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ABSTRACT

In the last two decades or so there has been great interest in the problem of estimating signal
parameters from the measurements at sensor array outputs. The most important parameters
are probably the directions-of-arrival (DOAs) at the array from radiating sources in the
observed spatial field. This thesis is devoted to the study of algorithms and techniques which
have been suggested from different points of view for the same direction estimation problem.
Several classes of algorithms are examined which include the conventional beamforming
methods, eigenstructure based algorithms, subspace rotation metheds, decompositions
techniques, and the more recently proposed weighted subspace fitting methods.

The research in this thesis contains three main aspects addressing theoretical analyses,
computer simulations, and praétical experiments respectively. A set of simulation programs
has been developed to evaluate the performance in various scenarios, and Monte Carlo tests
have been carried out to support theoretical analyses. The simulation work was carried out
on an IBM PC, and the computer language used was MATLAB (Matrix Laboratory) a
package especially developed for matrix computations.

A sonar system available in the sonar research group at Loughborough University of
chhnology (LUT) was modified and used to collect real data for off-line processing so as
to demonstrate the algorithm performance in real experimental environments. Two scenarios
were examined when the system worked in passive and active modes respectively. In the

passive working mode, two emitters were employed to give uncorrelated or strongly
~ correlated signals by using the same or different working frequencies. When working in the
active mode, a single sensor ‘r&s placed on the top of the receiving array which received
reflections from two targets in distance. The data was captured and then saved on floppy
disks from the measurement system and processed on PCs.

A large number of results are presented, analysed, and summarized in the thesis, including

both computer simulations and practical measurements. This provides a fundamental ground
for further work in this and related areas.
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Chapter 1

CHAPTER 1

INTRODUCTION

The problem of detecting signals in background noise and estimating their properties such
as direction, waveform, etc. has attracted great interest in the last several decades. Research
in this field is concerned with theoretical studies and practical implementation which have
brought up a vast number of algorithms and applications in different practical situations.
This thesis discusses the most typical algorithms or methods which represent different
underlying philosophies and possess potential use in practice, and presents computer
simulation results and practical results of the considered algorithms. In this chapter, we
describe briefly the history of array signal processing focusing on the modern period of its
development, give the motivation and significance of the research in this thesis, summarize
the contributions, and present the organization of subsequent chapters.

1.1 Historical Perspective

Array signal processing has a very long history which dates back at least to 1795 [Pro95].
Arrays of sensors replacing a single sensor provide much better determination of the directions
of incident signals and also increase the output signal to noise ratio by a factor proportional
to the number of sensors in the arrays. The resolution of a linear array with equispaced
omnidirectional sensors is determined by the size of the array which, in turn, is determined
by the number of sensors and the inter-element spacing. Two sources can be separated only
if their separation is larger than the inverse of the array aperture (this is described as the
Rayleigh criterion). Toincrease the resolution of an array implies either adding more sensors
in the array or increasing the inter-element spacing; the former increases cost and the latter
causes grating lobes. Also, the physical size of an array is limited by practical considerations.
This is the main problem inherent in the conventional beamforming method whose resolution
is restricted by the Rayleigh criterion.
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The improvement in the array resolution was marked by the method proposed by Burg in
1967 [Bur67, Bur68] which is now commonly known as the Maximum Entropy Method
(MEM). This method modifies the zero assumption on the unavailable correlation lags by
fitting an AR model to the given data. A spectrum is formed and the directions of sources
are determined by locating the peaks in the spectrum.

Capon’s method proposed in 1969 [Cap69] is also a modification of the conventional
beamforming method. He found that the output of the array in one direction is formed by
input in that direction and also contributions from other directions. The aim of Capon’s
method is to eliminate interferences while maintaining the response in the wanted direction
as unity and, therefore, to improve the resolving ability of the array. Again, the estimated
directions of sources are found at the maxima of the resulting spectrum.

Both Burg’s and Capon’s methods provide better resolution than the conventional
beamforming method, and the term “high resolution” came into being. However, the
underlying structure of the estimation problem was still unexploited. The method that so far
attracts most interest, MUSIC, and so-called eigenstructure based methods are in a class of
methods which exploit the structure of the problem. Work in this direction was pioneered
by Ligget [Lig73], and Brillinger [Bri75] who related the well-studied factor-analysis
techniques in statistics with sensor array processing. Pisarenko [Pis73] used the theorem of
Caratheodory regarding the trigonometrical moment problem in complex analysis to develop
a different method for the same problem. And independently, Berni [Ber75] proposed a
similar approach which is more direct and less complicated. Pisarenko’s method was refined
and generalised by Schmidt [Sch79] and Bienvenu and Kopp [BK80]. In their methods, all
those eigenvectors of the covariance matrix corresponding to its smallest eigenvalues are
used in constructing the estimator and, therefore, make better use of the available information.
Furthermore, the array geometry is released to arbitrary geometries and the sources are not
necessarily uncorrelated as long as they are not fully correlated, i.e., coherent.

During the same time, Reddi [Red79] proposed a different method which is applicable only
to uniform linear arrays. His method was latterly interpreted by Kumaresan and Tufts [KT83]
and modified to be the method known as Minimum Norm Method (MNM) or KT method.

All these methods which have been mentioned so far, except the most basic conventional
beamforming method, share one common shortcoming, i.e., they are unable to resolve
coherent sources. Multiple dimensional algorithms which search all existing sources
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simultaneously can be used for coherent sources at the cost of much higher computation load.
As a result of an extensive study of direction-of-arrival estimation techniques, the spatial
smoothing technique was suggested by Evans et al [EJS81] and was shown to provide a very
attractive solution to coherent problems in the case of a uniformlinear array. In this technique,
the array is divided into overlapping subarrays, the modified covariance matrix is formed by
averaging covariance matrices at each subarray and used to estimate the source directions in
conjunction with eigenstructure based algorithms. One disadvantage of this technique is that
it reduces the effective aperture of the array significantly. To increase the effective aperture
of the array, the modified spatial smoothing technique was suggested by Evans et al [EJS85]
with an effort of not having to increase the computational burden significantly. A proof of
this modified spatial smoothing technique was provided in [WPMS88] and the conditions
under which the modified algorithm may fail were also shown.

Concerning the problem of coherence, the conventional beamforming technique is superior
to MEM, MVM, MUSIC, and MNM. This method resolves coherent sources when they are
sufficiently separated. As the separation decreases, this method fails to work no matter
whether the sources are coherent or not. Recently, a novel method was proposed by Clarke
and studied by Mather [Cla87, Cla88, Cla89a,b, Mat89a,b] modifying the conventional
beamforming method. The relevant algorithm, the so-called IMP (Incremental Multi-stage
Parameter) algorithm, uses the conventional beamscan as its basic processing procedure and
adopts adaptive techniques. At each stage of the algorithm, all other sources but the one
under refinement are eliminated by putting correspondent projections into their directions.
The procedure is repeated alternatively for all sources and the algorithm terminates when
some pre-defined criterion is satisfied.

When using the MUSIC method, knowledge of the array geometry is essential although this
can be arbitrary., This knowledge is usually obtained by calibrating the array, i.e., measuring
the array responses for all possible combinations of parameters and saving these responses
in some form for later referencing. In general, array calibration is a time-consuming and
difficult task. The ESPRIT (Estimation of Signal Parameter via Rotational Invariance
Techniques) algorithm proposed in 1985 [PRK85, RPK86, RK87, RK89, OK90, etc.] avoids
this task by setting a constraint on the array. In this method, sensors are replaced by doublets
holding a constant displacement vector between two sensors in each pair which possess
identical characteristics. Measurements are collected from two subarrays which are
composed of one sensor in each doublets. The relative displacement vector in each doublet
is used in the final determination of the directions of sources rather than the array manifold.
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Concerning the problem of estimation of source parameters, a huge number of methods,
algorithms, and techniques have been proposed. Some of them are analyzed and compared
mainly with MUSIC, the method which has been taken as the best algorithm for quite a long
time. Viberg and Ottersten [VOK89, VO91, OV88, OWVKS9, etc.] proposed a framework
to include several popular algorithms in a single framework and lead to different algorithms
when the data are used in different ways and the searching is implemented in different spaces.
The Cramer-Rao Bound (CRB) which gives a lower bound for the covariance matrix of the
estimate error of any unbiased estimate is used as a measure for assessment of algorithm
performance. Their framework includes one-dimensional searching methods, such as the
Conventional BeamForming method (CBF) and the MUIti Slgnal Characterisation method
(MUSIC), multidimensional methods such as Maximum Likelihood Method (MLM) and
Multi-Dimensional MUSIC (MD-MUSIC), and ML- and Total Least Squares (TLS-)
ESPRIT, etc. Based on this framework a new algorithm for sensor array processing is
deduced. This is the so-called optimal Weighted Subspace Fitting (WSF) method. The
optimal weighting was obtained by minimizing the covariance matrix of the estimate error
with respect to (w.r.t.) the weighting matrix, and the resulting method was shown approaching
the CRB asymptotically for both uncorrelated and coherent cases. The performance of WSF
was proven to be superior to that of MUSIC and other algorithms. But the optimality of the
optimal WSF method is achieved at the cost of heavy computational burden.

1.2 - Motivation for the Research in this Thesis and Contributions

One thing is obvious: whether an algorithm is optimal, sub-optimal, or totally inadequate is
dependent on the problem which is going to be resolved. An overall optimal algorithm does
not exist, at least not so far. Choosing a suitable method for the problem under consideration
is of importance and significance especially in practical situations. A basis for doing so is
to obtain a comprehensive understanding of the algorithms and their performance under
possible conditions. A thorough study of the algorithm performance is possible by means
of theoretical analysis and also computer simulations. This will be greatly helpful to practical
applications of these techniques.

Many papers have appeared in the literature concemning the analysis and comparison of
algorithm performance. But these are by no means exhaustive. Theoretical studies attract
much more attention, particularly those algorithms that provide superior resolution and
involve complicated mathematical computations. By the use of high speed digital processing



Chapter 1

these methods seem to be attractive. However they are impractical for real-time processing
inmany situations. By comparison the practical considerations of the high resolution methods
are mentioned less.

Some modern algorithms do not restrict the sensor array to a uniform linear array or any
other regular form, as long as the knowledge of the array geometry is available; in practice,
however, the most commonly used array has always been the one of the simplest, the uniform
linear array. The array manifold of the uniform linear array has an analytical form which
coincidentally is of the Vandermonde form. This property of the array allows more algorithms
to be applicable than other array geometries and, at the same time, the applied algorithms
can be simplified correspondingly.

The work which has been done in this thesis falls mainly into two categories: computer
simulations and practical experiments. In the computer simulation part, many algorithms
and methods were analyzed theoretically and simulated on the computer. These algorithms
include the Maximum Entropy Method (MEM) and Minimum Variance Method (MVYM)
belonging to adaptive techniques, Minimum Norm Method (MNM) and the popular MUSIC
method representing eigenstructure based methods, and their versions, the ESPRIT technique,
the IMP algorithm in the class of deconvolution techniques, and the novel optimal Weighted
Subspace Fitting (WSF) method and the multidimensional Maximum Likelihood Method
(MLM). A large number of results were obtained and analyzed to give a straightforward
understanding and also to support the theoretical calculations. Monte Carlo experiments
were carried out to show the asymptotic properties of these methods. Three statistics about
the results were examined and presented which are the probability of resolution, bias of the
angular estimates, and their standard deviation. The results are given as functions of signal
to noise ratios and angular separations, respectively, which are thought as two important
parameters in the estimation problem. The correlation between the two sources is also
considered by assigning different correlation factors in the simulations which demonstrate
the effect of the correlation on the algorithm performance.

In the practical experiment part, an air acoustic sonar array in the research group was modified
for the purpose of evaluating different algorithms and methods which have been discussed
in the stmulation part of the thesis. The sonar array was tested when working in two different
modes: first receiving signals radiated from emitters placed at a distance, and then receiving
signals reflected from the targets when a single emitter was used at the receiving array. In
the first mode, two types of signals were used which worked at different frequencies and the
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same frequency, respectively, to imitate weakly correlated sources and strongly correlated
sources. When working in the second mode, a single emitter was used at one frequency. For
both cases, the separation between the two sources / targets was varied and several
measurements under each separation were taken. The measurements were saved for later
processing. Estimates of directions of arrival were calculated by using most of the discussed
methods and tabulated to show the performance of these methods in practical situations.

Although mathematical modelling provides a better means than ever for the problem under
consideration here and analytical expressions show the performance in varying
circumstances, computer simulations give a better demonstration of these methods under
practical situations. The results from practical measurements are inevitably more powerful
in explaining the behaviour of different algorithms in real situations. The work presented in
this thesis is by no means exhaustive but it does provide a better reference in selecting a
suitable method for practical applications.

1.3 Organization of the Thesis

This thesis includes theoretical analyses of several sensor array processing algorithms,
performance comparisons between them, simulation results of these algorithms showing their
performance, and practical results obtained from an air sonar system which was available in
the research group. Before detailed discussions, a data model is formed as a basis for the
later presentation of the algorithms, and a literature survey of high resolution techniques is
also presented. The thesis is outlined as follows:

Chapter 2 Problem Formulation and Mathematical Preliminaries

This chapter presents the passive sensor array problem, formulates signal, noise, and array
models, and states basic assumptions and definitions. Two fundamental maximum likelihood
estimators, deterministic and stochastic estimators, are introduced together with their
statistical properties. Some mathematical concepts, such as subspaces, eigen-decomposition
of covariance matrices and singular value decomposition of data matrices, are briefly
described.

Chapter 3 Literature Survey of Direction-of-Arrival Estimation Techniques

This chapter includes the presentation of typical algorithms and techniques in each stage of
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the evolution of sensor array processing which are of interest. Based on the model and
assumptions and definitions .in the previous chapter, methods such as conventional
beamforming, maximum entropy, minimum variance, MUSIC, and minimum norm, etc. are
discussed in more detail than those novel methods including ESPRIT, IMP, and WSF which
will be discussed later in relevant chapters with numerical examples.

Chapter 4 Performance Comparison of Spectral and Root Versions of MEM, MVM,
MUSIC, and MNM

Root versions of single stage spectral methods can only be applied to uniform linear arrays
while some of their spectral versions are applicable to arbitrary array geometries. Constrained
to uniform linear arrays, this chapter compares, analytically and by simulations, the
performance of different versions of these methods.

Chapter 5 ESPRIT Algorithm

LS- and TLS-ESPRIT are two popular versions of the same ESPRIT algorithm with different
consideration of the noise terms in the measurements, which have been shown to be
asymptotically equivalent. This chapter mainly concerns the properties of the LS-ESPRIT
and its performance comparison with the better known MUSIC technique, both spectral and
root versions.

Chapter 6 IMP Algorithm

The IMP algorithm is the main topic of this chapter as a representative of the class of
decomposition techniques. The implementation of the IMP algorithm is discussed and so is
the selection of the subject threshold in terminating the procedure. Numerical examples are
presented with convergence plots to illustrate the iterations in this method fordifferent orders
of model. Monte Carlo experiments have been carried out to compare the performance of
IMP to that of MUSIC showing their similarity under the weak correlation case and the
advantages of IMP in the highly correlated case.

Chapter 7 Weighted Subspace Fitting Methods

The more recently proposed weighted subspace fitting methods are analysed in this chapter.
Initialisation of the parameter estimates is crucial in this class of methods. The Alternating
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Projection method of Ziskind and Wax is employed in the initialisation procedure and the
modified Gauss-Newton method in the iterative searching. The implementation of this class
of methods is discussed and the method with optimal weighting coefficients is compared
with the multidimensional Maximum Likelihood estimator to demonstrate its performance
advantage in the asymptotic case.

Chapter 8 Discussion of Computer Simulation Results

A summary of a vast number of results provided in previous chapters is given in this chapter
in order to draw a clearer picture about the performance of different methods under
consideration in this thesis. This serves as afl;seful guide when applying these methods to the
practical experiments.

Chapter 9 Practical Measurements with Different Algorithms

Based on a sonar system which was available in the research group, tests were carried out in
the air to explore the performance of the algorithms that have been simulated in previous
chapters in the practical situations. A brief description of the system is givenin this chapter
and so are the modifications that have been done for the task in this thesis. Several cases
which are commonly encountered in practical situations are considered. Measurements from
the array outputs were saved on floppy disks and processed off-line. This chapter presents
results given by different methods using the collected data and a discussion of these results.

Chapter 10 Conclusion and Suggestion for Further Work

The work covered in this thesis is more theoretical than practical, although some practical
experiments have been carried out and the results been analysed. A thorough study of
algorithm performance provides a useful foundation for future practical applications in this
or related fields. Some suggestions for following work in sonar signal processing are given
since possibilities of applying high resolution algorithms in practical systems are getting
larger as the development of electronics and mathematical algorithms progresses.



Chapter 1
1.4 Notations

In this thesis, a somewhat standard notation is used to make the presentation as clear as
possible. Lower case italic roman characters denote scalars. Lowercase bold characters are
generally used to represent vectors with elements denoted by subscripted lower case italic
characters, e.g., a; representing the ith element of vector a. Upper case bold characters
generally refer to matrix and its (i,j) entry is usnally denoted by corresponding characters in
lower italic case with two subscripts, €.g., @;; is the (i,j) entry of matrix A. Operators are
usually denoted by superscripts, such as (-) denotes the conjugate operator, ()7 the transpose
operator, and (-} the conjugate transpose or Hermitian transpose.

Several characters are conventionally used to represent some variables. These will be
described in following chapters in relevant places.
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CHAPTER 2

PROBLEM FORMULATION AND MATHEMATICAL
PRELIMINARIES

Before going into details of algorithms and their performance, the problem to which
algorithms and techniques discussed in this thesis are applied is formulated first. The task
of this chapter is this problem formulation and associated assumptions and considerations
concerning the sensor array, the medium and the sources. Notations and representations are
introduced for the convenience of theoretical derivations which will greatly simplify the
problem under consideration and provide insight into the underlying signal and noise models
and make it possible to understand the problem and its solution more thoroughly.

In this chapter, we present the data model on which the following analysis will be based. In
forming this model, the arrays in use, propagation medium, as well as signals and noise are
of great significance and some assumptions are essential for the following discussion. We
provide, in this chapter, some general assumptions and mathematical representations for
signals and noise received at the array under consideration. Specific requirement on array
geometries, signals, etc. will be given with the algorithm in need of them.

For most algorithms used to solve the estimation problem, the sensor array may possess an
arbitrary configuration and no analytical expression is available for the sensor responses.
"~ What is needed in these algorithms concerning the array is an array calibration table. But
although most algorithms do not constrain the array geometry, the most commonly used array
in practice is the uniform linear array in which sensors are equispaced on a line. Uniform
linear arrays are considered in this thesis for analytical simplicity.

Concerning signal waveforms, twomain models have appeared in the literature which assume
deterministic and stochastic waveforms respectively. These two signal models are suitable

10
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for different applications. Their statistical properties and likelihood functions are discussed,
herein, after presenting the more general assumptions on signals : the narrowband signal
assumption, and their co'mﬁlcx representation.

Generally, the sensor noise is modelled as a Gaussian random process, which is justified by
the central limit theorem. Second order moments of sensor noise are given in section 3.
Based on the given array, signal and noise models, the problem is formulated in section 4
and the model extension is also given therein. A brief description of some mathematical
definitions and theorems are provided in section 5 for conveniencein the following discussion.
The final section of this chapter, section 6, is devoted to maximum likelihood estimators.

2.1 Arrays

The sensor array under consideration in this thesis is a passive sensor array which only
receives signals. This kind of array is often encountered in underwater acoustics as well as
many other research fields such as radio or satellite communications, seismic applications,

\ | £

source #1

etc.

sensor #2 ®

sensor #1

sensor #m

Figure 2.1 A passive sensor array receiving plane waves from far-field point sources

Figure 2.1 depicts a sensor array of i sensors arranged in an arbitrary geometry in a plane,
receiving the wavefronts from d pbint sources which are assumed to be in the far field. The
transmission medinm is assumed to be homogeneous isotropic, so the propagation of signals
is along straight lines and the wavefronts of signals can be approximated as planar when they
arrive at the array. Therefore, the measured output from each sensor is a super-position of

11
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delayed and scaled replicas of the transmitted signals from individual emitters and noise ( or
is a linear combination of the d incident wavefronts and noise). Let 5,(t),- - -,5,(¢) denote the
d signal waveforms, the measured output of the kth sensor, x,(¢), is modelled by

d
x (@)= i)=:1 8,(0) - 5t —T.(0.) +n, () 2.1)

where g,(0;) represents the sensitivity of the kth sensor to the signal in direction 8,, T,(8,) is
the time delay of the ith signal at the kth sensor relative to the reference sensor (or reference
point, which is usually the centriod of the array in arbitrary array geometry cases), and n,(¢)
denotes an additive noise term. The measured array output is formed by collecting the outputs
at m sensors in the m-vector x(r)

- -
_ - 2 8:0)-s(t—1(0))) | _ -
x,(t) ‘:_1 nl(t)
(8 .gl £:(8) - 5:(r —1,(6,) ny(t)
x0)=| = : + o (2.2)
EXGII ' | (),
| & gm(es) ‘ si(t - tm(ei))
and more compactly
x(t)=G-s(t)+n(r) (2.3)
where
[x,(8)] [ 2.0, 8,8,)] [5,(2))] [ n,(5)]
x,(t) 8,(0,),---,8,(8,) 5,(¢) ny(r)
x=| L, 6= | so= | no=| 24
5, (0)] FECHRENACH) [5.(0)] )

A kind of sensor array with special constraints on the array geometry is most commonly used

12
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in practical applications rather than arrays of arbitrary geometry. They are uniform linear

arrays (ULA), in which the sensors are spaced equi-distant spaced on a line. ULA(4) is
usually used to denote a uniform linear array with inter-element spacing A, asshown in figure

7

° ® ® T e
X0 % XH(t)

Figure 2.2 A plane wave impinging on a uniform linear array

Let the first sensor be the reference sensor, the time delay of the ith signal at kth sensor is
calculated as

1,8) = (k — 1)1,(8,) = (k — 1) -%- Sin®, 2.5)

where 1,(0;) = (A/c) - Sin9; is the time delay of the ith signal between two adjacent sensors,
and ¢ is the propagation speed of the wavefront. If the array sensors are of identically
directional characteristics, g(8), then the array output can be rewritten as

o RIOR0) o
x,(1) L n,(t)
x,(t) X g(®,)s5,(t—ASin6/c) ny(t)
t=1
x(1) = = : + (2.6)
_xm(t)i d -nm(t)_.
_g‘,] g(©,)-5(t—(m—-1)ASin6/c)

13



Chapter 2

Furthermore, if omnidirectional sensors are used in the sensor array, the sensitivity will be
equal in all directions for all sensors implying that g () is constant, which can be taken as
unity without loss of generality. Once more, we have the written array output as

- ) :
S Zsi(0) o
%) i B m(1)
x(t) -;1 s;(t = ASin0/c) ny(t)
x(1) = = : . + e
.xm(! )_ d . i nm(t)_
2 5t~ (m = 1)ASin/c)

2.2 Signals

Concerning signals emitted by far-field sources and received at the sensor array, some
assumptions are also necessary.

Assume the signals are narrowband, and have the same known centre frequency, ®,. 'i‘hus,
the ith signal can be modelled as a sinusoid with frequency ®, and slowly time-varying
amplitude and phase

5;(t) = ut) - Cos(w, ¢ +v,(1)) (2.8)

where slowly ime-varying functions u;(¢) and v;(¢) modulate the amplitude and phase of 5,(t)
respectively. The definition of slowly time-varying, herein, means that the amplitude and
phase variations as functions of spatial position for time instant ¢ are negligible over the
aperture of the array, i.e.,

5;(t —7,(0,)) = u;(t — 1,(6;)) - Cos{w, - (£ —7,(0,)) +v,(t — 1,(6,))}

= u;(t) Cos{ma (= 1(0,)) +v, ()} 2.9)

For narrowband signals, complex envelope representation is a more suitable form to describe
the signals. In thisrepresentation, a so-called analytic signal, §(¢), is constructed by combining
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the original real signal 5(¢) and its Hilbert uanéform £(¢) in the following way,
S@)=s@)+js(t) (2.10)

where j =+ — 1, and the Hilbert transform §(z) of s(r) is defined as
=s{0)
§@ =f —d 2.11
0= -549° (2.11)

which actually shifts the phase of the signal s{¢) by 90°, i.e.,
§() =u(r) - Sin(w,r +v(1)) (2.12)
Thus, the analytic signal §(¢) can be written in the form of

§()=u(t)- Cos(w,z+v(t))+j-u(t) - Sin(w,r+v (1))

Hoe+v())

=uft)-e {2.13)

Obviously, the original real signal s(¢) can be easily recovered from the analytic signal § @)
by taking the real part.

Recalling the narrowband assumptions, for all moderate time delays T, u(t) = u(t — 1) and
v(t) = v(t — 1), so the time delays T can be simply expressed as a phase shift as

i} @, - (= 5+v(—1)
S¢-D=ult-1)-€ ’

Jla e +v(r)) -jw,t
- €

=u(t)-e

=5(t)- 7" (2.14)

Substituting the complex representation of the signal into equation (2.7)
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$ 50 o
. =1 _ _ n(2)
PEIGE A W L0
)= . +
4 —jo, -(m—1)- ASin,fe 7 ()]
| 2540 e |
= 5 a0) - 5,6) +n () 2.15)
where
a(®,) = [1’ e—-jmoasme,..'c, . e-—jma(m -I)ASinBI.Ic:IT (2.16a)
and
() = [n,(t), -+, n, (0" (2.16b)
Defining
A(@®)=[a0,),---,a(0,)] (2.17)
51) = [5,(0), -, 500" (2.18)

the measurement model for the passive sensor array narrowband signal processing problem
can be represented as

X(t) = A(®)-8(t)+n(2) (2.19)

where the complex d-vector S(¢) contains the received signal wavefonns-ffé represents the
unknown signal parameter vector. The columns of A(®), a(8;),i =1,---,d, are usually
referred to as the steering vectors or array manifold vectors. They represent the complex
array responses to unit wavefronts from the directions-of-arrival of interest. In more general
cases, steering vectors may depend on more than one parameter per source, which might
include bearing and elevation angle, range, polarization, centre frequency, etc. Concerning
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the DOA estimation problem considered in this thesis, the parameter space of interest is
defined as the compact set in which the signal direction 0 is allowed to vary, and a more
general matrix A is defined as the array manifold in the following way.

Definition 2.1  The array manifold, A, is defined as the collection of all array response

vectors a(0) over the parameter space of interest

A={a(@)|6e B} (2.20)

In the application of DOA estimation problems, most algorithms require knowledge of A.

This can be done in two ways, either by analytical calculations or by array calibration. For
azimuth only DOA estimation, the array manifold is a one-parameter manifold which may
be expressed in an analytical form if the sensor characteristics and the array geometry are
known. For more general cases, expressing the array response as a function of the incident
angles is impossible, and a procedure usually referred to as array calibration is applied. This
is an experimental procedure in which the array outputs, when one source is present, are
measured as a function of the parameter to be estimated, collected and stored. This can be
a time-consuming task, particularly when the array is large and more than one parameter is
to be estimated. However, it does provide an alternative to the incredibly complex modelling
for some array geometries.

Besides the knowledge of the array manifold, another factor about the array geometry which
must be considered is the array ambiguity. The existence of array ambiguities makes the
mapping from the steering vectors to the DOAs not one-to-one, so the DOA estimates will
not be unique even when steering vectors are determined. Thus, an assumption is made that
ambiguity is not allowed in the array manifold. This can be stated in the following way :
For any collection of d distinct DOAs, 6, € ©,i =1, - -,d, the corresponding steering vectors
are linearly independent.

For the uniform linear array, the array manifold is a collection of steering vectors possessing
the structure shown in equation (2.16a), which are addressed as Vandermonde vectors. If
the DOAs are restricted within [-n/2,7/2] and the inter-element spacing A is less than a
half-wavelength, A/2, such an array can be shown to be unambiguous.
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2.3 Noise

Throughout this thesis, the noise at array sensors is modelled as a zero mean, stationary and
white random process with equal variance 6° for independent components. This is a natural
assumption due to the fact that the sensor noise can often be regarded as a super-position of
several "error sources” and the central limit theorem applies. Its distribution is complex
Gaussian which implies that its real and imaginary parts are independent, identically
distributed Gaussian processes. Such a noise process n(z) has second moments as follows :

Eln(r) - n"(s)] =15,

221
E[n()-n’(s)] =0 @21

For a stationary, temporally and spatially white, complex Gaussian random process, n(t),
with zero mean, the noise covariance is E[n(z) - n”(1)] = 6’1 |

2.4 Problem Formulation and Model Extension

In preceding sections, we have made appropriate assumptions on array, signal, and noise,
and defined models. Now we come to formulate the estimation problem.

The array outputs modelled in (2.19) are simultaneously sampled at N time instants, and the
measurements are collected into a data matrix Xy

x() = A(®) - s(r) +n(r) t=1,---,N (2.22a)
Xy =[x(1),x(2), -, x(N)] (2.22b)

The tilde in (2.19) representing the complex signals is omitted in the above equations and
from now on. These simultaneous measurements at the array output are usually referred to
as the snapshots of the array outputs. Given these N observations, the estimation problem
generally consists of estimating the following three quantities

1) The number of signals, d

2) The signal parameters, &
3) The signal waveforms, s(¢), t=1,--- N
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The problem of estimating the number of signals, 4, is often referred to as the detection
problem. The knowledge of the number of signals present in the scene is crucial in most
highresolution algorithms, and many approaches have been suggested [Sch81, WK85, WZ88,
VOK91, etc.] for the detection problem in order to ascertain the anticipated performance of
estimation algorithms. The problem of most interest in this thesis is the signal parameter
estimation problem.

Under the assumption that the signal wavefronts are independent from the noise process, the
covariance matrix of the array output is of the form

R=E[x() x'(1)] =A@®)-S- A(®)+ 1 (2.23)

which is commonly referred to as the array (or sample) covariance matrix. Strictly speaking,
R coincides with the covariance of the observation vector only when the signals are assumed
to have zero mean. Matrix S in equation (2.23) is defined as

S =E[s(r)- 7 (2)] (2.24)

and referred to as the signal (or source) covariance matrix. All of the signals incident onto
the array may be uncorrelated, partially correlated or completely correlated (or coherent)
with each other. In particular, for two jointly stationary signals s,(2), 5;(t) (cf. eqn.(2.8)), the
correlation coefficient between them is defined as

o Els.(0) - 5,(2)]
" NENsIEN s 01

(2.25)

and from the Schwatz inequality (¢f. [Cra61]), itis known that|p,| <1. And

p; =0 <=> 5;(¢),5,(t) are uncorrelated

O<|pl <1 <=>  5/(),5,(t) are partially correlated
Ipjl =1  <=>  si(1),s5;(r) are coherent
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Correspondingly, matrix S is diagonal when the incident waveforms represented by the
elements of S are uncorrelated, and is singular when S contains coherent pairs. In more
general cases, S is positive definite which reflects the arbitrary degrees of pair-wise
correlations occurring between the incident waveforms. When the signal waveforms are
non-coherent, the signal covariance matrix, 8, has full rank. However, in some applications
specular multipath is common and S may be ill-conditioned or even rank deficient. The
methods to be studied are of particular interest when the rank of § is less than d. In general,
let the rank of the d x d signal covariance matrix be d’.

With N observations x(1),x(2),- - -, x(N) available, the sample covariance matrix of the array
is formed and denoted by R

R=

) 1=

1
5 2 X0 xX'(1) (226)

A further assumption is that the following limit exists

S=lim— ): s(r)- 5" () (227

N—»- =1

then sample covariance matrix will converge to the array covariance matrix as the number
of snapshots goes infinite

R= hm—Zx(t) X' =A®)-S-A@)+71 ' (2.28)

N—o=l¥ =
2.5 Mathematical Preliminaries
Some mathematical concepts are quoted here in forms of definitions or theorems for a better

understanding of the following discussion (¢f. [GV83, LH73, Str80, etc] ).

Definition 2.2 A complete infinite unitary space is called a Hilbert space, denoted by H .
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Definition 2.4

Definition 2.5

Definition 2.6

Chapter 2

The eigenvalues of amatrix A € C"™" are the n roots of its characteristic

polynomial p(z) = det(z1 — A). The set of these roots is called the spectrum
and is denoted by AM(A). If MA)={A, N, -, A}, then it follows that

det(A) =AM, A, (2.29)

Moreover, if we define the trace of A by

Tr(A)= X a; AeC™™" (2.30)
i=1
thenTr(A)= X A,.
i=1
If\; € A(A) then the non-zero vectors e; € C"*' that satisfy

Ae; = Ae, (2.31)

are referred to as eigenvectors. An eigenvector defines a one-dimensional
subspace thatis invariant withrespect to pre-multiplication by A. Usually,
the eigenvalues are arranged in descending order.

A vector space X is the direct sum of two subspaces Y and Z., denoted

X=Y®Z, ifevery x € X can be uniquely expressed as x =y + z for some
yeYandze Z.

Given a subset M of a Hilbert space H, the set of all vectors orthogonal
to M is called the orthogonal complement of M and is denoted M-.

For amatrix A e C™*", its range is defined by

R(A)={ye C"| y=Ax forsome xe(C"} (2.32)
and the null space of A by

N(A)={xe C"| Ax =0} (2.33)
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Theorem 2.1 Eigen-decomposition
A Hermitian matrix A = A has an eigen-decomposition of the form

A=EAE"=$ 2, ¢ (2.34)
i=1

where A is real and diagonal and E is orthogonal.

The entries on the main diagonal of A are the eigenvalues of A, and the columns of E are the

corresponding eigenvectors.

Theorem 2.2 Singular Value Decomposition

If A e C™*" then there exist unitary matrices

U=[u,u, --u]e C™" . (2.35)
and
V=[v,V, --,v]e C"™" (2.36)
such that
U"AV =diag(0,,6,,--,6,)=Ze R™*", p =min{m,n} (2.37)
where

0,20,2:-20, (2.38)

From Theorem 2.2, it is ready to have A decomposed as A =UZV” by pre- and
post-multiplying the two sides of equation (2.37) with U and V¥, respectively.
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Corollary 2.1 If the SVD of A is given by Theorem 2.2 and

0,2---26,>0,,,=---=0,=0 (2.39)

then
rank(A)=r (2.40)
N(A)=span{v, - ", V,.} (2.41)
R(A)=span{u,,---,u} (2.42)

2.6 Maximum Likelihood Estimators

The Maximum Likelihood (ML) method, as a general method of estimation, was first
introduced by R. A. Fisher, and has been accepted as one of the most important methods of
estimation and taken as a standard technique in statistical estimation theory. In this method,
the likelihood function of the observed data is defined as the Conditional Probability Density
Function (CPDF) of the data with unknown parameters, the objective is to choose the unknown
parameters such that the likelihood function becomes as large as possible. Any solution to
the likelihood equation associated with the likelihood function will be taken as an estimate
of the unknown parameters.

When applied to the signal parameter estimation problem, the Maximum Likelihood (ML)
method provides an optimal criterion. Under this criterion, optimal solutions can be defined
and sorted out from optimal solutions under other criteria for the same problem,

2.6.1 Deterministic Maximum Likelihood Estimator {Wax85, OV88, SN89]

Recall the model formulated previously and assume that the number of signals, d, is known
and smaller than the number of sensors, m. Since the N samples x(1),x(2),---,x(N) are
independent and identically distributed, the joint (conditional) probability density function
of the sampled data is given by

N -5 ()- A®) (s

ey 1 2
Fo e x) = o

(2.43)
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Maximising equation (2.43) is equivalent to minimising its negative log likelihood function
1 ¥ 2
—log(f(x,, -, Xy)) =Nlogrn+mN log®+— 3, Ix(z;) — A(B) - s(t.)l (2.44)
=1
Ignoring the constant term,
1% 2
L(8,s(t),0%) =mN loga*+— 21 Ix(z,) — A(©) - s(z,)l (2.45)

is defined as the criterion function. Thus, the ML estimator is obtained by sdlving the
following minimisation problem

[6,5(1),6%) =arg min L(8,s(1),0%) (2.46)
0,51, 0°

Fixing 6-and s(t;), and minimising with respect to &’, we obtain
6’ =— 3 (1) — A(0) - sz, (2.47)

mN =)

Substituting this result back to the criterion function, and ignoring the constant terms, we
have

L(©,s())=mN lo ﬁ .-é Ix(1,)— A(8) - s(z,.)lz] (2.48)

which functionally equals
L(0,s(t))= ii Ix(t;) — A(©) - s(r,)I* (2.49)
in the maximisation problem in equation (2.46). To carry out the minimisation of L(8,s(z,)),

we hold 6 fixed and minimise with respect to s(z;) yielding
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3() = (A" - A - A" x(t)
(A" . A)'- A" is defined as the pseudo-inverse of A and denoted as
At= (A% A" A
Substituting equation (2.50) to (2.49) results in
L(®)= .-)E‘l x(t)— A" A - x(5)
This can be rewritten as

L(®)= _i Ix(z,) - P, - x(1,)

Nk

IP; - x(2,)?

[

where two operators P, and P; are defined respectively as

P,=A*-A, P;=I-P,

Chapter 2

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.5%)

P, is the projection operator onto the space spanned by the columns of the matrix A, and P;

is the orthogonal projection operator onto the null space of A.

By properties of the trace operator, Tr{-}, the likelihood function in equation (2.54) can be

written in another form as

L®)=Tr[P;-R]

(2.56)

where R is the sample covariance matrix given in (2.26). Thus, the ML estimator of 8 is

obtained as
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6 = arg min Tr[P; - R] (2.57)
2]

2.6.2 Stochastic Maximum Likelihood Estimator [Sch81, Boh87]

Under the assumptions which have been made concerning the signal and noise, the joint
probability density function of the N independent samples is given by

N 1 . i
X;, o, Xy) = [ ————— >R -0 2.58
fx, N) N T der® (2.58)

and the normalised negative log likelihood function of {x(1),---,x(¥)} has the following
form,

LM)=mlogn+logdetRM)+Tr{R'{n)- ﬁ} (2.59)

where M represents the unknown parameters 6, S, and 6° of the observation covariance. The
ML estimate is the minimizing argument of L(1). In this form, the Sto-ML method requires
a non-linear, (d*+ d + 1)-dimensional optimization. As noted in [Boh87], the log likelihood
function (2.58) can be separated and thus, the dimension of the optimization can be reduced.
For fixed 6, the minimisation of (2.59) with respect to (w.r.t.) S and ¢ yields

$(0)= A*R-O))-A* = Tr{P;-R} (2.60)

m-—d
The following d-dimensional non-linear minimisation problem yields

6=arg min det {AS(®)A" + G7(O)T} (2.61)
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CHAPTER 3

LITERATURE SURVEY OF DIRECTION-OF-ARRIVAL
TECHNIQUES

In this chapter, some typical solutions to the array signal processing problem are reviewed.
These solutions are mainly for the direction of arrival (DOA) estimation problem, which
might require other knowledge such as the estimate of the number of signals, and may be
extended to other applications such as the signal waveform estimation, etc.

The evolution of estimation techniques has experienced several stages. For clarity of
presentation, the discussion will be divided into several parts which contain different classes
of methods. To make the presentation self-contained, one section in this chapter is devoted
to the detection problem at the end.’

3.1 Conventional Techniques

The basic array processing structure is shown in figure 3.1, in which the array output is
evaluated as a function of the angle. Conventional techniques aim to form a power spectrum
at the array output and take its peaks as indications of the true directions of arrival of
wavefronts present.

Under the narrowband signal assumption, a single complex coefficient in each channel (i.e.,
each sensor of the array) is sufficient to adjust the transfer function of the filter. Using x,(z)

to denote the output at the ith sensor and w;(9) the corresponding weighting coefficient, the
array output can be written as

y®) = £ wi®) 50)= £ w© 5 G.D)
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x,(1)
w,{@)

Y

. s =

*

Dx,m C@(

Figure 3.1 Basic Array Processing Scheme

where the superscript (*) denotes the comiplex conjugate operator.

Employing the vector notation

x(t) =[x, (1), -+, 2, (0] (3.2a)

and
w(B) = [w\(8), -, w,(0)]" (3.2b)

to represent the array measurements at time instant £ and the weighting vector, where m is
the number of sensors in the array, the ensemble average power output P (8) is then given by

P®)=Elly®)| 1 =w" -Ex(¢)-x"(¢)] - w=w"-R-w (3.3)
where R is defined as the array output covariance matrix
R =E[x(:) - x"(1)] (3.4)

It will be shown that, by using the weighting vector in different ways, several methods can
be developed from (3.3) which include the classical beamforming method, Capon’s maximum

28



Chapter 3

likelihood method, and Burg’s maximum entropy method.

3.1.1 Classical Beamforming Method

The wave propagation phenomenon in physics stimulated the formulation of the conventional
beamformer. Itis well known therein that a coherent summation of all waveforms at sensor
outputs produces a scalar output which includes a coherent sum of energy in signals and an
incoherent sum of noise, and that incohérent summation exists for both signals and noise
when signals arrive out-of-phase. The aim of the conventional beamformer is to choose a
weighting vector w(6) to compensate propagation delays at different sensors so as to steera
beam in the wanted direction.

L @
Figure 3.2 Uniform Linear Array with A Spacing

For the uniform linear array with inter-element spacing A in the metric of wavelength

(ULA(A)) given in figure 3.2, the time delay between two adjacent sensors for the signal
incident onto the array in direction 0 to the normal of the array is given by

T, = A—lsme = mSinG (3.5)
c w

where ¢ is the propagation speed of the waveform at radian frequency ®. Then, the delay
between the ith sensor and the reference sensor is simply

T, =({-1)r, (3.6)
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Therefore, the weighting vector for the conventional beamformer can be constructed as
w®) =[1,¢7™ ... ¢ " = a(p) 3.7)

which coincides to be equal to a(0), the steering vector defined in chapter 2. Thus the output
power of the conventional beamformer is given by

Pyr(0) =2"(0)-R-a(0) (3.8)

In practice, only finite measurements are available and it is the estimated covariance matrix
that can be used in the estimation of the power spectrum. Given N observations of the array
output, the estimated power output is described by time averaging which can be given by the
following alternative expression °

m 2

Bo® =t Sy =2 3| $ e 1) (3.9)
CEBF Ni=1 Ni=li=1 : )

where y=r, is defined as spatial frequency. This estimator takes the Discrete Fourier
Transform (DFT) of the array aperture distribution (m-point DFT) as the spatial spectrum
estimate and has very limited resolution, because the convolution of the unknown spectrum
with the filter transform function destroys the details of the peak spectra [Gab80]. Poor
resolution due to the finite array size and sidelobe leakage due to inter-element spacing are
the main problems with the conventional beamformer which cannot be overcome by
conventional techniques. However, because of its easy implementation and robustness it is
still widely used in practical systems.

3.1.2 Burg’s Maximum Entropy Method (MEM)

In the conventional beamformer, the weighting vector w(8) is chosen according to some
desired criterion and is fixed in processing. In contrast, an adaptive system possesses the
ability to adjust its weighting coefficients to meet the changing environment so as to achieve
some particular requirements. Adaptive methods have been proven to have superior resolving
capabilities compared to the conventional beamformer and provide optimum array gains.
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The Maximum Entropy Method (MEM) of Burg [Bur67] is widely used in estimating the
directions of arrival of wavefronts at a linear equispaced array, especially when the data
records are short. The idea of the method is to keep the first coefficient of the weighting
vector to be unity while allowing all other coefficients to take any value. The aim of this is
to minimise the output subject to the first sensor constraint, and nulls will be placed at the
positions of all the strong signals. The inversion of this response gives an estimate of the
angular spectrum and the peaks are used to locate the source directions.

Defining the first unit vector as u, =[1,0,---,0] T the MEM angular spectrum is given by

u' Ry,

Pymy(0)=————
M WRa(e)) ?

(3.10)

The main advantages of MEM are that it shows much higher spatial resolution compared to
the conventional beamforming technique even with short data records [Gab80], and that the
unwanted "end effect” caused by the finite aperture sampling is also avoided. This method
is useful in adaptive arrays for cases where the wanted signal itself is weaker that the
background noise. The interferences are first removed and then the signal recovered from
the noise by post-‘proccssin g. Despite all these advantages, the so-called line-spliting problem
exists, as does the lack of source power estimates. Another shortcoming inherent in the MEM
is that it needs knowledge of the length of the prediction error filter, i.e., the order of the
corresponding AR model [UB75]. This method was first claimed to be applicable to
equispaced arrays only, but it is stated in [Nic88] that it can also be applied to irregular arrays.

3.1.3 Capon’s Maximum Likelihood Method (MLM)

Capon’s method, the Maximum Likelihood Method (MLM) [Cap69], is a modification of
the conventional beamformer by using an adjustable weighting vector rather than a fixed
one. This method is a mapping of the maximum likelihood filter used in time domain
optimisation problems to the space domain with a wavenumber resolution superior to that
obtained from the conventional method [Cap69, Gab80, KM81]. As has been stated, this
maximum likelihood filter is designed to pass the power in a narrowband about the signal
frequency of interest and minimise all other frequency components in an optimum manner.

31



Chapter 3

In the direction of arrival estimation problem, the array output power in the wanted direction
contains contributions from stimuli in that direction and, as well, in other unwanted directions.
To minimize the responses to unwanted directions, a constrained optimal problem is
formulated. The array output power is minimized while maintaining the gain along the wanted
direction to be constant. This can be formulated as a zeroth-order main beam directional
gain constraint optimization problem as follows :

minimize : P®)=E[y()]3 =w"(®)-R-w(®) (3.11a)
subject to : | w(8)- a@®,) =1 (3.11b)

where a(8,) denotes the array reéponse to the wanted direction 8,. Solving the above problem

is equivalent to constraining the weighting of the array to form a beam in the wanted direction
while, at the same time, to'minimise the mean square output from the array. Therefore, to
distinguish it from true Maximum Likelihood (ML) techniques, Capon’s method-is also
addressed as the Minimum Variance Method (MVM), which is a realisation of the ML

technique in the real sense only when a single source is present,

The Lagrange method is usually used to solve the constrained optimisation problem stated
in (3.11) and gives the optimal weighting vector as [Gri§3]

R™-a"(0)
w,(0)= 3.12
a2 a"(@)- R a(0) (3.12)
and the angular spectrum estimate as
: 1
Py (0)= (3.13)

a’(0)-R™*-a(@)

So the angular spectrum can be estimated by sweeping the steering vector a(0) over the
field-of-view with the inverse of a given covariance matrix.

Using the spectrum representation of the covariance matrix R given in (2.34) and the
properties of matrix inversion, the MVM spectrum can be written as
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1

Prau(8) =
a"(9)- (,)31 e ef’) -a(6)

(3.14)

This implies that all eigenvalues and eigenvectors of the covariance matrix are used in the
final evaluation of the output spectrum. The reciprocal of the eigenvalue is used to weight
the corresponding eigenvector.

A better resolution is achievable by the MVM estimator than that by the conventional
beamformer, and the angular spectrum is directly referenced to receiver noise power so that
the peaksrepresent signal power estimates in those directions, which permits the measurement
of relative source strength. Theresidual backgrbund ripple is low and relatively well behaved,
and provided that the array manifold is known, it is not necessary for the array to be equally
spaced; thus the array aperture can be widened and the resolution is substantially increased
for a given number of sensors. Also, the MVM does not need knowledge of the number of
signals present.

On the other hand, ill-conditioning may arise when calculating the inverse of the covariance

matrix. This method fails to resolve coherent sources and its computation load is relatively
high.

3.2 Signal Subspace Methods

The ML estimator for the deterministic sequences has been given in (2.57) and the likelihood
function is rewritten here as

L®)=Tr[P,(0) R} (3.15)

Substituting the spectral representation of the covariance matrix, which is the form of the
covariance matrix denoted by its eigenvalues and eigenvectors, given in (2.34) into the
likelihood function, and using the properties of the projection and trace operators, we have

L©)= 3 MIP,©)-¢/’ (3.16)
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Maximising L (8) yields the ML estimates of the directions of arrival. It is evident that all
eigenvalues and eigenvectors of the covariance matrix R are used in the estimation. A
non-linear, multidimensional maximising procedure is involved which means a heavy
computational burden.

To reduce the computational complexity inherent in the ML estimator and to provide
comparable performance at the same time, suboptimal procedures are needed. Work in the
field of eigenstructure based methods was pioneered by Pisarenko [Pis73]. His work
concentrated on extracting harmonics embedded in white noise in time series analysis. His
method, however, has provided a fundamental basis for eigenstructure based methods which
have dominated the field of DOA estimation since their emergence.

The common basis for all these suboptimal signal subspace methods is the
eigendecomposition of the covariance matrix sampled at the array output. They differ from
each other in the way in which they make use of the obtained eigenvalues and eigenvectors
of the covariance matrix, with the aim being to find the direction estimates as exactly as
possible. The orthogonality between the signal subspaces (spanned by the sfgnal eigenvectors
) and the noise subspace (spanned by the noise eigenvectors) and that between the signal
steering vector and the noise subspace are the foundation of a number of high resolution
DOA estimation techniques.

The MVM described in section 3.1.3 is one of such suboptimal method obtained by reducing
the multidimensional optimisation problem involved in the ML estimator into a
one-dimensional searching procedure. The MUSIC (MUltiple SIgnal Characterisation)
algorithm of Schmidt [Sch79, Sch81] and Bienvenu and Kopp [BK80], and MNM of Reddi
[Red79] and Kumaresan and Tufts [KT83], etc. provide a more appealing solution to the
DOA estimation problem by reducing the computational load and providing better resolution
performance.

3.2.1 The MUSIC Method

The MUSIC algorithm is based on a geometric interpretation of the signal parameter
estimation problem. The main ideas behind this signal subspace approach are : 1) obtain the
array manifold, 2) find the signal subspace, and 3) search for the intersections between the
array manifold and the signal subspace. For d signals, the observed data vectors are
constrained to the d-dimensional subspace of C™, termed the signal subspace. The
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intersections of these d-dimensional subspaces and the array manifold A (@) give d vectors
a(6,),i =1,-+-,d, which are the d columns of the array manifold A(6), termed as the signal
steering vectors. That is, these vectors yield the set of vectors from the array manifold that
span the observed signal subspace. Once these d independent vectors have been observed,
the DOA estimates are immediately determined if no ambiguity exists in the array manifold.
The signal subspace method separates the highly non-linear DOA estimation problem into
two parts: the non-linear part which is the determination of the array manifold, and the linear
part which is the observation of the signal and noise subspaces. Given the array manifold,
either by analytical calculation or by calibration, the DOA estimation problem is equivalent
to that of finding the intersections between the signal subspace and the array manifold and
inferencing to the corresponding directions.

Intersections between the signal subspace and the array manifold are obtainable only in the
ideal case when noise is absent. Estimates of these intersections have to be made, since with
probability one (w.p.1) there will be no intersection between the estimated signal subspace
and the array manifold. Procedure for seeking array manifold vectors that are closest to the
estimated signal subspace must be provided. Schmidt’s idea was to find a set of d vectors
by minimising the squared distance from the array manifold vector to the estimated signal

subspace.

Fromthe orthogonality between the signal eigenvectors and the noise eigenvectors, assuming
that the covariance matrix is precisely known, we have

el.e.=0 i=1, -.d; j=d+1,--m (3.17)
The squared Euclidean length from a steering vector a(8) to the signal subspace is
|11*=a"(6)- Ey-Ey - a(6) (3.18)
In the direction where a(6) is orthogonal to the noise subspace

11]*=0 (3.19)

and the 8 which makes the scalar function in (3.18) tend to zero is the estimate of the DOAs.
The reciprocal of the function given in equation (3.18) yields the MUSIC spectrum estimate,
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ie.,
1
. . 3.20
music(6) at(6) - Ey - EX - a(0) (3.20)
or |
P @)= 1 = 1 (3.21)
2@ Exl” 3 |at(g). ¢
j=d+1

The MUSIC algorithm makes use of the noise eigenvectors only, and all the noise
eigenvectors. In other words, it re-weights all eigenvectors by setting the noise eigenvalues
to unity and signal eigenvalues to zero. The MUSIC algorithm provides an asymptotically
unbiased estimate of many important parameters of the wavefronts arriving at a sensor array,
such as the number of incident wavefronts, directions of arrival, strengths and
cross-correlations among the incident wavefronts, and noise / interference strength, etc.
[Sch81]. Spectra resulting from the MUSIC method are much smoother while, in the
directions of signals, nulls appear with significant depth.

Equation (3.21) shows that an accurate estimate of the number of the incident signals is of
greatimportance. Overestimate of the number of signals results in the introduction of spurious
signal directions, and underestimate of it will effect the estimate of other directions of signals
that are present. The effect of under-estimation of the number of signals is worse than that
of over-estimation.

The maxima obtained by the MUSIC algorithm do not depict the signal strength because the
spectrum given inequation (3.21) involves noinformation associated with signal eigenvalues,
which are related to the signal powers. Theoretically the peaks in this spectrum appear to
be infinitely high in the signal directions since the denominator tends to zero. This method
does provide superior resolution compared with other non-eigenstructure based techniques
although in a practical environment the peaks only have finite heights [MC85, JD82, SV84].

The MUSIC algorithm yields unbiased estimates of a general set of signal parameters whose
variances match the Cramer-Rao lower bound asymptotically, i.e., when the number of
snapshots becomes very large or Signal-to-Noise Ratio (SNR) is extremely high [Sch79,
Sch81]. When only finite noisy data is available two types of estimate errors, local and
global, exist [SPK86]. The former implies deviation of the shape of the observed peak from
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that which should have resulted in the asymptotic case, and the latter describes the "false"
peaks that are not within some small neighbourhood of the true directions. Since the directions
of arrival are estimated from the intersections of signal subspace and the array manifold, i.e.,
the array geometry, the array geometry design is of particular importance in affecting the
performance of MUSIC,

The main disadvantage of the MUSIC algorithm is that it is computationally expensive,
because of the searching procedure and the use of all the noise eigenvectors. Kumarensan
and Tufts’ method eases the computational load by using a single vector in the final searching
procedure. '

3.22 Kumaresan and Tufts's Method (MNM)

The method suggested by Kumaresan and Tufts [KT83], usually referred to as Minimum
Norm Method (MNM) or KT method in later literature, uses a single vector which is
orthogonal to the signal subspace, generated either from the signal subspace or from the noise
subspace, tocalculate the angular spectra. This method estimates the arrival angles of multiple
plane waves by forming a polynomial from the eigenvectors of the covariance matrix, and
finding its zeros which give estimates of the angles of arrival. The polynomial may be formed
from the signal or noise subspace eigenvectors, because they are complementary.

Recalling the definitions of signal subspace and noise subspace, they form two matrices with
dimensions of m X d and m X (m —d), respectively. Partition these two matrices, Eg and Ey,
as follows

T
g d

E,=|--- E,=|-—- (3.22)
E/ E,

where g and ¢ are column vectors having the first elements of signal and noise subspace

eigenvectors, respectively. E¢" and E,’ have the same elements of Eg and E, with the first
row deleted.

The vectord proposed by Kumaresan and Tufts to calculate the angular spectrais a constrained
vector which spans the noise subspace, i.e., lies in the range of the noise subspace matrix E,,.
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d={d,d,---.d,)" (2.23)

Setting the first element of d to be one and minimizing its norm
minimise Y |d|*  subjectto  d =1 (3.24)
i=1

the rest of the elements of d are obtained by using the appropriate pseudo-inverse of E¥ or
of E,’

del o or de|-———————- (3.25)
—Es"g.l(l _gHg) EN'-C.ICH-C

With the orthogonality between signal eigenvectors and noise eigenvectors, ideally,
El.d=0 (3.26)
The angular spectrum based on the vector d is suggested as

1

Pyy(®) =————;
O e

(3.27)

Compared to the expression in equation (3.21) for MUSIC spectrum estimation, the KT
method spends less time in the final searching procedure. The shortcoming of the KT method
relies in the emerging of spurious peaks and merging of spectral peaks at lower SNR value.

Herein, the MUSIC technique and the MNM are described as examples of the so-called signal
subspace methods. In the derivations of the methods it has been assumed that the additive
noise is spatially white or the noise covariance matrix is known to within a scalar factor.
Cases when the noise is completely unknown exist in practical situations. Significant
performance degradation is expected if the noise is treated as white and the above cited
algorithms are applied [Mar84]. Several methods have been suggested to tackle this problem
[LeC89, PK86, Tew89].
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3.3 Subspace Rotation Methods

3.3.1 ESPRIT

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) is a
relatively new approach to the general high resolution signal parameter estimation problem.
Like the MUSIC algorithm, this is an ei genstructure based method and in many aspects, such
as exploiting the underlying signal and noise models and generating asymptotically unbiased
estimates of signal parameters, is similar to MUSIC. On the other hand, ESPRIT manifests
significant performance and computational advantages over MUSIC by employing rotational
invariance among signal subspaces induced by an array of sensors with translational
invariance structure. The work in this algorithm was pioneered by Paulraj, Roy, and Kailath
[PRK8S, PRK86, RK89, etc].

ESPRIT is an attempt to retain most of the essential features of the arbitrary array of sensors
while offering a significant reduction in computational complexity by imposing a constraint
on the array. This is achieved at the price of less general applicability.

In order to exploit the translational invariance property of the array, it is convenient to describe
the array used in the ESPRIT algorithm as being comprised of two subarrays, Zy and Zy,

which are identical in every respect except a physical displacement vector A. Denoting the
outputs of all doublets in two subarrays in vector notation :

x(£)=A-s(t)+n,(r) (3.28a)

y(r)=A-®-s(1)+n, 1) (3.284)

a matrix ® is introduced here to represent the relation between the measurements from the
two subarrays.

@ =diag(e™ ..., ™), ¢, = ©,ASin8,/c (3.29)
The auto-covariance matrix of the data received by subarray Zy is given by

Ry, = E[x(1)x"(1)] = ASA” + &°I (3.30)
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and the cross-covariance matrix between the measurements from two subarrays, Z, and X,
by

R,y = E[x(t)x"(1)] = AS®"AY (3.31)

Here one theorem is formulated to provide the foundation for subsequent analysis and results.

Theorem 3.1 Define T as the generalised eigenvalue matrix associareé‘ with the matrix
pencil {(Ryx — A, Ryy} where Ay, is the minimum (repeated)
eigenvalue of Ryy. Then, if S is non-singular, the matrices © and T are
related by

o 0
T=[O 0] (3.32)

to within a permutation of the elements of ®.

A proof to this theorem can be found in [PRK85].

From the relation in equation (3.29) it is obvious that once @ is known, the signal DOAs can
easily estimated as

8, = arcsin{c.0,/w,A} (3.33)

In practical situations errors arise from the finite data measurements and the subsequent finite
precision computations, For this reason, the smallest eigenvalues of Ry are clustered rather
than having the same (repeated) value and the relation in equation (3.32) is not exactly
satisfied. Two formulations of the ESPRIT algorithm have been suggested to obtain the
desired DOA estimates and probably other parameters of the sources, the so-called Least
Squares (LS) ESPRIT and Total Least Squares (TLS) ESPRIT.

The ESPRIT techniques fall in the class of the so-called Subspace Rotation (SR) methods ,

another representative of which is the less known Toeplitz Approximation Method (TAM).
This method is based on the observation that the estimated covariance matrix is Toeplitz in

40



Chapter 3

the case when sources are uncorrelated and statistically stationary. In coherent cases, the
Toeplitz structure can be guaranteed by employing the smoothing techniques suggested either
by T.J.Shan et al or By the authors of the TAM method [KLF86]. The TAM method was
originally proposed for the harmonic retrieval problem in time series analysis [KAR83], and
was then modified to be applicable to the DOA estimation problem in array processing
{KLF86]. In the TAM approach, the data is modelled as the output of a self generating
ARMA process and a'state space representation is then formed from the Singular Value
Decomposition {(SVD) of the data matrix.

Itis shown [SN91] that the asymptotic variance of the SR estimate is greater than the MUSIC
asymptotic variance; furthermore, the differencc between SR and MUSIC variances may be
considerable for large m. '

3.4 Deconvolution Methods

Apart from the ESPRIT method, most existing high resolution algorithms are "single stage"
algorithms which generate spectral estimates and assume maxima or minima in the spectra
as indications of directions of possible sources. Another class of methods to be described in
the present section make multi-stage estimates of spatial spectra and compare some specific
statistics associated with these estimates with a pre-defined threshold to give an estimate of
source directions. These methods are often addressed as deconvolution methods which
include the advanced CFAR (Constant False Alarm Rate) technique [BLP86, Wei82] as well
as the Wagstaff and Berrou Broadband (WB?) algorithm [WB84], Iterative Filtering
Algorithm (IFA) of Kay [Kay84], CLEAN [Hog74, RLD87, Sch78, VL89] and IMP
(Incremental Multi-stage Parameter) method [Cla87, Cla88, Cla89, Mat89a,b].

A common feature among deconvolution methods is the re-processing of data after the initial
estimation of the output power distribution. Strictly speaking, deconvolution implies inverse
linear filtering which means that the inverse of the system response is required and used to
convolve with the measurement so as to give an estimate of the stimuli to the system.
Deconvolution methods including CLEAN, IMP, WB? and IFA implement the deconvolution
procedure iteratively. At each stage, an estimate of the stimuli is assumed according to the
system output spectrum, and then convolved with the system response and compared with
the observation (i.e. the system output spectrum). The correspondence between the convolved
result and the original observation measures the fitness of the estimate and determines the
termination of the procedure.
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3.4.1 Iterative Filtering Algorithm

Kay’s IFA (Iterative Filtering Algorithm) [Kay84] addresses the classical problem of
estimating frequencies of. sinusoids in white noise with the ability to provide accurate
frequency estimates at low signal-to-noise ratios, provided that the number of sinusoids is
known. It adjusts an all-pole filter which processes the data. Atequilibrium, the frequencies
of sinusoids can be deduced from the filter coefficients. It has been shown that IFA is related
to Steiglitz-McBrides’s algorithm for identification of linear systems.

3.4.2 Wagstaff and Berrou Broadband Technique

The technique developed by Wagstaff and Berrou [WB84] for high-resolution beamforming
and spectral analysis is referred to as the WB? technique. The WB? algorithm derives its first
estimate from the output power spectrum of a conventional beamformer, rather than from
the array output, and performs the mathematical operations on the logarithm of the power
rather than the power itself. These two departures from other commonly used high resolution
methods make WB? a fast, simple, and nonlinear algorithm giving approximate solutions to
a very complex problem.

The WB? algorithm is also an iterative algorithm. At the first stage, a "guess” of the
environment comprising locations of point sources is found from the positions of the spectral
peaks. The "guess” is convolved with the array beam pattern to give the estimated output
spectrum. This spectrumis compared with the measured speétrum, and the decibel differences
in the estimated and observed spectra are used to modify the "guessed" spectrum. This
process is repeated until a suitable goodness of fit criterion is met.

The WB?algorithm utilises a very important principle : convolution in the time domain equals
multiplication in the frequency domain; furthermore, multiplication in frequency domain
equals addition of logarithms. These two transformations greatly simplify the mathematical
operations, and thus speed up the processing.

Both IFA and WB? allow changes to any or all of the estimates from iteration to iteration,
iNg y

while only one estimate is allowed to change between iterations in the CLEAN method and
the IMP algorithm which will be presented below.
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3.4.3 CLEAN

The CLEAN technique was first mtroduced by Hogbom [Hog74] to radio astronomy and
nowadays, with modifications and addmons is still widely used in aperture synthesis radio
astronomy for image restoration. The basic assumptions made in the CLEAN method are
that : 1) the brightness distribution contains only a few sources at well separated, small
Tegions, i.e., the brightness distribution is essentially empty; 2) the maximum response in the
dirty map is due to a single far-field point source at the location of the maximum, and only
a minor part comes from the filter response from other sources placed further away; 3)
complete knowledge of the array manifold A(B) is available. The philosophy behind the
CLEAN method is as follows :

Having found the maximum response in the dirty map, the energy contributions
from a point source at this location to all other positions in the map can be
determined and subtracted.

In the CLEAN method, the observed map is called a "dirty” map (d) which is a convolution
of the brightness distribution (z,) with the instrumental response, called the "dirty" beam (b).
The dirty map may have some unwanted secondary responses. The aim of the CLEAN
method is to remove the effects of these responses. This is done in two steps : first a
deconvolution step in which the dirty map is decomposed in a set of scaled 8-function, the
component (¢} which when convolved with the "dirty" beam would reproduce the original
"dirty" map; second, the componénts are convolved with a hypothetical "clean™ beam (k)
which is free from the unwanted responses. This finally gives the "clean"” map (c).

d=b*t "dirty" map
c=h*t “clean" map

A "true clean” map (c,) can also be defined as the convolution of the "true" brightness
distribution with the clean beam (k).

¢, = h*t, "true clean” map

The "clean” map (c) can be regarded as an estimate of the "true clean" map (c,). The
deconvolution need not be complete, i.e., leaving residuals (r) added to the "clean" map (¢).
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In practice, this method is i_mplemeritcd iteratively. A single peak is found at each iteration.
Its contribution to the output is obtained by convolving a §-function in the wavenumber with
the system transfer function, and thén is subtracted from the data. This procedure is repeated
until some criterion is satisfied: ’

3.4.4 The IMP Algorithm -

IMP (Incremental Multi-stage Parameter) of Clarke [Cla87, Cla88, Cla89] is an iterative
algorithm. The IMP spatial spectrum starts from the output power distribution of a sensor
array which implies that the conventional beamforming is used as the initial stage in the IMP
algorithm. A single peak (the global maximum) is found in the output spectrum estimate
and the contribution of stimuli in the corresponding direction of the peak is found by
convolving a 8-function in wavenumber (or frequency in time series analysis) with the system
transfer function. In order to remove the effect of the selected peak, the weighting
(pre-conditioning, which is assumed to be uniform in the initial procedure) is modified and
applied to the data. This is one feature that differs in IMP relative to CLEAN where the
effect of the selected peak is subtracted from the input data directly.

The conventional spectrum estimate under the assumption that the noise correlation matrix
is an identity matrix (i.e., the noise at sensors is assumed to be of equal power and uncorrelated
from sensor to sensor) is given by

_ a’(0)-X-X".a(0)
a"(0) - a(0)

P(0) (3.34)

In more general cases where a matrix filter is applied to the input, a suitable expression for
the spectrum may be expressed as

a"(0)-C-X-X".C-a(0)
2"(6)- C - a(9)

P(O)= (3.35)

where C is the pre-conditioning matrix, which is the identity matrix in the initial iteration
and modified afterwards according to the direction estimate in the previous iteration.

The statistic used in the IMP algorithm is the Signal plus Noise to Noise Ratio (SNNR), that
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is

a¥(@)-C-R-C-a(®)
a(0) - C-Ry-C-a(®)

 SNNR(a) = (3.36)

In the conventional beamformer where uniform weighting is used or when noise
pre-whitening is applied to the case when Ry =1, equation (3.36) is equivalent to equation
(3.34) which is used in the initial stage of IMP.

When a dominant peak has been found in the output spectrum estimate, or a global maximum
of the SNNR has been identified, the pre-conditioning is adjusted to eliminate, or null, the
response in the corresponding direction. The contribution from this direction to the output
spectrum is cancelled by a projection matrix which projects into the null space of the array
manifold vector of the peak direction in SNNR. Such a projection matrix is as

H
ap,, ° ap,,

Q=1- (3.37)

H
apk N CO " apk

where a,, is the array manifold vector in the peak direction, and C, is a generalised
pre-conditioning matrix in the initial stage which can be set to the identity matrix or the
inverse of the noise correlation matrix, or possibly the inverse of the sampled data covariance
matrix. The pre-conditioning is then updated

H
C,-a,-a,-C,

¢,=C,-Q-C,=C, ——-
1 oQ -4 o aﬁ_co_ap‘:

(3.38)

It is evident from the fact that af,, - C, - a,, = 0 that the output will not contain contributions
from noise or si gnal components matching the array manifold vector a,,. Substituting (3.38)
into (3.35), a modified spectrum results with a null in the direction of the global peak in the
previous spectrum estimate. The power level of this spectrum is compared with some
pre-defined threshold to decide whether to terminate the procedure. If the criterion is not
satisfied, the maximum in this modified spectrum is found and the corresponding array
manifold vector is used to form a projection matrix and then a new modified spectrum. This
procedure is repeated until the termination criterion is met.
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The cancellation philosophy employed by IMP has been implemented in the DICANNE
(Digital Interference Cancelling Adaptive Null Network Equipment) sonar system [ And69].

3.5 Subspace Fitting Methods

The concept of SubSpace Fitting (SSF) was proposed by Viberg and Ottersten [ORKS89,
0OV88, VOI91, VOK89, VOKOI1, etc] for sensor array processing, and so was a common
framework to unify different hi gh resolution methods into a so-called subspace fitting class.
These methods include the deterministic ML (Det-ML), the Conventional BeamForming
method (CBF), MUSIC, Multi-Dimensional MUSIC (MD-MUSIC), and ESPRIT et al. From
this framework, algebraic relations between different methods are quite clear and a better
understanding of the problem makes it possible to introduce the new algorithm. The optimal
Weighted Subspace Fitting (WSF) method resulted.

The formation of the basic subspace fitting problem results from the fact that the Det-ML
method tries to fit the subspace spanned by A(0) to the measurement X, which can be defined
as

[A,T] = arg m@rn| IM~AT||2 (3.39)
A,

where M is an m x g matrix representing the observed data, the m xp matrix A is
parameterised by the directions of arrival, and T is any non-singular p X ¢ matrix.

Since the subspace fitting problem is separable in A and T [GP73], substituting the
pseudo-inverse solution, T = A*M, into equation (3.39) yields the following equivalent
problem ‘

A =arg min Tr{P;(8)-M-M"} (3.40)
A

Choosing M as a Hermitian square root of the covariance matrix MM? =R and searching
simultaneously in the d-dimensional signal subspace, (3.39) yields the Det-ML method as
given in (2.57). Setting M = E¢ and forming a one-dimensional spectrum, the MUSIC
algorithmis obtained. Itis shown [Vib89] that for a large number of snapshots it is sufficient
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to consider the case when M = E, only if the signal subspace matrix is post-multiplied by a
specific weighting matrix W. Consequently, all methods within the subspace fitting
framework minimise the following criterion function

Vy=Tr{P;(6)- Eg- W-Eg} (3.41)

where W is a d x d weighting matrix. Equation (3.41) defines the weighting subspace fitting
methods.

It is well known that the Det-ML method does not attain the Cramer-Rao Bound (CRB) as
the number of snapshots tends to infinity, since the number of unknowns also increases
without limit. This observation encouraged searching for an optimal weighting matrix that
results in a method with better asymptotic performance. The covariance matrix of the estimate
error for WSF is formed and then minimised with respect to the weighting matrix. It was
found that there exists a weighting matrix such that WSF always outperforms Det-ML when
the amount of data is large. Such a weighting matrix is

W, = (A= DA (3.42)

In practice, only finite measurements are available and the estimates rather than the true
values are used to form the WSF criterion function as

V©) =Tr{P;(8)- Eg(As - *D)°- A3 - B (3.43)

3.6 Other DOA Estimation Techniques

The survey of the high resolution algorithms given above is by no means exhaustive. Only
typical examples in each class of method have been included. Many other methods which
also provide high resolution abilities have been proposed. In this section, some of the newly
suggested methods are described. These include the Method Of Direction Method (MODE)
of Stoica and Sharman [SS90a,b] and the CLOSEST estimator. of Buckley and Xu et al
[BX90b, XB90, HXB90, XBM90]. |
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The MODE Technique

The MODE method is also an eigenstructure based approach with advantages of providing
the comparable performance of the ML estimator at a computational load which is not much
heavier than that inherent in the popular MUSIC algorithm. The performance advantage
over the MUSIC method is that MODE behaves better in highly correlated situations.

The invention of the MODE method was stimulated by the thought of combining the
computational simplicity of the MUSIC method and the resolving ability forhighly correlated
sources of the ML estimator. Eventually, the MODE estimator is a large sample realisation
of the deterministic ML estimator under certain approximations, which simplifies the
computational complexity while keeping the capability of resolving highly correlated sources.

[he CLOSEST Estimator

A new approach to spatial spectrum estimation for arbitrary configured arrays was recently
introduced by Buckley and Xu. This new approach is based on forming a spatial spectrum
estimate by projecting onto a vector or vector set in the estimated noise-only subspace which
is in some sense closest to the arra)} manifold in a sector of source locations where high
resolution is desired. Several measures have been used to derive different CLOSEST vector
algorithms, such as the FINE (FlIrst priNcipal vEctor) algorithm and the FINES (Flrst
priNcipal vEctorS) algorithm. It was shown that in a location sector of interest the FINE
algorithm provides higher spectral resolution than either MN or MUSIC, with location
estimation variance comparable to MUSIC.

In the FINE algorithm, a single vector in the estimated noise subspace is defined which has
a minimum angle to a subspace which essentially spans the a(8) over ©. Instead of finding
a single vector, FINES finds a set of orthogonal vectors in the noise subspace, whose range
has a minimum angle with the source representation subspace.

The selection of the sector width is of great importance in both FINE and FINES algorithms.

Beam-width sectors are often recommended since they have both computational and
resolution advantages.
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3.7 Detection Techniques

Correct detection of signals is of great importance in most signal subspace methods and any
parametric estimation method. The issue of estimating the number of signals has been
addressed in many papers, €.g., [Sch81, WK83, WK85b, Wax85, WZ§8, etc.]. For most
situations, the correctness of the knowledge of the number of signals may be crucial for the
following parameter estimation since it may lead to incorrect splitting between the signal
subspace and the noise subspace. A lot of effort has been expended on this problem.

Anderson’s hypothesis testing procedure [And63] might be the first attempt in estimating
the number signals. This procedure was based on the confidence interval of the noise
eigenvalues and a subjective threshold was required. To avoid the assignment of such a
threshold, information theoretic criteria were developed by Akaike [Aka73, Aka74] and
Rissanen [Ris78, Ris83], and the so-called AIC (Akaike Information Criterion) and MDL
(Minimum Description Length) methods were formulated respectively.

Probably, Liggett [Lig73] was the first to address the problem of estimating the number of
signals by exploiting the structure of the underlying model of the data. Under the assumption
that the signals are Gaussian random processes, a so-called Likelihood Ratio (LR) statistic
is formulated

I A
LR (k) =log) —*—— (3.44)
= 3 X
i=k+1
and tested for a sequence of hypotheses
H®: M= k+2=.' =k,

The value of k for which H® is first accepted is selected as the estimate of the number of
signals. The LR test uses the ratio of the arithmetic mean of a set of eigenvalues to their
geometric mean to measure their equality.
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The two more commonly used criteria 'based on the information theoretic criteria are the
eigenvalue forms of AIC and MDL derived by Wax and Kailath [WK83, WK85b]. They
are widely applied in array signal processing since the eigenvalues are available in most high
resolution techniques. It was shown that the AIC approach tends to overestimate the number
of signals as the number of measurements tend to infinity whilst the MDL criterion yields
an asymptotically consistent estimate of the number of signals. When N independent
measurements at an array of m sensors are available, the AIC and MDL criteria are given as
follows :

AIC(k)=—=2LR(k)+2k(2m -k) k=0, .m—1 (3.45)

1
MDL(k)=~LR()+5k(2m ~k)logN  k=0,--,m ~1 (3.46)

where k is the number of free adjusted parameters in the parameter vector. The number of
signals d is determined as the value of k for which either ATC or MDL is minimised.

Schmidt [Sch81] divided the space spanned by the covariance matrix of the array output into
the signal subspace and its orthogonal complement, the noise subspace. Ideally, the number
of signals can be estimated from the multiplicity of the smallest eigenvalues of the covariance
matrix, i.e., the number of eigenvectors spanning the noise subspace. In practice, however,
the covariance matrix is calculated as the time average from a finite set of observations, and
w.p.1 eigenvalues which are supposed to be equal to the noise variance are all different, and
even inseparable from the signal eigenvalues if the SNRs are not high enough or correlation
between signals exists. Both AIC and MDL criteria provide more objective approaches to
determine the number of signals incident upon a sensor array rather than making the
judgement by observing the eigenvalues directly. Both the dimension of the signal subspace
and the number of signals are determined simultaneously since they are equal in the case
where signals are non-coherent. When signals in different directions are strongly correlated
or even coherent (i.e., completely correlated) which is the case in specular multipath
propagation, the resulting signal subspace estimate is of a dimension that is usually less than
the number of signals. An incorrect division between the signal subspace and the noise
subspace causes the failure of most subspace based techniques, including the famous MUSIC
algorithm.
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In [WZ88], Wax and Ziskind adapted the MDL criterion to the case when fully correlated
(coherent) signals are present by using the knowledge of estimation of signal directions. The
formulated estimator for the number of signals can be expressed as a minimisation problem
as follows

Eyps =arg min  MDLB(k) (3.47)

ke {0, ,m—1}

where MDLB (k) is a slightly different version of the MDL principle from that given in (3.46)

m-

Ek l,(é(k})

l.
m-—k =1

MDIB(k)=N(m —k)- log—"—t+5k(2m -k)logN (3.48)
(’"ﬁ*mé‘*’))"_‘
i=1

where A,(0®)=...2 A j‘)(0(")) are the non-zero eigenvalues of the m xm matrix
P;(©0%) - R - P;(8®) which depends on 6% that can be estimated by

1 m—k "
it 2 M8
6* = arg min{lo - 1 (3.49)
g® m—k -k
( IT 2,(6%“)
i=1

The recently proposed WSF approach requires knowledge of both the number of signals
incident on the array and the dimension of the estimated signal subspace. Accompanied with
the WSF estimation scheme, a new detection scheme was formulated [VOK91]. The basis
of this new scheme is an observation noticed by several researchers [Sch81, Roy87, Cad88].
Given an estimate of the number of signals, the distance between the array manifold and the
estimated signal subspace is measured, and the estimate will be accepted if this distance is
small enough; otherwise coherent signals are indicated. This is expressed as the WSF cost
function converging to zero as the amount of data increases.
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CHAPTER 4

PERFORMANCE COMPARISON OF SPECTRAL AND
ROOT VERSIONS OF MEM, MVM, MUSIC, AND MNM

MEM, MVM, MUSIC, and MNM have all shown superior angular resolution abilities
compared to the conventional beamforming technique, although inevitably, at expense in
some form. The estimated DOAs obtained by these methods are depicted by the dominant
peak positions in the estimated output spectra, which involve a searching procedure over the
field of interest. Intuitively, a heavy computational burden is unavoidable,

Based on the fact that the MUSIC algorithm utilises the orthogonality between the signal
steering vectors and the eigenvectors in the noise subspace, a variation of MUSIC which
makes use of the roots of the associated polynomial to estimate DOAs was first suggested
by Barabell [Bar83], where it was stated that the polynomial rooting technique is also
applicable to other methods such as MVM. This method of dealing with the roots of an
all-pole direction finding spectrum is addressed as root MUSIC; more generally, it is called
the root version of MUSIC and the original MUSIC as the spectral version of MUSIC.
Although the uniform linear geometry constraint limits its popularity, it has also attracted
public attention.

In this chapter, we would like to restate the root MUSIC and derive root versions of MEN,
MVM, and MNM, while focusing our main attention on their asymptotic properties and
numerical examples.

Another topic in this chapter is the description of the simulation programmes. Since a large

number of simulations is going to be carried out in this and following chapters, the signal
and noise models and some assumptions are necessary before the implementation of the
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simulations and discussion of the results. The implementation of algorithms will be presented
in relevant chapters and that of the four methods to be discussed in this chapter and their root
versions will be given before presenting the simulation results.

4.1 Spectral and Root Representations

The output spectra for MEM, MVM, MUSIC, and MNM have been given in the previous
chapter, they are rewritten here briefly for the convenience of deriving their root forms.

MEM : _ u’f-R"-ul il
PMEH'(B) - Iui{ . R-l . a(B)IZ ( . )
MVRES P = 42)
' MM T a9y - R - a(@) '
MUSIC: p ©) = 1 43)
MUSICE™" ™ aH(@) - Ey - EX - a(0) '
MNM: . 1
. J () oW (4.4)

The averaging relationship between the ME method and the MV method has been observed
soon after the invention of the ME estimator [Bur72], which can be mathematically expressed
as

1 1™ 1
Prrnd®) 15 P ®,1) *-5)

where Py (6, i) is the output power spectrum with ith order model. The averaging over the
ME spectra from one point up to the m-point prediction error filter explains the lower res-
olution of the ML estimator.

A similar relationship between the MUSIC algorithm and the MN method was proved by
Nickel [Nic88], with the exception that the harmonic averaging is weighted. Also, it was
shown therein that the MUSIC spectrum and the MN spectrum are the extremes of the MV
spectrum and the ME spectrum, respectively, as the signal-to-noise ratio tends to infinity.
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This gives a good explanation to the better performance offered by the MUSIC and MN
methods compared to that of the MV and ME methods, and also the smoother background
in the MUSIC and MV.spectra.

Root Versions

The polynomial rooting technique is applicable only to the uniform linear array where the
array manifold consists of Vandermonde vectors. For such manifold vectors, the orthogo-
nality to noise subspace eigenvectors occurs for roots of the noise eigenvector polynomials,
which produce the peaks in the estimated output spectrum.

All of the four methods which will be included in this chapter can be written in a general
"all-pole" direction finding form as follows :

1
~af(8)-M-a(0)

P(8) (4.6)

where M is a Hermitian matrix taking different forms for different methods. We take the
MUSIC algorithm as an example for our derivation where M =E, - EX§.

In the MUSIC spectrum, peaks appear at positions where the array vectors are orthogonal to
noise eigenvectors, i.e.,

a"(0)-e, =0, k=d+1, -,m 4.7)

which, for uniform linear arrays, is equivalent to
.zl eik . e—jlﬂ:(i- 1)A Sin(8Y2 — 0 (4-8)

defined as the noise eigenvector polynomials. If we set z = exp(j2nA Sin(B)/A) € C, then the
above expression can be rewritten as -

D(z)= X ¢,- 27 V=0, k=d+1,--m 4.9)
i=1
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The signal zeros are defined as roots of each of these polynomials. A polynomial is therefore
formulated to combine all these polynomials in the following way

m

D(z)= 3 Dy2)- D) (4.10)

+1

which can be simplified to (¢f. [Bar83])
m-1 ; .
D)= %X b,z 4.11)
I=-m+1

where b, = X, _, . M(i, k) is the sum of the entries of M along the /th diagonal.

For the MUSIC algorithm, equation (4.10) is equivalent to

D(z)= i (i eik.z—{i—l))(i e&_z—(i—l)J
k=d+1\i=1 i=1

=k=§+laﬂ-ek-ef-a=a”-EN-Ei,'-a (4.12)

Peaks in the MUSIC spectrum correspond to the zeros in the denominator of the expression
in (4.3) which, in turn, are the roots of D (z) lying close to the unit circle in the z-plane. Once
these roots are available, the DOAs are ready to be estimated as

(A o
6, = arcsm(znAJarg (z), i=1,---,d (4.13)
Similarly, the root forms for MEM, MVM, and MNM can be formulated, which are the same
as that for the MUSIC algorithm except the form of matrix M.

For MEM, it is seen that the numerator in equation (4.1), where u, is the first unit vector, is
a scalar which is the (1,1) element of R™, the inverse of the covariance matrix, R. Itcan be
either included in the denominator or omitted without affecting the roots of eigenvector
polynomial, D(z). Matrix M is defined by the denominator and, for MEM, is given by
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M=R" .y v -R'=r.+/ (4.14)
where r =R - u, is the vector containing the first column of R™.

Root versions for MVM and MNM are straightforward. The key is also the matrix M which,
referred to equations (4.2) and (4.4), equals R™ for MVM and d - ¢” for MNM.

) * 1 0 + 1
* * ﬁ *
g -10 : 9 -0} . B OE® * ow . 108
§ o 5 -
£ 20 - 5 gl 106 8
3 i c 2 <
w3 - § 2 .8.
3 . L J
§ -30 ':' T g =30 04 o
3 . E - MNM
§-40~ s MEM do2 :2.40- : {02
1 1 B L 1 1 i 1 = L i
- - 0
50-90 -60 -30 0 30 60 900 ngo -60 -30 o 30 &0 90
Direction (Degree) Direction (Degree)
0 1 0 1
%\ 10 08 § 10 f 08
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Figure 4.1 Spectra of MEM, MNM, MVM, and MUSIC and their associated polynomial roots for two
equal-powered sources located at 10° and 12°. The vertical lines indicate the true locations of the sources.
There is only one peak associated with the two closely placed emitters in each spectrum, while the roots
show their proper locations. Two uncorrelated sources were used. The array was a uniform linear array
with half wavelength spacing. 20 snapshots were taken to form the data matrix,
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Figure 4.1 shows a simple but meaningful case where both the spectra and their associated
roots for the above mentioned four methods are displayed. In this case, two closely spaced
sources with equal powers are used. The spectral versions of the methods are shown to be
unable to distinguish the two sources by giving a single peak somewhere in between the two
given directions in each of the plots. However, the root versions demonstrate two separate
roots near the true DOAs which are depicted by the dotted vertical lines.

4.2 Performance Comparison between Spectral and Root Versions

Figure 4.1 illustrates that root versions of the four methods under consideration can provide
DOA estimates with reasonable accuracy while spectral versions fail to show two distin-
guished peaks in corresponding directions. This resolution degradation exists as long as an
estimated covariance matrix is used in estimating the signal zeros and DOAs. It has been
shown that spectral MUSIC and root MUSIC have the same asymptotic mean squared error
while the derivation of the mean squared error for spectral MUSIC is under the assumption
that distinct sources in space correspond to distinct peaks in the spectrum [PF88, RH89%a].
However, since radial errors in signal zeros affect the angular spectrum as well as the angular
errors in signal zeros, more loss in resolution in the spectral MUSIC is expected, which may
cause showing one peak for two closely spaced sources especially when the signal-to-noise
ratio is not high enough.

When an estimated covariance matrix is in use instead of the true covariance matrix, which
is generally the case in practice, errors arise in the eigenvectors which in turn result in errors
in the eigenvector polynomial D (z). Consequently, the roots are perturbed, i.e., errors will
appear in signal zeros as well. No matter whether spectral or root forms of eigenstructure
based methods are used, errors in the DOA estimates are unavoidable which, in the case of
root forms, are angular errors in signal zeros only; while, in the case of spectral forms, errors
result from both angular and radial errors in signal zeros.

For a general root approach, equation (4.10) can be expressed in the factored form, given the
zeros at z = z;,i = 1,---,m — 1, in the following way

D) =cTI:-I:(1 —z-7Y). (-2 -2)

=cH@) -H (1/2) (4.15)
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m-1

where ¢ is a constant resulting from the factorisation. Therefore H(z) = I1 (1 —-2z-z"") can

be expressed in the polynomial form as

HZ)=1-h 27— =h,_ - z7"D (4.16)

Define the perturbed zeros of H(z) as z;+Az,i=1,---,m —1 when errors exist in the
coefficients #;,i = 1,---,m — 1. The error Az, can be expressed in terms of the errors in the
coefficients as (¢f, [0S75])

m-—1 aZ" f
Az,':,,E;aT'Ahb i=1L2--,m-1 (4.17)
= k
. a1, z
so we have, from (4.14) and the fact that (MT(,.))l ton o (a%)),:,
aZI Zl-—k zim-t
= - (4.18)
k

_]m-l a1
-z I (1—2z-27)
1=1

i

1 (zi—2p)

®i

——

which is a measure of the sensitivity of the ith zero to an error in the kth coefficient of H(z),
and therefore

k m

m-1 m- m—1
Az; = E%—'Mk=m-lz ) ZZ*‘A}H (4.19)
k= Il (z;—z) II(z;-z) t=
H H

Correspondingly, the sensitivity of the zeros of H(z) to perturbations in its coefficients can
be defined as

1 .
s= 3 I—P= — (4.20)
- H I(l —2Z; Z,‘-l)lz
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The estimated D (z) due to errors in signal zeros is [RH89b]
a m—1 1 »
D(z)=6‘):, (A-(z+Az)-27)(1=(z,+Az) z) (4.21)
=1
where ¢ is a constant. Substituting the "clean"” signal zero z = z;, 1zl = 1, we have

i m-—1
Dlg™™) = ¢ - |AzP TTI(1 —z,z7)? (4.22)
i (=1 14

I=:

the approximation is o (N "), i.e., the terms dropped approach zero when multiplied by N and
N tends to infinity. The mean squared error, IAz;%, is obtained by taking expectations of both
sides of the equation (4.19), i.e.,

Jey;

D(e’™) )

AzP = D(e

o =Suy - 4.23)

E T —zz7HP
=1

=i

m-1
“1y 2
where Syy = m:{é Ell (1-z-2z7)| } is interpreted as the parameter sensitivity of the root

T=i

MUSIC method. A computationally more convenient expression for S,,,, has been derived
as

S _ m
MU a™(@) . Ey - Ey-a'(8)

(4.24)

where a’(0) is the first derivation of the steering vector a(8). After the derivation of B(ejw‘)
of equation (4.23) which is omitted here, Az, is given by

Az, =

- A
Swy (m — )0, (: 2] (4.25)

—_ a"ey.
o z e a”(8) - ¢,/

where A; are "pure” signal eigenvalues while A, are those corrupted by noise covariance o2,
i.c., A’k = ?"’; + 0-2.
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Errors in 31gnal Zeros, Az d1stnbute in both radian and angle. Denote Az, = ei#,-, then
L=z +Az,=e"" 41, e * =12l ™. It was shown that [RH89b]

l 2
2 - T — - 2 - 1 2 . — .
IAG;° = (Zn A Cos ei) ro- Sin“(¢; - ;) (4.26)
which is deduced as
— 2- 2 02 d lk H 2
RP=] —m—m——— ] . . . . . B!
146 (:m Cos e,) S0 Gl (tz:l 02 20 “427)

Compare |Az;? in (4.25) and 1A8,1? in (4.26), we can see that

; _
ﬂ _ 2l(m -d) > 2(ml-— :1) 2% 2m —d) (4.28)
AzP (Zcosef ()

2xA

Including the factor (\/(2nA Cos 8,)), a parameter yaddressed as the spectral efficiency factor
is defined as

2nACos®; Y 1A8;1
Y= - 4.29)

A 1Az,

which is a measure of the effectiveness of using a spectral approach. Evidently, spectral
MUSIC is much less effective than root MUSIC. For any moderate A (not tending to zero),
spectral MUSIC suffers a large degradation in resolution.

A similar relationship between spectral MNM and root MNM is proved to exist as well
[RH89Db]

1405w _ 1 x ¥
Az 2’ (ZRA Cos G,-) (4.30)

which is not related with the number of sources and that of sensors. The difference between
spectral and root MNM is much smaller than that between spectral and root MUSIC.
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4.3 Signal and Noise Models in the Computer Simulation

The computer simulations were carried out on an IBM PC using the package MATLAB
(MATrix LABoratory). The array is assumed to be uniform linear array with half wavelength
spacing. 10 elements are used and all the sensors are assumed to be omnidirectional.

Two uncorrelated signals are generated from sine waves at two different frequencies. The
required correlation between the two signals is guaranteed by applying equation (2.25) if
correlated signals are needed. The difference between the two signal frequencies is chosen
so that non-correlation is guaranteed and so is the narrowband signal assumption. The noise
is assumed to be Gaussian white noise with zero mean and unit variance.

Although fully correlated sources are expected when the correlation factor is assigned as 1,
only very strongly correlated sources can be obtained in the finite sample case. In the fol-
lowing simulations, when the correlation factor is given as 1, it does not mean that completely
coherent sources are applied.

4.4 Monte Carlo Results

Some Monte Carlo simulations have been carried out and are presented in this section,
providing more insight into the performance of algorithms which have been analyzed in
previous sections. Data was collected from a uniform linear array of 10 elements with half
wavelength spacing receiving signals from two far field point sources which have been
assumed uncorrelated, and correlated with a correlation factor being 0.5 and 0.95 respectively.
Results, in terms of probability of resolution, bias and standard deviation of the estimated
angles, were obtained for scenarios where the signal-to-noise ratio and angular separation
of two sources were varied. In each of a number of discrete angular separations and signal
to noise ratios, 500 trials were taken to form the statistics, and for each of these trials 100
independent samples were observed.

The observed field was [0, —5°,0, + 59 for the spectral versions (where 8, and 6,(> 6,) are
the two source directions), i.e., only the segment of spectra within this region' was checked
and the peaks were found. The angular increment was 0.1°. Once two estimates were
observed, they were to be examined with respect to whether they could be regarded as
estimates of the true directions of signals. Two criteria were deployed for the judgement :
1) the response at the mid-point of these direction estimates is smaller than both responses
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at these two directions; 2) the estimates are within £3° from the true directions, which are
known in simulations, i.e., | §; ~9;] <3°. When only a single peak could be found in the
resulting spectra, the methods are regarded as failing to resolve the two sources.

For the root versions, since 10 elements were assumed in the array, 9 roots were found in
each trial and only two of them were the possible DOAs. To choose these two roots out of
9, criteria were set: the estimates nearest to the true directions were thought to be the wanted
estimates if their moduli were greater than 0.7, and a separation of 0.5° between the two
estimates were required.

Algorithms are grouped into A and B for convenience of discussion

A:  Spectral MEM B: Root MEM
Spectral MVM Root MVM
Spectral MNM Root MNM
Spectral MUSIC Root MUSIC

4.4.1 Results as Functions of Signal to Noise Ratio

To test the algorithm performance of Groups A and B as a function of signal to noise ratio
(SNR), the angular separation is fixed at 2° with one source at 0° and the other at 2° from the
normal of the array. The probability of resolution, biases and standard deviations of angular
estimates of both sources were examined. The results are plotted as follows :

Correlation Factor Group A Group B
Figure 4.2 p=00 (a)- (e ®-®
Figure 4.3 p =0.50 @ - (e ®-0
Figure 4.4 p=0.95 (@) - (e) ® - G)

In each of these figures, (a) - (€) refer to the spectral versions (Group A) of the algorithms
under examination and (f) - (j) to the root versions (Group B). More straightforwardly, the
results in the left column are from the spectral versions and those in the right one from the
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rootversions. The samples are taken at 5 dB increments, and the results of different algorithms
are depicted by different line styles as indicated in the plots of probability of resolution. The
contents of each plot are listed as follows :

Plot Version Content

(a) Spectral Probability of Resolution

(b) Spectral Bias of Angular Estimates of Source at 0° (#1)
(c) Spectral Bias of Angular Estimates of Source at 2° (#2)
(d) Spectral Standard Deviation of Source #1

(e) Spectral Standard Deviation of Source #2

® Root Probability of Resolution

(g) Root Bias of Angular Estimates of Source #1

(h) Root Bias of Angular Estimates of Source #2

@) Root Standard Deviation of Source #1

G} Root Standard Deviation of Source #2

4.4.1.1  Probabilities of Resolution

The probabilities of resolution of all four of these methods and their root versions increase
as the Signal-to-Noise Ratio (SNR) ifnprovcs. The MINM starts to resolve the sources at the
lowest threshold for both the spectral and root versions, and for all three cases when the
correlation factors are assigned different values. For spectral versions, the MUSIC algorithm
and the MEM possess similar resolving abilities; while, for the root versions, the MUSIC
algorithm resolves the two sources at a lower SNR. Both versions of the MVM need the
highest resolution threshold among these four methods at different correlation factors.

The SNRs at which the spectral versions begin to distinguish the two sources are the same
for each method for the cases when the correlation factors are 0 and 0.50. The differences
rely on the fact that for all methods the probabilities of resolution have smaller values in the
0.50 correlation case than in the uncorrelated case at the same SNRs.

The root versions demonstrate a bigger probability of resolving the two sources at lower
SNRs when the correlation between the two sources is stronger. However, the trend of
decreasing resolution abilities as the correlation increases is similar to that in the spectral
cases. A bigger degradation is expected when the correlation factor is large.
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Chapter 4

The resolvabilities degrade as the correlations between the two sources get bigger, i.e., higher
SNR is needed to achieve the same probability of resolution at higher correlation. The
right-bound shifts of the plots of the probabilities of resolution from the correlation factor
from 0.50 to 0.95 are much bigger than those from correlation factor 0 to 0.50.

The case when the correlation factor is unity (fully correlated sources) was also examined.
Both the spectral and root versions fail to resolve the two sources. In the spectral case, only
a single peak was revealed. In the root case, among the 9 roots which were obtained from
the 10 element array either only one root showed very big modulus or several of them were
of the same order so that none of them could be reasonably regarded as the signal root. This
is consistent with the theoretical prediction.

4.4.1.2 Biases of Angular Estimates

Biases of angular estimates for both sources were examined and plotted. For all situations
considered in the simulations herein, biases tend to zero as the SNR goes very high. In the
spectral cases, although the MINM starts to resolve the two sources at relatively lower SNR,
it shows large biases over that region. The probabilities of resolution of spectral MUSIC and
spectral MEM are similar while the MUSIC algorithm suffers slightly higher biases. MVM
begins to separate the two sources at a higher SNR and also depicts higher biases. Positive
biases in most of the plots of the first sources and negative in those of the second sources
imply that the peaks (if there were two) declined to the middle point between the two source
directions. This is especially the case when the correlation factors are getting bigger, while
MNM seems to be an exception.

Comparatively, the biases resulting from the root versions show bigger fluctuations., Again,
MVM gives the biggest biases in all three cases with different correlation factors even when
the four methods are able to resolve the two sources, while the other three methods show
comparative biases. When the probabilities of resolution are still small, the corresponding
statistics are less meaningful in providing the comparable performance. As the probabilities
get larger, MNM depicts the smallest biases while MUSIC shows smaller biases than MEM,
which is opposed to that in the spectral cases. In the highly correlated case, the differences
among the biases given by different methods are more noticeable. MUSIC and MEM perform
similarly while MNM behaves better and MVM worse, concerning the biases of angular
estimates.
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4.4.1.3 Standard Deviations

Standard deviations of the direction estimates were also examined. They all tend to be near
zero as the SNR goes very high, no matter whether the sources are uncorrelated or correlated
and how strong the correlation is (but not fully correlated).

For the uncorrelated cases, both spectral and root versions show a smooth decrease in the
standard deviations as the SNR goes higher. Although MNM demonstrates higher resolving
abilities at lower SNRs and smaller biases than those from MUSIC and MVM, high standard
deviations exist before other methods begin to resolve the two sources. At SNRs when all
the four methods are able to resolve the two sources, the standard deviations are comparable
to each other while those from the MUSIC method are lower in the spectral case; and those
from MUSIC and MVM are both smaller than those from the other two methods in the root

versions, mainly in the uncorrelated and weakly correlated cases.

All four methods demonstrate better resolving abilities at lower SNRs in the root forms than
in the spectral forms. However, under the condition that the spectral versions give separate
estimates, the standard deviations are roughly the same. This is consistent with the theoretical
derivation in [PF88, RH89a].

In figure 4.3, where the case with 0.5 correlation is given, a few points in the plots need
explanations. In figures (d) and (e), the standard deviations given by the MUSIC algorithm
are on the horizontal axis when the SNR equals 10 dB. The probability of resolution at this
point is 0.002 which implies that only one of the 500 trials gives two estimates that can be
accepted as estimates. From the point of view of the statistics, this point should not be
included since only a single sample is available. Itis given here in the plot merely because
the MUSIC method shows the possibility of separating two sources at this SNR. This is
typical for this class of "false” points in the plots. 12 is usually taken as the minimum number
of samples which can be used to calculate the statistical measures. Since 500 trials were used
in the simulations for each set-up of parameters, the probability of resolution is required to
be not less than 0.024 to give a meaningful statistical quantity. This helps to explain the
sharp turnings in some of the plots shown in figure 4.4,

68



Chapter 4

4.4.2 Results as Functions of Angular Separation

The performance of algorithms as functions of angular separation was studied when the signal
to noise ratio was 10 dB for both sources (not the array signal to noise ratio which is con-
ventionally defined as the SNR at each element of the array per snapshot + 10log,(m)). The
increment of angular separation was 1°. Again, the performance was tested for different
correlation factors and results are shown in figures as follows:

Correlation Factor Group A Group B
Figure 4.5 p=0.0 (a) - (e) M-
Figure 4.6 p =050 (@) - (e) -0
Figure 4.7 p=095 @ - ®-0

Statistics which have been examined were the same as those in the previous sub-section and
were arranged in each figure in the same way.

4421 iliti f Resolution

The probabilities of resolution depicted in plots (a) and (f) from figure 4.5 through figure 4.7
show the same trends as those in figures 4.2 to 4.4 as functions of signal-to-noise ratios. For
algorithms in Group A (the spectral versions), the MNM needs the lowest resolution threshold
and the MVM the highest resolution threshold while the MUSIC method the MEM share
roughly the same threshold and the same resolution possibility. This is similar to the situation
inthe previous sub-section. However, as the correlation between the two sources gets stronger
the difference between the possibilities offered by the MUSIC method (which is obviously
bigger) and the MEM emerges, although the thresholds are still the same which changed
from 1° separation, to 2° and then to 4° separation. Meanwhile, the threshold for MVM is
from 4°, to 5° and then to 6°, and that for MNM from 1° in both the uncorrelated case and the
case with 0.5 correlation factor to 2° separation in the strongly correlated when the correlation
factor is 0.95.

The root versions of all these methods also show degradation in the probabilities of resolution
as the correlation gets stronger. Compared to the spectral case, a 2° equivalent advantage
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Chapter 4
exists in all three cases for all four methods. The order of four methods in resolving the two

sources remain the same for different correlation factors and so does the diversion among
them.

4.4.2.2 Biases of Anqular Estimates

The biases shown in figure 4.5 tend to converge as the two sources are more widely placed.
What is different from those as functions of SNRs is that the biases do not completely vanish
as the angular separation becomes large. Especially, in the group of spectral versions, the
biases obtained from MEM seem to be constant over a wide band of the angular separations.
On the other hand, both MEM and MVM give visible biases even at the separation of 12° in
the root versions. :

Infigure 4.6 where the sources with 0.5 correlation factor were examined, the spectral versions
of MEM and MVM both suffer from biases at big angular separation; while in the root
versions, the performance degradation of MVM is more severe than that of MEM. This
performance degradation is more serious in the highly correlated source cases shown in figure
4.6. The MUSIC algorithm shows constant biases in both the spectral and root versions, and
MVM gives about 0.5° bias. Although MEM shows very high bias at smaller angular sep-
arations, the biases tend to be at the same level as those in the uncorrelated and weakly
correlated cases. Comparatively, MNM behaves much better in both versions.

4.4.2.3 Standard Deviations

Plots (d}), (e), (1), and (j) in figures 4.5 through 4.7 give a clear picture of the behaviour of
all four methods in both versions in the measure of standard deviation. Although the MN
method shows lower bias in all three cases with different correlation factors, its standard
deviations are higher than those given by MVM and MUSIC, at the same level as the ME
method. At the 0.5 correlation factor, the difference between the standard deviations given
by MNM and MEM, and that between MUSIC and MVM are still not significant. As the
correlation increases to (.95, these differences are shown in both the spectral and the root
situations. MNM suffers from the highest deviations, which are higher than those given by
MEM,; the standard deviation given by the MUSIC method is beneath both those given by
MNM and MEM, while MVM demonstrates the lowest deviations.
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4.5 Discussion

Besides the representations of both spectral and root versions of MEM, MVM, MUSIC, and
MNM, the asymptotic properties of the two versions were compared with MUSIC and MNM
being two examples. The advantages of the root version were demonstrated. Computer
simulations were also carried out and analysed. The results were presented as functions of
signal to noise ratios and those of angular separations respectively. The calculation of
statistics is greatly dependent upon the criteria which are set up in the processing. The results
shown in this chapter are obtained from those criteria described in the relevant parts. Slightly
different statistics are expected from the same simulation data if different criteria are applied.

74



Chapter 5

CHAPTER 5

ESPRIT ALGORITHM

Although the MUSIC algorithm provides substantial performance advantages over many
other high resolution methods, the searching procedure over the parameter space and the
storage required for array calibration data limit its generality in practical implementation. A
new member in the class of signal subspace methods has appeared which is superior toMUSIC
in that it dramatically reduces the computation and storage requirements inherent in MUSIC.
This new technique is termed ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) and is based on an eigen-decomposition of the sample covariance
matrix and "second stage" processing to obtain the DOA estimates, or / and other parameters.
This technique, like other eigenstructure based methods, has its origin in Pisarenko’s method
for harmonic retrieval and found applications in temporal signal processing [RPK86] as well
as in sensor array processing [OV89, RGO89, RK87, RK89, RPK8S5, etc.].

So far two algorithms have been developed for the ESPRIT technique : LS-ESPRIT (Least
Squares ESPRIT) and TLS-ESPRIT (Total Least Squares ESPRIT). The former was the
original ESPRIT algorithm introduced in [PRK86, RK89] which has already been proven
equivalent theoretically to TAM (Toeplitz Approximation Method) [May88, RH89¢]. The
latter algorithm is relatively new, formulated in an attempt to give consideration to errors in
both signal subspace estimates resulting from noisy measurements. The difference between
LS- and TLS-ESPRIT is not significant in most cases though LS-ESPRIT vyields biased
parameter estimates at low SNRs. The TLS solution of the ESPRIT algorithm is expected
to yield better estimates, i.e., estimates with lower variances. Simulations have shown that
TLS-ESPRIT is relatively insensitive to array errors, and that its use of the TLS minimisation
criterion yields apparently unbiased parameter estimates even at low SNRs [SRK89].

Both LS- and TLS-ESPRIT algorithms have been analyzed in, e.g., [RH89d] and [OVK91]
respectively. The TLS-ESPRIT was summarized in a more general class of subspace fitting
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methods [OVK89, VO91]. An asympiotic equivalence between LS- and TLS-ESPRIT was
suggested and proven [RH89d]. This chapter will describe the LS and TLS algorithms briefly,
present their implementations in the computer simulations, and then focus on their per-
formance comparisons with some well known methods, spectral MUSIC and root-MUSIC,
which are chosen as representatives of the methods discussed in the previous chapter.

5.1 ESPRIT Algorithms

Beside the assumptions which have been made in chapter 2 concerning the sensor array and
signal waveforms, the ESPRIT algorithm requires an essential constraint on the array; that

“is the array should be composed of two identical subarrays which are displaced by a known
translational vector A. This special structure allows the parameter estimates to be obtained
without the knowledge of the individual sensor responses (i.e., no calibration is required)
and without computation or search of some spectral measure. Like the inter-element spacing,
this vector is also specified in fractions of a wavelength. Because the array may possess
arbitrary geometry, provided that the displacement is guaranteed, DOAs are specified relative
to the normal of A instead of that of the array (in the linear array case, the two normals are
the same). Let the array be composed of two identical arrays with a constant displacement
vector and all measurements be referenced to a common reference point (sensor). Then,
referring to equation (3.28), the outputs of two subarrays are related by phase shifts and
expressed as follows :

x(t)=[a(0,), - -,a0)] -s(®)+n ()= A -s(t)+n(t) (5.1a)

v =[a@)- ¢, a0y ] -s@)+n ) =A-®-s@)+n,() (5.1b)

where
& = diag[™. .., ¢'*] (5.2)

describes the propagation between the two subarrays and ¢,’s are phase shifts relating outputs
from the two subarrays and can be used to obtain the DOAs, 6,’s, by the following relation

6, =27- |4l - Sin6, k=1,-d (5.3)

Introducing a general array manifold G to describe array responses from the two subarrays
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A
G=[A.¢] (5.4)

the overall output of the array can then be expressed in a compact form as

_ X(t) _ A nx(‘) _
z(t) "[y(t)] _[A _ cb] -s(1) +[n,(t)] =G-s(2)+n() (5.5)

Under the assumptions that the noise sequence is a zero mean complex Gaussian process
with variance o and uncorrelated with the signals, the asymptotic covariance matrix is given
as follow :

R, =E[z(t)-Z'¢)] =G-§-G" + %, (5.6)

Since GSG” is of rank d, the generalised eigenvalues of the matrix pair {R,, T}, i.c., the
eigenvalues of Rz, in metric of Xy, can berepresented as A, 24,2 - 2 A, > My = = Ay,
= 07, and the associated eigenvectors ¢; satisfy the identity ‘

Ry -e,=X-Zy ¢ (5.7)
or

g?0,)-¢,=0, k=1,2,--.d, i=d+1,d+2,-,2m (5.8)

where g(6,),k = 1,--,d are the d column vectors of G. Equivalently, e,,e,,---,e, span the
same subspace which is spanned by the column vectors of G, i.e.

[epez,“"ed] =GT (5.9)

where T is some non-singular d xd matrix. Define Ey and Ey as partitioning [e,, e,, -, €,]

E
le, e, e =[E"] (5.10)

Y.

then
E,=A-T, E,=A-&-T (5.11)

and
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[E, EJ]=A[T oT] (5.12)

which , denoting Eyy = [Ey  E,l, gives

) T
E=E! E, [E,][E E/] = [ T%H}A”Arr @T] (5.13)

and E is non-negative definite Hermitian and is of rank d. Thus E has the representation of
E=V . diag(,b, ,1,,0,---,0)- V¥ (5.14)
where [;>0,i=1,---,d and VV? =1_. Search for a 2d x d full rank matrix W such that
[Exy EJW=0 (5.15)
ie.

AT OTIW=0 (5.16)

Since A is of dimension m xd and of rank d, the above equation is equivalent to

[T ®TIW=0 (5.17)
Once again, partition W as
W,
W= W (5.18)

where W, and W, are two d X d matrices. This, together with (5.17), yields

W
[T @T) [wj =TW, +®TW,=0 (5.19)

or

~-W,-W;' =T'0oT ‘ (5.20)
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Thus, any W satisfying (5.15) has the interesting property that the eigenvalues of the matrix
—W, - W;' generated from the partition in (5.18) are given by e_”",i =1,---,d. Therefore,
the DOAs are obtained directly.

To complete this analysis, it is sufficient to exhibit such a W and toward this purpose, a
re-examination of (5.14) shows that

E-v,=l-v,=0 d<i<2d (5.21)

where v; represents the ith column vectorof V. Since [Ey E,] is also of rank d, from (5.13),
(5.21) reduces to

[Ey Ejv,=0 d<i<2d (5.22)

Thus the desired W is given by

v
W= [vd+1:vd+2’ ’ "’v:ld] =|:Vlj:| (523)
2

where V,; and V,, are two d X d sub-matrices of

Vi Vi
V_|:V21 sz:| (5.24)

and eigenvalues of —V,,- V5, gives the actual DOA estimates. These eventually are the
TLS-ESPRIT estimates of the DOAs.

A spectrum representation of the covariance matrix of the whole array can be expressed as
n H H H
i=1

where E;=[e,,---,e], Ey=[e;,,, -, e,l, and A,2A,2..-2A,,. For non-coherent
waveforms, the source covariance S is of full rank and Eg spans the same space as G. Given
finite data record, the sample covariance matrix must be estimated and so are Eg,E,,, and A
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5 13 A A pH B & pH
Rz =N "—21 x(t) x"(6)=Eg- Ag-Bf +Ey - A, - By (5.26)

The TLS version of the ESPRIT algorithm has been shown [ROSK88, VO91] to minimise
the following cost function

Bl [ A o,
min| ) [Esj —[A . (D]Tl |2 = minj|E; -G - T|13 (5.27)
S

where Eg, and E, are obtained by appropriately partitioning K4 corresponding to the two
subarrays. The original formulation of the ESPRIT algorithm is the LS-ESPRIT which
assumes that there are no measurement errors in Ey,, .., letting Eg, = A - T, and consequently
the cost function reduces to

min] | Eg, - A®T] |2 (5.28)
Denoting ¥ =T - & - T, the cost function for LS-ESPRIT can be rewritten as
min| | B, —Eg, - ¥I17 => ¥=E5 - Eg (5:29)
or assume that no errors exist in Eg, resulting in
min| | Eg, — AT|{2 = min}| E;, - Eg, - W77 = W¥i=E}, E (5.30)
where the symbol (-)* denotes the Moore-Penrose pseudo inverse.
When only finite noisy measurements are available, the covariance matrix needs to be esti-
mated from the given data. The estimated signal subspace is inevitably corrupted with noise
which means that errors are present in both K, and E,, in general. Assumption that either
Es, or K, is error free is inappropriate and the LS solution of the ESPRIT algorithm yields
biased estimates, especially at low SNRs.
By applying a Total Least Squares (TLS) criterion to the preliminary version of the ESPRIT
algorithm, the LS-ESPRIT algorithm, errors which might exist in both K, and E;, are taken

intoaccount. Solving the minimisation problemexpressed in (5.27), the intermediate variable
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¥ is given as (cf. [GV80, GV83])
‘iITLS ==Vp,- V;; (8.31)

where V,,, Vo, are defined in equation (5.24). The eigenvalues of ‘i’m in (5.31) give the
estimates of DOAs in the TLS sense.

Once ‘i’m is known, its eigenvalues can be calculated, which are also the eigenvalues of ¢
by the relationship T - ¥ - T~ =®. That is, the signal parameters are obtained as nonlinear
functions of the eigenvalues of ¥ which maps one set of vectors, Es,, which span an m-di-
mensional signal subspace, into another set of vectors, Esz.

0, =arcsin{arg(§)/2n- 1A}  Vk=1,--..d (5.32)

An SVD variant of ESPRIT was also suggested which may be preferred in cases where there
is large amount of data and numerical issues are important. The SVD versions of ESPRIT,
both LS and TLS, are easily obtained by replacing all the eigendecompositions in the
covariance versions with SVD’s except for the final eigen-decomposition of ¥ where phase
information is required [RK89].

5.2 Array Geometry for ESPRIT

Although applicable to arbitrary geometry, the ESPRIT algorithm is not as general as the
MUSIC algorithm due to the fact that the array is assumed to be translationally invariant.
The original version of ESPRIT assumes a single displacement invariance in time or space
which results in that only a single parameter per signal may be uniquely estimated. There
are arrays that possess multiple invariances. Two important examples are rectangular phased
arrays and uniform linear arrays (ULAs). The most frequently employed arrays in practice,
ULAs, are considered herein.

From (5.3), it is easily seen that the range of DOAs in which there are no ambiguities is
determined by the following relationship

1
- <2njA| Sin@, < => |6, <arcsin (H) (5.33)
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If the front half space is to be observed, the subarray displacement is restricted to be no bigger
than half the wavelength. The estimation error variance is expected to decrease when the
displacement | A| is increased. A procedure was suggested to compromise these two aspects
by first using a small | A| to determine in which sector the sources are and then within this
sector reducing the estimation error variance with a large |A|. However, this procedure is
applicable only when sources are clustered. Problems arise when sources are present in a
large parameter range [OVK91].

Obviously only simultaneous exploiting all possible invariances in the array gives an optimal
ESPRIT estimation.

5.3 Implementation of the ESPRIT Algorithm

Before going to describe the implementation of the ESPRIT technique, both LS-ESPRIT and

TLS-ESPRIT algorithms are summarised. Based on this summary the implementation of
the two algorithms is. straightforward.

Summary of LS-ESPRIT Algorithm:

1) Calculate an estimate of the covariance matrix, lizz, Jfrom the obtained
measurements, Z
2) Compute the generalised eigen-decomposition of {Rzz, Ty}
R,E=Z,EA
3) Estimate the number of sources, d, if necessary
4) Obtain the signal subspace estimate S, = span{E,;} where

EX

Y.

5) Compute the eigenvalues of [Eif -EJ)" - El .E,

b=A{El B} EI-E,), Vi=1,d

6) Estimate the signal parameters using €, = ;)
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Summary of TLS-ESPRIT Algorithm:

1)-4) the same as LS-ESPRIT
5) Compute the eigen-decomposition of EXy - Exy where Byy = [Ey  E,]

EY, - E,y = EAE"
and partition E into d x d sub-matrices
{2
E, E
6) Calculate the eigenvalues of —E,;- E3}
&;=MG-E,-E), Vi=l,---d
7) the same as step (6) in LS-ESPRIT

Using the package, MATLAB, the matrix computations involved in the ESPRIT algorithms
can be implemented without much difficulty. Table 5.1 gives the simulation results from
LS-ESPRIT from 10 trials, and the simulation results from the root MUSIC method are given
in table 5.2 and those from the spectral MUSIC method are illustrated in figure 5.1.

Table 5.1 LS-ESPRIT Table 5.2 Root MUSIC
6, 8, 8, [ 8, P2
-0.82 142 0.34 089 125 095
-0.10 1358 .24 092 162 0.96
-0.15 1.60 -0.06 091 165 0.95
0.49 184 0.48 093 196 0.94
-045 2.35 020 090 185 0.95
-057 226 028 095 226 093
-0.38 1.93 0.06 0.91 1.60 0.94
025 177 0.26 091 145 094
013 221 -0.01 0.96 249 0.94
022 192 0.27 093 195 0.95
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Figure 5.1 Spectral MUSIC

The signal parameters for the above simulations are given as follows:d = 2,m = 10,N = 100,

the two sources are assumed to have equal power of 10 dB relative to the unit noise variance
and are placed at 0° and 2° to the normal of the array. The element spacing in the uniform
linear array is half a wavelength so the beam-width is about 11.5°. The conventional
beamforming method fails completely in this closclyl'. s?%ced source case, as does the spectral
MUSIC method shown in figure 5.1. The number of sources is assumed known in all three
methods. The 2 estimates which are closest to the true directions in the 9 estimated in the
root MUSIC method are chosen and so are their corresponding radial estimates. For the
ESPRIT algorithm, only two estimates are brought out and they are re-ordered because of
the permutation in the processing.

The performance advantages of the ESPRIT technique over the spectral MUSIC method is
noticeable from the example shown above. To compare the performance of the two tech-
niques, more results are necessary. To investigate their behaviour under different parameter
set-ups, a large amount of simulation work has been carried out and will be presented in the
following section.

Only the LS-ESPRIT was implemented to compare the ESPRIT technique with the MUSIC
technique. As was stated in the description of the algorithms, the advantages of TLS-ESPRIT
over the LS-ESPRIT are mainly at low SNRs and are based on the explicit examination of
the noise components present in both estimated subspaces. Because the noise is assumed as
ideally white Gaussian noise and uncorrelated with signals, the structure of the noise cova-
riance is neglected. Under the same assumption, the noise distributed in both subspace
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estimates will not receive the treatment which makes the TLS-ESPRIT superior to the
LS-ESPRIT. Therefore, only the LS-ESPRIT was examined for the performance comparison
of the two different techniques, ESPRIT and MUSIC.

5.4 Computer Simulations

The same statistics as those which have been examined in the previous chapter will be
investigated herein to check the performance of the ESPRIT method under different cir-
cumstances. Three statistics are explored as functions of signal to noise ratio and angular
separation, separately. The signal to noise ratio range is 0 dB to 50 dB with 5 dB increments
when the angular separation is fixed at 2° in the former case, while, in the latter one, the
angular separation is allowed to change from 1° to 12° which is just above the conventional
resolution of the array in use. In this case, source one is placed at 0° to the normal of the
array, while source two is moved along the array and the signal to noise ratio is set as 10 dB.
The number of sources is given in all three methods under examination. The spectrum of
spectral MUSIC is formed on a 0.1° grid. The 2 estimates of DOAs which are nearest to the
true directions are chosen out of 9 in the root MUSIC method. The only two estimates from
the ESPRIT method are recorded first and then, together with the results from the other two
methods, are processed to compute the probabilities of resolution, biases and angular esti-
mates and their standard deviations. The same criteria for root MUSIC as specified in the
previous chapter are applied to the ESPRIT method.

5.4.1 Results as Functions of Signal to Noise Ratio

Signals with different correlations were checked when the signal to noise ratio was changed.
The correlation factor between the two sources was assigned as 0.0, 0.5, and 0.95, respectively,
and the correspondent results are shown in figures 5.2, 5.3, and 5.4. The inability of the
MUSIC technique for coherent sources has been shown in chapter 4, and the ESPRIT
technique is also unable to resolve the fully correlated sources due to the philosophy behind
it. So the case of fully correlated sources has not been included in the discussion.

Again, 100 independent snapshots were taken in each trial to form the data matrix and 500
trials were used to calculate the statistics.
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of signal to noise ratio when p = 0.5
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of signal to noise ratio when p =0.95
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5.4.1.1 Uncorrelated Case

Figure 5.2(a) shows the probabilities for the three methods in the uncorrelated case, denoted
by different line styles as specified in the plot. Similar resolution thresholds are demonstrated
by root MUSIC and LS-ESPRIT, while the spectral MUSIC has a threshold about 10 dB
higher. However high biases are shown in the estimates of the ESPRIT method at lower
SNRs although the correspond;in g probability of resolution is slightly higher than that of root
MUSIC. Biases of the ESPRIT estimates decrease quickly at 10 dB to be the lowest. As
signal to noise ratio continues to increase, the root MUSIC and LS-ESPRIT give roughly the
same biases while spectral MUSIC shows higher biases until around 30 dB and above when
the difference among the biases merges.

As far as the standard deviation is concerned, asymptotically similar properties are proved
by all three methods. Although root MUSIC and LS-ESPRIT begin to resolve the two sources
at lower SNRs, high standard deviations also resulted.

5.4.1.2 Correlated Sources with Correlation Factor 0.5

As the correlation between the two sources gets stronger, the performance of the methods is
expected to degrade. Figure 5.3 illustrates the propertties in the sense of probability of res-
olution, bias, and standard deviation. Compared to those in figure 5.2, the performance
degradation can be seen in all three aspects under examination.

The degradation in the probability of resolution is more significant than in the other two
statistics. All three plots in figure 5.3(a) shift right-wards about 5 dB. The plots given by
root MUSIC and LS-ESPRIT begin to separate showing a larger probability for LS-ESPRIT
to distinguish the two sources in the correlated case.

The biases degrade mainly at lower signal to noise ratios, below 30 dB, which is generally
the case in practical situations. Since the value of the probability of resolution of root MUSIC
is too small at 0 dB, the correspondin g statistics are meaningless. Those given by LS-ESPRIT
are uneven for the two sources, very high in one and very low in the other. At 5 dB, the
biases from LS-ESPRIT are still very high. Only when the SNRs are higher, are smaller
biases depicted.
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The unevenness of the root MUSIC and LS-ESPRIT is also shown in the standard deviations
in the low SNR region. In contrast to the biases, smaller values are given in source one and
bigger values are in source two. Starting from 10 dB both standard deviations decrease
smoothly as the signal to noise ratic increases. Larger standard deviations are given by
LS-ESPRIT. The spectral MUSIC, however, starts to resolve the two sources at relatively
higher SNRs, but possesses similar standard deviations as root MUSIC and LS-ESPRIT.

5.4.1.3 Highly Correlated Sources with Correlation Factor 0.95

A correlation factor of 0.95 was given to test the performance of the three methods in the
highly correlated case. Comparing the plots in figure 5.4 to those in figure 5.3, a 10 dB
equivalent degradation can be observed in all three statistics which are inspected. The
probability pattern is similar to that in figure 5.3(a) and the LS-ESPRIT does not show
improvement over the root MUSIC method as it did from the uncorrelated case to the case
with correlation factor 0.5. Again, the threshold of resolution of spectral MUSIC is the
highest one.

Although the LS-ESPRIT method shows the ability to resolve the two sources at low SNRs
in the highly correlated case, high biases of angular estimates are also shown. Especially,
source one depicts a constant positive bias of about 1.0° over 15 dB. This widens the range
in the previous case (figure 5.3(b)) with a 10 dB extension. Comparatively, the bias for
source two is nearer to those from the MUSIC methods. And the biases from LS-ESPRIT
drop to zero about 15 dB earlier.

The standard deviations of the ESPRIT estimates are less even than before at lower SNRs.
Only when the signal to noise ratio is high (at and above 20 dB), they show a more noticeable
tendency to converge. Root MUSIC also shows larger standard deviations at low SNRs. On
the other hand, spectral MUSIC, although starting to resolve the two sources at higher SNRs,
similar standard deviations are shown as those from the other two methods.

5.4.2 Results as Functions of Angular Separation

Statistics were also examined as functions of angular separation when the signal to noise
ratio was fixed at 10 dB. 12 separations were checked from 1° to 12° with 1° increment.
Statistics were calculated from 500 trials which were based on data matrices formed by 100
independent snapshots. The same correlation factors were assigned as those in last subsection.
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5421 Uncorrelated Case

The non-correlation case is illustrated in figure 5.5. As shown in figure 5.5(a), the two
methods which give the direction estimates directly rather than locating them in the spectral
estimate demonstrate similar abilities to distinguish the two sources; the spectral MUSIC
starts to resolve them at a bigger separation, 2° in the 10 dB signal to noise case.

Comparatively, the biases are smoother than those as functions of signal to noise ratios. The
spectral MUSIC gives bigger biases when the separation is relatively small. Positive bias in
source one and negative bias in source two given by spectral MUSIC imply that the two
peaks in the spectral estimate tend to each other, shifting from their true directions.

Despite that estimates from all three methods are unbiased as the angular separation is big,
the standard deviations always exist. From figures 5.5(d) and 5.5(¢), the standard deviations
from the LS-ESPRIT are slightly higher than those from the two MUSIC methods. The
standard deviation does not tend to merge as the angular separation is very large, even larger
than the conventional resolution beam-width, when the signal to noise ratio is unchanged.

5.4.2.2 Correlation Sources with Correlation Factor 0.5

For sources with correlation, larger angular separations are required to achieve the same
probabilities of resolution as those in the uncorrelated case. LS-ESPRIT shows a little higher
ability than the root MUSIC method while spectral MUSIC remains the last one to be able
to resolve the two sources.

The biases are also higher even after the probability of 1 has been shown, What is different
from the results as functions of signal to noise ratio is that LS-ESPRIT gives higher biases
than theroot MUSIC method does. The highest biases are from the spectral MUSIC technique,
and the tendency of giving two peaks within the true directions is depicted by positive bias
for source one and negative bias for source two.

Where the standard deviations are concemed, the LS-ESPRIT technique gives larger values
when all three methods are able toresolve the two sources, whilst the two versions of MUSIC
have asymptotically equivalent performance. At the smallest separation of 1°, the standard
deviations are less meaningful in the sense of statistics. The zero standard deviations of
spectral MUSIC at 2° separation resulted from the fact that only a single trial out of the 500

94



Chapter 5

gave acceptable estimates of the true source directions. The standard deviations from all
three methods stay at the same level as those in the uncorrelated case when the separation
between the two sources is very large.

.4.2.3 Highly Correlated Sources with Correlation Factor 0.

The properties of both ESPRIT and MUSIC techniques are worse in the highly correlated
case than in the two previous cases. The resolution thresholds are 2° higher than those in the
correlated case with 0.5 correlation factor. Besides the general movement towards the right
in figure 5.7(a), the two plots from LS-ESPRIT and root MUSIC are mixed, differing from
the picture of two distinct lines in figure 5.6(a) at small separations.

Big biases exist in the three plots for each source over the whole range under examination.
Comparatively, those from the spectral MUSIC method are smaller and those from LS-
ESPRIT are the largest. As the separation is 12°, this small difference in the biases vanishes.

Standard deviations are at a higher level than in the two previous cases. Asymptotically
LS-ESPRIT gives bigger values than the two MUSIC methods.

5.5 Discussion

The computational advantage of the ESPRIT technique is claimed as the key advantage over
the popular MUSIC methods. Unfortunately the computation time 1s not calculated in the
simulations here. However, the high speed of the LS-ESPRIT method was noticed in the
simulation procedure. Although the TLS-ESPRIT provides better performance at low SNRs
at the cost of more complex computations, it is still much quicker to obtain direction of arrival
estimates from the ESPRIT method rather than from the peak position estimates of a spectrum
in the spectral MUSIC. No searching procedure is involved in the root MUSIC method, but
it needs the rooting of a polynomial, whose order may be very high in the large number of
sensors case, besides the eigen-decomposition of the covariance matrix.
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CHAPTER 6

IMP ALGORITHM

Apart from those high resolution algorithms discussed in previous chapters, most of which
are based upon eigen-analysis of the sample covariance matrix, another class of method, the
so-called deconvolution algorithms, has also been proposed to improve spectral estimates.
The IFA algorithm, the WB? method, the CLEAN technique, and the IMP approach, all of
which fall into this type of method, have been described briefly in Chapter 3. To explore the
performance of this class of method, the IMP algorithm, which has been mainly applied in
the field of the direction estimation problem in array processing so far, is examined in detail
in this chapter as a representative.

6.1 Introduction

Most of the modern high resolution algorithms, such as MNM, MUSIC, and ESPRIT
described earlier in this thesis, involve eigen-analysis of the sample covariance matrix, and
in the ESPRIT algorithm, an intermediate matrix formed as well. In contrast, the IMP (In-
cremental Multi-Parameter) algorithm proposed by 1.J.Clarke [Cla87, Cla88, Cla89] makes
use of the information preserved in the conventional beamformer as its basic processing
component, and defines a scheme for re-processing the data after the initial beamforming in
order to determine the number of sources and their bearings. This algorithm borrows the
concept used in CFAR (Constant False Alarm Rate) methods [BLP86, Wei82] for detection
and uses the difference between global maximum and minimum values of the output signal
plus noise to noise ratio (SNNR) as its detection statistic. A single peak is found at each
iteration, and the angular information depicted by this peak is used to modify a so-called
pre-conditioning matrix. This pré-conditioning matrix is used as a weighting to the sampled
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data, giving the effect of removing the peak on which the pre-conditioning is based. This
procedure continues until no significant peak appears in the resulting signal plus noise to
noise ratio spectrum and then the algorithm terminates.

In the DOA estimation problem, the aim is to extract details of source directions from the
data received from sensors. This includes two aspects in which effort is needed : 1) an
estimator which will give more detail of source directions, i.e., how to extract more infor-
mation about the source directions from the available data; 2) how to make full use of the
information contained in the sampled data, i.e., not to discard any information which might
be useful in the processing.

The conventional beamformer does not discard information contained in the data, but provides
very poor resolution because of the mechanism used in the beamformer. High resolution
estimators, such as MUSIC, frequently throw information away by using different weights
to emphasise or discard components of the data. The resolution is improved by the com-
plicated computations on the received data. The IMP algorithm which will be described in
this chapter preserves all the information contained in the received data and, at the same time,
provides much higher resolution than the MUSIC algorithm.

The advanced Constant False Alarm Rate (CFAR) technique provides an automatic detection
accomplished by setting an adaptive threshold relative to the local estimate of the noise mean.
The detection control is applied to both IMP and CLEAN. No matter whether manual or
automatic detection is used, when the local noise mean is corrupted by other targets or sidelobe
leakage, the probability of detection is degraded. This raises the detection threshold and may
result in a target being missed. Therefore, a strong target may mask a weaker signal, or it
may be masked by a multiplicity of nearby targets. It is this masking effect that motivates
the study on these decomposition methods. '

In most passive systems, the statistic commonly used for detection is the power in the field
of view of interest. By contrast, the CLEAN algorithm uses relative brightness of a spot to
the background, while the IMP algorithm uses the difference between the global maximum
and minimum values of the Signal plus Noise to Noise Ratio (SNNR).

97



Chapter 6
6.2 Data Model
As before, a sample of the array output can be represented in the form
x(t)=A-s()+n(r) (6.1)

which is a snapshot sampled at the array outputs at time instant z. After the data processing,
the information concerning the source to be detected and estimated is contained in

y(t)=A". C-x() (6.2)

where C is a pre-conditioning matrix, which involves the applications of a matrix filter to
the input, and A, as before, is the array manifold containing array responses in all possible
directions. For passive sensor arrays, it is the output power that is preserved for further
processing. The averaged power output over N snapshots of the array outputs is given by

ﬁglly(t)l A” C-X-X".C.-A=A".C-R-C-A (6.3)

Under the assumption that noise and signals are not correlated, the estimate of the covariance
matrix can be calculated as the time average from snapshot to snapshot as

== 3 x() %) =R, +R, 6.4)

where Rg=A-S-A¥ with S defined as the source covariance matrix in (2.24) and
Ry = /N XY n() n(t)”. Denoting the noise covariance matrix Ry by a normalised noise
covariance matrix Yy, we have Ry = 6> ¥, where o? is the noise power. Thus,

R=A-S-A"+&% 3, (6.5)

The pre-conditioning matrix C is assumed to be Hermitian. Determining whether a target is
present involves comparing a statistic with a pre-defined threshold, where such a statistic
comprises the output power 1n the direction to be detected and information available in the
rest of the data.
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6.3 The IMP Algorithm

Based on the model given in section 6.2, the IMP algorithm will be discussed in detail in this
section with the objective of giving a better understanding of the IMP technique,

IMP (Incremental Multi-stage Parameter) is an iterative algorithm. The IMP spatial spectrum
starts with the output power distribution of a sensor array which implies that conventional
beamforming is used as the initial stage in the IMP algorithm. A single peak is found in the
output spectrum estimate and the contribution of stimuli in the corresponding direction of
the peak is found by convolving a 8-function in wavenumber (or frequency in time series
analysis) with the system transfer function. In order to remove the effect of the selected peak,
the weighting (pre-conditioning) is modified and applied to the data.

The statistic used in the IMP algorithm is the signal plus noise to noise ratio (SNNR) which
has been given in equation (3.36) and is rewritten here for convenience of referencing

a(0)-C-R-C-a(6)

SNNR(a) = a’(6)- C-Ry - C-a(®)

(6.6)

Under the general assumption that the noise field is spatial white and the noise measurement
is uncorrelated from sensor to sensor, equation (6.6) is simplified to

a"(0)-C-R-C-a(®)

SNNR(@) =7 ®)-C-a()

(6.7)

This is the conventional beamforming spectrum when the pre-conditioning matrix C =1.
When only a single source is present, in the presumed isotropic noise background, the IMP
estimator performs like the conventional beamformer giving the best estimate of the source
direction at its first stage. The corresponding source steering vector, denoted by a_,,, is used
to form a projection matrix to project the received data into the null space of this direction
vector

aH

annx armx
Q=1-=—== (6.8)

Binx " Amax

99



Chapter 6

Replacing the pre-conditioning matrix C in equation (6.6) with the above projection matrix,
a modified spectrum is formed as

, HHY.O-R-O-
P(e)za (921 Q-R-Q-a(6)
a”(0)-Q-a(®)

(6.9)

It should be remembered that any projection matrix is both idempotent and symmetric
(Hermitian in the complex case), i.e., Q = Q?, and Q = Q”. No signal component will fall
into the nullspace of {a,,,,} if a,,, exactly presents the signal direction, and thus no significant

peak will appear in the output power spectrum P (0) in equation (6.9). The algorithm ter-
minates.

Example 1 (One Source Case)

Figure 6.1 illustrates the simplest case when only a single source is present. A 10 element
uniform linear array with half wavelength spacing is used. A single source of 10 dB source
power (the noise variance is assumed asunity) is located at 2.4° from broadside. 100 inde-
pendent snapshots are taken to form the data matrix. The threshold is calculated as 9.95 dB.
Plot 6.1(a) shows the initial stage of the algorithm which is the conventional spectrum of the
array output. A global maximum of this spectrum is found at 2.4° to the normal of the array.
A projection matrix is then formed and applied to equation (6.9) for the modified spectrum.
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Figure 6.1 IMP algorithm in the single source case

Both numerator and denominator as well as the modified spectrum are plotted in plot 6.1(b),
denoted by the dotted, long chained, and solid lines respectively. (The numerator and the
denominator give the same curve since the numerator drops to the noise level when no signal
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components exist.) Deep nulls are formed in both the numerator and the denominator
corresponding to the peak position in plot 6.1(a), while a flat spectrum results with respect
to the spatial angle, dropping to the noise level.

End

By using the conventional beamformer, when two signals are present a double hump structure
exists in the output power spectrum if the separation of the sources is sufficient (otherwise
a single broad peak results), but the two peaks tend to the mid-point and estimation biases
are obvious. Usually two peaks are not of the same height even though two equal strength
signals might be used. In the IMP algorithm, the globally highest peak, denoted by a,, or
the only one when a single exists, is taken for the formation of the projection matrix which
will be used in the second iteration of the algorithm. Applying this projection matrix to the
received data, the resulting power spectrum eliminates the components of both signals in the
nullspace of the column vector a,. Since there is a second signal, the residual output power
of this modified beamformer shows a principal peak with respect to 9, and this is taken as
the initial angular estimate of the second source, denoted by a,.

So far we have obtained two estimates of the signal directions, corresponding to source
steering vectors a, and a,, respectively. Since bias exists at least in the estimate of the first
signal direction, refinement is necessary for more accurate estimates of the signal directions.
To refine the first signal direction estimate, a projection matrix is formed on a,. Since many
signal components concerning the second signal, contained in the received data, are elim-
inated when the latest projection matrix is applied to the received data, the resulting power
spectrum is much purer and gives a better angular estimate of the first signal. Alternatively,
this procedure is applied to re-estimate the direction of the second signal. This continues
until the angular estimates for both signals are stable and then the algorithm terminates.

To verify the accuracy of the estimates, a projection matrix Q can be formed on [a,,a,] when
both of them are stable. Defining A =[a,,a,], we have

Ag- AX
Af - Ag

Q=I- (6.10)

Substituting this projection matrix into equation (6.9), the power spectrum having eliminated
the components of both signals is available. No significant peak will appear and the power
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will drop to the noise power level.
Example 2 (Two Source Case}

Figure 6.2 gives the details of the convergence of a two source case. The two sources are
given equal power of 10 dB (relative to the unit noise variance) and placed at -1.2° and 3.4°.
The same array as that in the previous example is used and again 100 snapshots are taken to
form the data matrix. The threshold for this case is 9.90 dB. [Alotof 13 iterations were
executed before ...  termination of the procedure. The first 5 of them are shown in plots
6.2(a) through 6.2(e) and the iteration is depicted in plot 6.2(f). The situation of iterations
in between is omitted and the history of the convergence is given in plot 6.2(g). The peak
positions at each iteration are listed beside plot 6.2(g). The re-processing stops at the stable
estimates of 8, = —1.0° and 8, = 3.4°. The dotted lines in plot 6.2(g) depict the true directions
of sources. Itis easily seen from the plot, and also the list of peak positions at each iteration,
that the adjustment is applied to only one peak position at each iteration. In the lastiteration,
aprojection matrix based on the two direction estimates is formed and applied to the observed
data so as to eliminate the signal components in these two directions. The residual spectrum
contains mainly the noise component and some possible signal leakage, and drops to the
noise level.

End

When more than two signals are present, the algorithm will continue after finding the stable
angular estimates of the first two signals. In this case, P(0) in equation (6.9) depicts a
significant peak even though the projection matrix Q is based on [a,, a;], which indicates the
existence of the third source. This peak is assumed as the initial estimate of the third source,
with source steering vector denoted by a,. Because of the existence of the third signal, the
estimates of the first two signal directions in stage 2 are stable but not accurate. Refinement
is necessary for the angular estimates of all three signals.

To refine the first angular estimate, the projection matrix Q is based on [a,,a,]. Then using
the latest estimates of a, and a,, the second one is re-estimated by applying the projection
matrix based on [a,,a,]. For the third one, the projection matrix is formed on [a,,a,]. These
three steps are repeated to re-estimate all three signal directions alternatively. The criterion
for judging whether to terminate the algorithm is the same as that in stage 2 for the two signal
case.
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Example 3 (Three Source Case)

This example shows the processing of the three source case by means of the IMP algorithm.
The same array is assumed. Three sources with equal power of 20 dB are placed at -3.2°,
1.5° and 4.1° and the threshold is calculated as 10.08 dB. 21 iterations are completed to
give the stable estimates of all three source directions and the procedure terminates
successfully. Four plots are drawn in figure 6.3 to show the modified spectra in 4 iterations
chosen from the total 21 iterations. Plot 6.3(a) is the conventional spectrum which fails to
resolve the three sources placed within one beamwidth of the array. The global maximum
of this spectrum is used to null the received data in that direction and the resulting spectrum
is shown in plot 6.3(b) by the solid line. The dotted and long chained lines represent the
numerator and denominator of the equation (6.9) respectively. Expressed in decibels, the
difference of these two spectra results in the modified power spectrum given by the solid
line. Plot 6.3(c) shows the situation when the first two direction estimates are stable and are
nulled from the spectrum, the 11th iteration. Since the residual power level is still above the
threshold, the existence of the third source is indicated and the peak position in the residual
power spectrum is assigned as its initial estimate. The refinement is applied to the three
direction estimates alternatively until stable estimates are obtained. The residual power is
compared with the threshold and termination of the procedure is decided.

End

This procedure can be extended to higher order models without difficulty.

Defining a generalised matrix Ag to contain the array manifold vector(s) which has been
calculated at each iteration according to the peak direction(s) in the previous iteration. At
stages when only one peak has been found, A; will be a column vector containing the
corresponding array manifold vector as A = [a,,J; when more than one peak is going to be
cancelled, the matrix Ag will be composed of multiple of array manifold vectors, which
correspond to these peak directions, as Ag = [a,, a,] in the two peak case, and Ag = [a,,a,,a,]
when three peaks are to be eliminated. When & peaks are to be cancelled, the projection
martrix is as

A®. A(*)”

Q=I_—_A£*V’-C,-A§"’

6.11)
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where the superscript (k) denotes the number of peaks to be cancelled, and C, is the

pre-conditioning matrix in the initial stage which has been assumed as identity matrix in the
above three examples. Therefore, the corresponding pre-conditioning matrix is shown to be

C,=C,=C, AP (a¥".C, A4 A" ., (6.12)
The IMP algorithm can be summarised as follows :

1) ' Initialise the procedure 1 k=0, C,=I
2) Evaluate the Signal plus Noise to Noise Ratio (SNNR) :

aH‘Ck'R'Ck'a
a”°Ck-RN-C,,-a

SNNR (%9) = (6.13)

and find the global maximum

3) Adjust the weighting C, according to the latest estimates of the peak
positions by using equation (6.12) '

4) Compare the maximum and the pre-defined threshold. If the maximum is
bigger than the threshold, return to Step 2; otherwise, terminate the

Process.

Substituting R given in equation (6.5) into the numerator of (6.13), the following relationship
results

a".C,-A-S-A".C,-a
aH'C*'RN'Ck'a

SNNR(B) = +1 (6.14)

whereitisassumedthat Ry = 03 ¥. Fromthe above expression it follows that the projection
matrix into the nullspace of the all signals will cancel all the signal components in the data
because of the orthogonality between the C, and the signal array manifold vectors. This
results in the SNNR reaching the level ofjunity asymptotically.
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6.4 Computer Simulations

Computer simulations have been carried out to compare the performance of the IMP algorithm
to that of the popular MUSIC method and its root version. Two groups of simulations are
going to be presented in this section to show statistics as functions of signal to noise ratio
and those of angular separation, respectively. The correlation factor between the two sources
is assumed to be 0, 0.95, and 1. Two highly correlated situations are considered to show the
superior performance of the IMP algorithm over the MUSIC method which is claimed in the
highly correlated cases.

The simulation programs were written using MATLAB. In all cases the number of sources
was assumed to be known, and the m-d smallest eigenvalues of the estimated covariance
matrix were used in estimating the noise variance and in defining the threshold. To reduce
computations involved in the search procedures, the angular range was restricted to
[0, —4°,0,+4°. The search grid was set to 0.1°.

The conventional spectrum output of the array is first checked for the existence of any source.
If the peak level in the spectrum is below the pre-defined threshold, no source is indicated
and the program terminates; otherwise at least one source is present and its angular position
is estimated and used in forming the projection matrix to check the existence of more sources.

In the procedure for finding more sources, two criteria are set for the termination of the
program :

1) The difference of the latest estimates of the directions and those of the previous ones is
smaller than a given tolerance, which is given as _I'E_'-OfS_in the simulation. Since the grid of
angular estimates is given as 0.1°, this criterion means that the latest estimates should be the
same as the previous ones when the program terminates successfully.

2) The given maximum number of iterations is exceeded. In the simulations to be presented
in this chapter, 10 iterations are allowed for each source, i.e., in total 20 iterations can be
performed at the stage when two sources are refined and 30 iterations in the three source
case, and so on.

When calculating the modified spectrum, the numerator and denominator of equation (6.9)
are computed separately and then used to form the power spectrum. This is to avoid possible
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division by O so as to keep the continuum of the resulting spectrum. When the denominator
of (6.9) is less than1E-06 the spectrum value at this direction is assigned the value of the
previously searched direction; otherwise the spectrum is calculated as the division of the
current numerator by the current denominator.

The correctness of the angular estimates given by the IMP algorithm is judged by two criteria:
one is that the estimates fall in the neighbourhood of the true directions, and the other one is
that the separation between the two estimates is bigger than a given angle. For the processing
of the simulated data, the neighbourhood of the true directions is defined as £3°, and sufficient
separation between the two estimates.in each trial is given as 0.5°. The judgement of the
fitness of the estimates given by MUSIC is the same as that in previous chapters. Again,
only the successful estimates for each parameter set-up are included in the calculation of the
statistics.

6.4.1 Results as Functions of Signal to Noise Ratio

Probabilities of resolution, biases of angular estimates, and their standard deviations are
calculated over 500 trials and shown in figures 6.4 to 6.6. The two sources are located at 0°
and 2° to the normal of the 10 element array with half wavelength spacing, that is about 0.17
beamwidth. The initial signal to noise ratio for the simulations is given as 0 dB and is then
increased at 5 dB increments to 50 dB.

The resolving threshold of the IMP algorithm is similar to that of the spectral MUSIC but
higher than that of the root MUSIC. This is the case for both uncorrelated sources and the
sources with correlation factor p = 0.95, but IMP seems to suffer from lower probability of
resolution over a range of the signal to noise ratio after all three methods are able to solve
the two sources in the uncorrelated case. From the uncorrelated case in figure 6.4 to the
highly correlated case in figure 6.5, the resolution threshold of all three methods increases
about 10 dB equivalent in signal to noise ratio, while the resolution degradation of the IMP
algorithmis relatively less than that of both spectral and root versions of the MUSIC method.
As the correlation gets stronger (fully correlated), as shown in figure 6.6, only the IMP
algorithm shows the ability to resolve the two sources. Two other methods, spectral and root
MUSIC, fail completely, as predicted theoretically.
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The reason for the loss of resovability of the IMP al gorithin between 15 dB to 25 dB is thought
to be the criterion defined for testing the probability of resolution. Since the grid for searching
the directionsis setto0.1°, so all the estimates which are only 0.1° apart are taken as unresolved
estimates. Thisreduces the probability of resolution and the biases and the standard deviations
at the same time.

Concerning the biases of the estimated source directions in the uncorrelated case, the root
MUSIC method shows larger values at lower signal to noise ratios where the other two
methods are still unable to resolve the two sources. As the signal to noise ratio goes higher,
the IMP method and the spectral MUSIC technique start to separate the two sources but give
biasesin the angular estimates. The biases given by the spectral MUSIC method are relatively
higher, while those given by the IMP algorithm are similar to that of the root MUSIC
technique. When the signal to noise ratio is even higher, at or above 30 dB, all three methods
tend to estimate the directions without bias.

Meanwhile, the standard deviations resulting from all three methods are nearly the same, and
g0 to zero as the signal 1o noise ratio increases.

In the highly correlated case in figure 6.5, all three methods give approximately the same
performance in the sense of the standard deviation. However, significant differences are
evident in the biases. Two versions of the MUSIC technique give asymptotically unbiased
angular estimates, whilst the estimates from the IMP algorithm are off the true directions
even when the signal to noise ratio is very high.

The simulated data were checked for the reason of the high biases in estimated source
directions from the IMP method. It was found that IMP gives very good estimates of the
source directions when it starts to resolve the two sources at 25 dB with the estimates almost
evenly being -0.1°, 0°, or 0.1° for source 1 and 1.9°, 2.0°, or 2.1° for source 2. This results in
smaller biases and relatively larger standard deviations. As the signal to noise ratio goes
higher, the estimates of the two sources tend to possess the smaller values of the three in the
25 dB case, i.e., more estimates remain at -0.1° and 1.9° for two sources, until at 50 dB all
500 trials give the same estimates of [-0.1°,1.9°]. A -0.1° bias exists for both source directions
while the standard deviations are zero.

Figure 6.6 shows the coherent case where only the IMP algorithm is still able to distinguish
between the two sources. The possibility of resolution remains the same as that in the highly
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correlated case, while the relative values of biases and standard deviations are opposite to
those in the previous case. The scale for the plot in figure 6.6(b) and 6.6(c) is changed to
show the very small values of the biases for all the signal to noise ratio cases when the two
sources are resolvable. On the other hand, the standard deviations are stable at about 0.2°,

The estimates do not converge at all.

6.4.2 Results as Functions of Angular Separation

The simulated data carried out as functions of angular separation were analysed in the same
way as that in the previous sub-section, and the same statistics were tested and plotted. The
signal to noise ratio was given as 10 dB throughout the computer simulations. The correlation
factor given to the three cases was 0, 0.95, and 1.0, and the results are shown in figures 6.7
to 6.9.

In the uncorrelated case, all three statistics are similar to those as functions of signal to noise
ratio. The root MUSIC technique has the smallest resolution threshold, while the thresholds
for the other two methods are 5 dB higher and the IMP algorithm suffers from some loss of
probability of resolution at the middle part of the plot. The biases converge as the angular
separation increases with higher biases resulting from the spectral MUSIC algorithm at
relatively smaller separations. Despite the differences in the biases, standard deviations are
very similar but do not tend to zero as the angular separations increase.

The degradation in the probabilities of resolution is also similar to that in the case of functions
of signal to noise ratio when the correlation between the two sources is stronger. As shown
in figure 6.8, the degradation in IMP algorithm is the smallest, shifting from the spectral
MUSIC method towards the root MUSIC technique. Biases given by the MUSIC techniques
are much higher at smaller separations but decrease as the separation becomes bigger while,
at the same time, the IMP algorithm possesses a small bias at smaller separations and a large
one at larger separations. Concerning the standard deviation, the two MUSIC based methods
have similar but larger values while those given for the IMP method are almost constant over
the whole range of angular separation where it is able to resolve the two sources.

The MUSIC techniques fail completely when the correlation between the two sources is
extremely high or the two sources are coherent, as was stated in chapter 4. Inthe three aspects
under examination, the behaviour of the IMP algorithm remains the same as that in the
previous case. '
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6.5 Conclusion

The simulation results presented in this chapter provide a means for a better understanding
of the IMP algorithm. The performance advantages of the IMP algorithm over the most
popular MUSIC techniques, especially in the highly correlated source case are demonstrated
in the computer simulations. In the uncorrelated case, the performance of the IMP method
is similar to that of the root MUSIC method and superior to the spectral version of MUSIC.
As the correlation between the sources is stronger, the performance advantages of the IMP
algorithm are significant.
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CHAPTER 7

WEIGHTED SUBSPACE FITTING METHODS

Multidimensional methods in array signal processing possess advantages, such as the ability
to handle coherent signals, over conventional one-dimensional techniques at the cost of
expensive computations. Although, the Maximum Likelihood (ML) approaches have been
systematic approaches to many parameter estimation problems for several decades, only in
the past ten years or so have the appropriate methods for maximising the cost function been
proposed, see e.g. [BM86, Sha88, SN88, ZW88] for deterministic ML (Det-ML) and {Sch81,
Boh87] for stochastic ML (Sto-ML). To avoid the heavy computational burden inherent in
the multidimensional approaches, many suboptimal methods were suggested for the DOA
estimation problem among them the so-called eigenstructure or signal subspace techniques
have received much attention because of their high resolution properties (cf. [Sch81, BK80]).
A one-dimensional search over the parameter space is employed in these methods instead of
the multidimensional search in the optimal ML methods resulting in that they are unable to
resolve highly correlated or coherent signals. Recently some multidimensional subspace
methods have been proposed to deal with the coherency problem and, at the same time, have
high resolution abilities [Cad88, ZW88].

More recently, a Weighting Subspace Fitting (WSF) scheme was introduced by Viberg and
Ottersten in, e.g. [OV89, VO91], which include a wide range of direction estimation algo-
rithms. Based on an investigation of the variance of the estimation errors, a new multidi-
mensional estimation procedure was proposed which is applicable to arbitrary array
geometries and signal correlation. This so-called optimal WSF method belongs to the same
class of subspace fitting based algorithms as the deterministic ML method, but attains the
stochastic Cramer-Rao Bound (CRB) while the optimization is of similar structure as that
required by deterministic ML. It was demonstrated in [VOK89] that the WSF method is not
only statistically efficient, but also offers other advantages over deterministic ML.
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A brief description of the optimal WSF method has been given in the literature survey in
chapter 3. This chapter will restate the problem under consideration briefly and concentrate
on the implementation of the algorithm and its performance analysis by means of computer
simulations.

7.1 The Basic Subspace Fitting Problem and Subspace Fitting
Methods

The problem under consideration here is also extracting information from the array output
measurements. The output of the m element sensor array is assumed to be a weighted
super-position of d wavefronts corrupted by sensor noise which is assumed to be a white
Gaussian process and uncorrelated with the emitter signals

x(t) = A(0) - s(t) +n(r) (71.1)

The output of the array is sampled at N time instants and these snapshots are collected to
form an m XN data matrix Xy. Given measurements Xy, the basic subspace fitting problem
is defined by the deterministic ML criterion as trying to fit the subspace spanned by A(0) to
the measurement X,. Described mathematically, this problem is expressed as

[A, ] =arg min| M- A(®)-T|I; (7.2)

where M is an m X ¢ matrix representing the measurement data, A(Q) is an m X p matrix
parameterised by the DOAs, and T is any p x g matrix. According to Golub and Pereyra
[GP73], the subspace fitting problem defined in (7.2) can be separated in A and T. By
substituting the pseudo-inverse solution T'= A*- M into (7.2), the following equivalent
problem results

A(®) = arg max Tr{P,MM"} (7.3)
) A

or equivalently

A(0) = arg min Tr{P;‘MMH} : (7.4)
A
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where P, = A(A" A)'l AH is the projection matrix that projects into the range of A and
P; =1 - P, is that which projects in to the nullspcae of A. The parameter vector & is estimated
from A.

The deterministic ML method given by equation (2.57) is a straightforward member of this
set of subspace fitting methods by taking R = MM" and employing a d-dimensional search
over the subspace spanned by the columns of A(0).

Finding maxima in the MUSIC spectrum in (3.21) equals maximizing 1—1/Pyygc(0) =
a”(0) - E; - EY - a(6), which results in the DOA estimates as

8 = arg maxTr{P, - E, - EF} (7.5)
This is a case of the subspace fitting method when M = Esand A € A.

To overcome the problem of coherency, a multidimensional version of the MUSIC algorithm
was suggested in [Cad88] which can be formulated in the subspace fitting framework as

6 = arg max Tr{P,- ]:35 . E‘.?} (7.6)

Aead

This, again, is a computationally expensive multidimensional optimization problem. A
special case of the multidimensional method is achieved when it is applied to arrays with
special constraints. This is the so-called ESPRIT method applicable only to arrays of identical
translationally displaced subarrays, by which the computation is reduced with the price of
an inability to handle coherent sources.

From the expressions for the Det-ML and MUSIC techniques given above, the representation
of the data can be chosen in two ways, either as the Hermitian square root of the estimated
covariance matrix or the estimated signal subspace matrix. The relation between these two
choices foralarge number of snapshots isdescribed by the following theorem which motivates
the optimal weighting subspace method.
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Theorem 7.1 The deterministic ML (Det-ML) method has the same asymptotic dis-
tribution as the following estimator

6=arg min |EAY-ATI; =arg minTr{P;EAE}  (7.7)
d AeA

Ae A",

where A = Ag — o1 = AV2AH?

A proof to this theorem can be found in [Vib89].

Applying Theorem 7.1 to equation (7.2), the subspace fitting problem may be restated as
(A, 1) = arg min] E;W" - A@)TI (7.8)

where W is a positive definite weighting matrix. Referring to equation (7.3), the directions
of arrival can consequently be estimated as

B=arg min Tr{P,(O)E,WEY (7.9)

Forming the variance of the estimation error in terms of the weighting matrix and finding
the derivative with respect to the weighting matrix, an optimal weighting can then be found
which gives the lowest possible variance of the estimation errors. Such a weighting matrix
was derived in [OV91] and given as

A (7.10)

7.2 Asymptotic Analysis of Subspace Fitting Methods

Cramer-Rao Bound

The Cramer-Rao Bound (CRB) provides a lower bound for the covariance matrix of the
estimation error of any unbiased estimate. CRBs were developed in [SN89] for deterministic
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signals when either ,; or N is infinite or both are infinite and summarised into several the-
orems. Two theorems for the cases when m is finite while NV is finite and infinite, respectively,
are restated here.

Theorem 7.2 Let 8 be an asymprotically unbiased estimate of the true parameter vector
0,, the CRB for 0, is given by

CRB(m,N)=7{§,lRe[s"(t)-D .P;-D. s(r)]} (7.11)

where

s(t) = diag {s,(2)," - -,s,(t)}

d d
D =I:d_ela(el)a' : ’,“roda(ed)] (7.12)

Theorem 7.3 For sufficiently large N, the CRB is given by

CRB(m, o) =%{Re[{DH-P‘; D} OST} (7.13)

where S is the source covariance matrix as defined in (2.24).

For the deterministic signals under consideration here, 1+d(N + 1) parameters are to be
estimated from mN data. The ratio of the amount of data to the number of the estimated
parameters remains bounded if m < e, evenif N — oo; onlyif m, as well as N, tends to infinity
does this ratio increase without bound. This observation suggests that the CRB cannot be
achieved by increasing N; the essential requirement for attaining the CRB should be to
increase m. This point was discussed more precisely in, e.g. [SN89, SN90Q].

It is proved in [VO91], however, that the covariance of the asymptotic distribution of the
optimal WSF estimates is the same as the asymptotic Cramer-Rao bound for Gaussian source
signals. That s, the optimal WSF solution gives the lowest possible estimation error variance
of any unbiased estimator.
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To investigate the asymptotic properties of the subspace fitting methods, a single criterion
function for all methods provides a more convenient means. As shownin[Ott89], the methods
choosing M as the Hermitian square root of the covariance matrix can be put in a unified
fashion as those using the signal subspace matrix as M by post-multiplying the signal subspace
matrix with a specific weighting matrix. The unified criterion function for all methods within
the subspace fitting framework is in the following asymptotic form

V(0)=Tr{P,(6) E;- W-EN (7.14)

where W is a d” x d’ weighting matrix. The choice of W affects the asymptotic properties
of the estimate error. The weighted subspace fitting estimate 8y is given by

b=arg max V(0) (7.15)

The weighting matrix W in (7.14) is restricted to be Hermitian and positive definite. It is
shown that the criterion function, Vy(8), converges with probability one (w.p.1), uniformly
in 8 to thé limit function V(8)

V(©)=Tr{P,(®) E;-W-E} (7.16)

as N tends to infinity.

7.3 Implementation of Subspace Fitting Methods

The subspace fitting methods involve multidimensional searching procedures which require
efficient algorithms for implementation. The algorithm to be used for this purpose is the
Modified Variable Projection (MVP) method of Kaufman [Kau75], which is a slightly
modified version of the Gauss-Newton method of Golub and Pereyra [GP73].

The non-linear least squares problem involved in the subspace fitting methods can be
described as follows

8= arg mgn V(©) (7.17)
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V(0) =Tr{P;(6)- M- M"} = || P5(6) - M| I,zc (7.18)

where M = E; - W" is used as a general matrix to represent the observation so as to simplify
the notations. By using the damped Newton method [GMW81, DS83], which is thought as
the most efficient and globally convergent optimisation method for unconstrained smooth
criteria, the searching procedures are formulated iteratively and the estimate is calculated as

8,,,=0,+p, -H'V (7.19)

where |, is a step length, H and V' represent the Hessian matrix and the gradient of the
criterion function, respectively. The Hessian and the gradient need to be evaluated at each
iteration and are given as

H= 2R8{(D”P;D) O (A'MM"A" )'} (7.20)

V’ = =2Re{diag (A"MM"P; D)} (7.21)

To start the iterations given in equation (7.19), an initial value of the direction estimate is
required. In the following two subsections, the initialisation of the iterations and the iteration
itself will be discussed, respectively.

7.3.1 [Initialisation

The initial estimates of the directions of arrival are crucial to the global convergence of the
final estimates. Although several direction estimation algorithms can be employed to give
the initial estimates, such as the ESPRIT technique or even the IMP algorithm in the previous
chapter, a reliable initialisation procedure is still needed to provide good enough initial
estimates especially at low signal to noise ratios. Examining the convergence of different
initialisation methods is outside the scope of this thesis. Herein, the Alternating Maximisation
(AM) technique suggested by Ziskind and Wax [ZW88] for obtaining the initial estimates
in their realisation of the ML estimator, the Alternating Projection (AP) algorithm, was
applied.
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By applying the AM technique, the initial estimates of the DOAs are also given iteratively.
The multidimensional maximisation is accomplished in a sequence of procedures maximising
a single parameter at each iteration.

The first source direction estimate is assigned the global peak position found inthe generalised
spectrum given as -

_a"(0)- M-M"-a(@)
T a"@)-a®)

P(©) (7.22)

which is

8, =arg max P(®) (7.23)

Given this estimate, the spectrum given in (7.22) is modified by applying a projection matrix,
Q, onto the nullspace of the first direction vector, a(@l). And the second source direction
estimate is found as

H H
8, = arg max T© UMM Q-2(0)

o a"(8)-Q-a(®)

(7.24)

When more sources are present and the initial estimates are required, the projection matrix
needs to be modified to be based on all the initial direction estimates and then applied to
equation (7.24). The maximum in the modified spectrum is regarded as the initial value of
the direction to be estimated.

In the estimation of the initial directions of arrival, the number of sources is necessary, either
as prior information or estimated. The philosophy behind the initialisation is rather like that

employed in the IMP algorithm, but the refinement of each estimates is not included.

The one-dimensional Newton method is then used to refine these initial estimates which are
usually given over a coarse grid.
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7.3.2 lterations

After obtaining the initial estimates, the modified variable projection method is employed to
accomplish the iterative searching procedures. To simplify the computations involved in the
calculation of the Hessian matrix and the gradient of the criterion function, which needs to
be evaluated at each iteration, some mathematical work will be necessary.

By applying the QR-decomposition using the Househoulder transformation [GV83], the
direction vectors (signal array manifold vectors) can be written in multiplicative form of an
orthogonal matrix ) and a upper triangular matrix R

R
A= mem ) Rmxd = [QI’Q7] [ 0{| (725)

and Q and R are partitioned into respective sub-matrices with appropriate dimensions.
Therefore, the Moore-Penrose pseudo-inverse of the direction vectors A(0), A*, and its
projection matrix, P;, are described as

A'=R'Q!, Pi=QQ] (7.26)
Introducing several intermediate variables as follows :
&=Q/D, ¥=M"Q, T=R;'Q'M (7.27)

the criterion function, its Hessian matrix and gradient, referring to (7.18), (7.20), and (7.21),
are derived as

V =Tr{¥¥" (7.28)
V' =Re{diag (T¥®)} (7.29)
H = Re (") © (TT")} (7.30)

These three expressions rather than the original ones are substituted back into (7.19) for the
iterative calculation of the direction estimates.
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The termination of the iteration is determined by three criteria :

1) if the given maximum number of iterations is exceeded,
2) if no more improvement along the searching direction is possible,
3) if local minima are found.

In the computer simulations to be shown in following sections, the maximum number of
iterations is assigned as 10; the iteration number is initialised as 0 and incremented at each
iteration. When the iteration number equals the maximum number of iterations, the procedure
terminates and also brings out a flag to show the status of the termination.

At each iteration, the criterion function is evaluated to check the improvement of the search.,
The current value of this function is compared with the minimum value of the function retained
as a variable and a decision is made whether to refresh this variable. If the current value is
smaller, then it is assigned to the variable and the current estimates of the source directions
are taken as the latest direction estimates; otherwise previous values for the criterion function
and the direction estimates are kept.

One important parameter in the iterations is the step length, {4, in equation (7.19). This
controls the convergence speed and also determines the possibility of convergence. A bigger
value of |t gives a quick search but allows the missing of possible local minima; on the other
hand, a smaller value slows down the searching speed dramatically. In the simulations, [ is
assigned as"ix_ni{y' at the beginning of each iteration and then half of the previous value is taken
to accomplish the search along the searching direction. This procedure is continued until the
value of Y is less than 0.0001 when it is accepted as that no improvement (or no "sufficient
decrease") is possible for the current search direction. This also leads to an unsuccessful
termination of the procedure and the status of the termination is again brought out for later
processing of the simulation results.

The norm of the multiplication of the inverse of the Hessian matrix and the gradient of the
criterion function is evaluated at each iteration and compared to a pre-defined tolerance. If
it is smaller than this tolerance, the estimates of the source directions are considered as
successful direction estimates. Only these estimates will be used in later processing for the
statistics.
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7.4 Computer Simulations

Based on the algorithm implementation proposal given in the previous section, computer
simulations have been carried out for the ML and WSF approaches. The simulation set-up
is similar to that in simulations in previous chapters. Also, the statistics used to show the
performance are the same as those given before, i.¢., the probability of resolution, biases of
angular estimates and their standard deviations. Simulations to be presented in this section
are in two categories : 1) signal to noise ratio of the sources is varied in the simulations, and
2) angular separation between the two sources is changed. 500 trials were run for the statistics
with 100 snapshots taken in each trial. A 10 element uniform linear array was used with half
wavelength spacing. The conventional resolution of such an array was about 11.5°.

7.4.1 Results as Functions of Signal to Noise Ratio

Toevaluate the performance of ML and WSF under different signal to noise ratios, the angular
separation is fixed at 2°. Results are shown in figures 7.1 to 7.3 for three cases when the
correlation factor between the two sources is assigned as 0 (uncorrelated), 0.95, and 1 (co-
herent) respectively.

The uncorrelated case is the case when all the high resolution methods give good direction
estimates at reasonable signal to noise ratio and angular separation. Both the ML estimator
and the optimal WSF estimator show excellent performance, as depicted in figure 7.1,
including higher resolving abilities at low signal to noise ratio and low and smooth biases
and standard deviations. The statistics from ML and WSF are extremely close except at 0
dB signal to noise ratio where the ML methods performs a little better.

In highly correlated source case, the optimal WSF method outperforms the ML method in
the sense of separating the two sources at low signal to noise ratios. Large differences exist
between the biases and standard deviations given for ML and WSF at signal to noise ratios
less than 10 dB. The biases resulting from the WSF method tend to be even outside the true
source directions, but those from the ML method are both smaller than the true values of
source directions. For signal to noise ratios at or above 10 dB, the two methods give very
similar performance in every statistic shown in the figures.
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the angular separation is 2° and the correlation factor is p=1.0
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Figure 7.3 shows the coherent case. The possibility of resolving the two sources at lower
signal to noise ratios is less than that in the highly correlated case. The performance
degradation in the biases is not significant while that in the standard deviation is more
noticeable.

7.4.2 Results as Functions of Angular Separation

Varying the angular separation between the two sources, the source correlation was changed.
Uncorrelated signals, signals with 0.95 correlation factor, and fully correlated (coherent)
signals were used respectively, and correspondingly, the results are illustrated in figure 7.4
through figure 7.6.

In figure 7.4, where the results for uncorrelated signals are shown, both approaches depict
high resolution abilities even at the angular separation as small as 1°. What is noticeable for
this case is that ML and WSF give almost equivalent performance. The biases of both sources
are very small as are the standard deviations which, however, do not tend to approach the
minimum level (zero) as the angular separation increases.

When the correlation between the two sources gets stronger, the probabilities of resolution
of both ML and WSF are expected to degrade. Statistics of these two approaches are dem-
onstrated in figure 7.5 for the case of a correlation factor of 0.95. It can be seen that both
methods lose resolving ability at small angular separations, mainly at the separation of 1°.
Biases of angular estimates of both sources get bigger than those in the uncorrelated case,
while the bias for source 1 (the one assumed at the normal direction of the array) is slightly
larger than that for source 2 (the source whose i)osition is moved in the simulations). At the
scparafion of 1°, although the bias given by ML is a bit larger for source 1, the correspondent
standard deviation is relatively lower than that given by WSF; for source 2, a big difference
in biases is shown between ML and WSF while a pattern is given in the standard deviation
similar to that for source 1. The standard deviations remain stable at about 0.1° no matter
how big the angular separation gets.

Figure 7.6 shows the coherent case. Compared to that given in figure 7.5(a), the ability to

resolve two closely spaced sources degrades again, butonly slightly. The possibility of higher
resolution is demonstrated by WSF at angular separation 1° and 2°. Biases given by WSF
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are narrowly smaller than those given by ML at small angular separations except for the
second source which shows lower bias for ML at separation 1°. Concerning the standard
deviation, ML. demonstrates lower standard deviation at the smallest angular separation
whilst at other separations smaller than 6°, WSF performs better. For all other separations,
both methods give almost identical results. Like the two previous cases, standard deviations
do not approach zero although the angular estimates tend to be unbiased at bigger angular
separations.

7.4.3 More Results of Functions of Signal to Noise Ratio

Since the performance given by ML and WSF is superior to those algorithms which have
been discussed and analysed in previous chapters, under the same set-up of parameters these
two methods do not show much change in the given statistics and the predicted performance
advantages over other high resolution methods have not been shown significantly, Since it
is interesting to investigate the behaviour of these two methods under "bad" conditions, more
computer simulations have been carried out and the processing results will be presented in
this and the following subsections.

To observe the performance of ML and WSF when the signal to noise ratio changes, the
angular separation between the two sources is reduced to 1°, while all other parameters are
given as the same as those in section 7.4.1. Results are shown in figure 7.7 to figure 7.9 with
correlation factor being 0, 0.95, and 1.0 respectively. Comparing the plots in these three
figures with those in figures 7.1 to 7.3, the performance degradation can be easily seen. What
is unchanged is that the performances of ML and WSF are still very similar in the correlated
case and differences exist in both biases and standard deviations for highly and fully correlated
cases.

The performance degradation mainly lies in the low signal to noise ratio region. The per-
formance difference is around 10 db equivalent in the signal to noise ratio for all the three
cases. And relative performance of ML and WSF is similar to that in the 2° case. In the
highly and fully correlated source cases, source 1 gives smooth statistics while source 2 shows
more fluctuations at low signal to noise ratios. At the signal to noise ratios where the
probability of resolution is unity, both ML and WSF demonstrate the tendency to give
unbiased estimates and minimum standard deviations as the signal to noise ratio tends to
infinity.
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7.4.4 More Results as Functions of Angular Separation

The results to be shown in this subsection are obtained as functions of angular separation
when the fixed signal to noise ratio is assigned as 5 dB and O dB, respectively. The same
statistics are tested and presented in figures 7.10 to 7.15.

Figure 7.10 gives the statistics of ML. and WSF when the signal to noise ratio is 5 dB and
the two sources are uncorrelated. Compared with the corresponding plots in figure 7.4, the
performance degradation which is mainly in the standard deviation can be seen. The
thresholds of resolution remain the same while the possibility of resolving the two targets is
lowerin the small angular separationregion. Biases for both sources are large in the situations
when the angular separation is small, but tend to be comparative with those in figure 7.4 at
and above 3°. In contrast, the standard deviations are higher than those in figure 7.4 within
the whole DOA range which has been examined.

The results for highly correlated sources are shown in figure 7,.11. The degradation of per-
formance caused by the correlation between the two sources is similar to that in the 10 dB
signal to noise ratio case. More fluctuations in the biases are revealed in the large angular
separation case, and in the segment of small separations source 1 depicts larger biases for
both ML and WSF while source 2 shows smaller but non-smooth statistics. These two
different types of biases at the smaller separation result, however, in similar standard devi-
ations. For the larger separation part, the standard deviations are smooth and tend to increase
slightly as the angular separation becomes large.

Although the correlation factor for the results shown in figure 7.12 is given as one, i.e., fully
correlated signals, the actual generated signals are extremely highly correlated rather then
fully correlated in the finite sample cases in the strict sense. The performance degradation
resulting from this increase in the correlation is visible in all three statistics given in figure
7.12. Compared to the plots in figure 7.11, no severe degradation of performance is observed.
The abilities to solve highly correlated signals for both the ML and WSF methods are evi-
denced in these simulation results.

To investigate the performance of these two methods in low signal to noise situations, the
simulations have been repeated when the signal to noise ratio is 0 dB while other conditions
remain the same. Again, three cases were considered when the correlation between the two
sources is changed.
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The effects of the reduction in the signal to noise ratio can be seen in all three statistics
illustrated. Probabilities of resolution decrease in the smaller angular separation region but
show full abilities to resolve the two sources when they are placed at a larger distance from
each other. However, biases exist even when the source separation is very large. Unlike the
beamforming methods which usually tend to give estimates of directions between the true
directions, the biases given by ML and WSF show that these two methods are more likely
to give estimates outside the true directions, especially in the uncorrelated cases, no matter
what the signal to noise ratio is. The standard deviations shown in figure 7.13(d) and figure
7.13(e) are much higher that those in figure 7.4 and figure 7.10 although they decrease as
the angular separation increases.

Figures 7.14 and 7.15 show the behaviours of ML and WSF at the low signal to noise ratio
and high correlation cases. Performance degradation is obvious.

7.5 Discussion

The performance of the Maximum Likelihood (ML) estimator and the optimal Weighted
Subspace Fitting (WSF) estimator in the application of direction estimation has been analysed
in this chapter, mainly by means of computer simulations. The large number of results
presented herein demonstrate the behaviour of the two methods in different scenarios, as
functions of signal to noise ratio and angular separation between the two sources, respectively.
And under each circumstance, more results than those in previous chapters were obtained
for the examination of these methods under "bad" conditions. The abilities of these two
methods to resolve two closely positioned sources with low signal to noise ratios are evident
from the results presented. And also the estimates have good statistics in the sense of biases
and standard deviations of the direction estimates. Although it is claimed by the original
authors that the optimal WSF outperforms the ML method asymptotically, the difference in
the statistics shown here is not significant, sometimes even better results were obtained from
the ML estimator. Whether this is because the "asymptotic" conditions are not met or any
other reason, these two methods give roughly identical performance in most situations.
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CHAPTER 8

DISCUSSION OF COMPUTER SIMULATION
RESULTS

Through chapter 4 to chapter 7, simulation results have been presented for several high
resolution direction estimation algorithms. These algorithms represent different philosophies
in dealing with the direction estimation problem and also demonstrate the evolution of
direction estimation algorithms. The methods which have been simulated and discussed in
the previous four chapters include

%  the Maximum Entropy Method (MEM) of Burg and the Minimum Variance Method
(MVM) of Capon (or Capon’s Maximum Likelihood Method) in the class of adaptive
techniques

% MUltiple SIgnal Characteristics (MUSIC) of Schmidt and Bienvenu and Kopp, and
Minimum Norm Method (MNM) of Reddi and Kumaresan and Tuft, representing the
signal subspace methods

% root versions of the above four methods, promoted by Barabell, which explore the
roots of associated polynomials rather than searching the peak positions in the resulting
spectra

% Estimation of Signal Parameters via Rotation Invariance Techniques (ESPRIT) of
Roy, Paulraj, and Kailath et al, which reduces the computation load of the MUSIC
algorithm by constraining the array in use and, at the same time, retains most of the
features of MUSIC
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* Incremenatal Multiple Parameter (IMP) estimation method, in the class of
decomposition methods, of Clarke, which re-processes the received data by applying
projections and provides high resolution ability even for fully correlated sources

* deterministic Maximum Likelihood (ML) method which is able to solve for coherent
sources at the cost of heavy computation due to the multidimensional searching
involved

sk optimal Weighted Subspace Fitting (WSF) method of Viberg and Ottersten which is
deduced to give the lowest possible variance of estimation errors with reduced
computations due to the low rank representation of the observed data

In the simulations, two scenarios were mainly considered : the performance of the algorithms
at different signal to noise ratios when the angular separation between the two sources was
fixed, and that under different angular separations when the signal to noise ratio was
unchanged. For each scenario, various correlation factors were applied to test the algorithm
abilities to resolve sources with different correlations. The inability of the signal subspace
methods and the ESPRIT techniques to handle coherent sources was known, so the
simulations concentrated on the uncorrelated and the weakly correlated source cases while
sources with correlation factor 0.95 were also examined to show the algorithm performance
in the highly correlated situation. In order to demonstrate the performance advantage of the
IMP algorithm in the highly correlated case, besides the correlated case, two large correlation
factors were assigned to the sources in chapter 6. In chapter 7 where the ML and optimal
WSF were simulated, the correlation factor between the two sources was given the same
values as that in chapter 6 but more values were assigned to the signal to noise ratios and the
angular separations to study the performance of these two "superior” resolution algorithms.

Inchapter 4, the four methods which fall in the signal subspace methods and theirroot verstons
were examined. It was shown there that the MUSIC technique gives the lowest standard
deviations in both versions as functions of signal to noise ratio and shows the lowest standard
deviations together with the MV M as functions of angular separations. The MUSIC methods,
both spectral and root versions, were chosen as "models"” to be compared with the ESPRIT
algorithm in chapter 5 and the IMP technique in chapter 6.

For the ESPRIT algorithm, multiple choices of subarray displacement vector are possible in
the uniform linear array case. However, only the one with the maximum over lapping
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subarrays was tested in the simulations here. Bigger displacement between the two subarrays
are in favour when the sources are known to cluster, by giving smaller direction estimation
erTors.

The asymptotic properties of the ESPRIT method are very similar to those of the MUSIC
methods. The probability of resolution brovidcd by the ESPRIT method is near to that of
the root MUSIC method, both being higher than that of the spectral MUSIC method, although
the correspondent biases and standard deviations are also higher before the spectral MUSIC
begins to resolve the two sources. The computation time of the simulation for these three
methods was not compared quantitatively, but it has been noticed that the ESPRIT technique
consumed much less time due to the lack of the searching procedure inherent in the spectral
MUSIC method. If the output spectrum of the array is not needed, which is generally the
case in the direction estimation problem, ESPRIT is a good substitute for the MUSIC method
by providing similar performance with less computation time,

The IMP algorithm provides a different philosophy to the direction estimation problem. The
re-processing of the observed data does provide high resolution and the ability to handle
coherent sources, but the computation burden involved in the processing makes it prohibitive,
Remedies have been suggested, such as searching spectrum on a coarse grid and then
narrowing the field of search and refining the estimates, or applying the quadratic fitting of
the rough estimates of three points at and around the peak position to give a more accurate
estimate. This, however, does not help much especially in the high order case (more sources
are present). Probably this method will find applications in some areas where the processing
speed is not a important factor. Butit is not promising to meet the need in most cases because
high processing speed is generally required and this technique has less chance of real-time
implementation.

Comparatively, the optimal WSF method is more appealing although the multidimensional
search procedure involved makes it look less so. The low-rank representation of the data in
the optimisation saves much computation, compared to the ML method. Also the
development in computers and electronics allows the complicated computations in the
multidimensional processing to be accomplished at very high speed. By means of "modern”
parallel processing techniques and special-purpose chips, the complexity of the computations
can be more easily realised than the search procedure in estimating the spectra which seems
much easier in appearance.
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The excellent performance of the optimal WSF algorithm shown in chapter 7 is worth the
effort in implementing the inherent complicated computations. Under the same parameter
set-ups as those in chapter 4 to chapter 6, the performance advantages are readily seen from
the plots shown figures 7.7 to 7.6. To verify these merits, the optimal WSF method and the
ML method have gone through tests under bad conditions. The two sources were placed
only 1° apart to repeat the simulations as functions of signal to noise ratios and the signal to
noise ratios were set to 5 dB and O dB respectively to undergo the performance analysis as
functions of angular separations. Performance degraded in the worse situations but still gave
reasonably good results.

Besides the comparison of performance of various algorithms, the simulation results shown
in the previous chapters draw clear pictures of each of these algorithms under the conditions
given in the simulations. Although the factors taken into account in the simulations are very
limited, the results provide a good guide for the analysis of the practical measurements which
will be presented in the following chapter.
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CHAPTER 9

PRACTICAL MEASUREMENTS WITH DIFFERENT
ALGORITHMS

In previous chapters, computer simulations of algorithms and methods in several different
classes have been carried out and discussed. Results strongly supported the theoretical
analyses and provided insight into understanding of algorithm performance. However, the
behaviour of these algorithms or methods in practical environments is still unknown.
Although they are expected to depict similar results as anticipated from the theoretical dis-
cussion, it is necessary to apply these algorithms to practical measurements when their
performance in practical situations is considered. This chapter will present some off-line
processing results of data collected from a sonar system which was available within the
research group.

The measurement system used for experiments in this chapter was an air acoustic sonar
system which had been built by the Sonar Research Group at Loughborough University of
Technology (LUT). This system consists of a passive receiving array and a transputer-board
based signal acquisition and analysis system. Either emitters or targets were employed to
transmit or reflect signals at a distance. The array responses to these signals were captured
and sent to the signal acquisition and analysis system. The received signals were saved in
12 bit digital form on the memory board. These data were then accessed by a transputer
board which could process data in the OCCAM language or save data on floppy disks via an
IBM-286 host computer for off-line processing. The results presented in this chapter were
obtained by using the software package MATLAB (Matrix Laboratory).

Two scenarios were examined : first, the acoustic array worked in the passive mode and two

emitters were placed at a distance in front of the array. Two categories of signals were applied
in this working mode, one was the case when two emitters worked at different frequencies

152



Chapter 9

and the other at the same frequency. Secondly, two targets were placed in front of the array
to reflect signals transmitted from a separate sensor which was placed on the top of the
receiving array.

9.1 Description of the Measurement System

9.1.1 Array

The array used for experiments was an echelon array of two layers with eight transducers on
the top-and seven on the bottom, as shown in figure 9.1. Parameters of the transducers and
the array are also depicted in figure 9.1. |

|

410 mm

Ny

-

I mm

- @
— 125 mm 4-‘

Figure 9.1 The Diagram of the Echelon Air Array

The transducers used in the array were made by the Polaroid Company and have good acoustic
characteristics. The relative sensitivities of these fifteen transducers were measured and are
listed in table 9.1. The conditions for these measurements are given underneath. From table
9.1, it can be seen that the standard deviation was only about 10% of the mean value.

- Since the transducers are circular plane transducers, the beam pattern of a single transducer,
* if the circular aperture is uniformly excited, can be calculated as

)
o

S(®)= 9.1)

where J;(0) is the first-order Bessel function of ¢ = 2nr sin(B)/A, r is the radius of the circular
plane [ElI81]. The radius of transducers used in the array is 17 mm, and the calculated beam
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Table 9.1 Relative Sensitivities of Individual Transducers

No. of Elements Output (V)
1 0.95
2 0.88 \
3 0.92
4 0.94
5 091 ||
6 0.97
" 7 1.04
8 1.03
9 1.12
10 1.12
11 1.11
12 1.17
13 1.20
14 1.13
15 1.06
Mean Value 1.04
Standard Deviation 0.10
Measurement Conditions :
Transmitting frequency 40 kHz
Pre-amplifier used channel 5 °

Distance between Tx and Rx

3m

Chapter 9

" When measuring individual sensitivities the same pre-amplifier, the one in

channel five, was used.
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pattern using equation (9.1) is shown in figure 9.2 and compared to the measured result. By

calculation, the beam width of one transducer is about 15° at 40 kHz, which is measured as
about 14°,

Boeam Pattern of One Element

[} u‘z_...
w f \\‘ —Theooical
- {1
i- e
i —
- . i 1
]
i I\
: . !7 \\\ S,
—F 2 N A
°-n - -0 - 0 - L] w n a0 o = -
Direction
Frequency = 40 kHz

Figure 9.2 The Theoretical and Measured Beam Patterns of One Element

Although the array is composed of two layers, it can be approximated by a linear array if the
sources are in the far-field and are in the horizontal plane containing the normal to the centre
of the array. The equivalent linear array has fifteen sensors in the same line with inter-element
spacing half of that in the original echelon array, i.e., 23 myn. The wavelength of signals at
the transmitting frequency of 40 kHz is 8.5 mm, thus the inter-element spacing in the metric
of the signal wavelength is AA =2.7.

The beam pattern of a linear array with omnidirectional sensors is well known and given by
the following equation

_Sin(m -%-A-Sin8/\)
"~ m - Sin(n- A- Sin6/2)

D(©) 9.2)

According to the product theorem [Uri75], the beam pattern of the array with directional
elements will be the product of the beam pattern of an identical array of non-directional
elements and the beam pattern of each element alone. Thus, the beam pattern of the employed
array will be given by ’
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Chapter 9

PO =D(0)x5(9) : 9.3)

The beam pattern of the array obtained by using equations (9.1) - (9.3) is compared with
those measured by using electrical steerin g and mechanical steering of the array in figure 9.3
and figure 9.4. In figure 9.3, by using electronic steering the array was stationary and the
measured beam pattern was obtained by scanning the space with the steering vector assigned
a unity modulus, that is, the directivity of individual transducer was not taken into account.
Correspondingly, the theoretical beam pattern was given by equation (9.2) without multi-
plication with the beam pattern of each element. Substituting the parameters of the array
into (9.2), the beam pattern will have maximum values (grating lobes) at 8 =0°, +21.8°,
+47.8°, etc., as shown in figure 9.3. The measured beam pattern in figure 9.4 was obtained
using mechanical steering of the array when the array was driven by a beam plotter [WZG+90].
Since each single element in the array had a sharp directivity, grating lobes in figure 9.3 were
greatly suppressed, and the resulting beam pattern shows much lower responses in the
corresponding directions. The measured results were very consistent with the theoretical

calculation by using equation (9.1) - (9.3), and the beam width of the whole array is about
1.4° at 40 kHz.

Beam Pattern of Alr Acoustic Array
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Figure 9.3 The Theoretical and Measured Beam Patterns of the Air
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Beam Pattern of Air Acoustic Array
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9.1.2 The Measurement System

Figure 9.5 shows the layout of the measurement system used for carrying out experiments
in this thesis. The original system was designed and built for both signal acquisition and
analysis. Since programs written for processing data, either simulated on computers or
measured in practice, had not been translated into the OCCAM language which was required
by the transputer, the system was used for signal acquisition only and off-line processing
was carried out.

The data acquisition part of this system, as shown in figure 9.5, is composed of pre-amplifiers,
analogue multipliers, low pass filters, analogue to digital convertors (ADCs), a memory
board, and the signal generator and control board.

Each of the fifteen transducers in the array is linked to one of the fifteen channels in the
acquisition system. In each channel, a pre-amplifier is employed to raise the output level to
the desired value, which is required by the dynamic range of 72 dB for 12 bit digital data.
The output signal from the pre-amplifier is then passed to an analogue | -Iil_[lifili;ﬁ'er , where
the In-phase and Quadrature (I&Q) components of the received signal are extracted by
multiplying with Sine and Cosine reference signals. Because the sonar signals are generally
narrowband signals, the 1&Q sampling technique shifts the received signals to baseband,
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illustrated in figure 9.6, and consequently reduces the required sampling frequency at the
A/D convertors. To remove the sum-frequency components of the shifted signals from the
1&Q sampling, a low pass filter is used with 5 kHz cutoff frequency. The filtered signals
then pass to the Sample / Hold (S&H) amplifiers which hold constant signal amplitudes
before analogue to digital conversion.

Pro ampir IBM PC

O Decomposition

AT converor

Cnanns! 1 M

Pre-ampkfor
12 Decompasition

AD convertor

Cnannel 2 ™

MEMORY T8oo
CONTROL BUS {16"64K Byte) TRANSPUTER
SINE & COSINE  _] — 12 BIT DATA BUS
REFERENCE SIGNALS TRANSPUTER-TO-BBC
INTERFACE
1 MHz BUS
SIGNAL USER

Pro-amphfer

G Docompasiien GENERATOR PORT BBC
| AD comvenor & CONTROL
MICH
Cnannel 15 BOARD AOCOMPUTER

RECEIVING ARRAY

Figure 9.5 The Layout of the Measurement System

The outputs from the A/D convertors are in 12 bit digital form and are conveyed over a 12
bit bus to a memory buffer which is accessible by the transputer T800. The sampled data
can be either processed on the transputer board in the system or saved on floppy disks via
the IBM PC for off-line processing.

A BBC microcomputer serves as the main controller in this system. The Signal Generator
and Control board generates the transmitted pulses and other reference signals such as the
Sine and Cosine reference signals for the 1&Q decomposition. The 1 MHz bus of the BBC
is used for the transputer and BBC interface.
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An IBM PC is used as the host of the transputer. Since the data is to be processed off-line,

programs have been developed to transfer the data saved on the memory board to floppy
disks via the IBM PC.

—fo

0 frfr f,  f

Figure 9.6 Frequency Shifting by IQ Technique

This system was originally designed and developed for the implementation of high resolution
direction finding (DF) algorithms to resolve closely placed underwater targets / sources. The
choice of the main system parameters was made according to practical measurement
conditions such as the limited physical size of the water tank available in the Department,
working frequency range of the available transducers, the tradeoff between the cost and
resolution and speed of an A/D convertor, and so on.

The rest of this chapter is organised as follows : the design of experiments is proposed in
section 9.2 where two cases (when the system works in passive mode and active mode
respectively) are supposed with different scenarios for each case; section 9.3 presents
experimental results in accordance with the different situations in section 9.2; the last section,
section 9.4, presents a discussion and a conclusion of the practical work carried out so far.
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9.2 Design of Experiments

The array used in experiments for this thesis was an air acoustic sonar array which could
work in active mode when a single sensor was used as an emitter and the whole array received
reflections from target(s), and also in passive mode when the array simply received signals
radiated from emitter(s). For both modes, the measurement environment was the same as
that shown in figure 9.7. Targets / Sources were placed at a distance in front of the array.
The distance between targets / sources varied in experiments and will be specified later with

individual experiment designs.

Air Acoustic Array
S

Figure 9.7 Geometry of the Measurement Environment

9.2.1 Passive Case

Working in this mode, the array "passively” received signals radiated from sources which
are detectable at the array sensors.

One advantage of starting the experiments with the passive working mode of the array was
that uncorrelated signal could be guaranteed by choosing different working frequencies for
two sources. Since sub-optimal highresolution algorithms including the most popular MUSIC
method were applied only to non-coherent sources with performance degradation when the
correlation factor is high, uncorrelated sources were required to assess these algorithms for
practical experiments.
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The case when a signal source was present was considered as a preliminary of the two source
case. Unlike computer simulation or theoretical analysis, knowledge of the source positions
relative to the array and the relative position was unavailable, or at least inaccurate.
Measurements with a single source present helped to align the sources.

When two sources were present, one was fixed around the normal position to the array while
the other one was moved, in parallel with the array, from a distance toward the fixed source.
The angle between the sources to the array was approximately calculated, and also measured
by switching off one source and measuring the direction of the other source and the other
way round. This procedure was repeated for each angular separation and, of course, data
when both sources were switched on was also recorded.

The case for two emitters working at the same frequency was then considered. Measurements
were for different separations between the two emitters and also for each of the two emitters
when the other one was switched off, for alignment of the emitter positions.

9.2.2 Active Case

In the active mode of the array, one individual transducer was placed near the array. (In this
sense, the array is not really working in the active mode). Two targets were placed in front
of the array at an appropriate distance, in the experiments to be described herein chosen as
5.6 m, so that the reflections from them are detectable while the far-field approximation
could still be met roughly. Again, cases when one single target was in use and when two
targets were used were considered. And the position(s) of the target(s) was defined in the
same way as that in the passive mode.

The targets were made of metal, the material which is known to have stron gf reﬂectiirity.- )
Two targets were of the same circular shape and of the same size of 85 mmin &izimeter, which
was 10 times of the signal wavelength. Two factors were . ... :+ taken into account when
choosing the size of the targets;{thé;e- were the reflected energy and the directivity of the
targets. If the target size was too small, the targets would have to be placed nearer the receiving
array so that the reflections were detectable. On the other hand, a sharper directivity was
expected from a larger #.x target which, in turn, would cause difficulty in receiving target
reflections.
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9.3 Experiment Implementations and Results

According to the experiment designs in section 9.2, alarge number of practical measurements
have been carried out and analyzed by using the different algorithms, which have been
discussed previously. These algorithms include the conventional beamforming technique,
the MUSIC technique and its root version, the LS-ESPRIT method, the IMP method, and
two multidimensional approaches, ML and WSF. Results of the experiments by means of
applying the above-mentioned algorithms to the experimental measurements will be pres-
ented in this section.

9.3.1 Experiments, Group 1

In this group of experiments, the array worked in the passive mode. Two sources were placed
in front of the array at a distance of 7.56 meters. The measurement environment was shown
infigure 9.7. Source #2 was fixed at a position while source #1 was moved along the direction
of the array (in parallelwihthe array). The position of source #2 was given by the peak in the
spectrum obtained when source #1 was switched off. Holding source #2 at this position,
measurements were taken when source #2 was turned off to give a location estimate of source
#1 which was moved Z.: - = .-#+ when both sources were on. The distance between
these two sources was initially 600 mm and decreased with decrements of 50 mm to 100 mm.
Foreach set-up of these parameters, measurements were repeated twice. Results are tabulated
in table 9.3 and the conventional beamforming spectra and MUSIC spectra are given in figure
9.9 and figure 9.10 respectively

For this group of experiments, the two sources worked at different frequencies : 39.52 kHz
and 40.00 kHz. 30 snapshots were taken for each experiment. The illustration for the
calculation of the angles is given in figure 9.8, where R = 7560 mm is the distance between
the source and the receiving array. The position of the fixed source, source #2, was measured.
The moving source, source #1, was placed at different positions in parallel with the array.
Distances between these two sources were measured and used to calculate the angular sep-
arations so as to compare with the estimated results obtained from algorithms.

The position of source #2 was measured when source #1 was switched off. The corresponding
angle was about 1.6° from the normal of the array and the distance from the normal was
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calculated as 211 mm. This distance added with the source separation was used to compute

the position of source #1 and compare with the estimated angular directions given by different

algorithms.

Array

Figure 9.8 [Hlustration of the Calculation of Angles

The calculation of the corresponding source #1 positions, when it was moved, followed the

equations given below and the results are listed in table 9.2.

tan® = (s +s,)/R

9.4)

where s, =R - tan0, =211 mm with 0, being estimated by switching off source #1.

Table 9.2 Emitter Directions Obtained by Calculation

s{mm) |s+s,(mm) tan 0 0+0,(°)
600 811 0.1072 6.1
550 761 0.1007 5.7
500 711 0.0940 54
450 661 0.0874 5.0
400 611 0.0808 4.6
350 561 0.0742 42
300 511 0.0676 3.9
250 461 0.0610 35
200 411 0.0544 31
150 361 0.0478 2.7
100 311 0.0411 24

163



Chapter 9

Table 9.3 shows the results of this set of experiments by applying different algorithms. Inside
the column of the source separation, the calculated directions of source #1 at different
positions are also given for comparison. These are the directions to the normal of the array
rather than the separation between the two sources.

The angular estimates shown in table 9.3 and those in following subsections were obtained
according to the following criteria :

CBF: peak positions in the estimated spectrum

SP-MUSIC: peak positions in the estimated spectrum

RT-MUSIC: angle estimates with the biggest modulus estimates, which usually
are > 0.8 but sometime 0.8 > p > 0.7

ESPRIT: angles given from the algorithm with assigned number of sources
IMP: angles given from the algorithm with assigned number of sources
ML: angles given from the algorithm with assigned number of sources
WSF: angles given from the algorithm with assigned number of sources

The plots in figures 9.9 and 9.10 give the spectra obtained by the conventional beamforming
method and the MUSIC technique. In each plot in these two figures, solid lines denote the
cases when a single source was on and the dashed lines represent the cases when two sources
were on. Figure 9.9.1 and figure 9.10.1 show the four measurements when the fixed source
#2 was on. The other 11 figures give the situations when source #1 was moved from a distance
towards source #2.

From table 9.3, it can be seen that the estimates given from different algorithms are strongly
consistent when a single source was on, except those given by ESPRIT which tend to be
biased. The estimates given by the ESPRIT algorithm are smaller than the calculated angles
and the estimates from other methods. The biases existing in the ESPRIT estimates are more
noticeable at the larger emitter separations and, in the cases with 150 mm and 100 mm
separations are much less significant.

For the cases where both sources were on, when the source separation is big enough (= 200

mm), the results from all algorithm except the ESPRIT method show excellent indications
of the true positions of the sources, while the ESPRIT algorithm inclines to give biased
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estimates when the source separation is not less than 400 mm. As the source separation
decreases, the performance of ESPRIT begins to degrade by giving estimates which are
apparently different from estimates given by other methods.

When the source separation gets small, at 150 mm or 100 mm, the conventional beamforming
method fails to give two separate peaks. The results shown in relevant columns are the unique
peak positions in the corresponding spectra, as depicted in figure 9.9.11 and 9.9.12. They
lie in directions somewhere between the two sources.

Although two estimates were given in table 9.3 for spectral MUSIC (SP-MUSIC) when the
separation is 150 mm, from the corresponding figure 9.10.11, it is seen that the estimate at
2.7° does not show a clear peak. At 100 mm source separation, one of the two estimates gives
two separate values which, from figure 9.10.12, are estimates from two distinguishable peaks.

It can easily seen from the plots in figures 9.9 and 9.10 that the resolution abilities of both
the conventional and the MUSIC methods degrade as the source separation decreases.
Although the MUSIC method is proved to possess higher resolution, it is not fully shown in
this group of experiments although figure 9.10.11 and figure 9.10.12 provide some evidence.
The advantages of the MUSIC method over the conventional beamforming method are shown
in that the spectra from the MUSIC method give sharper peaks and smoother backgrounds.
The array deployed in these experiments has very sharp directivities so that even the
conventional beamforming method can resolve very closely placed sources and the resolution
abilities of both methods might be limited by other practical factors, such as environment
noise, etc..

The root MUSIC (RT-MUSIC) method shows similar results as the spectral MUSIC method
at all the source separations and in both cases when a single source and two sources are on.
For source separations of 150 rym and 100 run, only one estimate is given in one of the two
experiments. This is because only one angular estimate has a modulus which is big enough
to be recognized as an estimate.

Results obtained from IMP, ML, and WSF demonstrate very good consistency in most of
the cases except the last separation of 100 mm where the IMP algorithm gives only one source
direction estimate although the number of sources is two. The program terminated after
giving the estimate of the first source since the residual power level was lower than the
threshold. The estimates are the same as those from the conventional method (which
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constitutes the first stage of the IMP algorithm). Probably changing the definition of the
threshold or using a more flexible threshold would allow the processing to carry on till the
second source was found.

From table 9.3, the position estimate of source #2 at each separation, the fixed source, does
not hold the estimate given by the switching off source #1 in the first row of the table, This
is thought to be the result of switching on / off the sources manually.

9.3.2 Experiments, Group 2

For this group of experiments, the two sources worked at the same frequency, 40.00 kHz,
while other parameters were the same as that in the previous group of experiments. For
source #2 which was unmoved in the experiments, four measurements were taken to align
its position at the beginning of the measurements. Afterwards, two measurements were taken
when only source #1 was on to determine the source positions which were changed in the
experiments. When both sources were on, four measurements were taken to provide more
information for the following processing and for the observation of the algorithm abilities to
resolve the two sources.

The source separation was reduced from 600 mm to 100 mm with a decrement of 50 mm, i.e.,
11 separations were considered. The calculated angles of the source directions were the same
as those in the previous group of experiments, as listed in table 9.2. The results obtained by
using different algorithms are tabulated in table 9.4.

The position of the fixed source, source #2, was consistently determined by all the methods.
Like in the Experiment Group 1, the ESPRIT method gave estimates which were smaller
than the average of estimates from all other methods. But the "bias” herein was smaller than
in the previous case.

For all the separations through the experiments, the positions of source #1 were well deter-
mined. Although the ESPRIT method tended to give smaller angular estimates, the differ-
ences were getting less noticeable and, at the separation of 150 mm and 100 mm, the same
estimates resulted as those from other methods.
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When both sources were on, the results required more attention. For separations which were
larger than 300 mm, all methods depicted good indication of source positions. Especially
for the separations of 600 mm, 550 mum, and 500 mm, all methods showed excellent results
with great consistency, except the ESPRIT estimates at 500 mm separation which show biases.
For the separation of 450 mm, IMP, ML, and WSF still performed extremely well in the sense
of giving consistent estimates. Other methods also gave good estimates but did not behave
as consistently with the other methods as before. The conventional beamforming method
showed a tendency to give estimates which were in the true directions. The other spectral
method, SP-MUSIC, did not show this trend by giving estimates which were much nearer
those from the IMP, ML, and WSF. Comparatively, the estimates from RT-MUSIC seemed
to be better than those for ESPRIT.

The three optimal methods, again, gave very consistent estimates at separations of 400 mm
and 350 mm. The CBF method, however, showed quite good results, similar to those from
the optimal methods, while estimates from both MUSIC methods were biased. The results
from ESPRIT were more "arbitrary”.

It can be seen that when the source separations are large, the performance of all algorithms
is similar to that in the case when two sources worked at different frequencies. But as the
separation decreases, the performance degrades. This performance degradation can be seen
from the results when the source separations are 300 nun or smaller.

In the row where the source separation was 300 mm and two sources were on, none of the
four measurements gave two distinct peaks in the conventional beamforming spectra while
three of them found both estimates in the MUSIC spectra. Only one of the two estimates
given by the ESPRIT algorithm seemed reasonable and seemed to be lying at a direction
somewhere between the two source directions rather than near either of them. Two of the
RT-MUSIC estimates among the four gave similar results as the SP-MUSIC and the other
two were less convinced. All the roots were checked and it was found that the estimates at
-0.6° possessed larger moduli than the ones at 2.8°, Although the largest moduli in this case
were more clustered and less distinguishable from the rest, the two angular estimates with
the largest moduli were picked out and listed in the table.

Despite the performance degradation in the above-mentioned methods, both multidimen-

sional approaches, ML and WSF, provided very good angular estimates. The IMP method
also performed well except in the last measurement where only one estimate was given (the
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searching procedure terminated after finding the first source).

The same measurements were then processed under the assumption that only one source was
present. Conventional beamforming did not depend on this knowledge and the assumption
would not affect its performance and the correspondent estimates were not repeated in the
table. However, the SP-MUSIC was greatly affected and gave only one estimate in each
measurement which was the same as the correspondent estimate from CBF. RT-MUSIC, on
the other hand, gave similar results to the ESPRIT method except in the first measurement.
The roots were again checked for the reason and it was the same as under the assumption of
two sources present. An angular estimate existed at 2.8° but the corresponding modulus was
smaller than the one at 4.1°, which was listed in the table.

The results from the IMP algorithm were somehow surprising. This algorithm failed to find
any peak in three of these four measurements. The reason for this was thought probably to
be that one of the two signals was taken as the noise component and the wrong classification
raised the threshold which was dependent on the noise power estimate. The other
measurement, however, gave two estimates although the number of sources was given as 1
and the two estimates were the same as those in the above row.

The multidimensional approaches, ML and WSF, gave only one estimate for each
measurement and the estimate was similar to that from CBF.

For all the cases when the source separations were less than 300 mm, the data were analysed
under both assumptions when the number of sources was 2 or 1. The conventional beam-
forming, the SP-MUSIC method, and the RT-MUSIC method gave only one estimate in all
these measurements. Only a single peak was found in each of the spectra obtained from the
conventional beamforming method or from the SP-MUSIC technique, and, for the RT-
MUSIC technique, only one estimate could be found with a modulus which was larger than
all the clustered moduli.

The number of estimates obtained from ESPRIT, ML, and WSF depended on the given
estimate of the number of sources. The estimates from ML and WSF seemed to be acceptable
estimates of the true source directions while only one of the two given by ESPRIT was likely
to be an estimate of the source direction.
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Table 9.4 Results when two sources working at the same frequency (40.00 kHz)
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(continued)

Emitter Emitter CBF SP-MUSIC RT-MUSIC ESPRIT IMP ML WSF
State Separation
#1 ON 200 mm 3.1 3.1 3.1 3.0 3.1 3.1 3.1
#2 OFF (3.19 3.1 3.1 3.1 29 3.1 3.1 3.1
41 ON 2.6 2.6 2.7 26 -84 16 3.1 1.7 32 17 32
#2 ON 26 2.6 26 25 -13 16 3.1 1.7 32 17 32
2. 25 2.5 26 -1.5 26 17 32 1.7 32
d=2 25 24 24 2.5 -85 2.5 16 3.1 16 3.1
#1 ON 2.6 2.6 2.6 2.6 2.7 2.6
#2 ON 26 26 2.5 1.6 3.1 2.6 26
2.6 26 26 26 26 26
d=1 2.5 2.5 2.5 2.5 2.5 25
#1 ON 150 mm 28 2.8 2.8 2.8 28 28 2.8
#2 OFF Q.7 2.7 2.7 2.7 27 27 2.7 27
#1 ON 22 2.1 2.0 22 1.0 2.0 35 1.9 33 1.8 32
#2 ON 2.3 23 2.3 23 -58 23 2.0 3.5 2035
23 2.3 2.3 23 -80 1.0 2.5 16 3.0 14 28
d=2 23 23 23 23 26 23 1.8 3.2 1.5 29
#1 ON 2.2 22 23 22 22 22
#2 ON 23 2.3 23 23 23 23
. 23 23 23 23 2.2 22
d=1 23 23 23 23 22 23
#1 ON 100 mm 24 24 24 24 24 24 24
#2 OFF (2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.5
#1 ON 2.0 2.1 2.1 2098 08 22 0.8 22 0.8 22
#2 ON 1.9 19 19 19 -93 19 36 18 3.5 0.8 2.1
1.9 19 1.9 19 94 1.9 1.8 3.5 09 22
d=2 20 1.9 1.8 20 88 1.9 3.6 19 35 1.9 3.5
#1 ON 2.0 2.0 20 20 20 2.0
#2 ON 19 1.9 1.9 19 20 20
2.0 20 19 1.9 20 20
d=1 2.0 2.0 20 2.0 2.0 2.0
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Figure 9.11 Spectra obtained by the conventional beamforming method
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Figure 9.12 Spectra obtained by the spectral MUSIC method
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Chapter 9

The number of estimates obtained from the IMP algorithm varied from measurement to
measurement, which was believed to be related with the threshold pre-defined in the pro-
cessing program. And also this indicated that the IMP algorithm was probably unrelated
with the number of sources assumed, provided that a more flexible threshold was defined.
But this was not the case in the results shown here.

The conventional spectra and the MUSIC spectra of the measurements presented in this
section are plotted in figure 9.11 and figure 9.12. The case when a single source was on is
not included because good spectra are expected as in the previous section. The first 6 plots
in each figure are for the 6 biggest angular separations, from 600 mm to 350 mm. The other
8 plots are for cases when the angular separations are less that 350 mm and the number of
sources are alternatively assumed as 2 and 1 (i.e, plots with odd numbers are for the cases
when the number of sources is given as 2, and those with even numbers are for those when
the number of sources is 1). The CBF spectra did not depend on the number of sources
assumed, but the plots were repeated to keep the figure complete.

The two sources working at the same frequency were supposed to be coherent, and the SP-
MUSIC, the RT-MUSIC technique, and the ESPRIT methods were expected to be unable to
distinguish the two sources even though the source separation was large enough. However,
these three methods still showed goodresultsin the experiments presented here. Nevertheless,
compared with those results listed in the table 9.3, the performance degradation could be
easily seen because of the larger correlation between the two sources.

9.3.3 Experiments, Group 3

This group of experiments is an extension of those in the previous group. The number of
source separations was reduced from 11 in last section to 4, which were 400 mm, 300 mm,
200 mm, and 100 mm, while more measurements were taken to inspect the algorithm per-
formance in the correlated source cases. For each of 4 separations, 12 measurements were
taken. Estimates of the angular locations for all these 12 observations are listed in table 9.5.1
through table 9.5.10, while the first 8 of the spectra obtained from the conventional beam-
forming method and the SP-MUSIC are plotted in figure 9.13.1 through figure 9.13.10.
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Table 9.5.1 Position of Source #2 (the Fixed Source)

No. CBF |sP-MusIC |[RT-MuUSIC | ESPRIT M ML WSF
—
1 1.6 1.6 1.6 16 16 16 16
2 1.6 1.6 1.6 1.5 1.6 16 16
3 1.6 1.6 1.6 1.6 1.6 16 16
4 1.6 1.6 1.6 1.6 1.6 16 1.6
5 1.6 1.6 1.6 1.6 1.6 1.6 1.6
6 16 16 1.6 1.6 1.6 16 1.6
7 16 1.6 1.6 1.6 1.6 16 1.6
8 16 1.6 1.6 1.5 1.6 1.6 16
9 16 1.6 1.6 1.6 1.6 16 16
10 16 1.6 1.6 1.5 1.6 16 1.6
11 1.6 1.6 1.6 1.6 16 1.6 1.6
12 16 16 1.6 1.6 1.6 1.6 1.6

Figure 9.13.1 Spectra Obtained from CBF (on left) and MUSIC (on right)

Normalised Spectra (dB)

Normalised spectra (dB)

3 o > 3 [} 12
Field of View (Degree) Field of View (Degree)

As before, the position of the fixed source was first measured. The results are listed and
drawn in table 9.5.1 and figure 9.13.1. The estimates for the source directions were very
consistent, as were the estimated spectra. As can be seen from the two plots in figure 9.13.1,
the MUSIC spectra were much smoother than the CBF spectra.

Table 9.5.2 represents the estimates of the positions of source #1 when the source separation
was given as 400 mm, and the corresponding CBF and MUSIC spectra are shown in figure
9.13.2. Good estimates of the position were revealed both from the table and the plots. The
situation when both sources were switched at this separation is described in table 9.5.3 and
figure 9.13.3. ML and WSF performed well again, and so did IMP which gave very similar
estimates except for measurement no.7 where only one source was found by the IMP
algorithm. Both CBF and SP-MUSIC behaved very well which can be seen both from the
table and the figures. But RT-MUSIC gave some confusion in selecting the estimates.
Measurement no.3 resulted in only one estimate with a reasonable modulus, and 4 of other
11 measurements showed two acceptable angular estimates with moduli not being the two
biggest ones (denoted by a superscript * in table 9.5.3). ESPRIT did give good estimates in
most but not every measurement.
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Table 9.5.2 Position of Source 1
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Table 9.5.4 Posiiion of Source 1
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Table 9.5.5 Positions of Both Sources with Separation of 300 mm
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Table 9.5.6 Position of Source 1
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Table 8.5.7 Positions of Both Sources with Separation of 200 mm
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Table 9.5.8 Position of Source 1

Chapter 9

No. CBF SP-MUSIC | RT-MUSIC | ESPRIT | IMP ML WSF
1 [ 24 2.4 24 24 | 24 2.4 34
2 24 24 24 23 24 24 24
3 24 24 24 23 24 24 24
4 24 24 24 24 24 24 24
5 24 24 24 23 24 24 24
6 25 25 25 24 2.5 25 2.5
7 2.5 25 2.5 24 25 25 2.5
8 24 24 24 23 24 24 24
9 24 24 24 24 24 24 2.5
10 24 24 24 24 24 24 24
11 24 24 24 23 2.4 24 24
12 24 24 24 23 24 24 24

Figure 9.13.8 Spectra Obtained from CBF {on left} and MUSIC (on right)
N g
S 8
3 3.
e o 3 s 9 12 e .'3 o 3 s 12
Field of View (Degree) Field of View (Degree)
Table 9.5.9 Positions of Both Sources with Separation of 100 mm

No. CBF SP-MUSIC | RT-MUSIC| ESPRIT Imp ML WSF
1 2.1 1.8 18 29 2.1 50 2.1 1.8 32 18 3.2
2 2.1 20 20 22 -103 1.8 3.1 18 32 1.8 3.1
3 2.1 20 19 2.1 83 2.1 1.8 3.2 1.8 32
4 2.2 21 20 23 105 2.2 19 33 19 33
5 22 2.1 21 23 103 22 19 3.2 19 32
6 22 21 2.1 23 -10.5 22 19 34 19 34
7 2.1 2.1 2.0 2.3 B.O 21 18 3.2 18 3.2
B 20 1.9 19 2.1 102 18 3.2 1.8 3.2 1.8 3.2
9 2.1 20 20 2206 2.1 18 3.1 1.8 32
10 2.1 19 19 2254 1.8 32 18 3.1 1.8 32
11 20 19 19 2.1 -100 20 1.8 32 18 3.2
12 2.1 1.9 19 22173 2.1 18 3.2 1.8 3.2

Normalised Spectra (dB)

Field of View (Degree)
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Figure 9.13.9 Spectra Obtained from CBF (on left) and MUSIC (on right)
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Table 9.5.10 Positions of Both Sources with Separation of 100 mm when the Number of Source was
Assumed as 1

No.| SP-MUSIC | RT-MUSIC ] ESPRIT MP ML WSF
1 2.1 2.1 22 2.1 2.1 2.1
2 2.1 2.1 22 21 21 2.1
3 2.1 2.1 22 2.1 2.1 2.1
4 22 22 23 22 2.1 22
5 22 22 23 22 22 22
6 22 2.2 23 22 2.2 22
7 2.1 2.1 2.2 2.1 2.1 21
8 2.1 2.0 22 2.0 2.1 2.1
9 2.1 2.1 22 2.1 2.1 2.1
10 2.1 2.1 2.2 2.1 2.1 2.1
11 2.0 2.0 22 2.0 2.0 2.0
12 2.1 2.1 22 2.1 2.1 2.1

Figure 9.13.10 Spectra Obtained from CBF (on left) and MUSIC (on right)
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For the separations of 300 nun and 200 mm, performances from all methods under examination
were good, which can be seen from both the tables 9.5.4 to 9.5.7 and the figures 9.13.4 to
9.13.7. This was, however, somehow unexpected from experience in the last section.

As the separation reduced to 100 mm, both conventional spectra and the MUSIC spectra
depicted a single peak in each of the plots, as shown in figure 9.13.9. RT-MUSIC managed
to give two estimates only in one measurement which could be recognized as possible source
directions. ESPRIT depicted two estimates but only one of them was acceptable, lying
between the two source directions. The IMP algorithm showed three chances of giving two
estimates, which were very similar as those given by ML and WSF in the same row. ML and
WSF showed two stable estimates in all the 12 measurements.

The last set of measurements was tested under the assumption that only one source was
present. The results are presented in table 9.5.10 and figure 9.13.10. All methods show very
consistent performance. The CBF spectra plotted in figure 9.13.10 were the same as those
in figure 9.13.9, but the MUSIC spectra given in figure 9.13.10 were smoother and the peak
positions were more concentrated.
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Measurement Groups 2 and 3 were both taken as the responses of the array to the sources
which worked as the same frequency. However, only slight difference was shown in the
analysed results, Those in the Group 2 were more like the expected results obtained in the
situations when the same frequency was used in the two sources; while those in Group 3
were approaching the performance in the situation when the two sources worked at two
different frequencies, as discussed in section 9.3.1. Correlation between the two sources
needs testing to provide insight into the explanation of the results presented here, which
however, is not included in this thesis.

9.3.4 Experiments, Group 4

The experimental results to be presented in this subsection are the results obtained from the
target reflections received at the array. Because it was very difficult to put the targets at
wanted positions,!ifewer target separations were considered, compared with the measurements
in the passive working mode of the array.{ Forf - the same reason, the position of the
moving target, target #1, was not estimated by removing the other target. Only the cases
with both targets present were tested. But the position of the fixed target, target #2, was
estimated by taking measurements before adding the second target.

5 target separations were assumed which were 340 mm, 270 mm, 200 mm, 150 mm, and 100
mm. For each separation, 12 measurements were taken. The corresponding results by
applying different algorithm are shown in table 9.6, and the spectra from the conventional
beamformer and from the spectral MUSIC method are plotted in figure 9.14 and figure 9.15.

Target #2 was positioned by the estimates given in the first block in table 9.6. All seven
methods used in the analysis gave very good estimates which were consistent from method
to method and also from measurement to measurement. Only 2 measurements among the
12 failed the IMP algorithm. No peak was found in the spectrum at the first stage of the
algorithm. Actually the first stage of the IMP algorithm was the conventional beam-scan,
which found peaks in all the 12 measurements as shown in table 9.6 and in figure 9.14. The
failure of the IMP algorithm was thought to be caused by the threshold defined in the pro-
cessing programs, which was related with the number of sensors in the array, number of
snapshots, and noise variance estimate. The peak level found in the first stage of IMP was
compared with the threshold, and only if this peak was higher would the peak be accepted
as an estimate, otherwise the no peak was assumed to be found.
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“This problem with the IMP algorithm was observed in the case when both targets were on

and the target separation was 340 mm. Whilst all other methods gave very good estimates
of both target positions, the IMP algorithm failed sevéral times by giving only one estimate
or even none at all. It seemed an adjustment in defining the threshold was necessary to
guarantee the performance of the IMP method to be at least as good as the conventional
beamforming method, which was the basis of the high resolution IMP algorithm.

As the separation decreased to 270 mm, the situation in the results was similar to the previous
separation. CBF, SP-MUSIC, RT-MUSIC, and the two multidimensional appreoaches, ML
and WSF showed very consistent estimates, while the ESPRIT method gave estimates with
bigger arbitrary. The performance showed by the IMP algorithm seemed better compared
to the case of 340 mm separation. Half of the measurements were found to give similar results
with ML and WSF, while the other half showed only one estimate in each measurement.

When target #1 was moved nearer to target #2 with a separation of 200 run, the conventional
method failed to resolve the two targets. But all other methods showed the ability to separate
the two targets. Estimates given by ESPRIT were less convincing for several measurements
while those from the other five methods were excellent.

Referred to figure 9.15.4 where the MUSIC spectra were shown, the peaks on the left were
not of great enough height above the nulls between the two peaks. Comparing the estimates
from CBF and those from ML or WSF, it was found that the estimates given by the con-
ventional beamforming method were almost equal to one of the estimates rather than falling
in some direction between the two estimates. It was suspected that one of the targets reflected
weak signals which made the conventional beamforming method, the target strength-sensitive
method, "ignore" the existence of such a target.

A'tt:t]:%fen smaller separation of 150 mm, the conventional beamforming method surprisingly
showed double humps which were of similarheights, as showed in figure 9.14.5. The MUSIC
spectra were similar but having a smoother background. IMP, ML, and WSF again depicted
very similar results except one measurement where only one estimate was shown by IMP,
which was the corresponding CBF estimate with the global maximum value. Estimates from
ESPRIT, however, changed a lot between measurements.

At the smallest separation in this group of experiments, 100 mm, ML and WSF still managed
to give two reasonable estimates in all measurements with good consistency. Most of the
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T

IMP estimates were also quite good while others were similar to the CBF estimates. Both
MUSIC methods showed resolving abilities on only a few occasions. Although two estimates
in each measurement were listed for ESPRIT, few of them gave two meaningful estimates.

Through the experimental analysis in this subsection, the RT-MUSIC had the same problem
as that explained earlier. Not all the biggest moduli corresponded to the angular estimates
which were more likely to be the target position estimates from the "prior knowledge”. More
than two estimates had similar values of moduli. The results listed in the RT-MUSIC column
were chosen mainly according to the values of angular estimates.

9.4 Conclusion

Results from practical measurements have been presented in this chapter. The aim was to
investigate the performance of:hajgorithms, which have been previously analysed and
simulated, with practically sampled data rather than the more ideal data in simulations.
Situations when sources and targets were used have been considered. A large amount of data
was obtained, analysed, and presented in the previous section. The results presented therein
showed the superior performance of the multidimensional methods over the more
conventional methods such as CBF, MUSIC, and ESPRIT. Especially the ML and the optimal
WSF methods depicted stable and reliable abilities to estimate the source / target directions
under all the circumstances considered in this thesis.
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CHAPTER 10

CONCLUSION AND SUGGESTION FOR FURTHER.
WORK

The task of the research in this thesis was to investigate the performance of direction finding
algorithms applied to sonar signal processing. This has been accomplished mainly by
computer simulations and analysis of practical measurements from an air acoustic sonar
array, together with some theoretical discussions. The current chapter is devoted to the
conclusion of the work and suggestions for further work in this and relevant field_s.

10.1 Conclusion of the Work in this Thesis

The algorithms included in the study of this thesis are representatives of each class of methods,
which, so far have been either widely used (such as the conventional beamforming method),
or extensively studied theoretically (such as the well studied MUSIC technique and the
recently proposed Weighted Subspace Fitting (WSF) methods). Computer simulation
provides a more visual way for the examination of performance than the mathematical
expressions, and more factors that affect the performance of the al gorithms can be considered.
On the other hand, analysis of practical measurements allows the algorithms to be explored
in an environment which is nearer to the "destination”.

The simulations in this thesis rﬁainly concern three statistics that are very important in
evaluating algorithms: probability of resolution, bias of estimated angles, and their standard
deviations. They are studied as functions of the signal to noise ratio and the angular separation
between the two sources, respectively. The same set-up of parameters has been used
throughout the simulations of all algorithms and, for the multidimensional approaches, more
situations were tested. This was motivated by the thougﬁt of testing the optimal methods
with "bad data".
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In the computer simulations, MEM, MVM, MNM, and MUSIC and their root versions were
first examined and the MUSIC techniques were chosen as "models" to be compared with the
ESPRIT algorithm and the IMP algorithm respectively, because of the lowest standard
deviations in both versions as functions of signal to noise ratio and those of angular
separations. For the ESPRIT technique, only one subarray displacement vector was
considered which was the one with the maximum over lapping subarrays in the uniform linear
array with half wavelength spacing. The asymptotic properties of ESPRIT were found to be
very similar to those of the MUSIC methods while its probability of resolution is almost the
same as the root MUSIC method, which is higher than that of the spectral MUSIC method.

The IMP-algorithm provides high resolution ability by re-processing the observed data and
is also able to handle coherent sources at the cost of a heavy computation burden. The ability
of the IMP algorithm to detect and estimate sources simultaneously is not evident from the
simulations since the order of the model was given and the data was rather "ideal". The
number of estimates was the same as that of the order of model throughout the computer
simulations. However, this is not the same when the IMP algorithm s applied to the practical
measurements.

Both ML and optimal WSF methods gave excellent results in the computer simulations. More
simulated date was tested, besides that for other methods, to examine the behaviour of these
two methods in "bad" simulations. One factor which needs more attention in implementing
these multidimensional methods is the computation load.

The analysis of practical measurements gives an idea of the algorithm performance in reality.
All the methods under examination show very consistent results with those in the simulations,

although some exceptions exist due to the measurement environment and experimental
system.

As can be seen from the experimental results, the conventional beamforming method (CBF)
provided reasonably good direction estimates. The beam-width of the employed array was
very narrow because the aperture of the array was large in the metric of wavelength (15
transducers were used in array with inter-element spacing of 2.7 wavelengths). This allowed
the CBF method to separate closely placed sources / targets.

Although the spectral MUSIC technique did not show significant advantages over the CBF
method in the experiments shown in this thesis due to the directivity of the array, it still can
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.be seen that spectral MUSIC was superior in the sense of providing sharper peaks and smoother
background. Also, the spectral MUSIC method failed to separate the two sources / targets
as a smaller separation compared to the CBF method. It is certain that the advantages of the
spectral MUSIC method over the CBF method will be shown when an array with a small
aperture is used. However, this advantages can only be achieved at the cost of a heavier
computation burden, which was the case in the analysis here.

The root MUSIC showed similar performance to that of the spectral MUSIC. Although it
was found in both the theoretical analysis and the computer simulation that the resolution
threshold of the root MUSIC is lower than that of the spectral MUSIC, it was not the case in
the practical experiment analysis. The processing speed was higher due to the lack of the
eigen-decomposition of the sample covariance matrix, but the order of the polynomial were
high since the number of sensors in the array was large. The main problem with the root
MUSIC was thought to be the selection of the possible direction estimates from all roots of
the polynomial, especially when the angular separation of the two sources / targets was small.

Comparatively, the performance of ESPRIT was slightly disappointing. The noise field was
suspected to be the main reason for this performance degradation. This method is less
appealing than the conventional beamforming method and the MUSIC techniques.

The IMP algorithm consumed more time than other methods in the data processing. For
most measurements, the results from the IMP algorithm were excellent and very similar to
those from the ML and the optimal WSF methods; while in other cases the results were less
satisfying. There were cases where no peak was found by the IMP algorithm when all other
methods were able to give very good estimates. The threshold in the processing was believed
to be the key for this problem. A more flexible threshold is required to guarantee the IMP
algorithm to perform at least as well as the CBF method, which is the basis of the IMP
algorithm. The ability of the IMP algorithm to estimate the number of sources / targets
simultaneously when estimating their directions was not demonstrated in the experimental
results presented here. But several measurements gave some evidence to this ability by
providing results that were not dependent on the number of sources / targets.

For all experiments, the ML and the optimal WSF methods gave the most stable and the most
consistent results even when the angular separation of the two sources / targets was very
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small. The complex computations of the multidimensional search inherent in these two
methods were not a big problem in off-line processing. Their excellent performance deserves
effort for real-time implementation.

10.2 Suggestion for Further Work

Several aspects need attention in the future work in this field and its possible applications to
other relevant research areas.

The aigorithm performance as functions of number of snapshots is interesting, since toomany
snapshots are impractical in real implementation. A trade-off between the number of
snapshots and the performance is required in practical systems.

The properties of sources / targets are also helpful in the analysis of practical observations,
especially those of the targets. A better way of placing the targets in the experiments is
needed so as to eliminate effects which might cause confusion in explaining the results, such
as the narrow directivity of the targets and the edges of the targets.

All transducers and the channels in the r;leasuremcnt system were tested before the data
acquisition. Good consistency between transducers and between channels was ensured.
However, no array calibration has been carried out for the air acoustic array which was used
for the practical data collection. The final performance of algorithms might degrade due to
the assumption of a perfect array and sensors while faulty sensors are always possible.

The newly suggested WSF methods are quite promising and provide excellent results even
when all other methods fail. A disadvantage inherent in this class of methods is the
computational complexity, which in not difficult when using off-line processing, but is
problematical in real-time implementation. Mathematical algorithms are required and high
speed processing technique, such as the parallel structure, is a promising solution. At the
same time, new techniques for hardware could also meet some need in the processing.

When applied to other areas, the choice of the available algorithms should be made according
to the special needs in that application. Super resolution is not the utmost judgment of an
algorithm, To provide a means for this task, more simulations are needed and the variables
in the simulations are task subjective. Onlyl ;ﬁ&_ an intensive study of the[aiégﬁthms,
could an appropriate choice be made.
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