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'SYNOPS1S

This thesis reports studies based on the concept of
characterising a bandlimited signal by the locations of its zeros
in a "complex time" plane (whose real axis is the real variable,
+). The relations between the zeros of a signal and more conventional
descrfpfors such as Nyquist samples, Fourier coefficlents or
spectral samples are Investigated.

Added noise or linéar filtering changesvThe zeros of a
signal in a compl!caféd way. The problems which arise are discussed.

Signals can be synthesised directly from a specified zero
pattern. The properties of signals. having a certain class of zero
paffern ("angle coded signals") are studled. A method Is presented
by which zero patterns can be produced which yield signals (sultable
for radar use) having desired properties. |

The practical use of angle coded signals would; infsome
circumstances, call for the use of a Hilbert transform network -

a wideband 90° phase shifter. The difficulties of constructing
such networks are discussed and ways of overcoming the !imitations
of existing networks are suggested.

The theory of the distribution of the energy of a signal in
the time-frequency plane is given in an appendix. The relations
between this t-f distribufion and the Insfanfgneous frequency of a
signal and 'short-time' spectra are given.

Another appendix applies the theory developed for the
design of radar signals described by thelr zéros ina compléx time
plane to the design of Huffman sequences,'whlch are described by

their zero patterns in the complex frequency plane.



Finally, a new scheme for computing the coefflclehfs of a .
polynomial from its roots is presented. This scheme, which is
based on the discrete Fourier transform, Is not unduly affected
by round-off error even when used with polynomials of very high

order.
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CHAPTER |

INTRODUCT ION
ol Representing a Signal by its Zeros

It is a familiar result of Ilnear sysfém theory that a
(ratlonal) transfer function can be specifled elther by Its magnitude
and phase (or by41+s real and imaginary parts) given as a function
of the real variable, frequency or by the locations of its poles
and zeros in the complex frequency plane.

By considering the reciprocal roles of time and frequency
in the Fourier transform relations I+ might be supposed that
something similar would apply to time functlons (signais). In
fact a bandlimited signal (which, as a functlion 6f a complex variable,
Is an entire function - no sfngular!fies In the finite plane) can
be specified essentially by the locations of Its zeros in the complex
time plane In addition to more éonvenfional representations such
| as Its envelope and Instantaneous phase glven as time functions.

A bandlimited signal Is analogous to a filter whose Impulse response
Is duration-limited and whose transfer function consequently has
only zeros in the finite complex frequency plane.

The possibility of representing a bandlImited signal (i.e.
an entire function of exponentlal type) was shown In 1926 by Tlfchmarsh'
and by Paley and WIenerz. |

One theorem of Titchmarsh's paper states that if

sz) =, 2y o2 4 (z=t+]o)

g,
(i.e. If s(t) is a bandlimited signal), then s(z) can be expressed

as an Infinlte proddc+:

o

Jn(f +f2)z Ih{ (= z/zp)

s{(z) = s(o) e
, n=|



{The notation of Titchmarsh's paper s altered here).

Thus, except for a scale factor and a frequency shift, a bandlimlted
signal can be speciflied by the locations of Its zeros In the complex
time plane. Titchmarsh also proved that the zeros tend to be clustered
along the real (+) axis of the z-plane and occur on average at the
Nyquist rate (iIn engineering parlance).

A paper was published by Bond and Cahn In l9573\whi¢h applled
the mathematiclans' resuits to signals. Bond and Cahn suggested that
as an alternative to specifylng a bandlimited signal by its Nyqulst
samples I+ was possible to "sample the zeros'". They also suggested
that slignals could be synthesised so that the Information was coded
explicitly In the zero pattern. |

The work of Bond and Cahn appears to have recelved 1{ttle
attention until Voelcker, In 1966, published his paper entitled
"Toward a Unlfled Theory of Modulatton™, in *als paper he
Interpreted modufation processes as being equivalent to manipulations
performed on the zero patterns of signals. In addition to his
inferprefive‘work, Voelcker suggested means of generating +wo types
of signal in which the Information Is carrled explicitly by the
zero pattern. With one type of signal ("real zero" slgnals), the
zeros are restricted to lying on the real (1) axis of the complex-
time plane. With the other type of signals (which he termed "angle~
coded" signals) each zero is constrained to lle on elther of two
conjugate lines parallel to the t-axlis and at regular Intervals in
the direction of the t-axis. The work of this thesis Is largely
concerned with Investigattng the properties and applications of
"angle~coded" signals.

As Voelcker has shown, the zero-based description of signals
Is evldently a "natural® one to use In studyling modulatlion processes

which are essential!y multiplicative in nature. Because zero-based




signal theory has proved to be such an effectlive tool In the study
of modulation It would be natural to seek other situatlons where It
would be useful. Such situatlions are suggested by consldering why
pole-zero methods play such a central part In linear system theory.
There seem to be two principal reasons for the widespread use of
poie-zero methods.

(I) When sysfems are cascaded and their transfer functions are
multipiled, the resulting pole-zero pattern Is the superposition of
the individual pole-zero patterns.

(11) There are simple approximate (qualitative) relationships
between the pole-zero pattern of a system and both its time
behaviour (for example, lts step response) and its frequency
response characteristics.

In addition to the study of situations where signals are
muitiplied I+ would seem that zero based methods might be usseful in
stulying the propertlies of signals whers both the tIme and the
frequency behaviour are simultaneously of interest. Zero-based
Ideas are In fact used In this thesls to design signals having

deslired time-frequency properties.

t.2 Organisation of the Work

As a basis for later work, the formal relationships between
t+he zeros, the Nyquist samples and the spectral samples (or the
Fourier coefficlents) of band-limlited signals are developed In
Chapter 2. This Is done for periodic s!gna!s, using the Fourler
series factorisation methods outllined by Voelcker and also for
"finite bandlimited" signals (that Is, for signals whose Nyquist
samples outside some finite interval are all zero). Methods are
developed by which the zeros of a bandlimited signal can be

located from knowledge of Its waveform.



In chapter 3 the Important but difficult questions as to
how the zeros of a signal are affecfed by Ilnear filtering or by
added nolse are posed.

The properties of angle coded signals are studied In chapter
4. This work includes studies, both theoretical and computational,
of the spectra of these signals. In connection with the
computational work, a new scheme for determining the coefficlents
of a polynomlal from Its roots was devised which Is described in
appendix C.,

In chapter 5 a procedure is developed by which a zero pattern
can be chosen which ylelds a signal whose energy distribution
In the tlme-frequency plane approximates some desired form., This
provides a synthesis procedure for radar signals. Appendix A
provides a background for chapter 5; It clariflés +the relationships
between ambigulty functions, short-time spectra and other functions
of time and frequency which are used in sfgnal theory. Appendix
B Is, In effect, a transiation of chapter 5 from time language
fn?o frequency language. The work is, perhaps, of greater practical
-uftllfy when cast In this form.

Much of the work of this thesis deals with analytic signals.
In many applications of analytic signal theory a Hilbert transform
network s necessary. Chapter 6 clarifies the reasons for the
difficulty In realising satisfactory practical Hilbert transform
networks and suggests ways in whlch they may be constructed so as

to work over a wide frequency range.




" CHAPTER 2

ZERO LOCATION

2.1 Introduction

A central problem in zero-based signal theory is that of
locating the zeros of the signal. In other words, given the
waveform of a bandiimlted signal, how are its zeros to be found?

As pointed out by Voelcker‘4

, the real zeros of a.slgnal can
be located readily by the use of an axis crossing detector. But
complex zeros cannot be located by simple observations on the
waveform of a signal. Voelcker suggested that the zeros of a
periodic bandlimifed_signal can be found by numerical factorisation
of the polynomial which represents I+. He also suggested that,

as a non-periodic signal can be represented over a finlte Interval
by a Fourler series, the zeros of a non-periodic sfignal could

also be located to a close approxImation by factorisation of a
Fourler polynomial.

Bond and Cahn3, by using the results of TiTchmarshJ,

succeeded In expressing the Nyquist samples of a finite bandlimited*

(FBL) signal in terms of its real and complex.zero locations.
However, they were unable fo suggest a procedurs for locating the
compliex zeros.

In section 2.2 of this chapter the relatlons between the
Nyquist samples, the Fourier coefflcients and the zeros of a
periodic bandlimited (PBL) signal are developed. The Nyquist
samples and the Fourler coefficlents are related (as is well known)
by the discrete Fourier transform (DFT)? which is a linear
reversible transformation. The Fourier coefficlents and the zeros

are related by a nonlinear transformation which Is also reversible.

*The term finlte bandlimited signal 1s applied to a signal whose

Nyquist samples outside a finite interval are all zero.




In section 2.3 a procedure Is suggested which 1n principle
can be used to determine the zeros of a FBL signal from Its Nyquist
samples. Theory Is developed relattng the Nyquist samples, the
spectral samples and the zeros of a FBL signal. The Nyquist
samples are related to the spectral samples by the DFT, while the
Nyquist samples and the zeros are related by a nonlinear transformation.

These procedures are éxa¢? in the sense that 1If the Nyquist
samples which specify the signals are known exactly, then in
principle the zero locations can be found to any required degree
of accuracy. In section 2.4 the application of these methods to
the approximate location of zeros is discussed. Approximate zero
location methods must be used elther when the whole history of the
signal Is not known (e.g. In real-time operations) or when the
dimensionality of the slignal Is too large for exact methods to be
used.

in section 2.5, a rather different approach to the zero
location problem Is presented. An "axls shifting" filter (which
Is a nonphysically reallsable complex |Inear filter) converts
complex zeros on some llne In the complex time plane running
parallel to the t-axis into real zeros. The real zeros can then
be observed directly. Thls method does not provide a very practical
way to compute zero locations; however, it Is a useful conceptual
device which Is used In chapter 3 In the study of the effects of

noise on the zeros of a signal.

2.2 Perlodlc Bandlimited Signals.

The study of the zeros of periodic signals Is the simplest;
problems of zero location become (as shown by Voelcker) equivalent

to polynomial factorisation.



In this section (and in most subsequent work) only analytic
slgnals whose spectra are zero outside some range (0,W) are
considered. (This is no great restriction, as anyPBL signal can
be brought into this ciass by a sultable frequency translation).

Such a signal can be represented by a finite Fourler series of N

terms
i . J2nt/T 2r(N-1)t/T
M('f) = % + Cl eJ + o0 e + CN"%J
N- Jonkt/T
= A Ck (3] 2.2-'
k=0
where T Is the perlod of the signal and N = TW+i,
The sample values of the signal are thus given by
e
mn/w = 2, ¢, oK/ N n=0,1, vvs, N~ 2.2.2
k=0 |
or, in vector form,
m = Y*C 2.2.3
when the N element vectors m and C are glven by
m{O0/W) Cq
m(1/W) Ci
m = : ! g= - 2.2.4
L] : . '
| [(N=1 )/w_l‘  Cpyey
and the N x N matrix Y* is the conjugate o the DFT matrix Y,
glven by
! | I B %
i
oy vyt
y = } 2-2.5
b . . . ses . . 2;
-1 2(N- -1)4
| YN i Y-(N 1) Y(N 1) |

. vée

where Y = e-JZ“/N




As equation 2.2.3 has the form of a discrete Fourler transform,

t+s Inverse is given by

C= - ¥m | 2.2.6

- N

The +ransformation from the Fourier coefficlents of a PBL
signal to I+s Nyquist samples Is linear and roversible. As it
is a form of the DFT, the fast Fourler transform (FFT) algorlfhn?

can be used for computational work.

By substituting the symbol Z for ernT/T, the finite Fourler

series 2.2.1 can be rewritten as

= : N
M(Z) - Co + C'Z + s + CH"lZ
N-1{
= > ozt 2.2.7
K=o

By the fundemental theorem of algebra, this polynomial in Z has

N=! roots, ZI’ cae ZN—I and can be written In the factored form

M(2) = C (1 = Z/Z)) oo U-Z/Zy 4y

N-1

ol

The signal is specified by Its Fourler coefflcients which can be
recaversd by multiplying out the right hand side of equation 2.2.8.
Thus, except for a multiplying scale factor, the roots of M(Z)
speclfy the signal. The Fourier coefficients are related to the
roots by the nonlinear equations.

Cy/Cy = = (sum of reciprocals of all roots)

- (lﬂ! + lllzz * see ¢+ ‘/ZN—')

+ (sum of products of reciprocals of ail roots
taken two at a time)

C,/C,

]

(VZjZg+ WZjZg+ <o)




C3/C° = =~ (sum of products of reciprocals of all roots
taken three at a time)

= —(1/212223 + 1/2'2224 + ves)

CN-I/CO = (-ph! (product of reciprocals of all roots)
N~1
= ("") / (lez s ZN_')- 2-209

To speclfy the signal compietely one datum is needed tn addi+ion
to the roots of the Fourier polynomial. This could be the zero

frequency (or any other) Fourter coefficient.

The roots of M(Z) are related to the real and complex zeros
of the signal In a simple way4. M(Z) was obtalned by replacing
eJZ"T/T by Z tn equation 2.2.1. This determines a conformal
mapping from the z- (complex time) plane to the Z-plane. To each
pofnf In the Z-plane at which M(2) Is zero (i.e. to each root of
M(Z)} there correspond points in the z-plane at which m(z) is

zero (the zeros of the signal). These zeros are glven by the

solutions of the equations.

z, = oJ2T U= 1,200 N 2.2.10

Because of the periodicity of the exponential function, the solutions

of the equation set 2.2,10 (the signal zeros) torm a configuration

in the z-plane which is perlodic In the t-direction, with period T.
Taking the principal value logarithm of cach slde of * -

equation 2.2.8, the locations are found of the zeros which lie in

the vertical strip in the complex time plane deflined by -T/2<t«T/2

(the princliple s?(ip):

_ 1 \
zy = T/2x [' arg Z, - jlnlzll l i=l,2,.0oN-1 2,2.11

The N=I zeros In the principal strip deflne the roots of M(Z)

vla equation 2.2.10 and, as shown above, these roots define the



Fourler coefficients of the signal except for a scale factor,

The above shows that the Fourier coefficlents of a PBL

factor, k.

|
|
|
|
signal are obtalned from its zeros except for an arbitrary scale
This transformation can be symbolised;

C = Vi), 2.2.12

where the N-1 element vector z is defined by

es e N

1

]

z=g |
i ZN-1

This Transformmfion Is shown In block diagram form in fig.2.2.1.

The Inverse of this transformation is the scale factor-destroying

\

|

\

1

transformation depicted In flg. 2.2.2 which can be symboltsed i
- i

z = vho 2.2.13

The relations between the Fourler coefficients, Nyquist
transformations are convenlently programmed for digital computer,

making use of existing FFT routines and polynomlal factorising

and muitiplylng-out routines®.

2.3 Finlte Bandlimited Signals

samples and zeros of a PBL slignal are shown In flg. 2.2.3. These

A finlte bandlimited (FBL) whose Nyqulst samples are zero
outside the range (-T/2,T/2) and having spectral extent W has N
Nyquist iInstants within the interval (where N+l|.is the smallest
even Integer excesding TW : a Nyquist sample Is assumed to occur

at t=o). Flg. 2.3.| shows such a signal. The signal Is assumed

* A scheme for computing thecafficiekof a high order polynomial

from its roots is presented in appendix C.



expj2n{-)/T

expj2u(-yT

exp '21‘(-))T — 'Multiply out to

-obtain coefficients
from roots_._

oc,

o ¢

Transformation from zeros to

to obtain roots

from coefficients.

O CN-

021

‘Fig.2.2.1.
' Fourier coefficients.
CoO—1— (1/j20T)n(+)
' ¢y O—1—=| Factor polynomial ~ai(1/j 21T )In( )

022

i (1/j 211 T) IN(+)

N

Fig.2.2.2. Inverse transformation from Fburier

coefficients to zeros.

o ZN,‘




' DFT, equation 2.2.3.°

Fourier . . '
~coefficients,c ()

~ _IDFT, equation 2.2.6. - I (Nyquist samples)

v,

[ V(:), equation 2.212, '
equation22.13. - SR

Q© z (zeros)

o

'Fig.2.2.3,  Relations between the zeros, the Fourier
coefficients and the Nyquist samples of

a PBL signal.
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! Fig.2.3.2. Zero pattern of FBL signal.
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to have N-I real and complex zeros within the interval (-T/2,7/2)
which may occur anywhere except at the origin of the complex time
plane*. Outside the interval the zeros occur at the Nyquist
instants, l.e., at

z = +n/W+ jo n o= (N=1)/2+41,(N=1)/2+2,(N~1)/243,.000s.
as 1llustrated In fig. 2.3.2.

By Tltchmarsh's work, such a signal can be expressed

N=1 o
st = s 1L U-t/zo 1L 1-(tW/n)? 2.3.1
k=l n=(N-1)/2+1

The left product s taken over N-1 terms involving the zeros
which may lie anywhere (except the origin). The right product 1s
+aken over the terms involving the real zeros which lie at the
Nyquist Instants outside the interval (-1/2,T/2).

Equation 2.3.} glves

N-1

s(t)/s(o) = 1:2 (1=t/z ) p(t) 2.3.2

where the function p(t) is defined by

pe = T 1= (+H/n)2 2.3.3
n=(N+11/2

Using the product expansion for sin Wt , p(f) can be written

p(t) = sin nift 2.3.4
vt ‘Nflflz L~ (H/m) 2

m=1

*This assumption 1s made by Bond and Cahns. While It seems
dimensionally correct that N-1 zeros should specify N Nyquist
samples to within a multiplicative constant, the assumption seems
difficult to prove. Bond and Cahn also assume that the zeros tie
within the strip z«t+jg where |+|<T/2. Although they tend to
cluster within the region there is no reason (or need) for this

assumption to hold In general.



At the Nyqulist Instants, where + = +k/4, k=0,1,2,...
36

p(t) has the values

fIN=1)/22 ! CiN-1)/721%
TIN-1072 + K] ! AN-1V/2 - k]! *

for kg{N-1)/2
pltk/W) =
o ,for k>(N-1)/2

2.3.5

p(t) Is shown graphically in fig. 2.3.3 (for N=9).

The Nyquist samples of s(t) can be obtained from the locations
of the N-I non-Nyquist Instant zeros (to within a multiplicative
scale factor) by the evaluation of equation 2.3.2, substituting
the values gliven by equation 2.3.5 for p(f). This nonlinear
transformation from the zeros to the Nyqulist samples can be
expressed In vector form

s = B(2) 2.3.6

where the N-1 element vectors s and z are defined by

s !:(N-I)/ZHJ /s(0) | -'z| k
: %2
s= |s (1/W) / s(o) , Zz = . 2.3.7
s (=1/W)/ s(o) .
s [-tN-1/21} 7 sto) z, |
e - )

The foregoing shows how the Nyquist samples of a FBL signal
can be expressed In terms of Its zeros. Although detalls of the
present treatment differ, this is basically what was done by Bond
and Cahn. In the following, a method Is outliined by which the
opposite transformation can be made In which the locations of the
N-1 non-Nyquist Instant zeros of a FBL signal can be obtalned
from the N Nyquist gamples within the Interval (-17/2,7/2)
(or, for that matter, from any set of N distinct samples within
the Intervall.

If each side of equation 2.3.2 is divided by p(t+), the

right hand side becomes a polynomial:




real zeros
Vv
] . { L]

\ ] 1 N
-4 -3 -2 - -
2 -1 0 1 2 3 4 5,6 7

real zeros

L L] L}

-7 -6 -5

Fig.2.3.3. plt) for N=9 (9 non-Nyquist sample instant zero-s).




S(H) / s(0) ptt) = ag + apt + ...+ gy P 2.3.8

The roots of this polynomial are the N~I non-Nyquist instant zeros
of the signal.

In general, it is sufflicient to know the value of an Mth
order polynomial at M+| polnts In order to be able to determine
its coefficients, which Is done by the process of soiving a set
of M+l IInear equations, From the N non zero Nyquist samples,
the N coefficlients of the right hand slde of equation 2.2.7 can be
found. The polynomial can then be factored numerically to yleld
1+s roots, which are the zeros of the slignal. The zeros of a FBL
signal can thus, in principle, be found directly from Its non-zero
Nyquist samples. The inverse of the transformation 2.3.6 thus
exlsts and can be written
-1

z = B

(s) 2.3.9

While the above shows that the transformation from the
Nyquist samples to the zeros cah be made In prlncfple, nothing
has been said about the practical feasibiilty of this process.

The procedure Involves the solution of a set of N |lnear equations
and the factorisation of a polynomlal of order N~I. The compu+aTlonai
difficulty of both of these operations Increase. very raplidly as

N Increases. Nevertheless it Is of Interest that there exists a
process by which the zeros of a FBL signal can be found exactly
from 1+s Nyquist samples.

‘The relation between the Nyquist samples and the spectral
samples of a FBL signal Is stralghtforward. The Fourier transform,
S(f), of a bandiimited signal can be expressed in terms of Its
Nyqulst samples5, of which only N are non-zero in the case of a

FBL signal.




(N-1)/2
OV, stn/w o327/ 1wy 2.3.10
n=-(i=1)/2

The spectral samples of S(f) are given by

(N-1)/2
SC/TY = I stn/w o VRN e L(n-1)/2,..0, (-1 /2

n==(N=-1{)/2
2.3.11

This Is a discrete Fourlier transform (DFT) which can be expressed
in matrix form as

S=1/4W Ws 2.3.12
where the N element vectors S and s are given by

yo o

i S{o) s(o)

SCIT) s(=/w)
5= | s = ) 2.3.13
= | s [w-nyz T :
s [~=D/27 s [(N=1)/2:4]
: s [~(N-1)/24]
S(=2/T) :
_ s(=2/w)
s¢um | -0

and W is the DFT matrix, given by

:I l 'I » L ] . |
o WP cLoutD
W= ’ ) Tt 2.3.14
| W=D W2 =1 . W(N-—I)Z
L- —

where W = o J27/N
The inverse of this transform, giving the Nyquist samples in
terms of the spectral samples is thus glven by

s= T WS 2.3.15




15

The relations between the spectral samples, the Nyquist
samples and the zeros of a FBL signal are shown In flg.2.3.4.
I+ 1s Interesting to compare this figure with flg. 2.2.3. In the
case of a PBL signal the zeros are found from the Fourler
coefficlents (frequency description) of the signal while in the
case of a FBL signal, the zeros are found from I+s Nyquist

samples (time description).

2.4 Appreximate Methods

The preceeding sections of this chapter presented methods
by which the zeros of a FBL or a PBL signal could be found, as
accurately as required, from its Nyquist samples. These schemes
are practicable when the signals are of moderate dimensionallty
(N<60, say) but for signals of very large dimensionallty, such as
an Information bearing signal In a communication system they are
not feasible. |If the zero locations of a signal are to be found
in "real-time", only the past values of the signal are avallable:
Its whole history Is not known. In such clircumstances procedures
are requlired by which the locations of the zeros can be found
approximately without meking use of the whole history of the signal.
It is possible for such approximate procedures to exist as the
relation between the Nyquist samples of a signal and Its zeros Is
a 'localised! one. That is, a zero which is very dlstant in the
complex~time plane from a particular Nyqulst Instant has very Ilttle
effect on the sample value associated with that Instant (although
in principle all the Nyquls* samples depend to some extent on alll
the zeros).

Suppose that the scheme of section 2.2 for locating the
zeros of a PBL signal were avallable. How could this scheme be
used to locate (appr-xImately) the zeros of a signal with

inconveniently large dimensionality? One approach would be fo




DFT, equation 2.3.12, s
- S(spectral

s
samples)

 Nyquist samples,
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take N adjacent Nyqulst samples and to form thelr perfodic repetition
(f1g.2.4.1.). The periodic sample sequence can be regarded as
constituting the samples of a PBL signal whose zeros can be found
by the method of sectlon 2.2. However, the zero pattern found
by this method Is not simply the periodic repetition of a section
of the zero pattern of the original signal as the zero locations
within the fundamental period of the PBL signal are Influenced by
the "incorrect" Nyquist samples outside the fundamental peridd;
However, if N is large enough, the zeros near the ééﬁf}é'of"+he
fundamental perlod will not be Influenced appreciably by the
"incorrect" Nyquist samples outside the perliod. To ensure accurate
zero location then:

(i) N must be targe enough.

(i7) Zero locations near the centre of the fundamental

period must be used.

All the zeros of a signal can be found by repeating the process
for successive (overlapping) sections of the original waveform.

This method can be improved by adding zero Nyqulst samples
to the ends of the segment which Is made periodic (fig.2.4.2.).
The polint of doing this Is that a zero Nyqulst sample will generally
be "less incorrect® than the perlodically repeated Nyquist samples
of the original signal, This increases the number of Nyquist
samples per period, and hence, apparently, the order of the Fourler
polynomial which must be factored. But this 1s not so, as the extra
zeros which are added are known., Thus when the coefficlents of the
Fourfer polynomial have bzen found from the Nyquist samples (.la
the DFT), the extra roots which have been added can be divided out

before factorisation.
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2.5 Zero Location by Axis Shifting

The methods for locating the zeros of a signal which are
presented in the previous sections are numerical methods; they
depend upon sampling the signal and operating numerically on the
samples to produce the zero locations. The scheme presented In
+his section is different in character. A ilnear filter Is used
to operate on the signal so that zeros which lIie on some line
parallel to the t-axis of the compiex t+ime plane, are converted
Into real zeros. Real zoros are readily detected. By using a
sufficient number of such filters the zeros can, in principle, be
located to any desired degree of accuracy.

The use of an “axlis-shifting" fiiter provides a simple method
of zero location. However, in the present work, the principle of
the axis shifting filter is found useful as'a‘concepfual dovice in
studying the effects of added noise on the zercs of signals.

A bandiimited signal lying in the frequency range (fl, fi+y)
can be written, using the inverse Fourier transform, (as a function

_of the complex-time variable, 2).

fi+w
m(z) = I M) e‘jZ“fZ

y

where z = t+jo. Giving o a particular value, oy,3 new time

function my(t) can be formed:

mg (1)

m(++jge

il

foeW - .
J P Mgy o780 Q2T g 2.5.2
fy

df 2.5.1
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This equation shows that ma(f) can be obtainod from m(t)

by flitering using a transfer function
Hy(F) = o72TM%a g chef e

= anything , otherwise, _ 2.5.3

If m(z) has a2 zero at (t| + jogz), then m,(t) must have a (real)
zero at t|. AT a real zero of a complex or an analytic signal

both the real and the imaginary parts of the signal must be zero
so that the envelope must be zero there, too. The zeros of a
bandlimited signal can thus be located (in principle) by filtering,
using transfer functions of the form given above with all possible
values of 03, and observing the real zeros of the envelopes of the
filtered signals.

As an illustration, fig. 2.5.1(a) shows the waveform of the
analy+ic signal lying in the frequency range (0,wW) which has the
zero pattern shown in fig. 2.5.2. Fig. 2.5.1(b) shows the waveform
of tne signal after filtering with the appropriate transfer function
to convert the lower half plane zeros into real zeros.

Fig. 2.5.3. shows how the scheme might be implemented in a
practical way, fto provide approximate zero location using a |imited
number of axis shifting filters. In this application the real zero
detectors would be replaced by threshold detectors which would
give an indication whenever the envelope of a fiitered signal fell
below some small value. This scheme would be particularly simple
fo implement if the zeros of a signal were known to |le nowhere
except on two lines parallel to the t-axis (for example, In the case
of the angle coded signals which are studled in subsequent chapters).

Only two axis shifting filters would then be required.
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Fig. 2.5.2. Zero pattern_‘of signal at input" to axis
‘shifting filter.
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CHAPTER 3.
EFFECTS OF FILTERING AND NOISE ON THE ZEROS OF SIGNALS.

3.1 Introduction

The effects of physical fransmission channels on signals
can often be represented as the addition of random noise to the
signal or as the operation of a linear filter (or both). Conventional
"Iinear' signal theory deals very successfully with thesse situations.
For a zero based theory of signals to be of general use, it too
should be capable of dealing with such problems. In particular, it
should be possible to predict the effects of adding nolse or flltering
on the locations of the zeros of a signal.

In the case d a PBL signal, which is represented by a Fourier
polynomial; |

N

M(Z) =CO+C|Z+..O +CNZ 3.'.'0

(where Z = exp j2nfyt, and where f, is the fundamental frequency
of the signal), such problems are partly equivalent to studying
how the roots of the polynomials

N

Mp(Z) = (Cotng) + (Cy+ny) Z+ ...+ (CN + ny)Z 3.1.2,

and

N

Mf(Z) = COH(O) + CIH(fO) Z * o0 ¥ CNH(NfO)Z 3.'.3.

differ from those of M(Z). Here, Ngs Nis «es, Ny are the Fourier
coefficients of a perlodfc noise function which is added to the
signal and has the same poriod and bandwldih. (Note that i+ may
be no less reallistic to represent noise as a periodic function
than it Is to represent the signal as such a function). H¢g) Is

+he transfer function of the flilter whose effect on the zeros is




to be studied. Thus (for PBL signals) problems of the effects of
noise and filtering on the zeros of a signal are partly equivalent
to questions of how the roots of polynomials are related to thelr
coefficients. This problem Is difficult; it is not well understood
even though it has been of interest to mathematicians for many
years. (When the problems are formulated for non periodic band-

limited signals they are even more intractable).

3.2 Effects of Linear Filtering

In general it is difficult to make specific statements
about the effecis a particular filter will have on a signai.
However it is possiblo to make broad statements about the effects
of certaln types of filter. For example, as pointed out by
Tefare\fé differentiating é real PBL a sufficient number of times
will cause all of its zeros to become real*, and further
differentiations regularise the spacings of the zeros.

General statements can also be made about the effect of
filters which reducc the bandwidth of signals. Titchmarsh's results
show that the average rate of occurrence of zeros is equal to
the spectral extent of the signa|.~ Thus a filter which reduces the
total speciral extent of the signal (such as a iowpass fllter whose
bandwidth is less than that of the signal) results in a new zero

pattern which has a reduced number of zeros.

¥ A rigorous proof is given by Szegg7.




ral

The 'pre-envelope! of a real signal is formed from the real
dgnal by flltering with an impulse response h(t) = (§(+) + j/qat).
The spectrum of the pre-envelope is that of the real signal with
the negative frequency components eliminated (and the positive
frequency components doubled in amplitude) so that the filter
reduces the total spectral extent of the signal. In the case of
a real signal whose bandwidth is small compared with Its centre
frequency the reduction in the zero rate can be very large. (Also
the zeros of the pre envelope of a real signal are very seldom -
real or In conjugate pairs - unlike the zeros of the real signal
itself which are always thus).

The one type of linear filter whose effect on the zeros of
a signal is simple Is the axis shifting filter, which was discussed
in sectlion 2.5 of the previous chapter. In the following section
the axis Shiffing filter is used as a conceptur' device in studying

the effects of added noise on the zeros of a signal.

3.3 Effects of Added Noise.

It Is possible to set general bounds on the magnitudes of the
changes in the roots of a polynomiala\nhich result when the
coefficients are perturbed by the addition of error terms, as
expressed by equation 3.1.2. However, these bounds are very weak
for polynomials of only moderately high order; for the nolse
magnltudes which exist in even the most precise englngering situations
they are not relevant.

The root=-locus methods of servo Theory9 provide a set of
rules by which the loci (as k is varied) of the polynomial

P(z) = Q(z) + k R(z) can be sketched. In the signal theory context
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Q(z) might represent a wanted signal and R(z) might represent an
added noise whose power Is set by the value of k. Reference 9
treats sampled-data servos and gives examples. Although root
locus methods can be applied to the study of the moveménts of the
zeros of signals, i+ is felt that the method is not very useful.
In signal theory it Is the general properties of signals and
their transformations which is of interest, rather than the study
of a unique signal. In any case, with the avallability of digital
computers it is perhaps more straightforward to plot the root loci
by factoring P(z) for a succession of values of k, rather than use
the rules.

The relationship between the zeros of a PBL signal and its
F-coefficlents can be pictured as a multivariable memoryless
nonl inear system (fig.3.3.1.). Studying the of fects on the signal
zeros of added noise is equivalent to examining the effects on the
outputs of the nonlinear system of noise added fo its inputs.
The theory of multivariable memoryless nonlinear sysfemgo is of
little help. Because ot the difficulty of calculating even such
'simple' statistics as the variance of the output variables glven
the variances (and covariances) of the input veriables, the usual
approach is to estimate such statistics experimenfallyl! |

When the power of the noise is small compared with that of
the signal, 1t should be possible to linearise the Fourier
coefficient-zero relations so as to be able to calculate the zero
movements resulting from the addition of a (small) noise voltage. ; i
However, this will only be possible when the Fourler coefficient- J
zero relationships are sufficlently continuous; that is, when small

changes in the Fourier coefficients produce only small corresponding




Relalations between Fourier coefficients

and zeros pictured as a multi-input,

multi-output nonlinear system.
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changes In the zoro positions.

The' | inearised Fourier coefficient-zoro emlations are

specified by the sensitivity matrix $;

251. QEL s aZI
3Co 9Cy TN

. 3.3.1

aZN aZN see aZN
aCO FCT Wﬁ

The elements of this matrix are given by

Now
dzk = J2m exp(j2nz /)
dzk T k
= J2n Zg/T
and
¢
Mk =20/ M@
3C, dz Z =127y
Thus
: g~1 / dM(Z)
92 - ’—1—;- %k / Z | zez4 3.3.2
m .
Ty

When the linearisation procedure is valld, the change,AZ,
in the vector whose elements are the zero positions produced by
a change ég in the Fourier coefficient vector Is approximately
given by
5_2_ = S AC ‘ 3.3.3
The linearisation Is only valld when the elemerts of §_are‘

sufficlently smail. The remainder of this section is a verbal

discussion of the circumstances when this Is so. Thetaxis~-shifting'
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filter gf section 2.5 Is used as a conceptual device. Real zeros
at the output of an axis-shifting filter are plctured as being
produced by cancellation of the frequency components of the
signal. The effect of added noise Is.fo upset this complete
cancel lation.
In section 2.5 a filter having the transfer function
HiE) = o J2TfoR 3.3.4
(over the frequency range of the signal) was termed an axis-

shifting filter. If its input signal is s(t), Its output signal

splt), takes the values of s(z) on a line in the z~plane
running parallel to the t-axis and cutting the Imaginary axis
at cp. Thus if the input signal to the axis shifting filter has
a complex zero at (ty+jop), the odfpuf'égnal from the filter has
a real zero at ). |

A physical undersfanding of the action o an axis shifting
filter can be gained by considering a signal having a zero pattern
such as that of fig. 3.3.2. Such a signal may be represented by
a Fourler series :

A2t/

m{t) = | -a 3.3.5

tihere a = ezno/T

). The vector representation of this signal Is
shown in fig. 3.3.3. The component vectors are of unequal length
and so they do not cancel for any real value of time, t.

Suppose that m(t) is passed through the axis-shifting
filter which converts its complex zeros Into real zeros. The
+ransfer function of this filter is gliven by equation 3.3.4.

m(t+) is transformed into tha signal

m () = 1 - e—2nc/T a ej21r1'/T



Fig.3.3.2. Zero pattern of signal "1_é‘elzﬂt/T“

~ Imimt)]

Fig.3.3.3. Vector representation of 1-l2"t/T,
A _ | '

Imim,(t)}

~ Relm(t)]

Fig.3.3.4%. Vector ‘representation of 1-e/2Mt/T

Re{m, (t)] k
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- _ej2ﬂ+/T

which has the vector diagram shown in fig. 3.3.4. The component
vectors are of equal length and so +ﬁey cancel exactly when they
Iie in opposite directions. The action of an axis shifting filter
in producing real zeros can thus be visualised as being to

equal ise fhernagn!fuqes of the frequency components so that they
cancel at certain instants of time (the resulting real zeros)

The effect of an axis shifting filter on a sfgnal with a
more complicated zero pattern can bé explained in a simllar way.
The zero pattern of the signat, m(+), wili be supposed to be
arbitrary except that it contains a 'periodic zero', that Is, a
zero at positions such as those shown by fig. 3.3.5. It Is the
action of the axis shifting filter on these periodic zeros that Is

t+o be discussed. The signal can be factored Into the form
[
m = |1 =a T

The Fourier transform of m(t) can thus be written

M(f) = R(f) - a R(f-1/T)

Suppose that 1f the 'remalnder signal! r(f) is applied
+o an axis shift+ing filter the output which results Is q(t). Then
the output, m{t), of tho axis shifting filter, in response to m(+)
has the F-transform

My(f) = H(f)  M(f)

o 2rfoy [R(f) - a R(f—l/T)] : 3.3.6

Equation 3.3.6 becomes
Mi(f) = Q(f) = QUf=1/T)

and my(+) Is thus given by

mh) = qt) = oI ZT ey




Fig1313.5. EZe;r(q, pal.tfern ‘with "b'e})ciqd;iq_ zero".
J ) .

i

] Im
. }(a)
b
r(t) Re
Tl el2M/T
Im
(b)
r(t) n(t) Re
r(t)ejort/T

Fig. 3.3.6. Vector representation of (a) signal having

a periodic.zero and (b) this signal plus noise.
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This signal is shown in vector form in fig. 3.3.6a Like the
signal discussed previously, it consists of the sum of two vectors
whose lengths are equal but whose instantaneous frequencies differ
by 1/T. The difference between this case and the previous one is
that the lengths and angular veloclities of the Individual
vectors are no longer fixed.

in general, when a propertion of noise is added to a
bandllmifed signal the locatlon of every one of the zeros is changed.
The change in the position of each zero depends on the waveform
of the noise, the original location of the zero and also in the
original locations of all the other zeros of the signal. However,
when the change in each zero location is small, the change depends
predomirantly on the original location of the zero itself and little
on the original locations of the other zeros. In this section,
because the main concern is to study the conditions under which
the change in a zero's location is small, it Is permissible to
conslider only the influence of the location of the zero itself on
its sensitivity to noise and to disregard the effect of the other
zeros. Only signals havingsimple zero patterns such as that shown
in fig. 3.3.¢. are considered here.

If the zeros of the signal are close to the t-axis (that
Is, the ratio |o||/T is small, T belng the spacing between zeros

In the direction of the t-axis) the slgnal may be represented by

a two~term Fourier series

jort/T 3.3.7

m{f) = | +ae
in which the magnitude of a Is close to unity. If random noise,
n(t), of small rms value and occupying the same frequency band as

the signal 1s added to m(t), the resulting sum can be represented
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by a vector diagram such as that of fig. 3.3.6{8.The nolse
component is represented by a vector of rendomly varying length
and direction.

The.axls shifting fliter which converts the zeros of m(t)
Into real zeros has a gain-frequency characteristic which does
not vary greatly over the frequency band of the signal. Thls
ié because to produce real zeros the fllter has to equalise the
ampl1tudes of the frequency components of m(+) and these do not
differ greatly to start with., Fig. 3.3.7. shows the vector
dlagram of the signal at the output of the axls shifting fliter
when there would be a real zero In the absence of nolse. The
output of the filter at this Instant consists of noise alone.
The magnitude of the nolse being small, a small change in the
value of the parameter o, of the axls shifting fllter produces
+he sltuation represented In fig. 3.3.8. wherc there would be a
real zero If the instantaneous phase.of one frequency component
of the signal were changed slightly. Provided that the change Is
small compared with a Nyquist Interval such a change can be
offected by advancing or delaying the signal plus nolse without
appreciable change In the magnitude or phase of the noise vector.

The foregoing verbal argument suggests that when a small
proportion of noisc Is added to a signal whose zoros arc close to
the t~axis the resulting change in the position of each zero s
shall. With such signals lincarisation of the Fourler coefficient-
zero relations might be used to stucy the effects of added nolse

on the zeros.
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CHAPTER 4

ANGLE CODED SICNALS AND THEIR PROPERTIES

4.1 Introduction

As an application of zero based signal theory, Voelcker
suggested that signals could be generated so that the zero pattern
of a signal would represent blnary data expl1c1f|y4. As an
example, he generated periodic signals having’zero patterns In which
The‘appearance of a particular zero In the upper half of the complex-
time plane would denote a binary 'I' and 1ts appearance in the
lower half plane, a binary 'o'. Thus by systematically conjugating
the N zeros (complex, and not occurring In conjugate pairs) of
the fundamental period, a total of 2N different signals can be
generated. As the envelope of a signal remains unaltered when a -
complex zero is replaced by its conjugate, these signals are
members of a "common envelope set" and they differ solely In having

different instantaneous phase functions. Accordingly, Voelcker

termed signals generated In this way angle coded signals.

In the remaining chapters of this thesis attention Is confined
principally to the study of angle coded signals having zero patterns
i1ke that shown in fig. 4.1.1., in which the zeros occur at regular
intervals of T In the direction of the t-axis and at either +s or -s
in the directlion of the o-axis.,

Fig. 4.1.2 shows the real part, the imaginary part, the
envelope and the Instantancous frequency of the signal whose zero
pattern Is shown In fig. 4.1.3. and which lies In the frequency

range (O,W). The aspect ratio, p(=s/T), of this signal Is 0.6.

Note that the behaviour of the envelope Is the same in the vicinity
of both the upper half plane (UHP) and.the lower half plane (LHP)

zeros, whlle the Instantanecus frequency peaks In the vicinity of

LY




Fig.1..1,1.} Typical angle coded signal zero pattern.
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" having the =zero pattern of fig.4.1.3: p = 0.6.



Fig.4.1.3. - Fundamental period of zero pattern

of example.




an UHP zero and It dips near a LHP zero. Fig. 4.1.4, shows the
locus of thisama tic signall% Examination of the motion of the
analytic signal vector as time progresses glves Insight Into 'why'
the Instantaneous frequency and envelope behave as they do in the
vicinity of UHP and LHP zeros. Fig. 4.1.5. shows the analytic
signal locus for the "minimum p_hase"4 member of the common

envelope set (all zeros in the LHP), and flg. 4.1.6., for the
"maximum phase" member. These locl 1liustrate the physical

Imptications of minimum and maximum phase. The analytic signal

locus enclrcles tho t-axis onco for each UHP zero. When all +the
zeros are UHP the average rate of increase of the Instantaneous
phase (which Is the average of the instantaneous frequency) Is W
revolutions per second and when all zeros lie In the LHP, It Is
zero*,

Flg. 4.1.7. shows the waveforms associated with the zero
pattern of fig, 4.1.3. when the aspect ratio, p, has the value 0.2
(a smail value). The peaks of the instantaneous frequency are large
and the dips of the real part and the envelope come close to the
t-axis. Flg. 4.1.8. shows the waveforms which result when p has
the value 4.0 (a large value). The fluctuatlions of the envelope
and the Instantaneous frequency are much reduced in magnltude; so
much so that for most practical purposes the signal can be regarded

as being a pure frequency modulation signal.

¥ Reference I3 contains a discussion of the mean value of the
Instantaneous frequency of a signal which could be cast in terms

of zero~based theory. See also ref.j4.
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Fig.4.1.7. Waveforms associated with the signal *
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Fig., 4.1.9, shows the waveforms assoclated with the same
zero pattern for other values of p. The characterlstics of the
signals undergo a qualltative change at a value of p of about 0.6.
For example, a dip In fhe real part of the signal near a LHP zero
oceurs only for p less than about 0.6, This qualitative change In
nature at a value of p of about 0.6 occurs with other slgnal
characteristics such as the form of the power spectrum (as will be
seen later).

As a result of the multiplicative nature of the relationships
between the zeros and the waveform of a slignal, zero based methods
seem to be best suited for discussing situations where signals are
multiplied together (as Voelcker has 1llustrated in hls treatment
of modulation) or where logarithmic properties of signals are to
be studled. However, if angle coded signals are o be used in
conventional communication system applications it is important
to discuss 'linear' properties of the signatls such as the forms of
thelr spectras.

| Chapter 2 showed that the relations between the Nyquist samples
of a signal and its zeros are generally complicated (i.e. |
multivariable and nonlinear) and so it Is Iikely that other '{inear’
properties of angle coded signals cannot be exactly expressed In
Terms of fhe characteristics of their zero patterns-in a simple way.
Nevertheless, It might be hoped that simple approximate
(asymptotic, qualitative) relations might be found beTweenbflfnear'
propertles of the signal and its zero pattern characteristics
rather in the way that while the exact relationships between the
modulating function and the spectrad an FM signal may be

compl icated, simple approximate relations often exist.










This chapter investigates the properties of angle coded

signals whose spectra lie in the range (O,W). It Is a trivial
matter to extend the results to signals lying in some other

frequency range.

4.2 General Properties of Aﬁgle Coded Signals

As mentioned in the Introduction to this éhapfer, the zeros
of the signals considered have occurred at regular intervals T in
the direction of the t-axls and at either +s or -s in the direction
of the o-axis of the compiex time plane. The zero locations can

thus be written

i

Z

n nT + jan S’ n= o0 ’2""0"’2’ s e e ' 4.2.'

where
+|

, If the nth zero lles In the UHP

n ~-| , if the nth zero lies In the LHP

Fourler Coefficients

A periodic angle coded signal having N zeros per period can

be represented (from chapter 2) :

J2nt/NT / eJ21rz|/NT J2wt/NT /ej2nzN/NT)

m({t) = co(l~e ) v (l~c
N 127 (+=21 }/NT
=c_ TT  (1-ed i ) 4.2.2

“o i
=1

On expansion thls gives the Fourier polynomial :

4 = c, *+ C‘ ej21r1'/NT . CN eJ21r1'/T
N .
=S¢ eJ21rk1'/NT 4,2.3
Ja 7K
k=0

The zero frequency Fourfer coefficient (the 'd.c.™ component)
of a perlodic angle coded signal having a certain particular zero

pattern is determined by the power (i.e. the mean square), P.
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Expressing P In terms of the Fourler coefficlients

N ‘ )
P = 2 le| e

k =0

gives, for Cq

| N 2 .4
Co= = 57 lowl®* 4.2.4.
k=1

(C, Ts assumed to be positive and real without loss of generality).
This expression Is used below.
Envelope

The properties of the envelope of signals from a common
envelope set can bo studied by ;onsidering any member of the set.
i+ 1s most simple, however, to consider elther the maximum phase
of the minimum phase member as these members have only fwo
frequency components in thelir Fourier series 4 The Fourier
series of the minimum phase signal can be written at once from

equation 4,.2.3.

m(t) = C, L’ + (=N eJ'an/T e—Zns/T]
2 Co [1# DN A SIZT | 4.2.5.
where A = e_Z"S/T = e-Z“p

The squared envelope is given by

m(+)m¥* (+)

2
LIy

= cH+at - 2 cos(ZnT/T)J 4.2.6.
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The spectrum of the squared envelope Is zero outside the frequency
range (-W,W) = as Indeed It must be, by the squared envelope
Theorem43'5For +he minimum phase signal the zero-frequency Fourler

coefficlent 1s, from 4.2.4. and 4.2.5., given by
c 2 = P/(1+a? ) 4.2.7.
and so the envelope is glven by

[m¢t)| = Pﬁ:|+A? - 2A cos(ZnT/T)] / (I+A?)} : 4.2.8.

The 1llustrations of the waveforms of angle coded signals shown
in the introducticn (flgs.4.1.7.~ &.1.4) shcwéd that, in a
qualitative way, the fluéfuafions of the envelope of an angle
coded signal diminish as p, the aspect ratio, Is Increased. From
equation 4.2.8 the maximum, ImMAX‘Z’ and minimum, |mMIN|2’ values

of the squared envelope are given by

In|%ps = P CemZ 7 Cen?) 4.2.9.

and

P (1-0)2 7 (1+A%) 4.2.10.

2
Im %
respectively. The peak-to-peak envelope fluctuation |m|pp Is

thus given by

mlpp = 2 | PA 7 (ndy |2 4.2.11.
Fig. 4.2.1 shows the maximum and minimum envelope values and the
peak-to-peak envelope fluctuation plotted against p (for a signal
of unit mean square). When p Is large (the zeros of the signal
Ite far from the t-axis) tho envelope fluctuations become
diminutive. In this cése angle coded signals of the type
considered herc can be considered, for practical purposecs, to
be purely frequency modulated signals. This observation Is

exploited several times In the rest of thls work,
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Fig.-4.2.1. Variation of envelope properties

zero pattern aspect :rat'io, p.

10.0

with



3%

Instantaneous Frequency

The Instantaneous frequency of an angle coded signal is
of central Importance In these studles partly because, as
mentioned above, an angle coded stgnal of large p can be
approximately represented as purely FM and also because the
Instantaneous frequency of a signal can be expressed In terms
of Its zeros In a simple way. As Voeldker has shown4, the

instantaneous phase derlvative can be expressed*

(0]
n

2
% +(t Tn)

$(t) = + K (radlanssec) 4,2.12

2

M

L]

3

where Zn(=Tn + Jon) s the locatlon of the nth zero of the slgnal.
In the case of an angle coded signal, wherellonl = s and T, = nl,
the Instantanecous phase derlvative consists of a serles of

pulses of identical shape:

$#6) =K+ 30 oy V(t-nT) 4.1.13

'
==-00

=

where ap = sgn Oy

and where
g
V(t) = -—2'-—”-!—2- 4.2.14
(o] + 1

n

The constant K can be evaluated most simply by physical roasoning.
In the caso of anglc coded signals lying In the frequency range
(0,W) the average rate of change of phasc (i.c. the mean of é(f))
of the minimum phasc signal Is zoro. For this

K=a/T. ' 4,2.15.
&(f) can be pictured as belng the output of a linear filter whose
impulse response is V(1) and whose input consists of a sequence of

positive and negativc unit impulsc functions.

* The Instentancous phase derivative is 2m tlmes the Instahtaneous
froquency.

{
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That Is

$U) = VB ¥ S o sCt-nt) + K 4.2.16

n=-c

where * denotes the operation of conv olution. This Is
I{tustrated In flg. 4.2.2. Regarding the instantaneous frequency
function as beling the output of a linear fllter Is conceptually
heloful. I+ suggests how the Instantanecus frequency function
can be syntheslised eclectronically as a prelimlnary stage in the
generation of angle coded signatls. |t also makes calculatlion of
such properties of the Instantaneous frequency functlion as Its
power spectrum and Its mean square conceptually simple ~ at
least to an electrical englineer.

The Impulse responsé of the equivalent linear system Is
shown In fig. 4.2.3., plotted for various values of p. When p
Is small, the width of the Impulse response (defined in some
appropriate way) Is small compared with the Nyquisi iInterval, T,
and 1ts maximum magnitude is very large. As p tends to zero,
V(+) becomes an Impulse function of strength w. The physical
reason for this behaviour of ¢(t) can be seen by considering
the vector diagram of the min.phase angle coded signal (for
example) as the value of p Is reduced (flg. 4.2.4.) p approaches
zero, the rate of change of phasc as the signal goes through Its
- minimum magnltude becomes more and more rapid; when the zcros are
real (p=o) It makes a jump In phase of v radibms at each envelope
minlmum. |f p Is Increased the width of V(1) becomes larger (and
Its maximum value Is reduced). When p has a value of about 0.6,
the width of V(t) Is comparable with T, the zero spacing in the
directlon of the t-axis. When p is small, UHP and LHP zeros can

be distingulished by observation of the peaks and dips of é(f)
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Fig.I..2.2. 'Instantaneous phase derivative generated
' as the response of a linear filter to an

impulse train. .




0= R

3.0

. 2.0 o - ‘ p=025

.5 L -3 -2 <1 0 1 2 3 L s

Fig.4.2.3. V(t) plotted for ‘various values of p.
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Fig.4.2.4.  Vector diagram of the analytic signal
mit) = 1 + ael2Mt/T,
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but as p Is made larger over-lapping of the individual terms

of the sertes of equation 4.2.14 occurs. This Is discussed In
detail later: Note here however, that the effect can be plctured
as intersymbol Interference of a sequence of Impulses spaced at
intervals of T 1s transmitted through a linear channel whose

lmpulse reéponse Is V(t).

Spectral Moments

The normalised moments of the spectrum of a slgnal's't7can
be used fo provide measures of the centre frequency, the bandwidth,
the skewness, etc., of the spectrum. For a finite energy signal,
the first moment of the energy density spectrum is defined
L
£ 2 2
| = [MCEY|© F df / [MCE) |© df 4.2.17

This expression can be manipulated Into the form

00

! 2 .
fy = 'Z?L, ImC)|= 4ty df /J Imet)] 2at, 4.2.18

-0

which, for present purposes is a more useful form. For a signal

of finite power, the first moment can be defined by the |imit

T , T
fi = lim %; I Im(f)l2 $(+) dt /j Im('l')l2 dt 4.2.19
T -T =T
For a perlodlc signal, thls definition Is equivalent to
. Tp ™
£y = %;I Im(H)|? 1) dt /I Imt0)]? ot  4.2.20
o o

where-Tp Is the period of the signal.
_ For an angle coded signal, |m(1')|2 Is glven by equation
4.2.8 and $(t) by the series of equation 4.2.12. Substituting

these expressions for |m(t)]|% and () in equation 4.2.20
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| M ' ‘ T 2 2
f) = K/awt lim E}'E;x ay/ p[l+A.-2A cos(2y?/Tﬂ/(l+A.)d+
Mo 2T M JMT -

=K/aw+ 1im -%1? % ap / 2M1p

n=-M
_ o/ . 2
where an -J n p(l1+A%=2A cos(27t/T)/(1+A7) dt
- 2 .2
On +1°
- o
=prm |1~ o~ 2ns/T 1 sen oy
Thus,
r_ =21p, . § -

2
where n, Is the ratio of the arrange number of UHP zeros tfo

the total number of zeros per unit timc and n| Is the corresponding
measure of the number of LHP zeros.

Flg. 4.2.4.\.shows f}/W plotted as a function of p, In the
cases of minimum phase and max i mum phase signals. Uhen p Is
very small, f Is hardly affected by whether the zeros are UHP
or LHP as,in this case, the magnitudes of the frequency components
are nearly equal. When p is very large, one frequency component
predominates, lying at oither extreme of the frequency band
according to whether the signal Is minimum or maximum phase.

‘The second moment of the energy density spectrum of a finite

energy signal can be deflined by

00

£, = J £ Mep|? of / I [Me£) |2 af 4.2.22

-—0a -0

= —lfj & nth P2+ gh?Z Imen | d-r/[ Im(+)|2 dt 4.2.23
4n7)_ J-°°

In the case of a finite power signal f, can be defined by
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Fig.4.2.41. Normalised first spectral moment of minimum
and maximum phase angle coded signals as a

function of p, the zero pattern aspect ratio.
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T

.
.11{ d_Imctyp? + oth? |mth) | df/J Im(+)|% ot 4.2.24
& -T

T

d+

o =1im
2 o

f2 has two components; one Involves the envelope alone of the
signal and Is thus the same for all members of the common envelope
set. The other component tnvolves the Instantaneous frequency
function and Is thus generally different for the various members
of the common envelope set. It Is not possible to express f;
exactly in terms of the zeros of the signal In a simple way (as
could be doné for f|). The reason for this Is that f2 Is not a
Ilnear functlonal of $() - unlike f|. However, when p is

large (that Is, greater than about 2) the envelope fluctuations
become very small and equation 4.2.24 can be approximated by

T .,
f, = i | I $2(+) dt 4.2.25
T oTyand) 17

Thus f, (for large p) Is approximately given by the mean square
of —%; &(T), which can be calculated In a straightforward way
1+ the relevant statistics of the zero locations are known. '

1f the probablility that a particular zero lies In the upper
half plane Is 0.5, and is independent of the locations of the
other zeros of the angle coded slgnal (this Is a reasonable
assumption 1f binary data Is to be transmitted with an UHP zero
representing binary '17 and a LHP zero representing binary o)
then J(+) Is a train of uncorrelated V(1) pulses. Thus

° 7 - 2
() E/T + K

where E Is the 'energy' of one pulse glven by the expression

E = J V2 dt
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Thus, for a random angle coded signal (as one with zeros
randomly In the upper and lower half planes will be termed),
fo s glven by
fp = 1/(16nsT) + 17472 (cycles/sec)z
= W2/ 16np)  + W2/4 4.2.26.

The 'standard deviation', fgp, of the spectrum about Its
flret moment or "centrold" can be used as a measure of the
bandwidth of a signal. For an angle coded signal (with p large)

+his 1s, from equations 4.2.21 and 4.2.26,
fsp = /Fp - 112
= /(47 /ED

= W/ (4 /p) 4,2.21.
The effective bandwidth of a random angle coded signal (as
measured by the standard deviation of the spectrum) Is thus a
fraction of the 'strict' bandwidth W (outside which the spectrum
Is zero). As p Is Increased and the zeros move away from the real
axis In the complex plane, the effective bandwidth of a large-p
angle coded signal decreases. Thls effect Is mentioned agaln In
+he next section in which the power spectra of random angle coded

signals are discussed.

4.3 Spectra of Random Angle Coded Signals - Theoretical

In the statistical approach to communication system analysls,
Information carrylng signals are repfesen+ed as being sample
#functions from a random process. The power specirum of the random
process Is of interest for perhaps two principal reasons. I+ enables
the effect on the signal (on average) of |inear filtering operations

to be calculated. I+ also provides an indication of the effectiveness




Lo

of the signal process for communicating in the presence of

noise. Shannonl9

derived the ideal form of power spectrum for

the signal process for signalling In the presence of additive
Gausslan nolse of a glven spectral form : by comparing the spectra
of different signal processes (for example, the angle coded

slgnal process) with the Ideal, thelr relative effectliveness can

be gauged.

A continuing random angle coded signal process ('continuing

process', for short) Is a random process whose sample functions
are angle coded signals (all of equal power, p) whose zeros occur
at regular Instants separafed by T tn the direction of the t-axis
and randomly +js or ~js fn the direction of the g-axis of the
complex time plane. A CP Is not a statlonary process; for example,
its ensemble—arranged magnitude (which Is simply the envelope)
depends expllicitly on +Ime according to equation 4.2.8

The autocorrelation function R(t,t), of the continuing
process 1s given by

R (4,00 = E [ m(t) m*(ten) ] 4.3.1
By considering the nature of the zero pattern It can be seen that
the autocorrelation function must be perlodic In t, with period T.
That is

R (t,7) = R (++nT,r) for n = o0,*1,+2, ...

As the autocorrelation function of the CP Is time dependent, the
power spectrum Is, too. However, for many purposes I+ Is suffic¢lent

to conslder the time average5¥)5(f), of the power spectrum, S(t,f).
T

S(s) = -]l-[ S (+,£) ot 4.3.2.
o] .
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where S(t,f) ls the Fourler transform of R(t,t)

S(t,f) = r R(+,7) o327 4o 4.3.3

X}

For purposes of calculating the power passed by fllters and
so on, the time averaged power spectrum can be treated llke the
power spectrum of a statlonary random process. It Is the time
averaged power spectrum that Is treated 1n thls chapter.

In the experimental estimation of spectra described later

In this chapter, +he 1dea of a periodlic random angle coded

slgnal process (pericdic process, In short) is used. This Is

defined to be a random process whose sample functions are
perlbdic angle coded signals (all of equal power, P) having N
zero? per period. The zeros In the fundamental period of each
sampie functlon are chosen randomly so that each zero lles In
olther the UHP or the LHP with equal probability. The auto-
correlation funcTIon,‘Rp(f,T), of the PP, in addition to belng

perlodic in t with period T, Is also perfodic In t with perlod NT:

Rp(t,t) = RP(T+mT, T+nNT), m = 0,+1,+2,+3,.....

n=o0,+,+2,+3,..... 4.3.4

Here 1+ 1s the tIme averaged autocorrelation function (referred

to simply as the autocorrelation functlon from here on), defined

by

T
R (1) = | J R_(+,t) dt, 4.3.5
P T P
o
which Is of Interest.
If mp(t) Is a sample functlion from the perlodic process,
1ts Fourler serles expanslonz'ls

. N
mp (1) = :E:I ap eJZ"nf/NT 4,3.6

n=o
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(The series contalns only N+l terms, as the sample functlions
are band !imited to the frequency irange (0y1/T)).

The Fourler coefflclents ap, glven by
N-r -
ay = | J m () o J2nnt/NT 4.3.7

are uncorrelated random variables such that

Efa,t= E[m ()], n=o
i 4.3.8
E i?nj = 0 , hfo
and
- _ rk , k=n . .
E ak a * = 4.309
L n J o) , Kkén

where the ry are the coefficlents of the Fourler serles expansion
of Rp(r)fal The autocorrelation functlon can thus be expressed
N J2mke/NT
Rolt) = 27 rge 4.3.10
k=0.
The time averaged power spectrum, the Fourler transform of
Rp(t), Is thus

N
Sp(f) = E{I rg 8(f-k/NT) 4.3.11

k=o~
If the perfod, NT, of the periodic process Is great enough
1+ may be assumed that any signal drawn from the periodic process
will have similar statistical properties (within Its fundamental
period) to those of a signal from the continuing process with the
same characterlsing parameters (power, bandwidth and 'aspect

ratio', p). Then the autocorreiation function, RP(T), of the
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perlédic process will provide (within Its fundamental period)

a good approximation to that of the contlinulng process, R(t)

(flg.4.3.1.) |
Rt) = RP(T) rect{x/NT)

Taking the Fourier transform of this approximate equation glves

S(f) = Sp(f) * NT slnc. (#NT) 4.3.12

Thus the spectrum of the continuing process Is given approximately
by interpolating the line spectrum of the perlodic process
wlth the sinc function of equation 4,3.12 or Indeed any reasonable
interpolating function of similar width and helght.

The remainder of thls sectlon derives theoretical
expressions for the power spectrum of the continuing process
which become valld in the extreme cases of very large and very

small aspect ratio p.

Case (1) - Small p

Instead of studying the analytic angle coded slgnal process,
1+ 1s expedient here to consider Its real part. There is no
problem, of course, in finding the spectrum of an analytic
process if the spectrum of Its real part 1s known. Fig.4.3.2.
shows a section of the waveform of +he real part of an angle
coded slgnal whose zeros lie close to the t-axls (l.e., p Is small).

This figure also displays the real part of the analytic signal
m () = [l . eJ'z"*”] , 4.3.13

Wwhere a 1s a real number such that the two slgnals are of equal
power). The two waveforms are very similar in form, except that
the real part of the angle coded signal dips below the f-axis in

+he vicinity of an UHP zero and passes above it near a LHP zero.
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Fig.4.3.1. Au_tocorre_lailtion functions and power spectra

- of p'eri'odic.- and .continuing processes.




Fig.4.3.2. Waveform of the real part of

an angle coded signal with its zeros close
to the real axis.
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Let the real part of the angle coded signal (which Is

a sample function from the continuing process) be represented by

st = L [ e costantm)] + ath) 4.3.14
vz

where the analytic signal has been normalised to have unit
mean square, so that In equation 4,3.13, a has the value 1/¥Z2.
-y
s(t) fs bandl imited to (~W,W) and therefore d(+) must be
too, since the other term on the RHS of equation 4.3.2 Is also
bandlimited to (W,W. Thus, by the samplling theorem, d{(t) can

be represented by the serles

d(t) = ;’* dlm/2W sinc (2Wt-m) 4.3.15

Lod,
m= =

Now at the +-coordinate of the zeros, t+ = nT, n = o; :j,:?,...

the expression (l+cos 2nt/T) Is zero and so at these points
d(nT) = s(nT), n=0,+1,+2,...

The Instantaneous phase of the signal makes a sudden Increase of
7 radlans in the vicinity of each UHP zero and a sudden decrease
of 7 In the vicinity qf each LHP zero. The phase change is
sudden because of the impulse-llke character of the instantaneous
frequency function for signals of smail p. In addition, there Is
a steady Increase of phase at the rate of 7 radlans In T seconds,
because the centre frequency of the process |les at W/2. The
result of this is that the Instantaneous phase of the small p

signal at the Instants nT (n=o0,*1,+2,...) Is approximately an
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lnfeger‘mulfiple of « which results In the signal being real at
these Instants. Thus d(nT) Is given by

d(nT) = a, |m|min n=o,+l,+2,...

(where on 1s unlty if the nth zero lles In the UHP and -1 1f I+
Ites In the LHP - sect.4.2) At the other sampling Instants,
t = n7/2, n=+[,+3,15,...,, 1+ 1s evident that s(t) takes
(very nearly, for p small) the same values as the real part of
my(t) and thus

d(nT/2) = o, n=+1,+3,+5,,....

Thus equation 4.3.15 becomes, approximately

d(t) = |m|min :zj a, sinc  (2Wt-2n) 4.3.16
n=—w
d(t) can be thought of as being the output of an ldeal low pass
fllter whose Impulse response Is sing:(2yt) and which Is exclted:
with rendomly positive and negative impulses of area |m|yi, and
occurring at regular Intervals of T. Thus the power spectrum,

Sq(f), of d(+) Is that of bandlimited whlte nolse.
Sq(f) = W rect (/W) 4.3.17
where w, the spectral density Is given by

w= |af /2 volt? /Hz 4.3.18

Thus, from equations 4.2.10, 4.3.14 and 4.3.17 the power denslty
spectrum of an analytic angle coded signal of small p Is

approximately glven by*

¥The power spectrum Sy (f) an analytic signal Is related to the
power spectrum of Its real part, SR(f), by

4SR(f), f >0

Satf) =2 s ) fu
(o ’
o f< o
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S¢e) = P E,t B [6({-’)4'6(1:..\(4)]' + 8 r‘ecﬂf/w-%)}} 4.3.19
when ‘

@ = 2A/C1+A%)
and

g = (1-A)2/(1+Ad)

This approximate expression for S(f), valid In the case of
extremely small p, is shown graphically in fig.4.3.3. and also
later In this chapter when 1+ Is compared with experimental

estimates of the power spectrum.

Case (I11) - Large p

Sectlon 4.2 showed that the envelope fluctuations of angle

coded signals, when p Is large, are very small. In fact, for
practical purposes they can be regarded as purely frequency
modulated signals. The Instantaneous frequency of a large-p angle
coded signal consists of a series of slowly varying V(+) functions
and so must Itself be a slowly varying function of +Ime. The
"purely FM" character of large p angle coded signals and the slow
vartéflons of their instantaneous frequency functions suggests
that the quas! stationary method of calculating ™M spectra Is
applicable.

- The Instantaneous frequency of random angle coded signal can
be regarded as beling produced by the operation of flltering a
sequence of randomly positive and negative Impulses with a fiiter
whose Impulse response is V(+), When p is large, V(+) Is.of much
larger duratlion than, T, the Interval between Impulses and so, at
any Instant, the Instantaneous frequency conslsts of the sum of

many quantities which have similar magnitudes but random signs.
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Fig.4.3.3. Approximate spectrum of random

angle;» coded signal (for p small).

S(f)

" Fig.4.3.4. Approximate spectrum of random
- angle coded signal (for p large).
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Under these condltlons the central limit theorem should apply
and the Instantaneous frequency, fi(f), should be a random functlon

whose probability distribution p(f}) is Gaussian. Thus

e e A2y 2
ptip) = 1 o ) /2fs 4.3.20

.2 /7w
The mean, fy, of the Instantaneous frequency for a random
angle coded signal lylng In the frequency range (O,W) is simply

W/2. The varlance, foz, ts given by

£2 = [ vin? gt

(2m)?

-0

since the successive V(T) pulses are uncorrelated and occur at the
rate of W per second. Thus
52 = W/(8ns)

= W/(8up)

When the quasi-stationary hypofhééls applies, the power of
a signal in a frequency band (f},f|+df) Is proporffonal to the
broporfion of the time that the Instantaneous frequency of the
signal lles within that band. Thus, the power spectrum, S(f), of

a large-p angle coded slignal of power P Is approximately given
by

S(f) = P/(fx/2m) exp E:-(f-fm)z/ZfoZ]

= (P 2/P/W) exp [-—(f—W/Z)Z 41rp/w2] 4.3.21,

This approximate expression for S{f) Is shown graphically In
£ig.4.3.4.] 7 .. One Indlcation
of the approximate nature of this expression is that It

Incorrectly indicates the spectrum fo be non-zero (although very

small) at frequencies outslde the range (O,W).




4.4 Spectra of Random Angle Coded Signals - Experimental

Computer experiments ("Monte Carlo" calculations) were
performed to verify the theory of section 4.3 and to establish
the range of validity of the approximations. The procedure used
was, briefly, as follows. The power spectrum of a periodlc
process (sect.4.3) was estimated by repeatedly choosing zero
patterns at random, computing Fourler coefficlen?s of the corresponding
angle coded signals and averaging the squared magnitude of eaéh
Fourler coefficlient over the set of generated signals. (An
estimate of the standard deviation of each estimate was produced at
the same time). The estimated periodic process spectrum was
interpolated to provide an estimate of the confinu!ng process
spectrum. These estimated spectra are displayed graphically later
In this sectlon, together with the theoretically derived spectral
forms of the previous section.

The outline of the computer program shown in fig.4.4.1.
requfres {I+tle explanation but the foliowing discusses some
particular points.

At stage (i) (fig.4.4.1) the roots Z, of the Fourier
polynomial are chosen to lie at regular anguiar Intervals in
the complex plane and randomly on a circle of radlus A or A-'.
This corresponds to choosing the zeros of the signal to lle at
regular Intervals T Tn the direction of the t~axis of the complex
TImelpIane and randomly at +s$.or -s In the direction of the o-axis.
The 'random' choices are made according to the outcome of whether
numbers produced by the pseudo random number generating routine

UTRI* e above or below the mean.

*Avallable at Loughborough Unlversity of Technology Computer Centre.

]



Read p, N,

Compute A = e

“2Mp

[

Select the N roots of the Fourier

Z, = A%n ejZﬂn/N'n= 1, .. ..N

where an is a (pseudo) random number

taking the values +1 and -1 with
equal probability- 3

polynomial

v

Evaluate the coefficients of the i th

polynomial from its roots

Evaluate Xpj= ]C,-]z, n=0,...,N
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Evaluate estimates

Xn= YmM

:

Punch results.

s

Fig.4.4.1. Flow diagram of spectrum estimation program,
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At stage (2), the standard scheme for computing the coefficfenis
of a polynomial from its roots proved to give totally IncoF?ecf.
results when 1+ was used with polynomials of order greater than
about 40, due to the accumuiation of round off errors. To
overcome this effect, a scheme was devised based on the dlscrete
Fourfer transform (DFT) which gave good accuracy with polynomlals
of order of at least 250. The detalls of this scheme are given
In appendix C.

At stages (3) and (4) the estimate of the power in the nth

spectral line X was computed as

M

E Xnt »

A=l

X, =1
"W

where Xni is the squared magnitude of the nth Fourier coefflcient
of the ith randomly generated Fourier polynomial. An estimate of
t+he standard deviatlon of +this estimate was taken as §h, defined

by the expression

2

>
A
u
=|—-
N
S
N
1
L

Xy)

where Xhz 1s computed according to the expression
- M
2 [ 2
n=l.

Dividing the estimates of the welghts of the spectral lines

of the periodic process by'N+l.gives estimates of the values of

the spectrum of the continuing process at the sample points.
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These sample values were Interpolated by straight lines In
plotting the estimated spectra. A vertical line of length
representing twlce the estimated sfqndard deviation of each
estimated polnt Is drawn with its cénfre on the point.

The results are displayed in figs. 4.4.2. = 4.4.10. The
theoretical form of the spectrum Is also shown on each figure;
the large p form the plots for the spectra of signals with p
greater than 0.5 and the small p form for the spectra of signals
with p less than 0.5.

The experimental results show good agreement with the
theoretical results. The agreement Is quite surprisingly close In
the case of signals of only moderafély large values of p.

In most of the experiments the signals which were studled had
63 zeros per period. To check that this was a large enough number,
the spectra of signals with 127 zeros per perlod were also
estimated (for the large p cases of p=4.0 and p=8.0). By comparing
flgures 4.4.7. and 4.4.8. with 4.4.9. and 4.4.]0. 1t can be
concluded that 63 zeros per perlod s a sufficiently large number
for the perlodic process to provide a good model of the continuing

process, except when p Is very large (greater than about 4).
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CHAPTER 5
ANGLE CODED SIGNALS FOR RADAR AND SONAR

5.1 Introduction

in a radar or a sonar system the transmitted slignal returns
delayed In time according to the range of the target and shifted In
frequency according to its velocity* (together with an amplltude
change and various disturbances). The classlc problem of radar
signal deslgn consists of choosing a waveform which permits targets
at varlous specifled portions of the delay-doppler shift plane to be
distinguished (In the presence of nolse).

The amblgulty func+lon5czz

provides a means of comparing the
resolution capabilitles of signals. Ideally I+ would be possible to
synthesise a signal directly to yfeld a specifled ambigulity function
but there are great theoretical difficulties In this approach.
Instead, what Is commonly done Is to choose a sultable waveform for
a glven appllcation from those signals whose amblguffy functions
have been cafalogueoZ? Phase moddlated signals are often used
because they require only simple and efficlent transmitter clrcults.
Because angle coded signals, for p large, bchave for pracflcal.
purposes as purely frequency modulated signals it might be expeéfed
(as Voelckerhas suggested) that they would be sultable for use as
radar signals.

In radar signal design one is concerned simultaneously with

the temporal and the specfral behaviour of signals. As mentloned in

chapter |, by the énalogy_w!?h root locus methods (which are found

* To a close approximation

5)
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useful when the time and frequency behaviour of |[inear systems are
of Interest), 1+ mlght be expected that zero based signal theory
would be useful In the design of radar signals.

This chapter shows that zero based methods can be useful in
radar slgnal design. In particular, a method 1s presented by which
an angle coded signal can be synthesised whose time~-frequency energy
density distributlon (appendix A) approximates some desired form.

The resulting signal Is «a dual of a Huffman "impulse equivalent"
pulse sequence*zé Appendix C, which represents a translatton of
\fhls chapter from time language Into frequency language, applies this

theory to the deslgn of Huffman sequences.

5.2 Synthesls of Zero Patterns

The signal design problem here princlpally consists of chooslng
the zero locations of an angle coded signal so that the energy
density of the slignal Is concentrated about some line in the +1me-
frequency (t-f) plane. Reference 24discusses the problem of choosing
sultable forms of +-f energy density distribution.

If the energy density of the signal s concentrated about a
line in the t-f plane which forms a single valued function of time,
then 1+ Is meaningful to speak of "the frequency at which the power
of the signal acts" at that time. A measure of this quantity, f (t),
Is glven by the normalised first moment of the real part of the
complex energy density funcflog§ e(t,f), (taken with respect to
frequency at a gliven Instant of time). Appendix A shows that thls
quantity Is glven by the Instantaneous frequency of the signal whether

or not this Is a slowly varying function of time. Thus the

*Polnted out, according to Prof. Voelcker,by Prof. TiH{sbaum




instantaneous frequency at a glven Instant of time represents the
"centre of gravity" of a cross sectlon of e(t,f) taken In the
frequency directlon at that Instant (fig.5.2.1.).

The instantaneous frequency of an angle coded signal can be
expressed very simply In terms of the zero locations (sect.4.2).
The Instantanecous phase derivative, ¢(t), can be thought of as being

produced by the convolution of the functlon

V(t) = S 5.2.1

with the Impulse serles

©

I = > @ 8(t-nT) 5.2.2
n=-w
together with the addition of the constant, k. o, takes the values
+| and -] according to whether the nth zero lies In the upper or

lower half planes. Symbolically,

(1) = V) * () + K 5.2.3

To produce an angle coded signal whose energy Is concentrated
about some llne, fy(t), in the +-f plane, I+ suffices to choose a
zero pattern which results In the Instantaneous frequency function
of the slgnal following this Iine. It can be seen from equations
5.2.2 and 5.2.3 that this Is equivalent to chooslng a sequence of
regularly spaced positive and negative unit Impulses which, after
being smoothed by convolution with V(1) and belng added fo K,
approximate f4(t).

A delta-sigma modulaforzs(fig. 5.2.2.) Is a system whose output
conslsts of a sequence of equally spaced positive and negative
Impulses the welghts of which are all of the same magnltude. |1 works

In such a way that Its output, when smoothed by a lowpass fllter, Is
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Fig.5.2.1. Instantaneous frequency as n»ormalised}
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Fig.5.2.2, ° Delta~sigma modulator.:
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transformed into a sigral which presents an approximation to Its
Iﬁpuf waveform. Thus If i+ Is requlred to approximate a function

by the convolufion of a sequence of impulses with a function having
the nature of the Impulse response of a lowpass fllter (as In the
present sifuaffoh) the impulse sequence can be found by applying the
destred function to the Input of a delta sigma modulator and
recordihg.1#s output.

The ImpulsevreSponse of the lowpass fllfeh_ln this case Is V() .
so that the zero pattern can be chosen by applylng 7% fq(t) (with
k/2n subfracted) to the Input of a delta-sigma modulator whose
sampling perlod Is T and whose output Impulses have welghts of unl+t
magnitude. A positlve Impulse from the delta modulator at the nth
samplingllnsfanf Indicates that the nTH zero should lle In the UHP;

a negatlive Impulse Indlcates that I+ should lle In the LHP.

5.3 Example of the Method

To illustrate the use of the methed the form of t-f energy
‘distribution sketched In fig. 5.3.1 was chosen as the deslred energy
distributlon. Thls cnergy distribution resembles that ofvfhe periodlc
repe+1+|oh of a |Ilnear FM pulse (which Is a commonly used radar signal).

The duration-bandwidth product of one period of this energy
distribution Is 34 which Implies that a periodic zero pattern with 34
zeros per period should be used. (when T, the spacing between zeros,
will be one thirty-fourth of the period of the energy: density
function). n '

The deslred inétanfaneous frequency function f4(t), corresponding

to this desired 1-f enehgy distribution is shown in fig. 5.3.2.




Fig.5.3.1. Desired t-f energy distribution.

f;t)

Fig. 5.3.2.

Desired

instantaneous

frequency function.
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A system similar to a delta-sigma modulator was simulated (by hand)
with f4(t) (less its mean value) as Input. One perfod of the
resulting Impulse sequencec was |
| (++ettttdtibdnfmimpmpormtmmmn———nn) |

The Fourier coefflicients of the resulting periodic angle coded signal
for various values of p are displayed In table 5.1 and plotted In
flo. 5.3.3. They were computed from the zero locations specified by
+the above sequence making use of the methods of section 2.3.

The complex energy density functlon of an analytic signal m(+)
Is deflned by

-Jzﬂf-'. 5.3" L

e(t,f) = m(t) M*¥(f)
If m(+) Is periodic, with pericd T and Is represented by a Fourier

series

nt) = S g od2TKHT | 5.3.2
e,
k=0.

its Fourter transform is a series of Impulses

N ,
M(f) = C, &(f~-k/T) 5.3.3.

Thus e(t,f) is glven by

N N

= ~J2n =K/t .
e(t,f) EE}A EEZ»CkCE* e §(f-2/T). 5.3.4.
=0. =0

o(t,f) conslists of lines running In the directlion of the t=-axis, and -
spaced at Integzr multiples of the fundamental frequency In the
direction of the f-axis.

To provide a display of e(f,t), the welght of each line (a time

function) was ploited by evaluating the expression
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-j2n(f-k/T)t

at 400 points and Interpolating with stralght lines (which are too
small to be percelved in the display). The form of display adopted

is similar to that used by Singleton and Poulfeﬁzf Each line welght

\
|
function, ez(f), has a constant added to I+ which represents the
frequency of the line. The line s then displayed as a conventlonal
x-y plot = with the exception that any portlion of a +racevwhich lies |
below a previously plotted trace is suppfessed to enhance the "3-D"
appearance. The results are shown In flgures 5.3.4 - 5.3.6.

The Instantaneous phase derivatlive was evaluated, also at

400 polnts, using the expression

3(t) = Im [ ity / m('l')]

= Im [(J'an ZNI' k ¢ IZMHT % ckejz"fk‘":/T 5.3.6.
k=0 k=0
In the computations, T was assignéd the value unity; this normalises
t+he scales of the resulting graphs.
The characteristics of the angle coded signals having the
syntheslised zero pattern (for various values of p) are shown plotted
in figures 5.3.7%.~ 5.3.9. These'plofs show -the envelope,'fhe real
and the Imaglnary parts of the waveform, the instantaneous frequency

and the real part of the +-f energy distribution. One period of each

function 1s shown, except for the t-f energy distribution, where for

clarity two perlods are shown.
|
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Fig.5.3.5.a Instantantaneous frequency of synthesised



Rels(t)l

._io“ﬂrM

o] | T N [t psT

F'ig.5.3.5.b. Real and imagi'nary parts of synthesised signal: p= 05.



Im(t)l

3 T e

Fig.5.3.5.c. Envelope of synthesised signal: p=205.







v

0
0 |

A3 —_—

I — T b

Fig.5.3.7;a. Instantaneous frequency of synthesised

signal: p = 1.0.




Relm(t)

et

°)

J

Im{m(t)]

il

7 Fig.5.3.7.b. Real and imaginary parts of synthesised signal:p=1.0.‘

0 | [ | T I

It I35T



Im(t)]

10

°l

Fig.5.3.7.c.

Envelopeof synthesised signal: p = 1.0. Envelopes

of

larger-p signals differ imperceptibly.



— -

:\/"“\\/\/\ /\/\ /\1/\\ //\\/,f\\f,r\ R N -
Y -0 v R ~ ot \ VA
“\/;" - - k/’ />Q> /"A ; - > ! ,"“"\.\/; \“’V/\ \ .’/ \/\-‘/ 5 / \ /\ f
e % \ i \ : ]
\ \//’,?:A o ">\/>:\/\\ { \/ ! /V\ \ [\/\ N
/(‘ B , ; . | / '

A
\ \
‘\

i
\ i
A \ - \ ! s
: \ \
TR AN
' \
\ \
TN N . : ‘\.‘ \_.
~.. SN, N
- ’ ’ Y N\ )
" ’/\/‘\\j ’\\/1 \‘\/ e \/\\/ \///\\j \k/'__“\—»\ \_/

e T e

!

WA \
VAVAY YAVAY: g N ,
A /\ VAVAVAVAY "\\\,// N

\/

o T e T TN e T e T T T T T T T T e T T T m e e

35T t 70T

Fig.5.3.8.

| | i I | | | | |

t-f energy distribution of synthesised signal: p = 2.0.




N e B B R S

Fig.5.3.9.a. Instantaneous frequency of syn thesised
signal: p = 2.0.




.
p—




57

5.4 Discusslion

Inspection of the plotted t-f energy denslty distributions
and the corresponding waveforms places in evidence the following
polints:
(1)  For signals having a value of p of about 1.0, the Instantaneous
frequency functlion provides a good approximation to the required
form.
(f1) For p small, f‘(f) presents a poor approximation to the desired
form. This Is also true when p Is large.
(111) The t-f energy density distribution of the large p signals is
concentrated In the region of the Ilne formed by the instantaneous
frequency function.
(Iv) The envelope fluctuations 6f the large p slignals are very small
"In magnitude. For practical purposes they can be viewed as purely

frequency-modulated slgnals.

From (1) above, It can be concluded that the zero pattern
synthesls schemé put forward In the previous sectlon provides a
means by which angle coded signals can be produced having a t-f energy
density distribution which approximates a desired form.

The fallure of f;(1) to provide a good approximation noted In
(11) when p Is elther too small or too large Is due to V(1) falling
In the first case fo provide sufficient smoothing of the impulse
Traln; In the second case, the width of V(1) results In excesslve
smoothing, so that f{(+) cannot follow the rapld changes In the desired
Instantaneous frequency form.

Tée "EM-11ke" nature of the angle coded slignals wlth p largs,
noted in (Tv) (as In sectlon 4.3 ) implies that a transmitter for
such slignals can be simple and efficient; a class-C final amplifier

can be used In the output stage.
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The time-frequency dual of an angle coded signal Is a
Huffman pulse sequence. Huffman sequences have the property that
+helr autocorrelation functions are zero for all time shifts greater
than the length of one pulse of the sequence and less than one
pulse length less than the sequence duration. Thus Huffman
saquences (which because of thls property are called "impulse
equivalent") can provide excellent resolution between targets of
known veloclty and differing. ranges. An angle coded signal,
by the dual of this statement, should provide excellent resolution
between targets of known ranges and differing velocities. Thls can
be seen by consldering the ambigulty function of an angle coded
signal for zero time shift (corresponding to a farget of known
range):

00

%.(0,1) =J n(t) m*(teo)e 2T gt 5.4.1

This is simply the Fourler transform of the squared envelope of the

signal, which from section 4.2 (equation 4.2.6. and 7) 1Is glven by
~

x{o,z) = P [;jS~ SCF=1/T) + s(£) = A §(f+1/T) 5.4.2

| +AZ Y.

The amblgul?y function, for zero time shift Is thus zero for any
frequency shift less Thanlfhe bandwldth of the signal (apart from
zero frequency shift). By analogy with the term "impulse equivalent”
angle coded signals might be termed "spectral line equivalent".

An angle coded signal is thus a good slgnal for resolving targets

of known range and differing veloclties. This Is perhaps an
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academic observation, as 1t Is dlfflcult to visuallse a situation
In which the velocity of a target Is unknown while its range
remains known.

To conclude, a method has been presented by which angle coded
signals can be synthesised so as to have a desired t-f energy
density distribution. It must be admlffed; however, that it Is
not obvious that an angle coded signal Is greatly preferable to a
signal produced (for example) by directly frequency modulating a
carrier with the desired Insfénfaneous frequency function.
Attributes of the angle coded signal which might conceivably be
useful are Its sfficf bandlIml+edness and I+s "spectral line
equivalent" property. The author belleves that the results of this
chapter are of more general usefulness when translated from time
language Into frequency language and applied to the design of

Huffman pulse sequences. Thls Is done In appendix B.




CHAPTER 6

HILBERT TRANSFORM NETWORKS

6.1 Introduction

The work of chapters 4 and 5 of this thesis deal with analytic
angle coded signals. To make practical application of analytic
signal theory some form of Hilbert fransform nefwork Is necessary.
in addition to applications of the present work, Hil;er+ transform
networks are of impoffance in :

(1) single-sideband data transmission

(i1) vestiglal-sldeband transmission of felevision signals27
(i11) minimum phase modulaﬂon28

(iv) real-zero In'rerpola*t'ion'4

As Gabor explainedlé a physical Hilbert transform network
must inevitably involve some form of signal storage and delay. The
difficulty of constructing a Hilbert transform network becomes
evident when the "quantity of information" (in the Nyquist sense)
that must be stored is considered.

The minimum bound on the delay which must be provided by a
Hilbert transform network is set by the need for it to give a 90°
phase shift at all the frequencies within its working range. This
implies that the delay period cannot be less than one quarter period
of the lowest frequency, f| at which the network is to operate.

By the sampling theorem, to specify a lowpass signal whose
upper frequency is'fH, the signal must be'sampled at a rate of at

least 2f The total equivalent number of slignal samples, Ng,

Ho

6o



which must be stored by the network must exceed the product of

the minimum time delay and the sampling frequency :

Ne > (ZfH)/(4fL)

S

that is,

Ng > Ty / 2f) 6.1.1.

This formuta illustrates at once the difficulties which are
involved In making Hilbert transform networks to handle signals
of large "frequency ratio" (fy/f). For example, to form the Hilbert
+ransform of signals covering the frequency range 50 Hz to 10 kHz
requires at a minimum the storage of the equivalent of 100 signal
samples. 1+ Is to be concluded that Hilbert transform networks
to cope with large frequency ratio signals must inevitably be
complicated, having many degrees of freedom.

The observation that the Hilbert fransform networks of
Gourie+27and tyannoyzgused an equivalent number of stored samples
more than twice the minimum number set by the above theory led
to the development of the "simplified quadrature network" which

Is reported in the reprinted letter which follows.



SIMPLIFIED QUADRATURE NETWORK

The number of sections in the delay line of a quadrature
network can be halved by replacing one half of the line by an
RCnetwork. Measured characteristics of an experimental
network are presented.

Ln ideal Hilbert transformer, or quadrature network, would
lave constant gain and /2 phase shift at all frequencies. The
npulse response of such a network would be!

b that its output signal would depend on both the entire
hiture and past of its input signal. Practical approximations
b the ideal quadrature network incorporate some form of
elay to ‘convert the future into the past’.2 Thus a quadrature
etwork has two outputs: a delayed replica of the input signal
he in-phase output) and the quadrature version of this out-
ut. The time that the in-phase signal must be delayed
epends on the lowest frequency that the quadrature net-
ork must handle.

An artificial delay line provides a practical means of
roducing the required delay. Quadrature networks have been
hade!:? which use the delay line in a transversal filter,
here an approximation to the ideal impulse response is

]

, .

A ! B 8
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3o 5’% : % ------------- % current operated

1) ! amplifier
delay 2T
l . s(t-T)
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ig. 1A Quadrature netwark using delay line
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O

ig. 1B Simplified quadrature network _

ade straightforwardly by adjustment of the weighting
sistors connected to delay-line taps (Fig. 1A). However,
sed in this way, the total time delay provided by the line
ust be twice the period T that the in-phase signal is delayed.
The number of sections required in the delay line can be
alved by terminating it with a short circuit,* so that reflection
ccurs and its length is effectively doubled. In practice, when
is technique is used, attenuation in the delay line causes the
mpulse response of the quadrature network to be not truly
dd, which results in phase error. Using this method, the

(o}
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phase difference between outputs,deg

frequency Hz

ig. 2 Frequency response of quadrature network
¢ X X calculated gain ’

ttenuation cannot be compensated by adjustment of the
veighting-resistor values.

The method proposed here allows compensation of
ttenuation in the delay line. It can also be applied to digital
Jilbert transform networks® and analogue quadrature net-
vorks, in which the necessary time delay is obtained by means

h(t)=1—1-t...........(1)-

eprinted from Electronics Letters, Vol. 4, No. 6, 22nd March 1968 6L

Fig. 3 Response to square-wave input

other than a (theoretically) lossless delay lme (e.g. the
transistor delay network of Krause9). -

The quadrature output signal §(r — 7) has two com- .

ponents: one depends on the future of the in-phase output
signal s(t — T), and one depends on its past. In Fig. 1A, the
half A4 of the transversal filter forms the component which is
dependent on the future of the in-phase output signal. The
use of some form of storage such as an artificial delay line is
unavoidable here. The half B forms the component dependent
on the past of the in-phase signal. In principle, this half of the
transversal ﬁlter can be replaced by a simpler network
(Fig. 1B).

For the phase difference between the delayed input signal
(i.e. the in-phase output) and the quadrature output to be
/2, it is sufficient that the impulse response at the quadrature
output is odd about the ordinate ¢ = 7. However, unless this

_has the form described earlier, which, of course, requires an

infinite delay, the gain will vary with frequency. Nevertheless,
it is possible to find an impulse response of which the part
corresponding to positive time (¢ > 0) can be realised by a
simple RCnetwork and yet which yields a quadrature network
whose gain is sensibly constant over some quite wide fre-
quency range, even though its impulse response is quite a
crude approximation to the ideal.

As an example, for the construction of an experimental .

network, this part of the impulse response was chosen to be
of the form °

g(t) = Ae~9e  Be~w#t fort> 0}

=0 fort <0 @

which can be realised without difficulty using a simple active
RCnetwork to replace the second half of the transversal filter.
The transfer function of a network with the odd impulse
response of which eqn. 2 is the positive time component is

jo(w? + w?)
(w? + wi)(w? + wf)

The operating-frequency range of the quadrature network was
set by the delay line used; the lower limit was set by the
limited delay of the line and the upper limit by its cutoff
frequency. w, and w; were chosen to lie within the working
angular-frequency range, close to its limits. w, was made the
geometric mean of w, and w,, so that the gam/frequency
characteristic had two peaks of equal height.

Fig. 2 shows the calculated variation of gain with frequency
of a quadrature network whose impulse response is

h(t) = k(e~1780M1 4 10e-178%0y son (1) . . . ()

this being the inverse transform of eqn. 3 with the chosen
values of w,, wy and w,.

Also shown are the measured gain and phase characteristics
of an experimental quadrature network designed to have this

H(jw) = K 3

impulse response. Fig. 3 shows the in-phase and the quadra-

ture output waveforms in response to a square-wave input
signal.

The experimental quadrature network uses an active RCnet-
work in place of the second half of the transversal filter. The
first half uses a constantk artificial delay line (used because
suitable inductors were available), giving a total time delay
of 1:-85ms. The weighting resistors were adjusted to com-
pensate for the increase in attenuation along the line.




The delayed in-phase signal is differentiated and added to
the output signal.? This improves the frequency response and
the closeness of the phase difference between the outputs to
/2. ]

Truncation of one of the components of the impulse
response due to the finite length of the delay line produces a
deviation in the phase difference between outputs from /2.
Calculation shows that the phase error due to this cause is
small, in the working frequency range, compared with that
due to the imperfect characteristics of the delay time. Phase
error is also introduced by the time-discrete approximation to
the continuous impulse response made in the transversal

filter. . )
The writer wishes to thank J. W. R. Griffiths for helpful

discussions.

M. H. ACKROYD . 15th February 1968

) Department of Electrical Engineering
"y University of Technology,
i Loughborough, Leics., England
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6.3 Realisation of Hllbert Transform Networks.

The following approaches to the construction of Hilbert
transform networks (as opposed o 90° phase~difference networks)
have been suggested or used :

LA Transversal filters using artificial delay IinesZ7'28’29

(rn Time varying nefworks30(ln essence, combined SSB modulator
and demodulator)

(111) Expansion of the impulse response in orthonomal funcflonsg‘

(iv) Non!inear networks with shift regisferész(for use with
clocked binary inputs only)

(v) 90° bhase difference network with transversa!l filter delay
equal lser33.

(vi) Shift register transversal ﬂlfer534

(for use with clocked
binary inputs).
(vii) On-line digital computer.

In the future, the last two methods are likely to be of
lmporfénce. Unlike an analogue artificlal delay line, there is no
Iime to the time delay that can be obtained using a shift register
(while malnfaining a given time resolution). In conjunction with

a delfa-modulaforsﬁo 34

r a conventional analogue-digital converter
t+he shift register transversal filter scheme can be adapted to
handle analogue signals. This scheme also has the attractlion that

it could be realised in micro-miniature form.



CHAPTER 7
Conclusions

This thesis reports Investigations Into the problems of
specifyling bandlimited signals In terms of thelir complex-time
plane zeros and Into tho properties and uses of signals synthesised
In ferms of their zeros.

Zero-based signal theory Is evidently no panacea. |In
particular, the relations between |inear effects (filtering and
+the additton of nolse) scem fo be particularly intractable.

This s perhaps to be expected; the polynomial root-coefficlent
relationship problem has Interested mathematicians for many years
and yet remains |ittle understood. The problem of the effects

of lincar flitering on frequency modulated signals, too, although
much studled, is not well undorstood. In view of the complexity
of nolsc effects and the non-recfangularffy of thelr spectra,
there is no clear reason why the angle coded signals of chapter

4 should bc used In a communicafion system, rather than more
conventlonal signals which are simpler to generate.

Zero based signal theory seems most likely to be of use
In the study of situations where signals are multiplied or where
| tnear operations are performed on the logarithms of signals.

One such situation Is the study of homomorphic filfer!n§Y7where
the logarithm of a signal Is applied to a linear fllter. The
homomorphically filtered signal 1s produced by forming the
exponential of the output of the linear filter. However It Is
not obvious how to apply zero based signal theory as the

output of a homomorphlc filter is generally not bandlimited

even If Its Input is.
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The relationship between the zero pattern of a signal
and its t-f energy density distributlon might be capable of
development In greater detall. One can speculate that this
might be uséful in studying speech problems.

The theory of short-time spectra, which Is of practical
use In the experimental study of time varying systoms,is far
from being complete. In particular, procedures for computing
best" estimates of the spectra of time varying processes from

experimental measurements need o be developed.
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APPENDIX 'A!

The Time~Frequency Energy Distribution of Signals

A.l. Introduction

The concept of the Time-frequency (t-f) energy density
distribution of a signal was found useful in chapter 5. Section
A2 of this appendix is a reprint of a paper which provides an
introduction to the notion of the t-f energy density distribution
of a real signal. The complex +-f energy density distribution
of a complex signal has been discussed by Rihaczek38 but without
emphasis of its physical interpretation. In order to give a
physical inferprefafioh, section A3 discusses the significance
of power when analytic signals are Involved. Finally, section A4

presents some propeffies of the complex t~f energy density

distribution of a complex signal.
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Instantaneous and Time-Varying Spectra—

An Introductlon

Several definitions of ‘time-varying",
By spectra exist.

‘short-time’ and ‘instantaneous’
The paper relates these to the time-frequency energy

distribution of a signal and to the time-varying power spectrum of a

M. H. ACKROYD, B.Sc.t

non-stationary random process.

The -treatment emphasxzes physical

interpretation, rather than mathematical ngour

List of Principal Symbols

e(t,f) time-frequency energy density dlstrlbutlon of
a signal _
e(t, f) version of e(t, f) smoothed in the ¢-direction.

E energy
E; - total energy
f frequency
Af frequency interval

G(f) ‘short-time’ spectrum according to Fano.
h(t) impulse response
H(f) transfer function corresponding to 4(t)

i(t) current

p(t,f) ‘instantaneous spectrum’ according to Page
P(t,f) time dependent power spectrum of a random
~ process
q(®) power
R(t, ) time dependent autocorrelation function
Re () ‘real part of (- )’
s(1) signal as a time function
S(f) Fourier transform of s(¢)
t time ‘
At time interval _
T effective duration of a signal or an impulse
response
S u(t) unit step function
w effective bandwidth of a signal or filter
X(f) reactance
Y(f) admittance
(—.—) ‘ensemble average of (- )’

1. Introduction

For the usual purposes of time-invariant system
analysis it is sufficient to consider a signal as a function
of time alone or as a function of frequency alone.
However, in certain situations (which are usually
associated with the study of time-varying linear
systems) one is concerned with both the time and the
frequéncy characteristics'of a signal at once. One such

t Department of Electronic and Electrical Engineering,
University of Technology, Loughborough, Leicestershire.

The Radio and Electronic Engineer, Vol. 89, No. 3, March 1970
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situation is in the study of speech and the vocal
mechanism.’*?  Another is in radar system theory
where signals suffer both a time delay and a frequency
shift between being transmitted and subsequently
being received after reflection by a moving target.3:#

Intuitively, it is evident that the energy of a signal
does have a distribution in time and frequency in
some sense. For example, the acoustic energy of a
short blast on a whistle is ‘obviously’ located both at

the frequency of the note which is blown and at the

epoch in time when the whistle is sounded.

. Many definitions of ‘short-time’, ‘instantaneous’

~ and time-varying power and energy spectra can be

found in the literature.® In addition various
instruments have been constructed to measure short-
term spectra.% ! Thus further implicit definitions of
short-term spectra couched in the mechanisms and
parameters of these instruments have been introduced.
The questions arise: How are these definitions related ?
Can they be regarded as approximations to some
‘exact’ or ‘true’ instantaneous spectrum? How are
they to be interpreted in physical terms?

In what follows it is shown that an exact definition
of e(t, f), the energy density distribution in time and
frequency of a signal, can be made. This definition
applies whether the signal is deterministic, such as a
pulse of specified shape, or whether it is random. If
signals originate in a random process, then each
individual signal from the process has its own energy
distribution in time and frequency. The time-varying
power spectrum. of the random process, P(t,f), is
found by averaging all the possible energy density
functions in accordance with their probability of
occurrence.’>'®  In other words, P(t,f) is the
average of e(t, f) over the ensemble. P(t, f) itself, for
a well defined random process is not a random
function any more than is, for example, the mean of
the process. ‘

The short-term spectrum measured according to a
particular definition can be interpreted in two ways:
it provides an approximation to the time-frequency
energy density distribution of the signal and it can also
provide an estimate of the time varying power spec-
trum if the signal is a random one.
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_physically realizable.
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Xtf)

it
o> Xx(f)
Fig. 1. Idealized circuit.
stt) T % (I
Fig. 2. Reactance of idealized circuit element. -
o , ' T AR T

.2 Energy Density of a Slgnal in Time and

Frequency

This section derives an expression for the distribu-
tion of the energy of a signal in the time-frequency
plane.®

Replacing the real signal by the analytic signal?
would have allowed the mathematics to have been
made slightly more elegant and would have given
substantially similar results. However, the conceptual
difficulties involved in assigning physical meanings to
the various results would have been increased
(although this can be done in a satisfactory way). To
minimize the difficulties of visualizing the results, the
analysis is presented in terms of the real signal. -

The definition of the energy density function can be
understood by considering -the circuit shown in
Fig. 1. X(f) is supposed to be a purely reactive
circuit element having infinite reactance at all fre-
quencies except over a narrow band where it has zero
reactance. The reactance of this element is shown
diagrammatically in Fig. 2. The admittance between
the terminals of the circuit is

Y(N)=1, fi<|f|<fi+AS,

. =0, otherwise.

Such an idealized admittance function is not
However, it is nevertheless
possrble to calculate the current that would flow in the
circuit in response to a given voltage waveform.

From the waveform of a signal, s(¢), the distribution
of its voltage as a function of frequency is given by the
Fourier transform

S(f)=

j s(t) exp (—j2n [t)dt ...... 2)

Conversély, the waveform is given by the inverse
transform‘

s(t) = J' S(f) exp (]27rft)df eeeee(3)

Applymg the signal s(t) as a voltage to the terminals of
the circuit, the current that flows only has frequency

t The analytic signal35- s a complex function of time. Its
relation to the réal signal is simple; the analytic signal is derived
by doubling the amplitudes of the positive frequency components
and eliminating the negative frequency components of the real
signal. As an example, the analytic signal correspondmg to the
real signal A cos Q¢ [— Af2(exp jQt+ exp —jQ2¢)] is A exp jQt.
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‘ i(t) =

components lying in the frequency range f; to f; +Af.
The waveform of the current is given by the inverse
Fourier transform

Ji1+Af

f S(f) exp (j2r f)df +
+ f S(f)eXp(J2nft)d,f

~2Re [ f 'Sty exp (J27ffl)df]

The power enterrng the terminals of the circuit is
given by the product of the applied voltage and the
current which flows:

q(t) = s(1)i(®)
Thus the energy which enters the circuit between a
time ¢, and ¢, + At is given by
ty At
E= [ s(®i()d:
31
This quantity is defined as twice the part of the energy
of the signal contained in the frequency range f; to .
Si+Af and in the time interval ¢, to ¢, + At in the

t-f plane. Thus the energy density at ¢; and f; is
given by B
e(tl, fO) = lim 1E/AtAS . )
At~ 0
Af—0

Substituting equations (4) and (6) into (7) and writing
t and f'in place of ¢, and f; gives

e(t, f) = s(t) Re [S(f) exp(j2nfD)]
This is the required expression for the energy density
distribution in time and frequency.t

h s(t)

IWAW/ WA/
RVAVIYATEg

Fig. 3. Pulsed carrier signal of example.
(Shown for T = 4.0, fo = 1:0.)

T Reference 18 derives the complex energy density function of
the analytic signal. The present definition appears in reference 8.

The Radio and Elect™:nic Engineer, Vol. 39, No. 3



Example .
The pulsed-carrier signal shown in Fig. 3 can be
written (using Woodward’s rect function®t)

s(t) = A rect (t/T) cos 2nfyt.

The corresponding energy density function is
2

e(t, f) =% rect (¢/T) x

[cos 2a(f+fo)t+ cos 2n(f—fo)t] ><
[sin a(f+fo)T sin n(f—fo)T]
n(f+/o) (f—fo)

which is shown graphically in Fig. 4. Note that as T,
the duration of the pulse, is increased the spread of the
energy density on each side of the carrier is reduced.
Eventually, as T becomes infinite and the signal
becomes a pure cosine wave, the whole of the energy
_ density becomes concentrated at the frequency of the
carrier. '

The example illustrates that, for values of ¢ where
the signal is zero, e(t, f) is also zero. If the waveform
of the example were applied to a bank of bandpass
filters and square-law envelope detectors in the
arrangement traditionally used to measure ‘short-
term’ spectra, the output voltage of each filter would
not immediately fall to zero at the end of the input
pulse. Instead, it would die away gradually due to the
response time of the filter. In fact, the function of
time and frequency measured by a filter bank is an
approximation to e(t, f), as explained in Section 4 of
this paper. - .

The function e(t, f) is symmetrical about the time
axis; the negative frequencies merely mirror the
positive frequencies: . :

e(t, f) = e(t, —f).

This results directly from the symmetry properties of

the Fourier transforms of real signals. Thus in
plotting e(t, f) it is only necessary to consider positive
values of f.

Integrating e(#, ) over all values of f gives the
energy density. (that is, the power) of the signal at
time . This is readily verified by integrating equation

®):
I et N = s(?

Similarly, the energy density spectrum of the signal is
got by integrating e(z, f) over all time; :

T ett, pyit =[SCHP?

1 The rect function is defined by

1, <72
rect () =o' 11| > T)2.

March 1970

Fig. 4. Sketch of e(¢, f) of example. Note: Cross-sections at
f=1:0,1-3, 1-9 are shown.

The total energy of the signal is thus found by inte-
grating e(t, f) over the whole time-frequency plane;

[ T ett, f)de df = By

-0 —®

There exists a misconception that it is not possible .

to measure exactly the ¢—f energy density function of a

given waveform and that this is a consequence of

Gabor’s uncertainty relation.!®  However, the
uncertainty principle of waveform analysis is not
concerned with the measurement of t—f energy density
distributions: instead, it states that if the effective

bandwidth of a signal is W then its effective duration"

cannot be less than about 1/W (and conversely, the
bandwidth of a signal of effective duration T cannot
be less than about 1/T). In fact, given the waveform of
a signal, its ¢-f energy density distribution can in
principle be computed exactly using the defining
relation (8). However, if e(t, /) is measured approxi-

“mately by the use of a bank of bandpass filters each

having a bandwidth W, then it is evident that varia-
tions of e(z, f) in the f-direction which are finer than
W will be obscured. If the effective duration of the
impulse response of each filter is 7, then details of
e(t, f) in the ¢-direction which are finer than T will be
obscured. The only sense in which the uncertainty
principle applies to the measurement of 7—f energy
distributions is that it prohibits filters from having
both short impulse responses and narrow bandwidths
(as the impulse response of a filter, like any other
signal, is subject to the TW > 1 uncertainty relation),
Thus a bank of fixed bandwidth filters cannot provide
both good spectral and good temporal resolution
(although the resolution may be entirely adequate for
practical purposes, of course).

Exactly parallel limitations on resolution apply
when short term spectral analysis is performed by the
process of multiplying the time waveform by con-
tiguous ‘time window’ functions to produce a succes-
sion of short waveforms which are each subjected to
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Fig. 5. Non-stationary (time varying) noise source.

Fourier analysis to produce a succession of cross-
sections of a short-term spectrum. (The use of this
procedure is described in detail in reference 20.)

3. Power Spectra of Non-stationary

Processes?-17

A non-stationary process is one whose statistics
vary with time. Here, one is interested in processes
which are non-stationary in the wide sense, that is,
with processes whose mean or whose autocorrelation
vary with time. Figure 5 shows a model of a particular
non-stationary process. Stationary white noise (from
an ideal noise diode held at constant temperature, for
example) is applied to a time-varying attenuator.
Intuitively, one feels that the output signal has a
time-varying spectral density.. Many non-stationary
processes can be represented as a time-varying net-
work excited by a stationary random process.

The autocorrelation of a real process is defined
‘ R(t, ) = s(t)s(t+7)
The line above the product indicates that the en-
semble average is to be taken, that is, the product is to
be averaged over all possible pairs of values of s()
and s(z47) in accordance with their probability of
occurring jointly. R(¢, t) exists for signals whose total
energy is finite and also for signals whose total energy
is infinite but whose average power is finite.

Taking the Fourier transform of equation (12) with
respect to 7 and denoting it by P(¢, f) gives

P(t, f) = _f° R(t, 7) exp (=j2nfo)de

oo

= f s(t)s(t+1) exp (—j2nfr)dc

-0
Assuming that the order of averaging and integrating
can be interchanged, and that the F-transform of
s(t) exists,T equation (13) becomes

P(t, ) =s(t) | s(t+7) exp (=i2nfr)de

= s()S(f) exp (j2nf1)

- Equation (13) is the time-varying analogy of the

‘Wiener-Khintchine relation, which states that the
power spectrum of a stationary random process is the
Fourier transform of its autocorrelation function.

1 These assumptions are always satisfied for physical signals.

_ The requirement for the Fourier transform of s(¢) to exist can be

relaxed by the use of the generalized harmonic analysis.
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veeeee(13)

P(t, f) is generally a complex function, in contrast to

the purely real power spectra of stationary processes.
This happens as R(#, t), unlike the stationary case,
is not generally an even function in 7.

The real part of P(¢, f) is the ensemble average
value of e(t, f) as given by equation (8). The physical
interpretation of this quantity is that Re [P(¢;, f1)]AS
is expected value of the power entering the circuit of
Fig. 1 at time ¢, when s(¢) is applied as a voltage
across its terminals. The imaginary part of P(z, f) is
of no direct interest here, but the following brief
discussion explains its significance in a different
context. R

Had the analytic signal been used in the foregoing
arguments, then P(¢,f) would have played an
analogous part to the ‘complex power’ of a.c. phasor
theory.?! Its real part would have represented the
power entering the circuit of Fig. 1 and its magnitude
the volt-amperes. As in the case of complex power,
the imaginary part has little physical significance but
is useful in analysis in that it provides the discrepancy
between the real part and the magnitude of P(z, f) in
the correct way. ) )

Relations similar to (9), (10) and (11) apply to
P(t,£).1%17 The ensemble mean power of the signal
is given by

I PeHY=50?

The expected energy of the signal, if it is finite, is given
by

§ [ P fafde=E;

-0 =—w
By integrating P(z, ) with respect to time in the case
-of a signal of finite energy, or averaging over time in
the case of a signal of finite power, it is possible to
define a mean energy (or power) spectrum of the
process. This is discussed in detail in references 16
and 17.

4. Short-term Spectra—Relations between
Definitions . ‘
Many definitions of short-term spectra exist, as

was mentioned in the Introduction. Some were

introduced to provide Wiener-Khintchine-like rela-
tionships with corresponding short-term autocor-
relation functions”*? and others to accord with the
results of physical measurement, being cast in terms
of the past and present values of the signal.®*® This

Section shows that the various definitions can be

regarded as approximations to e(z, f).

The block diagram of the system which produces

e(t,f ) from s(z)is shown in Fig. 6. The relationship

between this block diagram and equation (8) becomes

The Radio and Electronic Engineer, Vol. 39, No. 3
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hit)=
cos2mfit

sit) elt,f)
. MULTIPLIER |—O

]

Fig. 6. Scheme for measuring e(t, f).

clear when it is realized that Re [S(f}) exp (j2nf18)] is
simply the response to s(t) of the system whose
impulse response is

h(t) = cos 2nf;t
This is not a physically realizable system as its impulse
response is non-zero for negative t. Nevertheless, its
output can be calculated or it can be simulated.** The
transfer function corresponding to the impulse
response A(t) is ,
H(f) =3[6(f+f)+o(f=fD] .. (18)
which represents a filter having an infinitely narrow
bandwidth (Fig. 7).

AHif)

=1, 1, 7

Fig. 7. Transfer function of ‘ideal’ filter.

4.1. Page's Definition

Page® defined an ‘instantaneous power spectrum’

in terms of a ‘running transform’;

S() '=_'{° s(z) exp (—j2nfr)dr  ...... (19)

The running transform depends only on the past and
present values of the signal and not on its future
values. His instantaneous spectrum was defined as
the rate of change with time of the squared magnitude

of S(f): -
0
Pt f) = 5 S|
Equatfons (19) and (20) can be manipulated into the

. alternative form

p(t, f) = 2s(t) Re [S(f) exp (j2nf1)]
Now Re [S,(f1) exp (j2nf;t)] can be shown to be the
response to s(¢) of a filter whose impulse response is

h(?) = u(t) cos 2nf;t

...... (20)
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...... Qe

Hif)

= , f f

Fig. 8. Transfer function of . physically realizable filter of

equation (23).

where u(t) is the unit step function. This impulse
response is physically realizable in the sense that it is
zero for negative 7. The transfer function correspond-
ing to this impulse response is

H(f) =jf2a(f{~f*)
whose magnitude is shown plotted in Fig. 8.
p(t, f,) is thus produced (except for a scale factor)

by a system having the block diagram of Fig. 6 in

which the ‘ideal’ filter of equation.(18) is replaced by
the less perfect (but realizable) filter of equation (23).
p(t, f) can therefore be thought of as an approxima-
tion to e(¢, f) with poorer spectral resolution.

4.2. Fano's Definition

Fano’*? defined a ‘short-time’ power spectrum by
the expression :

(A scale factor which is not of interest here is omitted.)
This definition was chosen by Fano as being the
Fourier transform of a ‘short-time’ autocorrelation
function. Equation (24) can be rewritten '

G(f) = _f s(t) exp [ —a(t—1)] cos 2z f(t—1)dt{*+
+ _f 5(z) exp [ —a(t—7)] sin 2nf(t—1)dr |>......(25)

Thus G,(f,) is produced by the system whose block
diagram is shown in Fig. 9. The signal is applied
to two filters whose impulse responses are
u(t) exp (—at) cos 2rnf;t and u(t) exp (—at)sin 2nf;yt
and the outputs of these filters are squared and
added to yield G (f;).

hytt)= .
ult}e""'wsz"f]t | SQUARE ____1
sit) &)
’ ADD Lo
hy(t)=
uttye~tsin2mfie [~ SOQUARE ___J
Fig. 9. Scheme for measuring G.(f).
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hit)=cos2mfit

stt) esltf)

MULTIPLIER LOWPASSA (t)/ —o0

l

Fig. 10. Scheme for measuring e.(t, f) (e(t, f) smoothed in the
t-direction).

[y

Suppose that in measuring e(t, f) the fine structure in
the t-direction is of no interest. This irrelevant detail
can be removed by smoothing e(z, f) in the z-direction
with a low-pass filter. Figure 10 shows the block

diagram of a system to produce e(t, f;), the smoothed

version of e(t, f;). This is simply the system of Fig. 6
which produces e(t, f1) with the addition of a low-pass
filter at its output. The smoothed version of e(t, f) can
be expressed by the convolution integral

eft,f) = I e(t, fHh(t—1)dz

where h(t) is the 1mpulse response of the low-pass
filter. Equation (26) becomes, on substituting the
defining relation for e(z, f),

q@ﬁ%ReLr&ﬂwMﬂﬁm@MPﬂa]

...... (26)

= Re [S(f) exp (j2nf1) x

fws(r) exp[ —j27tf(t—‘c)]h(t—7:)d1] ....... 7

-0 E

e(t, f) can thus also be calculated by the scheme

shown in Fig. 11, which is the block diagram repre-

sentation of equation (27). The similarity between

Fig. 9 and Fig. 11 becomes exact if, in Fig. 11,

(i) the filters having impulse responses cos2nft and
sin2rft are replaced by filters having impulse
responses

- (—af) sin2nft, respectively; and

(ii) the impulse response of the low-pass filter, A(z), is

given by
h(t) = u(f) exp (—at)
From the similarity of these block diagrams it is
evident that Fano’s definition of the short-term

- spectrum, G(f), can be thought of as an approxima-

tion to e(t, f).

4.3. Other Definitions

The definitiorr of e/(¢, f) given above (in which h(t)
can be any low-pass filter impulse response) was
termed by Schroeder and Atal® a ‘short-time spectrum
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u(t)exp (—at) cos2nft and u(t)exp

of the second kind’. This definition was used by them
as it is the Fourier transform of a corresponding
short-time autocorrelation function.

Their ‘short-time spectrum of the first kind’
represents a generalization of the short-term spectrum
of Fano in which the simple band-pass filters of Fig. 9
are replaced by band-pass filters of a more general
form. Their ‘short-time spectrum of the third kind’
is measured by a system similar to that used in
measuring ez, /) in which the ideal band-pass filter
is replaced by a physically realizable one. All these
definitions thus provide approximations to e(¢, f).

The effect of using non-ideal band-pass filters in the
various short-term spectrum measuring systems is to
give reduced spectral resolution which 'is equivalent
to a smoothing of e(t, f) in the f-direction. The
various definitions of short-term spectrum thus
correspond to modifications of e(t, /) made by smooth-

ing in the ¢- and f-directions w1th various weighting .

functlons

5. Measurement of Short-term Spectra

Roughly speaking, situations in which a short-term
spectrum is to be measured can be placed in two
categories, although the division between categories
is by no means clear. In one category, the signal
itself is the prime object of interest, for example in
sonar signal design. - In the other category, the
principal object of study is not the signal as such, but
rather the process from which it originates. Examples
here are the spectrographic study of the speech
forming process and seismology.

‘In the first category, the ¢—f energy distribution is
required, perhaps in the finest detail possible. The
finest possible detail is provided by computing
e(t, f) directly from its defining relation.t However,

—] cos2mft —

MULTIPLIER

L—{hit)cos2mpyt T

sit) e (.1}
© Om— ADDER —o0

»
l—A sin2mfit

1

MULTIPLIER

L htt)sin2mfy t ——

Fig. 11. Alternative scheme for measuring e.(¢, f).

+ This can be done economically by using the fast Fourier

transform algorithm. Reference 22 is an entire issue devoted to

this subject; reference 23 gives a FORTRAN sub-routine.

!
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the fine structure of e(¢, f) (such as its fluctuations over
a period of one or two cycles of the frequency con-
cerned) may be of no interest. Then a degree of
smoothing can be provided in the t-direction by an
appropriate choice of A(¢) in computing e(?, f) as
given by equation (26).

In the second category of situations, one often

.wishes to estimate the power spectrum of a time-’

varying random process. If P(¢, f) changes with time

at a rate which is of the same order as the rate at -

“which the signals fluctuate, there is little that can be
done with a single signal. With a set of signals from
the process, however, e(t, f) can be computed for each
member of the set and the average taken to yleld an
estimate of P(t, f). -

If the time variation of P(¢, f) is slow compared with
the rate of fluctuation of the signal then P(¢, f) can be
estimated by smoothing e(?, f) calculated for a single
signal from the random process. However, at the
present time the question of what the best
smoothing operation is in a particular situation is not
well understood. Ideally, procedures would be avail-
able by which the optimum smoothing operation
could be-chosen on the basis of the available a
priori knowledge of the process being studied. (For
example, in measuring the spectrum of the noise from
a vehicle moving past a fixed microphone at a particu-
lar speed certain features of the non-stationary noise
process such as the rate at which the level changes, the
total Doppler shift, etc., are known beforehand.)
Developing such procedures is a matter for further
research. '

In the absence of systematic methods for choosing
the smoothing operation to be performed on e(t, f) it
is necessary to rely on the intuition of the investigator.
In short-term spectrum analysis as it is usually done
(using a filter bank or by Fourier analysis of weighted
sections of the signal), the smoothing operation is
implicitly chosen by the investigator when he chooses
filter bandwidths (and so on) so that the measured
short-term spectrum appears ‘best’ accordmg to his
subjective judgement.

6. Conclusion

The intention of this paper has been to serve as an
introduction to the concepts of the r—f energy density
distribution and the time-varying power spectrum and
to clarify the physical meaning of the results of
practical short-term spectrum measurement.

The idea of the t-f energy density distribution of a
signal has been used to relate the various definitions of
‘short-time’ and ‘instantaneous’ spectra and to inter-
pret them in physical terms. The ¢—f energy density
distribution of a signal can in principle be calculated
exactly if its waveform is known. The uncertainty

March 1970

principle of waveform analysis makes no restriction
on the accuracy with which e(z, f) can be computed.

~The only sense in which it does apply is that it re-

stricts the #-f plane resolution that can be obtained
when short-term spectrum measurement is made by
a bank of bandpass filters or by an analogous method.

The time-varying power spectrum, P(¢, f), of a
random process can be regarded as being the average
of the t—f energy density functions of the individual
signals from the process. A smoothed version of a
measured e(?, f) function can provide an estimate of
P(t, f), but as yet rules which specify the ‘best’
smoothing operation for a given application do not
exist. Thus the design of a short-term spectrum
analysis remains a matter in which heavy reliance
must be placed on intuition.
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A.3. The t~f Complex Energy Density Distribution

Power and Analytic Signals.

At least three physical interpretations can be assigned

to an analytic signal (or-any complex signal) :

(1) The real part can be consldered to represent a physical
signal while the imaginary part Is regarded as a purely
mathematical fiction which may serve in defining the envelope
or the instantaneous frequency of a signal. The analytic

15

signal in this case is often termed the pre-envelope “of the

real signal.
(ii) Each part of the signal can be represented as a voltage
(for example) which is transmitted by a separate wire.

(111) A complex signal can be defined fo be the complex envelqggz’9

of a high frequency waveform. The real part, sp(tJ,
represents the amplitude of the in-phase component and the
imaginary part, sj(f), represents the amplitude of the

~ quadrature component of the assoclated high frequency signal.
The real high frequency signal is tThen
v{t) = s.(t) cos 2rfct = si{f) sin 2"€c+ A3.t.

A complex envelope may or may not be an analytic signai.

For most purposes of |inear systems analysis the physical
interpretation applied to analytic signals is immaterial. The lowpass
analytic angle coded signals discussed in thls thesls could equally
well be given any of the threec above meanings. However, when
power and energy are involved (or equivalently, when signals are

multiplied together) care is needed in interprefing the physical

meaning of the complex quantities which result. The Interpretation
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of an analytic signal used here Is the complex envelope, which
represents a generalisation of the a.c. circuit theory notion of
a phasor. In fact, except for the conventional use of rms
values Instead of pcak values, the phasor and the complex
envelope representation of a sinusoid of frequency f_ are identical.
What follows is a simple generalisation of the theory of power
in a.c. circults. |

A narrowband signal, v(t), has a spectrum of the form shown
in fig.Al. If this signal is applied as a voltage across the
terminals of a time~invarient passive circuit, the current which
flows, i(t), is also narrowband and has a spectrum of the same
general form as v(t). The power, p{(t)}, entering the clrcuit is

given by the product of the voltage and the current

p(t) vit) 1)

1

_
Im(+| cos|znt t + ¢ (]| neh)| cosfant t + o (1]

= lm(*i')2 n(t)| {cos [4ﬂfc+ + ¢m(1") * 9, (1')] + COS [q)ms('l') -¢n;1')]}
A3 .

where m(+) and n(1) are the complex envelopes of v(t) and 1(1),
respectively, so that

vt = |meh] cos [2nf t ¢ ¢.m(+ﬂ

i(t) = |n(t)] cos ':Zﬂfc’i‘ + 0]

The power has a spectrum of the form shown in fig.A2Z and can

be considered as boing The sum 6f fwo components; one is a

bandpass function whose spectrum is concentrated near the
frequencies * 2f . The other component is a lowpass function whose
functions depend on the complex envelopes of v(t) and i(t) and do
not involve fe. It Is usually this quantity which is of

interest. In a.c. circuit practice, this Is the quantity which




v

Al

| Fig. A1, Spectrum of narrowband . voltage wavefor_rh..

o4
N .
- 2%, - 20 f

Fig.A2. Spectrum of power waveform.
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Is measured by a wattmeter (which indicates only the steady component
of the power and does not follow the fluctuations at fwice the
mains frequency).
The cross-power, p(t), of two analytlic signals m(t)
and n(t) can be defined:
p{t) = m($) n*(1) A3.3

401‘0 non

This is a generalisation of the notion of complex power
sinusoldal analytic signals. [+ is a generally complex quantity
whose real part is nothing else but twice the slowly varying part
of p(t). [Its magnitude (if m(t) and n(t) are the complex
envelopes of a voltage and a current, respectively) is the volt-
amperes in the circuit and is equal to the product of the
magnitudes of m(t) and n(t). The imaginary part of p(t) (t+he
freactive volt-ampercos') has little physfcal significance49 but

serves 1o produce the discrepancy between the magnitude and +he

real part of p(t).
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Compliex Energy Density

The complex energy density distribution in time and
frequency, e (+,f), has been used formally by Rihaczel?a, following
Villeﬁi and Levln4!bu+ 1+s physical interpretation has not been
emphasised.

I the analytic signal m(t+) is applied as a voltage
ac.-oss a (non-realisable) admittance given by

Y(f) = | , for fo < |f| <fo + Af
0 ', otherwise

then the current, n(t) is given by
otAf
n() = Mee) oI 2T
fo

df'

The complex power entering the circuit Is thus

m(ft) n¥*(+)

p(t)

£

: fb+Af
m () J | we(sy e d92mFT e
o]

The complex energy, Ec, which enters the circuit in the time

interval (tg, T4 + AT) is given by the integral

Tttt
Ep (foibt,fo,0f) = p(t) dt
1-0

The complex energy density at time 1} and frequency f| is

defined by
«ty, f1) = fim E_(ty, A, fj, Af)
A > 0 At of
Af -+ 0

‘jZﬂf’T'

mit) ME(E)) e A3.4
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e(t,f) Is a complex quantity. The previous section shows that

its real part can be interpreted as follows. If a real narrowband
signal, of which m(+) Is The complex envelope and which has the form
given by equation A3.1, is applied to an impedance which acts as a
unlt reslstor over a very narrow frequency range about (f + f.)

and which otherwise acts as an open circuit, then e(f,f|) gives

the power entering the Impedance at time t (fo be exact, the

lowpass component of the power).
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A.4 Properties of the Complex Energy Density Function

The complex energy density distribution is a function with
many interesting properties. Many properties of a signal such as
its envelope, energy, efc. can be expressed in terms of &(t,f) in
a simple and direct way (see Rihaczek's ﬁaperS?).ln this section
several more signal properties of o(t,f) are presented.

The following is a reprint of an [tem of technical
correspondence which points out that the fns+an+aneous

frequency of a signal is simply related to e(t,f).
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Instantancous Spectra and Instantancous Frequency

Abstract—A simple relation exists between the instantaneous
frequency and the instantaneous spectrum of an analytic signal which
does not depend on an assumption that the instantaneous frequency
varies slowly.

’ ’ The instantancous spectrum or time-frequency encrgy density distribu- |
tion of a signal was introduced by Ville! (in a slightly different form from |
that used here) and has subsequently been used by others.2~* A survey of
earlier work is contained in the paper by Rihaczek.* |

A signal whose spectrum is zero for negative frequencies is termed an |
analytic signal.’ The waveform of an analytic signal is a complex function |
of time whose real and imaginary parts form a Hilbert transform pair. ‘
The complex r-f energy density dnsmbuuon e(1, /) of an analytic signal |

_ m(r) can be defined by the expression }
|
1

e(r.f) = m(OM*{[) exp (~2rf1)

wheré M(f) is the Fourier transform of m(r). The real part of e(t, /) is the
quantity of prime interest; it represents the power of the signal per unit
bandwidth at frequency f'and time ¢.

In the case of a signal whose instantaneous frequency varies slowly, it. C
has long been realized that the energy density of the signal is concentrated. ;i
in the 1-f plane about a line which follows the instantancous frequency. |
This result is supported by physical reasoning and by the principle of sta-
tionary phase.* The instantaneous frequency of an analytic signal is de-
fined by ’

LA e 2 e

S0 = (1/2n)d/ds[arg m(0)].

Howecver. it docs not seem to be widcly known that there is a simple rela-
tion between e{t, f) and f(r) which holds cven when /(1) varies rapidly.

The normalized first moment of the real part of eft, f), taken with re-
spect to frequency at a given instant of time, provides a measure of the
center frequency of the signal at that time. Expressed as a function of time,
this quantity is

S g = ReUm fet, f)df/J‘Q e, f)df}

which, on substituting the definition of {1, f) and intcgrating, becomes

-4 =Re§ (39 Lrrtym )}
= (1/2n)d/dt[arg m(n)}.

This is nothing other-than f(1). the instantancous frequency of the signal,
Thus, in the scnsc given above, the instantancous frequency provides a
measure of the “frequency at which the power of the signal acts at a given
time” which applics not only to signals for which f(t) varics slowly but
indced to any signal..
M. H. Ackrovp
Dept. of Elcctronic and Elcc Engrg.
Loughborough University of Technology
Loughborough, Leics., England
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Other moments of ¢ (t,f) also provide measures of signal properties.
For example the expression*

o= IJ tf §(t,f) df df

JJe(T,f) dt df

becomes, on substituting The defining relatlon for g(t,f),

S

F o1 j t ooy Im)|? at
E

which is He|ms+rom'539measure of "the amount of FM in a signal".
The physical meaning of T¥f bocomes, perhaps, clearer when the
expression A4.1 Is considercd.

An important property of e(f,f) is that its fwo dimensional

Fourier transform is the ambiguity function of radar Theory38

X (T,E) = J J o(t,f) o IEUTHED gt g

where the ambiguity function is defined by

(1,8) = [ n(F) mECree) e 9ETET g,

"The two dimenslonal autocorrelation function of e(T,f) gives
the squared magnitude of the ambiguity func+ion3§ (This fs
related to the fact that the squared magnitude of an ambiguity
function is i*s own Fourier transform). This result can be

generalised to the cross-ambiguity funcfion,)oiz(r,s), of fwo

signals m;(+) and my(t).

*
|X|2 (ng)lz = X'IZ(T’E) X-lZ(T:E)

- Jm|(f)m2*(T+T) IZTET gy _f My (£-E) M (F) oIZTTT g

#*From here onwards all Iategrals are taken over an Infinite Interval.
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: *
= JJ o (1,) o, Cr+r,f~E) dt df Ad.3

where e!(f,f) and eZ(T,f) are the t-f energy density functions of
ml(T) and my(1).

Thus the squared magnitude of the cross-ambiguity function of
two signals is given by the fwo-dimensional cress correlation
function of their individual energy density functions. This
relation is useful In skeitching the squarcd magnitudes of cross
(or auto) ambiguity functions. The author has found it more
straightforward to skefch the t-f energy density functions of
the individual signals and then to use A4,3 than to attempt fo
sketch e (+,f) directiy from its definition.

The expression A4.,3 allows a clarification to be made of
the relations between "short term" spectra and the f-f energy
density distribution of a signal.

in practice, short term spectra are usually measured by
procedures which are equivalent to one of the following :

(i) The signal waveform, s(f), is multiplied by a window

function w(t) (shifted so as to be centred at +;) and the

squared magnitude of the Fourier transform of the product is

computed. The resulting function of frequency is

regarded as consfifpfing a cross section of the short

term spectrum, ST(T,f), taken In the f-direction at

Time TI.
(f1) The signal is filtered with a transfer function H(f)

(shifted in frequency so as 1o be centfred at fl). The

squared magnitude of the oufput waveform of the filter Is

taken to be a cross section of the short term spectrum,

dt df




S¢(t+,f), In the t-direction at frequency fl.
The short term spectrum defined by the first process

can be written

2
Stlty, ) = J s(1) wit-t)) e 92T gt Ad.4

From its similarity of form to the squared magnltude of
a cross-ambigulty fraction, this expression can be re-written

using A4.3 :

51_(1'|,f‘) = JJes('I‘,f)ex* (1'-1‘l, f-fl) dt df

where es(T,f) and ew*(f,f) are the t-f energy density distributions

of s(+) and w*(+), respectively. This becomes
Stlt),f)) = J[ eg(t,f) e, (-t,, f,-f) dt df

where E (t,f) s the t-f energy density distribution of w(t).
Thus, as suggested In the paper of sectlion 2, the short term
spectrum Is Indeed a smoothed version of the t-f energy density
of the signal, the smoothing being done by a two-dimensional
convolution with the t-f cnergy density function of the window.
The short term spectrum defined by the second process can

be expressed

2
Setty ) = Usm HeE-) o127 g |
which, applying Parseval's thecorem, becomes
- 2
S(t),f,) = ” s() het)-t) & IZHT gt l
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I h(-t), the Impulse response of the lowpass prototype of the
filter Is identified with w(t+), the last expression becomes

fdentical to A4.4, which can be rewritten
Sf(*l,fl) =J{ es(+,f) eh(Tl-f,f-fl) dt df

(where e, (t,f) can be shown to be identical to ew(—+,~f)).

Thus the short term spectrum, whether measured using a
frequency window or a time window can be regarded as being
modtfications of the +-f cnergy density distributfon of the signal
made by a two dimensional convolution with the t-f energy
density distribution of the appropriate window. The equivalence

of the time window and frequency window approaches was first

shown by Larroﬁé42.
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'APPENDIX 'B'

This appendix is similar to chapter 5 but the theory Is
applied to the design of Huffman sequences instcad of angle
coded signals. The principal difference between chapter 5

and this appendix is that the words time and frequency are

interchanged.
This appendix has been accepted for

publication as a paper In |.E.E.E. Transactions on Aerospace

and Electronic Systems.
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The Design of Huffman Sequences

by M.H. Ackroyd

Aﬁééféct / B .

The paper prese;ts a method by which the zeros of the
polynomial represénting a Huffman (impulse-equivalent) pulse
'sequence can be chosen 50 as to exert a degree of control on
the form of the energy distribution of the signal in.thg time-
frequency plane.’ This makes it possible to design Huffman

pulse sequences which are suitable for use as radar or sonar

'signals in situations wvhere significant target velocity occurs.
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1. Introductione.
To overcome the effects of noise and interference in a radar

or a sonar systeh the transmitted signal should have large energy

. wvhich, with a transmitter of limited peak power output,

necessitates a pulse of long duration. , Provided that the

¢ .
modulation in phase and amplitude of ‘the transmitted signal is .

chosen properly, the use of long duration pulses does not precludé

‘the attainment of good tesolution between targets at different

ranges. This is because the limits on range resolution are set

by the effective width of the autocorrelation function of the

signal, rather then by the duration of the signal itseif.

The classic problem of radar signal design is finding a signal

vhose ambiguity function1 has a magnitude of some desired form in .

the 1-¢ (time delay-doppler shift) plane.

Because of the difficulties of direct synthesig, the commonly
used approach is to select a suitable waveform-from among those

vhose ambiguity functions have been‘cataloguedz.

In cases where significant target velocity is not encountered,

it is sufficient to control the form of the antocorrelation function

of the signal (which is simply the ambiguity function on the t axis
of the 1-¢ piane). To obtain good resolution, the autocorrelation

function should be narrow, like that of a singleishort pulse.

3

Huffman~ showed how to design finite trains of contiguous pulses

.modulated in amplitude-—and phase 1n such a wvay that ‘their auto-

' i
correlation functlons vould resemble that of a slngle large pulse.

The autocorrelation function of such a pulse sequence,shown sketched

in fig. 1, is zero for shxfts greater than the duratlon of one pulse

-

except that for shlfts of abuut the total durat1on of the pulse '
ﬂ

sequence the autocorrelat1on funct;on 15 unavo;dably non-zero.




Such sequences were termed by Huffman "impulse equivalent".

The amplftudes of the complex envelopes of the N+l transmitted

pulses are represented ag the coeff1c1eats of a polynomlal haw1ng

PO, abeabsn

N roots*®. \

-

N

Q=Cé+c D+ ... +C D---.'c.o see XX} cee eeoe (1)

1 "y

Huffman showed that for the pulse train to be impulse equivalent
the roots of @ should lie at equal angular intervals in the

complex plane on either of two circlea one of which has some radius
‘ x-while the other has radius X I.

There are three probleae in4deeigoingralﬂuffman seqpenee:
(i) choosing thevnumber.ofhpolees“in-the sequence.. -
" (ii) choosing the radius of one‘or'otherJof“the circles on:phich i
| the roots lie in the complex plane. |
| (iii) deciding on which circle each root should lie.
These problems are interrelateq;‘in general ansver to eaeﬁ
_ problem depends on the anseer to the.other tvo and also on exaetly

By

vhat properties the Huffman aequence 13 requ1red to have.

A desxrable property of a Huffman sequence 1s that 1ts gggggz
ratio, (the rat1ovof the\total energy of the sequence to the
energy of the largest pulse),should be large. The energy ratio
evidently cannot exceed N+l, for which case all the pulses would

[V FREEN FANE A SV \‘A [VFAY GO ee Wi ' P

be of equal amplltude.
. A PP S

‘#If a transmltted pulse 1s of amplltude A and phase 0 the

’ eorreapondzng complex envelope value 13 Aexp(Je)

Ll bt . TR D I 4

.- R Y R 1 ¢ . - .-‘ -t * s -vA . B . ) : o) . ks e " . e +
! LT e TALD Ly BAWGNLG U a0 P S I AN AR
.

e e e+ o e et e < T




- 3:f'

(W)

Injeyan ‘has found a nine;pulse sequence with the large energy
ratio of 8.125%.

The autocorrelation function of a Huffman sequence (fig. 1)
has sidelobes which can eas;iy”;; ;hown to be X /(1+x ) bf the
amplitude of the central lobe. The latter is equal to the energy
of the signal, of course. The tolerable sidelobe level sets |
limits on X and N. What constitutes a tolerable level depgnds, of
course, on the environment in which the signal is to be used.

It is possible to generate Huffman sequences yith the property
of having purely’rggl”pulgg aqg}itgégsJ(i.ef.phasg\O*oer),:with .
consequent simplicity of implementation, by choosing the complex
roots of Q to be conjugate pai;gi T_Howgve; purely‘real Huffman
sequences usually ha@e poor gneggydfatios or large.autocorrglation
function sidelobes.;:dﬂéfg;ghce (g)»dggggibeg thg_?;agpiga; use of

. a real Huffman sequence.

*It'ia, in'fgct, gos§ib}e‘to.impr9ve slightly:on Inseyan's
sequence: .For e§amp;e th?‘sggueng? (l.OOijQ:OOO, 0:000;50.226, -
- 0.496 = J03150, 0,76 = §0.618, 0.180 = 0.86T, 0.T87 - j0.618, -
- 0.496 - jO. 790 o ooo+ao 296 1. 000+JO ooo) 1s a. n1ne pulse ha
sequence hav;ng an energy rgth‘qf 8.2#: ?hlq 13 the h1ghest
energy ratio that ca; be obtained §ith thia root paftern, which is
.(--- + - +++) where a m1nus slgn 1nd1cates a root on the smg%}er

circle and a plu; slgn‘lndlcates one on the larger. This pulse

sequence, like InJeyan s has relatlvely large autocorrelation

.-

function 81delobes° they have K magnztude vhzch 1s dbout 7% of the : +
2 AA)S\;."_ - (P ™ . ,..,
central peak ) ) e e e .
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In addition to exerting control on the foregoing properties
of a Huffman sequence (energy ratio, sidelobe level, purely AM
pulses) it may also be désirable to control the form of its
ambiguity function off the t-axis. This paper presents a method
for choosing the roots of the pol&nomial representing a Huffman
sequence so that the energy density aistributién of t@e signal in
the time frequency (f-f).plane approximates some desired distribution.
 This permits a degree of control on the form of the ambiguity
function in the t-¢ plane as a result of the one-to-one relation
between the form of the energy distributibn of a signalAin_the

t-f plane and the form of its ambiguity function in the t-¢ ilane(T).m

2. Huffman sequenées and Zero Patterns.

Instead of dealing directly with a pulse sequence represented

by a polynomial such as (1) it is more convenient here to consider

Y

a signal m(t) vhich consists of a series of impulses having.complex
_weights;

m(t) = ¢ &(t) + €, 8(¢-T) + ... + Cy §(t-NT). '...‘ eee (2)°

-~

vhere T is the duration of each pulse of the transmitted signal.
The complex envelope n(t), of the transmitted signal is given by

the convolution of m(t) with a rectangular fungtion of duration T.

Symbolically, ' E

n(t) =m(t) * rect(t/T) cev ceme oee  evs oceo oee (3)
Taking the Laplace transform of (2) gives

M(s) = cC,*+C

1 exp(-sT) * eee + CN erp(-BNT) ) ooo‘ eee oo‘o~v (h)

emdetmms s -

and making the substitution

2 ﬂexp. (BT) (XN (N (XN [ X ] eo o (XN [ X -oo' (5)




gives the z-transform of the impulse sequence:

length 9. Reversing the substitution:(5), the iefoa of M(s) in"~ . *

N

l""_oo}c""CN' z- X .Ioo ooc. e e (6)

M(z) =C°+ Cl z

As mentioned in the introduction, Huffman showed that for the
polynomial (1) to represent an impulse equivalent sequence its .

roots should be chosen so that they lie at equal angular intervals

in the complex plane, with each zero being chosen to lie either on
1

a circle of some radius X or else on one of radius X 1. Thus (6)
can be written in factored form o
N > b '
M(Z) ='C Il (1- z-l Z ) o;o' cd)o -o.oo. see (7)
o : n A _
n=l o N « e .

vhere the zeros of M(z) are given by

X exp(j2m/N), if the nth zero lies on

the circle of radius X _
z_ = 1 ,n=1,2,...,N
X " exp(je2mn/N), if the nth zero lies on . (8)

the circle of radius X+

fig.2 shows a typical z-plane zero pattern for a sequence of

!

- -
’

the s-plane are given by

1 N
Bn+11c-"_1‘-ln (zn)

kgo’ i’ 2’ LN ]

= %» ‘1n l%n L + jlarg z & k) .ﬁ.' (9)

N1, 2, coeeeey N

The zero pattern is periodic in the direction of the Jw axis and

is thus defined by the locations of the zeros in any strip of

" width 27/T such as the one shown shaded invfig;_3.' The zeros in

this qtrip are given by s

o

.
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' %-ln X + j2m/(NT), if the nth zero of M(z) lies on the -
| circle of radius X.

8 © -%»ln X + j2mn/(NT), if the nth zero of M(z) lies on the
circle of radius x1. ‘

n=l’ 2’ ...’N ...’... .'..‘. LN LN ) (10)-

(fig. 2 shows the s-plane zero pattefn corresponding to.the z~plane
zero pattern of fig. 1). V

In a paper of 1926, Titchmarsh6 showed that,'in engiheering
language, the Laplace transform of a function vhich is effectively

zero outside the range (tl’tz) can be exprgssed in the form
-s(tl+t2)/2 o ' ' '
M(s) = M(O) e : I (1 - 8/8k) ’.o'o see eee (11)
i

Kk==oo

where the zeros of M(s) are 81332; eees In the present case

t, = 0 and t, = NT. This infinite product expanéion of M(s) is

“used in the next section where it is necessary to take logarithms.

3. Complex Energy Density in Time and Frequency.

()

The time-frequency energy denéitx distribution
o N
signal is given by
e(t,f) = m(t) M*(j2nf)e-32“ft.

where M(j2rf) is the Fourier transform of m(t), given by

M(j2nf) = M(s)
' - 8:-=0+ jent

The real part of e(t,f) represents the power of the signal per unit
bandwidth at frequency f and at time t. Amdng many interesting

' properties of e(t,f) is that its two-dimensional autocorrelation

of a complex

ve ees ;.. s eee (22)
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function gives the squared magnitude of the ambiguity function of

(1)

the signal* Thus if a form of e(t,f) which leads to a

desired ambiguity function is known (or can be found) it is
sufficient to work in the t-f plane and control e(t,f) instead of

wdrking in the t-¢ plané. Finding suitable form of e(t,f)
| presents a problem, but one which can scmetimes be solved by using
.knowledge of the energy density distribution_functions.of signals
vhich are known to havelﬁmbiguity functions close to the required
form but vhich are not impulse equivalent. B

If the bulk of the energy is concentrated aﬁoutfa line ip.fhg

t-f plane vhich forms a single-valued function of f, then the
normalised first moment tg(anf) of the real part of e(t,f) (taken
.with respect to t) pfovides a measure of the time at which the
pover of the signal is concentrated at a given frequency.(fig. h).'
* Thus | | S f:. | _
1 (2nf) = Re [}' te(t,f)at/ f et f)dt]... cee eee (13)

- 00 -0
- which, on substituting (12) and performlng the 1ntegrat10ns,‘

-

~ becomes . - - .
: . @ . L
lig M (j0) | | N
‘l’g(w) = Re I M(j(&)) i ese eee - eee see see - (lh)

= Re j%&'ln M(jm) ' oo o;o XX eee Xy (15)

- SRS

vhere w = 2nf. < (w) is, in fact, the group delay of the signal.
‘Substituting the infinite product expan31on (11) into (15) gives ’

T (w) in terms of the zero locations of M(s)

*The author has found this fact a useful ald in sketchzng

ambiguity functzons of szgnals. : I ':1”~'ag.h

"
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Tg((ﬂ) = NT/2 + ; k o0  ese YY) 'cco (16)

2 2 [ N ]
k=- o, +.(w-wk)

vhere Bk = °k + Jw

K
'As.was shown in the previous section, the s-plane zero patterns
of Huffman sequences'have zeros occurring at regular intervals of
.2w/(NT) in the direction of the jw a;is, and either at (1/T) 1n X
in the RHP or at (-1/T) 1n X in the LHP, according to fhether the
corresponding zero of M(;) lies on the X-radius circle or the x‘l
radius circle, respectively. Thus by considering equation (16)-
it can be seen that the group delay rs(m) can beirepfesentéd aé
the sum of a constant term and a series of functions of identical
shape displaced by various amounts of a positive or negafivg sign:

Ts(w) = NT/Z + T 8gn akw(w-auk/NT)... ..,ooo‘ ':ooo ".ooo ' (17)

k2w

e

| % |

where \’(w) a8 ""'""‘"—-2" 00 eve o8  eese - 'oo! ese  _eee 'o'oo .(18)

2

+
Ok (0

From equation (17) it is evident that té(w)‘cah be pictured '

-

" as being produced by the convolution of 'W(w) with the series o?f

regularly spaced positive ‘and negative unit impulses given ﬁj

I(N) = z sgn Uk 6(&-2111(/11’1;) soe XX oo; ...V XX} (19)
k=-= - | )

together with the addition of the constant term NT/2. This impulse4

" series is periodic as a result of the periodicity of the zero
pattern in the direction of the ju axis. |

The problem pf finding a zero pattern which yields a Huffman
sequence whoset-f energy concentration follows some desiredAline

e
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rvn e e e




thus becomes equivalent to finding an impulse series having the -
form given by equation (17) which when smoothed by convolution
with v(w) gives an approx1mat10n to the requlred group delay
function. o e
A delta-signma modulétore (fig:.ﬁ).is a system whose output
consists of a sequence'of equally spsced positive and negative
impulses (the weights of vhich are all of the same magnitude).
It works in such a way thstbits output, when smoothed by a lowpass
_filter, is transformed into a signal which presents an approximation
to its input vaveform. .
A sequence of impulses which, vhen smoothed by convolution’
" with Yu), approx1mates a deslred .group delay funct1on can thus be
found by simulating a delta—slgma modulator whose input is the !
"._des1red group delay funct;on (less the mean value, NT/Z)

When the zero pattern has been chosen, 1t rems1ns only to r‘
multiply out (7) to obta;n the complex ampl;tudes of the pulse B
... sequence. | |

WL Lt SUTISUN, cLEL St R
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h, Example:
As an illustration of the.use o; the'method a’requireddttf
energy density distributdon similar,to that of a 'linear EMfislgnal
hsv1ng a duratxon-bandw1dth (TB) product of 3& was chosen: thgne
approprlste sequence_length 1s.suout;§5,pulses;-each zero gives
about one unlt of TB product. ‘ e '
Fig. 6 shovs the correspondlng T (w) functlon wh1ch, when
| used as the input to a s1mulated delta-sigma modulator, produced
. the 1mpulse sequence (+++++++++-+++-;-+-+-+---f---—----) and

" thus spec1f1ed the zero pattern of M(s). A value of X of l 24

“wss used. Thzs value of x yzelds a good energy ratzo;(l? 0) and -
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very low autocorrelation sidelobes (0.00068 of the central lobe).
A;so, the resulting ratio of Oy to W results in aP(w) function
which has sufficient width to give a smooth Tg(m) function but is
not so wide that tg(w) is und?ly smoothed so that its features are
obscured. ‘

e(t,f), for an impulse sequence signal, consists ,of lines in
the t-direction of the (t,f) plane and is periodic in the
f-direction®*. Fig. 7 shows a plot of the real part of e(t,f)

‘evaluated for the signal having the zero paﬁtern and the X value’
specified above; two periods in the f-direction and shown. This
form of display was used by Singletom and Poulter9. Areas of
low energy concentration appear as rapid alternations of Re [e(t,fﬂ
for the reason explained in referéncé T. It is evident from this
plot that the energy concentration approximates the required form..
Fig. 8 shows one period of tg(m)mfor_this signal, computed by
evaluation of the expression (th&,  The real and imaginary pa&ts'

. of the sequence are presented in tab@e 1 and the envélope'of the

pulgse train is shown in fig. 9. '

-

5. Remarks on Sequence Design.
The foregoing presehts a method by which the distribution of

the energy of a Huffman sequence in the time-frequency plane can be

*From equations (3) and (12), the t-f energy density
distribution of the complex envelope, n(ﬁ), of the transmitted
signal is related to that of m(t) by convolution with rect (t/T)
in the t-direction (interpolation by 'zero order hold') and by

'mnltlpllcatlon with Ts1nc(T f) in the f-dlrectlon (whlch effects'

'subetant1al attenuation outszde the fundamental per1od)
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controlled. However there are other properties of the sequence
vhich one wishes to control such as the form of the'sequence
epvelope. Unfortunately, the design of Huffman sequences remains
a matter in which.a degree of trial-and-error is required. The

following remarks may assist when a sequence is to be designed for

"a particular application. a .

When half of the z-plane zeros lie within the unit circle and

half lie outside, the envelope of the pulse train tends to be

_relatively symmetrical about the mid pulse. If more than half of

‘the zeros lie inside the unit circle the energy of the pulse train

is concentrated towards its front; the more zeros that lie within
the unit circle;'the greater is the frontal concentration. Converéiy,
if more than half of the zeros lie outside the unit circle, the

energy is concentrated to the rear*. For most applications, where

N
. normalised first moment of-the pulse energies,'fi = (L kT IC | )/ z |c |2

" inspection of equation (16), it can be seen that the more zeros lie

-outside the z-plane unit clrcle, the ‘more p031t1Ve 15 tl " When

*These statements can be expressed qnantitative}y. The .
k=0
may be taken as a measure of the centre of the temporal energy
distribution” of the signal. This quantity may be expressed in ferns
of the group delay of thgm§§gqgimﬁy péing'the expression given by |
Villelo for the firstmoment ofithe squared envelope of a gignal .
(adapted for discrete-time, periodic-spectra signals). The |

expression is . :
|ujane)| 2 v, (2nf) ar | -

— .1 lim ~F

t,. B —

1 2¥F-w F . o i
[ |m(Gane)| ? ar

which is linear in Tg(w). The spectrum magnitude is the same for all g

sequences having a particular autocorrelation function. Thus by

half the zeros lie 1n81de the unat czrcle tl has the value NT/2.
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it is préferable that the energy should be distributed uniformly

. — along the pulse train with consequent large energy ratio it seems
correct, as Huffman sugéested, to choose half of the zeros to lie
on each circle. -

When half of the zeros lié inside the:unit circie, then if X
is made very large the energy of fhe pulse train Secomes éoncentrated
in the central pulses. As X approaches unity, the eneréy becomes
concentrated at the extremes of the train. As a general rule,
recomputing_the pulse sequence with a smaller value of X reduces
the amplitudes of the central pulses relative to7tﬁe amplitudes of
the extreme pulses. The opposite is true when %he gequence‘is .
recomputed with a larger value of X.

The energy ratio plqtted as a function of i for a particular
zero pattern may poséess many quite sharﬁ peaks. To choose the ;_.
sequence having the maximum energy ratio for a givén.zero paﬁtern‘f v

- . it is therefore neéessar} to compute the seqnenées correspondipé ;. S )
to a succession of closely spaced values of X. ; e
>:  6. Conclusion.

A method has been presented which enables the roots of the
polynomial which represents a Huffman sequence to be chosen.ao as to i ; o

. - exert a degree of control on the form of t-f energy density -
'distribution. This»can be .done without affectihg the impulse~

equivalent character of its autocorrelation function. -

There exists a duality between Huffman sequences and the o ‘ﬁ.-‘_ i
 "ang1e coded" signals devised.by.VOelckerll, whigp are ;pecjfied | |
by the locations of their zeros in a complex time (instead.of
.frequency) plane. The results of this paper'can be applied to ;. - j
the design of angle coded signals with little more than a change..
in notation and terminology. :jf?hé#:yére in‘fgégtfiraflgorkgd

1

out for signals of this type).
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Fig.1. Autocorrelation of Huffman pulse- sequence.
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'Fig.9- Envelope of synthesised signal.




TABLE 1
putse number Re

1 1«00
.2 0.00
3 -fHeT1
4 5.00
5 =0D.46
6 ) ’ ‘Acla
7 9.11
8 -Ne87
9 -3.47
10 =3.83
11 684
12 425
13 0.94
14 -4.21
15 ~3«H2
16 5.03"
17 =7.14
18 -9.164
19 -Tel4
20 -5.03
21 =362
22 ~4.21
23 0.94
24 Le25
25 6eRY
26 -3.83
27 -3.47
28 -4.87
29 9.11
30 =-4.14
31 =0+ 46
32 . 5.00
33 ~4.71
34 0.00

35

1.00

Im

0.00
3.07
-1.63
=389
696
~6¢53
1.35
636
-1.80

=3.92

~5.98
5.01
3«26
Se 49
-2.19
O.46
—-lo 12
=0+ 30
= el12
0«46
-2.19
Se 49
3.26
5.01
-5.98
-3.92

=1.80"

636
1. 35
=653
696
-3.89
=163
3.07

0.00



APPENDIX 'C!

Computing the Coofficlents of Polynomials of High Order

The standard method of computing the coefficionts of a
polynomial from its roots was found to glve rise to excessive orror
accunulatlon when used with polynomials of hlgh order (greater
than about 40). This appendlx presents an alternative method whlch
proved to be free from this difficulty.

The coofficients (Cy, Cy, .....,Cy) are related to the zeros

of the polynomial (Zy,Z3,..4..,2y) by

Co# CIZ + «ve + CZ = X1 = Z/Z)1-2/22) oo (1=2/2y)

An Nth order polynomial consists of the product of N first
order‘po!ynomiais, the coefficlients of the ith of which are
(1, = 1/Z3). Multiplication of two polynomials amounts to the
discrete convolution of thelr coefficients. The conventional method
of compuflng (CpsCpsevesCy) Is To perform the discrete convolution
of (I, =1/Z}) with (1, ~1/Zy) and then convolve the result with
(1, =1/Zz), and so on. This method proves satisfactory for
polynomials of low order when programmed In FORTRAN for an [CL
1905 computer. However, it Is prone to error accumulaiion when
used with polynomials of high order, This Is shown by table Cl(a)
which shows the coefficlents as computed for a set of 127 roots |
uniformly spaced around tho unit circle,

As an alternatlve to computing the discrete convolution of
two sequences directly it Is possible to ﬁ
(1) compute thelr discrete Fourter fransforms
(11) multiply the fransformed sequences
(111) compute the Inverse discrete Fourler transform of the product

| sequence. |

This provides an alternative method for computing the coefflicients
of a polynomial from its roots. The DFT (Ao,...,AN) of the

coefficient sequence Is given by
%4




. R TABLE“ C1 o
—|--n--|--RetCnl -——- ImiCq1 | o] Re[Cn] L ImiCn] - | ——

a3 oe 00

b | 1.20E=07___ -

_=5_.57€_08

| 1.148 12

B8.83€.13

3{_; __2.00E 15 =

A0_ | __2.77E_16

60__| =1.26E_19

_6b4_| =7 53E_18

—8.106_17

8_ | =1.21E=03
_12_| =2.92 02
6| =4 726 _05__

_20_ | =7.82E_07__

_63_ | _6.01FE_18__

__=5,37E=09.
=1,52FE=06_

1.9F..02
=1,49F_05

=7.15€_13.
=2,26F 15
__=2,888_16

___=8.61E_18_

2.07_19

2.24E=02 ]

~1.98F_07
=4,828_11.

1.68E._19_
_7.02€E._18.

84 | _4.34E 17

R ¥, T

. 96_|_9_35(_A3

00

104 _|_1.01E_10

108 _| =1.19E 038

A i s
: 156

=1.09E_18_
_A_91EAT

92 | _2.17 E_'LS______
_JL 32E_142

=5.39E.05____
- K.67E 01

4.70E.18

14b35 R?

=4, 888 02

2. _5 2= 15
1.35E_14
____8.62F_ A1
5.31E._09_
9,16F 07
2.608_05

_1.00E 00

:'.5, .01E ,,_1,1 .

=1.59F=10__
~4 13E=10
-l P4LE=10

-t __OSE, AN
_6.65FE=11
=1 .06E=10
|=5.20E=10__
=2.13E=10
_2.47E=10__

-3 21E=10

=6 18F=11__
5.63E=10

2. .55E=10___

_A.94LE=10____

=9 03E=11__ 2.36E~10|

-1.90E=10__

A=4.51E=11_
-6, 65FE=19_ .
=2 . LOE=10___
3. 33E=11_

_3.8GE=10
3.23E~10
2.63E=10___ =

=4 _89FE=10__

. =6.59E=11

3.87E=10
«8.87F=~13
2.26F=10
-1 12E=10
 2.90E=10
_.3.74E=11

L,70E=10

R.29E=12

44 | _9.07E 16 =2.908 17| |=4.69E=10 ___ ?.15e=11|_
48| =1.30E_18__ =1.038 18| | 3.57E=11___ 4.66E=10 :
—52__|.=5. 5,25_1_,8,_:,1 78F_18_ b LG6E=10___ 9 .32E~11 |
| 86_ | =7.08E_1% =1.008_19. 1.59E=10_  3,48e=-10} |

) =1.98E=10

1, ~03 F_,_o_o”

- 9.62E=11
1.14E=10

2.04g=10
T =1.,84E=10
3.27E=10
_2.00E=10

_ =1.23F=101{__

-4 .34E=10_
__ =8.28E=11

 =9,064E=11
2. P0F=41 |

. 3,60F=111{

L, 26FE=10|

20| _3.50E=01__ =3.236~01| | 1.45E=10____1.40E-10|
4264 _|_4.37E=06__ _=4,88E=06 1.39E=10____ 5.86E=10|__ |
A28 . |=1.0 e |=1.00E_00___=1.258=0% {
— (a) —(b) ;

from its roots

by _(a)

DFT—=

—based —method . Compare

the direct _method

Coefficients, Cp, 0f _thepoly.nomial—-1 --‘-x127-;:‘=1 s-—computed

i
|
!

_an d_( b)__th e_,__&,_‘

the magnitudes of "th‘e‘“*“%‘

intermediate—coefficients, “the correct va l'ue's“of"_\y hich—™

'
i

—_—

are—all—zero-

—(Only-every—fourth—coefficient—is-displayed )'i

|
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(Rgr sl = (L= 172y, 1-W/Zy, =Wz, oo, 1=z

X U = 1/Zg, 1-WZgy 12723, weu , 1=V 172p)
42 N-1
X (= 172y, 1=W2Zy, 1072y, o0y 1072y
where W = o 4&™N_ This scheme Is castly programned and the

coefficlent soquence (Cg, ++., Cy) s obtained from (Ag, ...,Ay)
by using a standard FFT subroutine to compute the inverse DFT.
Table Cl(b) shows the error in the case of roots unlformly spaced
around the unit circle To be acceptably small. even when the number

of roots is large.







