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SUMMARY 

When digital data is transmitted over a noisy 

channel, there is always a chance that the received data 

will contain errors. Usually an error rate is specified 

above which the received data is considered unusable, 

and if the channel error rate exceeds this value then 

error correction coding can be used to reduce the error rate 

to an acceptable level. 

In recent years such coding techniques have become 

widespread, particularly hard decision decoding which is 

well established and documented. However, by making use 

of the additional statistical information in the received 

signal and making 'soft' decisions, soft-decision de-coding 

can provide improved coding gain and thereby increase the 

usefulness of a particular code. 

Most published results on soft-decision decoding 

are concerned with performance on random error channels. 

The preient work describes the application of soft 

decision techniques to burst noise channels and brings 

to light some of the problems involved. 

A new decoding method called parallel threshold 

decoding is introduced. The resulting decoders are more 

economical to implement than equivalent soft-decision 

decoders, yet they are shown to have superior performance 

on both random and burst noise channels. Performance 

evaluation was carried out using computer simulation, and 

also a prototype hardware decoder has been designed, 

constructed and tested. The improvement using parallel 



threshold decoding over conventional hard and soft 

decision decoding methods predicted by the simulations 

was verified for the hardware decoder. 

The work also includes an investigation into the 

use of slow microprocessors for implementing error 

correction cOding in fast transmission channels. This 

leads to the concept of a time shared decoder, where 

the microprocessor can spend more than the block receive 

time for decoding an erroneous block. Algorithms which 

lend themselves to this type of decoding are described 

and evaluated. 
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CHAPTER 1 

INTRODUCTION 

One of the serious prob~ems in a digital data 

communication systems, is the occurrence of errors in 

the data transmitted over a noisy channel. The user 

generally establishes an error rate above which the 

received data are not usable. If the received data will 

not meet the error rate requirements, error-correction 

coding can often be used to reduce errors to a tolerable 

level. In recent years the use of error-correction 

coding for solving this type of problem has become 

widespread. It is now used almost on a routine basis 

inmost new communication systems, because in addition 

to increasing the energy efficiency of communication 

links, coding ideas are providing new methods for solving 

existing problems in communication systems, among· many 

others, the elimination of intersymbol interference 

caused by either filtering or multipath signals. 

Since the appearance of Sh'annon' s classic papers 

in 1948 and 194J81~ a great deal of research has been 

devoted to the problem of designing efficient schemes 

by which information can be coded for reliable 

transmission across noisy channels. From a practical 

standpoint, it soon became clear that the real limit 

on communication rate was set not by Shannon's channel 

capacity, but by the complexity and the cost of implementing 

the coding scheme. For this reason during the last 
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twenty years or so, efforts have been directed towards 

the design of coding and decoding schemes which could 

be easily implemented. The first generalised decoding 

schemes of real significance to emerge were based on 

algebraic concepts. The algebraic techniques basically 

involve the simultaneous solution of sets of equation 

(6 7 15) . for location and values of errors. " . Nonalgebra1c 

decoding techniques, while accomplishing the same goal, 

are based upon simple structural aspects of the codes 

which permit the determination of error-patterns in a 

more direct fashion(59,61,72). The introduction of 

microprocessors, and the dramatic decrease in the cost 

of solid-state devices, gave designers a higher degree 

of freedom in implementing more complicated, yet practical 

error-correction systems. Consequently, researchers have 

been looking into new ideas to improve the already 

existing 

decoding 

decoding techniques. Although soft-decision 

was known as far back as 1954(5,82) it has 

relatively recently become a practial reality. The 

only 

additional information provided by the soft-decision in 

most instances can provide an additional coding gain, 

which was shown by Wozencraft(94) to be about 2d8, this 

additional gain can, therefore, significantly 

increase the usefulness of the code employed. The USe 

of soft-decision with block codes can be divided into 

two types according to the communication channel noise, 

firstly, soft-decision decoding for correcting random-

errors, and secondly, soft-decision decoding for correcting 

burst errors. The first type is well studied and 
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documented, while the second type is not as widely 

studied due to the complexity of formulating bursty 

channel statistics. 50ft-decision decoding for correcting 

random errors is particularly effective over a broad 

range of sNR, starting from low sNR values. Needless to 

say, at high sNR values the soft-decision decoding 

performance approaches that of a. conventional decoder, 

up to a point where the soft-decision decoding does not 

provide any additional gain. It has been shown(l8) that 

for quantization levels of eight or more, no improvement 

is achieved whether a lineat or optimum spacing is 

used, while an optimum spacing performs slighty better 

when the number of quantization levels is less than 

eight. Again it has been shownb~ many researchers that 

most of the gain can be achieved by eight level 

quantization, and that there is no real gain in increasing 

the number of quantization levels. On the other hand 

very little is published about soft-decision decoding 

of burst-errors, and not much is published in particular 

about the effect of the number of quantization levels 

on the decoder performance. 

The first aim of the work was to introduce an 

algorithm that can be used by a soft-decision decoder 

for correcting transmission errors when the transmission 

is over a bursty channel, then to study the effect of 

the number of quantization levels on the decoder 

performance. The soft-decision decoding was' expected 

to perform badly at very low burst sNR values, because 
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at these SNR values the additional information on which 

the decoder depends for its improved performance is 

not correct, due to the high noise power. The next step is 

to modify the introduced algorithm so it performs better 

at very low SNR values. 

Clearly, the binary channel mOdel(32) is no longer 

suitable to be used for the soft-decision transmission 

channel simulation, because its output is either '1' or 

'0'. Consequently, a new channel model has to be used, 

where the channel output is a sample of the analogue 

received signal. In such a channel, a burst is no longer 

defined by the errors, but by the noise power. Since 

binary codes are to be used, ihen it was necessary to 

make sure that the analogue channel model used for 

channel simulation in the study of the soft-decision 

performance is transferable to the binary channel model 

used in studying binary codes. Obviously, introducing 

the analogue channel model has to be achieved before 

continuing to fulfil the first aim. 

Most of the soft-decision decoding algorithms 

are based on the use of microprocessors to execute the 

complicated decoding algorithm, which in turn complicates 

the decoder and escalates its cost. Needless to say, 

that the decoding speed is a deciding factor in a real 

time decoding. Thus a complicated decoding algorithm, 

or even a simple one used at high transmission rate 

channels, might cause decoding problems in real time 

transmission systems because the lack of sp~ed, which 

in the best case can be rectified by using faster 
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microprocessors. Hence escalating the cost further more. 

The second aim was to look. at this problem and find an 

economical solution, so that slower microprocessors 

can be used, or very complicated algorithms can be used 

in high rate transmission channels. Consequently, soft

decision decoding algorithms can be used over a wider 

range of transmission rates. 

The idea of using a slow microprocessor can be 

explained as the following. During transmission errors 

tend to happen in some transmitted blocks, the number 

of these ~rroneous blocks depends on the noise power 

value. In general the percentage of these erroneous blocks 

to the overall transmitted blocks is small. If the 

decoding process is divided into ·syndrome calculation, 

error-detection, and error correction. The decoder is 

calculating the syndrome only for most of the transmission 

time, because the received blocks are error-free most 

of the transmission time, while the decoder has to 

finish all three phases during the receive time of 

one block, in order to be usable in real time transmission. 

The same argument is applicable when a microprocessor 

is used. Consequently, the microprocessor is idleing 

there for most of the time, while trying as fast as 

possible to execute the correction algorithm when an 

erroneous block is received. Assuming that the micro

processor is allowed to work on a time shared basis, 

which is, to allow the microprocessor to share the next 

block correction time for correcting the present erroneous 

block. Then in real time transmission there is no real 
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need for the microprocessor to finish the three decoding 

phases in the receive time of one block. Consequently, 

the, ,time sharing system can achieve higher transmission 

rates than the conventional real time decoder using 

the same decoding algorithm and same microprocessor. , 

Clearly, the time sharing system introduced some delay 

into the system, and requires buffers at the input and 

the output of the decoder. 

Generally, ,"oftrdecision decoding has a number of 

disadvantages, and a designer must think carefully before 

using such decodin''g techniques. As mentioned earlier, 

the average gain is about 2dB, and for most soft-decision 

algorithms the use of analogue to digital converters 

for quantizing the incoming signal is inevitable, so is 

the microprocessor. These two hardware items are " 

sophisticated, and subsequently costly, and in general 

their cost increases dramatically with their speed. 

Hence, although a soft-decision decoder is costly at 

low transmission rates, it is even more costly at high 

transmission rates,even without taking into account the 

software cost. It was found that whatever modifications 

are carried out on a soft-decision decoding algorithms, 

these inherited disadvantages, although affected in one 

way or another, are still there. In view of this, the 

third aim was to find a new type of decoding that can 

achieve higher gain, is simple to implement as a hardware, 

and the use of analogue to digital convert~rs and 

microprocessors is unnecessary. Such a system will have 

the advantage that its real time speed is limited only 
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by the maximum speed of the hardware used and not· 

by the decoding algorithm complexity. 

The third aim is achieved in the following way. 

A hard-decision decoder receives at its input, a binary 

digit~ .'0' or 'l'~ This digit is calculted from the 

received signal as follows. The demodulator supplies 

the detector with a sample of the received signal, and 

the detector set at some threshold value, detects the 

binary value from this sample. The threshold value is 

chosen in such a way as to minimize the probability of 

error in the received symbol, assuming that the probability 

of a symbol being '1' or '0' is equal. Clearly this 

strategy works well for the overall transmission, because 

the probability of '1' and 'o'~are equal. But it does not 

minimize the probability of error in a received block, 

unless the number of '1' and '0' are equal, which could 

be the case for some codeword, but not for all .• SUbsequently 

some additional gain can be obtained if an optimum 

threshold is used with each block. The soft-decision 

decoding used the same threshold value as a reference 

for the confidence number. Thus nothing of the optimum 

threshold gain is obtained. The parallel threshold decoder 

is based on the idea of obtaining this additional gain, 

by using the optimum threshold value of each block for 

detecting the received samples of that block. Obviously, 

the use of all possible values for optimum thresholds 

will require a variable threshold detector,' in addition 

to that the threshold value has to be calculated, which 

will complicate the decoder. Instead a fixed number of 
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thresholds are used, the output of each threshold is 

fed to a subdecoder, each of which consists of a 

complete decoder that can detect decoding failures. 

The parallel threshold decoder scans all subdecoders in 

a preset sequence, and once a codeword or correctable 

error pattern is detected, the information digits are 

accepted or corrected accordingly. The scan sequence is 

chosen so that the parallel threshold decoder tries to 

minimize the probability of error of the received symbol 

first, if no correctable error-pattern is found, the 

decoder attemps to minimize the received word probability 

of error. The second factor in preseting the scan sequence 

is to scan all subdecoders according to the weight 

value of the input threshold, so that the threshold 

likely to be optimum or near optimum for the highest 

number of codewords is scaned first. and the threshold 

likely to be optimum for the next to the highest number 

is scaned second and so on. The parallel threshold 

'decoder is interesting when error-trapping subdecoders 

are used, because in addition to the gain descirbed 

above, an additional gain over the conventional error

trapping decoder can be achieved by converting correctable 

but untrappable errors into trappable errors, thus 

reducing the number of decoding failures. The statistical 

parallel threshold rlecoder is a further modification 

of the parallel threshold decoder, it is used for error

correction of burst-errors, where any burst is likely 

to occur more frequently than any longer burst. The 

statistical parallel threshold decoder choses the 
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shortest error-pattern detected by all the subdecoders 

as the most likely error-pattern to have occured in the 

channel during transmission, while in turn each subdecoder 

has chosen previously the shortest possible error-pattern 

for the received word detected at its threshold. The 

parallel threshold decoder and the statistical parallel 

threshold decoder description shows that no analogue to 

digital convertors or microprocessors need be used, 

hence overcoming two of the major disadvantages of the 

soft-decision decoders. 

The parallel threshold decoding idea is used in the 

error-pattern search parallel threshold decoder, and the 

digit search parallel threshold decoder. The optimum 

threshold in the error-pattern search parallel threshold 

decoder is found by searching all the trapped error

patterns and then accepting the one that occured most. 

While the digit search parallel threshold decoder, corrects 

on a digit by digit basis, by scanning one bit of all 

the error-pattern that correspond to a digit of the 

received word at a time, if the number of bits indicating 

errors are larger than a certain threshold, that digit 

is assumed erroneous, and is corrected. And so on for 

all the received word digits. Here again no analogue to 

digital convertor is used, but a microprocessor may be 

required for the error-pattern search parallel threshold 

decoder. 
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CHAPTER 2 

BINARY CYCLIC CODES AND ERROR-TRAPPING TYPE DECODERS 

2.1-Binary Cyclic Codes 

During the past ten years. most of the research 

work done on block codes has been concentrated on a 

subclass of linear codes. namely. the cyclic codes. 

There are two reasons for this. Firstly. encoding and 

syndrome calculation of any cyclic code can be implemented 

easily by employing simple shift registers with feedback 

connections(6.55). Secondly. because of their structure. 

it is possible to find various simple and efficient 

decoding methods. 

Cyclic codes were first studied by Prange in 1957(70). 

Since then. many algebraic coding theorists(6.67.68) 

studied extensively cyclic codes and their implementations 

for both random-error correction and burst-error correction. 

2.1.1 Description of Cyclic Codes 

By definition. an (n.k) linear code is said to be 

cyclic if for any codeword C. where 

(2.1) 

a new word C(l) which is formed by shifting cyclically 

the components bf C once to the right. is a codeword 

where 

C(l) = (c l.co.c l •••.. ...• c 3' c 2) n- n- n-
( 2 • 2 ) 
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From the definition, it is clear that 

(c .,c . l'c . Z'·····,c l'cO'c l , .• n-l n-l+ n-l+ n-

... ,c ·z,c '1) n-l- n-l- ( Z • 3 ) 

is obtained by shifting the codeword C to the right 

cyclically i places, and is also a codeword. 

When the components of the codeword C are treated 

as coefficients of a polynomial, then 

C(X) 
( Z • 4 ) 

if the polynomial C(X) is multiplied by X mod Xn_l, the 

result 

Z n-Z n-l = c l+cOX+cIX + .•• +C 3X +C ZX n- n- n-

( Z • 5 ) 

is the polynomial representation of the codeword 

c(l)(x), and the multiplication by X mod Xn_l is seen 

as a cyclic shift to the right of the codeword represented 

by the polynomial C (X) . To obtain the codeword formed 

by shifting C (X) , i shifts to the right, C (X ) is multiplied 

by XiC(X) mod Xn_l. The result is 

Z i-I 
c .+c . lX+c . ZX + ..••.. +c IX + n-l n-l+ n-l+ n-

i i+l n-Z n-l 
cOX +cIx + ..••. . +c . ZX +c . IX n-l- n-1-

\ 

( Z .6) 
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Conversely, if the codewords of a linear cyclic 

code are represented by a set of polynomials, then for 

every codeword polynomial C(X), the code contains all 

cyclic shifts of C(X). And since the sum of codewords 

of a linear code is also a codeword of the same linear 

code, the code must contain all multiples of [(X) mod 

Xn_l. Which conclude that the codeword polynomials of 

any linear cyclic code consist of the multiples of some 

n 
generator polynomia.l mod X -I, where the generator 

polynomial g(X) is a divisor of Xn_l. 

The polynomial representation, enables the 

. . (66 67 70 72) 
development of some lmportant propertles ' , , for 

the cyclic codes, which make the simple implementation 

of encoding and syndrome calculation possible. The cyclic 

property, and the property that each codeword polynomial 

is a multiple of the generator polynomial minimize the 

storage facilities for the encoding dictionary, and make 

the shift-register devices very easily implemented. 

2.1.2 Shortened Cyclic Codes 

In certain applications, where the requirements 

of a system cannot be met by a suitable natural length 

of a code, it may be desirable to shorten a code to 

meet these requirements. The shortening is accomplished 

as follows. 

Given an (n,k) cyclic code, assuming the number of 

information digits r~quired by the system is a, then the 

B leading information digits of each block are assunled 

by the encoder afld the decoder to be zer os, where 
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B = k - a (2.7-a) 

It is clear from equation (2.7-a) that for the code to be 

a shortened code and meaningful. a should satisfy the 

following condition. 

k > a > 0 (2.7-b) 

Since the B zeros are assumed to be inserted at 

the encoder and deleted at the decoder. it is easy to 

that the shortened code consist of 2
k

- B codewords. see 

and that these codewords form an (n-B. k-B) linear code. 

This code is called a shortened cyclic code(67)and 

is not cyclic. It has at least the same error-correcting 

capability as the code from which it is derived. The 

encoding and syndrome calculation for a shortened cyclic 

code can be accomplished .by the same circuits as employed 

by the original cyclic code. This is because the deleted 

B zeros do not affect the parity-check calculations. The 

decoder for the original code can be used for decoding 

the shortened cyclic code simply by prefixing each 

received codeword with B zeros. This 

eliminated. however by modifying the 

of the syndrome register. 

prefixing can be 

feedback connection~67) 

Let an (n.k) cyclic code be a shortened code by B. 

if the correction procedure is unaltered. it would require 

additional B shifts corresponding to the omitted 

information digits. before the actual correction process 

is started. However. decoding can be accomplished more 
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quickly if, instead of calculating the syndrome of 

Xn-kR(X) as would be done for a cyclic code, the syndrome 

of Xn-k+BR(X) is calculated, where R(X) is the received 

word. This can be achieved by an automatic premultiplication 

by XB mod g(X). The technique is illustrated in the 

following example. 

Suppose it is necessary to shorten the (15,11) 

single-err or-correcting Hamming code which has the 

generator polynomial 

g(X) (2.8-a) 

by 6=5, so that a new (10,6) single-error-correcting 

shortened code will result. 

are 

The feedback connections for the premultiplication 

the remainder obtained by dividing Xn - k + 6 =X 9 by g(X). 

The result of the division is 

p (X) = X + X3 
m (2.8-b) 

The altered Meggitt decoder for the new (10,6) 

code is shown in fig.(2.1) while the Meggitt decoder 

for the (15,11) code is shown in fig.(2.2). 

It can be seen that feedback connections of p (X) m 

in fig.(2.1) are used only when the received word is 

fed to the syndrome register, otherwise the generator 

polynomial g(X) feedback connections are used. 

The modification advantage over the unaltered 
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10 - Bit reQister + 

Correcled word 

Fig.2.1 AMeggitt decoder for a (10,6) shortened 

Hamming code. 

+ 

15-8it reqisrer 

+ , 
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I 
I 
I 
I 
I 
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I 
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I 
I ---________ ...J 

Corrected word 

Fig.2.2 A Meggitt decoder for the (15,11) 

Hamming code. 
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decoder is the speed of which the correction process is 

started, and the bigger 8 the more the speed gain. But 

that is achieved on the account of complicating the 

hardware. 

2.2-Error-trapping Decoding for Cyclic Codes 

Decoding of cyclic codes have been studied 

t . 1 (3B,66,71,95) bib f h ex enS1ve y y a arge num er 0 researc ers. 

The general decoding algorithms for BCH codes given by 

Peterson(67) are well known. Also, other interesting 

decoding methods have been given by Meggitt(62), Prange(72), 

and Kasami(49). 

. . (55 61 62 67) The general decodlng method of Meggltt ' , , 

applies to any cyclic code, but refinements are necessary 

for practial implementations. Error-trapping decoding 

is based on Meggitt decoding technique, it uses a very 

simple combinational logic circuit for error detection 

and correction. 

Cyclic codes are divided into two groups. Firstly, 

cyclic codes for . (6 55 67 6B) correctlng random errors ' " . 

Secondly, cyclic codes for correcting single-burst 

(3,21,29,36,37,47,48,50,63,77) C tl errors . onsequen y, 

there are different types of error-trapping decoders, 

for decoding each group of codes. 

2.2.1 Error-trapping Decoding for Correcting Random Errors 

Suppose that an (n,k) cyclic code is used for 

correcting errors in a communication channel, Let C(X) 

be the transmitted binary codeword and R(X) the received 

binary word, where C(X) is as in Eq.(2.4) 
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c (X) 2 n-l (2.4) = c O+c I X+c 2 X + ..•.••.• +cn_1X 

and 

R (X) 2 n-l (2.9) = rO+rlX+r2X + ••.•••.. +rn_1X 

depending on the channel noise R(X) mayor may not be 

the transmitted codeword C(X). The decoder calculates 

the syndrome S(X), which is equal to the remainder 

resulting from dividing the received word polynomial 

R(X) by the generator polynomial g(X), i.e 

R(X) = p(X) g(X) + S(X) (2.10) 

where S(X) is a polynomial of degree. n-k-l or less. 

If the syndrome is zero, the received word is a codeword 

and the decoder will accept the received codeword as the 

transmitted codeword. If the syndrome is a non-zero 

vector, the received word is not a codeword, and errors 

have been detected. Let the error polynomial be E(X) 

where 

E(X) (2.11) 

then 

R(X) = C(X) ffi E(X) (2.12) 

where ffi represent modulo two addition, since C(X) is a 

codeword polynomial it must be multiple of the generator 

polynomial g(X), say 

C(X) = m(X)g(X) (2.13) 
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Combining Eqs.(2.10),(2.12), and (2.13), we obtain 

E (X) = [p(X)+m(X))g(X)+S(X) (2.14) 

let P(X)+m(X) = q(X) (2.15) 

E (X ) = q(X)g(X) + S (X) (2.16) 

If the errors of E(X) are confined to the n-k 

parity-check postions of P(X), then E(X) is a polynomial 

of degree n-k-l or less. It follows that q(X)=O in 

Eq.(2.16) and 

E(X) = S(X) (2.17) 

Thus, correction is done by modulo-2 addition of the 

syndrome and the n-k received parity check digits. Or, 

alternatively, by simply outputing the information 

digits to the data sink if the partiy-check digits are 

no longer required. 

Suppose that the errors are not confined to the 

n-k parity-check positions of R(X), but are confined to 

the n-k-l low-order parity check digits, plus one error 

in the leading high-order information digits. In such 

cases the error polynomial E(X) is of degree higher 

than n-k-l, and correction cannot be done directly. 

However, if the received word is shifted once to the 

iight cyclically then the shifted error-pattern E(I)(X) 

is confined to the n-k parity-check digits of the shifted 

received word R(l)(x). Since from Eq.(2.2) C(l(X) is a 

codeword, then the syndrome of R(l(X) is identical to 
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the error polynomial E(l)(X) and correction can be made 

in the same way as in the previous step. 

Making use of the cyclic properties of the code 

the syndrome of R(l)(x) can be calculated from the 

received word syndrome 5(X) by dividing 5(X) by the 

generator polynomial g(X). 

Conversely, if the error-pattern is confined to 

any n-k consecutive position including the end round 

case, i.e 

E(X) = 
i i+l (n-k)+i-l 

e.X +e·+lX + .•.... +e( k) . IX 1 1 n- +1-

(2.18) 

after n-i cyclic shifts, the error-pattern will be 

confined to the n-k parity check positions. The 

corresponding syndrome is calculated by dividing 5(X) 

by the generator polynomial g(X), n-i times. As a result 

the errors can be corrected. 

2.2.2 Error-trapping Decoder for Correcting Random Errors 

Given an (n,k) cyclic code, which is capable of 

correcting all t or fewer random errors in any codeword,an 

error-trapping decoder is shown in fig.(2.3), the operation 

of which is described by the fOllowing(55,64,65,79). 

Input 
+ 

Threshold Gate 

To Activate Gates I, 2 and 3 

Buffer Register 

Fig.2.3 An error-trapping decoder 



- 19 -

STEP 1. Gate 1 is turned on, Gate 2 and 3 are 

turned off. The received word R(X) is read into the 

syndrome register and into the buffer register 

simultaneously (if the parity-check digits are no 

longer required, the buffer register has only to store 

the k received information digits). As soon as the entire 

received word has been shifted into the syndrome register, 

the contents of the register is the syndrome of the 

received word. 

STEP 2. The Hamming weight of the syndrome is 

tested by an (n-k) input threshold gate. The output of 

this gate is 'I' when t or fewer of its inputs are '1'. 

Otherwise, the output is zero. 

STEP 3. a)If the output of the threshold gate is 

'1', which means either the syndrome is zero and the 

received word is a codeword, or the Hamming weight of 

the syndrome is 

(2.19) 

and the errors are confined to the n-k parity-check 

positions. Consequently, the k received information 

digits in the buffer register are error-free in both 

cases. Gate 3 is turned on, and the information digits 

are sent to the data sink. The syndrome register is set 

to zero. To correct the next received word go to STEP 1. 

b) If the threshold gate output is '0', the 

syndrome register is then shifted once, with Gate 1 

turned on, and Gate 2 and 3 turned off. Go to STEP 4. 
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STEP 4. a)If the threshold gate output is '1'. 

the errors are confined to the positions Xn-l.XD.Xl 

x(n-k-2) of the received word. The leftmost digit in 

the syndrome matches the error at the positions Xn - l of 

the received word. the other n-k-l digits in the syndrome 

.. ° 1 n-k-2 register match the errors at posltl0ns X .X ••..• X 

of the received word. The output of the threshold gate 

turns Gate 1 off and sets a clock to count from 2. The 

syndrome register is shifted to the right in step with 

the clock. As soon as the clock has reached n-k. the 

syndrome register contain '1' in the rightmost position. 

and zeros in all the rest. The '1' matches the error in 

position X
n

- l of the received word. Gates 2 and 3 are 

turned on. the k information digits are read out of the 

buffer. while the syndrome register is shifted to the 

right at the same time. Thus. the first received 

information digit is corrected by the '1' coming out of 

the syndrome register. and the decoding is completed. 

Return to STEP 1. 

b)If the threshold gate output is still 

'0'. the syndrome register is shifted once again with 

Gate 1 turned on. and Gates 2 and 3 turned off. Go to 

STEP 5. 

STEP 5. Step 4b is repeated until the threshold 

gate output goes up to '1'. If the output is '1' after 

the ith shift. for l~i~n-k. the clock starts to count 

from i+l. At the same time. the syndrome register is 

shifted with Gate 1 turned off. As soon as the clock 
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has counted to n-k, the rightmost i digits in the syndrome 

register match the errors in the first i received 

information digits in the buffer register. The other 

information digits are error-free. Gates 2 and 3 are 

then turned on. The received information digits are 

read out of the buffer, with shifting the syndrome 

register to the right at the same time for correction. 

Return to STEP 1. 

STEP 6. If the output of the threshold gate never 

goes up to '1', by the time the syndrome has been shifted 

n-k times, Gate 3 is turned on, with Gate 1 still on, and 

the information digits are read out. At the same time the 

syndrome register is shifted once for each information 

digit read out. As soon as the threshold gate output goes 

up to '1', the contents of the syndrome register match 

the errors in the rightmost n-k digits in the buffer 

register. Gate 1 is turned off, and Gate 2 is turned on, 

the syndrome register is shifted to the right once as 

every information digit is read out, so that the erroneous 

information digits are corrected one by one._ 

STEP 7. The syndrome register is set to zero before 

starting to calculate the next received word syndrome. 

Go to STEP 1. 

If the threshold gate output never goes up to '1' 

by the time the k received information digits have been 

read out of the buffer, then either an uncorrectable 

error-pattern has occured or a correctable error-pattern 

with errors not confined to n-k consecutive positions 
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has occured (untrappable error-pattern). 

2.2.3 Error-Trapping Decoding for Correcting 

Single-Burst Errors 

Given an (n,k) cyclic code, which is capable of 

correcting all single-bursts of length £ or less. The 

t " d d" (1,2,55,67,6B)" d "b d error- rapp1ng eco 1ng 1S as escr1 e 

in section 2.2.1 with a slight variation. 

Let R(X) be the received word as in Eq.(2.4), and 

E(X) the error polynomial as in Eq.(2.1), and 

(2.20) 

be the syndrome of R(X). If the errors of R(X) are 

confined to the £ high-order parity-check positions 

Xn - k -£, .... . Xn - k - 2 ,X n - k - l of R(X). Then according to 

Eq.(2.16), the £ high-order bits of SeX) match the 

errors of E(X), and the remaining n-k-£ low-order bits 

of SeX) are zeros. 

Suppose that the errors are not confined to the 

£ high-order digits of the parity-check postions of 

R(X), but are confined to certain £ consecutive positions 

of R(X). Where 

E(X) e Xp p+l XP+£-l = +e IX + ....•..•• +e n 1 p p+ . P+;v-

(2.21) 

according to the previous discussion, the errors should 

be confined to the £ high-order of an n-k vector, so 
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that they can be corrected. Let B(X) be a polynomial of 

degree n-k-l, where the low-order n-k-~ coefficients 

are all zeros, and the high-order coefficients of E(X), 

then 

B(X) 3 n-k-~ n-k-l 
= D+DX+DX. + ••••• •• +epX + • ••• +ep+~_lX 

the error-pattern E(X) and B(X) can be superimposed if 

B(X) is shifted j times. 

where 

j = p -(n-k-~) 

from Eq.(2.16) 

s(X) = E(X) - q(X)g(X) 

substituting Eq.(2.23), in Eq.(2.25) 

let 
i = n-j 

multipling Eq.(2.26), by X(i) y.ields 

by using Eq.(2.27) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.2B) 

(2.29) 

Since g(X) divides Xn_l, and B(X) has a degree 

less than the degree of g(X). Then B(X) is the remainder 
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error_patterns of length ~ or less in the high-order 

part of the syndrome, the decoder detects the n-k-~ 

zeros in the n-k-~ low-order part of the syndrome. As 

soon as n-k-l zeros are detected, a correctable error

pattern is trapped in the ~ high-order part of the 

syndrome, which is of length ~ or less. The zero 

detection is accomplished by the use of an n-k-~ input 

OR gate, where the output is '0' when an all zeros 

input is present, otherwise the output is '1'. The 

decoding procedure can be described in the following 

ste'ps: 

STEP 1. Gate 1 is turned on, Gates 2 and 3 are 

turned off. The syndrome is calculated by shifting the 

received word R(X) into the syndrome register. At the 

same time, if the parity-check digits are no longer 

required, the k information digits are shifted into 

the buffer register. 

STEP 2. a)If the OR gate output is '0'. Then, 

either, the syndrome is zero and the received word is 

a codeword, or the error is trappable and is confined 

to the ~ high-order parity-check digits, which leave 

the information digits error-free. In both cases, Gate 3 

is turned on, with Gate 2 still off, and the information 

digits are read out to the data sink. The syndrome 

register is set to zero. Return to STEP 1. 

b)If the OR gate output is '1'. Gate 1 

is turned on, Gates 2 and 3 are turned off. The syndrome 

register is shi fted. As soon as the OR gate output 

goes down to '0', the ~ rightmost stages of the syndrome 



- 26 -

register contain the error-pattern. Three phases must 

be considered, so that the correction can be made. 

STEP 3. a)If the DR gate output goes down to 'D' 

after the ith shift for l~i~n-k-~. Then the errors of 

the E(X) are confined to the parity-check digits of 

R(X). Thus, the k received information digits are error-

free. Gate 2 is turned on, and the information digits 

are read out to the data sink. The syndrome register is 

set to zero. Return to STEP 1. 

b)If the DR ~ate output never goes down 

to 'D' during the first n-k-~ shifts. Then the burst is 

not confined to the n-k parity-check digits of R(X). 

STEP 4. If the DR gate output goes down to 'D' 

after the (n_k_~+i)th shift of the syndrome register 

for l~i~~, then the burst is confined to the positions 

Xn-i, •.• ,Xn-1,XD, •..• ,X~-i-l of R(X). The i bits 

contained in the ~th, (~_l)th; •.• (~_i+l)th stages of 

the syndrome registe~ (from the right end) match the 

n-i n-2 n-1 () error bits at the positions X , ••• ,X ,X of R X • 

At this instant, a clock starts to count from (n-k-~+i+l). 

The syndrome register is shifted (in step with the 

clock) with Gate 1 turned off. As soon as the clock has 

counted up to n-k, the i rightmost bits in the syndrome 

register match the error in the first i received 

information digits in the buffer register. Gates 2 and3 

are then turned on. The received information digits 

are read out of the buffer for correction. The syndrome 

register is set to zero. Return to STEP 1. 
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STEP 5. If after the syndrome register has been 

shifted n-k times, the OR gate output never goes down 

to '0', then Gate 3 is turned on and the received 

information digits are read out of the buffer one at 

a time. At the same time, the syndrome register is 

shifted with Gate 1 turned on. As soon as the OR gate 

output goes down to '0'. the contents of the i rightmost 

stages of the syndrome register match the errors in the 

next ~ received information digits to come out of the 

buffer. Gate 2 is turned on and the erroneous information 

digits are corrected ~y the digits coming out from the 

syndrome register with Gate 1 turned off. 

If the OR gate output never goes down to '0' by 

the time the k information digits have been read out 

of the buffer, then a burst of length longer than ~ 

have been detected. 

2.2.5 Properties of Error~Trapping Decoding 

Efficiency of error-trapping decoding, depends 

greatly on the ability to trap the error-pattern, which 

contaminated the transmitted codeword. If the uncorrectable 

error-patterns (which are beyond the correction ability 

of the code used) are excluded, error-trapping decoding 

decodes effectively all single-error-correcting codes, 

and single-burst-error-correcting codes. It is also 

effective for decoding some double-err or-correcting 

codes which have a low rate. But when it is applied to 

high rate codes, with large error-correcting capability, 

it becomes very ineffective, and will be able to correct 



- 28 -

only a small percentage of the total correctable errors(55). 

While the code rate does not affect the performance of 

the decoder when used to decode burst-err or-correcting 

codes. 

The main disadvantage of the error-trapping decoding 

is the disability to trap all the correctable error

patterns. In general this disadvantage increases the 

higher the code rate is (excluding the single-error

correcting codes, and single burst-error-correcting 

codes). The other. disadvantage is that unlike some other 

decoders, the error-trapping decoders will correct only 

terrors orless for random-error-correcting codes, or 

a burst of length ~ or less for burst-err or-correcting 

codes, and will not consider any more than t or longer 

then ~ error_patterns even if the code can correct these 

error_patterns. 

On the other hand, the main advantage is that, 

in the case of decoding failure, where the received 

word is not a codeword, or is not corrected to a 

codeword, either because the error-pattern is uncorrectable 

or is untrappable, the decoder will inform of such an 

occurrance, and an appropriate action can be taken, 

i.e. ask for retransmission of the erroneous word, if 

this facility is available. The other advantage is that 

the combinational logic circuit is very simple, and 

inexpensive. So that a complete decoder for a certain 

code can be built easily on one integrated circuit~ 

Because of the advantage, a great deal of work 
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is done to overcome the disadvantages. In an effort 

to extend the application of the random-err or-trapping 

decoding to multiple-error-correcting codes, several 

modifications have been devised(49,57,73,79,80,90), 

while Gallager(31) proposed an optimum decoding method 

for burst-err or-correcting codes based on the burst-

error-trapping decoding. 

2.3-The Optimum Decoding for Burst-Error-Correcting Codes 

Although the decoder described in section (2.2.4) 

is efficient in correcting all burst error of length ~ 

or less, it is still a fraction of the correctable error_ 

patterns (coset leaders). 

The number of possible error_patterns of length ~ 

~ -1 or less, in a word of length n is n2 , the total 

number of the correctable burst errors of length n-k is 

2n-k. Then the ratio of the correctable error of length ~ 

or less is 

R 
c 

= 
~ -1 n2 

The most efficient burst-error-correcting codes are 

the optimal codes, which meet the Reiger bound(77). 

They satisfy the condition 

~ opt = 
n-k 

2 

Substituting Eq.(2.31) in Eq.(2.30) 

(2.30) 
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n-k --1 
n2 2 

(2.32) 

it can be seen from Eq.(2.321 that for large n, R is a c 

small fraction. It is also clear that R is even smaller 
c 

for nonoptimal codes. 

Gallager(3l) introduced a modification to the 

burst-error-trapping decoder in such a way that it 

corrects all the correctable burst errors of length n-k 

or less; that is, besides correcting all bursts of length 

~ or less, the decoder also corrects those bursts of 

length ~+l to n-k, which are used as coset leaders. 

An optimum burst-error-correcting decoder for a 

cyclic code is defined as a decoder which, given the 

received word R(X), selects C(X) as the transmitted 

codeword, for which R(X)-C(X) contains the shortest 

error burst. Such a decoder would minimize the probability 

of decoding error on a channel for which each burst of 

any given length is less likely than each burst of any 

shorter length. 

The performance of the optimum decoder is plotted 

in fig.(2.5). It is interesting to notice that when 

n-k and ~ are large, most bursts are corrected for 

~'<n-k-log2n where ~'~~. It can be seen from fig.(2.5) 

that increasing the burst correcting capability ~ raises 

the flat part of the exponent function of the uncorrectable 

bursts e(~'). Decreasing the fraction of uncorrectable 

bursts in the vicinity of ~'=(n-k~' 
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n-k-R.+l 

N-k 

" fig.(2.5)' Exponent for f~action of uncorrectable 

burst of length R.' 

Unfo~tunatley, relatively little is known about 

how to choose the generator polynomial g(X) for a given 

nand k to maximize R.. Fire(26) has developed a large 

class of cyclic codes wi th reasonably large values of 

R., Elspas and Short(21) have published a short table of 

cyclic codes with optimum values of R.. Lin(55) published 

some efficient cyclic codes and shortened cyclic codes. 

K .(4B,50) 1 . t bl f h t d l' asaml has a so glven a a e 0 s or ene cyc lC 

codes with optimum value of R.. 

2.3.1 An Optimum Decoder for Correcting Single-Burst, Errors 

An optimum decoder is shown in fig.(2.6), assuming 

that the decoder is used to decode an (n,k) cyclic code, 

which is able to correct all burst of errors of length 

R. or less. The decoding procedure can be described in the 

follciwing steps: 

STEP 1. Gate 1 is turned on, Gate 2 and 3 are 

turned off. The received word R(X) is read into the 

syndrome register, and into the buffer register 

·This figure is taken from Gallager's book Information 

Theory and Reliable Communication "'. ref. 31. 



- - - - - - - -

Feedback Connections 
Gate 1 

input 
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Fig.2.6 An optimum decoder for single-burst-error cyclic code 
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simultaneously (when the parity-check digits are not 

required, the buffer register has only to store the k 

received information digits). As soon as the entire 

received word has been shifted into the syndrome register, 

the contents of the register is the syndrome of the 

received word. 

STEP 2. The syndrome is tested, if it is zero, 

then the received word is a codeword. Gate 3 is turned 

on, with Gate 2 turned off, and the information digits 

are read out to the data sink. The syndrome register is 

set to zero. Return to STEP 1. If the syndrome is not 

zero, n-k '1' are stored in the burst store, and the 

syndrome register is shifted once with Gate 1 turned on 

and Gates 2 and 3 turned off. 

STEP 3. The syndrome content is tested by the 

control logic, if the burst error is not confined to 

the rightmost digits of the syndrome register go to 

STEP 4. Otherwise the burst length is calculated. If 

the length of the burst error which is in the syndrome 

register is found to be less than the length of the 

burst error in the burst store, then, the content of 

the syndrome register is transferred to the burst store. 

Otherwise, the content of the burst store is kept unchanged. 

STEP 4. With Gate 1 turned on, and Gate 2 and 3 

are turned off. The syndrome register is shifted n 

times, STEP 3 is repeated after each shift. After the 

n shifts, the contents of the syndrome register will be 

the syndrome of the received word, while the burst store 
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will contain the shortest burst error. 

STEP 5. The syndrome register is shifted, with 

Gate 1 turned on and Gates 2 and 3 turned off. As soon 

as the contents of the syndrome register contain the 

shortest error burst, i.e. its content match the content 

of the burst store, the correction can be made. Let 

the syndrome register contain the shortest error burst 

after the ith shift, then three stages should be considered. 

STEP 6.a)If i=O, then the burst errors confine 

to the n-k parity-check digits, and the information digits 

in the buffer register are error-free. Gate 3 is then 

turned on, and with Gate 2 turned off, the information 

digits are read out to the data sink. Thus the decoding 

is completed. The syndrome register is set to zero. 

Return to STEP 1. 

b) If l~i~n-k, the clock starts to count 

from i+l. At the same time, the syndrome register is 

shifted with Gate 1 turned off. As soon as the clock 

has counted to n-k, the rightmost i digits in the 

syndrome register match the errors in the first i received 

information digits in the buffer register. The other 

information digits are error-free. Gates 2 and 3 are 

then turned on. The received information digits are 

read out of the buffer for correction. Return to STEP 1. 

c) If the contents of the syndrome register 

never matched the burst store by the time the syndrome 

register has been shifted n-k times (with Gate 1 turned 

on), Gate 3 is then turned on and the received information 

digits are read out of the buffer one for each shift of 
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the syndrome register. As soon as the syndrome register 

is shifted i times, its content match the errors in the 

rightmost n-k digits in the buffer register. Gate 1 is 

turned off, and Gate 2 is turned on and the erroneous 

information digits are corrected by the digits coming 

out from the syndrome register. As soon as the k 

information digits are read out of the buffer register, 

the syndrome register is set to zero. Return to STEP 1. 

Depending on the design of the logic circuit, 

some times it could be better to store the burst-error 

length and the number of shifts, of the burst to be stored 

in the burst store instead of storing the actual burst. 

Another suggestion is to store the burst-error length, 

and set an n counter to zero, then increment the counter 

with each shift of the syndrome register. The same 

burst error will appear in the syndrome register once 

n shifts are completed, i.e. the n counter returns to 

zero. 

A number of modifications are sometimes de~irable 

in such a decoder.Fbr example, the 'round the end' 

bursts can be ignored since they are usually much less 

likely to happen than the ordinary bursts. Such a 

modification will simplify the decoding process greatly, 

in addition to the simplification of the control logic. 

Another modification is to count as a detected error any 

burst longer than a given length. This. modification is of 

great significance when a retransmission facility is 

available. Finally, in some cases when two or more 

bursts of the same length as the shortest burst are 
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present, the decoder is confused in determining which 

burst to use. The detection process can be modified 

so that, the decoder can look at both the number of 

errors in the burst and the length of the burst to 

decide which burst is the more likely one. 

On one hand, the optimum decoder has the advantage 

of being able to correct burst errors longer than ~. 

On the other hand, it has the disadvantage of being 

unable to detect uncorrectable errors. To overcome this 

disadvantage the second modification described above is 

used. Let an (n,k) cyclic code be used, where n is large. 

According to fig.(2.5) the optimum decoder can correct 

all burst-error of length ~' or less where 

(2.33) 

depending on Eq.(2.33), the optimum decoder can be 

modified to accept the corrected word as the transmitted 

codewrird, whenever the detected burst error is of length 

~. or less. And to inform of the detection of an erroneous 

word, when the detected burst error is longer than ~', 

so that an appropriate reaction can be taken. A modified 

optimum decoder in the way described above is more 

complicated than the ordinary optimum decoder which is 

in turn more complicated than the error-trapping decoder. 

2.4-Soft-Decision Decoding 

In a communication system using error-correcting 

codes for error control, the transmitted bit stream 
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usually carries a great deal of information about the 

nois~ in the channel. Although, in general, when dealing 

with binary codes, the decoding techniques developed 

(31,49,55,67) h 1 h t t . assume a c anne w ose ou pu 1S also 

binary, for many communication applications this 

assumption is not necessary and furthermore, to make a 

'hard' decision without regard to these additional 

noise information is to·throw information away and 

degrade the performance of the system. This situation 

was tolerated for a time because it was thought that 

the loss in performance was justified by the simplicity 

of the digital decoder. Recently, the great advance in 

electronic technology, makes this justification come 

into question, and there have been many proposals for 

reducing this performance loss through modified 

d d (13,22,23,24,25,27,33,34,35) h" h t k d t eco ers· w 1C a es a van age 

of the additional information by abstraction of the 

channel measurement information. 

Failure correction, or forced erasure detection, 

11 d d " (8,14, 41,42,45,51,54,58,69,83,84,92) or nu -zone eco 1ng 

can be considered as the fiist step in soft-decision 

decoding. Received signal elements lying on both sides 

near the threshold level, are passed to the decoder 

labelled as erasures, so that the decoder has some 

knowledge of where the errors are likely to be. 8ecause 

the channel noise added to the transmitted elements is 

likely to have affected the elements near the threshold 

more than the far elements from the threshold level. 
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The next step nearer to soft-decision decoding 

was the extention of the null-zone detection, to the 

double null-zone detection, which gave an improvement 

in the performance(54) over the null-zone detection. 

The generalisation to more than two null-zones, with 

the improvement in the performance rise as the number 

of zones is increased. This general form of null-zone 

detection is called soft-decision decoding(13,20,34,40, 

85,86,87) 

An early example of the use of channel measurement 

information with block codes is gi ven by Wagner decoding (5,82) 

and its generalization(30), where channel measurement 

information is used to extend by 1 the error-correcting 

capabilities of a code whose minimum distance is an 

even number~ Recently considerably more sophisticated 

approaches for using channel measurement information 

. (10 12 13 19 22 23 24 
w~th block codes have been developed ' , , , , , , 

25,27,33,34,35,59,91) 

A block diagram of a communication system using 

a soft-decision is shown in fig.(2.7), the information 

digits are encoded to give the transmitted codeword, 

these binary digits are fed into a data modulator, which 

determines the transmi tted wav.eform x(t). When a binary 

channel is assumed, the data demodulator produces a 

sequence of n binary digits R where r. are the coefficients 
~ 

of R(X) in Eq.(2.9) 

(2.34 ) 
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which are based on the received waveform y(t). In the 

case of soft-decision decoding the data demodulator 

will supply the binary sequence R, and in addition, a 

sequence of n positive numbers denoted by a, where 

(2.35) 

will be supplied. These positive numbers, called the 

channel measurement information, are used by the decoder 

to provide a measure of the relative reliability of the 

received binary digits. Then if 

a. > a. 
1 J 

(2.36 ) 

the decoder shall assume that r. is more likely to be . 1 

correct than r .. Each value of a coefficients a. is 
J 1 

viewed as a confidence value on the reliability of 

each received digit. Since the decoder is fed both the 

received word R(X) and the sequence a, then the decoder 

is no longer a true binary decoder. 

For many applications the abstraction of channel 

measurement information is relatively a simple matter. 

For example, if the magnitude of the decision statistic 

of each received digit is assumed to be monotonically 

related to the probability that the digit is received 

correctly, the required channel measurement information 

can be obtained by simply replacing the I-bit output 

device by a J-bit analogue-ta-digital converter. These 

J-bits represent Q quantization levels symmetrically 

spaced about the hard-decision boundary, where 
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(2.37) 

Let us assume that the waveform representing the ith 

element has entered the demodulator the output is the 

estimate of the received ith binary digit given by the 

J-bit word. The output of the quantizer v. is 
1 

V. 
1 = v. l'v. 2'v. 3'·······,v. J 1 , 1 , 1 , 1 , 

where the first bit v. 1 
" 

is the hard-decision and the 

(2.38) 

remaining J-l bits give an indication of the confidence 

of that estimate. The confidence number a. of the ith 

element is defined as 

1 

when v. 1 = D 
1 , 

a . = (v. 2' v. 3'·· .. ·' v. J) III (1, 1, ........ , 1) 
1 1, 1, 1, 

when v. I = I 
1 , 

(2.39-A) 

(2.39-8) 

where III represent modulo-two addition, from Eqs.(2.38) and 

(2.39) the quantizer output v. can be represented as 
1 

V. = v. l,a. 
1 1, 1 

(2.40 ) 

The confidence number a can be used either in the binary 

or the decimal form depending on the type of algorithm 

used for correction. 
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2.4.1 Improvement Over The Hard-Decision Decoding 

First, consider the random-error channel. Let 

d h be the hard minimum distance of code, then its 

bounded-distance hard correcting power is the largest 

integer. 

(2.41) 

In the soft-decision sense codewords (paths) are 

~d =(O-l)d soft-decision levels apart, and therefore 
s h 

the bounded distance guaranteed soft-decision error 

correction power in levels is 

t ~(d -1)/2 s s (2.42) 

and 0/2 or more soft-decision errors will result of 

a hard-decision error, since the soft-decision decoder 

can correct t soft-decision errors, then the number s 

of hard-decision errors that can be corrected by the 

use of soft-decision technique is 

th = t/(0/2) (2.43) 

• 
Substituting Eq.(2.42) in Eq.(2.43) 

th 
2 

[(d s -l)/2) (2.44) = Q 

th = 
1 
0 

[(0-1 )dh-l) (2.45 ) 
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for large Q 

(2.46 ) 

Thus, the correction power of the code is doubled. 

It should be noted that the doubling of the correction 

power of a code is an upper bound on the improvement, 

and will be achieved only at very high SNR. While, at 

low SNR the average improvement will be significantly 

less than this. 

Considering a Gaussian channel as the transmission 

media, the soft-decision decoding has an improvement of 

3 dB in coding gain(25,94)for a very high SNR. For a 

noisy channel the improvement will drop to 2 dB. These 

gains are obtained when the quantization levels are 

infinite. For more practical values of quantization 

levels, the improvement is less, but fortunately the 

degradation in performance due to using fewer quantization 

levels is not linear so the degradation involved(lB,44) 

in usin~ B-level equal-spacing quantization is only 

about 0.2 dB, which gives an improvement of 2.8 dB at 

high SNR, and 1.B dB for low SNR values. 

In case of Rayleigh channel, the soft-decision 

decoding is capable theoretically(25) of providing much 

larger coding gain than in the case of the Gaussian 

channel. For example at high SNR the soft-decision 

decoding requires approximately half the SNR in dB to 

achieve the same output bit error as hard-decision 

decoding. It must be noted, however 
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that the expected halving in power requirement will 

not be achieved at low SNR. In general, the increase 

in improvement where soft-decision techniques are applied 

to a non-Gaussian channel is more than the improvement 

in the Gaussian channel case. 

As mentioned earlier the abstraction of channel 

measurement is done by quantizing the incoming signal 

into Q levels symmetrially spaced about the hard-decision 

threshold, but these Q levels, although assumed linearly 

(equally) spaced up to now, need not be .. In fact, it has 

b h (40,46,60,76) that I' . . een s own a non- lnear spaclng may 

be optimum. In the case of a Gaussian channel a 3-level 

optimum-spacing quantization degrades the code gain by 

about IdB only. 

If we next consider a burst-error channel, it is 

not possible to derive a theoretical soft-decision 

improvement figure for this, because of the lack of a 

simple burst-noise model. In general, the burst channel 

can be considered(9) to be a diffused-burst channel in 

which error bursts are separated by relatively short 

gaps of low density of errors. Therefore any code used 

on such a channel must have burst and random-error-

correction capability to achieve high improvement. 

However, one method of evaluating the improvement is 

by simulation. 

Given a random-err or-correcting code capable of 

correcting t random errors, this same code is capable 

of correcting all burst errors of length t or less, 

Since the use of soft-decision decoding extend the 
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random-error-correcting capability to 2t accordin~ to 

Eq.(2.46), then the same code can correct all burst 

errors of length 2t or less if soft-decision decoding 

is used. 

Conversly, one can assume that the soft-decision 

decoding doubles the power of burst-error-correcting 

codes. 

2.4.2 Error-pattern Soft Weight Calculation 

The data modulator of fig.(2.7) will output two 

sequences, when the waveform y(t) is received 

R = r O,r l ,r2 ,····· .,r n _ l 
(2.34) 

which is the hard-decision estimate of the transmitted 

codeword, and the confidence number a for the received 

word elements. 

where each element a. is calculated as in Eq.(2.39) 
1 

let 

where i3. = decimal value of (a.) 
1 1 

it can be seen from Eq.(2.39) that 13. is large, when 
1 

r. is likely to be correct, and is small, when r. is 
1 1 

likely to be erroneous. 

Assuming the error-pattern that corrupted the 

transmitted codeword is 

E(X) 

(2.35 ) 

(2.47) 

(2.48) 

(2.11) 
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Fig.2.7 Communication system block diagram 
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then, the error-pattern soft weight (EPSW) is 

n-l 
EPSW = L e. 

i=O 1 

S. 
1 

(2.49) 

it is clear that the value of EPSW is relatively small, 

since the confidence numbers Si should be small for all 

the error values. 

Soft-decision is simply calculating the soft weight 

for all the possible error-patterns, and accepting the 

error-pattern which has the smallest EPSW as the error-

pattern that corrupted the transmitted codeword. 

If a cyclic code is used, then all the possible 

error-patterns are calculated by shifting the syndrome 

register n times, after calculating the syndrome. In 

fact, significantly fewer additions than in Eq.(2.49) 

are required, if one observes that, in such cases, the 

error-pattern is confined to the n-k syndrome bits only. 

Assuming that S is shifted cyclicaly once with each 

shift of the syndrome register (after the syndrome is 

calculated), then Eq.(2.49) can be rewritten as 

n-k-l 
EPSW = L 

i=D 
s .. S. . 

1 HJ 
(2.50) 

where si is the ith coefficient of the syndrome SeX) 

and j is an adjustment factor so that S .. will 
1+J 

correspond to the digit represented by s. 
1 

( 2 • 51 ) 
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2.4.3 50ft-Decision Decoder 

A soft-decision decoder based on the above facts 

is shown in fig.(2.8). The decoding procedure can be 

described in the following steps: 

STEP 1. Gate 1 is turned on,Gates 2 and 3 are 

turned off. The syndrome S(X) is formed by shifting 

the entire received word R(X) into the syndrome register. 

At the same time, the received word is stored in the 

buffer register (if parity-check digits are no longer 

needed, only the k information digits are stored). 

STEP 2. If the syndrome is zero, the received 

word is a codeword, Gate 3 is turned on, with Gate 2 

still off. The data is read out to the data sink. The 

syndrome register is set to zero. Return to STEP 1. 

Otherwise a decimal number larger than (n-k)Q/2is stored 

in the EPSW store. 

STEP 3. The syndrome content is tested. If the 

rightmost digit of the syndrome register is 'I', then 

the EPSW of the error-pattern present at the syndrome 

register is calculated. If the EPSW calculated is smaller 

than the value stored in the EPSW store, then the new 

EPSW is stored in the EPSW store, and the error-pattern 

in the syndrome register is stored in the error-pattern 

store. Otherwise the EPSW and the error-pattern are 

kept unchanged. 

STEP 4. Gate 1 is turned on, Gates 2 and 3 are 

turned off. The syndrome register is shifted n times, 

STEP 3 is repeated after each shift. After the n shifts, 

the contents of the syndrome register is the syndrome 
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Fig.2.8 A soft-decision decoder for random-err or-correction cyclic code 
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of the received word, while the error-pattern store 

contains the error-pattern which has the smallest EPSW 

i.e. the error-pattern that is chosen by the decoder, 

as the corrupting error-pattern. 

STEP 5. Gates 1,2, and 3 as in STEP 4. The syndrome 

register is shifted,let the contents of the syndrome 

register match the contents of the error-pattern store 

after the ith shift. Then three phases should be considered: 

STEP 6. a)If i=O. The errors confine to the n-k 

parity-check digits, and the information digits are 

error-free. Gate 3 is turned on with Gate 2 turned off. 

The information digits are read out to the data sink. 

The syndrome register is set to zero. Return to STEP 1. 

b)If l~i~n-k. The clock starts to count 

from i+1. At the same time, the syndrome is shifted 

with Gate 1 turned off. As soon as the clock count 

reaches n-k, the rightmost i digits in the syndrome 

match the errors in the first i received information 

digits in the buffer register. Gates 2 and 3 are turned 

on, the information digits are corrected as they are 

read out of the buffer register. Return to STEP 1. 

c)If the contents of the syndrome register 

never matches the error-pattern store by the time the 

syndrome register has been shifted n-k times (with 

Gate 1 turned on), Gate 3 is turned on and the received 

information digits are read out one for e~ch shift of 

the syndrome register. As soon as the syndrome register 

is shifted i times, its contents match the error in the 

n-k rightmost digits of the buffer register. Gate 1 is 
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turned off, Gate 2 is turned-on, the erroneous information 

digits are corrected as they are read out of the buffer 

register by the bits coming out of the syndrome register. 

As soon as all the received word digits are read out of 

the buffer register, Gate 3 is turned off. The syndrome 

register is set to zero. Return to STEP 1. 

The increased coding gain achievable with this 

decoder over a hard-decision decoder is dependent on 

whether the most trappable error-patterns are confined 

to an n-k consecutive positions i.e. whether they are 

present as one of the calculated error-patterns or not. 

Since the number of error-patterns confined to n-k 

position is proportional to n-k, then this decoder is 

most effective for decoding single and double-error

correcting codes and the improvement in coding gain 

will decrease as the code rate is increased. For high 

rate codes, it will become very inefficient, and much 

of the correction power will be lost. 
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CHAPTER 3 

THE COMMUNICATION CHANNEL 

A communication channel might represent any medium 

by means of which the signal is transmitted or stored. A 

typical transmission channel is a telephone line and a 

typical storage device is a magnetic-tape unit including 

writing and reading heads. The channel is usually subject 

to various types of noise disturbances; for example, 

time-varying frequency response, and impulsive switching 

noise, for the transmission channel, while dirt particles 

and defective tape material are common noise sources for 

the storage channel. A block diagram of a typical data 

communication system is shown in fig.(3.l). The source 

encoder converts the data generated by the source into 

binary data, the channel encoder attaches parity-check 

digits to the data digits and this output is a sequence 

of digits al, ....• a n. These digits are produced at a 

fixed rate, say one digit every T secs. In each interval 

of T seconds, the modulator produces waveforms, each of 

duration T, xl(t), .•• ,xn(t). Each waveform xi(t) is 

determined by the digit a. entering the modulator. These 
~ 

xi (t) are transmitted through the channel where they 

are contaminated by noise. At the other end of the channel 

the demodulator receives the waveform yl(t)' ..•• 'yn(t). 

where 

y(t) = x(t) + w(t) 

y(t) = L: y.(t - iT) 
~ 

(3.1) 

(3.2) 
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Fig.3.l Block diagram of a typical communication system 



x(t) 

and w(t) 

- 49 -

=Lx.(t-iT) 
1 

=Lw.(t-iT) 
'. 

( 3 .3) 

( 3 .4) 

where w(t) is the channel noise added to the tranmitted 

waveform. The demodulator takes the received waveform from 

the channel and converts it into a sequence of digits 

b
l

, .... ,bn , at a rate of one digit each T seconds. The 

channel encoder will produce binary data from the b. 
1 

sequence which hopefully will be the same data generated 

by the source, after the source decoder has converted 

this sequence. 

In more sophisticated cases, the output from the 

demodulator will contain information about how reliable 

the b. sequence is, and in this case the demodulator will 
1 

output in additional to the sequence b. another sequence 
1 

or sequences, which will contain the reliability 

information. 

A channel can be specified in terms of the set of 

inputs available at the input terminal, the set of 

outputs available at the output terminal, and for each 

input the probability measure on the output events 

conditional on that input. 

Considering this definition, a channel can be one 

of many kinds, for example, in fig.(3.l), the channel 

can be considered continuous in time, in which the input 

and output are waveforms i.e. the channel input is the 

modulator output x(t), the output is the demodulator 
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input y(t). and the channel is the block named 'channel 

or storage medium '. On the other hand. the channel can 

be discrete in time. in which case the input and output 

are sequences belonging to the set of real numbers i.e. 

the channel consists of the modulator. the channel. and 

the demodulator. in which the input is the discrete 

sequence al •.....• a n • and the output is the discrete 

sequence bl •.....• b n . The choice of channel is dependent 

entirely on the stages one is interested in. 

If one is interested primarily in the encoder and 

decoder. then it is convenient to consider the modulator 

and the demodulator as being part of the channel. On the 

other hand. if one is interested in a channel in which 

the input is discrete and the output is continuous. then 

the appropriate channel to consider is the one which 

contains the modulator and the channel block. where the 

input is al •....• a n , and the output is y(t). 

3.1-Random-errors and burst-errors channels 

In order to predict the performance of a code. it 

is necessary to have precise information about the channel. 

Though most real communication channels are not accurately 

represented by the binary symmetric channel (BSC). shown 

. (31 81) 
in fig.(3.2). it has been studied extenslvely • . 

For the binary symmetric channel. the probability is q 

that the same symbol as transmitted will be received and 

that p is the probability of receiving an erroneous 

symbol. It is assumed that q> p and that each symbol is 
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independent of all others (the channel is memoryless). 

This channel model includes the modulator, channel, and 

the demodulator of the system in fig.(3.1). 

q 
o~-------------.----~o 

p 

p 

l~--------------~l 
q 

fig.(3.2) The binary symmetric channel 

The transmission errors induced on the binary 

symmetric channel are referred to as random errors. 

Unfortunately, very few real channels are like the binary 

symmetric channel. There is usually serious dependence 

of errors in successive transmitted symbols. The noise 

disturbance - a strike of lightning or a man-made electrical 

disturbance - frequently affects several adjacent symbols. 

Defects on magnetic recording devices also usually affect 

more than one symbol. Thus, errors occur in bursts. 

When each element in the output sequence depends 

statistically both on the corresponding input and on past 

inputs and outputs, the channel is a channel with memory. 

A burst-error channel is such a channel. They have the 

special property that errors tend to group together,where 

the error groups being separated by larger error-free 

groups. A Markov chain with two states can be used as a 

. (32) model for generatlng bursts . Assuming that the i th 



- 52 -

error generated is e. where 
1 

e. = 1 
1 

for generating an error (3.5-a) 

e. = 0 
1 

for not generating an 
error (3.5-b) 

The two states are 'A' for generating no error (e. =0), 
1 

and state 'B' for generating either e.=O or e.=l, as in 
1 1 

fig.(3.3), the directed branches indicate transitions from 

P(e.=l) 
1 

O(e.=O) 
1 

(e
i 
=1/0)0 1 

fig.(3.3) Transition diagram 
for Markov chain 

one state to another, with the symbol on each branch 

representing the probability of that transition, and when 

mentioned the output is given in parenthesis. 

After producing the noise digi t e., the Markov chain 
1 

makes a transition to prepare for e. l' To simulate 
l+ 

burst errors, the states 'A' and 'B' must tend to persist 

i.e. the transition probabilities P (for going from A+B) 

and PI (for going from B+A) are small, and the probabilities 

o (f 0 r r em a i n i n gin 'A') and 0 1 (f 0 r r em a i n i gin 'B') are 

large where 

o = 1 - P (3.6-a) 
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and (3.6-b) 

The Markov chain model is suitable for investigating 

binary burst-error channels, where e. may take either 'D' 
1 

or 'I', as in Eq.(3.5), but this model is not suitable 

for channels where noise information is required i.e. in 

simulating channels for the study of soft-descision 

decoders, where information about the actual amplitude 

value of the noise sample w. is needed, where the 
1 

amplitude of w. can take any value 
1 

-c.o~w. ~+oo ,. ( 3. 7 ) 

To overcome this problem it is desirable to define a 

model that can supply the required noise information. To 

differentiate between the two models the latter will be 

called an analogue-burst-noise channel model. 

3.2- Analogue-burst-noise channel model 

In practice, assuming that the noise effect on the 

channel is only additive noise, two noise types must be 

considered: 

a) Noise of relatively low power, which is added 

to the signal continuously during the whole transmission 

period. Its presence is responsible for producing few 

scattered errors. These errors can be considered random 

errors. Clearly, this noise is not the main source of 

errors in a bur sty channel and will be called the 

background noise. 
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b) Noise of high power, and a relatively short 

duration (at least longer than one element duration period 

T). This burst noise is the main source of errors in the 

channel and its presence tends to be separated by longer 

periods of its absence. 

Although the background noise is present during 

the whole transmission time, it is insignificant compared 

to the burst noise and so can be neglected when an 

error burst is present. One can thus think of noise as 

being switched from low power noise to high power noise 

and vice versa. 

A model of the analogue-burst-noise channel based 

on the above facts is shown in fig.(3.4). This chain will 

provide information about noise amplitude, where noise 

amplitude is as defined in Eq.(3.7). Since we are interested 

in the channel coding and channel decoding performance, 

then it is more convenient to consider the discrete signals 

at the input and the output of the channel, so that Eq.(3.1) 

can be rewritten as 

y. = x. + w. 
111 

where y. ,x. ,wo are samples of the ith received, 
1. 1. .l 

transmitted, and noise elements respectively. 

( 3.8) 



• 

- 55 -

fig.(3.4) Transition diagram for 

analogue-burst-noise chain 

Two states are used for generating noise, state'A' 

generates the background noise, where the probability of 

( 
\ 

generating error.is PR (for random), and state '8' for 

generating burst noise, where the probability of generating 

error is P8 (for burst). The probabilities QA (for remaining 

in 'A'), and 08 (for remaining in'8') are large compared 

to the transition probabilities PA8 (for moving from 'A' to 

'8'), and P8A (for moving from '8' to 'A'). Eqs.(3.6) can 

be rewritten 

(3.9-a) 

(3.9-b) 

The noise sample w. is a statically independent random 
1 

variable, which has one of two probability densities 

depending on the state that generates w .• 
l 

Assuming the system is in state' A', although the 

noise power is low, Eq.(3.7) still applies and errors 

may be generated. The probability of generating errors 

PR' varies according to the probabili ty densi ty function 
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Df the simulated noise, and its power. When the noise 

power jumps up to a high value, the system will move to 

state 'B'. Again the probability of generating errors 

PB' is dependent on the probability density function 

and the power of the noise. In this state more errors 

are generated in a form of a burst. At some stage the 

cause of the high power noise will cease to exist, 

noise will then jump down to the previous value, and 

the system will move back to state 'A', and so on. To 

define the probabilities of the transitions, one should 

recall that the system moves from 'A' to 'B' and from 

'B' to 'A' as a result of the change in the noise power 

from low to high value and high to low value respectively. 

Consider the case ~f moving from 'A' to 'B'; this case 

will arise when the noise makes a jump from low power to 

high power, thus the system has to move from' A' to 'B', 

generating one noise sample w. as it moveS. Since the 
l 

system starts to move after the noise power change, then 

the probability of' generating errors in this transition 

state is the same as the ~robability of generating errors 

. th h' h . t t ( 'B ' ) , I C I In e 19 power nOlse s a e name y, PB' onvers y, 

the probability of generating errors in the transition 

from 'B' to 'A I is 

3.3-Properties of analogue-burst-noise channel model 

In order to compare the analogue-burst-noise channel 

model with any other model we must list some of its major 

properties. 

I-Each noise sample 'D. is an algebraic value, it 
.1 
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must satisfy Eq.(3.7) 

( 3 . 7 ) 

independent of the state in which the system is i. e. 'A', 

'B', moving from 'A' to 'B', or moving from 'B' to 'A'. 

2-Assuming the channel noise is only additive 

noise, the noise addition is algebraic, and Eq.(3.8)applies 

Yl·=X.+W. 
1 .'!.. 

( 3.8 ) 

Given that the modulator of fig.(3.1) will output the 

sample voltage +V for the binary 'I' and the sample 

vol tage -v for the binary '0', then 

X. = ± v 
1 

(3.10) 

then the sample of the received waveform y. will take 
1 

value in the range 

+oo~y.~_co 
1 

(3.11) 

where the addition in Eq.(3.8) is an algebraic addition. 

3-Few errors may be generated in the no burst 

state, (state 'A' and moving from 'B' to 'A'). But these 

errors are scattered, and are considered random errors. 

4-An analogue-burst starts when the noise power 

jumps up to a high value. The probability of generating 

errors at the first burst element (the system is moving 
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from 'A' to'S') is PS' Although PB is large, yet it is 

less than one, thus, an analogue-burst does not necessarily 

start with an error, although that has the probability 

of Ps which is relatively high. 

5-The end of the analogue burst is when the noise 

power jumps down to a low value. The probability of 

generating errors at the last burst element (the system 

is still in 'B') is PS' Which is large, but less than 

one. 50 an analogue-burst does not necessarily end with 

an error, although this has a relatively high probability. 

6-The probability distributions df states 'A' and 

'B', can be similiar or different depending on the 

simulated channel. 

7-The high noise power of state'S', can be either 

constant or variable during a transmission period. 

S-The probability distribution of state '8', can 

be in theory variable during a burst generation, or 

during a transmission time. 

3.4-Transforminq analoque-burst-noise model 

to an equivalent binary model 

The Markov chain representing a binary-burst 

channel model, shown in fig.(3.3), can be used to study 

the performance of any binary burst-error-correcting 

codes. Since binary-err or-correcting codes, and the 

binary correction technique will be used to correct 

errors, in decoding methods, that make use of the 

available noise information, then the analogue-burst-noise 
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model should be transformed to an equivalent binary-

burst model to facilitate the application of binary 

correction rules. 

Before considering the transformation from the 

analogue-burst-noise model to the binary-burst model, 

it will be beneficial to consider the following facts. 

I-The analogue-burst-noise model represents the 

generation of additive noise, while the binary-burst 

model represents the generation of errors. 

2-Any noise sample w. generated by the analogue-
1 

burst-noise model, mayor may not be an error. Let Th 

be the threshold value on which the demodulator of 

fig. (3.1), decides from the received sample y., whether 
1 

the transmitted sample 

the rules 

if 

or 

if 

y. < Th 
1 

y. > Th 
1 

x. was '0' 
1 

or 

then x = 0 
i 

then x. = 1 
1 

'1', acc ording to 

(3.12-a) 

(3.12-b) 

The noise sample w. will correspond to an error if two 
1 

conditions are met 

if 

and 

w. _ e. = 1 
1 1 

I w. I > Th 
1 

sign l"· 01 sign x. 
1 1 

(3.13-a) 

(3.13-b) 

(3.13-c) 
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3-Although theoretically, noise generated by the 

analogue-burst-noise model is of unlimited value as in 

Eq.(3.7), it is practically, limited by the receiver to 

the voltage levels representing '0' and '1'. Let the 

voltage represent '0' by -v and the voltage represent 

'1' be +V then Eq.(3.7) can be rewritten 

-v , w. , +v 
1 

The term 'analogue model' will be used as an 

(3.14) 

equivalent to the term 'analogue-burst-noise channel 

model', while the term 'binary model' will be used to 

represent the 'binary-burst channel model', during the 

description of the translation process, which is as 

follows: 

STATE 'A' in ·the analogue model can be considered 

as two separate cases according to the result of the 

detection process in the demodulation of fig. (3.1) which 

uses Eqs.(3.12). 

Case 1, state 'A' in the analogue model does not 

generate an error. This event has the probability I-PR 

and so it can be transferred directly to state 'A' in 

the binary model. 

Case 2, state 'A' in the analogue model generates 

errors, with probability PR' Assuming that the present 

noise sample w. is an error, then state 'A' in the 
1 

analogue model represents the transition form 'A' to's' 

in the binary model. The next noise sample wi+l may be one 
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of two pcssibilities, either w. 1 is not an error, 
l+ 

consequently state 'A' in the analogue model is represented 

by the transition from 'B' to 'A' in the binary model, 

or w. 1 is an error, then state 'A' in the analogue model 
l+ 

is represented by state 'B' in the binary model. In the 

later case, 'A' in the analogue model becomes 'B' in the 

binary model as long as the next consecutive noise samples 

are errors . As soon as the next noise sample is not 

an error, state 'A' in the analogue model becomes a 

transition from 'B' to 'A' in the binary model. 

Transition from 'A' to"B', three cases can be 

considered depending on the previous noise samples. If 

w· 1 was not an error, then w. can be one of two values, 
l- 1 . 

either wi is not an error where the probability is l-PB' 

in which case the transi tion from 'A' to 'B' in the 

analogue model is state 'A' in the binary model. Or w
i 

is an error which has the probability of PB' thus the 

transition from 'A' to 'B' in the analogue model is 

transferred to the transition from 'A' to 'B' in the 

binary model. On the other hand if the previous noise 

sample wi_l was an error the transition from 'A' to 'B' 

in the analogue is state 'B' in the binary model. 

STATE 'B' This is best described by considering 

the noise samples generated in state 'B' as three parts; 

start, middle, and end. 

Transforming the few first samples is dependent on 

the previous samples. Let the first noise sample generated 

in state 'B' be Illl if the previous sample w· 1 was an 
1 -
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error, then state 'B' in the analogue model becomes 

state 'B' in the binary model. Otherwise if w· 1 was not 
1-

an error and w. is an error, then state 'B' in the analogue 
1 

model is represented by the transition from 'A' to 'B' in 

the binary model, while at the next sample wi+l,state 'B' 

in the analogue model becomes state' B' 'in the binary 

model. If w. land w. are not errors, then state 'B' in 
1- 1 

the analogue model becomes stat 'A' in the binary model. 

As soon as a noise sample is an error, state 'B' in the 

analogue model is transformed to the transition from 'A' 

to 'B' in the binary model, and at the next noise sample 

state 'B' in the analogue model becomes state '8' in the 

binary model. 

In the middle part, state 'B' in the analogue model 

has been transformed to state 'B' in the binary model, it 

stays there for all the middle part. 

Transformation of the end part is dependent on the 

future noise samples. Let the present noise sample w. be 
1 

the last error in the burst, then state 'B' in the 

analogue channel becomes state 'B' in the binary model. 

Since the next noise sample w. 1 is not an error, then 
1+ 

state 'B' in the analogue model becomes transition from 

'B' to 'A' in the binary model, while for the next sample 

state 'B' becomes state 'A'. 

Transi tion from 'B' to 'A' I f the noise sample wi 

is an error, the transition from 'B' to 'A' in the 

analogue model is represented by state 'B' in the binary 

model, while if the previous noise sample w. 1 was an 
1-
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error, and w. is not an error, 
1 

then the transition from 

'B' to 'A' in the analogue model becomes a transition 

from 'B' to 'A' in the binary model. But if w. 2 and 
1-

w. 1 and w. were no error samples, then the transition 
1- .l 

from 'B' to 'A' in the analogue model becomes state 'A' 

in the binary model. 

The above discribed transformations from the 

analogue-burst-noise channel model to the binary-burst 

channel model are summarised in table.(3.l). 

3.5-The transforming probabilities of the 

analogue-burst-noise model 

The description of the transform from the analogue-

burst-noise channel model to the binary-burst channel in 

section (3.4) and in table (3.1) does not give a proper 

idea of how many transformations take place from one state 

to another. To determine the transformation from any 

state in the analogue-burst-noise channel model to the 

corresponding state in the binary-burst channel model, 

it is essential to look at the probabilities for each 

individual case. 

Before calculating the probabilities, let us 

define the terms to be used in the calculations. Let 

p( ) be the probability of transforming statel,state2 

state 1 in the analogue-burst-noise channel model to 

state 2 in the bina~y-burst channel model, furthermore 

let A, represent state 'A', AB the transition from 'A' 

to 'B', B for state 'B', and BA represent the transi tion 

from 'B' to 'A'. 



analogue 

state 

A 

A to B 

B 

S to A 

e. = 1 
1 

e. = 0 
1 

blank 

model error samples 

present next 

e. e i +l e i +2 1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
0 
1 

1 
0 1 0 
0 0 0 
0 0 0 
0 
1 
0 
1 
0 
1 
0 
1 

error 

no error 

do not care 

binary model state probability 

previous present of error 

transform transform 

A A PR 
A A to B PR 

A to B B to A PR 
A to B B PR 

B B to A PR 
B B PR 

B to A A PR 
B to A A to B PR 

A A PB 
A A to B PB 

A to B B PB 
B B PB 

B to A A PB 
B to A A to B PB 

A A Ps 
A A to S Ps 

A to S B Ps 
S S Ps 
S S PB 
S B to A Ps 

B to A A Ps 
A A PR 
A A to S PR 

A to B S to A PR 
A to S B PR 

S S to A PR 
B B PR 

B to A A PR 
S to A A to S PR 

Table (3.1) Transferring analogue model to binary model 

, 



, 
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Considering state' A', according to table (3.1) 

there are four possible places where state 'A' can be 

transformed, so there are four probabilities corresponding 

to these four transformations. 

The transform from state 'A' in the analogue model 

to the transition from 'A' to 'B' in the binary model, 

takes place each time an error is generated, following a 

no error generation. Since the probability of generating 

an error in state 'A' is PR' and the probability of 

generating no error'is I-PR' then 

(3.15) 

Transforming 'A' in the analogue model to state '8' 

in the binary model requires state 'A' to generate an 

error next to an error generation, or in other words to 

generate an error following a transform from state 'A' 

in the analogue model to the transition from 'A' to 'B' 

or to state 'B' in the binary model. Thus 

(3.16) 

Assuming state 'A' in the analogue model has been 

transformed to state 'B' in the binary model as a result 

of the previous transform, the current transform can be 

to the transition from 'B' to 'A', if state 'A' in the 

analogue model did not generate an error i.e. state 'A' 

in the analogue model will transform to the transition 

from 'B' to 'A' in the binary model if state 'A' generates 
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no error after generation of an error. The probability 

of this transform is 

(3.17) 

The fourth and last probability to be calculated is 

the probability of the transform from state 'A' in the 

analogue model to state 'B' in the binary model. This 

transform takes place if the previous transform was to 

the transition from 'B' to 'A', or to state 'A' i.e. if 

two consecutive no errors are generated when the system 

is in state 'A' in the analogue model, thus the probability 

is 

(3.1B) 

To consider the transform probabilities for state 'B', 

the length of the current burst ~ should be taken into 

account. Considering the transform from state 'B' in the 

analogue-burst-noise channel model to the transition 

from 'A' to 'B' in the binary-burst channel model, this 

transform will take place at the first error generation 

when the system is in state 'B' in the analogue model. 

The probability of generating at least one error during 

all ~ samples, given that the probability of generating 

an error is PB , can be calculated as follows. The 

probability of generating no errors during the whole 

burst is 

(3.19) 



since 

- 66 -

L P1' = 1 
i 

(3.20) 

then the probability of generating one error or more in 

the JI. samples is 

(3.21) 

during the burst generation JI. transforms take place, the 

transform from state '8' in the analogue model to the 

transition from 'A' to '8' occ.urs only once, so its 

occurence is t of the whole burst, and since the probability 

of its occurence is Perror' then the probability of the 

transfer is 

(3.22) 

The next transform to be considered, is the transform 

from state '8' in the analogue channel model to the 

transition from '8' to 'A' in the binary model. This 

transform will occur, if the system in state '8' in the 

analogue model has generated at least one error (the 

system is in state '8' in the binary model), and the 

error generated does not confine itself to the Jl.
th 

position of the burst. In fact the transform to the 

transition from '8' to 'A' in the binary system will 

take place, at the next sample to the last error generation, 

wherever that error is. The Jl. th sample of the burst can 

be used as an indication of the transform. So if the Jl. th 



- 67 -

sample generates an error, then no transform has occured, 

while if the ~th sample generates no error, then a 

transform has occured, but not necessarily at the ~th 

position. The probability of an no error generated at 

the ~th position is 

p = 1 - PB no error (3.23) 

The probability of the system being tansformed to state 

'B' in the binary model is given inEq.(3.2l). Thus the 

transform probability is the probability of generating no 

errors in the £th position given that the system is in 

state 'B' in the binary model, and since it takes place 

only once during the burst, then 

(3.24) 

The third transform is the transform state 'B' in 

the analogue channel model to state 'A' in the binary 

channel model. Such a transform may occur at the beginning 

and the end of the burst. At the beginning of a burst, 

the system will move from state 'A' to state 'B' in the , 
analogue channel model, once the system is in state 'B' 

in the analogue model, it will be transformed to state 

'A' In the binary model as long as no error is generated. 

As soon as an error is generated, state 'B' in the binary 

model is transformed to the transition from 'A' to 'B' 

and then to state 'B'. On the other hand, near the end 
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of the burst, state '8' in the analogue channel is being 

transformed to state '8' in the binary model, as long as, 

the last error in the burst is not generated. After the 

generation of the last error, state 'B' in the analogue 

is transformed to the transition from 'B' to 'A', then 

to state 'A' in the binary model. To reduce the calculation 

complexity the actual transform from state 'B' in the 

analogue to state 'B' in the binary model is shifted, so 

that the transform from 'B' in the analogue channel to 

state 'A' in the binary channel will occur at the beginning 

only. Fig.(3.5) shows a burs t ·\9 en er at ed when the system 

is in state 'B' in the analogue channel model before and 

after shifting. The probability of transforming state ' B ' 

in the analogue model to state 'A' in the binary model 

during the 1st sample is the probability of generating 

no errors, then 

p = 1 - PB no error 
(3.25) 

since this transform takes place once during ~ samples, 

then 

I-PB 
PI no error = le (3.26) 

Similarly the probability of generating no errors for 

the ith sample is the probability of Eq.(3.26) given that 

all previous samples generate no errors, Hence 



One Sample Period -
~. ________ • __ • _mm~ 

a) The Generated 8urst 

~ 
b) The Shifted 8urst 

~ Transfer to state 'A' ~ Transfer to the transition from 'A' to '8' 

D Transfer to state '8' §§ Transfer to the transition from '8' to 'A' 

Fig.3.5 Shifting a burst 
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(3.27) 

the total probability of transforming state'S' in the 

analogue model to state 'A' in the binary model is the 

sum· of all these 1 probabilities 

1 
P(B,A) = 1 . (3.28) 

The fourth and last probability, is the probability 

of transforming state'S' in the analogue channel model 

to state 'B' in the binary channel model. According to 

Eq.(3.2o) 

= 1 

(3.29) 

P(B,B) = 1 - ( P(B,A) + P(B,AB) + P(S,SA)} 

(3.30) 

Substituting Eqs.(3.2B),(3.22),(3.24) in Eq.(3.30) gives 

or 

(3.32 ) 

A real transmission channel has the probability 

-2 4 
values of PR=lO - 10- , and PS=o.l - 0.5. 
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-3 Considering an average channel which has PR=lO ,and 

-
PB=0.3, and let the average burst length ~=12B the 

transform probability from state 'A' in the analogue 

channel model to state 'A' in the binary channel from 

Eq.(3.1B) is 

(3.33) 

P(A,A) = 0.998 (3.34) 

Similarily the transform probability from state 'B' in 

the analogue channel model to state 'B' in the binary 

channel model is given in Eq.(3.32) 

P(B,B)= 1-1~8 [{ t::(1-0.3)i}+(2-0.3){1-(1-O.3)128}) 

(3.35) 

P(B,B) = 0.9789 (3.36) 

Eqs.(3.34) and (3.36) show that 99.8% of the noise 

samples generated in state 'A' correspond to state 'A' 

in both channel model, and nearly 98% of the noise samples 

generated in state 'B' correspomd to state '8' in both 

channels. Consequently, the two channel models are 

interchangeable for 98% of the time, so that the techniques 

used for signal processing when the binary channel·is 

used can be used for the analogue channel and vice versa, 

since the transformation error incurred is very small. 
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The probability of the system being present 

in state 'A' in both systems is the probability of 

transform from state 'A' to state 'A' and from state 'A' 

to the transition from 'B' to 'A', because at the end of 

the two transforms the system is in state 'A'. So 

(3.37) 

Substituting the values of the average channel in Eq.(3.37) 

gives 

PA = 0.998 + 0.00099 = 0.999 ( 3. 3B) 

similarily, the probability of the system being in state 

'B' in both systems is 

(3.39) 

PB - 0.97B9 + 0.0078 = 0.9867 (3.40) 

The effect of the probabilities of error variation 

can be seen as follows. It is clear from Eqs.(3.37),(3.1B), 

and (3.17) that state 'A' probabilities is dependent on 

the background noise probability only. Thus PR is the only 

factor that will affect the transform probabilities of 

state 'A'. Eq.(3.lS) shows that P(A,A) will move closer 

to 1 as PR decreases, while Eq.(3.l7) shows that the 

value of P(A,SA) decreases as PR decreases, but since 
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P(A,A) is the dominant factor and its increase is larger 

than the decrease of P(A,BA)' then P A moves closer to 

1 as PR decreases and vice versa. These results are 

expected because as PR is decreased, fewer random errors 

are generated, which lead to more transforms from state 

'A' in the analogue model to state 'A' in the binary 

model, hence P(A,A) is larger. On the other hand, since 

more transforms occur from 'A' to 'A' then fewer transforms 

occur from'A'to'B' and consequently fewer transforms to 

the transition from 'B' to 'A', hence P(A,BA) becomes 

smaller. 

State 'B' probabilities are dependent on the burst 

noise probability only, for a given burst length,according 

to Eqs.(3.39),(3.32), and (3.22). It can be seen from 

Eq.(3.32) that P(B,B) increases, as the probability of 

error PB is increased, while for a moderate length ~ 

P(A,AB) is nearly constant. Thus PB increases with the 

increase of PB, and vice versa. Again thi~ result is 

expected because as PB is increased, fewer no errors will 

be present at the beginning and the end of a burst, 

hence fewer transforms to 'A'. 

3.6-Channel simulation 

During the course of the tests, two types of codes 

were used. Codes for correcting random-errors, and codes 

for correcting burst-errors. Consequently, there was a 

need to simulate two types of channels that are suitable 

for the transmission of each type of codes, namely a 
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random error channel and a burst-error channel (bursty 

channel). 

3.6.1 The bursty channel 

The obvious way to get.the data for a bur sty ~hannel 

is to set three random variables, one representing the 

start point of the burst, the second representing the burst 

length, while the third represents the errors position in 

the burst. This will be a simulated channel which is not 

real, because in reality bursts have a special properties 

where short bursts tend to occur more frequently than the 

longer ones, while very long burst are rare. A better wa~ 

is to smiulate a real transmission channel. It was stated at 

the beginning of this;.chapteri that a' channel can be any 

medium where data is transmitted or stored. And since our 

interest is in the decoder itself and not in the channel, 

therefore the choice of a bursty channel for the simulation 

is not critical, and can be either a transmission line, 

communication link, or a storage media. 

The data chosen for the simulation is taken from a 

consultancy work done in Loughborough University of 

Technology for EMI Central Research Laboratories(93), 

where tests were carried out for recording and reading 

digital data on digital audio tapes. Data obtained from 

the report concerns the burst length and frequency in 

a one hour recording period at a data rate of 26Kbps 

for different tape types. 

3.6.1.1 The bursty channel simulation 

Simulation of the bursty channel is carried out by 
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cal.culating values for the three random variables mentioned 

in section 3.6.1. The first represents the burst 

distribution during transmission, i.e. it gives the start 

point of each burst. It was assumed that bursts are randomly 

distributed during the transmission period. This is in 

accordance with section 3.2 where no special distribution 

is assumed for burst generation, and in the absence of 

further data concerning bursts distribution appears a 

reasonable assumption to make. The second variable determines 

the duration of each burst. The data for this variable is 

obtained from reference (93), although that reference gives 

a very accurate method for simulating the bursty channel 

it does not lend itself to computer simulation due to 

time constraints, and so a simple curve fitting technique 

will be used for our study. A least-squares approximation 

using Chebyshev pOlynomial(3D)iS used to get the equation 

of the bursts length, which in turn is used to generate 

the random length of the simulated bursts. The third 

variable is the actual noise value added to each of the 

transmitted digits, and it sign, i.e. the error position 

in the burst. This variable is usually taken in a binary 

burst channel model as a '0' or '1' generator, but for 

our case since we are interested in simulating an analogue 

burst channel model, the noise added to the transmitted 

signal must have a algebraic value, and not '0' and '1' 

only. Although the additive noise introduced by many 

practical channels does not approximate to Gaussian noise, 

it is well known that a digital signal having a better 
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tolerance to additive white Gaussian noise than another 

signal, will normally also have a better tolerance to the 

additive noise obtained in practice(16,17). Therefore an 

additive white Gaussian noise is used as the random 

variable that decides the error positions in each 

burst. 

3.6.1.2 Implementation of the simulation 

The data from reference (93) shows that 230 burst 

occured on average during a one hour recording, and that 

the total number of transmitted digits is 93,600,000 per 

hour. To start with, 230 random numbers are generated 

from the curve fitting equation, these numbers represent 

the length of the 230 burst to be used during the simulated 

transmission. Then another 230 numbers ranging between 1 

and 93,600,000 are randomly generated, these numbers 

represent the starting point of each burst. Since the 

computer will simulate the transmission process in a 

serial mode, th·erefore these numbers are sorted in an 

ascending order, so that each burst is in the correct 

order timewise. The next step was to consider the 

adjacent burst, to check for a common area between the 

two burst. When a common area is present between two or 

more bursts, the following rules are used to deal with 

that area: 

I-If the next burst happens to exist inside the 

present burst, the next burst is discarded. 

2-If two bursts or more happen to overlap, all the 

bursts are considered as one burst that starts at the 
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beginning of the first overlapped burst, and ends at the 

end of the last overlapped one. 

3-If any burst extends to·the point beyond the end 

of transmission, it is forced to end at the end of the 

transmission, and the rest is discarded. 

The noise samples are then added to the corresponding 

digits of the burst, which are then handed to the receiver 

for decoding. Since we are interested in simulating the 

analogue burst noise channel described in section 3.2, then 

two types of noise will be added to transmitted signal 

in the channel. Firs·tly, noise of low power, which will 

be called background noise, this noise is present all 

the time, so it is added to the signal during all the 

transmission period, the SNR value at the channel output 

is high, therefore only few random errors will be generated. 

Secondly, the burst noise, which has high power, and is 

added to transmitted signal during the burst periods only, 

the SNR value at the channel output is low, thus this is 

responsible for generating most of the errors introduced 

in the transmission system. 

3.6.1.3 Some practical considerations 

Interlaceing techniques are expected to be used on 

any bursty channel to improve the code performance, 

especially with short length block codes. In order to 

achieve a practical system simulation, codes were inter

laced to a degree of A. Interlaceing techniques will be 

discussed in detail in chapter four. 

For the sake of running the simulation programme 
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faster, and using less memory space, some practical 

aspects were considered during the program writing. These 

changes do not affect the programme results, but they 

increase its complexity. These changes are: 

I-Since each code tested was interlaced to 

interlaceing degree A. A minimum memory space of An is 

used to store the transmitted and the received data. 

2-To cut the big amount of calculation in the 

encoding and decoding processes, it was assumed that the 

background noise generate errors that can be corrected by 

the decoder. Therefore no errors occur in the blocks not 

affected by a burst or more. Thus the encoding and decoding 

process in the simulation takes place only for the 

corrupted An blocks. Furthermore, the program monitors 

each transmitted codeword block of the A blocks, and 

excludes any unaffected block or blocks from the decoding 

process. 

3-Because of the policy used to deal only with the 

corrupted blocks, then the program has to fit each burst 

in its exact place within the code blocks. In some cases 

where the burst is not comfined to one block, the noise 

values are added to the transmitted digits from the place 

where the burst starts up to the last {Anth) digit of 

the interlaced block, after which the decoding process is 

started. Once the decoding is finished the remainder of 

the burst is added to the digits of the .next interlaced 

block, and the process is repeated as long as the burst is 

not finished. Once all the burst is added to the transmitted 
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signal and the decoding process is finished, the next 

burst is considered 

The block diagram of fig.(3.6) shows the flow chart 

for the analogue-burst- noise channel test system as 

used in the simulation, while the actual simulation 

programme is included in appendix D. 

3.6.2 The random-error channel simulation 

The channel simulation programme for random-error 

generation is a straightforward programme. Additive 

white Gaussian noise is used for the same reason mentioned 

in section 3.6.1.1. Since the noise power is nearly 

constant in these channels, then a white Gaussian noise is 

added to the t~ansmitted signal during the transmission 

period. The SNR value at the channel output is constant, 

and the number of random errors is dependent on the noise 

power value. Simulation is acheived by the algebraic 

addition of a noise sample to each transmitted digit. The 

encoding and decoding process is carried out for all the 

transmitted blocks. The simulation programme is included 

in appendix D. 

3.7-Two-Way Channels 

The communication channel shown in fig.(3.l) is 

strictly a one-way channel, where signals are transmitted 

from one terminal (the source) to another terminal (the 

sink), through the channel, in one direction only. Very 

frequently communication systems employ two-way channels, 

where a terminal (source or sink) can transmit and receive 

signals from the other terminal (sink or source). Being 
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error detection and retransmission. Error detection 

requires much simpler decoding equipment, although encoding 

for error detection is no more complex than for error-

correcting codes. Also, error detection with retransmission 

is adaptive, i.e. redundancy digits are increased with 

errors, when no errors are detected, there are no redundancy 

digits transmitted. Therefore the transmission bit rate 

under certain circumstances may be lower. Thus this kind 

of system may perform better than the one-way channel 

system. 

There is a limit to the efficiency of a system 

that uses simple error detection and retransmission alone. 

Short error-detecting codes cannot detect errors 

efficiently, while if extremely long codes are used, 

retransmission must be done too frequently. A combination 

of correction of most frequent error-patterns and detection 

coupled with re transmission for less frequent error-

patterns is not subject to the limitations described 

above, and is often more efficient than either error 

correction or error detection and retransmission alone. 

Several systems have been .build using the combined error 

correction and detection with retransmission facilities(53). 

Deciding on the best system, that add less 

redundancy digits, at some error-rate value, is dependent 

on many factors, i.e. the number of parity-check digits 

of the detection and correction codes, the lenght of the 

block, and the channel error rate. A detailed study of 

the bit rate consideration in detection and correction 

codes for random-error channels, is included in appendix C. 
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CHATPER 4 

TIME - SHARED 

SOFT-DECISION DECODER FOR BURST-ERROR CHANNELS 

4.l-Burst Noise 

8urst noise problems can be divided into two 

fundamental types. Firstly, where no information is 

available to identify single unreliable digits. This 

type has been well studied and documented over the years, 

because this problem existed long before soft-decision 

techniques were available. However, if the error statistics 

are available, the channel under study can be modelled 

(as in section 3.1), and a suitable error-correction 

scheme can be introduced. The second type of problem 

occurs when noise information is available from the 

demodulator, thus the reliability identification for 

each received digit can be calculated. However the use 

of reliability information for decoding burst-errors, 

will create new problems at high noise power in that the 

high noise value may force the transmitted digit ·to 

change its value to a value higher than that transmitted. 

This will happen if the noise sample 

conditions 

1 w. I) 2V 
]. 

w. 
]. 

satisfies two 

(4.l-a) 

(4.l-b) 
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where x. is the transmitted digit, that can be transmitted 
1 

as +V or -V. The decoder will treat such samples as a 

correctly received digit, because the confidence number is 

high. To overcome this problem the received digits are 

erased during severe noise conditions. 

The first type of problem occurs in certain 

communication media where data is handled digitally 

such as storage media. Examples are films, magnetic 

disks, magnetic memories, and sometimes magnetic tapes. 

Burst error can occur through scratches, defects, ageing, 

etc. The nature of the error mechanism is such that 

reliability information is very difficult, if not impossible 

to obtain. Typical approaches to solving this problem are 

techniques which correct long bursts of errors, or multiple 

short bursts, or interlacing codes, so multiple long 

bursts can be corrected. Burst-error-trapping techniques 

found by Tong(BB) and Gallager(3l) are very effective 

in correcting long bursts provided there is sufficient 

error-free guard space between bursts. The greatest 

problem in applying these techniques is getting an 

accurate data of the burst statistics of the transmission 

channels. 

The use of coding in the second type of burst noise 

problem can be more effective, because of the use of 

noise information of the channel (section2.4.l). Often 

the channel is basically a Gaussian noise channel that 

is occasionally corrupted by large bursts of noise or 

interference. The transmission channel is specified by 
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four probabilities as in fig.(3.4), two transition 

probabilities PAS and PSA that give the remaining 

Markov chain probabilities from Eqs.(3.9). The other 

two probabilities are the background noise probability 

PR' which cause the generation of random errors, and 

the burst noise probability PS' which is responsible for 

the burst noise errors generation. A near-optimum 

strategy in providing likelihood information when the 

bursts are present is to simply blank the digits effected 

by the burst noise so that erasures are produced(ll). 

This strategy will improve the decoder performance, since 

the erroneous confidence numbers are not fed to the 

decoder, thus the decoder is not assuming any of the 

burst digits are correct as opposed to the ordinary soft-

decision decoder. However, it is assumed in such decoders 

that when the burst noise is present, it is considered 

to have such a large value that it can easily be detected 

and blanked by the modulator, which will result in a 

burst of erasures. And that only complete digit or digits 

are blanked. The performance in an actual system will 

depart somewhat from the results calculated by computer 

simulation, because of difficulties in implementing 

perfect blankers or because the blanker may be approximated 

by a clipper or a limiter. In addition, the burst noise 

may not have a sufficient large value to activate the 

blanker. Because of the degradation in the practical 

system that uses blankers, compared to the computer 

simulated system, it was decided not to use blankers in 

the introduced algorithms keeping in mind that a similar 
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system using blankers will perform better at low SNR 

values, The reason for this choice is to get a more 

relistic idea from comparing the performance of the 

different computer simulated systems. 

4.2-Interlaceing (Interleaving) Techniques 

To correct all bursts of errors added to the 

transmitted signal during transmission through a bur sty 

channel, an error-correcting code which is capable of 

correcting bursts of length equal at least to. the maximum 

burst length generated by the channel should be used. 

This will restrict the choice of codes for such channels 

to long codes. One potential solution involves utilizing 

a suitable interlacer/deinterlacer pair. Using this 

approach, codewords from the encoder output are fed into 

an interlacer prior to transmission, at the receiver end 

the received word is fed to a deinterlacer prior to 

decoding. The function of the interlaceing is to distribute 

error more uniformly at the decoder input, sotha~ codes 

which have relatively short burst-length correction 

capability can be used. A block diagram of a system 

that uses interlacer/deinterlacer is shown in fig.(4.1). 

Note that if each received digit is quantized to J bits 

Data in Data out 

Encoder Interlacer Channel Deinterlacer Decoder 

Fig.(4.1) Block diagram of external Interlacer/Oeinterlacer 
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in the demodulator, then the deinterlacer requires a 

factor of J more memory than the hard decision memory 

requirements. 

By definition, an interlacer is a device that 

rearranges the ordering of a sequence of symbols in a 

deterministic manner. On the other hand a deinterlacer 

is a device that functions exactly in the reverse order 

of the interlacer, i.e. it applies the inverse ordering 

to restore the symbols to thier original sequence. These 

two devices can assume any configurations, as long as a 

law and its inverse are applied. However interlacers 

can be divided into two principal classifications. First, 

the periodic type, which is perferred in many applications 

because of its simplicity and its low cost. The second, 

is the pseudorandom type, which offers more robustness 

than the periodic type. Hence, it may' be preferred in 

certain applications where the burst characteristics of 

the transmission channel vary substantially. 

The interlacer/deinterlacer shown in fig.(4.1) are 

applied externally to the encoder/decoder hardware, which 

is the general case. But this is not the simplest 

implementation for the cyclic codes using error-trapping 

decoders. The simplest implementation is to apply inter-

laceing and deinterlaceing internally to the decoder by 

the use of shift registers(47). 

4.2.1 Periodic Interlacers 

A periodic interlacer is an interlacer which has 

a periodic function of time law as the ordering law. Two 
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types of interlacer are commonly used, symbol interlacers, 

and convolutional interlacers. 

4.2.1.1 Symbol Interlacers 

A typical case of a symbol interlacer involves 

writing the coded digits in the rows of a matrix, which 

has n columns and A rows which is called (A,n) interlacer. 

Each codeword is written in a row, so in total A codewords 

are written in the matrix. The ordering consist of 

reading these digits out of the matrix by columns prior 

to transmission. Such an interlacer is called a symbol 

interlacer of degree A. At the receiving terminal, the 

deinterlacer performs the inverse operation, digits are 

written in columns and read out in rows. The most important 

characteristics of the symbol interlacers are: 

I-Any burst of errors of length 2'~A results in 

single errors at the deinterlacer output, each separated 

by at least n digits. Since the block code length is n, 

then fo~ such a case one error may occur in each block. 

If the code used can correct a burst of lc errors in one 

block, then using this interlacer will enable the code 

to correct bursts of length 2'~A2. Hence the correction 

power is increased by A. 

2-Any burst of length 2' that statisfy the following 

equation 

lc' = fA 

where for the moment assuming f>l, will result in 

bursts of no more than r~ digits length. which are 

( 4 .2) 
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separated by a space guard no less than n-ffl digits, 

where r f 1 represent the nearest largest integer to the 

value of f. Since it is assumed that the code can correct 

all bursts of 2 or less in one block, then for correctable 

bursts f can be 

( 4 • 3) 

3-A periodic sequence of K single errors spaced 

by A digits, will result in a single burst of length K 

at the deinterlacer output, while if the errors are 

spaced by AI] , they will result in] bursts. On the 

other hand, even if the errors are not single errors, 

they will result in a burst and some scattered errors 

in the interlaced An digits, as long as there exist 

in these errors spaced by A digits. 

4-The memory requirement is An digits of storage 

in both the interlacer and the deinterlacer provided 

that the received digits are not quantized. End to end 

delay can differ depending on the modulating and decoding 

strategy. If the transmission, and the decoding starts 

after the whole An digits are stored then the maximum 

delay is 

D = 2An 
max 

( 4 .4) 

On the other hand, if the transmission and the decoding 

starts once digits are stored in the whole first column, 

then the delay is minimum and given by 
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D. = 2 { An - (n-l) } mln (4.5) 

The third characteristic demonstrates clearly that, 

if there is substantial variation in the burst noise 

characteristics of the transmission channel, this type 

of interlacer lacks robustness, and its ability to 

disperse bursts is degraded. 

4.2.l.2-Convolutional Interlacers 

This type of interlacer is referred to as a (A,n) 

interlacer(28,75), and has properties similar to the 

(A,n) symbol interlacer. A shift register version is shown 

in fig.(4.2). 8y definition 

fROM 
ENCODER 

M = n 
A 

BURST 
ERROR 

CHANNEl 

TO 
DECODER 

Fig.(4.2) Shift register implementation of a 

convolutional interlacer/deinterlacer 

( 4 • 6 ) 

The interlacer functions in the following way. The 

encoder output digits are fed to the interlacer input 

which shifts them sequentially into A registers. Each 

digit is fed to one of A register in turn, as a new 

digit is shifted in,the oldest digit in the interlacer 

is shifted out to the channel. The shifting in and 
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shifting out is done synchronously. The length of the 

A registers is increased by a factor of M. The deinterlacer 

functions in the reverse order, where the A registers 

are decreased by a factor of M. Channel output is shifted 

in one of the registers and the oldest is shifted out at 

the same time. Clearly a synchronization between the 

interlacer and the deinterlacer should be present for 

proper deinterlaceing. 

The most important characteristics of this type of 

interlacer are 

l-Any two digits that are separated by less than 

n digits at the interlacer input will be separated by at 

least A digits. Let a burst consist of £ digits which 

are added to the transmitted digit in the channel, this 

burst will result at the output of the deinterlacer as 

£ single errors which are separated by at least n digits. 

2-Any pattern of errors that is a periodic single 

errors spaced by n+l digits results in a burst of length 

A at the interlacer output. 

3-The total end-to-end delay excluding the channel 

delay is 

D = n (A-l) 

while the memory requirement for each terminal is 

n(A-l)/2 digits of storage. 

( 4 . 7 ) 

Two points worth noticeing at this stage are, firstly, 

in this type of interlacer the memory and delay are about 
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half those of the equivalent symbol interlacer's 

requirements. Secondly this system lacks robustness in 

the same way as the symbol interlacer systems. 

4.2.2 Pseudorandom Interlacer 

This interlacer takes a block of L digits from the 

encoder output and reorders, or permutes them in a 

pseudorandom fashion. This can be implemented by writing 

the L digits into a (lxL) RAM, and then reading them out 

pseudorandomly. Any pseudorandom sequence can be used to 

permute the interlacer memory address. To generate the 

pseudorandom sequence, a pseudorandom number generatoi 

can be used, or alternatively the desired permutation 

can be stored in a ROM and the ROM output is used to 

address the 'nterlacer(IB,7B). Th d· t I . I • e e1n er acer s1mp y 

performs the inverse permutation. That is, at the 

deinterlacer the received digits are written into a (lxL) 

RAM using the same pseudorandom sequence used to read them 

at the ~nterlacer. Then these digits are read out of the 

memory sequentially. The reading out of the interlacer and 

writing in the deinterlacer sequences should be synchronized 

to get back the same transmitted codeword at the deinterlacer 

output. 

The most important characteristics of the pseudorandom 

interlacer are the following: 

I-This technique provides a high degree of robustness 

to the variability of the burst noise channel parameters 

during transmission. Needless to say, such an interlacer is 

more costly and complex than either the symbol interlacer 

or the convolutional interlacer. 
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2-If the same permutation sequence is used for 

interlaceing each block of L digits, there exist certain 

error~p8tterns that can seriously degrade the interlacer 

performance. In systems where such patterns are likely 

to occur, permutation should be changed freqeuntly, during 

the transmission to avoid this problem. 

3-The total end-to-end delay exclusive of the channel 

delay is 

D = 2 L (4.B) 

And the memory requirement in both the interlacer and the 

deinterlacer is L digits of storage, excluding the memory 

control requirements. 

4.2.3 Implementation of Interlacers 

The two principal classes of interlacers described 

in sections 4.2.1 and 4.2.2 function using a different 

strategy. The periodic interlacers strategy attempts to 

produce maximally spaced errors while the pseudbrandom 

interlacers strategy attempts to produce random errors 

at the decoder input. It has been widely assumed that 

the periodic approach will result in superior performance 

when the interlacer is exactly matched to the transmission 

channel parameters(lB). But it is much less robust to 

their changes than the pseudorandom interlacers. 

Synchronization is a problem of various complexity 

according to the interlacer used. The symbol interlacer 

presents no additional problem when it is used with 
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block codes, where S2mp block synchronization techniques 

can be used to synchronize the interlacer and the 

deinterlacer. The implementation of a convolutional 

interlacer involves a similar problem to the symbol 

interlacer, and in some applications a detector is added 

to detect the unsynchronized cOdewords(89) so that 

resynchronization can be achieved faster, or the erroneous 

codewords can be discarded. In the pseudorandom interlacer 

there is a fixed relationship between the ROM address 

counter, or the pseudorandom number generator state and 

the received digit counter: Once lock is obtained, the 

deinterlacer is set ready to receive the first digit of 

the L block digits by standard synchronization technieques. 

Although the memory requirements for each type of 

interlacer are given in the appropriate sections, these 

are not the exact memory requirements of the system for 

the symbol and pseudorandom interlacers, while n(A-l)/2 

is sufficient at each encoder or decoder terminal for the 

convolutional interlacer. The reason is that for the symbol 

interlacer and the pseudorandom interlacer, the actual 

memory management is usually accomplished using two 

interlacers and two deinterlacers in a ping-pong 

configuration, where digits are written in one inter lac er 

or deinterlacer while digits are read from the other. Once 

one interlacer or deinterlacer is full and the other is 

empty the functions of the two interlacers or deinterlacers 

are interchanged. So the actual memory requirements are 

twice those mentioned in sections 4.2.1.1 and 4.2.2. 
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4.3-The Time-Shared Decoders-

There is no doubt that the recent developments in 

micro-technology, and the fall in the cost of storage 

devices has attracted too many designers to the microprocessor, 

due to its falling hardware cost, and its flexibility. In 

many communication fields as well as the error-correction. 

field, microprocessors are used widely, and many algorithms 

have been introduced that give superior improvement to 

non-microprocessor based systems, but at the cost of more 

complexity. Some algorithms need a long time to be executed, 

which forces their application to be limited by the 

microprocessor speed, i.e. whether the microprocessor can 

process the input data fast enough to be used as a real-

time processor. In most applications it is desirable to 

use slow microprocessors, because of their cost and 

power comsumption requirements. 

4.3.1 Microprocessors Speed Limitations 

Microprocessors can be defined as a prpgram-driven 

clocked sequential circuits. Their internal organization 

contains no special circuit or architectual features 

which do not exist in conventional integrated circuits. 

The main difference is that the rapid development in 

recent years has allowed more ciruits to be accommodated 

in less space. This has created the first major limitation, 

which is that whereas the capacity of the integrated 

circuit chips for logic components is very large, the 

number of pins that can be accommodated mechanically on 

a chip is limited by its physical size. In the case of 
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microprocessors, this problem is overcome by time-sharing 

the input/output pins.(96) This arrangement incurs a 

speed penalty on the microprocessor compared to a system 

which used independent input and output pins. The second 

limitation can be seen by regarding the microprocessor as 

a clocked sequential circuit whose processing activities 

are timed by a clock. Clearly the higher the clock frequency, 

the faster the system. The maximum clock frequency that 

can be used in a system is determined by the response time 

of the internal circuits and by the access time of the 

memory used. With present-day components the limiting factor 

in practice is usually the memory access time. It is 

worthy to mention that microprocessor are getting faster 

all the time, but on the other hand transmission rates 

are also increasing, thus demanding faster and faster 

microprocessors to cope with the faster processing 

requirements for real time processing on these high bit 

rate channels. 

4.3.2 The Use of Microprocessor In Decoding Block Codes 

Most decoding algorithms for error-correcting 

codes are based on the use of a microprocessor to perform 

the algorithm functions. Although decoding algorithms 

that use microprocessors were used for error-correction 

in hard decision decoders, the use of microprocessors 

become inevitable, due to the decoding algorithms complexity. 

When a microprocessor is used in the decoding process, 

the relation between the necessary time for exceuting the 

algorithm used, and the data receive time is very important 
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since for a practical system with a real-time decoding 

it could mean the difference between using a particular 

algorithm or discarding it. At the other extreme one 

has the choice of a faster and more expensive micro- " 

processor, or reducing the data transmission rate. 

From this point, since we are interested only in 

block error-correcting codes, we are going to consider 

those codes only. However, the same argument stands for 

any sort of codes, but some of the equations developed 

might need some modification. 

To derive the equation that relates data receive 

time and the algorithm execution time, assume an (n,k) 

block error-correcting code is used in a transmission 

system, where the decoder is a microprocessor that 

executes a certain algorithm for decoding. The data is 

assumed to be transmitted through a transmission channel 

that has an error rate of p, and the transmission is 

assumed to be rl hits per second. The time t l , of received 

one block of n transmitted. digits is 

n seconds 
m 

( 4 • 9) 

To use a microprocessor that uses the algorithm in real 

time, the microprocessor should be able to execute the 

algorithm in a time, say t , less or at the most equal m 

to the time of receiving one block of the transmitted 

digits, that is 
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(4.10) 

4.3.3 Idle Time Index and Usage Efficiency 

The algorithm execution time t is a good measure 
m 

of the microprocessor choice. If t was, for example, 
m 

much smaller than t
l

, it indicates a badly designed system, 

because a slower microprocessor can be used, or additional 

duties can be done by the microprocessor, during the 

remaining block time, thus cutting down the peripheral 

hardware cost and complexity. The Idle Time Index I of 

the microprocessor for one block is, by definition, the 

fraction time of the total block time t
l

, where the 

microprocessor is idle. 

I (4.11) 

The Idle Time Index can vary theoretically from zero, 

where the microprocessor is used all the time to one, 

where the microprocessor is not used at all. The micro-

processor usage percentage efficiency n , when represented 

as a percentage of the total time, can be written as 

t 
n = 100 ( 

m 

~ 
) % (4.12) 

Any error-correcting decoder, has to start the 

decoding process by calculating the syndrome of the 

received word regardless of whether the decoder is a 

hardware decoder, a software decoder, of a mixture of 
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both. Let the syndrome calculation time be ts' when a 

hardware decoder is used t is negligible, while usually s 

it has a value other than zero for software decoders. The 

second step is the detection process, where the calculated 

syndrome is tested, if the test result is zero, i.e. all 

the syndrome components are zeros, then the received word 

is accepted as the transmitted codeword, although it 

could be a codeword other than the transmitted codeword. 

While if anyone or more of the syndrome components are 

not zeros, then an error is detected in the received word. 

The third step is to calculate the error pattern that 

was present in the transmission channel during the block 

transmission, and correct the erroneous digits accordingly, 

which is done by executing the algorithm. The last step 

is to output the corrected digits to the next stage of 

the system. 

Consider an error-correcting decoder which decodes 

the received block totally by a sotfware algorithm, i.e. 

the syndrome calculation, error detection, and error 

correction is done by a microprocessor. Let the total 

correction time tm for correcting an erroneous block t z' 
and the time to calcultate the syndrome only be t • Then 

s 

the idle time index for an erroneous block le' can be 

calculated from Eq.(4.ll) 

1 e = (4.13) 
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while the idle time index I for a block which has a 
c 

zero syndrome is 

(4.14) 

In the case of using software algorithms for decoding 
I 

received word, I e is bigger than Ic' the ratio ~ is 
c 

dependent on the algorithm used and the code rate. In 
I 

the all software decoder the ratio ~ is about 15 for 
c 

the hard decision system, to 250 for the soft-decision 

the 

decoders, for code rates of about 0.5, while the ratio is 

a very large number if hardware syndrome calculation is 

used with software detection and correction. 

4.3.4 Decoder Idle Time 

Assuming a microprocessor is used for executing 

the decoding algorithm, although Eqs.(4.13) and (4.14) 

give an idea about the use of the microprocessor during 

each received block, they are not suitable for measuring 

the overall microprocessor usage during the whole trans-

mission, because some of the received blocks will be 

correct, while some other will be erroneous. Thus to 

calculate the overall microprocessor usage, additional 

information about the correct and erroneous received 

blocks is required. 

Let, by definition, the decoder idle time be the 

total time during the whole transmission where the 

microprocessor is idle, which gives aclear idea about 
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the microprocessor usage. The error probability can 

provide the necessary information about the received 

block. Let the probability of generating an error in the 

transmission channel be p. Then the probability of 

receiving a block of n digits free of error P is, the 
c 

probability that each of the received digits is correct, 

that is 

(4.15) 

and the probabili ty of receiving a block which contains 

at least one error P is e 

p = 1 _ (l-p) n 
e 

(4.16) 

Actually, since the decoder will treat any erroneous 

block received as another codeword as a correctly received 

block, Eq.(4.16) is not very accurate(6,67). But for 

simplicity it will be assumed tha~ Eq.(4.16) is accurate 

en ough • 

It is reasonable to assume that the correction 

algorithm is not executed when a correct block is received. 

This leaves the decoder idle during the decoding of error 

free blocks except of the syndrome calculation time ts. 

Consequently the decoder idle time Id is 

p 
e + I c 

p 
c 

(4.17) 
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substituting Eqs.(4.13),(4.14),(4.15) and (4,16) in 

Eq.(4.17) gives 

t -t 
1 s 
tl 

The first part I P is a small fraction of the 
e e 

total time, because I is small and P is small, while 
e e 

(4.18) 

I p is the dominent part. Consequently, the microprocessor 
c c 

is idle mostly because of receiving correct blocks most 

of the transmission time, and since the probability of 

receiving correct blocks is relatively high, then Id is 

close to 1. 

To get a rough idea about the decoder idle time in 

a real system, consider a channel which has a probability 

-3 of error p, where p=lo as it was taken in chapter three. 

Let the error-correcting code be an (n,k) random cnde, 

where the block length n=31. And let the idle time index 

I for erroneous block be I =0.1, and the idle time index 
e e 

for error-free block be I c =0.8. 

( 4 . 18) 

substituting in Eq. 

31 3 31 
Id = 0.1 (l-(1-10-3) } +0.8(1-10-) =0.7786 

(4.19) 

The decoder idle value of Eq.(4.19) is the worst case 

value, because the channel is considered a random channel. 

While if a bursty channel which has the same error rate 

is considered, the decoder idle time is higher, because 

for such channel' errors tend to be concentrated in a few 
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blocks. Which leaves most of the other blocks error free. 

Any decrease in Id improves the effective usage of 

the microprocessor timewise. Such a decrease will result 

in an increase of the correction time t 2 , whether the 

increase is due to the increase of the syndrome calculation 

time or the algorithm execution time. For a real time 

usable decoder any increase in t2 should allow the 

microprocessor to execute the correction algorithm in the 

block receive time t l , i.e. the erroneous block idle time 

index should not become negative. 

I ~ 0 e 
(4.20) 

there is no need to restrict Ic separately, because since 

it is included in t
2

, then it is restricted indirectly by 

Eq. (4.20). 

4.3.5 The Basic Idea of Time-Shared Decoders 

Time-shared decoder is a technique to increase the 

microprocessor effeciency and decreasing the decoder idle 

time to some negative value, yet using the decoder in 

real time transmission, which is done by avoiding Eq.(4.20). 

When I became negative Eq.(4.20) can be rewritten 
e 

(4.21) 

substituting le from Eq.(4.l3) and dividing both sides 

by t2 gives 
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(4.22) 

that is allowing the microprocessor to expand the 

correction time of the erroneous block i into the next 

i+l received block correction time t . 1. If the i+l
th 

m, ~ + 

block is theerror free then the remaining time after 

correcting the ith block will be enough to calculate the 

syndrome and accept the data if 

otherwise the microprocessor is allowed to share the 

i+2 th calculation time t . 2. On the other hand if 
m,l+ 

the i+l th block is erroneous the microprocessor is 

(4.23) 

allowed to expand into the i+2th calculation time, and 

so on. 

Assuming that the decoder received j erroneous 

blocks, then one error-free block, the decoder will 

finish decoding all the received blocks at the end of 

the calculation time of the j+lth block t . lif the 
rn, J+ 

decoder can satisfy the following equation 

(4.24) 

fig.(4.3) show~ the decoder timings when one and two 

erroneous blocks are received. It is assumed 
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Fig.(4.3) time diagram for time-share and correction 

in fig.(4.3) that the decoding process starts after 

receiving the last digits in the block, furthermore it 

is assumed that t is relatively very long time compared s 

with t2 for the drawing clarity. The delay introduced 

by this technique is 

(4.25) 

where j is the number of consecutive erroneous blocks. 

4.3.6 Buffering Requirements 

Once a delay is introduced into a system some sort 

of storage is required to cope with this delay. Clearly 

" 
timE 
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a buffer is required in the time-shared decoder system, 

because, as it can be seen from fig.(4.3), while the 

microprocessaro is executing the algorithm for correcting 

the ith block, the i+lth block was received, and the i+2th 

is received, so unless the i+lth block is stored it will 

be lost. The storage space required to handle the incoming 

digits without any loss of information is dependent on 

the maximum number of the consecutive erroneous blocks. 

4.3.6.1 Random-Error Channel Buffer 

Consider a time-shared system that is used to 

correct errors that results from transmission through a 

random-error channel. Assuming that a buffer of one block 

storage space is used, it is required to calculate the 

maximum number of consecutive erroneous blocks that the 

system can cope with, without any loss of information. 

To start with assume that no erroneous blocks are 

received so far. The buffer is empty because each received 

digit is read out as soon as its written in. Assume now 

that an erroneouS block is received, all'its digits will 

be read out as before. Because the decoder is executing 

the correction algorithm the first received digit will 

not be read out until the decoder has finished correcting 

the erroneous block. The number of digits in the buffer 

up to the moment where the decoder has finished the 

correction process can be calculated as follows. The 

duration time of one digit is 

T = 1 
m 

(4.26) 
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where m is the transmission rate; and the delay resulting 

of one erroneous bLock from Eq.(4.25) is 

Then B the number of digits in the buffer is 

B = o 
T 

(4.27) 

(4.2B-a) 

(4.2B-b) 

if the next received block is erroneous then an additional 

B digits are stored in the buffer, and so on. In the 

general case where j consecutive erroneous blocks are 

received, the number of digits in the buffer, given that 

the buffer was empty before receiving the first erroneous 

block, is 

(4.29) 

Clearly there is no loss of information as long as all 

B digits are stored. So for the case where one block 

storage space is available, the maximum number of 

consecutive blocks received without any loss in the 

information is when 

B = n ( 4 • 30) 
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Thus from Eq.(4.30) and (4.29) 

j [ n 

1 = (t2 -t
l 

Jm 
(4.31 ) 

substituting Eq.(4.9) in Eq.(4.3l) gives 

j 

f 

tl 

) = 
(t2 -t

l
) 

(4.32 ) 

where [f] represent the nearest integer :;:'f. This is 

used since no part of an erroneous block can be accepted. 

In practice there is no need to force the buffer to be 

one block or multiple of a block, so if the buffer has 

Z digits store space, then Eq.(4.3l) can be rewritten 

j =[ 
z 

(t
2
-t

l
)m ) (4.33 ) 

4.3.6.2 Bursty Channel Buffer 

The use of time-shared decoders to decode transmitted 

signals through a bursty channel makes the use of buffers 

inevitable. To find the storage space required for such 

channels, assume that . ~ is the length of the 
max 

longest burst that may occur in the channel, and that an 

(n,k) code is used. Two cases must be considered. 

Firstly, when the code is not interlaced. Any burst 

will produce a number of consecutive erroneous blocks. 

Thus the storage requirements can be calculated from 

Eq.(4.29). Let'J· be the maximum number of blocks that 
max 
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can be affected by the maximum length ~max' then 

~ max 
n 

+ 1 ( 4 . 34 ) 

Substituting Eq.(4.34) and Eq.(4.29) gives the minimum 

buffer requirements 

(4.35 ) 

Secondly, the interlaced codes. Assuming that the 

interlacer memory space is equal to M then the number sp 

of blocks that can be fitted in the interlacer is 

M 
u = ~ 

n 

Then the longest burst ~ max 

2u blocks. 

cannot affect more than 

(4.36) 

For the convolutional interlacer, the buffer is 

placed after the deinterlacer, and should be able to 

cope with 2u consecutive erroneous block, thus from 

Eq.(4.29) the minimum buffer size required is 

(4.37) 

in practice values lower than 2u can be used, because 

the 2u blocks will not be all erroneous. 

For the symbol interlacers and the random interlacers, 

the case is the same as above and Eq.(4.37) gives the 

buffer requirement. The buffer can be placed in two 
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different places, if the buffer storage space is taken 

as a multiple of M sp 

8 = i. u( t
2
-t

l
)m 

, 
where i = 1,2 

Substituting Eq.(4.9) in Eq.(4.3B) 

where i = 1,2 

Such buffers can be placed within the deinterlacer. As 

(4.38 ) 

(4.39 ) 

it was mentioned in section 4.2.3, deinterlacers are in 

effect two deinterlacers each working in a ping-pang 

configuration,the additional buffer can be placed with 

these two deinterlacers giving a total of three or more. 

The data is written in each one in turn and read out in 

the same sequence, this configuration simplifies the 

buffer control circuit. The other case is where i is a 

real number and not an integer, clearly the previous 

implementation cannot be used. The buffer is placed after 

the deinterlacer as in the convolutional interlac~ts. 

4.3.6.3 Decoders Output Buffer 

The use of time-shared decoders will introduce an 

addi tional delay into the decoder, this delay varies from 

zero for the error-free blocks to a maximum value depending 

on the maximum number of consecutive erroneous blocks j. 

(4.40) 

where 0 is the remaining delay from the previous set 
re 
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of erroneous blocks, which can be neglected without 

serously affecting Eq.(4.4o). 

In some applications the whole block is treated as 

an individual. In such application the delay isnot a serious 

problem, and the data sink can wait for the correction 

delay. In others any delay is not tolerated, where the 

data should be outputed at a fixed rate, consequently, 

additional buffer storage is required at the output. The 

decoder output is written into the buffer until the buffer 

is full, before reading any data out. Once a delay occurs, 

the buffer contents will be reduced, but the buffer will 

be full again as soon as the micrprocessor has recovered 

from the delay. 

Since the decoding time is no longer critical, the 

microprocessor can also be used to control the input and 

output buffers, giving a further saving in cost. 

4.3.7 Modified Time-Shared Decoder for Bursty Channels 

Although the time-shared decoder makes a better use 

of the microprocessor, the microprocessor is not used 

efficeiently even if it is decoding during all the 

transmission time. For example, assuming that our interest 

is concentrated on the k information digits, the micro

processor is attempting to correct errors confined to 

the parity-check digits which will be discarded anyway. A 

more efficient decoder will be one that can detect when 

the errors are confined to the parity-check digits, and 

in such a case it will accept the data without executing 

the correction algorithm, hence saving the delay resulting 
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from the decoding process, and reducing the queue length 

in the buffer. 

4.3.7.1 Parity-Check Errors Trapping 

The parity-check error-trapping is based on the 

error-trapping decoding idea discussed in chapter two. 

Assuming that an (n,k) code is used to correct errors in 

a transmission system, where the transmission channel 

can be either a random or bursty channel. A decoder that 

can detect the correct received words and words with the 

errors confinded to the parity-check digits without too 

many calculations is the error-trapping decoder. So to 

achieve the required hlodified algorithm, the parity-

check error-trapping part of the error-trapping decoder is 

combined with the correction algorithm to be used. A 

summary of the modified algorithm follows. 

STEP 1 After the receiving"of the whole block, 

the syndrome is calculated. 

STEP 2 The syndrome is tested and if it is all 

zeros, the received word is a codeword and the information 

digits are accepted as the transmitted data and the 

decoding is complete, otherwise:-

STEP 3 Is dependent on the type of code used. For 

random-err or-correcting codes which can correct all errors 

of t or less, the syndrome is tested and if its Hamming 

weight is t or less then errors are confined to the n-k 

parity-check digits, and the information digits are 

error-free. which are accepted as the transmitted digits 

and the decoding is complete. Otherwise go to STEP 4. 
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For burst-error-correcting codes, which can correct all 

bursts of length ~ or less, the leftmost n-k-~ stages of 

the syndrome are tested, if they contain zeros, then the 

error-pattern is trapped in the ~ rightmost stages, other

wise the syndrome is shifted once again and the syndrome 

tested. If the n-k-~ leftmost stages contain zeros at 

the ith shift, where O~i~n-k-~, then the error-pattern is 

confined to the parity-check digits, the information 

digits are error-free, and are accepted as the transmitted 

information digits. Otherwise go to STEP 4. 

STEP 4 The correction algorithm is executed and 

errors are corrected. 

It should be noted that the algorithm should 

calculate the possible untrappable errors in the n-k parity

check digits. 

4.3.7.2 Probability Of Parity-Check Errors-Trapping 

For Random Error Channel 

When an (n ,k) code is used for error correction in 

a random-error channel, where this code can correct all 

t or less errors, the probability of t or less errors 

confined to the parity-check digits can be calculated as 

follows. Let the probability of error in the transmission 

channel be p, then the probability of receiving a word 

containing v errors is the probability of receiving v 

errors given that the remaining n-v digits are error 

free, that is 

v (l_p)n-v Pv = p (4.41) 
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The fraction of v error confined to the parity-check 

digits, to the total number of possible v errors in a 

codeword is 

C n-k,v 
C n,v 

= 

(n-k)~ 
v~(n-k-vn 

n ~ 

v~(n-v)~ 

(n-k)~(n-v)~ 

n~(n-k-v)~ 

from Eqs(4.41) and (4.42) the probability of v errors 

confining to the n-k parity-check digits is 

(4.42) 

p = 
v 

(n-k) ~ (n-v) ~ 
n~(n-k-v)~ 

(4.43) 

Since all t or less errors are trappable, then the 

probability of trapping t or less eretrs confined to the 

parity-check Pet is 

t 
= ~ 
i=l 

4.3.7.3 Probability Of Parity-Check Error-Trappin~ 

For Bursty Channel 

(4.44) 

Assuming an (n,k) code is used for error correction 

in a bursty channel, where the code used can correct all 

bursts of length t or less. Let the probability of 

generating errors in the channel is p. Since the channel 

is a bur sty channel then errors tend to affect a number 

of consecutive digits. 50 it will be assumed that errors 

in this channel affect consecutive digits only, and that 

no random errors will occur outside the burst. The 
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probability of generating a burst of length ~ or less, 

where the burst contain l~v~~ errors, given that the 

remaining n-~ digits are error-free is 

where l"'v~~ (4.45) 

The total number of possible bursts of length ~ in 

a block of n digits is 

(4.46) 

the number of bursts of length ~ confined to the parity-

check diqits is 

Y = n-k-o+l 
.2 '" 

(4.47) 

from Eqs(4.45), (4.46) and (4.47), the probability of a 

burst of length ~ containing v errors being confined to 

the n-k parity-check digits is 

(4.48) 

where O~v~~ 

Since all bursts of length ~ or less are trappable, 

regardless of the number of errors in the burst, then 

the probability of trapping bursts of length ~ or less 

confined to the parity-check digits Pet is 
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~ 

= I (4.49) 
i=l 

4.3.7.4 The Percentage Reduction In The 5torage~Oelay 

Due to The Modified Algorithm 

The probability of receiveing erroneous blocks is 

given in Eq.(4.16), thus the percentage reduction in 

executing the correction algorithm Red is 

Pet 
= -p - 100% (4.50) 

e 

Let the time required to calculate the syndrome and 

detect the parity-check digit errors be t , then for each 
e 

parity-check erroneous block detected there is a reduction 

in the delay t d' where re 

t red 
(4.51) 

but according to Eq.(4.25), a delay 0 resulting from 

receiving j consecutive erroneous blocks is 

(4.25) 

Consequently, the detection of partiy-check erroneous 

block will result in reducing the buffer contents by v 

blocks if the buffer contains v blocks, where 
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v = (4.52) 

Let b d be the reduction in the buffer size measured in re 

bits, then Eq.(4.52) becomes 

(4.53) 

Conversley, the overall percentage reduction in the 

storage space is 

8 = n 
red 

100% (4.54) 

where 8 d is in bits, P is as given in Eq.(4.16) and re e 

Petjs as given in Eq.(4.44) or Eq.(4.49) depending on 

the channel type. The precentage reduction in the delay 

can be calculated in the same way as 

o red 
Pet 

= 0 P 100% 
e 

'.(4.55) 

4.3.7.5 Symbol Interlacer And Parity-Check Error -Trapping 

The parity-check error-trapping technique has a 

big advantage when used with symbol interlaced error-

correcting codes. Let us take a closer look at a burst 

generated in a channel. There are two possible places 

where a burst may be added, firstly, the whole burst may 

be added to the contents of one interlacer somewhere 

between the first and the Anth digit, and in this case 

the maximum number of consecutive erroneous blocks 



- 116 -

cannot exceed A blocks. Secondly, the burst is affecting 

the contents of two adjacent interlacers and in this case 

the burst will affect the end digits of the first interlacer 

blocks, and the beginning digits of the second interlacer 

blocks, which are normally the parity-check digits. Assuming 

that the longest burst R. is 
max 

R. < A(R.+l) max (4.56) 

Then any burst that affects two adjacent interlacers will 

not affect more than the parity-check digits of the 

second interlacer. Since all these parity-check errors can 

be trapped, then in this case also the maximum number of 

consecutive blocks for which the algorithm needs executing 

cannot exceed A blocks. Thus Eq.(4.37) that states the 

minimum buffer requirements so that no information is lost 

can be rewritten for the symbol interlacer when a parity-

check error trapper is implemented in the decoding 

algorithm, as 

(4.57) 

4.3.B An Algorithm For Decoding Single-Burst Errors 

The algorithms described are algorithms for correcting 

burst errors. The reason for choosing a bursty channel is, 

firstly to get information about the behaviour of soft-

decision decoding for bursty channels, secondly to study 

the effect of quantization, and thirdly to study the 
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algorithm performance itself. Although these algorithms 

as described are for decoding burst-error-correcting codes, 

they can be easily modified to be used for decoding random

error correcting codes. 

4.3.8.1 First Algorithm 

This algorithm has a basic structure as the general 

description of the modified algorithm in section 4.3.7.1, 

and can therefore trap all errors that are confined to the 

parity-check digits. Assuming that an (n,k) code which can 

correct all bursts of length i or less is used to correct 

the transmission channel bursts, then the decoding 

algorithm can be described by the following steps. 

STEP 1 The syndrome S(X) of the received word is 

calculated and tested. If the syndrome is all zeros, the 

received word is a codeword, the information digits are 

accepted as the transmitted data, and the decoding is 

finished. Otherwise. 

STEP 2 The syndrome is tested for n-k-i zeros in 

the n-k-i leftmost stages. If they are detected, then the 

burst pattern is confined to the i rightmost stages of 

the syndrome register, and the information digits are 

error-free. Hence the data is accepted, and the decoding 

is finished. Otherwise, 

STEP 3 The syndrome is shifted with the feedback 

connection affecting the syndrome to the right once, and 

its contents tested up to i times, where l~i'n-k-i. As 

soon as the n-k-i leftmost stages contain only zeros, the 

i rightmost stages contain the error-pattern, and the 

error burst is confined to the parity-check section of 
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the received word. Thus the information digits are 

accepted as error-free, and the decoding is finished. If 

at the end of the n_k_~th shift the error is not trapped 

then the burst has affected the information digits and 

to correct them the correction algorithm has to be executed. 

To start:this,the shifts counter is.set to zero. 

STEP 4 The syndrome is shifted with the feedback 

considered to the right once, and the error-pattern soft 

weight (EPSW) is calculated from Eq.(2.50) for this error-

pattern, then the syndrome contents, the EPSW, and information 

about the syndrome location are stored. 

STEP 5 STEP 4 is'repeated n times and at each time 

the EPSW is compared with the EPSW stored, if the new 

EPSW is found to be smaller then the stored EPSW, then the 

new syndrome contents, EPSW, and the syndrome location are 

stored. 

At the end of the n shifts, the syndrome store 

contains the error-pattern which has the lowest EPSW, i.e. 

the most likely error-pattern to have been added to the 

transmitted codeword during transmission. 

The content of the syndrome, after the k+lth shift, 

is the syndrome S(X) of the received word, thus the EPSW 

calculated corresponds to the error-pattern that is confined 

to the parity-check digits, which was not calculated at 

the beginning of the decoding. It should be noted that 

the burst length of the error-pattern at the syndrome 

after the nth shift is longer than I, otherwise the 

error-pattern would have been detected in STEP 2 or 

STEP 3. 
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STEP 6 Using the information stored in the syndrome 

location store , the syndorme is modulo-two added to the 

corresponding digits for correction before the data is 

read out, thus the decoding is finished. 

A complete process flowchart is shown in fi9.(4.4) 

4.3.B.2 Second Algorithm 

The second algorithm introduced is based on the 

same idea as the first algorithm. Three major modifications 

are carried out to improve the algorithm execution time 

without degrading the decoder performance as follows. 

I-Once the syndrome for the received word is calculated, 

it is tested for an all zeros syndrome, then it is tested 

for n-k-2 zeros in the leftmost stages. Whenever any of 

these tests are satisified, the information digits are 

accepted as the transmitted data. Since, whenever the 

first test is satisfied the second one will be satisfied, 
, 

then the first test can be omitted from the algorithm. 

2-The EPSW as is given in Eq.(2.S0) is dependent on 

the 'l's in the syndrome. Since the 'l's in the syndrome 

do not change unless the last rightmost stages contain '1', 

then the syndrome will contain the same error-pattern as 

long as no shift has occured where the last rightmost stage 

contains '1', i.e. the syndrome contents will be the 

previous contents shifted once to the right till a '1' 
th . 

at the n-k stage changes the error patern. So the EPSW 

will not change its value until after a shift where the 

last rightmost stage of the syndrome contains 'I'. 

Consequently, the same results can be achieved with less 

calculation if the EPSW is calculated only when the last 



y 

y 

Calculate syndrome 

Is 

syndrome all 

zeros ? 

N,r-__________________ ~ 

Are 
n-k -i. 

leftmost digits 
zeros? 

Is 

Shi ft syndrome 

contents once 

Calculate [PSW 

N 

Shift syndrome 

contents once 

STORE: EPSW, 

syndrome and location 

Set shift counter 

to zero 

Fig.(4.4) Flowchart of first algorithm 

N 

Shift syndrome 
contents once 

Calculate EPSW 

Is 

EPSW <: Stored 
EPSW? 

N 

Is 
the shi ft 
count = n? 

Shift the stored 
syndrome to the 

correct position 

Correct the 

received word 

Accept data 

y STORE: [PSW, 
syndrome and location 



- 120 -

rightmost stage is '1'. 

3-To reduce the EPSW calculations further, it was 

assumed that the transmission channel generates bursts 

in such a way that each burst of any given length is less 

likely to be generated, than each burst of any shorter 

length. Thus the EPSW is more likely to have its smallest 

value for shorter error-patterns. The decoder stores a 

number of the shortest error-patterns, then the EPSW is 

calculated for these error-patterns and the one with the 

lowest EPSW is chosen as the error-pattern added to the 

transmitted signal in the channel. Clearly the bigger the 

number of error-patterns stored, this algorithm will 

perform similar to the first algorithm. While if the 

number goes down to one it will perform as the optimum 

decoder of section (2.3). 

Considering the three points mentioned above, the 

second algorithm can be described in the following steps. 

STEP 1 Th~ syndrome S(X) of the received word is 

calculated, then tested for n-k-t zeros in the n-k-t leftmost 

stages. If these zeros are detected, then, either the 

syndrome is zero, i.e. the received word is a codeword, 

or the burst pattern is confined to the t rightmost 

stages. In both cases the information digits are accepted 

as the transmitted data, and the decoding process is 

finished. Otherwise 

STEP 2 With the feedback connection considered the 

syndrome is shifted to the right once, and its contents 

are tested. If the n-k-t leftmost stages contain zeros 

at any stage of the shifting process, where the number of 
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shifts i is l(i(n-k-£, the burst pattern is confined 

to the n-k parity-check digits, and the information 

digits are error-free. Thus the data is accepted, and 

the decoding is finished. Otherwise, the shifts counter 

is set to zero. 

STEP 3 The syndrome rightmost digit is tested, if 

it is '0', the syndrome is shifted to the right once with 

the feedback connection considered, then STEP 3 is repeated 

from the beginning, while if the syndrome's rightmost 

digit is '1', the length of the burst pattern in the 

syndrome is calculated, and the syndrome, the burst length, 

and the syndrome location are stored. 

STEP 4 STEP 3 is repeated till the shifts counter 

reaches n. Each time the burst length is calculated, the 

syndrome, the burst length, and the syndrome location are 

each stored in a different store. 

At the end of the n shifts, the store area contains 

all the possible burst information for the received word, 

and includes any burst pattern that maybe confined to the 

parity-check digits, and which is longer than ~, i.e. 

untrappable. 

STEP S All the bursts stored in STEP 3 and STEP 4 

are sorted according to their length. Assuming that it 

is required to consider j bursts, then the EPSW of the 

shortest j bursts is calculated according to Eq.(2.50), 

and the burst which has the smallest EPSW is accepted as 

the burst added to the transmitted codeword in the channel. 

STEP 6 Using the location information of the chosen 

burst, the syndrome is modulo-two added to the corresponding 
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digits for correction, then the data is read out, finishing 

the decoding cycle. 

A flow chart of a complete process is. shown in 

fig.(4.5). 

4.3.8.3 Shortened Codes And The First And Second Algorithms 

The use of shortened codes with these two algorithms 

can simplify the two algorithms furthermore. Given that 

an (nl,k
l

) code is shortened by B, so that the shortened 

code is the (n,k) code. Assuming that 

(4.58) 

and 

B > n-k (4.59) 

which means that the code will not detect round the end 

burst, because they are spaced by S digits. Thus they 

cannot be trapped by the syndrome. 

Assuming the the generator polynomial of the (nl;k
l

) 

code is used without any modification, clearly in this 

case the syndrome has to be shifted n l times instead of 

n times to get back to the received word syndrome. The 

algorithms for burst-error-correcting codes can be modified 

in the following way. 

I-After the n-k-£ shifts the syndrome contents will 

correspond to the round the end bursts for the next i 

shifts, where n-k-£<i<n-k. After the n_k
th 

shift the 

syndrome contents will correspond to the B inserted 

zeros until i reaches the S-n-k. After the next shift, 



y 

Calculate syndrome 

Ace 

n -k~.t 

leftmost digit 

zero? 

Is 
number 

of shifts 

n -k -I.? 

y~-------------+~ 

Shi ft counter 

Shi ft syndrome 

contents once 

Is 
the rightmost 
syndrome digit 

I I I ? . 

o 

N 

Y l ___________ ----" 

N 

Shift syndrome 

contents once 

Calculate error 

pattern lenght 

STORE: syndrome, 

lenght. location 

Is 
the shift 

count = n ? 

Sort the stored syndromes 

Set [PSW 

STORE to large value 

Calculate EPSW for one 

of j considered pattern 

[PSW < 

[PSW? 

y Store: EP5W, 

syndrome. and location 

N~ __________________ --J 

Ace 

all j patterns 

finished? 

Shift pattern to 

correcL 110silion 

Correct the 

received word 

Accept dala 

L-_______________________ ---

riq.(4.5) rlowchart of the second decoding Al~orilhm 



- 123 -

i.e. the B_n~k+lth shift, the syndrome will correspond to 

the position X
n

- l of the received polynomial R(X), and to 

the zeros in n n+l n-k-2 
the positions X,X , .... ,X . The next 

n-2 n-l () shifted syndorme will correspond to X ,X of R X and 

n n+l n-k-3 
to the X,X , ... ,X , and so on. Considering the fact 

t n-l n-2 n-l k+l. tha any burst present at X or X ,X , or .••. ,X , 

k+2 Xn - l " t t "t" Xk Xk+l X '0 .•. ' ,15 present a he POSl lons , , ..•• , 

n -1 
X • Becuase for each case the rest are zeros, and cannot 

be erroneous. Then it can be seen that the syndrome contents 

does not give any additional information for all i shifts 

where 

n-k-Jl.< i <B+n-k (4.60) 

This will lead to the insertion of additional STEP after 

STEP 3 in the first algorithm, and after STEP 2 in the 

second algorithm. The inserted STEP is as follows. 

INSERTED STEP The syndrome contents are shifted 

with the feedback connection considered B+JI. times to the 

right, and the shifts counter is set to zero. 

The execution of STEP 4 and STEP S in the first algorithm, 

and STEP 3 and STEP 4 in the second algorithm, k times 

correspond to calculating the burst patterns that contain 

at least one information digits, the k+l corresponds to 

the burst pattern confined to the parity-check digits. 

While the rest correspond to round the end burst patterns. 

Since these last patterns do not exist in the shortened 

codes, they can be excluded. This will lead to the 

substituting n in STEP 5 of the first algorithm, and 

STEP 4 of the second algorithm by k. 
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Since shortened codes where used in the simUlation, these 

two modifications are included in the programmes of thses 

two algorithms in appendix D. 

4.4-Simulation Results And Discussions 

The (34,22) single-burst-error-correcting code is 

used in the simulation, this code is a shortened code 

from the (91,79) single-burst-error-correcting code, 

which has the generator polynomial g(X)(S5). 

the generator of Eq.(4.6l) is used as the generator 

polynomial for the shortened code. 

Since all codewords are equally likely to be 

transmitted, then the use of a repeated codeword will 

(4.61) 

result in the same test outcome. To avoid any complication 

at the transmitter end an all zero codeword is chosen to 

be transmitted repeatedly. Two types of Gaussian noise is 

added to the transmitted signal as described in chapter 

three. The received signal is quanti zed and fed to the 

decoder. A symbol interlacer and deinterlacer of degree 

A=25 are used with all decoders. 

4.4.1 First Algorithm Performance 

4.4.1.1 Effect of Parity-Check Error-Trapping 

As it was mentioned in section 4.3.8.1 the first 

algorithm employs a parity-check error-trapping technique. 

To study the effect of this technique, two decoders were 
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used to decode the same received signals, a soft-decision 

decoder and a decoder using parity-check error-trapping. 

The background SNR is assumed fixed at 9 dB while the 

burst SNR is varied from -20 to 6 dB, the resultant word 

error rate for both decoders are plotted infig.(4.6). 

Clearly the curves of fig.(4.6) can be divided into 

two parts according to the burst SNR values. In the first 

part which is for burst SNR<-2.2S dB the parity-check 

error-trapping decoder outperforms the conventional 

soft-decision decoder and the improvement is increased 

with the decrease of burst SNR values, e.g. at burst 

SNR=-3 dB the improvement is 0.05 dB while at burst 

SNR=-17 dB the improvement is 1.05 dB. In the second part 

where the burst SNR<-2.2S dB the parity-check error-

trapping introduces a degradation of 0.1 dB on average. 

The parity-check error-trapping decoder is in , 

effect an error-trapping decoder during the error detection 

in the parity-check digits only, and the reasons for its 

performance are discussed later in section 4.4.1.3. 

4.4.1.2 Quantization Effects 

A soft-decision decoder using the first algorithm 

is used to study the effect of the number of quantization 

levels. Linear law quantizers are used for all the tests, 

the number of quantization!levels is varied from 4 levels 

to 64 levels. The results are plotted in fig.(4.7). As 

in the previous test the background SNR is set to 9 dB, 

while the burst SNR is varied from -20 dB to 6 dB. 

Although one may expect the decoder performance to 

improve as the number of quantization levels increases,as 
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it has been shown by a number of researchers at higher 

SNR values the results shown in fig.{4.7) show the opposite. 

The reason for this is that at low SNR values the noise 

imformation obtained by quantization is not correct, and 

the decoding process will contain a higher number of 

errors i.e. the larger the number of quantization levels 

the more the noise information will contain errors. This 

can be best described in the following example. 

Example: Assume that two '0' digits are transmitted 

through a high noise power channel, i.e. low SNR value. 

The modulator will output to the channel two values 

x j = xk = -V (4.62) 

during transmission noise will be added to these signals, 

let the two noise samples be wj,w
k 

where 

w. = 2V 
J 

wk = D. SV 

(4.63-a) 

(4.63-b) 

The received sampled digits will be according to Eq.{3.S) 

Then 

Yl. = x. + w. 
1 1 

y. = -V + 2v = +V 
J 

Yk = -V + D.Sv = -D.2V 

(3.S) 

(4.64-a) 

(4.64-b) 
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Consider for simplicity that a two level decoder 

is used to decode the received digits. Such a decoder 

has a detecting threshold of zero volts, hence y. will 
J 

be detected as '1', and Yk as '0'. The confidence number 

for both digits are equal, thus the decoder will consider 

both digits to be equally likely candidates for being 

erroneous. 

Next consider a four level decoder to decode the 

receive~ digits, with equal spacing between the quantization 

levels. Such a decoder will have three detecting 

thresholds at +v/2, 0, -v/2 volts. Thus y. will be detected 
J 

as '1', with a confidence number of '1', while Yk will be 

detected as '0', with a confidence number of '0'. Although 

both digits are detected the same as in the two level 

detector, the decoder will consider Yk as a more likely 

candidate for being erroneous than y., which is not the 
J 

case, and may result in erroneous decoding. 

Clearly, at high SNR values, such a case will not 

arise very often, because the probability of the noise 

value having high power is very small, while the probability 

will increase as the noise power is increased, i.e. the 

SNR is decreased, causing more such cases, and eventually 

increasing the error rate. In the previous example the 

difference in the confidence number was '1' between the 

two samples for four quantization levels. If we assume 

that the number of quantization levels is increased further, 

clearly the received sample y. will have the highest 
J 

confidence number whatever the quantization levels. On 
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the other hand, the difference between the confidence 

numbers of Yj and Yk will increase for this case as the 

number of quantization levels is increased. Consequently, 

the decoder will treat Yk as a more likely candidate for 

being erroneous as the number of quantization levels is 

increased, thus increasing the error rate, as can be 

seen from fig.(4.7). 

4.4.1.3 Decoder Performance 

The test conditions for the decoder performance 

are the same conditions for the previous tests, i.e. the 

background SNR=9 dB, and the burst SNR is varied from 

-20 dB to 6 dB. Two decoders used for this test, a four 

levels decoder and a sixteen levels decoder, the test 

results are shown in fig.(4.B), where the error-trapping 

decoder, and the optimum decoder performance are plotted 

for comparsion. 

As it is expected the optimum decoder performs 

better then the error-trapp~ng decoder, because the channel 

statistics fits the assumed channel statistics of the 

optimum decoder. The 16 levels decoder performs better 

than the optimum decoder up the -5 dB point, and better 

than the error-trapping decoder up the -7.4 dB point. As 

the burst SNR value drops below these points, the first 

algorithm performs worse than the other two decoders, 

The 4 levels decoders performs in a similar way but the 

performance intersection points are -13 dB with the error

trapping decoder, and -6.B dB with the optimum decoder. 

When the background SNR is changed to 7 dB and the 
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same test is carried out, fig.(4.9) shows that the decoder 

performance is better at this lower background SNR value, 

yet the general shape of the curve is as before but the 

intersection points are shifted. For the 16 levels decoder 

the intersection points are -11 dB, and -17 dB, with 

the error-trapping decoder, and the optimum decoder results 

respectively, while for the 4 levels decoder the inter

section point with the optimum decoder is at -19.S.dB, 

and the 4 levels decoder performs better than the error

trapping decoder for the whole studied range. When the 

background SNR is changed to 11 dB, fig.(4.1o), shows that 

the intersection points becaome -6 dB, and -4 dB for 16 

levels decoder, and -10 dB, and -5.6 dB for the 4 levels 

decoder with error~trapping deocder and the optimum decoder 

respectively. 

The inferior performance of the decoder using the 

first algorithm at low burst SNR values is expected because, 

as mentioned in the previous section, the noise information 

is no longer correct, hence the calculated EPSW gives 

unreliable values, which leads to decoding errors. 

Eventually, any decoder that does not use the noise 

information will perform better as it is clear from 

figs.(4.S),(4.9) and (4.10). However as the background 

SNR is decreased the decoder performance using the first 

algorithm starts to improve over the error-trapping and 

the optimum decoders. The reason for this is that as the 

background SNR is decreased, the number of random errors 

is increased. In such cases the random errors may extend 

the burst length. For the error-trapping, if the extended 
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burst is of length ~ or less, the decoding is correct, 

otherwise it is either a decoding error or decoding 

failure. The optimum decoder will decode correctly if the 

extended burst is the shortest error-pattern detected 

and is unique. But if there exist two error-pattern of 

the same length as the extended burst length, the decoder 

is confused, and may decode erroneously, while if the 

extended burst is not the shortest detected error-pattern 

the decoding is erroneous. On the other hand, the first 

algorithm soft-decision decoder can be regarded as an 

optimum decoder that evaluates the error-patterns 

according to their soft-decision weight and not to the 

error-pattern length. In the cases where the burst SNR is 

very low, burst errors have in general, high confidence 

numbers, while since the background SNR is relatively high, 

random errors have, in general, low confidence numbers. 

Clearly, the actual error-pattern consists of burst errors 

and random error or errors, while other error-patterns 

may point to some burst errors and correct digits. The 

EPSW for the actual error-pattern is lower than the other 

error-patterns because of the random error or errors, 

thus the decoding is correct. But if the random error or 

errors are indicated by other error-patterns, the 

decoding may be erroneous. Consequently, for low burst 

SNR, and low background SNR values, the first algorithm 

soft-decision decoder performs better than the other two 

as it is clear from figs.(4.B), (4.9) and (4.10). 

Needless to say that the first algorithm improvement 

is not expected to keep on increasing as the background 
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SNR is decreased, because as the background SNR is 

decreased the confidence number is increased. Subsequently, 

the difference in EPSWs will be smaller, and the decoder 

will make more decoding errors, thus reducing the 

improvement. 

In general, the use of blankers at low SNR values 

will improve the algorithm performance. But an algorithm 

is not simulated because as it was mentioned in section 

4.1 the simulated results give a superior performance to 

a real system, eventually, and the simulation will not 

be accurate to use for comparsion. 

4.4.2 Second Algorithm Performance 

4.4.2.1 The Effect of The Number of Error-Patterns Tested 

The number of error-patterns tested in the decoding, 

has a significant effect on the second algorithm performance, 

as it was described in section 4.3.B.2. To see this, the 

second algorithm is tested in the following conditions; 

the background SNR=7 and 9 dB, the quantization levels 

were taken as 4 and 16 levels, while the number of error

patterns tested is changed in steps, 4,8,12 error-patterns 

for each of the quantization levels, and the burst SNR is 

varied from 6 dB to -20 dB. 

The test results are shown in figs.(4.11), and (4.12), 

for burst SNR=7 dB and for 4 and 16 quantization levels 

respectively. Both figures show that for burst SNR values 

lower than the values of -6 dB for 16 quantization levels, 

and -10 dB for 4 quantization levels, the lower the number 

of the error-patterns tested the higher the improvement. 



Xl0- 4 

5. 121 
I 

4.70 

-. 
4.29 

'\ 3. 87~ 
~ I 
~ ~ 

W 
I
< 
0:: 

\~ 3.45

1 

~ 3. 04J ~ 
~\ I 0:: 

'\ J', ~ 
2., 0:: 

~ ~ , 
2. 20~ 

I' 
i~ 

1.791 \ 
" ~ 

... ~ 

" 
1. 37 

~ 
r---' --. ,.--- ---- -, -----T -----r- ----.------.--------T-----,----,....9-"'+-- -,----.----~ 
-20 -18 -15 -14 -12 -10 -8 -5 -4 -2 0 2 4 5 

SNR(dB) 

__ 4 EP TESTED ___ 12 EP TESTED 

__ 8 EP TESTED 

, 

FIG.(4.11) NO. OF ERROR-PATTERNS TESTED EFFECTS 



, 

X10- 4 

5.69] 

5.21 

4.74 

4.27 

3.79 
1 

I 
I 3.32-.; 
I 

I 
" 84~ 
~~ i 

'\ 
2.3 

i~ 
1. 89~ ~ 

! ~~ 
I '~ 

r--'-----I--,---r--,-----,-- r~'--:~l-,-~ 
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 

SNR(dB) 

__ 1 EP TESTED ___ 12 EP TESTED 

__ 8 EP TESTED 

FIG.(1.12) NO. OF ERROR-PATTERNS TESTED EFFECTS 



- 133 -

The test results for burst SNR=9 dB, shown in 

figs.(4.13), (4.14) for 4 and 16 quantization levels 

respectively, tell the same story, except that the inter

section points of the burst SNR values are -2.6 dB, and 

between -7 dB and -3 dB for 16 and 4 levels respectively. 

The degradation at high burst SNR values, however, 

is very small compared with the improvement when the 

burst SNR values drops to low values during transmission. 

However, this is not the case if the burst SNR value does 

not exceed the intersection point. 

4.4.2.2 Quantization Effects 

To study the quantization effects on the second 

algorithm performance, a test is carried out under the 

following conditions; The background SNR=9 dB, B error

patterns were tested, the burst SNR is varied from 6 dB 

to -20 dB, and the quantization levels are taken as 4,B,16, 

32, and 64 levels for each burst SNR value. All quantizers 

used are uniform spaced level quantizers. 

The test results are shown in fig.(4.15), where it 

can be seen that at low burst SNR values, the second 

algorithm performs better the lower the number of· 

quantizations levels. While at high b,urst SNR values, say 

2 db, a decoder using a 16 levels quantizer performs 

slightly better than the others. 

The quantization effects on the second algorithm are 

vary similiar to their effect on the first algorithm, as 

it can be seen from figs.(4.15) and (4.7). This is 

somehow expected, because the second algorithm is a 
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modification of the first one, hence needless to say 

that the argument for the quantization effect on the first 
, 

algorithm in section 4.4.1.2 stands also for the quantization 

effects on the second algorithm. 

4.4.2.3 Improvement Over First Algorithm 

The second algorithm is designed to perform better 

than the first algorithm at low SNR values. To verify 

this, the second algorithm is tested with the background 

SNR=9 dB. The number of error-patterns tested is taken 

as 4 and 12 at 16 and 4 quantization levels, and the results 

are shown in figs.(4.16) and (4.17). The optimum d~coder, 

error-trapping decoder, and the first algorithm decoder 

results are plotted also for comparsion. 

Fig.(4.16) shows the results when the first algorithm 

and second algorithm decoders,used 16 levels quantizers. 

For 4 error-patterns, the second algorithm performs better 

than the first algorithm at burst SNR values lower then 

-1.9 dB, while its performance is better than the error-

trapping decoder for the whole studied range of burst 

SNR. But worse than the optimum decoder for burst SNR values 

lower than -11.5 dB. On the other hand the second algorithm 

decoder using 12 error-patterns performs better than the 

first algorithm fot burst SNR values lower than-I.2 dB. 

While.it performs worse than the optimum decoder and the 

error-trapping decoder at burst SNR values lower than 

-6 dB, and -9.5 dB respectively. 

Fig.(4.17) shows the same results as fig.(4.16), 

the only difference here is that the quantization levels 
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are 4. The intersection points for the 4 and 12 error

patterns are -6 dB, and 0 dB respectively, and the inter

section points with the optimum decoder results are 

-13.5 dB, and -B.2 dB for 4 and 12 error-patterns respectively. 

The second algorithm outperforms the error-trapping 

decoder for the whole studied range. 

The same previous test is repeated for a background 

SNR=7 dB, the test results are shown in figs.(4.18) and 

(4.19) for 16 and 4 quantization levels. Here again, as 

for the first algorithm, the second algorithm performs 

better at a lower background SNR value. The two figures 

are very similar to the previous two, the only difference 

is that the intersection points are shifted to the left. 

For the 16 level decoders, fig.(4.18), the inter

section points with the first algorithm are -0.5 dB and 

-4.5 dB for 12 and 4 error-patterns respectively. The 

intersections with the optimum decoder and the error

trapping decoder for the 12 error-patterns are at -12 dB 

and -20 dB re~pectively. While the 4 error-pattern decoder 

outperforms the optimum and error-trapping decoders 

for the whole studied range. 

The curves bf fig.(4.19) are a little bit different, 

because at 4 quantization levels the second algorithm 

outperforms the error-trapping decoder, and the optimum 

decoder over the whole studied range. While the inter

section points with first algorithm are -9 dB and -0.8 dB 

for the 4 and 12 error-patterns respectively. 

Clearly figs.(4.16), (4.17), (4.1B), and (4.19) show 

that the second algorithm introduces an improvement over 
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the first algorithm at low burst SNR values, but this 

improvement is at the cost of a small degradation at 

high burst SNR values. And that the improvement and 

the degradation are inversely proportional to the number 

of error-patterns used in the decoding process. 

4.S-Conclusions 

The time-shared decoding may be the solution for 

a very high transmission rate system. Any system is 

evaluated by its complexity, cost, and performance. A 

time-shared decoder will introduce an additional complexity 

to the receiver, yet the microporcessor software can be 

made to simplify the system, i.e. use the microprocessor to 

handle the buffer control. The cost is also higher because 

at least the system requires additional storage to be 

used as buffers. Again some systems may require buffers for 

usage by other than the error-correcting decoder, hence 

the existing buffers may be used by the time-shared 

decoder. Consequently, the time-shared decoder complexity 

and cost is somehow difficult to evaluate; because it 

can be different from one system to another. While the 

time-shared decoder performance is entirely dependent on 

the decoding algorithm, two algorithms were introduced to 

be used specifically as time-shared decoding algorithms, 

although in general any decoding algorithm can be used. 

Perhaps the most important conclusion one can draw 

is the effect of the number of quantization levels on the 

soft-decision decoder performance. It became clear during 

the simulation that the decoder performance is not always 
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improved by increasing the number of quantization levels. 

In fact the simulation results show that the decoder 

performance is improved as the number of quantization 

levels is increased at high burst SNR. But after a certain 

low SNR value the decoder performance starts to deteriorate 

as the number of quantization levels is further increased. 

This represents a special problem because if a small number 

of quantization levels are used, the decoder will preform 

well at low burst SNR values, but will not get all the 

improvement that can be achieved. On the other hand, if 

a larger number of quantization levels is used, the decoder 

will perform well at high burst SNR values, and badly at 

low burst SNR values. In general it is perferable to use 

larger num~er of quantization levels, so that the overall 

decoder performance is good, because in the bursty channel 

case, the SNR value is high most of the transmission time. 

The first algorithm is in fact an ordinary soft

decision algorithm, with the exception that the parity

check error-trapping is added so that it will reduce the 

execution time, hence reducing delay when used in the 

time-shared decoder. Although the algorithm is designed to 

be used in time-shared decoders, there is nothing to stop 

using it in a conventional soft-decision decoder. The 

parity-check error-trapping technique can be incorporated 

in the conventional soft-decision decoder to achieve an 

additional gain at low burst SNR values. In general the 

inclusion of the parity-check error-trapper in the decoder 

can be achieved without additional cost to the hardware 
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or major modifications in the software. 

The second algorithm is a further modification of 

the first algorithm, it performs better than the first 

algorithm at low burst SNR values, while the first algorithm 

outperforms the second algorithm at high burst SNR values. 

Again the second algorithm can be used in conventional 

soft-decision decoders with or without the parity-check 

error-trapping facility. The most important feature of 

the second algorithm is its change of perfromance as the 

number of tested error-patterns are changed. When the 

number of tested error-patterns is large, the second 

algorithm performs exactly as the first algorithm. If 

the number of tested error-patterns is equal to one, a 

second algorithm decoder will perform exactly as the 

optimum decoder. While if the number of tested error

patterns is in between then, the second algorithm, 

depending on the SNR values, may perform better than the 

first algorithm and the optimum decoder. 

As it is mentioned earlier, the first algorithm 

performs better at high burst SNR, while the second 

algorithm performs better at low burst SNR. Since the 

second algorithm can be made to perform as the first 

algorithm by increasing the number of the tested error~ 

patterns. Then an adaptive system that change the number 

of the tested error-patterns according to the burst 

SNR value, can be used to achieve a better performance 

over the whole burst SNR range. Clearly such a system 

will require a burst SNR calculation circuit, which may 

be complicated in itself. A simple solution can be based 
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on the following fact; keeping in mind that the transmitted 

codewords are interlaced. At low burst SNR values, a burst 

will cause a number of consecutive received words to be 

erroneous. As soon as the burst is finished, there should 

be no consecutive, but random erroneous received words. 

Instead of the burst SNR calculation circuit, a counter 

is designated to count the consecutive erroneous words, 

if the count is larger than certain number a burst is 

assumed, and the number of tested error-patterns is reduced 

to a low value, while once an error-free word is received, 

it is assumed that the burst is finished, and the number 

of tested error-patterns is increased. Although this 

solution may not be very elegant, it is reasonably accurate 

and very simple to implement. 

Both algorithms show that for bursty channels the 

improvement over error-trapping and optimum decoding is 

increased as the background SNR is decreased. But it is 

expected that the improvement will start to decrease after 

reaching a peak value as the background SNR is decreased. 
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CHAPTER 5. 

THE PARALLEL THRE5HOLD DECODER 

5.1- A General Look 

A data stream is transmitted over a transmission 

channel fig.(3.1), which can handle binary signals. 

Consider the transmission of a data block from the data 

stream. Fig.(5.1) shows the different waveforms of a 

block in various points of the transmission system, the 

modulator output x(t) is shown in fig.(s.l-a) which 

represents the transmitted waveform during transmission, 

noise waveform wet) is added to the transmitted waveform, 

to form the received waveform yet) according to Eq.(3.1) 

yet) = x(t) + wet) ( 3.1 ) 

The received waveform at the demodulator input yet) is 

shown in fig.(5.1-b). At the demodulator the received 

signal is sampled in time wi th the sampling pulses 

fig.(5.1-c), and compared with a present threshold value 

to detect whether the transmitted digit was '0' or '1'. 

The output of the demodulator is dependent on the 

threshold value which in most communication systems is 

half point between the transmitted values of '0' and '1'. 

The output of a detector which has a threshold value of 

zero is shown in fig.(5.1-d), and it can be seen from 

comparing fig.(5.1-d), and fig.(5.1-a) that the demodulator 

committed three errors in detecting the 2nd, 6th, an~ 12th 
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received digits. Let the threshold value be any value 

other than zero volts, say -v/2 volts. The detector at 

the demodulator will compare the sampled received waveform 

with the-V/2 volts threshold, it will assume that the 

corresponding transmitted digit was '1' if its sampled 

received waveform value is higher than -v/2, and that 

the transmitted digit was '0' if the sampled value was 

lower than -v 12 vol ts. The output of a detector which has 

a threshold value of -v/2 volts is shown in fig.(5.1-e), 

it can be seen from comparing fig.(5.1-e), and fig.(5.1-a), 

that the demodulator committed two errors in detecting 

the 2nd, and the 12th received digits. If an error

correcting code is used for error-control in this 

transmission system, which is capable of correcting two 

or less errors in the considered block. Then the block 

decoded by the zero threshold mayor may not be corrected, 

while the block detected by the -V 12 volt threshold will 

be decoded successfully, and the correct data will be 

delivered to the sink. Clearly in this particular case 

the second threshold value is more suitable for the 

decoding of this particular received waveform than the 

first threshold value, and this may not be the case if 

the same block is transmitted again. 

5.2-The Optimum Threshold Calculation 

The optimum threshold is the value that when used 

to detect the received signal the detection is optimum. 

The detection process is optimum in the sense that it 

minimizes the probability of error in the detection of 
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the received signal. 

It is assumed that no signal distortion is 

introduced by the transmission channel, so that the 

signal waveform is shaped entirely at the transmitter 

and the receiver. The transmission channel, however, 

introduces additive white Gaussian noise. Although the 

additive noise introduced by many practical channels 

does not approximate to Gaussian noise, it is well 

known(16,17) that a digital signal having a qetter 

tolerance to additive white Gaussian noise than another 

signal, will normally also have a better tolerance to 

the additive noise obtained in practice. The relative 

tolerance of different signals to additives white 

Gaussian noise are therefore usually a good measure of 

their relative tolerance to additive noise present in 

a practical channel, 

Going back to fig.(3.1) the signal to be transmitted 

through the channel is generated in the source, the 

source encoder will change this signal to a stream of 

'0' and 'l's. The channel encoder groups each k digit 

together and annexes n-k parity check digits to each 

group, so that a block of n digits is formed. Each block 

is an independent vector of any other block, and it 

is a codeword. Let this vector be C, then 

c = c 1 'c 2 'c 3 '········,cn (5.1) 
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where cl ••...• c(n_k) are the parity check digits. and 

c(n_k+l)' c(n_k+2).····· .c n are the information digits. 

At this stage. since we are interested in the 

sampled output of the transmission channel. Then a 

discrete channel will be considered. where discrete 

noise will be added to the transmitted signal in the 

channel. 

The vector C is converted to the binary polar 

vector X. and is transmitted through the channel as a 

two level signal where 

x = (5.2) 

each sample x. is one of two levels depending on the 
J. 

value of c
i 

when 

and when 

c. = '1' 
J. 

c =' 0' i 

then xi = +V 

then x. = -V 
J. 

During the transmission through the channel. 

(5.3-a) 

(5.3-b) 

white Gaussian noise. which has zero mean. and power 

spectral density of 0
2 • is added to the transmitted 

signal. The received signal is the addition of the 

transmitted signal and the noise signal. Let the noise 

vector added to the transmitted vector be W. then 

w = ( 5-. 4 ) 
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where w. is a sample value of a Gaussian process, with 
1 

zero mean and 0 variance . 

At the receiver, the received signal is the sampled 

vector Y, where 

Y = ( 5.5) 

The received vector Y can be written as the addition of 

the transmitted vector and noise -

Y = X + W 

+ W. 
1 

( 5 . 6 ) 

( 5 .7) 

To detect the value of x. from y., y. is compared 
111 

with a threshold level of Th, 

when Yi < Th 

when Y
i 

> Th 

x. is detected as -V 
1 

x. is detected as +V 
1 

(5.B-a) 

(5.B-b) 

and when y. = Th 
1 

x. may 
1 

be detected as +V or-V 
(5.B-c) 

The probability density function of the noise 

component w. in Eq.(5.4) is 
1 

p(w.) = 
1 

1 w~ 
exp (---1) 

20 2 

( 5.9 ) 
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The probability density function of the received 

signal can be obtained from Eqs.(5.9) and (5.7) 

1 
(y.-x.)2 

exp{- J. J. ) (5.10) 
20 2 

Thus y has two possible probability-density 

functions p(y·1 _ v) and p(y·1 _ V), its probability 
J. x.-- J. x.-+ 

J. J. 

densi ty depending upon whether x=-V or x=+V. p(y·1 - V) 
J. x.--

J. 

and p(y.1 V) are conditional probability densities 
J. x.=+ 

J. 

of y, given that x=-V and x=+V respectively. The two 

conditional probability densities are shown in fig.(5.2). 

Decision Threshold 

p(ydx.=+v) 
J. 

Fig.(5.2) Conditional Probability Density 

Functions of y 

Clearly, the two conditional probability densities 

can be obtained by substituting the values x. in Eq. (5.10). 
J. 
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1 
(y.+V)2 

p(Yilx.=-v) = exp { _ 1 } 

1 12n02 20 2 
(S.11) 

and 1 
(y._V)2 

p(Yilx.=+v) = exp { _ 1 } 

1 12n02 20 2 
(S.12) 

Assuming the decision threshold used in the 

detection process it Th, and the detection rules are 

the same as Eqs.(S.8). If x.=-V, an error occurs in the 
1 

detection of x. when y.>Th, thus the probability of 
1 1 

error is 

<X> 

PeO = J ~ exp 

Th 

(y.+V)2 
{ _ 1 } 

20 2 
dy. 

1 
(S.13) 

If x.=+V, an error occurs in the detection of x. 
1 1 

when y.<Th, thus the probability of error is 
1 

(y._V)2 
{ _ 1 } exp 

20 2 
(S.14) 

assuming that x. is transmitted as -V, from Eq.(S.7) 
1 

w. = Yi 1 
+ V (S.IS) 

Then 

dw. = dy. 
1 1 

(S.16) 

again assuming that xi is transmitted as +V, from Eq.(S.7) 
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w. = y. - V 
1 1 

(S.17) 

Then 
(S.lS) 

Substituting Eqs.(S.lS) and (S.16) in Eq.(S.13) gives 

'" 
w~ 

PeO = j ;,,:' exp ( __ 1_ dw. 
1 

(S.19) 
20 2 

Th 

Similarily substituting Eqs.(S.17) and (S.lS) in Eq.(S.14) 

gives 

Th 

Pel = j 1 
12110 2 

w~ 
exp ( __ 1_) dw. 

1 
(S.20) 

20 2 

. -. co 

Assuming the decision threshold is at a distance d
l 

from +V, and d
2 

from -V, then from fig.(S.2) 

Thus if x.=-V, an error occurs in the detection 
1 

of xi whenever wi >d 2 . Similarily, if xi=+V, an error 

occurs in the detection of x. whenever w.<d
l

. Hence 
. 1 1 

(S.2l) 

PeO is the probability that the noise component w
i 

has 

a value more postive than d
l

, and Pel is the probability 

that w
i 

has a value more negative than d
2

. It follows 
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w~ 
exp ( __ 1_) 

20 2 

w~ 
exp ( __ 1_) 

20 2 

dw_ 
1 

dw. 
1 

(5.22 ) 

(5.23) 

Let the probability of transmitting' l' be ql' and 

the probability of transmitting '0' be qO. Then 

= 1 (5.24) 

Consider the transmission of a digit without any 

knowledge of this digit being '0' or '1'. The probability 

of decoding this digit erroneously as '1' is 

p 
eO = qo PeO (5.25) 

00 

j 12 :" 

w~ 
p = qo exp ( __ 1_) dw. (5.26) 

eO 20 2 1 

d2 

00 

j~ 
w~ 

p = qo exp ( __ 1_) dw. (5.27) eO 2 1 

d2 -
0 

d 
P eO = qo erf (2) (5.28-) 

0 
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where 
00 

j erf(y) 1 z2. 
(5.29) = exp (--) dz 

/2TT 2 

y 

Conversley, the probability of decoding the 

transmitted digit erroneously as '0' is 

p 
el = ql Pel (5.30) 

d l w~ j ;':0' 
p = ql exp ( __ 1._) dw. (5.31 ) el 20 2 1. 

_00 

w~ 
Since exp( __ 1._) is an even function of w, Eq.(5.31) can 

20 2 

be rewritten 

00 

f 12~02 
w~ 

P = ql exp ( __ 1._) dw. (5.32) 
el 20 2 1. 

-d 
1 

00 

j~ w~ 
p = ql exp ( __ 1._) dw. (5.33) 

el 20 2 1. 

-d l -
0 

-d 
P = ql erf (_1) (5.34) el 0 

where erf(y) is defined as in Eq.(5.29). 

The probability of decoding a transmitted digit 

erroneously is 

Pe = PeD + Pei 
(5.35) 
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Substituting Eqs.(S.28) and (S.34) in Eq.(S.3S) gives 

( S . 36 ) 

To find the distance d
1

, that minimizes the 

probability of error is the received digit the following 

condition should be satified 

from Eq.(S.21) 

ap 
e = 0 

ad
l 

Substituting Eq.(S.38) in Eq.(S.26) gives 

00 

j }"o' 
w~ 

p el = qo exp ( __ 1_) 

20 2 

2V-d l 

from Eqs.(S.3S),(5.3l), and·(5.39) 

(S. 37) 

(S.38) 

dw. (S.39) 
1 

p 
e = J :~P(_w~ )dw.+q J:xP(_W~ )dw. J 

202 1 0 202 1 

2V-d l (5.40) 

( 4 ) 
according to the first fundamental theorm of cu1cu1us . 

d 2 

exp( ___ l_)_q exp{ 
20 2 0 

(5.41) 
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to meet the condition of Eq.(5.37) 

d 2 

q exp( ___ l_)_q exp{-
1 20 2 0 

= 

2 

(2V-d
l

) 
---=--) = 0 (5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

Similarily d2 can be calculated in the same way, to give 

(5.48) 

or directly from Eq.(5.2l). 

It is clear from Eqs. (5.47) and (5.48), that the 

threshold distance from +V or -v (the threshold value), 

is dependent on the transmitted signal voltage ±V, the 
ql 

noise power 0 2 , and the ratio qo 



- lS2 -

The mean power level of the transmitted signal is 

( 22 
S = +V) -(-V) = 

2 

The noise power is 

The signal to noise ratio SNR is 

SNR 

Substituting Eq.(S.Sl) in Eq.(S.47) gives 

log 

(S.49) 

(S.SO) 

(S.Sl) 

(S.S2) 

which shows that the optimum distance is dependent on 
ql 

the SNR and the ratio qo 

S.3-The Optimum Threshold of a Continued Transmission 

In section (S.2) the optimum threshold value that 

minimizes the probability of error in each received digit 

is derived. During a continuous transmission the same 

equations can be used to minimize the probability of 

error for each individual received digit. It is wise to 

assume that the source is an unbiased source, thus each 

generated digit is equally likely "to be either '0' or '1'. 

Solving Eq.(S.24) for this assumption gives 
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(5.53) 

Substituting qo and ql values in Eqs.(5.47) and (5.48) 

yields 

(5.54) 

The decision threshold value for such a system is placed 

at half-distance between the +V and -V, which is in this 

case zero volts. 

The assumption of an unbiased source is a wise one, 

because the end result, Eq.(5.54), is independent of the 

noise value. Consequently, this threshold value is fixed 

and always optimum regardless of the SNR value in the 

transmission channel. While the use of any other values 

for qo'and ql (except 0, and 1) will result of a different 

threshold value for eachSNR value. 

5.4-The Optimum Threshold for a Limited Length Block 

The term continuous transmission used in section 

(5.3) implies that a large number of digits are transmitted 

during each communication process, where the number of 

'0' and '1' is nearly equal. Unfortunatly, this is 

not the case when a limited digits number is considered. 

Since our main interest is block codes, and that each block 

is independent of t.he other transmitted blocks. The 

optimum threshold will be calculated for the received 

block. The optimum threshold is the value that when used 

to detect the received block, the detection is optimum. 
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The detection process is optimum in the sense that it 

minimizes the probability of error in the detection of 

the received block. 

According to EQs.(S.47) and (S.48), the optimum 

threshold value is dependent on qD and ql. To find 

these values, consider that an (n,k) block-error-

correcting code is used for error correction in a 

channel, the information digits stream is divided into 

independent groups of k digits in the transmitter. Since 

the source is generating the 'I' and '0' stream according 

to the information to be transmitted, and each group 

is independent of the others, then the number of Ills 

and 'D's is different for each group. Furthermore the 

annexation of the parity-check digits to these groups, 

will cause a change in the number of 'I' and '0' in 

each block, although the 'D's to 'I' ratio mayor may 

not change. The relation between the number of 'I' NOD, 

i.e. the Hamming weight and number of '0' NDl, in each 

block of length n is 

NOD + NDl = n (S.SS) 

the probabilities qD and Ql for th ith block are 

= NDl. / 
1. n 

(5.56) 

and 
q =NDD./ li 1. n (S.57) 
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The length of each block is n digi ts, where n is 

dependent on the block code used, which is relatively 

small number compared with the number of digits in a 

continuous transmission. Consequently, Eq.(S.S3) does 

not apply generally to all blocks, thus, threshold 

value calculated in Eq.(S.S4) is no longer the optimum 

threshold that minimizes the probability of error in all 

the received blocks. 

The channel input is always a codeword whatever 

the information digits are, thus the probabilities 

qo and ql can take only the values corresponding to the 

probabilities of the 2k codewords. Fig.(S.3) shows the 

frequency distribution of the '0' or '1' in all the 

possible codewords for the BCH(31,21) cyclic-block code. 

It can be seen that the 20971S2 NOD or NOZ values form 

a group of 23 values. Fig.(S.3) is plotted by using 

the NOD values. The NOZ will give a similar figure but 

rotated about n/2 axis. By scaling down the x axis by 

n in fig.(S.3), the same figure will represent the 

frequency of qo and ql' Fig.(S.3) shows the NOD distribution 

for the BCH(31,21) code, which is typical of the codp.s 

used as it can be seen from fig.(S.4) which is the 

distribution of the (34,22) burst code, fig. (S.S) the 

(27,20) burst code, fig.(S.6) the (27,17) burst code, 

and fig.(S.7) the (19,11) burst code. The only exception 

is the distribution of the BCH(lS,7) random-error-

correcting code fig.(S.8), which differs in that it has 

its maximum value at a point other than n/2' It is clear 
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from,figs.(5.3) to (5.S), that the ratio is variable 

from one code to another, furthermore it is variable in 

the same code from one codeword to another as it is 

expected. 

The other variable that affects the threshold value 

in addition to the ratio qo is the noise power according 
ql 

to Eqs.(5.47) and (5.4S), or the SNR as in Eq.(5.52). 

This variable is channel dependent, and it varies randomly 

throughout the transmission period. In some cases it 

can be assumed constant, as in the random error generating 

channel, where errors are generated randomly (a memoryless 

channel), but in other cases such as the burst error 

generating channel (the channel has a memory), its value 

cannot be predicted, and is not constant throughout the 

transmission periods. To study the variation of the 

optimum threshold values with the variation of the noise 

power of the SNR, the SCH(15,7) random error correcting 

code was ~hosen for the study, this choice was made 

because this code has the smallest number of codewofds 

so, they all can be plotted clearly on the same graph. 

The optimum threshold value is calculated for each 

codeword for every SNR value, while the SNR value is 

increased from IdS to 7 dS in one dB 

result is plotted in fig.(~.9), the 

steps. The study 
d l 

distance V of 

Eq.(5.52) r~presents the optimum threshold values, 

while the different values of the 
ql 

ratio -- represent 
qo 

the different codewords. The all zeros and all ones 

codewords were left out of the study because d 2 for the 
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all zeros codeword according to Eq.(S.48) is 

d 2 V 0 2 
log 1 = + 0 2V (S.S8) 

. d2 = V + 
0 2 

2V (log 1 - log 0) (S.S9) 

- '" (S.60) 

which gives an optimum threshold value of - '" volts. 

Similarily, from Eq.(S.47) d l for all ones codeword is 

- '" (S.61) 

which gi ves an optimum threshold value of + '" volts. 

Eqs.(S.60) and (S.61) show that for these particular 

codewords the optimum threshold is independent of the 

noise power. 

Fig.(S.9) shows that 

are symmetrical around the 
ql 
-=1, qo 

the optimum threshold values 
d l \1=1 value· which is th·e value 

and that the threshold values of d l for the ratio 
d l converge to \1=1 as the SNR value grows bigger. But the 

most important result is that there is no fixed value 

for the optimum threshold of any codeword as the SNR 

value is varied, apart from the three special values 

where 

(S.62) 

or 

(S.63) 
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or 
(5.64) 

It is clear by now that to minimize th~ probability 

of error in a received block a variable decision threshold 

level should be u~ed, where this decision level is 

dependent on the particular codeword transmitted and on 

the noise present at the channel during transmission. 

S.S-The Variable Optimum Threshold Oecoder 

The use of Eq.(S.47) and Eq.(S.48) in an actual 

decoder requires a special arrangements so that the 

decoder will get all the necessary information about the 

two variables a and qO/ql' in fact, the knowledge of qo 

or ql is sufficient to calculate the ratios qO/ql or 

q/qo' by solving Eqs.(S.SS),(S.S6), and (5.57), qo or 

ql can be calculated, where 

(5.65) 

Assuming that it is required to build a decoder 

that will minimize the probability of error in the 

received block, such a decoder should have a detector 

which has a controllable threshold level which can be 

varied finely from - '" to + '" to cope with all a and 

qO/ql values. The first step is to find the values qo 

or ql of the received block, since the decoder will get 

these values after the decoding process and not before, 

then one of these two values has to be transmitted, while 
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the other one will be calculated from Eq.(5.65). To 

transmit qo or ql within acceptable accuracy will require 

the transmission of additional digits with each block, 

which increase the transmission rate, and add redundancy 

to the transmitted digits. The second step is to calculate 

the noise power 0 2 , to give the decoder an idea about the 

noise in the transmission channel, a special sequence 

known to the receiver has to be transmitted so that an 

initial value of the noise can be calculated from Eq.(5.7) 

w. 
1 

x. 
1 

(5.67) 

The number of digits transmitted in this sequence depends 

on the accuracy required in the noise power calculation, 

the longer the sequence the more accurate the calculation 

will be. Once the initial sequence transmission is ended, 

the information blocks are tranmitted. At this stage the 

optimum threshold value for the first block can be 

calculated, using the initial value of 0 2 and the first 

block transmitted value of qo or ql' from Eqs.(5.47) or 

(5.48). At the end of the first block decoding, the 

decoder has calculated an additional n noise samples, 

same as in Eq.(5.67), but using the decoded values as 

x .• These n samples are used to update the noise power 
1 

value, so that the updated value is used to calculate 

the optimum threshold value for the next block and so on. 

The optimum threshold value has to be calculated 

before the information and parity-check block can be 



- 160 -

decoded, which will introduce delay to the system. 

This decoder may function satisfactorily in some 

channels where the noise value is constant i.e. random 

error generating channels, or the slowly noise varying 

channel, because in the above described decoder the noise 

information used in the calculation of the present block 

is the noise value of the channel for the previous period 

up to the beginning of the present block, so any sudden 

variation in the noise power during the transmission of 

the prese~t block, will result in a large difference in 

the noise power, hence the calculated threshold is no 

longer optimum. If the decoding of the present block 

was successful, in which the received block was. the 

same as the transmitted one, then the noise power value 

is updated, and the threshold value for the next block is 

optimum. If the decoding block was unsuccessful, then 

the decoded values of x. will be erroneous, thus the 
~ 

updated noise value calculated by the use of Eq.(S.67) 

is wrong which will cause the calculation of the next 

block threshold ~o result in a value other than the 

optimum value. The repetition of this process may cause 

the propagation of erroneous decoding, but generally 

the noise power will move nearer to the correct calculated 

value with every correct block decoding after the sudden 

change in the noise power. Since the sudden change of 

noise power will result in the calculation of a nonoptimum 

threshold value, and may cause an erroneous decoding of 

the block in which the noise has changed during its 
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transmission, furthermore the erroneous decoding might 

spread to the next block or block, then it is clear that 

this type of decoder is not suitable for decoding 

transmitted signals over fast noise varying channels, 

and bursty channels. 

5.6-The Multiple Fixed Thresholds Decoder 

The decoder of section 5.5 is clearly a complicated 

one, and has the disadvantages of introducing additional 

delay, more redundancy, and more complexity into the 

system. To avoid these disadvantages, a different decoder 

will be introduced based on the idea of using multiple 

fixed thresholds as the decision levels. The idea of 

mUltiple fixed thresholds can be described as follows. 

The optimum threshold values of fig.(5.9) shows that for 

some certain threshold values, one threshold can be 

optimum or very near optimum for more than one transmitted 

codeword at different SNR values, i.e. different values 

of ql/qD and 0 2 • For ~xample the threshold value which 

is at a distance of d l /V=D.966 is optimum for the 

detection of the codewords which has ql/qo=O.S75 at 

SNR=3dB, and QI/qO=2/3 at 7dB, while it is near optimum 

for the codewords which has QI/QO=2/3 at SNR=5dB, and 

QI/QO=O.S75 at SNR=5dB. Although the last two values are 

not optimum, yet these values are much nearer to the 

optimum threshold values than the conventional zero volt 

threshold. Such thresholds can be used for decoding these 

two codewords at different SNR values to obtain better 

results than the zero volt threshold. By a careful choice 
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of threshold values one can serve more than one code word 

at different SNR, the number of thresholds to be used 

can be reduced from an infinitely, large number of 

optimum thresholds to a few optimum and near optimum 

thresholds; Fig.(S.9) is derived from the threshold 

values of the BCH(lS,7) random code, and the threshold 

va~ues mentioned above are applicable to that code only, 

where the curve values are calculated by Eq.(5.47). In 

general one should expect curves similar to fig.(S.9) 

for any code, because the threshold distance d l calculated 

from Eq.(S.47) does not correspond to the code itself 

but to. the ratio ql/qO which can be present in any code. 

Hence for longer codes there will be more ql/qO values, 

thus more curves than fig.(S.9), consequently, one chosen 

threshold may fit many optimum thresholds at different 

SNR values, and may serve many other near optimum 

thresholds. 

Assuming that for a certain code, thresholds values 

were found as described above, and the received word is 

detected by each threshold value, then decoded and 

corrected. Each received word is detected at least once 

by a threshold value that is optimum or near optimum 

regardless of the SNR value in the transmission channel 

so, all the decoder has to do is to pick the corrected 

output of the optimum or near optimum. Such a decoder is 

much less complicated than the decoder of section S.S 

and it has some advantages over other decoders. Firstly, 

it does not introduce any redundancy digits to the 
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transmitted bits, thus the transmission bit rate is 

unchanged. Secondly, the threshold values are fixed, so 

they can be preset in the decoder. Thirdly, the decoder 

function is independent of the SNR value in the transmission 

channel. Fourthly, the probability of error using this 

decoder is higher than the probability of error of the 

decoder of section S.S, yet it is lower than the 

probability of error of the conventional zero threshold 

decoder. 

To calculate the degradation in the probability 

of error when a near optimum threshold is used for the 

detection of a received word, let the transmitted word 

have the probabilities ql and qo for the transmitted digit 

to be '1' and '0' respectively, and let the optimum 

threshold be at a distance d
l 

from +V, and d
2 

from -V, 

the probability of error is given in Eq.(S.36) 

-d 
erf( 0

1
) 

Let the near optimum threshold used to detect 

(S.36) 

this received word be at a distance d
3 

from +V, and d
4 

from -V, where according to Eq.(S.2l) 

(S.68) 

The probability of error for the detection with the 

near optimum threshold Pen is 
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(5.69) 

Probability of error degradation Pe is 
deg 

P e deg 

= p 
en P e (5.70) 

erf( ~)-erf( ~) - d - d 1 
o 0 

(5.71) 

substituting Eqs.(5.21) and (5.6S) in Eq.(5.71) gives 

P e deg 
[ 

2V-d 2V-d 1 
= qo erf( 0 3)_erf( 0 1) [ 

-d -d 1 
+ql erf( ;)-erf( cf) 

(5.72) 

the degradation is shown in fig.(5.10) as the blocked 

area, while the probability of error for the optimum 

threshold is the shaded area. 

P degradation e 
P minimum 

e 

-v 

near opti um decision threshold 

d· 
1 

+V 

optimum decision threshold 

Fig. (5~10) Probability of error and its 
degradation 
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When the value of the detection threshold is 

reasonably close to the optimum detection threshold, then 

the degradation can be ignored without affecting the 

probability of error value seriously, as it can be seen 

from fig.(S.lO) 

S.7-Thresholds Values Choice 

In a practical system it is impossible to prefix 

the decision thresholds to all the optimum threshold 

values for all the transmitted codewords and all the 

possible SNR values in the transmission channel, because 

the number of these values is so big, it makes the decoder 

very complicated and expensive to build. To avoid this, 

a reasonable number of thresholds should be used so that 

the decoder will give an improved performance at an 

acceptable cost and complexity. Several methods will be 

described for choosing decision threshold values; all 

these methods can be divided into two categories, the 

code independent thresholds, and the code dependert 

thresholds. Figs.(S.3) to (S.S) show that all six codes 

used are symmetrical about the x=n/2 axis. This means 

that the optimum thresholds of each group will be 

distributed symmetrically on both sides of the x=n/2 

point. Another result of a special interest is the point 

x=n/2 itself because at that point for any code 

NOD = NOZ = n/2 (S.73) 

which gives the '1' and 'O's probability from Eqs.(S.S6) 
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and (5.57) as in Eq.(5.53) 

(5.53) 

and results in an optimum thresholds distance of zero 

volts as in Eq.(5.54) 

(5.54) 

given that 

I-vi = I+vl (5.74) 

It can be said from the above discussion that 

every group of the optimum thresholds are symmetrically 

distributed on both sides of the zero volt threshold, 

which corresponds to the x=n/Z point on the frequency 

distribution curve. 

5.7.1 The Independent Thresholds 

These groups,of thresholds can be used for the 

decoding of the received word regradless of the code 

used. They are symmetrically distributed on both sides 

of the zero volt threshold. Let the number of thresholds 

on each side of the zero volt threshold be F, excluding 

the zero volt threshold. Since the thresholds are 

symmetrical around the zero volt thresholds, then the 

total number of thresholds required by the decoder is 

Z = 2F if zero volt threshold is not used 
(5.7~i-Cl) 

Z = 2Ftl if zero volt threshold is used (5.57-1J) 
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Th'2~ groups of the independent thresholds will be 

discussed. 

a) The Full Span Thresholds: The Z thresholds are 

spaced equally between tV and -V, since the distance 

between every two thresholds is constant, then the 

voltage difference between every two u is 

u = 2V/Z-l (5.76) 

If the zero volt threshold is ~sed, then the nearest 

threshold from each side to the zero volt threshold is 

at a distance of u volts, while if the zero threshold is 

not used, the two nearest thresholds to zero volt are 

at a distance of ±u/2. 

b)The Partial Span Thresholds: Fig.(5.9) show that 

for a large range of SNR values the threshold is not 

at a distance more than V/4 from the zero volt point 

(excluding all zero and all ones cojewords). Thus the 

full span thresholds are not economical, because 75% 

of the thresholds are very far from the optimum threshold, 

and do not serve any optimum threshold within a reasonable 

range of the SNR values, so these thresholds are spaced 

equally between two voltage values, say tV l and -VI' 

where these values are greater than the maximum distance 

of a threshold from the dl/V=l point for the code used. 

In general v can be chosen as V/3 without regarding the 

code used. The voltage difference between any two 

thresholds u is 
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u = 2v l / Z_ l (5.77) 

again as in the full span thresholds, the nearest 

thresholds are at a distance ±u if the zero voltage 

threshold is used, otherwise, the thresholds are at a 

distance of ±u/2. 

c)The Partial Nonequidistance Thresholds: Furthermore 

fig.(S.g) show that the threshold values has a special 
d l distribution, where they are concentrated near the V=l 

point, and become more scattered as the distances grow 

bigger. To match this, those thresholds are spaced so 

that 

from 

the distance is bigger as the threshold is further 
d l V=l point. Again, to keep the advantages gained by 

using partial span thresholds, these thresholds cover 

the central part of the distance between +V and -V, say 

+vl to -v l . A good law to set the distance between 

thresholds is the doubling law, where the 

the next threshold (which is furth~r from 

distance to 
d

l V=l point) 

is nearer to the 

is 

double the previous threshold (which 
d l V=l point). Here two cases must be 

when the zero voltage threshold (at 

considered, firstly, 
d

l V=l point) is used, 

the threshold voltage for the ith threshold from the 

zero voltage ui is 

U. 
l 

i 
= I 

m=l 2F 
(5.78) 

1 

Secondly, if the zero voltage threshold is not to be 

used, the threshol~ voltage for the first threshold 
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from the zero vol tage u 1 is 

the ith voltage value u. is 
1 

u. = 
1 

u. = 
1 

for l,,-i(F 

(5.79) 

for l"i"F 

(5.80) 

( 5 . 81 ) 

fig.(5.1l~.) shows the threshold values for F=3, when the 

zero volt threshold is used, while fig. (5.11.-'0) shows 

the thresholds values for F=3, when the zero volt 

threshold is not used. 

I I I 
o 

Fig.(5.11-.. )Threshold for F=3 with 0 volt threshold 

Fig.(5.11~~Thresholds for F=3 
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The thresholds values calculated by Eqs.(5.76), 

(5.77),(5.78).(5.79), and (5.81) are independent of the 

,code used, but they are not the optimum values, although 

a few of them could be. The probability of having a number 

of the optimum thresholds in the calculated thresholds 

becomes bigger as the number of the calculated thresholds 

grows bigger. When the number of the calculated thresholds 

reaches infinity, all the optimum thresholds are included 

in the calculated set. Consequently, the decoder performance 

-
will improve as the number of thresholds used is increased. 

A decoder using a fixed number of thresholds calculated 

to form a pa,tial span of thresholds will perform much 

better than the case where the thresholds form a full 

span, while, if the thresholds were arranged as a partial 

nonequidiitance,the decoder will perform even better, 

but as the thresholds number is increased the improvment 

over the other systems become smaller, till at some 

stage all the three groups perform the same, and no more 

improvment can be achieved by increasing the threshold 

numbers beyond this point. 

5.7.2 The Code Dependent Thresholds 

Each group of these codes are derived to be used 

with the specific code they are derived for. Three types 

will be discussed here, two are channel noise dependent, 

while the third is channel noise independent. All three 

will be derived from code dependent equations or curves. 

a)The Optimum Thresholds Groups: These groups are 

code and channel noise dependent, and the number of 



- 171 -

thresholds is determined by the code used, where for 
ql 

each different value of the ratio --, one threshold 
qo 

exists. The thresholds values are calculated by Eq.(5.47) 

(5.47) 

noise power values a 2 are taken as the average noise power 

in the transmission channel. 

For long codes, the number of thresholds calculated 

according to this group is large. In some applications, 

it may require from a practical point of view to use a 

fewer number of thresholds in the decode·r. In such cases 

the furthest thresholds on both sides are omitted till 

the required number is reached. 

These groups of thresholds are the best to use 

tif no thresholds are omitted), because all the thresholds 

are optimum. The big disadvantage is that the only way 

to control the threshold number without omitting any 

threshold is by using a different code. The: other 

disadvantage is that the code itself dictates the cost 

and complexity of the decoder through the number of 

thresholds. Consequently, code choice for these type of 

threshold decoders is somewhat critical. 

b)The Optimum Spaced Groups: These groups are 

also code and channel noise dependent and have the 

advantage of having a flexible number of thresholds in 

each group, but at the cost of the thresholds used being 

optimum or near optimum. 
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Thresholds are derived from the distance frequency of 

NOD or NOZ curve. ~istance d
l 

is calculated from Eq.(5.47) 

for each value of the ratio ql/qO' at the average noise 

power 0 2 , the results are plotted against the frequency 

of NOD or NOZ, which can be called the frequency of the 

ratio ql/qO' or the frequency of thresholds. Fig.(5.12) 

shows this curve for the BCH(31,2l) random code. at 

SNR=3 dB. 

Assuming that one threshold is required (F=O), a 

line which has the equation 

y = f 
1 max 

(5.B2) 

is drawn where f max is the maximum frequency value, this 

line will intersect with the curve at the point d l , giving 

the distance of the threshold required, which is for this 

code 

(5.83) 

which is the zero volt threshold in this case. Now 

consider the case where F=l, the intersection line 

equation is 

= f /2 max (5.84) 

This line will give two thresholds values symmetrical 

or nearly symmetrical about the zero volt threshold. 

Similarily for F=2 two equations for the intersection 

lines exist, where 
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(5.85-a) 

Y2 = 2f /3 max (5.85-a) 

which gives four threshold values. In general, when Z 

thresholds are required, the intersection equations are 

F, when no zero volt threshold is used, and F+l, when 

zero volt threshold is used, the intersection equations 

are given by 
f max 
.. F +1 (5.86) 

where for zero volt threshold 

j = 1 and F = 0 (5.87-a) 

and for the other thresholds 

j=1,2, .... F when F > 0 (5.87-b) 

fig.(5.l2) shows the intersection lines for the BCH(31,21) 

code and the threshold distances for Z=5. 

Some codes have a c4rve shape other then the shape 

of fig.(5.l2). For these codes Eqs.(5.82) to (5.87) does 

not apply, but the principle of dividing .the y axis into 

equal segments to get the threshold distance still applies, 

and is used to find the threshold values. An example of 

these codes is the 8CH(15,7) random code, where fig.(5.l3) 

shows the distance frequency curve, and the intersection 

lines for finding thresholds for Z=6. 

These two methods of finding thresholds are suitable 

only for channels where the SNR value does not deviate 

too much from the average value, otherwise the threshold 

----------- - -- -~ -------



>-
u 
z 
w 
:::> 
Cl 
w 
Ck: 
LL 

>-
u 
z 
w 
:::> 
Cl 
w 
Ck: 
LL 

X10 4 
3.02 

2.72 -
2.42 -
2. 11 

1. 81 
1. 51 -
1. 21 -

.91 

.60 -

.30 

.00 
7.00 

) 
, 

8.50 

/ 1\ 

1\ 
, 

10.00 
, 

11.50 
. Xl0- 1 

, 
. 13.00 

d1/U 

FIG.(5.12) DISTANCE VS FREQUENCY CURVE AT SNR= 3 dB 

30 
27 -
24 -
21 
18 -
15 
12 -
9 -
6 -
3 -
o 
7.00 

, 

I, I \ 

t'J 

\ , 
8.50 10.00 

FIG.(5.13) THRESHOLD VALUES FOR Z=6 

-,-------, 
11.50 13.00 

Xl0- 1 U 61/ 



- 174 -

values used will no longer be optimum. Thus these two 

methods are suitable for random-error channels, and are 

not optimum for the burst-error channels. 

c)The Practical Spaced Groups: The disadvantage 

of the average noise power or the SNR being relatively 

constant, in the optimum thresholds groups, and the 

optimal spaced groups, hence the degraded improvement 

when these groups are used in a decoder for decoding 

burst-noise channels, led to thinking in a way to isolate 

the noise effect on the thresholds values. The obvious 

way to achieve this is by taking the SNR at a lower value 

than the average SNR in the transmission channel. This 

process will shift the thresholds from their optimum 

values, but they will still be placed in good places 

for the decoder to achieve a good improvement. This 

arrangement will work satisfactorily at both low and 

high SNR values. At low SNR values, threshold values 

are very close to the optimum values, because the chosen 

SNR value is close to the ~ow SNR value. Thus the decoder 

will perform well giving,a good improvement. On the other 

hand, at high SNR values, threshold values are not 

optimum, but it can be seen from fig.(5.9) that threshold 
. d

l values are close together near the \/=1 point, and they 

become further apart near the bottom of the curve, 

furthermore it can be seen that as the SNR values increase 

the threshold values draw closer and closer. Hence at 

high SNR, the threshold values chosen by the arrangement 
dl described above near the \/=1 point will serve as near 
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optimum thresholds and the decoder will perform 

satisfactorily. A practical value for lowering the 

average SNR value can be taken as 3-10 dB, although 

bigger values can be used for channels with very sharp 

noise power changes. 

Another simple method is based on the observation 

that the NOD vs the frequency curve of fig.(5.3) is 

similar to the threshold distance curve, so the 

curve is used for finding the threshold values. 

frequency 
d

l The -
V 

values on the x axis are determined, based on the three 

following facts 

a)At the ratio 
ql 

the threshold value is -=1 zero q , 
0 d l volts, and this corresponds to the \1=1 point. 

b)At the ratio 
ql 

the threshold value is at -=0, 
qo 

- '" vol t, but since in a practical system the incoming 

signal is limited to the logical '0' value, then the 

threshold value is at -V volt, which corresponds to the 
d l point -=0 on the x axis. 
V 

c)Conversely, the practical threshold value for the 
ql 
- = "" qo 

d l 
\1=2 on ratio is +V, which corresponds to the point 

the x axis. 

After defining the x axis, thresholds values can 

be found from the frequency curve using Eqs.(5.86), and 

(5.87). The advantage of the latest method is its 

independence of the noise channel values, which save the 

inaccurate choice of the SNR values yet it is code dependent. 

Threshold values for these groups are calculated 

from the corresponding curve, as in the optimal spaced 

groups, by finding the intersection line equation or 
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equations from Eqs.(5.B2) to (5.B7). 

To compare the improvement when each group is used, 

the BCH(31,21) random code and the (34,22) burst code 

are used, in a five threshold parallel threshold decoder. 

Five groups are used in the comparsion. Firstly the full 

span thresholds. Secondly the partial span thresholds 

(±v
l

=¥). Thirdly the partial nonequidistance thresholds, 

V 
where ±Vl=Z' and the threshold values calculated from 

Eq.(5.7B). The fourth group is the parallel spaced group, 

where the trhesholds are calculated at SNR value of 1 dB 

for the random code, and -5 dB for the burst code. The 

last group is again the practial spaced group, but the 

threshold values are derived from the NOD vs frequency 

curve. The test results are shown in fig.(5.14) for the 

random code, and fig.(5.15) for the burst code. Where 

it can be seen from fig.(5.14) that all thresholds groups 

perform nearly the same, and better than the full span 

thresholds. Fig.(5.15) show again that the full span 

thresholds perf~rm worse than the others, while the 

practical spaced- groups followed both nearly the same curve 

that performs better than the rest, the remaining 

two performed nearly the same. 

5.B-Choosing A Suitable Error-Pattern 

A decoder which has multiple fixed thresholds, say 

j fixed thresholds, will have at the end of a decoding 

cycle j received words. The received word is detected by 

the j thresholds, the output of each threshold is fed to 
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a subdecoder, which will calculate an error-pattern, 

dependent on the value of its output. Hence for the j 

thresholds there will be j vectors of error-patterns 

E. = 
J 

O f th t th .th ne 0 ese vec ors, say el, 

(5.88 ) 

is a result of the 

detection of the received word by an optimum or near 

optimun threshold, Consequently the ith vector is the 

most likely error-pattern to be added to the transmitted 

d d · th h 1 Th .th . d d h· h co ewor In e c anne. e 1 reC81ve war , W le is 

the result of the received word detection by the ith 

th h Id · t d b th .th tt t res 0 ,lS correc eye 1 error-pa ern vec or. 

The corrected word is the most likely transmitted codeword, 

where the probability of error for the received word is 

minimum according to Eq.(5.36). The point is that the 

decoder has no means of calculating Eq.(5.36) tb decide 

which of the j thresholds is the optimum or near optimum 

one. Thus the decoder cannot make any decision on which 

one of the j corrected words is the transmitted codeword. 
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5.8.1 Probability of a Threshold 8eing Optimum 

During a Transmission 

In general the data generated at the source is 

random data, and since it is divided into blocks of k 

digits each, then the contents fo each block is randomly 

distributed and can be any of the 2k possible combinations. 

To each block the encoder annexes n-k parity-check digits, 

the resultant n digits are unique for each of the 2k so 

blocks. Since the k information digits in a block can 

equally likely be any combination, then the transmitted 

k n digits block can be equally likely any of the 2 codewords. 

The probability of an error-pattern E., being the error-
1 

pattern added to the transmitted signal in the channel, is 

the probability of the transmitted codeword being one of 

the codewords that has the ith threshold as an optimum 

or near optimum threshold. 

The frequency distribution is unique for every code, 

and is universal frequency distribution, because the test 

is carried out for all the pos~tble codewords. The discrete 

probability density function for the 'l's or 'O's can be 

calculated from the frequency distribution 

for i = 1,2, ••.• ,n 

where p. is the probability of the transmitted word 
1 

(5.89) 

having i number of 'l's or 'O's. in its n digits, and fi 

is the frequency of the code words which has i number of 

'l's or 'O's. It can be seen from Eq.(5.89) that the 
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discrete probability distribution is the discrete 

frequency distribution scaled down by the factor of 2k. 

Since the probability distribution function of the 'l's 

or '0' s is of similar shape of the frequency distribu·tion, 

then it can be seen easily that the thresholds nearer to 

·n 
the 2 point in fig.(S.3) has a higher probability of 

being optimum or near optimum than other thresholds, and 

the probability of thresholds being optimum or near optimum 

becomes smaller as the distance between tne threshold 

and the ¥ point grows bigger. 

S.B.2 Threshold Weight Distribution Function 

The discrete probability density function of Eq.(S.B9) 

determine the probability of an optimum threshold being 

used during a transmission. But according to section S.7 

thresholds used in an actual decoder need not be always 

the optimum thresholds, but may be near optimum thresholds. 

Since the discrete probability density function exists 

only where an optimum threshold exists, then it is not 

a clear indication of the probabilities for the thresholds 

other than the optimum. Therefore, some sort of continuous 

indication is required. This indication is called the 

threshold weight distribution, which is to assign a weight 

value for each threshold value that indicates the 

probability of a threshold being used during a transmission. 

That is, the threshold weight distribution is the continuous 

probability density function for the 'l's or 'D's, 

assuming it exists outside the integer values. Since the 
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integer values in the discrete probability density function 

is increased by one for each new value, then the relation 

between distributions is 

i+O.S 

f f( w) 
f . 

W. J. for i 1,2, ... ,n = = Pi = ?" = J. 

i-O.S (S.90) 

where W. is the weight of the threshold that is optimum 
J. 

for detecting a received word which has i 'l's or 'O's in 

the transmitted codeword~, and f(w) is the threshold 

weight distribution function. The threshold weight 

distribution for the BCH(3l,2l) random code is shown in 

fig.(S.16) where it is clear that whatever the threshold 

value within the range, a weight values does exist for 

that threshold. 

Going back to the error-patterns detected by the 

decoder Eq.(S.BB), the threshold weight value W. for the 
J. 

ith threshold used, is an indication of the probability 

that the error-pattern E. detected by the use of th~ ith 
J. 

threshold is optimum. Using the threshold weight distribution 

function, which is unique for each code, the decoder can 

choose the error-pattern which is more likely to be the 

one added to the transmitted signal during the transmission 

through the channel. 

S.8.3 The Decoding Process 

The threshold weight distribution function, will 

always point to the same threshold (or thresholds) as the 
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most likely optimum. This threshold (or thresholds) 

will be used for decoding every received word during the 

whole transmission if the decoder has no means of choosing 

a threshold for decoding other than using the weight 

value. Such a decoder will be a single threshold decoder, 

and any received word which has an optimum threshold 

other than the one used will not b~ detected, so that the 

probability of erroris not minimum. Thus the decoder has 

to use an additional rule to choose a suitable threshold 

accordingly. 

One method is to use an error-trapping decoder as 

a subdecode~, because the error-trapping decoder has the 

advantage of detecting whether a correctable error-pattern 

is trapped, or untrappable error-pattern is added to the 

transmitted signal in the transmission channel. The decoder 

described in what follows makes use of the threshold weight 

distribution function and the decoder's ability to detect 

the untrappable error-patterns. 

Consider a decoder which is using a number of 

thresholds, say j thresholds for decoding the received 

word. Such a decoder consists of j identical subdecoders 

(each subdecoder is the syndrome computer of an error

trapping decoder) and a flag. Each flag is connected to 

the syndrome computer in such a way that as soon as a 

trappable error-pattern is detected at the syndrome 

register, the flag is set, otherwise it remains reset as 

before. The received word is detected by the j thresholds, 

and the output of each threshold is fed to its corresponding 
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subdecoder. At the end of the error-pattern detection 

phase, some of the j flags will be set, where trappable 

error-pattern are trapped, while other flags may remain 

reset. The decoder starts to search for a set flag among 

all the flags by testing each flag, starting by the flag 

of the threshold that has the biggest weight value, and 

ending with the threshold flag that has the smallest 

weight value, according to the decreasing weight values 

of their corresponding thresholds. Once a set flag is 

encountered, its threshold value is accepted as the 

optimum threshold. Hence the trapped error-pattern in the 

syndrome register is accepted as the error-pattern added 

to the transmitted signal during transmission in the 

channel, and the correction is made accordingly. 

Due to the symmetry in the threshold weight 

distribution curve fig.(5.16), there will be pairs of 

thresholds which have equal weight values. In such cases 

it does not make any difference to the overall results, 

whichever threshold flag is tested {irst. Since the 

threshold weight distribution curve fig.(5.16) is a 

unique and constant curve for each code, then the flags 

test sequence can be preset, at the decoder, at the time 

the thresholds values are determined. This sequence 

remains the same as long as the thresholds values are not 

changed. 

5.9-Parallel Threshold Decoders Performance 

Up to now the choice of thresholds values can be 

one of two options, whatever the chosen thresholds weight 
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distribution, namely, the use of odd or even number of 

thresholds. This is, according to Eqs.(5.75), the choice 

of having or not having a threshold at zero volt. The 

first option is more appealing for the following reasons: 

a)At high SNR values Eq.(5.52) can be rewritten as 

d
l " V (5.91 ) 

where 

1 log 
ql 

« 1 
2SNR qo 

(5.92) 

and can be neglected without any serious error, where 

SNR value is as given in Eq.(5.51). Thus, the zero volt 

threshold is an optimum one regardless of the received 

codeword. 

b)The zero voltage threshold is the optimum threshold 

that minimizes the probability of error for the whole 

transmission, as in section 5.3. Thus the inclusion of 

this threshold will give the decoder the ability to try 

to minimize the bit probability of error as well as the 

block probability of error. 

c)The subdecoder that processes the zero threshold 

output will give the same results as the conventional 

error-trapping decoder, and by giving the zero threshold 

a weight higher than the maximum weight value, regardless 

of whether the threshold weight curve justifies this 

or not. The decoder tests the zero threshold subdecoder 

first, thus all trappable errors by the conventional 

decoder are accepted by the parallel threshold decoder. 
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Consequently, the parallel threshold decoder that uses 

this arrangement should not perform worse than the 

conventional-decoder. 

From this point on, it will be assumed that, the 

parallel threshold decoder has a threshold at zero volt;, 

and that it has the maximum weight value. 

S.9.1 The Random-Error Parallel Threshold Decoder Performance 

As mentioned above, the parallel threshold decoder 

will test the zero voltage threshold first and it will 

accept any trappable error-pattern as the error-pattern 

added to the transmitted signal in the channel, thus it 

will perform as any ordinary error-trapping decoder. But 

once an untrappable error-pattern is encountered, the 

parallel threshold dec6der tries to convert it to a 

trappable error-pattern, and then correct the erroneous 

digits. 

Untrappable errors can be due to two reasons, firstly, 

the error-pattern contains more errors than the error-\ 

correcting capability of the code, in this case the 

decoder tries to reduce the number of errors to the 

correctable number of errors by the code used. Secondly, 

because of the error-trapping technique nature, the 

error-pattern could be correctable but untrappable. In 

such cases the decoder tries to convert the untrappable 

error-pattern to a trappable one, hence correction can 

be achieved. The latter source of untrappable errors is 

dependent on the code rate, where the number of untrappable 

errors becomes smaller as the code rate decreases. The 
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relation between the untrappable errors and the code 

rate for a block code of n=15, where the error correcting 

capability of the code is assumed to be t=3, is shown in 

fig.(5.17). 

Consequently, the parallel threshold decoder is 

expected to perform slightly better with low code rates 

because the source of improvement is correcting the 

uncorrectable errors only. The performance is expected 

to improve with the increase of the code rate, because 

the number of untrappable but correctable errors increases 

with the increase of the code rate. 

5.9.2 The Burst-Error Parallel Threshold Decoder Performance 

Two types of errorS are usually present in bursty 

channels,random errors, and burst errors. The code used 

should be able to cope with the burst errors. But because 

of the burst error definition, a random error at some 

distance from a burst, may change a trappable error

pattern to an untrappable one. In general an untrappable 

error-pattern will occur only if the overall burst length 

of the error-pattern is greater than the burst-error

correcting-capability ~ of the code. When an interlacer 

is used then the expression 'overall burst length' 

represents the overall burst length that is confined to 

a particular block. 

Untrappable bursts in bur sty channels can be 

due to any of three sources. Firstly, a burst of length 

less than the correct~ble burst length ~, but a random 

error at some distance forces the burst length to become 
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larger than ~. Secondly, the burst length is bigger than 

~, and thirdly, the burst is longer than ~, and a random 

error makes it even longer. 

let us consider the probabilities of error when a 

threshold of a value, say v is used for decoding an 

error generated by the background noise which has the 

power 0l' and an error generated by the burst noise which 

has the power OH' let the probability of error for the 

background noise detection be Pea' and for the burst noise 

be Peb' Then from Eq.(S.36) it can be seen that, for any 

threshold value v and the same codeword 

Pea < p eb (5.93) 

that is, the probability of detecting an error generated 

by the background noise correctly is greater than the 

probability of detecting correctly an error generated by 

the burst noise. Thus the parallel threshold decoder. is 

able to trap\a good deal of the error-patterns generated 

b~ the first source. Some error-patterns generated by 

the second source, and a little bit less of the third 

source. 

S.lD-Slock Diagrams of the Parallel Threshold Decoders 

Two block diagrams will be discussed, anyone of 

them can be used for random-error correction or burst

error correction, keeping in mind that the appropriate 

error-trapping decoders should be used as subdecoders 

in each case. When the interlaceing technique is used 
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it is assumed that the deinterlacer is placed outside 

the decoder, although nothing can stop the use of an 

internal deinterlacer in· the first block diagram, apart 

from the cost of too many shift registers. 

5.10.1 First Block Diagram 

A j parallel thresholds decoder consists of j 

branches of similar threshold and subdecoders circuits, 

correction circuits, and the contrOl circuit, as shown in 

fig.(5.18). The sampled signal is fed to the j threshold 

detectors, where it is compared with the preset threshold 

value of each detector, the output of each threshold is 

as defined in Eqs.(5.8),but limiting the -v to '0', and 

the +V to 'I'. Hence the outputs of the threshold detectors 

are binary symbols of either '0' and 'I'. The output of 

the threshold detector is fed to a subdecoder, which is 

a complete error-trapping decoder excluding the correction 

circuit, which is shown in fig.(5.19). The k information 

digits are shifted into the k bit shift regi~ter, 

simultaneously the syndrome computer will be calculating 

the syndrome, as soon as the n digits are shifted in the 

syndiome computer, the syndrome is present at the syndrome 

computer. The syndrome contents are tested for trappable

errors, and then shifted. If during the next n shifts, 

an error-pattern is trapped, the shifting stops, and the 

flag is set, otherwise the flag remains res~t,By this 

.time the flag scan and gate control circuit monitor the 

zero volt threshold subdecoder. If at the end of the 

subdecoder.n shifts the flag is set, the gateccontrol 
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allows the gate to pass the zero volt subdecoder information 

digi ts and the error-pattern to the correction circui t for 

correction. On the other hand, if the zero volt flag is 

not set, the flag scan circuit starts to scan the flags 

according to the preset scan sequence, testing for a set 

flag, once detected, its message and error-pattern are 

passed to the correction circuit. If no flag is found set, 

a decoding failure is assumed. Once the correction is 

achieved, all flags are reset, and all syndrome registers 

are set to zero, so the decoder is ready for decoding the 

next received word. 

5.10.2 Second Block Diagram 

An alternative to the decoder described above is 

the decoder of fig.(5.20). This decoder differs from the 

previous one in the block arrangement, where the correction 

circuit is moved from the last stage of fig. (5.1B), and 

placed in each of the subdecoders fig.(5.21). The 

information digits are stored and the syndrome is'.calculated 

as in the decoders of fig.(5.1B).Ouring the next n shifts, 

if an error-pattern is trapped, the flag is set, and 

the correction process is carried out. Otherwise the flag 

remains reset. Then unlike the typical error-trapping 

decoder, the corrected information digits are fedback to 

be stored in the k bit information register. At the end 

of the correction cycle the shift register should contain 

the information digits in the right order. Once the n 

syndrome shifts are finished, a correction time is allowed, 

then the flag scan and gate control tests the flags 



To The Gate 
k message bits shift register 

Correction 

Circuit 

Inp ut 
syndrome computer Trappable 

Error To Flag 
Detector 

Logic 

fig.(5.2l) Block diagram of A Subdecoder 



- 189 -

according to the preset sequence, once a set flag is 

found, its information digits are read out through the 

gate. If no set flag is found then a decoding failure is 

assumed. The last stage is to reset all flags, and set 

all syndromes to zero. Thus the decoder is ready for 

decoding the next received word. 

The second decoder is more expensive because of 

the additional j-l correction circuits, but assuming that 

the scan is done very fast and can be neglected compared 

to overall correction time, then the whole correction 

cycle is achieved in a constant time, thus synchronization 

is less complex. 

5.11-The Statistical Parallel Threshold Decoder 

For 8ursty Channels 

The statistical decoders are of special interest, 

because their performance is better when the channel 

statistics match the decoder assumed statistics. The 

statistical parallel threshold decoder assumes that in 

the transmission channel, each burst of any given length 

is less likely than each burst of any shorter length. This 

information is used to choose the most likely error

pattern that is added to the received word in the channel. 

The statistical parallel threshold decoder function 

can be described as the following. The sampled received 

word is fed to j thresholds, the output of each threshold 

is fed to a subdecoder, which generates all the possible 

error-patterns, and chooses the shortest error-pattern 

as the most likely error-pattern for the received word 
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detected at the particular value of the subdecoder threshold. 

At the end of the sub decoder detection cycle, the j 

syndrome registers will contain the shortest j error-

pattern at the different values of thresholds. Since 

according to the assumed channel statistics, the shortest 

error-pattern are the most likely to occur, thus the decoder 

chooses the shortest error-pattern from these j error-

patterns, and then the correction can be achieved 

accordingly. 

Any subdecoder function is similar to the optimum 

decoder(33) described in chapter two, thus it can be said 

that the statistical parallel threshold decoder is the 

prallel decoder version of the optimum decoder. 

An important point to notice is that the thresholds 

limits are of great importance to the statistical parallel 

threshold decoder performance. Where the limits are far 

apart the farthest thresholds will strat to introduce 

errors at the high SNR (the background noise), because 

although these thresholds are optimum or near optimum 

for detecting words received in the presence of burst 

noise, they are very far from optimum j"or detecting words 

received in the presence of background noise. In practice 

it wan found that limiting the threshold values to ±D.5 V 

gives acceptable results. 

5.11.1 Block Diagram of the Statistical Parallel 

Threshold Decoder 

A j threshold statistical parallel threshold 

decoder consists of j branches of a similar threshold 
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and subdecoder circuit, decision and control circuit, 

and a correction circuit, as in fig.(5.22). The sampled 

received signal is fed to the j threshold detectors in 

parallel, the binary output of each threshold detector is 

fed to a subdecoder, fig.(5.23). At the subdecoder the 

information digits are stored in the k message bit shift 

register, simultaneously the syndrome is computed. The 

error-pattern length store is set to a number larger than 

n-k. The syndrome content length is compared with the 

error-pattern length store, if it is less, the syndrome 

contents are transferred to the shortest error-pattern 

store and its length is stored in the error-pattern 

length store. Otherwise the stored values remain unchanged, 

the syndrome is shifted n times and the test is repeated. 

At the end of the nth shift the shortest error-pattern 

store contains the shortest burst, while the error-p3ttern 

length store contains its length. The decision and control 

circuit tests the error-pattern length stores for the 

shortest error~pattern, which is allowed to pass through 

the gate with its k information digits to the correction 

circuit, where the erroneous information digits are corrected. 

Although all j stored error-patterns are tested, 

the test should be carried out in the threshold weight 

sequence, because in the case of two equal error-pattern 

lengths, the first one is kept in the store, thus when 

the scan is done according to the threshold weight, the 

error-pattern which has the higher weight of the equal 

error-patterns is used for correction. Other schemes can 



1st 1st Sub Gate Correction r- Threshold Decoder I 
Circuit .Jl..UJ:....i:l u t I 

I 
I , 
I 

I 
I 
I 
I 
I 

inpu Dv Decisi on 
Thresholc I & 

I 
Control I 

I - I Circuit , 
I 
I 
I 

I 

I 
I 

jth jth Sub 
L..-.. Thresholw Decoder 

fig.(S.22) Block diagram of The SPTD 



To Gate 
k message bits shift register 

Fr 
~ 

error Tn rlRr.lsion 
threshold syndrome computer r pattern and control circu om 

1 ength stor,e detector 
it 

- - - - -

shortest error-pattern store 

fig.(5.23) Bolck diagram of A sub decoder 



- 192 -

be used for choosing one of two or more error-patterns 

of equal length, e.g. the error-pattern which has the 

lowest Hamming weight can be used, if the threshold 

weight method is not to be used. 

5.l2-Results and Discussions 

The repetitive transmission of the same codeword 

does not give accurate results, when the parallel threshold 

decoders are used, because if an optimum threshold value 

happens to be used the results will be better than the 

actual performance. To eliminate such bias a random 

data is used for each codeword. This requires an additional 

complexity of the simulation program where a random 

number generator is used to simulate the random information 

digits, and a simulated encoder to get the transmitted 

codeword. 

Six codes were used to test the performance of 

the parallel threshold decoders. Two of them are random-

error-correcting codes, the first is the 8CH(3l,2l) code, 

which has a generator polynomial 

(5.94 ) 

the second code is the 8CH(15,7) code, which has a ge,nerator 

polynomial 

g(X) 4 6 7 8 = l+X +X +X +X (5.95) 

80th these codes can correct two or less random errors 

in any codeword.The other four codes are single-burst-
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error-correcting codes. The first one is the shortened 

(34,22) code, which is shortened from the (91,79) code, 

and can correct all bursts of ~=6 or less, thus it is an 

optimal code. Its generator polynomial is 

(5.96) 

The second code is the (27,17) burst code, which is again 

an optimal code, and can correct all bursts of 1=5 or less. 

It is a shortened code derived from the (341,331) code, 

which has a generator polynomial 

The third code is the (19,11) burst code, which is an 

optimal code that can correct all bursts of length ~=4 or 

less, and is shortened from the (217,211) code, (see 

appendix B). The generator polynomial used is 

g (X) 2 4 7 B = l+X +X +X +X (5.9B) 

the last code is the (27,20) burst code, which is not an 

optimal code,and can correct all bursts of length ~=3 or 

less. It is shortened from the (62,55) code, which has a 

generator polynomial 

g (X) 367 
= l+X +X +X (5.99) 

Symbol interlacing of degree A=25 is used with all burst 

• 
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codes to enhance the code performance. The interlacing 

degress has no effect on the decoder performance because 

in each case the results are compared with the corresponding 

results for the same code interlaced to the same degree. 

The simulation programmes are shown in appendix D. 

5.12.1 Number Of Thresholds Choice 

To study the effect of the number of thresholds on 

the decoder performance, two types of threshold spacing is 

used. the full span thresholds, and the practical spaced 

group. These two spacings are chosen because they represent 

the two extremes, as it can be seen from fig.(5.14). 

Consequently all other spacing schemes will fit in between 

these two spacings. This test is carried out for all codes 

using the corresponding parallel threshold decoder, while 

the test is carried out for all the burst codes using the 

statistical parallel threshold decoder for the practical 

spaced thresholds only, because as it was mentioned in 

section 5.10, the full span w~ll result in a degraded 

performance. Typical specimen results are given, and if 

any code behaves differently its results will be shown as 

well. 

5.12.1.1 The Full Span Threshold Spacing 

The (31,21) random code is chosen to represent the 

typical performance of the parallel threshold decoder 

when a different full span threshold spacing is used. 

3000 codewords are transmitted in each test, where the 

SNR value is changed from 1-8 d8, and for each test the 

threshold values are varied from 5-17 thresholds. The 
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error rate is plotted against the SNR values for the 

different threshold values in fig.(5.24), in addition 

the performance of a conventional error-trapping decoder 

is included for comparsion. 

It can be seen clearly that the parallel threshold 

decoder outperforms the conventional error-trapping 

decoder for any number of thresholds used. The improvement 

in performance increases with the increase of the number 

of thresholds used. A big improvement is added with an 

increase in the number of thresholds, while the use of 

more than 9 thresholds results in an additional smalle~, 

and steady improvement with the increase of the thresholds 

number. 

5.12.1.2 The Practical Spacing Thresholds 

The (34,22) burst code decoded by a parallel 

threshold decoder is chosen to represent the parallel 

threshold decoder typical performance, when a practical 

threshold spacing is used. The background noise is 

assumed 9 dB, while the burst noise is changed between 

6 dB and -20 dB. Here the treshol~ number is varied from 

3 to 17. The results are shown in fig.(5.25). Again for 

comparsion, the conventional" error-trapping decoder 

performance is plotted, as well as the parallel threshold 

decoder (PTO) using 17 full span spacing thresholds. 

Fig.(5.25) shows clearly that the parallel threshold 

decoder perf~rms better over the whole studied range, and 

that the practical spacing results in a lower additional 

improvement as the number of thresholds is increased. i.e. 
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a big improvement is achieved when three thresholds are 

used, less additional improvement is achieved by going 

from three to five thresholds, while very little 

improvement can be achieved by going to more than five 

thresholds_ As it is expected the practical spacing 

outperforms the full span spacing, and it can be seen 

that a parallel threshold decoder using three practical 

spaced threshold performs better than the same decoder 

using 17 full span spaced thresholds especially at low 

5NR burst noise values. 

5.12.1.3 Effect Of Background Noise On The Number 

Of Thresholds 

The effect of varying the burst noise on the parallel 

threshold decoder can be observed in fig.(5.25), but not 

the effect of varying the background noise. To study its 

effect the same graphs of fig.(5.25) are produced for 

two background noise values, fig.(5.26) is for background 

noise of 7 dB, while fig.(5.27) is for background noise 

of 11 dB. 

The results shown in fi9.(5.26) confirm the results 

of fig.(5.25), the only difference is that the improvement 

for increasing the thresholds number from three to five 

is bigger than the improvement shown in fig.(5.25). 

Fig.(5.27) however shows a different result. The parallel 

threshold decoder using practical spaced thresholds is 

still performing better than the error-trapping decoder, 

but the improvement is'very small when three thresholds 

were used, and hardly any additional improvement can be 



--------------......... -............. 
-"", 

I I I I i I J 

'",,
'", 

'", 

X10-4 
5.68 

5.20 

4.72 

, 4.23 

"
}~-75 

\ , 

3.26 

2.78 

1. 33 

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 

__ 3 TH. 

__ S TH. 

___ 7 TH. 

___ 17TH. 

SNR(dB) 

17 FULL SPAN 

__ E. T. 

FIG.(S.26) PRACTICAL SPACING AT SNR= 7 dB 



X10-4 
1. 62 

1. 46 

1. 30 

1. 14 

.97 

.81 

.17 

, 

\ 
\ ',,-

',,--......... 

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 

__ 3 TH. 

__ 5 TH. 

__ 7 TH. 

_ _ _ 17TH. 

SNR(dB) 

17 FULL SPAN 

___ E. T. 

FIG.(5.27) PRACTICAL SPACING AT SNR= 11 dB 



- 197 -

achieved by increasing the number of thresholds. On the 

other hand the parallel threshold decoder using 17 full 

span thresholds is performing worse than the error-trapping 

decoder despite the fact that the parallel threshold 

decoder is designed to perform the same as the error

trapping decoder in the worst case, as it is shown in 

section 5.9. In reality, the parallel decoder is not 

performing worse, but the reason for these results can 

be seen as the following. 

The transmission channel is assumed to be a one 

way channel where no retransmission facility is available, 

furthermore the receiver is assumed to accept the 

information.digits without correction in the case of 

decoding failures so that maximum improvement can be 

achieved. In the simulation, the received imformation 

digits only are compared with the transmitted digits, 

and any missmatch is counted as an erroneous word. Let 

the received word contain more than t errors for the 

random-errors decoder, and an error-pattern longer than 

~ for the burst correction channel. And let these errors 

be confined to the parity-check digits only. The error

trapping decoder will decode such a received word as a 

decoding failure, and will accept the information digits, 

the simulation programme will count this word as a correct 

word although it is a decoding failure. The parallel 

threshold decoder will try to convert this decoding 

failure to a trappable-error, if.the conversion is 

successful the performance is the same, otherwise the 

error-trapping is decoding better for such received words. 
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Let the error probability in the transmission channel 

during the occurance of such a word be p, and the code 

used be an (n,k) code. Then the probability of decoding 

failure of correct information digits Pcf for the random

error channel is from Eq.(4.44) 

i 
p 

and Pcf for the burst error channel, from Eq.(4.49) is 

P =[_1 
cf n 

n-k 
I 

i=l 

R-
I 

i=l 

(S.lOO) 

(S.lOl) 

this is present of course at low SNR value, but they are 

unnoticeable because of the superior performance of the 

parallel threshold decoders at lower SNR values. However, 

in the error-trapping decoders that disregard the received 

word whenever a decoding failure is detected, the parallel 

threshold decoder will perform equal or better whatever 

the SNR value. 

At high background SNR values, the poor improvement 

over the error-trapping is justified, because at high 

background SNR values, there are only few random errors, 

hence the improvement is from detecting burst-errors 

correctly, which according to Eq.(S.93) is not as successful 

as detecting random errors. 

The three figs.(S.2S),(S.26),and (S.27), show that 

the improvement increases with the increase of the number 

of thresholds. For a background SNR of 11 de 3 thresholds 

are sufficient to get most of the improvement that can be 
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achieved, while for background SNR of 9 dB, S thresholds 

is enough, and for background SNR of 7 dB, 5 threshods is 

acceptable, but 7 thresholds will give a little additional 

improvement. In general it can be said that, to get most 

of the improvement, the number of thresholds should be 

increased with the decrease of the background SNR value. 

5.12.2 Random-Error Parallel Threshold Test Results 

5.12.2.1 Simulation Results 

Two codes were used in the simulation results, 

the BCH(31,21), and the BCH(15,7). The results given in 

fig.(S.2B) and fig.(S.29) show the results of both codes, 

when 3,5,7, and 17 practical spaced thresholds are used 

for the detection. The simulation results for the 

conventional error-trapping decoder and soft-decision 

decoder are plotted for comparsion. The soft-decision 

decoder used a 16 level qunatizer, so that most of the 

possible improvement is achieved. 

The (31,21) code. performance of fig.(5.2B), is 

self explanatory. 50ft-decision decoding outperforms 

the error-trapping decoding and an improvement of 0.2B dB 

is obtained at SNR=3 dB,and [l.T dBat SNR=6 dB. The parallel 

threshold decoder perform better than both, an improvement 

of 0.67 dB at SNR=3 dB, and 1 dB at SNR=6 dB is achieved 

over the error-trapping decoding, and O.S dB at SNR=3 dB,and 

1 dB at SNR=6 dB over the soft-decision decoding, for 

the 5 threshold parallel threshold decoder. 

The (15,7) code performance, fig. (S.29) is different 

in that the error-trapping decoder using this code will 

trap all correctable errors, hence any decoding failure 
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will guarantee that the received word contains at 

least 3 errors. The soft-decision decoding has an 

advantage in such a case, since all correctable errors 

are trappable, then the soft-decision decoder will calculate 

the EPSW for all the possible error-patterns, and not 

for the trappable error-patterns only, which give the 

soft-decision decoder a superior performance over codes 

in which the n-k parity-check digits cannot trap all 

correctable errors. On the other hand, the parallel 

threshold decoder is at a disadvantage, because as it 

is mentioned in section 5.9.1, the only source of 

improvement for such codes, is for the parallel threshold 

decoder to detect correctly all the received errors but 

two, in the received word. Consequently the poor performance 

of the parallel threshold decoder for the (15,7) code is 

not surprising. Fig.(5.29) shows that the parallel 

threshold decoding performs better than the error-trapping 

decoding, an improvement of 0.5 dB is achieved at SNR=3 dB, 

and 1.5 dB at SNR=6 dB when a 5 thresholds decoder is 

used. While the overall soft-decision decoding outperforms 

both decoding methods, where an improvement of 0.9 dB 

is achieved at SNR=3 dB, and 1.5 dB at SNR=6 dB over 

error-trapping decoding. And 0.2 dB at SNR=3 dB, and no 

improvement at SNR=6 dB over the parallel threshold 

decoding. 

5.12.2.2 Hardware Test Results 

A hardware parallel threshold decoder has been 

built and tested. Three and five practical thresholds 



- 201 -

were used, and the test results are very similiar to 

those obtained by the simulation. The hardware and 

simulation results, for errer-trapping decoding, 3 and 

5 thresholds parallel threshold decoder are shown in 

fig.(A.B). The circuit diagram, and a full discussion of 

the parallel threshold decoder function, and the results 

are included in appendix A. 

5.12.3 Burst-Error Decoding Results 

The simulation results considered here will be for 

the parallel threshold decoding, and the statistical 

parallel threshold decoding. In each case the four burst 

codes are used. The background SNR values is taken as 

9 dB during all the tests, and an interlaceing degreee 

A=25 is taken for all codes. To assess the performance of 

the decoding, the error-trapping decoding, the optimum 

decoding, and the soft-decision decoding is plotted, with 

the performance of 3, 5, and 17 practical threshold 

spacing parallel threshold decoding results. 

5.12.3.1 Parallel Threshold Decoding Results 

The first code to be considered is the (34,22) code, 

its performance results are shown in fig.(5.3D). As it is 

expected the optimum decoding performs better than the 

error-trapping decoding, because the assumed channel 

statistics match the decoding statistics. The average 

improvement over the studied range is about 5 dB. Soft

decision decoding does not give any improvement over the 

error-trapping decoding for burst SNR values lower than 

-7.4 dB, and lower than -4.25 dB for the optimum decoding. 

On the other hand the parallel threshold decoding [Jutllc'rrorms 
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all other decoding methods. At burst SNR = -3 cB the five 

thresholds ~arallel threshold decoding, improves by 

3 dB, 2.2S dB, and 0.7 dB, over error-trapping, optimum, 

and soft-decision, respectively, while at burst SNR=-17 dB, 

the improvement is 10.S dB, S.4 dB, and 10 dB. 

Using the (27,17) code, the results of fig.(S.31) 

show similar performance to the (34,22) code, at burst 

SNR=-3dB a five threshold PTO achieved an improvement of 

3.3 dB, 1.16 dB, and -.1 dB, over error-trapping, the 

optimum, and soft-decision decoding respectively, while 

at burst SNR=-17 dB the improvement is 9 dB, 3.15 dB, and 

7.8 dB. 

The (19,11) is a powerful code and because of its 

low code rate only a few correctable errors are untrappable. 

This can be seen from fig.(S.32), where the word error 

rate is lower then the two previous codes, thus under 

these conditions the parallel decoder using this code is 

not expected to give a big improvement. The optimum 

decoding gives a small improvement over the error-trapping 

decoding, while the soft-decision is worse most of the 

range. A five thresholds PTO at burst SNR=-3 dB performs 

slightly better, the improvement is 1.1 dB, 0.34 dB, and 

1.27dB, over error-trapping, the optimum, and soft-decision 

decoding respectively, while at burst SNR=-17 dB, the PTO 

achieves an improvement of 9.7 dB over the soft-decision 

decoding, and 0.36 dB over error-trapping, but introduces a 

degradation of 9.7 dB over the optimum decoder. 

The PTO using the (27,20) code does noi achieve a 

big improvement, the reason being that the (27,20) is 
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not a powerful code, due to its low correction ability, 

as it is seen from fig.(5.33) where the word error rate 

is high. A five threshold PTO achieves at burst SNR=-3 dB 

an improvement of 0.7 dB, 0.5 dB, and 0 dB over error

trapping, the optimum, and soft-decision decoding 

respevtively, while at burst SNR=-17 dB the improvement 

is 2.5 dB, 0.3 dB, and 10.3 dB. 

5.12.3.2 The Statistical Parallel Threshold Decoder (SPTO) 

The decoding performance for the (34,22) code is 

shown in fig.(5.34). As it is expected the SPTO performs 

even better than the PTO, because the assumed channel. 

statistics matches the decoder statistics. The five 

thresholds SPTO out~erformsthe error-trapping, the 

optimum, and soft-decision decoding by 4.7 dB, 3.9 dB, 

and 2.1 dB, at burst SNR=-3 dB, and by 13.3 dB, 10.7 dB, 

and 11.7 dB, at burst SNR=-17 dB, respectively. From a 

comparsion of fig.(5.34) and fig.(5.30) it can be seen 

that the SPTO introduces an additional improvement of 

1.7 dB, at burst SNR=-3 jB, and 6.4 dB, at burst SNR=-17 dB, 

over the five thresholds PTO. 

The decoding performance using the (27,17) code is 

very similar to the (34,22) performance fig.(5.35). The 

five thresholds SPTO gives an additional gain over 

error-trapping, the optimum, and soft-decision decoding 

of 3.7B dB, 3 dB. and 0 dB, at burst SNR=-3 dB, and 11.B dB, 

B.4 dB, and 9.3 dB, at burst SNR=-17 dB respectively. 

Again the improvement over the PTO can be seen from 

comparing fig.(5.35) and fig.(5.31), where a gain of 

7.1 dB, and 0.6 dB, is achieved at burst SNR=-3 dB and 
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SNR=-17 dB respectively. 

The SPTO performs poorly when the (19,11) code is 

used, for the same reasons that cause the PTO poor 

performance. The SPTO same as the PTO introduces some 

improvement over the optimum decoding for the burst 

SNR>-6 dB, while hardly any improvement for burst SNR<-6 dB 

as in fig.(5.36). A five threshold SPTO achieves an 

additional improvement of 1.B dB, 1.15 dB, and 2 dB, at 

burst SNR=-3 dB, and 4.4 dB, 0 dB, and 10.B dB, at burst 

SNR=-17 dB over error-trapping, the optimum and soft

decision decoding, while the improvement over the PTO 

is 0.9 dB, and 3.9 dB, at burst SNR=-3 and -17 dB respectively." 

On the other hand, the performance of the SPTO 

is very poor when the (27,20) code is used as it is shown 

in fig.(5.37). A five thresholds SPTO introduces a very 

small improvement at low burst SNR values, and a degradation 

at very low burst SNR values except over the soft-decision 

decoding. The improvement at burst SNR=-3 dB is 1.6 dB, 

1. 4 dB, and 0.6 dB, over error-trapping, the optimum, 

and soft-decision decoding. While at burst SNR=-17 dB, 

the only improvement is over the soft-decision, which is 

9..-B dB, the degradation over error-trapping is 2.4 dB, 

and over the optimum decoding is 4.2 dB. The SPTo introduces 

a reasonable gain over the PTO at burst SNR>-B dB, but 

it performs worse for a burst SNR<-8 dB. For example, 

the improvement at burst SNR=-3 dB is o.B dB, while the 

degradation at burst SNR=-17 dB is 3.9 dB. 

- - - - - - - --
-----
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5.12.4 The Effect of Code Rate On The Performance Of 

Parallel Threshold Decoders 

The study of the effect of code rate on the PTO 

performance is a difficult problem to solve. On one hand 

different codes with different code rates have to be used, 

which involves the simulation of all chosen codes. On the 

other hand all the codes used should have the same 

correction power, i. e. the error-correction ability of 

all codes (t for random codes, and i for burst codes) 

should be the same for the same number of perity-check 

digits. 

An easier solution to this problem is to use a 

code that can be shortened and lengthened. Shortening a 

code represents no problem since any code can be shortened. , 
But lenghtening codes cannot be done unless the code itself 

is a shortened code. It is worth mentioning that if an 

optimum burst code is shortened or lengthened, it does not 

necessarily mean the code is still optimum, although an 

optimal code will remain optimal. tlearly the shortening 

of a code will decrease its code rate, and lengthening it 

will increase its code rate, and if the same code is 

shortened and lengthened, then its correction power is 

the same. 

The shortening and lengthening idea is uSed to 

study the code rate effects on the PTO performance. The 

shortened (34,22) burst code is used, for the study. A 

parallel threshold decoder with practical spacing is 

used. The background SNR=9 dB, and the burst SNR is vaFied 

from -20 dB to 6 dB, while the code rate is changed from 
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0.52 to 0.666. It would be more comprehensive to increase 

the code rate to a higher value but the computer word 

length was a deciding factor to stop at this value. For 

each value the PTO and the error-trapping decoder are 

tested. The PTO improvement over the error-trapping 

decoder in terms of word error rate is calculated for 

all burst SNR values. It was found that the results 

curve have a similar shape, hence only three curves for 

burst SNR 2,-8, and-I? d8 are plotted in fig.(5.38). 

The curves of fig.(5.38) show that the code rate 

has a big effect on the PTO improvement. At low oode 

rates the improvement is low, then as the code rate is 

increased the improvement becomes greater until it 

reaches a maximum value, then it starts to drop as the 

code rate is further increased. Two other conclusions 

can be drawn from fig.(5.38); firstly, the improvement 

is higher at lower burst SNR, which means that the PTO 

performs better as the burst SNR drops; secondly, the 

peak of the curve is flater at low burst SNR than at 

higher burst SNR, which means that to get the maximum 

improvement the code rate is less critical at low burst 

SNR values than at higher burst SNR values. 

The above results were somehow expected because 

of the relation between the code rate and the number of 

trappable error-patterns, as previously discussed in 

sections 5.9.1, 5.9.2. Since the number of the correctable 

but untrappable errors increase with the increase in the 

code rate, and since the PTO achieves some improvement by 

correcting these untrappable error-patterns, then the 
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improvement increases with the increase·in the code rate, 

which is responsible for the left hand side of the curve 

from the maximum point. As the code rate is increased, 

the number of untrappable but correctable errors become 

so large that the code itself becomes powerless to correct 

most error-patterns, hence the drop at the right hand 

side of the curve. 

5.13- Advantages Of The Parallel Threshold Decoding 

The use of any decoding method is dependent on two 

principle factors. Firstly, the total decoder cost, i.e. 

hardware, implementation, software, testing, etc., secondly, 

the decoder's ability to function in real time, i.e. its 

speed, for a given performance achieved. 

The parallel threshold decoder is very attractive 

from these points of view, its total cost is not much 

more than that of the error-trapping decoder, and much 

le·ss than the soft-decision decoder. Once a subdecoder is 

built and tested, the remaining subdecoders are just 

duplicates, in a practical system hardly more than five 

threshold need to be used thus the hardware cost of the 

subdecoders is very cheap, because they consist of shi ft 

registers and gates only. While the thresho~d circuits 

are ordinary threshold gates unlike the expensive 

analogue-to-digital converter used in soft-decision 

decoders. Again because the parallel threshold decoder 

is easily and economically implemented in hardware, no 

software expense need be involved, thus· on the whole 

the parallel threshold decoder gives a very go-od cost-
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performance trade of. Also, since the whole decoder is 

economical to implement directly in hardware its speed 

as a real time decoder is limited only by the maximum 

speed of the hardware used. 

Consequently the two main advantages of the parallel 

threshold decoder are its low cost, and it speed, which 

makes it very competitive with other decoders. Although 

the parallel threshold decoder provides a big advantage 

when implemented as hardware decoder, yet there is nothing 

to stop its implementation by the use of microprocessors, 

although by doing this at the present state of thechnology 

most of its advantages will be lost. 

5.l4-Conclusions 

The parallel threshold decoding is a decoding 

technique that attempts to minimize the symbol probability' 

of error during the whole transmission, or to minimize 

the block symbol probability of error, or both of them. 

The parallel threshold decoder should in general 

perform e~Ual to or better than the error-trapping decoder, 

the amount of improvement is dependent on the SNR ratio 

or ratios, the lower the SNR values the more the 

improvement. The improvement is also dependent on the code 

itself, the largest improvement is achieved at moderate 

code rates 0.629 and 0.647; while for a powerful code, at 

moderate background SNR value, the improvement is small 

because the parallel threshold decoder is not able to 

add too much to the code correction power. At the other 

extreme, the parallel threshold decoder is unable to 

enhance the performance of a weak code. 
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is dependent on the code rate and the SNR values, thus 

the statistical parallel threshold decoder, will follow 

a similar improvement curve achieving higher improvement, 

where the parallel threshold decoder improvement is high, 

but at high code rates not achieving the same improvement 

as the parallel threshold decoders. 

Although in theory the number of thresholds can 

be very large, in practice there is hardly any need to 

include more than five thresholds or at most seven 

thresholds, since most of the improvement is achieved at 

the first few thresholds. 

The parallel threshold decoders can be used in a 

two-way channel system, provided a small number of thresholds 

are used i.e. three or five thresholds at most. A 

retransmission is requested once a decoding failure is 

detected, i.e. no trappable error-pattern is found in 

all subdecoders. The number of thresholds is very important 

for such a system because as the number of thresholds is 

increased the improvement is increased, s6 is the number of 

erroneous decoded words, while the number of the decoding 

failures in all subdecoders, hence the retransmission is 

decreased, and visa versa. Consequently it is safer to 

use a small number of thresholds, and more retransmissions, 

so that the overall error rate is reduced. 
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CHAPTER 6 

THE SEARCH PARALLEL THRESHOLD DECODER 

6.1- The Decoder Limitation 

Decoding techniques for block codes can be divided 

into two general categories, algebraic and nonalgebraic. 

The algebraic techniques basically involve the simultaneous 

solution of set of equations for the location and values 

of the errors. The nonalgebraic techniques, while 

accomplishing the same goal, are based upon simple 

structural aspects of the codes which permit the 

determination of the error-patterns in a more direct 

fashion. 

In general the algebraic decoders are more complicated 

in terms of the hardware than the nonalgebraic decoders, 

but they are usable with "any error-cor'I'ecting code. While 

the n,onalgebraic decoders have some built in disadvantages. 

Since we are interested in the error-trapping decoders 

which are nonalgebraic decoders, we will consider their 

disadvantages. As a practical matter, although their 

hardware implementation is reasonably simple, the 

complexity of these decoders increases rapidly as the 

number of error to be corrected grows. In addition to 

this, for any error-pattern to be correctable by these 

decoders, it has to be trappable, and since any correctable 

error-pattern is trappable only if the error-pattern 

is confined to n-k consecutive digits, the decoder may 

not correct all correctable error-patterns. Hence they 
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are generally not useful for correcting more than 3 

random errors or for correcting more than a single burst 

of errors. Clearly, as the number of random errors, or 

the length of the single burst grows, the algebraic 

decoders becomes more efficient than the error-trapping 

decoders, because the number of the correctable but 

untrappable error-patterns becomes larger. Consequently 

the algebraic decoders hav~ to be used. 

In general any error-correcting code can correct 

all errors-patterns of L or less. Where L=t the maximum 

number of random errors that a random-err or-correcting 

code guarantee to correct regardless of their position 

in the codeword, or L=~ the maximum burst length of 

which the code is capable of correcting regardless of 

its position in the codeword. On the other hand the code 

cannot correct all the error-patterns of Ltl or more, 

but it will correct some of them. 

In order to guarantee the correction of all error

patterns of L or less, decoders in both categories are 

limited to the correction of t random errors or burst 

length ~, although that is below the code error-correction 

ability. 

6.2- Expanding the Limitations 

When a one-way channel is used as the transmission 

channel, some" application may be required to correct as 

much data as possib}e at the expense of increased 

decoding errors. No matter which decoder is used all 

error-patterns of L or less will be decoded correctly, 
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while all error-patterns of L+l or more will be signaled 

as decoding failure. If an error-trapping decoder is 

used, then the untrappable error-patterns if any, will 

be signaled as additional decoding failures. B~ing one

way channel the receiver ha·s no choice other than 

discarding the erroneous received word, or accepting it 

knowing it is erroneous. In the later case the word 

error rate will be lower if the full correction capability 

of the code is used. Because all error-patterns of L or 

less will be corrected as before, while part of the 

previous decoding failures will be corrected. But in 

such a case the receiver will have no means of telling 

which received word is correct and which is a decoding 

failure i.e. it may make a decoding error. 

6.3- The Search Parallel Threshold Decoding (SPT) 

The search parallel threshold decoder is a decoder 

of the later type described above, it tries to correct 

as many as possible of the erroneous received words • .It 

is basically a modified error-trapping decoder of which 

the decoder has no means of detecting failures and uses 

the principle of the parallel thresholds to decode the 

received word, but in a completely different way to the 

parallel threshold decoding. 

Dne way for decoding using the SPT decoder is for 

the decoder to use certain weighing rules to decide whi~h 

threshold is optimum or near optimum, and accept its 

output as the received word, where the decoding is carried 

out for that word, and the corrected output is accepted 
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as the transmitted information digits. The weighing is 

done for all the trapped error-patterns in the syndrome 

registers for all thresholds. 

An alternative method is for the SPT decoder to 

use the same concept of the optimum and near optimum 

thresholds as above, but the weighing is done in a way 

that the SPT decoder uses one digit at a time of the 

trapped error-pattern in every syndrome register to' 

correct the bit errors in the received word, i.e. the 

weighing is done on a digit by digit basis for the trapped 

error-patterns. 

6.3.1 The Trapped Error-Patterns 

Consider a decoder which has j threshold detectors 

at its input, the output of each of these j detectors is 

fed to a syndrome calculator. When a received word is 

fed into this decoder, each detector will output the 

received word according to its threshold value. Once all 

the received words are fed into the receiver, j syndromes 

are formed in the j syndrome registers. Then each of 

these syndromes is shifted until a trappable error-pattern 

is found, and if at the end of the n shifts no trappable 

error-pattern is found, the syndrome register is reset 

to zero. Let the j vectors of the error-patterns be 

E. = eo,lel,l·····en_k_l,l 1 

E2 = e o ,2 e l,2····· e n_k_l,2 ( 6 • 1 ) 

E. = eO .e l ..•..• e k 1 . 
J ,J,J n- - ,J 
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Assuming that the ith threshold is an optimum or near 

optimum threshold, then the ith trapped error-pattern is 

the most likely error-pattern to have been added to the 

transmitted codeword in the channel. 

The distance d
l 

between the 'l',voltage +V, and 

the optimum threshold is given in Eq.(5.47) 

(5.47) 

where 0 2 is the noise power, ql and qo is the number 

'I' and '0' in the transmitted codeword. Fig.(5 .. 9) shows 

the variation of the optimum threshold distance with the 

variation of SNR values for all possible codewords except 

the all zeros and all ones codewords for the BCH(15,7) 

random-error-correcting code. 

Although Eq.(5.47) gives the distance for all 

zeros and all ones codewords as + 00 and - 00, which 

correspond to threshold values of - 00 and + 00 respectively. 

Fig.(5.9) shows that for all codewords other than the all 

zeros and all ones codewords, thresholds are concentrated 

around the 0 volt value, and for reasonable SNR values 

the thresholds are within a small distance from the 0 volt, 

e.g. in fig.(5.9) the distance is ±¥. However, no matter 

what the threshold values are, usually they will be limited 

by the hardware to ±V. One should notice that for any 

code there are 2k different codewords, hence the ratio 
ql 
-- in general will have more values as k grows, consequently 
qo 
the number of the optimum thresholds will increase as k 
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increases. Such an increase will lead to a higher 

concentration of thresholds around the 0 volt when a 

figure similar to fig .. (5.9) is plotted for a code with 

higher k value. S~ even if using the optimum threshold 

for the (15,7) code may be reasonable, for longer codes 

one has to use one of the threshold distributions described 

in section 5.7. 

Assuming that the number of thresholds used j in 

the above described decoder are large, and that a codeword 

other than the all ·.ones and all zeros codeword is 

transmitted, furthermore, let the optimum or near optimum 

threshold for detecting the received word be the ith 

threshold, then the most likely error-pattern to be 

added to the transmittted codeword in the channel will 

b E h E · th .th t d tt· e ., were . lS e 1 rappe error-pa ern ln 
1 1 

Eq.(6.1). Since j is a large number, then the i+l
th 

and 

i_lth threshold will be hear optimum thresholds, hence 

the corresponding error-patterns E. 1 and E. I' are 1+ 1-

likely to be the error-pattern added to the transmrtted 

codeword. Again the i+2th and i_2 th thresholds may be 

close enough to be near optimum thresholds, thus the 

corresponding error-patterns E. 2 and E. 2' may be the 1+ 1-

error-pattern added to the transmitted codeword, but 

they are less likely than Ei+l and E. l' which in turn 
1-

are less likely than E .. The same thing can be said 
1 

about Ei +3 
and E. 3' and so on. 

1-

The reason for excluding the all ones and all 

zeros codewords from the above argument is that these 

two codewords represent the extreme cases, and since 
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their optimum thresholds are at - = and + =, then their 

optimum thresholds are not included in the thresholds 

used in the decoder, because usual 1 y the thresholds span 

is -v to +V. Thus the nearest thresholds to -V and +V 

are the near optimum thresholds for these two words. Going 

back to the j thresholds decoder, these two thresholds 

st . th 
will be the 1 and J thresholds. Consequently, for the 

1st threshold no oth threshold exists, and for the jth 

threshold no j+lth threshold exists. Needless to say 

what applies to the thresholds applies to the error-

patterns, hence no EO or Ej +l exists. Clearly for such 

cases no symmetry exists around the optimum or near 

optimum threshold, and the error-patterns to be considered 

are Apart from that 

all the above disc~ssions apply to all threSholds. In 

general the decoder can consider as many error-patterns 

as required, provided they do exist. 

6.3.2 The Error-Pattern - A Different Look 

C ·d th .th tt E onSl er e 1 error-pa ern . 
1 

in Eq.(6.1), 

which could be any trapped error-pattern resulting from 

the detection by the ith threshold, 

E. 
1 

. . • • • • e k 1 . n - - ,1 (6.1-a) 

The error-pattern consists of n-k digits, each digit is 

either '0' or '1' and can be regarded as a flag, where 

the flag is indicating an error if it is set, i.e. it is 

'1' or indicating no error if it is reset, i.e. it is '0' 
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In addition to that the error-pattern corresponds to a 

specific n-k digits in the received word. each digit of 

the error-pattern components corresponding to a unique 

digit in the received word. Consequently the decoder 

knows exactly which bits are erroneous according to E .. 
1 

Assume that the ith error-pattern is the optimum 

or the nearest to the optimum threshold. then the most 

likely error-pattern to have been added to the transmitted 

codewrod is E .. But since the i+l th and i_l
th 

thresholds are 
1 

near optililum, then E. 1 and E. 1 will represent the same 
1+ 1-

error-pattern as E .• and all error-patterns will correspond 
1 

to the same n-k digits of the received word. Thus 

Ei = Ei _l = Ei+l 

from Eq.(6.2) and Eq(6.1-a) 

( 6 . 2 ) 

e . = e . 1 = e . 1 where m=O.1.2 •.•• n-k-l m,l m,l- m,l+ 
( 6 • 3 ) 

If any other threshold is near enough to be considered 

a near optimum threshold. then its error-pattern is the 

same as E. and it will correspond to the same n-k digits 
1 

in the received word. In general Eqs.(6.2) and (6.3) can 

be wri tten 

E. 
1 

= E 
r 

e . = e where m=O.1.2 •...• n-k-l m,l m,r 

( 6 • 4 ) 

(6.5) 

where r is the number fo the rth threshold that can be 
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considered as near optimum threshold to the ith threshold. 

Clearly as the" number of thresholds used j is 

increased, the distance between thresholds becomes smaller. 

Consequently, the number of near optimum thresholds for 

any optimum threshold grows larger. In other words as j 

is increased the range of r becomed larger, and according 

to Eq.(6.4) more error-patterns become the same as the 

optimum threshold error-pattern E .. Up to now no 
1 

distribution of any kind is assumed for the thresholds 

used. If a special distribution is used where the 

thresholds are more concentrated in the area where the 

optimum thresholds are, then the range of r in Eqs(6.4) 

and (6.5) will be even larger for the same nu~ber of 

thresholds used j. In fact one can use one of the 

distribution described in chapter five, section 5.7. 

6.3.3 The Decoding Strategy 

The basic decoding idea is to detect the added 

error- attern to the transmitted codeword from the j 

error-patterns using Eq.(6.4). Dr to detect the bits of 

the error-pattern added by the use of Eq.(6.5). Each 

type of detection will give a different implementation 

of the decoder. The first type of detection, involves 

the scanning of all j error-patterns of Eq.(6.l), and 

looking for the largest number of equal error-patterns 

that correspond to the same n-k digits of the received 

word and accepting this error-pattern as the error-

pattern added to the transmitted codeword, where the 

correction can be achieved as in the conventional 
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error-trappirig decoder. The second type of detection, 
" , 

invol~es the scanning of one bit at a time of all 

j error-patterns of Eq.(6.1) looking for set error flags 

that correspond to the first digit in the received word, 

if the number of detected flags is greater than a certain 

threshol~:(the,error-threshold) 0alue, an error in th~t 

bitis,as·sumed, other\"ise it is assumed error-free,then 

the~hole s~an is repeated for the second digit, and so 

on:. The detection corr'ection process is. finished when 

~\l,then digits of the received word are finished, .i.e. 

~ scans are finished~ At the end of this detection 
. " .' 

~orr~ct~~n processthe'corrected'word m~y' corit~in an, 

erroneo~~ bit, thus itii c~rrected ina~othe~ err~t~ 

...... ::£~~ppinq decoder to· giv.e the final decoder.: output'. 

. 6.4.1 'Th~ Error-Pattern SPT Decoder 

The' error-pattern SPT decoder is 'the de'coder that' 

uses Eq.(6.4) for decoding~ A block diagram of the 

decoder is shown in. fig,(6.1), and the decoder functions 

as follows: 

The received word is fed to the decoder ,input bit by 

bit, where each bit is compared with all j thresholds. 

The output of each threshold is fed to its 'Syndrome 

Calculator' and to the received word storage register. 

By the time all the received word is fed completely into· 

the decoder, the syndrome calculator contains the syndrome, 

while the k stage 'Information Digits Storage Register' 
... " ~.' 

contains the received information digits detected by 
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its threshold. Then the syndrome calculator is shifted 

until a trappable error-pattern is detected. If at the 

end of n shifts no trappable error-pattern is detected, 

the syndrome register is reset to zero. At the end of 

n shifts all j syndrome registers will contain either 

trappable error-patterns, or zeros. The 'Scan and Control 

Circuit' starts to scan all error-patterns from the 

first to the jth in iurn, looking for the largest number 

of consecutive equal error-patterns. The term equal 

error-patterns means that for any t~o equal error-patterns, 

E. 
1 

Iil E = 0 
s 

( 6 . 6 ) 

where Iil represent a modulo-two addition, and that the 

two error-patterns correspond to the same n-k digits in 

the received word. After scanning the jth error-pattern 

the 'Scan ahd'Cont~olCir~uit' kno~i~t~eplace of t~e 

largest number of equal eFror-patterns area, say from 

E. to E . At this stage the detection phase is finished, 
1 s 

and the decoder accepts any of these equal error-patterns 

(E. to; E ) as the actual error-pattern added to the 
1 s 

transmitted codeword. For correction, the 'Scan and 

Control Circuit' selects one of the accepted error-patterns, 

and the corresponding received information digits, opens 

the 'Gate' and passes them through to the 'Correction 

Circuit' where the correction is done and the corrected 

information digits are outputed to the next stage. 
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A further simplification of the decoder can be 

achieved by observing that the accepted error-pattern 

is present in large number in adjacent thresholds 

trapped error-pattern, when the two error-patterns are 

equal the two detected received words are equal. Thus 

the decoder is simplified by omitting every second and 

third 'Information Storage Register' so that when a 

group of error-patterns are chosen, an error-pattern 

that has an 'Information Digits Storage Register' is 

passed through the 'Gate' to the correction circuit. 

6.5-The Digit SPT Decoder 

The digit SPT decoder is the decoder that uses 

Eq.(6.5) for decoding. A block diagram of the decoder is 

shown in fig.(6.2). The decoder function is as follows: 

The received word is fed to the decoder, where it 

is detected at each of the j thresholds and the output 

of each threshold is fed to its 'Syndrome Calculator' 

The output of the zero threshold is (ed also to the 

'Received Word Storage Register', which consists of n 

stages, so that the whole received word is stored including 

the parity-check digits. By the time the whole received 

word is fed into the desoder the j syndromes are calculated 

and each syndrome calculator is shifted until a trappable 

error-pattern is detected, if no trappable error-pattern 

is detected after n shifts the syndrome register is set 

to zero. Once the time of n shifts has elapsed, i.e. no 

syndrome calculator is shifted any longer, the 'Scan and 

Control Circuit' detects any erroneous digits accordin~ 
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to the following .rules. 

When a received word is detected by an optimum 

or near optimum threshold and the adjacent near optimum 

thresholds, the j trapped error-patterns will correspond 

to different sections of n-k digits of the received 

word. If one considers anyone digit of the received 

word, then there is.at most j flags pointing to that 

digit. If the considered digit is erroneous, then 

according to Eq.(6.5) there are at least r set flags. The 

error detection process is simply counting all set flags 

which correspond to a particular digit, if the number 

of flags is equal or larger than r (the error-threshold 

value), then the digit is assumed erroneous, otherwise 

the digit is assumed error-free. Since the error-threshold 

number is varied according to the channel noise, then it 

is taken as a preset number, determined by simulation. 

Going back to the 'Scan and Control Circuit', once 

the shifts are ended, the 'Scan and Control Circuit' 

starts scanning all flags corresponding to the first 

digit of the received word, counting the set flags. 

If no flag is found in ·an···error-pattern, 1. e. no digi t 

in that error-pattern corresponds to the first digit of 

the received word. then a reset flag is assumed. At the 

end of the first scan cycle if the number of the set 

flags is larger than the error-threshold, the first 

digit is changed. This process is repeated n times for 

all n digits. The last phase of correction is to feed 

the corrected received word which is stored in the 
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'Received Word Storage Register' to be corrected in an 

error-trapping decoder. The necessity of this last phase 

is that there is a small probability that error-patterns 

other than the error-patterns resulting from the optimum 

or near optimum thresholds, will set enough flags so 

that a digit in the received word, not erroneous according 

to the accepted error-pattern is inverted. And since the 

code itself can correct such errors, it is used for 

correction in the last phase. 

6.6-The Statistical Decoders 

The statistical decoders are the decoders that 

can correct all error-patterns of L or less and some 

error-patterns of L+l or more. An example of these is 

the optimum decoder (discussed in chapter two) for 

correcting burst of errors. In general the statistical 

decoders depend on special statistical information of 

the transmission system to perform their decoding. 

The optimum decoder can be considered as a statistical 

error-trapping decoder, because the error-pattern is 

trapped in the syndrome register, yet that requires the 

calculation of all the possible error-patterns for the 

received word. Although the optimum decoder can be used 

effectively with a large number of single-burst error

correcting codes, unfortunatly its idea can not be 

extended to the random error-correcting codes for two 

basic reasons; Firstly the optimum decoder is used 

with channels which have special statistical properties, 

unlike these channels random channels are memory less 
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channels, hence no special statistical properties can 

be assumed. Secondly, in the optimum decoder the detected 

error-pattern is extneded to include burst lengths of 

L )~+l, this cannot be done with decoders for random 

error-correcting codes, because of the following. 

Consider a linear (n,k) code, which has a minimum 

distance d
min

, where 

2t + 2 ) d. ) 2t + 1 
mln 

( 6 . 7 ) 

Let C be a transmitted codeword, R the received word, 

and U any other codeword. The Hamming distances among 

C, U, and R satisfy the following inequality 

d(C,R) + d(U,R) ) d(C,U) (6.8) 

if an error-pattern of L error occurs, where 

L " t 
( 6. 9 ) 

Then the Hamming distance between the transmitted 

codeword C and the received word R is 

d(C,R) = L (6.10) 

Since d (C, U) ) d. :; 2 t + 1 mln 
(6.11) 

Then from Eq.(6.8) 

d(U,R) ) d(C,U) - d(C,R) (6.12) 
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Substituting Eqs.(6.10) and (6.11) in Eq.(6.12) gives 

d(U,R) ~ 2t + 1 - L (6.13) 

from Eq.(6.9) 

2t + 1 ) L + t + 1 (6.14") 

2t + 1 - L ) t + 1 (6.15) 

substituting in Eq.(6.13) gives 

d(U,R) ) t + 1 (6.16) 

from Eqs.(6.9) and (6.16) 

d(U,R) > L (6.17) 

The inequality of Eq.(6.17) says that, if an error-pattern 

of t or fewer errors occurs, the received word R is 

closer to the actual transmitted code vector C than to 

any other codeword U, thus the decoding will be correct. 

On the other hand, the decoder cannot correct all patterns 

of L>t+l errors, for there is at least one error-pattern 

which is closer to a codeword other than the transmitted 

codeword. 

The result of Eq.(6.16) is of special interest, 

because it states that for any error-pattern of L errors 

that satisfies Eq.(6.9), there exists at least one 

codeword where the received word is at a Hamming distance 



- 227 -

of t+l from this codeword. Eq.(6.10) shows clearly that 

the extension of the correction power of an error-trapping 

decoder using a random-error-correcting code from L=t 

to L=t+l will result in more decoding errors, because 

for every received word at a distance t or less from a 

codeword, there is another codeword at distance t+l from 

the received word. And since the error-trapping decoder 

will accept the first error-pattern at a distance of L 

or less as the error-pattern added to the transmitted 

codeword in the channel, then the decoder will accept 

the first of either codewords as the transmitted codeword. 

If the decoder identifies the codeword at distance t or 

less as the transmitted codeword, the decoding is correct, 

otherwise the decoder will make an incorrect decoding . 

. Although the decoder will decode correctly Some error

patterns of L=t+l, but the degradation will be much 

more than the improvement. 

Needless to say that further extension of the 

correction power, say to L>t+l, will result in more 

degradation, because the number of the codewords at 

distance L will become larger as L grows larger. 

6.7-Error-Trapping Oecoder With Extended Correction Power 

An extended correction power error-trapping decoder 

must satisfy the following rules; 

I-Its performance must be at least equal to the 

performance of an error-trapping decoder, i.e. the 

8;:t~nrled error-trapping decoder should be able to 

correct all trappable error-patterns of L or less, 
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where L(t. 

2-It should be able to correct some error-patterns 

of L or more, where L~t+l. 

An error-trapping decoder can be modified to be 

an extended error-trapping decoder as the following. 

After calculating the syndrome, the error-trapping 

decoder will calculate all the possible error-patterns 

added to the transmitted codeword. Once a trappable 

error-pattern is detected, it is assumed that the trapped 

error-pattern is the one added to the transmitted codeword 

in the channel and the correction is done accordingly. 

The modified error-trapping decoder does the same, except 

that while calculating the possible error-patterns added 

to the transmitted codeword, and looking for a trappable 

error-pattern, the decoder looks also for error-pattern 

of L=t+l. Once such an error-pattern is detected the 

error-pattern and its location are stored, and the 

calculation of the remaining error-patterns is continued. 

If a trappable error-pattern (of L ( t) is de~ected, 

the correction is carried out as with the error-trapping 

decoder. On the other hand, if no trappable error-pattern 

is detected at the end of the detection cycle, the stored 

error-pattern (of L=t+l) is used for correction using 

the error-pattern location information. 

Another method of achieving the correction is 

by storing the error-pattern only. At the end of the 

detection cycle, if no trappable-error is found, the 

shifting process is continued until the error-pattern 
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in the syndrome register matches the stored error-pattern, 

then the correction can be carried out in the same way 

as with the trappable error-pattern. 

The error-correction power of the modified error-

trapping decoder can be extended so that the code can 

correct some error-patterns of L where 

t + 1 ( L ~ n-k (6.18) 

Assuming that the decoder is required to correct some 

error-pattern of L. where 
1 

t + 1 ( L. ( t + i 
1 

in addition to correcting all error-patterns of L(t. 

In such cases the decoder will function as described 

(6.19) 

above, but it will look for and stored error-patterns of 

t+l,t+2, •... t+i. If no trappable error-pattern is 

detected, the error-pattern which has the smallest 

number of errors is used for correction as described 

above. 

6.7.1 The Extended Error-Trapping Decoder Performance 

Consider the case where the error-pattern is 

trappable, i.e. L(t. The extended error-trapping decoder 

will consider the trapped error-pattern as the error-

pattern added to the transmitted codeword in the channel, 

and will correct accordingly same as the error-trapping 
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decoder, no matter how many error-patterns of L)t+l are 

stored. Thus for L~t the extended error-trapping decoder 

will perform exactly as the error-trapping decoder. If 

an untrappable error-pattern of L~t is added to the 

transmitted codeword, the error-trapping decoder will 

signal that an untrappable error has occured, and since 

that is decoding failure generally, the output is an 

erroneous block of information digits. While the extended 

error-trapping decoder will consider the stored error

pattern, and correct accordingly, thus resulting in an 

erroneous block of information digits. The only difference 

between the two decoders so far is that the error-trapping 

decoder gives an indication when a decoding failure has 

occured. 

Consider now the other case, where the error-pattern 

is of L=t+l, the Hamming distance between a codeword U 

and the received word R is given in Eq.(6.l3) 

d(U,R) ) 2t + 1 - L ( 6 . 1 3 ) 

substituting L=t+l in Eq.(6.l3) gives 

d(U,R) ) t (6.20) 

the inequality of Eq.(6.20) shows clearly that if an 

error-pattern of L=t+l has occured the received word is 

closer to a codeword other than the transmitted codeword, 

thus the decoding is erroneous. But under certain conditions 

these codewords are not detected. i.e. the t errors are 
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untrappable, thus the decoder will detect a pattern of 

t+l errors, if the detected error-pattern is the actual 

one, then the decoding is correct. 

To study the performance of the error-trapping 

and the extended error-trapping decoders, when an error

pattern of L=t+l is added to the transmitted codeword, 

two cases must be considered; Firstly, when di fferent error

pattern is trappable, in such a case the error-trapping 

decoder, and the extended error-trapping decoder will 

accept the error-pattern of t errors as the actual error, 

and the decoding will be carried out accordingly, resulting 

in a decoding error in both decoders. Secondly, when the 

error-pattern of t errors is untrappable. In this case an 

error-pattern of L=t+l is present, and the closest 

codeword or codewords are at a Hamming distance of t+l 

from the received word. In general the error-trapping 

decoder will detect an untrappable error-pattern, signal 

a decoding failure, and the decoding result is an erroneous 

block of information digits. On the other hand the extended 

error-trapping decoder will store an error-pattern of 

L=t+l. According to Eq.(6.l0) the received word is at 

Hamming distance of t+l from the transmitted codeword, 

while Eq.(6.20) shows that there could be another one 

or more codewords at the same Hamming distance from the 

received word. Assuming that there are Bt+l codewords at 

Hamming distance of t+l from the received word. Since 

the decoder has no meanS of evaluating which one is the 

transmitted codeword, the extended decoder will choose 
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one of these codewords as the transmitted codeword. In 

other words the extended error-trapping decoder will 

find Bt +
l 

error-patterns of L=t+l, and has to choose one 

of them as the actual error-pattern. Since any of the 

Bt+l error-patterns can be the actual error-pattern and 

the decoder has no additional information about which one 

to choose, then the decoder can be forced to make a certain 

choice, i.e. first or last error-pattern, so that the 

decoder hardware is less complicated. 

The probability of choosing the actual error-pattern 

added to the transmitted codeword in the channel, hence 

the probability of correct decoding Pcd is 

Pcd = (6.21) 

Since the decoder will choose an error-pattern of L=t+l 

only if no error-pattern of L~t+l is detected, then Eq.(6.2l) 

can be rewritten 

t 
iff I 

i=O 
B. = 0 

1 

where B. is the number of error-pattern with L=i. In 
1 

general 

= 
1 

~ 
L-l 

iff I 
i=O 

where L is defined in Eq.(6.1B). 

B. = 0 
1 

(6.22) 

(6.23) 

In general, extending the error-correction power 
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of an error-trapping decoder to more than t+l will not 

give an additional improvement. To see the reason, one 

should go back to Eq.(6.l3), substituting the value of 

t+2 in L shows that error-patterns of ~t-l are present, 

and substituting t+3 in L, shows that error-patterns of 

~t-2 are present, and so on. Clearly, the chances of the 

decoder choosing the actual error-pattern between the 

present error -patterns of t-l~L~t+2 for the first case, 

and t-2~L~t+3 in the second case are slim indeed. Another 

way of looking into this is by considering the Hamming 

distance between the received word and the accepted 

codeword as the transmitted one. As this distance is 

increased by increasing L as it can be seen from Eq.(6.l0), 

more and more codewords become within the range of L. 

And since the decoder will choose one of these codewords, 

then the probability of correct decoding becomes smaller 

and smaller. 

6.8- Simulation Results and Oiscussions 

Unfortunately, because of the time limitations, 

the results included here are the first stage of 

the test results for the digit SPT decoder only. Although 

these results represent the beginning of the test,work 

for this chapter, and may not be the same as the final 

result after including all the possible improvements, 

yet they are of great'importance because they show clearly 

that the ba'sic theoretical ideas are correct and can be 

implemented. It was felt that the error-pattern SPT 
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decoding will provide higher improvement than the digit 

SPT decoding, thus it was decided to work on the digit 

SPT decoding in the remaining time, because the success 

of the digit SPT decoding idea will give some assurance 

that the error-pattern SPT decoding is also a success. 

6.B.l Choosing The Error-Threshold 

To study the effect of the error-threshold on the 

digit SPT decoder, two types of codes were used the (31,21) 

random-error-correcting code, and the (34,22) single

burst-error-correcting code. The first code used with a 

random error-generating channel, the decoder is the error

trapping decoder type described in section B.S.l. The 

thresholds are taken 17 practically spaced thresholds. 

Several runs for different SNR values are tried, and they 

all prove to have the same general shape, although the 

error-threshold value that minimizes the word error .rate 

is different for different SNR values. The curve of 

fig.(6.3) is a typical curve, where the word error rate 

is plotted against the value of the error-threshold. The 

error-trapping decoder results are plotted also for 

comparsion. The SNR value . used in fig.(6.3) is 3 dB. 

The second code used is the (34,22) single-burst

error-correcting code. The decoder used for the test is 

similar to the decoder described in section 6.5.1, but 

the basic unit is an optimum decoder instead of error

trapping decoder. Again the thresholds used are 17 

thresholds practically spaced. The background SNR is 

set to 9 dB, while the burst SNR is varied fo·r different 
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runs. All runs prove to have the same general curve, 

furthermore they all have a very close values for the 

error-threshold that minimize the word error rate. A 

typical curve is plotted in fig.(6.6), where the burst 

5NR=-B dB. The optimum decoder results are plotted also 

for comparsion. 

Figs.(6.3) and (6.4) show clearly that at low 

error-thresold values, the word error rate shoots up. 

This is somehow expected, because at low error-threshold 

values almost every error flag present in the j error

patterns of Eq.(6.1) has affected a digit, which makes a 

proper correction nearly impossible. Then for error

threshold values larger then the intersection value the 

decoder introduces an improvement over the error-trapping 

or the optimum decoders. This intersection value is nearly 

fixed for different values of burst SNR for the burst 

code decoder, while its value changes with the SNR for 

the random code. The variation suggest that al low SNR 

a lower value of error-threshold should be used and 

visa versa. 

6.B.2 The Digit SPT Decoder Performance 

The digit SPT decoder performance is studied using 

the above mentioned two codes, namely the (31,21) random 

code, and the (34,22) burst code. The thresholds used 

with the two codes are 17 thresholds practically spaced. 

Three runs are carried out for each test, the SNR values 

for the (31,21) code are I, 3, and 6 dB. The first test 

is for a decoder that has a fixed error-threshol~ value, 
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the error-threshold value is set to 7. The second test 

is carried out with a varaible error-threshold values, 

these values are chosen so that the maximum improvement 

is achieved for each SNR value. The error-threshold 

values are 4 for 1 dB, 6 for 3 dB, and 7 for 6 dB. The 

last test is carried out to show the improvement in 

case an adaptive error-threshold value scheme is used. 

The two test results are plotted in addition to the 

error-trapping decoder results in fig.(6.S). It can be 

seen that the digit SPT decoder will introduce an 

improvement of 0.15 dB for the fixed error-threshold value 

and 0.157 dB for the adaptive error-threshold value over 

the error-trapping decoder at 3 dB, while the improvement 

is 0.oB6 dB over the error-trapping decoder for both 

decoders at 5 dB. 

The SNR values for the (34,22) code are -20, -B,and, 

o dB. The test is carried out for a fixed error-threshold 

value of 13, there was no need for adaptive decoder tests 

because the chosen value mi~imize the word error rate for 

the three chosen SNR values. The test results and the 

optimum decoder results are plotted in fig.(6.6). It can 

be seen that the digit SPT decoder performs better than 

the optimum decoder for all the region and produces an 

improvement of 3.6 dB at burst SNR of -17 dB, and 0.64 dB 

at burst SNR of -3 dB over the optimum decoder. 

6.g-Conclusions 

It would be very unwise to draw major conclusions 

from the results obtained so far. However the results 
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obtained give the assurance that the basic idea is correct, 

and that a wide variety of modifications can be incorporated 

with the decoder to provide a better improvement some 

of these modifications are suggested in the next section. 

Nevertheless, considering the digit SPT decoder, 

the results of section 5.6.1 shown in figs.(6.3) and (6.4) 

suggest that there exists some inversely proportional 

relation between the error-threshold value and the SNR 

value. That is, when the SNR value is high, lower value 

for error-threshold should be used, and visa versa. 

According to the simulation results, it seems that the 

penalty paid in increasing the word error rate by using 

hi~her error-threshold value is very small. Hence it can be 

beneficial to use a higher error-threshold value to 

prevent a performance deterioration if the channel SNR 

value dropped to a value lower than the expected. 

The digit SPT decoder for random erroL-generating 

channels test results suggests that an adaptive ~ystem 

is preferred in the case of changing SNR values especially 

if the SNR value is low. While error-threshold value is 

preferred otherwise because the decoder is less complicated. 

The simulation results show that at low SNR values 

the improvement obtained from the digit SPT decoder is 

higher than at high SNR values, yet there is a small 

improvement at high SNR. Which suggests that these types 

of decoders can be used over a wide range of SNR values. 

The only thing to say about the error-pattern SPT 

decoding, if any, is that the success of the digit SPT 
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decoding enhances the belief that the error-pattern SPT 

decoding will prove a success also. 

6.1D-Suggestions For Further Study 

Two types of suggestions will be considered for 

further study of the SPT decoding techniques. The first 

type is based on the observation of the digit SPT decoders 

behaviour and concerns only the digit SPT decoders. 

Although the second type is based on the digit SPT decoders, 

but they are general suggestion which can apply to both 

types of SPT decoders. These suggestions are mostly 

concerned with the improvement of the decoder performance 

in general, because it was believed that the improvement 

resulted from these suggestion is worth considering. 

However many areas of unfinished work needs further study, 

but it was felt that these are very obvious to mention. 

6.10.1 The Digit SPT Decoder 

I-The use of adaptive error-threshold value. The 

significance of using an adaptive error-threshold value 

is clear from fig.(6.5), where a higher improvement 

can be achieved. The use of adaptive error-threshold 

value is limited to the random code decoders, because 

no real improvement can be achieved for the burst code 

decoders. Furthermore, they should be used only when 

they are needed, i.e. when the SNR variation is large. 

In case of small SNR variation, the error-threshold 

value can be increased, so that the drop in SNR value 

will not cause a deterioration in the decoderpreformance. 
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A simple method for calculating the value of the 

error-threshold, is to start with a fixed value and 

monitor the number of the inverted digits in a received 

block, if the number is larger than a set value, say 2t, 

then the error-threshold is increased. On the other hand 

if the number of the inverted digits is small, then the 

error-threshold value is decreased. 

Needless to say that the adaptive digit SPT decoder 

is more complicated to implement then the digit SPT decoder. 

2-Extending the correction power of the decoder. This 

modification is applicable only to the random error decoder. 

The extended correction power decoder will introduce an 

additional improvement over the conventional decoder, 

only if the error-trapping decoder can not trap all 

correctable error-patterns. As it is shown in section 

6.7.1, the correction power should not be extended to 

more than t+l errors. However, the improvement expected 

from the correction power extention is not very big, but 

it can be considerable in some special cases, i.e. when 

some codewords are not used. 

6.10.2 The SPT Decoder 

This modification is applicable to digit SPT decoder, 

and error-pattern SPT decoders. Its aim is to force the 

SPT decoder to function the same as the decoder it is 

derived from in the worst case. The modification is as 

the following: 

The SPT decoder is forced to look at the 0 volt 

threshold error-pattern before starting the decoding process. 
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If the error-pattern is zero, a correct received word 

is assumed, while if the error-pattern is trappable, 

the trapped error-pattern is assumed to be the actual 

error-pattern added to the transmitted codeword, and the 

correction is done accordingly. While if no trappable 

error-pattern is detected, the SPT decoding process is 

continued. 

For the digit SPT decoder, this modification has 

the effect of pushing the parts above the horizontal 

line, figs.(6.3) and (6.4), of the conventional decoder 

down to coincide with the horizontal line. When such 

modification is incorporated in the decoder, the error

threshold value no longer has a deteriorating effect on 

the decoder, although it still has an affect on the 

decod~r improvement. 
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APPENDIX A 

PARALLEL-THRESHOLD-DECDDER HARDWARE TEST SYSTEM 

A.I-General r 

The ideal system for testing the .parallel threshold 

decoder is a real transmission system which has a block 

digram as in fig.(3.1) where the demodulater delivers a 

sampled value of the demodulated signal (not a binary 

value), and the 'Channel Decoder' represents the parallel 

threshold decoder. Such B system is ideal but too complicated 

and t60 expensive to be built for testing purposes. The 

same results can be obtained by simlifying the system of 

fig.(3.1) as follows. 

1. Using a binary data 'Source' and 'Sink',the 'Source 

Encoder' and 'Source Decoder' can be eliminated from the 

diagram. 

2. By assuming tha~ the channel can handle binary 

signals and that noise is an additive noise only, the 

'Modulator' can be diEarded, while the 'Demodulator' can 

be replaced by a sampling circuit. 

After, these two modifications the system will be 

as in fig.(A.l) 

A.2-Repeated Same Word Transmission 

Further simplification can be achieved by transmitting 

the same codeword repeatedly because the 'Encoder' can be 

excluded. On the other hand the 'Source'. has to generate 

the repeated codeword (including the parityJcheck digits) 

instead of generating a random sequence of binary digits. 
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This in turn adds to the complexity of the 'Source' circuit 

in the test system. One method of overcoming this complexity 

is by using an all ones word or all zeros word, if these 

are codewords. So that the whole upper-branch -of_ figs.(3.1) 

or (A.l) is a wire connected to the-positive or negative 

voltage to represent the Bll ones or all zeros word 

respectively. 

In general, since all codewords are equally likely 

to be transmitted,then the use of repeated transmission of the 

same codeword will result in the same test outcome. 

Unfortunately, this is not the case with the parallel 

threshold decoder, because if the optimum threshold for 

that codeword is used~ then the outcome is much better than 

the outcome of the transmission;of random codewords. This 

false improvement depends on the transmitted codeword and 

the distance between the threshold used and the optimum 

threshold value. The maximum false improvement will be 

achieved in the special case where an all ones or all zeros 

word is transmitted repeatedly. 

Consider the case where and (n,k) code is used, it 

is required to calculate the probability of errors when an 

optimum threshold is used to decode an all ones transmitted 

codeword. Eq.(5.47) gives the distance of the optimum 

threshold. 

d
l 

V 
0 2 

log 
ql 

= + Tv qo 
(5.47) 

d
l = V + 

0 2 

Tv (log ql - log qO) (A. 1 ) 
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Since the transmitted codeword is all ones, then 

and qo = 0 

Substituting in E q. (A.l) yields 

0
2 

dl - V + 2V (log L - log 0) 

(A.2 ) 

(A. 3) 

(A.4) 

(A.5 ) 

Since the reference point for the threshold distance is 

at +V volts and the direction of d
l 

is opposite the X axis 

direction, then the threshold value is 

Th = + 0> volts 

The probability of error is given by Eq.(5.31) 

exp ( 

_0> 

2 -v 

20
2 

Substituting Eq.(A.5) in Eq.(5.31) 

_0> 

q,f 1 2 
p ( -v 

= exp 
20

2 e l 12rr02 

_0> 

) dv 

) dv 

(A.6 ) 

(5.31) 

(A.7 ) 

(A. 8) 

Althougfu, an error-trapping decoder will not·give the 

results of Eq.(A.8), a parallel threshold decoder with 

.....:....:..;-:.;.;,-:.,::--:..:..::--======....:..:..:..:.~=-=:..:..::::..::.======--:.....:.-~--::::..:--~-=-=--=---=--.:.:=--- --------
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three thresholds placed at zero and ±oo will give a very 

close error probability to Eq.(A.8), provided the +00 

threshold output is decoded before the _00 threshold 

output. 

Similarily, the same results can be derived for the 

all zeros transmitted codeword. 

A.3-Choosing The Code And The Codeword 

To be able to compare the hardware test results with 

the computer simulation results,it is clear that one of 

the simulated codes should be used. Although some burst

error-correcting codes perform very well and give large 

improvements, it was decided against using one of these 

codes for two reasons. 

I-A burst-noise generator is not available, and 

building one is a c.ostly process and will add to the system 

complexity. 

2-The use of burst-error-correcting code requires 

deinterlacers at the input, which again adds to the system 

cost and complexity, while if the code is not interlaced 

it will lose much of its correction power. 

With the elimination of the burst-error-correcting 

codes, two random error-correcting codes are left to 

choose from. It was decided to use the (31,21) random 

code because it preforms better than the (15,7) random 

code. 

The other point to decide is the codeword. For sake 

of simplicity it was decided to use a repeated transmission 

of the all ones codeword. To accommodate for the false 
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improvement, a repeated transmission of all ones codeword 

is simulated, the results of simulating repeated all ones 

codeword and random codewords is ploted in fig.(A.2), 

where it can be seen that an improvement of 0-0.5dB, and 

0-0.6dB has taken place for the 5, and 3 thresholds parallel 

decoder respectively, while the error-trapping decoder 

degradation can be ignored. 

A.4-The Test System 

A block diagram of the test system is shown in fig.(A.3). 

The input signal is provided by connecting the channel 

input to a ligical '1"'. So that all ones codeword is 

generated. At the channel~ noise is added to the channel 

input signal and the output is the. received signal. To 

start the test, the 'Error Words Counter' and the '3000 

Word Counter' are reset to zero, the later will cause 

'Gate l' to turn on allowing the r.eceived signal to be fed 

to the 'Parallel Threshold Decoder'. As soon as the 

received word has entered the 'Parallel Threshold Decoder', 

a signal is sent to the '3000 Word Counter' to advance 

its count by one. At the end of the decoding, if the 

decoded word is not the all ones word, the 'Error Words 

Counter' advances its count by one, otherwise it remains 

as it was. As soon as the decoding is ended, the next 

received word is fed to the 'Parallel Threshold Decoder'. 

Once the 3000th word is fed in, the '3000 Word Counter' 

turns 'Gate l' off, indicating the end of the test process. 

The number of the test words is chosen to b~ 3000 (93000 

bits), so that it will be the same number used in the 

computer simulation. 
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The test system arrangement is shown in fig.(A.4), 

which is an expanded version of fig.(A.3). The difference 

between the two figures is :-

I-As the 'Parallel Threshold Decoder', '3000 Word 

Counter' and 'Error Words Counter' are digital circuits, 

they require a system clock to drive them, this clock is 

introduced in fig.(A.4). Since without clock pulses, the 

decoding system will stand still. Then a clock stop signal 

is used to stop the system, by inhibiting the clock, after 

the decoding of 3000 words. Using this arrangement, 'Gate I' 

of fig.(A.3) is no longer required. 

2-The 'Channel' block in fig.(A.3) is expanded to include 

noise generation and addition blocks. The noise generator 

is an analogue random Gaussian noise generator. Gaussian 

noise is used to match the noise used in the simulation. 

The noise generator has a maximum value of 1 volt at its 

output, and since higher output values are required, an 

amplifier is used to get a suitable noise output. Again 

the noise generator has an output noise bandwidth of ZDHz-

2DMHz, so a low pass filter is used to band limit the 

noise. At the output of the filter an RMS voltmeter is 

used to measure the noise to be added to the signal in 

the channel. The addition ciruit is an analogue addition 

circuit, which adds the generated noise to the signal at 

the channel input. 

A.5-The Parallel Threshold Decoder Circuit 

The parallel threshold decoder circuit is of special 

interest because it gives an idea of the decoder complexity 

and so the circuit will be discussed in some details. The 
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circuit used is a modification of a circuit designed by 

. (52) Mr. D.G.K1ng , although its function is exactly the 

same as a parallel threshold decoder, it works in a serial 

mode. This mode incurs.a time penalty over the parallel 

system, but it requires fewer devices to implement, while 

the c6ntrol circuitry is slightly more complicated. A 

block diagram of the decoder is shown in fig.(A.5). The 

channel output signal is fed to the 'Input Threshold 

Detectors', wh~re it is compared with the various threshold 

values, the output of the third threshold (0 volt threshold) 

is fed directly to the error-trapping decoder, while the 

output of the rither thresholds are stored in the four 

auxiliary registers 1,2,3, and 4. At the error-trapping 

decoder, the information digits'sr'e stored .in the '21 Stage 

Main Data Register', at the same time the complete received 

word is shifted into the syndrome register. As soon as the 

whole word is shifted in, the syndrome is calculated at 

the syndrome register and if it is all zeros the received 

word is correct and is passed to the decoder output. If 

the syndrome is not all zeros, it is shifted cyclicaly 

until a trappable error-pattern is detected, and the 

received word is corrected. If at the end of 21 cyclic 

shifts of the syndrome register no trappable error-pattern 

is detected; the syndrome register is reset to zero, and 

the next threshold output, which is stored in an auxiliary 

register, is fed to the error-trapping decoder, and new 

correction is started. If at the end of this correction 

phase no trappable error is detected, the next threshold 

output is considered, and so on. 
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If at the end of the five correction phases no trappable 

error is detected, an erroneous decoded word is assumed. 

Once a trappable error is detected, and the received word 

is corrected, no matter which correction phase the decoder 

is in, the whole system is reset, and a new received word 

is accepted. The threshold outputs are considered in a 

fixed sequence 3,2,4,1,5 each time a new received word is 

fed in from the channel. 

The parallel threshold decoder circuit diagram is 

shown in fig.(A.6). 8efore going into the circuit details 

it is worthy to consider the EPROM (A380 outputs fig.(A.7) 

because it is the main control circuit. The EPROM is an 

(64x8) memory device, each output being allocated a specific 

task in controlling the circuit; 

El : is the 'Information Digits Input Control' and 

is used to turn gate A34a on for the first 21 clock 

waveforms of each detection phase, to allow the first 21 

digits of the processed word to be stored in the main data 

register (A23 and A24). 

E2 : is the 'Syndrome Input Control', it is used to 

turn gate A34b on at the beginning of each phase, to allow 

the whole processed word to be shifted in the syndrome 

register (A25, A26, A27, and A28). Once the 31 bit word is 

in (during the first 31 clock waveforms), gate A34b is 

turned off. 

E3 : during the whole decoding process, in any 

phase, the syndrome Hamming weight is constantly being 

tested by the weight detector. To stop any action being 

taken if a trappable error is detected during the syndrome 
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calculation, E3, the 'Weight Control Output' turns gate 

A33a off for the first 31 clock waveforms, and then on for 

the rest of the decoding phase. 

E4 : the 'Information In/Out Control', is used to 

control the shift clock in the main data register. It 

turns A34c on during the first 21 clock waveforms to allow 

the information digits to be shifted in. Again it turns 

gate A34c on during the 41st clock to enable the read out 

of the information digits. 

E5 : the 'Correction Control', is used to route the 

output of the syndrome register to the correction gate A31c, 

which adds the error-pattern to the information digits as 

they are simultaneously read out of their respective 

registers after correctable errors have been detected. 

Since the correction process may start after the 41st 

clock waveform, E5 turns gate A33b on during the 41st 

clock, and turns it off at the end of the correction 

process, during the 62nd clock waveform. 

E6 : is used as an 'Untrappable Error Pattern Reset', 

which turns gate A34a on during the 52nd clock cycle of 

each detection phase, causing a reset pulse to be generated 

if no trappable error is detected by then. The reset pulse 

ends prematurely the current detection phase and starts 

the next phase. 

E7 : or the 'Trappable Error Pattern Reset'. When 

a trappable error pattern is detected, E7 generates a 

reset pulse after the end of the correction process, to 

reset the whole system. 50 that the next received word 

decoding can start. The reset pulse will be generated 
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whenever a trappable error pattern is detected and corrected 

during any of-the five detection phases. 

E8 : is used as a 'Phase Adv~nce Clock', to increase 

A15 count by one at the end of each detection phase, so 

in the next phase the received word output is connected 

to the error-trapping decoder input. 

The best way to describe the function of the serial 

mode parallel threshold decoder of fig.(A.6) is to follow 

a received word from the input throughout all the storeing, 

detection, and correction processes. 

Once the power supply is switch~d on a reset pulse 

is generated by R33 and Cl, resetting the EPROM address 

counters A36 and A37 to zero through A35a, A31d, A35b, and 

A39d, and to reset A15 to zero threugh A35a, A17f, A22d, 

and A22c while the syndrome calculator A25 ..•• A29 are reset 

to zero through A35a, A17f, A2ld, and A39a. 8y this time 

the system clock is inhibited. As soon as the supply 

voltage is on,the input circuit is functioning, although 

no clock is present. The channel output signal is fed to 

the decoder input, which is feeding the five threshold 

gates AI, A2, A3a in parallel. Each threshold detector 

will outpu~ '1' if the input signal is larger than its 

referance voltage, transistors VI, V2, V3, V4, and V5 

convert the threshold detectors output to a signal 

compatible with logic circuits, while invertors A4a, 

A4b, A4c, A4d, and A4e invert the signals_to the threshold 

detectors polarity. It can be seen that no sampling is 

associated with the threshold detectors input, so the 

output follows the input signal. 
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The zero address at the EPRoM input causes gates 

A34a, and A34c, to turn on, so that information digits 

can be read in. Also gateA34b is turned on to enable the 

received word to be···shifted in. Simultaneously, the 

zero count at the output of A1S, and E2 output of the 

EPRoM, turns gate A22b on allowing the output of the 

third threshold detector· (0 voltage threshold) to be 

shifted into the error-trapping decoder, and turns on 

gates ASa, ASb, ASc, and ASd to allow the storage of the 

first, second, fourth, and fifth threshold detector output 

in A6, A7, AB, A9, AIo, All, and A12,A13 shift registers 

respectively. 

The signal present at the threshold detectors in 

synchronism with the clock are accepted as the same putputs 

of the sampled signal at the output. Once the clock 

system is enabled, the signal at the output is shifted into 

A6 .... A13 re,gisters, the main data register A23 and A24, 

and into the syndrome register A2S, A26, A27, A2B, and 

A29. By the time the first 21 digits are shifted in, Gates 

A34a and A34c are turned off by El and E4, to stop the 

parity check digits being shifted into the main data 

register A23 and A24, while the shifting in is continued 

for the other registers. As soon as the whole word (31bits) 

is shifted in gates ASa, ASb, ASc, ASd, A22b, and A34b 

are turned off by E2. By this time the syndrome is calculated 

by the syndrome register A2S •..• A29. The Hamming weight 

of the syndrome is tested by the weight testing circuit 

A32a where each stage output of the syndrome register 

A2Sa~ •• A29b is fed through the same registers R17 •••• R26 
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to an analogue addition circuit A32a, its output being 

linearly proportional to the Hamming weight of the· syndrome 

contents, which is compared with the Hamming weight of 

three. Wh~n the syndrome weight is less than three the 

comparator A32b will output a negative voltage, .which 

is translated to logical '1' by V6. Once the weight 

goes to two or less after the syndrome is calculated, E3 

turns gate A33a on allowing the weight detector output 

to pass throught to turn gate A33c off, so that the error~ 

pattern is trapped in the syndrome register. If the error-

pattern is trappable during the first ten shifts of the 

syndrome register after calculating the initial syndrome 

(between 31-41st clock cycles), shifting the syndrome is 

continued to the 41st clock cycle; so that the trapped 

error-pattern will be in the right place for the correction. 

On the other hand if an error-pattern has not been trapped 
~ 

before the 42nd clock cycle gates A34a and A34c are turned 

on by El and E4and the information digits are read out, 

E5 will turn gate A33b on to allow the weight detector 

output to pass through. The information digits are read 

out in synchronism with the clock and at the same time 

the syndrome register is shifted. As soon as an error-

pattern is trapped, the weight detector turns gate A33d 

on through gate A33b allowing the erroneous digits to be 

corrected by A31c. By the time the. syndrome register is 

shifted 21 times after calculating the syndrome ( at the 

end of the 52nd clock cycle) E8 will advanc~ A15 count by 

one preparing for the next phase, if no error-pattern is 

trapped, the decoding process is prematurely terminated 
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by reseting to zero the syndrome register by E6 through 

A34d and A39a, and the EPROM Bddress counters by E6 through 

A34d, A39a, A31d, A35b, and A39d. 

The next phase starts after a decoding failure in 

the previous phase. Assuming'that the current phase is 

phase two, then the output of A15,is one as a binary 

number, which will connect ,the second auxiliary register 

AB and A9 the output of the second threshold detector 

through A14 to.the error-trapping decoder input A21C, 

and cause the output of A16 to turn gate A20a on through 

A17a\ AlBa, and A19a to allow the clock (ClK2) for reading 

out the contents of the auxiliary store, to pass through. 

ClKl will shift the third threshold detector output stored 

in AB and A9 only into the error~trapping decoder, where 

a new decoding phase is started. At the end of the second 

detection phase, if no error-pattern is trapped, phase two 

is terminated after advancing A15 by one, and the third 

detection phase is started, where the content of the third 

auxiliary register (the output of the fourth threshold 

detector) is fed to the error-trapping decoder, and so on. 

If an error-pattern is trapped during any phase, 

the correction' process is allowed to be continued until 

all the 21 information digits are read out. The decoding 

process is terminated by reseting the whole system, ,which 

is done by El, the EPROM address counters are reset 

throughA35f, and A39d, the syndrome register is reset 

through A35f, and A39a, while A15 is reset through A22c. 

On the other hand if no error pattern is trapped in 

the last detection phase, the system reset is different. 
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Since the phase will be terminated prematurely. then ·c", 

the output··ES ·will clear the syndrome register 

through A34d. and A39a. and the EPRDM address registers 

through'·A34d,. A39a.··.A3·1d.· A35b. and A39d·.The system 

reseting requires the additional .. reseting of AlS. which 

is achi~vedby.reseting A15 by the appropriate output from 

AlS through A22d. and A22c. Using this arrangement makes 

it possible to use this same decoder as a five threshold 

parallel-decoder. by connecting output five (pinlO) Of 

AlS to A22d (pin13). while a three threshold parallel-

decoder is achieved by connecting out~ut three (pin12) of 

AlS to A22d (pin13). Again the decoder can be used as a 

conventional error-tr~pping decoder by connecting output 

one (pin14) of AlS to A22d (pin~3}. These connections 

have the effect of terminating the decoding after the fifth. 

third. and first decoding phase respectively. 

A.S-Test Results 

The noise RMS voltage is measured by a slow RM5 

voltmeter. it is connected to the system as in fig.(A.4). 

The signal to noise ratio is given by 

S 
SNR = 20 log N (A. 9) 

where SNR is the signal to noise ratio in dbs. S signal 

voltage. and N noise voltage. Given for the test that 

S = 5 volts 

N = RMS volts 

Eq.(A.9) becomes 

SNR 5 
== 20 log RMS 

• 

(A.ID-a) 

(A.ID-b) 

(A.ll) 

I 

~ 
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Eq.(A.ll) is used to calculate the RMS values for the 

required SNR values, where 

RMS = 
5 
-1 

log SNR 
20 

(A.12) 

Five test runs were carried out for each SNR value, 

the number of erroneous words were counted for each run, 

and the average number calculated. These tests were 

repeated for five thresholds, three thresholds, and the 

conventional error-trapping decoder. The threshold values 

used for the five threshold parallel-decoder were 1.43, 

O.B, 0, -O.B, -1.43 volts, and the values for the three 

thresholds parallel-decoder were 1.12, 0, -1.12 volts. 

The results of these runs are shown in tables (A .1-3) 

The computer simulation results, and the hardware 

test results are ploted together in fig.(A.B). Both results 

show nearly the same improvement over the error-trapping 

decoding, but it can be seen that the hardware test results 

are shifted by about 2dB towards a lower SNR. This is 

because although a slow RMS voltage meter was used, it 

was very difficult to accommodate for the noise variations, 

so the noise voltage was set to be at the correct value 

for most of the run time, but that would not compensate 

for the sudden increase in the noise voltage. 



SNR(dB) WORD ERROR RATE AVERAGE 
ERRORS 

1 2950 2980 2979 2955 2960 2964.8 

2 2695 2802 2844 2792 2822 2811 

3 2599 2594 2602 2605 2593 2598.6 

4 2293 2296 2279 2280 2278 2285.2 

5 1671 1683 1678 1666 1670 1673.6 

6 1147 1125 1117 1098 1130 1123.4 

7 583 585 603 590 592 590.6 

8 258 255 263 261 242 255.8 

9 76 64 70 68 62 68 

10 17 19 17 18 16 17.4 

TABLE (A.l) ERROR-TRAPPING DECODER TEST RESULTS 



SNR(dB) WORD ERROR RATE AVERAGE 
ERRORS 

1 2765 2780 2769 2709 2707 2750.2 

2 2455 2459 2450 2461 2426 2454 

3 2091 2108 2108 2125 2080 2102.4 

4 1509 1471 1480 1485 1469 1482.8 

5 963 988 983 976 976 977.2 

6 604 597 590 609 595 599 

7 263 260 243 250 247 252.6 

8 105 101 103 99 87 99 

9 21 20 18 19 23 20.2 

10 2 0 0 1 2 1 

TABLE (A.2) THREE THRSHOLDS PTO TEST RESULTS 



SNR(dB) WORD ERROR RATE AVERAGE 
ERRORS 

1 2742 2701 2727 2684 2694 2709.6 

2 2410 2396 2423 2392 2389 2402 

3 2049 2031 2025 2027 1998 2026 

4 1416 1426 1427 1435 1448 1431 

5 960 951 989 974 1005 975.8 

6 472 502 495 512 480 492.2 

7 201 215 230 200 181 205.4 

8 53 70 62 55 65 61 

9 30 19 25 12 14 20 

10 1 2 0 1 0 0.8 

TABLE (A.3) FIVE THRSHOLDS PTD TEST RESULTS 
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APPENDIX B 

THE SHORTENED CYCLIC BURST-ERROR-CDRRECTING CODE (19,11) 

During the test stages of the parallel threshold 

decoder by computer simulation, the shortened cyclic 

Burst-error-correcting code (19,11), was chosen to be 

used in the test process. This code was listed in two 

references, as an optimal code, which is capable of 

correcting all bursts of length t or less, where 

.Q. 
n-k = 2 

(B.l) 

.Q. 
19-11 4 = = 2 

(B.2) 

but, the generator polynomial g(X), was different in each 

reference from the other. In reference(48) it was given 

as 

(B. 3 ) 

while in reference(55) it was given as 

(B.4) 

it was clear form the beginning that Eq.(B.4) is not the 

correct one, because the degree of g(X) is nine while it 

should be of degree n-k, which is eight. 

Going back to reference (48)showed clearly that the 

author of reference (55) miss copied the generator 

polynomial. He copied the generator polynomial of the 

shortened cyclic burst-error-correcting code (38,29), 
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which is a sub optimal code, with a capability of 

,correcting all burst of four errors or less, and has 

a burst-correcting efficiency Z. 

Z n = ~ n-k 
(8.5) 

Z 2x4 8 = 38-29 = "9 (8.6) 

while the burst-correcting efficiency Z, for any optimal 

code is one, from Eq.(8.1) 

2J1. = n-k (8.7) 

Substituting Eq.(8.7) in Eq. (8.5) gives 

n-k 
Z = ~ = 1 (8.8) 

In spite of the knowledge that the generator 

polynomial of Eq.(8.3) is the correct one; it was decided 

to search for all the generator polunomials suitable for 

the shortened code (19,11). The search was done by the 

use of a computer. 

Using the knowledge that the generator polynomial 

is of degree n-k, a program was written ,to verify which 

of the 127 generator polynomial possibilities is a 

suitable generator polynomial for a shortened (19,11) 

burst-error-correcting code, which is capab~e of 

correcting all burst length of four or less. The computer 
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test produced six generator polynomials: 

1- It was found that the (19,11) code can be derived 

from the (255,247) burst cyclic code, by inserting 

6 = 236 zeros. Two generator polynomials were found for 

such a code. 

(B. 9 ) 

(B. 10) 

2- The (19,11) code can be derived from the (217,209) 

code, by inserting 6 = 198 zeros. Again two generator 

polynomials were found for such a code. 

468 
= l+X+X +X +X 

it can be seen then g4(X) is the same g(X) given in 

Eq.(B.3). 

(B.11) 

(B.12) 

3- The (19,11) code can be derived from the (127,119) 

burst code, by inserting B = 108 zeros. The generator 

polynomial for this code is 

3 4 7 8 
= l+X+X +X +X +X (B.13) 

4- The (19,11) code can be derived from the (84,76) 

burst code, by inserting 6 = 65 zeros. The generator 
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polynomial for this code is 

(B.14) 

To assess the performance of the (19,11) code 

generated by various generator polynomials, a transmission 

is simulated for each of the generator polynomials using 

the optimum decoder. The simulation results are plotted 

in fig.(B.l). The optimum decoder is used since it is 

a decoder that will show any improvement in the 

performance due to the use of different generator 

polynomials, because the decoder will try to correct any 

burst of errors even if they are longer than ~, and that 

is the area where each code performance will differ, 

while all the codes will perform the same for bursts of 

length ~ or less. 

As a result, the generator polynomial given in 

Eq.(B.3) and Eq.(B.12) was used in the simulation because 

the code performs better when this generator is used. for 

a wide range of SNR values. 
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APPENDIX C 

Bit Rate Consideration in Detection and Correction Codes 

The performance of error-correction techniques 

on one-way channels are clearly far superior to the 

performance of error-detection techniques, because the 

latter will not result in any improvement in error rate 

and any detected erroneous information is ignored. On the 

other hand, both techniques give improvement on two-way 

channels, but this improvement is at the cost of increasing 

the transmission bit rate. So it would be reasonable to 

compare the performances of both techniques at the same 

constant increase in the transmission bit rate. 

Consider the transmission of information digits 

which are grouped in a block of k digits each, through 

a transmission channel. This channel can be either a one-

way channel or two-way channel, which has in either case 

a probability p of generating errors. To start with 

assume that an error-detection and retransmission system 

is used. Let the error-detection code be (nd,k) code, 

where nd-k digits are annexed for error-detection pruposes. 

And let the retransmission request require the transmission 

of n digits for each request. 
r 

The probability of receiving a whole transmitted 

block correctly, Pdc is the probability of receiving 

everyone of the nd digits correctly, which is 

( C • 1 ) 

The probability of receiving an erroneous block Pde is 
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nd 
Pde = 1 - (l-p) (C.2) 

For simplicity, assume that the transmitter receives 

all retransmissions and the retransmission requests correctly 

the average increase in digits per block due to a 

retransmission Or is 

Or = Pde(nd+nr)/n d 

substituting Eq.(C.2) in Eq.(C.3) 

(1 + 

( C • 3) 

( C .4) 

Let Od be the increase in bits per block due to the 

addition of the error-detection parity-check bits. Then 

( C • 5 ) 

The total increase in bits per block due to the 

parity-check and retransmission digits is 

00 = od + or 

from Eqs.(C.4) and (C.5) 

00 = (nd-k) + (l_(l_p)n d] 

(C. 6 ) 

( C .7) 

It is worthy to note that with the detection and 

retransmission system that the receiving of all the 

information digits error free is not guaranteed, because 

any codeword corrupted in the channel to be received as 

another codeword, will be detected as a correct received 

word. The probability of error for these cases is given(6,67) 

as 

( C .8) 
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where A. denotes the number of codewords of weight i 
1 

in the block code used. 

Now consider the other case, where error-correction 

is carried out on the received blocks, which are transmitted 

through the same channel described above. Let the error-

correction code used be an (n ,k) code, where the number c 

of parity-check digits is nc-k. The total increase in the 

number of bits per block due to the parity-check digits, 

which is the only source of increasing the channel bit 

rate in this case, is 

n - k c 
( C • 9) 

Two sources of errors are present in this case. 

Firstly, as in the error-detection case a corrupted 

code word can be received as a different codeword, where 

the decoder will accept the erroneous data as a correct 

data. The probability of such occurance is 

n . c . n -1 

= L A. p1(l_p) C 
. I 1 1= 

(CJ.O) 

where A. represent the number of codewords of weight i 
1 

in the block code used. Secondly, the received words 

which has erroneous digits more than the code correction 

ability may be decoded erroneously, which is called 

failure. The probability of decoding failure, whenever 

t the maximum number of errors the code guarantees to 

correct, is less than half the code's minimum distance{6,56} 
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is nc t 

= l-I I 
k=0 j =0 

nc (i,n -i) k n -k 
I A. W. k c P (l-p) c 
i=O 1 1, 

(C.11 ) 

where A. is the number of codewords of weight i in the 
1 

block (i n-i) 
code used, and W. k' denote the number of words 

J , 

of weight k which are at distance j from any given word 

of weight i and length n. The actual probability of 

decoding failure is may be less than the probability 

calculated by Eq.(C.ll), because Eq.(C.ll) assumes a 

decoder that decodes all patterns of up to t errors and 

nothing more. 

If it can be assumed that the error probabilities 

for the two systems described above are within the 

acceptable limits, then the increase in the transmission 

bit rate can be evaluated by calculating the expression 

that gives the same increase in the bit per block for 

the two systems, that is 

(C. 12) 

Let the error probability value that result equal increase 

be Plo , then from Eqs.(C.9) and (C.7) lm 

nd 
(l-(l-Pl' ) )= n -k lm c 

(C.13) 

Clearly if the left hand side is smaller, the detection 

and retransmission system will introduce less increase 

in the transmission bit rate than the error-correction 
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system, and vice versa" 

Once the error-detction and the error-correction 

codes are chosen, the deciding factor on which of the two 

codes will increase the transmission bit rate less, is 

the channel probability of generating errors p. The 

probability of error for the equal increase in the bit 

rate can be calculated from Eq.(C.13) 

nd n - nd c (C.14) (l-Pl" ) = 1 -1m 
(nd+nr)/n d 

1 

n - nd nd 

l-P lim 1 
c (C.15) = -

(nd+nr)/n d 

1 

n - nd 
nd 

1 1 c (C.16) P lim = - -
(nd+nr)/n d 

Eq.(C.16) gives the limit for the use of either codes on 

the channel. When the probability of error in the 

transmission channel is less than Plo , the use of 
1m 

error-detection and retransmission system will produce 

less increase in the transmission bit rate. While if the 

error probability is higher, then the use of error-

correction system will result in lower transmission bit 

rate. In the case that the probability of error in the 

transmission channel is equal to Plo , it may be 
1m 

beneficial to use the error-detection and retransmission 
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system, because although it will not give any reduction 

in the transmission bit rate over the other system, yet 

it may give some improvement in the error rate. 

Consider the special case where the number of 

parity-check digits for both codes is the same i.e. the 

thransmitted block length is the same, then 

n = n 
c d (C.17) 

susstituting Eq.(C.17) in Eq.(C.16) gives 

(C.19) 

Thus, whenever the codes used are of equal length, the 

error-correction system will equal the increase in the 

transmission bit rate, when the channel is error-free 

with the error-detection system, and will increase the 

transmission bit rate less for any value of the channel 

error probability other than zero. 



1. 

APPENDIX 0 

SIMULATION PROGRAMS 

Sample programs are included in this appendix. where 

the burst (34.22) code is used for the burst channel 

samples. and the BCH(31.21) code is used for random 

channel samples. Programs included are written in Fortran. 

but some subroutines are written in Plan(43) to speed 

execution. The first and second soft-decision algorithms 

are not written in standard Fortran. because they contain 

logical operations MASK. OR. XDR. AND. SHIFT ••..• hence 

these subroutines have to be modified or used with the 

appropriate computer. if they have to be used. 
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MASTER ERORGN 
C 
C THIS IS THE RANDOM ERROR CHANNEL SIMULATOR WHERE 
C THE BCH (31,21) CODE IS USED THE NUMBER OF TRANSMITTED 
C CODEWORDS IS 3000.. THE CODEWORDS GENERATED ARE RANDOM. 
C 

C 

DIMENSION D(31),IT(31) 
DIMENSION IR(31,17) 
CALL G05CBF(0) 
SIG=0.447 
DO 7 L=1,3000 

C RANDOM DATA GENERATION AND ENCODING 
C 

DO 3 1=11,31 
A=G05CAF(A) 
IT(I)=o 

3 IF (A.GT.0.5) IT(I)=1 
CALL IENCODE (IT ( 1 ) ,~IESS) 
DO 8 1=1,31 
D(I)=-1.0 

8 IF (IT(I).GT.O) D(I)=1.0 
C 
C THE ADDITION OF NOISE (SIGMA=SIG) 
C 

DO 9 1=1,31 
9 D(I)=G05DDF(0.O,SIG)+D(I) 
C 
C THE QUANTISATION : THE QUANTISER IS A IS A LINEAR QUANTISER 
C THE QUANTISATION LEVELS ARE 2*LEV LEVELS 
C 

LEV=8 
DO 1 1=1,31 
Q=LEV*(D(I)+1 ) 
IF (Q.LT.O) GOT01 
K=Q+1 
IF (K.GT.(2*LEV)+1) K=(2*LEV)+1 
DO 2 J=1,K 

2 IR (I, J) = 1 
CONTINUE 
IF (IPARALLEL(IR(1,1».NE.MESS) IERR=IERR+1 

7 CONTINUE 
WRITE (2,100) IERR 
STOP 

lOO FORMAT (1H ,'NO. OF ERROR WORD RECEIVED IS ',110) 
END 
FINISH 

**** 
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MASTER ~IA IN 
C 
C THE MAIN PROGRAM IS A BURST-CHANNEL SIMULATOR 
C THE CODE USED IN THIS PROGRAM IS THE BURST (34,22) 
C WHERE SIG AND SIGl ARE THE NOISE SIGMA FOR 
C THE BACKGROUND AND THE BURST NOISE RESPECTIVELY 
C 

DIMENSION IX(231),X(231),D(35,25),IT(35) 
DH1ENSION NSCAN (2,25) 
N=231 
KODE=34 
IX(N)=1 
X(N)=93650000.0 
LA~1DA=25 

SIG=0.355 
SIG1=1.0 
CALL G05CBF(LAMDA) 

C GET CHANNEL DATA 
CALL START (IX,X) 
NSC=1 

C 

NSCAN ( 1 , 1 ) = 1 
NSCAN(2,1)=LAMDA 

C THE DATA GENERATION AND THE ENCODER 
C 

DO 302 1=1,25 
DO 301 J=13,34 
A=G05CAF(A) 
IT(J)=O 
IF (A.GE.0.5) IT(J)=1 

301 CONTINUE 
CALL IENCODE(IT(I),IT(35» 
DO 303 J=I.,34 
D(J,I)=(2*IT(J»-1 

303 CONTINUE 
D<35, I)=IT<35) 

302 CONTINUE 
C 
C BACKGROUNG NOISE ADDITION 
C 

DO 3 I=I,LAMDA 
DO 5 J=I,34 
D(J,I)=G05DDF(0.O,SIG)+D(J,I) 

5 CONTINUE 
3 CONTINUE 

LL=1 
LBLO=LAMDA*KODE 
CALL BURST (IX, X, ISTAR I, LL ,LAMDA, LBLO, NBLO 1, IBL 1, IS1'1 ) 

2 LL=LL+l 
IF (MORE.EQ.2) GOTO 28 
IRST 1 =IX(LL-l ) 
IRST=IX(LL-l ) 
ISTAR=ISTARl 
IBL=IBLl 



IST=ISTl 
GOTO 30 

4 . 

28 IF (LONGI10.EQ.0) IRST2=IX(LL-1) 
LONGI10=0 
IRST=ISTAR1-ISTAR-IRST1+IRST2 
IST=II1ST 
ISTAR=ISTAR+IRSTl 

30 NBLO=NBLOl 
MORE=O 
CALL BURST (IX, X, ISTAR 1, LL, LMlDA, LBLO, NBLOl ,IBL 1, IST 1) 

105 IF (ISTAR+IRST.GT.LBLO) LONGER=l 
100 IF (NBLO.LT.NBL01) GOTO 102 

IF (LONGER.EQ.O) GOTO 106 
IF (ISTAR1+IX(LL).GT.LBLO) GOTO 101 
LL=LL+l 
GOTO 106 

101 IRST2=IX(LL)+ISTAR1-LBLO-l 
ISTAR1=1 
IBL 1 = 1 
IST1=1 
NBL01=NBL01+l 
LONGtl0= 1 
GOTO 102 

106 IF (ISTAR+IRST-ISTAR1) 103,103,104 
104 MORE=l 
103 MORE=MORE+l 
102 IF (IRST.LE.O) GOTO 32 

LItHT=LAMDA 
IF (IST+IRST-l.LT.LAMDA) LIMIT=IST+IRST-l 
IF (IRST.LT.LAMDA) GOTO 107 
LSCAN=l 
GOTO 108 

107 NSC=NSC+l 

C 

NSCAN(l,NSC)=IST 
NSCAN(2,NSC)=LIMIT 

C BURST NOISE ADDITION 
C 
108 DO 1 I=IST,LIMIT 

IRST=IRST-l 
1 D(IBL,I)=G05DDF(O.O,SIG1)+D(IBL,I) 

LNS=LNS+LIMIT 
H1ST=LHlIT+l 
IF (IRST.LE.O) GOTO 32 
IF (IBL.EQ.KODE) GOTO 32 

8 IF (IRST.LT.LAMDA) GOTO 14 
IBL=IBL+l 
DO 7 I=l,LAMDA 
IRST=IRST-l 

7 D(IBL,I)=G05DDF(0.O,SIG1)+D(IBL,I) 
LNS=LNS+LAllDA 
IF (IBL+LONGER.EQ.KODE+l) GOTO 24 
GOTO 8 

14 IF (IRST.LE.O) GOTO 32 



IBL=IBL+l 
NSC=NSC+l 
NSCAN(l,NSC)=l 
NSCAN(2,NSC)=IRST 
DO 20 I=l,IRST 

5. 

20 D(IBL,I)=G05DDF(0.O,SIG1)+D(IBL,I) 
LNS=LNS+IRST 
H1ST=IRST+ 1 

32 IF (V-ORE.NE.O) GOTO 25 
24 NSC1=2 -

C 

CALL LINITS (NSCAN ,NSC, LSCAN) 
IF (LSCAN.EQ.l) NSC1,NSC=1 

C THE DECODER 
C 

DO 109 LO=NSC1,NSC 
IBE=NSCAN( l,LO) 
IEN=NSCAN(2,LO) 
DO 4 L=IBE, IEN 
IF (ICOR(D,L,SIG).NE.O) 11ERR=MERR+l 
NWORD=NWORD+l 

4 CONTINUE 
109 CONTINUE 

NSC=l 
LSCAN=O 
IRST1=IX(LL-l ) 
IF (LONGER.EQ.O) GOTO 25 
IRST1=IRST 
ISTAR=l 
IBL=l 
IST=l 
LONGER=O 
110RE=0 
NBLO=NBLO+l 
GOTO 105 

25 IF (LL.LT.N) GOTO 2 
31 WRITE (2,17) MERR 

WRITE (2,35) NWORD 
WRITE (2, 122) LAI.JDA 

C 
C SNR(DB) CALCULATION 
C 

ABC=10*ALOG10(1/(SIG*SIG» 
WRITE (2,124) ABC 
ABC=10*ALOG10(1/(SIG1*SIG1» 
WRITE (2,125) ABC 
ABC=«SIG*(93600000.0-LNS»+(LNS*SIG1»/93600000.0 
ABC=10*ALOG10(1/(ABC*ABC» 
WRITE (2,126) ABC 

123 FORMAT (lHl) 
124 FORMAT (lH ,'BACKGROUND SIN RATIO IS ',Fl0.2) 
125 FORMAT (lH ,'BURST SIN RATIO IS ',Fl0.2) 
126 FORMAT (lH ,'OVERALL SIN RATIO IS ',Fl0.2) 
17 FORMAT (' NUMBER OF DECODING FAILURE IS',Il0) 
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35 FORr~AT (' NO. OF ERROR WORD RECEIVED' :IlD) 
122 FORMAT (' LAMDA =',110) 

r~ERR=O 

NWORD=O 
LNS=O 

121 CONTINUE 
STOP 
END 
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SUBROUTINE BURST(IX,X,ISTAR1,LL,LAMDA,LBLO,NBL01,IBL1,IST1) 
C 
C THIS SUBROUTINE CALCULATES THE START AND END POINTS OF EACH 
C BURST IN THE INTERLACED BLOCK AND WETHER IT IS CONFINED TO 
C THIS SAME BLOCK OR NOT 
C 

DIMENSION IX(231),X(231) 
B=X(LL) 
B=B/LBLO 
NBL01=B 
I=B 
A=(B-I)*LBLO 
A=A/LAMDA 
IBL1=A 
I=A 
A= (A-I) *LAf1DA 
ISTl =A+ 1 
ISTARl =IST1+(IBL l*LAI1DA) 
IBL1=IBL1+l 
RETURN 
END 
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SUBROUTINE LHlITS(NSCAN, NSC, LSCAN) 
C 
C THIS SUBROUTINE CALCULATES THE LIt~ITS OF THE ERRONEOUS 
C RECIVED WORDS FOR CORRECTION 
C 

DIMENSION K(2,24),NSCAN(2,25) 
IF (LSCAN.EQ.1) GOTO 151 

154 IF (NSC.LE.2) GOTO 151 
KFLA=O 
K(1,1)=NSCAN(1,2) 
K(2,1)=NSCAN(2,2) 
N=l 
DO 150 I=3,NSC 
DO 153 J=l,N 
IF (NSCAN(1,I).GT.K(2,J» GOTO 153 
IF (NSCAN(2,I).LT.K(1,J» GOTO 153 
IF (NSCAN(l,I).LT.K(l,J» K(l,J)=NSCAN(l,I) 
IF (NSCAN(2,I).GT.K(2,J» K(2,J)=NSCAN(2,I) 
GOTO 150 

153 CONTINUE 
N=N+1 
K(l,N)=NSCAN(l,I) 
K(2,N)=NSCAN(2,I) 
KFLA=l 

150 CONTINUE 
DO 152 1=1,24 
NSCAN(1,I+1)=K(1,I) 
NSCAN(2,I+1)=K(2,I) 

152 CONTINUE 
IF (NSC.EQ.N+1) GOTO 151 
NSC=N+1 
IF (KFLA.EQ.1) GOTO 154 

151 RETURN 
END 
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SUBROUTINE START(IX,X) 
C 
C THIS SUBROUTINE CALCULATES THE START POINTS OF THE 
C BURSTS AND THEIR LENGTHS 
C 

DIMENSION IX(231),X(231) 
N=230 
DO 75 I=l,N 

78 A=G05CAF(A) 
IF (A.LT.0.0003) GOTO 78 
B=(2* A -1.0003)/0.9997 
B=ACOS(B) 
C=1.8084-1.8609*COS (B)+1.0185*cOS (2*B)-0.97088*cOS(3*B) 

75 IX(I)=IFIX (64*C) 
DO 76 I=l,N 
A=G05DAF(1.0,93600000.0) 

76 X(I)=A 
K=O 
CALL t·l01ANF( X,l,N,K) 
IF (K.NE.O) WRITE (2,77) K 

77 FORMAT (' SORT FAIL K=',I3) 
A=IX(N)+X(N) 
IF (A.GT.93600000.0) IX(N)=IX(N)+93600000.0-A 
RETURN 
END 
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THE ENCODER 

THIS SUBROUTINE CALCULATES PARITY-CHECK DIGITS FR0I4 THE 
THE INFORMATION DIGITS FOR THE BURST CODE (34,22) 

nPROGRAM IIENCODE(DBM,22AM) 
OLOWER 

ADDRESS(2) 
nPROGRAM 

OBEY O( 1) 

LDN 3 0(3) 
STO 3 ADDRESS 
OBEY 1(1) 

LDN 3 0(3) 
STO 3 ADDRESS+1 
LDX 3 ( ADDRESS 
ADN 3 12 
LDN 7 22 
LDN 5 0 

L2 SLL 5 1 
ORX 5 0(3) 
ADN 3 1 
BCT 7 L2 
LDX 3 ADDRESS+1 
STO 5 0(3) 
LDN 7 22 

L3 STO 5 3 
ANDX 3 '01' 
BZE 3 L1 
ERX 5 '1115712' 

L1 SRL 5. 1 
BCT 7 L3 
LDN 7 12 
LDX 3 ADDRESS 
ADN 3 11 

L4 STO 5 6 
ANDX 6 'n 1 ' 
STO 6 0(3) 
SBN 3 1 
SRL 5 1 
BCT 7 L4 
EXIT 1 2 

IIEND 
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THE DECODER 

THIS SUBROUTINE DECODES THE OUTPUT OF THE 11 THRESHOLDS 
TO FIND THE ERROR-PATTERN THAT IS 140ST LIKELY ADDED TO 
THE TRANSMITTED CODEWORD FOR THE BURST CODE (34,22) 

UPROGRAM /IPARALLEL(DBM,22AM) 
DLOWER 

CHECK,MESSAGE 
RETURN,ADDRESS(18) 

IIPROGRAM 
OBEY O( 1) 

STO 1 RETURN 
LDN 3 0(3) 
LDN 1 11 
STO 3 ADDRESS+l 
SBN 1 1 
STO 3 2 

Ll1 SBN 2 34 
STO 2 ADDRESS(l) 
SBN 1 1 
ADN 3 34 
STO 3 ADDRESS( 1 ) 
BCT 1 Ll1 
LDN 1 11 

L14 LDX 3 ADDRESS( 1) 
STO 3 ADDRESS 
LDN 1 12 
LDN 5 0 

L3 SLL 5 1 
ORX 5 0(3) 
STOZ 0(3) 
ADN 3 1 
BCT 1 L3 
STO 5 CHECK 
LDN 1 22 
LDN 5 0 

L4 SLL 5 1 
ORX 5 0(3) 
STOZ 0(3) 
ADN 3 1 
BCT 1 L4 
STO 3 ADDRESS 
STO 5 flESSAGE 
STO 5 6 

IIMONITOR 0/110 
LDN 1 10 
ANDX 6 '/11111' 
CALL 2 DIVIDE 
LDN 1 12 
LDX 5 CHECK 
SLL 5 12 

IIMONITOR 0/115 
CALL 2 DIVIDE 
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BZE 6 COMP 
CALL 2 FAST 

IIMONITOR 0/103 
LDN 7 22 

L 11 STO 6 3 
ANDX 3 '111 ' 
BZE 3 L8 
CALL 2 BRSLEN 

III~ONITOR 0/104 
BZE 4 L13 

L8 CALL 2 SHIFT 
BCT 7 L 11 
LDN 7 12 

CHDG STO 6 3 
ANDX 3 'D 1 ' 
BNZ 3 L12 
SRL 6 1 
BCT 7 CHDG 

L12 CALL 2 BRSLEN 
BZE 4 COMP 
BCT 1 L14 
LDX 6 MESSAGE 
BRN L18 

L13 NGX 3 7 
BZE 3 COMP 
SLL 6 22(3) 
LDX 5 MESSAGE 
ERX 6 5 
ANDX 6 '1117777777 ' 
BRN L5 

Cot1P LDX 6 I1ESSAGE 
L5 SBN 1 1 

BXL 1 '111',L18 
L 17 LDN 7 34 

LDX 3 ADDRESS( 1 ) 
L15 STOZ 0(3) 

ADN 3 1 
BCT 7 L15 
BCT 1 L17 

L18 LDX 1 RETURN 
OMONITOR 0/106 

EXIT 17 
DCUE DIVIDE 
SYND SRL 5 1 

STD 5 4 
ANDX 4 '04000 ' 
STD 6 3 
ANDX 3 '111 ' 
SRL 6 1 
ORX 6 4 
BZE 3 Ll 
ERX 6 '116745' 

Ll BCT 7 SYND 
EXIT 2 0 
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OCUE SHIFT 
STO 6 3 
ANDX 3 '01' 
SRL 6 1 
BZE 3 L2 
ERX 6 '06745 ' 

L2 EXIT 2 0 
OCUE FAST 

LDN 7 69 
L7 STO 6 3 

ANDX 3 '01' 
SRL 6 1 
BZE 3 L6 
ERX 6 '06745 ' 

L6 BCT 7 L7 
EXIT 2 0 

IICUE BRSLEN 
STO 6 4 
ANDX 4 '117700 ' 
EXIT 2 0 

IIEND 
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THIS SUBROUTINE IS THE PARALLEL THRESHOLD DECODER 
FOR THE BCH (31,21) CODE WHERE THE INPUT IS THE 
RECEIVED SIGNAL DETECTED AT 17 THRESHOLDS 

PLAN(CR) 
UPROGRAM IIPARALLEL(DBM,22AM) 
(ILOWER 

CHECK,I1ESSAGE 
RETURN,ADDRESS(18) 

IIPROGRAM 
OBEY O( 1) 

STO 1 RETURN 
LDN 3 0(3) 
LDN 1 17 
STO 3 ADDRESS+l 
SBN 1 1 
STO 3 2 

L17 SBN 2 31 
STO 2 ADDRESS ( 1) 
SBN 1 1 
ADN 3 31 
STO 3 ADDRESS(l) 
BCT 1 L17 
LDN 1 17 

L14 LDX 3 ADDRESS(l) 
STO 3 ADDRESS 
LDN 7 10 
LDN 5 0 

L3 SLL 5 1 
ORX 5 0(3) 
STOZ 0(3) 
ADN 3 1 
BCT 7 L3 
STO 5 CHECK 
LDN 7 21 
LDN 5 0 

L4 SLL 5 1 
ORX 5 0(3) 
STOZ 0(3) 
ADN 3 1 
BCT 7 L4 
STO 3 ADDRESS 
STO 5 MESSAGE 
STO 5 6 

OMONITOR 01110 
LDN 7 11 
ANDX 6 '111777' 
CALL 2 DIVIDE 
LDN 7 10 
LDX 5 CHECK 
SLL 5 10 

(IMONITOR 01115 
CALL 2 DIVIDE 
BZE 6 COMP 
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L16 CALL 2 HAflWEI 
nHONITOR 0/103 

BXL 4 '113' ,co/JP 
CALL 2 SHIFT 
LDN 7 10 

L6 STO 6 3 
ANDX 3 '111 ' 
BZE 3 L7 
CALL 2 HAMWEI 

nMONITOR 0/111 
BXL 4 '1I3',L12 

L7 CALL 2 SHIFT 
BCT 7 L6 
LDN 7 21 

L 11 STO 6 3 
ANDX 3 'D 1 ' 
BZE 3 L8 
CALL 2 HAMWEI 

IIMONITOR 0/104 
BXL 4 '113',L13 

L8 CALL 2 SHIFT 
BCT 7 L 11 
BCT 1 L14 
LDX 6 MESSAGE 
BRN L18 

L12 LDN 4 1 
NGX 3 4 
ADX 3 7 
SRL 6 0(3) 

IIHONITOR 0/101 
LDX 5 MESSAGE 
ANDX 6 '1/7777777 ' 
ERX 6 5 
BRN L5 

L13 NGX 3 7 
BZE 3 COMP 
SLL ·6 22(3) 
LDX 5 HESSAGE 
ERX 6 5 
ANDX 6 '117777777 ' 
BRN L5 

cmlP LDX 6 MESSAGE 
L5 SBN 1 1 

BXL 1 '111',L18 
L17 LDN 7 31 

LDX 3 ADDRESS(l) 
L15 STOZ 0(3) 

ADN 3 1 
BCT 7 L15 
BCT 1 L17 

L18 LDX 1 RETURN 
IIMONITOR 0/106 

EXIT 17 
nCUE DIVIDE 
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SYND SRL 5 1 
STO 5 4 
ANDX 4 '111000 ' 
STO 6 3 
ANDX 3 'D 1 ' 
SRL 6 1 
ORX 6 4 
BZE 3 L1 
ERX 6 '111133' 

L1 BCT 7 SYND 
EXIT 2 0 

IICUE SHIFT 
STO 6 3 
ANDX 3 ' 11 1 ' 
SRL 6 1 
BZE 3 L2 
ERX 6 '111133' 

L2 EXIT 2 0 
nCUE HAMWEI 

STOZ 4 
LDN 5 10 

LlD LDN 3 1 
ANDX 3 6 
BZE 3 L9 
ADN 4 1 

L9 SRC 6 1 
BCT 5 L10 
SLC 6 10 
EXIT 2 0 
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SUBROUTINE ALG(ICOR,D,L,SIG,LEV) 
C 
C THIS SUBROUTINE IS THE FIRST ALGORITHM SOFT-DECISION 
C DECODER WHERE 
C SIG IS THE NOISE SIGI1A 
C LEV IS 1/2 THE QUATIZER LEVELS 
C D THE RECEIVED WORD 
C L THE LOCATION OF THE RECEIVED WORD IN THE ~~TIX 

C ICOR THE DECODER OUTPUT 0 IF CORRECT DECODED CORRECTLY 
C 

C 

DIMENSION D(34,25) 
DIMENSION K(34) 
DIMENSION KW(34) 
ICOR=O 

C THIS IS A LINEAR QUANTISER OF 2*LEV LEVELS 
C 

DO 12 1=1,34 
K (I) =0 

12 IF (D(I,L).GT.O) K(I)=1 
DO 122 1= 1 , 34 
KW(I)=(LEV*ABS(D(I,L»)+1 
IF (KW(I).GT.LEV) KW(I)=LEV 
D(I,L)=G05DDF(0.O,SIG)-1.0 

122 CONTINUE 
ICON=4096 
IG=7114 
IR=O 
IS=O 
00 1 1=1,22 
IR=SHIFT (IR, 1) 

1 IR=OR(IR,K(I» 
DO 2 1=23,34 
IR=SHIFT(IR, 1) 
IR=OR(IR,K(I» 
IS=SHIFT(IS,1) 

2 IS=OR(IS,K(I» 
DO 3 1=1,22 
J=23-I 
IF (K(J).EQ.l) IS=OR(IS,ICON) 
IF «IS.A.1B).EQ.l) IS=XOR(IS,IG) 

3 IS=SHIFT(IS,-I) 
C 
C THE PARITY-CHECK ERROR-TRAPPING 
C 

DO 4 1=1,7 
IF «IS.A.7700B).NE.0) GOTO 8 
IF «IR.A.17777777B}.NE.0) ICOR=1 
GOTO 114 

8 IF «IS.A.1B).EQ.l) IS=XOR(IS,IG) 
4 IS=SHIFT(IS,-I) 

DO 5 1=1,62 
IF «IS.A.1B).EQ.l) IS=XOR(IS,IG) 

5 IS=SHIFT(IS,-I) 



18. 

IWEIT: 10000 
C 
C EPSW CALCULATION 
C 

DO 6 1:1,22 
IF «IS.A.1B).EQ.0) GOTO 7 
J:35-I 
IW:O 
IW:IW+KW(J) 
IF «IS.A.0002B).NE.0) IW:IW+KW(J-l) 
IF «IS.A.0004B).NE.0) IW:IW+KW(J-2) 
IF «IS.A.0010B).NE.0) IW:IW+KW(J-3) 
IF «IS.A.0020B).NE.0) IW:IW+KW(J-4) 
IF «IS.A.0040B).NE.0) IW:IW+KW(J-5) 
IF «IS.A.Ol00B).NE.0) IW:IW+KW(J-6) 
IF «IS.A.0200B).NE.0) IW:IW+KW(J-7) 
IF «IS.A.0400B).NE.0) IW:IW+KW(J-8) 
IF «IS.A.l000B).NE.0) IW:IW+KW(J-9) 
IF «IS.A.2000B).NE.O) IW:IW+KW(J-l0) 
IF «IS.A.4000B).NE.O) IW:IW+KW(J-ll) 
IF (IW.GE.IWEIT) GOTO 9 
ISHORT:IS 
IWEIT"IW 
ISH:I 

9 IS:XOR(IS,IG) 
7 IS:SHIFT(IS,-l) 
6 CONTINUE 

IW:O 
1:23 
J:35-I 
IF «IS.A.0001B).NE.O) IW:IW+KW(J) 
IF «IS.A.0002B).NE.O) IW:IW+KW(J-l) 
IF «IS.A.0004B).NE.O) IW:IW+KW(J-2) 
IF «IS.A.0010B).NE.O) IW:IW+KW(J-3) 
IF «IS.A.0020B).NE.0) IW:IW+KW(J-4) 
IF «IS.A.0040B).NE.O) IW:IW+KW(J-5) 
IF «IS.A.Ol00B).NE.O) IW:IW+KW(J-6) 
IF «IS.A.2000B).NE.O) IW:IW+KW(J-7) 
IF «IS.A.0400B).NE.0) IW:IW+KW(J-8) 
IF «IS.A.l000B).NE.O) IW:IW+KW(J-9) 
IF «IS.A.2000B).NE.O) IW:IW+KW(J-l0) 
IF «IS.A.4000B).NE.O) IW:IW+KW(J-l1) 
IF (IW.GE.IWEIT) GOTO 10 
IF «IR.A.17777777B).NE.O) ICOR:l 
RETURN 
IS"XOR (IS, IG) 
IS:SHIFT(IS,-l ) 
ISH:ISH-l 
IS:SHIFT(ISHORT,ISH) 
IR:XOR(IR,IS) 
IF «IR.A,17777777B).NE.O) ICOR:l 

114 DO 113 1:1,22 
IF «IR.A.1B).NE.O) NBIT:NBIT+l 
IR :SHIFT (IR, -1 ) 



113 CONTINUE 
RETURN 
END 

19. 



20. 

SUBROUTINE ALG(ICOR,D,L,SIG,LEV,LLV) 
C 
C THIS SUBROUTINE IS THE SIMULATION OF THE SECOND 
C SOFT -DECISION ALGORITHI1 DECODER . WHERE 
C D IS THE RECEIVED WORD 
C L ITS LOCATION IN THE MATRIX 
C SIG THE BACKGROUND NOISE SIGMA 
C LEV 1/2 THE NO. OF QUANTI SAT ION LEVELS 
C LLV THE NO. OF ERROR-PATTERNS TESTED 
C ICOR THE DECODER OUTPUT, 0 IF THE DECODING IS CORRECT 
C 

C 

DIMENSION D(34,25) 
DIHENSION K (34) 
DIMENSION KW(34) 
DIMENSION ISTA(2,34) 
DIMENSION LAB(34),LABEL(34),LWO(5),LOW(5) 
ICOR=O 

C THE QUAMTISER IS A UNIFORM QUANTISER OF 2*LEV LEVELS 
C 

DO 12 1=1,34 
K (I) =0 

12 IF (D(I,L).GT.O) K(I)=1 
DO 122 1=1,34 
KW(I)=(LEV*ABS(D(I,L»)+1 
IF (KW(I).GT.LEV) KW(I)=LEV 
D(I,L)=G05DDF(O.0,SIG)-1.0 

122 CONTINUE 

C 

ICON=4096 
IG=7114 
IR=O 
IS=O 

C SYNDROME CALCULATION 
C 

DO 1 1=1,22 
IR =SHIFT (IR, 1 ) 
IR=OR(IR,K(I» 
DO 2 1=23,34 
IR=SHIFT(IR,1) 
IR=OR(IR,K(I» 
IS=SHIFT (IS, 1) 

2 IS=OR(IS,K(I» 
DO 3 1=1,22 
IF (K(J).EQ.l) IS=OR(IS,ICON) 
IF «IS.A.1B).EQ.l) IS=XOR(IS,IG) 

3 IS=SHIFT(IS,-I) 
C 
C THE PARITY-CHECK ERRRE-TRAPPER 
C 

DO 4 1=1,7 
IF «IS.A.7700B).NE.0) GOTO 8 
IF «IR.A.17717777B).NE.0) ICOR=1 
GOTO 114 



21. 

S IF «IS.A.1B).EQ.1) IS=XOR(IS,IG) 
4 IS=SHIFT(IS,-l) 

DO 5 1=1,62 
IF «IS.A.1B).EQ.1) IS=XOR(IS,IG) 

5 IS=SHIFT(IS,-l) 

C 

IWEIT= 10000 
IND=O 

C THE DECODING PROCESS 
C 

DO 6 1=1,22 
IF «IS.A.1B).EQ.0) GOTO 7 
IND=IND+1 
II=IS 
DO 13J=1,12 
II=SHIFT(II ,-1) 
IF «II.A.7777B).EQ.0) GOTO 14 

13 CONTINUE 
14 LAB(IND)=J 

ISTA(2,IND)=I 
ISTA(l,IND)=IS 

9 IS=XOR(IS,IG) 
7 IS=SHIFT(IS,-l) 
6 CONTINUE 
C 
C SORTING THE ERROR-PATTERNS ACCORDING TO THEIR LENGTH 
C 

C 

LKING=5 
IFAIL=O 
CALL 1101ALF(LAB,LWO,LABEL,LOW,IND,LKING,IFAIL) 
IF (IFAIL.NE.O) WRITE (2,99) 

C EPSW CALCULATION FOR THE TESTED ERROR-PATTERNS 
C 

DO 15 I=l,LLV 
IS=ISTA(l,LABEL(I» 
J=35-ISTA(2,LABEL(I» 
IW=O 
IW=KW(J) 
IF «IS.A.0002B).NE.0) IW=IW+KW(J-1) 
IF «IS.A.0004B).NE.0) IW=IW+KW(J-2) 
IF «IS.A.0010B).NE.0) IW=IW+KW(J-3) 
IF «IS.A.0020B).NE.0) IW=IW+KW(J-4) 
IF «IS.A.0040B).NE.0) IW=IW+KW(J-5) 
IF «IS,A.0100B).NE.0) IW=IW+KW(J-6) 
IF «IS.A.0200B).NE.0) IW=IW+KW(J-7) 
IF «IS.A.0400B).NE.0) IW=IW+KW(J-S) 
IF «IS.A.1000B).NE.0) IW=IW+KW(J-9) 
IF «IS.A.2000B).NE.0) IW=IW+KW(J-10) 
IF «IS.A.4000B).NE.0) IW=IW+KW(J-11) 
IF (IW.GE.IWEIT) GOTO 15 
ISHORT=lS 
IWEIT=lW 
ISH=ISTA(2,LABEL(I» 



15 CONTINUE 
C 
C THE CORRECTION PROCESS 
C 

ISH=ISH-1 
IS=SHIFT(ISHORT,ISH) 
IR=XOR OR, IS) 

22. 

IF «IR.A.17777777B).NE.O) ICOR=1 
114 DO 113 1=1,22 

IF «IR.A.1B).NE.O) NBIT=NBIT+1 
IR=SHIFTOR ,-1) 

113 CONTINUE 
RETURN 

99 FORMAT (1H ,'SORT ERROR ') 
END 
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