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ABSTRACT 

In the last two decades or so there has been great interest in the problem of estimating signal 

parameters from the measurements at sensor array outputs. The most important parameters 

are probably the directions-of-arrival (DOAs) at the array from radiating sources in the 

observed spatial field. This thesis is devoted to the study of algorithms and techniques which 

have been suggested from different points of view for the same direction estimation problem. 

Several classes of algorithms are examined which include the conventional beamforming 

methods, eigenstructure based algorithms, subspace rotation methods, decompositions 

techniques, and the more recently proposed weighted subspace fitting methods. 

The research in this thesis contains three main aspects addressing theoretical analyses, 

computer simulations, and practical experiments respectively. A set of simulation programs 

has been developed to evaluate the performance in various scenarios, and Monte Carlo tests 

have been carried out to support theoretical analyses. The simulation work ':Vas carried out 

on an mM PC, and the computer language used was MATLAB (Matrix Laboratory), a 

package especially developed for matrix computations. 

A sonar system available in the sonar research group at Loughborough University of 

Technology (LUT) was modified and used to collect real data for off-line processing so as 

to demonstrate the algorithm performance in real experimental environments. Two scenarios 

were examined when the system worked in passive and active modes respectively. In the 

passive working mode, two emitters were employed to give uncorrelated or strongly 

correlated signals by using the same or different working frequencies. When working in the 

active mode, a single sensor ~! placed on the top of the receiving array which received 

reflections from two targets in"distance. The data was captured and then saved on floppy 

disks from the measurement system and processed on PCs. 

A large number of results are presented, analysed, and summarized in the thesis, including· 

both computer simulations and practical measurements. This provides a fundamental ground 

for further work in this and related areas. 
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Chapter 1 

CHAPTER 1 

INTRODUCTION 

The problem of detecnng signals in background noise and estimating their properties such 

as direction, waveform, etc. has attracted great interest in the last several decades. Research 

in this field is concerned with theoretical studies and practical implementation which have 

brought up a vast number of algorithms and applications in different practical situations. 

This thesis discusses the most typical algorithms or methods which represent different 

underlying philosophies and possess potential use in practice, and presents computer 

simulation results and practical results of the considered algorithms. In this chapter, we 

describe briefly the history of array signal processing focusing on the modem period of its 

development, give the motivation and significance of the research in this thesis, summarize 

the contributions, and present the organization of subsequent chapters. 

1.1 Historical Perspective 

Array signal processing has a very long history which dates back at least to 1795 [Pr0951. 

Arrays of sensors replacing a single sensor provide much better determination of the directions 

of incident signals and also increase the output signal to noise ratio by a factor proportional 

to the number of sensors in the arrays. The resolution of a linear array with equispaced 

omnidirectional sensors is determined by the size of the array which, in turn, is determined 

by the number of sensors and the inter-element spacing. Two sources can be separated only 

if their separation is larger than the inverse of the array aperture (this is described as the 

Rayleigh criterion). To increase the resolution of an array implies either adding more sensors 

in the array or increasing the inter-element spacing; the former increases cost and the latter 

causes grating lobes. Also, the physical size of an array is limited by practical considerations. 

This is the main problem inherent in the conventional bearnforming method whose resolution 

is restricted by the Rayleigh criterion. 
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Chapter 1 

The improvement in the array resolution was marked by the method proposed by Burg in 

1967 [Bur67, Bur68] which is now commonly known as the Maximum Entropy Method 

(MEM). This method modifies the zero assumption on the unavailable correlation lags by 

fitting an AR model to the given data. A spectrum is formed and the directions of sources 

are determined by locating the peaks in the spectrum. 

Capon's method proposed in 1969 [Cap69] is also a modification of the conventional 

bearnforming method. He found that the output of the array in one direction is formed by 

input in that direction and also contributions from other directions. The aim of Capon's 

method is to eliminate interferences while maintaining the response in the wanted direction 

as unity and, therefore, to improve the resolving ability of the array. Again, the estimated 

directions of sources are found at the maxima of the resulting spectrum. 

Both Burg's and Capon's methods provide better resolution than the conventional 

bearnforming method, and the term "high resolution" came into being. However, the 

underlying structure of the estimation problem was still unexploited. The method that so far 

attracts most interest, MUSIC, and so-called eigenstructure based methods are in a class of 

methods which exploit the structure of the problem. Work in this direction was pioneered 

by Ligget [Lig73], and Brillinger [Bri75] who related the well-studied factor-analysis 

techniques in statistics with sensor array processing. Pisarenko [Pis73] used the theorem of 

Caratheodory regarding the trigonometrical moment problem in complex analysis to develop 

a different method for the same problem. And independently, Berni [Ber75] proposed a 

similar approach which is more direct and less complicated. Pisarenko's method was refined 

and generalised by Schmidt [Sch79] and Bienvenu and Kopp [BK80]. In their methods, all 

those eigenvectors of the covariance matrix corresponding to its smallest eigenvalues are 

used in constructing the estimator and, therefore, make better use of the available information. 

Furthermore, the array geometry is released to arbitrary geometries and the sources are not 

necessarily uncorrelated as long as they are not fully correlated, i.e., coherent. 

During the same time, Reddi [Red79] proposed a different method which is applicable only 

to uniform linear arrays. His method was latterly interpreted by Kumaresan and Tufts [KT83] 

and modified to be the method known as Minimum Norm Method (MNM) or KT method. 

All these methods which have been mentioned so far, except the most basic conventional 

bearnforming method, share one common shortcoming, i.e., they are unable to resolve 

coherent sources. MUltiple dimensional algorithms which search all existing sources 
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Chapter 1 

simultaneously can be used for coherent sources at the cost of much higher computation load. 

As a result of an extensive study of direction-of-arrival estimation techniques, the spatial 

smoothing technique was suggested by Evans et al [EJS81] and was shown to provide a very 

attractive solution to coherent problems in the case of a uniform linear array. In this technique, 

the array is divided into overlapping subarrays, the modified covariance matrix is formed by 

averaging covariance matrices at each subarray and used to estimate the source directions in 

conjunction with eigenstructure based algorithms. One disadvantage of this technique is that 

it reduces the effective aperture of the array significantly. To increase the effective aperture 

of the array, the modified spatial smoothing technique was suggested by Evans et al [EJS85] 

with an effort of not having to increase the computational burden significantly. A proof of 

this modified spatial smoothing technique was provided in [WPMS88] and the conditions 

under which the modified algorithm may fail were also shown. 

Concerning the problem of coherence, the conventional bearnforming technique is superior 

to MEM, MVM, MUSIC, and MNM. This method resolves coherent sources when they are 

sufficiently separated. As the separation decreases, this method fails to work no matter 

whether the sources are coherent or not. Recently, a novel method was proposed by Clarke 

and studied by Mather [Cla87, Cla88, Cla89a,b, Mat89a,b] modifying the conventional 

bearnforming method. The relevant algorithm, the so-called IMP (Incremental Multi-stage 

Parameter) algorithm, uses the conventional beamscan as its basic processing procedure and 

adopts adaptive techniques. At each stage of the algorithm, all other sources but the one 

under refinement are eliminated by putting correspondent projections into their directions. 

The procedure is repeated alternatively for all sources and the algorithm terminates when 

some pre-defined criterion is satisfied. 

When using the MUSIC method, knowledge of the array geometry is essential although this 

can be arbitrary. This knowledge is usually obtained by calibrating the array, i.e., measuring 

the array responses for all possible combinations of parameters and saving these responses 

in some form for later referencing. In general, array calibration is a time-consuming and 

difficult task. The ESPRIT (Estimation of Signal Parameter via Rotational Invariance 

Techniques) algorithm proposed in 1985 [PRK85, RPK86, RK87, RK89, OK90, etc.] avoids 

this task by setting a constraint on the array. In this method, sensors are replaced by doublets 

holding a constant displacement vector between two sensors in each pair which possess 

identical characteristics. Measurements are collected from two subarrays which are 

composed of one sensor in each doublets. The relative displacement vector in each doublet 

is used in the final determination of the directions of sources rather than the array manifold. 
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Chapter 1 

Concerning the problem of estimation of source parameters, a huge number of methods, 

algorithms, and techniques have been proposed. Some of them are analyzed and compared 

mainly with MUSIC, the method which has been taken as the best algorithm for quite a long 

time. Yiberg and Ottersten [YOK89, Y091, OY88, OWVK89, etc.] proposed a framework 

to include several popular algorithms in a single framework and lead to different algorithms 

when the data are used in different ways and the searching is implemented in different spaces. 

The Cramer-Rao Bound (CRB) which gives a lower bound for the covariance matrix ofthe 

estimate error of any unbiased estimate is used as a measure for assessment of algorithm 

performance. Their framework includes one-dimensional searching methods, such as the 

Conventional BeamForming method (CBF) and the MUlti SIgnal Characterisation method 

(MUSIC), multidimensional methods such as Maximum Likelihood Method (MLM) and 

Multi-Dimensional MUSIC (MD-MUSIC), and ML- and Total Least Squares (TLS-) 

ESPRIT, etc. Based on this framework a new algorithm for sensor array processing is 

deduced. This is the so-called optimal Weighted Subspace Fitting (WSF) method. The 

optimal weighting was obtained by minimizing the covariance matrix of the estimate error 

with respect to (w.r.t.) the weighting matrix, and the resulting method was shown approaching 

the CRB asymptotically for both uncorrelated and coherent cases. The performance ofWSF 

was proven to be superior to that of MUSIC and other algorithms. But the optimality of the 

optimal WSF method is achieved at the cost of heavy computational burden. 

1.2 . Motivation for the Research in this Thesis and Contributions 

One thing is obvious: whether an algorithm is optimal, sub-optimal, or totally inadequate is 

dependent on the problem which is going to be resolved. An overall optimal algorithm does 

not exist, at least not so far. Choosing a suitable method for the problem under consideration 

is of importance and significance especially in practical situations. A basis for doing so is 

to obtain a comprehensive understanding of the algorithms and their performance under 

possible conditions. A thorough study of the algorithm performance is possible by means 

of theoretical analysis and also computer simulations. This will be greatly helpful to practical 

applications of these techniques. 

Many papers have appeared in the literature concerning the analysis and comparison of 

algorithm performance. But these are by no means exhaustive. Theoretical studies attract 

much more attention, particularly those algorithms that provide superior resolution and 

involve complicated mathematical computations. By the use of high speed digital processing 
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Chapter 1 

these methods seem to be attractive. However they are impractical for real-time processing 

in many situations. By comparison the practical considerations of the high resolution methods 

are mentioned less. 

Some modern algorithms do not restrict the sensor array to a uniform linear array or any 

other regular form, as long as the knowledge of the array geometry is available; in practice, 

however, the most commonly used array has always been the one of the simplest, the uniform 

linear array. The array manifold of the uniform linear array has an analytical form which 

coincidentally is of the Vandermonde form. This property ofthe array allows more algorithms 

to be applicable than other array geometries and, at the same time, the applied algorithms 

can be simplified correspondingly. 

The work which has been done in this thesis falls mainly into two categories: computer 

simulations and practical experiments. In the computer simulation part, many algorithms 

and methods were analyzed theoretically and simulated on the computer. These algorithms 

include the Maximum Entropy Method (MEM) and Minimum Variance Method (MVM) 

belonging to adaptive techniques, Minimum Norm Method (MNM) and the popular MUSIC 

method representing eigenstructure based methods, and their versions, the ESPRIT technique, 

the IMP algorithm in the class of deconvolution techniques, and the novel optimal Weighted 

Subspace Fitting (WSF) method and the multidimensional Maximum Likelihood Method 

(MLM). A large number of results were obtained and analyzed to give a straightforward 

understanding and also to support the theoretical calculations. Monte Carlo experiments 

were carried out to show the asymptotic properties of these methods. Three statistics about 

the results were examined and presented which are the probability of resolution, bias of the 

angular estimates, and their standard deviation. The results are given as functions of signal 

to noise ratios and angular separations, respectively, which are thought as two important 

parameters in the estimation problem. The correlation between the two sources is also 

considered by assigning different correlation factors in the simulations which demonstrate 

the effect of the correlation on the algorithm performance. 

In the practical experiment part, an air acoustic sonar array in the research group was modified 

for the purpose of evaluating different algorithms and methods which have been discussed 

in the simulation part of the thesis. The sonar array was tested when working in two different 

modes: first receiving signals radiated from emitters placed at a distance, and then receiving 

signals reflected from the targets when a single emitter was used at the receiving array. In 

the first mode, two types of signals were used which worked at different frequencies and the 
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Chapter 1 

same frequency, respectively, to imitate weakly correlated sources and strongly correlated 

sources. When working in the second mode, a single emitter was used at one frequency. For 

both cases, the separation between the two sources / targets was varied and several 

measurements under each separation were taken. The measurements were saved for later 

processing. Estimates of directions of arrival were calculated by using most of the discussed 

methods and tabulated to show the performance of these methods in practical situations. 

Although mathematical modelling provides a better means than ever for the problem under 

consideration here and analytical expressions show the performance in varying 

circumstances, computer simulations give a better demonstration of these methods under 

practical situations. The results from practical measurements are inevitably more powerful 

in explaining the behaviour of different algorithms in real situations. The work presented in 

this thesis is by no means exhaustive but it does provide a better reference in selecting a 

suitable method for practical applications. 

1.3 Organization of the Thesis 

This thesis includes theoretical analyses of several sensor array processing algorithms, 

performance comparisons between them, simulation results of these algorithms showing their 

performance, and practical results obtained from an air sonar system which was available in 

the research group. Before detailed discussions, a data model is formed as a basis for the 

later presentation of the algorithms, and a literature survey of high resolution techniques is 

also presented. The thesis is outlined as follows: 

Chapter 2 Problem Formulation and Mathematical Preliminaries 

This chapter presents the passive sensor array problem, formulates signal, noise, and array 

models, and states basic assumptions and definitions. Two fundamental maximum likelihood 

estimators, deterministic and stochastic estimators, are introduced together with their 

statistical properties. Some mathematical concepts, such as subspaces, eigen-decomposition 

of covariance matrices and singular value decomposition of data matrices, are briefly 

described. 

Chapter 3 Literature Survey of Direction-of-Arrival Estimation Techniques 

This chapter includes the presentation of typical algorithms and techniques in each stage of 
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Chapter 1 

the evolution of sensor array processing which are of interest. Based on the model and 

assumptions and definitions.in the previous chapter, methods such as conventional 

bearnforming, maximum entropy, minimum variance, MUSIC, and minimum norm, etc. are 

discussed in more detail than those novel methods including ESPRIT, IMP, and WSF which 

will be discussed later in relevant chapters with numerical examples. 

Chapter 4 Performance Comparison of Spectral and Root Versions of MEM, MVM, 

MUSIC, and MNM 

Root versions of single stage spectral methods can only be applied to uniform linear arrays 

while some of their spectral versions are applicable to arbitrary array geometries. Constrained 

to uniform linear arrays, this chapter compares, analytically and by simulations, the 

performance of different versions of these methods. 

Chapter 5 ESPRIT Algorithm 

LS- and TLS-ESPRIT are two popular versions of the same ESPRIT algorithm with different 

consideration of the noise terms in the measurements, which have been shown to be 

asymptotically equivalent. This chapter mainly concerns the properties of the LS-ESPRIT 

and its performance comparison with the better known MUSIC technique, both spectral and 

root versions. 

Chapter 6 IMP Algorithm 

The IMP algorithm is the main topic of this chapter as a representative of the class of 

decomposition techniques. The implementation of the IMP algorithm is discussed and so is 

the selection of the subject threshold in terminating the procedure. Numerical examples are 

presented with convergence plots to illustrate the iterations in this method for different orders 

of model. Monte Carlo experiments have been carried out to compare the performance of 

IMP to that of MUSIC showing their similarity under the weak correlation case and the 

advantages of IMP in the highly correlated case. 

Chapter 7 Weighted Subspace Fitting Methods 

The more recently proposed weighted subspace fitting mc;:thods are analysed in this chapter. 

Initialisation of the parameter estimates is crucial in this class of methods. The Alternating 
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Projection method of Ziskind and Wax is employed in the initialisation procedure and the 

modified Gauss-Newton method in the iterative searching. The implementation of this class 

of methods is discussed and the method with optimal weighting coefficients is compared 

with the multidimensional Maximum Likelihood estimator to demonstrate its performance 

advantage in the asymptotic case. 

Chapter 8 Discussion of Computer Simulation Results 

A summary of a vast number of results provided in previous chapters is given in this chapter 

in order to draw a clearer picture about the performance of different methods under 

consideration in this thesis. This serves as a:useful guide when applying these methods to the 

practical experiments. 

Chapter 9 Practical Measurements with Different Algorithms 

Based on a sonar system which was available in the research group, tests were carried out in 

the air to explore the performance of the algorithms that have been simulated in previous 

chapters in the practical situations. A brief description of the system is given in this chapter 

and so are the modifications that have been done for the task in this thesis. Several cases 

which are commonly encountered in practical situations are considered. Measurements from 

the array outputs were saved on floppy disks and processed off-line. This chapter presents 

results given by different methods using the collected data and a discussion of these results. 

Chapter 10 Conclusion and Suggestion for Further Work 

The work covered in this thesis is more theoretical than practical, although some practical 

experiments have been carried out and the results been analysed. A thorough study of 

algorithm performance provides a useful foundation for future practical applications in this 

or related fields. Some suggestions for following work in sonar signal processing are given 

since possibilities of applying high resolution algorithms in practical systems are getting 

larger as the development of electronics and mathematical algorithms progresses. 
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1.4 Notations 

In this thesis, a somewhat standard notation is used to make the presentation as clear as 

possible. Lower case italic roman characters denote scalars. Lowercase bold characters are 

generally used to represent vectors with elements denoted by subscripted lower case italic 

characters, e.g., ai representing the ith element of vector a. Upper case bold characters 

generally refer to matrix and its (ij) entry is usually denoted by corresponding characters in 

lower italic case with two subscripts, e.g., aij is the (ij) entry of matrix A. Operators are 

usually denoted by superscripts, such as (.). denotes the conjugate operator, (Y the transpose 

operator, and (. t the conjugate transpose or Hermitian transpose. 

Several characters are conventionally used to represent some variables. These will be 

described in following chapters in relevant places. 
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CHAPTER 2 

PROBLEM FORMULATION AND MATHEMATICAL 

PRELIMINARIES 

Before going into details of algorithms and their performance, the problem to which 

algorithms and techniques discussed in this thesis are applied is formulated fIrst. The task 

of this chapter is this problem formulation and associated assumptions and considerations 

concerning the sensor array, the medium and the sources. Notations and representations are 

introduced for the convenience of theoretical derivations which will greatly simplify the 

problem under consideration and provide insight into the underlying signal and noise models 

and make it possible to understand the problem and its solution more thoroughly. 

In this chapter, we present the data model on which the following analysis will be based. In 

forming this model, the arrays in use, propagation medium, as well as signals and noise are 

of great signifIcance and some assumptions are essential for the following discussion. We 

provide, in this chapter, some general assumptions and mathematical representations for 

signals and noise received at the array under consideration. Specific requirement on array 

geometries, signals, etc. will be given with the algorithm in need of them. 

For most algorithms used to solve the estimation problem, the sensor array may possess an 

arbitrary confIguration and no analytical expression is available for the sensor responses . 

. What is needed in these algorithms concerning the array is an array calibration table. But 

although most algorithms do not constrain the array geometry, the most commonly used array 

in practice is the uniform linear array in which sensors are equispaced on a line. Uniform 

linear arrays are considered in this thesis for analytical simplicity. 

Concerning signal waveforms, two main models have appeared in the literature which assume 

deterministic and stochastic waveforms respectively. These two signal models are suitable 

10 
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for different applications. Their statistical properties and likelihood functions are discussed, 

herein, after presenting the more general assumptions on signals: the narrow band signal 

assumption, and their coinplex representation. 

Generally, the sensor noise is modelled as a Gaussian random process, which is justified by 

the central limit theorem. Second order moments of sensor noise are given in section 3. 

Based on the given array, signal and noise models, the problem is formulated in section 4 

and the model extension is also given therein. A brief description of some mathematical 

definitions and theorems are provided in section 5 for convenience in the following discussion. 

The final section of this chapter, section 6, is devoted to maximum likelihood estimators. 

2.1 Arrays 

The sensor array under consideration in this thesis is a passive sensor array which only 

receives signals. This kind of array is often encountered in underwater acoustics as well as 

many other research fields such as radio or satellite communications, seismic applications, 

etc. 

sensor #2 • 

• sensor #1 

• 

• 
• 

• sensor #m 

Figure 2.1 A passive sensor array receiving plane wavesfromfar.jield point sources 

Figure 2.1 depicts a sensor array of m sensors arranged in an arbitrary geometry in a plane, 

receiving the wavefronts from d point sources which are assumed to be in the far field. The 

transmission medium is assumed to be homogeneouf,fsotroPic, so the propagation of signals 

is along straight lines and the wavefronts of signals can be approximated as planar when they 

arrive at the array. Therefore, the measured output from each sensor is a super-position of 
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delayed and scaled replicas of the transmitted signals from individual emitters and noise ( or 

is a linear combination of the d incident wavefronts and noise). Let s\(t),· . ·,sit) denote the 

d signal waveforms, the measured output of the kth sensor, xit), is modelled by 

d 

xl(t) = r. gl(9,)· Si(t - 'tl (9,)) + nl(t) 
i=1 

(2.1) 

where gl(9,) represents the sensitivity of the kth sensor to the signal in direction 9i , 'tl (9,) is 

the time delay of the ith signal at the kth sensor relative to the reference sensor (or reference 

point, which is usually the centriod of the array in arbitrary array geometry cases), and nl(t) 

denotes an additive noise term. The measured array output is formed by collecting the outputs 

at m sensors in the m-vector x(t) 

x(t) = 

and more compactly 

where 

x(t) = , G= 

d 

r. g\(9,)· Si(t - 't\(9,)) 
i=1 

d 

r. g2(9,) . Si(t - -r,(9,)) 
i = 1 

= 

d 

r. gm(9,) . Si(t - 'tm(9,)) 
i=1 

x(t) = G· s(t) +n(t) 

g\(9\),· . ·,g\(9d ) 

g2(9\),·· ·,g2(9d ) 

, s(t) = 

+ (2.2) 

(2.3) 

, n(t) = (2.4) 

A kind of sensor array with special constraints on the array geometry is most commonly used 
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in practical applications rather than arrays of arbitrary geometry. They are uniform linear 

arrays (ULA), in which the sensors are spaced equi-distant spaced on a line. ULA(L'.) is 

usually used to denote a uniform linear array with inter-element spacing L'., as shown in figure 

2.2. 

• 
x,(t) 

• 
x,(t) 

• • x.(t) 

Figure 2.2 A plane wave impinging on a uniform linear array 

Let the first sensor be the reference sensor, the time delay of the ith signal at kth sensor is 

calculated as 

'tk(e,) = (k - 1)'to(e,) = (k - 1) . ~. Sin ei e 
(2.5) 

where 'to(ei ) = (Ne) . Sin ei is the time delay of the ith signal between two adjacent sensors, 

and e is the propagation speed of the wavefront. If the array sensors are of identically 

directional characteristics, g (e), then the array output can be rewritten as 

d 

L g(e,)· sJt» 
xt(t) ;=1 nt(t) 

d 
x2(t) L g (e,) . Si(t - Min ele) 

i =1 
n2(t) 

x(t) = = + (2.6) 

xm(t) d nm(t) 
L g (e,)· Si(t - (m -1)L'.Sin ele) 

;=1 
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Furthermore, if omnidirectional sensors are used in the sensor array, the sensitivity will be 

equal in all directions for all sensors implying that g (9) is constant, which can be taken as 

unity without loss of generality. Once more, we have the written array output as 

d 

L Si(r) 
i=1 

d 

L si(r-~Sin9/c) 
i =1 

x(r) = = + (2.7) 

d 

L si(r- (m - 1)~Sin 9/c) 
;=1 

2.2 Signals 

Concerning signals emitted by far-field sources and received at the sensor array, some 

assumptions are also necessary. 

Assume the signals are narrow band, and have the same known centre frequency, 000 , Thus, 

the ith signal can be modelled as a sinusoid with frequency 000 and slowly time-varying 

amplitude and phase 

Si(r) = ui(r)' Cos(ooor + vi(r» (2.8) 

where slowly time-varying functions ui(r) and vi(r) modulate the amplitude and phase of si(r) 

respectively. The definition of slowly time-varying, herein, means that the amplitude and 

phase variations as functions of spatial position for time instant r are negligible over the 

aperture of the array, i.e., 

Si(r -1:1(9,» = ui(r -1:1(9,» . Cos{ 00
0 

• (r-1:1(9,» + vi(r -1:1(9,»} 

~ ui(r)Cos{ooo' (r-1:1(9,»+vi(r)} (2.9) 

For narrow band signals, complex envelope representation is a more suitable form to describe 

the signals. In this representation, a so-called analytic signal, s(r), is constructed by combining 
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the original real signal set) and its Hilbert transform set) in the following way, 

set) = set) + }s(t) 

where} = 0, and the Hilbert transform set) of set) is defined as 

set) = r- sea) da 
Lt-a 

which actually shifts the phase of the signal set) by 90°, i.e., 

set) = u(t) . Sin(0)ot + vet)) 

Thus, the analytic signal.f(t) can be written in the form of 

set) = u(t)· Cos(ov +v(t)) + } . u(t) . Sin(ov + vet)) 

() 
j«(J).,+v(l)) 

=u t . e 

Chapter 2 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Obviously, the original real signal set) can be easily recovered from the analytic signal set) 

by taking the real part. 

Recalling the narrowband assumptions, for all moderate time delays 't, u(t) ~ u(t -'t) and 

vet) ~ vet - 't), so the time delays 't can be simply expressed as a phase shift as 

_( ) ( ) j«(J) • . (1-<)+v(I-<» 
S t-'t =u t-'t ·e 

-jUl't' 

=s(t)·e· (2.14) 

Substituting the complex representation of the signal into equation (2.7) 
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where 

and 

Defining 

d 

r. Si(t) 
i = 1 

~ -jo> .~Sin9/c 
"- Si(t)· e • 

i=1 

x(t) = + 

~ _ () -jro •. (m-I).IISme;l' 
"-Sit ·e 

i = 1 

d 

= r. a(9,) . Si(t) + net) 
;=1 

(9 ) - [1 -jro."Sme;l' -jro.(m -I)lISme;l,]T a j - ,e ," ',e 

A(e) = [a(91),·· ·,a(9d)] 

set) = [SI(t),·· ·,Sit)f 

Chapter 2 

(2.15) 

(2.I6a) 

(2.I6b) 

(2.17) 

(2.18) 

the measurement model for the passive sensor array narrow band signal processing problem 

can be represented as 

x(t) = A(e)· set) +n(t) (2.19) 

where the complex d-vector set) contains the received signal wavefonn~e represents the 

unknown signal parameter vector. The columns of A(e), a(9,),i = 1,·· ·,d, are usually 

referred to as the steering vectors or array manifold vectors. They represent the complex 

array responses to unit wavefronts from the directions-of-arrival of interest. In more general 

cases, steering vectors may depend on more than one parameter per source, which might 

include bearing and elevation angle, range, polarization, centre frequency, etc. Concerning 
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the DOA estimation problem considered in this thesis, the parameter space of interest is 

defined as the compact set in which the signal direction e is allowed to vary, and a more 

general matrix A is defined as the array manifold in the following way. 

Definition 2.1 The array manifold, A, is defined as the collection of all array response 

vectors aCe) over the parameter space of interest 

A={a(e)lee E>} (2.20) 

In the application of DOA estimation problems, most algorithms require knowledge of A. 

This can be done in two ways, either by analytical calculations or by array calibration. For 

azimuth only DOA estimation, the array manifold is a one-parameter manifold which may 

be expressed in an analytical form if the sensor characteristics and the array geometry are 

known. For more general cases, expressing the array response as a function of the incident 

angles is impossible, and a procedure usually referred to as array calibration is applied. This 

is an experimental procedure in which the array outputs, when one source is present, are 

measured as a function of the parameter to be estimated, collected and stored. This can be 

a time-consuming task, particularly when the array is large and more than one parameter is 

to be estimated. However, it does provide an alternative to the incredibly complex modelling 

for some array geometries. 

Besides the knowledge of the array manifold, another factor about the array geometry which 

must be considered is the array ambiguity. The existence of array ambiguities makes the 

mapping from the steering vectors to the DOAs not one-to-one, so the DOA estimates will 

not be unique even when steering vectors are determined. Thus, an assumption is made that 

ambiguity is not allowed in the array manifold. This can be stated in the following way: 

For any collection of d distinct DOAs, ei e E>, i = I" . ',d, the corresponding steering vectors 

are linearly independent. 

For the uniform linear array, the array manifold is a collection of steering vectors possessing 

the structure shown in equation (2.16a), which are addressed as Vandermonde vectors. If 

the DOAs are restricted within [-7tl2, 7tl2] and the inter-element spacing tJ. is less than a 

half-wavelength, 'JJ2, such an array can be shown to be unambiguous. 
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2.3 Noise 

Throughout this thesis, the noise at array sensors is modelled as a zero mean, stationary and 

white random process with equal variance cf for independent components. This is a natural 

assumption due to the fact that the sensor noise can often be regarded as a super-position of 

several "error sources" and the central limit theorem applies. Its distribution is complex 

Gaussian which implies that its real and imaginary parts are independent, identically 

distributed Gaussian processes. Such a noise process net) has second moments as follows: 

E[ n(t) . nH (s)] = cfIo" 

E[n(t)· nT(s)] = 0 
(2.21) 

For a stationary, temporally and spatially white, complex Gaussian random process, net), 

with zero mean, the noise covariance is E[n(t)· nH(t)] = cfI 

2.4 Problem Formulation and Model Extension 

In preceding sections, we have made appropriate assumptions on array, signal, and noise, 

and defined models. Now we come to formulate the estimation problem. 

The array outputs modelled in (2.19) are simultaneously sampled at N time instants, and the 

measurements are collected into a data matrix XN 

x(t) = A(e) . set) + net) 

XN = [x(I),x(2), .. ·,x(N)] 

t = 1,·· ·,N (2.22a) 

(2.22b) 

The tilde in (2.19) representing the complex signals is omitted in the above equations and 

from now on. These simultaneous measurements at the array output are usually referred to 

as the snapshots of the array outputs. Given these N observations, the estimation problem 

generally consists of estimating the following three quantities 

1) The number of signals, d 

2) The signal parameters, e 
3) The signal waveforms, set), t = 1,· . ·,N 
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The problem of estimating the number of signals, d, is often referred to as the detection 

problem. The knowledge of the number of signals present in the scene is crucial in most 

high resolution algorithms, and many approaches have been suggested [Sch81, WK85, WZ88, 

YOK91, etc.] for the detection problem in order to ascertain the anticipated performance of 

estimation algorithms. The problem of most interest in this thesis is the signal parameter 

estimation problem. 

Under the assumption that the signal wavefronts are independent from the noise process, the 

covariance matrix of the array output is of the form 

R = E[x(t)· ~(t)] = A(9)· S· A(9) + crI (2.23) 

which is commonly referred to as the array (or sample) covariance matrix. Strictly speaking, 

R coincides with the covariance of the observation vector only when the signals are assumed 

to hav~ zero mean. Matrix S in equation (2.23) is dermed as 

S = E[s(t)· s"(t)] (2.24) 

and referred to as the signal (or source) covariance matrix. All of the signals incident onto 

the array may be uncorrelated, partially correlated or completely correlated (or coherent) 

with each other. In particular, for two jointly stationary signals Si(t),S/t) (ef. eqn.(2.8)), the 

correlation coefficient between them is defined as 

and from the Schwatz inequality (ef. [Cra61]), it is known that I pijl ~ 1. And 

0< I pijl < 1 

I pijl = 1 

<=> 

<=> 

<=> 

Si(t),S/t) are uncorrelated 

Si(t),S/t) are partially correlated 

Si(t),S/t) are coherent 

19 

(2.25) 



Chapter 2 

Correspondingly, matrix S is diagonal when the incident waveforms represented by the 

elements of S are uncorrelated, and is singular when S contains coherent pairs. In more 

general cases, S is positive definite which reflects the arbitrary degrees of pair-wise 

correlations occurring between the incident waveforms. When the signal waveforms are 

non-coherent, the signal covariance matrix, S, has full rank. However, in some applications 

specular mUltipath is common and S may be ill-conditioned or even rank deficient. The 

methods to be studied are of particular interest when the rank of S is less than d. In general, 

let the rank of the d x d signal covariance matrix be d'. 

With N observations x(l), x(2),· .. , x(N) available, the sample covariance matrix of the array 

is formed and denoted by R 

• 1 N 
R=-lx(t)·~(t) 

N 1=1 
(2.26) 

A further assumption is that the following limit exists 

1 N 
S= lim -ls(t)·~(t) 

N-t_Nt=l 
(2.27) 

then sample covariance matrix will converge to the array covariance matrix as the number 

of snapshots goes infmite 

. (2.28) 

2.5 Mathematical Preliminaries 

Some mathematical concepts are quoted here in forms of definitions or theorems for a better 

understanding of the following discussion (cf. [GV83, LH73, Str80, etc] ). 

Definition 2.2 A complete infinite unitary space is called a Hi/bert space, denoted by H. 
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Definition 2.3 The eigenvalues of a matrix A e Cox, are the n roots of its characteristic 

polynomial p (z) = det(zI - A). The set of these roots is called the spectrum 

and is denoted by A(A). IfA(A) = {Al'~"· ·,A,}, then itfollows that 

det(A) = Al~· .. A, (2.29) 

Moreover, if we define the trace of A by 

, 
Tr(A) = .L aii 

1=1 
A e C'" (2.30) 

, 
then Tr(A) = L Ai. 

i =1 

If Ai e A(A) then the non-zero vectors ei e C' x 1 that satisfy 

Aei = Aiei (2.31) 

are referred to as eigenvectors. An eigenvector defines a one-dimensional 

subspace that is invariant with respect to pre-multiplication by A. Usually, 

the eigenvalues are arranged in descending order. 

Definition 2.4 A vector space X is the direct sum of two subspaces Y and Z, denoted 

X = Y $ Z, if every x e X can be uniquely expressed as x = y + zfor some 

ye Y andze Z. 

Definition 2.5 Given a subset M of a Hi/bert space H, the set of all vectors orthogonal 

to M is called the orthogonal complement of M and is denoted M-. 

Definition 2.6 For a matrix A e C''', its range is defined by 

R(A)={ye C'I y=Ax forsome xe C} (2.32) 

and the null space of A by 

N(A)={xe C'I Ax=O} (2.33) 
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Theorem 2.1 Eigen-decomposition 

A Hermitian matrix A = AH has an eigen-decomposition o/theform 

• 
A = EAEH = L ').. .. e· . elf • • • ;=1 

(2.34) 

where A is real and diagonal and E is orthogonal. 

The entries on the main diagonal of A are the eigenvalues of A, and the columns of E are the 

corresponding eigenvectors. 

Theorem 2.2 Singular Value Decomposition 

If A E en". then there exist unitary matrices 

(2.35) 
and 

V=[v t ,v2,···,vJ E coX. (2.36) 

such that 

where 

(2.38) 

From Theorem 2.2, it is ready to have A decomposed as A = urvH by pre- and 

post-multiplying the two sides of equation (2.37) with U and VH, respectively. 
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Corollary 2.1 If the SVD of A is given by Theorem 22 and 

~ > ... >~ >~ = ... =~ =0 Vt - - UT V,+l Vp (2.39) 

then 

rank (A) =r (2.40) 

N(A) = span {v,+" ... , v.} (2.41) 

R(A) = span {u" ... , u,} (2.42) 

2.6 Maximum Likelihood Estimators 

The Maximum Likelihood (ML) method, as a general method of estimation, was first 

introduced by R. A. Fisher, and has been accepted as one of the most imponant methods of 

estimation and taken as a standard technique in statistical estimation theory. In this method, 

the likelihood function of the observed data is defined as the Conditional Probability Density 

Function (CPDF) of the data with unknown parameters, the objective is to choose the unknown 

parameters such that the likelihood function becomes as large as possible. Any solution to 

the likelihood equation associated with the likelihood function will be taken as an estimate 

of the unknown parameters. 

When applied to the signal parameter estimation problem, the Maximum Likelihood (ML) 

method provides an optimal criterion. Under this criterion, optimal solutions can be defined 

and soned out from optimal solutions under other criteria for the same problem. 

2.6.1 Deterministic Maximum Likelihood Estimator [Wax85, OV88, SN89] 

Recall the model formulated previously and assume that the number of signals, d, is known 

and smaller than the number of sensors, m. Since the N samples x(I),x(2), ···,x(N) are 

independent and identically distributed, the joint (conditional) probability density function 

of the sampled data is given by 

(2.43) 
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Maximising equation (2.43) is equivalent to minimising its negative log likelihood function 

1 N 
-log(f(xl" . "XN» = N loglt + mN log<i + <it~llx(t,) - A(9) . S(t,)12 (2.44) 

Ignoring the constant term, 

1 N 
L(9, s(t), <i) = mN log<i + o2t~llx(t,) - A(9) . S(t,)12 (2.45) 

is defined as the criterion function. Thus, the ML estimator is obtained by solving the 

following minimisation problem 

[9,8(t,),01 =arg min L(9,s(t,),<i) 
9.-<ti~O> 

(2.46) 

Fixing 9 and s(t,), and minimising with respect to 02, we obtain 

• 1 N 
Cl = mN '~I Ix(t,) - A(9) . s(t,i (2.47) 

Substituting this result back to the criterion function, and ignoring the constant terms, we 

have 

L(9,s(t» =mN 10{~ '~IIX(t)- A(9)· s(t,i) (2.48) 

which functionally equals 

N 

L(9,s(t» = ~ Ix(t) - A(9)· S(t)12 
i c: 1 

(2.49) 

in the maximisation problem in equation (2.46). To carry out the minimisation of L(9, s(t,», 

we hold 9 fixed and minimise with respect to s(t,) yielding 
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(2.50) 

(AH . Ar!· AH is defined as the pseudo-inverse of A and denoted as 

(2.51) 

Substituting equation (2.50) to (2.49) results in 

N 

L(9) = L Ix(t,) - A + . A . x(ti )12 

i =1 
(2.52) 

This can be rewritten as 

N 

L(9) = L Ix(t,) - PA • x(t,)1' 
i=1 

(2.53) 

N 
= L 1P;i . X(t,)12 

i= 1 
(2.54) 

where two operators PA and p.. are defined respectively as 

(2.55) 

PAis the projection operator onto the space spanned by the columns of the matrix A, and p.. 
is the orthogonal projection operator onto the null space of A. 

By properties of the trace operator, Tr{·}, the likelihood function in equation (2.54) can be 

written in another form as 

L(9) = Tr[ .... . RJ (2.56) 

where R is the sample covariance matrix given in (2.26). Thus, the ML estimator of 9 is 

obtained as 
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e = arg min Tr[i>A . R] 
9 

C2.57) 

2.6.2 Stochastic Maximum Likelihood Estimator [Sch81, Boh87] 

Under the assumptions which have been made concerning the signal and noise, the joint 

probability density function of the N independent samples is given by 

NI· -I 

f( ... ) - IT -x (t)·R ·x(t) 
Xl' 'XN - e 

t=l1t"'det(R) 
C2.58) 

and the normalised negative log likelihood function of {x(1), ···,xCN)} has the following 

form, 

1 ' LCll) = m loglt + 10gdetRCll) + Tr{R- {ll) . R} C2.59) 

where 11 represents the unknown parameters e, S, and er of the observation covariance. The 

ML estimate is the minimizing argument of L Cll). In this form, the Sto-ML method requires 

a non-linear, (d 2 + d + I)-dimensional optimization. As noted in [Boh87], the log likelihood 

function (2.58) can be separated and thus, the dimension of the optimization can be reduced. 

For fixed e, the minimisation of (2.59) with respect to Cw.r.t.) S and er yields 

(2.60) 

The following d-dimensional non-linear minimisation problem yields 

e = arg min det{AS(e)AH + Q-2(e)I} (2.61) 
9 
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CHAPTER 3 

LITERATURE SURVEY OF DIRECTION-OF-ARRIVAL 

TECHNIQUES 

In this chapter, some typical solutions to the array signal processing problem are reviewed. 

These solutions are mainly for the direction of arrival (DOA) estimation problem, which 

might require other knowledge such as the estimate of the number of signals, and may be 

extended to other applications such as the signal waveform estimation, etc. 

The evolution of estimation techniques has experienced several stages. For clarity of 

presentation, the discussion will be divided into several parts which contain different classes 

of methods. To make the presentation self-contained, one section in this chapter is devoted 

to the detection problem at the end .. 

3.1 Conventional Techniques 

The basic array processing structure is shown in figure 3.1, in which the array output is 

evaluated as a function of the angle. Conventional techniques aim to form a power spectrum 

at the array output and take its peaks as indications of the true directions of arrival of 

wavefronts present. 

Under the narrow band signal assumption, a single complex coefficient in each channel (Le., 

each sensor of the array) is sufficient to adjust the transfer function of the filter. Using XiCt) 

to denote the output at the ith sensor and wi (9) the corresponding weighting coefficient, the 

array output can be written as 

m m 

yCt) = 1 w:(9)· xiCt) = 1 wi(9)· x:Ct) C3.l) 
i= I j=1 
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• y(t) 
• 
• 

Figure 3.1 Basic Array Processing Scheme 

where the superscript (*) denotes the complex conjugate operator. 

Employing the vector notation 

(3.2a) 

and 

(3.2b) 

to represent the array measurements at time instant t and the weighting vector, where m is 

the number of sensors in the array, the ensemble average power outputP(S) is then given by 

"peS) = E[ly(t)11 =~. E[x(t)· ~(t)] . w=~· R· w (3.3) 

where R is defined as the array output covariance matrix 

R = E[x(t)· ~(t)] (3.4) 

It will be shown that, by using the weighting vector in different ways, several methods can 

be developed from (3.3) which include the classical beamforming method, Capon's maximum 
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likelihood method, and Burg's maximum entropy method. 

3.1.1 Classical Beamforming Met~od 

The wave propagation phenomenon in physics stimulated the formulation of the conventional 

beamformer. It is well known therein that a coherent summation of all waveforms at sensor 

outputs produces a scalar output which includes a coherent sum of energy in signals and an 

incoherent sum of noise, and that incoherent summation exists for both signals and noise 

when signals arrive out-of-phase. The aim of the conventional bearnformer is to choose a 

weighting vector w(e) to compensate propagation delays at different sensors so as to steer a 

beam in the wanted direction. 

Figure 3.2 Uniform Linear Array with!i Spacing 

For the uniform linear array with inter-element spacing ~ in the metric of wavelength 

(ULA(~» given in figure 3.2, the time delay between two adjacent sensors for the signal 

incident onto the array in direction e to the normal of the array is given by 

MS' e 27t~S' e 1: =- In =-- In 
o C W 

(3.5) 

where c is the propagation speed of the waveform at radian frequency w. Then, the delay 

between the ith sensor and the reference sensor is simply 

(3.6) 
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Therefore, the weighting vector for the conventional beamformer can be constructed as 

(e) - [-j"'" -jO>( .. -1)t.1T - (e) w - 1,e ,"',e J -a (3.7) 

which coincides to be equal to a(e), the steering vector defined in chapter 2. Thus the output 

power of the conventional beamformer is given by 

(3.S) 

In practice, only finite measurements are available and it is the estimated covariance matrix 

that can be used in the estimation of the power spectrum. Given N observations of the array 

output, the estimated power output is described by time averaging which can be given by the 

following alternative expression 

(3.9) 

where 'Y = OYto is defined as spatial frequency. This estimator takes the Discrete Fourier 

Transform (OF!) of the array aperture distribution (m-point OFT) as the spatial spectrum 

estimate and has very limited resolution, because the convolution of the unknown spectrum 

with the filter transform function destroys the details of the peak spectra [GabSO]. Poor 

resolution due to the finite array size and sidelobe leakage due to inter-element spacing are 

the main problems with the conventional beamformer which cannot be overcome by 

conventional techniques. However, because of its easy implementation and robustness it is 

still widely used in practical systems. 

3.1.2 Burg's Maximum Entropy Method (MEM) 

In the conventional beamformer, the weighting vector wee) is chosen according to some 

desired criterion and is fixed in processing. In contrast, an adaptive system possesses the 

ability to adjust its weighting coefficients to meet the changing environment so as to achieve 

some particular requirements. Adaptive methods have been proven to have superior resolving 

capabilities compared to the conventional beamformer and provide optimum array gains. 
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The Maximum Entropy Method (MEM) of Burg [Bur67] is widely used in estimating the 

directions of arrival of wavefronts at a linear equispaced array, especially when the data 

records are short. The idea of the method is to keep the first coefficient of the weighting 

vector to be unity while allowing all other coefficients to take any value. The aim of this is 

to minimise the output subject to the first sensor constraint, and nulls will be placed at the 

positions of all the strong signals. The inversion of this response gives an estimate of the 

angular spectrum and the peaks are used to locate the source directions. 

Defining the first unit vector as u, = [1,0, ···,of, the MEM angular spectrum is given by 

(3.10) 

The main advantages of MEM are that it shows much higher spatial resolution compared to 

the conventional beamforming technique even with short data records [Gab80], and that the 

unwanted "end effect" caused by the finite aperture sampling is also avoided. This method 

is useful in adaptive arrays for cases where the wanted signal itself is weaker that the 

background noise. The interferences are first removed and then the signal recovered from 

the noise by post-processing. Despite all these advantages, the so-called line-splitingproblem 

exists, as does the lack of source power estimates. Another shortcoming inherent in the MEM 

is that it needs knowledge of the length of the prediction error fllter, i.e., the order of the 

corresponding AR model [UB75]. This method was first claimed to be applicable to 

equispaced arrays only, but it is stated in [Nic88] that it can also be applied to irregular arrays. 

3.1.3 Capon's Maximum Likelihood Method (MLM) 

Capon's method, the Maximum Likelihood Method (MLM) [Cap69], is a modification of 

the conventional beamforrner by using an adjustable weighting vector rather than a fixed 

one. This method is a mapping of the maximum likelihood fllter used in time domain 

optimisation problems to the space domain with a wavenumber resolution superior to that 

obtained from the conventional method [Cap69, Gab80, KM81]. As has been stated, this 

maximum likelihood fllter is designed to pass the power in a narrow band about the signal 

frequency of interest and minimise all other frequency components in an optimum manner. 
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In the direction of arrival estimation problem, the array output power in the wanted direction 

contains contributions from stimuli in that direction and, as well, in other unwanted directions. 

To minimize the responses to unwanted directions, a constrained optimal problem is 

formulated. The array output power is minimized while maintaining the gain along the wanted 

direction to be constant. This can be formulated as a zeroth-order main beam directional 

gain constraint optimization problem as follows: 

minimize: 

subject to: 
P(B) = E[I y(t)11 = WI(B). R· w(B) 

I WI (B) . a(Bo)1 = 1 

(3.11a) 

(3.11b) 

where a(Bo) denotes the array response to the wanted direction Bo. Solving the above problem 

is equivalent to constraining the weighting of the array to form a beam in the wanted direction 

while, at the same time, to' minimise the mean square output from the array. Therefore, to 

distinguish it from true Maximum Likelihood (ML) techniques, Capon's method'is also 

addressed as the Minimum Variance Method (MVM), which is a realisation of the ML 

technique in the real sense only when a single source is present. 

The Lagrange method is usually used to solve the constrained optimisation problem stated 

in (3.11) and gives the optimal weighting vector as [Ori83] 

(3.12) 

and the angular spectrum estimate as 

P (B) _ 1 
MVM - aH (B) . R-1 • a(B) (3.13) 

So the angular spectrum can be estimated by sweeping the steering vector a(B) over the 

field-of-view with the inverse of a given covariance matrix. 

U sing the spectrum representation of the covariance matrix R given in (2.34) and the 

properties of matrix inversion, the MVM spectrum can be written as 

32 



Chapter 3 

(3.14) 

This implies that all eigenvalues and eigenvectors of the covariance matrix are used in the 

final evaluation of the output spectrum. The reciprocal of the eigenvalue is used to weight 

the corresponding eigerlvector. 

A better resolution is achievable by the MVM estimator than that by the conventional 

beamformer, and the angular spectrum is directly referenced to receiver noise power so that 

the peaks represent signal power estimates in those directions, which permits the measurement 

of relative source strength. The residual background ripple is low and relatively well behaved, 

and provided that the array manifold is known, it isnot necessary for the array to be equally 

spaced; thus the array aperture can be widened and the resolution is substantially increased 

for a given number of sensors. Also, the MVM does not need knowledge of the number of 

signals present. 

On the other hand, ill-conditioning may arise when calculating the inverse of the covariance 

matrix. This method fails to resolve coherent sources and its computation load is relatively 

high. 

3.2 Signal Subspace Methods 

The ML estimator for the deterministic sequences has been given in (2.57) and the likelihood 

function is rewritten here as 

L(9) = Tr [PA (9) . RJ (3.15) 

Substituting the spectral representation of the covariance matrix, which is the form of the 

covariance matrix denoted by its eigenvalues and eigenvectors, given in (2.34) into the 

likelihood function, and using the properties of the projection and trace operators, we have 

m 

L(9) = I Ad PA (9)· eil' 
i:; 1 

(3.16) 
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Maximising L(6) yields the ML estimates of the directions of arrival. It is evident that all 

eigenvalues and eigenvectors of the covariance matrix R are used in the estimation. A 

non-linear, multidimensional maximising procedure is involved which means a heavy 

computational burden. 

To reduce the computational complexity inherent in the ML estimator and to provide 

comparable perfonnance at the same time, suboptimal procedures are needed. Work in the 

field of eigenstructure based methods was pioneered by Pisarenko [Pis73]. His work 

concentrated on extracting harmonics embedded in white noise in time series analysis. His 

method, however, has provided a fundamental basis for eigenstructure based methods which 

have dominated the field of DOA estimation since their emergence. 

The common basis for all these suboptimal signal subspace methods is the 

eigendecomposition of the covariance matrix sampled at the array output. They differ from 

each other in the way in which they make use of the obtained eigenvalues and eigenvectors 

of the covariance matrix, with the aim being to find the direction estimates as exactly as 

possible. The orthogonality between the signal subspaces (spanned by the signal eigenvectors 

) and the noise subspace (spanned by the noise eigenvectors) and that between the signal 

steering vector and the noise subspace are the foundation of a number of high resolution 

DOA estimation techniques. 

The MVM described in section 3.1.3 is one of such suboptimal method obtained by reducing 

the multidimensional optimisation problem involved in the ML estimator into a 

one-dimensional searching procedure. The MUSIC (MUltiple SIgnal Characterisation) 

algorithm of Schmidt [Sch79, Sch81) and Bienvenu and Kopp [BK80], and MNM of Reddi 

[Red79] and Kumaresan and Tufts [KT83], etc. provide a more appealing solution to the 

DOA estimation problem by reducing the computational load and providing better resolution 

perfonnance. 

3.2.1 The MUSIC Method 

The MUSIC algorithm is based on a geometric interpretation of the signal parameter 

estimation problem. The main ideas behind this signal subspace approach are : 1) obtain the 

array manifold, 2) find the signal subspace, and 3) search for the intersections between the 

array manifold and the signal subspace. For d signals, the observed data vectors are 

constrained to the d-dimensional subspace of cm, tenned the signal subspace. The 
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intersections of these d-dimensional subspaces and the array manifold A(6) give d vectors 

a(6,), i = 1, ···,d, which are the d columns of the array manifold A(6), termed as the signal 

steering vectors. That is, these vectors yield the set of vectors from the array manifold that 

span the observed signal subspace. Once these d independent vectors have been observed, 

the DOA estimates are immediately determined if no ambiguity exists in the array manifold. 

The signal subspace method separates the highly non-linear DOA estimation problem into 

two parts: the non-linear part which is the determination of the array manifold, and the linear 

part which is the observation of the signal and noise subspaces. Given the array manifold, 

either by analytical calculation or by calibration, the DOA estimation problem is equivalent 

to that of finding the intersections between the signal subspace and the array manifold and 

inferencing to the corresponding directions. 

Intersections between the signal subspace and the array manifold are obtainable only in the 

ideal case when noise is absent. Estimates of these intersections have to be made, since with 

probability one (w.p.l) there will be no intersection between the estimated signal subspace 

and the array manifold. Procedure for seeking array manifold vectors that are closest to the 

estimated signal subspace must be provided. Schmidt's idea was to find a set of d vectors 

by minimising the squared distance from the array manifold vector to the estimated signal 

subspace. 

From the orthogonality between the signal eigenvectors and the noise eigenvectors, assuming 

that the covariance matrix is precisely known, we have 

i=I,···,d; j=d+l,···,m (3.17) 

The squared Euclidean length from a steering vector a(6) to the signal subspace is 

(3.18) 

In the direction where a(6) is orthogonal to the noise subspace 

111 2 =0 (3.19) 

and the 6 which makes the scalar function in (3.18) tend to zero is the estimate of the DOAs. 

The reciprocal of the function given in equation (3.18) yields the MUSIC spectrum estimate, 
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I.e., 

P (8) _ 1 
MUSIC - aH (8). EN. EZ· a(8) 

(3.20) 

or 

1 1 

I a
H

(8)· ENI2 i I aH(8)· e/ 
j=d+l 

(3.21) 

The MUSIC algorithm makes use of the noise eigenvectors only, and all the noise 

eigenvectors. In other words, it re-weights all eigenvectors by setting the noise eigenvalues 

to unity and signal eigenvalues to zero. The MUSIC algorithm provides an asymptotically 

unbiased estimate of many important parameters of the wavefronts arriving at a sensor array, 

such as the number of incident wavefronts, directions of arrival, strengths and 

cross-correlations among the incident wavefronts, and noise / interference strength, etc. 

[Sch81]. Spectra resulting from the MUSIC method are much smoother while, in the 

directions of signals, nulls appear with significant depth. 

Equation (3.21) shows that an accurate estimate of the number of the incident signals is of 

great importance. Overestimate of the number of signals results in the introduction of spurious 

signal directions, and underestimate of it will effect the estimate of other directions of signals 

that are present. The effect of under-estimation of the number of signals is worse than that 

of over-estimation. 

The maxima obtained by the MUSIC algorithm do not depict the signal strength because the 

spectrum given in equation (3.21) involves no information associated with signal eigenvalues, 

which are related to the signal powers. Theoretically the peaks in this spectrum appear to 

be infmitely high in the signal directions since the denominator tends to zero. This method 

does provide superior resolution compared with other non-eigenstructure based techniques 

although in a practical environment the peaks only have finite heights [MC85, JD82, SV84]. 

The MUSIC algorithm yields unbiased estimates of a general set of signal parameters whose 

varlances match the Crarner-Rao lower bound asymptotically, i.e., when the number of 

snapshots becomes very large or Signal-to-Noise Ratio (SNR) is extremely high [Sch79, 

Sch81]. When only finite noisy data is available two types of estimate errors, local and 

global, exist [SPK86]. The former implies deviation of the shape of the observed peak from 
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that which should have resulted in the asymptotic case, and the latter describes the "false" 

peaks that are not within some small neighbourhood of the true directions. Since the directions 

of arrival are estimated from the intersections of signal subspace and the array manifold, i.e., 

the array geometry, the array geometry design is of particular importance in affecting the 

performance of MUSIC. 

The main disadvantage of the MUSIC algorithm is that it is computationally expensive, 

because of the searching procedure and the use of all the noise eigenvectors. Kumarensan 

and Tufts' method eases the computational load by using a single vector in the final searching 

procedure. 

3.2.2 Kumaresan and Tufts's Method (MNM) 

The method suggested by Kumaresan and Tufts [KT83], usually referred to as Minimum 

Norm Method (MNM) or KT method in later literature, uses a single vector which is 

orthogonal to the signal subspace, generated either from the signal subspace or from the noise 

subspace, to calculate the angular spectra. This method estimates the arrival angles of multiple 

plane waves by forming a polynomial from the eigenvectors of the covariance matrix, and 

finding its zeros which give estimates of the angles of arrival. The polynomial may be formed 

from the signal or noise subspace eigenvectors, because they are complementary. 

Recalling the definitions of signal subspace and noise subspace, they form two matrices with 

dimensions of m x d and m x (m - d), respectively. Partition these two matrices, Es and EN, 

as follows 

E, =[ -:~,-l E. =[ ~:,-l (3.22) 

where g and c are column vectors having the first elements of signal and noise subspace 

eigenvectors, respectively. Es' and E/ have the same elements of Es and EN with the first 

row deleted. 

The vector d proposed by Kumaresan and Tufts to calculate the angular spectra is a constrained 

vector which spans the noise subspace, i.e., lies in the range of the noise subspace matrix EN' 
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d=[d A ···d 1T 
1'~' 'mJ (2.23) 

Setting the fIrst element o~ d to be one and minimizing its nonn 

.. 
minimise L I di l

2 subject to (3.24) 
jet 

the rest of the elements of d are obtained by using the appropriate pseudo-inverse of E~ or 

ofE/ 

(3.25) 

With the orthogonality between signal eigenvectors and noise eigenvectors, ideally, 

E~·d=O (3.26) 

The angular spectrum based on the vector d is suggested as 

1 
(3.27) 

Compared to the expression in equation (3.21) for MUSIC spectrum estimation, the KT 

method spends less time in the final searching procedure. The shortcoming of the KT method 

relies in the emerging of spurious peaks and merging of spectral peaks at lower SNR value. 

Herein, the MUSIC technique and the MNM are described as examples of the so-called signal 

subspace methods. In the derivations of the methods it has been assumed that the additive 

noise is spatially white or the noise covariance matrix is known to within a scalar factor. 

Cases when the noise is completely unknown exist in practical situations. Significant 

penonnance degradation is expected if the noise is treated as white and the above cited 

algorithms are applied [Mar84l. Several methods have been suggested to tackle this problem 

[LeC89, PK86, Tew89l. 
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3.3Subspace Rotation Methods 

3.3.1 ESPRIT 

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) is a 

relatively new approach to the general high resolution signal parameter estimation problem. 

Like the MUSIC algorithm, this is an eigenstructure based method and in many aspects, such 

as exploiting the underlying signal and noise models and generating asymptotically unbiased 

estimates of signal parameters, is similar to MUSIC. On the other hand, ESPRIT manifests 

significant performance and computational advantages over MUSIC by employing rotational 

invariance among signal subspaces induced by an array of sensors with translational 

invariance structure. The work in this algorithm was pioneered by Paulraj, Roy, and Kailath 

[PRK85, PRK86, RK89, etc]. 

ESPRIT is an attempt to retain most of the essential features of the arbitrary array of sensors 

while offering a significant reduction in computational complexity by imposing a constraint 

on the array. This is achieved at the price of less general applicability. 

In order to exploit the translational invariance property of the array, it is convenient to describe 

the array used in the ESPRIT algorithm as being comprised of two subarrays, Zx and Zy, 

which are identical in every respect except a physical displacement vector 1'1. Denoting the 

outputs of all doublets in two subarrays in vector notation: 

x(t) = A . set) + "x(t) 

yet) = A . <1>. set) + ",(t) 

(3.28a) 

(3.28b) 

a matrix <I> is introduced here to represent the relation between the measurements from the 

two subarrays. 

(3.29) 

The auto-covariance matrix of the data received by subarray Zx is given by 

Rxx = E[x(t)~(t)] = ASAH + crI (3.30) 
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and the cross-covariance matrix between the measurements from two subarrays, Zx and Xy, 

by 

(3.31) 

Here one theorem is formulated to provide the foundation for subsequent analysis and results. 

Theorem3.! Define T as the generalised eigenvalue matrix associated with the matrix 

pencil {(Rxx - A",inI), Rxr} where A",.. is the minimum (repeated) 

eigenvalue o/Rxx . Then, ifS is non-singular, the matrices <1> and Tare 

related by 

(3.32) 

to within a permutation o/the elements 0/<1>. 

A proof to this theorem can be found in [PRK85]. 

From the relation in equation (3.29) it is obvious that once <1> is known, the signal DOAs can 

easily estimated as 

(3.33) 

In practical situations errors arise from the finite data measurements and the subsequent finite 

precision computations. For this reason, the smallest eigenvalues of Rxx are clustered rather 

than having the same (repeated) value and the relation in equation (3.32) is not exactly 

satisfied. Two formulations of the ESPRIT algorithm have been suggested to obtain the 

desired DOA estimates and probably other parameters of the sources, the so-called Least 

Squares (LS) ESPRIT and Total Least Squares (TLS) ESPRIT. 

The ESPRIT techniques fall in the class of the so-called Subspace Rotation (SR) methods, 

another representative of which is the less known Toeplitz Approximation Method (TAM). 

This method is based on the observation that the estimated covariance matrix is Toeplitz in 

40 



Chapter 3 

the case when sources are uncorrelated and statistically stationary. In coherent cases, the 

Toeplitz structure can be guaranteed by employing the smoothing techniques suggested either 

by TJ.Shan et al or by the authors of the TAM method [KLF86]. The TAM method was 

originally proposed for- the harmonic retrieval problem in time series analysis [KAR83], and 

was then modified to be applicable to the DOA estimation problem in array processing 

[KLF86]. In the T AM approach, the data is modelled as the output of a self generating 

ARMA process and a' state space representation is then formed from the Singular Value 

Decomposition (SVD) of the data matrix. 

Itis shown [SN91] that the asymptotic variance ofthe SR estimate is greater than the MUSIC 

asymptotic variance; furthermore, the difference between SR and MUSIC variances may be 

considerable for large m. 

3.4 Deconvolution Methods 

Apart from the ESPRIT method, most existing high resolution algorithms are "single stage" 

algorithms which generate spectral estimates and assume maxima or minima in the spectra 

as indications of directions of possible sources. Another class of methods to be described in 

the present section make multi-stage estimates of spatial spectra and compare some specific 

statistics associated with these estimates with a pre-defined threshold to give an estimate of 

source directions. These methods are often addressed as deconvolution methods which 

include the advanced CFAR (Constant False Alarm Rate) technique [BLP86, Wei82] as well 

as the Wagstaff and Berrou Broadband (WB2
) algorithm [WB84], Iterative Filtering 

Algorithm (IFA) of Kay [Kay84], CLEAN [Hog74, RLD87, Sch78, VL89] and IMP 

(Incremental Multi-stage Parameter) method [Cla87, Cla88, Cla89, Mat89a,b]. 

A common feature among deconvolution methods is the re-processing of data after the initial 

estimation of the output power distribution. Strictly speaking, deconvolution implies inverse 

linear filtering which mearis that the inverse of the system response is required and used to 

convolve with the measurement so as to give an estimate of the stimuli to the system. 

Deconvolution methods including CLEAN, IMP, WB2 and IFA implement the deconvolution 

procedure iteratively. At each stage, an estimate of the stimuli is assumed according to the 

system output spectrum, and then convolved with the system response and compared with 

the observation (i.e. the system output spectrum). The correspondence between the convolved 

result and the original observation measures the fitness of the estimate and determines the 

termination of the procedure. 
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3.4.1 iterative Filtering Algorithm 

Kay's IFA (Iterative Filtering Algorithm) [Kay84] addresses the classical problem of 

estimating frequencies of. sinusoids in white noise with the ability to provide accurate 

frequency estimates at low signal-to~noise ratios, provided that the number of sinusoids is 

known. It adjusts an all-pole filter which processes the data. At equilibrium, the frequencies 

of sinusoids can be deduced from the filter coefficients. It has been shown that IF A is related 

to Steiglitz-McBrides's algorithm for identification of linear systems. 

3.4.2 Wagstaff and Berrou Broadband Technique 

The technique developed by Wagstaff and Berrou [WB84] for high-resolution bearnforrning 

and spectral analysis is referred to as the WB2 technique. The WB2 algorithm derives its first 

estimate from the output power spectrum of a conventional bearnformer, rather than from 

the array output, and performs the mathematical operations on the logarithm of the power 

rather than the power itself. These two departures from other commonly used high resolution 

methods make WB2 a fast, simple, and nonlinear algorithm giving approximate solutions to 

a very complex problem. 

The WB2 algorithm is also an iterative algorithm. At the first stage, a "guess" of the 

environment comprising locations of point sources is found from the positions of the spectral 

peaks. The "guess" is convolved with the array beam pattern to give the estimated output 

spectrum. This spectrum is compared with the measured spectrum, and the decibel differences 

in the estimated and observed spectra are used to modify the "guessed" spectrum. This 

process is repeated until a suitable goodness of fit criterion is met. 

The WB2 algorithm utilises a very important principle : convolution in the time domain equals 

multiplication in the frequency domain; furthermore, multiplication in frequency domain 

equals addition of logarithms. These two transformations greatly simplify the mathematical 

operations, and thus speed up the processing. 

Both IFA and WB2 allow changes to any or all of the estimates from iteration to iteration, 

while only one estimate is allowed to change between iterations in the CLEAN method and 

the IMP algorithm which will be presented below. 
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3.4.3 CLEAN 

The CLEAN technique was first in.tro,!uced by Hogbom [Hog74J to radio astronomy and 

nowadays, with modifications and additions, is still widely used in aperture synthesis radio 

astronomy for image restoration. The basic assumptions made in the CLEAN method are 

that: 1) the brightness distribution contains only a few sources at well separated, small 

regions, i.e., the brightness distribution is essentially empty; 2) the maximum response in the 

dirty map is due to a single far-field point source at the location of the maximum, and only 

a minor part comes from the filter response from other sources placed further away; 3) 

complete knowledge of the array manifold A(e) is available. The philosophy behind the 

CLEAN method is as follows: 

Having found the maximum response in the dirty map, the energy contributions 

from a point source at this location to all other positions in the map can be 

determined and subtracted. 

In the CLEAN method, the observed map is called a "dirty" map (d) which is a convolution 

of the brightness distribution (to) with the instrumental response, called the "dirty" beam (b). 

The dirty map may have some unwanted secondary responses. The aim of the CLEAN 

method is to remove the effects of these responses. This is done in two steps : first a 

deconvolution step in which the dirty map is decomposed in a set of scaled 8-function, the 

component (t) which when convolved with the "dirty" beam would reproduce the original 

"dirty" map; second, the components are convolved with a hypothetical "clean" beam (h) 

which is free from the unwanted responses. This finally gives the "clean" map (c). 

d =b*t 

c =h*t 

"dirty" map 

"clean" map 

A "true clean" map (co) can also be defined as the convolution of the "true" brightness 

distribution with the clean beam (h). 

Co =h*to "true clean" map 

The "clean" map (c) can be regarded as an estimate of the "true clean" map (co), The 

deconvolution need not be complete, i.e., leaving residuals (r) added to the "clean" map (c). 
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In practice, this method is implemented iteratively. A single peak is found at each iteration. 

Its contribution to the output is obtained by convolving a &-function in the wavenumber with 

the system transfer function, and then is subtracted from the data. This procedure is repeated 

until some criterion is satisfied .. 

3.4.4 The IMP Algorithm· 

IMP (Incremental Multi-stage Parameter) of Clarke [Cla87, Cla88, Cla89] is an iterative 

algorithm. The IMP spatial spectrum starts from the output power distribution of a sensor 

array which implies that the conventional beamforming is used as the initial stage in the IMP 

algorithm. A single peak (the global maximum) is found in the output spectrum estimate 

and the contribution of stimuli in the corresponding direction of the peak is found by 

convolving a &-function in wavenumber (or frequency in time series analysis) with the system 

transfer function. In order to remove the effect of the selected peak, the weighting 

(pre-conditioning, which is assumed to be uniform in the initial procedure) is modified and 

applied to the data. This is one feature that differs in IMP relative to CLEAN where the 

effect of the selected peak is subtracted from the input data directly. 

The conventional spectrum estimate under the assumption that the noise correlation matrix 

is an identity matrix (i.e., the noise at sensors is assumed to be of equal power and uncorrelated 

from sensor to sensor) is given by 

P(8) 
aH (8)· X· XH . a(8) 

aH(8)· a(8) 
(3.34) 

In more general cases where a matrix filter is applied to the input, a suitable expression for 

the spectrum may be expressed as 

aH (8)· C· X· XH . C· a(8) 
P (8) = --'.-'---caH::-(8-)-. -C-. a-(8-'-)----'''-'- (3.35) 

where C is the pre-conditioning matrix, which is the identity matrix in the initial iteration 

and modified afterwards according to the direction estimate in the previous iteration. 

The statistic used in the IMP algorithm is the Signal plus Noise to Noise Ratio (SNNR), that 
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(3.36) 

In the conventional beamfonner where unifonn weighting is used or when noise 

pre-whitening is applied to the case when RN = I, equation (3.36) is equivalent to equation 

(3.34) which is used in the initial stage of IMP. 

When a dominant peak has been found in the output spectrum estimate, or a global maximum 

of the SNNR has been identified, the pre-conditioning is adjusted to eliminate, or null, the 

response in the corresponding direction. The contribution from this direction to the output 

spectrum is cancelled by a projection matrix which projects into the null space of the array 

manifold vector of the peak direction in SNNR. Such a projection matrix is as 

Q=I 
H 

ap" apt 

a:.· Co' apt 
(3.37) 

where apt is the array manifold vector in the peak direction, and Co is a generalised 

pre-conditioning matrix in the initial stage which can be set to the identity matrix or the 

inverse of the noise correlation matrix, or possibly the inverse ofthe sampled data covariance 

matrix. The pre-conditioning is then updated 

Cl = Co . Q. CO = Co 
Co . apt . a: •. Co 

a:', Co' apt 
(3.38) 

It is evident from the fact that a: •. Cl . 3 p• = 0 that the output will not contain contributions 

from noise or signal components matching the array manifold vector 3 p •• Substituting (3.38) 

into (3.35), a modified spectrum results with a null in the direction of the global peak in the 

previous spectrum estimate. The power level of this spectrum is compared with some 

pre-defined threshold to decide whether to tenninate the procedure. If the criterion is not 

satisfied, the maximum in this modified spectrum is found and the corresponding array 

manifold vector is used to fonn a projection matrix and then a new modified spectrum. This 

procedure is repeated until the termination criterion is met. 
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The cancellation philosophy employed by IMP has been implemented in the DICANNE 

(Digital Interference Cancelling Adaptive Null Network Equipment) sonar system [And69]. 

3.5 Subspace Fitting Methods 

The concept of SubSpace Fitting (SSF) was proposed by Viberg and Ottersten [ORK89, 

OV88, V091, VOK89, VOK91, etc] for sensor array processing, and so was a common 

framework to unify different high resolution methods into a so-called subspace fitting class. 

These methods include the deterministic ML (Det-ML), the Conventional BearnForming 

method (CBF), MUSIC, Multi-Dimensional MUSIC (MD-MUSIC), and ESPRIT et al. From 

this framework, algebraic relations between different methods are quite clear and a better 

understanding of the problem makes it possible to introduce the new algorithm. The optimal 

Weighted Subspace Fitting (WSF) method resulted. 

The formation of the basic subspace fitting problem results from the fact that the Det-ML 

method tries to fit the subspace spanned by A(e) to the measurement X, which can be defined 

as 

A A 2 
[A,1] =argminIIM-ATIIF (3.39) 

A,T 

where M is an m x q matrix representing the observed data, the m x p matrix A is 

parameterisedby the directions of arrival, and T is any non-singular p x q matrix. 

Since the subspace fitting problem is separable in A and T [GP73], substituting the 

pseudo-inverse solution, t = A +M, into equation (3.39) yields the following equivalent 

problem 

A . H 
A = arg min Tr{P.4(e)· M· M } (3.40) 

A 

Choosing M as a Hermitian square root of the covariance matrix MMH = R and searching 

simultaneously in the d-dimensional signal subspace, (3.39) yields the Det-ML method as 

given in (2.57). Setting M= Es and forming a one-dimensional spectrum, the MUSIC 

algorithm is obtained. It is shown [Vib89] that for a large number of snapshots it is sufficient 
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to consider the case when M = Es only if the signal subspace matrix is post-multiplied by a 

specific weighting matrix W. Consequently, all methods within the subspace fitting 

framework minimise the following criterion function 

- - H VN = Tr{p';(8)· Es' W· Es} (3.41) 

where W is a d x d weighting matrix. Equation (3.41) defines the weighting subspace fitting 

methods. 

It is well known that the Det-ML method does not attain the Cramer-Rao Bound (CRB) as 

the number of snapshots tends to infinity, since the number of unknowns also increases 

without limit This observation encouraged searching' for an optimal weighting matrix that 

results in a method with better asymptotic performance. The covariance matrix of the estimate 

error for WSF is formed and then minimised with respect to the weighting matrix. It was 

found that there exists a weighting matrix such that WSF always outperforms Det-ML when 

the amount of data is large. Such a weighting matrix is 

(3.42) 

In practice, only finite measurements are available and the estimates rather than the true 

values are used to form the WSF criterion function as 

(3.43) 

3.6 Other DOA Estimation Techniques 

The survey of the high resolution algorithms given above is by no means exhaustive. Only 

typical examples in each class of method have been included. Many other methods which 

also provide high resolution abilities have been proposed. In this section, some of the newly 

suggested methods are described. These include the Method Of Direction Method (MODE) 

of Stoica and Sharman [SS90a,b] and the CLOSEST estimator. of BuckIey and Xu et aI 

[BX90b, XB90, HXB90, XBM90]. 
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The MOPE Techni<J.lle 

The MODE method is also an eigenstructure based approach with advantages of providing 

the comparable performance of the ML estimator at a computational load which is not much 

heavier than that inherent in the popular MUSIC algorithm. The performance advantage 

over the MUSIC method is that MODE behaves better in highly correlated situations. 

The invention of the MODE method was stimulated by the thought of combining the 

computational simplicity of the MUSIC method and the resolving ability for highly correlated 

sources of the ML estimator. Eventually, the MODE estimator is a large sample realisation 

of the deterministic ML estimator under certain approximations, which simplifies the 

computational complexity while keeping the capability of resolving highly correlated sources. 

The CLOSEST Estimator 

A new approach to spatial spectrum estimation for arbitrary configured arrays was recently 

introduced by Buckley and Xu. This new approach is based on forming a spatial spectrum 

estimate by projecting onto a vector or vector set in the estimated noise-only subspace which 

is in some sense closest to the array manifold in a sector of source locations where high 

resolution is desired. Several measures have been used to derive different CLOSEST vector 

algorithms, such as the FINE (FIrst priNcipal vEctor) algorithm and the FINES (FIrst 

priNcipal vEctorS) algorithm. It was shown that in a location sector of interest the FINE 

algorithm provides higher spectral resolution than either MN or MUSIC, with location 

estimation variance comparable to MUSIC. 

In the FINE algorithm, a single vector in the estimated noise subspace is defined which has 

a minimum angle to a subspace which essentially spans the aCe) over 8. Instead of finding 

a single vector, FINES finds a set of orthogonal vectors in the noise subspace, whose range 

has a minimum angle with the source representation subspace. 

The selection of the sector width is of great importance in both FINE and FINES algorithms. 

Beam-width sectors are often recommended since they have both computational and 

resolution advantages. 
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3.7 Detection Techniques· 

Correct detection of signals is of great importance in most signal subspace methods and any 

parametric estimation method. The issue of estimating the number of signals has been 

addressed in many papers, e.g., [Sch8l, WK83, WK85b, Wax85, WZ88, etc.]. For most 

situations, the correctness of the knowledge of the number of signals may be crucial for the 

following parameter estimation since it may lead to incorrect splitting between the signal 

subspace and the noise subspace. A lot of effort has been expended on this problem. 

Anderson's hypothesis testing procedure [And63] might be the first attempt in estimating 

the number signals. This procedure was based on the confidence interval of the noise 

eigenvalues and a subjective threshold was required. To avoid the assignment of such a 

threshold, information theoretic criteria were developed by Akaike [Aka73, Aka74] and 

Rissanen [Ris78, Ris83], and the so-called AIC (Akaike Information Criterion) and MDL 

(Minimum Description Length) methods were formulated respectively. 

Probably, Liggett [Lig73] was the first to address the problem of estimating the number of 

signals by exploiting the structure of the underlying model of the data. Under the assumption 

that the signals are Gaussian random processes, a so-called Likelihood Ratio (LR) statistic 

is formulated 

1 
m I )(m_k)N 
IT J..~-' 

LR(k) = 10 :+f' J... 
m-A:: i=k+l 

(3.44) 

and tested for a sequence of hypotheses 

The value of k for which H(k) is fi;'t accepted is selected as the estimate of the number of 

signals. The LR test uses the ratio of .the arithmetic mean of a set of eigenvalues to their 

geometric mean to measure their equality. 
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The two more commonly used criteria based on the information theoretic criteria are the 

eigenvalue forms of AIC and MDL derived by Wax and Kailath [WK83, WK85b]. They 

are widely applied in array signal processing since the eigenvalues are available in most high 

resolution techniques. It was shown that the AIC approach tends to overestimate the number 

of signals as the number of measurements tend to infinity whilst the MDL criterion yields 

an asymptotically consistent estimate of the number of signals. When N independent 

measurements at an array of m sensors are available, the AIC and MDL criteria are given as 

follows: 

AIC(k)=-2LR(k)+2k(2m -k) k =0", ',m-l (3.45) 

1 
MDL(k) =-LR(k)+"2k(2m -k)logN k = 0", ',m-I (3.46) 

where k is the number of free adjusted parameters in the parameter vector. The number of 

signals d is determined as the value of k for which either AIC or MDL is minimised. 

Schmidt [Sch8l] divided the space spanned by the covariance matrix of the array output into 

the signal subspace and its orthogonal complement;the noise subspace. Ideally, the number 

of signals can be estimated from the multiplicity ofthe smallest eigenvalues of the covariance 

matrix, i.e., the number of eigenvectors spanning the noise subspace. In practice, however, 

the covariance matrix is calculated as the time average from a finite set of observations, and 

w.p.l eigenvalues which are supposed to be equal to the noise variance are all different, and 

even inseparable from the signal eigenvalues if the SNRs are not high enough or correlation 

between signals exists. Both AIC and MDL criteria provide more objective approaches to 

determine the number of signals incident upon a sensor array rather than making the 

judgement by observing the eigenvalues directly. Both the dimension of the signal subspace 

and the number of signals are determined simultaneously since they are equal in the case 

where signals are non-coherent. When signals in different directions are strongly correlated 

or even coherent (i.e., completely correlated) which is the case in specular multipath 

propagation, the resulting signal subspace estimate is of a dimension that is usually less than 

the number of signals. An incorrect division between the signal subspace and the noise 

subspace causes the failure of most subs pace based techniques, including the famous MUSIC 

algorithm. 
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In [WZ88], Wax and Ziskind adapted the MDL criterion to the case when fully correlated 

(coherent) signals are present by using the knowledge of estimation of signal directions. The 

formulated estimator for the number of signals can be expressed as a minimisation problem 

as follows 

kMDLB =arg min MDLB(k) 
le {O.···./Pl-l} 

(3.47) 

where MDLB (k) is a slightly different version of the MDL principle from that given in (3.46) 

m-' -'_. L A(e('~ 
m-.I:: i-I I 1 

MDLB(k) =N(m -k) . log - _1 +Zk(2m -k)logN 

C~: A;(e(k»t' 

(3.48) 

where A,(e(k~ ~ ... ~ ~m_k)(e(k» are the non-zero eigenvaIues of the m Xm matrix 

PA(e(k». R· .... (e(k» which depends on e(k) that can be estimated by 

e(k) = arg min 10 
r#' 

(3.49) 

The recently proposed WSF approach requires knowledge of both the number of signals 

incident on the array and the dimension of the estimated signal subspace. Accompanied with 

the WSF estimation scheme, a new detection scheme was formulated [VOK91]. The basis 

of this new scheme is an observation noticed by several researchers [Sch81, Roy87, Cad88]. 

Given an estimate of the number of signals, the distance between the array manifold and the 

estimated signal subspace is measured, and the estimate will be accepted if this distance is 

small enough; otherwise coherent signals are indicated. This is expressed as the WSF cost 

function converging to zero as the amount of data increases. 
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CHAPTER 4 

PERFORMANCE COMPARISON OF SPECTRAL AND 

ROOT VERSIONS OF MEM, MVM, MUSIC, AND MNM 

MEM, MVM, MUSIC, and MNM have all shown superior angular resolution abilities 

compared to the conventional beamforming technique, although inevitably, at expense in 

some fonn. The estimated DOAs obtained by these methods are depicted by the dominant 

peak positions in the estimated output spectra, which involve a searching procedure over the 

field of interest. Intuitively, a heavy computational burden is unavoidable. 

Based on the fact that the MUSIC algorithm utilises the orthogonality between the signal 

steering vectors and the eigenvectors in the noise subspace, a variation of MUSIC which 

makes use of the roots of the associated polynomial to estimate DOAs was first suggested 

by Barabell [Bar83], where it was stated that the polynomial rooting technique is also 

applicable to other methods such as MVM. This method of dealing with the roots of an 

all-pole direction finding spectrum is addressed as root MUSIC; more generally, it is called 

the root version of MUSIC and the original MUSIC as the spectral version of MUSIC. 

Although the unifonn linear geometry constraint limits its popularity, it has also attracted 

public attention. 

In this chapter, we would like to restate the root MUSIC and derive root versions of MEN, 

MVM, and MNM, while focusing our main attention on their asymptotic properties and 

numerical examples. 

Another topic in this chapter is the description of the simulation programmes. Since a large 

number of simulations is going to be carried out in this and following chapters, the signal 

and noise models and some assumptions are necessary before the implementation of the 
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simulations and discussion of the results, The implementation of algorithms will be presented 

in relevant chapters and that of the four methods to be discussed in this chapter and their root 

versions will be given before presenting the simulation results. 

4.1 Spectral and Root Representations 

The output spectra for MEM, MVM, MUSIC, and MNM have been given in the previous 

chapter, they are rewritten here briefly for the convenience of deriving their root forms. 

MEM: H R-' 
PMFM(6) 

u, . . u, 
(4.1) 

lu~ . R-' . a(6)12 

MVM: P (6) _ 1 
MVM - aH(6). R-' . a(6) 

(4.2) 

MUSIC: 1 
PMUSIC(6) 

aH(6)· EN' EZ· a(6) 
(4.3) 

MNM: 
PMNM(6) 

1 

laH(6). dl2 (4.4) 

The averaging relationship between the ME method and the MV method has been observed 

soon after the invention ofthe ME estimator [Bur721, which can be mathematically expressed 

as 

(4.5) 

where PMFM(6, i) is the output power spectrum with ith order model. The averaging over the 

ME spectra from one point up to the m-point prediction error filter explains the lower res­

olution of the ML estimator. 

A similar relationship between the MUSIC algorithm and the MN method was proved by 

Nickel [Nic881, wit~ the exception that the harmonic averaging is weighted. Also, it was 

shown therein that the MUSIC spectrum and the MN spectrum are the extremes of the MV 

spectrum and the ME spectrum, respectively, as the signal-to-noise ratio tends to infinity. 
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This gives a good explanation to the better performance offered by the MUSIC and MN 

methods compared to that of the MV and ME methods, and also the smoother background 

in the MUSIC and MY. spectra. 

Root Versions 

The polynomial rooting technique is applicable only to the uniform linear array where the 

array manifold consists of Vandermonde vectors. For such manifold vectors, the orthogo­

nality to noise subspace eigenvectors occurs for roots of the noise eigenvector polynomials, 

which produce the peaks in the estimated output spectrum. 

All of the four methods which will be included in this chapter can be written in a general 

"all-pole" direction finding form as follows: 

P(S) 
1 

(4.6) 

where M is a Hermitian matrix taking different forms for different methods. We take the 

MUSIC algorithm as an example for our derivation where M = EN . EZ. 

In the MUSIC spectrum, peaks appear at positions where the array vectors are orthogonal to 

noise eigenvectors, i.e., 

k=d+l, .. ·,m (4.7) 

which, for uniform linear arrays, is equivalent to 

m 
'<"' -j'br;.i -1>"S",(9)'>. - 0 .... ea·e -

i:::: 1 
(4.8) 

defined as the noise eigenvector polynomials. If we set z = exp(i21tL'l Sin(S)/A.) E C, then the 

above expression can be rewritten as 

.. 
D ( ) - '<"' -{i-I)-O 

k Z - £.J ea . Z -, 
i::: 1 
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The signal zeros are defined as roots of each of these polynomials. A polynomial is therefore 

formulated to combine all these polynomials in the following way 

m 

D(z) = L D.(z)· [D.(z))" 
,i;z=d+l 

(4.10) 

which can be simplified to (et [Bar83]) 

m-I 

D(z)= L bl'z-I (4.11) 
l=-m+l 

where bl = 4-.=1 M(i ,k) is the sum of the entries of M along the [th diagonal. 

For the MUSIC algorithm, equation (4.10) is equivalent to 

D(z)= i (i e".z-(i-I>1.(i e".z-(i-l)}' 
k=d+l ;=1 ) i=1 ) 

(4.12) 

Peaks in the MUSIC spectrum correspond to the zeros in the denominator of the expression 

in (4.3) which, in turn, are the roots of D (z) lying close to the unit circle in the z-plane. Once 

these roots are available, the DOAs are ready to be estimated as 

ei = areSin( 2~.1. }rg (z), i = 1", ',d (4.13) 

Similarly, the root forms for MEM, MVM, and MNM can be formulated, which are the same 

as that for the MUSIC algorithm except the form of matrix M. 

For MEM, it is seen that the numerator in equation (4.1), where UI is the first unit vector, is 

a scalar which is the (1,1) element of R- I
, the inverse of the covariance matrix, R. It can be 

either included in the denominator or omitted without affecting the roots of eigenvector 

polynomial, D (z). Matrix M is defined by the denominator and, for MEM, is given by 
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(4.14) 

Root versions for MVM and MNM are straightforward. The key is also the matrix M which, 

referred to equations (4.2) and (4.4), equals R-I for MVM and d· dH for MNM. 

0 * ~ * 
0 t * * * 

~ -10 ~ -10 * * * * 
0.8 * * * 0.8 

* ~ .. i -20 

.. e ·20 

.. 'ii 0.6 'ii .. 0.6 qs 

~ ~ 11: o!} .. 
~ 

o!} 
04 ~ ~ -30 .. 0.4 ~ -30 .. 

.~ .. . ~ 
l : 1~ 

.. 
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Figure 4.i Spectra of MEM, MNM, MVM, and MUSiC and their associated polynomial roots for /Wo 

equal-powered sources located at ](1' and 12°. The vertical lines indicate the true locations of the sources. 

There is only one peak associated with the /Wo closely placed emillers in each spectrum. while the roots 

show their proper locations. Two uncorrelated sources were used. The array was a uniform linear array 

with half wavelength spacing. 20 snapshots were taken to form the data matrix. 
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Figure 4.1 shows a simple but meaningful case where both the spectra and their associated 

roots for the above mentioned four methods are displayed. In this case, two closely spaced 

sources with equal powers are used. The spectral versions of the methods are shown to be 

unable to distinguish the two sources by giving a single peak somewhere in between the two 

given directions in each of the plots. However, the root versions demonstrate two separate 

roots near the true DOAs which are depicted by the dotted vertical lines. 

4.2 Performance Comparison between Spectral and Root Versions 

Figure 4.1 illustrates that root versions of the four methods under consideration can provide 

DOA estimates with reasonable accuracy while spectral versions fail to show two distin­

guished peaks in corresponding directions. This resolution degradation exists as long as an 

estimated covariance matrix is used in estimating the signal zeros and DOAs. It has been 

shown that spectral MUSIC and root MUSIC have the same asymptotic mean squared error 

while the derivation of the mean squared error for spectral MUSIC is under the assumption 

that distinct sources in space correspond to distinct peaks in the spectrum [PF88, RH89al. 

However, since radial errors in signal zeros affect the angular spectrum as well as the angular 

errors in signal zeros, more loss in resolution in the spectral MUSIC is expected, which may 

cause showing one peak for two closely spaced sources especially when the signal-to-noise 

ratio is not high enough. 

When an estimated covariance matrix is in use instead of the true covariance matrix, which 

is generally the case in practice, errors arise in the eigenvectors which in turn result in errors 

in the eigenvector polynomial D(z). Consequently, the roots are perturbed, i.e., errors will 

appear in signal zeros as well. No matter whether spectral or root forms of eigenstructure 

based methods are used, errors in the DOA estimates are unavoidable which, in the case of 

root forms, are angular errors in signal zeros only; while, in the case of spectral forms, errors 

result from both angular and radial errors in signal zeros. 

For a general' root approach, equation (4.10) can be expressed in the factored form, given the 

zeros at z = zi,i = 1", ',m -1, in the following way 

m-I 

D(z) =c IT (l-z/· Z-I). (l-z;· z) 
/=1 

=cH(z)·H'(lIz") (4.15) 
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m-I 

where e is a constant resulting from the factorisation. Therefore H (z) = n (1 - z/ . Z-I) can 
1=1 

be expressed in the polynomial form as 

H () 1 h -I h -{m -I) Z = - ·z -.,.- 'Z 1 m-I (4.16) 

Define the perturbed zeros of H(z) as zi+llli,i=I,···,m-l when errors exist in the 

coefficients hi' i = 1" . ',m -1. The error &i can be expressed in terms of the errors in the 

coefficients as (et. [OS75]) 

m-I aZ. 
Illi = L "\h' . t:Jzk , 

hI U k 
i = 1,2", ·,m-l 

(ilH('») a., (ilH(.») 
so we have, from (4.14) and the fact that a;;- 1.=.,' Ch, = Ch, '=', 

m-I 

-Zi-I n (1 - z/ . Zi- I
) 

1=1 
I 'It i 

m-k 
Zi 

m-I 

n (Zi -Z/) 
I", 1 
I 'It i 

(4.17) 

(4.18) 

which is a measure of the sensitivity of the ith zero to an error in the kth coefficient of H (z), 

and therefore 

(4.19) 

Correspondingly, the sensitivity of the zeros of H(z) to perturbations in its coefficients can 

be defined as 

m~' aZi 2 m-I 
S = L. I "h I = m-I 

k=1 U k n l(l-z/. Zi-I)12 
J = I 
lit; 
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The estimated D (z) due to errors in signal zeros is [RH89b] 

m-I 

15(z) = c I (1- (Z,+~,)· z-l)(l- (Z, +~,)'Z) 
1=1 

(4.21) 

where c is a constant. Substituting the "clean" signal zero Z = Zi, IZil = 1, we have 

15(/(0,) ~ c . 1~/miill(l_ Z,Zi-l)f 
'~I 
l;lt i 

(4.22) 

the approximation is o (N-I
), i.e., the terms dropped approach zero when multiplied by Nand 

N tends to infInity. The mean squared error, I~;I', is obtained by taking expectations of both 

sides of the equation (4.19), i.e., 

m-I 
C IT 1(1 - Z,Zi-I)12 

Icl 
l>lti 

(4.23) 

where SMU = rn/ C IT}II (1 - z, . Zi-
I
)1

2 
is interpreted as the parameter sensitivity of the root 

(

m-I J 
I •• 

MUSIC method. A computationally more convenient expression for SMU has been derived 

as 

(4.24) 

where a'(8) is the fIrst derivation of the steering vector a(8). After the derivation of IT (ej(O,) 

of equation (4.23) which is omitted here, l~il2 is given by 

(4.25) 

where A.~ are "pure" signal eigenvalues while A.. are those corrupted by noise covariance d', 
i.e., A.. = A.~ + d'. 
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Errors in signal zeros, &i' distribu.te in both radian and angle. Denote l!z. = r .. ej +., 
... jm. it, I' I jO)I I I 

then 

Z i = Zi + l!zi = e . + ri . e . = Z i . e . It was shown that [RH89b] 

-a 12 ( A )2 2 .2 I~ . = . r . Sm (c)I. - ro) 
• 21t~COSai •• (4.26) 

which is deduced as 

(4.27) 

Compare Il!zl in (4.25) and l~ail2 in (4.26), we can see that 

l~ail2 2(m-d) 2(m-d)6=Ai2 
2 = ( ). )2 > ()')2 = 2Jt'(m - d) 

Il!zil -cosa· -- . - (4.28) 

Including the factor (AI(21t~ Cos a;))2, a parameter 1 addressed as the spectral efficiency factor 

is defmed as 

_ (21t~COsai)2 I~al 
1- .= 

A l&i l2 
(4.29) 

which is a measure of the effectiveness of using a spectral approach. Evidently, spectral 

MUSIC is much less effective than root MUSIC. For any moderate ~ (not tending to zero), 

spectral MUSIC suffers a large degradation in resolution. 

A similar relationship between spectral MNM and root MNM is proved to exist as well 

[RH89b] 

l~aili!N 

l&ilifN 
1 ( A )2 
2' 2MCOSai 

(4.30) 

which is not related with the number of sources and that of sensors. The difference between 

spectral and root MNM is much smaller than that between spectral and root MUSIC. 
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4.3 Signal and Noise Models in the Computer Simulation 

The computer simulations were carried out on an IBM PC using the package MA TLAB 

(MATrix LABoratory). The array is assumed to be uniform linear array with half wavelength 

spacing. 10 elements are used and all the sensors are assumed to be omnidirectional. 

Two uncorrelated signals are generated from sine waves at two different frequencies. The 

required correlation between the two signals is guaranteed by applying equation (2.25) if 

correlated signals are needed. The difference between the two signal frequencies is chosen 

so that non-correlation is guaranteed and so is the narrow band signal assumption. The noise 

is assumed to be Gaussian white noise with zero mean and unit variance. 

Although fully correlated sources are expected when the correlation factor is assigned as 1, 

only very strongly correlated sources can be obtained in the finite sample case. In the fol­

lowing simulations, when the correlation factor is given as 1, it does not mean that completely 

coherent sources are applied. 

4.4 Monte Carlo Results 

Some Monte Carlo simulations have been carried out and are presented in this section, 

providing more insight into the performance of algorithms which have been analyzed in 

previous sections. Data was collected from a uniform linear array of 10 elements with half 

wavelength spacing receiving signals from two far field point sources which have been 

assumed uncorrelated, and correlated with a correlation factor being 0.5 and 0.95 respectively. 

Results, in terms of probability of resolution, bias and standard deviation of the estimated 

angles, were obtained for scenarios where the signal-to-noise ratio and angular separation 

of two sources were varied. In each of a number of discrete angular separations and signal 

to noise ratios, 500 trials were taken to form the statistics, and for each of these trials 100 

independent samples were observed. 

The observed field was [8. - 5°,82 + 5"] for the spectral versions (where 8. and 82(> 8.) are 

the two source directions), i.e., only the segment of spectra within this region I was checked , 
and the peaks were found. The angular increment was 0.1°. Once two estimates were 

observed, they were to be examined with respect to whether they could be regarded as 

estimates of the true directions of signals. Two criteria were deployed for the judgement: 

I) the response at the mid-point of these direction estimates is smaller than both responses 

61 



Chapter 4 

at these two directions; 2) the estimates are within ±3° from the true directions, which are 

known in simulations, i.e., I Si - 9.1 :s; 3°. When only a single peak could be found in the 

resulting spectra, the methods are regarded as failing to resolve the two sources. 

For the root versions, since 10 elements were assumed in the array, 9 roots were found in 

each trial and only two of them were the possible DOAs. To choose these two roots out of 

9, criteria were set: the estimates Ilearest to the true directions were thought to be the wanted 

estimates if their moduli were greater than 0.7, and a separation of 0.5° between the two 

estimates were required. 

Algorithms are grouped into A and B for convenience of discussion 

A: Spectral MEM B: RootMEM 

Spectral MVM RootMVM 

Spectral MNM RootMNM 

Spectral MUSIC Root MUSIC 

4.4.1 Results as Functions of Signal to Noise Ratio 

To test the algorithm performance of Groups A and B as a function of signal to noise ratio 

(SNR), the angular separation is fixed at 2° with one source at 0° and the other at 2° from the 

normal of the array. The probability of resolution, biases and standard deviations of angular 

estimates of both sources were examined. The results are plotted as follows: 

Correlation Factor Group A GroupB 

Figure 4.2 p=O.O (a) - (e) (f) - (j) 

Figure 4.3 p =0.50 (a) - (e) (f) - (j) 

Figure 4.4 p =0.95 (a) - (e) (f) - (j) 

In each of these figures, (a) - (e) refer to the spectral versions (Group A) of the algorithms 

under examination and (f) - (j) to the root versions (Group B). More straightforwardly, the 

results in the left column are from the spectral versions and those in the right one from the 
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rootversions. The samples are taken at 5 dB increments, and the results of different algorithms 

are depicted by different line styles as indicated in the plots of probability ofresolution. The 

contents of each plot are listed as follows: 

Plot Version Content 

(a) Spectral Probability of Resolution 

(b) Spectral Bias of Angular Estimates of Source at 0° (#1) 

(c) Spectral Bias of Angular Estimates of Source at 2° (#2) 

(d) Spectral Standard Deviation of Source #1 

(e) Spectral Standard Deviation of Source #2 

(f) Root Probability of Resolution 

(g) Root Bias of Angular Estimates of Source #1 

(h) Root Bias of Angular Estimates of Source #2 

(i) Root Standard Deviation of Source #1 

G) Root Standard Deviation of Source #2 

4.4.1.1 Probabilities of Resolution 

The probabilities of resolution of all four of these methods and their root versions increase 

as the Signal-to-Noise Ratio (SNR) improves. The MNM starts to resolve the sources at the 

lowest threshold for both the spectral and root versions, and for all three cases when the 

correlation factors are assigned different values. For spectral versions, the MUSIC algorithm 

and the MEM possess similar resolving abilities; while, for the root versions, the MUSIC 

algorithm resolves the two sources at a lower SNR. Both versions of the MVM need the 

highest resolution threshold among these four methods at different correlation factors. 

The SNRs at which the spectral versions begin to distinguish the two sources are the same 

for each method for the cases when the correlation factors are 0 and 0.50. The differences 

rely on the fact that for all methods the probabilities of resolution have smaller values in the 

0.50 correlation case than in the uncorrelated case at the same SNRs. 

The root versions demonstrate a bigger probability of resolving the two sources at lower 

SNRs when the correlation between the two sources is stronger. However, the trend of 

decreasing resolution abilities as the correlation increases is similar to that in the spectral 

cases. A bigger degradation is expected when the correlation factor is large. 
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The resolvabilities degrade as the correlations between the two sources get bigger, i.e., higher 

SNR is needed to achieve the same probability of resolution at higher correlation. The 

right-bound shifts of the plots of the probabilities of resolution from the correlation factor 

from 0.50 to 0.95 are much bigger than those from correlation factor 0 to 0.50. 

The case when the correlation factor is unity (fully correlated sources) was also examined. 

Both the spectral and root versions fail to resolve the two sources. In the spectral case, only 

a single peak was revealed. In the root case, among the 9 roots which were obtained from 

the 10 element array either only one root showed very big modulus or several ofthem were 

of the same order so that none of them could be reasonably regarded as the signal root. This 

is consistent with the theoretical prediction. 

4.4.1.2 Biases of Angular Estimates 

Biases of angular estimates for both sources were examined and plotted. For all situations 

considered in the simulations herein, biases tend to zero as the SNR goes very high. In the 

spectral cases, although the MNM starts to resolve the two sources at relatively lower SNR, 

it shows large biases over that region. The probabilities of resolution of spectral MUSIC and 

spectral MEM are similar while the MUSIC algorithm suffers slightly higher biases. MVM 

begins to separate the two sources at a higher SNR and also depicts higher biases. Positive 

biases in most of the plots of the first sources and negative in those of the second sources 

imply that the peaks (if there were two) declined to the middle point between the two source 

directions. This is especially the case when the correlation factors are getting bigger, while 

MNM seems to be an exception. 

Comparatively, the biases resulting from the root versions show bigger fluctuations. Again, 

MVM gives the biggest biases in all three cases with different correlation factors even when 

the four me~ods are able to resolve the two sources, while the other three methods show 

comparative biases. When the probabilities of resolution are still small, the corresponding 

statistics are less meaningful in providing the comparable performance. As the probabilities 

get larger, MNM depicts the smallest biases while MUSIC shows smaller biases than MEM, 

which is opposed to that in the spectral cases. In the highly correlated case, the differences 

among the biases given by different methods are more noticeable. MUSIC and MEM perform 

similarly while MNM behaves better and MVM worse, concerning the biases of angular 

estimates. 
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4.4.1.3 Standard Deviations 

Standard deviations of the direction estimates were also examined. They all tend to be near 

zero as the SNR goes very high, no matter whether the sources are uncorrelated or correlated 

and how strong the correlation is (but not fully correlated). 

For the uncorrelated cases, both spectral and root versions show a smooth decrease in the 

standard deviations as the SNR goes higher. Although MNM demonstrates higher resolving 

abilities at lower SNRs and smaller biases than those from MUSIC and MVM, high standard 

deviations exist before other methods begin to resolve the two sources. At SNRs when all 

the four methods are able to resolve the two sources, the standard deviations are comparable 

to each other while those from the MUSIC method are lower in the spectral case; and those 

from MUSIC and MVM are both smaller than those from the other two methods in the root 

versions, mainly in the uncorrelated and weakly correlated cases. 

All four methods demonstrate better resolving abilities at lower SNRs in the root forms than 

in the spectral forms. However, under the condition that the spectral versions give separate 

estimates, the standard deviations are roughly the same. This is consistent with the theoretical 

derivation in [PF88, RH89al. 

In figure 4.3, where the case with 0.5 correlation is given, a few points in the plots need 

explanations. In figures (d) and (e), the standard deviations given by the MUSIC algorithm 

are on the horizontal axis when the SNR equals 10 dB. The probability of resolution at this 

point is 0.002 which implies that only one of the 500 trials gives two estimates that can be 

accepted as estimates. From the point of view of the statistics, this point should not be 

included since only a single sample is available. It is given here in the plot merely because 

the MUSIC method shows the possibility of separating two sources at this SNR. This is 

typical for this class of "false" points in the plots. 12 is usually taken as the minimum number 

of samples which can be used to calculate the statistical measures. Since 500 trials were used 

in the simulations for each set-up of parameters, the probability of resolution is required to 

be not less than 0.024 to give a meaningful statistical quantity. This helps to explain the 

sharp turnings in some of the plots shown in figure 4.4. 
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4.4.2 Results as Functions of Angular Separation 

The perfonnance of algorithms as functions of angular separation was studied when the signal 

to noise ratio was 10 dB for both sources (not the array signal to noise ratio which is con­

ventionally defined as the SNR at each element of the array per snapshot + 10l0glO(m)). The 

increment of angular separation was 1°. Again, the perfonnance was tested for different 

correlation factors and results are shown in figures as follows: 

Correlation Factor Group A GroupB 

Figure 4.5 p=O.O (a) - (e) (t) - (j) 

Figure 4.6 p =0.50 (a) - (e) (t) - (j) 

Figure 4.7 p=0.95 (a) - (e) (t) - (j) 

Statistics which have been examined were the same as those in the previous sub-section and 

were arranged in each figure in the same way. 

4.4,2,1 Probabilities of Resolution 

The probabilities of resolution depicted in plots (a) and (t) from figure 4.5 through figure 4.7 

show the same trends as those in figures 4.2 to 4.4 as functions of signal-to-noise ratios. For 

algorithms in Group A (the spectral versions), the MNM needs the lowest resolution threshold 

and the MVM the highest resolution threshold while the MUSIC method the MEM share 

roughly the same threshold and the same resolution possibility. This is similar to the situation 

in the previous sub-section. However, as the correlation between the two sources gets stronger 

the difference between the possibilities offered by the MUSIC method (which is obviously 

bigger) and the MEM emerges, although the thresholds are still the same which changed 

from 1° separation, to 2° and then to 4° separation. Meanwhile, the threshold for MVM is 

from 4°, to 5° and then to 6°, and that for MNM from 1 ° in both the uncorrelated case and the 

case with 0.5 correlation factor to 2° separation in the strongly correlated when the correlation 

factor is 0.95. 

The root versions of all these methods also show degradation in the probabilities of resolution 

as the correlation gets stronger. Compared to the spectral case, a 2° equivalent advantage 
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exists in all three cases for all four methods. The order of four methods in resolving the two 

sources remain the same for different correlation factors and so does the diversion among 

them. 

4.4.2.2 Biases of Angular Estimates 

The biases shown in figure 4.5 tend to converge as the two sources are more widely placed. 

What is different from those as functions of SNRs is that the biases do not completely vanish 

as the angular separation becomes large. Especially, in the group of spectral versions, the 

biases obtained from MEM seem to be constant over a wide band of the angular separations. 

On the other hand, both MEM and MVM give visible biases even at the separation of 120 in 

the root versions. 

In figure 4.6 where the sources with 0.5 correlation factor were examined, the spectral versions 

of MEM and MVM both suffer from biases at big angular separation; while in the root 

versions, the performance degradation of MVM is more severe than that of MEM. This 

performance degradation is more serious in the highly correlated sourcecases shown in figure 

4.6. The MUSIC algorithm shows constant biase~ in both the spectral and root versions, and 

MVM gives about 0.50 bias. Although MEM shows very high bias at smaller angular sep­

arations, the biases tend to be at the same level as those in the uncorrelated and weakly 

correlated cases. Comparatively, MNM behaves much better in both versions. 

4.4.2.3 Standard Deviations 

Plots (d), (e), (i), and (j) in figures 4.5 through 4.7 give a clear picture of the behaviour of 

all four methods in both versions in the measure of standard deviation. Although the MN 

method shows lower bias in all three cases with different correlation factors, its standard 

deviations are higher than those given by MVM and MUSIC, at the same level as the ME 

method. At the 0.5 correlation factor, the difference between the standard deviations given 

by MNM and MEM, and that between MUSIC and MVM are still not significant. As the 

correlation increases to 0.95, these differences are shown in both the spectral and the root 

situations. MNM suffers from the highest deviations, which are higher than those given by 

MEM; the standard deviation given by the MUSIC method is beneath both those given by 

MNM and MEM, while MVM demonstrates the lowest deviations. 
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4.5 Discussion 

Besides the representations of both spectral and root versions of MEM, MVM, MUSIC, and 

MNM, the asymptotic properties of the two versions were compared with MUSIC and MNM 

being two examples. The advantages of the root version were demonstrated. Computer 

simulations were also carried out and analysed. The results were presented as functions of 

signal to noise ratios and those of angular separations respectively. The calculation of 

statistics is greatly dependent upon the criteria which are set up in the processing. The results 

shown in this chapter are obtained from those criteria described in the relevant parts. Slightly 

different statistics are expected from the same simulation data if different criteria are applied. 

74 



Chapter 5 

CHAPTER 5 

ESPRIT ALGORITHM 

Although the MUSIC algorithm provides substantial performance advantages over many 

other high resolution methods, the searching procedure over the parameter space and the 

storage required for array calibration data limit its generality in practical implementation. A 

new memberin the c1assof signal subspace methods has appeared which is superior to MUSIC 

in that it dramatically reduces the computation and storage requirements inherent in MUSIC. 

This new technique is termed ESPRIT (Estimation of Signal Parameters via Rotational 

Invariance Techniques) and is based on an eigen-decomposition of the sample covariance 

matrix and "second stage" processing to obtain the DOA estimates, or / and other parameters. 

This technique,like other eigenstructure based methods, has its origin in Pisarenko' s method 

for harmonic retrieval and found applications in temporal signal processing [RPK86] as well 

as in sensor array processing [OY89, RG089, RK87, RK89, RPK85, etc.]. 

So far two algorithms have been developed for the ESPRIT technique: LS-ESPRIT (Least 

Squares ESPRIT) and TLS-ESPRIT (Total Least Squares ESPRIT). The former was the 

original ESPRIT algorithm introduced in [PRK86, RK89] which has already been proven 

equivalent theoretically to TAM (Toeplitz Approximation Method) [May88, RH89c]. The 

latter algorithm is relatively new, formulated in an attempt to give consideration to errors in 

both signal subspace estimates resulting from noisy measurements. The difference between 

LS- and TLS-ESPRIT is not significant in most cases though LS-ESPRIT yields biased 

parameter estimates at low SNRs. The TLS solution of the ESPRIT algorithm is expected 

to yield better estimates, i.e., estimates with lower variances. Simulations have shown that 

TLS-ESPRIT is relatively insensitive to array errors, and that its use of the TLS minimisation 

criterion yields apparently unbiased parameter estimates even at low SNRs [SRK89]. 

Both LS- and TLS-ESPRIT algorithms have been analyzed in, e.g., [RH89d] and [OYK91] 

respectively. The TLS-ESPRIT was summarized in a more general class of subspace fitting 

75 



Chapter 5 

methods [OVK89, V091]. An asymptotic equivalence between LS- and TLS-ESPRIT was 

suggested and proven [RH89d]. This chapter will describe the LS and TLS algorithms briefly, 

present their implementations in the computer simulations, and then focus on their per­

formance comparisons with some well known methods, spectral MUSIC and root-MUSIC, 

which are chosen as representatives of the methods discussed in the previous chapter. 

5.1 ESPRIT Algorithms 

Beside the assumptions which have been made in chapter 2 concerning the sensor array and 

signal waveforms, the ESPRIT algorithm requires an essential constraint on the array; that 

. is the array should be composed of two identical subarrays which are displaced by a known 

translational vector~. This special structure allows the parameter estimates to be obtained 

without the knowledge of the individual sensor responses (i.e., no calibration is required) 

and without computation or search of some spectral measure. Like the inter-element spacing, 

this vector is also specified in fractions of a wavelength. Because the array may possess 

arbitrary geometry, provided that the displacement is guaranteed, DOAs are specified relative 

to the normal of ~ instead of that of the array (in the linear array case, the two normals are 

the same). Let the array be composed of two identical arrays with a constant displacement 

vector and all measurements be referenced to a common reference point (sensor). Then, 

referring to equation (3.28), the outputs of two subarrays are related by phase shifts and 

expressed as follows: 

x(t) = [a(9,),· .. , a(9d)] • s(t) + n.(t) = A . s(t) + n.(t) (S.la) 

[ .• ..~ 
y(t) = a(9,)· / \ .. ·,a(9d)· / dJ . s(t)+n,(t) = A· <1>. s(t) + n,(t) (S.lb) 

where 

(S.2) 

describes the propagation between the two subarrays and c!>. ' s are phase shifts relating outputs 

from the two subarrays and can be used to obtain the DOAs, 9;s, by the following relation 

k = 1,·· ·,d (S.3) 

Introducing a general array manifold G to describe array responses from the two subarrays 
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(5.4) 

the overall output of the array can then be expressed in a compact form as 

(5.5) 

Under the assumptions that the noise sequence is a zero mean complex Gaussian process 

with variance cf and uncorrelated with the signals, the asymptotic covariance matrix is given 

as follow: 

(5.6) 

Since GSGH is of rank d, the generalised eigenvalues of the matrix pair {Rzz, :EN}, i.e., the 

eigenvalues ofRzz in metric on:N, can be represented as AI;:: A.,;:: ... ;:: Ad > A.d+1 = ... = A.,.. 
= cf, and the associated eigenvectors ei satisfy the identity 

(5.7) 

or 

t (a.) . ei = 0, . k = 1,2, "',d, i=d+l,d+2,"',2m (5.8) 

where g(a.),k = 1, "',d are the d column vectors of G. Equivalently, el,e" "',ed span the 

same subspace which is spanned by the column vectors of G, i.e. 

(5.9) 

where T is some non-singular d x d matrix. Define Ex and Ey as partitioning [el' e2, "', eJ 

(5.10) 

then 

Ex=A·T, (5.11) 

and 
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[Ex Ey] = A[T <1>1] (5.12) 

which, denoting Exr = [Ex Ey], gives 

(5.13) 

and E is non-negative definite Hennitian and is of rank d. Thus E has the representation of 

E = V· diag(/"12, ···,ld'O' ",,0)· V
H (5.14) 

where li > 0, i = 1, ... , d and VVH = Im. Search for a 2d x d full rank matrix W such that 

(5.15) 

i.e. 

A[T <l>1]W = 0 (5.16) 

Since A is of dimension m x d and ofrank d, the above equation is equivalent to 

[T <l>1]W = 0 (5.17) 

Once again, partition W as 

(5.18) 

where W, and W 2 are two d x d matrices. This, together with (5.17), yields 

(5.19) 

or 

(5.20) 
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Thus, any W satisfying (5.15) has the interesting property that the eigenvalues ofthe matrix 

-W1· W;I generated from the partition in (5.18) are given by e -i+',i = I, ···,d. Therefore, 

the DOAs are obtained directly. 

To complete this analysis, it is sufficient to exhibit such a W and toward this purpose. a 

re-examination of (5.14) shows that 

E·v.=[.·v·=O • • • d<i$2d (5.21) 

where Vi represents the ith column vectorofV. Since [Ex Ey] is also of rank d. from (5.13). 

(5.21) reduces to 

d<i$2d (5.22) 

Thus the desired W is given by 

(5.23) 

where V 12 and V 22 are two d x d sub-matrices of 

V __ [Vl1 Vj2 
V21 V 

(5.24) 

and eigenvalues of -V'2' v-ri gives the actual DOA estimates. These eventually are the 

TLS-ESPRIT estimates of the DOAs. 

A spectrum representation of the covariance matrix of the whole array can be expressed as 

(5.25) 

where Es=[e,.···,e,J. EN=[ed+,,···,e,.J. and A,2:A,2:···2:I.."". For non-coherent 

waveforms. the source covariance S is of full rank and Es spans the same space as G. Given 

finite data record. the sample covariance matrix must be estimated and so are Es. EN' and A. 
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(5.26) 

The TLS version of the ESPRIT algorithm has been shown [ROSK88, V09I] to minimise 

the following cost function 

(5.27) 

where Es, and En are obtained by appropriately partitioning Es corresponding to the two 

subarrays. The original formulation of the ESPRIT algorithm is the LS-ESPRIT which 

assumes that there are no measurement errors in ESh i.e., letting Es, = A . T, and consequently 

the cost function reduces to 

• A 2 
mmll En - A<I>TII F (5.28) 

Denoting 'I' = 'FI . <I> . T, the cost function for LS-ESPRIT can be rewritten as 

• A. A. 2 "A+" 
mmll En - ES! . 'I'll F => 'I'LS = Es, . ES2 (5.29) 

or assume that no errors exist in En resulting in 

• A 2. A A 1 2 ,.. 1 A+ "'-
mmll ES! - A TII F = mmll Es, - En' 0/" II F => o/"LS = ES2 . Es, (5.30) 

where the symbol (Y denotes the Moore-Penrose pseudo inverse. 

When only finite noisy measurements are available, the covariance matrix needs to be esti­

mated from the given data. The estimated signal subspace is inevitably corrupted with noise 

which means that errors are present in both Es, and ES2' in general. Assumption that either 

ES! or ES2 is error free is inappropriate and the LS solution of the ESPRIT algorithm yields 

biased estimates, especially at low SNRs. 

By applying a Total Least Squares (TLS) criterion to the preliminary version of the ESPRIT 

algorithm, the LS-ESPRIT algorithm, errors which might exist in both ESI and ES2 are taken 

into account. Solving the minimisation problem expressed in (5.27), the intermediate variable 
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'I' is given as (c/. [GV80, GV83]) 

(5.31) 

where V l2' V22 are defined in equation (5.24). The eigenvalues of >¥TLS in (5.31) give the 

estimates of OOAs in the TLS sense. 

Once >¥TLS is known, its eigenvalues can be calculated, which are also the eigenvalues of <1> 

by the relationship T . 'I' . 11 = <1>. That is, the signal parameters are obtained as nonlinear 

functions of the eigenvalues of 'I' which maps one set of vectors, Es!> which span an m-di­

mensional signal subspace, into another set of vectors, ES2• 

e. = arcsin {arg (cP.)/(21t ·1 dl)} Vk = 1,·· ·,d (5.32) 

An SVD variant of ESPRIT was also suggested which may be preferred in cases where there 

is large amount of data and numerical issues are important. The SVO versions of ESPRIT, 

both LS and TLS, are easily obtained by replacing all the eigendecompositions in the 

covariance versions with SVO's except for the final eigen-decomposition of'l' where phase 

information is required [RK89]. 

5.2 Array Geometry for ESPRIT 

Although applicable to arbitrary geometry, the ESPRIT algorithm is not as general as the 

MUSIC algorithm due to the fact that the array is assumed to be translation ally invariant. 

The original version of ESPRIT assumes a single displacement invariance in time or space 

which results in that only a single parameter per signal may be uniquely estimated. There 

are arrays that possess multiple invariances. Two important examples are rectangular phased 

arrays and uniform linear arrays (ULAs). The most frequently employed arrays in practice, 

ULAs, are considered herein. 

From (5.3), it is easily seen that the range of OOAs in which there are no ambiguities is 

determined by the following relationship 

-1t $ 21t1 dl Sin 6. $1t => 16.1 $ arcsin( 21 ~I ) (5.33) 
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If the front half space is to be observed, the subarray displacement is restricted to be no bigger 

than half the wavelength. The estimation error variance is expected to decrease when the 

displacement I ~I is increased. A procedure was suggested to compromise these two aspects 

by first using a small I ~I to determine in which sector the sources are and then within this 

sector reducing the estimation error variance with a large I ~I. However, this procedure is 

applicable only when sources are clustered. Problems arise when sources are present in a 

large parameter range [OVK91]. 

Obviously only simultaneous exploiting all possible invariances in the array gives an optimal 

ESPRIT estimation. 

5.3 Implementation of the ESPRIT Algorithm 

Before going to describe the implementation of the ESPRIT technique. both LS-ESPRIT and 

TLS-ESPRIT algorithms are summarised. Based on this summary the implementation of 

the two algorithms [ is. straightforward. 

Summary of LS-ESPRIT Algorithm: 

1) Calculate an estimate of the covariance matrix, Rzz• from the obtained 

measurements, Z 
2) Compute the generalised eigen-decomposition of {Rzz• LN} 

3) Estimate the number of sources, d, if necessary 
4) Obtain the signal subspace estimate ~ z = span {Ez} where 

5) Compute the eigenvalues of [E~. Ey]-I. E~ . Ex 

"Vi = I, ···,d 

6) Estimate the signal parameters using ei = rl(~;) 
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Summary o/TLS-ESPRIT Algorithm: 

1)-4) the same as LS-ESPR1T 
5) Compute the eigen-decomposition ofEIJr· Exy where Exy = [Ex Er] 

and partition E into {j x (j sub-matrices 

6) Calculate the eigenvalues of -E12 . E~ 

, -I 
<1>; = A;( -E12 . E 22), '<:I1·=l···{j , , 

7) the same as step (6) in LS-ESPRlT 

Using the package, MA 1LAB, the matrix computations involved in the ESPRIT algorithms 

can be implemented without much difficulty. Table 5.1 gives the simulation results from 

LS-ESPRIT from 10 trials, and the simulation results from the root MUSIC method are given 

in table 5.2 and those from the spectral MUSIC method are illustrated in figure 5.1. 

Table 5.1 LS·ESPRlT Table 5.2 Root MUS1C 

e, e, e, p, 6, p, 

-0.82 1.42 0.34 0.89 1.25 0.95 
-0.10 158 '().24 0.92 1.62 0.96 
-0.15 1.60 -0.06 0.91 1.65 0.95 
0.49 1.84 0.48 0.93 1.96 0.94 
-0.45 2.35 '()20 090 1.85 0.95 
-057 2.26 -0.28 0.95 2.26 0.93 
-0.38 1.93 0.06 0.91 1.60 0.94 
0.25 1.77 0.26 0.91 1.45 0.94 
0.13 2.21 -0.01 0.96 2.49 0.94 
0.22 1.92 0.27 0.93 1.95 0.95 
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The signal parameters for the above simulations are given as follows: d = 2, m = 10, N = 100, 

the two sources are assumed to have equal power of 10 dB relative to the unit noise variance 

and are placed at 0° and 2° to the normal of the array. The element spacing in the uniform 

linear array is half a wavelength so the beam-width is about 11.5°. The conventional 

bearnforming method fails completely in this closely! sp"aced source case, as does the spectral 

MUSIC method shown in figure 5. I. The number of sources is assumed known in all three 

methods. The 2 estimates which are closest to the true directions in the 9 estimated in the 

root MUSIC method are chosen and so are their corresponding radial estimates. For the 

ESPRIT algorithm, only two estimates are brought out and they are re-ordered because of 

the permutation in the processing. 

The performance advantages of the ESPRIT technique over the spectral MUSIC method is 

noticeable from the example shown above. To compare the performance of the two tech· 

niques, moreresults are necessary. To investigate their behaviour under different parameter 

set-ups, a large amount of simulation work has been carried out and will be presented in the 

following section. 

Only the LS-ESPRIT was implemented to compare the ESPRIT technique with the MUSIC 

technique. As was stated in the description of the algorithms, the advantagesofTLS-ESPRIT 

over the LS-ESPRIT are mainly at low SNRs and are based on the explicit examination of 

the noise components present in both estimated sl!bspaces. Because the noise is assumed as 

ideally white Gaussian noise and uncorrelated with signals, the structure of the noise cova­

riance is neglected. Under the same assumption, the noise distributed in both subspace 
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estimates will not receive the treatment which makes the TLS-ESPRIT superior to the 

LS-ESPRIT. Therefore, only the LS-ESPRIT was examined for the performance comparison 

of the two different techniques, ESPRIT and MUSIC. 

5.4 Computer Simulations 

The same statistics as those which have been examined in the previous chapter will be 

investigated herein to check the performance of the ESPRIT method under different cir­

cumstances. Three statistics are explored as functions of signal to noise ratio and angular 

separation, separately. The signal to noise ratio range is 0 dB to 50 dB with 5 dB increments 

when the angular separation is fixed at 2° in the former case, while, in the latter one, the 

angular separation is allowed to change from 1° to 12° which is just above the conventional 

resolution of the array in use. In this case, source one is placed at 0° to the normal of the 

array, while source two is moved along the array and the signal to noise ratio is set as 10 dB. 

The number of sources is given in all three methods under examination. The spectrum of 

spectral MUSIC is formed on a 0.1 ° grid. The 2 estimates of DOAs which are nearest to the 

true directions are chosen out of 9 in the root MUSIC method. The only two estimates from 

the ESPRIT method are recorded first and then, together with the results from the other two 

methods, are processed to compute the probabilities of resolution, biases and angular esti­

mates and their standard deviations. The same criteria for root MUSIC as specified in the 

previous chapter are applied to the ESPRIT method. 

5.4.1 Results as Functions of Signal to Noise Ratio 

Signals with different correlations were checked when the signal to noise ratio was changed. 

The correlation factor between the two sources was assigned as 0.0, 0.5, and 0.95, respectively, 

and the correspondent results are shown in figures 5.2, 5.3, and 5.4. The inability of the 

MUSIC technique for coherent sources has been shown in chapter 4, and the ESPRIT 

technique is also unable to resolve the fully correlated sources due to the philosophy behind 

it. So the case of fully correlated sources has not been included in the discussion. 

Again, 100 independent snapshots were taken in each trial to form the data matrix and 500 

trials were used to calculate the statistics. 
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Figure 5.2 Statistics of spectral MUSIC, root MUSIC, and ESPRIT asfunctions 
of signal to noise ratio when p = 0.0 
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5.4.1.1 Uncorrelated Case 

Figure 5.2(a) shows the probabilities for the three methods in the uncorrelated case, denoted 

by different line styles as specified in the plot. Similar resolution thresholds are demonstrated 

by root MUSIC and LS-ESPRIT, while the spectral MUSIC has a threshold about 10 dB 

higher. However high biases are shown in the estimates of the ESPRIT method at lower 

SNRs although the corresponding probability of resolution is slightly higher than that of root 
'. 

MUSIC. Biases of the ESPRIT estimates decrease quickly at 10 dB to be the lowest. As 

signal to noise ratio continues to increase, the root MUSIC and LS-ESPRIT give roughly the 

same biases while spectral MUSIC shows higher biases until around 30 dB and above when 

the difference among the biases merges. 

As far as the standard deviation is concerned, asymptotically similar properties are proved 

by all three methods. Although root MUSIC and LS-ESPRIT begin to resolve the two sources 

at lower SNRs, high standard deviations also resulted. 

5.4.1.2 Correlated Sources with Correlation Factor 0.5 

As the correlation between the two sources gets stronger, the performance of the methods is 

expected to degrade. Figure 5.3 illustrates the properties in the sense of probability of res­

olution, bias, and standard deviation. Compared to those in figure 5.2, the performance 

degradation can be seen in all three aspects under examination. 

The degradation in the probability of resolution is more significant than in the other two 

statistics. All three plots in figure 5.3(a) shift right-wards about 5 dB. The plots given by 

root MUSIC and LS-ESPRIT begin to separate showing a larger probability for LS-ESPRIT 

to distinguish the two sources in the correlated case. 

The biases degrade mainly at lower signal to noise ratios, below 30 dB, which is generally 

the case in practical situations. Since the value of the probability of resolution of root MUSIC 

is too small at 0 dB, the correspond,ing statistics are meaningless. Those given by LS-ESPRlT 

are uneven for the two sources, very high in one and very low in the other. At 5 dB, the 

biases from LS-ESPRIT are still very high. Only when the SNRs are higher, are smaller 

biases depicted. 
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The unevenness of the root MUSIC and LS-ESPRIT is also shown in the standard deviations 

in the low SNR region. In contrast to the biases, smaller values are given in source one and 

bigger values are in source two. Starting from 10 dB both standard deviations decrease 

smoothly as the signal to noise ratio increases. Larger standard deviations are given by 

LS-ESPRIT. The spectral MUSIC, however, starts to resolve the two sources at relatively 

higher SNRs, but possesses similar standard deviations as root MUSIC and LS-ESPRIT. 

5.4.1.3 Highly Correlated Sources with Correlation Factor 0.95 

A correlation factor of 0.95 was given to test the performance of the three methods in the 

highly correlated case. Comparing the plots in figure 5.4 to those in figure 5.3, a 10 dB 

equivalent degradation can be observed in all three statistics which are inspected. The 

probability pattern is similar to that in figure 5.3(a) and the LS-ESPRIT does not show 

improvement over the root MUSIC method as it did from the uncorrelated case to the case 

with correlation factor 0.5. Again, the threshold of resolution of spectral MUSIC is the 

highest one. 

Although the LS-ESPRIT method shows the ability to resolve the two sources at low SNRs 

in the highly correlated case, high biases of angular estimates are also shown. Especially, 

source one depicts a constant positive bias of about 1.0° over 15 dB. This widens the range 

in the previous case (figure 5.3(b)) with a 10 dB extension. Comparatively, the bias for 

source two is nearer to those from the MUSIC methods. And the biases from LS-ESPRIT 

drop 'to zero about 15 dB earlier. 

The standard deviations of the ESPRIT estimates are less even than before at lower SNRs. 

Only when the signal to noise ratio is high (at and above 20 dB), they show a more noticeable 

tendency to converge. Root MUSIC also shows larger standard deviations at low SNRs. On 

the other hand, spectral MUSIC, although starting to resolve the two sources at higher SNRs, 

similar standard deviations are shown as those from the other two methods. 

5.4.2 Results as Functions of Angular Separation 

Statistics were also examined as functions of angular separation when the signal to noise 

ratio was fixed at 10 dB. 12 separations were checked from 1° to 12° with 1° increment. 

Statistics were calculated from 500 trials which were based on data matrices formed by 100 

independent snapshots. The same correlation factors were assigned as those in last subsection. 
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5.4.2.1 Uncorrelated Case 

The non-correlation case is illustrated in figure 5.5. As shown in figure 5.5(a), the two 

methods which give the direction estimates directly rather than locating them in the spectral 

estimate demonstrate similar abilities to distinguish the two sources; the spectral MUSIC 

starts to resolve them at a bigger separation, 2° in the 10 dB signal to noise case. 

Comparatively, the biases are smoother than those as functions of signal to noise ratios. The 

spectral MUSIC gives bigger biases when the separation is relatively small. Positive bias in 

source one and negative bias in source two given by spectral MUSIC imply that the two 

peaks in the spectral estimate tend to each other, shifting from their true directions. 

Despite that estimates from all three methods are unbiased as the angular separation is big, 

the standard deviations always exist From figures 5.5(d) and 5.5(e), the standard deviations 

from the LS-ESPRIT are slightly higher than those from the two MUSIC methods. The 

standard deviation does not tend to merge as the angular separation is very large, even larger 

than the conventional resolution beam-width, when the signal to noise ratio is unchanged. 

5.4.2.2 Correlation Sources with Correlation Factor 0.5 

For sources with correlation, larger angular separations are required to achieve the same 

probabilities of resolution as those in the uncorrelated case. LS-ESPRIT shows a little higher 

ability than the root MUSIC method while spectral MUSIC remains the last one to be able 

to resolve the two sources. 

The biases are also higher even after the probability of 1 has been shown. What is different 

from the results as functions of signal to noise ratio is that LS-ESPRIT gives higher biases 

than the root MUSIC method does. The highest biases are from the spectral MUSIC technique, 

and the tendency of giving two peaks within the true directions is depicted by positive bias 

for source one and negative bias for source two. 

Where the standard deviations are concerned, the LS-ESPRIT technique gives larger values 

when all three methods are able to resolve the two sources, whilst the two versions of MUSIC 

have asymptotically equivalent performance. At the smallest separation of 1°, the standard 

deviations are less meaningful in the sense of statistics. The zero standard deviations of 

spectral MUSIC at 2° separation resulted from the fact that only a single trial out of the 500 
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gave acceptable estimates of the true source directions. The standard deviations from all 

three methods stay at the same level as those in the uncorrelated case when the separation 

between the two sources is very large. 

5.4.2.3 Highly Correlated Sources with Correlation Factor 0.95 

The properties of both ESPRIT and MUSIC techniques are worse in the highly correlated 

case than in the two previous cases. The resolution thresholds are 2° higher than those in the 

correlated case with 0.5 correlation factor. Besides the general movement towards the right 

in figure 5.7(a), the two plots from LS-ESPRIT and root MUSIC are mixed, differing from 

the picture of two distinct lines in figure 5.6(a) at small separations. 

Big biases exist in the three plots for each source over the whole range under examination. 

Comparatively, those from the spectral MUSIC method are smaller and those from LS­

ESPRIT are the largest. As the separation is 12°, this small difference in the biases vanishes. 

Standard deviations are at a higher level than in the two previous cases. Asymptotically 

LS-ESPRIT gives bigger values than the two MUSIC methods. 

5.5 Discussion 

The computational advantage of the ESPRIT technique is claimed as the key advantage over 

the popular MUSIC methods. Unfortunately the computation time is not calculated in the 

simulations here. However, the high speed of the LS-ESPRIT method was noticed in the 

simulation procedure. Although the TLS-ESPRIT provides better performance at low SNRs 

at the cost of more complex computations, it is still much quicker to obtain direction of arrival 

estimates from the ESPRIT method rather than from the peak position estimates of a spectrum 

in the spectral MUSIC. No searching procedure is involved in the root MUSIC method, but 

it needs the rooting of a polynomial, whose order may be very high in the large number of 

sensors case, besides the eigen-decomposition of the covariance matrix. 
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CHAPTER 6 

IMP ALGORITHM 

Apart from those high resolution algorithms discussed in previous chapters, most of which 

are based upon eigen-analysis of the sample covariance matrix, another class of method, the 

so-called deconvolution algorithms, has also been proposed to improve spectral estimates. 

The IFA algorithm, the WB2 method, the CLEAN technique, and the IMP approach, all of 

which fall into this type of method, have been described briefly in Chapter 3. To explore the 

performance of this class of method, the IMP algorithm, which has been mainly applied in 

the field of the direction estimation problem in array processing so far, is examined in detail 

in this chapter as a representative. 

6.1 Introduction 

Most of the modern high resolution algorithms, such as MNM, MUSIC, and ESPRIT 

described earlier in this thesis, involve eigen-analysis of the sample covariance matrix, and 

in the ESPRIT algorithm, an intermediate matrix formed as well. In contrast, the IMP (In­

cremental Multi-Parameter) algorithm proposed by I.J.Clarke [Cla87, Cla88, Cla89] makes 

use of the information preserved in the conventional bearnformer as its basic processing 

component, and defines a scheme for re-processing the data after the initial bearnforming in 

order to determine the number of sources and their bearings. This algorithm borrows the 

concept used in CFAR (Constant False Alarm Rate) methods [BLP86, Wei82] for detection 

and uses the difference between global maximum and minimum values of the output signal 

plus noise to noise ratio (SNNR) as its detection statistic. A single peak is found at each 

iteration, and the angular information depicted by this peak is used to modify a so-called 

pre-conditioning matrix. This pre-conditioning matrix is used as a weighting to the sampled 
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data, giving the effect of removing the peak on which the pre-conditioning is based. This 

procedure continues until no significant peak appears in the resulting signal plus noise to 

noise ratio spectrum and then the algorithm terminates. 

In the DOA estimation problem, the aim is to extract details of source directions from the 

data received from sensors. This includes two aspects in which effort is needed: 1) an 

estimator which will give more detail of source directions, i.e., how to extract more infor­

mation about the source directions from the available data; 2) how to make full use of the 

information contained in the sampled data, i.e., not to discard any information which might 

be useful in the processing. 

The conventional beamformerdoes not discard information contained in the data, but provides 

very poor resolution because of the mechanism used in the beamformer. High resolution 

estimators, such as MUSIC, frequently throw information away by using different weights 

to emphasise or discard components of the data. The resolution is improved by the com­

plicated computations on the received data. The IMP algorithm which will be described in 

this chapter preserves all the information contained in the received data and, at the same time, 

provides much higher resolution than the MUSIC algorithm. 

The advanced Constant False Alarm Rate (CFAR) technique provides an automatic detection 

accomplished by setting an adaptive threshold relative to the local estimate of the noise mean. 

The detection control is applied to both IMP and CLEAN. No matter whether manual or 

automatic detection is used, when the local noise mean is corrupted by other targets or sidelobe 

leakage, the probability of detection is degraded. This raises the detection threshold and may 

result in a target being missed. Therefore, a strong target may mask a weaker signal, or it 

may be masked by a multiplicity of nearby targets. It is this masking effect that motivates 

the study on these decomposition methods. 

In most passive systems, the statistic commonly used for detection is the power in the field 

of view of interest. By contrast, the CLEAN algorithm uses relative brightness of a spot to 

the background, while the IMP algorithm uses the difference between the global maximum 

and minimum values of the Signal plus Noise to Noise Ratio (SNNR). 
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6.2 Data Model 

As before, a sample of the array output can be represented in the form 

x(t) = A· set) + net) (6.1) 

which is a snapshot sampled at the array outputs at time instant t. After the data processing, 

the information concerning the source to be detected and estimated is contained in 

yet) = All. C . x(t) (6.2) 

where C is a pre-conditioning matrix, which involves the applications of a matrix filter to 

the input, and A, as before, is the array manifold containing array responses in all possible 

directions. For passive sensor arrays, it is the output power that is preserved for further 

processing. The averaged power output over N snapshots of the array outputs is given by 

1 N 2111 H H· 
P=-l!y(t)! =-A ·C.X·X ·C·A=A ·C·R·C·A (6.3) 

N t=1 N 

Under the assumption that noise and signals are not correlated, the estimate of the covariance 

matrix can be calculated as the time average from snapshot to snapshot as 

1 N 
R =-1 x(t)· x(tt =Rs+RN 

N t=1 
(6.4) 

where Rs = A· S . All with S defined as the source covariance matrix in (2.24) and 

RN = lIN 1~=1 n(t)· n(t)H. Denoting the noise covariance matrix RN by a normalised noise 

covariance matrix 1N, we have RN = <?.IN where <? is the noise power. Thus, 

(6.5) 

The pre-conditioning matrix C is assumed to be Hermitian. Determining whether a target is 

present involves comparing a statistic with a pre-defined threshold, where such a statistic 

comprises the output power in the direction to be detected and information available in the 

rest of the data. 
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6.3 The IMP Algorithm 

Based on the model given in section 6.2, the IMP algorithm will be discussed in detail in this 

section with the objective of giving a better understanding of the IMP technique. 

IMP (Incremental Multi-stage Parameter) is an iterative algorithm. The IMP spatial spectrum 

starts with the output power distribution of a sensor array which implies that conventional 

beamforming is used as the initial stage in the IMP algorithm. A single peak is found in the 

output spectrum estimate and the contribution of stimuli in the corresponding direction of 

the peak is found by convolving a &. function in wavenumber (or frequency in time series 

analysis) with the system transfer function. In order to remove the effect of the selected peak, 

the weighting (pre-conditioning) is modified and applied to the data. 

The statistic used in the IMP algorithm is the signal plus noise to noise ratio (SNNR) which 

has been given in equation (3.36) and is rewritten here for convenience of referencing 

SNNR(a) = aH
(9)· C· R· C· a(9) 

aH(9)· C· RN· C· a(9) 
(6.6) 

Under the general assumption that the noise field is spatial white and the noise measurement 

is uncorrelated from sensor to sensor, equation (6.6) is simplified to 

SNNR(a) = a
H

(9)· C· R· C· a(9) 
all (9) . C . a(9) 

(6.7) 

This is the conventional bearnforming spectrum when the pre-conditioning matrix C = I. 
When only a single source is present, in the presumed isotropic noise background, the IMP 

estimator performs like the conventional beamformer giving the best estimate of the source 

direction at its first stage. The corresponding source steering vector, denoted by 3 max, is used 

to form a projection matrix to project the received data into the null space of this direction 

vector 

Q=I 
11 amax ' 3 max 

H amax ' amax 
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Replacing the pre-conditioning matrix C in equation (6.6) with the above projection matrix, 

a modified spectrum is formed as 

P(6) 
al/(6)· Q. R· Q. a(6) 

al/(6)· Q. a(6) 
(6.9) 

It should be remembered that any projection matrix is both idempotent and symmetric 

(Hermitian in the complex case), i.e., Q = Q2, and Q = QII. No signal component will fall 

into the null space of {amaJ if a,..x exactly presents the signal direction, and thus no significant 

peak will appear in the output power spectrum P (6) in equation (6.9). The algorithm ter­

minates. 

Example 1 (One Source Case) 

Figure 6.1 illustrates the simplest case when only a single source is present. A 10 element 

uniform linear array with half wavelength spacing is used. A single source of 10 dB source 

power (the noise variance is assumed as'unity) is located at 2.4' from broadside. 100 inde­

pendent snapshots are taken to form the data matrix. The threshold is calculated as 9.95 dB. 

Plot 6.1(a) shows the initial stage of the algorithm which is the conventional spectrum of the 

array output. A global maximum of this spectrum is found at 2.4' to the normal of the array. 

A projection matrix is then formed and applied to equation (6.9) forthe modified spectrum. 
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Figure 6.1 IMP algorithm in the single source case 

Both numerator and denominator as well as the modified spectrum are plotted in plot 6.1(b), 

denoted by the dotted, long chained, and solid lines respectively. (The numerator and the 

denominator give the same curve since the numerator drops to the noise level when no signal 
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components exist.) Deep nulls are formed in both the numerator and the denominator 

corresponding to the peak position in plot 6.1 (a), while a flat spectrum results with respect 

to the spatial angle, dropping to the noise level. 

End 

By using the conventional beamformer, when two signals are present a double hump structure 

exists in the output power spectrum if the separation of the sources is sufficient (otherwise 

a single broad peak results), but the two peaks tend to the mid-point and estimation biases 

are obvious. Usually two peaks are not of the same height even though two equal strength 

signals might be used. In the IMP algorithm, the globally highest peak, denoted by aI' or 

the only one when a single exists, is taken for the formation of the projection matrix which 

will be used in the second iteration of the algorithm. Applying this projection matrix to the 

received data, the resulting power spectru!n eliminates the components of both signals in the 

null space of the column vector al' Since there is a second signal, the residual output power 

of this modified beamformer shows a principal peak with respect to e, and this is taken as 

the initial angular estimate of the second source, denoted by a2• 

So far we have obtained two estimates of the signal directions, corresponding to source 

steering vectors a l and a2, respectively. Since bias exists at least in the estimate of the first 

signal direction, refinement is necessary for more accurate estimates of the signal directions. 

To refine the first signal direction estimate, a projection matrix is formed on a2• Since many 

signal components concerning the second signal, contained in the received data, are elim­

inated when the latest projection matrix is applied to the received data, the resulting power 

spectrum is much purer and gives a better angular estimate of the first signal. Alternatively, 

this procedure is applied to re-estimate the direction of the second signal. This continues 

until the angular estimates for both signals are stable and then the algorithm terminates. 

To verify the accuracy of the estimates, a projection matrix Q can be formed on [aI' a~ when 

both of them are stable. Defining As = fah a~, we have 

Q=I 
As·A~ 

A~ ·As 
(6.10) 

Substituting this projection matrix into equation (6.9), the power spectrum having eliminated 

the components of both Signals is available. No significant peak will appear and the power 
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will drop to the noise power level. 

Example 2 (Two Source Case) 

Figure 6.2 gives the details of the convergence of a two source case. The two sources are 

given equal power of 10 dB (relative to the unit noise variance) and placed at _1.2° and 3.4°. 

The same array as that in the previous example is used and again 100 snapshots are taken to 

form the data matrix. The threshold for this case is 9.90 dB. lA lot of 13 iterations were 

executed before ;,.'.' termination of the procedure. The fIrst 5 of them are shown in plots 

6.2(a) through 6.2(e) and the iteration is depicted in plot 6.2(f). The situation of iterations 

in between is omitted and the history of the convergence is given in plot 6.2(g). The peak 

positions at each iteration are listed beside plot 6.2(g). The re-processing stops at the stable 

estimates ofe1 = -1.0° and e, = 3.4°. The dotted lines in plot 6.2(g) depict the true directions 

of sources. It is easily seen from the plot, and also the list of peak positions at each iteration, 

that the adjustment is applied to only one peak position at each iteration. In the last iteration, 

a projection matrix based on the two direction estimates is formed and applied to the observed 

data so as to eliminate the signal components in these two directions. The residual spectrum 

contains mainly the noise component and some possible signal leakage, and drops to the 

noise level. 

End 

When more than two signals are present, the algorithm will continue after finding the stable 

angular estimates of the fIrst two signals. In this case, P(S) in equation (6.9) depicts a 

signifIcant peak even though the projection matrix Q is based on [ai' a:J, which indicates the 

existence of the third source. This peak is assumed as the initial estimate of the third source, 

with source steering vector denoted by a3• Because of the existence of the third signal, the 

estimates of the fIrst two signal directions in stage 2 are stable but not accurate. RefInement 

is necessary for the angular estimates of all three signals. 

To refine the fIrst angular estimate, the projection matrix Q is based on [a"aJ. Then using 

the latest estimates of a 1 and a3, the second one is re-estimated by applying the projection 

matrix based on [ai' aJ. For the third one, the projection matrix is formed on [a" a:J. These 

three steps are repeated to re-estimate all three signal directions alternatively. The criterion 

for judging whether to terminate the algorithm is the same as that in stage 2 for the two signal 

case. 
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Example 3 (Three Source Case) 

This example shows the processing of the three source case by means of the IMP algorithm. 

The same array is assumed. Three sources with equal power of 20 dB are placed at _3.2°, 

1.5", and 4.1°, and the threshold is calculated as 10.08 dB. 21 iterations are completed to 

give the stable estimates of all three source directions and the procedure terminates 

successfully. Four plots are drawn in figure 6.3 to show the modified spectrd in 4 iterations 

chosen from the total 21 iterations. Plot 6.3(a) is the conventional spectrum which fails to 

resolve the three sources placed within one beamwidth of the array. The global maximum 

of this spectrum is used to null the received data in that direction and the resulting spectrum 

is shown in plot 6.3(b) by the solid line. The dotted and long chained lines represent the 

numerator and denominator of the equation (6.9) respectively. Expressed in decibels, the 

difference of these two spectra results in the modified power spectrum given by the solid 

line. Plot 6.3(c) shows the situation when the first two direction estimates are stable and are 

nulled from the spectrum, the 11 th iteration. Since the residual power level is still above the 

threshold, the existence of the third source is indicated and the peak position in the residual 

power spectrum is assigned as its initial estimate. The refinement is applied to the three 

direction estimates alternatively until stable estimates are obtained. The residual power is 

compared with the threshold and termination of the procedure is decided. 

End 

This procedure can be extended to higher order models without difficulty. 

Defining a generalised matrix As to contain the array manifold vector(s) which has been 

calculated at each iteration according to the peak direction(s) in the previous iteration. At 

stages when only one peak has been found, As will be a column vector containing the 

corresponding array manifold vector as As = [amaJ; when more than one peak is going to be 

cancelled, the matrix As will be composed of multiple of array manifold vectors, which 

correspond to these peak directions, as As = [a" a~ in the two peak case, and As = [a" a2, aJ 

when three peaks are to be eliminated. When k peaks are to be cancelled, the projection 

matrix is as 

(6.11) 
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where the superscript (k) denotes the number of peaks to be cancelled, and Co is the 

pre-conditioning matrix in the initial stage which has been assumed as identity matrix in the 

above three examples. Therefore, the corresponding pre-conditioning matrix is shown to be 

C =C -C . A(l>. (A<'"I' .C .A(lii-1.A(l'fl.C 
k DOS SoS) I 0 

(6.12) 

The IMP algorithm can be summarised as follows: 

1) Initialise the procedure: k = 0, Co = I 

2) Evaluate the Signal plus Noise to Noise Ratio (SNNR) : 

I aH 
• Cl . R . Cl . a 

SNNR (6) = -:H::---'---"--
I a· Cl . RN . Cl . a 

(6.13) 

andfind the global maximum 

3) Adjust the weighting Cl according to the latest estimates of the peak 

positions by using equation (6.12) 

4) Compare the maximum and the pre-defined threshold. If the maximum is 

bigger than the threshold, return to Step 2; otherwise, terminate the 

process. 

Substituting R given in equation (6.5) into the numerator of (6.13), the following relationship 

results 

aH
• Cl' A· S· AH. Cl' a 

SNNR(6) = H + 1 
a . Cl . RN . Cl . a 

(6.14) 

where it is assumed that RN = c?" ' .. LN' From the above expression it follows that the projection 

matrix into the nullspace of the all signals will cancel all the signal components in the data 

because of the orthogonality between the Cl and the signal array manifold vectors. This 

results in the SNNR reaching the level ofiunity asymptotically. 
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6.4 Computer Simulations 

Computer simulations have been carried out to compare the performance of the IMP algorithm 

to that of the popular MUSIC method and its root version. Two groups of simulations are 

going to be presented in this section to show statistics as functions of signal to noise ratio 

and those of angular separation, respectively. The correlation factor between the two sources 

is assumed to be 0,0.95, and 1. Two highly correlated situations are considered to show the 

superior performance of the IMP algorithm over the MUSIC method which is claimed in the 

highly correlated cases. 

The simulation programs were written using MA TLAB. In all cases the number of sources 

was assumed to be known, and the m-d smallest eigenvalues of the estimated covariance 

matrix were used in estimating the noise variance and in defining the threshold. To reduce 

computations involved in the search procedures, the angular range was restricted to 

[8, - 4°, 82 + 4"]. The search grid was set to 0.1°. 

The conventional spectrum output ofthe array is first checked for the existence of any source. 

If the peak level in the spectrum is below the pre-defined threshold, no source is indicated 

and the program terminates; otherwise at least one source is present and its angular position 

is estimated and used in forming the projection matrix to check the existence of more sources. 

In the procedure for finding more sources, two criteria are set for the termination of the 

program : 

1) The difference of the latest estimates of the directions and those of the previous ones is 

smaller than a given tolerance, which is given a~!E.-05 in the simulation. Since the grid of 

angular estimates is given as 0.1°, this criterion means that the latest estimates should be the 

same as the previous ones when the program terminates successfully. 

2) The given maximum number of iterations is exceeded. In the simulations to be presented 

in this chapter, 10 iterations are allowed for each source, i.e., in total 20 iterations can be 

performed at the stage when two sources are refined and 30 iterations in the three source 

case, and so on. 

When calculating the modified spectrum, the numerator and denominator of equation (6.9) 

are computed separately and then used to form the power spectrum. This is to avoid possible 
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division by 0 so as to keep the continuum of the resulting spectrum. When the denominator 

of (6.9) is less than:lE-06 the spectrum value at this direction is assigned the value of the 
-- ., 

previously searched direction; otherwise the spectrum is calculated as the division of the 

current numerator by the current denominator. 

The correctness of the angular estimates given by the IMP algorithm is judged by two criteria: 

one is that the estimates fall in the neighbl:>urhood of the true directions, and the other one is 

that the separation between the two estimates is bigger than a given angle. For the processing 

of the simulated data, the neighbourhood of the true directions is defined as ±3°, and sufficient 

separation between the two estimates· in each trial is given as OS. The judgement of the 

fitness of the estimates given by MUSIC is the same as that in previous chapters. Again, 

only the successful estimates for each parameter set-up are included in the calculation of the 

statistics. 

6.4.1 Results as Functions of Signal to Noise Ratio 

Probabilities of resolution, biases of angular estimates, and their standard deviations are 

calculated over 500 trials and shown in figures 6.4 to 6.6. The two sources are located at 0° 

and 2° to the normal of the 10 element array with half wavelength spacing, that is about 0.17 

bearnwidth. The initial signal to noise ratio for the simulations is given as 0 dB and is then 

increased at 5 dB increments to 50 dB. 

The resolving threshold of the IMP algorithm is similar to that of the spectral MUSIC but 

higher than that of the root MUSIC. This is the case for both uncorrelated sources and the 

sources with correlation factor p = 0.95, but IMP seems to suffer from lower probability of 

resolution over a range of the signal to noise ratio after all three methods are able to solve 

the two sources in the uncorrelated case. From the uncorrelated case in figure 6.4 to the 

highly correlated case in figure 6.5, the resolution threshold of all three methods increases 

about 10 dB equivalent in signal to noise ratio, while the resolution degradation of the IMP 

algorithm is relatively less than that of both spectral and root versions of the MUSIC method. 

As the correlation gets stronger (fully correlated), as shown in figure 6.6, only the IMP 

algorithm shows the ability to resolve the two sources. Two other methods, spectral and root 

MUSIC, fail completely, as predicted theoretically. 
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The reason for the loss of resovability of the IMP algorithm between 15 dB to 25 dB is thought 

to be the criterion defined for testing the probability of resolution. Since the grid for searching 

the directions is setto 0.1 0, so all the estimates which are only 0.1 ° apart are taken as unresolved 

estimates. This reduces the probability of resolution and the biases and the standard deviations 

at the same time. 

Concerning the biases of the estimated source directions in the uncorrelated case, the root 

MUSIC method shows larger values at lower signal to noise ratios where the other two 

methods are still unable to resolve the two sources. As the signal to noise ratio goes higher, 

the IMP method and the spectral MUSIC technique start to separate the two sources but give 

biases in the angular estimates. The biases given by the spectral MUSIC method are relatively 

higher, while those given by the IMP algorithm are similar to that of the root MUSIC 

technique. When the signal to noise ratio is even higher, at or above 30 dB, all three methods 

tend to estimate the directions without bias. 

Meanwhile, the standard deviations resulting from all three methods are nearly the same, and 

go to zero as the signal to noise ratio increases. 

In the highly correlated case in figure 6.5, all three methods give approximately the same 

performance in the sense of the standard deviation. However, significant differences are 

evident in the biases. Two versions of the MUSIC technique give asymptotically unbiased 

angular estimates, whilst the estimates from the IMP algorithm are off the true directions 

even when the signal to noise ratio is very high. 

The simulated data were checked for the reason of the high biases in estimated source 

directions from the IMP method. It was found that IMP gives very good estimates of the 

source directions when it starts to resolve the two sources at 25 dB with the estimates almost 

evenly being _0.1°, 0°, or 0.1 ° for source 1 and 1.9°,2.0°, or 2.1° for source 2. This results in 

smaller biases and relatively larger standard deviations. As the signal to noise ratio goes 

higher, the estimates of the two sources tend to possess the smaller values of the three in the 

25 dB case, i.e., more estimates remain at -0.1 ° and 1.9° for two sources, until at 50 dB all 

500 trials give the same estimates of [-0.1 0, 1.9°]. A -0.1 ° bias exists for both source directions 

while the standard deviations are zero. 

Figure 6.6 shows the coherent case where only the IMP algorithm is still able to distinguish 

between the two sources. The possibility of resolution remains the same as that in the highly 
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correlated case, while the relative values of biases and standard deviations are opposite to 

those in the previous case. The scale for the plot in figure 6.6(b) and 6.6(c) is changed to 

show the very small values of the biases for all the signal to noise ratio cases when the two 

sources are resolvable. On the other hand, the standard deviations are stable at about 0.2°. 

The estimates do not converge at all. 

6.4.2 Results as Functions of Angular Separation 

The simulated data carried out as functions of angular separation were analysed in the same 

way as that in the previous sub-section, and the same statistics were tested and plotted. The 

signal to noise ratio was given as 10 dB throughout the computer simulations. The correlation 

factor given to the three cases was 0, 0.95, and 1.0, and the results are shown in figures 6.7 

to 6.9. 

In the uncorrelated case, all three statistics are similar to those as functions of signal to noise 

ratio. The root MUSIC technique has the smallest resolution threshold, while the thresholds 

for the other two methods are 5 dB higher and the IMP algorithm suffers from some loss of 

probability of resolution at the middle part of the plot. The biases converge as the angular 

separation increases with higher biases resulting from the spectral MUSIC algorithm at 

relatively smaller separations. Despite the differences in the biases, standard deviations are 

very similar but do not tend to zero as the angular separations increase. 

The degradation in the probabilities of resolution is also similar to that in the case of functions 

of signal to noise ratio when the correlation between the two sources is stronger. As shown 

in figure 6.8, the degradation in IMP algorithm is the smallest, shifting from the spectral 

MUSIC method towards the root MUSIC technique. Biases given by the MUSIC techniques 

are much higher at smaller separations but decrease as the separation becomes bigger while, 

at the same time, the IMP algorithm possesses a small bias at smaller separations and a large 

one at larger separations. Concerning the standard deviation, the two MUSIC based methods 

have similar but larger values while those given for the IMP method are almost constant over 

the whole range of angular separation where it is able to resolve the two sources. 

The MUSIC techniques fail completely when the correlation between the two sources is 

extremely high or the two sources are coherent, as was stated in chapter 4. In the three aspects 

under examination, the behaviour of the IMP algorithm remains the same as that in the 

previous case. 
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6.5 Conclusion 

The simulation results presented in this chapter provide a means for a better understanding 

of the IMP algorithm. The performance advantages of the IMP algorithm over the most 

popular MUSIC techniques, especially in the highly correlated source case are demonstrated 

in the computer simulations. In the uncorrelated case, the performance of the IMP method 

is similar to that of the root MUSIC method and superior to the spectral version of MUSIC. 

As the correlation between the sources is stronger, the performance advantages of the IMP 

algorithm are significant. 
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CHAPTER 7 

WEIGHTED SUBSPACE FITTING METHODS 

Multidimensional methods in array signal processing possess advantages, such as the ability 

to handle coherent signals, over conventional one-dimensional techniques at the cost of 

expensive computations. Although, the Maximum Likelihood (ML) approaches have been 

systematic approaches to many parameter estimation problems for several decades, only in 

the past ten years or so have the appropriate methods for maximising the cost function been 

proposed, see e.g. [BM86, Sha88, SN88, ZW88] for deterministic ML (Det-ML) and [Sch81, 

Boh87] for stochastic ML (Sto-ML). To avoid the heavy computational burden inherent in 

the multidimensional approaches, many suboptimal methods were suggested for the DOA 

estimation problem among them the so-called eigenstructure or signal subspace techniques 

have received much attention because of their high resolution properties (et [Sch81, BK80]). 

A one-dimensional search over the parameter space is employed in these methods instead of 

the multidimensional search in the optimal ML methods resulting in that they are unable to 

resolve highly correlated or coherent signals. Recently some multidimensional subspace 

methods have been proposed to deal with the coherency problem and, at the same time, have 

high resolution abilities [Cad88, ZW88]. 

More recently, a Weighting Subspace Fitting (WSF) scheme was introduced by Viberg and 

Ottersten in, e.g. [OV89, V091], which include a wide range of direction estimation algo­

rithms. Based on an investigation of the variance of the estimation errors, a new multidi­

mensional estimation procedure was proposed which is applicable to arbitrary array 

geometries and signal correlation. This so-called optimal WSF method belongs to the same 

class of subspace fitting based algorithms as the deterministic ML method, but attains the 

stochastic Cramer-Rao Bound (CRB) while the optimization is of similar structure as that 

required by deterministic ML. It was demonstrated in [VOK89] that the WSF method is not 

only statistically efficient, but also offers other advantages over deterministic ML. 
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A brief description of the optimal WSF method has been given in the literature survey in 

chapter 3. This chapter will restate the problem under consideration briefly and concentrate 

on the implementation of the algorithm and its performance analysis by means of computer 

simulations. 

7.1 The Basic Subspace Fitting Problem and Subspace Fitting 
Methods 

The problem under consideration here is also extracting information from the array output 

measurements. The output of the m element sensor array is assumed to be a weighted 

super-position of d wavefronts corrupted by sensor noise which is assumed to be a white 

Gaussian process and uncorrelated with the emitter signals 

x(t) = A(e) . set) + net) (7.1) 

The output of the array is sampled at N time instants and these snapshots are collected to 

form an m xN data matrix XN • Given measurements XN , the basic subspace fitting problem 

is defined by the deterministic ML criterion as trying to fit the subspace spanned by A(e) to 

the measurement XN • Described mathematically, this problem is expressed as 

[A, t] =arg minIIM-A(e)· TII~ 
A,T 

(7.2) 

where M is an m x q matrix representing the measurement data, A(e) is an m x p matrix 

parameterised by the DOAs, and T is any p x q matrix. According to Golub and Pereyra 

[GP73], the subspace fitting problem defined in (7.2) can be separated in A and T. By 

substituting the pseudo-inverse solution t = A + • M into (7.2), the following equivalent 

problem results 

or equivalently 

A(e) = arg max Tr{PAMMH
} 

A 

• H 
A(e) = arg min Tr {PA MM } 

A 
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where P
A 

= A(AH Ar1AH is the projection matrix that projects into the range of A and 

P.4 = I - PAis that which projects in to the nullspcae of A. The parameter vector El is estimated 

fromA. 

The detenninistic ML method given by equation (2.57) is a straightforward member of this 

set of subspace fitting methods by taking R = MMH and employing a d-dimensional search 

over the subspace spanned by the columns of A(9). 

Finding maxima in the MUSIC spectrum in (3.21) equals maximizing l-lIPMuslc(9) = 
aH (9) . Es . E~ . a(9), which results in the DOA estimates as 

,., ... "H 
9 =arg maxTr{PA • Es· Es} (7.5) 

This is a case of the subspace fitting method when M = Es and A EA. 

To overcome the problem of coherency, a multidimensional version of the MUSIC algorithm 

was suggested in [Cad88] which can be formulated in the subspace fitting framework as 

A A A H 
9 = arg max Tr{PA . Es· Es} (7.6) 

AeA4 

This, again, is a computationally expensive multidimensional optimization problem. A 

special case of the multidimensional method is achieved when it is applied to arrays with 

special constraints. This is the so-called ESPRIT method applicable only to arrays of identical 

translationally displaced subarrays, by which the computation is reduced with the price of 

an inability to handle coherent sources. 

From the expressions for the Det-ML and MUSIC techniques given above, the representation 

of the data can be chosen in two ways, either as the Hennitian square root of the estimated 

covariance matrix or the estimated signal subspace matrix. The relation between these two 

choices for a large number of snapshots is described by the following theorem which motivates 

the optimal weighting subspace method. 
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Theorem 7.1 The deterministic ML (Det-ML) method has the same asymptotic dis· 

tribution as the following estimator 

where J... = As - crI = J...'12J...HI2 

A proof to this theorem can be found in [Vib89j. 

Applying Theorem 7.1 to equation (7.2), the subspace fitting problem may be restated as 

(7.8) 

where W is a positive definite weighting matrix. Referring to equation (7.3), the directions 

of arrival can consequently be estimated as 

e = arg min Tr {P.4. (9)Es WE~} 
9 

(7.9) 

Forming the variance of the estimation error in terms of the weighting matrix and finding 

the derivative with respect to the weighting matrix, an optimal weighting can then be found 

which gives the lowest possible variance of the estimation errors. Such a weighting matrix 

was derived in [OV9Ij and given as 

7.2 Asymptotic Analysis of Subspace Fitting Methods 

Cramer-Rao Bound 

The Cramer-Rao Bound (CRB) provides a lower bound for the covariance matrix of the 

estimation error of any unbiased estimate. CRBs were developed in [SN89j for deterministic 
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signals when either m or N is infmite or both are infmite and summarised into several the­

orems. Two theorems for the cases when m is finite whileN is finite and infmite, respectively, 

are restated here. 

Theorem 7.2 

Theorem 7.3 

Let e be an asymptotically unbiased estimate of the true parameter vector 

8., the CRB for 8. is given by 

er{ N }-I 
CRB(m,N) ="2 I~I Re [$I(t) . DH. P.4.. D· s(t)] (7.11) 

where 

(7.12) 

For sufficiently large N, the CRB is given by 

. er H T ~ 
CRB (m , 00) = 2N {Re[{D . P.4. . D} 0 S ]} (7.13) 

where S is the source covariance matrix as defined in (224). 

For the deterministic signals under consideration here, I + d (N + 1) parameters are to be 

estimated from mN data. The ratio of the amount of data to the number of the estimated 

parameters remains bounded if m < 00, even ifN --7 00; onlyifm, as well asN, tends toinfmity 

does this ratio increase without bound. This observation suggests that the CRB cannot be 

achieved by increasing N; the essential requirement for attaining the CRB should be to 

increase m. This point was discussed more precisely in, e.g. [SN89, SN90]. 

It is proved in [V09I], however, that the covariance of the asymptotic distribution of the 

optimal WSF estimates is the same as the asymptotic Cramer-Rao bound for Gaussian source 

signals. That is, the optimal WSF solution gives the lowest possible estimation error variance 

of any unbiased estimator. 

122 



Chapter 7 

To investigate the asymptotic properties of the subspace fitting methods, a single criterion 

function for all methods provides a more convenient means. As shown in [Ott89], the methods 

choosing M as the Hermitian square root of the covariance matrix can be put in a unified 

fashion as those using the signal subspace matrix as M by post-multiplying the signal subs pace 

matrix with a specific weighting matrix. The unified criterion function for all methods within 

the subspace fitting framework is in the following asymptotic form 

(7.14) 

where W is a d' x d' weighting matrix. The choice of W affects the asymptotic properties 

of the estimate error. The weighted subspace fitting estimate aN is given by 

a = arg max V(9) 
9 

(7.15) 

The weighting matrix W in (7.14) is restricted to be Hermitian and positive definite. It is 

shown that the criterion function, VN(9), converges with probability one (w.p.l), uniformly 

in 9 to the limit function V(9) 

(7.16) 

as N tends to infmity. 

7.3 Implementation of Subspace Fitting Methods 

The subspace fitting methods involve multidimensional searching procedures which require 

efficient algorithms for implementation. The algorithm to be used for this purpose is the 

Modified Variable Projection (MVP) method of Kaufman [Kau75], which is a slightly 

modified version of the Gauss-Newton method of Golub and Pereyra [GP73]. 

The non-linear least squares problem involved in the subspace fining methods can be 

described as follows 

a = arg min V(9) (7.17) 
9 
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V(8) = Tr{P.4(8)· M· MH} = 11 P.4(8)· MII ~ (7.18) 

where M = its . W ll2 is used as a general matrix to represent the observation so as to simplify 

the notations. By using the damped Newton method [GMW81, DS83], which is thought as 

the most efficient and globally convergent optimisation method for unconstrained smooth 

criteria, the searching procedures are formulated iteratively and the estimate is calculated as 

(7.19) 

where III is a step length, H and V' represent the Hessian matrix and the gradient of the 

criterion function, respectively. The Hessian and the gradient need to be evaluated at each 

iteration and are given as 

(7.20) 

V' = -2Re{diag(A ~MHP.4D)} (7.21) 

To start the iterations given in equation (7.19), an initial value of the direction estimate is 

required. In the following two subsections, the initialisation of the iterations and the iteration 

itself will be discussed, respectively. 

7.3.1 Initialisation 

The initial estimates of the directions of arrival are crucial to the global convergence of the 

final estimates. Although several direction estimation algorithms can be employed to give 

the initial estimates, such as the ESPRIT technique or even the IMP algorithm in the previous 

chapter, a reliable initialisation procedure is still needed to provide good enough initial 

estimates especially at low signal to noise ratios. Examining the convergence of different 

initialisation methods is outside the scope of this thesis. Herein, the Alternating Maximisation 

(AM) technique suggested by Ziskind and Wax [ZW88] for obtaining the initial estimates 

in their realisation of the ML estimator, the Alternating Projection (AP) algorithm, was 

applied. 
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By applying the AM technique, the initial estimates of the DOAs are also given iteratively. 

The multidimensional maximisation is accomplished in a sequence of procedures maximising 

a single parameter at each iteration. 

The fIrst source direction estimate is assigned the global peak position found in the generalised 

spectrum given as 

which is 

P(S) = aR(S)· M· MR • a(S) 
aR(S)· a(S) 

9, =arg maxP(S) 
e 

(7.22) 

(7.23) 

Given this estimate, the spectrum given in (7.22) is modifIed by applying a projection matrix, 

Q, onto the nullspace of the fIrst direction vector, a(9,). And the second source direction 

estimate is found as 

Aa _R-'.(s::.!.)_. Q.:;-. M:....::...-· .:...M.:...R_. -",Q~. =.a(=S) 
S2=arg max-

e aR(S)· Q. a(S) 
(7.24) 

When more sources are present and the initial estimates are required, the projection matrix 

needs to be modifIed to be based on all the initial direction estimates and then applied to 

equation (7.24). The maximum in the modifIed spectrum is regarded as the initial value of 

the direction to be estimated. 

In the estimation of the initial directions of arrival, the number of sources is necessary, either 

as prior information or estimated. The philosophy behind the initialisation is rather like that 

employed in the IMP algorithm, but the refInement of each estimates is not included. 

The one-dimensional Newton method is then used to refIne these initial estimates which are 

usually given over a coarse grid. 
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7.3.2 Iterations 

After obtaining the initial estimates, the modified variable projection method is employed to 

accomplish the iterative searching procedures. To simplify the computations involved in the 

calculation of the Hessian matrix and the gradient of the criterion function, which needs to 

be evaluated at each iteration, some mathematical work will be necessary. 

By applying the QR-decomposition using the Househoulder transformation [GY83], the 

direction vectors (signal array manifold vectors) can be written in multiplicative form of an 

orthogonal matrix Q and a upper triangular matrix R 

(7.25) 

and Q and R are partitioned into respective sub-matrices with appropriate dimensions. 

Therefore, the Moore-Penrose pseudo-inverse of the direction vectors A(e), A+, and its 

projection matrix, FA, are described as 

FA =Q2Q~ (7.26) 

Introducing several intermediate variables as follows: 

<ll = Q~D, (7.27) 

the criterion function, its Hessian matrix and gradient, referring to (7.18), (7.20), and (7.21), 

are derived as 

v = Tr{qnplI} 

V' = Re {diag (T'¥<ll)} 

H = Re {(<llH<ll) 0 (rr{} 

(7.28) 

(7.29) 

(7.30) 

These three expressions rather than the original ones are substituted back into (7.19) for the 

iterative calculation of the direction estimates. 
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The termination of the iteration is determined by three criteria: 

1) if the given maximum number of iterations is exceeded, 

2) if no more improvement along the searching direction is possible, 

3) if local minima are found. 

In the computer simulations to be shown in following sections, the maximum number of 

iterations is assigned as 10; the iteration number is initialised as 0 and incremented at each 

iteration. When the iteration number equals the maximum number of iterations, the procedure 

terminates and also brings out a flag to show the status of the termination. 

At each iteration, the criterion function is evaluated to check the improvement of the search. 

The current value of this function is compared with the minimum value of the function retained 

as a variable and a decision is made whether to refresh this variable. If the current value is 

smaller, then it is assigned to the variable and the current estimates of the source directions 

are taken as the latest direction estimates; otherwise previous values for the criterion function 

and the direction estimates are kept. 

One important parameter in the iterations is the step length, ~, in equation (7.19). This 

controls the convergence speed and also determines the possibility of convergence. A bigger 

value of ~ gives a quick search but allows the missing of possible local minima; on the other 

hand, a smaller value slows down the searching speed dramatically. In the simulations, ~ is 

assigned as:~nityat the beginning of each iteration and then half of the previous value is taken 

to accomplish the search along the searching direction. This procedure is continued until the 

value of ~ is less than 0.0001 when it is accepted as that no improvement (or no "sufficient 

decrease") is possible for the current search direction. This also leads to an unsuccessful 

termination of the procedure and the status of the termination is again brought out for later 

processing of the simulation results. 

The norm of the multiplication of the inverse of the Hessian matrix and the gradient of the 

criterion function is evaluated at each iteration and compared to a pre-defined tolerance. If 

it is smaller than this tolerance, the estimates of the source directions are considered as 

successful direction estimates. Only these estimates will be used in later processing for the 

statistics. 
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7.4 Computer Simulations 

Based on the algorithm implementation proposal given in the previous section, computer 

simulations have been carried out for the ML and WSF approaches. The simulation set-up 

is similar to that in simulations in previous chapters. Also, the statistics used to show the 

performance are the same as those given before, i.e., the probability ofresolution, biases of 

angular estimates and their standard deviations. Simulations to be presented in this section 

are in two categories: I) signal to noise ratio of the sources is varied in the simulations, and 

2) angular separation between the two sources is changed. 500 trials were run for the statistics 

with lOO snapshots taken in each trial. A 10 element uniform linear array was used with half 

wavelength spacing. The conventional resolution of such an array was about 11.5°. 

7.4.1 Results as Functions of Signal to Noise Ratio 

To evaluate the performance ofML and WSF under different signal to noise ratios, the angular 

separation is fixed at 2°. Results are shown in figures 7.1 to 7.3 for three cases when the 

correlation factor between the two sources is assigned as 0 (uncorrelated), 0.95, and I (co­

herent) respectively. 

The uncorrelated case is the case when all the high resolution methods give good direction 

estimates at reasonable signal to noise ratio and angular separation. Both the ML estimator 

and the optimal WSF estimator show excellent performance, as depicted in figure 7.1, 

including higher resolving abilities at low signal to noise ratio and low and smooth biases 

and standard deviations. The statistics from ML and WSF are extremely close except at 0 

dB signal to noise ratio where the ML methods performs a little better. 

In highly correlated source case, the optimal WSF method outperforms the ML method in 

the sense of separating the two sources at low signal to noise ratios. Large differences exist 

between the biases and standard deviations given for ML and WSF at signal to noise ratios 

less than 10 dB. The biases resulting from the WSF method tend to be even outside the true 

source directions, but those from the ML method are both smaller than the true values of 

source directions. For signal to noise ratios at or above 10 dB, the two methods give very 

similar performance in every statistic shown in the figures. 
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Figure 7.1 Statistics of ML and WSF as functions of signal to noise ratio when 
the angular separation is 2" and the correlationfactor is p ~ 0.0 
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Figure 7.3 shows the coherent case. The possibility of resolving the two sources at lower 

signal to noise ratios is less than that in the highly correlated case. The performance 

degradation in the biases is not significant while that in the standard deviation is more 

noticeable. 

7.4.2 Results as Functions of Angular Separation 

Varying the angular separation between the two sources, the source correlation was changed. 

Uncorrelated signals, signals with 0.95 correlation factor, and fully correlated (coherent) 

signals were used respectively, and correspondingly, the results are illustrated in figure 7.4 

through figure 7.6. 

In figure 7.4, where the results for uncorrelated signals are shown, both approaches depict 

high resolution abilities even at the angular separation as small as 1°. What is noticeable for 

this case is that ML and WSF give almost equivalent performance. The biases of both sources 

are very small as are the standard deviations which, however, do not tend to approach the 

minimum level (zero) as the angular separation increases. 

When the correlation between the two sources gets stronger, the probabilities of resolution 

of both ML and WSF are expected to degrade. Statistics of these two approaches are dem­

onstrated in figure 7.5 for the case of a correlation factor of 0.95. It can be seen that both 

methods lose resolving ability at small angular separations, mainly at the separation of 1°. 

Biases of angular estimates of both sources get bigger than those in the uncorrelated case, 

while the bias for source 1 (the one assumed at the normal direction of the array) is slightly 

larger than that for source 2 (the source whose position is moved in the simulations). At the 

separation of 1°, although the bias given by ML is a bit larger for source 1, the correspondent 

standard deviation is relatively lower than that given by WSF; for source 2, a big difference 

in biases is shown between ML and WSF while a pattern is given in the standard deviation 

similar to that for source 1. The standard deviations remain stable at about 0.1 ° no matter 

how big the angular separation gets. 

Figure 7.6 shows the coherent case. Compared to that given in figure 7.5(a), the ability to 

resolve two closely spaced sources degrades again, but only slightly. The possibility of higher 

resolution is demonstrated by WSF at angular separation 1° and 2°. Biases given by WSF 
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are narrowly smaller than those given by ML at small angular separations except for the 

second source which shows lower bias for ML at separation 1°. Concerning the standard 

deviation, ML demonstrates lower standard deviation at the smallest angular separation 

whilst at other separations smaller than 6°, WSF performs better. For all other separations, 

both methods give almost identical results. Like the two previous cases, standard deviations 

do not approach zero although the angular estimates tend to be unbiased at bigger angular 

separations. 

7.4.3 More Results of Functions of Signal to Noise Ratio 

Since the performance given by ML and WSF is superior to those algorithms which have 

been discussed and analysed in previous chapters, under the same set-up of parameters these 

two methods do not show much change in the given statistics and the predicted performance 

advantages over other high resolution methods have not been shown significantly. Since it 

is interesting to investigate the behaviour of these two methods under "bad" conditions, more 

computer simulations have been carried out and the processing results will be presented in 

this and the following subsections. 

To observe the performance of ML and WSF when the signal to noise ratio changes, the 

angular separation between the two sources is reduced to 1°, while all other parameters are 

given as the same as those in section 7.4.1. Results are shown in figure 7.7 to figure 7.9 with 

correlation factor being 0, 0.95, and 1.0 respectively. Comparing the plots in these three 

figures with those in figures 7.1 to 7.3, the performance degradation can be easily seen. What 

is unchanged is that the performances of ML and WSF are still very similar in the correlated 

case and differences exist in both biases and standard deviations for highly and fully correlated 

cases. 

The performance degradation mainly lies in the low signal to noise ratio region. The per­

formance difference is around 10 db equivalent in the signal to noise ratio for all the three 

cases. And relative performance of ML and WSF is similar to that in the 2° case. In the 

highly and fully correlated source cases, source 1 gives smooth statistics while source 2 shows 

more fluctuations at low signal to noise ratios. At the signal to noise ratios where the 

probability of resolution is unity, both ML and WSF demonstrate the tendency to give 

unbiased estimates and minimum standard deviations as the signal to noise ratio tends to 

infmity. 
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Figure 7.8 Statistics of ML and WSF as functions of signal to noise ratio when 
the angular separation is r and the correlation factor is p = 0.95 

138 



Chapter 7 

.c 

°o~--~,~o-----=~-----=~~---7.~~--~~ 
SigMiIO Nou. Ralio (dB) 

(a) 

k' 
~ 

J 
! 
~ ~., 

~ 

..... 
.. 

~ 
.~ ., '----7.;"---;:---:::----::---: 
':I:IOIO:ZO 30 40 30 

(b) 

" r------------------------------, 

1;:.,.. __ -
.~ --, 
.9 G.I .•••••••••• :--\. 
;.. .... -',' i:: .... ./ "\~ 

0.2 ~ 
°OL---~,~O----~~=-----»=-----~~--==~~ 

SigMl to Nou~ Ralio (dB) 

Signal to Noise Ralio (dB) 

(c) 

"r---------------------------, 

(d) (e) 

Figure 7.9 Statistics of ML and WSF asfunction of signal to noise ratio when the 
angular separation is r and two are fully correlated p = 1 

139 



Chapter 7 

7.4.4 More Results as Functions of Angular Separation 

The results to be shown in this subsection are obtained as functions of angular separation 

when the fixed signal to noise ratio is assigned as 5 dB and 0 dB, respectively. The same 

statistics are tested and presented in figures 7.10 to 7.15. 

Figure 7.10 gives the statistics of ML and WSF when the signal to noise ratio is 5 dB and 

the two sources are uncorrelated. Compared with the corresponding plots in figure 7.4, the 

performance degradation which is mainly in the standard deviation can be seen. The 

thresholds of resolution remain the same while the possibility of resolving the two targets is 

lower in the small angular separation region. Biases for both sources are large in the situations 

when the angular separation is small, but tend to be comparative with those in figure 7.4 at 

and above 3°. In contrast, the standard deviations are higher than those in figure 7.4 within 

the whole DOA range which has been examined. 

The results for highly correlated sources are shown in figure 7.11. The degradation of per­

formance caused by the correlation between the two sources is similar to that in the 10 dB 

signal to noise ratio case. More fluctuations in the biases are revealed in the large angular 

separation case, and in the segment of small separations source 1 depicts larger biases for 

both ML and WSF while source 2 shows smaller but non-smooth statistics. These two 

different types of biases at the smaller separation result, however, in similar standard devi­

ations. For the larger separation part, the standard deviations are smooth and tend to increase 

slightly as the angular separation becomes large. 

Although the correlation factor for the results shown in figure 7.12 is given as one, i.e., fully 

correlated signals, the actual generated signals are extremely highly correlated rather then 

fully correlated in the finite sample cases in the strict sense. The performance degradation 

resulting from this increase in the correlation is visible in all three statistics given in figure 

7.12. Compared to the plots in figure 7.11, no severe degradation of performance is observed. 

The abilities to solve highly correlated signals for both the ML and WSF methods are evi­

denced in these simulation results. 

To investigate the performance of these two methods in low signal to noise situations, the 

simulations have been repeated when the signal to noise ratio is 0 dB while other conditions 

remain the same. Again, three cases were considered when the correlation between the two 

sources is changed. 
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The effects of the reduction in the signal to noise ratio can be seen in all three statistics 

illustrated. Probabilities of resolution decrease in the smaller angular separation region but 

show full abilities to resolve the two sources when they are placed at a larger distance from 

each other. However, biases exist even when the source separation is very large. Unlike the 

bearnforming methods which usually tend to give estimates of directions between the true 

directions, the biases given by ML and WSF show that these two methods are more likely 

to give estimates outside the true directions, especially in the uncorrelated cases, no matter 

what the signal to noise ratio is. The standard deviations shown in figure 7. 13(d) and figure 

7.13(e) are much higher that those in figure 7.4 and figure 7.10 although they decrease as 

the angular separation increases. 

Figures 7.14 and 7.15 show the behaviours ofML and WSF at the low signal to noise ratio 

and high correlation cases. Performance degradation is obvious. 

7.5 Discussion 

The performance of the Maximum Likelihood (ML) estimator and the optimal Weighted 

Subspace Fitting (WSF) estimator in the application of direction estimation has been analysed 

in this chapter, mainly by means of computer simulations. The large number of results 

presented herein demonstrate the behaviour of the two methods in different scenarios, as 

functions of signal to noise ratio and angular separation between the two sources, respectively. 

And under each circumstance, more results than those in previous chapters were obtained 

for the examination of these methods under "bad" conditions. The abilities of these two 

methods to resolve two closely positioned sources with low signal to noise ratios are evident 

from the results presented. And also the estimates have good statistics in the sense of biases 

and standard deviations of the direction estimates. Although it is claimed by the original 

authors that the optimal WSF outperforms the ML method asymptotically, the difference in 

the statistics shown here is not significant, sometimes even better results were obtained from 

the ML estimator. Whether this is because the "asymptotic" conditions are not met or any 

other reason, these two methods give roughly identical performance in most situations. 
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DISCUSSION OF COMPUTER SIMULATION 

RESULTS 

Chapter 8 

Through chapter 4 to chapter 7, simulation results have been presented for several high 

resolution direction estimation algorithms. These algorithms represent different philosophies 

in dealing with the direction estimation problem and also demonstrate the evolution of 

direction estimation algorithms. The methods which have been simulated and discussed in 

the previous four chapters include 

* the Maximum Entropy Method (MEM) ofBurg and the Minimum Variance Method 

(MVM) of Capon (or Capon's Maximum Likelihood Method) in the class of adaptive 

techniques 

* MUltiple SIgnal Characteristics (MUSIC) of Schmidt and Bienvenu and Kopp, and 

Minimum Norm Method (MNM) of Reddi and Kumaresan and Tuft, representing the 

signal subspace methods 

* root versions of the above four methods, promoted by Barabell, which explore the 

roots of associated polynomials rather than searching the peak positions in the resulting 

spectra 

* Estimation of Signal Parameters via Rotation Invariance Techniques (ESPRIT) of 

Roy, Paulraj, and Kailath et ai, which reduces the computation load of the MUSIC 

algorithm by constraining the array in use and, at the same time, retains most of the 

features of MUSIC 
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* Incremenatal Multiple Parameter (IMP) estimation method, in the class of 

decomposition methods, of Clarke, which re-processes the received data by applying 

projections and provides high resolution ability even for fully correlated sources 

* deterministic Maximum Likelihood (ML) method which is able to solve for coherent 

sources at the cost of heavy computation due to the multidimensional searching 

involved 

* optimal Weighted Subspace Fitting (WSF) method of Viberg and Ottersten which is 

deduced to give the lowest possible variance of estimation errors with reduced 

computations due to the low rank representation of the observed data 

In the simulations, two scenarios were mainly considered: the performance of the algorithms 

at different signal to noise ratios when the angular separation between the two sources was 

fixed, and that under different angular separations when the signal to noise ratio was 

unchanged. For each scenario, various correlation factors were applied to test the algorithm 

abilities to resolve sources with different correlations. The inability of the signal subspace 

methods and the ESPRIT techniques to handle coherent sources was known, so the 

simulations concentrated on the uncorrelated and the weakly correlated source cases while 

sources with correlation factor 0.95 were also examined to show the algorithm performance 

in the highly correlated situation. In order to demonstrate the performance advantage of the 

IMP algorithm in the highly correlated case, besides the correlated case, two large correlation 

factors were assigned to the sources in chapter 6. In chapter 7 where the ML and optimal 

WSF were simulated, the correlation factor between the two sources was given the same 

values as that in chapter 6 but more values were assigned to the signal to noise ratios and the 

angular separations to study the performance of these two "superior" resolution algorithms. 

In chapter 4, the four methods which fall in the signal subspace methods and their root versions 

were examined. It was shown there that the MUSIC technique gives the lowest standard 

deviations in both versions as functions of signal to noise ratio and shows the lowest standard 

deviations together with the MVM as functions of angular separations. The MUSIC methods, 

both spectral and root versions, were chosen as "models" to be compared with the ESPRIT 

algorithm in chapter 5 and the IMP technique in chapter 6. 

For the ESPRIT algorithm, multiple choices of subarray displacement vector are possible in 

the uniform linear array case. However, only the one with the maximum over lapping 
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subarrays was tested in the simulations here. Bigger displacement between the two subarrays 

are in favour when the sources are known to cluster, by giving smaller direction estimation 

errors. 

The asymptotic properties of the ESPRIT method are very similar to those of the MUSIC 

methods. The probability of resolution provided by the ESPRIT method is near to that of 

the root MUSIC method, both being higher than that of the spectral MUSIC method, although 

the correspondent biases and standard deviations are also higher before the spectral MUSIC 

begins to resolve the two sources. The computation time of the simulation for these three 

methods was not compared quantitatively, but it has been noticed that the ESPRIT technique 

consumed much less time due to the lack of the searching procedure inherent in the spectral 

MUSIC method. If the output spectrum of the array is not needed, which is generally the 

case in the direction estimation problem, ESPRIT is a good substitute for the MUSIC method 

by providing similar performance with less computation time. 

The IMP algorithm provides a different philosophy to the direction estimation problem. The 

re-processing of the observed data does provide high resolution and the ability to handle 

coherent sources, but the computation burden involved in the processing makes it prohibitive. 

Remedies have been suggested, such as searching spectrum on a coarse grid and then 

narrowing the field of search and refining the estimates, or applying the quadratic fitting of 

the rough estimates of three points at and around the peak position to give a more accurate 

estimate. This, however, does not help much especially in the high order case (more sources 

are present). Probably this method will find applications in some areas where the processing 

speed is not a important factor. But it is not promising to meet the need in most cases because 

high processing speed is generally required and this technique has less chance of real-time 

implementation. 

Comparatively, the optimal WSF method is more appealing although the multidimensional 

search procedure involved makes it look less so. The low-rank representation of the data in 

the optimisation saves much computation, compared to the ML method. Also the 

development in computers and electronics allows the complicated computations in the 

multidimensional processing to be accomplished at very high speed. By means of "modem" 

parallel processing techniques and special-purpose chips, the complexity of the computations 

can be more easily realised than the search procedure in estimating the spectra which seems 

much easier in appearance. 
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The excellent performance of the optimal WSF algorithm shown in chapter 7 is worth the 

effon in implementing the inherent complicated computations. Under the same parameter 

set-ups as those in chapter 4 to chapter 6, the performance advantages are readily seen from 

the plots shown figures 7.7 to 7.6. To verify these merits, the optimal WSF method and the 

ML method have gone through tests under bad conditions. The two sources were placed 

only 10 apart to repeat the simulations as functions of signal to noise ratios and the signal to 

noise ratios were set to 5 dB and 0 dB respectively to undergo the performance analysis as 

functions of angular separations. Performance degraded in the worse situations but still gave 

reasonably good results. 

Besides the comparison of performance of various algorithms, the simulation results shown 

in the previous chapters draw clear pictures of each of these algorithms under the conditions 

given in the simulations. Although the factors taken into account in the simulations are very 

limited, the results provide a good guide for the analysis of the practical measurements which 

will be presented in the following chapter. 
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CHAPTER 9 

PRACTICAL MEASUREMENTS WITH DIFFERENT 

ALGORITHMS 

In previous chapters, computer simulations of algorithms and methods in several different 

classes have been carried out and discussed. Results strongly supported the theoretical 

analyses and provided insight into understanding of algorithm performance. However, the 

behaviour 'of these algorithms or methods in practical environments is still unknown. 

Although they are expected to depict similar results as anticipated from the theoretical dis­

cussion, it is necessary to apply these algorithms to practical measurements when their 

performance in practical situations is considered. This chapter will present some off-line 

processing results of data collected from a sonar system which was available within the 

research group. 

The measurement system used for experiments in this chapter was an air acoustic sonar 

system which had been built by the Sonar Research Group at Loughborough University of 

Technology (LUT). This system consists of a passive receiving array and a transputer-board 

based signal acquisition and analysis system. Either emitters or targets were employed to 

transmit or reflect signals at a distance. The array responses to these signals were captured 

and sent to the signal acquisition and analysis system. The received signals were saved in 

12 bit digital form on the memory board. These data were then accessed by a transputer 

board which could process data in the OCCAM language or save data on floppy disks via an 

IBM-286 host computer for off-line processing. The results presented in this chapter were 

obtained by using the software package MA TLAB (Matrix Laboratory). 

Two scenarios were examined: first, the acoustic array worked in the passive mode and two 

emitters were placed at a distance in front of the array. Two categories of signals were applied 

in this working mode, one was the case when two emitters worked at different frequencies 
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and the other at the same frequency. Secondly, two targets were placed in front of the array 

to reflect signals transmitted from a separate sensor which was placed on the top of the 

receiving array. 

9.1 Description of the Measurement System 

9.1.1 Array 

The array used for experiments was an echelon array of two layers with eight transducers on 

the top and seven on the bottom, as shown in figure 9.1. Parameters of the transducers and 

the array are also depicted in figure 9.1. 

I. 410mm "I 
I·"m-..\ T ········eT ~ ••••••• it ~ 

~::~ 1..-
Figure 9.1 The Diagram of the Echelon Air Array 

The transducers used in the array were made by the Polaroid Company and have good acoustic 

characteristics. The relative sensitivities of these fifteen transducers were measured and are 

listed in table 9.1. The conditions for these measurements are given underneath. From table 

9.1, it can be seen that the standard deviation was only about 10% of the mean value . 

. Since the transducers are circular plane transducers, the beam pattern of a single transducer, 

.. i{the circular aperture is uniformly excited, can be calculated as 

.. , . 

5(<<1» = J,(<<I» 
cl> 

(9.1) 

whereJ,(cI» is the first-order Bessel function of cl> = 2xr sin(9)1A., r is the radius of the circular 

plane [E1l81]. The radius of transducers used in the array is 17 mm, and the calculated beam 
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Table 9.1 Relative Sensitivities of Individual Transducers 

No. of Elements Output (V) 

1 0.95 

2 0.88 

3 0.92 

4 0.94 

5 0.91 

6 0.97 

7 1.04 

8 1.03 

9 1.12 

10 1.12 

11 1.11 

12 1.17 

13 1.20 

14 1.13 

15 1.06 

Mean Value 1.04 

Standard Deviation 0.10 

Measurement Conditions: 

Transmitting frequency 

Pre-amplifier used 

Distance between Tx and Rx 

40kHz 

channelS· 

3m 

Chapter 9 

• When measuring individual sensitivities the same pre-amplijier, the one in 

channel five, was used. 
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pattern using equation (9.1) is shown in figure 9.2 and compared to the measured result. By 

calculation, the beam width of one transducer is about 15° at 40 kHz, which is measured as 

about 14°. 

Beam Pattern of One Element , 
/ "\ 

I ~ I 
I \\ --_ . . -

, 
f \ , , 

j \ 

h \ 
;) 1\\ 

, --, If \\ ~. 

,-- - y if \'/; " / 
• , .-

• 
Diuctum 

Frequency" 40 kHz 

Figure 9.2 The Theoretical and Measured Beam Pal/erns of One Element 

Although the array is composed of two layers, it can be approximated by a linear array if the 

sources are in the far-field and are in the horizontal plane containing the normal to the centre 

of the array: The equivalent linear array has fifteen sensors in the same line with inter-element 

spacing half of that in the original echelon array, i.e., 23 mm. The wavelength of signals at 

the transmitting frequency of 40 kHz is 8.5 mm, thus the inter-element spacing in the metric 

of the signal wavelength is llfA. = 2.7. 

The beam pattern of a linear array with omnidirectional sensors is well known and given by 

the following equation 

D(S) = Sin(m .1t. ~. SinSiA.) 
m . Sin(1t . ~. Sin M.) 

(9.2) 

According to the product theorem [Uri75j, the beam pattern of the array with directional 

elements will be the product of the beam pattern of an identical array of non-directional 

elements and the beam pattern of each element alone. Thus, the beam pattern of the employed 

array will be given by 
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P(9)=D(9)xS(9) (9.3) 

The beam pattern of the array obtained by using equations (9.1) - (9.3) is compared with 

those measured by using electrical steering and mechanical steering of the array in figure 9.3 

and figure 9.4. In figure 9.3, by using electronic steering the array was stationary and the 

measured beam pattern was obtained by scanning the space with the steering vector assigned 

a unity modulus, that is, the directivity of individual transducer was not taken into account 

Correspondingly, the theoretical beam pattern was given by equation (9.2) without multi­

plication with the beam pattern of each element. Substituting the parameters of the array 

into (9.2), the beam pattern will have maximum values (grating lobes) at 9 = 0°, ±21.8°, 

±47.8°, etc., as shown in figure 9.3. The measured beam pattern in figure 9.4 was obtained 

using mechanical steering of the array when the array was driven by a beam plotter [WZG+90j. 

Since each single element in the array had a sharp directivity, grating lobes in figure 9.3 were 

greatly suppressed, and the resulting beam pattern shows much lower responses in the 

corresponding directions. The measured results were very consistent with the theoretical 

calculation by using equation (9.1) - (9.3), and the beam width of the whole array is about 

1.4° at 40 kHz. 

lN~~-+~--4---~~--~~~--4---~~~-+--~ 1 u ~~-!J.+l---4---~~--~I---~--4---~~,'j.: 4-+-~ 
~ ~ 1-----+-++l---+--+--l---i+I---+--+--+--lf, ++--l 

Number of Element _ 15 
Element Space .. 2.7 
Frequency _ 40 kHz 

Figure 93 

Range .. Sm 
Slap .0.2 degree 

Direction 
.. " • z:I » 

The Theoretical and Measured Beam Patterns of the Air 

Acoustic Array Using Electronic Steering 
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Beam Paltern of Air Acoustic Array 
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Figure 9.4 The Theoretical and Measured Beam Patterns of the Air 

Acoustic Array Using Mechanical Steering 

9.1.2 The Measurement System 

Chapter 9 

Figure 9.5 shows the layout of the measurement system used for carrying out experiments 

in this thesis. The original system was designed and built for both signal acquisition and 

analysis. Since programs written for processing data, either simulated on computers or 

measured in practice, had not been translated into the OCCAM language which was required 

by the transputer, the system was used for signal acquisition only and off-line processing 

was carried out. 

The data acquisition part of this system, as shown in figure 9.5, is composed of pre-amplifiers, 

analogue multipliers, low pass filters, analogue to digital convertors (ADCs), a memory 

board, and the signal generator and control board. 

Each of the fifteen transducers in the array is linked to one of the fifteen channels in the 

acquisition system. In each channel, a pre-amplifier is employed to raise the output level to 

the desired value, which is required by the dynamic range of 72 dB for 12 bit digital data. 

The output signal from the pre-amplifier is then passed to an analogue I.multiplier , where 

the In-phase and Quadrature (I&Q) components of the received signal are extracted by 

mUltiplying with Sine and Cosine reference signals. Because the sonar signals are generally 

narrow band signals, the I&Q sampling technique shifts the received signals to baseband, 
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illustrated in figure 9.6, and consequently reduces the required sampling frequency at the 

AID convenors. To remove the sum-frequency components of the shifted signals from the 

I&Q sampling, a low pass filter is used with 5 kHz cutoff frequency. The filtered signals 

then pass to the Sample / Hold (S&H) amplifiers which hold constant signal amplitudes 

before analogue to digital conversion. 

RECEIVING ARRAY 

PT.ampl», 
IrQ Decomposition 

NU CO/IWft)f 

Cn~' 

CONTROL BUS 

SINE & COSINE 

REFERENCE SIGNALS 

~.mpI"r 

£-0 Decomposition 
AID OOIJWrtor 

enamel,5 

MEMORY 

(16"64KByte, 

12 BffDATA BUS 

SIGNAL 

GENERATOR 

& CONTROL 

BOARD 

USER 

PORT 

Figure 9.5 The Layout of the Measurement System 

IBM PC 

TBOO 

TRANSPIfTER 

TRANSPVTER-TO-BBC 

INTERFACE 

1 MHzBUS 
,-----''-----, 

BBC 
MICROCOMPUTER 

The outputs from the AID convenors are in 12 bit digital form and are conveyed over a 12 

bit bus to a memory buffer which is accessible by the transputer T800. The sampled data 

can be either processed on the transputer board in the system or saved on floppy disks via 

the IBM PC for off-line processing. 

A BBC microcomputer serves as the main controller in this system. The Signal Generator 

and Control board generates the transmitted pulses and other reference signals such as the 

Sine and Cosine reference signals for the I&Q decomposition. The I MHz bus of the BBC 

is used for the transputer and BBC interface. 
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An IBM PC is used as the host of the transputer. Since the data is to be processed off-line, 

programs have been developed to transfer the data saved on the memory board to floppy 

disks via the IBM PC. 

o 

IT 

I 
I 

o klr 

le 

1 
I 

IT 

I 

Figure 9.6 Frequency Shifling by IQ Technique 

I 

I 

This system was originally designed and developed for the implementation of high resolution 

direction finding (OF) algorithms to resolve closely placed underwater targets / sources. The 

choice of the main system parameters was made according to practical measurement 

conditions such as the limited physical size of the water tank available in the Department, 

working frequency range of the available transducers, the tradeoff between the cost and 

resolution and speed of an AID convertor, and so on. 

The rest of this chapter is organised as follows: the design of experiments is proposed in 

section 9.2 where two cases (when the system works in passive mode and active mode 

respectively) are supposed with different scenarios for each case; section 9.3 presents 

experimental results in accordance with the different situations in section 9.2; the last section, 

section 9.4, presents a discussion and a conclusion of the practical work carried out so far. 
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9.2 Design of Experiments 

The array used in experiments for this thesis was an air acoustic sonar array which could 

work in active mode when a single sensor was used as an emitter and the whole array received 

reflections from target(s). and also in passive mode when the array simply received signals 

radiated from emitter(s). For both modes. the measurement environment was the same as 

that shown in figure 9.7. Targets I Sources were placed at a distance in front of the array. 

The distance between targets I sources varied in experiments and will be specified later with 

individual experiment designs. 

,., 1 ~ -, 
0 rn = '" -, 

T " § 
~ 

I· R----I·I 

Figure 9.7 Geometry of the Measurement Environmelll 

9.2.1 Passive Case 

Working in this mode. the array "passively" received signals radiated from sources which 

are detectable at the array sensors. 

One advantage of starting the experiments with the passive working mode of the array was 

that uncorrelated signal could be guaranteed by choosing different working frequencies for 

two sources. Since sub-optimal high resolution algorithms including the most popular MUSIC 

method were applied only to non-coherent sources with performance degradation when the 

correlation factor is high. uncorrelated sources were required to assess these algorithms for 

practical experiments. 
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The case when a signal source was present was considered as a preliminary of the two source 

case. Unlike computer simulation or theoretical analysis, knowledge of the source positions 

relative to the array and the relative position was unavailable, or at least inaccurate. 

Measurements with a single source present helped to align the sources. 

When two sources were present, one was fixed around the normal position to the array while 

the other one was moved, in parallel with the array, from a distance toward the fixed source. 

The angle between the sources to the array was approximately calculated, and also measured 

by switching off one source and measuring the direction of the other source and the other 

way round. This procedure was repeated for each angular separation and, of course, data 

when both sources were switched on was also recorded. 

The case for two emitters working at the same frequency was then considered. Measurements 

were for different separations between the two emitters and also for each of the two emitters 

when the other one was switched off, for alignment of the emitter positions. 

9.2.2 Active Case 

In the active mode of the array, one individual transducer was placed near the array. (In this 

sense, the array is not really working in the active mode). Two targets were placed in front 

of the array at an appropriate distance, in the experiments to be described herein chosen as 

5.6 rn, so that the reflections from them are detectable while the far-field approximation 

could still be met roughly. Again, cases when one single target was in use and when two 

targets were used were considered. And the position(s) of the target(s) was defined in the 

same way as that in the passive mode. 

The targets were made of metal, the material which is known to have strong! reflectivity _. 

Two targets were of the same circular shape and of the same size of 85 mm in diameter, which 

was 10 times of the signal wavelength. Two factors were . ____ ~ .,. taken into account when 

choosing the size of the targets; [these were the reflected energy and the directivity of the 

targets. If the target size was too small, the targets would have to be placed nearer the receiving 

array so that the reflections were detectable. On the other hand, a sharper directivity was 

expected from a larger j.;~ target which, in turn, would cause difficulty in receiving target 

reflections. 
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9.3 Experiment Implementations and Results 

According to the experiment designs in section 9.2, a large number of practical measurements 

have been carried out and analyzed by using the different algorithms, which have been 

discussed previously. These algorithms include the conventional bearnfonning technique, 

the MUSIC technique and its root version, the LS-ESPRIT method, the IMP method, and 

two multidimensional approaches, ML and WSF. Results of the experiments by means of 

applying the above-mentioned algorithms to the experimental measurements will be pres­

ented in this section. 

9.3.1 Experiments, Group 1 

In this group of experiments, the array worked in the passive mode. Two sources were placed 

in front ofthe array at a distance of7.56 meters. The measurement environment was shown 

in figure 9.7. Source #2 was fixed at a position while source #1 was moved along the direction 

of the array (in parallelilllll.the array). The position of source #2 was given by the peak in the 

spectrum obtained when source #1 was switched off. Holding source #2 at this position, 

measurements were taken when source #2 was turned off to give a location estimate of source 

#1 which was moved:.< : = ~ -.:l~. when both sources were on. The distance between 

these two sources was initially 600 mm and decreased with decrements of 50 mm to 100 mm. 

For each set-up ofthese parameters, measurements were repeated twice. Results are tabulated 

in table 9.3 and the conventional bearnfonning spectra and MUSIC spectra are given in figure 

9.9 and figure 9.10 respectively 

For this group of experiments, the two sources worked at different frequencies: 39.52 kHz 

and 40.00 kHz. 30 snapshots were taken for each experiment. The illustration for the 

calculation of the angles is given in figure 9.8, where R = 7560 mm is the distance between 

the source and the receiving array. The position of the fixed source, source #2, was measured. 

The moving source, source #1, was placed at different positions in parallel with the array. 

Distances between these two sources were measured and used to calculate the angular sep­

arations so as to compare with the estimated results obtained from algorithms. 

The position of source #2 was measured when source#l was switched off. The corresponding 

angle was about 1.6° from the normal of the array and the distance from the normal was 
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calculated as 211 mm. This distance added with the source separation was used to compute 

the position of source #1 and compare with the estimated angular directions given by different 

algorithms. 

Array 

Figure 9.8 I/lustration of the Calculation of Angles 

The calculation of the corresponding source #1 positions, when it was moved, followed the 

equations given below and the results are listed in table 9.2. 

tan 9 = (s + so)/R (9.4) 

where So = R . tan 90 = 211 mm with 90 being estimated by switching off source #1. 

Table 9.2 Emitter Directions Obtained by Calculation 

s(mm) s +so(mm) tan 9 9+90 (°) 

600 811 0.1072 6.1 
550 761 0.1007 5.7 
500 711 0.0940 5.4 
450 661 0.0874 5.0 
400 611 0.0808 4.6 
350 561 0.0742 4.2 
300 511 0.0676 3.9 
250 461 0.0610 3.5 
200 411 0.0544 3.1 
150 361 0.0478 2.7 
100 311 0.0411 2.4 
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Table 9.3 shows the results of this set of experiments by applying different algorithms. Inside 

the column of the source separation, the calculated directions of source #1 at different 

positions are also given for comparison. These are the directions to the normal of the array 

rather than the separation between the two sources. 

The angular estimates shown in table 9.3 and those in following subsections were obtained 

according to the following criteria: 

CBF: peak positions in the estimated spectrum 

SP-MUSIC: peak positions in the estimated spectrum 

RT-MUSIC: angle estimates with the biggest modulus estimates, which usually 

are> 0.8 but sometime 0.8 > P > 0.7 

ESPRIT: angles given from the algorithm with assigned number of sources 

IMP: angles given from the algorithm with assigned number of sources 

ML: angles given from the algorithm with assigned number of sources 

WSF: angles given from the algorithm with assigned number of sources 

The plots in figures 9.9 and 9.10 give the spectra obtained by the conventional bearnforming 

method and the MUSIC technique. In each plot in these two figures, solid lines denote the 

cases when a single source was on and the dashed lines represent the cases when two sources 

were on. Figure 9.9.1 and figure 9.10.1 show the four measurements when the fixed source 

#2 was on. The other 11 figures give the situations when source #1 was moved from a distance 

towards source #2. 

From table 9.3, it can be seen that the estimates given from different algorithms are strongly 

consistent when a single source was on, except those given by ESPRIT which tend to be 

biased. The estimates given by the ESPRIT algorithm are smaller than the calculated angles 

and the estimates from other methods. The biases existing in the ESPRIT estimates are more 

noticeable at the larger emitter separations and, in the cases with 150 mm and 100 mm 

separations are much less significant. 

For the cases where both sources were on, when the source separation is big enough P- 200 

mm), the results from all algorithm except the ESPRIT method show excellent indications 

of the true positions of the sources, while the ESPRIT algorithm inclines to give biased 

164 



Chapter 9 

estimates when the source separation is not less than 400 mm. As the source separation 

decreases, the perfonnance of ESPRIT begins to degrade by giving estimates which are 

apparently different from estimates given by other methods. 

When the source separation gets small, at 150 mm or 100 mm, the conventional beamforming 

method fails to give two separate peaks. The results shown in relevant columns are the unique 

peak positions in the corresponding spectra, as depicted in figure 9.9.11 and 9.9.12. They 

lie in directions somewhere between the two sources. 

Although two estimates were given in table 9.3 for spectral MUSIC (SP-MUSIC) when the 

separation is 150 mm, from the corresponding figure 9.10.11, it is seen that the estimate at 

2.7° does not show a clear peak. At 100 mm source separation, one of the two estimates gives 

two separate values which, from figure 9.10.12, are estimates from two distinguishable peaks. 

It can easily seen from the plots in figures <7.9 and '7.10 that the resolution abilities of both 

the conventional and the MUSIC methods degrade as the source separation decreases. 

Although the MUSIC method is proved to possess higher resolution, it is not fully shown in 

this group of experiments although figure 9.10.11 and figure 9.10.12 provide some evidence. 

The advantages of the MUSIC method over the conventional bearnforming method are shown 

in that the spectra from the MUSIC method give sharper peaks and smoother backgrounds. 

The array deployed in these experiments has very sharp directivities so that even the 

conventional bearnforming method can resolve very closely placed sources and the resolution 

abilities of both methods might be limited by other practical factors, such as environment 

noise, etc .. 

The root MUSIC (RT-MUSIC) method shows similar results as the spectral MUSIC method 

at all the source separations and in both cases when a single source and two sources are on. 

For source separations of 150 mm and 100 mm, only one estimate is given in one of the two 

experiments. This is because only one angular estimate has a modulus which is big enough 

to be recognized as an estimate. 

Results obtained from IMP, ML, and WSF demonstrate very good consistency in most of 

the cases except the last separation of 100 mm where the IMP algorithm gives only one source 

direction estimate although the number of sources is two. The program terminated after 

giving the estimate of the first source since the residual power level was lower than the 

threshold. The estimates are the same as those from the conventional method (which 
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Emitter 
State 

#1 OFF 
#2 ON 

#1 ON 
#2 OFF 

#ION 
#2 ON 

#ION 
#2 OFF 

#ION 
#2 ON 

#ION 
#2 OFF 

#1 ON 
#2 ON 

#1 ON 
#2 OFF 

#ION 
#2 ON 

#ION 
#2 OFF 

#ION 
#2 ON 

Table 9.3 Results when two sources working at differnetfrequencies (39.52 kHz, 40.00 kHz) 

Emitter CBF SP·MUSIC RT·MUSIC ESPRIT IMP ML WSF 
Separation 

1.7 1.7 1.7 1.7 1.7 1.7 1.7 
1.6 1.6 1.6 1.4 1.6 1.6 1.6 
1.6 1.6 1.6 lA 1.6 1.6 1.6 
1.6 1.6 1.6 1.5 1.6 1.6 1.6 

600 mm 6.2 6.2 6.2 5.7 6.2 6.2 6.2 
(6.1") 6.2 6.2 6.2 5.8 6.2 6.2 6.2 

1.5 6.0 1.5 6.0 1.5 6.1 1.3 5.7 1.5 6.0 1.5 6.0 1.5 6.0 
1.6 6.1 1.6 6.1 1.6 6.1 1.6 5.9 1.6 6.1 1.6 6.1 1.6 6.1 

550 mm 5.7 5.7 5.7 5.3 5.7 5.7 5.7 
(5.7") 5.8 5.8 5.8 5.5 5.8 5.8 5.8 

1.6 5.8 1.6 5.8 1.6 5.9 1.5 5.9 1.7 5.7 1.7 5.7 1.7 5.7 
1.5 5.8 1.5 5.7 1.6 5.8 1.5 5.7 1.7 5.6 1.8 5.6 1.7 5.6 

500 mm 5.3 5.3 5.3 5.0 5.3 5.3 5.3 
(5A,) 5.3 5A 5A 5.1 5.4 5.4 5.4 

1.6 5.5 1.6 5.5 1.6 5.5 1.5 5.3 1.6 5.5 1.6 5.5 1.6 5.5 
1.5 5A 1.6 5A 1.6 5A lA 4.3 1.6 5A 1.6 5.4 1.6 5A 

450 mm 5.0 5.0 5.0 4.7 5.0 5.0 5.0 
(5.0') 5.0 5.0 5.0 4.5 5.0 5.0 5.0 

1.6 5.0 1.6 5.0 1.6 5.0 1.5 4.7 1.6 5.0 1.6 5.0 1.6 5.0 
1.6 5.0 1.6 5.0 1.6 5.0 1.5 4.7 1.6 5.0 1.6 5.0 1.6 5.0 

400 mm 4.6 4.6 4.6 4.0 4.6 4.6 4.6 
(4.6') 4.6 4.6 4.6 4.1 4.6 4.6 4.6 

1.5 4.2 lA 4.3 1.4 4.1 1.2 4.3 1.5 4.3 1.5 4.3 1.5 4.3 
1.5 4.3 1.5 4.3 lA 4A 1.3 4A 1.5 4.3 1.5 4A 1.5 4A 

(to be continued) 



(continued) 

Emitter Emitter CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 
State Separation 

#10N 350 mm 4.3 4.3 4.3 3.9 4.3 4.3 4.3 
#2 OFF (4.2") 4.3 4.3 4.3 4.0 4.3 4.3 4.3 

#ION 1.4 4.0 1.4 4.0 1.4 4.0 0.8 3.8 1.4 4.0 1.4 4.0 1.4 4.0 
#2 ON 1.9 4.2 1.8 4.3 1.8 4.3 2.4 5.5 1.7 4.5 1.7 4.5 1.7 4.5 

#ION 300 mm 3.9 3.9 3.9 3.6 3.9 3.9 3.9 
#2 OFF (3.9") 3.9 3.9 3.9 3.6 3.9 3.9 3.9 

#ION 1.9 4.1 1.8 4.2 1.8 4.2 -4.3 2.7 1.9 4.1 1.9 4.1 1.9 4.1 
#2 ON 1.7 3.9 1.6 4.1 1.6 4.1 1.1 3.2 1.5 4.2 1.5 4.2 1.5 4.2 

#10N 250 mm 3.5 3.5 3.5 3.2 3.5 3.5 3.5 
#2 OFF (3.5") 3.6 3.6 3.6 3.3 3.6 3.6 3.6 

#1 ON 1.4 3.5 1.4 3.7 1.5 3.6 1.9 3.0 1.4 3.5 1.3 3.6 1.4 3.5 
#2 ON 1.4 3.5 1.4 3.7 1.4 3.6 1.8 4.0 1.4 3.6 1.4 3.6 1.4 3.6 

#1 ON 200 mm 3.1 3.1 3.1 2.9 3.1 3.1 3.1 
#2 OFF (3.1") 3.2 3.2 3.2 2.8 3.2 3.2 3.2 

#1 ON 1.3 3.4 1.3 3.5 1.3 3.4 1.8 4.7 1.3 3.4 1.3 3.4 1.3 3.4 
#2 ON 1.3 3.3 1.4 3.4 1.4 3.3 1.9 4.1 1.4 3.2 1.4 3.2 1.4 3.2 

#10N 150 mm 2.8 2.8 2.9 2.6 2.8 2.8 2.8 
#2 OFF (2.7") 2.9 2.9 2.9 2.7 2.9 2.9 2.9 

#10N 2.2 2.2 1.9 -4.8 2.5 1.8 3.2 1.8 3.2 1.8 3.2 
#2 ON 2.6 1.8 2.7 1.6 2.9 2.64.0 1.7 3.1 1.73.1 1.7 3.1 

#1 ON 100 mm 2.4 2.4 2.4 2.2 2.4 2.4 2.4 
#2 OFF (2.4") 2.4 2.4 2.5 2.4 2.4 2.5 2.5 

#ION 1.9 1.9 1.8 -1.3 1.8 1.9 1.0 2.1 0.92.1 
#2 ON 1.8 1.5 2.7 1.4 2.8 1.1 2.9 1.8 1.6 2.9 1.6 2.9 
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Chapter 9 

constitutes the first stage of the IMP algorithm). Probably changing the definition of the 

threshold or using a more flexible threshold would allow the processing to carry on till the 

second source was found. 

From table 9.3, the position estimate of source #2 at each separation, the fixed source, does 

not hold the estimate given by the switching off source #1 in the first row of the table. This 

is thought to be the result of switching on / off the sources manually. 

9.3.2 Experiments, Group 2 

For this group of experiments, the two sources worked at the same frequency, 40.00 kHz, 

while other parameters were the same as that in the previous group of experiments. For 

source #2 which was unmoved in the experiments, four measurements were taken to align 

its position at the beginning of the measurements. Afterwards, two measurements were taken 

when only source #1 was on to determine the source positions which were changed in the 

experiments. When both sources were on, four measurements were taken to provide more 

information for the following processing and for the observation of the algorithm abilities to 

resolve the two sources. 

The source separation was reduced from 600 mm to 100 mm with a decrement of 50 mm, i.e., 

11 separations were considered. The calculated angles of the source directions were the same 

as those in the previous group of experiments, as listed in table 9.2. The results obtained by 

using different algorithms are tabulated in table 9.4. 

The position of the fixed source, source #2, was consistently determined by all the methods. 

Like in the Experiment Group 1, the ESPRIT method gave estimates which were smaller 

than the average of estimates from all other methods. But the "bias" herein was smaller than 

in the previous case. 

For all the separations through the experiments, the positions of source #1 were well deter­

mined. Although the ESPRIT method tended to give smaller angular estimates, the differ­

ences were getting less noticeable and, at the separation of 150 mm and 1 ()() mm, the same 

estimates resulted as those from other methods. 
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When both sources were on, the results required more attention. For separations which were 

larger than 300 mm, all methods depicted good indication of source positions. Especially 

for the separations of 600 mm, 550 mm, and 500 mm, all methods showed excellent results 

with great consistency, except the ESPRIT estimates at 500 mm separation which show biases. 

For the separation of 450 mm, IMP, ML, and WSF still performed extremely well in the sense 

of giving consistent estimates. Other methods also gave good estimates but did not behave 

as consistently with the other methods as before. The conventional bearnforming method 

showed a tendency to give estimates which were in the true directions. The other spectral 

method, SP-MUSIC, did not show this trend by giving estimates which were much nearer 

those from the IMP, ML, and WSF. Comparatively, the estimates from RT-MUSIC seemed 

to be better than those for ESPRIT. 

The three optimal methods, again, gave very consistent estimates at separations of 400 mm 

and 350 mm. The CBF method, however, showed quite good results, similar to those from 

the optimal methods, while estimates from both MUSIC methods were biased. The results 

from ESPRIT were more" arbitrary". 

It can be seen that when the source separations are large, the performance of all algorithms 

is similar to that in the case when two sources worked at different frequencies. But as the 

separation decreases, the performance degrades. This performance degradation can be seen 

from the results when the source separations are 300 mm or smaller. 

In the row where the source separation was 300 mm and two sources were on, none of the 

four measurements gave two distinct peaks in the conventional beamforrning spectra while 

three of them found both estimates in the MUSIC spectra. Only one of the two estimates 

given by the ESPRIT algorithm seemed reasonable and seemed to be lying at a direction 

somewhere between the two source directions rather than near either of them. Two of the 

RT-MUSIC estimates among the four gave similar results as the SP-MUSIC and the other 

two were less convinced. All the roots were checked and it was found that the estimates at 

_0.6° possessed larger moduli than the ones at 2.8°. Although the largest moduli in this case 

were more clustered and less distinguishable from the rest, the two angular estimates with 

the largest moduli were picked out and listed in the table. 

Despite the performance degradation in the above-mentioned methods, both multidimen­

sional approaches, ML and WSF, provided very good angular estimates. The IMP method 

also performed well except in the last measurement where only one estimate was given (the 
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searching procedure terminated after finding the first source). 

The same measurements were then processed under the assumption that only one source was 

present. Conventional beamforming did not depend on this knowledge and the assumption 

would not affect its performance and the correspondent estimates were not repeated in the 

table. However, the SP-MUSIC was greatly affected and gave only one estimate in each 

measurement which was the same as the correspondent estimate from CBF. RT-MUSIC, on 

the other hand, gave similar results to the ESPRIT method except in the first measurement. 

The roots were again checked for the reason and it was the same as under the assumption of 

two sources present. An angular estimate existed at 2.80 but the corresponding modulus was 

smaller than the one at 4.10, which was listed in the table. 

The results from the IMP algorithm were somehow surprising. This algorithm failed to find 

any peak in three of these four measurements. The reason for this was thought probably to 

be that one of the two signals was taken as the noise component and the wrong classification 

raised the threshold which was dependent on the noise power estimate. The other 

measurement, however, gave two estimates although the number of sources was given as 1 

and the two estimates were the same as those in the above row. 

The multidimensional approaches, ML and WSF, gave only one estimate for each 

measurement and the estimate was similar to that from CBF. 

For all the cases when the source separations were less than 300 mm, the data were analysed 

under both assumptions when the number of sources was 2 or 1. The conventional beam­

forming, the SP-MUSIC method, and the RT-MUSIC method gave only one estimate in all 

these measurements. Only a single peak was found in each of the spectra obtained from the 

conventional beamforming method or from the SP-MUSIC technique, and, for the RT­

MUSIC technique, only one estimate could be found with a modulus which was larger than 

all the clustered moduli. 

The number of estimates obtained from ESPRIT, ML, and WSF depended on the given 

estimate of the number of sources. The estimates from ML and WSF seemed to be acceptable 

estimates of the true source directions while only one of the two given by ESPRIT was likely 

to be an estimate of the source direction. 

172 



Table 9.4 Results when two sources working at the same frequency (40~OO kIIz) 

Emitter Emitter CBF SP·MUSIC RT·MUSIC ESPRIT IMP ML WSF 
State Separation 

#1 OFF 1.6 1.6 1.7 1.5 1.6 1.6 1.6 
#2 ON 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

1.6 1.6 1.6 1.5 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 

#ION 600 mm 6.1 6.1 6.1 5.9 6.1 6.1 6.1 
#2 OFF (6.1") 6.1 6.1 6.1 5.8 6.1 6.1 6.1 

#ION 1.7 6.0 1.7 6.1 1.7 6.1 1.7 6.2 1.7 6.1 1.7 6.1 1.7 6.1 
#2 ON 1.6 5.9 1.5 6.0 1.5 6.0 1.4 6.0 1.5 6.0 1.5 6.0 1.5 6.0 

1.7 5.9 1.6 5.9 1.6 6.0 1.4 5.9 1.6 6.0 1.6 6.0 1.6 6.0 
1.6 5.9 1.6 6.0 1.6 6.0 1.6 5.9 1.6 6.0 1.5 6.0 1.5 6.0 

#ION 550 mm 5.8 5.8 5.8 5.6 5.8 5.8 5.8 
#2 OFF (5.7") 5.8 5.8 5.8 5.5 5.8 5.7 5.8 

#ION 1.8 5.8 1.7 5.9 1.7 5.9 1.8 6.0 1.7 5.9 1.7 5.9 1.7 5.9 
#2 ON 1.8 5.8 1.7 5.8 1.7 5.8 1.8 5.8 1.8 5.8 1.8 5.9 1.8 5.8 

1.8 5.8 1.7 5.8 1.7 5.8 1.6 5.7 1.7 5.8 1.7 5.8 1.7 5.8 
1.8 5.8 1.7 5.8 1.7 5.8 1.9 6.0 1.7 5.8 1.7 5.8 1.7 5.8 

#ION 500 mm 5.5 5.5 5.5 5.3 5.5 5.5 5.5 
#2 OFF (5.4") 5.3 5.3 5.3 5.2 5.3 5.3 5.3 

#ION 1.8 5.3 1.7 5.3 1.7 5.3 1.4 5.5 1.8 5.3 1.8 5.2 1.8 5.2 
#2 ON 1.7 5.3 1.7 5.2 1.6 5.3 1.3 5.3 1.7 5.2 1.8 5.3 1.8 5.2 

1.5 5.3 1.6 5.3 1.6 5.4 1.5 5.4 1.7 5.2 1.7 5.3 1.7 5.3 
1.8 5.3 1.7 5.2 1.7 5.4 1.8 4.9 1.8 5.3 1.8 5.3 1.8 5.3 

#1 ON 450 mm 5.0 5.0 5.0 4.8 5.0 5.0 5.0 
#2 OFF (5.0") 5.0 5.0 5.0 4.8 5.0 5.0 5.0 

#ION 1.9 4.8 1.6 4.9 1.5 4.8 1.3 4.6 1.7 4.9 1.7 4.9 1.7 4.9 
#2 ON 2.04.7 1.8 4.7 1.8 4.7 1.3 4.8 1.8 4.9 1.8 4.9 1.8 4.9 

1.9 4.7 1.7 4.8 1.7 4.8 1.6 4.6 1.7 4.9 1.7 4.9 1.7 4.9 
1.9 4.8 1.7 4.8 1.7 4.8 1.5 4.9 1.7 4.9 1.7 4.9 1.7 4.9 

(to be continued) 



(continued) 

Emitter Emitter CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 
State Separation 

#ION 400 mm 4.7 4.7 4.7 4.6 4.7 4.7 4.7 
#2 OFF (4.6j 4.6 4.6 4.6 4.5 4.6 4.6 4.6 

#ION 1.7 4.8 1.6 4.9 1.6 4.8 2.05.4 1.7 4.8 1.7 4.8 1.7 4.8 
#2 ON 1.7 4.8 1.5 4.9 1.4 4.8 1.8 5.0 1.7 4.8 1.7 4.8 1.7 4.9 

2.1 4.7 1.6 4.8 1.6 4.8 1.6 4.8 1.9 4.7 1.9 4.7 1.9 4.7 
2.1 4.7 1.8 4.7 1.7 4.7 1.7 4.4 2.04.7 2.04.7 2.04.7 

#1 ON 350 mm 4.3 4.3 4.3 4.2 4.3 4.3 4.3 
#2 OFF (4.2j 4.3 4.2 4.2 4.1 4.3 4.2 4.2 

#1 ON 1.9 4.5 1.7 4.6 1.6 4.6 1.9 4.6 2.0 4.4 2.0 4.4 2.04.4 
#2 ON 2.1 4.5 1.9 4.5 1.5 4.5 2.8 4.1 2.1 4.4 2.1 4.4 2.1 4.4 

1.9 4.5 1.6 4.6 1.5 4.6 2.0 5.2 2.04.4 2.0 4.4 2.0 4.4 
1.8 4.5 1.5 4.7 1.4 4.6 1.8 4.9 2.04.4 2.1 4.4 2.1 4.4 

#ION 300 mm 3.9 3.9 3.9 3.8 3.9 3.9 3.9 
#2 OFF (3.9i 3.9 3.9 3.9 3.8 3.9 3.9 3.9 

#ION 3.1 1.3 3.0 -0.6 1.2 2.8 -2.6 1.4 3.4 1.5 3.5 1.6 3.5 
#2 ON 3.0 1.5 2.8 1.3 3.8 2.82.0 1.6 3.6 1.7 3.6 1.6 3.6 

2.9 1.4 2.8 1.2 3.8 2.76.9 1.6 3.5 1.6 3.6 1.5 3.5 
J=2 2.7 2.8 -0.6 1.2 2.7 -6.7 2.7 1.9 3.8 2.03.9 

#ION 3.1 4.1 2.9 0 3.2 3.2 
#2 ON 3.0 2.8 2.8 0 2.9 3.0 

2.9 2.8 2.8 1.6 3.5 2.9 2.9 
J=I 2.7 2.7 2.7 0 2.7 2.7 

#lON 250 mm 3.4 3.4 3.4 3.2 3.4 3.4 3.4 
#2 OFF (3.5j 3.5 3.5 3.5 3.4 3.5 3.5 3.5 

#ION 2.9 2.9 2.9 2.6 -6.0 1.6 3.3 1.5 3.3 1.5 3.3 
#2 ON 2.8 2.9 2.9 2.6 6.5 1.6 3.3 1.6 3.3 1.6 3.3 

2.8 2.8 2.8 2.6 -6.8 1.5 3.2 1.5 3.2 1.6 3.3 
J=2 2.8 2.7 2.8 2.6 -7.6 1.5 3.2 1.6 3.3 1.6 3.3 

#1 ON 2.9 2.9 2.7 1.6 3.3 2.9 2.9 
#2 ON 2.8 2.9 2.7 1.6 3.3 2.8 2.8 

2.8 2.9 2.7 1.5 3.2 2.8 2.8 
J=I 2.8 2.8 2.7 2.8 2.8 2.8 

(to be continued) 



(continued) 

Emitter Emitter CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 
State Separation 

#ION 200 mm 3.1 3.1 3.1 3.0 3.1 3.1 3.1 
#2 OFF (3.1") 3.1 3.1 3.1 2.9 3.1 3.1 3.1 

#1 ON 2.6 2.6 2.7 2.6 -8.4 1.6 3.1 1.7 3.2 1.7 3.2 
#2 ON 2.6 2.6 2.6 2.5 -7.3 1.6 3.1 1.7 3.2 1.7 3.2 

2.6 2.S 2.5 2.6 -7.S 2.6 1.7 3.2 1.7 3.2 
J=2 2.5 2.4 2.4 2.S -8.5 2.S 1.6 3.1 1.6 3.1 

#ION 2.6 2.6 2.6 2.6 2.7 2.6 
#2 ON 2.6 2.6 2.S 1.6 3.1 2.6 2.6 

2.6 2.6 2.6 2.6 2.6 2.6 
J=1 2.5 2.S 2.S 2.S 2.S 2.S 

#10N ISO mm 2.8 2.8 2.8 2.8 2.8 2.8 2.8 
#2 OFF (2.7") 2.7 2.7 2.7 2.7 2.7 2.7 2.7 

#10N 2.2 2.1 2.0 2.2 1.0 2.03.S 1.9 3.3 1.8 3.2 
#2 ON 2.3 2.3 2.3 2.3 -S.8 2.3 2.0 3.5 2.0 3.5 

2.3 2.3 2.3 2.3 -8.0 1.0 2.5 1.6 3.0 1.4 2.8 
J=2 2.3 2.3 2.3 2.3 -2.6 2.3 1.8 3.2 I.S 2.9 

#ION 2.2 2.2 2.3 2.2 2.2 2.2 
#2 ON 2.3 2.3 2.3 2.3 2.3 2.3 

. 2.3 2.3 2.3 2.3 2.2 2.2 
J=1 2.3 2.3 2.3 2.3 2.2 2.3 

#1 ON 100 mm 2.4 2.4 2.4 2.4 2.4 2.4 2.4 
#2 OFF (2.4") 2.4 2.4 2.4 2.4 2.4 2.S 2.S 

#1 ON 2.0 2.1 2.1 2.09.8 0.82.2 0.8 2.2 0.82.2 
#2 ON 1.9 1.9 1.9 1.9 -9.3 1.9 3.6 1.8 3.5 0.8 2.1 

1.9 1.9 1.9 1.9 -9.4 1.9 1.8 3.5 0.92.2 
J=2 2.0 1.9 1.8 2.08.8 1.9 3.6 1.9 3.5 1.9 3.5 

#ION 2.0 2.0 2.0 2.0 2.0 2.0 
#2 ON 1.9 1.9 1.9 1.9 2.0 2.0 

2.0 2.0 1.9 1.9 2.0 2.0 
J=1 2.0 2.0 2.0 2.0 2.0 2.0 
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Chapter 9 

The number of estimates obtained from the IMP algorithm varied from measurement to 

measurement, which was believed to be related with the threshold pre-defined in the pro­

cessing program. And also this indicated that the IMP algorithm was probably unrelated 

with the number of sources assumed, provided that a more flexible threshold was defined. 

But this was not the case in the results shown here. 

The conventional spectra and the MUSIC spectra of the measurements presented in this 

section are plotted in figure 9.11 and figure 9.12. The case when a single source was on is 

not included because good spectra are expected as in the previous section. The first 6 plots 

in each figure are for the 6 biggest angular separations, from 600 mm to 350 mm. The other 

8 plots are for cases when the angular separations are less that 350 mm and the number of 

sources are alternatively assumed as 2 and I (i.e, plots with odd numbers are for the cases 

when the number of sources is given as 2, and those with even numbers are for those when 

the number of sources is 1). The CBF spectra did not depend on the number of sources 

assumed, but the plots were repeated to keep the figure complete. 

The two sources working at the same frequency were supposed to be coherent, and the SP­

MUSIC, the RT-MUSIC technique, and the ESPRIT methods were expected to be unable to 

distinguish the two sources even though the source separation was large enough. However, 

these three methods still showed good results in the experiments presented here. Nevertheless, 

compared with those results listed in the table 9.3, the performance degradation could be 

easily seen because of the larger correlation between the two sources. 

9.3.3 Experiments, Group 3 

This group of experiments is an extension of those in the previous group. The number of 

source separations was reduced from I I in last section to 4, which were 400 mm, 300 mm, 

200 mm, and 100 mm, while more measurements were taken to inspect the algorithm per­

formance in the correlated source cases. For each of 4 separations, 12 measurements were 

taken. Estimates of the angular locations for all these 12 observations are listed in table 9.5.1 

through table 9.5.10, while the first 8 of the spectra obtained from the conventional beam­

forming method and the SP-MUSIC are plotted in figure 9.13.1 through figure 9.13.10. 
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Table 9.5.1 Position of Source #2 (the Fixed Source) 

CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 

1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.5 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.5 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.5 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 

Figure 9.13.1 Spectra Obtainedfrom CBF (on left) and MUS1C (on right) 
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As before, the position of the fixed source was first measured. The results are listed and 

drawn in table 9.5.1 and figure 9.13.1. The estimates for the source directions were very 

consistent, as were the estimated spectra. As can be seen from the two plots in figure 9.13.1, 

the MUSIC spectra were much smoother than the CBP spectra. 

Table 9.5.2 represents the estimates of the positions of source #1 when the source separation 

was given as 400 mm, and the corresponding CBP and MUSIC spectra are shown in figure 

9.13.2. Good estimates of the position were revealed both from the table and the plots. The 

situation when both sources were switched at this separation is described in table 9.5.3 and 

figure 9.13.3. ML and WSP performed well again, and so did IMP which gave very similar 

estimates except for measurement no.7 where only one source was found by the IMP 

algorithm. Both CBP and SP-MUSIC behaved very well which can be seen both from the 

table and the figures. But RT-MUSIC gave some confusion in selecting the estimates. 

Measurement no.3 resulted in only one estimate with a reasonable modulus, and 4 of other 

11 measurements showed two acceptable angular estimates with moduli not being the two 

biggest ones (denoted by a superscript * in table 9.5.3). ESPRIT did give good estimates in 

most but not every measurement. 
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Table 95.2 Position of SOUTce 1 

CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 

4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.3 4.6 4.6 4.6 
4.6 4.6 4.6 4.3 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.5 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 
4.6 4.6 4.6 4.5 4.6 4.6 4.6 
4.6 4.6 4.6 4.4 4.6 4.6 4.6 

Figure 9.13.2 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 95.3 Positions of Both SOUTces with Separation of 400 mm 

CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 

1.4 4.5 1.4 4.6 1.4 4.7 2.54.2 1.5 4.4 1.5 4.4 1.5 4.3 
1.4 4.5 1.5 4.5 1.5 4.6 -6.1 2.9 1.5 4.4 1.5 4.4 1.5 4.3 
1.5 4.5 1.5 4.5 1.4 2.4 3.6 1.5 4.3 1.5 4.3 1.5 4.2 
1.5 4.5 1.4 4.7 1.4 5.0 2.4 4.2 1.5 4.3 1.5 4.3 1.5 4.3 
1.4 4.5 1.3 4.6 1.3 4.5- 2.5 5.0 1.4 4.3 1.4 4.3 1.4 4.3 
1.4 4.6 1.4 4.7 1.4 4.8 -6.2 2.8 1.4 4.4 1.5 4.4 1.4 4.4 
1.4 4.6 1.4 4.8 1.4 4.9 1.8 4.4 1.4 1.5 4.5 1.5 4.4 
1.3 4.6 1.3 4.9 1.3 5.0- 1.5 4.6 1.4 4.3 1.4 4.3 1.4 4.3 
1.4 4.6 1.4 4.8 1.4 4.8- 1.8 4.5 1.5 4.4 1.5 4.4 1.5 4.4 
1.4 4.5 1.4 4.7 1.4 4.9- 1.4 4.5 1.5 4.3 1.5 4.2 1.5 4.2 
1.4 4.4 1.4 4.5 1.4 4.5 -\.O 3.0 1.5 4.3 1.4 4.3 1.4 4.3 
1.4 4.5 1.4 4.8 1.4 5.0 2.05.8 1.5 4.2 1.5 4.2 1.5 4.2 

Figure 9.13.3 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 9.5.4 Position of Source I 

CBF SP-MUSIC RT·MUSIC ESPRIT IMP ML WSF 

4.0 4.0 4.0 3.9 4.0 4.0 4.0 
3.8 3.8 3.8 3.7 3.8 3.9 3.8 
4.0 4.0 4.0 3.7 4.0 4.0 4.0 
3.8 3.8 3.8 3.7 3.8 3.8 3.8 
3.9 3.9 3.9 3.8 3.9 3.9 3.9 
3.8 3.8 3.8 3.7 3.8 3.8 3.8 
3.9 3.9 3.9 3.7 3.9 3.9 3.9 
3.9 3.9 3.9 3.7 3.9 3.9 3.9 
3.8 3.8 3.8 3.7 3.8 3.9 3.8 
3.8 3.8 3.8 3.5 3.8 3.8 3.8 
3.9 3.9 3.9 3.8 3.9 3.9 3.9 
3.8 3.8 3.8 3.7 3.8 3.8 3.8 

Figure 9.13.4 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 9.5.5 Positions of Both Sources with Separation of 300 mm 

CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 

1.5 3.8 1.5 4.0 1.5 4.0 2.1 4.7 1.3 3.9 1.3 3.9 1.3 3.9 
1.5 3.8 1.4 4.0 lA 4.0 1.0 3.9 1.3 3.9 1.3 3.9 1.3 3.9 
1.4 3.7 1.4 3.8 1.4 3.8 1.7 4.1 1.3 3.8 1.3 3.8 1.3 3.8 
1.5 3.8 1.6 3.9 1.6 3.8 2.02.6 1.4 3.9 1.4 3.9 1.4 3.9 
1.5 3.7 1.5 3.7 1.6 3.7 1.2 3.2 1.4 3.8 1.4 3.8 1.4 3.8 
1.5 3.8 1.4 3.9 1.4 3.9 1.3 3.3 1.4 3.9 1.4 3.9 1.3 3.9 
1.5 3.8 1.4 3.8 1.4 3.8 0.62.8 1.3 3.8 1.3 3.8 1.3 3.8 
1.5 3.7 1.4 3.8 1.4 3.8 1.7 3.7 1.4 3.8 1.4 3.8 1.4 3.8 
1.5 3.8 1.4 3.9 1.4 3.9 0.8 3.4 1.4 3.8 1.4 3.8 1.4 3.8 
1.4 3.7 1.5 3.8 1.5 3.8 2.24.0 1.4 3.8 lA 3.8 1.4 3.8 
1.4 3.7 1.4 3.9 1.5 3.8 1.6 3.8 1.3 3.8 1.3 3.8 1.3 3.8 
1.4 3.7 1.4 3.9 1.4 3.9 1.3 3.8 1.3 3.8 1.3 3.8 1.3 3.8 

Figure 9.135 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 

,,-------"'~-------, 

• 20 .. :---':.,--"",;--';, ---;,---';---i" 
Field o/View (Degree) 

183 

,,-------,,or--------, 

~ -2 

~ ,10, i -4 lA. J /\ ~ _ 
~ • I I ~I~~~~,~ 
] -6 ~ N·;~,·~JI! \: I! \~,.,\.: ......... -.... -.... =-.-.... -. 1 ~ .... .:::::: .. :; I \ "', \ -. 
~ -I 'r--_r,./'\ .. /-\.} \J .. _ .... ______ _ 

_ 10 -6:---';., ---!,---c,~-!-, --~,,---!,, . 
Field a/View (Degree) 



No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Chapter 9 

Table 9.5.6 Position of Source 1 

CBF SP·MUSIC RT·MUSIC ESPRIT IMP ML WSF 

3.2 3.2 3.2 3.0 3.2 3.2 3.2 
3.1 3.1 3.1 2.9 3.1 3.1 3.1 
3.1 3.1 3.1 3.0 3.1 3.1 3.1 
3.1 3.1 3.1 3.0 3.1 3.1 3.1 
3.1 3.1 3.2 3.0 3.1 3.2 3.2 
3.2 3.2 3.2 3.1 3.2 3.2 3.2 
3.1 3.1 3.1 3.0 3.1 3.1 3.1 
3.1 3.1 3.1 3.0 3.1 3.2 3.2 
3.1 3.1 3.1 3.0 3.1 3.1 3.1 
3.1 3.1 3.1 2.9 3.1 3.1 3.1 
3.1 3.1 3.1 3.0 3.1 3.1 3.1 
3.1 3.1 3.1 2.9 3.1 3.1 3.1 

Figure 9.13.6 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 9.5.7 Positions of Both Sources with Separation of200 mm 

CBF SP·MUSIC RT·MUSIC ESPRIT IMP ML WSF 

1.4 3.2 1.4 3.3 1.4 3.2 2.4 2.8 1.4 3.2 1.4 3.2 1.5 3.2 
1.4 3.3 1.3 3.4 1.3 3.3 2.3 4.2 1.4 3.3 1.4 3.3 1.4 3.3 
1.4 3.3 1.4 3.3 1.4 3.4 1.7 3.4 1.4 3.3 1.4 3.3 1.4· 3.3 
1.3 3.1 1.3 3.1 1.3 3.1 0.8 2.4 1.4 3.0 1.4 3.0 1.4 3.0 
1.3 3.2 1.2 3.1 1.2 3.1 0.4 3.1 1.4 3.1 1.4 3.1 1.4 3.1 
1.4 3.2 1.4 3.2 1.4 3.2 2.4 4.4 3.2 1.4 3.2 1.4 3.2 
1.4 3.1 1.4 3.2 1.3 3.2 2.0 3.5 1.3 3.1 1.3 3.1 1.4 3.1 
1.4 3.1 1.4 3.1 1.4 3.1 2.3 2.4 1.5 3.1 1.4 3.1 1.4 3.1 
1.4 3.2 1.4 3.2 1.4 3.2 0.6 2.5 1.5 3.2 1.5 3.2 1.5 3.2 
1.4 3.2 1.4 3.2 1.4 3.3 2.1 3.9 1.4 3.2 1.4 3.2 1.4 3.2 
1.4 3.2 1.4 3.2 1.4 3.2 2.4 5.3 1.4 3.2 1.4 3.2 1.4 3.2 
1.4 3.2 1.4 3.2 1.4 3.2 1.4 2.4 1.4 3.2 1.4 3.2 1.4 3.2 

Figure 9.13.7 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 9.5.8 Position of Source I 

CBF SP·MUSIC RT·MUSIC ESPRIT IMP ML WSF 

2.4 2.4 2.4 2.4 2.4 2.4 3.4 
2.4 2.4 2.4 2.3 2.4 2.4 2.4 
2.4 2.4 2.4 2.3 2.4 2.4 2.4 
2.4 2.4 2.4 2.4 2.4 2.4 2.4 
2.4 2.4 2.4 2.3 2.4 2.4 2.4 
2.5 2.5 2.5 2.4 2.5 2.5 2.5 
2.5 2.5 2.5 2.4 2.5 2.5 2.5 
2.4 2.4 2.4 2.3 2.4 2.4 2.4 
2.4 2.4 2.4 2.4 2.4 2.4 2.5 
2.4 2.4 2.4 2.4 2.4 2.4 2.4 
2.4 2.4 2.4 2.3 2.4 2.4 2.4 
2.4 2.4 2.4 2.3 2.4 2.4 2.4 

Figure 9.13.8 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 9.5.9 Positions of Both Sources with Separation of 100 mm 

CBF SP·MUSIC RT·MUSIC ESPRIT IMP ML WSF 

2.1 1.8 1.8 2.9 2.1 5.0 2.1 1.8 3.2 1.8 3.2 
2.1 2.0 2.0 2.2 ·10.3 1.8 3.1 1.8 3.2 1.8 3.1 
2.1 2.0 1.9 2.1 8.3 2.1 1.8 3.2 1.8 3.2 
2.2 2.1 2.0 2.3 10.5 2.2 1.9 3.3 1.9 3.3 
2.2 2.1 2.1 2.3 10.3 2.2 1.9 3.2 1.9 3.2 
2.2 2.1 2.1 2.3 ·10.5 2.2 1.9 3.4 1.9 3.4 
2.1 2.1 2.0 2.3 8.0 2.1 1.8 3.2 1.8 3.2 
2.0 1.9 1.9 2.1 10.2 1.8 3.2 1.8 3.2 1.8 3.2 
2.1 2.0 2.0 2.20.6 2.1 1.8 3.1 1.8 3.2 
2.1 1.9 1.9 2.2 5.4 1.8 3.2 1.8 3.1 1.8 3.2 
2.0 1.9 1.9 2.1 ·10.0 2.0 1.8 3.2 1.8 3.2 
2.1 1.9 1.9 2.27.3 2.1 1.8 3.2 1.8 3.2 

Figure 9.13.9 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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Table 95.10 Positions of Both Sources with Separation of 100 mm when the Number of Source was 
Assumed as 1 

No. SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2.1 2.1 2.2 2.1 2.1 2.1 
2.1 2.1 2.2 2.1 2.1 2.1 
2.1 2.1 2.2 2.1 2.1 2.1 
2.2 2.2 2.3 2.2 2.1 2.2 
2.2 2.2 2.3 2.2 2.2 2.2 
2.2 2.2 2.3 2.2 2.2 2.2 
2.1 2.1 2.2 2.1 2.1 2.1 
2.1 2.0 2.2 2.0 2.1 2.1 
2.1 2.1 2.2 2.1 2.1 2.1 
2.1 2.1 2.2 2.1 2.1 2.1 
2.0 2.0 2.2 2.0 2.0 2.0 
2.1 2.1 2.2 2.1 2.1 2.1 

Figure 9.13.10 Spectra Obtainedfrom CBF (on left) and MUSIC (on right) 
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For the separations of300 mm and 200 mm, performances from all meihods under examination 

were good, which can be seen from both the tables 9.5.4 to 9.5.7 and ihe figures 9.13.4 to 

9.13.7. This was, however, somehow unexpected from experience in ihe last section. 

As the separation reduced to 100 mm, both conventional spectra and ihe MUSIC spectra 

depicted a single peak in each of the plots, as shown in figure 9.13.9. RT-MUSIC managed 

to give two estimates only in one measurement which could be recognized as possible source 

directions. ESPRIT depicted two estimates but only one of ihem was acceptable, lying 

between the two source directions. The IMP algorithm showed three chances of giving two 

estimates, which were very similar as ihose given by ML and WSF in the same row. ML and 

WSF showed two stable estimates in all the 12 measurements. 

The last set of measurements was tested under the assumption that only one source was 

present. The results are presented in table 9.5.10 and figure 9.13.10. All methods show very 

consistent performance. The CBF spectra plotted in figure 9.13.10 were the same as those 

in figure 9.13.9, but ihe MUSIC spectra given in figure 9.13.10 were smoother and the peak 

positions were more concentrated. 
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Measurement Groups 2 and 3 were both taken as the responses of the array to the sources 

which worked as the same frequency. However, only slight difference was shown in the 

analysed results. Those in the Group 2 were more like the expected results obtained in the 

situations when the same frequency was used in the two sources; while those in Group 3 

were approaching the performance in the situation when the two sources worked at two 

different frequencies, as discussed in section 9.3.1. Correlation between the two sources 

needs testing to provide insight into the explanation of the results presented here, which 

however, is not included in this thesis. 

9.3.4 Experiments, Group 4 

The experimental results to be presented in this subsection are the results obtained from the 

target reflections received at the array. Because it was very difficult to put the targets at 

wanted positionsjfewertarget separations were considered, compared with the measurements 

in the passive working mode of the arraY.l. For " . the same reason, the position of the 

moving target, target #1, was not estimated by removing the other target. Only the cases 

with both targets present were tested. But the position of the fixed target, target #2, was 

estimated by taking measurements before adding the second target. 

5 target separations were assumed which were 340 mm, 270 mm, 200 mm, 150 mm, and 100 

mm. For each separation, 12 measurements were taken. The corresponding results by 

applying different algorithm are shown in table 9.6, and the spectra from the conventional 

bearnformer and from the spectral MUSIC method are plotted in figure 9.14 and figure 9.15. 

Target #2 was positioned by the estimates given in the first block in table 9.6. All seven 

methods used in the analysis gave very good estimates which were consistent from method 

to method and also from measurement to measurement. Only 2 measurements among the 

12 failed the IMP algorithm No peak was found in the spectrum at the first stage of the 

algorithm. Actually the first stage of the IMP algorithm was the conventional beam-scan, 

which found peaks in all the 12 measurements as shown in table 9.6 and in figure 9.14. The 

failure of the IMP algorithm was thought to be caused by the threshold defined in the pro­

cessing programs, which was related with the number of sensors in the array, number of 

snapshots, and noise variance estimate. The peak level found in the first stage of IMP was 

compared with the threshold, and only if this peak was higher would the peak be accepted 

as an estimate, otherwise the no peak was assumed to be found. 
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This problem with the IMP algorithm was observed in the case when both targets were on 

and the target separation was 340 mm. Whilst all other methods gave very good estimates 

of both target positions, the IMP algorithm failed several times by giving only one estimate 

or even none at all. It seemed an adjustment in defining the threshold was necessary to 

guarantee the performance of the IMP method to be at least as good as the conventional 

bearnforming method, which was the basis of the high resolution IMP algorithm. 

As the separation decreased to 270 mm, the situation in the results was similar to the previous 

separation. CBF, SP-MUSIC, RT-MUSIC, and the two multidimensional approaches, ML 

and WSF showed very consistent estimates, while the ESPRIT method gave estimates with 

bigger arbitrary. The performance showed by the IMP algorithm seemed better compared 

to the case of 340 mm separation. Half of the measurements were found to give similar results 

with ML and WSF, while the other half showed only one estimate in each measurement. 

When target #1 was moved nearer to target #2 with a separation of 200 mm, the conventional 

method failed to resolve the two targets. But all other methods showed the ability to separate 

the two targets. Estimates given by ESPRIT were less convincing for several measurements 

while those from the other five methods were excellent. 

Referred to figure 9.15.4 where the MUSIC spectra were shown, the peaks on the left were 

not of great enough height above the nulls between the two peaks. Comparing the estimates 

from CBF and those from ML or WSF, it was found that the estimates given by the con­

ventional bearnforrning method were almost equal to one of the estimates rather than falling 

in some direction between the two estimates. It was suspected that one of the targets reflected 

weak signals which made the conventional beamforrningmethod, the target strength-sensitive 

method, "ignore" the existence of such a target. 

Afb';"en smaller separation of 150 mm, the conventional bearnforrning method surprisingly ,. 
showed double humps which were of similar heights, as showed in figure 9.14.5. The MUSIC 

spectra were similar but having a smoother background. IMP, ML, and WSF again depicted 

very similar results except one measurement where only one estimate was shown by IMP, 

which was the corresponding CBF estimate with the global maximum value. Estimates from 

ESPRIT, however, changed a lot between measurements. 

At the smallest separation in this group of experiments, 100 mm, ML and WSF still managed 

to give two reasonable estimates in all measurements with good consistency. Most of the 
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Target 
State 

#2 ON 
#1 OFF 

#ION 
#2 ON 

#1 ON 
#2 ON 

Emitter 
Separation 

340 mm 

270 mm 

Table 9.6. Results when two targets were in use 

CBF SP-MUSIC RT-MUSIC ESPRIT IMP 

0.5 0.5 0.4 0.5 0.5 
0.4 0.4 0.4 0.4 0.4 
0.5 0.5 0.5 0.4 0.5 
0.6 0.6 0.6 0.5 0.6 
0.6 0.6 0.6 0.7 0.6 
0.6 0.6 0.6 0.6 0.6 
0.6 0.6 0.6 0.5 0.6 
0.6 0.6 0.6 0.6 0 
0.6 0.7 0.9 0.8 0 
0.5 0.5 0.5 0.4 0.5 
0.4 0.4 0.4 0.5 0.4 
0.7 0.7 0.7 0.7 0.7 

-3.0 0.0 -3.1 0.1 -3.1 0.1 -3.2 0.5 0 
-3.0 0.3 -3.1 0.4 -3.1 0.3 -3.2 1.0 -3.0 0.3 
-3.1 0.3 -3.1 0.4 -3.1 0.4 -3.2 0.3 -3.1 0.3 
-2.9 0.0 -2.9 0.3 -2.9 0.3 -3.1 0.5 -2.9 
-3.0 0.3 -3.1 0.4 -3.2 0.4 -3.2 0.8 -3.0 0.3 
-3.1 0.2 -3.2 0.3 -3.1 0.3 -3.3 0.5 -3.1 0.2 
-3.0 0.3 -3.1 0.4 -3.1 0.4 -3.2 0.5 -3.0 
-3.0 -0.2 -3.1 -0.2 -3.0 -0.3 -2.9 0.7 -3.0 
-2.9 0.0 -3.0 0.6 -3.0 0.7 -3.2 0.8 -2.9 
-2.7 -0.1 -2.9 0.3 -2.9 -0.2 -3.0 0.7 -2.9 0.2 
-3.1 0.0 -3.3 0.0 -3.4 0.0 -3.2 0.3 0 
-3.2 0.3 -3.2 0.3 -3.2 0.3 -3.1 0.5 0 
-2.3 0.3 -2.3 0.7 -2.3 0.7 -2.2 0.8 -2.3 
-2.2 0.0 -2.3 0.3 -2.3 0.1 -2.1 1.0 -2.2 
-2.3 0.1 -2.4 0.2 -2.4 0.2 -2.7 0.2 -2.5 0.2 
-2.4 0.0 -2.5 0.2 -2.5 0.2 -2.7 0.4 -2.6 0.2 
-2.2 0.2 -2.2 0.3 -2.2 0.1 -1.9 1.3 -2.2 
-2.2 0.0 -2.3 0.1 -2.3 0.0 -2.0 0.4 -2.2 
-2.2 0.1 -2.3 0.2 -2.3 0.1 -2.00.8 -2.2 
-2.2 0.0 -2.3 0.1 -2.3 0.0 -2.20.9 -2.2 
-2.3 0.0 -2.4 0.1 -2.4 0.1 -2.4 0.6 -2.5 0.1 
-2.4 0.0 -2.4 0.2 -2.4 0.1 -2.3 1.1 -2.5 0.1 
-2.4 -0.1 -2.4 0.3 -2.4 0.0 -2.3 0.8 -2.5 0.2 
-2.3 0.1 -2.3 0.3 -2.3 0.1 -2.3 1.1 -2.4 0.3 

ML WSF 

0.5 0.5 
0.4 0.4 
0.5 0.5 
0.6 0.6 
0.6 0.6 
0.6 0.6 
0.6 0.6 
0.6 0.6 
0.6 0.7 
0.5 0.5 
0.4 0.4 
0.7 0.7 

-3.0 0.1 -3.0 0.1 
-3.0 0.3 -3.0 0.3 
-3.1 0.3 -3.1 0.3 
-2.9 0.2 -2.9 0.2 
-3.0 0.3 -3.0 0.3 
-3.0 0.2 -3.1 0.2 
-3.0 0.3 -3.0 0.3 
-3.1 0.0 -3.1 0.0 
-2.9 0.2 -2.9 0.1 
-2.8 0.2 -2.8 0.2 
-3.1 0.0 -3.1 0.0 
-3.2 0.3 -3.1 0.3 

-2.4 0.6 -2.4 0.6 
-2.4 0.2 -2.4 0.2 
-2.5 0.2 -2.5 0.2 
-2.6 0.2 -2.6 0.2 
-2.3 0.4 -2.3 0.4 
-2.4 0.3 -2.4 0.3 
-2.4 0.2 -2.4 0.2 
-2.3 0.1 -2.4 0.1 
-2.5 0.1 -2.5 0.1 
-2.5 0.1 -2.5 0.1 
-2.5 0.1 -2.5 0.1 
-2.4 0.3 -2.4 0.3 

<0 

(to be continued) 
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(continued) 

Target 
State 

#1 ON 
#2 ON 

#10N 
#2 ON 

#10N 
#2 ON 

Emitter 
Separation 

200 mm 

150 mm 

100 mm 

CBF 

-0.3 
-0.5 
-0.3 
-0.3 
-0.2 
-0.4 
-0.2 
-0.2 
-0.3 
-0.2 
-0.1 
-0.2 

-1.4 0.1 
-1.5 0.2 
-1.3 0.2 
-1.5 0.1 
-1.4 0.2 
-1.3 0.3 
-1.4 0.2 
-1.5 0.2 
-1.3 0.2 
-1.4 0.3 
-1.4 0.2 
-1.2 0.3 

-0.2 
-0.3 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.3 
-0.2 
-0.1 
-0.1 
-0.2 

SP-MUSIC RT-MUSIC 

-1.7 -0.2 -1.9 -0.2 
-2.4 -0.5 -2.5 -0.4 
-2.2 -0.3 -2.3 -0.3 
-2.2 -0.3 -2.2 -0.3 
-2.2 -0.1 -2.1 -0.1 
-2.1 -0.3 -2.2 -0.3 
-2.2 -0.2 -2.2 -0.2 
-2.1 -0.2 -2.1 -0.2 
-2.2 -0.2 -2.2 -0.2 
-2.0 -0.1 -2.1 -0.1 
-1.8 0.1 -2.0 0.1 
-2.0 0.1 -2.0 -0.1 

-1.5 0.2 -1.5 0.1 
-1.5 0.2 -1.5 0.2 
-1.5 0.2 -1.5 0.1 
-1.4 0.2 -1.5 0.1 
- 1.4 0.2 -1.5 0.2 
-1.4 0.3 -1.5 0.3 
-1.4 0.3 -1.5 0.2 
-1.5 0.2 -1.6 0.1 
-1.4 0.3 -1.5 0.3 
-1.5 0.3 -1.5 0.3 
-1.4 0.3 -1.5 0.2 
-1.6 0.3 -1.6 0.2 

-0.3 1.2 -0.4 1.3 
-0.3 -0.4 
-0.2 -0.3 
-0.4 -0.4 1.1 
-0.2 -0.2 1.3 
-0.3 -0.3 

-0.5 1.1 -0.5 1.1 
-0.4 -0.4 
-0.2 -0.2 
-0.2 -0.4 
-0.3 -0.3 
-0.4 -0.4 

ESPRIT IMP ML WSF 

-1.8 0.3 -1.8 -0.1 -1.9 -0.1 -1.9 -0.1 
-0.7 0.1 -2.2 -0.4 -2.1 -0.3 -2.1 -0.3 
0.90.7 -2.0 -0.2 -2.0 -0.2 -2.0 -0.2 
-2.0 0.0 -2.2 -0.3 -2.1 -0.2 -2.1 -0.2 
0.0 -2.1 -2.0 -0.1 -2.0 -0.1 -2.0 -0.1 
-0.8 1.1 -2.2 -0.3 -2.1 -0.2 -2.1 -0.2 
-2.5 0.0 -2.1 -0.2 -2.1 -0.2 -2.1 -0.2 

-1.1 -0.2 -2.1 -0.2 -2.0 -0.1 -2.0 -0.1 
-2.2 -0.1 -2.1 -0.2 -2.2 -0.2 -2.2 -0.2 
-1.9 0.1 -2.0 -0.1 -2.0 -0.1 -2.0 -0.1 
-1.9 0.3 -1.8 0.1 -1.7 0.2 -1.7 0.2 
-2.1 0.1 -2.0 -0.1 -2.0 -0.1 -2.0 -0.1 

-0.8 1.6 -1.5 0.1 -1.5 0.1 -1.4 0.2 
-0.8 3.2 -1.5 0.3 -1.5 0.3 -1.5 0.3 
-1.7 0.8 -1.3 0.1 -1.3 0.1 -1.3 0.2 
-1.0 1.4 -1.5 0.1 -1.5 0.1 -1.5 0.1 
-1.0 0.9 -1.4 0.2 -1.4 0.2 -1.4 0.2 
-0.2 2.9 -1.3 0.3 -1.3 0.3 -1.3 0.3 
-0.6 0.2 -1.3 0.2 -1.3 0.2 -1.2 0.2 
-0.5 3.9 -1.4 0.1 -1.4 0.1 -1.3 0.1 
-0.5 1.9 0.2 -1.4 0.3 -1.3 0.3 
-0.5 3.4 -1.3 0.3 -1.3 0.3 -1.3 0.3 
-1.2 0.6 -1.3 0.2 -1.3 0.2 -1.3 0.2 
-2.5 0.3 -1.3 0.3 -1.2 0.3 -1.1 0.3 

-0.3 1.4 -0.2 -0.4 1.2 -0.4 1.3 
-0.2 3.0 -0.3 -0.5 1.0 -0.5 1.0 
0.08.2 -0.4 1.1 -0.4 1.1 -0.4 1.1 
0.02.7 -0.3 1.4 -0.4 1.2 -0.4 1.2 
0.06.0 -0.3 1.2 -0.3 1.2 -0.3 1.2 
0.09.7 -0.4 1.2 -0.4 1.2 -0.4 1.2 
-0.5 1.7 -0.5 1.2 -0.5 1.2 -0.5 1.2 
-0.3 4.7 -0.3 -0.5 1.1 -0.5 1.1 
-0.1 9.8 -0.4 1.1 -0.4 1.1 -0.4 1.1 
0.08.9 -0.4 1.1 -0.4 1.0 -0.4 1.1 
0.05.2 -0.4 1.2 -0.5 1.1 -0.4 1.1 
-0.1 2.7 -0.3 1.4 -0.4 1.3 -0.4 1.3 
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Chapter 9 

IMP estimates were also quite good while others were similar to the CBF estimates. Both 

MUSIC methods showed resolving abilities on only a few occasions. Although two estimates 

in each measurement were listed for ESPRIT, few of them gave two meaningful estimates. 

Through the experimental analysis in this subsection, the RT-MUSIC had the same problem 

as that explained earlier. Not all the biggest moduli corresponded to the angular estimates 

which were more likely to be the target position estimates from the "prior knowledge". More 

than two estimates had similar values of moduli. The results listed in the RT-MUSIC column 

were chosen mainly according to the values of angular estimates. 

9.4 Conclusion 

Results from practical measurements have been presented in this chapter. The aim was to 

investigate the performance Of:JgOrithms, which have been previously analysed and 

simulated, with practically sampled data rather than the more ideal data in simulations. 

Situations when sources and targets were used have been considered. A large amount of data 

was obtained, analysed, and presented in the previous section. The results presented therein 

showed the superior performance of the multidimensional methods over the more 

conventional methods such as CBF, MUSIC, and ESPRIT. Especially the MLand the optimal 

WSF methods depicted stable and reliable abilities to estimate the source I target directions 

under all the circumstances considered in this thesis. 
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Chapter 10 

CHAPTER 10 

CONCLUSION AND SUGGESTION FOR FURTHER 

WORK 

The task of the research in this thesis was to investigate the performance of direction finding 

algorithms applied to sonar signal processing. This has been accomplished mainly by 

computer simulations and analysis of practical measurements from an air acoustic sonar 

array, together with some theoretical discussions. The current chapter is devoted to the 

conclusion of the work and suggestions for further work in this and relevant fields. 

10.1 Conclusion of the Work in this Thesis 

The algorithms included in the study of this thesis are representatives of each class of methods, 

which, so far have been either widely used (such as the conventional bearnforming method), 

or extensively studied theoretically (such as the well studied MUSIC technique and the 

recently proposed Weighted Subspace Fitting (WSF) methods). Computer simulation 

provides a more visual way for the examination of performance than the mathematical 

expressions, and more factors that affect the performance of the algorithms can be considered. 

On the other hand, analysis of practical measurements allows the algorithms to be explored 

in an environment which is nearer to the "destination". 

The simulations in this thesis mainly concern three statistics that are very imponant in 

evaluating algorithms: probability of resolution, bias of estimated angles, and their standard 

deviations. They are studied as functions of the signal to noise ratio and the angular separation 

between the two sources, respectively. The same set-up of parameters has been used 

throughout the simulations of all algorithms and, for the multidimensional approaches, more 

situations were tested. This was motivated by the thought of testing the optimal methods 

with "bad data". 
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In the computer simulations, MEM, MVM, MNM, and MUSIC and their root versions were 

first examined and the MUSIC techniques were chosen as "models" to be compared with the 

ESPRIT algorithm and the IMP algorithm respectively, because of the lowest standard 

deviations in both versions as functions of signal to noise ratio and those of angular 

separations. For the ESPRIT technique, only one subarray displacement vector was 

considered which was the one with the maximum over lapping subarrays in the uniform linear 

array with half wavelength spacing. The asymptotic properties of ESPRIT were found to be 

very similar to those of the MUSIC methods while its probability of resolution is almost the 

same as the root MUSIC method, which is higher than that of the spectral MUSIC method. 

The IMP algorithm provides high resolution ability by re-processing the observed data and 

is also able to handle coherent sources at the cost of a heavy computation burden. The ability 

of the IMP algorithm to detect and estimate sources simultaneously is not evident from the 

simulations since the order of the model was given and the data was rather "ideal". The 

number of estimates was the same as that of the order of model throughout the computer 

simulations. However, this is not the same when the IMP algorithm is applied to the practical 

measurements. 

Both ML and optimal WSF methods gave excellent results in the computer simulations. More 

simulated date was tested, besides that for other methods, to examine the behaviour of these 

two methods in "bad" simulations. One factor which needs more attention in implementing 

these multidimensional methods is the computation load. 

The analysis of practical measurements gives an idea of the algorithm performance in reality. 

All the methods under examination show very consistent results with those in the simulations, 

although some exceptions exist due to the measurement environment and experimental 

system. 

As can be seen from the experimental results, the conventional beamforming method (CBF) 

provided reasonably good direction estimates. The beam-width of the employed array was 

very narrow because the aperture of the array was large in the metric of wavelength (15 

transducers were used in array with inter-element spacing of2.7 wavelengths). This allowed 

the CBF method to separate closely placed sources / targets. 

Although the spectral MUSIC technique did not show significant advantages over the CBF 

method in the experiments shown in this thesis due to the directivity of the array, it still can 
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be seen_ that spectral MUSIC was superior in the sense of providing sharper peaks and smoother 

background. Also, the spectral MUSIC method failed to separate the two sources / targets 

as a smaller separation compared to the CBF method. It is certain that the advantages of the 

spectral MUSIC method over the CBF method will be shown when an array with a small 

aperture is used. However, this advantages can only be achieved at the cost of a heavier 

computation burden, which was the case in the analysis here. 

The root MUSIC showed similar performance to that of the spectral MUSIC. Although it 

was found in both the theoretical analysis and the computer simulation that the resolution 

threshold of the root MUSIC is lower than that of the spectral MUSIC, it was not the case in 

the practical experiment analysis. The processing speed was higher due to the lack of the 

eigen-decomposition of the sample covariance matrix, but the order of the polynomial were 

high since the number of sensors in the array was large. The main problem with the root 

MUSIC was thought to be the selection of the possible direction estimates from all roots of 

the polynomial, especially when the angular separation of the two sources / targets was small. 

Comparatively, the performance of ESPRIT was slightly disappointing. The noise field was 

suspected to be the main reason for this performance degradation. This method is less 

appealing than the conventional beamforming method and the MUSIC techniques. 

The IMP algorithm consumed more time than other methods in the data processing. For 

most measurements, the results from the IMP algorithm were excellent and very similar to 

those from the ML and the optimal WSF methods; while in other cases the results were less 

satisfying. There were cases where no peak was found by the IMP algorithm when all other 

methods were able to give very good estimates. The threshold in the processing was believed 

to be the key for this problem. A more flexible threshold is required to guarantee the IMP 

algorithm to perform at least as well as the CBF method, which is the basis of the IMP 

algorithm. The ability of the IMP algorithm to estimate the number of sources / targets 

simultaneously when estimating their directions was not demonstrated in the experimental 

results presented here. But several measurements gave some evidence to this ability by 

providing results that were not dependent on the number of sources / targets. 

For all experiments, the ML and the optimal WSF methods gave the most stable and the most 

consistent results even when the angular separation of the two sources / targets was very 
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small. The complex computations of the multidimensional search inherent in these two 

methods were not a big problem in off-line processing. Their excellent performance deselVes 

effort for real-time implementation. 

10.2 Suggestion for Further Work 

Several aspects need attention in the future work in this field and its possible applications to 

other relevant research areas. 

The algorithm performance as functions of number of snapshots is interesting, since too many 

snapshots are impractical in real implementation. A trade-off between the number of 

snapshots and the performance is required in practical systems. 

The properties of sources / targets are also helpful in the analysis of practical obselVations, 

especially those of the targets. A better way of placing the targets in the experiments is 

needed so as to eliminate effects which might cause confusion in explaining the results, such 

as the narrow directivity of the targets and the edges of the targets. 

All transducers and the channels in the measurement system were tested before the data 

acquisition. Good consistency between transducers and between channels was ensured. 

However, no array calibration has been carried out for the air acoustic array which was used 

for the practical data collection. The final performance of algorithms might degrade due to 

the assumption of a perfect array and sensors while faulty sensors are always possible. 

The newly suggested WSF methods are quite promising and provide excellent results even 

when all other methods fail. A disadvantage inherent in this class of methods is the 

computational complexity, which in not difficult when using off-line processing, but is 

problematical in real-time implementation. Mathematical algorithms are required and high 

speed processing technique, such as the parallel structure, is a promising solution. At the 

same time, new techniques for hardware could also meet some need in the processing. 

When applied to other areas, the choice ofthe available algorithms should be made according 

to the special needs in that application. Super resolution is not the utmost judgment of an 

algorithm. To provide a means for this task, more simulations are needed and the variables 

in the simulations are task subjective. Only/ aft~r. . ~ intensive study of the[al.g~rithms, 
could an appropriate choice be made. 
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