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SUMMARY

When digital data is transmitted over a noisy
channel, there is always a chance that the received data
will contain errors. Usually an error rate is specified
above which the received data is considered unusable,
and if the channel error rate exceeds this value then
error correction coding can be used to reduce the error rate
to an acceptable level,.

In recent years such coding techniques have become
widespread, parfticularly hard decision decoding which is
well established and documented. Howewver, by making use
of the additional statistical information in the received
signal and making 'soft' decisions, soft-decision decoding
can provide improved coding gain and thereby increase the
usefulness of & particular code.

Most published results on soft-decision decoding
are concerned with performance on random error channels.
The preéent work describes the application of soft
decision techniques to burst noise channels and brings
to light some of the problems involved.

A new decoding method called parallel threshold
decoding is introduced. The resulting decoders are more
economical to implement than equivalent soft-decision
decoders, yet they are shown to have superior performance
on both random and burst noise channels. Performance
evaluation was carried out using computer simulation, and
also a prototype hardware decoder has been designed,

constructed and tested. The improvement using parallel




threshold decoding over conventional hard and soft
decision decoding methods predicted by the simulations
was verified for the hardware decoder.

The work also includes an investigation into the
use of slow microprocessors for implementing error
correction coding in fast transmission channels. This
leads to the concept of a time shared decoder, where
the microprocessor can spend more than the block receive
time for decoding an erronecus block. Algorithms which
lend themselves to this type of decoding are described

and evaluated.



LIST OF MAJOR SYMBOLS AND ABBREVIATIONS

ALl First soft-decision algorithm

ALZ Second soft-decision algorithm
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can correct
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CHAPTER 1

INTRODUCTION

One of the serious probdems in a digital data
communication systems, is the occurrence of errors in
the data transmitted ocver a noisy channel. The user
generally establishes an error rate above which the
received data are not usable. If the received data will
not meet the error rate requirements, error-correction
coding can often be used to reduce errors to a tolerable
level. In recent years the use of error-correction
coding for solving this type of problem has become
widespread. It is now used almost on a routine basis
in'most new communication systems, because in addition
to increasing the energy efficiency of communication
links, coding ideas are providing new methods for solving
existing problems in communication systems, among-many
others, the elimination of intersymbol interference
caused by either filtering or multipath signals.

Since the appearance of Shannon's classic papers
in 1948 and 194581{ a great deal of research has been
devoted to the problem of designing efficient schemes
by which information can be coded for reliable
transmission across noisy channels. From a practical
standpoint, it soon became clear that the real limit
on communication rate was set not by Shannon's channel
capacity, but by the complexity and the cost df implementing

the coding scheme. For this reason during the last



twenty years or so, efforts have been directed towards
tse design of coding and decoding schemes whieh could
be easily implemented. The first generalised decoding
schemes of real significance to emerge were based on
algebraic concepts. The algebraic techniques basically
involve the simultaneous solution of sets of equation

for location and values of errors.(6’7’15).

Nonalgebraic
decoding technigues, while accomplishing the same goal,
are based upon simple structural aspects of the codes
which permit the determination of error-patterns in a
more direct fashion(59’51’72). The introduction of
microprocessors, and the dramatic decrease in the cost
of solid-state devices, gave designers a higher degree
of freedom in implementing more complicated, yet practical
error-correction systems; Consequently, rTesearchers have
‘been looking into new ideas to improve the already
existing decoding techniques. Although soft-decision

deceoding was knouwn as far back as 1954(5’82)

it has only
relatively recently become a practial reality. Theu
additional information provided by the soft—decision in
most instances can provide an additional coding gain,

which was shown by wozencraft(ga)

to be about 2dB, this
additional gain can, therefore, significantly
increase the usefulness of the code employed. The use
of soft-decision with block codes can be divided into
two types according to the communication channel noise,
firstly, soft-decision decoding for correcting random-

errors, and secondly, soft-decision decoding for correcting

burst errors. The first type is well studied and



documented, while the second type is not as widely
studied due to the complexity of formulating bursty
channel statistics. Soft-decision decoding for correcting
random errors 1is particula;ly effective over a broad
range of SNR, starting from low SNR values. Needless to
say, at high SNR values the soft-decision decoding
performance approaches that of a conventional decoder,

up to a point where the soft-decision decoding does not

(18) that

provide any additional gain. It has been shoun
for quantization levels of eight or more, no improvement
is achieved whether a lineé} ar optimum spacing is
used, while an optimum spacing performs slighty better
when the number qf quantization levels is less than
eight. Again it has been shown by many researchers that
most of the gain can be achieved by eight level
quantization, and that there is no real gain in increasing
the number of quantization levels. On the other hand
very little is published about soft-decision decoding
of burst-errors, and not much is published in particular
about the effect of the number of guantization levels
on the decoder performance.

The first aim of the work was to introduce an
algorithm that can be used by a soft-decision decoder
for correcting transmission errors when the transmission
is over a bursty channel, then to study the effect of
the number of quantization levels on the decoder

performance. The soft-decision decoding was expected

to perform badly at very low burst 5SNR values, because



at these SNR values the additional information on which
the decoder depends for its improved performance is

not correct, due to the high noise power. The next step is
to modify the introduced algorithm so it performs better
at very low 5SNR values.

Clearly, the binary channel model(32) is no longer
suitable to be used for the soft-decision transmission
channel simulation, because its output is either '1' or
'0', Consequently, .@a new channel model has to be used,
where the channel output is a sample of the analogue
received signal.'In such a channel, a burst is no longer
defined by the errors, but by the noise power. Since
binary codes are to be used, then it was necessary to
make sure that the analogue channel model used for
channel simulation in the study of the soft-decision
performance is transferable toc the binary channel model
used in studying binary codes. Obviously, introducing
the analogue channel model has to be achieved before
continuing to FUlfil the first aim.

Most of the soft-decision decoding algorithms
are based on the use of microprocessors to execute the
complicated decoding algorithm, which in turn complicates
the decoder and escalates its cost. Needless to say,
that the decoding speed is a déciding factor in a real
time decoding. Thus a complicated decoding algorithm,
or even a simple one used at high transmission rate
channels, might cause decoding problems in real time
transmission systems because the lack of speed, which

in the best case can be rectified by using faster




microprocessors. Hence escalating the cost further more.
The second aim was to look at this problem and find an
economical solution, so that slower microprocessors

can be used, or very complicated algorithms c;n be used
in high rate transmission channels. Conseqguently, soft-
decision decoding algorithms can be used over a wider
range ﬁf transmission rates.

The idea of using a slow microprocessor can be
explained as the follnwiﬁg. During transmission errors
tend to happen in some transmitted blocks, the number
of thesexérroneous blocks depends on the noise power
value. In general the percentage of these erroneocus blocks
to the overall transmitted blocks.is small. If the
decoding process is divided into 'syndrome calculation,
error-detection, and error correction. The decoder is
calculating the syndrome only for most of the transmission
time, because the received blocks are error-free most
of the transmission time, while the decoder has to
finish all three phases during the receive time of
one block, in order to be usable in real time transmission.
The same argument is applicable when a microprocessor
is used. Consequently, the microprocessor is idleing
there for most of the time, while trying as fast as
passible to execute the correction algorithm when an
erroneous block is received. Assuming that the micro-
processor is allowed to work on a time shared basis,
which is, to allow the microprocessor to. share the next
tlock correction time for correcting the present erroneous

block. Then in real time transmission there is no real




need for the microprocessor to finish the three decoding
phases in the receive time of one block. Consequently,

~ the..time sharing system can achieve higher transmission
rates than the dénﬁentionai real time decoder using

the same-de¢oding qlgorithm and same micrbprocessor.
Ciearly. the time sharing system introduced some delay
into the system, and requires buffers at the input and
the output of the decoder.

Generally, gsoft~decision decoding has a number of
disadvantages, and a designer must think carefully before
using such decodiﬁb technigques. As mentioned earlier,
the average gain is about 2dB, and for most soft-decision
algorithms the use of analogue to digital converters
for gquantizing the incoming signal is inevitable, so is
the microprocessor. These two hardware items are
sophisticated, and subsequently costly, and in general
their cost increases dramatically with their speed.
Hence, although a soft-decision decoder is costly at
low transmission rates, it is even more cosfly at high
transmission rates,even without taking into account the
software cost. It was found that whatever modifications
are carried out on a soft-decision decoding algorithms,
these inberited disadvantages, although affected in one
way or another, are still there. In view of this, the
third aim was to find a new type of decoding that can
achieve higher gain, is simple to implement as a hardware,
and the use of analogue to digital converters and
microprocessors is unnecessary. Such a system will have

the advantage that its real time speed is limited only



by the maximum spéed of the hardware used and not"f
by the decoding algorithm complexity.

The third aim is achieved in the following way .
A hard-decision decoder receives at its input, a binary
digit, '0' or '1', This digit is calculted from the |
recéiued signal as follows. The deﬁodulator supplies
' the detector with a sample of the received signal, and
the detector set at some threshold value, detects the
binary value from this sample. The threshold value is
chosen in such a way as to minimize the probability of
error in the received symbol, assuming that the prﬁgability
of a symbol being '1l' or '0' is equal. Clearly this
strategy works well for the overall transmission, because
the probability of '1l' and '0!' are equal. But it does not
minimize the probability of error in a received block,
unless the number of '1' and '0' are équal, which could
be the case for some codeword, but not for all, Subsequently
some additional gain can be obtained if an optimum
threshold is used with each block. The soft—degision'
decoding Qsed the same threshold value as a reference
for the confidence number. Thus nothing of the optimum
threshold gain is obtained. The parallel threshold decoder
is based on the idea of obtaining this additional gain,
by using the optimum threshold value of each block for
detecting the received samples of that block. Obviously,
the use of all possible values for optimum thresholdé
will require a variable threshold detector,” in addition
to that the threshold value has to be calculated, which

will complicate the decoder. Instead a fixed number of



thresholds are used, the output of each threshold is
fed.to a subdecoder, each of which consists of a
complete decoder that can detect decoding failures.

The pafallel threshold decoder scans all subdecoders in

a preset seguence, and once a codeword or correctable
erfnr pattern is detected, the information digits are
accgpted or corrected accordingly. The scan sequence is
chosen so that the parallel threshold decoder tries to
minimize the probability of error of the received symbol
first, if no correctable error-pattern is found, the
decoder attemps to minimize the received word probability
of error. The second factor in preseting the scan sequence
is to scan all subdecoders according to the weight

value of the input threshold, so that the threshold
likely to be optimum or near optimum for the highest
number of codewords is scaned first.and the threshold
likely to be optimum for the next to the highest number
is scaned second and so on., The parallel threshold
‘Edecoder is interesting when error-trapping subdecoders
are used, because in addition to the gain descirbed
above, an additional gain over the conventional error-
trapping decoder can be achieved by converting correctable
but untrappable errors into trappable errors, thus
reducing the number of decoding failures. The statistical
parallel threshold decoder is a further modification

of the paralle; threshold decoder, it is used for error-
correction of burst-errors, where any burst is likely

to occur more frequently than any longer burst. The

statistical parallel threshold decoder choses the



shortest error-pattern detected by all the subdecoders

as the most likely error-pattern to have occured in the
channel during transmission, while in turn each subdecoder
has chosen previously the shortest possible error-pattern
for the received word detected at its threshold. The
parallel threshold decoder and the statistical parallel
threshold decoder description shows that no analogue to
digital convertors or microprocessors need be used,

hence overcoming two of the major disadvantages of the
soft-decision decoders.

The parallel threshold decoding idea is used in the
error-pattern search parallel threshold decoder, and the
digit search parallel threshold decoder. The optimum
threshold in the error-pattern search parallel threshold
decoder is found by searching all the trapped error-
patterns and then accepting the one that occured most.
While the digit search parallel threshold decoder, corrects
on a digit by digit basis, by scanning one bit of all
the error-pattern that correspond to a digit of the
received word at a time, if the number of bits indicating
errors are larger than a certain threshold, that digit
is assumed erroneous, and is corrected. And so0 on for
all the received word digits. Here again no analogue to
digital convertor is used, but a microprocessor may he
required for the error-pattern search parallel threshaold

decoder.



CHAPTER 2

BINARY CYCLIC CODES AND ERROR-TRAPPING TYPE DECODERS

2.1-Binary Eyclic Codes

During the past ten years, most of the research
work done on block codes has been concentrated on a
subclass of linear codes, namely, the cyclic codes.
There are two reasons for this. Firstly, encoding and
syndrome calculation of any cyclic codé can be implemented
easily by employing simple shift registers with feedback

(6,55). Secondly, because of their structure,

connections
it is possible to find various simple and efficient
decoding methods.

Cyclic codes were first studied by Prange in 1957(70),

Since then, many algebraic coding theorists(5’57,58)
studied extensively cyclic codes and their implementations

for both random-error correction and burst-error correction,

2.1.1 Description of Lyclic Codes

By definition, an {n,k) linear code is said to be

cyclic if for amy codeword C, uhere

C = (CD,cl,c2,. ........ ’Cn—Z’Cn-l) (2.1)

(1) yhich is formed by shifting cyclically

a new word C
the components 6f C once to the right, i5 a codeword

where

(2.2)



From the definition, it is clear that

(1) _
t = (e 17 141 Cnois2’

) (2.3)

**%n-i-2"%n-1-1
is obtained by shifting the codeword C to the right
cyclically i places, and is also a codeword.

When the components of the codeword C are treated
as coefficients of a polynomial, then

C(X) = cp+c,X+c XZ{ ...... +c_ X

0 "1 2

(2.4)
if the polynomial C(X) is multiplied by X mod X"-1, the

Tesult

XC(X)Ymod X"-1 = c,

(2.5)
is the polynomial representation of the codeuword
c(l)(x), and the multiplication by X mod Xn-l is seen
as a cyclic shift to the right of the codeword represented
by the polynomial C(X). To obtain the codeword formed
by shifting C(X), i shifts to the right, C(X) is multiplied
by XiC(X) mod X'=1. The result is

ey - ¢ 2 xi-1

. +c . X+cC . X
n-i n-i+l n-i+2



Conversely, if the codewords of a linear cyclic
code are represented by a set of polynomials, then for
every codeword polynomial C(X), the code contains all
cyclic shifts of C(X). And since the sum of codewords
of a linmear code is also a codeword of the same linear
code, the code must contain all multiples of C{X) mod
x"-1. Which conclude that the codeword polynomials of
any linear cyclic code consist of the multiples of some
generator polynomial mod Xn—l, where the generator
polynomial g(X) is a divisor of X'-1.

The polynomial représentation, enables the

(66,67,70,72) o

development of some important properties
the cyclic codes, which make the simple implementation

of encoding and syndrome calculation possible. The cyclic
property, and the property that each codeword peolynomial
is a multiple of the generator polynomial minimize the
storage facilities for the encoding dictionary, and make

the shift-register devices very easily implemented.

2.1.2 Shortened Cyclic Codes

In certain applications, where the requirements
of a system cannot be met by a suitable nmatural length
of a code, it may be desirable to shorten a code to
meet these requirements. The shortening is accomplished
as follous.

Given an (n,k) cyclic code, assuming the number of
information digits required by the system is o, then the
B leading information digits of each block are assumed

by the encoder and the decoder to be zeros, where




B = k - a (2.7-a)

It is clear from equation (2.7-a) that for the code to be
a shortened code and meaningful, @ should satisfy the

following condition.

Kk >a>0 (2.7-b)

Since the B zeros are assumed to be inserted at
the encoder and deleted at the decoder, it is easy to
see that the shortened code consist of 2k"B codewords,
and that these codewords form an (n~-B, k-B)} linear code.
This code is called a shortened cyclic code(57)and
is not cyclic. It has at least the same error-correcting
capability as the code from which it is derived. The
encoding and syndrome calculation for a shortenéd cyclic
code can be accomplished by the same circuits as employed
by the original cyclic code. This is because the deleted
B zeros do not affect the parity-check calculations. The
decoder for the original code can be used for decoding
the shortened cyclic code simply by prefixing each
received codeword with B zeros. This prefixing can be
eliminated, however by modifying the feedback connectiong87)
of the syndrome register.
Let an (n,k) cyclic code bé a shortened code by B,
if the correction précedure is unaltered, it would reguire
additional B shifts corresponding to the omitted

information digits, before the actual correction process

is started. However, decoding can be accomplished more




quickly if, instead of calculating the syndrome of

n-k

X R(X) as would be done for a cyclic code, the syndrome

n-%<+§

of X R(X) is calculated, where R(X) is the received

word. This can be achieved by an automatic premultiplication

by XB

mod g(X). The technique is illustrated in the
following example.
Suppose it is necessary to shorten the {15,11)

single-error-correcting Hamming code which has the

generator polynomial
. 4
g(x) =21 + X + X (2.8-a)

by B=5%, so that a new (10,6) single-error-correcting
shortened code will result.
The feedback connections for the premultiplication

n-k+R

are the remainder obtained by dividing X =x? by g(Xx).

The result of the division is
Pm(X) = X + X (2.8-b)

The altered Meggitt decoder for the new (10,8)
code is shown in fig.(2.1) while the Meggitt decoder
for the (15,11) code is shown in fig.(2.2).

It can be seen that feedback connections of Pm(X)
in fig.(2.1) are used only when the received word is
fed to the syndrome register, otherwise the generator
polynomial g{(X) feedback connections are used.

The modification advantage over the unaltered
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decoder is the speed of which the correction process is
started, and the bigger B the more the speed gain. But
that is achieved on the account of complicating the
harduware.

2.2-Error-trapping Decoding for Cyclic Codes

Decoding of cyclic codes have been studied

(38,66,71,95)

extensively by a large number of researchers.

The general decoding algorithms for BCH codes given by

Peterson(67) are well known. Also, other interesting
decoding methods have been given by Meggitt(ez), Prange(72),
and Kasami(ag).

The general decoding method of MEggitt(55’61’62’67)

applies to any cyclic code, but refinements are necessary
for practial implementations. Error-trapping decoding

is based on Meggitt decoding technique, it uses a very
simple combinational logic circuit for error detection
and correction.

Cyclic codes are divided into two groups. fFirstly,
cyclic codes for correcting random errors(5’55’67’68).
Secondly, cyclic codes for correcting single-burst
errors(3,2l,29,38,3?,47,48,50,63,77). Consequently,
there are different types of error-trapping decoders,

for decoding each group of codes.

2.2.1 Error-trapping Decoding for Correcting Random Errors

Suppose that an (n,k) cyclic code is used for
correcting errors in a communication channel, Let C(X)
be the transmitted binary codeword and R(X) the received

binary word, where C(X) is as in £€q.(2.4)



it

c.+c,X+cC X2+ ........ +cC X (2.4)

c(x) gtciX*c;

and

r +T,X+T X2+.. ...... +T xn-1 (2.9)

R(X) gtT1 X+,

depending on the channel noise R(X) may or may not be
the transmitted codeword C(X). The decoder calculates
the syndrome S5(X)}, which is equal to the remainder
resulting from dividing the received word polynomial

R(X) by the generator polynomial g{X), i.e

R(X) = P(x) g(x) + s(x) (2.10)

where S{(X) is a polynomial of degreg n-k-1 or less.

If the syndrome is zero, the received word is a codeword
and the decoder will accept the received codeword as the
transmitted codeword. If the syndrome is a non-zero
vector, the received word is not a codeword, and errors
have been detected. Let the error polynomial be E(X)

where

e . +e,X+e X2+ ...... ve..tE x”'l

E(x) gte X*e;

(2.11)

then

R(X) C(x) 8 E(X) (2.12)

where @ represent modulo two addition, since C(X) is a
codeword polynomial it must be multiple of the generator

polynomial g(X), say

C(X) = m{X)g(X)  (2.13)



Combining Eqs.{(2.10),(2.12), and (2.13), we obtain

E(X) = [P(X)+m(X)]g(X)+S(X) (2.14)
let P(x)+m(X) = q(x) . (2.15)
E(X) = aq(x)g(X) + 5(x) (2.16)

If the errors of E(X) are confined to the n-k
parity-check postions of P(X), then E(X) is a polynomial
of degree n-k-1 or less. It follows that q(X)=0 in

Eq.{2.16) and
E(x) = s(x) (2.17)

Thus, correction is done by modulo-2 addition of the
syndrome and the n-k received parity check digits. Or,
altegnatiuely, by simply Uutputihg the information
digits to the data sink if the partiy-check digits are
no longer required.

Suppose that the errors are not confined to the
n-k parity-check positions of R(X), but are confined to
the n-k-1 low-order parity check digits, plus one error
in the leading high-order information digits. In such
cases the error polynomial E(X) is of degree higher
than n-k-1, and correction cannot be done directly.
However, if the received word is shifted once to the
right cyclically then the shifted error-pattern E(l)(x)
is confined to the n-k parity-check digits of the shifted
received word R(l)(x). Since from Eg.(2.2) C(lEX) is a

codeword, then the syndrome of R(lex) is identical to



the error polynomial E(l)(x) and correction can be made
in the same way as in the previous step.

Making use of the cyclic properties of the code
the syndrome of R(l)(x) can belcalculated from the
received word syndrome S{X) by dividing S(X) by the
generator polynomial g(X).

Conversely, if the error-pattern is confined to
any n-k consecutive position including the end round
case, i.e

_ i i+l (n-k)+i-1
E(X) = eiX +ei+lX R R +E(n_k)+i_lx

(2.18)
after n-i cyclic shifts, the error-pattern will be
confined to the n-k parity check positions., The
corresponding syndrome is calculated by dividing S{X)
by the generator polynomial g(X), n-i times. As a result
the errors can be corrected.

2.2.2 Error-trapping Decoder for Correcting Random Errors

Given an (n,%) cyclic code, which is capable of
correcting aill t or fewer random errors in any codeword, an
error-trapping decoder is shown in fig.(2.3), the operation

of which is described by the Following(SS’Sa’BS’?g).

Feedback Connection

Gate [ f—
Pt.. 1]
Input

Oy (n—k)-Stage Syndrome Register

ty - - ¥y

Threshold Gate
+ Gate 2

To Activate Gates 1, 2and 3
- Buffer Register Gate 3 |-—»

Qutput

Fig.2.3 An error-trapping decoder



STEP 1. Gate 1 is turned on, Gate 2 and 3 are
turned off. The received word R(X) is read into the
syndrome register and into the buffer reqister
simultaneously (if the parity-check digits are no
longer required, the buffer register has only to store
the k received information digits). As soon as the entire
received word has been shifted into the syndrome register,
the contents of the register is the syndrome of the
received word.

STEP 2. The Hamming weight of the syndrome is
tested by an (n-k) input threshold gate. The output of
this gate is '1]' when t or fewer of its inputs are '1'.
Otherwise, the output is zero.

STEP 3. a)If the output of the threshold gate is
'1', which means either the syndrame is zero and the
received word is a codeword, or the Hamming weight of

the syndrome is

1 € w (S) gt (2.19)

h
and the errors are confined to the n-k parity-check
positions. Conseqgquently, the k received information
digits in the buffer register are error-free in both
cases. Gate 3 is turned on, and the information digits
are sent to the data sink. The syndrome register is set
to zero. To correct the next received word go to STEP 1.
b)If the threshold gate output is '0', the
syndrome register is then shifted once, with Gate 1

turned on, and Gate 2 and 3 turned off. Go to STEP 4.




STEP 4. a)If the threshold gate output is '1°',

the errors are confined to the positions Xn_l,XD,Xl...

X(n_k_z) of the received word. The leftmost digit in

1

the syndrome matches the error at the positions x" of

the received word, the other n-k-1 digits in the syndrome
register match the errors at positions )'(U,Xl,...,)(nhk-2
of the received word. The output of the threshold gate
turns Gate 1 off and sets a clock to count from 2. The
syndrome register is shifted to the right in step with
the clock, As soon as the clock has reached n-k, the
syndrome register contain '1' in the rightmost position,
and zeros in all the rest. The '1l' matches the error in
position x""1 of the received word. Gates 2 and 3 are
turned on, the k information digits are read out of the
buffer, while the syndrome register is shifted to the
right at the same time. Thus, the first received
information digit is corrected by the "1' coming out of
the syndrome register, and the decoding is completed.
Return to STEP 1.
b)If the threshold gate output is still

'0', the syndrome register is shifted once again with
Gate 1 turned on, and Gates 2 and 3 turned off. Go to
STEP 5.

STERP 5, Step 4b is repeated until the threshold
gate output goes up to '1'. If the output is '1' after
the ith shift, for 1lg<igmn-k, the clock starts to count

from i+l1. At the same time, the syndrome register is

shifted with Gate 1 turned off. As soon as the clock



has counted to n-k, the rightmost i digits in the syndrome
register match the errors in the first i received
information digits in the buffer register. The other
information digits are error-free. Gates 2 and 3 are

then turned on. The received information digits are

.read out of the buffer, with shifting the syndrome
register to the right at the same time for correction.
Return to STEP 1.

STEP 6. If the output of the threshold gate never
goes up to 'l', by the time the syndrome has been shifted
ﬁ—k times, Gate 3 is turned on, with Gate 1 still on, and
the information digits are read out. At the same time the
syndrome register is shifted once for each information
digit readlout. As soon as the threshold gate output goes
up to '1l', the contents of the syndrome register match
the errors in the rightmost n-k digits in the buffer
register. Gate 1 is turned off, and Gate 2 is turned on,
the syndrome register is shifted to the right once as
every information digit is read out, so that the erroneous
information digits are corrected one by one..

STEP 7., The syndrome register is set to zero before
starting to calculate the next received word syndrome.

Go to 5TEP 1.

If the threshold gate output never goes up to '1!
by the time the k received information digits have been
read out of the buffer, then either an uncorrectable
error-pattern has occured or a correctable error-pattern

with errors nmot confined to n-k consecutive positions
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has occured (untrappable error-pattern).

2.2.3 Error-Trapping Decoding for Correcting

Single-Burst Errors

Given an (n,k) cyclic code, which is capable of
correcting all single-bursts of length & or less. The

9(1,2,55,87,58) is as described

error-trapping decodin
in section 2.2.1 with a slight variation.

Let R{X) be the received word as in Eq.(2.4), and
E(X) the error polynomial as in Eqg.(2.1), and

K 2 n-1

S(X) = SD+SlX+52X Fenvanes +5 X (2.20)
be the syndrome of R(X). If the errors of R(X) are
confined to the £ high-order parity-check positions

n-k-ﬁ,....-xn—k-Z,xn-k—l of R(X). Then accofding to

X
Eq.(2.16), the & high-order bits of 5(X) match the
errors of E(X), and the remaining n-k-£ low-order bits
of S5(X)} are zeros.
Suppose that the errors are not confinmed to the
2 high-order digits of the parity-check postions of
R{X), but are conFinea to certain & consecutive positions
of R(X). Where
xp+ﬂ,-l

- p p+l
E(X) = er +ep X teeeons ""+Ep+2—l

(2.21)

according to the previous discussion, the errors should

be confined to the & high-order of an n-k vector, so



that they can be corrected. Let B(X) be a polynomial of
degree n-k-1, where the low-order n-k-2 coefficients
are all zeros, and the high-order coefficients of E(X),
then

3 k-2

— n-
B(x) = U+DX+UX_+.......+EDX +""+Ep+£-lx

(2.22)

the error-pattern E{X) and B(X) can be superimposed if

B(X) is shifted j times.

(2.28)

£(x) = x3)g(x) | (2.23)
where

j=p -{n-k-2)
from tq.(2.16)

S(x) = E(X) - a(X)g(x) (2.25)
substituting Eq.(2.23), in Eq.(2.25)

s(x) = x7800) - q(x)g(x) (2.26)
let

i=n-j (2.27)
multipling Eq.(2.26), by (1) yields

sx) = x*axy - x{Eg(x)g(x)
by using Eq.(é.27)

x( s = (x"anex) - xHg(x)g(x) + 8(X)

(2.29)

Since g{X) divides x"-1, and B(X) has a degree

less than the degree of g(X). Then B{X) is the remainder

(2.24)
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error-patterns of length & or less in the high-order
part of the syndrome, the decoder detects the n-k-%
zeros in the n-k-£ low-order part of the syndrome. As
soon as n-k-1 zeros are detected, a correctable error-
pattern is trapped in the % high-order part of the
syndrome, which is of length £ or less. The zero
detection is accomplished by the use of an n-k-% input
OR gate, where the output is '0' when an all zeros
input is present, otherwise the output is '"1'. The
decoding procedure can be described in the following
Stéps:

STEP 1. Gate 1 is turned on, Gates 2 and 3 are
turned off. The syndrome is calculated by shifting the
received word R(X) into the syndrome register. At the
same time, if the parity-check digits are no longer
required, the k information digits are shifted into
the buffer register.

STEP 2. a)If the OR gate output is '0'. Then,
either, the syndrome is zero and the received word is
a codeword, or the error is trappable and is confined
to the & high-order parity-check digits, which leave
the information digits error-free. In both cases, Gate 3
is turned on, with Gate 2 still off, and the information
digits are read out to the data sink. The syndrome
register is set to zero. Return to STEP 1,

b)If the DR gate output is '1'. Gate 1
is turned on, Gates 2 and 3 are turned off. The syndrome
register is shifted. As sSoon as the OR gate output

goes down to '0', the & rightmost stages of the syndrome
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register contain the error-pattern. Three phases must
be considered, so that the correction can be made.

STEP 3, a)If the OR gate output goes down to 'O!
after the ith shift for 1gig<n-k-2. Then the errors of
the E{X) are confined to the parity-check digits of
R{(X). Thus, the k received information digits are error-
free. Gate 2 is turned on, and the information digits
are read out to the data sink. The syndrome register is
set to zero. Return to STEP 1.

b)If the OR gate output never goes doun
to '0' during the first n-k-£ shifts. Then the burst is
not confined to the n-k parity-check digits of R(X).

STERP 4. If the OR gate output goes down to '0!
after the (n-k-2+i)t" shift of the syndrome register
for 1g<ig?, then the burst is confined to the positions
xMi o xm L x O xR Y f R(X). The i bits
contained in the Rth, (R—l)th;...(2-1+l)th stages of
the syndrome register (from the right end) match the

error bits at the positions Xn-l,...,)'(n_z,)(n-1 of R(X).

At this instant, a clock starts to count from (n-k-2+i+1).

The syndrome register is shifted (in step with the
clock) with Gate 1 turned off. As soon as the clock has
counted up to n-k, the i rightmost bits in the syndrome
register match the error in the first i received
information digits in the buffer register. Gates 2 and3
are then turned on. The received information digits

are read out of the buffer for correction. The syndrome

register is set to zero. Return to STEP 1.




STEP 5, If after the syndrome register has been
shifted n-k times, the OR gate output never goes down
to '0', then Gate 3 is turned on and the received
information digits are read out of the buffer one at
a time. At the same time, the syndrome register is
shifted with Gate 1 turned on, As soon as the OR gate
output goes down to '0'. the contents of the & rightmost
stages of the syndrome register match the errors in the
next £ received information digits to come out of the
buffer. Gate 2 is turned on and the erroneous information
digits are corrected\by the digits coming out from the
syndrome register with Gate 1 turned off.

If the OR gate output never goes down to '0' by
the time the k information digits have been read out
of the buffer, then a burst of length longer than £

have been detected.

2.2.5 Properties of Error-Trapping Decoding

Efficiency of error-trapping deceding, depends
greatly on the ability to trap the error-pattern, uwhich
contaminated the transmitted codeword. If the uncorrectable
error—-patterns (which are beyond the correction ability
of the code used) are excluded, error-trapping decoding
decodes effectively all single-error-correcting codes,
anC single-burst-error-correcting codes. It is also
effective for decoding some double-error-correcting
codes which have a low rate. But when it is applied to
high rate codes, with large error-correcting capability,

it becomes very ineffective, and will be able to correct



only a small percentage of the total correctable errors(ss).

While the code rate does not affect the performance of
the decoder when used to decode burst-error-correcting
codes.

The main disadvantage of the error-trapping decoding
is the disability to trap all the correctable error-
patterns. In general this disadvantage increases the
higher the code rate is (excluding the single-error-
correcting codes, and single burst-error-correcting
codes). The other disadvantage is that unlike some other
decoders, the error-trapping decoders will correct only
t errors orless for random-error-correcting codes, or
a burst of length £ or less for burst-error-correcting
codes, and will not consider any more than t or longer
then & error—patterns even if the code can correct these
error-patterné.

On the other hand, the main advantage is that,
in the case of decoding failure, where the received
word is not a codeword, or is not corrected to a
codeword, either because the error-pattern is uncorrectable
or is untrappable, the decoder will inform of such an
occurrance, and an apprapriate action can be taken,

i.e. ask for retransmission of the erroneous word, if
this facility is available. The other advantage is that
the combinational logic circuit is very simple, and
inexpensive. S50 that a complete decoder for a certain
code can be built easily on one inteqgrated circuit.

Because of the advantage, a great deal of work




is done to overcome the disadvantages. In an effort
to extend the application of the random-error-trapping
decoding to multiple-error-correcting codes, several

modifications have been deuised(ag’57’73’7g’80’90),

(31)

while Gallager proposed an optimum decoding method
for burst-error-correcting codes based on the burst-

error-trapping decoding.

2.3~-The Optimum Decoding for Burst-Error-Correcting Codes

Although the decoder described in section (2.2.4)
is efficient in correctiag all burst error of length £
or less, it is still a fraction of the correctable error-
patterns (coset leaders).

The number of possible error.patterns of length %
or less, in a word of léngth nis nzg-l, the total
number of the correctable burst errors of length n-k is

n-k

2 . Then the ratio of the correctable error of length &

or less is
R = &5 (2.30)

*The most efficient burst-error-correcting codes are
the optimal codes, which meet the Reiger bound(TT).

They satisfy the condition

- (2.31)

Substituting Eg.(2.31) in Eq.(2.30)



n-k

nz2

e pn-k_y (2.32)

it can be seen from Eq.(2.32) that for large n, Rc is a
small fraction. It is also clear that Rc is even smaller
for nonoptimal codes.

(31) introduced a modification to the

Gallager
burst-error-trapping decoder in such a way that it
corrects all the correctable burst errors cof length n-k
or less; that is, besides correcting all bursts of length

£ or less, the decoder also corrects those bursts of
length 2+1 to n-k, which are used as coset leaders.

An optimum burst-error-correcting decoder for a
cyclic code is defined as a decocder which, given the
received word R(X), selects C(X) as the transmitted
codeword, for which R{X)-C(X) contains the shortest
error burst. Such a decoder would minimize the probability
of decoding error on a channel for which each burst of
any given length is léss likely than each burst of any
shorter length.

The performance of the optimum decoder is plotted
in fig.(é.S). It is interesting to notice that when
n-k and £ are large, most bursts are corrected for
R'<n-k-1092n where £°282. It can be seen from fig.(2.5)
that increasing the burst correcting capability % raises’
the flat part of the exponent function of the uncorrectable

bursts e{27). Decreasing the fraction of uncorrectable

bursts in the vicinity of £'=(ﬂ-k}é'
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fig.(2.5)" Exponent for fraction of uncorrectable
burst of length &7

Unfertunatley, relatively little is known about

how to choose the generator poiynomial g(X) for a given

(26)

n and k to maximize L. Fire has developed a large

class of cyclic codes with reasonably large values of

(21)

£, Elspas and Short have published a short table of

(55)

cyclic codes with ocptimum values of L. Lin published

some efficient cyclic codes and shortened cyclic codes.

(48,50)

Kasami has also given a table of shortened cyclic

codes with optimum value of L.

2.3.1 An Optimum Decoder for Correcting Single-Burst-Errors

An optimum decoder is shown in Fig.(Z.B), assuming
that the decoder is used to decode an (n,k) cyclic code,
which is able to correct all burst of errors of length
£ or less. The decoding procedure can be described in the
following steps:

STEP 1. Gate 1 is turned on, Gate 2 and 3 are
turned off. The received word R{X) is read into the

syndrome register, and into the buffer register

#*This figure is taken from Callager's book Information

Theory and Reliable Communicatiaon °°, ref.3l.
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simultaneously (when the parity-check digits are not
required, the buffer register has only to store the k
received information digits). As soon as the entire
received word has been shifted into the syndrome reqgister,
the contents of the register is the syndrome of the
received word,.

STEP 2. The syndrome is tested, if it is zero,
then the received word is a codeword. Gate 3 is turned
on, with Gate 2 turned off, and the information digits
are read out to the data sink. The syndrome register is
set to zero. Return to STEP 1. If the syndrome is not
zero, n-k '1' are stored in the burst staore, and the
syndrome register is shifted once with Gate 1 turned on
and Gates 2 and 3 turned off.

STEP 3. The syndrome content is tested by the
control logic, if the burst error is not confined to
the rtightmost digits of the synd}ome register go to
STEP 4, Otherwise the burst length is calculated. If
the length of the burst error which is in the syndrome
Tegister is found to be less than the length of the
burst error in the burst store, then, the content of
the syndrome register is transferred to the burst store.
Otherwise, the content of the burst store is kept unchanged.

STEP 4, With Gate 1 turned on, and Gate 2 and 3
are turned off. The syndrome register is shifted n
times, STEP 3 is repeated after each shift. After the
n shifts, the contents of the syndrome register will be

the syndrome of the received word, while the burst store



will contain the shortest burst error.

STEP 5, The syndrome register is shifted, with
Gate 1 turned on and Gates 2 and 3 turned off. As soon
as the contents of the syndrome register contain the
shortest error burst, i.e. its content match the content
of the burst store, the correction can be made. Let
the syndrome register contain the shortest error burst
after the ith shift, then three stages should be considered.

STEP 6.a)If i=0, then the burst errors confine
to the n-k parity-check digits, and the information digits
in the buffer register are error-free. Gate 3 is then
turned on, and with Gate 2 turned off, the information
digits are read out to the data sink. Thus the decoding
is completed. The syndrome register is set to zero.
Return to STEP 1.

b} If 1<ign-k, the clock starts to count
from i+l. At the same time, the syndrome register is
shifted with Gate 1 turned off. As soon as the clock
has counted to n-k, the rightmost i digits in the
syndraome register match the errors in the first i received
information digits in the buffer register. The other
information digits are error-free. Gates 2 and 3 are
then turned on. The received information digits are
read out of the buffér for correction. Return to STEP 1.
c) If the contents of the syndrome register

never matched the burst store by the time the syndrome
register has been shifted n-k times (with Gate 1 turned
on), Gate 3 is then turned on and the received information

digits are read out of the buffer one for each shift of




the syndrome register. As soon as éhe syndrome reqgister
is shifted i times, its content match the errors in the
rightmost n-k digits in the buffer register. Gate 1 is
turned off, and Gate 2 is turned on and the erroneous
information digits are corrected by the digits coming
out from the syndrome register. As soon as the k
information digits are read out of the buffer register,
the syndrome register is set to zero. Return to STEP 1.

Depending on the design of the logic circuit,
some times it could be better to stocre the burst-error
length and the number of shifts, of the burst to be stored
in the burst store instead of storing the actual borst.
Another suggestion is to store the burst-error length,
and set an n counter to zero, then increment the counter
with each shift of the syndrome register. The same .
burst error will appear in the syndrome register once
n shifts are completed, i.e. the n counter returns to
zero.

A number of modifications are sometimes de;irable
in such a decoder.fFor example, the 'round the end!
bursts can be ignored since they are usually much less
likely to happen ithan the ordinary bursts. Such a
modification will simplify the decoding process gréatly,
in addition to the simplification of the control logic.
Another modification is to count as a detected error any
burst longer than a given length. This modification is of
great significance_when a retransmission facility is
available, Finally, in some cases when twp or more

bursts of the same length as the shortest burst are



present, the decoder is confused in determining which
burst to use. The detection process can be modified
so that, the decoder can look at both the number of
errors-in the burst and the length of the burst to
decide which burst is the more likely one.

0n one hand, the optimum decoder has the advantage
of being able to correct burst errors longer than 2.
On the other hand, it has the disadvantage of being
Qnable to detect uncorrectable errors. To overcome this
disadvantage the second modification described above is
used, Let an (n,k) cyclic code be used, where n is large.
According to fig.(2.5) the optimum decoder can correct

all burst-error of length £ or less where
” *
LR gEn-k -2 +1 (2.33)

depending on Eg.(2.33), the optimum decoder can be
modified to accept the corrected word as the transmitted
codeward, whenever the detected burst error is of length
2’ or less. And to inform of the detection of an erroneocus
word, when the detected burst error is longer than &7,

so that an appropriate reaction can be taken. A modified
optimum decoder in the way described above is mare
complicated than the ordinary optimum decoder which is

in turn more complicated than the error-trapping decoder.

2.4-50ft-Decision Decoding

In a communication system using error-correcting

codes for error control, the transmitted bit stream



usually carries a great deal of information about the
noise in the channel. Although, in general, when dealing
with binary codes, the decoding techniques developed
(31,48,55,67) assume a channel whose putput is also
birmary, for many communication applications this
assumption is not necessary and furthermore, to make a
'hard' decision without regard to these additional
noilse information is to -throw information away and
degrade the performance of the system. This situation
was tolerated for a time because it was thought that
the loss in performance was justified by the simplicity
of the digital decoder. Recently, the great advance in
electronic technology, makes this justification come
into question, and there have been many proposals for
reducing this performance loss through modified

decoders(l3'22’23’24,25s27,33,34,35)

which takes advantage
of the additional information by abstraction of the
channel measurement information.

Failure correction, or forced erasure detection,
or null-zone decoding(e,la, 41,42,45,51,54,58,69,83,84,92)
can be considered as the first step in soft-decision
decoding; Received signal elements lying on both sides
near the threshold level, are passed to the decoder
labelled as erasures, so that the decoder has some
knowledge of where the errors are likely to be. Because
the channel noise added to the transmitted elements is

likely to have affected the elements near the threshold

more than the far elements from the threshold level.



The next step nearer to soft-decision decoding
was the extention of the null-zone detection, to the
double null-zone detection, which gave an improvement

(54)

in the performance over the null-zone detection.
The generalisation to more than ftwo null-zones, with
the improvement in the performance rise as the number
of zones is increased. This general form of null-zone

detecticon is called soft-decision decoding(l3’20’3a’ao’

85,86,87)

An early example of the use of channel measurement

information with blockcodeé.isgiuentnrwagner decoding(5’82)

and its generalization(so), where channel measurement
information is used to extend by 1 the error-correcting
capabilities of a code whose minimum distance is an
even number. Recently considerably more sophisticated
approaches for using channel measurement information

with block codes have been deueloped(lﬂ’lz’13’19’22’23'2&’

25,27,33,34,35,59,91) '

A block diadgram of a communication system using
a soft-decision is shown in fig.(2.7), the information
digits are encoded to give the transmitted codeword,
these binary digits are fed into a2 data modulator, which
determines the transmitted waveform x(t). When a binary
channel is assumed, the data demodulator produces a
sequence of n binary digits R where r, are the coefficients

of R{X) in £q.(2.9)

R = rU;rl,rz,....,I‘n_l (2.34)



which are based on the received waveform y(t). In the
case of soft-decision decoding the data demodulator
will supply the binary segquence R, and in addition, a

sequence of n positive numbers denoted by ¢, uwhere
R L L P R Y (2.35)

will be supplied. These positive numbers, called the
channel measurement information, are used by the decoder
to provide a measure of the relative reliability of the

received binary digits. Then if

@, > o (2.38)

the decoder shall assume that T, is more likely to be
correct than rj. Each value of a coefficients @ is
viewed as a confidence value on the reliability of

each received digit. Since the decoder is fed both the
received word R(X) and the seguence a, then the decoder
is no longer a true binary decoder.

For many applications the abstraction of channel
measurement information is relatively a simple matter.
For examble, if the magnitude of the decision statistic
of each received digit is assumed to be monotonically
related to the probability that the digit is received
correctly, the required channel measurement informatiaon
can be obtained by simply replacing the l-bit output
device by a J-bit analogue-to-digital converter. fhese
J-bits represent Q quantization levels symmetrically

spaced atout the hard-decision boundary, where



Q=2 (2.37)
Let us assume that the waveform representing the ith
element has entered the demodulator the output is the
estimate of the received ith binary digit given by the
J-bit word. The output of the qgquantizer v is

ui = Ui,l’ui,Z’Ui,3’ ....... ’Ui,J (2.38)

where the first bit v.

i is the hard-decision and the
’ .

remaining J-1 bits give an indication of the confidence
of that estimate. The confidence number ai of the ith

element is defined as

where @ represent modulo-two addition,from Egs.(2.38) and

(2.39) the quantizer output vy can be represented as
Vi T oVi,100g (2.40)
The confidence number o can be used either in the binary

or the decimal form depending on the type of algorithm

used for correction.




2.4.1 Improvement Over The Hard-Decision Decoding

First, consider the random-error channel. Let
dh be the hard minimum distance of code, then.its
bounded-distance hard correcting power is the largest

integer.

tpsley-1)/2 (2.41)

In the soft-decision sense codewords (paths) are
;ds=(0-l)dh soft-decision levels apart, and therefore
the bounded distance guaranteed soft-decision error

correction power in levels is
tss(ds—l)/Z (2.42)

and Q/2 or more soft-decision errors will result of

a hard-decision error, since the soft-decision decoder
can correct ts soft-decision errors, then the number
of hard-decision errors that canm be corrected by the

use of soft-decision technique is

t, = t./(a/2) (2.43)

Substituting Eq.(2.42) in Eq.(2.43)

+
1]
fmIEN|

[(ds-l)/Z] (2.44)

t = {(O—l)dh-l] (2.45)

D)=



for large §

t = d (2.46)

Thus, the correction power of the code is doubled.

It should be noted that the doubling of the correction
power of a code is an upper bound on the improvement,
and will be achieved only at very high 5SNR. While, at
low SNR the average improvement will be significantly
less than this.

Considering a Gaussian channel as the transmission
media, the soft-decision decoding has an improvement of

3 dB in coding gain(zs’ga)

for a very high SNR. fFor a
noisy channel the improvement will drop to 2 dB. These
gains are obtained when the guantization levels are
infinite. For more practical values of guantization
levels, the improvement is less, but fortunately the
degradation in performance due to using fewer quantization
levels is not linear so the degradation involued(le’aé)
in usinS'B—leuel equal-spacing guantization is only
about 0.2 dB, which gives an improvement of 2.8 dB at
high SNR, and 1.8 dB for low SNR values.

In case of Rayleigh channel, the soft-decision

decoding is capable theoretically(zs) of

providing much
larger coding gain than in thg case of the Gaussian
channel. For example at high SNR the soft-decision
decoding requires apprqximatEly half the SNR in dB to

achieve the same output bit error as hard-decision

decoding. It must be noted, however

A
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that the expected halving in pawer requirement will

not be achieved at low SNR. In general, the increase

in improuement where soft-decision technigues are applied
to a2 non-Gaussian channel is more than the improvement

in the Gaussian channel case.

As mentioned éarlier the abstraction of channel
measurement is done by quantizing the incoming signal
into'Q levels symmetrially spaced about the hard-decision
threshold, but these {J levels, although assumed linearly
(equally) spaced up to now, need not be..In fact, it has

(40,48,60,76) that a non-linear spacing may

been shouwn
be optimum; In the case of a Gaussian channel a 3-level
optimum-spacing quantization degrades the code gain by
about 1dB only.

If we next consider a burst-error channel, it is
not possible to derive a theoretical soft-decision
improvement figure for this, because of the lack of a
simple burst-noise model. In general, the burst channel

(9)

can be considered to be a diffused-burst channel in
which error bursts are separated by relatively short
gaps of low density of errors. Therefore any code used
on such a channel must have burst and random-error-
correction capability to achieve high improvement.
However, one method of evaluating the improvement is
by simulation.

Given a random-error~-correcting code capable of
correcting t random errors, this same code is capable

of correcting all burst errors of length t or less.

Since the use of soft-decision decoding extend the



random=-error-correcting capability to 2t according to
Eq.(2.46), then the same code can correct all burst
errors of length 2t or less if soft-decision decoding
is used.

Conversly, one can assume that the soft-decision
- decoding doubles the power of burst-error-correcting

coges.

2.4.2 Error-pattern Soft Weight Calculation

The data modulator of fig.(2.7) will output tuwo

sequences, when the waveform y(t) is received

R = (2.34)

which is the hard-decision estimate of the transmitted
codeword, and the confidence number o for the received

word elements.

a LTI ERT PR L (2.39)
where each element o, is calculated as in Eg.(2.39)
let _

B - BD’Bl’BZ’ ------ 'Bn—l (2-“7)
where Bi = decimal value of (ai) (2.48)

it can be seen from Eq.(2.39) that B; is large, when
r, is likely to be correct, and is small, when Ty is
likely to be erroneous.

Assuming the error-pattern that corrupted the

transmitted codeword is
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then, the error-pattern soft weight (EPSW) is
n
EPSW = § e, - B. (2.49)
i

it is clear that the value of EPSW is relatively small,
since the confidence numbers Bi should be small for all
the error values.

Soft-decision is simply calculating the soft weight
for all the possible error-patterns, and accepting the
error-pattern which has the smallest ERPSW as the error-
'battern that corrupted the transmitted codeword,.

If a cyclic code is used, then all the possible
error-patterns are calculated by shifting the syndrome
register n times, after calculating the syndrome. In
fact, significantly fewer additions than in Eq.(2.49)
are required, if one observes that, in such cases, the
error-pattern is confined to the n-k syndrome bits only.
Assuming that B 1s shifted cyclicaly once with each
shift of the syndrome register (after the syndrome is

calculated), then Eq.(2.49) can be rewritten as
n
EPSW = § s..B., . {2.50)
i

where s. is the i"" coefficient of the syndrome $(X)

_ 2 n-k-1
5 = so+le+52X I X (2.51)

and j is an adjustment factor so that Bi+j will

correspond to the digit represented by S



2.4.3 Soft-Decision Decoder

A soft-decision deco&er based on the above facts
is shown in fig.(2.8). The decoding procedure can be
described in the following steps:

STEP 1. Gate 1 is turned on, Gates 2 and 3 are
turned off. The syndrome S(X) is formed by shifting
the entire received word R(X) into the syndrome register.
At the same time, the received word is stored in the
buffer register {if parity-check digits are no longer
needed, only the k information digits are stored).

STEP 2. If the syndrome is zere, the received
word is a codeword, Gate 3 is turned on, with Gate 2
still off. The data is read out to the data sink. The
syndrome register is set to zero. Return to STEP 1.
Otherwise a decimal number larger than (n-k)Q/2 is stored
in the EPSW store.

STER 3. The syndrome content is tested. If the
rightmost digit of the syndrome register is '1', then
the EPSW of the error-pattern present at the syndrome
register is calculated. If the EPSW calculated is smaller
than the value stored in the EPSW store, then the new'
EPSW is stored in the EPSW store, and the error-pattern
in the syndrome register is stored in the error-pattern
store. Otherwise the EP5W and the error-pattern are
kept unchanged.

STEP 4, Gate 1 is turned on, Gates 2 and 3 are
turned off. The syndrome register is shifted n times,
STEP 3 is repeated after each shift, After the n shifts,

the contents of the syndrome register is the syndrome
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of the received word, while the error-pattern store
contains the error-pattern which has the smallest EPSU
i.e. the error-pattern that is chosen by the decoder,
as the corrupting error-pattern.

STEP 5. Gates 1,2, and 3 as in STEP 4. The syndrome
register is shifted,let the contents of the syndrome
register match the contents of the error-pattern store
after the ith shift. Then three phases should be considered:

STEP 6. a)If i=0. The errors confine to the n-k
parity-check digits, and the information digits are
error-free. Gate 3 is turned on with Gate 2 turned off.
The information digits are read out to the data sink.

The syndrome register is set to zero. Return to STEP 1.

b)If 1lgign-k. The clock starts to count
from i+1l. At the sawme time, the syndrome is shifted
with Gate 1 turned off. As soon as the clock count
reaches n-k, the rtightmeost i digits in the syndrome
match the errors in the first i received information
digits in the buffer regisfér. GCates 2 and 3 are turned
on, the information digits are corrected as they are
read out of the buffer register. Return to STEP 1.

c)If the contents of the syndrome register
never matches the error-pattern store by the time the
syndrome register has been shifted n-k times (with
Gate 1 turned on), Gate 3 is turned on and the received
information digits are read out one for each shift of
the syndrome register. As soon as the syndrome register
is shifted i times, its contents match the error in the

n-k rightmost digits of the buffer register. Gate 1 is



turned off, Gate 2 is turned on, the erronecus information
digits are corrected as they are read out of thé buffer
register by the bits coming out of the Qyndrome register.
As soon as all the received word digits are read out of
the buffer register, Gate 3 is turned off. The syndrome
register is set to zero. Return to STEP 1.

The increased coding gain achievable with this
decoder over a hard-decision decoder is dependent on
whether the most trappable error-patterns are confined
to an n-k consecutive positions i.e. whether they are
present as one of the calculated error-patterns or not.
Since the number of error-patterns confined to n-k
position is proporticonal to n-k, themn this decoder is
most effective for decoding single and double-error-
correcting codes and the improvement in coding gain
will decrease as the code rate is increased. For high
rate codes, it will become very inefficient, and much

of the correction power will be lost.



CHAPTER 3

THE COMMUNICATION CHANNEL

A communication channel might represent any medium
by means of which the signal is transmitted or stored. A
typical transmission channel is a telephone line and a
typical storage device is a magnetic~tape unit including
writing and reading heads. The channel is usQally sub ject
to various types of noise disturbanceé; for example,
time-varying fregquency response, and impulsive switching
noise, for the transmission channel, while dirt particles
and defective tape material are common noise sources for
the storage channel. A block diagram of a typical data
communication system is shown in fig.(3.1). The source
encoder converts the data generated by the source into
binary data, the channel encoder attaches parity-check
digits to the data digits and this output is a sequence

of digits a »a@ . These digits are produced at s

17l
fixed rate, say one digit every T secs. In each interval
of T seconds, the modulator produces waveforms, each of
duration 7, xl(t),...,xn(t). Each waveform xi(t) is
determined by the digit a; entering the modulator. These
xi(t) are transmitted through the channel where they

are contaminated by noise. At the other end of the channel
the demodulator receives the waveform yl(t),....,yn(t).

y(t) = x(t) + w(t) (3.1)

where y{t) z yi(t - iT) (3.2)
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x(t)

r xi(t - iT) (3.3)

and w(t)

z wi(t - iT) (3.4)

where w(t) is the channel noise added to the tranmitted
waveform. The demodulator takes the received waveform from
the channel and converts it into a sequence of digits

b sb_, 2t a rate of one digit each 1 seconds. The

10 Py
channel encoder will produce binary data from the bi
sequence which hopefully wi;l be the same data generated
by the source, after the source decoder has converted
this sequence.

In more sophisticated cases, the output from the
demodulator will contain information about how reliable
the bi sequence is, and in this case the demodulator will
output in additional to the sequence bi another sequence
or segquences, which will contain the reliability
information.

A channel can be specified in terms of the set of
inputs available at the input terminal, the set of
outputs available at the output terminal, and for each
input the probability measure on the cutput events
conditional on that input.

Considering this definition, a channel can be one
of many kinds, for example, in fig.(3.1), the channel
can be considered continuous in time, in which the input
and output are waveforms i.e. the channel input is the

modulator output x(t), the output is the demodulator



input y(t), and the channel is the block named 'channel
or storage medium '. On the other hand, the channel can
be discrete in time, in which case the input and output
are sequences belonging to the set of real numbers i.e.
the channel consists of the modulator, the channel, and
the demodulator, in which the input is the discrete

sequence a »a,, and the output is the discrete

IEEEERE
sequence b sb_. The choice of channel is dependent
entirely on the stages one is interested in.

If one is interested primarily in the encoder and
decoder, then it is convenient to consider the modulator
and the demoduiator as being part of the channel. On the
other hand, if one is interested in a channel in which
the input is discrete and the output is continuous, then
the appropriate channel to consider is the one which
contains the modulator and the channel block, where the
and the output is y(t).

input is a .y @

l’--- n,

J.l-Random-errors and burst-errors channels

In order to predict the performance of a code, it
is necessary to have precise information about the channel.
Though most real communication channels are not accurately
represented by the binary symmetric channel (BSC), shown
in fig.(3.2), it has been studied extensiuely(Bl’Bl).
For the binary symmetric channel, the probability is q
that the same symbol as transmitted will be received and

that p is the probability of receiving an erroneous

symbol. It is assumed that g>p and that each symbol is




independent of all others (the channel is memoryless).
This charnnel model includes the modulator, channel, and

the demodulator of the system in fig.(3.1).

fig.{(3.2) The binary symmetric channel

The transmission errors induced on the binary
symmetric channel are referred to as random errors.
Unfortunately, very few real chamnels are like the binary
symmetric channel. There is usually serious dependence
of errors in successive transmitted symbols. The noise
disturbance - a strike of lightning or a man-made electrical
disturbance - frequently affects several adjacent symbols.
Defects on magnetic recording devices also usually affect
more than cone symbol. Thus, errors occur in bursts.

When each element in the output seguence depends
statistically both on the corresponding input and on past
inputs and outputs, the channel is a channel with memory.
A burst-error channel is such a channel, They have the
special property that errors tend to group together,uhere
the error groups being separated by larger error-free
groups. A Markov chain with two states can be used as a

model for generating bursts(BZ). Assuming that the ith




error generated is ey where

ey = 1 for generating an error (3.5-a)
e, = 0 for not generating an
eTrTor (3.5-b)

The two states are 'A' for generating no error (ei=D),
and state 'B' for generating either ei=D or ei=l, as in

fig.(3.3), the directed branches indicate transitions fram

P(ei=l)

Q(ei=0) (ei:l/oml

fig.(3.3) Transition diagram
for Markov chain

one state to another, with the symbol on each branch
representing the probability of that tramnsition, and when
mentioned the output is given in parenthesis.

After producing the noise digit ei, the Markaov chain

makes a transition to prepare for e, To simulate

+1°
burst errors, the states 'A' and 'B!' must tend to persist
i.e. the transition probabilities P (for going from A+B)

and P, (for going from B+A)} are small, and the probabilities
Q (for remaining in 'A') and Q, (for remainig in 'B') are

large where

0 =1-P (3.6-a)



and g, =1 - P (3.86-b)

The Markeov chain model is suitable for investigating
binary burst-error channels, where e, may take either '0!
or '1l', as in Eq.(3.5), but this model is not suitable
for channels where noise information is required i.e. in
simulating channels for the study of soft-descision
decoders, where information about the actual amplitude
value of the noise sample W is needed, where the

amplitude of w; can take any value

To overcome this problem it is desirable to define a
model that can supply the required noise information. To
differentiate between the two models the latter will be

called an analogue-burst-noise channel model.

3.2- Analogue-burst-noise channel model

In practice, assuming that the noise effect on the
channel is only additive noise, two noise types must be
considered:

a) Noise of relatively low power, which is added
to the signal continuously during the whole transmission
period. Its presence is responsible for producing few
scattered errors. These errors can be considered random
errors. Clearly, this nmoise is not the main source of
errors in a bursty channel and will be called thé

background noise.



b) Noise of high power, and a relatively short
duration (at least longer than one element duration period
T). This burst noise is the main source of errors in the
channel and its presence tends to be separated by longer
periods of its absence.

.Although the background noise is present during
the whole transmission time, it is insignificant compared
to the burst noise and so can be neglected when an
error burst is present. One can thus think of noise as
being switched from low power noise to high power noise
and vice versa.

A model of the analogue-burst-noise channel based
on the above facts is shown in fig.(3.4). This chain will
provide information about noise amplitude, where noise
amplitude is as defined in Eq.(3.7). Since we are interested
in the channel coding and channel decoding performance,
then it is more convenient to consider the discrete signals
at the input and the output of the channel, so that Eq.(3.1)

can be rewritten as
Y., = X. + w. (3.8)

where YirXgouy are samples of the ith received,

transmitted, and noise elements respectively.
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fig.(3.4) Transition diagram for

analogue-burst-noise chain

Two states are used for generating noise, state'A!
generates the background noise, where the probability of
generating error.is p, (for random), and state '8' for
generating burst noise, where the probability of generating
error is pg {for burst). The probabilities Q, (for remaining
in 'A')}, and Qg (for remaining in'8') are large compared
to the transition probabilities P,g (for moving from 'A' to
'B'), and P (for moving from 'B' to 'A'}. Egs.(3.6) can

BA

be rewritten
Q. =1 - P (3.9-a)
Q, =1 - P (3.9-b)

The noise sample Wy is a statically independent random
variable, which has one of two probability densities
depending on the state that generates w, .

Assuming the system is in state 'A', although the
noise power is louw, Eq.(3.7) still applies and errors
may be generated. The probability of generating errors

PR varies according to the probability density function



of the simulated noise, and its power. When the noise
power jumps up to a high value, the system will move to
state 'B'. Again the probability of generating errors

Pg» is dependent on the probability density function

and the power of the moise. In this state more errors

are generated in a form of a burst. At some stage the
cause of the high power noise will cease to exist,

noise will then jump down to the previous value, and

the system will move back toc state 'A', and so on, To
define the probabilities of the transitions, one should
recall that the system moves from 'A' to 'B' and from

'B'" to 'A' as a result of the change in the noise pouwer
from low to high value and high to low value respectively.
Consider the case gf moving from 'A' to 'B'; this case
will arise when the noise makes a jump from low power to
high power, thus the system has to move from 'A' to 'B',
generating onme noise sample w, as it moves. Since the
system starts to move after the noise power change, then
the probability of generating errors in this transition
state is the same as the probability of generating errors
in the high power noise state ('B'), namely, pg- Conversly,
the probability of generating errors in the transition

from 'B' to 'A' is PR -

3.3-Properties nf analoque-burst-noise channel model

In order to compare the analogue-burst-noise channel
model with any other model we must list some of its major
properties.

l-Each noise sample Wy is an algebraic value, it



must satisfy Eqg.(3.7)

(3.7)

)
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independent of the state in which the system is i.,e. 'A',
'B', moving from 'A' to 'B', or moving from 'B' to 'A'.
Z2-Assuming the channel nolse is only additive

noise, the noise addition is algebraic, and Eq.(3.8)applies

Y. = X. + w, (3.8)

Given that the modulator of fig.{(3.1) will output the
sample voltage +V for the binary '1l' and the sample

voltage -V for the binary '0', then

X, = +\ (3.10)

then the sample of the received waveform Y will take

value in the range

g - (3.11)

where the addition in Eq.(3.8) is an algebraic addition,
3-Few errors may be generated in the no burst
state, (state '"A' and moving from 'B' to 'A'). But these
errors are scattered, and are considered random errors.
4-An analogue-burst starts when the noise power
jumps up to a high value. The probability of generating

errors at the first burst element (the system is moving



from 'A' to 'B') is Pg Although Pg is large, yet it is
less than one, thus, an analogue-burst does not necessarily
start with an error, although that has the probability
of Pg which is relatively high.
5-The end of the analogue burst is when the noise
power jumps down to a low value. The probability of
generating errors at the last burst element (the system
is still in 'B') is pg- Which is large, but less than
one. So an analogue-bursi does not necessarily end with
an error, although this has a relatively high probability.
6-The probability distributions 6f states 'A' and
'8B', can be similiar or different depending on the
simulated channel.
7-The high noise power of state '8', can be either
constant or variable during a transmission period.
8-The probability distriﬁution of state 'B', can
be in theory variable during a burst generation, or

during a transmission time.

J.4-Transforming analogue-burst-noise model

to an eguivalent binary model

The Markov chain representing a binary-burst
channel model, shown in Fig.(3.3), can be used to study
the performance of any binary burst-error-correcting
codes. Since binary-error-correcting codes, and the
binary correction technique will be used to correct
errors, in decoding methods, that make use of the

available noise information, then the amalogue-burst-noise



model should be transformed to an equivalent binary-
burst model to facilitate the application of binary
correction rules.

Before considering the transformation from the
analogue-burst-noise model to the binary-burst model,
it will be beneficial to consider the following facts.

1-The analogue-burst-noise model represents the
generation of additive noise, while the binary-burst
model represents the generation of errors.

Z2-Any noise sample Wy generated by the analogue-
burst-noise model, may or may not be an error. Let Th
be the threshold value on which the demodulator of
fig.(S.l), decides from the received sample yi, whether
the transmitted sample x; was '0' or '1', according to

the rules

if y. < Th then x5

fl
o
—
(@]

.12-a)

ar

1
—

if y. > Th then x; (3.12-b)

The noise sample wy will correspond to an error if twe

conditions are met
w, = e, =1 (3.13-a)
if fu, | > Th (3.13-b)

and sign w, # sign Xy (3.13-c)



3-Although theoretically, noise generated by the
analogue-burst-noise model is of unlimited value as in
Eq.(3.7), it is practically, limited by the receiver to
the voltage levels representing '0' and '1'. Let the
voltage represent '0' by -V and the voltage represent

"1' he +V¥ then £g.(3.7) can be rewritten
-V g w, € +V (3.14)

The term 'analogue model' will be used as an .
equivalent to the term 'analogue-burst-noise channel
model', while the term 'bimary model' will be used to
represent the 'binary-burst channel model', during the
description of the tramslation process, which is as
follows:

STATE 'A' in -the analogue model can be considered
as two separate cases according to the result of the
detection process in the demodulation of fig.(3.1) which
uses Eqgs.(3.12).

Case 1, state 'A' in the analoque model does not
generate an error. This event has the probability l-pR
and so it can be transferred directly to state 'A' in
the binary model.

Case 2, state 'A' in the analogue model generates
errors, with probability PR Assuming that the present
noise sample Wy is an error, then state 'A' in the
analogue model represents the transition form 'A' to 'B'

in the binary model. The next noise sample wi,; may be one



of two possibilities, sither Wl is not an error,
consequently state 'A' in the analoque model is represented
by the transition from 'B' to 'A' in the binary model,

or wi+l is an error, then state 'A' in the analogue model
is represented by state 'B' in the binary model. In the
later case, 'A' in the analogue model becomes 'B' in the
binary model as long as the next consecutive noise samples
are errors . Rs soon as the next noise sample is not

an error, state "A' in the analogue model hecomes a

transition from 'B' to 'A' in the binmary model.

Transition from 'A' to'B', three cases can be

considered depending on the previous noise samples. If
wi _y was not an error, then Wy can pe one of two values,
either Wy is not an error where the praobability is l-pB,
in which case the transition from 'A' to 'B' in the
analogue model is state 'A' in the binary model. Or Wy
is an error which has the probability of Pg+ thus the
transition from 'A' to 'B' in the analogue model is
transferred to the transition from 'A' to 'B' in the
binary madel. On the other hand if the previous noise
sample w; ) was an error the transition from 'A' to 'B!
in the analogue is state '8' in the binary model.

STATE 'B' This is best described by considering
the noise samples generated in state 'B' as three parts;
start, middle, and end.

Transforming the few first samples is dependent on

the previous samples. Let the first noise sample generated

in state 'B' be w,; if the previous sample wi _q was an



error, then state 'B' in the analogue model becomes

state 'B' in the binary model. Otherwise if was not

Wil
an error and W is an error, then state 'B' in the analogue
model is represented by the transition from 'A' to 'B' in

the binary model, while at the next sample y.,,,state 'B'

1+1
in the analogue model becomes state 'B'*in the binary

model. If and w, are not errars, themn state 'B' in

"i-1
the analogue model becomes stat 'A' in the bimary model.
As soon as a noise sample is an error, state 'B' in the
analogue model is transformed to the transition from 'A'!
to 'B'" in the binary model, and at the next noise sample
state 'B' in the analogque model becomes state '8' in the
binary model.

In the middle part, state 'B' in the analaogue model
has been transformed to state 'B' in the binary model, it
stays there for all the middle part.

Transformation of the end part is dependent on the
future noise samples. Let the present noise samplelui be
the last error in the burst, then state 'B' in the
analogue channel becomes state 'B' in the binary model.

Since the next nolse sample Wy is not an errar, then

+1
state 'B' in the analogue model becomes tramsition from
'8' to 'A'" in the binary model, while for the next sample

state '8' becomes state 'A'.

Transition from 'B' to 'A' If the nolse sample Wy

is an error, the transition from 'B' to 'A' in the
analogue model is represented by state 'B' in the binary

model, while if the previous noise sample wi—l was an



error, and mi is not an error, then the transition from
'B' to 'A' in the analogue model becomes a transition
from 'B' to 'A' in the binary model. But if wi and
Wiy and we were nog error samples, then the transition
from 'B' to '"A' in the analogue model becomes state 'A!
in the binary model.

The above discribed transformations from the

analogue-burst-noise channel model to the binary-burst

channel model are summarised in table.(3.1).

3.5-The transforming probabilities of the

analogue-burst-noise model

The description of the transform from the analogue-
burst-noise channel model to the binary-burst chanmnel in
section (3.4) and in table (3.1) does not give a proper
idea of how many transformations take place from one state
to another. To determine the transformation from any
state in the analogue-burst-noise channel model to the
corresponding state in the binary-burst channel model,
it is essential to look at the probabilities for each
individual case.

Before calculating the probabilities, let us
define the terms to be used in the calculations. Let
p(statel,state2) be the probability of transforming
state 1 in the analogue-burst-noise channel model to
state 2 in the binary-burst channel model, furthermore
let A, represent state 'A', AB the transition from 'A'
to 'B', B for state 'B', and BA represent the transition

from 'B' to 'A'.

- - - e ——



analogue model error samples binary model state|probability
state present next previous | present [of error
e. e, e, transformtransform
1 i+l Ti+2
A 0 A A PR
1 A A to B P
O A to B B ta A P
1 A to B B PR
0 B B to A Pr
1 B B PR
0 B to A A Pp
1 B to A A to B Pp-
A to B 0 A A Pg
1 A A to B Pg
A to B B Pg
B B Pg
9] B to A A Pg
1 B to A A to B Pg
B 0 A A Pg
1 A A to B Pg
A to B B Py
1 B B Py
0 1 0 B B P
0 0 0] B B to A Pg
0 0 0 B to A A Pg
B to A 0 A A PR
1 A A to B Pp
0 A teo B B to A Pg
1 A to B B P
0 B B to A Pq
1 B B PR
0 B to A A Pg
1 B to A A to B PR
e, = 1 error

no eIrror

do not care

Table (3.1) Transferring anmalogue model to binary model




Considering state 'A', according to table (3.1)
there are four possible places where state 'A' can be
transformed, so there are four probabilities corresponding
to these four transformations.

The transform from state 'A' in the analogue model
to the transition from 'A' to 'B' in the binary model,
takes place each time an error is generated, following a
no error generation. Since the probability of generating
an error in state 'A' is PR and the probability of

generating no error’'is l-pR, then

P(a.ag) = pr(1l - pg) (3.15)

Transforming 'A' in the analogue model to state 'B!
in the binary model requires state 'A' to generate an
error next to an error generation, or in other words to
generate an error following a transform from state 'A!
in the analogue model to the transition from 'A' to 'B'
or to state 'B' in the binmary model. Thus

Pia.g) = o (3.186)

Assuming state 'A' in the analogue model has been
transformed to state 'B' in the binary model as a result
of the previous transform, the current transform can be
to the transition from 'B' to 'A', if state "A' in the
analogue model did not generate an error i.e. state 'A’'
in the analogue model will transform to the transition

from 'B' to 'A' in the binary model if state 'A' generates



no error after generation of an error. The probability

of this transform is

Pia,ga) = PR(L - pg) (3.17)

The fourth and last probability to be calculated is
the probability of the transform from state 'A' in the
analogue model to state 'B' in the binary model. This
transform takes place if the previous transform was to
the transition from 'B' to 'A', or to state 'A' i.e. if
two consecutive no errors are generated when the system
is in state 'A' in the analogue model, thus the probability
is

2 (3.18)

P(a,a) = (1 - gl

To consider the transform probabilities for state 'B',
the length of the current burst £ should be taken into
account. Considering the transform from state 'B' in the
analogue-burst-noise channel model to the transition
from 'A' to 'B' in the binary-burst channel model, this
transform will take place at the first error geneéation
when the system is in state 'B' in the analogue model.
The probability of generating at least one error during
all & samples, given that the probability of generating
an error is pg+ can be calculated as follows. The
probability of generating no errors during the whole
burst is
)2

(3.19)

P = (1 - pg

no errors



since L py =1 (3.20)

then the probability of generating one error or more in
the & samples is

p =1 - (1 - pt (3.21)
error B '
during the burst generation £ transforms take place, the
transform from state 'B' in the analogue model to the

transition from 'A' to 'B' occurs only once, so its

occurence is i of the whole burst, and since the probability

I
of its occurence is p s+ then the probability of the
error
transfer is
= X - - L

The next transform to be considered, is the transform
from state '8' in the analogue channel model to the
transition from 'B' to 'A' in the binary model. This
transform will occur, if the system in state ;8' in the
analogue model has generated at least one error (the
system is in state '8' in the binary model), and the
error generated does not confine itself to the Rth
position of the burst. In fact the transform to the
transition from 'B' to 'A'" in the binary system will
take place, at the next sample to the last error generation,

wherever that error is. The £ sample of the burst can

th

be used as an indication of the transform. So if the ch



sample generates an error, then no transform has occured,
while if the Rth sample generates no error, then a
transform has occured, but not necessarily at the ch
position. The probability of an no error generated at
the ch p051t10§ is

Pro error -~ 1 ~ Pg (3.23)
The probability of the system being tansformed to state
'B' in the binary model is given inEq.(3.21). Thus the
transform probability is the probability of generating no
errors in the ch position giueh that the system is in
state 'B' in the binary model, and since it takes place

only once during the burst, then

(1-pg)

a,80) =~ 11-(1-pg)") (3.24)

"

The third transform is the transform state 'B' in
the analogue channel model to state 'A' in the binary
channel model. Such a transform may occur at the beginning
and the end of the burst. At the beqginning of a burst,
the system will move from state 'A' to state 'B!' in the
analogue channel model, ocnce th; system is in state 'B!
in the analogue model, it will be transformed to state
'A' in the binary model as long as no error is generated.
As soon as an error is generated, state '8' in the binary

model is transformed to the transition from 'A' to 'B!

. and then to state 'B'. On the other hand, near the end
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of the burst, state 'B' in the analogue channel is being
transformed to state '8' in the binary model, as long as,
the last error in the burst is not generated. After the
generation of the last BrTor, state 'B'" in the analogue

is transformed to the transition from 'B' to 'A', then

to state 'A' in the binary model. To reduce the calculation
complexity the actual transform from state 'B' in the
analogue to state 'B' in the binmary model is shifted, so
that the transform from 'B' in the analogue channel to
state 'A' in the binary channel will occur at the beginning
only. Fig.(3.5) shows a burst.generated when the system

is in state 'B' in the analogue channel model before and
after shifting. The probability of transforming state '8!
in the analogue model to state 'A' in the binary model
during the 1lst sample is the probability of generating

no errors, then

Pho error - 1 - Pg (3.25)
since this transform takes place once during £ samples,
then
l1-p
B :

Pl no error © 7% (3.26)
Similarly the probability of generating no errors for
the ith sample is the probability of Eq.(3.26) given that

all previous samples generate no errors, Hence
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P = % {1 - pB)i (3.27)

i no error
the total probability of transforming state '8' in the
analogue model to state 'A' in the bimary model is the

sum. of all these & probabilities

(1-pB)':L .(3.28)
=1

-
bl anrs Fad

Pe,a) = ¢

The fourth and last probability, is-the probability
of transforming state 'B' in the anmalogue channel model
to state 'B' in the binary channel model. According to

Egq.(3.20)

Pa,8) * P(e,n) * P(s,n8) * P(s,Ba) !
(3.28)

P,y =1 -~ 1 Peg,n) * Prs,ne) * Ps,en)!

(3.20)

Substituting Eqs.(3.28),(3.22),(3.24) in Eq.(3.30) gives

% , 1-p
p(B’B) A [{% ;:1(1-D8)1}+%{l'(l‘pa)£}+_f_§{l-(l-DB)R}
(3.31)
or
L .

1 [}

(6,0) = 1= 1 (1181 70 He(2opg) (- (o))
(3.32)

A real transmission channel has the probability

values of pR=10-2 - lO_a, and pg=0.1 - 0.5.
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Considering an average channel which has pR=10-3, and
pB=D.3, and let the average burst length £=128 the
transform probability from state 'A' in the analogue
channel model to state 'A' in the binary channel from
Eq.(3.18) is

-3)2

= (1 - 10 (3.33)

Pla,n)

Pia,a) = 0.998 (3.34)

Similarily the transform probability from state 'B' in
the analogue channel model to state 'B' in the binary

channel model is given in Eq.(3.32)

128 ,

"(e,8)" l'TEE { Z (1-0.3)1}+(2—U.3){1_(1_0.3)128}]
(3.35)

P(g,g) = 0-9788 (3.38)

Egqs.(3.34) and (3.36) show that 89.8% of the noise
samples generated in state 'A' correspond to state 'A!
in both &hannel model, and nearly 98% of the noise samples
generated in state 'B' correspomd to state 'B' in both
channels, Consequently, the two channel models are
interchangeable for 98% of the time, so that the techniques
used for signal processing when the binary channel.is
used can be used for the analogue channel and vice versa,

since the transformation error incurred is very small.




The probability of the system being present
in state 'A' in both systems is the probability of
transform from state 'A' to state 'A' and from state 'A'
to the transition from 'B' to 'A', because at the end of

the two transforms the system is in state 'A'. So

Substituting the values of the average channel in Eq.(3.37)

gives

PA = (0.998 + 0.00099 = 0.9899 (3.38)

similarily, the probability of the system being in state

'B'" in both systems is

P = p( (3.39)

8,8) * P(s,a8)

0.9789 + 0.0078 = 0.9867 {(3.40)

0
]

The effect of the probabilities of error variation
can be seen as follows. It is clear from Eqgs.(3.37),{(3.18),
and (3.17) that state 'A' probabilities is dependent on
the background noise probability only.-Thus PR is the only
factor that will affect the transform probabilities of
state 'A'. Eq.(3.18) shouws that p(A,A) will move closer
to 1 as P decreases, while Eq.(3.l?) shows that the

value of p(H,BA) decreases as PR decreases, but since



p(R,A) is the dominant factor and its increase is larger
than the decrease of p(A,BA)’ then P A moves closer to
1l as PR decreases and vice versa. These results are
expected because as Pp is decreased, fewer random errors
are generated, which lead to more transforms from state
"A' in the analogue model to state 'A' in the binary
model, hence p(A,A) is larger. On the other hand, since
more transforms occur from 'A' to 'A' then fewer transforms
occur from'A'to'B' and consequently fewer transforms to
the transition from 'B' to "A', hence p(A,BA) becomes
smaller,

State 'B' probabilities are dependent on the burst
noise probability only, for a given burst length,according
to €gs.(3.39),(3.32), and (3.22). It can be seen from
Eq.(3.32) that p(B,B) increases, as the probability of
eIToT py is increased, while for a moderate length &
p(A,AB) is nearly constant. Thus PB increases w;th the
increase of Pg» and vice versa. Again thiquresult is
expected because as DB is increased, Femer.no errors will
be present at the beginning and the end of a burst,

hence fewer transforms to 'A',

3.6-Channel simulation

During the course of the tests, two types of codes
were used. Codes far correcting random—errors, and codes
for correcting burst-errors. Consequently, there was a
need to simulate two types of channels that are suitable

for the transmission of each type of codes, namely a



random error channel and a burst-error channel (bursty
channel).

3.6.1 The bursty channel

The obvious way to get.the data for a bursty channel
is to set three random variables, one representing the.
start point of the burst, the second representing the burst
length, while the third represents the errors position in
the burst. This will be a simulated channel which is not
real, because in reality bursts have a special properties
where short bursts tend to occur more freqgquently than the
longer ones, while very long burst are rare. A better way
is to smiulate a real transmission channel. It was stated at
the beginning of thisnchapferithat a channel can be any
medium where data is transmitted or stored. And since our
interest is in the decoder itself and not in the channel,
therefore the choice of a bursty channel for the simulation
is not critical, and can be either a transmission line,
communication link, or a storage media.

The data chosen for the simulation is taken from a
consultancy work done in Loughborough Uniyersity of
Technology for EMI Central Research Laboratories(g3),
where tests were carried out for recording and reading
digital data on digital audio tapes. Data obtained from
the report concerns the burst length and freguency in

a one hour recording period at a data rate of Z26Kbps

for different tape types.

3.6.1.1 The bursty channel simulation

Simulation of the bursty channel is carried out by




calculating values for the three réndom variables mentioned
in section 3.6.1. The first represents the burst
distribution during transmission, i.e. it gives the start
point of each burst., It was assumed that bursts are randomly
.distributed during the transmission period. This is in
accordance with section 3.2 where no special distribution

is assumed for burst generation, and in the absence of
further data cdncerning bursts distribution appears a
reasonable assumption to make. The second variable determines
the duration of each burst. The data for this variable is

*, obtained from reference (93), although that referemce gives
a very accurate method for simulating the bursty channel

it doés not lend itself to computer simulation due to

time constraints, and so a simple curve fitting technique
will be used for our study. A least-squares approximation

(30)

using Chebyshev polynomial is used to get the equation
of the bursts length, which in turn is used to generate
the random length of the simulated bursts. The third
variable is the actual noise value added to each of the
transmitted digits, and it sign, i.e. the error position
in the burst. This variable is usually taken in a binary
burst channel maodel as a '0' or '"1' generator, but for
our case since we are interested in simulating an analogue
burst channel model, the noise added to the transmitted
signal must have a algebraic value, and not '0' and '1!
only. Although the additive noise introduced by many

practical channels does not approximate to Gaussian noise,

it is well known that a digital signal having a better



tolerance to additive white Gaussian noise than another

signal, will normally also have a better tolerance to the
s ) . . . (16,17)

additive nolse obtained in practice . Therefore an

additive white Gaussian nolse is used as the random

variable that decides the error positions in each

burst.

3.6.1,2 Implementation of the simulation

The data from reference (93) shows that 230 burst
occured on average during & one hour recording, and that
the total number of tranmsmitted digits is 93,600,000 per
hour., To start with, 230 random numbers are generated
from the curve fitting equation, these numbers represent
the length of the 230 burst to be used during the simulated
transmission. Then another 230 numbers ranging between 1
and 93,600,000 are rangomly generated, these numbers
represent the starting point of each burst. Since the
camputer will simulate the transmission process in a
serial mode, therefore these numbers are sorted in an
ascending order, so that each burst is in the correct
order timewise. The next step was to consider the
adjacent burst, to check for a common area between the
two burst. When a common area is present between two or
more bursts, the following rules are used to deal with
that area:

1-If the next burst happens to exist inside the
present burst, the next burst is discarded.

2-1f two bursts or more happen to overlap, all the

bursts are considered as one burst that starts at the
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beginning of the first overlapped burst, and ends at the
end of the last overlapped one.

3-1If any burst extends to the point beyond the end
of transmissien, it is forced to end at the end of the
transmission, and the rest is discarded.

The noise samples are then added to the corresponding
digits of the burst, which are then handed to the receiver
for decoding. Since we are interested in simulating tﬁe
analogue burst noise channel described in section 3.2, then
two types of noise will be added to transmitted signal
in the channel. Firgtly, noise of low power, which will
be called background noise, this neise is present all
the time, so it is added to the signal during all the
transmission period, the SNR ualge at the channel output
is high, therefore only few random errors will be generated.
Secondly, the burst noise, which has high pouver, and is
added to transmitted signal during the burst periods only,
the SNR wvalue at the channel output is low, thus this is
responsible for generating most of the errors introduced
in the transmission system.

3.6.1.3 Some practical considerations

Interlaceing techniques are expected to be used on
any bursty channel to improve the code performance,
especially with short length block codes. In order to
achieve a practical system simulation, codes were inter-
laced to a degree of A. Interlaceing technigues will be
discussed in detail in chapter four.

For the sake of running the simulation programme



faster, and using less memory space, some practical
aspects were considered during the program writing. These
changes do not affect the programme results, but they
increase its complexity. These changes are:

1-S5ince each code tested was interlaced to
interlaceing degree A. A minimum memory space of An is
used to store the transmitted and the received data.

2-To cut the big amount of calculation in the
encoding and decoding processes, it was assumed that the
background noise generate errors that can be corrected by
the decoder. Therefore no errors cccur in the blocks not
affected by é burst or more. Thus the encoding and decoding
process in the simulation takes place only for the
corrupted An blocks. Furthermore, the program monitors
each transmitted codeword block of thg A blocks, and
excludes any unaffected block or blocks from the decoding
process.

S-Because of the policy used to deal only with the
corrupted blocks, then the program has to fit each burst
in its exact place within the code blocks. In some cases
where the burst is not comfined to one block, the noise
values are added to the transmitted digits from the place
where the burst starts up to the last (Anth) digit of
the interlaced block, after which the decoding process is
started, Once the decoding is finished the remainder of
the burst is added to the digits of the next interlaced
block, and the process is repeated as long as the burst 1is

not fimished. Onece all the burst is added to the transmitted



signal and the decoding process is finished, the next
burst is éonsidered

The block diagram of fig.(3.6) shows the flow chart
for the analogue-burst- noise channel test system as
vsed in the simulation, while the actual simulation
programme is included in appendix D.

3.6.2 The random-error channel simulation

The channel simulation programme for random-error
generation is a straightforward programme. Additive
white Gaussian noise is used for the same reason mentioned
in section 3.6.1.1. Since the noise power 1s nearly
constant in these channels, then a white Gaussian noise is
added to the transmitted signal during the transmission
period. The SNR value at the channel output is constant,
and the number of random errors is dependent on the noise
power value. Simulation is acheiwved by the algebraic
addition of a noise sample to each transmitted digit. The
encoding and decoding process 1is carried out for all the
transmitted blocks. The simulation programme is included

in appendix D.

3.7-Two-Way Channels

The communication chamnel shown in fig.(3.l) is
strictly a one-way channel, where signals are transmitted
from one terminal (the source) to another terminal (the
sink), through the channel, in one direction only. Very
frequently communication systems employ two-way channels,
where a terminal (source or sink) can transmit and receive

signals from the other terminal (sink or source). Being
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error detection and retransmission. Error detection
requires much simpler decoding equipment, although encoding
for error detection is no more complex than for error-
correcting codes, Also, errar detection with retransmission
is adaptive, i.e. redundancy digits are increased with
errors, when no errors are detected, there are no redundancy
digits transmitted. Therefore the transmission bit rate
under certain circumstances may be lower. Thus this kind
of system may perform better than the one-way channel
system.

There is a limit to the efficiency of a system
that uses simple error detection and retransmission alonel
Short error-detecting codes cannot detect errors
efficiently, while if extremely long codes are used,
retransmission must be done too frequently. A combination
of correction of most frequent error-patterns and detection
coupled with retransmission for less frequent error-
patterns is not subject to the limitations described
above, and is often more efficient than either errer
correction or error detection and retransmission alone.
Several systems have been build using the combined error
correction and detection with retransmission facilities(53).

Deciding on the best system, that add less
redundancy digits, at some error-rate value, is dependent
on many factors, i.é. the number of parity-check digits
of the detection and correction codes, the lenght of the
block, and the channel error rate. A detailed study of
the bit rate consideration in detection and correction

codes for random-error channels, is included in appendix C.




CHATPER 4

TIME - SHARED

SOFT-DECISION DECDDER FOR BURST-ERRDOR CHANNELS

4,1-Burst Noise

Burst noise problems can be divided into tuwo
fundamental types. Firstly, where no information is
avajilable to identify single unreliable digits. This
type has been well studied and documented over the years,
because this problem existed long before soft-decision
techniques were available. However, if the error statistics
are available, the channel under study can be modelled
(as in section 3.1), and a suitable error-correction
scheme can be introduced. The second type of problem
occurs when noise information is available from the
demodulator, thus the reliability identification for
each received digit can be calculated. However the use
of reliability information for decoding burst-errors,
will create new problems at high noise power in that the
high noise value may force the transmitted digit to
change its value to a value higher than that transmitted.
This will happen if the noise sample W, satisfies two

conditions

lw, > 2v (4.1-a)

sign g # sign Xy (4.1-b)




wvhere X is the transmitted digit, that can be transmitted
as +V or ~-V. The decoder will treat such samples as a
correctly received digit, because the confidence number is
high. To overcome this problem the received digits are
erased during severe noise conditions.

The.first type of problem occurs in certain
communication media where data is handled digitally
such as storage media. Examples are films, magnetic
disks, magnetic memories, and sometimes magnetic tapes.
Burst error can occur through scratches, defects, ageing,
etc. The nature of the error mechanism is such that
reliability information is very difficult, if not impossible
to obtain. Typical approaches to solving this problem are
techniques which correct long bursts of errors, or multiple
short bursts, or interlacing codes, so multiple long
bursts can be corrected. Burst-error-trapping technigues

found by Tong(aa) (31)

and Gallager are very effective

in correcting long bursts provided there is sufficient
error-free guard space between bursts. The greatest
problem in applying these techniques is getting an
accurate data of the burst statistics of the transmission
channels.

The use of coding in the second type of burst noise
problem can be more effective, because of the use of
noise information of the channel (section2.4.1). Often
the channel is basically a Gaussian nolse channel that

is occasionally corrupted by large bursts of noise or

interference. The transmission channel is specified by



four probabilities as in fig.(3.4), two transition

probabilities P and P that give the remaining

AB BA

Markov chain probabilities from Eqgs.(3.9). The other
two probabilities are the background noise probability
PR’ which cause the generation of random errors, and
the burst noise probability Pg» which is responsible for
the burst noise errors generation. A near-optimum
strategy in providing likelihood information when the
bursts are present is tosimply blank the digits effected
by the burst nolise so that erasures are produced(ll).

This strategy will improve the decoder performance, since
the erroneous confidence numbers are not fed to the
decoder, thus the decoder is not assuming any of the

burst digits are correct as opposed to the ordinary soft-
decision decoder. Howeuer,.it is assumed in such decoders
that when the burst noise is present, it is considered

to have such a large value that it can easily be detected
and blanked by the modulator, which will result in a

burst of erasures. And that only complete digit or digits
are blanked. The perfoermance in an actual system will
depart somewhat from the results calculated by computer
simulation, because of difficulties in implementing
perfect blankers or because the blanker may be approximated
by a clipper or a limiter. In addition, the burst noise
may not have a sufficient large value to activate the
blanker. Because of the degradation in the practical
system that Qses blankers, compared teo the computer

simulated system, it was decided not to use blankers in

the introduced algorithms keeping in mind that a similar



system using blankers will perform better at low SNR
values, The reason for this choice is to get a more
relistic idea from comparing the performance of the

different computer simulated systems.

4.2-Interlaceing (Interleaving) Technigques

To correct all bursts of errors added to the
transmitted signal during transmission through a bursty
channel, an error-cerrecting code which is capable of
correcting bursts of length eqgual at least to. the maximum
burst length generated by the channel should be used.
This will restrict the choice of codes for such channels
to long codes. One potential solution involves utilizing
a suitable interlacer/deinterlacer pair. Using this
approach, codewords from the encoder output are fed into
an interlacer prior to transmission, at the receiver end
the received word is fed to a deinterlacer prior to
decoding. The function of the interlaceing is to distribute
error more uniformly at fhe decoder input, so'thaF codes
which have relatively short burst-length correctidn
capability can be used. A block diagram of a system
that uses interlacer/deinterlacer is shown in fig.(4.1).

Note that if each received digit is guantized to J bits

Data in Data out

| |

Fncoder k Interlacer 4. Channel |4 Deinterlacer|d Decoder

Fig.(4.1) Block diagram of external Interlacer/Deinterlacer



in the demodulator, then the deinterlacer requires a
factor of J more memory than the hard decision memory
requirements.

By definition, an interlacer is a device that
rearranges the ordering of a sequence of symbols in a
deterministic manner, On the other hand a deinterlacer
is a device that functions exactly in the reverse order
of the interlacer, i.e. it applies the inverse ordering
to restore the symbols to thier original sequence. These
two devices can assume any confilgurations, as long as a
law and its inverse are applied. However interlacers
can be divided into two principal classifications. First,
the periodic type, which is perferred in many applications
because of its simplicity and its low cost. The second,
is the pseudocrandom type, which offers more robustness
than the periodic type. Hence, it may' be preferred in
certain applications where the burst characteristics of
the transmission channel vary substantially.

The interlacer/deinterlacer shown in fig.(4.1) are
applied externally to the encoder/decoder hardware, which
is the general case. But this is not the simplest
implementation for the cyclic codes using error-trapping
decoders. The simplest implementation is to apply inter-
laceing and deinterlaceing internally to the decoder by

the use of shift registers(a7).

4.2.1 Periodic Interlacers

A periodic interlacer is an interlacer which has

a periodic function of time law as the ordering law. Two



types of interlacer are commonly wused, symbol interlacers,

and convolutional interlacers.

4.2,1,1 Symbol Interlacers

A typical cése of a symbol interlacer involves
writing the coded digits in the rows of & matrix, which
has n columns and A rows which is called (A,n) interlacer.
Each codewaord is written in a row, so in total X codewords
are written in the matrix. The ordering consist of
reading these digits out of the matrix by columns prior
to transmission. Such an interlacer is called a symbol
interlacer of degree A. At the receiving terminal, the
deinterlacer performs the inverse operatien, digits are
written in columns and read out in rows. The most important
characteristics of the symbol interlacers are:

1-Any burst of errors of length 2 “g¢A results in
single errors at the deinterlacer output, each separated
by at least n digits. Since the block code length is n,
then for such a case one error may occur in each block.
If the Céde used can correct a burst of £ errors in one
block, then using this interlacer will enable the code
to correct bursts of length % °¢A%. Hence the correction
power is increased by A.

2-Any burst of lemgth & that statisfy the fellowing

equation

L7 = fA (4.2)

where for the moment assuming f>1, will result in

bursts of no more than rf] digits length, which are




separated by 2 space guard no less than n—ff] digits,
where [ f ] represent the nearest largest integer to the
value of f. Since it is assumed that the code can correct
all bursts of & or less in one block, then for correctable

bursts f can be
0 f <2 (4.3)

3-A periodic sequence of K single errors spaced
by & digits, will result in a single burst of length K
at the deinterlacer output, while if the errors are
spaced by A/J, they will result in J bursts. On the
other hand, ewven if the errors are not single errors,
they will result in a burst and some scattered errors
in the interlaced An digits, as long as there exist
in these errors spaced by X digits.

4-The memory requirement is An digits of storage
in both the interlacer and the deinterlacer provided
that the received digits are not quanti;éd. End to end
delay can differ depending on the modulating and decoding
strategy. If the transmission, and the decoding starts
after the whole An digits are stored then the maximum

delay is

D = 2An (4.4)
ma x _

Bn the other hand, if the transmission and the decoding
starts once digits are stored in the whole first column,

then the delay is minimum and given by




Drin = 2 { xn - (n-1) } . .
The third Charabteristic demonstrates clearly that,
if there is substantial variation in the burst noise
characteristics of the transmission channel, this type
of interlacer lacks robustness, and its ability to

disperse bursts is degraded.

4.2.1.2-Convolutional Interlacers

This type of interlacer is referred to as a (A, n)
interlacer(28’75), and has properties similar to the
(A,n) symbol interlacer. A shift register version is shouwn

in fig.(4.2). By definition

m= 3 (4.6)
[18-1M ]
fROM
ENCODER I I DEC?DEH
o m }o ERROR
- CHANNEL
. ] 0
1

e -0y
Fig.{4.2) Shift register implementation of a
convolutional interlacer/deinterlacer
The interlacer functions in the following way. The
encoder output digits are fed to the interlacer input
which shifts them sequentially into A registers. Each
digit is fed to one of A register in turn, as a new
digit is shifted in,the oldest digit in the interlacer

is shifted out to the channel. The shifting in and

(4.5)




shifting out is done synchronously. The length of the
A registers is increased by a factor of M. The deinterlacer
functions in the reverse order, where the A regisiers
are decreased by a factor of M. Channel output is shifted
'in one of - the registers and the oldest is shifted out at
the same time. Clearly a synchronization between the
interlacer and the deinterlacer should be present for
proper deinterlaceing.

The most important charécteristics of this type of
interlacer are :

l1-Any tuo digits that are separated by less than
n digits at the interlacer input will be separated by at
least A digits. Let a burst consist of 2 digits which
are added to the transmitted digit im the channel, this
burst will result at the output of the deinterlacer as
£ single errors which are separated by at least n digits.

2-Any pattern of errors that is a periodic single
errors spaced by n+l digits results in a burst of length
A at theninterlacer output.

3-The total end-to-end delay excluding the channel

delay is
D =n (A-1) (4.7)

while the memory requirement for each terminal is
n(x-1)/2 diéits of storage.
Two points worth noticeing at this stage are, firstly,

in this type of interlacer the memory and delay are about



half those of the equivalent symbol interlacer's
requirements. Secondly this system lacks robustness in

the same way as the symbol interlacer systems.

4.2.2 Pseudorandom Interlacer

This interlacer takes a block of L digits from the
encoder output and reorders, or permutes them in a
pseudorandom fashion. This can be implemented by writing
the L digits into a (1xL) RAM, and then reading them out
pseuvdorandemly. Any pseudorandom sequence can be used to
permute the interlacer memory address. To generate the
pseudorandom sequence, a pseudorandom number generator
can be usea, or alternatively the desired permutation
can be stored in a ROM and the RDM.output is used to
address the interlacer(18’78). The deinterlacer simply
performs the inverse permutation. That is, at the
deinterlacer the received digits are written into a (1xL)
RAM using the same pseudorandom sequence used to read them
at the interlacer. Then these digits are read out of the
memory s;quentially. The reading out of the interlacer and
writing in the deinterlacer sequences should be synchronized
to get back the same transmitted codeword at the deinterlacer
output.

The most important characteristics of the pseudorandom
interlacer are the following:

1-This technique provides a high degree of robustness
to the variability of the burst noise channel parameters
during transmission. Needless to say, such an interlacer is
more costly and complex than either the symbol interlacer

or the convelutional interlacer.



2-If the same permutation sequence is used for
interlaceing each block of L digits, there exist certain
error-patterns that can seriously degrade the interlacer
performance. In systems where such patterns are likely
to occur, permutation should be changed freqeuntly, during
the tramsmission to aveoid this probilem.

3-The total end-to-end delay exclusive of the channel

delay is

0D =2L (4.8)

And the memory requirement in both the interlacer and the
deinterlacer is L digits of storage, excluding the memory

control reguirements.

4.2,3 Implementation of Interlacers

The two principal classes of interlacers described
in sections 4.2.1 and 4.2.2 function using a different
strategy. The periodic interlacers strategy attempts to
praduce maximally spaced errors while the pseudérandom
interlacers strategy attempts to produce random errors
at the decoder input. It has been widely assumed that
the periodic approach will result in superior performance
when the interlacer is exactly matched to the transmission

(18). But it is much less robust to

channel pzrameters
their changes than the pseudorandom interlacers.
Synchronization is a problem of various complexity

according to the interlacer used. The symbol interlacer

presents no additional problem when it is used with



block codes, where same block synchronization techniques
can be used to synchronize the interlacer and the
deinterlacer. The implementation of a convolutional
interlacer involves a similar problem to the symbol
interlacer, and in some applications a detector is added

(88) so that

to detect the unsynchronized codewords
resxnchronization can be achieved faster, or the erroneous
codewords can be discarded. In the pseudorandom interlacer
there is a fixed relationship between the ROM address
counter, or the pseuwdorandom number generator state and
the received digit counter} Once lock is obtained, the
deinterlacer is set ready to receive the first digit of
the L block digits by standard synchronization technieques.
Although the memory requirements for each type of
interlacer are given in the appropriate sections, these
are not the exact memory reguirements of the system for
the symbol and pseudorandom interlacers, while n{A-1)/2
is sufficient at each encoder or decoder terminal for the
convoluticonal interlacer. The reason is that for the symbol
interlacer and the pseudorandom interlacer, the actual
memory management is wsually accomplished using two
interlacers and two deinterlacers in a ping-pong
configuration, where digits are written in one interlacef
or deinterlacer while digits are read from the other. Once
one interlacer or deinterlacer is full and the ather is
empty the functions of the two interlacers or deinterlacers
are interchanged. So the actual memory reguirements are

twice those mentioned in sections 4.2.1.1 and d.2!2.



4.3-The Time-Shared Decoders-

There is no doubt that the recent developments in
micro-technology, and the fall in the cost of storage
devices has attracted too many designers toc the microprocessor,
due to its falling hardware cost, and its flexibility. In
many communication fields as well as the error-correction,
field, microprocessors are used widely, and many algorithms
have been introduced that give superior improvement to
non-microprocessor based systems, but at the cost of more
complexity. Some algorithms need a long time to be executed,
which forces their application to be limited by the
micrOprbcessor speed, i.e. whether the microprocessor can
process the input data fast enough to be used as a real-
time processecr. In most applications it is desirable to

use slow microprocessors, because of their cost and

power comsumption requirements.

4.3.1 Microprocessors Speed Limitations

Microprocessors can be defimed as s prggram-driuen
clocked sequential circuits. Theif internal ofganization
contains no special circuit or architectual features
which do not exist in conventional 1inteqrated circuits.
The main difference is that the rapid development ipn
recent years has allowed more ciruits to be accommodated
in less space. This has created the first major limitation,
which is that whereas the capacity of the integrated
circuit chips for logic components is very large, the
number of pins that can be accommodated mechanically on

a chip is limited by its physical size. In the case of



microprocessors, this problem is overcome by time-sharing

the input/ocutput pins.(gs)

This arrangement incurs a

speed penalty on the microprocessor compared to a system
which used independent input and output pins. The second
limitation can be seen by regarding the microprocessor as

a clocked sequential circuit whose processing activities

are timed by a clock. Clearly the higher the clock frequency,
the faster the system. The maximum clock frequency that

can be used in a system is determined by the response time
of the internal circuits and by the access time of the
memory used. With present-day components the limiting factor
in practice is vsually the memory access time. It is

worthy to mention that microprocessor are getting faster

all the time, but oun the other hand transmission rates

are also increasing, thus demanding faster and faster
microprocessors to cope with the faster processing
requirements for real time processing on these high bit

rate channels.

4.3.2 The Use of Microprocessor In Decoding Block Codes

Most decoding algorithms for error-correcting
codes are based on the use of a microprocessor to perform
the algorithm functions. Although decoding algorithms
that use microprocessors were used for error-correction
‘in hard decision decoders, the use of microprocessors
become inevitable, due to the decoding algorithms complexity.
When a microprocessor is used in the decoding process,
the relation between the necessary time for exceuting the

algorithm used, and the data receive time is very important



since for a practical system with a real-time decoding

it could mean the difference between using a particular
algorithm or discarding it. At the other extreme one

has the choice of a faster and more expensive micro- o
processor, or reducing the data transmission rate.

From this point, since we are interested only in
block error-correcting codes, we are going to consider
those codes only. However, the same argument stands for
any sort of codes, but some of the equations developed
might need some modification.

To derive the equation that relates data receive
time and the algorithm execution time, assume an (n,k)
block error-correcting code is used in a transmission
system, where the decoder is a microprocessor that
executes a certain algorithm for decoding. The data is
assumed to be transmitted through a transmission channel
that bhas an error rate of p, and the transmission is
assumed to bem bhits per second. The time tl, of received

one block of n transmitted. digits is

tl = % seconds (4.9)
To use a microprocessor that uses the algorithm in real
time, the microprocessor should be able to execute the
algorithm in a time, say tm, less or at the most equal

to the time of receiving one block of the transmitted

digits, that is



t ¢t (4.10}

4.3.3 1dle Time Index and Usage Efficiency

The algorithm execution time trn is a2 good measure
of the microprocessor choice. If tm was, for example,

much smaller than t it indicates a badly designed system,

1°
because a slower microprocessor can be used, or additional
duties can be done by the microprocessor, during the
remaining block time, thus cutting down the peripheral
hardware cost and complexity. The Idle Time Index I of

the micropreocessor for one block is, by definition, the

fraction time of the total block time tl, where the

microprocessor is idle.

] =2 —... ™ {(4.11)

The Idle Time Index can vary theoretically from zero,
where the microprocessor is used all the time to one,
where the microprocessor is not used at all. The micro-
processor usage percentage efficiency n , when represented

as a percentage of the total time, can be written as

no=100 ( 2 ) % (4.12)

Any error-correcting decoder, has to start the
decoding process by calculating the syndrome of the
received word regardless of whether the decoder is a

hardware decoder, a software decoder, of a mixture of



boph. Let the syndrome calculation time be ts’ when a
hardware decoder is used tS is negligible, while usually
it has a value other than zero for software decoders. The
second step is the detection process, where the calculated
syndrome is tested, if the test result is zero, i.e. all
the syndrome components are zeros, then the received word
is accepted as the transmitted codeword, although it

could be a codeword other than the transmitted codeword.
While if any cone or more of the syndrome components are
not zeros, then an error is detected in the received word.
The third step is to calculate the error pattern that

was present in the transmission channel during the block
transmission, and correct the erroneous digits accordingly,
which is done by executing the algorithm. The last step

is to output the corrected digits to the next stage of

the system,.

Eonsider an error-correcting decoder which decodes
the received block totally by a sotfware algorithm, i.e.
the syndrome calculation, error detection, and error
correction is domne by a microprocessor. Let the total
correction time tm for correcting an erroneocus block t2,
and the time to calcultate the syndrome only be ts’ Then
the idle time index for am erroneous block Ie’ can be

calculated from Eq.(4.11)

] =L 2 (4.13)




while the idle time index IC for a block which has a

zero syndrome is
I = = (4.14)

In the case of using software algorithms for decoding the
I

received word, Ie is bigger than Ic’ the ratio TE is
C

dependent on the algorithm used and the code rate. In
I
the all software decoder the ratio — is about 15 for

Ic
the hard decision system, to 250 for the soft-decision
decoders, for code rates of about 0.5, while the ratio is
a very large number if hardware syndrome calculation is

used with software detection and correction.

4.3.4 Decoder Idle Time

Assuming a wicroprocessor is used for executing
the decoding algorithm, although Egs.{4.13) and (4.14)
give an idea about the use of the microprocessor during
each received block, they are not suitable for measuring
the overall microprocessor usage during the whole trans-
mission, because some of the received blocks will be
correct, while some other will be erroneous. Thus to
talculate the overall microprocessor usage, additional
information about the correct and erroneous received
blocks is required.

Let, by definition, the decoder idle time be the
total time during the whole transmission where the

microprocessor is idle, which gives aclear idea about




the microprocessor usage. The error probability can
provide the necessary information about the received
block. Let the probability of genmerating an error in the
transmission channel be p. Then the probability of
receiving a block of n digits free of error PC is, the
probability that each of the received digits is correct,

that is

P, = (1-p)" (4.15)
and the probability of receiving @ bleck which contains

at least one error Pe is

P_o=1 - (1-p)" (4.18)
Actually, since the decoder will treat any erroneous
block received as another codeword as a correctly received

(6’6?). But for

block, Eg.(4.16) is not very accurate
simplicity it will be assumed théi Eg.(4.16) is accurate
enough.

It is reasonable to assume that the correction
algorithm 1s not executed when a correct block is received.
This leaves the decoder idle during the decoding of error
free blocks except of the syndrome calculation time ts.

is

Consequently the decoder idle time Id

1. =1 P + I P (4.17)
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substituting Egs.(4.13),{(4.14),(4.15) and (4,16) in

£q.(4.17) gives

t,-t t. -t

I, = —2—% (1 - (1-p)"} + lt S (1-p)" (4.18)
1 1

The first part Iepe is a small fraction of the
total time, because Ie is small and Pe is small, while
Icpc is the dominent part. Consequently, the microprocessor
is idle mostly because of receiving correct blocks most
of the transmission time, and since the probability of
receiving correct blocks is relatively high, then Id is
close to 1.

To get a rough idea about the decoder idle time in
a real system, consider a channel which has a probability
of error p, where ple-:’J as it was taken in chapter three.
Let the error-correcting code be an (n,k) Tandom code,
where the block length n=31. And let the idle time index
Ie for erroneous block be IE=D.1, and the idle time index
for error-free block be IC=U.8. substituting in Eq.
(4.18)

31 )
} +0.8(1-10

31

I, = 0.1 {1—(1-10'3) 3) =0.7786

(4.19)

The decoder idle value of Eq.{(4.18) is the worst case
value, because the channel is considered a random channel.
While if a bursty channel which has the same error rate

is considered, the decoder idle time is higher, because

for such channel  errors tend to he concentrated in a few
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blocks. Which leaves most of the other blocks error free.
Any decrease in Id improves the effective usage of
the microprocessor timewise. Such a decrease will result
in an iﬁcrease of the correction time t2, whether the
increase is due to the increase of the syndrome calculation
time or the algorithm execution time., For a real time
usable decoder any increase in t2 should allow the
microprocessor to execute the correction algorithm in the
block receive time tl, i.e., the erroneous block idle time

index should not become negative.
I_>0 (4.20)

there is no need to restrict IC separately, because since
it is included in t2, then it is restricted indirectly by

Eqg.(4.20).

4.3.5 The Basic Idea of Time-Shared Decoders

Time-shared decoder is a technique to increase the
microprocessor effeciency and decreasing the decoder idle
time to some negative value, yet using the decoder in
real time transmission, which is done by avoiding Eq.(4.20).

When Ie became negative Eq.(4.20) can be rewritten

I < O (4.21)

substituting I from Eq.(4.13) and dividing both sides

by t2 gives




t. < t (4.22)

that is allowing the microprocessor to expand the

correction time of the erroneous block i into the next

th

i+l received block correction time t iIf the i1+1

m,i+1°
block is theerror free then the remaining time after

correcting the ith block will be enough to calculate the

syndrome and accept the data if
+ t_ € 2t (4.23)

otherwise the microprocessor is allowed to share the

i42th

calculation time t On the other hand if

my,i+2°
the i+lth block 1s erroneous the microprocessor is
allowed to expeand into the i+2th calculation time, and
5o on.

Assuming that the decoder received j erroneous
blocks, then one error-free block, the decoder will
finish decoding all the received blocks at the end of
the calculation time of the j+1°" block tn g if the

decoder can satisfy the following equation

Jty, + t < (G+1)) (4.24)
fig.(4.3) shows the decoder timings when one and two

erroneocus blocks are received. It 1s assumed
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Fig.(4.3) time diagram for time—share and correction
in fig.(4.3) that the decoding process starts after
receiving the last digits in the block, furthermore it
is assumed that ts is relatively very laong time compared

with t2 for the drawing clarity. The delay introduced

by this technigue is
D = j (t2-tl) (4.25)
where j is the number of consecutive erroneous blocks.

4.3.6 Buffering Requirements

Once a delay is introduced into a system some sort

of storage is required to cope with this delay. Clearly
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a buffer is required in the time-shared decoder system,
because, as it can be seen from fig.(4.3), while the
microprocessaro is executing the algorithm for correcting
the ith block, the i+lth block was received, and the i+2th
is received, so unless the i+lth block is stored it will
be lost. The storage space required to handle the incoming
digits without any loss of information is dependent on

the maximum number of the consecutive erroneocus blocks.

4.3.6.1 Random~Error Channel Buffer

Consider a time-shared system that is used to
correct errors that results from transmission through a
random-error channel. Assuming that a buffer of one block
storage space is used, it is required to calculate the
maximum number of consecutive erroneous blocks that the
system can cope with, without any loss of information.

To start with assume that no erroneous blocks are
received so far. The buffer is empty because each received
digit is read out as soon as its written in. Assume nouw
that an erroneous block is received, all its digits will
be read out as before. Because the decoder is executing
the correction algorithm the first received digit will
not be read out until the decoder has finished correcting
the erroneous block. The number of digits in the buffer
up to the moment where the decoder has finished the
correction process can be calculated as follows. The

duration time of one digit is

(4.26)

—
[}
3+~



- 105 -

where m is the transmission ratey and the delay resulting

of one erroneous block from Eq.(4.25) is

D = t, - t (4.27)

Then B the number of digits in the buffer is

A|O

(4.28-a)

o
I

(ty-ty)n (4.28-b)
if the next received block is erroneogus then an additiaonal

B digits are stored in the buffer, and so on. In the

general case where j consecutive erroneous blocks are
received, the number of digits in the buffer, given that

the buffer was empty before receiving the first erronecus

block, 1is
B = J(tz-tl)m (4.29)

Clearly there is no loss of information as long as all
B digits are stored. So for the case where one block
storage space is available, the maximum number of
consecutive blocks received without any loss in the

information ‘is when

B = n (4.30)
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Thus from Eqg.(4.30) and (4.29)

i o= [ thll - ] (4.31)

t
jo= | —2 (4.32)
(ty-t,)
where [f}] represent the nearest integer ¢f. This is

used since no part of an erroneous block can be accepted.
In practice there is no need to force the buffer to be
one block or multiple of a block, so if the buffer has

{ digits store space, then Eq.(ﬁ.3l) can be rewritten

- —z (4.33)

(t2-tl)m

4.3.6.2 Bursty Channel Buffer

The use of time-shared decoders to decode transmitted
signals through a bursty channel makes the use of buffers
inevitable. To find the storage space required for such
channels, assume that - Qmax is the length of the
longest burst that may occur in the channel, and that an
(n,k) code is used. Two cases must be considered.

Firstly, when the code is not interlaced. Any burst
will produce a number of consecutive erronecus blocks,

Thus the storage requirements can be calculated from

Eq.(4.29). Letujmax be the maximum number of blocks that
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can be affected by the maximum length lmax’ then
. Qmax
Jpax = — + 1 (4.34)

Substituting Eg.(4.34) and £q.(4.29) gives the minimum

buffer requirements

£
_ max -
Brnin = (—— +1)(t2 tl)m (4.35)
Secondly, the interlaced codes. Assuming that the
interlacer memory Space is equal to msp then the number

of blocks that can be fitted in the interlacer 1is

u - 5B (4.36)

Then the longest burst gmax cannot affect more than
2u blocks.

For the convolutional interlacer, the buffer is
placed after the deinterlacer, and should be aﬁle to
cope with 2u consecutive erroneocus block, thus from

£q.(4.29) the minimum buffer size required is

Brin = 2u(t2—tl)m (4.37)
in practice values lower than 2u can be used, because
the 2u blocks will not be all erroneous.

For the symbol interlacers and the random interlacers,
the case is the same as above and Eq.(4.37) gives the

buffer requirement. The buffer can be placed in two
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different places, if the buffer storage space is taken
as a multiple of M
sp

B = i.u(tz—tl)m where i = 1,2 (4.38)

Substituting €q.(4.9) in Eq.(4.38)

B = iamsp(tz—tl)/tl where i = 1,2 (4.39)
Such buffers can be placed within the deinterlacer. As

it was mentioned in section 4.2.3, deinterlacers are in
effect two deinterlacers each working in a ping-pong
configuration,the additional buffer canm be placed with
these two_deinterlacers giving a total of three or more.
The data is written in each one in turn and read out in
the same sequence, this configuration simplifies the
buffer control circuit. The other case is where i 1is a
real number and not an integer, clearly the previous
implementation cannot be used. The buffer is placed after

the deinterlacer as in the convolutionmal interlacers.

4,3.6.3 Decoders Output Buffer

The use of time-shared decoders will introduce an
additional delay into the decoder, this delay varies from
zero for the error-free blocks to a maximum value depending

on the maximum number of consecutive erroneous blocks j.

0

e

Dg j (¢t -tl)m + D (4.40)

2 e

where Dre is the remaining delay from the previous set
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of erroneous blocks, which can be neglected without
serously affecting Eq.(4.40).

In some applications the whole block is treated as
an individual. Inm such application the delay isnot a serious
problem, and the data sink can wait for the correction
delay. In others any delay is not tolerated, where the
data should be outputed at a fixed rate, consequently,
additional huffer storage is reguired at the output. The
decoder output is written into the buffer until the buffer
is full, before reading any data out. Once a delay occurs,
the buffer contents will be reduced, but the buffer will
be full again as soon as the micrprocessor has recovered
from the delay.

Since the decoding time is no longer critical, the
microprocessor can also be used to control the input and

output buffers, giving a further saving in cost.

4.3.7 Modified Time-Shared Decoder for Bursty Channels

Although the time-shared decoder makes a better use
of the micropreocessor, the microprocessor is not used
efficelently even if it is decoding during all the
transmission time. For example, assuming that our interest
is concentrated on the k information digits, the micro-
proceésor is attempting to correct errors confined to
the parity-check digits which will be discarded anyway. A
more efficient decoder will be one that can detect when
the errors are confined to the parity-check digits, and
in such a case 1t will accept the data without executing

the correction algorithm, hence saving the delay resulting
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from the decoding process, and reducing the gueuve length

in the buffer.

4.3.7.1 Parity-Check Errors Trapping

The parity-check error-trapping is based on the
error-trapping decoding idea discussed in chapter two.
Assuming that an {(n,k) code is used to correct errors in
a transmission system, where the transmission channel
can be either a random or bursty channel. A decoder that
can detect the correct rTeceived words and words with the
errors confinded to the parity-check digits without too
many Calculations is the error-trapping decoder. So to
achieve the required modified algorithm, the parity-
check error-trapping part of the error-trapping decoder is
combined with the correction algorithm to be wsed. A
summary of the modified algorithm follows.

STEP 1 After the receiving:of the whole block,
the syndrome is calculated.

STEP 2 The syndrome is tested and if it is all
zeros, the received word is a codeword and the information
digits are accepted as the transmitted data and the
decoding is complete, otherwise:-

STEP 3 Is dependent on the type of code used. For
random-error-correcting codes which can correct all errors
of t or less, the syndrome is tested and if its Hamming
weight is t or less then errors are confined to the n-k
parity-check digits, and the information digits are
error-free, which are accepted as the transmitted digits

and the decoding is complete. Otherwise go to STEP 4.
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For burst-error-correcting codes, which can correct all
bursts of length £ or less, the lefimost n-k-£ stages of
the syndrome are tested, if they containm zeros, themn the
error-pattern is trapped in the & rightmost stages, other-
wise the syndrome is shifted once again and the syndrome
tested. If the n-k-% leftmost stages contain zeros at
the ith shift, where 0gign-k-2, then the error-pattern is
confined to the parity-check digits, the information
digits are error-free, and are accepted as the transmitted
information digits. Otherwise go to STEP 4.

STEP 4 The correction algorithm is executed and
errors are corrected.

It should be noted that the algorithm should
calculate the possible untrappable errors in the n-k parity-

check digits.

4,3.7.2 Probability Of Parity-Check Errors-Trapping

For Random Ertor Channel

When an (n,k) code is used for error correction in
a random-error channel, where this code can correct all
t or less errors, the probability of t or less errors
confined to the parity-check digits can be calculated as
follows. Let the probability of error in the transmission
channel be p, then the probability of receiving a word
containing v errors is the probability of receiving v
errors given that the remaining n-v digits are error
free, that is

v

p. = pY (1-p)"7Y

(4.41)
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The fraction of v error confined to the parity-check
digits, to the total number of possible v errors in a

codeword 1is

( "k)! 1 '
E:rn—k,u _ u?fn-k—GTi _ (n-k)t(n-v)! (4.42)
- n' n'{n-k-v)!

Cn v
’ vi(n-v)!

from Eqgs{4.41) and (4.42) the probability of v errors
confining to the n-k parity-check digits is
(n-k)!'({n-u)!

Py = ni{n-k-v)! p” (l_p)”‘V (4.43)

Since all t or less errors are trappable, then the
probability of trapping t or less erﬁf}s confined to the

parity-check pet is

(n-t)lln=i)t i (g jyn-i (4.44)

P nt{n-k-i}!

et

1]
'_J-
1| &>t

1

4.3.7.3 Probability Of Parity-Check Error-Trapping

For Bursty Channel

Assuming an (n,k) code is used for error correction
in a bursty channel, where the code used can correct all
bursts of length & or less. Let the probability of
generating errors in the channel 1s p. Since the channel
is a bursty channel then errors tend to affect a number
of consecutive digits. So it will be assumed that errors
in this channel affect_consecutiye digits only, and that

no random errors will occur outside the burst. The
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probability of generating a burst of length £ or less,
where the burst contain 1lgvgQ errors, given that the

remaining n-2 digits are error-free is
p =pY (l-p)n-z where 1gvg® (4.45)

The total number of possible bursts of length £ in

a block of n digits is
Y; =N (4.48)

the number of bursts of length £ confined to the parity-

check digits is
Y, = n-k-£+1 (4.47)

from Eqgs(4.45), (4.46) and (4.47), the probability of a
burst of length £ containing v errors being confined to

the n-k parity-check digits is

(n-k-2+1)

- (4.48)

P, = 0¥ (1-p)" %
where 0Ogvgf

Since all bursts of length £ or less are trappable,
regardless of the number of errors in the burst, then
the probability of trapping bursts of length 2 or less

is

confined to the parity-check digits pet
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DJ (l_p)l'l-l (nr—]k—ﬂ,i»l) (4.49)

o
1}
I B 22

et

4.3.7.4 The Percentage Reduction In The StoragegDelay
Due to The Modified Algorithm

The probability of receiveing erroneous blocks is

given in Eq.(4.16), thus the percentage reduction in

executing the correction algorithm Red is
pet
Reg = P 100% (4.50)

Let the time required to calculate the syndrome and
detect the parity-check digit errors be te’ then for each
parity-check erroneous block detected there is a reduction

in the delay tr where

ed’

t = t, -t (4.51)

but according to Eq.(4.25), a delay D resulting from

receiving j consecutive erronedus blocks is
D = J(tz-tl) (4.25)

Consequently, the detection of partiy-check erroneous
block will result in reducing the buffer contents by v

blocks if the buffer contains v blocks, where
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tl—te
v =ﬁ . ' (5.52)
2 1
Let bred be the reduction in the buffer size measured in
bits, then Eq.(&.SZ) becomes
(t. t )
1-"e
b =n —— (4.53)
red tz-tl
Conversley, the overall percentage reduction in the

storage space is

(t,-t,) P
_ 1 "2 et
Boog =" % 5s— 100% (4.54)
2 1 e
where B__, is in bits, P_ is as given in Eq.(4.16) and
Pet';s as given in Eq.{(4.44) or Eg.(4.49) depending on

the channzl type. The precentage reduction in the delay

can be calculated in the same way as

8]
- p &t ‘
D.og =D P 100% {4.55)

4.3.7.5 S5ymbol Interlacer And Parity-Check Error -Trapping

The parity-check error-trapping technigue has a
big advantage when used with symbol interlaced error-
correcting codes. Let us take a closer look at a burst
generated in a channel. There are two possible places
where a burst may be added, firstly, the whole burst may
be added fo the contents of one interlacer somewhere
between the first and the Anth digif, and in this case

the maximum number of consecutive erroneous blocks
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cannot exceed X blocks. Secondly, the burst is affecting

the contents of two adjacent interlacers and in this case
the burst will affect the end digits of the first interlacer
blocks, and the beginning digits of the second interlacer
blocks, which are normally the parity-check digits. Assuming
that the longest burst Rm is

ax

Loax € M2+l) (4.56)
Then any burst that affects two adjacent interlacers will
not affect more than the parity-check digits of the
second interlacer. Since all these parity-check errors can
be trapped, then in this case also the maximum number of
consecutive blocks for which the algorithm needs executing
cannot exceed X blocks. Thus Eq.(4.37) that states the
minimum buffer requirements so that ne information is lost
can be rewritten for the symbol interlacer when a parity-
check error trapper 1is implemented in the decoding

algorithm, as

B in = A(tz-tl)m (4.57)

4,3.8 An Blgorithm For Decoding Single-Burst Errors

The algorithms described are algorithms for correcting
burst errors. The reason for choosing a bursty channel is,
firstly to get information about the behaviour of soft-
decision decoding for bursty channels, secondly to study

the effect of guantization, and thirdly to study the
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algorithm performance itself. Although these algorithms
as described are for decoding burst-error-correcting codes,
they can be easily modified to be used for decoding random-

error correcting codes.

4.3.8.1 First Algorithm

This algorithm has a basic structure as the general
description of the modified algorithm in section 4.3.7.1,
and can therefore trap all errors that are confined to the
parity-check digits. Assuming that an {(n,k) code which can
correct all bursts of length & or less is used to correct
the transmission channel bursts, then the decoding
algorithm can be described by the following steps.'

STEP 1 The syndrome S{X) of the received word is
calculated and tested. If the syndrome is all zeros, the
received word is a codeword, the information digits are
accepted as the transmitted data, and the decoding is
finished. Otherwise.

STEP 2_The syndrome is tested for n-k-2 zeros in
the n-k-4 leftmost stages. If they are detected, then the
burst pattern is confined to the £ tightmost stages of
the syndrome register, and the information digits are
error-free. Hence the data 1is accepted, and the decoding
is finished. Otheruwise,

STEP 3 The syndrome is shifted with the feedback
‘connection affecting the syndrome to the right once, and
its contents.tested up to i times, where 1l<ign-k-%. As
soon as the n-k-% leftmost stages contain only zeros, the
£ rightmost stages contain the error-pattern, and the

error burst is confined to the parity-check section of
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the received word. Thus the information digits are

accepted as error-free, and the decoding is finished. If

at the end of the n-k-ﬂth shift the error is not trapped
then the burst has affected the information digits and

to correct them the correction algorithm has to be executed.
To start  this,the shifts counter is set to zero.

STEP 4 The syndrome is shifted with the feedback
considered to the right once, and the error-pattern soft
weight (EPSW) is calculated from Eq.(2.50) for this error-
pattern, then the syndrome contents, the EPSW, and information
about the syndrome location are stored.

STEP 5 STEP 4 is'repeated n times and at each time
the EPSW is compared with the EPSW stored, if the new
EPSW is found to be smaller then the stored EPSW, then the
new syndrome contents, EPSW, and the syndrome location are
stored.

At the end of the n shifts, the syndrome store
contains the error-pattern which has the lowest EPSW, i.e.
the most likely error-pattern to have been added to the
transmitted codeword during transmission.

The content of the syndrome, after the k+Eth shift,
is the syndrome S(X) of the received word, thus the EPSY
calculated corresponds to the error-pattern that is confined
to the parity-check digits, which was not calculated at
the beginning of the decoding. It should be noted that
the burst length of the error-pattern at the syndrome
after the nth shift is longer than &, otherwise the
error-pattern would have been detected in STEP 2 or

STEP 3.
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STEP 6 Using the information stored in the syndrome
location store , the syndorme is modulo-two added to the
corresponding digits for correction before the data is
read out, thus the decoding is finished.

A complete process flowchart is shown in fig.(4.4)

4,3.8.2 S5econd Algorithm

The second algorithm introduced is based on the
same idea as the first algorithm. Three major modifications
are carried out to improve the algorithm execution time
without degrading the decoder performance as follows.

1-0Once the syndrome for the received word is calculated,
it is tested for an all zeros syndrome, then it is tested
for n-k-£ zeros in the leftmost stages. Whenever any of
these tests are satisified, the information digits are
accepted as the transmitted data. Since, whenever the
first test is satisfied the second one will be satisfied,
then the first test can be omitted from the algoritam.

2-The EPSW as is given in Eq.(2.50) is dependent on
the "1's in thé syndrome. Since the 'l's in the syndrome
do not change unless the last rightmost stages contain '1°',
then the syndrome will contain the same error-pattern as
long as no shift has coccured where the last rightmost stage
contains 'l', i.e. the syndrome contents will be the
previous contents shifted once to the right till a '1'

at the n—kth

stage changes the error patern. So the EPSU
will not change its value until after a shift where the
last rightmost stage of the syndrome contains 'l'.

Consequently, the same results can be achieved with less

calculation if the EPSU is calculated only when the last
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rightmost stage is '1'.

3-To reduce the EPSW calculations further, it was
assumed that the transmission channel generates bursts
in such a way that each burst of any given length is less
likely to be generated, than each burst of any shorter
length. Thus the EPSW is more likely to have its smallest
value for shorter error-patterns. The decoder stores a
number of the shortest error-patterns, then the EPSW is
calculated for these error-patterns and the one with the
lowest EPSW is chosen as the error-pattern added to the
transmitted signal in the channel. Clearly the bigger the
number of error-patterns stored, this algorithm will
perform similar to the first algorithm. While if the
number goes down to one it will perform as the optimum
decoder of section (2.3).

Considering the three points mentioned above, the
secaond algorithm can be described in the following steps.

STEP 1 The syndrome S(X) of the received word is
calculated, then tested for n-k-% zeros in the n-k-% leftmost
stages. If these zeros are detected, then, either the
syndrome is zero, i.e. the received word is a codeword,
or the burst pattern is confined to the & rightmost
stages. In both casas the information diéits are accepted
as the transmitted data, and the decoding process is
finished. Otherwise

STEP 2 With the feedback connection considered the
syndrome 1s shifted to the right once, and its contents
are tested. If the n-k-£ leftmost stages contain zéros

at any stage of the shifting process, where the number of
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shifts 1 is 1gign-k-2, the burst pattern is confined

to the n-k parity-check digits, and the information
digits are error-free. Thus the data is accepted, and
the decoding is finished. Otherwise, the shifts counter
is set to zero.

STEP 3 The syndrome rightmost digit is tested, if
it is '0', the syndrome is shifted to the right once with
the feedback connection considered, then STEP 3 is repeated
from the beginning, while if the syndrome's rightmost
digit is '1', the length of the burst pattern in the
syndrome is calculated, and the syndrome, the burst length,
and the syndrome location are stored.

STEP 4 STEP 3 is repeated till the shifts counter
reaches n. Each time the burst length is calculated, the
syndrome , the burst length, and the syndrome location are
each stored in a different store.

At the end of the n shifts, the store area contains
all the possible burst information for the received word,
and includes any burst pattern that maybe canfined to the
parity-check digits, and which is longer than £, i.e.
untrappable.

STEP 5 All the bursts stored in STEP 3 and STEP 4
are sorted according to their length. Assuming that it
is required to consider j bursts, then the EPSW of the
shortest j bursts is calculated according to Eq.(2.50),
and the burst which has the smallest EP3W is accepted as
the burst added to the tramsmitted codeword in the channel.

STEP 6 Using the location information of the chosen

burst, the syndrome is meodulo-two added to the corresponding
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digits for correction, then the data is read out, finishing
the decoding cycle.
A flow chart of a complete process is. shown in

fig.(4.5).

4,3.8.3 Shortened Codes And The First And Second ARlgorithms

The use of shortermned codes with these two algorithms
can simplify the two algorithms furthermore. Given that

an (n ,li code is shortened by B, so that the shortened

1

code is the (n,k) code. Assuming that

n, - k., = n-k (4.58)
and

B > n-k (4.59)

which means that the code will not detect round the end
burst, because they are spaced by B digits. Thus they
cannot be trapped by the syndrome.

;k )

Assuming the the generator polynomial of the (n <

1
code is wused without any modification, clearly in this
case the syndrome has to be shifted ny times instead of
n times to get back to the received word syndrome. The
. algorithms for burst-error-correcting codes can be modified
in the following way.

1-After the n-k-% shifts the syndrome contents will
correspond to the round the end bursts for the next i
shifts, where n-k-2<i<n-k. After the n-k'" shift the

syndrome contents will correspond to the B inserted

zeros wuntil 1 reaches the B-n-k. After the next shift,
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i.e. the B-nkk+1th shift, the syndrome will correspond to

the position x""1 of the received polynomial R{X), and to

n+l Xn—k—Z

the zeros in the positions Xn,X s e e us . The next

n-1

shifted syndorme will correspond to x”'z,x of R(X) and

to the Xn,Xn+l,...,Xn_k—3, and so on. Considering the fact

Xk+1.

H]

n-1 or Xn-2 n—l’

that any burst present at X s X

k+2,....,Xn_l, is present at the positions Xk,Xk+l,....,

OT .. ..,
X
Xn_l. Becuase for each case the rest are zeros, and cannot
be erroneous. Then it can be seen that the syndrome contents
does not give any additional information for all i shifts

where

n-k-2< i <B+n-k (4.80)

This will lead to the insertion of additional STEP after
STEP 3 in the first algorithm, and after STEP 2 in the
second algorithm. The inserted S3TEP is as follous.

INSERTED STEP The syndrome contents are shifted

with the feedback connection considered 8+ times to the
right, and the shifts counter is set to zero.

The execution of STEP 4 and S5TEP 5 in the first algorithm,
and STEP 3 and STEP 4 in the second algorithm, k times
correspond to calculating the burst patterns that contain
at least one information digits, the k+1 corresponds to
the burst pattern confined to the parity-check digits.
While the rest correspond to round the end burst patterns.
Since these last patterns do not exist in the shortened
codes, they can be excluded. This will lead to the
substituting n in STER 5 of the first algorithm, and

STEP 4 of the second algorithm by k.
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Since shortened codes where used in the simulation, these
two modifications are included in the programmes of thses

two algorithms in appendix O.

4,46-Simulation Results And Discussions

The (34,22) single-burst-error-correcting code is
used in the simulation, this code is a shortened code
from the (91,79) single-burst-error-correcting code,

which has the generator polynomial g(X)(SS).

11,12 (4.61)

g{x) = LaxaxSex®axexBix%ix
the generator of Eq.(4.61) is used as the generator
polynomial for the shortened code.

Since all codewords are equally likely to be
transmitted, then the use of a repeated codeword will
result in the same test outcome. To avoid any complication
at the transmitter end an all zero codeword is chosen to
be transmitted repeatedly. Two types of Gaussian noise is
added to the transmitted signal as described in chapter
three. The received signal is guantized and fed to the
decoder. A symbol interlacer and deinterlacer of degree

A=25 are used with all decoders.

4.4,1 First Algorithm Performance

4.4,1,1 Effect of Parity-Check Error-Trapping

As it was mentioned in section 4.3.8.1 the first
algorithm employs a parity-check error-trapping technigue.

To study the effect of this technique, two decoders were
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used to decode the same received signals, a soft-decision
decoder and a decoder using parity-check error-trapping.
The background SNR is assumed fixed at 9 dB while the
burst SNR is varied from -20 to 6 dB, the resultant word
error rate for both decoders are plaotted infig.(&.B).
Clearly the curves of fig.(4.6) can be divided into
two parts according to the burst SNR values. In the first
part which is for burst S5NR<-2.25 dB the parity-check
error-trapping decoder outperforms the conventional
soft-decision decoder and the improvement is increased
with the decrease of burst SNR values, e.g. at burst
SNR=~3 dB the improvement is 0.05 dB while at burst
SNR=~17 dB the improvement is 1.05 dB. In the second part
where the burst 5NR<-2.25 dB the parity-check error-
trapping introduces a degradation of 0.1 dB on average.
The parity-check error-trapping decoder is\in
effect an error-trapping decoder during the error detection
in the parity-check digits only, and the reasons for its
performance are decussed later in section 4.4.1.3.

4.4,.1.2 Quantization Effects

A soft-decision decoder using the first algorithm
is used to study the effect of the number of guantization
levels. Linear 1law quantizers are used for all the tests,
the number of quantizationtlewvels is varied from 4 levels
to 64 levels. The results are plotted in fig.(4.7). As
in the previous test the background SNR is sgt to 9 dB,

while the burst SNR is varied from -20 dB to 6 dB.

Although one may expect the decoder performance to

improve as the number of guantization levels increases,as
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it has been shown by a number of researchers at higher
SNR values the results shown in fig.{(4.7) show the opposite.
The reason for this is that at low 5SNR values the noise
imformation obtained by quantization is not correct, and
the decoding process will contain a higher number of
errors i.e. the larger the number of quantization levels
the more the noise information will contain errors. This
can be best described in the following example.

Example: Assume that two '0O' digits are transmitted
through a high noise power channel, i.e. low SNR value.

The modulator will output to the channel two values
X, = %X, = =V (4.62)

during transmission noise will be added to these signals,

let the two noise samples be mj,wk where

w. = 2V (4.63-a)

1
[om]

.8y (4.63-b)

The received sampled digits will be according to Eq.(3.8)

Y o= % ot w (3.8)
Then

yi = sV o+ 2v = sy (4.64-2a)

Y = -V 4+ D.8v = -0.2V (4.64-b)




Eonsider for simplicity that a two level decoder
is used to decode the received digits. Such a decoder
has a detecting threshold of zeroc volts, hence yj will
be detected as 'l', and Y, @s '0'. The confidence number
for both digits are equal, thus the decoder will consider
both digits to be equally likely candidates for being
ErronRecus,

Next consider ‘a four level decoder to decode the
received digits, with equal spacing between the quantization
levels, Such a decoder will have three detecting
thresholds at +v/2, 0, -V/2 volts. Thus yj will be detected
as '"1', with a confidence number of '1', yhile Y will be
detected as '0', with a confidence number of '0'. Although
both digits are detected the same as in the two level
detector, the decoder will consider Yy, 3s @ more likely
candidate for being erronecus than yj, which is not the
case, and may result in erroneous decoding.

Clearly, at high SNR values, such a case will not
“arise very often, because the probability of the noise
value having high power is very small, uwhile the probability
will! increase as the noise power is increased, i.e. the
SNR is decreased, causing more such cases, and eventually
increasing the error rate. In the previous example the
difference in the confidence number was 'l' between the
two samples for four qguantization levels. If we assume
that the number of guantization levels is increased further,
clearly the received sample yj will have the highest

confidence number whatever the quantization levels. 0On
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the other hand, the difference between the confidence
numbers of yj and Yi will increase for this case as the
number of guantization levels is increased. Consequently,
the decoder will treat Y, a@s & more likely candidate for
being erronecus as the number of quantization levels is
increased, thus increasing the error rate, as can be

seen from fig.(4.7).

4,4.1.3 Decoder Performance

The test conditions for the decoder performance
are the same conditions for the previous tests, i.e. the
background SNR=9 dB, and the burst 5NR is varied from
-20 dB to B dB. Two decoders used for this test, a four
levels decoder and a sixteen levels decoder, the test
results are shown in fig.{(4.8), where the error-trapping
decoder, and the optimum decoder performance are plotted
for comparsion.

As 1t is expected the optimum decader performs
better then the error-trapp;ng decoder, because the channel
statistics fits the assumed éhannel statistics of the
optimum decoder. The 16 levels decoder performs better
than the optimum decoder up the -5 dB point, and better
than the error-trapping decoder up the -7.4 dB point. As
the burst SNR value drops below these points, the first
algorithm performs worse than the .other two décoders,

The 4 levels decoders performs in a similar way but the
performance intersection points are -13 dB with the error-
trapping decoder, and ~6.8 dB with the optimum decoder.

When the background SNR is changed to 7 dB and the
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same test is carried out, fig.(4.9) shows that the decoder
performance is better at this lower backgroumd 5SNR wvalue,
yet the general shape of the curve i1s as before but the
intersection points are shifted. For the 16 levels decoder
the intersection points are -11 dB, and -17 dB, with

the error-trapping decoder, and the optimum decoder results
respectively, while for the 4 levels decoder the inter-
section point with the optimum decoder is at -189.5 dB,

and the 4 levels decoder performs better than the error-
trapping decoder for the whole studied range. When the
background SNR is changed to 11 d8, fig.{(4.10), shows that
the intersection peints becaome -6 dB, and -4 dE for 16
levels decoder, and -10 dB, and -5.6 dB for the 4 levels
decoder with error-trapping deocder and the optimum decoder
respectively.

The inferior performance of the decoder using the
first algorithm at low burst S5NR values is expected because,
as mentioned in the previous section, the noise information
is no longer correct, hence the calculated EPSW gives |
unreliable values, which leads to decoding errors.
Eventually, any decoder that does not use the noise
information will perform better as it is clear from
figs.{(4.8),(4.9) and (4.10). However as the background
SNR is decreased the decoder performance using the first
algorithm starts to improve over the error-trapping and
the optimum decoders. The reason for this is that as the
backgrournd SNR is decreased, the number of ramdem errors
is increased. In such cases the random errors may extend

the burst length. For the error-trapping, if the extended
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burst is of length £ or less, the decoding is correct,
otherwise it is either a decoding errar or decading
failure. The optimum decoder will decode correctly if the
extended burst is the shortest error-pattern detected
and 1s unique. But if there exist two error-pattern of
the same length as the extended burst length, the decoder
is confused, and may decode erroneously, while if the
extended burst is not the shortest detected error-pattern
the decoding 1s erroneous. OUn the other hand, the first
algorithm soft-decision decoder can be regarded as an
optimum decoder that evaluates the error-patterns
according to their soft-decision weight and not to the
error-pattern length. In the cases where the burst SNR 1is
very low, burst errors have in general, high confidence
numbers, while since the background SNR is relatively high,
random errors have, in general, low confidence numbers.
Clearly, the actual error-pattern consists of burst errors
and random error or errors, while other error-patterns
may point to some burst errors and correct digits. The
EPSW for the actual error-pattern is lower than the other
error-patterns because of the random error. Or Errors,
thus the decoding is correct. But if the random error or
errors are indicated by other error-patterns, the
decoding may be erroneous. Consequently, for low burst
SNR, and low background SNR values, the first algorithm
soft-decision decoder performs better thanm the other tuwo
as it is clear from figs.(4.8), (4.9) and (4.10)}.

Needless to say that the first algorithm improvement

is not expected to keep on increasing as the background
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SNR is decreased, because as the background S5SNR is
decreased the confidence number is increased. Subsequently,
the difference in EPSWs will be smaller, and the decoder
will make more decoding errors, thus reducing the
improvement.

In general, the use of blankers at low SNR values
will improve the algorithm performance. But an algorithm
is not simulated because as it was mentioned in section
4.1 the simulated results give a superior performance to
a real system, eventually, and the simulation will not

be accurate to use for comparsion.

4,4.2 Second Algorithm Performance

4.,4,2.1 The Effect of The Number of Error-Patterns Tested

The number of error-patterns tested in the decoding,
has a significant effect on the second algorithm performance,
as it was described in section 4.3.B.2. To see this, the
second alqorithm is tested in the following conditions;
the background SNR=7 and 9 dB, the quantization levels
were taken as 4 and 16 levels, while the number of error-
patterns tested is changed in steps, 4,8,12 error-patterns
for each of the gquantization levels, and the burst 5SNR is
varied from 6 dB to -20 dB.

The test results are shown in figs.{(4.11), and (4.12),
for burst SNR=7 dB and for 4 and 16 quantization levels
respectively. Both figures show that for burst SNR values
lower than the values of -6 dB for 16 quantization levels,
and -10 dB for 4 quantization levels, the lower the number

of the error-patterns tested the higher the improvement.
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The test results for burst SNR=9 dB, shown in
figs.(4.13), (4.14) for 4 and 16 quantization levels
respectively, téll the same story, except that the inter-
section points of the burst SNR values are ~-2.6 dB, and
between -7 dB and -3 dB for 16 and 4 levels respectively.

The degradation at high burst 5SNR values, however,
is very small cdmpared with the improvement when the
burst SNR values drops to low values during transmission.
However, this is not the case if the burst SNR value does

not exceed the intersection point.

4.4,.2.2 Quantization Effects

To study the quantization effects on the second
algorithm performance, a test is carried out under the
follbwing conditions; The background 5S5NR=8 dB, B error-
patterns were tested, the burst SNR is varied from 6 dB
to -20 dB, and the quantization levels are taken as 4,8,16,
32, and B4 levels for each burst SNR value. All quantizers
used are wuniform spaced level guantizers.

The test results are shown in Fig.(&.lS), where it
can be seen that at low burst SNR values, the second
algorithm performs better the lower the number of-
quantizations levels. While at high burst SNR values, say
2 db, a decoder using a 16 levels qguantizer performs
slightly better than the others.

The quantization effects on the second algorithm are
‘'very similiar to their effect on the first algorithm, as
it can be seen from figs.(4.15) and (4.7). This is-

somehow expected, because the second algorithm is a
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modification of the first ome, hence needless to say
that the argument for the gquantization effect on the first
algorithm in section 4.4.1.2 stands also for the quaﬁtization

effects on the second algorithm,

4.4.2.3 Improvement Over First Algorithm

The second algorithm is designed to perform better
than the first algorithm at low SNR values. To verify
this, the second algorithm is tested with the background
SNR=9 dB., The number of error-patterns tested is taken
as 4 and 12 at 186 and 4 quantization levels, and the results
are shown in figs.{(4.16) and (4.17). The optimum decoder,
error-trapping decoder, and the first algorithm decoder
results are plotted also for comparsion.

Fig.(4.1B) shows the results when the first algorithm
and second algorithm decoders,used 16 levels guantizers.
For 4 errcor-patterns, the second algorithm performs better
than the first algorithm at burst SNR values lower then
-1.9 dB, while its performance is better than the error-
trapping decoder for the whole studied range of burst
SNR. But worse than the aptimum decoder for burst SNR values
lower than -11.5 dB. On the other hand the second algoritbhm
decoder using 12 error-patterns performs better than the
first algorithm for burst SNR values lower than-1.2 dB.
While it performs worse than the optimum decoder and the
error-trapping decoder at burst SNR values lower than
-6 dB, and -9.5 dB respectively.

Fig.{4.17) shows the same results as fig.(4.18),

the only difference here is that the quantization levels
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are 4. The intersection points for the 4 and 12 error-

patterns are -6 dB, and 0 dB respectively, and the inter-
section points with the Dpfimum decoder results are

-13.5 dB, and -8.2 dB for 4 and 12 error-patterns respectively.
The second algorithm cutperforms the error-trapping

decoder for the whole studied range.

The same previous test is repeated for a background
SNR=7 dB, the test results are shown in figs.(4.18) and
(4.19) for 16 and 4 guantization levels. Here again, as
for the first algorithm, the second algorithm performs
better at a lower background SNR value. The two figures
are very similar to the previous two, the only difference
is that the intersection points are shifted to the left.

For the 16 level decoders, fig.{(4.18), the inter-
section points with the first algorithm are -0.5 dB and
-4,5 dB for 12 and 4 error-patterns respectively. The
intersections with the optimum decoder and the error-
trapping decoder for the 12 error-patterns are at -12 dB
and -20 dB reépectiuely. While the 4 error-pattern decoder
outperforms the optimum and error-trapping decoders
for the whole studied range.

The curves of fig.(4.19) are a little bit different,
because at 4 guantization levels the second algorithm
outperforms the error-trapping decoder, and the optimum
decoder over the whole studied ranmge. While the inter-
section points with first algorithm are -8 dB and -0.8 dB
for the 4 and 12 error-pattefns respectively.

Clearly figs.(4.16), (4.17), (4.18), and (4.18) shouw

that the second algorithm introduces an improvement over
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the first algorithm at low burst SNR values, but this
improvement is at the cost of a small degradation at
high burst 5NR wvalues, And that the improvement and

the degradation are inversely proportional to the number

of error-patterns used in the decoding process.

4,5-Conclusions

The time-shared decoding may be the solution for
a very high transmission rate system. Any system is
evaluated by its complexity, ceost, and performance. A
time-shared decoder will introduce an additicnal complexity
to the receiver, yet the microporcessor software can be
made to simplify the system, i.e. use the microprocessor to
handle the buffer control. The cost is also higher because
at least the system requires additional storage to be
used as buffers. Again some systems may reguire buffers for
usage by other than the error-correcting decoder, hence
the existing buffers may be used by the time-shared
decoder. Consequently, the time-shared decoder complexity
and cost is somehow difficult te evaluate; because it
can be different from one system to another. While the
time-shared decoder performance is entirely dependent on
the decoding algorithm, two algorithms were introduced to
be used specifically as time~-shared decoding algorithms,
although in geﬁeral any decoding algorithm can be used.
Perhaps the most important conclusion one can draw
is the effect of the number of qguantization levels on the
sof t-decision decoder ﬁerformance. It became clear during

the simulation that the decoder performance is not aluways
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improved by increasing the number of quantization levels.
In fact the simulation results show that the decoder
performance is improved as the number of guantization
levels is increased at high burst SNR., But after a certain
low SNR value the decoder performance starts to deteriorate
as the number of quantization levels is further increased.
This represents a special problem because if a small number
of gquantization levels are used, the decoder will preform
well at low burst SNR wvalues, but will not get all the
improvement that can be achieved. 0On the other hand, if
a larger number of quantization levels is used, the decoder
will perform well at high burst SNR values, and badly at
low burst SNR values. In general it 1is perferable to use
larger number of quantization levels, so that the overall
decoder performance is good, because in the bursty channel
case, the SNR value is high most of the transmission time.
The first algorithm is in fact an ordinary soft-
decision algorithm, with the exception that the parity-
check error-trapping is added so that it will reduce the
execution time, hence reducing delay when used in the
time-shared decoder. Although the algorithm is designed to
be used in time-shared decoders, there is nothing to stop
using it in a conventional soft-decision decoder. The
parity-check error-trapping technique can be incorporated
in the conventional soft-decision decoder to achieve an
additional gain at low burst SNR values. In general the
inclusion of the parity-check error-trapper in the decoder

can be achieved without additional cost to the hardware
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or major modifications in the software.
The second algorithm is a further modification of

the first algorithm, it performs better than the first

algorithm at low burst SNR values, while the first algorithm

outperforms the second algorithm at high burst SNR values.

Again the second algorithm can be used in conventional
soft-decision decoders with or without the parity-check
error-trapping facility. The most important feature of
the second algorithm is its change of perfromance as the
number of tested error-patterns are changed. When the
number of tested error-patterns is large, the second
algorithm performs exactly as the first algorithm. If
the number of tested error-patterns is equal to one, a
second algorithm decoder will perform exactly as the
optimum decoder. While if the number of tested error-
patterns is in between then, the second algorithm,
depending on the SNR values, may perform better than the
first algorithm and the optimum deccder.

As it is meéiioned earlier, the first algorithm
performs better at high burst SNR, while the second
algorithm performs better at low burst SNR., Since the
second algorithm can be made to perform as the first
algorithm by increasing the number of the tested error-
patterns. Then an adaptive system that change the number
of the tested error-patterns_accordingvto the burst
SNR value, can be used to achieve a better performance
over the whole burst 5NR range. Clgarly such a system
will require a burst SNR calculation circuit, which may

be complicated in itself. A simple soclution can be based




on the following fact; keeping in mind that the transmitted
codewords are interlaced. At low burst SNR values, a burst
will cause a number of consecutive received words to be
erronecus. As soon as the burst is finished, there should
be no consecutive, but random‘erroneous received words.
Instead of the burst S5NR calculation circuit, a counter

is designated to count the comnsecutive erroneous words,

if the count is larger than certain number a burst is
assumed, and the number of tested error-patterns is reduced
to 2 low value, while once an error-free word is received,
it is assumed that the burst is finished, and the number

of tested error-patterns is increased. Although this
splution may not be very elegant, it is reasonably accurate
and very simple to implement.

Both algorithms show that for bursty channels the
improvement over error-trapping and optimum decoding is
increased as the background SNR is decreased. But it is
expected that the improvement will start to decrease after

reacﬁing a peak value as the background SNR 1s decreased.
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CHAPTER 5.

THE PARALLEL THRESHOLD DECODER

5.1- A General Look

A data stream is transmitted over a transmission
channel fig.{3.1), which can handle binary signals.
Consider the transmission of a data block from the data
stream. Fig.{(5.1) shows the different waveforms of a
block in various points of the transmission system, the
modulator output x(t) is shown in fig.(51-2) yhich
represents the transmitted waveform during transmission,
noise waveform w(t) is added to the transmitted waveform,

to form the received waveform y(t) according to Eq.(3.1)
y{t) = x(t) + w(t) (3.1)

The received waveform at the demodulator input y(t) is
shown in fig.(5.1-b). At the demodulator the received
signal is sampled in time with the sampling pulses
fig.(5.l-c),.and compared with a present threshold value
to detect whether the transmitted digit was '0D!' or '1'.
The output of the demodulator is dependent on the
threshold value which in most communication systems is
half point between the transmitted values of '0' and '1'.
The output of a detector which has a threshold value of
zero is shown in fig.(5.1-d), and it can be seen from
comparing fig.(5.1-d), and fig.(5.1-a) that the demcdulator

committed three errors in detecting the 2nd, 6th, and 12th
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received digits. Let the threshold value be any value
other than zero volts, say -V/2 volts. The detector at
the demodulator will compare the sampled received waveform
with the-V/2 volts threshold, it will assume that the
corresponding transmitted digit was '1' if its sampled
received waveform value is higher than -V/2, and that

the transmitted digit was '0' if the sampled wvalue was
lower than -V /2volts. The output of a detector which has

a threshold value of -V¥/2 wvolts is shown in fig.(5.1-e),
it can be seen from comparing fig.(S.l—e), and fig.(5.1-a}),
that the demodulator committed two errors in detecting
the 2nd, and the 12th received digits. If an error-
correcting code.is used for error-control in this
transmission system, which is capable of correcting two
or less errors in the considered block. Then the block
decoded by the zero threshold may or may not be corrected,
while the block detected by the ~V/2 volt threshold will
be decoded successfully, and the correct data will be
delivered to the sink. Clearly in this particular case
the second threshold value is more suitable for the
decoding of this particular received waveform than the
first threshold value, and this may not be the case if

the same block is transmitted again.

5.2-The Optimum Threshold Calculation

The optimum threshold is the value that when used
to detect the received signal the detection is optimum.
The detection process is optimum in the sense that it

minimizes the probability of error in the detection of




the received signal.

It is assumed that no signal distortion is
introduced by the transmission channel, so that the
signal-waueform is shaped entirely at the transmitter
and the receiver. The transmission channel, however,
introduces additive white Gaussian noise. Although the
additive noise introduced by many practical channels
does not approximate to Gaussian noise, it is well

known(ls’l?)

that a digital signal having a better
tolerance to additive white Gaussian noise than another
signal, will normally also have a better tolerance to
the additive noise obtained in practice. The relative
tolerance of diffefent signals to additives white
GCaussian noise are therefore usually a good measure of
their relative tolerance to additive noise present %n

a practical channel,

Going back to fig.(3.1) the signal to be transmitted
through the channel is generated in the source, the
source encoder will change this signal to a stream of
'0' and '1's. The channel encoder groups each k digit
together and annexes n-k parity check digits to each
group, so that a block of n digits is formed. Each block
is an independent vector of any other bleck, and it

is a codeword, Let this vector be T, then

C = C12CpsCxrennnnnssCo (5.1)
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where c (k) are the parity check digits, and

p reeee
C(n—k+l)' Cln-k42)?" """ »C_ are the information digits.

At this stage, since we are interested in the
sampled output of the transmission channel. Then a
discrete channel will be considered, where discrete
noise will be added to the transmitted signal in the
channel.

The vector C is converted to the binary polar
vector X, and is transmitted through the channel as a

two level signal where

X = xl,ngxs, ------ s X (5.2)

each sample x5 is one of two levels depending on the

value of Ci

+Y (5.3-a)

when c " then X5

(5.3-b)

1
]
[~

and when c L then Xy
During the transmission through the channel,
white Gaussian noise, which has zero mean, and power
spectral density of 02, is added to the transmitted
signal. The received signal is the addition of the

transmitted signal and the noise signal. Let the noise

vector added to the transmitted vector be W, then

W = wl,wz,w3,.......,wn (5.4)
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where we is a sample value of a Gaussian process, with
zero mean and ¢ variance

At the receiver, the received signal is the sampled

vector Y, where

Y = yl’Y2’Y3D ------- 'S4 (5-5)

The received vector Y can be written as the addition of

the transmitted vector and noise -

Y = X + U (5.6)

Y. = X. + u, (5.7)

To detect the value of x5 from Yi» Y3 is compared

with a threshgld level of Th,

when y, < Th x, is detected as -V (5.8-a)
when Yy > Th X5 is detected as +V (5.8-b)
and when y. = Th x. may be detected as +V or-V
i i
(5.8-c)

The probability density function of the noise

component w, in Eg.(5.4) is

) (5.9)
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The probability density function of the received

signal can be obtained from Egs.(5.9) and (5.7)

(y;-%;)7

1
ply,) = exp{-
i V2no?2 202

} (5.10)

Thus y has two possible probability-density

functions p(yilx _ U) and p(yilx ), its probability
="

. =+Y
1

density depending upon whether x=-U or x=+V. p(yilx =-U)
i

and p(yi,x -+U) are conditional probability densities
i= _
of y, given that x=-V and x=+V respectively. The two

conditional probability densities are shown in fig.(5.2}.

Decision Threshold

p(yilx =-U) p(yilxi=+U)

Fig.(5.2) Conditional Probability Density

Functions of vy

Clearly, the two conditional probability densities

can be obtained by substituting the values xi in Eq.(5.10).



- 146 -

1
D(yi,xi:_u) ——

and _ 1
p(yllx oy exp

i ) V2n0?

exp {-

(yi+U)2
_—_) (5.11)
202
(yi—U)2
e | (5.12)
202

Assuming the decision threshold used in the

detection process it Th,

the same as Egs.(5.8). If x; ==V, an

and the detection rules are

error occurs in the

detection of X when yi>Th, thus the probability of

error is

peD

If x.=+V,
i

dy. (5.13)

an error occurs in the detection of xi

when yi<Th’ thus the probability of error is

[o3]

Pel

Th

(yi-U)z

1
2 exp {-—i
V2no? 20*

dy; (5.14)

assuming that x, is transmitted as -V, from Eq.(5.7)

Then

again assuming that X

is transmitted as +V,

(5.15)
(5.16)

from Eq.(S.?)



w, = vy, -\ (5.17)

Then
dw, = dy, (5.18)

1 w?
Pog = —— exp (-—— ) duw. (5.19}
2no? 202 1
Th

Similarily substituting Egs.(5.17) and (5.18) in Eq.{(5.14)

gives
Th
1 Wi
= —_— - . 5.20
Peoy /E;;?—- exp ( 202) dwl ( )
-

Assuming the decision threshold is at a distance dl

from +V, and d, from -V, then from fig.{5.2)

o d, + d, = 2y : (5.21)

Thus if xi=-U, an error occurs in the detection
of x4 whenever ui>d2. Similarily, if xi=+U, an error
gcecurs in the detection of x5 whenever wi<dl. Hence
pED'is the probability that the noise component W, has

a value more postive than d and Pol is the probability

1 L]

that Wy has a value more negative than d2. It follows
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that
1 wi
D = ——=—— exp (- ) du. (5.22)
el /2no? 20?2 1
d;
and dl
w2

dwi (5.23)

Let the probability of transmitting '1' be q;, and

the probability of transmitting '0' be Ag- Then
q; + ag = 1 (5.24)
Consider the transmission of a digit without any

knowledge of this digit being '0' or 'l'. The probability

of decoding this digit erroneously as 'l' is

peD = dgp Pgp (5.25)
’ 1 wi
p = - . 5-
0 %% | s e L) o 1520
d,
) 1 wi
peD = qg /5;__ exp (- 5 ) dui (5.27)
d,
o
d,
Pog = ag erf (7;) (5.28)



where

Conversley,

transmitted digit erroneously as

el

u.|2

Since exp{-—) is
202

be rewritten

el

el

el
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1 z%
exp (-5) dz (5.29)
vVon
b4
the probability of decoding the
o is
Pel = 91 Pey (5.30)
%1 w?
a, 1 exp (-—=—) duw (5.31)
270 202
an even function of w, Eg.(5.31) can
[=]
1 w?
i
q exp (- } Odu, (5.32)
L /ono? 202 .
—dl
w?
qQ, L exp (-——) du (5.33)
von 20?
gl
0
-9,
= qy erf (_3_) (5.34)

where erf(y) is defined as in Eq.{(5.29).

The probability of decoding a transmitted digit

erroneously 1s

(5.35)



- 150 -

Substituting Eqgs.(5.28) and (5.34) in Eq.(5.35) gives

To find the distance d.,

d5
po= erf (7;)+q

o Qg erf

1

1

-d
1
(=)

that minimizes the

(5.36)

probability of error is the received digit the following

conditicn should be satified

from Eg.(5.21)

BPE
=0
Bdl
d2 = 2V - d

Substituting Eq.(5.38) in Eq.(5.26) gives

from £g9s.(5.35),(5.31), and.(5.39)

P = L

€ V2no?

according to the first fundamental theorm of culculus

aP
e

adl V2no?

1
P . =g exp (-
et T | Joror
2U~dl
d
1 mi
9 exp(- Jdw.+q
1 202 1 O
- 2V

dz

[ q, exp(~——)-q, exp{-

202

w;
)
202

@
exp(-

_dl

(2u-dl

202

dw,
i

w?
1

202

)2
}

(5.37)

(5.38)

(5.39)

)du,

|

1

" (5.40)
(4)

(5.41)



to meet the condition of Eq.(5.37)

2
di (2U-dl)
q,exp(-——)-gqgexp{- ———=—} =0 (5.42)
202 20%
2
(ZU-dl)
q exp{ - }
—= = 0 (5.43)
q[] dz
exp{ - "1 }
202
91 1 2 2 2
— = exp — {(-4v +aual-dl) - (-dl)} (5.44)
90 202
93 1 2
log —= = —=—(4Vd,-4v°) (5.45)
2g2
9
9
02log — = ZU(dl-U) (5.46)
9 :
B o2 97
dl = V+ >V log — (5.47)
90

Similarily d2 can be calculated in the same way, to give

2 2V q; (5.48)

or directly from Eq.(5.21).

It is clear from Eqs.{(5.47) and (5.48), that the
threshold distance from +V or -V {the threshold value),
is dependent on the transmitted signal voltage tV, the

q

noise power ¢, and the ratio Ei'
0
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The mean power level of the transmitted signal is

_ (+v)2-(-v)° _ 2

5 > Y (5.48)
The noise power is
N = o2 (5.50)

SNR = % = — (5.51)
Substituting Eq.{(5.51) in Eq.(5.47) gives

d. = Vv(1+ log —) (5.52)

=2
1 25NR

which shows that the optimum distance is dependent on

q
the SNR and the ratio —i.

Y90

5.3-The Optimum Threshold of a Continued Transmission

In section (5.2) the optimum threshold value that
minimizes the probability of error in each received digit
is derived. During a continuous transmission the same
equations can be used to minimize the probability of
error for each individual received digit. It is wise to
assume that the scurce is'an unbiased source, thus each
generated digit is equally likely to be either '0D' or '1'

Solving Eq.(5.24) for this assumption gives



(5.53)

Substituting g, and q; values in Egs.(5.47) and (5.48)

yields

d. = d. =V (5.54)

The decision threshold value for such a system is placed
at half-distance between the +V and -V, which is in this
case zero volts.

The assumption of an unbiased source is a wise one,
because the end result, £q.(5.54), is independent of the
noise value. Consequently, this threshold value is fixed
and always optimum regardless of the SNR value in the
transmission channél. While the use of any other values
for qU'and 9, (except 0, and 1) will result of a different

threshold value for each SNR value.

5.4=The Optimum Threshold for a Limited Length Block

The term continuous transmission used in section
(5.3) implies that a large number of digits are transmitted
during each communication pfocess, where the number of
'0' and '1' is nearly equal. Unfortunatly, this is
not the case when a limited digits number is considered.
Since our main infereét is block codes, and that each block
is independent of the other transmitted blocks. The
optimum threshold will be calculated for the received
block. The optimum threshold is the wvalue that when used

to detect the received block, the detection is optimum.
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The detection process is optimum in the sense that it
minimizes the probability of error in the detection of
the received block.

According to £gs.(5.47) and (5.48), the optimum
threshold value is dependent on 95 and a; - Te find
these values, consider that an (n,k) block-error-
correcting code is used for error correction in a
channel, the information digits stream is divided into
independent groups of k digits in the transhitter. Since
the source is generating the '1' and '0' stream according
to the information to be transmitted, and each group
is independent of the others, then the number of 'l's
and '0's is different for each group. Furthermore the
annexation of the parity-check digits to these groups,
will cause a change in the number of '1' and '0' in
each block, although the '0's to 'l'!' ratio may or may
not change. The relation between the number of '1' NOO,
i.e. the Hamming weight and number of '0' NOZ, in each

block of length n is

NOO + NOZ = n (5.55)

th

the probabilities ag and a; for th 1 block are

NDZ, (5.56)

Risk n

and

I

NOO; /. (5.57)



The length of each block is n digits, where n is
dependent on the block code used, which is relatively
small number compared with the number of digits in a
continuous transmission. Consequently, E£q.{5.53) does
not apply generally to all blocks, thus, threshold
value calculated in £q.(5.54) is no longer the optimum
threshold that minimizes the probability of error in all
the received blocks.

The channel input is always a codeword whatever
the information digits are, thus the probabilities
ag and q; can take only the values corresponding to the
probabilities of the 2X codewords. Fig.(5.3) shows the
frequency distribution of the '0' or '1' in all the
possible codewords for the BCH{31,21) cyclic-block code.
It can be seen that the 2087152 NOO or NDOZ wvalues form
a group of 23 values. Fig.(5.3) is plotted by using
the NOO values. The NOZ will give a similar figure but
rotated about n/2 axis. By scaling down the x axis by
n in fig.(5.3), the same figure will‘fepresent the
frequency of qg and q,- Fig.(5.3) shows the NDO distribution
for the BCH(31,21) code, which is typical of the codes
used as it can be seen from fig.(5.4) which is the
distribution of the (34,22} burst code, fig.(5.5) the
(27,20) burst code, fig.(5.6) the (27,17) burst code,
and fig.(5.7) the (19,11) burst code. The only exception
is the distribution of the BCH(15,7) random-error-
correcting code fig.(5.8), which differs in that it has

its maximum value at a point other than n/2° Tt is clear
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from.figs.(5.3) to (5.8), that the ratio g? is variable
from one code to another, furthermore it is wvariable in
the same code from one codeword to another as it is
expected,
The other variable that affects the threshold value
q

in addition to the ratio EE is the noise power according
1

to Egs.(5.47) and (5.48), or the SNR as in Eqg.{5.52).

This variable is channel dependent, and it varies randomly
throughout the transmission period. In some cases it

can be assumed constant, as in the random error generating
channel, where errors are generated randomly (a memoryless
channel), but .in other cases such as the burst error
generating channel (the channel has a memory), its value
cannot be predicted, andis not constant throughout the
transmission periods. To study the variation of the
optimum threshold values with the variation of the noise
power of the SNR, the BCH(15,7) random error correcting
code was chosen for the study, this choice was made
because this code has the smallest number of codewords

so, they all can be plotted clearly on the same graph.

The optimum threshold value is calculated for each
codeword for every SNR value, while the SNR wvalue is
increased from 1dB to 7 dB in one dB steps. The study

d

result is plotted in fig.(5.9), the distance '\Tl of

Eq.(5.52) represents the optimum threshold values,

) g
while the different wvalues of the ratio ai represent

0
the different codewords. The all zeros and all ones

codewords were left out of the study because d2 for the
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all zeros codeword according to £qg.(5.48) is

- o2 1
d, = V + 5y log (5.58)
02
dy, =V + 5= (log 1 - log 0) (5.59)
d, = - (5.60)

which gives an optimum thresheold value of -« volts.

Similarily, from Eqg.(5.47) d, for all ones codeword is
d = = (5061)

which gives an optimum threshold value of + « volis,
Egs.(5.680) and (5.61) show that for these particular
codewords the optimum threshold is independent of the
noise power.

Fig.(5.9) shows that the optimum threshold values
are symmetrical around the i%=l value which is the value
1 for thz ratio g§=l, and that the threshold values
converge to 7T=l as the SNR value grows bigger. But the

most important result is that there is no fixed value

of d

for the optimum threshold of any codeword as the SNR
value is varied, apart from the three special values
where

ag = 1 (5.62)
or

q, =1 (5.63)



or l
5 (5.64)

It is clear by now that to minimize the probability
of error in a received block a variable decision threshold
level should be used, where this decision level is
dependent on the particular codeword transmitted aﬁd on

the noise present at the channel during transmission.

5.5-The Variable Optimum Threshold Decoder

The use of Eq.(5.47) and Eq.(5.48) in an actual
decoder requires a special arrangements so that the
decoder will get all the necessary information about the
two variables ¢ and qD/ql, in fact, the knowledge of qg
or o, is sufficient to calculate the ratios qD/ql oT
a,/ag» by solving Egs.(5.55),(5.56), and (5.57), qg or
a, can be calculated, where

Qg + 9, = i (5.65)

Assuming that it is required to build a decoder
that will minimize the probability of error in the
received block, such a decoder should have a detector
wvhich has a controllable threshold level which can be
varied finely from - to +¢e to cope with all o and
qD/ql values. The first step is to find the values ag
or q, of the received block, since the decoder will get
these values after the decoding process and not before,

then one of these two values has to be transmitted, while
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the other one will be calculated from Eq.(5.65). To
transmit Qg or a, within acceptable accuracy will require
the transmissicon of additional digits with each block,
whiech increase the transmission rate, and add redundancy
to the transmitted digits. The second step is to calculate
the noise power 0%, to give the decoder an idea about the
noise 1in the transmission channel, a special sequence
known to the receiver has to be transmitted so that an

initial value of the noise can be calculated from Eq.(5.7)

W, =y, = X. (5.67)

The number of digiﬁs transmitted in this sequence depends
on the accuracy required in the noise power calculation,
the longer the sequence the more accurate the calculation
will be. Once the initial sequence transmission is ended,
the information blocks are tranmitted. At this stage the
optimum threshold value for the first block can be
calculated, using the initial value of c? and the first
block tranmsmitted value of gy or q,, from Egs.(5.47) or
(5.48). At the end of the first block decoding, the
decoder has calculated an additional n noise samples,
same as in Eg.{(5.B7), but using the decoded values as
Xy . These n samples are used to update the noise power
value, so that the updated value is used to calculate
the aptimum threshold value for the next block and so on.
The optimum threshold wvalue has to be calculated

before the information and parity-check block can be
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decoded, which will introduce delay to the system.

This decoder may function satisfactorily in some
channels where the noise value is constant i.e. random
error generating channels, or the slowly noise varying
channel, because in the above described decoder the noise
information used in the calculation of the present block
is the noise value of the channel for the previous period
up to the beginning of the present block, so any sudden
variation in the noise power during the transmission of
the presemat block, will result in a large difference in
the noise power, hence the calculated threshold is no
longer optimum. If the decoding of the present block
was successful, in which the received block was the
same as the transmitted one, then the noise power value
is updated, and the threshold wvalue for the next block is
optimum. If the decoding block was unsuccessful, then
the decoded values of x5 will be erroneous, thus the
updated noise value calculated by the use of Eqg.(5.67)
is wrong which will cause the calculation of the next
block threshold ito result in a value other than the
optimum value. The repetition of this process may cause
the propagation of erroneous decoding, but generally
the noise power will move nearer to the correct calculated
value with every correct block decoding after the sudden
change in the noise power. Since the sudden change of
noise power will result in the calculation of a nocnoptimum
threshold value, and may cause an erroneous decoding of

the block in which the ncoise has changed during its
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transmission, furthermore the erroneous decoding might
spread to the next block or block, then it is clear that
this type of decoder is not suitable for decoding
transmitted signals over fast noise varying channeis,

and bursty channels.

5.6-The Multiple Fixed Thresholds Decoder

The decoder of section 5.5 is clearly a complicated
one, and has the disadvantages of introducing additional
delay, more redundancy, and more complexity into the
system. To aveoid these disadvantages, a different decoder
will be introduced based on the idea of using multiple
fixed thresholds as the decision levels. The idea of
multiple fixed thresholds can be described as follows.
The optimum threshold values of fig.{5.9) shows that for
some certain threshold values, one threshold can be
optimum or very near optimum for more than one transmitted
codeword at different SNR values, i.e. different values
of ql/qo and ¢%. For q;ample the threshold value which
is at a distance of dl;U=U.955 is optimuh for the
detection of the codewords which has ql/q0=0.875 at
SNR=3dB, and ql/q0=2/3 at 7dB, while it is near optimum
for the codewords which has ql/qD=2/3 at SNR=5dB, and
ql/qD=D.875 at SNR=5dB. Although the last two values are
not optimum, yet these values are much ﬁearer to the
optimum threshold values than the conventional zeroc volt
threshold. Such thresholds can be used for decoding these
two codewords at different SNR values to obtain better

results than the zero volt threshold. By & careful choice
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of threshold values one can serve more than one codeword
at different SNR, the number of thresholds to be used

can be.reduced from an infinitely, large number of
optimum threshoplds to a few optimum and near optimum
thrésholds; Fig.(5.9) is derived from the threshold
ualﬁes of the BCH(15,7) random code, and the threshold
values mentioned aone are applicable to that code onily,
where the curve values are calculated by Eq.(5.47). In
general one should expect curves similar to fig.(5.9)
for any code, because the threshold distance dl calculated
from £q.(5.47) does not correspond to the code itself

but to the ratio ql/qD which can be present in any code.
Hence for.longer codes there will be more ql/qD values,
thus more curves than fig.(5.9), consequently, one chosen
threshold may fit many optimum thresholds at different
SNR values, and may serve many other near optimum
thresholds.

Assuming that for a certain code, thresholds values
were found as described above, and the received word is
detected by each threshold value, then decoded and
corrected. Each received word is detected at least once
by a threshold value that is optimum or near optimum
regardless of the SNR value in the tranmsmission channel
so, all the decoder has to do is to pick thé corrected
output of the optimum or near optimum. 5Such a decoder is
much less complicated than the decoder of section 5.5
and it has some aduantéges over other decoders. fFirstly,

it does not introduce any redundancy digits to the
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transmitted bits, thus the transmission bit rate is
unchanged. Secondly, the threshold values are fixed, so
they can be preset in the decoder. Thirdly, the décoder
function is independent of the SNR value in the transmission
channel. Fourthly, the probability of error using this
decoder is higher than the probability of error of the
decoder of section 5.5, yet it is lower than the
probability of errer of the conventional zero threshold
decoder,

To calculate the degradation in the probability
of error when a near optimum threshold is used for the
detection of & received word, let the transmitted word
have the probébilities Qy and ag for the transmitted digit
to be '1' and '0' respectively, and let the optimum

threshold be at a distance d, from +V, and d, from -V,

1
the probability of error is given in Eq.(5.36)

9

P = erf(T;

-d
1
e ag } +a; erf( 7;) (5.36)

Let the near optimum threshold used to detect
this received word be at a distance d3 from +V, and da

from -V, where according to Eq.(5.21)
(5.68)

The probability of error for the detection with the

near optimum threshold pen is




da -d3
Pon = 9g erf(T;) +a, erf( 7;) (5.89)
Probability of error degradation PE is
' deg
P =P, - P (5.70)
deg
d d -d -d
_ _4 2 _3 1
Pe = ag erf(o)-erf(o)] +ql[ erf( 0)—erf( 0)
deg
(5.71)

substituting Egs.(5.21) and (5.68) in Eq.(5.71) gives

-d -d

2U-d3 2U—dl 3
Pedeg = qg erf( 5 Y-erf( = )] +ql{erf( 7;)-erf( =

(5.72)

the degradation is shown in fig.(5.10) as the blocked
area, while the probability of error for the ocptimum

threshold is the shaded area.

near optimum decision threshold

optimum decision threshold

P_ degradation /A///////

PE minimum

N

AR,

+V

Fig.(5.10) Probability of errorand its
degradation
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When the value of the detection threshold is
reasonably close to the optimum detection threshold, then
the degradation can be ignored without affecting the
probability of error value seriously, as it can be seen

from fig.(5.10)

5.7-Thresholds Values Choice

In a practical system it is impossible to prefix
the decision thresholds to all the optimum threshold
values for all the transmitted codewords and all the
possible 5MR values in the transmission channel, because
the number of these values is so big, it makes the decoder
very complicated and expensive to build. To aveid this,

a reasonable number of thresholds should be used so that
the decoder will give an improved performance at an
acceptabYé cost and complexity. Several methods will be
described for choosing decision threshold values; all
these methods can be divided into two categories, the
code independent thresholds, and the code dependeqt
thresholds. Figs.(5.3) to (5.8) show that all six codes
used are symmetrical sbout the x:n/2 axis. This means
that the optimum thresholds of each group will be
distributed symmetrically on both sides of the x=n/2
point., Another result of a special interest is the point

x=n/2 itself because at that point for any code
NOO = NOZ = n/2 (5.73)

which gives the '1' and '0's probability from Egs.(5.56)
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and (5.57) as in Eq.{(5.53)

- -1
ql - QD - 2 (5.53)
and results in an optimum thresholds distance of zero

volts as in Eq.{(5.54)

d, = d, =V (5.54)
given that

|-v] = {+v] (5.74)

It can be said from the above discussion that
every group of the optimum thresholds are symmetrically
distributed on both sides of the zero volt threshold,
which corresponds to the x=n/2 goint on the freguency

distribution curve.

5.7.1 The Independent Thresholds

These groups:.of thresholds can be used for the
decoding of the received word reqradless of the code
used. They are symmetrically distributed on both sides
of the zero volt threshold. Let the number of thresholds
on each side of the zero volt threshaold be F, excluding
the zero volt threshold. Since the thresholds are
symmetrical around the zero volt thresholds, then the

total number of thresholds required by the decoder is

2F if zero volt threshold is not used
(5.75-a)

[}
[

~
I

ZF+1 if zero volt threshold is used (5.57-1)



Throo groups of the independent thresholds will be
discussed.

a) The Full Span Thresholds: The Z thresholds are

spaced equally between +V and -V, since the distance
between every two thresholds is constant, then the

voltage difference between every two u is
b= 2y/z-1 (5.76)

If the zero volt threshold is used, then the neafest
threshold from each side to the zero volt threshold is
at a distance of u volts, while if the zero threshold is
not used, the two nearest thresholds to zero volt are
at a distance of #u/2.

b)The Partial Span Thresholds: Fig.{5.9) shou that

for a large range of 5NR values the threshold is not

at a distance more than V/4 from the zero volt point
(excluding all zero and all ones codewords). Tnus the
full span thresholds are not economical, because 75%

of the thresholds are very far from the optimum threshold,
and do not serve any optimum threshold within a reasconable
range of the SNR values, so these thresholds are spaced
equally between two voltage values, say vy and "V
where these values are greater than the maximum distance
of a threshold from the dl/U=1 point for the code used.
In general v can be chosen as V/3 without regarding the

code used. The voltage differemce between any tuwo

thresholds u is



- 168 -
_ 2v
u = 1/z2-1 (5.77)

again as in the full span thresholds, the nearest
thresholds are at a distance *u if the zero wvoltage
threshold is used, otherwise, the thresholds are at a
distance of *u/2,

c)The Partial Nonequidistance Thresholds: Furthermore

fig.(5.9) show that the threshold values has a special
d
1

distribution, where they are concentrated near the Tr:l

point, and become more scattered as the distances grow
bigger. 7o match this, those thresholds are spaced so

that the distance is bigger as the threshold is further
d

from T%:l point. Agalin, to keep the advantages gained by

using partial span thresholds, these thresholds cover
the central part of the distance between +VY and -V, say

+ul to -V A good law to set the distance between

thresheolds is the doubling law, where the distance to
d

the next threshold (which is further from T%zl point) is

double the previous threshold (which is nearer to the

d

T%:l point). Here two cases must be considered, firstly,
d

when the zero voltage threshold (at T%:l point) is used,

the threshold voltage for the ith threshold fram the

zero voltage us is

2Ty (5.76)
U, = S 5.78
Lot oo

Secondly, if the zero veltage threshold is not to be

used, the threshold voltage for the first threshold



- 169 -

from the zero voltage u, is

1
v
1
u, = — {(5.79)
1 2F+1_3
the ith voltage value ug is
vy i 2" vy
u, = 2F+l : + = 2F+l 2 for 1g<igF
- - - (5.80)
Vi * m
u, = =————— 1 ¢+ ) 2 ] for 1<igF (5.81)
i F+1
2 -3 m=2

Fig.(S.li}d) shows the threshold values for F=3, when the
zero volt threshold 1is used, while fig.(S.llyh) shows
the thresholds values for F=3, when the zero volt

thresheld is not used.

! V1 1 1
7 7 7 7
Fig.(5.11-a)Threshold for F=3 with 0 volt threshold
--5ul vy 0] :j, 5ul tuy
13 13 13 13

Fig.(5.11=%Thresholds for F=3
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The thresholds values calculated by Eqgs.(5.76),
(5.77),(5.78).(5.79), and (5.81) are independent of the
code used, but they are not the optimum values, although
a few of them could be. The probability of having a number
of the optimum thresholds in the calculated thresholds
becomes bigger as the number of the calculated thresholds
grows bigger. When the number of the calculated thresholds
reaches infinity, all the optimum thresholds are included
in the calculated set. Consequently, the decoder performance
will improve as the number of thresholds used is increased.
A decoder using a fixed number of thresholds calculated
to form a partial span of thresholds will perform much
better than the case where the thresholds form a full
span, while, if the thresholds were arranged as a partial
nonequidistance, the decoder will perform even better,
but as the thresholds number is increased the improvment
over the other systems become smaller, till at some
stage all the three groups perform the same, and no more
improvment can be achieved by increasing the threshold

numbers beyond this point.

5.7.2 The Code Dependent Thresholds

Each group of these codes are derived to be used
with the specific code they are derived for. Three types
will be discussed here, two are channel noise dependent,
while the third is channel noise independeﬁt. All three
will be dériued from code dependent equations or curves.,

a)The Optimum Thresholds Groups: These groups are

code and channel noise dependent, and the number of
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thresholds is determined by the code used, where for

q
each different value of the ratio —l, one threshold

90
exists. The thresholds values are calculated by £q.(5.47)

o2 9
dy =V + 57 log EE _ (5.47)

noise power values o? are taken as the average noise power
in the transmission channel.

For.long codes, the number of thresholds calculated
according to this group is large. In some applications,
it may require from a practical point of view to use a
fewer number oflthresholds in the decoder. In such cases
the furthest thresholds on both sides are omitted till
the required number is reached.

These groups of thresholds are the best to use
(if no thresholds are omitted), because all the thresholds
are optimum. The big disadvantage is that the only way
to control the threshold number without omitting any
threshold is by using a different code. The: other
disadvantage is that the code itself dictates the cost
and complexity of the decoder through the number of
thresholds. Consequently, code choice for these type of
threshold decoders is somewhat critical.

b)The Optimum Spaced Groups: These groups are

also code and channel noise dependent and have the
advantage of having a flexible number of thresholds in
each group, but at the cost of the thresholds used being

optimum or near optimum.
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Thresholds are derived from the distance frequency of
NOO or NOZ curve. Distance dl is calculated from Eg.{5.47)
for each value of the ratio ql/qD, at the average noise
power %, the results are plotted against the freguency
of NOO or NOZ, which can be called the frequency of the
ratio ql/qD, or the frequency of thresholds. Fig.{(5.12)
shows this curve for the BCH(31,21) random code, at
SNR=3 dB;

Assuming that one threshold i1s required (F=0), a

line which has the equation

Y1 7 Fmax (5.82)

is drawn where fmax is the maximum frequency value, this

line will intersect with the curve at the point dl’ giving
the distance of the threshold required, which is for this
code

d; =V (5.83)

which is the zero volt threshold in this case. Now
consider the case where F=1, the intersection 1line
equation is

Yo = Fray/2 (5.84)
This line will give two thresholds_ualues symmetrical
or nearly symmetrical about the zero volt threshold.
Similarily for F=2 Fwo equations for the intersection

lines exist, where
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Y1 = Frax/3 (5.85-a)

2f /3 (5.85-a)

Yo ma x

which gives four threshold values. In general, when Z
thresholds are required, the intersection eguations are
F, when no zero volt threshold is used, and F+1, when
zero volt threshold is used, the intersection equations

are given by

) _ . max
vy = 3T (5.86)

where for zero volt threshold
3 =1 and F =0 (5.87-a)

and for the other thresholds

j =1,2,....F when F >0 (5.87-b)

fig.{5.12) shouws the intersection lines for the BCH{31,21)
code and the threshold distances for 7=5.

Some codes have a curve shape other then the shape
of fig.(5.12). For these codes Eqs.(5.82) to (5.87) does
not apply, but the principle of dividing the y axis into
equal segments to get the threshold distance still applies,
and is used to find the threshold values. An example of
these codes is the BCH(15,7) random code, where fig.{(5.13)
shows the distance frequency curve, and the intersection
lines for finding thresholds for 2=6.

These two methods of finding thresholds are suitable
only for channels where the SNR value does not deviate

too much from the average value, otherwise the threshold
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values used will no longer be optimum. Thus these tuwao
methods are suitable for random-error channels, and are
not Dpﬁimum for the burst-error channels.

c)The Practical Spaced Groups: The disadvantage

of the average noise power or the SNR being relatively
constant, in the optimum thresholds groups, and the
optimal spaced groups, hence the degraded improvement
when these groups are used in a decoder for decoding
burst-noise channels, led to thinking in a way to isolate
the noise effect on the thresholds values. The obvious
way to achieve this is by taking the SNR at a lower value
than the average SNR in the transmission channel., This
process will shift the thresholds from their optimum
values, but they will still be placed in good places

for the decoder to achieve a good improvement. This
arrangement will work satisfactorily at both low and

high SNR values. At low SNR values, threshold values

are very close to the optimum values, because the chosen
SNR value is close to the low SNR value. Thus the decoder
will perform well giving a good improvement. On the other
hand, at high SNR values, threshold values are not
opt%mum, but it can be seen from fig.(S.Q) that threshold

d
values are close together near the —l=l point, and they

v
become further apart near the bottom of the curve,
furthermore it can be seen that as the SNR values increase
the threshold values draw closer and closer. Hence at

high SNR, the threshold values chosen by the arrangement

described above near the T%=l point will serve as near
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optimum thresholds and the decoder will perform
satisfactorily. A practical value for lowering the
average SNR value can be taken as 3-10 dB, although
bigger values can be used for channels with very sharp
noise power changes.

Another simple method is based on the observation
that the NOO vs the frequency curve of fig.(5.3) is
similar to the threshold distance curve, so the freguency
curve 1is used for finding the threshold values. The i%

values on the x axis are determined, based on the three

following facts

qQ
a)At the ratio El=l’ the threshold value is zero

0 d
volts, and this corresponds to the T%=l point.
q
b)At the ratio ai=0, the threshold value is at
0

-wvyolt, but since in a practical system the incoming
signal is limited to the logical '0' value, then the

threshold value is at -V volt, which corresponds to the

9
point TT:D on the x axis.
c)Conversely, the practical threshold value for the
q d
ratio al = is +V, which corresponds to the point T%=2 on
0

the x axis.
After defining the x axis, thresholds values can
be found from the frequency curve using Eqs.(S.BB), and
(5.87). The advantage of the latest method is its
independence of the noise channel values, which save the
inaccurate choice of the SNR values yet it is code dependent.
Threshold wvalues for these groups are calculated
from the corresponding curve, as in the optimal spaced

groups, by finding the intersection line equation or



equations from £gs.(5.82) to (5.87).

To compare the improvement when each group is used,
the BCH(31,21) random code and the (34,22) burst code
are used, in a five threshold parallel threshold decoder.
Five groups are used in the comparsion. Firstly the full
span thresholds. Secondly the partial span thresholds

(+v =£). Thirdly the partial nonequidistance thresholds,
2

1
where iul=%, and the threshold wvalues calculated from
£Eq.(5.78). The fourth group is the parallel spaced group,

where the trhesholds are calculated at SNR value of 1 dB
for the random code, and -5 dB for the burst code. The
last group is agaimn the practial spaced group, but the
threshold values are derived from the NOO vs frequency
curve. The test results are shouwn in fig.(5.14) for the
random code, and fig.(5.15) for the burst code. Where

it can be seen from fig.(5.14) that all thresholds groups
perform nearly the same, and better than the full span
thresholds. Fig.(5.15) show again that the full span
thresholds per%brm worse than the others, while the
practical spaced” groups followed both nearly the same curwve
that performs better thanm the rest, the remaining

two performed nearly the same.

5.B-Choosing A Suitable Error-Pattern

A decoder which has multiple fixed thresholds, say
J fixed thresholds, will have at the end of a decoding
cycle j received words. The received word is detected by

the j thresholds, the ocutput of each threshold is fed to
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a subdecoder, which will calculate an error-pattern,
dependent on the value of its output. Hence for the j

thresholds there will be j vectors of error-patterns

El = eD el ...... en-k-l
E2 = eD el ...... En-k-l (5.88)
Ej = eq El ...... en-k-l

J

One of these vectors, say the ith, is a result of the
detection of the received word by an optimum or near
optimun threshold, Consequently the ith vector is the
most likely error-pattern to be added to the transmitted
codeword in the channel. The ith received word, which is
the result of the received word detection by the ith
threshold, is corrected by the ith error-pattern vector.
The corrected word 1s the most likely transmitted codeword,
where the probability of error for the received word is
minimum according to £q.{(5.36). The peint is that the
decoder has no means of calculating Eq.(5.36) to decide
which of the j thresholds is the optimum or near optimum

one. Thus the decoder cannot make any decision on which

one of the j corrected words is the transmitted codeword.



5.8.1 Probability of a Threshold Being Optimum

During a Transmission

In general the data generated at the source is
randomdata, and since it is divided into blocks of k
digits each, then the contents fo each block is randomly
distributed and can be any of the 2k possible combinations.
To each block the encoder annexes n-k parity-check digits,
so the fesultant n digits are unique for each of the 2k
blocks. Since the k information digits in a block can
equally likely be any combination, then the transmitted
n digits block can be equally likely any of the Zk codewords.
The probability of an error-pattern Ei’ being the error-
pattern added to the transmitted signal in the channel, is
the probability of the transmitted codeword being one of
the codewords that has the ith threshold as an optimum
or near optimum threshold.

The frequency distribution is unique for every code,
and is universal frequency distribution, because the test
is carried out for all the posgible codewords. The discrete
probability density function for the '1's or 'O's can be

calculated from the freguency distributiaon

f.
p, = —= for i = 1,2,....,0 (5.89)
i 2k
where P is the probability of the transmitted word
having 1 number of 'l's or '0O's in its n digits, and fi
is the frequency of the codewords which has i number of

"1's or '0's. It can be seen from Eq.(5.89) that the
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discrete probability distribution is the discrete

fregquency distribution scaled down by the factor of 2k.
Since the probability distribution function of the 'l1l's

or '0's is of similar shape of the frequency distribution,
then it can be seen easily that the thresholds nearer to
the.% point in fig.(5.3) has a higher probability of

being optimum or near optimum than other thresholds, and
the probability of thresholds being optimum or near optimum

becomes smaller as the distance between the threshold

and the % point grows bigger.

5.8.2 Threshold Weight Distribution Function

The discrete probability density function of Eq.{(5.89)
determine the probability of an optimum threshold being
used during a transmission. But according to section 5.7
thresholds used in an actual decoder need not be always
the optimum thresholds, but may be near optimum thresholds.
Since the discrete probability density funcﬁion exists
only where an optimum threshold exists, then it is not
a clear indication of the probabilities for the thresholds
other than the optimum. Therefore, some sort of continuous
indication is required. This indication is called the
threshold weight distribution, which is to assign a weight
value for each threshold value that indicates the
probability of a threshold being used during a transmission.
That is, the threshoid‘weight distribution is the continuous
probability density function for the '1's or '0's,

assuming it exists outside the integer values. Since the
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integer values in the discrete probability density functian
is increased by one for each new value, then the relation

between distributions is

i+0.5
My
lﬂi = f(m) = pi =2_k fDI‘ i. = l,2,..-,r‘|
i-0.5

(5.90)

vhere wi is the weight of the threshold that is optimum
for detecting a received word which has i '1's or '0's in
the transmitted codeword., and f{w) is the threshold
weight distribution function. The threshold weight
distribution for the BCH(31,21) random code is shown in
fig.(5.16) where it is clear that whatever the threshold
value within the range, a weight values does exist for
that threshold. |

Going back to the error-patterns detected by the
decoder Eq.(5.88), the threshold weight value W, for the

ith threshold used, is an indication of the probability

that the error-pattern Ei detected by the use of the ith
threshold is optimum., Using the threshold weight distribution
function, which is unique for each code, the decoder can
choose the error-pattern which is more likely to be the

one added to the transmitted signal during the transmission

through the channel.

5.8.3 The Decoding Process

The threshold weight distribution function, will

always point to the same threshold {or thresholds) as the
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most likely cptimum, This threshold (or thresholds)
will be used for decoding every received word during the
whole transmission if the decoder has no means of choosing
a threéhold for decoding other than using the weight
value. Such & decoder will be a single threshold decoder,
and any received word which has an optimum threshold
other than the one used will not be detected, so that the
probability of erroris not minimum. Thus the decoder has
to use an additional rule to choose a suitable threshold
accordingly.

One method is to use an error-trapping decoder as
a subdecoder, because the error-trapping decoder has the
advantage of detecting whether a correctable error-pattern
is trapped, or untrappable error-pattern is added to the
transmitted signal in the transmission channel. The decodet
described in what follows makes use of the thresholq weight
distribution function and the decoder's ability to detect
the untrappable error-patterns.
h Consider a decoder which is using a number of
thresholds, say j thresholds for decoding the received
word. Such a decoder consists of j identical subdecoders
(each subdecoder is the syndrome computer of an error-
trapping decoder) and a flag. Each flag is connected to
the syndrome computer in such a way that as soon as a
trappable error-pattern is detected at the syndrome
register, the flag is set, otherwise it remains reset as
before. The received word is detected by the j thresholds,

and the output of each threshold is fed to its corresponding
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subdecoder. At the end of the error-pattern detection
phase, some of the j flags will be set, where trappable
grror-pattern are trapped, while other flags may remain
reset.'The decoder starts to search for a set flag among
all the flags by testing each flag, starting by the flag
of the threshold that has the biggest weight value, and
ending with the threshold flag that has the smallest
weight value, according to the decreasing weight values
of their corresponding thresholds. Once a set flag is
encountered, its threshold value is accepted as the
optimum threshold. Hence the trapped error-pattern in the
syndrome register is accepted as the error-pattern added
to the transmitted signal during tramnsmission in the
channel, and the correction is made accordingly.

Due to the symmetry in the threshold weight
distribution curve fig.(5.16), there will be pairs of
thresholds which have equal weight values. In such cases
it does not make any difference to the overall results,
whichever threshold flag is tested ?irst. Since the
threshold weight distribution curve fig.(5.16) is a
unique and constant curve for each code, then the flags
test sequence can be preset, at the decoder, at the time
the thresholds values are determined. This sequence
remains the same as long as the thresholds values are not

changed.

5.9~pParallel Threshold Decoders Performance

Up to nédw the choice of thresholds values can be

cne of two options, whatever the chosen thresholds weight
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distribution, namely, the use of odd or even number of
thresholds. This is, according to £Egs(5.75), the choice
of hawving or not having a threshold at zero volt. The
first option is more appealing for the following reasons:

a)}At high SNR values Eq.(5.52) can be reuwritten as

d, =V (5.91)
where
g
1 1
mlogga<< 1 (5.92)

and can be neglected without any serious error, uwhere
SNR value is as given in Eqg.(5.51). Thus, the zero volt
threshold is an optimum one regardless of the received
codeword.

b)The zero voltage threshold is the optimum threshold
that minimizes the probability of error for the whole
transmission, as in section 5.3. Thus the inclusion of
this threshold will giue the decoder the ablility to try
fo minimize the bit pfobability of error as well as the
block probability of error.

c)The subdecoder that processes the zero threshold
output will give the same results as the conventional
error-trapping decoder, and by giving the zero threshold
a weight higher than the maximum weight value, regardless
of whether the threshold weight curve justifies this
or not. The decoder tests the zero threshold subdecoder
first, thus all trappable errors by the conventional

decoder are accepted by the parallel threshold decoder.
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Coqséquently, the parallel threshold decoder that uses
this arrangement should not perform worse than the
conventional -decoder.

#rom this point on, it will be assumed.that, the
parallel threshecld decocder has a threshold at zero volt.,

and that it has the maximum weight value.

5.9.1 The Random-Error Parallel Threshold Decoder Performance

As mentioned above, the parallel threshold decoder
will test the zero voltage threshold first and it will
accept any trappable error-pattern as the error-pattern
added to the transmitted signal in the chanmel, thus it
will perform as any ordinary error-trapping decoder. But
once an untrappable error;pattern is encountered, the
parallel threshold decoder tries to convert it to a
trappable error-pattern, and then correct the erroneous
digits.

Untrappable errors can be due to two reasons, firstly,
the error-pattern contains more errors than the error--
correcting capability of the code, in this case the
decoder tries to reduce the number of errors to the
correctable number of errors by the code used. Secondly,
because of the error~trapping technigue nature, the
error-pattern could be correctable but untrappable. In
such cases the decoder tries to convert the untrappable
error-pattern to a trappable one, hence correction can
be achieved. The latter source of uptrappable errors is
dependent on the code rate, where the number of untrappable

errors becomes smaller as the code rate decreases. The
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relation between the untrappable errors and the code

rate for a block code of n=15, where the error correcting
capability of the code is assumed to be t=3, is shown in
fig.{(5.17).

Consequently, the parallel threshold decoder is
expected to perform slightly better with low code rates
because the source of improvement is correcting the
uncorrectable errors only. The performance is expected
to improve with the increase of the code rate, because
the number of untrappable but correctable errors increases

with the increase of the code rate.

5.9.2 The Burst-Error Parallel Threshold Decoder Performance

Two types of errors are usually present in bursty
channels,random errors, and burst errors. The code used
should be able to cope with the burst errors. But because
of the burst error definmition, a random error at some
distance from & burst, may change a trappable error-
pattern to an untrappable one. In general an untrappable
error-pattern will occur only if the overall burst length
of the error-pattern is greater than the burst-error-
correcting-capability & of the code. When an interlacer
is used then the expression 'overall burst length'
represents the overall burst length that is confined to
a particular block.

Untrappable bursts in bursty chénnels can be
due to any of three sources. Firstly, a burst of lengih
less than the correctable burst length 2, but a random

error at some distance forces the burst length to become
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larger than L, Secondly, the burst length is bigger than
2, and thirdly, the burst is longer than &, and a random
error makes it even lenger.

Let us consider the probabilities of error when a
threshold of a value, say v is used for decoding an
error generated by the background noise which has the
pPOwWer O , and an error generated by the burst neise which

has the power o Let the probability of error for the

e
background noise detection be pea’ and for the burst noise

be P Then from Eq.(5.36) it can be seen that, for any

b*

threshcld Ualueru and the same codeword

Pea < Peb (5.93)
that is, the probability of detecting am error generated
by the background noise correctly is greater than the
probability of detecting correctly an error generated by
the burst noise. Thus the parallel threshold decoder. is
able to trap“a good deal of the error-patterns generated
by.the'first source. Some-error-patterns generated by
the second source, and a little bit less of the third.

sgurce.

5.10-Block Diagrams of the Parallel Threshold Decoders

Two block diagrams will be discussed, any one of
them can be used for random-error correction or burst-
error correction, keeping in mind that the appropriate
error-trapping decoders should be used as subdecoders

in each case. When the interlaceing technigue is used
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it is assumed that the deinterlacer is placed outside
the decoder, although nothing can stop the wuse of an
internal deinterlacer in- the first block diagram, apart

from the cost of too many shift registers.

5.10,) First Block Diagram

A j parallel thresholds decoder consists of j
branches of similar threshold and subdecoders circuits,
correction circuits, and the control circuit, as shown in
fig.(5.18). The sampled signal is fed to the j threshold
detectors, where it is compared with the preset threshold
value of each detector, the output of each threshold is
as defined in Egs.(5.8),but limiting the -V to '0', and
the +V to '1'. Hence the outputs of the threshold detectors
are binary.symbols of either '0' and '1'. The output of
the threshold detector is fed to a subdecodef, which is
a complete error-trapping decode} excluding the correction
circuit, which is shown in fig.(5.19). The k information
digits are shifted into the k bit shift register,
simultaneously the syndrome computer will belbalculating
the syndrome, as soon as the n digits are shifted in the
syndrome computer, the syndrome is present at the syndrome
computer. The syndroﬁe contents are tested for trappable-
errors, and then shifted. If during the next n shifts,
an error-pattern ié trapped, the shifting_stops, and the
flag is set, otherwise the flag remains reset. By this
time thé flag scan and gate control circuit monitor the
zero volt threshold subdecoder. If at the end of the

subdecoder.n shifts the Flaé is set, the gate:control
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allows the gate to pass the zero volt subdecoder information
digits and the error-pattern to the correction circuit for
correction. On the other hand, if the zero volt flag is

not set, the flag scan circuit starts to scan the flags
according to the preset scan seguence, testing for a set
flag, once detected, its message and error-pattern are
passed to the correction circuit. If no flag is found set,

a decoding failure is assumed. Once the correction is
échieued, all flags are reset, and all syndraome registers
are set to zerc, so the decoder 1s ready for decoding the

next received word.

5.10.2 Second Block Diagram

An alternative to the decoder described above is
the decoder of fig.(5.20). This decoder differs from the
previous Aone in the block arrangement, where the correction
circuit is moved from the last stage of fig.(5.18), and
placed in each of the subdecoders fig.(5.21). The
information digits are stored and the syndrome is‘calculated
as in the decoders of fig.{(5.18). . During the next n shifts,
if an error-pattern is trapped, the flag is set, and
the correction process is carried out, Gtherwise the flag
remains rteset. Then inike the typical error-trapping
decoder, the corrected information digits are fedback to
be stored in the k bit information register. At the end
of the correction cycle the shift register should contain
the information digits in the right order. Once the n
syndrome shifts are finished, & correction time is sllowed,

then the flag scan and gate control tests the flags
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according to the preset seguence, once a set flag is
found, its information digits are read out through the
gate. If no set flag is found then a decoding failure is
assumed. The last stage is to reset all flags, and set
all syndromes to zero. Thus the decoder is ready for
decoding the next received word.

The second decoder is more expensive because of
the additional 3j-1 correction circuits, but assuming that
the scan is done very fast and can be neglected compared
to overall correction time, thenm the whole correction
cycle is achieved in a constamt time, thus synchronization

is less complex,

5.11-The Statistical Parallel Threshold Decoder

For Bursty Channels

The statistical decoders are of special interest,
because their performance is better when the channel
statistics match the decoder assumed statistics. The
statistical parallel threshold decoder assumes that in
the transmission channel, each burst of any given length
1s less likely thamn each burst of any shorter length. This
information is used to choose the most likely error-
pattern that is added to the received word in the channel.

The statistical parallel threshold decoder function
can be described as the following. The sampled received
word is fed to j thresholds, the output of each threshold
is fed to a subdecoder, which generates all the possible
error-patterns, and chooses the shortest error-pattern

as the most likely error-pattern for the received word
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detected at the particular value of the subdecoder threshold.
At the end of the subdecoder detection cycle, the j

syndrome registers will contain the shortest j error-

pattern at the different values of thresholds. Since
according to the assumed channel statistics, the shortest
error-pattern are the most likely tooccur, thus the decoder
chooses the shortest error-pattern from these j error-
patterns, and then the correction can be achieved
accordingly.

‘Any subdecoder function is similar to the optimum
decoder(33) described in chapter two, thus it can be said
that the statistical parallel tﬁreshold decoder is the
prallel decoder version of the optimum decoder.

An important po;nt to notice is that the thresholds
limits are of great importamnce to the statistical parallel
threshold decoder berformance. Where the limits are far
apart the farthest thresholds will strat to introduce
errors at the high SNR (the background noise), because
although these thresholds are optimum or near optimum
for detecting words received in the presence of burst
noise, they are very far from optimum for detecting words
received in the presence of background noise. In practice
it was found that limiting the threshold values to 0.5 V

gives acceptable .results.

5.11,1 Block Diagram of the Statistical Parallel

Threshold Decocder

AR j threshold statistical parallel threshold

decoder consists of j branches of a similar threshcld
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and subdecoder circuit, decision and control circuit,
and a correction circuit, as in Fig.(5.22). The sampled
received signal is fed to the j threshold detectors in
parallel, the binary output of each threshold detector is
fed to a subdecoder, fig.{5.23). At the subdecoder the
information digits are stored in the k message bit shift
register, simultaneously the syndrome is computed. The
error-pattern length store is set to a number larger than
n-k. The syndrome content length is compared with the
error-pattern length store, if it is less, the syndrome
contents are transferred to the shortest error-pattern
store and its length is stored in the error-pattern
length store. Otherwise the stored values remain unchanged,
the syndrome is shifted n times and the test is repeated.
At the end of the nth shift the shortest error-pattern
store contains the shortest burst, while the error-pattern
length store contains its length. The decision and control
circuit tests the error-pattern length stores for the
shortest erroglpattern, which is allowed to pass through
the gate with its k information digits to the correction
circuit, where the erroneocus information digits are corrected.
ARlthough all j stored error-patterns are tested,
the test should be carried out in the threshold weight
sequence, because in the case of two equal error-pattern
lengths, the first one is kept in the store, thus when
the scan is done according to the threshold weight, the
error-pattern which has the higher weight of the equal

error-patterns is used for correction. Other schemes can
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be used for choosing one of two or more error-patterns
of equal length, e.g. the error-pattern which has the
lowest Hamming weight can be used, if the threshold

weight method is not to be used.

5.12-Results and Discussions

The repetitive transmission of the same codeword
does not give accurate results, when the parallel threshold
decoders are used, because if an optimum threshold value
happens to be used the results will be better than the
actual performance. To eliminate such bias a random
data is used for each codeword. This requires an additional
complexity of the simulation program , where a random
number generator is used to simulate the random information
digits, and @ simulated encoder to get the transmitted
codeword.

S5ix codes were used to test the performance of
the parallel threshold deccders. Two of them are random-
error-correcting codes, the first is the BCH(31,21) code,
which has a generator polynomial

g({Xx) = 1ex2exPexBix8yx 9,10 (5.94)

the second code is the BCH(15,7) code, which has a generataor

palynomial

8

g(x) = 1+x“+x5+x7+x (5.95)

Both these codes cam correct two or less random errors

in any codeword.The other four codes are single-burst-
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error-correcting codes. The first one is the shortened
(34,22) code, which is shortened from the (91,79) code,
and can correct all bursts of £=6 or less, thus it is an
optimal code. Its generator polynomial is

g{x) = 1+x2+x3+x“+x5+x5+x9+x11+x12 (5.96)

The second code is the (27,17) burst code, which is again
an optimal code, and can correct all bursts of 8=5 or less.
It is a shortened code derived from the (341,331) code,
which has a generator polynomial

g(x) = 1+x3+x“+x5+x7+x8+xlD (5.97)

The third code is the (19,11) burst code, which is an
optimal code that can correct all bursts of length £=4 or
less, and is shortened from the (217,211) code, (see

appendix B). The generator polynomial used is
g(x) = 1exZax fex7ix® (5.88)

the last code is the (27,20) burst code, which is not an
optimal code, ‘and can correct all bursts of length £=3 or
less. It is shortened from the (62,55) code, which has a

generator polynomial

g{x) = 1exo+xBax? (5.99)

Symbol interlacing of degree A=25 is used with all burst
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codes to enhance the code performance. The interlacing
degress has no effect on the decoder performance because

in each case the results are compared with the corresponding
results for the same code interlaced to the same degree.

The simulation programmes are shown in appendix D.

5.12.1 Number Of Thresholds Choice

To study the effect of ﬁhe number of thresholds on
the decoder performance, two types of threshold spacing is
used., the full span thresholds, and the practical spaced
group. These two spacings are chosen because they represent
the two extremes, as it can be seen from fig.{5.14).
Consequently all other spacing schemes will fit in between
these two spacings. This test is carried out for all codes
using the correspondiﬁg parallel threshold decoder, while
the test is carried out for all the burst codes using the
statistical parallel threshold decoder for the practical
spaced thresholds only, because as it was mentioned in
section 5.10, the full span w;ll result in a degraded
performance. Typical sﬁecimen gesults are given, and if
any code behaves differently its results will be showun as
well,

5,12.1.1 The Full Span Threshold Spacing

The (31,21) random code is chosen to represent the
typical performance of the parallel threshold decoder
when a different full span threshold spacing is used.
3000 codewords are transmitted in each test, where the
SNR value is changed from 1-8 dB, and for each test the

threshold values are varied from 5-17 thresholds. The
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error rate is plotted against the SNR values for the

dif ferent threshold values in fiq.(5.24), in addition
the performance of a conventional error-trapping decoder
is included for comparsion.

It can be seen clearly that the parallel threshold
decoder outperforms the conventiomal error-trapping
decoder for any number of thresholds used. The improvement
in performance increases with the increase of the number
of thresholds used. A big improvement is added with an
increase in the number of thresholds, while the use of
more than 9 thresholds results in an additional smaller,
and steady improvement with the increase of the thresholds
number.

5.12.1.2 The Practical Spacing Thresholds

The (34,22) burst code decoded by a parallel
threshold decoder is chosen to represent the parallel
threshold decoder typical performance, when a practical
threshold spacing is used. The background noise is
assumed 9 dB, while the burst noise is changed between
6 dB and -20 dB. Here the treshold number is varied from
3 to 17. The results are shown in fig.(5.25). Again for
comparsion, the conugntional'erfor—trapping decoder
performance is plotted, as well as the parallel thresholq
decoder (PTD) using 17 full span spacing thresholds.

Fig.(5.25) shows clearly that the parallel threshold
decoder perqums better over the whole studied range, and
that the practical spacing results in a lower additional

improvement as the number of thresholds is increased, i.e.
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a big improvement is achieved when three thresholds are
used, less additional improvement is achieved by going
from three to five thresholds, while very little
improvement can be achieved by going to more than five
thresholds. As it is expected the practical spacing
outperforms the full span spacing, and it can be seen
that a parallel threshold decoder using three practical
spaced threshold performs bhetter than the same decoder
using 17 full span spaced thresholds especially at low
SNR burst noise values.

5.12.1.3 Effect 0f Background Noise On The Number
0f Thresholds

The effect of varying the burst noise on the parallel
threshold decoder can be observed in fig.(5.25), but not
the effect of varying the background noise. To study its
effect the same graphs of fig.(5.25) are produced for
two background noise values, fig.{5.26) is for background
noise of 7 dB, while fig.(5.27) is for background noise
of 11 dB,

The results shomn‘in fig.(5.26) confirm the results
of fig.(5.25), the only difference is that the improvement
for increasing the thresholds number from three to five
is bigger than the improvement shown in fig.(5.25).
Fié.(5.27) however shows a different result. The parallel
threshold decoder using practical spaced thresholds is
still performing better than the error-trapping decoder,
but the improvement is very small when three thresholds

were used, and hardly any additional improvement can be
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achieved by increasing the number of thresholds. On the
other hand the parallel threshold decoder using 17 full
span th;esholds is performing worse than the error-trapping
decoder despite the fact that the parallel threshold
decoder is designed to perform the same as the error-
trapping decoder in .the: worst case, as it is shown in
section 5.8. In reality, the parallel decoder is not
performing worse, but the reason for these results can
be seen as the following.

The-transmission channel is assumed to be a one
way channel where no retransmission facility is available,
furthermore the receiver is assumed to accept the
information.digits without correction in the case of
decoding failures so that maximum improvement can be
achieved. In the simulation, the received imformation
digits only are compared with the transmitted digits,
and any missmatch is counfed as an erroneous word. Let
the received word contain more than t errors for the
random-errors decoder, and an error-pattern longer than
f for the burst correétion channel. And let these errors
be confined to the parity-check digits only, The error-
trapping decoder will decode such a received word as a
decoding failure, and will accept the information digits,
the simulation programme will count this word as a correct
word although it is a decoding failure. The parallel
threshold decoder will try to convert this decoding
failure to a trappable-error, if the conversion is
successful the performance is the same, otherwise the

error-trapping is decoding better for such received words,.
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Let the error.probability in the transmission channel
during the occurance of such a word be p, and the code
used be an (n,k) code. Then the preobability of decoding
failure of correct information digits Pcf for the random-
error channel is from Eq.{4.44)

n-k i .
Poe =1 {n- ‘{3 f(”l}ﬁ p* (1-p)"7t (5.100)

i=t+1

and Pcf for the burst error channel, from Eq.{4.43) is

pcfz[% ; pi(l_p)kJ_{n;k-ul %

. pl(l-p)”] (5.101)
i=1 i=1

this is present of course at low SNR value, but they are
unnoticeable because of the superior performance of the
parallel threshold decoders at lower SNR values., However,
in the error-trapping decoders that disregard the received
word whenever a decoding failure is detected, the parallel
threshold decoder will perform equal or better whatever
the SNR value.

At high background SNR values, the poor improvement
over the error-trapping is justified, because at high
background 5SNR values, there are only few random errors,
hence the improvement is from detecting burst-errors
correctly, which according to Eq.(5.93) is not as successful
as detecting random errors.

The three figs.(5.25),(5.26),and (5.27), show that
the improvement increases with the increase of the number
of thresholds. For a background SNR of 11 d8 3 tﬁreshdlds

are sufficient to get most of the improvement that can be
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achieved, while for background SNR of 89 dB, 5 thresholds
is enough, and for background SNR of 7 dB, 5 threshods is
acceptable, but 7 thresholds will give a little additional
improvement. In general it can be said that, to get most
of the improvement, the number of thresholds shouvld be

increased with the decrease of the background SNR value.

5.12.2 Random-Error Parallel Threshold Test Results

5.12.2.1 Simulation Results

Two codes were used in the simulation results,
the BCH(31,21), and the BCH(15,7). The results given in
fig.(5.28) and fig.(5.29) show the results of both codes,
when 3,5,7, and 17 practical spaced thresholds are used
for the detection. The simulation results fo} the
conventional error-trapping decodgr and soft-decision

decoder are plotted for comparsion. The soft-decision

decoder used a 16 level qunatizer, so that most of the
possible improvement is achieved.

The (31,21) code performance of fig.(5.28), is
self explanatory. Soft;decision decoding outperforms
the error-trapping decoding and an improvement of 0.28 dB
is obtained at SNR=3 dB,and N.) dBat SNR=6 dB. The parallel
threshold decoder perform better than both, an improvement
of 0.87 dB at SNR=3 dB, and 1 dB at S5NR=6 dB is achieved
over the error-trapping decoding, and 0.5 dB at S5NR=3 dB,and
1 dB at SNR=6 dB over the soft-decision decoding, for
the 5 threshold parallel threshold decoder.

The (15,7) code pefformance, fig.(5.29) is different
in that the error-trapping decoder wsing this code will

trap all correctable errors, hence any decoding failure
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will guarantee that the received ward contains at

least 3 errors. The soft-decision aecoding has an

advantage in such a case, since all correctable errors

are trappable, then the soft-decision decoder will calculate
the EPSW for all the possible error-patterns, and not

for the trappable error-patterns only, which give the
soft-decision decoder a superior performance over codes

in which the n-k parity-check digits cannot trap all
correctable errors. On the other hand, the parallel
threshold decoder is at a disadvantage, because as it

is mentioned in section 5.9.1, the only source of
improvement for such codes, is for the parallel threshold
decoder to detect correctly all the received errors but
two, in the received word. Consequently the poor performance
of the parallel threshold decocder for the (15,7) code is
not surprising. Fig.(5.29) shows that the paraliel
threshold decoding performs better than the error-trapping
decoding, an improvement of 0.5 dB is achieved at S5NR=3 4B,
and 1.5 dB at SNR=6 dB when a 5 thresholds decodertis

used. While the overall soft-decision decoding outperforms
both decoding methods, where an improvement of 0.9 dB

is achieved at SNR=3 dB, and 1.5 dB at 5SNR=6 dB over
error-trapping decoding. And G.2 dB at SNR=3 dB, and no
improvement at 3NR=8 dB over the parallel threshold

decoding.

5.12.2.2 Hardware Test Results

A hardware parallel threshold decoder has been

built and tested. Three and five practical threshalds




- 201 -

were used, and the test results are very similiar to
those obtained by the simulation. The hardware and
simulation results, for errer-trapping decoding, 3 and
5 thresholds parallel threshold decoder are shown 1in
fig.(A.8). The circuit diagram, anc a full discussion of
the parallel threshold decoder function, and the results

are included in appendix A.

5.12.3 Burst-Error bOecoding Results

The simulation results considered here will be for
the parallel threshold decoding, and the statistical
parallel threshold decoding. In each case the four burst
codes are used. The background SNR values is taken as
9 dB during all the tests, and an interlaceing degreee
A=25 is taken for all codes. To assess the performance of
the decoding, the error-trapping decoding, the optimum
decoding, and the soft-decision decoding is plotted, with
the performance of 3, 5, and 17 practical threshold
spacing parallel threshold decoding results.

5.12.3.1 Parallel Threshold Decoding Results

The first code to be considered is the (34,22) code,
its performance results are shown in fig.(5.30). As it is
expected the optimum decoding performs better than the
error-trapping decoding, because the assumed channel
statistics match the decoding statistics. The average
improvement over the studied ramnge is about 5 dB. Soft-
decision decaoding does not give any improvement over the
error-trapping decoding for burst SNR values lower than
-7.4 dB, and lower than -4.25 dB for the optimum decoding.

On the other hand the parallel threshold decoding outnerforms
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all other decoding methods. At burst SNR= -3 ¢B the five
thresholds ‘parallel threshold decoding, improves by

3 dB, 2.25 dB, and 0.7 dB, over error-trapping, optimum,
and soft-decision, respectively, while at burst SNR=-17 an,
the improvement is 10.5 dB, 5.4 dB, and 10 dB.

Using the (27,17) code, the results of fig.(5.31)
show similar performance to the (34,22) code, at burst
SNR=-3dB a five threshold PTD achieved an improvement of
3.3 dB, 1.16 dB, and -1 dB, over error-trapping, the
optimum, and soft-decision decoding respectively, while
at burst SNR=-17 dB the improvement is 9dB, 3.15 dB, and
7.8 dB8.

The (19,11) is a powerful code and because of its
low code rate only a few correctable errors are untrappable.
This can be seen from fig.(5.32), where the word error
rate is lower then the two previous codes, thus under
trese conditions the parallel decoder using this code is
not expected to give a big improvement. The optimum
decoding gives a small improvement over the error-trapping
decoding, while the soft-decision is worse most of the
range. A five thresholds PTD at burst SNR=-3 dB performs
slightly better, the improvement is 1.1 dB, 0.34 dB, and
1.27dB, over error-trapping, the optimum, and soft-decision
decoding respectively, while at burst S5NR=-17 dB, the PTD
achieves an improvement of 9.7 dB over the soft-decision
decodiﬁg,and 0.36 dB over error-trapping, but introduces a
degradation of 9.7 dB over the optimum decoder.

The PTD using the (27,20) code does not achieve a

big improvement, the reason being that the (27,20} is
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not a8 powerful code, due to its low correction ability,
as it is seen from fig.(5.33) where the word error rate
is high. A five threshold PTD achieves at burst SNR=-3 dB
an improvement of 0.7 dB, 0.5 dB, and 0 dB over error-
trapping, the optimum, and soft-decision decoding
respevtively, while at burst SNR=-17 dB the improvement
is 2.5 dB, 0.3 0B, and 10.3 dB.

5.12.3.2 The Statistical Parallel Threshold Decoder (SPTD)

The decoding performance for the (34,22) code is
shown in fig.(5.34). As it is expected the SPTD performs
even better than the PTD, because thé assumed channel,
statistics matches the decoder statistics. The five
threstiolds SPTD outperforms the error-trapping, the
optimum, and soft-decision decoding by 4.7 dB, 3.9 dB,
and 2.1 dB, at burst SNR=-3 dB, and by 13.3 dB, 10.7 dB,
and 11.7 dB, at burst SNR=-17 dB, respectively. From a
comparsion of fig.(5.34) and fig.(5.30) it can be seen
that the SPTD introduces an additional improvement of
1.7 dB, at burst SNR=-3 dB, and 6.4 dB, at burst SNR=-17 dB,
over the five thresholds PTD.

The decoding performance using the {27,17) code is
very similar to the (3&,22) performance fig.(5.35). The
five thresholds SPTD gives an additional gain over
error-trapping, the optimum, and soft-decision decoding
of 3.78 dB, 3 dB. and 0 dB, at burst SNR=-3 dB, and 11.8 dB,
8.4 dB, and 9.3 dB, at burst 5NR=-17 dB respectively.

Again the improvement over the PTD can be seen from
comparing fig.(5.35) and fig.(5.31), where a gain of

7.1 dB, and 0.6 dB, is achieved at burst SNR=-3 dB and
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SNR=-17 dB respectively.

The SPTD performs poorly when the (19,11) code is
used, for the same reasons fhat cause the PTD poor
performénce. The SPTD same as the PTD introduces some
improvement over the optimum decoding for the burst
SNR>-8 dB, while hardly any improvement for burst SNR<-6 dB8
as in fig.(5.36). A five threshold SPTD achieves an
additional improvement of 1.8 dB, 1.15 dB, and 2 dB, at
burst SNR=-3 dB, and 4.4 dB, 0 dB, and 10.8 dB, at burst
SNR=-17 dB over error-trapping, the optimum and soft-
decision decoding, while the improvement over the PTD
is 0.9 dB, and 3.8 dB, at burst SNR=-3 and -17 dB respectively..

On the other hand, the performance of the SPTD
is very poor when the (27,20) code is used as it is shoun
in fig.(5.37). A five thresholds SPTD introduces a very
small improvement at low burst 5NR values, and a degradation
at very low burst SNR values except over the soft-decision
decoding. The improvement at burst 5NR=-§ dB is 1.6 dB,

1.4 dB, and 0.6 dB, over error-trapping, the optimum,

and soft-decision decoding. While at burst SNR=-17 dB,

the only improvement is over the soft-decision, which is

8.8 dB, the degradation over error-trapping is 2.4 dB,

and over the optimum decoding is 4.2 dB. The SPTD introduces
a reasonable gain over the PTD at burst SNR>-B dB, but

it performs worse for a burst SNR<-8 dB. For example,

the improvement at burst SNR=-3 dB is 0.8 dB, while the

degradation at burst SNR=-17 dB is 3.9 dB.
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5.12.4 The Effect of Code Rate On The Performance Of

Parallel Threshold Decoders

The study of the effect of code rate on the PTD
performénce is a difficult problem to solve. On one hand
different codes with different code rates have to be used,
which involves the simulation of 2ll chosen codes. On the
other hand all the codes used should have the same
correction power, i.e. the error-correction ability of
all codes (t for random codes, and £ for burst ceodes)
should be the same for the same number of perity-check
digits.

An easier solution to this problem is to use a
code that can be shortened and lengthened. Shortening a
code represents no prob}em since any code can be shortened.
But lenghtening codes cénnot be done unless the code itself
is a shortened code. It is worth mentioniné that if an
optimum burst code is shortened or lengthened, it does not
necessarily mean the code is still gptimum, although an
optimal code will remain optimal. blearly the shortening
of a code will decrease its code ‘rate, and lengthening it
will increase its code rate, and if the same code is
shortened and lengthened, then its correction power is
the same.

The shortening and lengthening idea is used to
study the code rate effects on the PTD performance. The
shortened (34,22) burst code is used for the study. A
parallel threshold decoder with practical spacing'is
used. The backgrand SNR=9 dB, and the burst SNR is varied

from -20 dB to 6 dB, while the code rate is changed from
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0.52 to 0.666. It would be more comprehensive to increase
the code rate to a higher value but the computer word
length was a deciding factor to stop at this value, For
each value the PTD and the error-trapping decoder are
tested. The PTD improvement over the error-trapping
decﬁder in terms of word error rate is calculated for

all burst SNR values. It was found that the results
curve have a similar shape, hence only three curves for
burst SNR 2,-8, and-17 dB are plotted in fig.(5.38).

The curves of fig.(5.38) show that the code .rate
has a big effect on the PTD improvement. At low code
rates the improvement is low, then as the code rate is
increased the improvement becomes greater until it
reaches a maximum value, then it starts to drop as the
code rate is further increased. Two other conclusions
can be drawn from fig.(5.38); firstly, the improvement
is hfgher at lower burst SNR, which means that the PTD
performs better as the burst SNR drops; secondly, the
peak of the curve is flater at low burst SNR than at
higher burst SNR, which means that to get the maximum
improvement the code rate is less critical at low burst
SNR values than at higher burst SNR values.

The above results were somehow expected because
of the relation between the code rate and the number of
trappable error-patferns, as preuiously discussed in
sections 5.9.1, 5.9.2. Since the number of the correctable
but untrappable gérrors increase with the increase iq the
code rate, and since the PTD achieves some improvement by

correcting these untrappable error-patterns, then the
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improvement increases with the increase.in the code rate,
which is responsible for the left hand side of the curve
from the maximum point. As the code rate is increased,

the number of untrappable but correctable errors become

so large that the code itself becomes powerless to correct
mostrerror-patterns, hence the drop at the right hand

side of the curve.

5.13~ Advantages Of The Parallel Threshold Decoding

The use of any decoding method is dependent on two
principle factors. Firstly, the total decoder cost, i.e.
hardware, implementation, software, testing, etc., secondly,
the decoder's ability to function in real time, i.e. its

5peed, for a given performance achieved,

The parallel threshold decoder is very attractive
from these points of view, its total cost is not much
more than that of the error-trapping decoder, and much
less than the soft-decision decoder. Once a subdecoder is
built and tested, the remaining subdecoders are just
duplicates, in a practical system hardly more than five
threshold need to be used thus the hardware cost of the
subdecoders is very cheap, because they Eonsist of shift
registers and gates only. While the threshold circuits
are ordinary threshold gates unlike the expensive
analogue-to-digital converter used in snft-decision‘
decoders., Again because the parallel threshold decoder
is easily and economically implemented in hardware, no
softuare expense need be involved, thus on the whole

the parallel threshold decoder gives a very good cost-
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performance trade of. Also, since the whole decoder 1is
economical to implement directly in hardware its speed
as a real time decoder is limited only by the maximgm
speed of the hardware used.

Consequently the two main advantages of the parallel
threshold decoder are its low cost, and it speed, which
makes it very competitive with other decoders. Although
the parallel threshold decoder provides a big advantage
when implemented as hardware decoder, yet there is nothing
to stop its implementation by the use of microprocessors,
although by doing this at the present state of thechnology
most of its advantages will be lost.

5.14-Conclusions

The parallel threshold decéding is a decoding
technique that attembts to minimize the symbol probability
of error during the whole tranmsmission, or to minimize
the block symbol probability of error, or both of them.

The parallel threshold decoder should in genersl
perform e;Ual to or better than the error-trapping decoder,
the amount of improvement is dependent on the SANR ratio
or ratios, the lower the S5NR values the mbre the
improvement. The improvement is. also dependent on the code
itself, the largest improvement is achieved at moderate
code rates ﬁ.529 and 0.647, while for a powerful code, at
mopderate background SNR value, the improvement is small
because the parallel thrgshold decoder is not able to
add too much to the code correction power. At the other
extreme, the parallel threshold decoder is unable to

enhance the performance of a weak code.



_ 210 -

is dependent on the code rate and the 5NR wvalues, thus
the statistical parallel threshold decoder, will follow

a similar improvement curve achieving higher improvement,
where the parallel threshold decoder improvement is high,
but at high code rates not achieving the same improvement
as the parallel threshold decoders.

Although in theory the number of thresholds can
be very large, in practice there is hardly any need to
include more than five thresholds or at most seven
thresholds, since most of the improvement is acgieued at
the first few thresholds.

The parallel threshold decoders can be used in a
two-way channel system, provided a small number of thresholds
are wused 1i.e. three or five thresholds at most. A
retransmission is requested once a decading failure is
detected, i.e. no trappable error-pattern is found in
all subdecoders. The number of thresholds is very important
for such a systembecause as the number of thresholds is
increased the improvement is increased, ;6 is the number of
erroneous decoded words, while the number of the decoding
failures in all subdecoders, hence the ret;ansmissimn is
decreased, and visa versa, LConsequently it is safer to
use a small number of thresholds, and more retransmissions,

so that the overall error rate is reduced.
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CHAPTER &

THE SEARCH PARALLEL THRESHOLD DECODDER

6.1- The Decoder Limitation

Decoding techniques for block codes can be divided
into two general categories, algebraic and nonalgebraic.
The algebraic technigues basically involve the simultaneous
solution of set of equations for the location and values
of the errors. The nonalgebraic techniques, while
accomplishing the same goal, are based upon simple
structural aspects of the codes which permit the
determination of the error-patterns in a more direct
fashion.

In general the algebraic decoders are more complicated
in terms of the hardware than the nonalgebraic decoders,
but they are usable with i:any error-correcting code. While
the npnalgebraic decoders have some built in disadvantages.
Since we are interested in the error-trapping decoders
which are nonalgebraic decoders, we will consider their
disadvantages. As a practical matter, although their
hardware implementation is reasonably simple, the
complexity of these decoders increases rapidly as the
number of error to be corrected grows. In addition to
this, for any error-pattern to be correctable by these
decoders, it has to be trappable, and since any correctable
e;ror-pattefn is trappable only if the error-pattern
is confined to n-k consecutive digits, the decoder may

not correct all correctable error-patterns. Hence they
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are geherally not useful for correcting more than 3
random errors or for correcting more than a single burst
of errors. Clearly, as the number of random errors, or
the length of the single burst grows, the algebraic
decoders becomes more efficient than the error-trapping
decoders, because the number of the correctable but
untrappable error-patterns becomes larger. Consequently
the algebraic decoders have to be used.

In general any error-correcting code can correct
all errors-patterns of L or less. Where L=t the maximum
number of random errors that a random-error-correcting
code guarantee to correct regardless of their pos?tion
in the codeword, or L= the maximum burst length of
which the code is capable of correcting regardless of
its position in the codeword. On the other hand the code
cannot correct all the error-patterns of L+1 or more,
but it will correct some of them.

In order to guarantee the correction of all error-
patterns of L or less, decode}s in both categories are
limited to the correction of t random errors or burst
length &, although that is below the code error-correction

ability.

B.2- Expanding the Limitations

When & one-way channel is used as the transmission
channel, some application may be reguired to correct as
much data as possible at the expense pF increased
decoding errors. No matter which decoder is used all

error-patterns of L or less will be decoded correctly,




while ail error-patterns of L+l or more will be signaled
as decoding fai}ure. If an error-trapping decoder is
used, then the untrappable error-patterns if any, will
be signaled as additional decodiﬁg failures. Being one-
way channel the receiver has no Ehoice other than
discarding the erroneous rpceiued word, or accepting it
knowing it is erroneous. In the later case the word
error rate will be lower if the full correction capability
of the code is used. Because all error—pattefns of L or
less will be correeted as before, while part of the
previous decoding failures will be corrected. But in
such a case the receiver will have no means of telling
which received word is correct and which is a decoding

failure.i.e. it may make a decoding error.

6.3- The Search Parallel Threshold Decoding {(SPT)

The search parallel threshold decoder is a decoder
of the later type described above, it tries to correct
as many as possible of the erroneocus received words. It
is basically a modified error-trapping decoder of whiéh
the decoder has no means of detecting failures and uses
the principle of the parallel thresholds to decode the
received word, but in a completely different way to the
parallel threshold decoding. |

One way for decoding using the SPT decoder is for
the decoder to use certain weighing rules to decide which
threshold is optimum or near optimum, and accept its
output as the received word, where the decoding is carried

out for that word, and the corrected output is accepted
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as the transmitted information digits. The weighing is
done for all fhe trapped error-patterns in the syndrome
registers Fpr all thresholds. |

An alternative method is for the 5PT decoder to
use the same concept of the optimum and near optimum
thresholds as above, but the weighing is done in a way
that the 5PT decoder uses one digit at a time of the
trapped error-pattern in every syndrome register to’
correct the bit errors in the received word, i.e. the
weighing is done on a digit by digit basis for the trapped

error-patterns.

5.3.1 The Trapped Error-Patterns

Consider a decoder which has j threshold detectors
at its input, the output of each of these j detectors is
fed to a syndrome calculator. When a received word is
fed into this decoder, each detector will output the
received word according te its threshold value. Once all
the received words are fed into the receiver, j syndromes
are formed in the jtsyndrome registers. Then each of
these syndromes is shifted until a trappable error-pattern
is found, and if at the end of the n shifts no trappable
error-pattern is found, the syndrome register is reset

to zero. Let the j vectors of the error-patterns be

.
B = €0,1%1,1° " *®h_k-1,1
E, = €0,2%1,2° " **Cn k1,2 (6.1)
Ej eD,JEl,j ..... n-k-1,

!
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Assuming that the ith threshold is an optimum or near
gptimum threshold, then the ith trapped error-patterﬁ is
the most likely error-pattern to have been added to the
transmitted codeword in the channel.

The distance dl between the '1',voltage +V, and
the optimum threshold is given in Eq.(5.47)

2 21

d, = U+2- log

1 2V (5.47)

90
where ¢? is the noise power, q,; and aq is the number
'1' and '0' in the transmitted codewofd. Fig.(5.9) shouws
the wvariation of the optimum threshold distance with the
variation of 5NR wvalues for all possible codewords except
the all zeros and all ones codewords for the BCH{15,7)
random—error—corrécting code.

Although Eq.(5.47) gives the distance for all
zeros and all ones codewords as +«and -=, which
correspond to threshold values of -=and +«respectively.
Fig.(5.9) shows that for all codewords other than the all
zeros and all ones codewords, thresholds are concentrated
around the 0 volt value, and for reasonable S5NR values
the thresholds are within a small distanmce from the 0 volt,
e.g. in fig.(5.9) the distance is t%. However, no matter
what the threshold values are, usually they will be limited
by the hardware to *V. One should notice that for any
code there are 2k different codewords, hence the ratio

g
— in general will have more values as k grows, consequently.

9
the number of the optimum thresholds will increase as k
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increases. Such an increase will lead to a higher
concentration of thresholds around the O volt when a
figure similar to fig.(5.8) is plotted for a code with
"higher Kk value. So even if using the optimum threshold
for the (15,7) code may be reasonable, for longer codes
one has to use one of the threshold distributions described
in section 5.7,

Assuming that the number of thresholds used j in
the above described decoder are large, and that a codeword
other than the all -ones and all zeros codeword is
transmitted, furthermore, let the optimum or near optimum
threshold for detecting the received word be the ith
threshold, then the most likely error-pattern to be
added to the transmittted codeword in the channel will
be Ei’ where Ei is the ith trapped error-pattern in

Eq.(6.1). Since j is a large number, then the i+lth and

i-lth threshold will be near optimum thresholds, hence

the corresponding error-patterns Ei+l and Ei—l’ are

likely to be the error-pattern added to the transmitted
codeword. Again the i+2th and '1—2th thresholds may be
close enough to be near optimum thresholds, thus the
corresponding error-patterns E.l+2 and Ei—2’

error-pattern added to the transmitted codeword, but

may be the

they are less likely than Ei+ and k. which in turn

1 i-1"
are less likely than Ei' The same thing can be said
about Ei+3 and Ei-3’ and so on.

The reason for excluding the all ones and all

zeros codewords from the above argument is that these

two codewords represent the extreme cases, and since
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their optimum thresholds are at -wand +», then their
optimum thresholds are not included in the thresholds

used in the decocder, because usually the thresholds span

is -V to +V. Thus the nearest thresholds to -V and +VY

are the near optimum thresholds for these two words. Going
back to the j thresholds decoder, these two thresholds

will be the lSt and jth thresholds. Consequently, for the

st threshold no Uth threshold exists, and for the jth

1
threshold no j+lth threshold exists. Needless to say

what applies to the thresholds applies to the error-
patterns, hence no EU or Ej+l exists. Clearly for such
cases no symmetry exists arounmd the optimum or near
optimum threshold, and the error-patterns to be considered

are El,EZ,E3,....0r E Apart from that

j’Ej—l’Ej-Z""
all the above discussions apply to all thresholds. In
general the decoder can consider as many error-patterns

as required, provided they do exist.

6£.3.2 The Error-Pattern - A Different Loak

Consider the ith error-pattern E, in Eg.(6.1),
which could be any trapped error-pattern resulting from

the detection by the ith threshold,

i T fp,if1,1 n-k-1,1 (6.1-a)

The error-pattern caonsists of n-k digits, each digit is
either '0' or '1' and can be regarded as a flag, where
the flag is indicating an error if it is set, i.e. it is

'1' or indicating mo error if it is reset, i.e. it is '07.
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In addition to that the error-pattern corresponds to a

specific n-k digits in the received word, each digit of

the error-pattern components corresponding to a unigue

digit in the received word. Consequently the decoder

knows exactly which bits are erraoneous according to Ei'
Assume that the ith error-pattern is the optimum

or the nearest to the optimum threshold, then the most

likely error-pattern to have been added to the transmitted

codewrod is Ei' But since the i+1th and i-lth thresholds are

near optimum, then Ei+l and Ei—l will represent the same

error-pattern as Ei’ and all error-patterns will correspond

to the same n-k digits of the received word. Thus

E, = E, 1 = E; (6.2)

from Eq.(6.2) and Eq(6.1-a)

em,i = em,i—l = em,i+l where m=0,1,2,..,n-k-1
(6.3)

If any other threshold is near enough to be considered

a near optimum threshold, them its error-pattern is the
same as Ei and it will correspond to the same n-k digits
in the received word. In general Eqgs.(6.2) and (6.3) can

bhe written

E, = E (6.4)
e s T e where m=0,1,2,.,.,n-k-1 (6.5)

where T is the number fo the rth threshold thst can be
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considered as near optimum threshold to the ith threshold.

Clearly as the number of thresholds used j 1is
increased, the distance between thresholds becomes smaller.
Consequently, the number of near optimum thresholds for
any optimum threshold grows larger. In other words as j
is incréased the range of r becomed large?, and according
to Eq.(B.4) more error-patterns become the same as the
optimum threshold error-pattern Ei' Up to now no
distributioﬁ of any kind is assumed for the thresholds
used. If a special distribution is used where the
thrésﬁolds are more concentrated in the area wﬁere the
optimum threshoelds are, then the rénge.of T in Eq;(B.d)
and (6.5) will be eueﬁ iarger for the same number of
thresholds used j. In fact one can use one of the

distribution described in chapter five, section 5.7.

6.3.3 The Decoding Strategy

The basic decéding idea is to detect the added -
error- attern to the transmitted codeword from the j
error-patterns using £g.(6.4). Or to detect the bits of
the error-pattern added by the use of Eq.(6.5). Each
type of detection will give a different implementation
of the decoder. The first type of detection, involves
the scanning of all j error-patterns of Eg.{(6.1), and
lpoking for the largest numﬁer of equal error-patterns
that correspond to the same n-~k digits of the received
word and accepting this error-pattern as the error-
pattern added to the transmitted codeword, where the

correction can be achieved as in the conventional
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error-trappihg decoderl The second type ot detection,
'iouoiues the scaoning‘of one bit at a time of all
j error-patterns of Eq.(6.1) looking for set error flags
”that correapond to the first digit ;n_the received word,
.liffthe dumber of-detected flags is greater than a certain”
'threshold (the error-threshold) ualue, an error in that
'blt is. assumed otherwlse it is assumed error-free,‘then,
_the whole scan is repeated for the second dlglt and'so
thIThe detectlon COIIECtanvprOEESS.ls flnlshed uhen
.a;}:the:nAdigits of the received mord are_finished,zi.e.'
i scaoa are finished} At the.end of'thie detection o
‘correctlon process “the- corrected uord may contaln an

j_erroneous blt thus 1t is corrected 1n another error-"

"”;'ftrapplng decoder to give the flnal decoder output

"_,8 4 l The Error Pattern SPT Decoder

"Sﬁﬁ?fhehspdeécoderé

_ The error- pattern SPT decoder is the decoder that
uses Eq.(6.4) for decoding. A block diagram of the
decoder is shown in fig.(6.1), and the decoder functions
as follows: | | o |

The received word is fed to the'decoder_input hit by

bit, where each bit is compared with all j thresholds.
The output of each threshold is fed to its 'Syndrome
CLalculator! and to the received word storage register.
By.the time all the received word is fed completely into -
the decoder, the syndrome calculator contains the syndrome,
mhlle the k stage 'Information Digits Storage Register’

'”contalns the received information digits detected by
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its threshold. Then the syndrome calculator is shifted
vntil a2 trappable error-pattern is detected. If at the

end of n shifts no trappable error-pattern is detected,

the syndrome register is reset to zero. At the end of

n shifts all j syndrome registers will contain either
trappable error-patterns., or zeros. The 'Scan and Control
Circuit' starts to scan ail error-patterns from the

first to the jth in turn, looking for the largést number

of consecutive equal error-patterns. The term equal
error-patterns means that for any two equal error-patterns,

" Say Ei’ ES

E. 8 E_ =0 (6.5)

where 8 repfegent a quulo-two_addition, and that thé

two error—pétterné.Qoérégpond £§hﬁﬁé ;aﬁe_n—k digits in
the received Qord. After scanning the jth error;pattern
the 'Scan ahd‘ContfoliCirEuit' knows ‘the place of the
largest number of equal error-patterns area,‘say from

E.l to Es' At this stage tHe detection phase is finished,
and the decoder accepts any of these equal error-patterns
(EitD:ES) as the actual error-pattern added to the
transmitted codeword. For correction, the 'Scan and
Control Circuit' selects one of the accepted error-patterns,
and the corresponding received information digits, opens
the 'Gate' and passes them through to the 'Correction

Circuit' where the correction is done and the corrected

information digits are outputed to the next stage.
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A further simplification of ihe decoder can be
achieved by observing that the accepted error-pattern
is present in large number in adjacent £hresholds
trapped error-pattern, when the two error-patterns are
equal the two detected received words are equal. Thus
the decoder is simplified by omitting every second and
third !Inforﬁation Storage Register' so that uwhen a
“group of error-patterns are chosen, an error-pattern‘
that has an 'Information Digits Storage Register' is

passed through the 'Gate' to the correction circuit.

5.5-The Digit SPT Decoder

- The digit SPT decoder is the decoder that uses
£Eq.(B6.5) for decoding. A block diagram of the decoder is
shown in Fig.(B.Zj. The decoder function is as follouws:

The received word is fed tﬁ tHe decoder, where it
is detected at each of the j thresholds and the output
of each threshold is fed to its 'Syndrome Calculator'.
The output of the zero threshold is fed also to the
'Hecéiued Word Storage Register', which consists of n
stages, so that the whole feceiued worﬁiis stored including
the parity—check digits. By the time the whole received
pord is fed into the decoder the j syndromgs arecalculated
and each syndrome calculator is shifted until a trappable
error-pattern is detected, if no trappable error-pattern
is detected after n shifts the syndrome register is set
to zero. Onbe the time of n shifts has elapsed, i.e. no

syndrome calculator is shifted any longer, the 'Scan and

Control Circuit'! detects any erroneous digits according”



lst

Threshold

lSt Syndrome

Calulator

0 V.

Threshold

¢ V. Syndrome
Calculator

Error-Trapping

Oecoder

CQutput

l

Received Word
Storage Register

i

.th
J

Threshold

jth Syndrome

Calculator

1L 17 1

[— Scan and
Control
Circuit

Fig.6.2 A block diagram of the digit SPT decoder



to the fellowing rules.
When a received word is detected by an optimum
or near optimum threshold and the adjacent near optimum
thresholds, the j trapped error-patterns will correspond
to different sections of n-k digits of the received
word. If one considers any one digit of the received
word, then there is at most.j flags pointing to that
digit. If the considered digit is erroneous, then
according to £qg.(6.5) there are at least r set flags. The
error detection process is simply coﬁnting all set flags
which correspond to a particular digit, if the number
of flags is equal or larger than t (the error-threshold
value), then the digit is assumed erroneous, otherwise
the digit is assumed error-free. Since the error-threshold
number is varied according to the channel noise, then it
is taken as a preset number, determined by simulation.
Going back to ﬁhe 'Scan and Control Circuit', once
the shifts are ended, the 'Scan and Centrol Circuit’
starts scanning all flags corresponding to the first
digit of the received word, counting the set flags.
If no flag is found in.anherror-pattern,'i.e. no digit
in that error-pattern corresponds to the first digit of
the received word. then a reset flag is assumed. At the
end of the first scan cycle if the number of the set
flags is larger than the error-threshold, the first
digit is changed. This process is repeated n times for
all n digits. The last phase of correction is to feed

the corrected received word which is stored in the
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'Received Word Storage Register' to be corrected in an
error-trapping decoder. The necessity of this last phase
is that there is a small probability that error-patterns
other than the error-patterns resulting from the optimum
or near optimum thresholds, will set enough flags so

that a aigit in the received word, not erroneous according
to the accepted error-pattern is inverted. And since the
code itself can correct such errors, it is used for

correction in the last phase.

65.6-The Statistical Decoders

The statistical decocders are the decoders that
can correct all error-patterns of L or less and some
error-patterns of L+l or more. An example of these is
the optimum decoder (discussed in chapter two) for
correcting burst of errors. In general the statistical
decoders depend on special statistical information of
the transmission system to perform their decoding.

The optimum decoder can be considered as a statistical
error-trapping decoder, because the error-pattern is
trapped in the syndrome register, yet that requires the
calculation of all the possible error-patterns for the
received waord. Although the optimum decoder can be used
effectively with a large number of single-burst error-
correcting codes, unfortunatly its idea can not be
extended to the random error-correcting codes for two
basic reasons; Firstly the optimum decoder is used
with channels which have special statistical properties,

unlike these channels random channels are memorfyless
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channels, hence no special statistical properties can

be assumed. Secondly, in the optimum decoder the detected

error-pattern is extneded to include burst lengths of

L »2+1, this cannot be done with decoders for random

error-correcting codes, because of the following.
Consider a linear (n,k) code, which has a minimum

distance d_._ , where 5
min

2t + 2> d . > 2t + 1 (6.7)

Let C be a transmitted codeword, R the received word,
and U any other codeword. The Hamming distances among

C, U, and R satisfy the following ineguality

d{C,R) + d{(u,r) » d(c,U) (6.8)

if an error-pattern of L error occurs, where

L gt (6.9)

Then the Hamming distance between the transmitted

codeword C and the received word R is

d(C,R) = L (6.10)

Since a(c,u)

%
L
N
o+
+
bt

(6.11)

Then from Eq.(6.8)

g

d(U,rR) » d{cCc,u) - d(c,R) (6.12)
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Substituting Eqgs.{(6.10) and (6.11)} in Eq.(6.12) gives

d{U,R) » 2t + 1 - L (6.13)
from Eg.(6.9)

2t + 1 2 L + t + 1 (6.14)

2t + 1 - L2 t + 1 (6.15)
substituting in Eqg.{(6.13) gives

d(U,R) > t + 1 (6.16)
from Egs.(6.9) and (6.16)

d(U,R) > L (6.17)

The inequality of Eq.(E.l?) says that, if an error-pattern
of t or fewer errorsloccurs, the received word R is
closer to the actualutransmitted code vector € than to
any other codeword U, thus the decoding will be correct.
On the other hand, the decoder cannot correct all patterns
of L>t+]1 errors, for there is at least one errcr-pattern
which is closer to a codeword other than the transmitted
codeword,

The result of €q.(6.16) is of special interest,
because it states that for any error-pattern of L errors
that satisfies Eq.(6.9), there exists at least one

codeword where the received word is at a Hamming distance
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of t+l from this codeword. Eq.(6.10) shows clearly that
the extension of the correction power of an error-trapping
decoder using a random-error-correcting code from L=t
to L=t+1 will result in more decoding errors, because
for every received word at a distance t or less from a
codeword, there is another codeword at distance t+1 from
the received word. And since the error-trapping decoder
will accept the first error-pattern at a distance of L
or less as the error~pattern added to the transmitted
codeword in the channel, then the decoder will accept
the first of either codewords as the tranmsmifted codeword.
If the decoder identifies the codeword at distance t or
less as the transmitted codeword, the decoding is correct,
otherwise the decoder will make an inceorrect decoding.
-Although the decoder will decode correctly some error-
patterns of L=t+l, but the degradation will be much
more than the improvement. |

Needless to say that further extension of the
corTection power, say to L>t+1l, will result in more
degradation, because the number of the codewords at

distance L will become larger as L grows larqger.

6.7-Error-Trapping Decoder With Extended Correction Power

An extended correction power error-trapping decoder
must satisfy the following rules;

1-Its performance must be at least equal to the
performance of an error-trapping decoder, i.e. the
axtended error-trapping decoder should be able to

correct all trappable error-patterms of L or less,
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where Lgt.

2-It should be able to correct some error-patterns
of L or more, where L2t+1.

An error-trapping decoder can be modified to be
an extended error-trapping decoder as the following.
After calculating the syndrome, the error-trapping
decoder will calculate 2ll the possible error-patterns
added to the transmitted codeword. Once a trappable
error-pattern is detected, it is assumed that the trapped
error-pattern is the one added to the transmitted codeword
in the channel and the correction is done accordingly.
The modified error-irapping decoder does the same, except
that while calculating the possible error-patterns added
to the transmitted codeword, and looking for a trappable
error-pattern, the decoder looks also for error-pattern
of L=t+1, Once such an error-pattern is detected the
error-pattern and its location are stored, and the
calculation of the remaining error-patterns is continued.
If a trappable error-pattern (of L g t) is detected,
the correction is carried out as with the error-trapping
decoder. On the other hand, if no trappablé error-pattern
is detected at the end of the detection cycle, the stored
error-pattern (of L=t+1) is used for correction using
the error-pattern location information.

Another method of achieving the correction is
by storing the error-pattern only. At the end of the
detection cycle, if no trappable-error is found, the

shifting process is continued until the error-pattern
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in the syndrome register matches the stored error-pattern,
then the correction can be carried out in the same way
as with the trappable error-pattern.

The error-correction power of the modified error-
trapping decoder can be extended so that the code can

correct some error-patterns of L where
t +1 <L g n-k (6.18)

Assuming that the decoder is required to correct some

error-pattern of Li where
t + 1 gL, ¢t +1 (6.19)

in addition to correcting all error-patterns of Lgt.

In such cases the decoder will function as described
above, but it will look for and stored error-patterns of
t+l,t+2,....t+;. If no trappable error-pattern is
detected, the e;ror-pattern which has the smallest
number of errors is used for correction as described

above.

6.7.1 The Extended Error-Trapping Decoder Performance

Consider the case where the error-pattern is
trappable, i.e. Lgt. The extended error-trapping decoder
will consider the trapped error-pattern as the error-
pattern added to the transmitfed codeword in the channel,

and will correct accordingly same as the error-trapping
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decoder, no matter how many error-patterns of Lyt+1 are
stored. Thus for Lgt the extended error-trapping decoder
will perform exactly as the error-trapping decoder. If

an untrappable error-pattern of L€t is added to the
transmitted codeword, the error-trapping decoder will
signal that an untrappable error has occured, and since
that is decoding failure gemnerally, the output is an
erronepous block of information digits. While the extendeﬁ
error-trapping decoder will consider the stored error-
pattern, and correct accordingly, thus resulting in an
erroneous block of information digits. The only difference
between the two decoders so far is that the error-trapping
decoder gives an indication when a decoding failure has

occured.

Consider now the other case, where the error-pattern
is of L=t+l, the Hamming distance between a codeword U

and the received word R is given in E£q.(8.13)

d(U,R) > 2t + 1 - L (6.13)

substituting L=t+1 in Eq.(6.13) gives

d(U,R) > t (6.20)

the ineguality of Eq.{(6.20) shows clearly that if an
error-pattern of L=t+}l has occured the received word is
closer to a codeword other than the transmitted codeword,
thus the decoding is erroneous. But under certain conditions

these codewords are not detected, i.e. the t errors are
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untrappable, thus the decoder will detect a pattern of
t+] errors, if the detected error-pattern is the actual
cne, then the decoding is correct.

To study the performance of the error-trapping
and the extended error-trapping decoders, when an error-
pattern of L=t+l is added to the transmitted codeword,
two cases must be considered; Firstly, whendifferent error-
pattern 1s trappable, in such a case the error-trapping
decoder, and the extended error-trapping decoder will
accept the error-pattern of t errors as the actual error,
and the decoding will be carried out accordingly, resulting
in a decoding error in both decoders. Secondly, when the
error-pattern of { errors is untrappable. In this case an
error~pattern of L=t+l1 is present, and the closest
codeword or codewords are at a Hamming distance of t+l
from the received word. In genesral the error-trapping
decoder will detect an untrappable ertor-pattern, signal
a decoding failure, and the decoding result is an erroneous
block of information digits. On the other hand the extended
error-trapping decoder will store an error-pattern of
L=t+1. According to Eq.{(6.10) the received word is at
Hamming distance of t+! from the transmitted codeword,
while Eq.(6.20) shows that there could be another one
or more codewords at the same Hamming distance from the

received word. Assuming that there are B codewords at

t+1l
Hamming distance of t+1 from the received word. Since
the decoder has no means of evaluating which one 1s the

transmitted codeuwnrd, the extended decoder will choose
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one of these codewords as the transmitted codeword. In
other words the extended error-trapping decoder will
find Bt+l error-patterns of L=t+1l, and has to choose one
of them as the actwal error-pattern. Since any of the
Bt+l error-patterns can be the actual error-pattern and
the decoder has no additional information about which one
to choose, then the decoder can be forced to make a certain
choice, i.e. first or last error-pattern, so that the
decoder hardware is less complicated.

The probability of choosing the actual error-pattern
added to the transmitted codeword in the channel, hence
is

the probability of correct decoding Pcd

P = =

1
cd ~ By, (6.21)
Since the decoder will choose an error-pattern of L=t+1
only if no error-pattern of Lgt+1l is detected, then Eq.(6.21)

can be rewritten

t
iff § B,
t+l i=o 1

(6.22)

I
o

where Bi is the number of error-pattern with L=i. In
general

1 .
Pcd = —EE 1ff

B. =D (6.23)

L L

1]
o]

where L is defined in Eq.(6.18).

In general, extending the error-correction power
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of an error-trapping decoder to more than t+l will not
give an additional improvement. To see the reason, one
should go back to Eq.(6.13), substituting the value of
t+2 in L shows that error-patterns of >t-1 are present,
and substituting t+3 in L, shows that error-patterns of
2t-2 are present, and so on. Clearly, the chances of the
decoder choosing the actual error-pattern between the
present error pattermsof t-1gLg¢t+2 for the first case,
and t-2<L<t+3 in the second case are slim indeed. Another
way of looking into this is by considering the Hamming
distance between the received word and the accepted
codeword as the transmitted one. As this distance is
increased by increasing L as it can be seen from Eq.(6.10),
more and more codewords become within the range of L.

And since the decoder will choose one of these codewords,
then the probability of correct decoding becomes smaller

and smaller.

6.8- Simulation Results and Discussions

Unfortunately, because of the time limitations,
the results included here are the first stage of
the test results for the digit SPT decoder only, Although
these results represent the beginning of the test.work
for this chapter, and may not be the same as the final
result after including all the possible improvements,
yet they are of great importance because they show clearly
that the basic theoretical ideas are correct and can be

implemented. It was felt that the error-pattern SPT
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decoding will provide higher improvement than the digit
SPT decoding, thus it was decided to work on the digit

SPT decoding in the remaining time, because the success
of the digit 5PT decoding idea will give some assurance

that the error-pattern S5PT decoding is also a success.

6.8.1 Choosing The Error-Threshold

To study the effect of the error-thresheld on the
digit SPT decoder, two types of codes were used the {(31,21)
random-error-correcting code, and the (34,22) single-
burst-error-correcting code, The first code used with a
random error-generating channel, the decoder is the error-
trapping decoder type described in section 6.5.1. The
thresholds are taken 17 practically spaced thresholds.
Several runs for different SNR values are tried, and they
all prove to have the same general shape, although the
error-threshold value that minimizes the word error .rate
is different for different 5SNR values. The curve of
fig.(6.3) is a typical curve, where the word error rate
is plotted against the value of the error-threshold. The
error-trapping decoder results are plotted also for
comparsion. The SNR value - used in fig.(6.3) is 3 dB.

The second code used is the (34,22) single-burst-
error-correcting code. The decoder used for the test is
similar to the decoder described in section 6.5.1, but
the basic unit is an optimum decoder instead of error-
trapping decoder. Again the thresholds used are 17
thresholds practically spaced. The background SNR is

set to 9 dB, while the burst 5NR is varied for different
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runs. All runs prove to have the same general curve,
furthermore they all have a very close values for the
error-threshold that minimize the word error rate. A
typical curve is plotted in fig.(6.6), where the burst
S5NR=-8 dB. The optimum decoder results are plotted also
for comparsion.

Figs.(6.3) and (6.4) show clearly that at low
error-thresold values, the word error rate shoots up.
This is somehow expected, because at low error-threshold
values almost every error flag present in the j error-
patterns of Eq.(6.1) has affected a digit, which makes a
proper correction nearly impossible. Then for error-
fhreshold values larger then the intersection value the
decoder introduces an improvement over the error-irapping
.or the optimum decoders. This intersection value is nearly
fixed for different values of burst SNR for the burst
code decoder, while its vealue changes with the 5SNR for
the random code. The variation suggest that al low SNR
a lower value of error-threshold should be used and

visa versa.

6.8.2 The Digit SPT Decoder Performance

The digit SPT decoder performance is studied using
the apoue mentioned two codes, namely the (31,21) random
code, and the (34,22) burst code. The thresholds used
with the two codes are 17 thresholds practically spaced.
Three runs are carried out for each test, the SNR values
for the (31,21) code are 1, 3, and B dB. The first test

is for a decoder that has a fixed error-threshold value,
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the error-threshold value is set to 7. The second test
is carried out with a varaible error-threshold values,
these values are chosen so that the maximum improvement
is achieved for each SNR value. The error-threshold
values are 4 for 1 dB, 6 for 3 dB, and 7 for 6 dB. The
last test is carried out to show the improvement in
case an adaptive error-threshold value scheme is used.
The two test results are plotted in addition to the
error-trapping decoder results in fig.(6.5). It can be
seen that the digit SPT decoder will introduce an
improvement of 0.15 dB for the fixed error-threshold value
and 0.157 dB for the adaptive error-threshold value aver
the error-trapping decoder at 3 dB, while the improvement
is 0.086 dB over the error-trapping decoder for both
decoders at 5 dB. _

The SNR values for the (34,22) code are -20, -8,and,
0 dB. The test is carried out for a fixed error-threshold
value of 13, there was no need for adaptive decoder tests
because the chosen value minimize the word error rate for
the three chosen SNR values. The test results and the
optimum decoder results are plotted in fig.{6.6). It can
be seen that the digit SPT decoder performs better than
the optimum decoder for all the region and produces an
improvement of 3.6 dBlat burst SNR of -17 dB, and 0D.64 dB

at burst SNR of -3 dB over the optimum decoder.

6.9-Conclusians

It would be very unwise to draw major conclusions

from the results obtained so far. However the results
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obtained give the assurance that the basic idea is correct,
and that a wide uariéty of modifications can be incorporated
with the decoder to provide a better improvement some
of these modifications are suggested in the next section.
Nevertheless, considering the digit SPT decoder,
the results of section 5.6.1 shown in figs.(6.3) and (6.4)
suggest fhat there exists some inversely proportional
relation between the error-threshold value and the SNR
value. That is, when the SNR value is high, lower value
for error-threshold should be used, and visa wversa.
According to the simulation results, it seems that the
penalty paid in increasing the word error rate by using
hicher error-~threshold value is very small. Hence it can be
benmeficial to use a higher error-threshold value to
prevent a performance deterioration if the channel SNR
value dropped to a value lower than the expected.
The digit S5PT decoder for random errorn-generating
channels test results suggests that an adaptive system
is preferréﬂ in the case of changing SNR wvalues especially
if the S5NR value is low. While error-threshold value is
preferred otherwise because the decoder is less complicated.
The simulation results show that at low 5NR values
the improvement obtained from the digit SPT decoder is
higher tham at high SNR values, yet there is a small
improvement at high SNR, Which suggests that these types
of decoders can be used over a wide range of SNR values.
The only thing to say about the error-pattern SPT

decoding, if any, is that the success of the digit SPT
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decoding enhances the belief that the error-pattern SPT

decoding will prove a success also.

6.10-5uggestions For Further Study

Two types of suggestions will be considered for
further study of the 5PT decoding techniques. The first
type is based on the observation of the digit 5PT decoders
behaviour and concerns only the digit SPT decoders.
Although the second type is based on the digit SPT decoders,
but they are general suggestion which can apply to both
types of 5PT decoders. These suggestions are mostly
concerned with the improvement of the decoder performance
in general, because it was believed that the improvement
resulted from these suggestion is worth considering.
However many areas of unfinished work needs further study,

but it was felt that these are wvery obvious to mention.

6.10.1 The Digit SPT Decoder

1-The use of adaptiye error-threshold value. The
significance of using an adaptive error-threshold value
is clear from fig.{(6.5), where a higher improvement
can be achieved. The use of adaptive error-threshold
value 1s limited to the random code decoders, because
no rteal improvement can be achieued for the burst code
decoders. Furthermore, they should be used only when
they are needed, i.e. when the SNR wvariationm is large.
In case of small SNR variation, the error-threshold
value can be increased, so that the drop in SNR value

will not cause a deterioration in the decoder preformance.
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A simple method for calculating the value of the
error-threshold, is to start with a3 fixed value and
monitor the number of the inverted digits in a received
block, if the number is larger than a set value, say 2t,
then the error-threshold is increased. On the other hand
if the number of the inverted digits is small, then the
error-threshold value is decreased.
Needless to say that the adaptive digit SPT decoder
is more complicated to implement then the digit S5PT decoder.
2-Extending the correction power of the decoder. This
modification is applicable only to the random error decoder.
The extended correction power decoder will introduce an
additional improvement over the conventional decoder,
only if the error-trapping decoder can not trap all
correctable error-patterns. As it is shown in section
6.7.1, the correcticn power should not be extended to
more than t+1 errors. However, the improvement expected
from the correction power extention is not very big, but
it can be considerable in some special cases, 1.e. when

some codewords are not used.

6.10.2 The SPT Decoder

This modification is applicable to digit SPT decoder,
and error-pattern SPT decoders. Its aim is to force the
SPT decoder to functicn the same as the decoder it is
derived from in the worst case. The modification is as
the following:

The SPT decoder is forced to look at the 0O volt

threshold error-pattern before starting the decoding process.
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If the error-pattern is zero, a correct received word

is assumed, while if the error-pattern is trappable,

the trapped error-pattern is assumed to be the actual

error-pattern added to the tramsmitted codeword, and the

correction is
error-pattern
continued.
For the
the effect of

line, figs.(6.

done accordingly. While if no trappable

is detected, the SPT decoding process is

digit SPT decoder, this modification has
pushing the parts above the horizontal

3) and (6.4), of the conventional decoder

down to coincide with the herizontal line. When such

modification is incorpeorated in the decoder, the error-

threshold value no longer has a deteriorating effect on

the decoder, although it still has an affect on the

decoder i1mproveéement.
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APPENDIX A

PARALLEL-THRESHOLD-DECODER HARDWARE TEST SYSTEM

A.l-General

The ideal system for testing the _pParallel threshold
decoder is a real transmissiog system which has a block
digram as in fig.(3.1) where the demodulater delivers a
sampled value of the demodulated signal (not a bina;y
value), and the 'Channel Decoder' represents the parallel
threshold decoder. Such a system is ideal but too complicated
and fbo expensive to be built for testing purposes. The
same results can be obtained by simlifying the system of
fig.(3.1) as follous.

1. Using a binary data 'Source' and 'Sink',the 'Source
Encoder! and 'Source Decoder' can be eliminated from the
diagram.

2. By assuming that the channel can handle binary
signals and that noise is an additive noise only, the
'Modulator' can- be discarded, while the 'Demodulator! can
be replaced by a sampling circuit.

After, these two modifications the system will be
aé in fig.(A.l)

A.Z2-Repeated Same Word Transmission

Further simplification can be achieved by transmitting
the same codeword repeatedly because the 'Encoder' can be
excluded, On the other hand the 'Source' has to generate
the repeated codeword (including the parity;check digits)

instead of generating a random seguence of binary digits.

ity
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This in turn adds to the complexity of the 'Source' circuit
in the test system. One method of overcoming this complexity
is by using an all ones word or all zeros word, if these
are codewords. 5o that the whole upper- branch .of. figs.(3.1)
or {(A.1) is a wire connected to the'pasitiue or negative
voltage to represent fhe'all ones or all zeros word
respectively.

In general, since all codewords are equally likely
to be transmitted,thén the use of repeated transmission of the
same codeword will result in the same test outcome.
Unfortunately, this is not the case wifh the parallel
threshold decoder, because if the optimum threshold for
that codeword is used, then the outcome is much better than
the outcome of the transmission.of random codewords. This
false improvement depends on the transmitted codeword and
the distance bgtmeen the threshold used and the optimum
threshold value. The maximum falsé improvement will be
achieved in the special case where an all ones or all zeros
word is transmitted repeatedly.

Consider the case where and {(n,k) code is used, it
is required to calculate the probability of errors when an
optimum threshold is used to decode an all ocnes transmitfed

codeword. Eq.(5.47) gives the distance of the optimum

threshold.
2 Q
_ o 1
d, =V + 5y log 2 (5.47)
02
dy =V + =7 (log Q, - log,qU) (A.1)




Since the transmitted codeword is all ones, then
g, = 1 _ : (R.2)

and ag = O (A.3)
Substituting in'Ea.(A.1) yields

2

d. =V + 2=

1 >y (log 1. - log 0) | (R.4) "

g, = - = | (a.5)

Since the reference point for the threshold distance is
at +V volts and the direction of d, is opposite the X axis.

direction, then the threshold value is

Th = + ©» vyolts (A.6)

The probability of error is given by Eq.(5.31)

dl
1 -y
P = q ————— exp ( ) dv (5.31)
®1 L /2n02 20 :
Substituting Eq.{A.5) in Eg.{(5.31)
1 ( -\J'2 ) ,
P = q —_—  exp — dv , {(A.7)
°1 Y /ono? 26°
-
Pel =0 (A.8)

Rlthough, an error-trapping decoder will not°give the

results of Eq.(A.B), a parallel threshold decoder with



three thresholds placed at zero and #® will give a very
close error probability to Eqg.(A.B), provided the +w
threshold output is decoded before the -« threshold
output.

Similarily, the same results éan be derived for the
all zeros transmitted codeword.

A.3-Choosing The LCode And The Codeword

To be able to compare the hardware test results with
the computer simulation results, it is clear that one of
the simulated codes should be used, Although some burst-
error-correcting codes perform very well and give large
improvements, it was decided against using one of these
codes for two reasons,

1-A burst-noise generator is not available, and
building one is a costly process and will add to the system
complexity.

2-The use of burst-error-correcting code requires
deinteriacers at the input, which again adds to the system
cost and complexity, while if the code is not interlaced
it will lose much of its correction power.

With the elimination of the burst-error-correcting
codes, two random error-correcting codes are left to
choose from. It was decided to use the (31,21) random
code because it preforms better than the (15,7) random
code.

The other point to decide is the codeword. For sake
of simplicity it was decided to use a repeated transmission

of the all ones codeword. To accommodate for the false



improvement, a repeated transmission of all ones codeword

is simulated, the results of simulating repeated all ones
codeword and random codewords is ploted in fig.(A.2),

where it can be seen that an improvement of U~U.5d3, and
0-0.6dB has -taken piace for the 5, and 3 thresholds parallel
decader respectively, while the error-trapping decoder
degradation can be ignored. |

A.4-The Test System

A block diagram of the test system is shown in fig.(A.3).
The input signal is_prouidéd by connecting the channel
input to a ligical 119, So that all ones codeword is
generated. At the channel, noise is added to the channel
input signal and the output is the_receiued signal. To
start the test, the 'E€Error Words Counter' and the '3000
Word Counter'! are reset to zero, the later will cause
'Gate 1' to turn on allowing the received signal to be fed
to the 'Parallel Threshold Decoder'. As soon as the
received word has entered the 'Parallel Threshold Deceoder!,
a signal is sent to the '3000 Word Counter' to advance
its count by one. At the end of the decoding, if the
decoded word is not the all ones word, the 'Error Words
Counter' advances its count by one, otherwise it remains-
as it was. As soon as the decoding is ended, the next
received word is fed to the 'Parallel Threshold Deéoder'.
Once the 3000th word is fed in, the '3000 Word Counter'
turns 'Gate 1' off, indicating the end of the test process.
The number of the test words is chosen to be 3000 (93000
bits), so that it will be the same number used in the

computer simulation.
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Fig.{A.3) Block diagram of the test system




The test system arrangement is shown 1n Fig.(A.&),
which is an expanded version of fig.(A.3). The difference
between the two figures is :-

1-As the 'Parallel Threshold Decoder','3000 Word
Eountér' and 'Error Words Counter' are digital circuits,
they require a system clock to driuelthem, this clock is
introduced in fig.{(A.4). Since without clock pulses, the
decoding system will stand still. Then a clock stop signal
is used to stop the system, by inhibiting the clock, aftef
the decoding of 3000 words. Using this arrangement, 'Gate 1!
of fig.{(A.3) is no longer required.

2-The 'Channel' block in fig.(A.3) is expanded to include
noisé generation and addition blocks. The noise generator
is an analogue random Gaussian noise generator. Saussian
noise is used to match the noise used in‘the simulation.
The noise generator has a maximum value of 1 volt at its
output, and since higher output values are required, an
amplifier is used to get a suitable noise output. Again
the noise generator has an output noise bandwidthtbf 20Hz-
20MHz, so a low pass filter is used to band limit the
noise. At the output of the filter anm RMS vaoltmeter is
used to measure the noise to be added to the signal in
the channel. The addition <ciruit is an analogue addition
circuit, which adds the generated noise to the signal at
the channel input,

A.5-The Paralle]l Threshold Decoder Circuit

The parallel threshold decoder circuit is of special
interest because it gives an idea of the decoder complexity

and so the circuit will be discussed in some details. The




Error words

counter

channel

| Addition
| Filter
circuit

I R

Amplifier

Gaussian
Nnoise

generator -

Parallel
Clock

decoder

3000
Word
Counter

Fig.{A.4) Test system arrangement

R MS

voltmeter

L



circuit used is a modification of a circuit designed by

me. 0.G6.King ®2), although its -function is exactly the

same as a parallel threshold decoder, it works in a serial
mode. This mode incurs.a time penalty over the parallel
system, but it requires fewer devices to implement, while
the control Eircuitry‘is slightly more complicated. A

block diagram'nf the decoder is shown in fig.(A.5). The
channel output signal is fed to the 'Input Threshold
Detectors', where it is compared with the various threshold
values, the output of the third threshold (0 volt threshold)
is fed directly to the error-trapping decoder, while the
output of the dthe; thresholds are stored in the four
auxiliary registers 1,2,3, énd 4, At the error-trapping
decoder, the information digits ‘are stored.in the '21 Staée
Main Data Register', at the same time the complete received
word is shifted into the syndrome register. As soon as the
whole word is shifted in, the syndrome is calculated at
the syndrome register and if it is all zeros the received
word is correct and is passed to the decoder output. If

the syndrome is not all zeros, it is shifted cyclicaly
until a trappable error-pattern is detected, and the
received word is corrected. If at the end of 21 cyclic
shifts of the syndrome register no trappable error-pattern
is detected; the syndrome register is reset to zero, and
the next threshold output, which is stored in an auxiliary
register, is fed to the error~trapping decoder, and new
correction is started. If at the end of this Ttorrection
phase no trappable error is detected, the next threshold

output is considered, and so on.
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if at the end of the five correction phases no trappable
error is detected, an erroneous decoded word is assumed.
Once a trappable error is detected, and the received word
is corrected, no matter which correction phase the decoder
is in, the whole system is reset, and a new received word
is accepted. The threshold cutputs are considered in a
fixed sequence 3,2,4,1,5 each time a new received word is
Fed_in from the channel.

The parallel threshold decoder circuit diagram is
shown in fig.(AR.5). Before going into the circuit details
it is worthy to consider the EPROM (A38) outputs fig.(A.7)
because it is the main control circuit. The EPROM 4is an
(84;8) memory device, each output being allocated a specific -
task in controlling the circuit, -

El : is the 'Information Digits Input Control' and
is used to turn gate AR34a on for the first 21 clock
waveforms of each detection phase, to allow the first 21
digits of the processed word to be stored in the main data
register (A23 and A24).

E2 : is the 'Syndrome Input Control', it is used to
turn gate A34b on at the beginning of each phase, to allow
the whole processed word to be shifted in the syndrome |
register (A25, A26, A27, and A28). Once the 31 bit word is
in (during the first 31 clock waveforms), gate A34b is
turned off.

E3 ¢ during the whole decoding process, in any
phase, the syndrome Hamming weight is constantly being
tested by the weight detector. To stop any action being

taken if a trappable error is detected during the syndrome
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calculation, E3, the 'Weight Control Output' turns gate
A33a off for the first 31 clock waveforms, and then on for
the rest of the decoding phase.

E4 : the 'Information In/Out Control', is used to
control the shift clock in the main data register. It
turns A34c on during the first 21 clock waveforms to allow
the information digits to be shifted in. Again it turns
gate A34c on during the 4lst clock to enable the read out
of the information digits.

ES : the 'Correction Caontrol'!, is used to route the

ovtput of the syndrome register to the correction gate A3lc,
which adds the error-pattern to the information digits as
they are simultaneously read out of their respective
registers after correctable errors have been detected.

Since the correction process may start after the 4lst

clock waveform, E5 turns gate A33b on during the 4lst

clock, and turns it off at the end of the correction
process, during the 52nd clock waveform.

EB : is uséd as an 'Untrappable Error Pattern Reset',
which turns gate AJ34a on during the 52nd clock cycle of
each detection phase, causing a reset pulse to be generated
if no trappable error is detected by then. The reset pulse
ends prematurely the current detection phase and starts
the next phase.

E7 : or the 'Trappable Error Pattern Reset'. When
a trappable error pattern is detected, E7 generates a
reset pulse after the end of the correction process, to
reset the uwhole system. So that the next received word

decoding can start. The reset pulse will be generated
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vhenever a trappable error pattern is detected and corrected
during any of the five detection phases.

EB8 : is used as a 'Phase Advance Clock', to increase
Al5 count by one at the end of each.detection phase, so
in the next_phase the received word output‘is conﬁected
to the error-trappiné decoder input,.

The best way to describe the function of the serial
mode parallel threshold decoder of fig.{(A.6) is to follow
a received word from the input throughout all the storeing,
detection, and correction processes.

Once the power supply is switcﬁéd on a reset pulse
is generated by R33 and Cl, resetting the EPROM address
counters A36 and A37 to zero through A35a, A3ld, A35b, and
A39d, and to reset AlS to zero threugh A35a, Al7f, A22d,
and A22c while the syndrome Ealculator A25....R29 are reset
to zero through A35a, Al7f, A21d, and A39a. By this time
the system clock is inhibited. As soon as the supply
voltage is onsthe input circuit is functioning, although
no clock is present. The channel output signal is fed to
the decoder input, which is Feediqg the five threshold
gates Al, A2, A3a in parallel. Each threshold detector
will output '1' if the input signal is larger than its
referance voltage, transisﬁors Vi, v¥2, V3, V4, and VS
convert the threshold detectors cutput to a signal
compatible with logic circuits, while invertors Ada,
A4b, A4c, A4d, and A4e invert the signals .to the threshold
detectors polarity. It can be seen that no sampling is
associated with the threshold detectofs input, so the

output follows the input signal.
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The zeroc address at the EPROM input causes gates
A34a, and A34c, to turn on, so that information digits
can be read in. Also gate ‘A34b is turned on to enable the
rece;ued word to be~shifted in. Simultaneously, the
zero count at the output of Al5, and E2 output of the
EPROM, turns gate A22b on allowing the output-of the
third threshold detector (0 voltage threshold) to be
shifted into the error-trapping decoder, and turns on
gates ASa, ASb, ASc, and AS5d to allow the storage of the
first, second, fourth, and fifth threshold detector output
in AG, A7, A8, A9, Al0, All, and Al2,Al3 shift registers
respectively.

The signal present at the threshold detectors in
synchronism with the clock are accepted as the same gutputs
of the sampled sigﬁaL at the output. Once the clock
system.is'enabled, the signal at the output is shifted into
A6....RA13 registers, the main data register A23 and A24,
and into the syndrome register A25, AZ26, AZ?, AZ2B, and
A29. By the time the first 21 digits_are shifted in, Gates
A34a and A34c are turned off py El and E4, to stop the
parity check digits being shifted into the main data
register A23 and A24, while the shifting in is continued
for the other registers. As soon as the whole word {(31bits)
is shifted in gates AS5a, AS5b, A5c, A5d, A22b, and A34b
are turned off by E2. By this time the syndrome is calculated
by the syndrome register A25....R29, The Hamming weight
of the syndrome is tested by the weight testing circuit
A32a where each stage output of the syndrome register

A25a... A28b is fed through the same registers R17....R26
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to an analogue addiiion circuit A32a, its output being
linearly proportional to the Hamming weight éf the-SynQrome
contents, which is compared with the Hamming weight of
three. When the syndrome weight is less than three the
comparator A32b will ocutput a negative voltage, .which

is translated to logical '1' by V6. Once the weight

goes to two or less after the syndrome is calculated, E3
turns gate A33a on allowing the weight detector output

to pass throught to turn gate A33c off, S0 that the error-
pattern is trapped in the syndrome register. If the error -
pattern is trappable during the first ten shifts of the
syndrome register after calculating the initial syndrome
(between 31-41st clock cycles), shifting the syndrome is
continued to the 4lst clock cycle; so that the trapped
error-pattern will be in the right place for the correction.
On the other hand if an error-pattern has not been trapped
before the 42nd clock cycle g;{es A34a and A34c are turned
cn by El and E4 'and the information digits are read out,
ES will turn gate A33b on to allow the weight detector
output to pass through. The information digits are read
out in synchronism with the clock and-at the same time

the syndrome register is shifted. As soon as an error-
pattern is trapped, the weight detector turns gate A33d

on through gate A33b allowing the erroneous digits to be
corrected by A3lc. By the time the syndrome register is
shifted 21 times after calculating the syndrome ( at the
end of the 52nd clock cycle) EB will advancer AlS count by
one preparing for the next phase, if no error-pattern is

trapped, the decoding process is prematurely terminated
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by reseting to zeroc the syndrome register by E6 through
Ajad and A39a, and the EPRQN address counters by E6 through
A34d, A3%a, A3ld, A35b, and A38d.

The next phase starts after a decoding failure in
the previous phase. Assuming that the current phase is
phase two, then the output of AR15-is one as a bipnary
number, which will connect .the second auxiliary register
AB and AS the output of the second threshold detector
through Al4 to the error-trapping decoder input A2lc,
and cause the output of AlE toc turn gate AZ20a on through
Al?éﬂ Al8a, and Al9a to allow the clock (CLK2) for reading
out the contents of the auxiliary store, to pass through.
CLK1 will shift the third threshold detector output stored
in AB and A9 only into the error-trapping decoder, where:
a new decoding phase is started. At the end of the second
detection phase, if no error-pattern is trapped, phase two
is terminated after advancing A1l5 by one, and the third
detection phase is started, where the content of the third
auxiliary register {the 6utput of the fourth threshold
detector) is fed to the error~trapping decoder, and so on.

If an error-pattern is trapped during any phase,
the correction process is allowed to be continued until-
all the 21 information digits are read out. The decoding
process is terminated by reseting the whole system, which
is done by E1, the EPROM address counters are reset
through A35f, and A39d, the syndrome register is reset
through A35f, and A38a, while Al5 is reset through AZZ2c.

On the other hand if no error pattern is trapped i%

the last detection phase, the system reset is different.
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-

Since the phase will be terminated prematurely, then T
the EPROM: output-EB-will clear the syndrome register
through A34d, and A33a, and the EPROM address registers
through+~A34d, A39a,- A3ld, - A35b, and A39d;-Thg system
reseting requirés the'additionalureéeting of AlS5, which

is achieved-by.reseting AlS by the appropriate output from

Al6 through A22d, and A22c. Using this arrangement makes ;
it possible to use thié same decoder as a five threshold
parallel-decoder, by connecting dutput five (pinl0) of

Al6 to A22d (pinl3), while a three threshold parallel-

decoder is achieved by connecting Dutﬁut three (pinl2) of

Al6 to A22d (pinl3). Again the decoder can be used as a
conventional error-trapping decode; by connecting output

one (pinl4) of Al6 to A22d (ﬁinyj}. These connections

have the effect of terminating the decoding after the fifth,
third, and first decoding phase respectively.

A.6-Test Results

The noise RMS voltage is measured by a slow RMS
voltmeter, it is'connected to the system as in fig.{(A.4).

The signal to noise ratioc is given by

SNR = 20 1log % (A.9)
where SNR is the signal to noise ratio in dbs, S signal
voltage, and N noise voltage. Given for the test that

5 5 vaolts (A.10-a)

N

RMS volts (A.10-b)

Eq.(A.9) becomes

S _

R (A.11)

SNR = 20 log
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Eqg.(A.11) is used to calculate the RMS values for the
required SMR values, where
RMS = ——?l-— (A.12)
log "5NR
20

Five test runs were carried out for each SNR value,
the number of errtoneocus words were counted for each run,
and the average number calculated. These tests were
repeated for five thresholds, three thresholds, and the
conventional error-trapping decoder. The threshold values
used for the five threshold parallel-decoder were 1,43,
0.8, 0, -0.8, ~-1.43 volts, and the values for the three
thresholds parallel-decoder were 1.12, 0, -1.12 volts.

The results of these runs are shouwn in tables (A.1-3)

The computer simulation results, and the hardware
test results are ploted together in fig.(H.B). Both results
show nearly the same improvement over the error-trapping
decoding, but it can be seen that the hardware test results
are shifted by about 2dB towards a lower SNR. This is
because although a slow RMS voltage meter was used, it
was very difficult to accommodate for the noise variations,
so the noise voltage was set to be at the correct value
for most of the rum time, but that would not compensate

for the sudden increase in the noise voltage.



SNR(dB) WORD ERROR RATE AVERAGE
ERRORS

1 2950 | 2980 | 2979 | 2955 | 2960 | 2964.8
2 2695 | 2802 | 2844 | 2792 | 2822 | 2811
3 2599 | 2594 | 2602 | 2605 | 2593 | 2598.6
y 2293 | 2296 | 2279 | 2280 | 2278 | 2285.2
5 1671 | 1683 | 1678 | 1666 | 1670 1673.6
6 1147 1125 | 1117 | 1098 | 1130 1123. 4
7 583 | 585 | 603 | 590 592 590.6
8 258 | 255 | 263 | 261 242 255.8
9 76 | 64 70 68 62 68
10 17 19 17 18 16 17.4

TABLE (A.1) ERROR-TRAPPING DECODER TEST RESULTS




SNR(dB) WORD ERROR RATE AVERAGE
ERRORS
1 2765 | 2780 | 2769 | 2709 | 2707 | 2750.2
2 2u55 | 2459 | 2450 | 2461 | 2426 | 2454
3 2091 | 2108 | 2108 | 2125 | 2080 | 2102.4
y 1509 | 1471 | 1480 | 1485 | 1469 1482.8
5 963 | 988 | 983 976 976 977 .2
6 604 | 597 (590 609 | 595 599
7 263 | 260 | 243 | 250 | 247 252.6
8 105 101 103 | 99 87 99
9 21 20 18 19 23 20.2
10 2 0 0 1 2 1
TABLE (A.2) THREE THRSHOLDS PTD TEST RESULTS3




SNR(dB) WORD ERROR RATE AVERAGE
ERRORS
1 2742 2701 | 2727 | 2684 | 2694 2709.6
2 2410| 2396 | 2423 | 2392 | 2389 2402
3 2049 2031 | 2025 | 2027 | 1998 2026
y 1416 | 1826 | 1427 | 1435 | 1448 1431
5 960 | 951 989 974 1005 975.8
6 472 | 502 | 495 512 480 §92.,2
T 201 215 | 230 200 181 205.4
8 53 70 62 55 65 61
9 30 19 25 12 14 20
10 1 2 0 1 0 0.8
TABLE (A.3) FIVE THRSHOLDS PTD TEST RESULTS
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APPENDIX B

THE SHORTENED CYCLIC BURST-ERROR-CORRECTING CODE (19,11)

During the test stages of the parallel threshold
decoder by computer simulation, the shortened cyclic
Burst-error-correcting code (18,11), was chosen to be
used in the tesf process. This code was listed in tuwo
references, as an ogptimal code, which is capable of

correcting all bursts of length £ or less, where

(8.1)

= 4 (B.2)

but, the generator polynomial g(X), was different in each
reference from the other. In reference{48) it was given
as

7

g(x) = 14x%+x%x +x8 (8.3)

while in reference(55) it was given as

g(x) = 14x2+x°4x84x3 (B.4)

it was clear form the beginning that Eqg.(B.4) is not the
correct one, because the degree of g{X) is nine while it
should be of degree n-k, which is eight.

Going back to reference (4g)showed clearly that the
author of reference (55) miss copied the generator
polynomial. He copied the generator polynomial of the

shortened cyclic burst-error-correcting code (38,29),



which is a sub optimal code, with a capability of
-correcting all burst of four errors or less, and has

a burst-correcting efficiency Z.

22 ,

Z = <= (B.5)
_2x4 B

Z=3555 =79 (B.8)

while the burst-correcting efficiency Z, for any optimal

code is one, from Eq.(B.1)

2% = n-k (8.7)

7 = = 1 _ (B.8)

In spite of the knowledge that the generator
polynomial of Eq.(B.3) is the correct one; it was decided
to search for all the generator polunomials suitable for
the shortened code (19,11). The search was done by the
use of a computer.

Using the knowledge that the generator polynomial
is of degree n-k, a program was written to verify which
of the 127 generator polynomial possibilities is a
suitable generator polynomial for a shortened (19,11)
burst-error-correcting code, which is capable of

correcting all burst length of four or less. The computer




test produced six generator polynomials:

1- It was found that the (19,11) code can be derived
froﬁ the (255,247) burst cyclic code, by inserting
B = 236 zeros. Two generatar polynomials were found for
such a code.

1+X2+X3+XQ+X8 (B.9)

i

gl(X)

8

gz(x) 1+x% x4 x84 x (B.10)
2- The (19,11) code can be derived from the (217,209)

code, by inserting B = 198 zeros. Again two generator

‘"polynomials were found for such a code.

(x) Lax+x Yex Bix8 (B.11)

8

1+x2+xa+x7+x (B.12)

L]
o~
—
>
~—
]

it can be seen then ga(X) is the same g{X) given in
Eq.(B.3).

3- The (19,11) code can be derived from the (127,119)
burst code, by inserting B = 108 zeros. The generator

polynomial for this code is

gc(X) = LaxaxaxaxTax® (B.13)

4- The (19,11) code can be derived from the (B84,76)

burst code, by inserting B = 6% zeros. The generator



polynomial for this code is

gE(X) = 1exaxZaxSaxtexB (B.14)

To assess the performance of the (19,11) code
generated by various generator polynomials, a transmission
is simulated for each of the generator polynomials using
the optimum decoder. The simulation results are plotted
in fig.(B.1). The optimum decoder is used since it is
a decoder that will show any improvement in the
performance due to the use of different generator
polynomials, because the decoder will try to correct any
burst of errors even if they are longer than £, and that
is the area where each code performance will differ,
while all the codes will perform the same for bursts of
length £ or less.

As a result, the generator polynomial given in
Eq.(B.3) and £q.(B.12) was used in the simulation because
the code performs better when this generator is used. for

a wide range of SNR values.
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APPENDIX C

Bit Rate Consideration in Detection and Correction Codes

The performance of error-correction techniques
on one-way channels are clearly far superior to the
performance of error-detection techniques, because the
latter will not result in any improvement in erreor rate
and any detected erronecous information is ignored. On the
other hand, both techniques give improvement on two-way
channels, but this improvement is at the cost of increasing
the transmission bit rate. So it would be reasonable to
compare the performances of both techniques at the same
constant increase in the transmission bit rate.

Consider the transmission of information digits
which are grouped in a block of k digits each, threough
a transmission channel. This channel can be either a one-
way channel or two-way channel, which has in either case
a probability p of generating errors. Teo start with
assume that an error-detection and retransmission system

is used. Let the error-detection code be (n,,k) code,

d
where nd—k digits are annexed for error-detection pruposes.

And let the retransmission request require the transmission
of n. digits for each reguest.

The probability of receiving a whole transmitted
block Forrectly, Pyc is the probability of receiving
every one of the Ny digits correctly, which is

n

p, = (1-p) ©

dc (c.1)

The probability of receiving an erroneous block Pye is




2.

d

n
=1 - (1-p) (c.2)

pde

For simplicity, assume that the transmitter receives
all retransmissions and the retransmission reguests correctly
the average increase in digits per block due to a

retransmission Gr is

6r - pde(nd+nr)/nd (c.3)

substituting Eq.(C.2) in Eq.(C.3)
n n
§_=11 - (1-p) d] (1 +=5) (C.4)
T nd

Let Gd be the increase in bits per block due to the
addition of the error-detection parity-check bits. Then
8y =0y - Kk (c.s)

The total increase in bits per block due to the

parity-check and retransmission digits is

§g = 84+ 8 (C.B)
from Egs.{(C.4) and (C.S5)}
o = (ng=k) + {12090 ") (242D (c.7)

It is Qorthy to note that with the detection and
retransmission system that the receiving of all the
information digits error free is not guaranteed, because
any codeword corrupted in the channel to be received as

another codeword, will be detected as a correct received

word. The probability of error for these cases is giuen(B’BT)

as n | .
i nd"l
=1 A, p(1-p) (c.8)



where Ai denotes the number of codewords of weight i
in the block code used.

pr consider the other case, where error-correction
is carried out on the received blocks, which are transmitted
through the same channel described above. Let the error-
correction code used be an (nc,k) code, where the number
of parity-check digits is nC-k. The total increase in the
number of bits per block due to the parity-check digits,
which is the only source of increasing the channel bit

rate in this case, is
§ . =n .-k (C.9)

Two sources of errors are present in this case.
Firstly, as in the error-detection case a corrupted
codeword can be received as a different codeword, where
the decoder will accept the erroneous data as a correct
data. The probability of such occurance is

nC i nc
Pac =iZ=l A; p (1-p) (ca1o)

where Ai represent the number of codewords of weight i
in the block code used. Secondly, the rteceived worés
which has erroneous digits more than the code correction
ability may be decoded erroneously, which is called
failure. The probability of decoding failure, whenever

t the maximum number of errors the code guarantees to

correct, is less than half the code's minimum distance(s’ss}




is

(C.11)

where Ai is the number of codeuwords of weight i in the

block code used, and wg%én"i) denote the number of words
of weight k which are at distance j from any given word
of weight i and length n. The actual probability of
decoding failure is may be less than the probability
calculated by Eq.(C.11), because Eq.{C.11) assumes a
decoder that decodes all patterns of up to t errors and
nothing more.

.If it can be assumed that the error probabilities
for the two systems described above are within the
acceptable 1imits, then the inmcrease in the transmission
bit rate can be evaluated by calculating the expression

that gives the same increase in the bit per block for

the two systems, that is
§, = & (C.12)

Let the error probability value that result equal increase

be py;.» then from Egs.(C.9) and (C.7)

n n d
d~k) + (1+Ei) {l—(l—plim) } = n -k

(n
(C.13)
Clearly if the left hand side is smaller, the detection
and retransmission system will introduce less increase

in the transmission bit rate than the error-correction



system, and vice versa.

Once the error-detction and the error-correction
codes are chosen, the deciding factor on which of the two
codes will increase the transmission bit rate less, is
the channel probability of generating errors p. The
probability of error for the equal increase in the bit

rate can be calculated from Eqg.(C.13)

"4 e = My
(L-p,. ) =1 - (c.14)
lim (n_+n_)/n
d 'r d
2
nC - nd nd
l-p,. = 1 - (C.15)
1im (n_ +n_)/n
d T d
1
n_ - nd nd
P . 1 - |1 - £ (c.16)
lim (n_ +n_)/n
d T d

Eq.{C.16) gives the limit for the Jse of either codes on
the channel. When the probability of error in the
transmission channel is less than Plim? the use of
error-detection and retransmission system will produce
less increase in the transmission bit rate. While if the
error probability is higher, then the use of error-
correction system will result in lower transmission bit
rate, In the case that the probability of error im the
transmission channel is equal to Piim’ it may be

beneficial to use the error-detection and retransmission



system, because although it will not give any reduction
in the transmission bit rate over the other system, yet
it may give some improvement in the error rate.
Consider the special case where the number of
parity-check digits for both codes is the same i.e. the

thransmitted block length is the same, then

n = n (c.17)

P.. =0 (C.19)

Thus, whenever the codes used are of equal length, the
error-correction system will equal the increase in the
transmission bit rate, when the channpel is error-free

with the error-detection system, and will increase the
transmission bit rate less for any value of the channel

2rTor probability other thanm zero.



APPENDIX D

SIMULATION PROGRAMS

Sample programs are included in this appendix, where
the burst (34,22) code is used for the burst channel
samples, and the BCH(31,21) code is used for random
channel samples. Programs included are written in Fortran,

(43)

but some subroutines are written in Plan to speed
execution. The first and second soft-decision algorithms
are not written in standard Fortran, because they contain
logical operations MASK, OR, XOR, AND, SHIFT,..., hence

these subroutines have to be modified or used with the

appropriate computer, if they have to be used.




MASTER ERORGN

C
C THIS IS THE RANDOM ERROR CHANNEL SIMULATOR WHERE
C THE BCH (31,21) CODE IS USED THE NUMBER OF TRANSMITTED
C CODEWORDS IS 3000 . THE CODEWORDS GENERATED ARE RANDOM,
C
DIMENSION D(31),IT{(31)
DIMENSION IR(31,17)
CALL GOSCBF (0}
SIG=0.447
DO 7 L=1,3000
C
C RANDOM DATA GENERATION AND ENCODING
C
PO 3 I=11,31
A=GOSCAF (A)
IT(I)=0
3 IF (A.GT.0.5) IT(I)=1
CALL IENCODE(IT(1),MESS)
BO 8 I=1,31
D(I)=-1.0
8 IF (IT(I).GT.0) D(I)=1.0
C
C THE ADDITION OF NOISE (SIGMA=SIG)
C
DO 9 I=1,31
9 D(I)=GOSDDF(0.0,SIG)+D(I)
C
C THE QUANTISATION : THE QUANTISER IS A IS A LINEAR QUANTISER
o THE QUANTISATION LEVELS ARE 2*LEV LEVELS
o
LEV=8
Dot I=1,31
Q=LEV*(D(I)+1)
IF (Q.LT.0) GOTO1
K=Q+1
IF (K.GT.(2*LEV)+1) K=(2*LEV)+i
DO 2 J=1,K
2 IR(I,J)=1
1 CONTINUE
IF (IPARALLEL(IR(1,1)).NE.MESS) IERR=IERR+1
7 CONTINUE
WRITE (2,100) IERR
STOP
100  FORMAT (1H ,'NO. OF ERROR WORD RECEIVED IS ',I10)
END
FINISH

LE L X



OO0

ao

301

303

302

MASTER MAIN

THE MAIN PROGRAM IS A BURST-CHANNEL SIMULATOR

THE CODE USED IN THIS PROGRAM IS THE BURST (34,22)
WHERE SIG AND SIG1 ARE THE NOISE SIGMA FOR

THE BACKGRQUND AND THE BURST NOISE RESPECTIVELY

DIMENSION IX{231),X(231),D(35,25),IT(35)
DIMENSION NSCAN(2,25)
N=231

KODE=34

IX(N)=1
X{N)=93650000.0
LAMDA=25

SIG=0,355

SIG1=1.0

CALL GOSCBF(LAMDA)
GET CHANNEL DATA

CALL START (IX,X}
N3C=1

NSCAN(1,1)=1
NSCAN(2, 1) =LAMDA

THE DATA GENERATION AND THE ENCODER

DO 302 I=1,25

DO 301 J=13,3M
A=GOS5CAF (A)

IT(J)=0

IF {A.GE.0.5) IT(J)=1
CONTINUE

CALL IENCODE(IT(1}),IT(35)})
DO 303 J=1,34
D(J,I)=(2*IT(J))-1
CONTINUE
D(35,1I)=IT(35)
CONTINUE

BACKGROUNG NOISE ADDITION

DO 3 I=1,LAMDA

DO 5 J=1,34
D(J,I)=GO5DDF(0.0,SIG)+D(dJ,I)
CONTINUE

CONTINUE

LL=1 -

LBLO=LAMDA*KODE

CALL BURST(IX,X,ISTAR1,LL,LAMDA,LBLO,NBLO1,IBL1,IST1)
LL=LL+1

IF (MORE.EQ.2) GOTO 28
IRST1=IX{LL-1)

IRST=IX(LL-1)

ISTAR=ISTARI

IBL=IBL1



IST=ISTI1
GOTO 30
28 IF (LONGMO.EQ.0) IRST2=IX(LL-1)
LONGMO=0
IRST=ISTAR1-ISTAR-IRST1+IRST2
IST=IMST .
ISTAR=ISTAR+IRST}
30 NBLO=NBLO1
MORE=0
CALL BURST(IX,X,ISTARY,LL,LAMDA,LBLO,NBLO1,IBL1,IST1)
105 IF (ISTAR+IRST.GT.LBLO) LONGER=1
100 IF {(NBLO.LT.NBLO1) GOTO t02
IF (LONGER.EQ.0) GOTO 106
IF (ISTARI+IX{LL).GT.LBLO) GOTC 101
LL=LL+1
GOTO 106
C101 IRST2=IX(LL)+ISTAR1-LBLO-1
ISTAR1=1
IBL1=1
IST1=1
NBLO1=NBLO1+1
LONGHO=1
GOTO 102
106 IF (ISTAR+IRST-ISTAR1) 103,103,104
104 MORE=1
103 MORE=MORE+1
102 IF (IRST.LE.O0) GOTO 32
LIMIT=LAMDA
IF (IST+IRST-1.LT.LAMDA) LIMIT=IST+IRST-1
IF (IRST.LT.LAMDA) GOTO 107
LSCAN=1
GOTO 108
107 NSC=NSC+1
NSCAN{1,NSC}=IST
NSCAN{(2,NSC}Y=LIMIT

C
C BURST NOISE ADDITION
c
108 DO 1 I=IST,LIMIT
IRST=IRST-1
1 D(IBL,I)=GO5DDF(0,0,SIG1)+D(IBL,I)

LNS=LNS+LIMIT
IMST=LIMIT+1

IF (IRST.LE.O0) GOTO 32
IF (IBL.EQ.KODE) GOTO 32

8 IF (IRST.LT.LAMDA) GOTO 14
IBL=IBL+1
DO 7 I=1,LAMDA
IRST=IRST-1

7 D(IBL,I)=G0O5DDF(0.0,SIG1)+D(IBL,I)

LNS=LNS+LANMDA
IF (IBL+LONGER.EQ.KODE+1) GOTO 24
GOTO 8

14 IF (IRST.LE.Q) GOTO 32



IBL=IBL+1
NSC=NSC+1
NSCAN(1,N5C)=1
NSCAN{2,NSC)=IRST
DO 20 I=1,IRST

20 D(IBL,I)=GOSDDF(0.0,SIG1)}+D(IBL,I)
LNS=LNS+IRST '
IMST=IRST+1

32 IF (MORE.NE.O0) GOTO 25

24 NSC1=2 -
CALL LIMITS(NSCAN,NSC,LSCAN)
IF (LSCAN.EQ.1) NSC1,NSC=1

THE DECODER

Qa0

DO 109 LO=NSC1,NSC
IBE=NSCAN(1,LO}
IEN=NSCAN(2,L0)
DO 4 L=IBE, IEN
IF (ICOR(D,L,SIG).NE.O) MERR=MERR+1
NWORD=NWORD+1
4 CONTINUE
109 CONTINUE
NSC=z1
LSCAN=0
IRST1=IX(LL-1)
IF (LONGER.EQ.0) GOTC 25
IRST1=IRST
ISTAR=1
IBL=1
IST=1
LONGER=0
MORE=0
NBLO=NBLO+1
GOTO 105
25 IF (LL.LT.N) GOTO 2
3 WRITE {2,17) MERR
WRITE (2,35) NWORD
WRITE (2,122) LAMDA

leNe]

SNR(DB) CALCULATION

ABC=10*ALOG10(1/(SIG*SIG))
WRITE (2,124) ABC
ABC=10*ALOG10(1/(SIG1*SIG1))
WRITE (2,125) ABC
ABC=((SIG*(93600000.0-LNS))+(LNS*3IG1))/93600000.0
ABC=10*ALOG10{(1/(ABC*ABC))
WRITE (2,126) ABC
123  FORMAT (1H1)
124  FORMAT (1H ,'BACKGROUND 3/N RATIO IS ',F10.2)
125  FORMAT (1H ,'BURST S/N RATIO IS ',F10.2)
126  FORMAT (1H ,'OVERALL S/N RATIO IS ',F10.2)
17 FORMAT (' NUMBER OF DECODING FAILURE IS',I10)



35 FORMAT (' NO. OF ERROR WORD RECEIVED ',110)
i22 FORMAT (' LAMDA =',I10)

MERR=0

NWORD=0

LNS=0
121 CONTINUE

STOP

END




OO0

SUBROUTINE BURST(IX,X,ISTAR1,LL,LAMDA,LBLO,NBLO1,IBL1,IST1)

THIS SUBROUTINE CALCULATES THE START AND END POINTS OF EACH
BURST IN THE INTERLACED BLOCK AND WETHER IT IS CONFINED TO
THIS SAME BLOCK OR NOT

DIMENSION IX(231),X(231)
B=X(LL)

B=B/LBLO

NBLO1=B

I=B

A=(B-I)*LBLO

AzA/LAMDA

IBL1=A

I=A

A=(A-I)*LAMDA

IST1=A+1
ISTAR1=IST1+(IBL1*LAMDA)
IBL1=IBL1+1

RETURN

END



aaan

154

153

150

152

151

SUBROUTINE LIMITS(NSCAN,NSC,LSCAN)

THIS SUBROUTINE CALCULATES THE LIMITS OF THE ERRONEOUS
RECIVED WORDS FOR CORRECTION

DIMENSION K(2,24),NSCAN(2,25)

IF (LSCAN.EQ.1) GOTO 151

IF (NSC.LE.2) GOTO 151

KFLA=0

K(1,1)=NSCAN(1,2)
K(2,1)=NSCAN(2,2)

N=1

DO 150 I=3,NSC

DO 153 J=1,N

IF (NSCAN(1,I).GT.K{(2,J)) GOTO 153
IF (NSCAN(2,I).LT.K(1,d)) GOTO 153
IF {NSCAN(1,I).LT.K{1,J)) K(1,J)=NSCAN(1,I)
IF (NSCAN(2,I).GT.K(2,J)) K(2,J)=NSCAN(2,I)
GOTO 150

CONTINUE

N=N+1

K(1,N)Y=NSCAN{1,1I)
K(2,N)=NSCAN(2,I)

KFLA=1

CONTINUE

DO 152 I=1,24

NSCAN{(1,I+1)=K(1,I)
NSCAN(2,I+1)=K(2,I)

CONTINUE

IF (NSC.EQ.N+1) GOTO 151

NSC=N+1

IF (KFLA.EQ.1) GOTO 154

RETURN

END



s NeNeNel

78

5

76

17

SUBRCUTINE START(IX,X)

THIS SUBROCUTINE CALCULATES THE START POINTS OF THE
BURSTS AND THEIR LENGTHS

DIMENSION IX(231),X(231)

N=230

DO 75 I=%,N

A=GOS5CAF (4)

IF (A.LT.0,0003) GOTO 78

B=(2%* A -=1.,0003)/0.9997

B=ACOS(B)

C=1,8084-1,8609*C0S (B)+1,0185%C0S (2*B)-0.97088*C0S{3*B)
IX(I)=IFIX (64%*C)

Do 76 I=1,N

A=GO5DAF(1.0,93600000.0)

X(I)=A

K=0

CALL MO1ANF( X,1,N,K)

IF (K.NE.0) WRITE (2,77) K

FORMAT (' SORT FAIL K=',I3)

A=IX(NY+X(N)

IF (A.GT.93600000,.0) IX(N)=IX(N)+93600000,0-A
RETURN

END



10.

THE ENCODER

THIS SUBROUTINE CALCULATES PARITY-CHECK DIGITS FROM THE
THE INFORMATION DIGITS FOR THE BURST CODE (34,22)

#PROGRAM /IENCODE (DBM, 22AM)
#LOWER
ADDRESS(2)
#PROGRAM
OBEY o
LDN 3 0(3)
STO 3 ADDRESS
OBEY 1(1)
LDN 3 0(3)
STO 3 ADDRESS+1
LDX 3« ADDRESS
ADN 3 12
LDN 7 22
LDN 5 0
L2 SLL 5 1
ORX 5 0(3)
ADN 3 1
BCT 7 L2
LDX' 3 ADDRESS+1
STO 5 0(3)
LDN 7 22
L3 STO 5 3
ANDX 3 '#1°
BZE 3 LI
ERX 5 ‘'#15712!
L1 SRL 5. 1
BCT 7 L3
LDN 7 12
LDX 3 ADDRESS
ADN 3 1
L4 ST0 5 6
ANDX 6 '#1!
STO 6 0(3)
SBN 3 1
SRL 5 1
BCT 7 LY
EXIT 1 2

#END



11.

THE DECODER

THIS SUBROUTINE DECODES THE OQUTPUT OF THE 17 THRESHOLDS
TO FIND THE ERROR-PATTERN THAT IS MOST LIKELY ADDED TO
THE TRANSMITTED CODEWORD FOR THE BURST CODE (34,22)

#PROGRAM
#LOWER

#PROGRAM
OBEY
STO
LDN
LDN
STO
SBN
STO
L7 SBN
STO
SBN
ADN
STO
BCT
LDN
L1y LDX
STO
LDN
LDN
L3 SLL
ORX
STOZ
ADN
BCT
STO
LDN
LDN
Ly SLL
ORX
STOZ
ADN
BCT
STO
STO
STO
#fMONITOR
’ LDN
ANDX
CALL
LDN
LDX
SLL
#MONITOR
CALL

W ~1w

VTV W) = =S ) = NN W =W — ) =

LS, IS R G B R UV

VL =y v =l

V]

/IPARALLEL (DBM, 22AM)

CHECK ,MESSAGE
RETURN ,ADDRESS(18)

0(1)
RETURN
0(3)

17
ADDRESS+1
1

2

34
ADDRESS(1)
]

34
ADDRESS(1}
L17

17
ADDRESS{(1)
ADDRESS
12

0

1

0(3)

6(3)

1

L3

CHECK

22

0

1

0(3)

0(3)

]

LY
ADDRESS
MESSAGE

6

0/110

10 .
YT
DIVIDE

12

CHECK

12

0/115
DIVIDE




BZE
CALL
{##MONITOR
LDN
STO
ANDX
BZE
CALL
#MONITOR
BZE
L8 CALL
BCT
LDN
STO
ANDX
BNZ
SRL
BCT
CALL
BZE
BCT
LDX
BRN
NGX
BZE
SLL
LDX
ERX
ANDX
BRN
COMP LDX
L5 SBN
BXL
LDN
LDX
STOZ
ADN
BCT
BCT
L18 LDX
#MONITOR
EXIT

LN

CHDG

L2

L13

L15

#CUE
SYND SRL
STO
ANDX
STO
ANDX
SRL
ORX
BZE
ERX
L1 BCT
EXIT

M O

- EO-T0OWwWw o~ N ML =3

—_ = =]} W= = a2 [e W= RS i RELRUL]

puy

N1 W OO I\

12.

COMP
FAST
0/103
22

3

#t

L8
BRSLEN
0/104
L13
SHIFT
L1t

12

3

13
L12

1

CHDG
BRSLEN
COMP
Lid
MESSAGE
L18

7

COMP
22(3)
MESSAGE
5
YMTTTTITT!
LS
MESSAGE
1
$#1r,L18
33
ADDRESS3(1)
0(3)

1

L15

L17
RETURN
0/106
17
DIVIDE
1

y
#U000!
3

I#“?

1

]

L1
'{#6TUS !
SYND

0



#CUE

L2
#CUE

L7

L6

#CUE

ffEND

STO
ANDX
SRL
BZE
ERX
EXIT

LDN
STO
ANDX
SRL
BZE
ERX
BCT
EXIT

370
ANDX
EXIT

R OV v Oy

P~ v g O =

= h

13.

SHIFT

3

'#1 1

1

L2
#6745
0

FAST

69

3

l#1 1

1

L6
HOTUS!
L7

0
BRSLEN
b
#7700
0



14,

THIS SUBROUTINE IS THE PARALLEL THRESHOLD DECODER
FOR THE BCH (31,21) CODE WHERE THE INPUT IS THE
RECEIVED SIGNAL DETECTED AT 17 THRESHOLDS

PLAN(CR)
#PROGRAM
#LOWER

#PROGRAM
OBEY
STO
LDN
LDN
STC
SBN
STO
L17  3SBN
STO
SBN
ADN
STO
BCT
LDN
L4 LDX
STO
LDN
LDN
L3 SLL
ORX
STO2
ADN
BCT
STO
LDN
LDN
Ly SLL
ORX
STOZ
ADN
BCT
STO
STO
STO
#MONITOR
LDN
ANDX
CALL
LDN
LDX
SLL
#MONITOR
CALL
BZE

A = wis — s i - N W 2w =) -

LS R WS R B UX] LI U LI B BN RO Y

LE AR B IS I e B |

[=A 0 \V

/IPARALLEL (DBM, 224M)

CHECK ,MESSAGE

RETURN ,ADDRESS(18)

0(1)
RETURN
0(3)

17
ADDRESS+1
1

2

3
ADDRESS(1)
1

3
ADDRESS(1)
L17

17
ADDRESS(1)
ADDRESS
10

0

1

0(3)
0(3)

1

L3
CHECK
21

0

1

0(3)
0(3)

1

L4
ADDRESS
MESSAGE
6

0/110
1
T
DIVIDE
10
CHECK
10

0/115

DIVIDE
COMP



L16  CALL
#MONITOR
BXL
CALL
LDN
L6 STO
ANDX
BZE
CALL
##MONITOR
BXL
L7 CALL
BCT
LDN
3TO
ANDX
BZE
CALL
#MONITOR
BXL
L8 CALL
BCT
BCT
LDX
BRN
LDN
NGX
ADX
SRL
#MONITOR
LDX
ANDX
ERX
BRN
NGX
BZE
SLL
LDX
ERX
ANDX
BRN
coMP  LDX
LS SBN
BXL
LDN
LDX
STOZ
ADN
BCT
BCT
L18 LDX
#MONITOR
EXIT

L1

L12

"L13

L17

L15

#CUE

OO O W

MNDWW =1 ~JN &= MNMWwWw =1 N I n

SN E

(=, N WS RWE R

o v\

W= a0

- 3w

15.

HAMWET
0/103
'#3',COMP
SHIFT

10

3

w

L7
HAMWEIL
0/111
W3r,L12
SHIFT

L6

21

3

'# 1 1

L8
HAMWET
0/104
"#3',L13
SHIFT
L1

L14
MESSAGE
L18

1

y

7

0(3)
/101
MESSAGE
YTTTTTTT
5

L5

7

COMP
22(3)
MESSAGE
5
WrTTTTT !
L5
MESSAGE
1
$1',L18
31
ADDRESS(1)
0(3)

1

L15

L17
RETURN
0/106

17
DIVIDE



SYND

L1

#fCUE

L2
fiCUE

L10

L9

SRL
STO
ANDX
STO
ANDX
SRL
CRX
BZE
ERX
BCT
EXIT

570
ANDX
SRL
BZE
ERX
EXIT

STOZ
LDN
LDN
ANDX
BZE
ADN
SRC
BCT
SLC
EXIT

PN~ RWw WO T

N v O

NV Oy Zwiwwan

16.

1
y
'#1000"
3

110

.

n

L1
"#1133"
SYND

0
SHIFT

3

3K

1

L2
"#1133"
0
HAMWEI
y

10

1

6

L9

1

1
L10

10

0
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17.

SUBROUTINE ALG(ICOR,D,L,SIG,LEV)

THIS SUBROUTINE IS THE FIRST ALGORITHM SOFT-DECISION
DECODER WHERE
SIG IS THE NOISE SIGMA
LEV IS i/2 THE QUATIZER LEVELS
D THE RECEIVED WORD
L THE LOCATION OF THE RECEIVED WORD IN THE MATIX
ICOR THE DECODER OUTPUT O IF CORRECT DECODED CORRECTLY

DIMENSION D(34,25)
DIMENSION K(34)
DIMENSION KW(34)
ICOR=0

THIS IS A LINEAR QUANTISER OF 2%LEV LEVELS

DO 12 I=1,34

K(I>=0

IF (D{I,L).GT.0} K{I)=1

Do 122 I=1,34
KW(IY=(LEV¥ABS(D{I,L)))+1
IF (KW(I).GT.LEV) KW(I)=LEV
D(I,L)=GO5DDF(0.0,S5IG)-1.0
CONTINUE

ICON=1409b

IG=7114

IR=0

15=0

DO 1 I=1,22

IR=SHIFT(IR,1)
IR=OR(IR,K(I})

DO 2 1=23,34

IR=SHIFT(IR,1)
IR=OR(IR,K(I))
IS=SHIFT(IS,1)
IS=0R(IS,K(I))

DO 3 I=1,22

J=23-1

IF (K(J).EQ.1) IS=OR(IS,ICON)
IF ((IS.A.1B).EQ.1) I8=XOR(IS,IG)
IS=SHIFT(IS,-1)

THE PARITY-CHECK ERROR-TRAPPING

DO 4 I=1,7
IF ((IS.A.T700B).NE.O) GOTOC 8

IF ((IR.A.17T7777T7BY.NE.O) ICOR=1
GOTO 114

IF ((IS.A.1B).EQ.1) IS=XOR(IS,IG)
IS=SHIFT(IS,-1)

DO & I=1,62

IF ((IS.A.1B).EQ.1) IS=XOR(IS,IG)
IS=SHIFT(IS,-1)



e N o]

o =10

114

IWEIT=10000
EPSW CALCULATION

DO 6 I=1,22

IF ((IS.A.1B).EQ
J=35-1I

Iw=0

IW=IW+KW(J)

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

{(IS.
((Is.
((IS.
((Is.
((Is.
({IS.A.02008)
({IS.A.0400B)
((IS.A.1000B)
((IS.A.2000B)
IF ((IS.A.3000B)
IF (IW.GE.IWEIT)
ISHORT=I3
IWEIT=IW

ISH=I
IS=XOR(IS3, IG)
IS=SHIFT(IS,-1)
CONTINUE

IW=0

I=23

J=35-1

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
RETURN
IS=XOR(1S,IG)
IS=SHIFT(IS,-1)
ISH=ISH-1

.0010B)
.0020B)

F - -

((IS.A.0004B)

({IS.A.0040B)

((IS.A.0400B)
((IS.A.1000B)
({IS.A.2000B)

(IW.GE.IWEIT)

IS=SHIFT(ISHORT,ISH)

IR=XOR(IR,IS)

((IS.A.0002B).
.0004B).
-NE
.NE
.0040B).
.0100B).

((1IS.A.0001B).
({IS.A.0002B).
.NE
{((IS.A.0010B}.
((IS.A.0020B).

((IS.A.0100B}.
((IS.A.2000B).

((IS.A.4000B).

.0

NE
NE

NE
NE

NE
NE
NE

NE

NE

GOTO 10
((IR.A.17777777B).NE.0) ICOR=1

18.

GOTO 7

.0)
.0)
0
.0)
.0)
.0)
NE.O0) IW=IW+KW(J-T7)
-NE.
LNE.
LNE.0) IW=IW+KW(J-10)
.NE,
GOTO 9

0)
o)

0

.0)
.0)
L0
.0)
NE.
.NE,
.0)
NE.
.NE
.NE
.NE

0)
0)

0)

.0)
.0)
.0)

0)

IW=IW+KW{(J=1)
IW=IW+KW({J-2)
IW=IW+KW(J=3)
IW=IW+KW(J=4)
IW=IW+KW(J=5)
IW=IW+KW{J-6)

IW=IW+KW{(J~-8)
IW=IW+KW(J-G)

IW=IW+KW(J=-11)

IW=IW+KW(J)
IW=IW+KW(J=1)
IW=IW+KW(J=-2)
IW=IW+KW(J=-3)
IW=IW+KW{J-U)
IW=IW+KW(J-5)
IW=IW+KW(J-6)
IW=IW+KW(J=T)
IW=IW+KW(J=8)
IW=IW+KW(J-9)
IW=IW+KW(J-10)
IW=IW+KW(J=11) -

IF ((IR.A,17777777B).NE.0) ICOR=1

DO 113 I=1,22

IF ((IR.A.1B).NE,0) NBIT=NBIT+1

IR=SHIFT(IR,-1)



19.

113 CONTINUE
RETURN
END




OO0
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SUBROUTINE ALG(ICOR,D,L,SIG,LEV,LLV)

THIS SUBROUTINE IS THE SIMULATION OF THE SECOND
SOFT-DECISION ALGORITHM DECODER . WHERE

2] IS THE RECEIVED WORD

L ITS LOCATION IN THE MATRIX

SIG THE PACKGROUND NOISE SIGMA

LEV 1/2 THE NO. OF QUANTISATION LEVELS

LLV THE NO. OF ERROR-PATTERNS TESTED

ICOR THE DECODER OUTPUT, O IF THE DECODING IS CORRECT

DIMENSION D(34,25)

DIMENSION K(34)

DIMENSION KW(34)

DIMENSION ISTA(2,34)

DIMENSION LAB(34),LABEL(34),LWO(5),LOW(5)
ICOR=0

THE QUAMTISER IS A UNIFORM QUANTISER OF 2¥*LEV LEVELS

DO 12 I=1,34
K{(I)=0

IF (D(I,L).GT.0) K(I}=1

DO 122 I=1,34
KW(I)=(LEV*ABS{D(I,L)})+1
IF (KW(I).GT.LEV) KW(I)=LEV
D(I,L)=GOS5DDF(0.0,8IG}-1.0
CONTINUE

ICON=L096

IG=7114

IR=0

IS=0

SYNDROME CALCULATION

DO 1 I=1,22

IR=SHIFT(IR, 1)

IR=OR(IR,K(I))

DO 2 I=23,34

IR=SHIFT(IR,1)

IR=OR(IR,K(I))

IS=SHIFT(IS, 1)

IS=OR(IS,K(I))

DO 3 I=1,22

IF (K(J).EQ.1) IS=OR(IS,ICON)
IF ((IS.A.1B).EQ.1) IS=XOR(IS,IG)
IS=SHIFT(IS,-1)

THE PARITY-CHECK ERRRE-TRAPFER

DO 4 I=1,7

IF ((IS.A.7700B).NE.0) GOTO 8

IF ((IR.A.1TT?7777B).NE.0) ICOR=1
GOTO 114
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IF ((IS.A.1B).EQ.1) IS=XOR(IS,IG)
IS=SHIFT(IS,-1)

DO 5 I=1,62

IF ((IS.A.1B).EQ.1) IS=XOR(IS,IG) .
IS=SHIFT(IS,~1)

IWEIT=10000

IND=0

THE DECODING PROCESS

DO 6 I=1,22

IF ((IS.A.1B).EQ.0) GOTO 7
IND=IND+1

II=1S

DO 13 4=1,12
IT=SHIFT(II,-1)

IF ((IXI.A.7777B).EQ.0) GOTO
CONTINUE

LAB(IND)=J

ISTA(2,IND)=I
ISTA(1,IND}=IS
IS=XOR(IS,IG)
IS=SHIFT(IS,-1)

CONTINUE

SORTING THE ERROR-PATTERNS ACCORDING TC THEIR LENGTH

LKING=5

IFAIL=0

CALL MO1ALF{LAB,LWO,LABEL,LOW,IND,LKING,IFAIL)
IF (IFAIL.NE.O) WRITE (2,99)

EPSW CALCULATION FOR THE TESTED ERROR-PATTERNS

DO 15 I=1,LLV

IS=ISTA(1,LABEL(I))
J=35-ISTA(2,LABEL(I))

IW=0

IW=KW(J)

IF ((IS.A.0002B).NE.O) IW=IW+KW(J-1)
IF ({IS.A.0004B).NE.O) IW=IW+KW(J-2)
IF ((IS.A.Q010B)}.NE.O) IW=IW+KW(J-3)
IF ((IS.A.0020B).NE.O) IW=IW+KW(J-4)
IF ((IS.A.OCUYOB).NE.OQ) IW=IW+KW(J-5)
IF ((IS:A.0100B).NE.O) IW=IW+KW(J-6)
IF ((IS.A.0200B).NE.0) IW=IW+KW(J-7)
IF ((IS.A.OH00B).NE.O) IW=IW+KW(J-8)
IF ((IS.A.1000B).NE.O) IW=IW+KW(J-9)
IF ((IS.A.2000B).NE.OQ) IW=IW+KW(J=-10)
IF ((IS.A.H000B).NE.Q) IW=IW+KW(J-11)
IF (IW.GE.IWEIT) GOTO 15

ISHORT=IS

IWEIT=1IW

ISH=ISTA(2,LABEL(I))
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CONTINUE
THE CORRECTION PROCESS

ISH=ISH-1

IS=SHIFT(ISHORT,ISH)
IR=XOR(IR,IS)

IF ((IR.A.17777777B).NE.0) ICOR=1
DO 113 I=1,22

IF ((IR.A.1B).NE.O) NBIT=NBIT+1
IR=SHIFT(IR,-1}

CONTINUE

RETURN

FORMAT (1H ,'SORT ERROR ')

END
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