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ABSTRACT 

For the past 20 years, CNC manufacturing has been relying on the proprietary fonnat of G& 

M codes to control the machining process despite the remarkable advances made in 

machining and control technologies. This low-level format is based on the vendor-specific 
ISO 6983 standard, which provides limited information to the CNC producing a primitive 

machining process language concentrating mainly on the cutting toolpath. Moreover, the ISO 

6983 data interface offers little or no interopcrability between the different CAD/CAM 

systems and CNC's, which is recognised as the key shortcoming of the current NC part 

programming process. 

In recent Years, a great deal of research effort has concentrated on the development of a new 
data model for the next generation of CNC's entitled ISO 14649 (STEP-NC). It has been 

strongly argued that STEP-NC has huge implications on the integration of CAD/CAPP/CAM 

(CAx) systems, giving the opportunity to realise interoperable CAD to CNC manufacturing. 
This is largely due to the STEP-NC data model offering a bi-directional data interface with a 

high-level description of both geometrical and manufacturing information, thus providing a 

revolution over the current state-of-the-art in CNC manufacturing. 

This research provides an investigation into the programming of wire-cutting electrical 

discharge machining (WEDM) machines using a high level process planning description 

based on the evolving STEP-NC standard. At present, part 13 of the standard has been 

dedicated to the non-conventional material removal process employing the use of a 

specialised. thermal machining technique to machine parts with intricate shapes and of varying 

hardness. The major contribution of this research is the design of a STEP-NC compliant CAx 

system framework with product and manufacturing information models supporting the 

WEDM process chain from product design through to machining process planning and CNC 

manufacturing. 

The research shows that conventional NC part programming is CAD-centric and can only 

offer an interim solution of satisfying the need for the WEDM CNC machining applications. 

STEP-NC strives for total integration of CAx systems with CNC by focusing on the 

standardisation of the product and manufacturing information for WEDM CNC 

manufacturing through the application of ISO 10303 standard (STEP). The research builds on 

such benefits and potentials of exploring STEP-NC to provide the basis for making a major 

step forward in facilitating interoperable CNC manufacturing for the WEDM process. 
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Chapter 1 

INTRODUCTION 

Since the inception of numerical control technology in the early 1950s, low-level G codes 
(preparatory commands) and M codes (miscellaneous command) have been used to specify 

the motion of NC machines. Despite significant advancement made in machine development 

and control technology in the last 35 years resulting in the evolution of the original NC 

processes, such as milling, into the thermal machining process, such as WEDM, the approach 

to NC part programmmg remains relatively unchanged. The very same G&M codes are still 
in use today to program these state-of-the-art machining processes and impose the CNC with 

simple cutting motions. These codes define and control the cutting toolpath, which requires 

to be calculated in terms of position and feedrate. The WEDM process relies on these G&M 

codes to thermally degrade the component material through the application of a series of 
discrete electrical discharges occurring between the wire tool and the part. However, the 

proprietary format of the G&M codes has been the bottleneck in integrating the wide range 

of CAD/CAM systems used in the generation of part programs for CNC WEDM component 

manufacturing. 

WEDM is a widely accepted non-traditional material removal process used to manufacture 

components with intricate shapes and profiles. It is considered as a unique adaptation of the 

conventional EDM process, which uses an electrode to initialise the sparking process. 

However, WEDM utilises a continuously travelling wire electrode made of thin copper, brass 

or tungsten of diameter 0.05-0.3mm. The thinner wire is commonly used to achieve sharp or 

small radii comers. The wire is kept in tension using a mechanical tensioning device reducing 

the tendencY of producing inaccurate parts. During the machining process, the material is 

eroded ahead of the wire and there is no direct contact between the workpiece and the wire, 

eliminating the mechanical stresses during machining. However, the machining process may 

require several cuts to produce the desired shape of the part. It includes the roughing cut to 

remove the slug and the finishing cut to get the required dimension accuracy and surface 

finish quality. This is mainly due to the large amount of wear occurring on the wire during 

the roughing cut, thereby producing a very coarse surface finish on the machined part. 

NVEDM process is able to machine exotic and high strength and temperature resistive (HSTR) 
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Chapter I 

materials and eliminate the geometrical changes occurring in the machining of heat-treated 

steels. 

In many CNC manufacturing environnients, CAD/CAM systems are used to define the 

component design and machining operation processes. The CNC programmer defines the 

part design by using a CAD system and determines the machining operation through the use 

of a CAM system. The end result is a cutting toolpath written in cutter location data format, 

which is subsequently imported to the post-processor generating the NC part program for a 

vendor-specific machine controller. However, the NC part program is scrutinised with G& 

M codes entailing simple 'go to point' instructions, which no longer satisfy the functional 

requirements of the modem-day CNC manufacturing. Furthermore, the CNC has the 

exclusive use of G&M codes, which isolate the CNC from the other CAD/CAM functions, 

in terms of information sharing and exchange. Such constraints are at the basis of a need to 

explore a high-level process planning description and interface, which can integrate the CAD 

to CNC process chain. 

A new data model, informally known as STEP-NC, has been developed to revolutionise the 

current approach of CAD/CAM programming for CNC WEDM component manufacturing. It 

is primarily based on the ISO 14649 standard (2003) to provide a bi-directional data interface 

between different CAx systems and a new breed of intelligent CNC. Current part 

programming practice uses vendor-specific interpreted G&M codes based on the ISO 6983 

standard (1982), otherwise known as RS 274D (1979), to program a CNC WEDM machine. 
It produces ad-hoc information content and data format, which cannot adequately satisfy the 
different system functional needs of sharing and exchanging information between the 

systems. STEP-NC aims to solve these problems through the use of the STEP (Standard for 

the Transfer and Exchange of Product model data) neutral product data transfer format ISO 

10303 (1994) of representing both the design and manufacturing intent. The neutral format 

ensures that the information would not change throughout the product life cycle or with the 

ever-advancing computing technology. In addition, STEP-NC seeks to capture the complete 
information requirements to support the operation and the control of the various CNC WEDM 

activities. 

The integrity of standardised repositories of product and manufacturing information is crucial 
to the planning, operating and controlling of the WEDM process. STEP-NC's data model 
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seeks to specify the information about the manufacturing capability of a process by mapping 
it onto the design specification of a part, thereby producing a feasible machining process plan 
for the part. In order to facilitate the evaluation of the impact of the product design on the 

manufacturing process at the early stage of product development, the two information 

repositories are closely integrated. The result of integrating the information repositories also 
helps to promote interoperable manufacturing of parts at different locations/companies. 

These benefits are largely made possible through the sharing and exchanging of product and 

process knowledge among different design and manufacturing software systems, thus 

facilitating integrated and interoperable product design, process planning and machining. 

A widely accepted method of integrating the different sources of information to support 

machining process planning is through information modelling. It ensures the effective 

representation of both the product and process knowledge, which require to be seamlessly 
integrated in the CNC manufacturing environment. The aim of this research is to provide an 
investigation into the programming of WEDM machines using a high level process planning 
description based on the ISO 14649 standard. This is mainly carried out by identifying the 

generic information models needed to support CNC manufacturing decision-making through 

the integration of information across the WEDM CAx to CNC process chain. As a result, it 

enables the information models to provide a consistent information exchange and the 

interoperability of product design and manufacturing infonnation for WEDM components 
both from the CAD system to the CNC and CNC to CAD. This research presents a system 
framework that supports the various part programming and machining process planning 

activities for WEDM component manufacturing within a STEP-NC compliant manufacturing 

environment. 

The major research questions explored in this thesis are: 

a. that a high-level process planning description based on a new manufacturing standard can 

be used to describe the geometrical and manufacturing requirements of a WEDM 

component 
b. that the information models can be used to support the interoperable manufacturing of 

WEDM components in the CAD to CNC process chain 
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The thesis is divided into four main sections, which are depicted in figure 1.1 and described as 

follows: 

i. Backgroundl7iterature review section 
This section provides the introduction and scope of the research. The latter identifies the aims 

and objectives of the research, which lead to a number of research areas undertaken by the 

author. One of the research areas involves the review on the various academic researches into 

the WEDM process and the advent of STEP-NC for CNC manufacturing, which is also 

included in this section. The review on the WEDM process gives an overview of the widely 

accepted non-traditional material removal process, thereby providing an insight into the 

planning of the WEDM process. On the other hand, the review on the STEP-NC studies its 

implication on the programming a component for CNC manufacturing through the use a high 

level process planning description based on the ISO 14649 standard. 

ii. Theoretical research section 
This section identifies a generic system framework and the two fundamental information 

models supporting an interoperable CAD to CNC manufacturing within a STEP-NC 

environment for the WEDM process. The system framework is described by exploring the 

information and functional perspectives of the CAx to CNC process chain. Whereas the 

information models are described in the context of modelling the product and manufacturing 
information needed to facilitate the planning of the WEDM process through the use of the 

ISO 14649 standard. 

iii. Experimental research section 
This section outlines the development and evaluation of a prototype system based on the 

system framework and the infonnation models identified in the previous section. The 

computational environment for the prototype system is described in this section in terms of 

the development, functional and operational structure to generate a STEP-NC process plan for 

WEDM component manufacturing. The prototype system is subsequently tested through the 

use of the example case study found in the ISO/DIS 14649-13. It is evaluated not only on the 

functionality of generating the STEP-NC process plan for the example parts but also on the 

information needed to adequately carry out the planning of a WEDM process. 
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iv. Research conclusion section 
This section discusses and concludes the various research areas surrounding the design and 
implementation of the STEP-NC compliant CAx system for WEDM component 

manufacturing. It also includes appendices relating to the testing of the prototype system. 

Part 1: Background/Literature Review Section 
Introduction 

(Chapter 1) 

Scope of Research 

(Chapter 2) 

State-of-the-Art in WEDM 
(Chapter 3) - 

Evolution of STEP-NC 
(Chapter 4) 

Part 2: Theoretical Research Section 
Design of an Interoperable 

STERNC Compliant 
WEDM CAx System Framework 

(Chapter 5) 

STERNC Compliant 
Information Modelling for 

WEDM Component Manufacturing 
(Chapter 6) 

Part 3: Experimental Research Section 
Computational Environment for 

STEP-NC Compliant 
WEDM CAx Prototype System 

(Chapter 7) 

Case Study, Testing & Results 

(Chapter 8) 

Part 4: Research Conclusions Section 
Concluding Discussion 

(Chapter 
Conclusions& FLAure Wod( 

(Chapter 10) 

j 

Figure IA The structure of the chapters in the thesis 



Chapter 2 

SCOPE OF RESEARCH 

2.1 Introduction 

This chapter describes the scope of the research reported in the thesis. It identifies the aims 

and objectives leading to a number of research areas undertaken by the author. 

2.2 Research aims and objectives 
The aims of the research are as follows: 

a. To investigate the programming of WEDM CNC machines by using a high level 

process planning description based on the ISO 14649 standard 
b. To explore the use of process planning information based on the ISO 14649 standard 

to support the interoperable CAD to CNC manufacturing of WEDM components 

The objectives of the research are as follows: 

i. Review the major WEDM research areas including process optimisation, process 

monitoring and control together with process development and applications 

Review the state-of-the-art NC part programming and the advent of STEP-NC in 

programming a component for CNC manufacturing 

iii. Design a framework for a WEDM CAx system to support interoperable CAD to CNC 

manufacturing within a STEP-NC environment 

iv. Identify the STEP-NC compliant information models for capturing the information 

requirements needed to perform the various VV'EDM machining process planning 

activities 
V. Develop a computational prototype system based on the CAx framework and the 

information models to program a WEDM component for CNC manufacturing 

vi. Evaluate the prototype system by using a case study and comparing it against state-of- 

the-art CAD/CAM systems 
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Chapter 2 

2.3 Scope of research 

The scope of the research forming the fundamental structure of the thesis is as follows: 

2.3.1 State-of-the-art in WEDM 

Over the last 45 years, the WEDM process has remained as a competitive and economical 

machining alternative. It is capable of machining parts with varying hardness or 

geometrically complex shapes, which are very difficult to be machined by the traditional chip 
forming machining processes. This part of the literature research will review the vast array of 

research work, carried out from the inception to the development of the WEDM process, 

exploring the different methodologies of achieving the ultimate WEDM goals of optimising 

the numerous process parameters and improving the overall machining efficiency. 

2.3.2 Evolution of STEP-NC 

The interoperability of CNC manufacturing is largely achieved by the neutral data format of 

representing and exchanging the product and manufacturing information between different 

design and manufacturing software systems. This research will review the various data 

transfer efforts of capturing and preserving the complete information requirements to support 

the operation and the control of the CNC manufacturing activities. The major part of this 

research will describe the evolution of STEP-NC by reviewing the conventional CNC part 

programming methods of manufacturing a component. 

2.3.3 Design of an interoperableSTEP-NC compliant WEDMCAx systemframework 
STEP-NC has huge implications on the integration of CAx systems giving the opportunity to 

realise interoperable CNC manufacturing. This part of the theoretical research will 
investigate the use of a generic system framework, which exploits product and manufacturing 
information, to support the decision-making relating to WEDM process planning and the 

generation of the STEP-NC process plan. The framework is intended to provide a platform 
for facilitating the interoperable manufacturing of a WEDM component through the seamless 

integration of product and manufacturing information across the CAx process chain. 

2.3.4 STEP-NC compliant information modellingfor WEDM component manufacturing 
The feasibility of planning the WEDM process is dependent on the integrity of the 

standardised repositories of product and manufacturing information. This research will aim to 

define two fundamental information models, namely the product and manufacturing models, 
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representing the vital information required to support the various part programming/ 

machining process planning activities for the WEDM process. The models are based on Part 

13 of ISO 14649 standard (2003), which is dedicated to the WEDM process, together with 
Part 10 of the standard (2004), which specifies the general machining information. 

2.3.5 Computational environmentfor STEP-NC compliant WEDM CAx prototype system 

The experimental part of the research will involve the development of a STEP-NC compliant 
WEDM CAx prototype system to demonstrate the viability of the information models, 
identified in section 2.3.4, in the application domain through the use of a WEDM example 

part. The system will be based on the framework, identified in section 2.3.3, and will 
demonstrate the use of information models for STEP-NC compliant WEDM CNC 

manufacturing. It is constructed on the basis of structuring the information aspect and 

constructing the functional aspect of the system through the use of the unified modelling 
language (UML) class diagrams, IDEFO activity modelling methodology, ObjectStore 

database management systems (DBMS) and Java programming language. 

2.3.6 Case study, testing and results 
The STEP-NC compliant WEDM CAx prototype system will be evaluated with a case study 

based on two example WEDM parts specified in the ISO/DIS 14649-13 standard. It will be 

tested to gauge the system performance of planning the WEDM process and generating the 

process plan within a STEP-NC manufacturing environment. The viability of the STEP-NC 

compliant information models supporting the various WEDM product design and WEDM 

manufacturing process activities will also be tested. This will involve the comparison 
between the prototype system and two commercial state-of-the-art WEDM CAD/CAM 

systems, in terms of the data input/output, programming activities and process planning rules. 

This should enable the research to be put in perspective of today's CAD to CNC 

programming systems. 
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STATE-OF-THE-ART IN 

WIRE ELECTRICAL DISCHARGE MACHINING 

3.1 Introduction 

This chapter provides a review, which has been published in (Ho et aL 2004), on the various 

academic research areas involving the WEDM process. It is the sister paper to a review by 

Ho and Newman (2003) on die-sinking EDM. The chapter first presents the machining 

process overview based on the widely accepted principle of thermal conduction and highlights 

some of WEDM applications. The main section of the chapter focuses on the major WEDM 

research activities, which include the machining process optimisation together with the 

machining process monitoring and control. It gives an outline of the various factors affecting 

the machining performance and productivity, thereby providing an insight into the planning of 

the WEDM process, which will be discussed in detail in chapter 5. The final part of the 

chapter critiques the major research areas and the possible research directions. 

3.2 NMDM 

This section provides the basic principle of the WEDM process and the variations of the 

process combining other material removal techniques. 

3.2.1 History of WEDM 

VVrEDM was first introduced to the manufacturing industry in the late 1960s. The 

development of the machining process was the result of seeking a technique to replace the 

machined electrode used in EDM. In 1974, D. H. Dulebohn applied the optical-line follower 

system to automatically control the shape of the component to be machined by the WEDM 

process (Jameson 2001). By 1975 its popularity was rapidly increasing, as the process and its 

capabilities were better understood by the industry (Benedict 1987). It was only towards the 

end of the 1970s, when CNC system was initiated into VYTDM that brought about a major 

evolution of the machining process. As a result, the broad capabilities of the machining 

process were extensively exploited for any through-hole machining owing to the wire, which 

has to pass through the part to be machined. The common applications of WEDM include the 
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fabrication of the stamping and extrusion tools and dies, fixtures and gauges, prototypes, 

aircraft and medical parts, and grinding wheel form tools. 

3.2 2 WEDMprocess 

The material removal mechanism of WEDM is very similar to the conventional EDM process 
involving the erosion effect produced by the electrical discharges (sparks). In WEDM, 

material is eroded from the workpiece by a series of discrete sparks occurring between the 

workpiece and the wire separated by a stream of dielectric fluid, which is continuously fed to 

the machining zone (Puri and Bhattacharyya 2003), as shown in figure 3.1. However, today's 

WEDM process is commonly conducted on workpieces that are totally submerged in a tank 

filled with dielectric fluid. Such a submerged method promotes temperature stabilisation and 

efficient flushing especially in cases where the workpiece has varying thickness. The WEDM 

process makes use of electrical energy generating a channel of plasma between the cathode 

and anode (Shobert 1983), and turns it into thermal energy (Tsai et aL 2003) at a temperature 

in the range of 8,000 to 12,000T (Boothroyd 1989) or as high as 20,000*C (McGeough 

1988) initialising a substantial amount of heating and melting of material on the surface of 

each pole. When the pulsating direct current power supply occurring between 20,000 to 

30,00OHz (Krar 1997) is turned off, the plasma channel breaks down. This causes a sudden 

reduction in the temperature allowing the circulating dielectric fluid to implore the plasma 

channel and flush the molten particles from pole surfaces in the form of microscopic debris. 

Nozzles for dielectric 
(deionised water) 

Figure 3.1 Basic elements of the WEDM process (Boothroyd 1989) 

10 



Chapter 3 

While the material removal mechanisms of EDM and WEDM are similar, their functional 

characteristics are not identical. WEDM uses a thin wire continuously feeding through the 

workpiece by a microprocessor, which enables parts of complex shapes to be machined with 

exceptional high accuracy. A varying degree of taper ranging from 15* for a 100mm thick to 

30" for a 400mm thick workpiece can also be obtained on the cut surface. The 

microprocessor also constantly maintains the gap between the wire and the workpiece, which 

varies from 0.025 to 0.05mm (Benedict 1987). WEDM eliminates the need for elaborate pre- 

shaped electrodes, which are commonly required in EDM to perform the roughing and 
finishing operations. In the case of WEDM, the wire has to make several machining passes 

along the profile to be machined to attain the required dimensional accuracy and surface 
finish (SF) quality. Kunieda and Furudate (2001) tested the feasibility of conducting dry 

machining to improve the accuracy of the finishing operations, which was conducted in a gas 

atmosphere without using dielectric fluid. The typical cutting rates (CRs) are 300MM2 /min 

for a 50mm thick D2 tool steel and 750mm2/min for a 150mm thick aluminium (Kalpajian 

and Schmid 2003), and SF quality is as fine as 0.04-0.25pm Ra. In addition, WEDM uses 
deionised water instead of hydrocarbon oil as the dielectric fluid and contains it within the 

sparking zone. The deionised water is not suitable for conventional EDM as it causes rapid 

electrode wear, but its low viscosity and rapid cooling rate make it ideal for WEDM (Huntress 

1978). 

3.2.3 Hybrid machining processes 
There are a number of hybrid machining processes (HMPs) seeking the combined advantage 

of WEDM with other machining techniques. One such combination is wire electrical 
discharge grinding (WEDG), which is commonly used for the micro-machining of fine rods 

utilized in the electronic circuitry. WEDG employs a single wire guide to confine the wire 

tension within the discharge area between the rod and the front edge of the wire and to 

minimise the wire vibration. Therefore, it is possible to grind a rod that is as small as 5Pm in 

diameter (Masuzawa and Tonshoff 1997) with high accuracy, good repeatability and 

satisfactory straightness (Masuzawa et aL 1985). Other advantages of WEDG include the 

ability to machine a rod with a large aspect ratio, maintaining the concentricity of the rod and 

providing a wider choice of complex shapes such as tapered and stepped shapes at various 

sections (Masuzawa el aL 1994). Several authors (Egashira, and Mizutanj 2002, Langen et aL 

1995, Masuzawa et aL 1989, Sun el aL 1996) have employed the VVTEDG process in the 

micro-machining of fine electrodes or pins with a large aspect-ratio, which are difficult to be 
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machined by traditional precision micro-machining methods such as Micro-EDM, LIGA and 

excimer laser drilling. 

Some of the HMPs seek to improve the WEDM performance measures such as the surface 
integrity and the CR. For example, the ultrasonic vibration has been applied to the wire 

electrode to improve the SF quality together with the CR and to reduce the residual stress on 

the machined surface (Guo, et aL 1997). On the other hand, the wire electrochemical grinding 

(WECG) process replaces the electrical discharge used in WEDG with an electrochemical 

solution to produce high SF quality part for a wide range of machining condition (Masuzawa 

et aL 1994). Masuzawa et al. (1994,1997) compared the SF quality obtained from the 

WECG with WEDG, which is suitable for finishing micro-parts. A rotary axis has also been 

added to WEDM to achieve higher material removal rate (MRR) and to enable the generation 

of free-fonn cylindrical geometries (Qu et A 2002a, Rhoney et al. 2002a). The effects of the 

various process parameters such as part rotational speed, wire feed rate and pulse on-time on 

the surface integrity and roundness of the part produced have been investigated in the same 
feasibility study (Qu et aL 2002b). 

3.3 WEDM applications 
This section discusses the viability of the WEDM process in the machining of the various 

materials used particularly in tooling applications. 

3.3.1 Modern tooling applications 
WEDM has been gaining wide acceptance in the machining of the various materials used in 

modem tooling applications. Several authors (Levy and Wertheim 1988, Luo et aL 1992) 

have investigated the machining performance in the wafering of silicon and machining of 

compacting dies made of sintered carbide. The feasibility of using cylindrical WEDM for 

dressing a rotating metal bond diamond wheel used for the precision form grinding of 

ceramics has also been studied (Rhoney et al. 2002a). The results showed that the WEDM 

was capable of generating precise and intricate profiles with small comer radii but a high wear 

rate was observed on the diamond wheel during the first grinding pass. Such an initial high 

wheel wear rate was due to the over-protruding diamond grains, which did not bond strongly 

to the wheel after the WEDM process (Rhoney et al, 2002b). The machining of permanent 
NdFeB and 'soft' MnZn ferrite magnetic materials used in miniature systems, which requires 

small magnetic parts, was studied by comparing it with the laser-cutting process (Kruusing et 
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aL 1999). It was found that the WEDM process yielded better dimensional accuracy and SF 

quality but had a slow CF, 5.5 mm/min for NdFeB and 0.17 mm/min for MnZn ferrite. A 

study was also done to investigate the machining performance of micro-WEDM used to 

machine a high aspect ratio meso-scale part using a variety of metals including stainless steel, 

nitronic austentic stainless, beryllium copper and titanium (Benavides et aL 2002). 

3.3.2 Advanced ceramic materials 
The WEDM process has also evolved as one of the most promising alternatives for the 

machining of advanced ceramics. Sanchez et al. (2001) provided a literature survey on the 

EDM of advanced ceramics, which have been commonly machined by diamond grinding and 
lapping. In the same paper, they studied the feasibility of machining boron carbide (B4C) and 

silicon infiltrated silicon carbide (SiSiC) using EDM and WEDM. Cheng et al. (1996) also 

evaluated the possibility of machining ZrB2 based materials using EDM and WEDM whereas, 
Matsuo and Oshima (1992) examined the effects of conductive carbide content, namely 

niobium, carbide (NbQ and titanium carbide (TiC), on the CR and surface roughness of 

zirconia ceramics POD during WEDM- Lok and Lee (1997) have successfully machined 

sialon 501 and aluminiurn oxide-titanium carbide (A1203-TiC). However, they realised that 

the MRR was very low as compared to the cutting of metals such as alloy steel SKD-I I and 

the surface roughness was generally inferior to the one obtained with the EDM process. 
Dauw et aL (1990) explained that the MRR and surface roughness were not only dependent 

on the machining parameters but also on the material of the part. 

An innovative method of overcoming the technological limitation of the EDM and WEDM 

processes requiring the electrical resistivity of the material with threshold values of 

approximately 100 fYcm (Konig et aL 1988) or 300 fVcm (Firestone 1988) has recently been 

explored. There are different grades of engineering ceramics, which Konig et aL (1988) 

classified as non-conductor, natural-conductor and conductor, which is a result of doping non- 

conductors with conductive elements. Mohri et aL (1996) brought a new perspective to the 

traditional EDM phenomenon by using an assisting electrode to facilitate the sparking of 

highly electrical-resistive ceramics. Both the EDM and WEDM processes have been 

successfully tested diffusing conductive particles from assisting electrodes onto the surface of 

sialon ceramics assisting the feeding the electrode through the insulating material. The same 

technique has also been experimented on other types of insulating ceramic materials including 
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oxide ceramics such as Zr02 and A1203, which have very limiting electrical conductive 

properties (Mohri et aL 2002). 

3.3.3 Modern composite materials 
Among the different material removal processes, WEDM is considered as an effective and 

economical tool in the machining of modem composite materials. Several comparative 

studies (Lau and Lee 1991, Lau et al. 1995) have been made between WEDM and laser 

cutting in the processing of metal matrix composites (MMC), carbon fibre and reinforced 
liquid crystal polymer composites. These studies showed that WEDM yielded better cutting 

edge quality and had better control of the process parameters with fewer workpiece surface 
damages. However, it had a slower MRR for all the tested composite materials. Gadalla and 
Tsai (1989) compared WEDM with conventional diamond sawing and discovered that it 

produced a roughness and hardness that was comparable to a low speed diamond saw but with 

a higher MRR. Yan et A (2000) surveyed the various machining processes performed on the 

MMC and experimented with the machining of A1203/6061AI composite using rotary EDM 

coupled with a disk-like electrode. Other studies (Guo et al. 2002, Yue et al. 1996) have been 

conducted on the WEDM of A1203 particulate reinforced composites investigating the effect 

of process parameters on the WEDM performance measures. It was found that the process 

parameters had little influence on the surface roughness but had an adverse effect on CR. 

3.4 Major areas of WEDM research 
The author has organised the various WEDM research into 3 major areas namely WEDM 

development, WEDM process optimisation together with WEDM process monitoring and 

control. The latter two research areas are discussed in this section. 

3.4.1 WEDMprocm optimisation 
Today, the most effective machining strategy is determined by identifying the different 

factors affecting the WEDM process and seeking the different ways of obtaining the optimal 

machining condition and performance. This section provides a study on the numerous 

machining strategies involving the design of the process parameter and the modelling of the 

WEDM process. 
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3.4.1.1 Process parameters design 

The settings for the various process parameters required in the WEDM process play a crucial 

role in producing an optimal machining performance. This section shows some of the 

analytical and statistical methods used to study the effects of the parameters on the typical 

WEDM performance measures such as CF, MRR and SF. 

3.4.1.1.1 Factors affecting the performance measures 
WEDM is a complex machining process controlled by a large number of process parameters 

such as the pulse duration, discharge frequency and discharge current intensity. Any slight 

variations in the process parameters can affect the machining performance measures such as 

surface roughness and CR, which are two of the most significant aspects of the WEDM 

operation (Alekseyev and Korenblurn 1989). Suziki and Kishi (1989) studied the reduction of 
discharge energy to yield a better surface roughness, while Luo (1995) discovered the 

additional need for a high-energy efficiency to maintain a high machining rate without 
damaging the wire. Several authors (Dauw and Albert 1992) have also studied the evolution 

of the wire tool performance affecting the machining accuracy, costs and performance 

measures. 

The selection of appropriate machining conditions for the WEDM process is based on the 

analysis relating the various process parameters to different performance measures namely the 

CR, MRR and SF. Traditionally, this was carried out by relying heavily on the operator's 

experience or conservative technological data provided by the WEDM equipment 

manufacturers, which produced inconsistent machining performance. Levy and Maggi (1990) 

demonstrated that the parameter settings given by the manufacturers were only applicable for 

the common steel grades. The settings for machining new materials such as advanced 

ceramics and MMCs had to be finiher optimised experimentally. 

3.4.1.1.2 Effects oftheprocess parameters on the cutting rate 
Many different types of problem-solving quality tools have been used to investigate the 

significant factors and its inter-relationships with the other variables in obtaining an optimal 
WEDM CP- Konda et aL (1999) classified the various potential factors affecting the 

machining performance measures into five major categories namely the different properties of 

the workpiece material and dielectric fluid, machine characteristics, adjustable machining 

parameters, and component geometry. In addition, they applied the design of experiments 
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(DOE) technique to study and optimise the possible effects of variables during machining 

process design and development, and validated the experimental results using noise-to-signal 
(NIS) ratio analysis. Tamg et aL (1995) employed a neural network system with the 

application of a simulated annealing algorithm for solving the multi-response optimisation 

problem. It was found that the machining parameters such as the pulse on/off duration, peak 

current, open circuit voltage, servo reference voltage, electrical capacitance and table speed 

were the critical parameters for the estimation of the CR and SF. Huang et al. (1999) argued 

that several published works (Liao et aL 1997b, Scott et aL 1991, Tarrig et aL 1995) were 

concerned mostly with the optimisation of parameters for the roughing cutting operations and 

proposed a practical strategy of process planning from roughing to finishing operations. The 

experimental results showed that the pulse-on time and the distance between the wire 

periphery and the workpiece surface affected the CR and SF significantly. The effects of the 

discharge energy on the CR and SF of a MMC have also been investigated (Rozenek et aL 
2001). 

3.4.1.1.3 Effects ofthe machining parameters on the material removal rate 
The effects of the machining parameters on the volumetric MRR have also been considered as 

a measure of the machining performance. Scott et al. (1991) used a factorial design requiring 

a number of experiments to determine the most favourable combination of the WEDM 

parameter. They found that the discharge current, pulse duration and pulse frequency were 

the significant control factors affecting the MRR and SF, while the wire speed, wire tension 

and dielectric flow rate had the least effect. Liao et al. (1997b) proposed an approach of 
determining the parameter settings based on the Taguchi quality design method and the 

analysis of variance. The results showed that the MRR and SF were easily influenced by the 

table feed rate and pulse-on time, which could also be used to control the discharging 

frequency for the prevention of wire breakage. Huang and Liao (2003) presented the use of 
Grey relational and SIN ratio analyses, which also displayed similar results demonstrating the 

influence of table feed and pulse-on time on the MRR. An experimental study to determine 

the MRR and SF for varying machining parameters has also been conducted (Rajurkar and 

Wang 1993). The results have been used with a thermal model to analyse the wire breakage 

phenomena. 
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3.4.1.1.4 Effectsof the process parameters on the surfacefinish 
There are also a number of published works that solely study the effects of the machining 

parameters on the machined surface. G6kler and Ozan6zgil (2000) studied the selection of the 

most suitable cutting and offset parameter combination to get a desired surface roughness for 

a constant wire speed and dielectric flushing pressure. Tosun et aL (2003) investigated the 

effect of the pulse duration, open circuit voltage, wire speed and dielectric flushing pressure 

on the machined workpiece surface roughness. It was found that the increasing pulse 
duration, open circuit voltage and wire speed increased with the surface roughness whereas 

the increasing dielectric fluid pressure decreased the surface roughness. Anand (1996) used a 
fractional factorial experiment with an orthogonal array layout to obtain the most desirable 

process specification for improving the WEDM dimensional accuracy and surface roughness. 
Spedding and Wang (1997) optimised the process parameter settings by using artificial neural 

network modelling to characterise the machined workpiece surfaces, while Williams and 
Rajurkar (1991) presented the results of the current investigations into the characteristics of 
WEDM generated surfaces. 

3.4.1.2 Process modelling 
In addition, the modelling of the WEDM process by means of mathematical techniques has 

also been applied to effectively relate the large number of process variables to the different 

performance of the process. Spedding and Wang (1997a) developed the modelling techniques 

using the response surface methodology and artificial neural network technology to predict 

the machining process performance such as CR, SF and surface waviness within a reasonable 
large range of input factor levels. Liu and Esterling (1997b) proposed a solid modelling 

method, which could precisely represent the geometry cut by the WEDM whereas, Hsue et aL 
(1999) developed a model to estimate the MRR during geometrical cutting by considering 

wire deflection with transformed exponential trajectory of the wire centre. Spur and 
Sch6nbeck (1993) designed a theoretical model studying the influence of the workpiece 

material and the pulse-type properties on the WEDM of a workpiece with an anodic polarity. 
Han et al. (2002) developed a simulation system, which accurately reproduced the discharge 

phenomena of WEDM. The system also applied an adaptive control, which automatically 

generated an optimal machining condition for high precision WEDM. 
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3.4.2 WEDMprocess monitoring and control 
The application of the adaptive control systems to the WEDM is vital for the monitoring and 

control of the process. This section investigates the advanced monitoring and control systems 
including the fuzzy, the wire breakage and the self-tuning adaptive control systems used in 

the WEDM process. 

3.4.2.1 Fuzzy control system 
The proportional controllers have traditionally been used in the servo feed control system to 

monitor and evaluate the gap condition during the WEDM process. However, the 

performance of the controllers was limited by the machining conditions, which considerably 

vary with the parameters settings. Kinoshita et al. (1976) investigated the effects of wire feed 

rate, wire winding speed, wire tension and electrical parameters on the gap conditions during 

WEDM. As a result, many conventional control algorithms based on explicit mathematical 

and statistical models have been developed for EDM or WEDM operations (Garbajs 1985, 

Huang et al. 1986, Pandit and Wittig 1984, Rajurkar and Wang 1990, Watanabe et al. 1990). 

Several authors (Liao and Woo 1997, Yan and Liao 1995) have also developed a pulse 
discrimination system providing a means of analysing and monitoring the pulse trains under 

the various machining conditions quantitatively. Although these types of control systems 

could be applied to a wide range of machining conditions, it could not respond to the gap 

condition when there was an unexpected disturbance (Yan and Liao 1998). 

In recent years, the fuzzy control theory has been applied to WEDM process to achieve 

optimum and highly efficient machining. Several authors claimed that a control strategy 
implemented on a fuzzy logic control system captured the expert's knowledge or operator's 

experience in maintaining the desired machining operation (Boccadoro and DauW 1995). In 

addition, the fuzzy logic controller did not require any comprehensive mathematical models 

adapting to the dynamic behaviour of the machining operation (Yan et A 1999). Several 

authors (Liao and Woo 1998, Yan and Liao 1998) proposed the sparking frequency 

monitoring and adaptive control systems based on the fuzzy logic control and the adjusting 

strategies, which could be applied to a wide range of machining conditions. Liao and Woo 

(2000) also designed a fuzzy controller with an online pulse monitoring system isolating the 

discharging noise and discriminating the ignition delay time of each pulse. EDM pulses can 

be classified into open, spark, arc, off or short, which are dependent on the ignition delay 
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time, and have a direct influence on the MRR, SF, electrode wear and accuracy of the part 
(Cogun 1990, De Bruyn and Pekelharing 1982). 

3.4.2.2 Wire inaccuracy adaptive control Wtems 
The occurrence of wire breakage during WEDM is one of the most undesirable machining 

characteristics greatly affecting the machining accuracy and performance together with the 

quality of the part produced. Many attempts have made to develop an adaptive control system 

providing an online identification of any abnormal machining condition and a control strategy 

preventing the wire from breaking without compromising the various WEDM performance 

measures. This section reports research from a collection of published work involving the 

adaptive control of wire breakage, wire lag and wire vibration. 

3.4.2.2.1 Wire breakage 

A wide variety of the control strategies preventing the wire from breaking are built on the 

knowledge of the characteristics of wire breakage. Kinoshita et aL (1982) observed the rapid 

rise in pulse frequency of the gap voltage, which continued for about 5-40 ms before the wire 

breaks. They developed a monitoring and control system that switched off the pulse 

generator and servo system preventing the wire from breaking but it affected the machining 

efficiency. Several authors (Kunieda et aL 1990, Shoda et aL 1992) also suggested that the 

concentration of electrical discharges at a certain point of the wire, which caused an increase 

in the localised temperature resulting in the breakage of the wire. However, the adaptive 

control system concentrating on the detection of the sparking location and the reduction of the 

discharge energy was developed without making any considerations to the MRR. The 

breakage of the wire has also been linked to the rise in the number of short-circuit pulses 

lasting for more than 30 ms until the wire broke (Tanimura et aL 1977). 

Other authors (Rajurkar et A 1991) argued that the wire breakage is correlated to the sudden 

increase in sparking frequency. It was also found that their proposed monitoring and control 

system based on the online analysis of the sparking frequency and the real-time regulation of 

the pulse off-time affected the MERR. Liao et al. (1997a) remedied the problem by relating the 

MRR to the machining parameters and using a new computer-aided pulse discrimination 

system based on the pulse train analysis to improve the machining speed. Whereas Yan and 

Liao (1996a, 1996b) applied a self-learning fuzzy control strategy not only to control the 
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sparking frequency but also to maintain a high MRR by adjusting in real time the off-time 

pulse under a constant feed-rate machining condition. 

The breaking of the wire is also due to the excessive thermal load producing unwarranted heat 

on the wire electrode. Most of the thermal energy generated during the WEDM process is 

transferred to the wire while the rest is lost to the flushing fluid or radiation (Rajurkar et A 

199 1). However, when the instantaneous energy rate exceeds a certain limit depending on the 

thermal properties of the wire material, the wire will break. Several authors (Dekeyser et aL 
1985, Jennes et aL 1984, Obara el aL 1995) investigated the influence of the various 

machining parameters on the thermal load of the wire and developed a thermal model 

simulating the WEDM process. In addition to the sparking characteristics or the temperature 

distribution, the mechanical strength of the wire also has a significant effect on the occurrence 

of the wire breakage. Luo, (1999) claimed that the wire material yielding and fracture 

contributed to the wire breakage, whilst an increase in temperature aggravates the failure 

process. 

3.4.2.2.2 Wire lag and wire vibration 
The main factors contributing to the geometrical inaccuracy of the machined part are the 

various process forces acting on the wire causing it to depart from the programmed path. 

These forces include the mechanical forces produced by the pressure from the gas bubbles 

formed by the plasma of the erosion mechanism, axial forces applied to straighten the wire, 

the hydraulic forces induced by the flushing, the electro-static forces acting on the wire and 

the electro-dynamic forces inherent to the spark generation (Dauw and Beltrami 1994, 

Kinoshita et aL 1984). 

As a result, the static deflection in the form of a lag effect of the wire is critically studied in 

order to produce an accurate cutting tool path. Several authors (Huang and Liao 1997, Luo 

1999, Puri and Bhattacharyya 2003) performed a parametric study on the geometrical 
inaccuracy of the part caused by the wire lag and attempted to model WEDM process 

mathematically. Wire lag is the difference between the actual and the intended wire positions. 
Whereas, Beltrami and Dauw (1996) monitored and controlled the wire position online by 

means of an optical sensor with a control algorithm enabling virtually any contour to be cut at 

a relatively high cutting speed. A number of geometric tool motion compensation methods, 

which increased the machining gap and prevented gouging or wire breakages when cutting 
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areas with high curvatures such as comers with small radii have also been developed 

(Dekeyser and Snoeys 1989, Wang and Ravani 2003). Lin et A (2001) developed a control 

strategy based on the fuzzy logic to improve the machining accuracy and concentrated 

sparking at comer parts without affecting the cutting feed rates. 

In addition, the dynamic behaviour of the wire during WEDM is also restrained to avoid 

cutting inaccuracies. There were a few discussions on the design and development of a 

monitoring and control system for compensating the behaviour of the wire vibration (Enache 

and Opran 1993, Rajurkar et aL 1991). Dauw et aL (1989) also reported that the vibration of 

the wire could be substantially reduced when the wire and the wire guides were completely 

submerged in the working tank filled with deionised water. Several authors (Mohri et aL 
1998) derived a mathematical model analysing the transient response of the wire vibration 
based on the force acting on the tool wire in a single discharge process. A number of authors 
(Rajurkar and Wang 1997, Snoeys, et aL 1983) reviewed the research and development of the 

various advanced monitoring and control systems used in EDM and WEDM processes. 

3.4.2.3 Self-tuning adaptive controlsystems 

In recent years, the WEDM research and development has explored control strategies 

adjusting to the variation in the power density required in machining a workpiece with 

varying thickness. Several authors (Kinoshita et aL 1982, Tanimura et aL 1977) found out 

that a change in the workpiece thickness during machining led to an increase in the wire 

thermal/power density and an eventual breaking of the wire. The power density in the gap 

and on the wire is defined as the ratio of discharge power to the discharge distribution length 

or workpiece height (Dekeyser et aL 1985). Rajurkar et aL (1994,1997) proposed an 

adaptive control system with a multiple input model that monitored and controlled the 

sparking frequency according to the online identified workpiece height. Other authors 

(Huang et aL 1986) developed a system that involved an explicit mathematical model 

requiring a number of experiments and statistical techniques. Yan et A (2001) used neural 

networks to estimate the workpiece height and the fuzzy control logic to suppress the wire 

breakage when a workpiece with variable height was machined. 

The application of a knowledge-based control system to control the adverse WEDM 

conditions has also been experimented. Snoeys et aL (1988) proposed a knowledge-based 

system, which comprised of three modules, namely work preparation, machining process 
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control and operator assistance or fault diagnosis, enabling the monitoring and control of the 

WEDM process. The work preparation module determined the optimal machining parameter 

settings, while the operator assistance and fault diagnostics databases advised the operators 

and diagnose the machining errors. Thus, the capabilities of these modules increased the 

amount of autonomy given to the WEDM machine. Huang and Liao (2000) have also 
indicated the importance of the operator assistance and fault diagnostics systems for the 

WEDM process. They proposed a prototype artificial neural network-based expert system for 

the maintenance schedule and fault diagnosis of the machining process. Dekeyser et al. 
(1988) developed a thermal model integrated with an expert system for predicting and 

controlling the thermal overload experienced on the wire. Although the model increased the 

level of machine autonomy, it required a large amount of computation, which slowed down 

the processing speed and undermined the online control performance. 

However, the study into the CAD/CAM system and the CNC for the VV'EDM process has 

shown little research interest. This is mainly due to the complex system architectural 

structure involving the use of the different control systems to perform the machining process 

and the control strategies. Yang and Park (2002) attempted to resolve the issue by designing 

and implementing an open architecture CNC consisting of an NC kernel for system 

integration and a four-constituent module for system function. The latter was made up of an 

operation-planning module, a motion control module, a discharge control module and a 

discrete 1/0 control module. Kruth et aL (1988) developed a set of modular software 

combining a generalised NC post-processor with a WEDM technological processor and a 

WEDM process-planner, allowing the system, user to program any type of 5-axis WEDM 

machine by using off-the-shelf commercial CAD/CAM system. EI-Midnay et aL (2000) also 

used similar modular software combination to provide the automatic correction for maximum 

taper angle and the automatic creation of the threading and tagging location. DeVries el aL 

(1990) argued that for the CAM modules and the CAPP software application software to be 

integrated transparently into the basic CAD/CAM system while remaining totally 

independently of any specific CAD/CAM system was through the use of a neutral CAD 

programming interface. 

3.5 Critique 

The author has classified the wide range of published works relating to the )NTDM process 
into three major areas, namely optimising the process variables, monitoring and control the 
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process, and WEDM developments. This section discusses the classified research areas and 
the possible future research directions, illustrated in figure 3.2. 
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Figure 3.2 Classification of major WEDM research areas 
(corresponding section numbers are in brackets) 

3.5.1 Optimising theprocess variables 
The optimisation of the WEDM process often proves to be a difficult task owing to the many 

regulating machining variables. A single parameter change will influence the process in a 

complex way (Scott et al. 1991). Thus, the various factors affecting the machining process 
have to be understood in order to deten-nine the trends of the process variation, as discussed in 

section 3.4.1.1. The selection of the best combination of the process parameters for an 

optimal machining performance involves analytical and statistical methods. However, it is 

very complicated to relate the input process parameters with the output performance measures 

and derive an optimal result using a simulation algorithm. The CR, MRR and SF are usually 

adopted as the measures of the machining process performance. Nevertheless, these methods 

provide an cffective means of identifying the variables affecting the machining performance. 

In addition, the modelling of the process is also an effective way of solving the tedious 

problem of relating the process parameters to the performance measures. As mentioned in 

section 3.4.1.2, several attempts have been carried out to model the process investigating into 

the influence of the machining parameters on WEDM performance and identifying the 

optimal machining condition from the infinite number of combinations. As a result, it 

provided an accurate dimensional inspection and verification of the process, yielding a better 

stability and higher productivity for the process. However, the random and complex nature of 

the erosion process in WEDM requires the application of deterministic as well as stochastic 
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techniques (Williams and Ra urkar 1991). Therefore, the optimisation of the process will j 

remain a key research area matching the numerous process parameters with the performance 

mcasurcs. 

3.5.2 Monitoring and control the process 
Over the years, monitoring and control systems have made an important contribution in 

minimising the effect of disturbances on the WEDM performance. The multi-parameter 

machining settings have made it difficult to clearly understand and obtain the optimal 

machining conditions. It requires a control algorithm that is often based on explicit 

mathematical and statistical models to cope with the machining process. However, the 

application of fuzzy control logic has brought about a drastic change to the conventional way 

of monitoring and controlling the machining process. The fuzzy control logic is able to 

consider several machining variables, weigh the significant factors affecting the process and 

make changes to the machining conditions without applying the detailed mathematical model, 

as mentioned in section 3.4.2.1. In addition, the feasibility of applying an expert system 

capable of giving advice and solving problems has also been explored (Snoeys et A 1988). 

Such a system would greatly appeal to the shop floor operational needs demanding 

unattended WEDM operation. 

The risk of wire breakage and the bending of the wire have also limited the efficiency and 

accuracy of the WEDM process. The occurrence of the wire breakage directly reduces the 

already low machining speed affecting the overall productivity of the machining process. 
Although, the control strategies reported in section 3.4.2.2 were designed to solve the 

problems of wire breakage, they solely relied on the indication of the possible occurrence and 

generated inadequate results for investigating the root cause of the wire breakage 

phenomenon. These strategies might therefore be deemed to be a setback when machining a 

workpiece with variable heights requiring a drastic change in the machining conditions. 

In addition, the wire vibrational behaviour and static deflection easily influence the geometric 

accuracy of the part produced. The typical solutions to these problems are often very 

conservative in nature by increasing the machining gap or reducing the discharge energy, 

which is regarded to be a main drawback for the WEDM process efficiency. Figure 3.3 

shows the considerable amount of research work concentrating on the improvement of the 
inaccuracy caused by the wire through the application of an adaptive control system. Jennes 
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and Snoey (1984) believed that the traditional research purpose was not to improve machining 

efficiency, but to prevent wire rupture during the machining process. Hence, one possible 

new WEDM challenge and future work area will be steered towards attaining higher 

machining efficiency by acquiring a higher CR and MRR with a low wire consumption and 
frequency of wire breakage. 
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3.5.3 WEDM developments 

The WEDM process is a suitable machining option in meeting the demands of today's 

modem applications. It has been commonly used in the automotive, aerospace, mould, tool 

and die making industries. WEDM applications can also be found in the medical, optical, 
dental, jewellery industries, and in the automotive and aerospace R&D areas (Stovicek 1993). 

Its large pool of applications, as shown in figure 3.3, is largely owed to the machining 
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technique, which is not restricted by the hardness, strength or toughness of the workpiece 

material. As mentioned in section 3.3, the machining of the HSTR, modem composite and 

advanced ceramic materials, which are showing a growing tendency in many engineering 

applications, has also been experimented. It has replaced the conventional means of 

machining ceramics, namely ultrasonic machining and laser beam machining, which are not 

only costly but damage the surface integrity of the ceramic component. However, with the 

introduction of over 20 non-traditional machining processes in the past 50 years and the rapid 

growth in the development of harder, tougher and stronger workpiece materials (Yeo el aL 
1997), the WEDM process inevitably has to be constantly rejuvenated in order to compete 

and satisfy the future crucial machining requirements. 

In addition, the WEDM process has sought the benefits of combining with other material 

removal methods to further expand its applications and improve the machining characteristics. 
The author has classified WEDM machine into the various physical characteristics, which 

clearly distinguished the different types of machine features affecting the performance 

measures, machining capacity and auxiliary facilities, as shown in figure 3.4. One of the most 

practical and precision HMP arrangements is the WEDG process used mainly to produce 

small size and complicated shape thin rod, which can be easily bent or broken by the lateral 

force when using a conventional grinding process. The precision of the CNC system is also 

partly responsible for the accuracy of the WEDG (Snoeys et A 1986). Therefore, the HMP 

processes, in particular the WEDG process, will continue to receive intense research attention 

especially in the growing field of microelectronics circuitry manufacturing. 

There is also a major push toward an unattended WEDM operation attaining a machining 

performance level that can be only achieved by a skilled operator. Such a goal has been 

partly fulfilled through the application of CNC to control the machining strategies, to prevent 

wire breakage and to automate the self-threading systems. An environmentally friendly and 

high-capacity dielectric regeneration system, which autonomously maintains the quality of the 

dielectric circulating within the WEDM machine, has also been experimented (Levy 1993). 

However, due consideration still has to be given to improving WEDM performance and 

enhancing the level of automation for future integration of the EDM and WEDM processes 

within the CIM environment (DeVries et aL 1990). By doing so, it would be able to 

reasonably meet the shortage of highly skilled EDMfWEDM operators and achieve a more 

cost efficient and cost effective machining operation. 
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Performance Measures 
------------------------- 

This chapter has aimed at understanding the interrelationship between the various factors 

affecting the machining process and identifying the optimal machining conditions. However, 

the true potential of these works has been confined by the use of the low-level G&M codes 

to program the WEDM machine. The programming/machining parameters and strategies 

affecting the transient WEDM sparking behaviour or the risk of wire breakages have not been 

adequately represented by these codes. These programming/machining functionalities are 

currently represented by different WEDM machine vendors using their own unique codes, see 

section 8.4.2. To further complicate the problem, it is not easy to gain access to the 

proprietary WEDM CAD/CAM and CNC system architecture, limiting the research and 
development into the interoperable manufacturing of WEDM parts across the CAx to CNC 

process chain. Thus, the implementation of STEP-NC to the WEDM process planning is a 

vital step of overcoming the ambiguous representation of the information relating to the 

machining operations. This research area has yet to be explored by the research community 

and is listed as one of the author's research objectives studying the implication of STEP-NC 

on the machining/programming capabilities of the WEDM process. 
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EVOLUTION OF STEP-NC 

4.1 Introduction 

This chapter describes the evolution of STEP-NC by reviewing the conventional methods of 

part programming a component for CNC manufacturing. It also describes the various 
international efforts of specifying the data transfer standard representing and exchanging the 

product and manufacturing information between the different CAx and CNC systems. The 

major part of the chapter presents a structured view of the STEP-NC compliant information 

models defining the different information requirements needed to support the various CNC 

machining process planning activities. The final part of the chapter identifies the major 

research and development into STEP-NC carried out by the international STEP-NC 

community, mainly from Europe, Korea, Switzerland and USA. 

4.2 Conventional NC part programming methods 
This section reviews the different low level yet widely accepted conventional part 

programming methods. 

4.2.1 Manualpartprogramming 

The conventional methods of programming a part rely on the low level information, which is 

specified in G&M codes based on the ISO 6983 standard (1982), to control the machining 

operations. The G codes provide the machine controller with the centre line of the cutting 
tool path while the M codes provide the simple switching instructions for a particular mode of 

operation, such as coolant on/off or spindle start/stop. Other machine control information is 

also included in the ISO 6983 part program, such as the machining sequence (N identifier), 

feed (F identifier), speed (S identifier) and tool (T identifier). However, these basic 

commands deliver only limited information to the machine controller, excluding the valuable 
information such as part geometry and process plan implicated in the machine control codes, 

making it nothing but an executing mechanism completely unaware of the motions being 

executed (Suh et aL 2002). 
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Traditionally and still today, part programmers have to determine the machine control codes, 

which include the G&M codes together with the other machine control information for the 

part program by studying the engineering drawing of the component and calculating the 

centre line of the cutting tool path. These machine control codes have to be specified in a 

word address format/NC data format. The part program is then entered into and interpreted 

by the machine tool controller to perform the specified machining operations at the machine 
tool. Such a tedious manual programming process is clearly time consuming and potentially 

prone to human errors, especially when programming a component of complex shape. In 

addition, the accuracy of the machined component is compromised by the part programmer's 
knowledge of the machining practice and the machine tool, and their individual skills of 

programming a component. 

4.2.2 Computer-assistedpart programming 
The advent of a computer-assisted part programming language in the 1950's brought several 

programming benefits to the traditional onerous approach of manual programming a 

component. It relieved the part programmer from the tedious mathematical calculation of the 

cutting tool path and offsets by coding the component geometry and the machine control 
information into a part program using the part programming language. One such language 

was automatically programmed tools (APT) (1987). The part program was then compiled 
into a machine independent data format, commonly known as the cutter location data file; 

thus eliminating manual programming errors. Subsequently, the cutter location data was 

converted into the machine specific control codes by means of a vendor-specific post- 

processor dedicated to a particular machine controller or machine tool. Other programming 

aids included the canned cycle and the subroutine or macro, which allowed the part 

programmer to perform a sequence of repetitive machining operations using a special 

preparatory command or a single group of variable parameters. 

However, the use of a vendor-specific post-processor caused a major data exchange problem 
between different part programming languages and machine controllers. The post-processor 

customised the part program with vendor-specific extensions of the ISO 6983 standard for a 

particular model of the machine controller. This was largely due to the machine tool 

manufacturers producing new machining features, which could not be fully satisfied by the 

traditional machine control codes (Jones 1992), for example the G81 drilling canned cycle. 
Though the post-processors were specific to individual machine controllers, the basic G&M 
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codes were implemented to perform the drilling canned cycle, such as the GOO rapid traverse 

and GOI linear interpolation commands. However, the NC data format and the proprietary 

technique behind the canned cycle vary from machine vendor to machine vendor. In order to 

facilitate the processing of a wide variation of machine controllers, part programming 
languages were supplied with a library of vendor-specific post-processors, which were also 

required in the CAD/CAM method of programming a component, as shown in figure 4.1. 
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Figure 4.1 Evolution of NC Technology (adapted from McMahon and Browne 1998) 

4.2.3 CADIC"part programming 

The only major difference between the computer-assisted and the CAD/CAM methods of part 

programming is in the translation of the cutting tool path from the component geometry. In 

CAD/CAM part programming, the cutter location data is directly translated from the CAD 
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part geometry using a CAM program. As a result, it removes the need to encode the part 

geometry and the tool motion, eliminating the risk of errors in interpreting the geometry and 

reducing the time taken in preparing the cutting tool path (McMahon and Browne 1998). The 

other advantages in using a CAD/CAM system include the visual verification of the part 

program, which provides a graphical display of the machining operation, and the editing of 
the part program, which uses the interactive editing graphics. 

Although, both the part programming language and the CAD/CAM system rely on the part 

geometry to obtain machine control codes, both methods do not support complex part 

geometry, such as spline interpolation. The machine control codes have been formalised from 

the more than 30-year-old ISO 6983 standard, which only supports simple tool trajectories 

that are inadequate in satisfying the demands of controlling 5 or more axes of machining. As 

a result, machine controller vendors add their own codes to the existing G&M codes. This is 

further complicated by the one-way flow of information discouraging any editing from the 
downstream to the upstream design and manufacturing computing software applications, 

referred in figure 4.1. All the conventional routes of part programming have the similar 
information flow problem largely due to the traditional means of representing and exchanging 

process information between different design and manufacturing software systems. 

4.3 Data transfer standards 

This section describes a few data transfer standards relying on the neutral data format to 

address the concept of communicating product data among the different CAx systems, namely 
the IGES, PDDI and PDES standards. 

4.3.1 Data transferformat 

Traditionally, vendors made CAD packages with a diverse range of functions and 

performances, which are dependent on algorithms with closed and proprietary data formats, as 

a key to control and retain the ownership of a customer base (Thilmany 2001). As a result, 

these CAD packages create communication problems of translating product data between the 

corresponding systems due to the presence of vendor-specific NC data formats. The problem 
becomes more apparent when a new system is added to an existing system, which increases 

the number of translators required to directly convert and transfer the data to the newly added 

system, refer to figure 4.2a. The total number of translators needed is represented by the 

formula N(N-I), where N is the number of systems involved in the transferring of the files 
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(Bhandarkar et aL 2000). This is in complete contrast to the indirect means of translating the 

data by using an intermediary file called the neutral data file. 

The neutral data format seeks to offer an equitable solution of integrating disparate systems 

together to collectively perform an application. It involves using a pair of indirect translators, 

which are independent of the existing and future systems, to pre-proccss the native data 

format from the source system into the neutral data format and subsequently post-process the 

neutral format into the native format of the target system, as shown in figure 4.2b. Since, the 

indirect translation method does not require constructing a new interface whenever a new 

system is installed, the cost incurred is relatively low as compared to the direct method. 

Moreover, the indirect translator philosophy protects against system obsolescence and 

eliminates dependence on a singlc-system supplier (Zeid 1991), thereby promoting the 

integration among different design and manufacturing software systems. 
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The development of the neutral data format is also prompted by the industrial move toward 

the automation of NC part programming. It aims to enable the use and reuse of the valuable 

product and manufacturing data among the different design and manufacturing software 

systems encountered over the entire product life cycle. The structure of the neutral database 

covers a minimum definition of the design and manufacturing intent so as to satisfy the 
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information requirements to machine a part. More importantly, the common underlying data 

structure of the part programming system must be extensive so that it can provide the data 

input required for each new f4fiction and accept the results of each new function (Young 

1994). 

4.3.2 IGES 

The IGES (initial graphics exchange specification) was the first data exchange effort targeted 

towards the transfer of product data between corporate systems and suppliers'/customers' 

systems. Its early version 1.0 (ANSI-YI4.26M 1981) defined a collection of information 

structures, which could be classified into geometry and non-geometry entities, to be 

transferred between systems by using a vendor independent fonnat, ASCII (American 

Standard Code for Information Interchange). ASCII standard (1991) code is used for 

information interchange among data processing systems and data communications systems in 

the United States. The geometry entities consisted of the definition of simple physical shapes, 

such as curve, solid model and part feature, while the non-geometry entities provided the 

graphical characteristics of the entities, such as dimension and text (13handarkar et aL 2000). 

However, due to the then 80-column file format, the size of the neutral file was found to be 

large requiring a long transmission time between different software systems. The file was 

also very ambiguous due to the complicated way of arranging the data. Such limitations had 

been widely dismissed as highly inefficient, which prompted the development of the German 

DIN 66301 (1986), which allowed a higher order of representing the surface geometry, and 

the French Z 68300 (1985), which had a more compact format. 

Although IGES has alleviated the problems in the later version, it has yet to be accepted as a 
formal definition language for data exchange. The revised version 5.3 (ANSI-US-PRO/IPO- 

100 1996) has merely increased the coverage of the specification by extending the complexity 

of the entities, such as the spline curves and surfaces, to support the growing number of CAD 

applications. However, vendor industrial practice was originally to only interpret and 
implement those entities that were relevant to their systems, which in effect caused 
discrepancies with systems executing IGES, on a different set of entities. This was further 

made inconsistent by the insufficient number of confonnance clauses resulting in a 
incomplete translation or loss of information. All of these issues, which have been 

overlooked by the IGES community, have contributed to the development of the STEP 

standard (Reed et aL 1990). 
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4.3.3 PDDI & PDES 

The eventual need to develop an extensive data transfer standard incorporating the essential 
information required by the various product life cycle related applications has been attempted 
by a number of organisations. The PDDI (product definition data interface) was developed by 

McDonnell Aircraft Corporation from the ICAM (integrated CAM) project (ICAM 2005, 

Shah and Rogers 1988), which expanded the IGES concepts through the application of 

manufacturing information into its standard format. The standard format was intended to 

serve as the information interface between engineering and manufacturing activities, such as 

process planning, NC programming, NC verification, quality assurance, tool design, robotics 

and other (Goldstein et aL 1998, Zeid 1991). Although the PDDI standard format could cater 
for discrete mechanical components of either sheet metal, turned, composite and machined 

configuration, it could not deal with component assemblies. 

The PDES (product data exchange specification) was initialised by the IGES organisation 

aiming to establish a mechanism for complete product model data exchange (Shah and Rogers 

1988). It was based on the discipline of information modelling by focusing on both the 

logical information being captured and the physical mechanism of data exchange. PDES was 

designed to facilitate the data exchange within a number of applications including 

architecture, engineering, construction, mechanical features, finite element modelling and 

printed circuit board manufacture. The research into the exchange of product definition data 

was not only confined to the US, in 1984 a five-year ESPRIT (European strategies 

programme for research into information technology) research project called CAD*I (CAD 

Interfaces) led by Germany, focused on European developments in data exchange standards 
(Zeid 1991). CAD*I mainly concentrated on product model data exchange for finite element 

analysis based on the use of schemas formally defined by using a data modeling language 

(Kemmerer 1999). 

However, it was the ISO Technical Committee 184/Sub-Committee 4 (TC184/SC4) that has 

driven the effort to replace the bewildering array of emerging data exchange standards with an 

agreed international standard of representing and exchanging the product data. TC184/SC4 

has coordinated and drawn together several world-wide projects including the VAD-FS 

(Verband Der Autornobilindustrie Flachen Schnittstelle) (1986), SET (Standard d'Echange et 
de Transfert) (1985), PDDI and PDES into a single unified global standard specified as ISO 

10303 (1994) or more commonly known as STEP. 
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4.4 STEP data transfer standard 
This section provides the fundamentals of the STEP data transfer standard. It also describes 

the formal data specification language called EXPRESS and the STEP data model and 

structure. 

4.4.1 STEPfundamentals 

STEP provides a complete representation of the product information together with the 

mechanisms and definitions enabling product data to be exchanged among the different 

computer systems encountered during the product life cycle. Unlike IGES, providing product 
information merely for drawing and 3D modelling purposes, STEP addresses the issue of 

sharing product information among the diversified engineering applications, such as design, 

analysis, process planning, manufacturing, maintenance and disposal. The product 
information aims to include not only the geometrical representation of the product, but also 

the process models, such as the manufacturing features, tooling, manufacturing strategies and 

manufacturing processes for the various stages of product development (Hardwick 2000). 

Thus, it acts as an effective means of fusing the manufacturing efforts among corporate 

partners and suppliers across the diverse computer environments through the use of the same 

product information. 

STEP became a full standard in 1994 and has since gained considerable acceptance by the 

industry, notably in the aerospace and defence, automotive and ship building, electronics and 

manufacturing sectors (Smith 2002). This is largely due to STEP drawing on the experiences 

and improvements of its predecessors through a number of areas namely (Owen 1993): 

e Formal specification language - uses an information modelling methodology called 

EXPRESS (IS010303-11 2004) to specify the information model in STEP. 

9 Three-layer architecture - comprises of 

i. Logical layer containing the implementation methods, which describes how 

EXPRESS is mapped to the physical files and other storage mechanisms, 
ii. Physical layer containing the resource information models, which provides the 

context-independent information, such as the description of the geometry, topology or 

product structure, and 

iii. Application layer containing the Application Protocols (APs), which holds 

information related to a particular application domain, such as draughting or electrical 

product modelling. 
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9 Conformance clauses - includes conformance testing methodology and a series of test sets 
to ensure confonnance to the standard. 

The STEP standard has also made a clear distinction between the information models and the 

infrastructure in order that the product data models can be applied in a number of ways. For 

example, it is organised into the APs with a unique sets of entities chosen for specific product, 

process or industry. Figure 4.3 shows the STEP standard architecture, in which the 

information models are depicted in shades and the infrastructure is not shaded. 
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Figure 4.3 STEP architecture (Feeney et aL 2003) 

4.4.2 STEP data model and data structure 
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The STEP standard is being progressively developed as a series of separate standards called 

parts. Each part is logically classified as a class representing the different product data 

models covering the full life cycle of a product. As a result, the large size of the standard is 

broken up into a number of classes making it simple for the CAD vendors to implement the 

appropriate part of the standard. These classes include (IS010303-1 1994, McMahon and 
Browne 1998): 
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w Introductory (Parts 1-9) currently comprising of Part I providing an introduction to the 

concepts and fimdamental principles of STEP. 

Description methods (Parts 11-19) comprising of Part 11 and 12 relating to the 

standardised method, known as the EXPRESS language used to describe STEP entities. 
Implementation methods (Parts 21-9) describing how EXPRESS is mapped to physical 
files and other storage mechanisms. 

u Conformance testing methodology and framework (Parts 31-9) providing methods for 

testing implementations, and test suites to be used during conformance testing. 

m Integrated resources (IRs) (Parts 41-99,101-99) including generic resources such as 

geometry and structure representation (41-99), and application resources such as 
draughting and finite element analysis (101-99). 

Application Protocols (Parts 201-99) describing implementations of STEP specific to 

particular industrial applications, and are associated with implementation methods to form 

the basis of a STEP implementation. 

Abstract test suites (Parts 301-99) providing test suites for each of the APs. 

Application interpreted constructs (Parts 501-) describing various model entity constructs, 

and specific modelling approaches. 

4.4.2.1 EXPRESS language 

EXPRESS is a formal information modelling language, which is used to specify the semantics 

of the product data model common to many applications. The semantics of the data model 

are expressed in an object-oriented manner facilitating the extension of the data model upon 

any changes or updates. Therefore, it is easy for the engineers or programmers to assemble a 

large product model created in different CAD systems. The basic element of the EXPRESS 

language is the entity, which specifies the characteristics, constraints and relationship with 

other entities (IS010303-11 2004). It provides a far richer set of language tools for 

expressing the semantics of the data types within a translation scheme than the standard 

general-purpose modelling methodologies, such as NLkM and IDEF1X, which only aid in the 

conceptual definition of the relational databases (Eastman 1994). The use of these parts or so 

called 10's series of the STEP standard produces a consistent representation and Mids 

ambiguity of the product infori-nation between the different CAD systems. The graphical 

notation of the entity and attribute relationship is also defined in the ISO 10303-11 standard 

and is called EYPRESS-G (2004). 
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4.4.22 Implementation methods and conformance testing 

STEP places a high emphasis on the implementation and conformance of the complete 
information model supporting a specific application. The implementation methods class or 

the 20's series define the exchange file structure and the application programming interface to 

the STEP database. For example: 

" ISO 10303-21 (2002) - clear text encoding of the exchange structure. 

" ISO 10303-22 (1998) - standard data access interface (SDAI) specification. 

" ISO/TS 10303-27 (2000) - Java programming language binding to the SDAI with 

Internet/Intranet extensions. 
a ISO/TS 10303-28 (2003) - XML (extensible markup language) representations of 

EXPRESS schemas and data 

The latter two parts of the STEP standard have been momentarily gaining research attention 
due to the acceptance of Internet-based technology enabling Web based manufacturing or e- 

manufacturing. More companies are adding the requisite machine intelligence, Web 

connectivity, and e-commerce and collaborative manufacturing software systems for 

implementing e-manufacturing (Hardwick 2001, Waurzyniak 2001, Xu and He 2004). 

Conformance testing is covered by two series of 10303 parts, namely the conformance testing 

methodology and framework, and abstract test suites, which will be discussed in section 
4.4.2.5. The conformance testing methodology and framework or the 30's series define the 

procedures and tools required to undertake the data and application verification, e. g. ISO 

10303-31 (1994) specifies the general concepts for the conformance testing methodology and 
framework. The foundation for the conformance testing concepts, methods and vocabulary 

were modelled after the ISO 9646 Open Systems Interconnection (OSI) standards 
incorporating a built-in basis for assessing conformance of implementations into the STEP 

architecture (Kemmerer 1999). 

4.4. Z3 Integrated resources 
The data content defined in this part of the STEP standard provides the building block for the 

development of the APs. The 40-90's series include the generic resource information models, 

which support general applications, e. g. ISO 10303-41 (2000) specifies the fundamentals of 

product description and support, ISO 10303-42 (2003) specifies the geometric and topological 

representation. As for the 100's series, they include the application resources, which support 
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a specific application or a class of application, e. g. ISO 10303-101 (1994) applies to 

draughting, while ISO 10303-104 (2000) applies to finite element analysis. The product data 

is represented in an application-independent format and is only implemented via an AP. 

4.4.24 Application Protocol (AP) 

The APs, or the 200's series, are used to specify the representation of product information for 

one or more particular life cycle stages of a specific product class. It is expected that many 
APs may be developed to support a wide range of industrial applications that STEP will serve. 
They are constructed from a set of IRs, which defines the fundamental constructs that can be 

specialised and applied for a wide variety of applications such as: 

" AP 203 (1994) - configuration controlled 3D designs of mechanical parts and assemblies 

" AP 214 (2003) - core data for automotive mechanical design processes 

" AP 219 (2002) - dimensional inspection information exchange 

" AP 224 (2000) - mechanical product definition for process planning using manufacturing 
features 

" AP 240 (2003) - Process plans for machined products 

The APs also include the context in which they are to be implemented, and a mapping 
indicating which particular task they perform in the application. This is part of the basic 

strategy of the STEP standard specifying the lower-level APs defined within a common 
framework, allowing them to be integrated at the enterprise level (Eastman 1994). APs are 

based on these four main ideas (Bloor and Owen 199 1): 

i. Scope and context of application, 

ii. ARM (application reference model) defining the information requirements needed for a 

particular application, 
iii. ALM (application interpreted model) satisfying the information requirements given in 

the ARM by using the STEP constructs, and 

iv. Conformance requirements and test procedures for compliance with the APs. 

The primary difference between the ARM and the AIM is the degree to which they use the 

STEP representation methods and technical architecture (Feeney et al. 2003). ARM is 

defined as an information model that describes the information requirements and constraints 

of a specific application context (IS010303-1 1994). Whereas, the AIM is defined as an 
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information model that uses the integrated resources necessary to satisfy the information 

requirements and constraints of an application reference model within an AP (IS010303-1 

1994). Such a difference has an enormous implication on the implementation of STEP-NC, 

which will be discussed in the section 4.5.3. 

4.4.2.5 Abstract test suites 
The abstract test suites are standardized in the ISO 10303-300 series containing the set of 

abstract test cases to support the conformance testing of an implementation for an AP. Each 

abstract test case specifies input data to be provided to the implementation under test, along 

with information on how to assess the capabilities of the implementation (Kemmerer 1999). 

STEP developers standardized the abstract test suites in order to alleviate the informal 

development of multiple test suites by various testing groups (McKay et aL 1994). One such 

abstract test suite is the ISO/TS 10303-304 (2001) for mechanical design using boundary 

representation. 

4.4.2.6 Application interpreted constructs 

The application interpreted constructs are reusable groups of inforMation-resoUrce entities 
that make it easier to express identical semantics in more than one AP (Nell 2005). An 

interpreted construct is a common interpretation of the integrated resources that supports 
interoperability among the APs. For example, ISO 10303-514 (1999) specifies the 

application interpreted construct, which specialises the generic constructs from ISO 10303-42, 

for the dcfinition of an advanced boundary representation solid with explicit topology and 

elementary or free-form geometry. 

4.5 STEP-NC compliant machining process planning 
This section reviews the basic fundamentals of STEP-NC, which seeks to standardise the 

information about CNC machining by adding to parts represented in the STEP product data 

model. 

4.5.1 STEP-NCfundamenlals 

ISO 14649 or more informally known as STEP-NC aims to offer a solution to overhaul the 

conventional routes of part programming a component. It is an extension of STEP that 

defines data representation workingsteps, or a library of specific operations that might be 

performed on a CNC machine tool (Hardwick and Lofiredo 2001). Figure 4.4 shows the 
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relationship between the STEP and the STEP-NC standards. STEP-NC is the end result of the 

a project developed by the ISO TC184/SCI and TC184/SC4 with the combined support of the 

IMS (Intelligent Manufacturing System) project, which was completed in 2001, named STEP- 

NC in Europe and Asia, and Super Model in the USA (Allen et aL 2003). It seeks to specify 

all the information requirements needed to carry out the different CNC machining processes 
by enhancing the design information with the associated manufacturing information. These 

information requirements include the billet descriptions, inspection quality tolerances, 

manufacturing features, set up procedure and tooling requirement. STEP-NC uses an external 

process plan generator making use of feature, process and cutting tool recognition tools to 

create the machining instructions. The end result is a detailed high-level process plan 

presented as a workplan consisting of several workingsteps needed to execute the various 
CNC machining operations. The term 'process plan' is used throughout the thesis to refer to 

the richer data output produced from the STEP-NC route of part programming. 

4%3 I 
%' 

1. _. 

STEP (ISO 10303) and STEP-NC (ISO14649) (Wcck and Wolf 2003) 

The main appealing feature of STEP-NC is the removal of the post-processor from the part- 

programming route. Figure 4.5 shows the major differences between the conventional and the 

STEP-NC route of part programming. STEP-NC eliminates the transitional steps of post- 

processing the vcndor-specific part program, which relies on the G&M codes to execute a 

machining operation. It aims to generate a machine-independent process plan that describes 

in stages when a particular machining feature should be machined according to the associated 

machining process parameters. Moreover, the STEP-NC route of part programming 
facilitates a bi-directional flow of information enabling engineering changes made at the 

shopfloor to be updated to the design department. This is possible due to the neutral data 
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format of representing the design and manufacturing intent, which simplifies the exchange of 

product information between dissimilar CAD, CAM and CNC systems. 

rn Im M ý. 
ý CAD/CAM M-. 

ý 

Unidirectional 
Data Flow 

Post-Processor 

am= 

E 

STEP-NC 
(ISO 

Z! 

14649) 

Bi-directional 
Data How 

Vendor specific Use of Features IS06983 Code Neutral formal language 
Dialect 

inaac noo zis WORKH". 
inset 1020 PO 1112DOMIS 

(W XCU011 con 1~ 1 jQ2% 

Wl- 

SxwHCwS 110*011AM 

III IJL= 

Conventional STEP - NC 
NC Controller Controller 

Figure 4.5 Comparison between the current NC interface 

and the new data interface based on STEP-NC (Rosso Jr et aL 2004) 

4.5.2 STEP-NCprocess plan 

The STEP-NC process plan is mainly made up of a highly structured workplan comprising of 

a sequence of workingsteps. It is presented in a physical file format laid out in the ISO 

10303-21 standard, which divides it into 2 sections namely the 'header' and 'data' sections, as 

shown in figure 4.6. In the header section, the general information relating to the process plan 
is stated, such as the author, filename and company name. As for the data section, the content 

is led by the project entity containing the main WorAplan and executables, which initiate the 

actions on a machine tool. The main workplan describes a sequence of executable 

workingsteps linking the geometry description, such as the manufacturing features, with the 

technology description, such as the machining operations, cutting tools, feed rate and setup. 
Hence, STEP-NC provides the machine tool controller with rich information that can be used 
for just-in-time tool selection, tool path generation, intelligent error recovery, and other 

capabilities for intelligent control (Procter et aL 2002). 
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Figure 4.6 Structure of the STEP-NC process plan based on ISO 10303-21 (Xu and He 2004) 

4.5.3 STEP-NC data model and data structure 

This section examines the 2 versions of implementing STEP-NC developed by the ISO, 

namely the ISO 14649 (ARM version) and the ISO 10303 AP 238 (AIM version). 

4.5.3.1 ISO 14649 (ARM)forstandalone NC implementation 

ISO 14649 extends the STEP product data models for CNC machining applications. It uses 

the ENPRESS language specified in ISO 10303-11 to define the various STEP-NC process 
data models needed to carry out a CNC machining operation. The ISO 14649 standard 

mainly concentrates on covering both the general machining data and the process specific 
data, as shown in figure 4.7. By strictly separating the geometrical, operational and process 

sequence data, the information access and storage are simplified and exchange between highly 

specified modules becomes possible (Xu and He 2004). The figure also depicts the various 

academics and industries who have contributed to the development of the ISO 14649 

standard. The various parts of the ISO 14649 standard include: 

0 ISO 14649-1 (2003) provides an overview and fundamental principles 

0 ISO 14649-10 (2004) specifies the general process data 

0 ISO 14649-11 (2004) specifies the process data for milling 

0 ISO/PRF 14649-12 (2004) specifies the process data for turning 

0 ISO/DIS 14649-13 (2003) specifies the process data for WEDM 

0 ISO/CD 14649-14 (2002) specifies the process data EDM 
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ISO 14649: STEP compliant NC programming interface 
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Figure 4.7 STEP-NC (ISO 14649) architecture (Weck and Wolf 2003) 

ISO 14649 amis to model the complete information requirement that must exist in a controller 

to control a machine tool. In STEP terminology, it is referred to as the ARM that mainly 

provides tile structure of the program execution by specifying a sequence of iiorkingsteps 

with the associated machining process parameters. The general process data model for the 

machining scherna is specified in the ISO 14649-10 standard, which makes references to the 

proccss-spccitic data models defined in different parts of the standard. These process-specific 

data models contain the relevant data types for a number of processes, such as the basic 

definition for a milling, turning or WEDM operation. The ISO 14649-10 also includes the 

definition of the workpiece and a collection of manufacturing features for different processes. 

However, it has been widely criticised (Feeney et al. 2003) for the objective way of 

presenting the process model without making substantial reference to the product data 

models. ISO 14649 does not include the geometric items and representations, which are 

referenced to the ISO 10303's generic resources, in the machining schema (Xu and He 2004). 

Consequently, tile use ofAP 238 is considered within the STEP community to pave the way 

for a full integration of the ISO 14649 standard with the ISO 10303 IRs. 
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4.5.3.2 ISO 10303.411 238 (AIM) for STEP integrated CNC 

ISO 10303 All 238 (2004) is the result of further development carried out by the STEP 

community to harniontse the common field of product data types over the life cycle. It maps 

the infonilation requirement modelled in the ARM (ISO 14649) onto the various STEP A-Ps, 

as shown M figure 4.8. AP 238 acts as a data fusion annotating the product information with 

manufacturing features into the process data model standardised in ISO 14649 giving the 

machine controller greater intelligent and autonomy in manufactunng the part. Therefore, AP 

238 enables a tight integration with the applications that use STEP constructs and is referred 

to as the A INI in STI-P (Procter et al. 2002). 

AP 238 Integrated CNC 

lilloing, Turning & EDM Inspection 
pr 

Nc 
CT-olerance 

defined by processes defined by 
I ISO 1 -NC) SO 14649 (STEP AP 219 

Features defined by Geometry defined by 
AP 224 AP'2031AP 214 

Fig, urc4.8 AP 238 STFP integrated version of STEP-NC (Xu and He2004) 

In addition, AP 238 uses the mapped information requirement to obtain the implementation 

methods allovving tile different applications to be supported within one AIN4 model. It 

facilitates the feature recognition system to read the CAD geometrical data defined in AP 203 

and AP 214, as tile manufacturing features specified in AP 238 are harmonised with AP 224. 

Similarly, the machine probing and inspection systems are able to read the tolerances in AP 

238, whicli matches Nvidi those defined in AP 219 and AP 203. Therefore, the AP 238 can 

replace the ISO 6983 as tile new input to CNC by extending a single structured feature-based 

representation of tile product Nvith all the rele-vant information that a programmer needs to 

machine a part. 

The major di I'l-crcticc betwcen the two versions is the degree they use the STEP representation 

methods and technical architecture (Feeney et al. 2003). ARM defines a set of NC domain 
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requirements models, whereas AIM is the result of implementing the ARM with STEP 

concepts of using both the IRs and APs. Most of the European work uses the ARM version, 

which is easier to implement while the US work uses the AIM version, which encompasses a 

number of AP's (Rosso Jr et aL 2004). 

4.5.4 STEP-NC compliant CADICAMsystem 

The external process plan generator exploits the information requirements specified in the 

various standards to plan the machining process in the form of a STEP-NC compliant 
CAD/CAM system. It makes use of the STEP product data models defining 'what-to-make' 

and plans 'how-to-make' the part in compliance with the STEP-NC process data models. 
This can be carried out in two ways depending on the ARM or AIM implementation of STEP- 

NC. The ARM representation of the machining schema is defined according to the ISO 

10303-21 physical file format, while the AIM representation is defined according to the ISO 

10303-22, ISO 10303-27 or ISO 10303-28, see section 4.4.2.2. The end result is a STEP-NC 

information model-driven process plan providing the context of facilitating the product data to 

plan and control the machining operation. 

4.5.5 STEP-NC international research and development 

In recent years, a number of projects involving the planning of a machining process based on 

the STEP-NC data models have been developed and implemented. Table 4.1 shows the 

participants and the distribution of the technological scope within the IMS project, which has 

effectively entailed an international research and development into the ISO 14649 standard. 

The major contribution from the international research institutes and industries include: 

i. European STEP-NC research 

A major development from Europe is the STEP-NC compliant Siemens controller based on 

the company's Sinumeric 840D control working in the milling applications by incorporating it 

with the Siemens ShopMill shopfloor-oriented NC programming (SFP) system (Hardwick and 

Loffredo 2001). This enables the STEP-NC physical files to be integrated directly with the 

controller, with visualisation of the machining features and associated workingsteps in the 

STEP-NC compliant version of their ShopMill CAM system (Rosso Jr et aL 2004). Daimler 

Chrysler and Volvo have commercially demonstrated the capabilities to incorporate the ISO 

14649 standard within the CAD/CAM products and export the STEP-NC output to the 

Siemens 840D control (Weck and Wolf 2003). 
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Table 4.1 The IMS STEP-NC project partners (Xu and He 2004) 

ii. Korean STEP-NC research 

The work in Korea has been developed at the National Research Laboratory for STEP-NC 

Technology (NRL-SNT) in a close collaboration with Pohang University of Science and 
Technology. It involved the development of a conceptual framework for an autonomous 
STEP-compliant CNC taking the data defined in ISO 14649 as an input and carrying out 
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manufacturing tasks based on a 'process sequence graph' (Suh et aL 2002). The process 

sequence graph is a graphical representation of the sequence of workingsteps described in 

terms of the machining_features and machining o _ perations using AND-OR relationships. 
Suh et aL (2003) also presented a STEP-compliant CNC architecture for a SFP system 

consisting of STEP physical file interpretation, feature recognition, process planning, part 

program generation and verification. 

iii. Swiss STEP-NC research 
The Swiss research institutes, namely EPFL (Federal Institute of Technology in Lausanne) 

and EIG (School of Engineers de Genýve at University of Geneva), together with AMT 

Consulting led the development of the ISO 14649 data model for wire-cut and die-sink EDM 

in collaboration with machine manufacturer; Agie-Charmilles, CAM manufacturer; 
CADCAmation and machine tool user-, Wyss SA (Nguyen and Stroud 2003). They proposed 

a data model that was capable of storing information necessary for the input and output of the 

proprietary expert system for the WEDM process (Kiritsis 2001), as illustrated in figure 4.9. 

The expert system is commonly used in the WEDM CAD to CNC process chain and has 

complicated the standardisation of the data structure toward an integrated manufacturing 

environment. 

Qualitylargets, Expert 
material, System 
wire, etc. 

Toolpath and 
feature geometry 

Geometry of Final offset 
features and toolpath and 

CAD wo CAM technology_, 
CNC 

jI 

Figure 4.9 WEDM CAD-CAM-CNC process chain (Kiritsis 2001) 

In addition, these partners are also responsible for developing and finalising the concepts and 

algorithms for the implementation of advanced functions for intelligent WEDM CAM/SFP 

systems and for the feedback of modified NC programs and its version history (Nguyen and 

Stroud 2003). The advanced functions include computing the wire trajectory based on the 
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ruled surface and checking the collision between the wire and the adjacent surfaces when 
cutting features with sharp comers. Richard et aL (2004) have successfully demonstrated the 

3D offset compensation on the ruled surface features for the WEDM process. 

iv. US STEP-NC research 
The STEP-NC project in the USA termed Super Model led by STEP Tools Inc. (2005) has 

made a significant contribution to the automation of the CAD to CNC manufacturing process 

through the use of STEP. Super Model aims to support a three-stage design process, namely 
functional design, manufacturing design and process design, and deliver the data produced by 

the process to an intelligent controller generating the cutting toolpath from the STEP-NC data 

(Hardwick and LofTredo 2001), as shown in figure 4.10. One of the most exemplary 
demonstrations mainly involved the use of the GibbsCAM programming system to facilitate: 

a. Reading the demonstration part defined in AP 203 format through the use of the 

GibbsCAM STEP Translator. The part was then programmed by using GibbsCAM's 

graphical interface, and visually verified by using its cut part rendering capability (Albert 

2005). 

b. Reading the demonstration part defined in AP 238 format and downloading it from the 

Internet through the use of the GibbsCAM STEP-NC adaptor plug-in. The STEP-NC 

adaptor then produced the GibbsCAM tooling, process and geometry elements and 

executed GibbsCAM functions to generate the toolpath corresponding to the AP 238 

manufacturing features without any operator invention (Xu and He 2004). Subsequently, 

the part was machined on a retrofitted three-axis Bridgeport vertical milling machine, 

which was controlled by a STEP-NC controller comprising of an MDSI (Manufacturing 

Data System, Inc. ) soft controller running on a PC-based NT platform (Lewis 2002). The 

MDSI soft controller is an open PC-based CNC software, which eliminates the need for 

intelligent board-level controller cards or other proprietary hardware. 

c. Integration with an open modular architecture controller (OMAC) through the use of the 

AP 238 process plan, resulting in a two-way interface between the CAM and NC control 

systems (Waurzyniak 2001). As in the previous demonstration, the AP 238 data file 

provided all the manufacturing information enabling the automation of CAM processing 

and cutting toolpath generation to be carried out on GibbsCAM. The machining 
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demonstration was performed on a three-axis horizontal milling machine on a wax version 
of a typical part. 
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Figure 4.10 STEP Tool Inc. Super Model project (Hardwick and Loffredo 2001) 

v. STEP-NC research at Loughborough University (UK) 

The research work from Loughborough University has mainly concentrated on the planning 

of the machining process and the generation of the STEP-NC process plan for milling and 

milling/turning components. Allen et aL (2005) developed a STEP-NC compliant 

computational environment for a multi-agent framework, where agents represented the 

individual features of the component and work independently and cooperatively to generate 

STEP-NC process plans for discrete component manufacture. Rosso Jr. et aL (2004) 

discussed the need for a new ISO 14649 machining schema specifically for asymmetric 

rotational parts and outlined a feasible solution to use the ISO 14649 data model for turn/mill 

machining. Further work was undertaken by Ali et aL (2005), who designed and 

implemented a STEP compliant inspection framework providing a capability to establish 

standardised measuring and inspection across the total CAx chain. 

4.6 Critique 

This section critiques the evolution of the STEP-NC in terms of the pioneering product 
definition standards and the NC machining process planning development. 

4.6.1 Product definition standards 

The pioneering product definition standards such as IGES, PDDI and PDES, are still widely 

adopted by today's CAD industry despite of their ambiguities in certain areas. IGES has been 

a dominant standard for CAD data exchange since its inception in the early 1980s. Its most 

exemplary characteristic is the ability to exchange data among different CAD systems that 
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translate IGES files into their proprietary format. However, IGES does not have a formal 

information model that captures the essential manufacturing information to fulfil the needs of 
CAM applications. On the other hand, PDDI was initiated in the mid 1980s to improve the 

underlying principles of IGES, which then led on to the development of PDES in the late 

1980s. Although PDES captures the complete information about a product and provides the 

physical mechanism for data exchange, it gives no onus to the vendors implementing specific 

entities to suit their own application. These deficiencies in IGES and similar formats led to 

the twin requirements of a formal definition language and conformance requirements, both of 

which are leading-edge technologies (Bloor and Owen 1991). 

STEP attempts to unite the various efforts of developing an agreed international standard and 

to surpass all its predecessors' scope and infrastructure. Its information model covers not 

only geometry but also deals with topology, features, tolerances and materials. Its 

information structure is designed to be modular and extensible but is constrained by the 

relationships between the entities. In addition, STEP ensures that implementation is 

conformed to a particular application domain through the use of conformance testing. Unlike 

the other standardisation activities, STEP is forward looking, and a number of experimental 

product modelling systems have been developed based upon the STEP standard and 

commercial system interpreters (Dutta et aL 1998). Most CAD software vendors have been 

equipped in their new releases with a STEP data translator, such as AutoCAD (Autodesk 

2005) and Solid Edge (UGS 2005). 

4.6.2 NC machiningprocess planning 

Most of today's CNC machines are still programmed in the G&M code language. The part 

program is generated by the CAM system, which makes use of the geometric information 

residing in the CAD system, to code the sequences of axis motions and tool functions. 

However, the data interoperability problem surfaces when building an environment for 

CAD/CAM system users on different sites, which requires a good communication tool and a 

proper standard to represent all the information to be transferred (Chao and Wang 2001). 

Such a problem prompted the need to develop a new data interface fusing the design and 

manufacturing intent together, and to look beyond the current range of information giving the 

CNC greater control and intelligence to machine a component. Against this backdrop, STEP 

Tools Inc. (2005) spearheaded the Super Model project in the US generating huge academia 

and industrial interests in solving the data interoperability problem in manufacturing. The 
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Super Model project is in effect a STEP model-driven intelligent control of manufacturing, 

which seeks to develop software and databases for an integrated design-to-manufacturing 

system allowing product design data to control CNC machine tools (Hardwick and Loffredo 

2001). 

STEP-NC aims to provide the complete information requirements that must exist in the 

machine tool controller. The information requirements include part geometry, manufacturing 
feature and manufacturing processes covering the need of the applications and tasks that a 

part programmer performs. Instead of programming the cutting toolpath and machine tool 

functions, STEP-NC describes the various machining_workingsteps required to machine a 

specific STEP manufacturing feature. Therefore, STEP-NC has effectively replaced the part 

programmer by defining the manufacturing features to be machined and associating essential 

manufacturing information, such as the machining process parameters with the feature. 

STEP-NC is becoming increasingly popular over the legacy format of the G&M codes 

within the research community contributing to the future global manufacturing needs. 

With the widespread use of the Internet, the networking of CAD/CAM systems across the 

globe will become increasingly apparent in the manufacturing industries. Through the use of 
STEP-NC and web-based technologies, resources can be easily accessed and work can be 

readily exchanged, thereby lowering the cost and Icadtimc of a project. Moreover, integrating 

procurement, design and manufacturing together within an c-manufacturing system promises 

to help give manufacturers the ability to eliminate product design changes far upstream, 

where such changes have the greatest negative impact on costs (Waurzyniak 2001). General 

Dynamics Land Systems (GDLS) has successfully integrated GibbsCAM and OMAC 

demonstration machining of a part from a STEP-NC part program downloaded from the 

Internet using XML (Hardwick and Loffredo 2001), thus overcoming the interoperability 

problems posed by disparate CAx and CNC systems in manufacturing. Though significant 

research and development have successfully demonstrated the benefits and potentials of 

STEP-NC, it still requires continual expansion with different parts issued to a wider variety of 

product types and life-cycle stages before it can be accepted as a discrete manufacturing 

approach when dealing with far-flung suppliers/facilities across the globe. 
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DESIGN OF AN INTEROPERABLE 

STEP-NC COMPLIANT WEDM CAx SYSTEM FRAMEWORK 

5.1 Introduction 

This chapter proposes the research framework for a STEP-NC compliant WEDM CAx system 

based on the author's WEDM information models designed from the STEP-NC standards. 

The framework is described by mainly exploring the information and functional perspectives 

of the CAx to CNC process chain. These perceptions represent the author's view and are 

described in the first part of the chapter. The major part of the chapter discusses the use of the 

system framework within an interoperable manufacturing envirom-nent. The information 

models required to drive the system are discussed in depth in the following chapter 6. 

5.2 Fundamentals of machining process planning 

The fundamentals of planning a machining process by examining the representation of 

information and through the generation of a process plan is of critical importance. The 

information representation is described in terms of modelling the information whereas the 

process plan generation is described in terms of the approaches of manipulating the 

information supporting the machining process. 

5. ZI Representation ofproduct and manufacturing information 

The essential information supporting manufacturing decision-making can be represented as a 

product model (PModel) and a manufacturing model (MModel). The PModel captures the 

information related to a product throughout its life cycle, whereas the MModel captures the 

information about the manufacturing situation of a company in terms of its manufacturing 

facility and capabilities (Molina and Bell 1999). These information models, which have been 

well-established by several authors (Molina et aL 1995, Molina and Bell 1999), are equally 

important and need to be highly integrated. The infonnation held within the MModel allows 

the product designer to study the effects of machining operations, machines, tools, 

fixtures/jigs, operation sequence, and machining parameters at an early stage of product 

development. Similarly, the information held in the PModel allows the manufacturing 
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process planner to manufacture the product according to the required geometry and 

tolerances. 

The role of integrating the different computer environments supporting these product design 

and manufacturing process activities is played by a computer-aided process planning (CAPP) 

system. Previously, much of the information modelling research, particularly in 

manufacturing information modelling has been developed based on the viewpoint of the 

individual researcher and has not concentrated on information standards. This requirement 
has been recognised by the author and through the use of the STEP-NC standard such generic 

models have been developed as described in section 5.3.1. 

5.2.2 Planning ofmachiningprocess 
Process planning has been defined by Alting and Zhang (1989) as a function within the 

manufacturing environment which deals with selecting the manufacturing processes and 

parameters to be used to transform a part from its initial form to final shape according to 

design specifications. To achieve this, it requires a part representation containing sufficient 
information for the properties to be evaluated, and a reasoning scheme in a form of rules and 

algorithms that carry out evaluation using the part representation (McMahon et al. 1997). The 

different approaches to machining process planning have been classified by Ham and Lu 

(1988) as variant, semi-generative and generative approaches. The variant approach involves 

retrieval and modification of a previous process plan to reflect the characteristics of the part, 

whereas the generative approach produces a completely new process plan for the part. The 

latter approach may utilise the decision table, decision trees or AI (artificial intelligence) 

techniques to develop a knowledge-based process planning system (Sormaz and Khoshnevis 

1997). As for the semi-generative approach, it is a cross-breed incorporating both the quasi- 

variant and quasi-generative features. 

Thus, the accuracy of proccss planning is dependent not only on the content of the 

information requirement but also on the manipulation of the information in order to produce a 

detailed description of the manufacturing operation sequences required to machine a part. A 

major contribution of this research is identifying a system framework that generates a STEP- 

NC process plan for WEDM component manufacturing based on the essential information 

requirement and the basic WEDM process logic and rules needed to plan the machining 

process. 
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5.3 STEP-NC compliant WEDM CAx system framework 

This section proposes a system fi-amework for a STEP-NC compliant WEDM CAx to CNC 

process chain by taking both information and functional perspectives of the system. The 

information perspective of the system framework is explained in terms of the information 

models and the data models needed to drive the WEDM CAx system. As for the functional 

perspective, it provides the methodology of planning the process and generating the process 

plan for WEDM component manufacturing. 

5.3.1 Information perspective ofsystemframework 
The system framework has relied on the information models, namely the PModej and the 

MModel, to satisfy the information requirement of planning and generating a process plan for 

the WEDM process. The PModel defines all the product-related information encountered 
during its life cycle, such as the descriptions of billet, the design of product together with the 

manufacturing view of the product. The manufacturing view provides a link between the 

PModel and MModel, and only has specific instances of the manufacturing processes (Liu 

and Young 2004). Whereas in the MModel, it identifies and represents the information 

relating to the manufacturing resource, manufacturing process and manufacturing strategy. 
The latter represents how the resource and process are organized, composed and deployed to 

support the realization of the manufacturing function (Molina and Bell 1999). Thus, the 

PModel and MModel capture the complete information and knowledge required to carry out 

the WEDM process. 

The data models for WEDM component manufacturing have been based on the ISO 14649 

standard, which is made up of different explicit parts providing the general and specific 

process data. Part 10 is the backbone of the standard covering the common. data structures for 

most machining processes, see section 4.5.3.1. These data structures describe the part to 

machine and the task to perform. In the standard, the part is defined as a workpiece while the 

task is defined as a workplan consisting of a series of machining, ýworkingsteps to carry out 

_9peration 
on a manufacturing eature. On the other hand, the subsequent the machining ýfi 

parts of the standard contain the data structures for a particular machining process, such as the 

ISO/DIS 14649 part 13, which is dedicated to the WEDM process, see section 4.5.3.1. 

The ISOIDIS 14649-13 data structures are extended from those defined in part 10 and provide 

the descriptions of the wire-edm-machining operation used in the WEDM process. Figure 
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5.1 shows the author's overall STEP-NC compliant data structure whose root is defined as a 

project. The project thus describes the workpiece to be manufactured in terms of material, 

global tolerances, geometry and boundary_geometryjelect, and the worAPIan to be 

performed in terms of the setup and machining_yorkingstep. 
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Figure 5.1 WEDM data model based on ISO 14649 standard 

5.3.2 Functional perspective ofsystemframework 

The system framework exploits the information and knowledge existing in the Model and 
MModel to support STEP-NC compliant planning of the WEDM process. It has been 

designed to be a semi-generative process planning system, which enables the interoperable 

manufacturing of a product at a different location/company by a different WEDM machine 

with dissimilar manufacturing process capability. Figure 5.2 shows the system framework 

depicting the STEP-NC compliant information models and the operational structure of the 

process plan generator. The term interoperability is used in this research to refer to the ability 

of the STEP-NC process plan generated from the system framework to operate among the 

different software systems in the CAx to CNC process chain, thereby promoting the ease of 

exchanging the information and knowledge about the WEDM process. 

The operational structure of the generator has been aligned with the use of PModel and 
MModel spelling out the design and manufacturing intent of the part. It is made up of three 

major stages namely the translation of the geometrical features, the planning of the machining 

operation and the generation of the process plan. The machining operation planning stage is 
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sub-divided into 3 stages, which define the WEDM constraints, identify the WEDM 

capability and determine the WEDM schema. 
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Figure 5.2 System framework for STEP-NC compliant WEDM CAx system (Ho et A 2005) 

However, if integration and automation are to be achieved in the CAPP system, a logical 

approach to the identification of a planning structure is needed (Ham and Lu 1988). This has 

been realised by identifying the essential planning activities and their relationships through 

the use of the IDEFO activity modelling methodology. IDEFO stands for ICAM Definition 

level 0 (Colquhoun et A 1993) and provides a valuable representation of activity 

relationships and information flows illustrated as an abstract at the top level to the detail at the 

bottom level. Figure 5.3 shows the IDEFO representation of the proposed system at the 

highest level. Each activity is controlled by a specific part of the STEP and STEP-NC 

standard together with libraries of manufacturing resources related information, which are 

briefly described below: 

AP 203/214 specifies the geometry of product, 

AP 219 is used for inspection data and results, 

AP 224 specifies the definition of feature-based component model, 
AP 240 is used in process planning, 
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0 ISO 10303-21 describes the format of the physical file, 

0 ISO 10303-22 is the SDAI for computing languages such as C++ and Java, 

0 ISO 14649-10 specifies the general process data, 

0 ISO/DIS 14649-13 specifies the process data related to WEDM process, 

0 Fixture library provides information on the j ig/fixtures, and 

0 Machine tool library provides information on the machine tool such as the machine tool 

specification. 
Feature Dimensions Process Data Models NC Physical File 
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(AP M31214) (AP 224) Library Library (AP 219) ISO/DISI4649-13 (AP240) (ISO 103M-21) 
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Figure 5.3 MEFO representation of the STEP-NC compliant WEDM CAx system framework 

SA Major activities of system framework 

The major activities of the proposed system framework for a STEP-NC compliant WEDM 

CAx system include the translation of the geometrical features, the planning of machining 

operation and the generation of the STEP-NC process plan. These WEDM process planning 

activities are outlined below. 

-5-4.1 Feature translation 
r)Uring the first stage, feature technology has been employed to translate the instance of the 
Nodel for use in applications following design such as machining process planning. It 
illvolves the translation of low-level information into a feature-based component model, 
Which has also been used to integrate and automate design and manufacturing applications. 
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Generally, there are two approaches of translation, namely feature-based design, which uses 

predefined and application specific features to model a product, and feature recognition, 

which converts the CAD product model into the feature-based component model without 
limitations on designer activities (Ozturk and Ozturk 2001). In the proposed system, the 

author favours the latter approach because it will not restrict the modelling of a product to a 
limited number of predefined features. It uses a feature recogniser based on AP 224 to extract 

manufacturing features and relationships, and identifies the required machining operations to 

machine the part but this is not the core aim of this research. The system also required a 
translator based on AP 203/214 to interpret the geometry of part. However, Allen et aL 
(2003) believed that the AP224 translator could be further developed to capture the feature 

information from a feature-based CAD model. 

5.4.2 REDM machining operation planning 
The second stage of planning the process has been divided into 3 sub-stagcs consisting of 
defining the machining constraints, identifying the machining capability and determining the 

machining schema. These activities have been designed to capture, organise and use the 

product and process knowledge via the proposed system to plan a detailed machining 

operation for the WEDM process. In this research, process planning refers to the making of a 

plan, which describes the required procedures of conducting a WEDM process, such as the 

setting up of the workpiece and the identification of the WEDM machining operation for a 

specific feature-based component. On the other hand, operation planning refers to the making 

of a plan, which indicates the detailed sequences of the WEDM machining operation, 
including the machining strategy to employ, the wire tool to use, the cutting conditions to 

apply, etc. Figure 5.4 shows the machining operation planning activities for the proposed 

system, which has been largely based on the WEDM MModel and are described as follows: 

WEDM resources - define the physical constraints imposed on the WEDM process, e. g. 

wire_tool, wire_edm-machineýfunctions. 

WEDM processes - identify the functional capabilities of WEDM process, e. g. 

workpiece setu -edm machining operations. p, wire 

WEDM strategies - determine the machining schemas of the WEDM process, e. g. 

wire_edm retract_qtrategy, wire edm technology. 
__qpproachl 
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Figure 5.4 IDEFO representation of WEDM machining operation planning activities 

5.4.3 WEDMprocess plan generation 

Lastly, the expected output from the system is a STEP-NC compliant and information model 

driven process plan defining 'what-to-make' according to the PModel and 'how-to-make' it 

by conforming to the MModel. The process plan is made up of one top-level entity called 

project, which indicates a machining worAplan and a worApiece upon which manufacturing 

functions are to be performed. The latter entity contains the characteristics of the workpiece 

to be machined, such as material, shape and size. As for the workplan, it contains a 

description of setting up the workpiece at the machine tool and a set of sequential 

machining. ýworkingstePs- Here, each machining_yorkingstep defines a 

wire_edm_machining_pperation, which is based on the machine, tooling and technological 

capabilities of the WEDM process. The process plan also captures the essential machine 

dependent information needed to operate the proprietary expert system, which is commonly 

found in the WEDM process, such as the Wire_edM_Machining__qtrategy, wire-tOol, 

wire-edm-technology, etc. The end result is a STEP-NC compliant process plan that is not 

dependent on the machine tool, thereby providing the capability to operate a WEDM process 

in an interoperable manufacturing environment. 
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5.5 Interoperable manufacturing environment 
An intcroperable manufacturing environment has provided the vital means of communicating 

with or exchanging data between different CAD, CAM and CNC systems. It provides the 

integrated infi-astructures which via computational mechanisms support interaction between 

business and manufacturing components where potentially such components may be 

distributed around the factory, globe or even universe (Weston 1998). The five basic 

approaches identified by Potter (2000) to interoperate one system's CAD data in other 

applications include the use of a standard neutral file format, direct translators, geometry 
kernels, CAD program's application programming interface (API) and visualisation 
technology based on tessellation. In addition, the Microsoft's Object Linking and Embedding 

(OLE) technology is another method of facilitating interoperability, which enables a product 
designer to essentially 'cut and paste' a solid-modelling component from one CAD 

application into another (Rowell 1997). Other options that support the concept of 
interoperability include programming languages such as Java and Corba. More importantly, 

the system's interoperability also depends on the industry-wide collaboration between CAD, 

CAM and CNC vendors sharing data throughout the design through manufacturing cycle. 

The proposed system framework supports data interoperability between the various CAx 

systems or CNCs in the manufacturing chain. Figure 5.5 illustrates how the proposed system 

operates in an interoperable manufacturing environment. The output from the system is a 

process plan that is interoperable with the corresponding CAx systems or CNCs. This has 

been largely made possible by the information models identifying machine independent 

information that can be executed on the various types of WEDM machine. However, the 

author believes that a certain level of detail is still needed to be fed into the system due to the 

proprietary characteristics of the CNCs for the WEDM process. For example, a component 
that requires four cutting operations at one machine may only need three cutting operations if 

it was manufactured at another machine to obtain the same surface finish. Such a difference 

in the machining strategies is determined by the individual CNC vendor's proprietary expert 

system, which makes it difficult to represent the information and knowledge needed to drive 

it. As mentioned in section 4.5.5, the expert system is commonly used in the WEDM CAx to 

CNC process chain to interpolate the cutting contour, monitor and control the machining 

condition. Hence, it is important that the WEDM process plan contains enough data to allow 
the CNC to intelligently process or interoperate from machine to machine. This can be 
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achieved through the information modelling of the manufacturing capabilities of the WEDM 

process. 
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Figure 5.5 Intcroperable manufacturing environment for WEDM process 

The key factor of attaining data interoperability is to adopt a good infrastructure, a proper 

communication tool, and a standard product data representation that can be accepted by most 

CAD/CAM software systems (Chao and Wang 2001). The author expects that the user-dri'ven 
STEP-NC data interface will enable the proposed system framework to meet the 

interoperability requirement through the use of the neutral file forinat of representing the 

inforniatioii for WEDM CNC manufacturing. This is in contrast to the machine-driven ISO 

6983 data interface, \,., Inch allows the incorporation of vendor-specific forinat or code to fully 

describe the WEDM process. Hence, by complying with the STEP-NC approach of CNC 

manufacturing, different WEDM CAD/CAM software companies and CNC vendors will be 

able to exchange product and manufactunng information explicitly without making 

compromises on disclosing their propnetary manufactufing methods and procedures. 
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STEP-NC COMPLIANT INFORMATION MODELLING FOR 

)VEDM COMPONENT MANUFACTURING 

6.1 Introduction 

This chapter provides an overview on how the author's STEP-NC compliant information 

models can be used to support the WEDM CAD to CNC process chain. It introduces the 

research from a viewpoint, which focuses on the planning of the WEDM process through the 

use of information models. The viewpoint is used to define the information models, which 
are based on parts 10 and 13 of ISO 14649 standard. This chapter includes an overview of the 

author's WEDM product and manufacturing data models. It also describes the additional 
information to the standard that is needed to operate and control the WEDM process. 

6.2 Context for STEP-NC compliant information modelling 
This section describes the context for modelling the product and manufacturing information 

needed to facilitate the planning of the WEDM process within the STEP-NC environment. It 

also describes how the STEP and STEP-NC standards have an effect on the design of the 

author's WEDM information models. 

62.1 Integratedproduct and manufacturing information modelling 
Information modelling has been used to represent the manufacturing capabilities of the 
NVEDM process. It assists in identifying the common information requirements before 

developing the machining process planning software applications. Hence, it should be 

recognised that the resultant information models are application and processing independent 

and form the basis for the design of application independent databases and interfaces (Toh et 

al. 1998). The common information requirements needed to execute and control the WEDM 

process have been divided into the Model defining the design specification together with 

method of manufacture, and MModel relating to the process capabilities, as mentioned in 

section 5.2.1. However, the two information models are closely integrated, as the product 
information is required to support the determination of the process, whereas the 

manufacturing information is required to facilitate the oPtimisation of the design 

specifications and method of manufacture. 
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This has been made possible by the information modelling techniques, which simplify the 

representation of the integrated data structure and relationships for a variety of product design 

and manufacturing process applications. The information modelling tools used in this 

research included the EXPRESS language and the UML (Quantrani 2000), which are 
described in detail in chapter 7. 

622 STEP compliant product information modelling 
The STEP standard has strongly influenced the research in the area of specifying the 
information of a WEDM product for CNC manufacturing. It seeks to provide a complete and 

unambiguous representation of the WEDM product geometrical information by using a 
feature-based component representation based on the object-oriented EXPRESS language. A 

feature-based element is considered as a geometric primitive, characterizing it as a component 
building block embodying the meaningful information for the exchange and interpretation of 
the design intent to other applications. In addition, STEP makes a clear distinction between 

the information model and the implementation method allowing the product data model 
(PDM) to be organised with a unique set of entities for the WEDM process. As a result, 

richer product information can be expected and exchanged consistently between the different 

stages of the WEDM product life cycle from product designing to product manufacturing. 

In this thesis, the PModel holds the detailed information relating to the product, which is 

clearly distinguishable from the PDM, which provides a data structure and relationship that 

enables the essential characteristics of a product to be captured (Boda et al. 2001). The 

research work carried out by Ming et al. (1998) has provided a significant insight into the 

appropriate breakdown of the WEDM PModel. They developed an object-oriented STEP 

based PModel depicting the geometrical information and the semantic representation of the 

part embodying the nominal shape, form feature, dimension and tolerance, material, and 

surface information for a CAPP system. These elements have been used to represent the basic 

attributes of the author's PModel. 

6. Z3 STEp-NC compliant manufacturing information modelling 
In addition to STEP compliant product modelling, the STEP-NC standard has effected the 

common consensus of establishing the structure of the manufacturing information supporting 
the WEDM process. It has been developed to standardise the information content and data 

structure describing the various machining process planning activities for CNC 
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manufacturing. The data structure of STEP-NC, which describes the characteristics of the 

CNC machining process has been extended from the STEP PDM in order to improve the 

integration of the CAD to CNC process chain. It also helped in the studying of the impact of 

the functional design decisions on the manufacturing technologies and processes by setting 

the design criteria in the context of the manufacturing facilities. 

Several researchers (Boda et aL 2001, Gao and Huang 1996, Giachetti 1999, Ming et aL 
1998) have modelled the manufacturing process capabilities in the context of the process 

representing the functions and characteristics of the manufacturing activities, and the resource 

representing the constraints of the manufacturing facilities. Some researchers (Liu and Young 

2004, Molina et aL 1995, Molina and Bell 1999) have identified an object-oriented MModel 

for capturing the data, information and knowledge related to the manufacturing resources, 

processes and strategies within an enterprise. These research areas have been utilised for the 

modelling of the manufacturing information about the machine, cutting tool, machining 

process and operation have contributed to the development of the author's MModel 

supporting the generation of the WEDM machining schema in an inte ated design gr and 

process planning environment. 

63 STEP-NC compliant information modelling for NVEDM process 
This section outlines the author's information models supporting WEDM component 

manufacturing based on STEP and STEP-NC standards. 

6.3.1 WEDM information modelling 

The information models described in this research apply the relevant STEP-NC standards to 

support decision-making relating to the WEDM process planning. As mentioned in section 

4.5.3, STEP-NC has a common source of well-defined and structured information capable of 

satisfying the information requirements needed to carry out a number of CNC machining 

processes. Part 13 of the ISO 14649 standard has been dedicated to the WEDM process and 

is still in the development phase. The Swiss partners of the IMS project (Richard et aL 2004) 

are the developers of the standard. Although the standard is still under development, the 

overall structure and content is expected to remain mainly unchanged. 

The author's proposed WEDM information models are shown in figure 6.1 and consist of the 

PModel and MModel based on the STEP-NC standards. The manufacturing view attribute 
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residing in the I'Model embodies the relevant instances of the MModel, It captures the 

generic manufacturing infonnation in the PModel to promote interoperable manufacturing of 

a WEDM part. This is consistent with other researchers (Borja et al. 2001, Lim et al. 1997) 

who have argued that the information held in the MModel must be made available to the 

product designcrs during product development phase in order to facilitate design for 

manufacture. 
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Figure 6.1 STEP-NC compliant WEDM infonnation models 

6.3.2 Jj1-, 'DAf numufacturing niotlel (MAlodel) 

The WEDM MModel captures the common information describing the manufacturing 

capabilities of the WEDNI process. It has been adapted from Molina et al. (1995), whose 

MModel described the manufacturing capability of a particular facility in tenris of its 

manufacturing rcsources, processes and strategies. As such, the WEDM MModel also 

considers the physical (resource) and functional (process) properties of the machining 

process. It also takes into account the representation of the feasible WEDM machining 

schemas (strategies) based on the composition of the resources and processes. This is due to 

the different combination of WEDM resources and processes having a direct effect on the 

WEDM machining schemas of achieving the machining targets, such as the number of cuts 

required to obtain a desired surface finish. The data structure of the WEDM MModcl that 

defines the characteristics of the process is illustrated in figure 6.2. The knowledge about the 

WEDM process is organised in an object-oriented manner enabling the process planner to 

select the appropriate strategies based on the array of available resources and the feasible 
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processes to machine a part. The WEDM MModel has been made up of the following 

attributes: 

WEDA, f resources - model the physical constraints imposed on the WEDM process to 

machine tile required parl, e. g. it-ire tool and wire ednimachine lunctions. 

WEDAI processcs model the functional capabilities of the WEDM process to perform the 

machining operatimis. c., -,. 1vork-j)it, ce_setz4p and wire_ednimachining_operations. 

WEDAI stralegics model the machining schemas of the WEDM process based on the given 

WEDN1 resources and processes, e. g. wire_edm_approachlretract-Strategy and 

wire_ed? n-technologv. 

These three attributes of the WEDM MModel have covered all the essential maiwfacturing 

information needed to carry out the WEDM process. 

Figure 6.2 Representation of STEP-NC compliant WEDM manufacturing data model 
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6.3.3 IVEDAf product model (PModel) 

The WEDM I'Model facilitates the management of the product information and knowledge 

for the vanous product life cycle activities. It models all the essential properties and 

charactenstics of a WEDM part. These include the representation of the billet, in terms of the 

material, nominal shape and size, together with the product design in relation to the 

geometries, dimensions and tolerances (G, D& T) of the part to be machined. In addition, a 

manufacturing view of the part is offered to the PModel in order to serve as a means of 

integrating the PModel and the MModel. Since the PModel has been ultimately used to 

satisfy the information requirements of the manufacturing process at the later stage of the 

process chain, it is vital to set it in the context of the selected process to manufacture the part. 

By doing so, the manufacturing view supports the preliminary and interoperable process 

planning in the early product development stage in an integrated manufacturing environment. 

This approach is consistent with the work done by Liu and Young (2004), who have also 

provided a manufacturing view in their I'Model to support global manufactunng co- 

ordination decision-making. 

Figure 6.3 Representation of STEP-NC compliant WEDM product data model 

68 



Chapter 6 

Figure 6.3 shows the data model of the WEDM PModel offering a manufacturing view of a 

part. The MModel residing in the PModel shares the same data structure as the main 
MModel, which holds the actual manufacturing information in the application domain and 

works in harmony with the PModel. The WEDM PModel is made up of the following 

attributes: 

WEDM billet - models the characteristics of raw material, which have an effect on the 

selection of cutting parameters (technology), e. g. material and nominal shape and size. 

WEDAI product design - models the G, D&T of the WEDM part, which have a direct 

influence on the determination of the machining operations and the selection of the cutting 

parameters, e. g. the surface finishing quality and the dimensional accuracy. 

WEDM niunujýcturing Oew - models the relevant instances of the MModel, which allow an 

early assessment of the manufacturability of the part and the interoperability of the machining 

workplan, e. g. interoperable workplan, production history and manufacturing features. 

The WFDM PModel enables the WEDM product information to be captured and represented 

through these three attributes. Figure 6.4 shows the overview of the two STEP-NC compliant 
WFDM data models. 
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The STEII-M' staiidar(i has provided the WEDM information models with a bounded set of 
data structures for CNC manufacturing. As shown in figure 6.4, the PDM is headed by the 

Project class, which is the top-level entity of the STEP-NC process plan, whereas the MDM 

is led by the Executah1c class, which is the base entity of all executable objects initiating 

actions on the machine (ISO 14649-10 2004). 

6.4 NVED. N1 extended information models 

In the author's opinion, the current data model specified in the ISO/DIS 14649-13 needs to be 

extended in order to fully support the WEDM machining operations. This is due to the lack 

of common product and manufacturing information that allows the CNC machine to 

intelligently operate the WEDM process. Figure 6.5 shows the additional infon-nation 

represented in their respective infori-nation models and is illustrated by the dotted lines and 

textboxes. This inforniation has been identified by the author's use of the commercial 

WEDM CAD/CANI systems, namely the PEPS Solid Cut Wire EDM (Production 

Engineering Productivity System) (Camtek 2005) and PC FAPT Cut i (Fanuc Automatically 

Programmed Tools) (60OCentre 2005). 

WEDM WEDM 
Product Model Manufacturing Model 

Billet 1611,11111. esotuces Plocesse Vi*w 
loduc 

------------------- 

------------------- ------------------- ------------------- ------------------- Radius c, --)rrer Machining Cutting Die/Punch 
with conic envelope parameters cutting 
offsetting -------------------- setting ------------------- 

------------------- - ------------------ ------------------ ------------------ !: Automatic ------------------- Reverse ----------------- 1. -4 1.1 Off set wre threading Tag cutting 
----------------- profile identification ------------------ 

-------------------- --------------- --------- 
-------------------- -------------------- No-core 

Gear & Machining : cutting 
cam gear feedrate ------------------- 

profile controlling 
-------- I ------------------- ------------------- --------- Multiple 

cutting 
------------------ 

Figure 6.5 WEDM extended information models 

As identified above, the extended information models are based on the 

machining/progranirning parameters of PEPS Solid Cut Wire EDM (PEPS Solid Cut) and the 
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PC FAFI Oit i (FAFF) CAD CAM systems. The inclusion of this additional information 

makes it possible to facilitate the integration of the PModel and the MModel with these 

commercial CAD, 'CANI systems. The detail of these systems will be discussed in depth in 

chapter 8, \\ hich describes the testing of the prototype system. 

NVEDNI Parts (1-wifficatian 
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ISO/DIS 14649-1311 
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I gure 6.6 Classification of WEDM parts 

In addition, a classillication of the various industrial parts manufactured by the WEDM 

process has been identified by tile author and has been mapped onto the STEP-NC standard in 

order to deternmic the additional inforniation that has yet to be specified in ISO/DIS 14649- 

13. Figure 6.6 sho\vs the author's classification of the WEDM parts under the various 
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headings including the types of manufacturing feature, boundary, profile cutting, 4-axis 

machining, edge and corner offsetting. The classification is also based on the approach, in 

which PEPS Solid Cut and FAPT program the machining operations for these parts. Such an 

approach simplifies the programming of the machining operations that are specific to the 

classified parts. For example, parts requiring multiple profile cutting have to perform the tag 

cutting and manual slug removal operations. Whereas parts requiring no-core cutting do not 
have to perform these operations, as such machining does not produce any core/slug. 
Therefore, through the classification of the WEDM parts, the specific programming of 

together with the relevant information relating to the machining operation for a specific part 

can be easily identified. 

Each WEDM part has been closely matched with the feature-based entity defined in the 

respective ISO 14649 standards. Any part that is left without a STEP-NC entity indicates the 

missing information in the current standards with respect to that part feature. The additional 

information identified is as follows: 

Radius corner i0th conic offsetting - is a type of radius corner generally found on WEDM 

parts, as shown in figure 6.6. It needs to be specified in the edm-transition as shown in table 

6.1. The additional information is highlighted in bold. 

TYPE EDM-TRANSITION = 
ENUMERATION OF 
(constant_radius, conical, sharp, 
radius-corner_conic_offsetting); 

END_TYPE; 

Table 6.1 Extended entity edm_transition 

Automatic ivire threading - is an automatic machining characteristic that helps to reduce the 

amount of operator's invention in threading the wire through the wire guides with/without the 

workpiece in place. This attribute needs to be added in the entity 

wireedm- machiningjUnctions as shown in table 6.2. 

Machining envelope - refers to the size of the machining area, which is determined by the 

WEDM machine axes including the x, y, z, u and v axes. It needs to be specified as one of 

the attributes in the ivireedni machining unctions as shown in table 6.2. 
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ENTITY wire edrn machine functions 
F - ons); SUBTYPE O F (mz;; hinejurýd 

coolant BOOLEAN; 
coolant_pressure: OPTIONAL pressure-measure; 
lowerý_nozzle: BOOLEAN; 
upper - nozzle: BOOLEAN; 
nozzle_gap: OPTIONAL length_measure; 
auto - wire threading: BOOLEAN; 
max -x-a 

is: length-measure; 
max_y_Axis: lengttLmeasure; 
max_zý_axls: lengttL measure; 
max-u-axis: length_ measure; 
max v axis: length_ measure; 
max: GPer, plane angle measure; 
otherý_ýnctions: SET [6:? j OrpropertyJarameter; 

END. 
_ENTITY; 

Table 6.2 Extended entity wire-edm-machine_functions 

Machine ftedrate controlling - is used together with an expert system to monitor and control 

the feedrate when machining parts with small comer, small radius, variable taper or variable 

thickness. It needs to be included in the wire_edm_techno1ogy, as shown in table 6.3. 

Cutting parameters setting - refers to the setting of various machining parameters in order to 

achieve optimal cutting conditions and offsets, such as the pulse on/off time and working 

current, as shown in table 6.3. The parameter setting is primarily determined by the WEDM 

expert system, which differs from vendor to vendor. 

ENTITY wire edrTLtechnology 
SUBTYPE CF (technology). 

small comer strategy* 
smalF radiui' strategy: 
varia@e_tape-rý_strategy: 
variablq_thickness_strategy: 
pulsq_orLtime: 
pulsq_, of(_time: 
working_current: 
otherý_generatorý_pararneters: 

END_ENTITY; 

OPTIONAL BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
time measure; 
time7measure; 
eleciric current measure; 
OPTIOWAL set [6'? ] OF propedy_parameter, 

Table 6.3 Extended entity wire_edm_technology 

Offset profile - is a literally twisted WEDM part in which the top profile axially offsets from 

the bottom profile, as shown in figure 6.6. The basic attributes for the offset profile are 

shown in figure 6.7. 
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Alo-coiv ciming retCrs to tile machining of a pocket through gradual enlargement without 

producing any core, slug, as shown in figure 6.6. It needs to be added as one of the 

niachining_ftatidres, as shown in figure 6.7. 

Gear, cani wid cani gear profiles - are some of the most commonly machined parts carried 

out by the WFDN1 process, as depicted in figure 6.6. This is largely due to the intncate teeth, 

which are very difficult to be machined by traditional material removal processes. The 

cutting of the gear profile needs to be added to the machiningJeature, as shown in figure 6.7. 

It has been prefixed Nvith an 'EXT' (extended) in order to distinguish from the STEP-NC 

entities. 

EXT_gem 

nvo, *Ae: vt 
ixmd)ef-of-tecth: irt 
pfesstme_agm*: pi"arKpiernousae 
tepb4coid iadlils: WVh-rne63LJre 
loot iýijiss: l-jlý ýras. sc 

Diell'unch culting has a different effect on the compensation of the offsets caused by the 

sparking zone when machining a punch or a die. Depending on the cutting direction, the side 

(left/right) in ýNhlch tile compensation is to be made needs to be defined in the 

ivire_etit? i_iti(j(, hiiiitig-opc"'eitio? ', as shown in table 6.4. 

Tag i(lentification - is a machining characten IIII istic, which identifies the tag position and the 

need to have multiple tags when machining a large component. It needs to be included in the 

ýi, ire-, edtti--t? iachinitig__ol)ereitioti, as shown in table 6.4. 

Reverse culling reduces machining time by performing machining with a different set of 

cutting conditions and offsets on the returning toolpath. This needs to be added into the 

wire Min j?,, j,, j, jj, jjjg opt, ration, as shown in table 6.4. 
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ENTITY wire 
- 

edm 
- 

machining_operation 
SUBTYPE OF (machining_operation); 

offsetjengthý OPTIONAL length_measure; 
off set - 

side: String; 
approach OPTIONAL wire 

- 
edm 

- 
approach_retract_strategy', 

retract OPTIONAL wire_edm_approach_retract_strategy', 
thread_pointý LIST OF [1.2] OF cartesian_point, 
cut-end_point: SET OF [0:? ] OF cartesian_point; 
tag_escape_amount: length_measure; 
reverse_cutting: BOOLEAN; 

END_ENTITY, 

Table 6.4 Fxtended entity wire_edm-machining_operation 

Multiple ciating - performs an order of cutting on multiple punches/dies on the same 

workpiece in a single setup, as shown in figure 6.6. The strategies optimising the amount of 

machine operator's invention on the manual removal of the slug/waste material and the 

manual control of the machine thereafter need to be defined as shown in table 6.5. 

ENTITY wire - 
edm 

- 
machining_strategy 

SUBTYPE OF (machining_strategy); 
wire_cut_tag_on_first_cut: OPTIONAL BOOLEAN; 
wire_cut-tag_at-end_of-Operation: OPTIONAL BOOLEAN; 
wire_cut_tag_at_end_of_all_first-cuts: OPTIONAL BOOLEAN; 

END_ENTITY, 

Table 6.5 Extended entity wireedm_machiningstrategy 

The additional information that is crucial to the WEDM operation has been identified to allow 

the CNC to intelligently operate the process. It adds on to the existing information specified 

in the drafted ISO 14649-13, which is still currently under development. This information has 

been represented in an object-oriented manner. The definition of the common technological 

parameters for specifying the WEDM generator setting is represented in the 

wireedni technoloD, whereas the standardisation of the proprietary strategies for machining 

specific teatures, such as sharp comer is presented in the wire 
- edm 

- n7achiningstrategies. 
This complies with the STEP-NC approach of reducing all the essential WEDM process data 

to its common denominator facilitating the reuse and reconfiguration of the data according to 

the different functions of the CAD to CNC software applications. This additional information 

is considered as a valuable contribution from this research work to the development of the 

ISO/DIS 14649-13 standard. 
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COMPUTATIONAL ENVIRONMENT FOR 

STEP-NC COMPLIANT WEDM CAx PROTOTYPE SYSTEM 

7.1 Introduction 

This chapter describes the computational environment for the STEP-NC compliant WEDM 

CAx prototype system based on the framework and the information models identified in 

chapters 5 and 6 respectively. The prototype system is referred to as Wire SNIPs (STEP-NC 

interoperable process planning prototype system for the wire-cutting EDM process) 
throughout the thesis. Wire SNIPs has been constructed through the use of the Java 

programming language and the ObjectStore database management system (DBMS) to capture 

and manage the essential information and knowledge supporting the various WEDM process 

planning activities. The chapter describes the development, functional and operational 

structure of Wire SNIPs to generate a STEP-NC process plan for WEDM component 

manufacturing. 

7.2 Overview of Wire SNIPs 

This section provides an overview of Wire SNIPs by briefly describing the various tools used 

to develop the prototype system. It also describes the representation of the WEDM 

information models needed to drive Wire SNIPs through the use of UML. 

7.2.1 Basic components of MireSNIPs 

Wire SNIPs has been developed to demonstrate the viability of the product and process 
knowledge residing in the author's WEDM information models based on STEP-NC standards. 
The design has been based on the framework outlined in chapter 5 and the WEDM PModel 

and MModel outlined in chapter 6. Figure 7.1 depicts the methodology of designing the Wire 

SN[Ps based on the system fi-amework and the WEDM information models. The system 
framework provides the operational structure, which supports the decision-making and the 

generation of STEP-NC process plan relating to WEDM process planning, see figure 5.2. 

These process planning activities, their relationships and information flows have been 

illustrated by the IDEFO diagram as an abstract in figure 5.3 to the detail in figure 5.4. Such 

an approach of differentiating the various process planning activities facilitates the 
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development of the Wire SNIPS, in tenns of database management. As for the instances of 
WEDM PModel and MModel, they have been represented by the UML class diagrarn, see 
figure 6.4, and will be further discussed in the following section 7.2.2. 

The realisation of the system together with the supporting information models has been 

systemically designed through the use of the UML class diagrams, the ObjectStore DBMS 

(Progress 2005) together with the Java programming language (Sun 2005). UML is an 
industry-standard and object-oriented modelling language that provides a reliable architecture 
for the specification, visualisation and documentation of information models. It has enabled 
the design along with the structure of the product and process knowledge to be explicitly 
illustrated and easily implemented in the DBMS. The ObjectStore DBMS is employed in the 

system to store, modify and extract data from the database, thus allowing it to be shared 

among multiple applications. As for Java, it is the nerve of the system performing the main 
planning task of matching the applicable manufacturing process capabilities to product design 

specification. The underlying principle of planning a WEDM process is made by invoking 

the rules of sequencing a logical machining route and imposing the technological machining 

criteria, such as the required surface finish and minimum number of cuts. 

The main objective of Wire SNIPs is to prove that the author's WEDM PModel and MModel 

based on the STEP-NC standards can be used to generate a STEP-NC process plan for 

WEDM component manufacturing. This has been achieved through an interactive software 

system, which makes the various process planning decisions and maps out a feasible process 

plan. Wire SNEPs was capable of determining the detailed WEDM operations based on the 

essential product and process information captured from the system users. Such capability 
has been made possible by making the following assumptions: 

i. Machining method was limited to die-opening cutting 
ii. Machining processes were limited to 3-axis WEDM machining 
iii. Machining processes were completed in single setup 
iv. Cutting modes were standardised to roughing, finishing and surface finishing 

V. Cutting conditions were generated automatically 

vi. Product information was extracted from feature-based component data 

vii. Feature-based component data was transformed from a CAD database 

viii. Translation of feature-based component has been carried out 
ix. Manufacturing resource allocation was not affected by resource availability 
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Chapter 7 

7.2.2 Representing IVEDAf information models in UML 

The object-oriented approach has provided the fundamental building blocks of the WEDM 

information models for the development of the Wire SNIPs. It views the process planning 

sy9tem as a set of interrelated objects, which exchange messages during process planning 
(Sormaz and Khoshnevis 1997). More importantly, the ability to create a number of objects, 

and make complex associations between them, enables users to more realistically represent 

the capabilities of resources, the relationships between resources and to map from process 

requirements to suitable resources (Molina et al. 1995). 

However, the key advantage of the object-oriented approach is that data inheritance and 

encapsulation characteristics enable complex WEDM objects to be defined by combining 

several simpler objects, such as wire edm achining. q - _ýM _ peration as shown in figure 7.2. Data 

inheritance occurs when the objects in the lower level of the hierarchy inherit common 

attributes from higher-level objects, whereas data encapsulation only allows the manipulation 

of the object's data through the appropriate operations; external manipulation of the data is 

not allowed. Thus, the Wire SNEPs was expected to deliver such benefits, making the process 

planning software applications more flexible, more reliable and faster to develop. 

UML was considered the most appropriate analysis and design method for developing the 

data structure for Wire SNIPs. It conceptualised the seamless integration of the different 

WEDM part design and machining process planning activities by building on the concept of 

objects and classes. Objects are defined as an abstraction of some thing in the real world, that 

carries both the data describing the real-world objects and the operations that have the only 

allowable access to that data (Brown 2002). Whereas, a class is defined as a group of objects 

with similar properties (attributes), common behaviour (operations), common associations to 

other objects (relationships), and common semantics (meaning) (Rumbaugh et aL 1991). 

Figure 7.2 shows a class diagram illustrating how the object identifies itself through a set of 

attributes, behaves through the appropriate operations, and associates itself to other objects 

through the specified relationships. The three major steps used to generate the class diagram 

of the WEDM information models include finding the classes involved in the problem 
domain, specifying the details of their attributes and operations, and identifying the 

relationship among the classes as well as their roles and cardinalities (Zhao et aL 1999). 
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These steps have facilitated the WEDM information models to be constructed as objects 

coordinating in a manner satisfying a specific design or process planning application. 

Machining Operation class 
class name 

itsjd String 
retract_plane* double 
start_point Cartesian Point 
its strategy Wire EDFA Machining Strategy 
its tool Wire Tool 

Tattributes 

its technology Wireý EDIO Technology 
its machine functions Wire _ EDM __ Machine Functions- 

offset - 
length: double 

approach Wire-EDM_Approach_ROtrect_ Strat89Y 
retract: Wre_EW_Approach_Retractý_Stratogy 
thread_point Cartesian Point 

t 

cut_. eno_point Cartesiar&oint 

gotoffsa operations 

Figure 7.2 Wire EDAf Machining 0 peralion inheriting the Machining 0 peration attributes 

UML has been used to represent the various objects in the WEDM manufacturing 

environment and the relationships between these objects. Each of the entities or data types 

specified in the WEDM Model and MModel based on part 10 and part 13 of the ISO 14649 

standard were mapped to the UML format and transformed into classes with logical links. 

Figure 7.3 shows the class diagram depicting the various classes of the interrelated WEDM 

product and process data types by using the ObjectStore Database Designer software 
(Progress 2005). As seen from the figure, the many links or associations between the low- 

level data types could be interpreted as the avoidance of data redundancy and the 

interdependence of the product and process knowledge supporting the WEDM process. 

In addition, the UML representation of the WEDM information models serves as a logical 

data model, which can be used as the building blocks in the creation of an object-oriented 
DBMS (OODBMS). In the case of Wire SNIPs, it has helped to develop the logical database 

schema of the WEDM information models, which were directly implemented in the 

ObjectStore DBMS. 
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72.3 Developing Wre SNIPs database system 
The OODBMS has allowed the easy storage and retrieval of WEDM information and 
knowledge captured from the system users in a structured manner. It retains all the key 

advantages of the object-oriented technology providing an efficient platform for information 

storage and retrieval based on data encapsulation and modularity. Gu et al. (1994) claimed 
that the administrative advantages were brought about by encouraging data modularity and by 

associating particular related knowledge with a specific set of data. As such, it gave 
OODBMS the perfon-nance advantage over its counterpart, the Relational DBMS, which 

required the mapping of objects to tables. As a result, the Relational DBMS slowed down the 

processing performance and increased the amount of code to be written due to the mapping of 

objects into rows and columns (ObjectStore 2003). Figure 7.4 illustrates how the OODBMS 

expedites the query of the Wire SNEPs database by traversing the 'tree-like' data structure or 

navigating from one node in the figure to another. As shown in the figure, the caching was 
the retention of data, usually in the application, to minimize network traffic flow and/or disk 

access. In addition, the OODBMS offered an ideal data storage solution for object-oriented 

programming languages such as Java and C++, which will be further discussed in depth in the 

subsequent section of this chapter. 

Wire $NlPs 

'Cac 

0- 

WEDIM 
1 I 

W00 
ýi 

wj" i 
j 

M f t 
macmnwv ED 

C J C n anu ac u r workingstap Machining L 
bg e Database Operations 

Wre EýDM 
m hi 

1wring 2 WWI EDM = o Wirs EDM Inter-related 
Objects ac r" at Operations n logy T ology i Approach strime Rm Retract 

S st . trategy 

V&eEDM Wre Too( 
h4KNMO 

FivKtions 

Figure 7.4 The query of the object-oriented Wire SNEPs database 

The object-oriented ObjectStore DBMS has been applied to Wire SNIPs to perform the 
functions of data storage and retrieval. Its main merits included: 

Extensive improvement on object serialisation by providing the capability to read and 

write a smaller subset of the complete tree of objects at a time. 
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41 Real-time responsive updatelaccess to the locally cached data, especially if an 

application required updating/accessing the objects frequently. 

Coordinated multiple threads sharing a single database and protecting the integrity of 
data. 

Comprehensive library of Object Managers supporting multimedia applications by 

maintaining the data independent of the data types such as image, audio, full text, 

video or HTML 

* Native support for Java and C++ object models by managing the ObjectStore objects 
in a component-rcady form. 

The ObjcctStore DBMS has been successfully adopted within the telecommunication market, 
however the growth of ebusiness has broadened its appeal to include cbusiness companies, 
financial institutions, and the embedded software market. 

72.4 Developing Wre SNIPs application 

The Java programming language has been employed to develop the Wire SNIPs applications. 
Its most appealing feature is the availability of the Java virtual machine (JVM) on almost all 

types of hardware and software, enabling Java applications to execute completely independent 

of the operating systems. JVM is a platform-independent runtime environment that converts 
java bytecodes into machine language and executes it. Therefore, such a 'write once, run 

anywhere' capability was expected to facilitate the Java applications written for Wire SNIPs 

to port easily between different platforms. Moreover, Java has a standardised support 

maintained and controlled by a single company, Sun Microsystems (2005), which supplies a 

consistent range of Java compilers and development environments. On the other hand, 

object-oriented programming languages, such as C++, are managed by different developers 

producing their own versions. Such a lack of a standardised support especially in the area of 

implementing the client-server environments has prompted the use of Java for the 

development of Wire SNIPs. 

The Java software development Idt (SDK) has been used to write and execute the Java 

application for Wire SNTs- It consists of a few basic development tools and libraries that 

have created the process planning application for the prototype system and also contained a 

set of useful utilities that have debugged and documented the Java source code. in addition, 

the Java SDK included the necessary application programming interface (API) that provides a 
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11hrar\ ol', 1cf-Hiffloiis describing how Java should communicate with the ObjectStore DBMS. 

'I he JaN a AIII to ObjectStore essentially contains classes of related functionality that were 

used to construct the graphical user interface (dialog), to access the databases and to identify 

the inputs to aiid outputs from thy 'Wire SNIPs. Figure 7.5 shows some of the core dialogs 

that \\erC used iii Wire SNII's to capture the product and manufacturing information from the 

system users. The Pro 
. ject dialog was the opening dialog and was linked to the Workpiece 

dialog acqUiririg the product data and the Workplan dialog obtaining the manufacturing data. 

The characteristics of' these dialogs corresponded to the STEP-NC entities, in which the 

project is the top-level entit) of the STEP-NC process plan indicating the ivorkpiece upon 

\Oich the ivorkplan was to be performed. Such as clear distinction of the dialogs was to 

facilitate the c\ciltual storing of the data captured from the Workpiece and the Workplan 

dlalo'-" lilto lh'ý I'l-oduct 'Ind m. inuflicturing, databases respectively. 
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Figure 7.5 IvVire SNIPs graphical user interfaces 

Some ofthc coninici-cial applications of Java include its use as a middleware to communicate 

between clients and server resources, such as the access to database. Its highly versatile 
language, through the use of SDK, is also making significant inroads in embedded systems 

sucli as [land-lield deN ices and car computers. Hence, Wire SNIPs was expected to be 
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portable and executable on any third party implementations, such as web browsers or device- 

specific virtual machines. 

7.3 Functional structure of Wire SNIPs 

This section describes the two main functionalities of Wire SNIPs, which include managing 

the databases and planning the NVEDM process. 

Z3. I Afanaging Wre SNIPs databases 

Wire SNEPs databases consist of the product database concentrating on the information about 

the product design, and the manufacturing database focusing on the information about 

WEDM manufacturing capability. Both the databases have been developed in ISO 14649, 

which are consistent with Lee and Bang (2003), who have argued that the standard can be 

used as a database for machining data, which has all the data of CAD/CAM and CNC 

systems. The instances of the WEDM classes or objects were manipulated in Wire SNIPs 

databases by performing the following operations: 

a. Start session by 

" Creating a session 

" Creating a database to hold the objects or opening a database to read, modify or 

store the objects 

Starting a transaction to facilitate the manipulation of the objects in the session 

b. Create database roots by 

Assigning the required objects to serve as the entry points into the database or the 

navigation references to access a collection of related objects 

C. Store objects in a database by 

Referring to the database roots 

d. Retrieve objects in the database by 

Referring to the database roots or performing an associative query 

e. Delete objects in the database by 

o Disconnecting the unwanted objects from their relationships 

* Destroying the unwanted objects 
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End session by 

e Committing the transaction to execute the logical unit of work 

* Closing the database 

* Terminating the session 

However, the ObjectStore class files have to be compiled and post-processed before it can be 

executed in the Wire SNIPs application. This was because the ObjectStore DBMS required 

the object to be made persistent capable before an application could store that object in the 

database. The term persistent capable refers to the capacity of an object to be stored in a 
database (ObjectStore 2003). The post-processor added a few lines of code in the class files 

allowing the ObJectStore DBMS to recognise the state of these objects. 

7.3.2 Planning MERV process 

The information manipulation operatives of Wire SNEPs were based on the IDEFO diagrams 

illustrated in figure 5.3 and figure 5.4. It followed a hierarchical structure of generating a 
feasible STEP-NC process plan according to the different information describing the 

manufacturing capabilities of the WEDM process. During the initial stage of process 

planning, the machining_/eatures were to be recognised and a set of 

wire edm machining. o perations was to be determined for each feature by using a rule-based 

reasoning tool considering feature types, geometric information and tolerance. As this was 

not the primary aim of the research, the activity was assumed to have been carried out and the 

essential product information was assumed to have been stored in the product database. 

However, the remaining product information relating to the WEDM component was captured 
from the system users. This was carried out through the Workpiece dialog capturing the 

relevant STEP-NC entities related to the characteristics of the workpiece such as the material 

and bounding_geometryjelect (shape and size of the workpiece). 

Wire SNIPs mainly focused on the planning of the WEDM machining operation and the 

generation of the STEP-NC process plan. Figure 7.6 shows the how the resources, processes 

and strategies instances of the WEDM MModel facilitated the planning of the STEP-NC 

compliant WEDNI machining operation. The typical planning activities included specifying 
the various STEP-NC entities associated with the characteristics of the WEDM machining 

operation such as the ivire tool, wire_edm_machinejunctions, workpiece_setup, 

wire_edm_machining_Operalions, wire-edm machiningjtrategy, wire-edm-technology and 
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wire-edný_approach_retract-strategy. The planning of the WEDM machining operation also 

concentrated on: 

Determining the workingsteps based on the desired surface quality and the required 

number of cuts, 

* Including additional workingsteps for the cut-through and the slug_removal 

operations, 
Identifying the machining precedence relations between operations in terms of the 

cutting modes such as roughing, finishing and surface finishing, 

Storing the product and manufacturing information in the respective product and 

manufacturing databases, and 

e Facilitating the generation of the STEP-NC process plan. 

Figure 7.6 STEP-NC WEDM machining operation Planning activities 

In addition to the above-mentioned declarative knowledge captured from the system users, 

Wire SNIPs has provided the procedural knowledge required to plan the WEDM machining 

process. The declarative knowledge explicitly represents the WEDM process information 

whereas the procedural knowledge implicitly represents the WEDM process information 

through rules, expressions and equations that infer process capabilities from the input 

parameters (Giachetti 1999). As for the Wire SNIPs, it has particularly made use of the 

machining process logic and rules to define how the strategic decisions are reinforced and 

achievcd. 
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The decision-making logic and rules developed within Wire SNIPs were limited to pre- 
defining the workingsteps. This logic and rules perform logical reasoning and deduce new 
knowledge by applying rules to facts so that process planning decisions can be made. One of 

the crucial logic and rules included determining the machining sequences without violating 

the machining precedence relations between machining operations. As each workingsteps 

only requires one vvire_edin machining or machining a feature on a component, _9peration 
f 

the logic of operation followed a sequential order, which was roughing, finishing then surface 
finishing. The rules for sequencing these machining operations are based on the technological 

constraint of the WEDM machine, such as the number of cuts to achieve the required surface 
finishing quality. Different WEDM machine vendors have different sets of performance 

measures, e. g. one machine may require three cuts to achieve the specified surface finishing 

but another machine may be able to do it with just two cuts. However, the Wire SNIPs has 

assumed such machining characteristics, which are outside the scope of this research. Thus, 

Wire SNIPs has been constructed to perform all the three machining modes based on an 

example part, which could be found in the ISO/DIS 14649-13. 

7.4 Operational structure of Wire SNIPs 

This section describes the operational structure of the Wire SNIPs by identifying the 

programming procedure to generate the STEP-NC process plan for WEDM manufacturing. 

7.4.1 Programmingprocedure of Wire SNIPs 

The programming procedures on using the Wire SNIPs has been based on the system 

framework identified in chapter 5. It mainly sought inputs from the system users via dialogs, 

which were displayed according to the WEDM information models, as described in section 

7.2.4. The Project dialog was the first dialog that appears on the screen each time a new 

project is created. Figure 7.7 shows the Project dialog, which serves as a starting point of the 

data-input process, which was basically mapped from the STEP-NC project entity. From this 

dialog, the system users are linked to the Workpiece dialog describing the attributes of the 

worApiece entity and the Workplan dialog describing the characteristics of the WEDM 

constraints, the WEDM capability and the YVEDM schema. 

88 



Chapter 7 

I .., ýI 't ý, M Lý4 %A, L 

A, Jhor's Name BRYAN 

111hor's AckV ess Lf3k)RC) 

elea &a Date M505 

*ase 7 "ve 1735 

A, pproved Status opt"ýw 

;: I)rCYai LL 

__ cJ 

ENTITY project; 
its 

- 
id: String; 

main 
- 

workplan: workplan; 
its 

- 
workpiece: workpiece; 

its 
- 

owner: OPTIONAL; 
its release: OPTIONAL; 
its status: OPTIONAL; 
ENDENTITY; 

i, -, urc 7.7 Wire SN I Ps project dialog depicting the STEP-Wpt-oject entity 

. )f A plec e V<, RKPiECE 

[4es Steel 

bolindroGeOmetfY 8106 

Lr-, rp4h 70 mm VOW' 40 mm HeVt 

heigtt mrn Radius MM 

ý, ̂ýorkpleCC POSIlOn 

x rj YaZc 

(relative to Vkwkpiece Origin) 

=OK 

Entity workpiece; 
its_id. Stringý 
its-materialý material; 
global-tolerance: OPTIONAL; 
its-rawpiece: OPTIONAL: 
its_geometry: OPTIONAL; 
its 

- 
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_positions. cartesian_point', 

END_ENTITY; 
_ 

sA I I's workpiece dialog depicting the STEP-NC workpiece entity 

The rclcýant attributes ofthe ivorkpiece entity were captured in the Workpiece dialog. They 

included the material of %vorkpiece, the shape and size of workpiece, and the location of 

feature coordinate systern relative to the workplece origin. Most of the attributes were 

featured iii a Java cornbo-box. which aids the system users in selecting the various options. 

For example. the attributes of the houncling_geometrY select, which described the bounding 

geonictrý ot'the \Norkpiece as a Nock or a right-circular-cylin(Jer, are displayed inside the 
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combo-box in a pull-down fashion. The other attributes of the workpiece, such as 

global-101erance, its-rawpiece and its_geometry, were not considered in Wire SNEPs as they 

have little/no effect on the machining operation or machining toolpath. Figure 7.8 illustrates 

the Workpiece dialog depicting the various attributes of the workpiece entity. 

As for the Workplan dialog, the description of the workplan entity took centre stage. It 

mainly serves as the data entry point for an ordered sequence of machining. ýýworkingsteTs 

representing the machining process on a specified area of the workpiece. In the case of Wire 

SNIPs, the machining_ýworkingsteps are characterised by the 

wire_edm_machining__qperation, which defines all the machining operations and technology 

specific data needed to carry out a WEDM process. The data is captured via the Java tabbed 

pane, which was divided into WEDM resources, WEDM processes and WEDM strategies, as 

shown in figure 7.9. 

The WEDM-resources-tab captures the description of the wire-tool and the 

wire-edm-machineJunctions, which denotes the on/off state of the coolant to be applied 
during machining. Whereas, the WEDM-processes-tab allows the system users to define the 

threading point of the pre-drilled hole, the starting point of the cutting process and the cutting- 

off point of the tag. It also involves the input of the required surface finishing quality and the 

number of cutting operations. 

On the other hand, the WEDM-strategies-tab provides a selection of the types of approach 

and retract strategies, which were defined relative to the start and end points of the cutting 

operation. These strategies included the along_path 
- strategy specifying an arbitrary 

machining toolpath, the linear_strategy specifying a linear segment and the arc-strategy 

specifying a linear-arc segment. In addition to the representation of the 

machining_ýworkingstePs, the Workplan dialog also considered the locations of the setup and 

the workpiece coordinate systems. The former describes the location of the setup coordinate 

system relative to the machine coordinate system, while the latter describes the workpiece 

coordinate system relative to the setup coordinate system, referred in appendix IV. 
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I-Igurc 7.9 Wire SNII's work-plan dialog depicting the STEP-NC workplan, machining 

opcration and NN ire edni machining operation entities 
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7.4.2 (jenertmon ol IFFI)AI STE, P-NCprocess plan 

The forriiat of tile process plan generated from Wire SNIPs was not designed for any specific 

CNC machine. Instead of providing the centre line of the cutting toolpath, the STEP-NC 

neutral forniat directly exploits the manufacturing features to execute and control the 

machiningoperation. Figure 77.10 illustrates Wire SNIPs generating a STEP-NC process plan, 

which is actually a text file that Nvas compliant with ISO 10303-21. The process plan captures 

not only a full description of the part but also all the essential information describing the 

characteristics of tile NVEDNI machining process. Since, STEP-NC defines the data 

representing iiorkingstcps, which essentially are a library of specific machining operations 

performed at tile CNC, any controller would be able to calculate the tool path based on 

definitions contained in fonnatted routines integrated within the controller (Lewis 2002). The 

STf--. P-N(' process plan generated front Wire SNIPs and based on the case study can be found 

in appendix 11 
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CASE S'1'1'1))', TESTING & RESULTS 

8.1 Introduction 

This chaptcr describes the testing of Wire SNIPs through the use of the example case study 

found in ISO/DIS 14649-13. It also forms the basis of cntically evaluating the author's 

STEP-NC compliant %VEDN1 inforination models driving the Wire SNIPs. The evaluation 

has been carried out by comparing the information residing in these WEDM information 

models with the ISO 6983 based information that has been supplied to the two commercial 

WEDM CAD/CANI systems. These systems include the PEPS Solid Cut Wire EDM together 

with the PC FAPT Cut i and have been benchmarked in terms of the programming procedures 

and the programnling, machining) parameters in the evaluation. 

8.2 Case stud) 
'I lie first WEDNI example part used in the case study is from the STEP-NC standard and is a 

rectangular block measuring 70 x 40 x 30 mm. It requires the machining of a 20 mm square 

die opening, as shown in figure 8.1. The machining of a die opening, which is widely 

machined by the %VEDN1 process, has been used as the case study. It is commonly required in 

the machining of' most mechanical and automotive parts. Table 8.1 shows some of the 

essential properties of the WEDNI example part I and the wire tool together with the relevant 

characteristics of niachining the 20 nini square die opening. 

J, 

I- I gure S. 1 WEDM example part I (ISO/DIS14649-13 2003) 
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Workpiece size 70 x40 x30 imm 
Workpiece material ST221 Cold Die Steel 
Required surface finishing quality Ra 0.4 pim 
Wire diameter 01 mim 
Wire material ST234 Cobra CutA 
Number of cuts 1 roughing ,1 

finishing, 1 surface-finishing 
Approach technique Linear (roughing) 
Retract technique Line ar (ro ug hing), Arc of rad ius 1 mm (surfa ce-finish in g) 
Cut start point 10.0.0 
Cut end point (Tag) 9.0.0 
Thread point 10,10.0 
Coolant On 
Upper nozzle Off 
Lower nozzle On 

'Fable 8.1 Machining charactenstics of the WEDM example part I 

The second cxample part also requires the machining of a die opening with inclined surface, 

as sho%vii in figure 8.2 and table 8.2. The STEP-NC process plans for machining these two 

WEDM exaniple parts can be found in appendix III and are mainly used to evaluate the 

perfomiance ot'\%'Ire SNIPs. 

-S. 2 NVEDM example part 2 (ISO/DIS14649-13 2003) 

Workpiece size x (not specified) mm 
Workpiece material Cold Die Steel 
Required surface finishing quality Ra 1.8 pm 
Wire diameter 0.25 mm 
Wire material Cobra Cut 
Number of cuts 1 roughing 
Approach technique Not Specified 
Retract technique Linear 
Cut start point Not Specified 
C ut en d po int (T ag) Not Specified 
Thread point Not Specified 
Coolant On 
Upper nozzle Off 

11-ower nozzle [Off 

Table S. 2 Machining charactenstics of the WEDM example part 2 
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8.3 Commercial NVEDNI CAD/CAM systems 

The evaluatioii Ofthe NVEDNI infonnation models outlined in chapter 6 was supported by the 

use oftwo commercial NVEDM CAD/CAM systems. One of the systems was the PEPS Solid 

Cut from Canitek- Ltd (2005), which also designs, develops and markets a range of 
CAD CANI software for the other CNC machining processes, such as milling, turning and 
laser cutting. PEPS Solid Cut operates on an integrated modular software platfon-n 

facilitating the dcfinition of the machining profile by means of the CAD system and the 

application ofthe machining parameters through the CAM system. The PEPS Solid Cut CAD 

system has a flexible translator interface supporting a number of industrial data transfer 

standards when importing CAD drawings and data models, such as IGES, AutoCAD DWG 

and STEP. Figure 8.3 illustrates a machining simulation of the WEDM example part 

carried out by the PEPS Solid Cut. 
Amo 
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1ý IgUre 8.3 1)[- I)S Solid Cut simulating the machining of the WEDM example part I 

PEPS Solid Oit lias a set ofpost processors serving the need to generate a specific NC part 

prograni 1'Or the diff-crent NVEDNI machine controllers including the Agievision, Chan-mlles, 

Mitsubishi and Sodick controls. It is specially written as an offline-programming tool. The 

comnion applications of PEPS Solid Cut can be found in precision machining together with 
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, industries. These industries manufacture typical products such as cutting tool and dic making 

tools with ditTerent rake angles, cams and gears of complex profiles, and extrusion dies with 

variable land teatures. 

FAP'I'\\a,, the sLýcond coniniercial WEDM CAD/CAM systein used in the evaluation. It was 

obtained froni OW Centre (2005), which produces a wide variety of machine tools including 

the Fanuc Robocut WEDN1 machine. FAPT is exclusively dedicated to the Robocut machine, 

which is recognised for establishing the first automatic wire threading system using the 

annealing and therinal cut off technique. In addition to the standard CAD and CAM features, 

FAPT has Narious types of intelligent cutting control functions that enable the Robocut 

machine to ý, ield an optimuni machining process. These intelligent functions together with 

the adaptive control software facilitates the selection and adjustment of the cutting conditions 

according to the changes in workpiece thickness and the cutting types such as comers and 

, the cutting efficiency and avoiding the wire breakage. tapers, %\ hIL- inaintaining 

hi additioii, FAPT has scveral machining routines, which promote higher machining 

producli\itý micii cutting multiple profiles on a single workpiece by maximizing the 
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unattcndcd operittion oftlie niachine, as shown in figure 8.4. The programming on FAPT was 

commonly performed off-line, which only requires the system user to enter the details of the 

cutting profile, size of Nvorkpiece, matenal, wire size and the number of roughing and 

finishing cuts. It is often put to effective use in producing punch and cut-off dies and is 

capable ofliandling the niachining using a wire diameter as small as 0.05 mm. 

8.4 Basis of evaluating Wire SNIPs 

The basis of evalLialino Wire SNIPs has been camed out by examining the programming 

procedures and tile part program of PEPS Solid Cut and FAPT and is outlined below. 

8.4.1 PP'PS Solid Cut wid FAPTprograniniing procedures 

The general procedures for producing a NC part program using PEPS Solid Cut and FAPT 

could be broken down into 5 stages. It consists of creating/importing the machining profile, 

translating the profile into a machining toolpath, determining the machining operations, 

selecting the cutting conditions and post-processing the NC data into a control ler-speci fi c part 

program, as shown in figurc 8.5. 

Start 

Product Create/Import 
Data 

'Jý 
Machining Profile 

Translate 
Mach ni ng Toolpath 

Manufacturing Determine 
Data 

ýrH 
Machining Operations 

Select 
Cutting Conditions 

Post-Process 
NC Data 

End 

IS06983 
Part Program 

Figure 8.5 Gcneral programming procedure of commercial WEDM CAD/CAM system 
based on ISO 6983 standard 
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The first stage is mainly concerned with the definition of the part geometries, which can be 

either created by using the existing CAD drawing tools or imported from other CAD 

packages. It also requires the details of workpiece, which assist in the subsequent graphical 

simulation of the machining process. The second stage involves the translation of the part 

geometries into wire tool centre cutting location allowing the machine controller to identify 

the starting and leading points. For the example parts, the starting point is the location where 

the wire threaded through a pre-drilled hole in the workpiece, whereas the leading point 

provides the location for the wire to feed into the machining toolpath. More importantly, this 

stage ensures that there are no breaks in the machining toolpath. 

The third stage focuses on determining the type of machining functions and machining 

routines to be used on the selected WEDM machine. These machining functions include the 

automatic wire threading system and intelligent cutting control functions, while the machining 

routines specify the basic cutting mode, cut-off type, cutting direction, and approach/retract 

strategy according to the types of WEDM parts, as shown in figure 6.6. 

Next, the optimum cutting parameters yielding the required surface finishing quality are 

applied to the machining toolpath. The cutting parameters are easily selected from a set of 

standard cutting conditions, which were pre-defined by the specific WEDM CAD/CAM 

knowledge-based system and dependent on a number of factors such as the cutting speed, 

surface roughness, number of cuts, workpiece and wire tool. 

Lastly, the machining instructions were generated according to the required machine 

controller. These machining instructions could be simulated to visually verify the machining 

operations and possibly eliminate any collision of the wire tool/wire guide with the setup tools 

before executing the actual machining process. 

8.4.2 PEPS Solid Cut and FAPTNCpart programs 

The NC part programs generated from the PEPS Solid Cut and FAPT were based on the ISO 

6983 standard. These systems primarily focused on the wire tool ccntre cutting motions and 

the machine switching functions, which were specified in G&M codes. However, different 

types of CNC required a dedicated post-processor in order to execute these codes giving 
instructions about the motions of the machine and the switching states of machine functions. 
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Figure 8.6 and 8.7 sho%ý the generation of a WEDM part program from PEPS Solid Cut for a 

Mitsubishi control and from FAPT for a Fanuc control respectively. 
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Figure 8.6 ITTS Solid Cut generating an ISO 6983 NC part program for example part I 

for Mitsubishi WEDM control 

I he niachine-specitic post-processor custormsed certain G&M codes in the ISO 6983 NC 

part program for a particular CNC vendor. It would define a unique code for a machining 

characteristic that %%as exclusive to a NA, 'I, 'DNI machine. For example, the G60 corner strategy 

and the G04 advanced offsetting were only available at the Charni'lles machines (Camtek 

2005). The former code changed the wire speed to maintain the finish quality on corners, 

whereas the latter code applied an offset parallel to the existing taper angle of the wire. In 

addition, tile cutting conditions for the various WEDM CNCs were represented differently. 

For cxaniple, tile cutting conditions reflected in the FAPT part program generated for the 

Fanuc control \Nere represented as 'SIDI', which specified the condition number and the 

Offset IlUniber, as showl, in figure 8.7. 

However, these cutting conditions are represented as 'EIFIHl' in the PEPS Solid Cut part 

program I-or the Mitsubishi control, as highlighted in figure 8.6. These NC part 
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progranis. ýOicli are based on the same case study, can be found in appendix V. These 

ambiguities in the representation of the NC part programs for the different WEDM CNC 

vendors causes a ma Jor problem to the exchange of data and the interoperability of part 

%ý hý: ii machining a component at different machine. 

8.5 Test results 

'I his sectioii pro% ides a comparison between the different NC part program s/STET-N C 

process plan generated by the FAPT. PEPS Solid Cut and Wire SNIPs. The comparison is 

primarilN based on the implementation of these NC part programs/STEP-NC process plans 

and the programniing/machining parameters. 

8.5.1 Directional-1701" ofdata 

The PFPS Solid Cut and FAPT methods of generating a part program have an effect on the 

provision of tlic feedback among the different and otherwise incompatible computer 

platfOrnis. 'I'llese com-entional methods restrict the flow of data to a top-down approach 
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making it difficult to modify or correct the final NC part program at the machine shopfloor 

without gaining a certain level of understanding of the G&M codes. Figure 8.8 shows the 

unidirectional data flow existing in the conventional method of generating an ISO 6983 part 
program. This effect could be traced to the CNC, which has no access to the product and 

process information residing in these CAD/CAM systems. Therefore, any major modification 

or correction to the NC part program could only be carried out by repeating the programming 

procedure and calculating a new cutting toolpath. Moreover, the ambiguous definition of the 
G&M codes provides the loopholes in accommodating and satisfying the new machining 
functionality, such as the Charmilles G60 and G64 codes. As such, it causes great difficulty 

in exchanging essential information about the machining process between the different 

CAD/CAA1 systems and CNCs- 

ISO 6983 NVEDM CNC 
LTO: 

LOll 

CAD Gellerate Post- COMA 
Motion 

Data Toolpath Process hlachýie Signals 
Toolpath Motion 

Figure 8.8 Unidirectional data flow presents in ISO 6983 part programming method 

On the other hand, the Wire SNEPs method of generating a STEP-NC process plan provided a 
bi-directional flow of data. It does not require a separate toolpath file, post-processor and G 

&M codes in order to produce the neutral-format STEP-NC process plan, as shown in figure 

8.9. The figure also shows how the Wire SNIPs process plan could be sent to a WEDM CNC 

for converting the machining instructions into specific machine codes through the use of the 
STEP-NC compiler. 

Unlike the PEPS Solid Cut and FAPT NC part programs defining only the cutting motions, 

cutting conditions and cutting offsets, the Wire SNIPS process plan went beyond the 
information that the machine control required. Wire SNIPS provides an unambiguous and full 

coverage of the manufacturing process by specifying the wire tool, tolerances, set up, task 

plan and task execution, which were based on the STEP-NC standard. 
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Figure 8.9 STEP-NC bi-directional flow of data 

8.5.2 ProgramminglAfachining parameters 
The various programming or machining parameters needed to drive the PEPS Solid Cut, 

FAPT and Wire SNIPs have also been compared. The aim of such a comparison was to 
investigate the viability of the STEP-NC standard for the WEDM process. By doing so, it 

enabled the identification of the additional process data for the ISO/DIS 14649-13 standard in 

order to fully satisfy the various requirements of planning the WEDM process. Table 8.3 

compares the STEP-NC entities used in Wire SNIPs against the programming characteristics 

utilised in the PEPS Solid Cut and FAPT. 

The table shows that PEPS Solid Cut and FAPT did not pay particular attention to the 

definition of the workpiece and the wire tool, and focus mainly on the calculation of the 

cutting toolpath. The specification of the coolant has also been neglected largely due to the 

growing trend of conducting the WEDM machining process in a tank filled with deionised 

water instead of applying direct jet flushing near the sparking zone. Although, most of the 

PEPS Solid Cut and FAPT programming characteristics measured up to the STEP-NC 

entities, they were not reflected in their respective NC part programs. 
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Whe SHIPs PEPS Soli(I Cut 
STEP-Ni hiitity STEPAC Attiihmes (ISO 14649-131 (IS069831 FAPT JISO 6983) 

_ Material .4 7 4 

T olerance x x 
Rawpiece x x 
Geometry x x 
Shape and size -4 4 4 (thickness only) 

, lam ping position x x 
Retract plane 

WE L) 14 Macl, ýjjjjq Cut start/end point 
01) el, v ioll Offset 

T In r týýo, nt 

WE 1) IVI hillach bling Backm otio n 
h h C 

x 
ut-t rou g Stiategy Siuq-removai 

_____ _ Material x 
Diame*, er 4 

Wke Tool Tension x x 
Speed x x 
,- oo lani (o n/ofq C x x VVEDM Mach illino 

e P 
Fulicliolls ressur 

UpperA-ower nozzle (onloff) 
x 
x 

x 
x 

_ ___ _ . Small corner strategy 
Vi lec"11010" GlobaL4-ocal technology 
Wile FIIIIIA AJong/Linear/Aic 
Ap 1) 1 oach R el i act 
SIIdIeQw 

(punch/de/no core cutting specific) 

I able 9.1 Comparison between the PEPS Solid Cut, FAPT and Wire SNIPs 

programming/machining parameters 

-1 able 8.4 shows tlic additional NVEDNI process data for the ISO/DIS 14649-13 standard. The 

author has listed these clata against the appropriate WEDM STEP-NC entities. Some ofthis 

data has bcen described in section 6.4. the others include: 

Escuj)e anioWlf - eX1StS 0111, N' "hen the cutting of the tag is performed at the very last stage, as 

illustrated in figurc 8.10. It provides a means for the wire to approach/retract from the 

machining prk)lil,:. thereby reducing the visible tag marks on the WEDM part. 

Punch 

Escape Amount' 4 

Cut End Point Start Point 

(a) Punch Cuttinq 

Figtire 8.10 I'scape amount for punch and die cutting 

Die 
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Nozzle gap - is the distance between the upper and low wire guides. It assists in the 

calculation of the tension and maximum angle of the wire, and the graphical simulation of any 

possible collision between the wire guides and the jigs or fixtures. 

The attributes of escape amount and nozzle gap need to be added in the 

wire_edm_machining__, qperation and wire_edm-machinejunctions, as shown in table 6.4 and 
table 6.2 respectively. 

Wire SNIPs; PEPS Solid Cut FAPT (ISO 6983) STEP ACE wity Additional Information (ISO 14649-131 (ISO 983) 
WEDM Machbilng Escape amount x -4 
Operaliott 

Reverse culing x -4 
WEDM Machbing No-corecuting x -4 
Strategy Multiple cutting x -4 

Taq identification x 
WEDM Madibilng Nozzle gap x 
Functions Automaticwire threading x -4 
WED M Technology Machining feedrate controlling x -4 

Cutting parameters setting x -4 
Machine Machining envelope x -4 
[Infolination 

Table 8.4 Identification of the additional process data for the drafted ISO 14649-13 

The accuracy of the output generated from the Wire SNIPs has measured up to the STEP-NC 

process plan featured in the case study found in the ISO/DIS 14649-13 standard. It has 

specified the niachining_workingsteps describing the task and the machining conditions under 

which the task has to be performed. Thus, Wire SNIPs has successfully demonstrated that the 

system framework for the WEDM process has identified both the essential process planning 

activities together with their interrelationships, and the general information requirements 

containing the basic data that collectively describes the applications following product design. 

In addition, this piece of research work has identified the additional information relating to 
the WEDM manufacturing features and the WEDM process. It has also resolved the problem 
of sharing this essential information among the different CAx systems and CNCs. The 

additional process data provides all essential information requirements needed in the CAD to 
CNC process chain and is represented in a machine and technology independent format. As a 

result, it fulfils the concept of interoperating the information requirements among these 
different systems. As mention in the concluding paragraph of section 6.4, this additional 
information would make a significant contribution to the development of the ISO/DIS 14649- 

13 standard. 
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CONCLUDING DISCUSSION 

9.1 Introduction 

This section discusses the two major research areas presented in the thesis namely the 

theoretical research and the experimental research. The theoretical research involved the 
designing of a CAx system framework and the information modelling for WEDM component 

manufacturing within a STEP-NC compliant manufacturing environment. As for the 

experimental research, it was concerned with the development and the testing of the Wire 

SNEPs. 

9.2 STEP-NC compliant WEDNI CAx system framework 

A STEP-NC compliant CAx system framework for WEDM component manufacturing has 

been proposed in this thesis. It was developed with the intent of applying the evolving STEP- 

NC technology to support the WEDM process by modelling the process planning activities 

and the information requirements needed to machine the part. The system framework covered 

a range of WEDM process planning tasks, which included workpiece setup, machining task 

planning and process plan generation. The input to the system framework required the 

descriptions of the product design specification in the form of a PModel and the 

manufacturing process capability in the form of a MModel. The output from the system 
framework was a description of the WEDM machining operations, which was compliant with 
the STEP-NC standards and could be used to machine the WEDM part. It has been referred 
to as a STEP-NC process plan, identifying the knowledge and constraints governing the use 

of the process. This was in direct contrast to the NC part program based on the ISO 6983 

standard. Even if ISO 6983 were to be updated with more complex toolpath types, NC codes 

would still be lacking in information on material types, tolerances, surface finish, expected 
forces, and other product or process data that could be used to support intelligent control 
(Procter el aL 2002). 

The system framework played the vital role of a CAPP system linking the various product 
designing and manufacturing activities. Although, the CAD and CAM systems have 
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revolutionised NC part programming, these systems have been developed in total isolation 

and remained largely disintegrated. CAPP systems support the process planning by 

accumulating machining knowledge and reasoning capabilities, and have taken an important 

role in integrating CAD and CAM (Rho et aL 2004). Similarly, the author's system 
framework was designed to represent, capture, arrange and utilise the knowledge of the 

product design specification together with the manufacturing process capability for WEDM 

process planning. It made use of the IDEFO activity modelling methodology to gain an 

understanding of the interactions among the various WEDM process planning activities. At 

higher levels of the WEDM process planning hierarchy, the choice of machines, wire tool, 

workpiece setup and machining operations were identified while at the lower levels, the 

machining conditions and machining strategies were defined together with the generation of 
the process plan for the given manufacturing feature of the part. As such the framework also 

provided an initial overview of the information flow between the activities indicating how a 
decision made by one activity was affected by the results of other activities. 

The major goal of STEP-NC is to allow information about the product design, process 

planning and manufacturing execution to be exchanged among and shared by different design, 

engineering and manufacturing software systems. However due to the unconventional 

material removal characteristic of the WEDM process, it was very difficult to plan an 
inclusive workplan that worked on most WEDM machine controllers. The WEDM process 

was driven by a number of machining parameters and strategies, which were machine and 

technology dependent. For example, the offset needed to compensate for the machining gap 

caused by the sparking phenomenon together with the machining strategy in order to improve 

the accuracy of specific geometrical features, such as sharp comers, varies from machine 

control to machine control. The methodology for making the best choice of the machining 

parameters and strategies was presently assisted by the expert system based on the objective 

quality target criteria, including the required surface finish, workpiece and wire materials 
(Richard et aL 2004). However, the expert system was proprietary making it difficult to be 

standardised and causing interoperability issues between different systems. As the 

expert/intelligent system formed an essential part of the CAD/CAM system, the possible 

solution was to separate the information that the vendors were willing to exchange from the 

proprietary methods and procedures that they wanted to protect. The STEP-NC data model 
for the WEDM process aims to support such an approach by including the information that 

was required to execute the expert system. By doing so, the data model captured most of the 
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information required to produce an interoperable workplan that was not governed by the type 

of vendor systems used. 

9.3 STEP-NC compliant WEDNI information modelling 
The WEDM information models aim to improve the integration between the highly automated 
CAD/CAPP/CAM systems and CNCs. These information models were based on the mature 

area of research intensely explored by several authors (Liu and Young 2004, Molina et aL 
1995). The representation of these WEDM information models was not pursued 
independently but was sought in an integrated manner supporting the early evaluation of the 

design for manufacture. This has been carried out through the use of the STEP-NC data 

interface for the WEDM process, specifying the various data entities, their properties, 
behaviours and interactions with other entities. 

Such a concept of data-driven applications, which included engineering applications and 

software tools, has emerged in response to the need for integrated and flexible computer 

environments to support design and manufacturing activities of a product (Molina and Bell 

1999). As a result of integrating the VV'EDM information models, it supported the preliminary 

evaluation of both the feasibility of product design and machining process planning. The 

product information could be shared by machining process planning and the manufacturing 
information could be made available for product design. 

The Model and MModel have provided a common source of well-defined and structured 
infon-nation relating to the WEDM process. They provide the information requirements 

supporting the decision-making in the process of designing and manufacturing a product. The 

PModel captures all the essential data relating to the workpiece material, shape and size, the 

product G, D&T together with the manufacturing planning 'data. This data has been 

classified into three key elements in the PModel namely the WEDM billet, WEDM product 
design and WEDM manufacturing view. On the other hand, the three core elements of 
MModel were adapted from Molina et aL (1995), namely WEDM resources, WEDM 

processes and WEDM strategies. These elements mainly described the physical and 
functional properties of the WEDM process representing the resource constraints and the 

process capabilities respectively. They also included the representation of the various 

machining strategies imposed by the composition of the WEDM resources and WEDM 

processes through the use of the expert system, such as identifying the cutting conditions. 
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In addition, the extended WEDM information models have been identified to represent 

complete and realistic manufacturing process knowledge. It should be noted that ISO/DIS 

14649-13 standard is currently in the development stage and the important machining process 

attributes have yet to be fully specified. These attributes were determined by making a 

comparison between STEP-NC and two commercial CAD/CAM systems based on the ISO 

6983 standard, namely PEPS Solid Cut and FAPT. Hence, the extended information models 

enable the different data-driven applications to use the knowledge and support the planning of 
the process more effectively. However, the main challenge of WEDM information models is 

to facilitate a practical platform for interoperable CNC manufacturing satisfying a completely 
integrated manufacturing system. For example, the PEPS Solid Cut has a different perception 

on the machining strategies as compared to the FAPT. Therefore, the WEDM information 

models would have to capture the knowledge from different functional perspectives cater to 

most CAx needs, and thereby provide an opportunity to manufacture a part at different 

locations or companies. 

9.4 STEP-NC compliant WEDNI CAx prototype system development 

A computational prototype entitled Wire SNIPs has been designed and implemented to 

demonstrate the viability of the STEP-NC compliant information models for WEDM 

component manufacturing. The system exploits the instances of the PModel and MModel to 

generate a feasible machining workplan by using process planning rules in terms of the 

machining precedence (workingstep) and surface finish accuracy defined in Ra. It also 

provides the basis for making an important step forward in integrating the various product 
design and machining process planning activities and facilitating the interoperable 

manufacturing of the WEDNI part through the use of the STEP-NC data interface. The 

implementation of Wire SNIPs was made up of three main stages, namely the representation 

of the information models, the development of the DBMS and the construction of the system 

application, as described in section 7.2. During the first stage, the UML was used to model 

the information requirements supporting the WEDM process planning activities. Although 

EXPRESS was used to specify the STEP-NC entities, it was inadequate for capturing 
functional interaction between the entities as it was more oriented towards capturing the 

constraints (Al-Ashabb and Young 1997). UML has clearly represented the WEDM 

information models in terms of classes, attributes, relationships and operations allowing the 

design of the database schema to be easily implemented in the object-oriented DBMS. 
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The ObjectStore DBMS was utilised to provide common inforination storage among the 

different data-driven applications. It was capable of extending direct information sharing to 

different design and manufacturing departments using the object-oriented database based on 
the UML. The ObjectStore DBMS was incorporated into Wire SNIPs by simply providing 

the vital link or interface to the Java programming language. Lastly, Wire SNIPs applications 

were developed in Java derining the computing operations relating to the WEDM process 

planning activities. The easy-to-use interface drastically reduced the amount of code required 

to manage the Java objects, and still provided the full capability of Java to define, manipulate 

and share important application data. 

At the CAM level, the system was capable of generating the STEP-NC process plan for the 

WEDM process based on the information specified by the I'Model and MModel. The 

information was organised in an object-oriented manner facilitating Wire SNIPs to select, to 

the best extent possible, the most appropriate WEDM resources, processes and strategies from 

the array of available options. In addition, Wire SNIPs was able to query the PModel/product 

database to obtain the product design specification and then query the Mmodel/manufacturing 

database for the corresponding manufacturing capabilities information. Hence, the 

compatibility of the product designs with the manufacturing capabilities could be determined 

or redesigned. 

9.5 Testing of Wire SNIPs 

Wire SNIPs has been tested to gauge the performance of its functionality. The end result 

generated from the system was passed onto a STEP-NC interpreter to parse it and extract data 

from it. In addition, the interpreter was used to activate the toolpath generator in order for the 

latter to calculate the toolpath for each manufacturing feature and send the wire tool motions 

to the machine control board, which was to produce motion/pulse signals to the motor. 
However, the testing of Wire SNIPs was limited to the computing functions of planning the 

WEDM process and generating the STEP-NC process plan. This has been primarily carried 

out by evaluating the product and manufacturing information based on the WEDM PModel 

and MModel- The product information included the geometrical, topological, tolerance, 

material and surface finishing quality attributes of the WEDM part. The geometrical and 

topological information were both represented by manufacturing feature-based 

representations but this was not the main focus of the thesis. As for the manufacturing 
information, it included information about the WEDM machining operations, wire tool and 
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WEDM machining parameters. This information described the required operations to 

machine a specific WEDM manufacturing feature, the appropriate wire tool to use, and the 

optimal cutting condition to perform the machining operations. 

Wire SNIPs annotated the design specification of a product with richer information about the 

WEDM manufacturing process capabilities. All this information was reflected in the STEP- 

NC process plan specified in a format that was neutral to most computing platforms enabling 

the sharing of data among the different design and manufacturing departments. Unlike the 

NC part program based on the ISO 6983 standard, which merely described the cutting 
toolpath and the machine switching functions, the STEP-NC process plan captured the crucial 
information about the WEDM characteristics in the form of a 

wire-edm-machining_operation. However, a certain level of detailed planning of the 

WEDM machining process is still required and could only be decided at the machine during 

runtime. The STEP-NC process plan did not specify the sequence of the events or the instant 

at which the unit task has to be performed, such as the turning the on/off of a switch. These 

decisions are instead lcft to the operator or in real time to the CNC (Zhang and Liu 2004). 

Thus, the application of the STEP-NC standards to specify the geometric and manufacturing 
information at the machine tool has provided the CNC with the vast opportunities to machine 

a part more intelligently. 
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CONCLUSIONS AND FUTURE WORK 

10.1 Introduction 

This chapter identifies the major contribution to knowledge and the conclusions drawn from 

the research. It also suggested the possible further work in order to extend the application of 

the Wire SNEPs. 

10.2 Major contribution to knowledge 

The major contribution to knowledge gathered from this work include: 

The design of a STEP-NC compliant CAx system framework for WEDM component 

manufacturing. The framework has provided a structured methodology for the design of a 
WEDM CAx systcm exploiting the product and manufacturing information requirements 
defined in the newly evolved STEP-NC standard. The computational implementation of 

the system framework has shown to be of strong potential for industrial application. It has 

also demonstrated the viability of the STEP-NC standard to describe the geometrical and 

manufacturing requirements of a WEDM component. 

The specification of the information models supporting WEDM component 

manufacturing. 'Me information models have identified the additional infor7nation to 

ISO/DIS 14649-13 that is essential for carrying out the WEDM operations based on 
industrial practices and would make a significant contribution to the development of the 

standard. These models have also supported the concept of interoperability within a 

STEP-NC compliant machining process planning environment through the exchange of 

product and manufacturing information across the CAx to CNC process chain. 

10.3 Conclusions 

The conclusions formulated from this work are as follows: 

j. Tile literature review on NVEDNI process has provided an in-depth research into the 

various academic works involving the improvement of the performance measures, the 

optimisation of the process parameters, the monitoring and control of the machining 
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process together with process development and applications. It has shown some 

possible trends for future research into the WEDM process. 

ii. The literature review on STEP-NC has highlighted the opportunity to revamp the 

traditional means of programming a part for CNC manufacturing. it has shown that 

STEP-NC facilitates the integration of the CAx systems and CNC's through its formal 

specification of representing and exchanging the product and manufacturing 
information. 

iii. A system framework has been designed to integrate the various stages of the product life 

cycle from product design to manufacture for the WEDM process chain. It provided a 

structure for the WEDNI process planning activities and their relationships that were 

compliant with the STEP-NC standards through the use of the IDEFO activity modelling 

methodology. 

iv. The system framework has also provided an overview of the information models 

supporting the WEDNI process planning activities. These WEDM information models 
have effectively derined the basic system vocabulary enabling the integrated use of the 

information in an interoperable industrial environment by the different CAx systems and 

CNC's. 

v. The rcalisation of the NVEDNI information models have fully captured and represented 

the infortnation relating to the design, manufacture and production functions that 

occurred during the design to manufacturing of a WEDM part. The application of the 

Model and the hINIodel, which models and manages the product design and 

manufacturing capability for IVEDM parts has provided the basis for an integrated 

knowledgc-based process-planning environment. 

vi. The WEDNI information models have fori-ned a common base of data with which all 

product design and manufacturing process functions interacted, thereby providing a vital 

mechanism through which they were integrated. These WEDM information models 

have been defined through the use of the object-oriented UML, which has shown to be 

of significant advantage in implementing the prototype system called Wire SNIPs. 
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vii. Wire SNIPs has bccn dcvcloped and implemented, and has shown the viability of the 

author's system framework. It has exploited the STEP-NC compliant WEDM 

information modcls identifying the product and manufacturing knowledge supporting 

the information requirements needed throughout the WEDM product life-cycle. 

viii. Wire SNIPs has shoum the puformance capability of WEDM process plarming and the 

potential for the use as an industrial tool. It has been built on the basis of structuring the 

information models and constructing the system applications, which has provided a 

systemically methodology of implementing the system framework. 

ix. The testing of the Wire SNIPs has used the example test parts provided in the ISO/DIS 

14649-13 standard, and thereby has proven the applicability of the research. It has 

evaluated not only the functionality of the system but also the information content 

nccded to drive the system. 

x. The viability of the data residing in the STEP-NC compliant WEDM information 

models has been evaluated by comparing it against the programming or machining 

parameters needed to drive the two commercial WEDM CAD/CAM systems, namely 

the PEPS Solid Cut and FAPT. The comparison has shown that the WEDM extended 

information models provide more reliable product and manufacturing information in 

assisting the performance of product development life cycle activities and related 

decision-making processes. 

10.4 Future Work 

The functionality of Wire SNIPs could be further explored or extended by further 

investigation into the following areas: 

10.4.1 Consider a complete machiningprocess logic and rules 

Due to the scope of the research reported in the thesis, the machining process logic and rules 

residing in Wire SNIPS have been developed for the machining of a die. However, the 

WEDM process is also commonly used to machine parts that required no-core cutting, 

multiple prorilc cutting and cam/cam gear cutting, as explained in section 6.4. An extension 

of the Wire SNIPS application therefore needs to contain more specific process logic and rules 
for the machining of pails that are produced by the NVEDM process. 
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10.4.2 Include graphical display in the 117re SNIPs 

Ile design of the graphical user interfaces used in Wire SNIPs has concentrated only on 

capturing of data giving little consideration to the interpretation of the data element to the 

system users. In order to provide a user-friendly graphical user interface, it needs to add 

pictures or figurcs elaborating the various information requirements needed from the user. In 

addition, a simulation of the WEDINI process based on the output generated from Wire SNIPs 

would also enable the user to visualise and verify the machining sequence. 

la4.3 Apply IVEDH exPert SYSIMI 10 117re SNIPS 

Wire SNIPs has simply assumed the various generator settings of the WEDM process for the 

example part featured in the case study. In most WEDM CAD/CAM systems, this is 

commonly determined through the use of the individual CNC vendor's expert system, which 

aims to achieve an accurate and efficient machining operation without compromising the 

machining performance. Furthcr research needs to consider on implementing an expert 

system into the Wire SNIPs architecture in order to identify the optimal machining condition 

from the infinite number of combinations of the various factors affecting the WEDM process, 

as described in section 4.5.5. 

10.4.4 Arrange outpuffroin 117re SNIPs inUfLformat 

The end result from Wirc SNIPs was a STEP-NC process plan based on the ISO 10303-21 

standard specifying an exchange structure using clear text encoding of data. The increasing 

use of the n1l. to implcmcnt e-manufacturing has generated keen research interest within the 

STEP-NC community. licnec, the STEP-NC process plan generated from the Wire SNIPs 

needs to be dcvclopcd and arrangcd in the nIL format based on the ISOITC 10303-28 

standard for the WEDM process. 
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Appendix Il 

STEP-NC PROCESS PLAN 

GENERATED FROM WIRE SNIPs FOR EXAMPLE PART 

ISO-10303-21; 
HEADER; 
FILE 

- 
DESCRIPTIONO; 

FILE 
- 

NAMEO; 
FILE 

- 
SCHEMAO; 

ENDSEC; 

DATA; 
# I=PROJECT('Project', #2, (#38)); 

#2=WORKPLAN('Workplan', (#3, #4, #5,46, #7), $, #29, $); 

#3=MACHINING 
_WORKINGSTEP('WS_I', 

$, $, #8, $); 
114=MACHINING 

_WORKINGSTEP('WS_2', 
$, $, #9, $); 

#S=MACHINING_ WORKINGSTEP('WS-3', $, $, #10, $); 
#6=MACHINING 

- 
WORKINGSTEP('WS 

- 
4', $, $, H I I, $); 

#7=MACHMNG_ WORKINGSTEP('WS-5', $, $, #12, $); 

#8=WIRE_EDM_MACHINING_OPERATION($, $, 'Machlg_opq_l', $, 5.0, #15, #16, #18, #24, 
0.2, #25, #26, #27, #28); 

#9=WIRE_EDM_MACHINING_OPERATION($, $, 'Mach'g_Opn,. 
_2,, 

#13,5.0, #15, #16, $, $, 0.2, 
$, $, #27, #28); 

#10--WIRE_EDM_MACHfNING_OPERATION($, $, 'Mach'g-Opn,. 
_3', 

#14,5.0, #15, #16, $, $, 
0.2, $, $, #27, #28); 

#1 I=WIRE_EDM_MACHfN[NG_OPERATION($, $, Mach'g__ýOpq_41, $, 5.0, #15, #16, #20, #24, 
0.2, $, $, #27, # 15); 

#12=WIRE_EDM_MACHINING-OPERATION($, $, 'Mach'g_QprL5', $, 5.0, #15, #16, #22, #24, 
0.2, $, #26, #27, #15); 

#13=CUT_THROUGHO; 

#14=SLUG_REMOVALo; 

#15=CARTESLA, N_POINT('Start-PV, (10.0,0.0,0.0)); 

#16=WIRE 
- 

TOOL('wire 
- 

1', #17,0.1,0.2,160, $); 
#17=MATERIAL('Copper_Wire', 'CWII, $); 

#18=WIRE EDM TECHNOLOGY($, $, true, #19); 
#19=NUMERIC_PARAMETERCRA!, 1.8, MICMI); 
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#20=WIRE_EDM-TECHNOLOGY($, $, true, #21); 
#21=NUMERIC-PARAMETER('RA', 0.8, 'MICMI); 

422=WIRE_EDM_TECHNOLOGY($, $, true, #23); 
#23=NUMERIC_PARAMETERCRA', 0.4, 'MICM'); 

#24=WIRE_EDM_MACHINE_FUNCTIONS(truc, $, true, false, o); 

#25=LINEAR_STRATEGY($, $); 

#26=ARC-STRATEGY($, $, I. O); 

#27=CARTESIAN_POfNT('Thread-Pt', (10.0,10.0,0.0)); 

428=CARTESIAN_POINT('Tag_Pt', (9.0,0.0,0.0)); 

#29=SETUP('Setup_l', #30, #32, #35); 
#30=AXIS2_PLACEMENT_3D('Setup_Qrigin', #31, $, $); 
#3 1 =CARTESLkN_POINT('SP-l', (0.0,0.0,0.0)); 
#32=ELEMENTARY_SURFACE('Setup_., Security_Plane', #33); 
#33=AXIS2_PLACEMENT_3D('Setup-yosition', #34, $, $); 
#34=CARTESIAN_POINT('Setup_l , (0.0,0.0,20.0)); 

#35=WORKPIECE_SETUP($, #36, $, $, $); 
#36=AXIS2_PLACEMENT_3D('Setup_yosition', #37, $, $); 
#37=CARTESIAN_POINT('Setup_l', (-10.0, -15.0,0.0)); 

#38=WORKPIECE('Workpiecc', #39, $, $, $, #40, $); 
#39=MATERIAL('DS2 F, 'Die Steel', $); 
#40=BLOCK('Block_l', 941,70.0,40.0,30.0); 

#41=AXIS2 
- 

PLACEMENT_3D('Block_Position_l', #42, $, $); 
#42=CARTESIAN_POrNT('WP-Pos-ll, (O. O, 0.0,0.0)); 

EDNSEC; 
END-ISO-10303-21; 
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STEP-NC PROCESS PLAN 

GENERATED FROM WIRE SNIPs FOR EXAMPLE PART 2 
ISO-10303-21; 
HEADER; 
FILE DESCRIPTIONO; 
FILE7NAMEO; 
FILE 

- 
SCHEMAO; 

ENDSEC; 

DATA; 
#I=PROJECT('ProjectTwo', #2, (#30)); 

#2=WORKPLAN('WorkplanTwo', (#3, #4, #5), $, #21, $); 

tf3=MACHINING_WORKINGSTEP('WS_I', $, $, #6, $); 
94=MACHINING_WORKINGSTEP('WS-2', $, $, #7, $); 
#5=MACHINING-WORKINGSTEP('WS-3', $, $, #8, $); 

#6=WIRE 
- 

EDM 
I 

MACHINING-OPERATION($, $, 'Mach'g-OprLl', $, 5.0, #I 1, #12, #14, #16, 
0.2, #17, #18, #19, #20); 

#7=WIRE 
- 
EDM 

- 
MACHINING_OPERATION($, $, 'Mach'g_ýQprL2,, #9,5.0, #I 1, #12, $, $, 0.2, 

$, ý, #19, #20); 
#8=WIRE 

- 
EDM 

- 
MACHINING_OPERATION($, $, 'Maclfg_Qplý_3,, #10,5.0, #I 1, #12, $, $, 0.2, 

$, #18, #19, #20); 

#9=CUT_THROUGHO; 
#10=SLUG_REMOVALO; 

#I I =CARTES IAN_POINT('Start-Pt', (0.0,0.0,0.0)); 

#12=WIRE 
- 

TOOL('wire 
- 

1', #13,0.25,0.2,160, $); 
#13=MATERIAL('Copper_Wire', 'CWII, $); 

#14=WIRE_EDM-TECIINOLOGY($, $, true, #15); 
#15=NUMERIC-PARAMETER('RA', 1.8, 'MICM'); 

#16=WIRE_EDM_MACHINE_FUNCTIONS(true, $, false, false, o); 

tfl8=LINEAR_STRATEGY($, $); 

#19=CARTESLA, N_POINT('Thread-Pt', (0.0,0.0,0.0)); 

#20=CARTESIAN_POINT(Tag_Pt', (0.0,0.0,0.0)); 

#21=SETUP('Setup_l', #22, #24, #27); 
#22=AXIS2_PLACEMENT-3D('Setup_QrigiW, 923, $, $); 
#23=CARTESIAN 

- 
POINT('SP 

- 
ll, (0.0,0.0,0.0)); 

#24=ELEMENTARY_SURFACE('Setup-_ýSecurityjlane', #25); 
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#25=AXIS2_PLACEMENT_3D('Setup_positioiV, #26, $, $); 
#26=CARTESIAN_POINT('Setup_l', (0.0,0.0,0.0)); 

#27=WORKPIECE_SETUP($, 428, $, $, $); 
#28=AXIS2_PLACEMENT-3D('Setup_yosition', #29, $, $); 
#29=CARTESIAN_POINT('Setup_l', (0.0,0.0,0.0)); 

#30--WORKPIECE('WorkpieceTwo', #31, $, $, $, #32, $); 
#3 1 =MATERIAL(DS2 1', Die Steel', $); 
#32=BLOCK('Block_l', #33,20.0,10.0,10.0); 

#33=AXIS2_PLACEMENT_3D('Block_Position_l', 434, $, $); 
#34=CARTESIAN_POrNT('WP_Pos_l', (0.0,0.0,0.0)); 

EDNSEC; 
END-ISO-10303-21; 
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CASE STU'DYBASED ON THE EXAMPLE PARTI 

PROVIDED IN ISO/DIS 14649-13 

U) 

IS() 11)"l), "I. 

HFADER-ý 

FILE DESCRIPTION( 

/* DF-SCRIPTION' ('THIS FILE CONTAfNS THE STEP-NC FILE OF A WIRE-EDM 
MANUFACTURING), 
/* IMPLEMENTATION_LEVEL */'2; 1'); 

FILE-NA%lF( 

//* NAME */'WIRE EDM-EXAMPLE', 
/* TIME 

- 
STAMP *, ý'2003-02-28TI4: 17: 26+01: 00', 

/* AUTHOR *1/ ('GABOR ERDOS'), 
/* ORGANIZATION */ ('EPFL-ICAP-LICP, LAUSANNE SWITZERLAND'); 

FILF S('IIFM. A(('MA('14INING SCHEMA', 'WIRE_EDM-SCHEMA')); 
FNDSI--'(', 

DATAI 
410=AR(' STRA"FEGY(S, S, I. ); 
411=SLLIG REMOVALO; 
#1 2ý CUTTf i ROUGHO; 

#I 3=('IR('LE('C I RCLE_009', #83,1. ); 
# 14-('IR('LE('C I RCLEO 10', #84,1. ); 
#I 5=CIR('I-E('CIRCLE_O 11', #85,1. ); 
#I 6=CIR('LE('CIRCI-E_O 12', 486,1); 

HI 7=TRINIMED_CLJRVE(ITRIMMED_CURVE_009', #I 3, (#55), (#56),. T., $); 
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#18=TRIMMED CURVE(TRrMMED CURVE 010', #14, (#60), (#61),. T., $); 
#19=TRIMMEEi-CURVE(7REMMED-CLJRVE-011', #15, (#65), (#66),. T., $); 
#20--TRIMMED_CURVE(7REMMED_CLJRVE-012', #16, (#70), (#71),. T., $); 

#21=POLYLINE('PLINE_009', (#52, #53)); 
#22=POLYLINE('PLINE_010', (#57, #58)); 
#23=POLYLINE('PLINE_01 1', (#62, #63)); 
#24=POLYLINE('PLINE_012', (#67, #68)); 

#25=COMPOSITE-CURVE_ SEGMENT($,. T., #21); 
#26=COMPOSITE_CURVE_ SEGMENT($,. T., #17); 
#27=COMPOSITE_CURVE- SEGMENT($,. T., #22); 
#28=COMPOSITE_CURVE_ SEGMENT($,. T., #18); 
#29=COMPOSITE_CURVE_ SEGMENT($,. T., #23); 
#30=COMPOSITE_CURVE_ SEGMENT($,. T., #19); 
#31--COMPOSrFE_CURVE_ SEGMENT($,. T., #24); 
#32---COMPOSITE_CURVE_ SEGMENT($,. T., #20); 

#33=PROJECT('WIRE_EDM-EXAMPLE', #39, (#34)); 

#34=WORKPIECE('WORKPEECE', #35,0.005, $, $, #38, $); 

#35=MATERIAL('ST221', 'COLD DIE STEEL', $); 
#36=MATERIAL('ST234', 'COBRA CUT A', $); 
#37=MATERIAL( ..... $); 

#38=BLOCK('BLOCK_001', #82,40., 30., 70. ); 

113 9=WORKPLAN('WP', (#40, #4 1, #42, #43, #44), # 115, # 117); 

#40=MACHINING_WORKINGSTEP('WS_01', $, #89, #91); 
#41=MACHINING-WORKINGSTEP('WS-02', $, #89, #92); 
#42=MACHINING_WORKINGSTEP('WS-03', $, #89, #93); 
#43=MACHINING_WORKINGSTEP('WS 

- 
04', $, #89, #94); 

#44=MACHINING_WORKINGSTEP('WS_05', $, #89, #95); 

1145=TOLERANCED_LENGTH_MEASURE(30., $, O., O. ); 
#46=TOLERANCED_LENGTH-MEASURE(I., $, O., O. ); 

#47=CARTESIAN 
- 

POINT('FEATORIGIN', (20., 10., 30. )); 
#48=CARTESIAN 

- 
POINT('WORKPIECE 

- 
BBBOX_LOCATION', (-10., -15., O. )); 

#49=CARTESIAN POINT(CUT START_PT, (10., 0., 0. )); 
#50=CARTESIAr4-POINT('rHR-EAD_PT', (10., 10., O. )); 
#51=CARTESLAN-POINT('CUT_END-PT', (9., O., O. )); 
#52=CARTESIAN 

- 
POINT('CARTESIAN 

- 
POINT 

- 
001 

- 
OF PLINE 009', (1., 20., 0. )); 

#53=CARTESIANý POR*4T('CARTESLAN POM_002_OF-PLIDiý-009', (19., 20., O. )); 
#54=CARTESIAN-POINT('CENTRE-POINT-OF-CIRCLE-0091, (19., 19., O. )); 
#55=CARTESIAN_POINT('START-POINT-OF_TRD4MEDCURVE 009', (19., 20., 0. )); 
#56=CARTESL, kN_POINT('END-POINT-OF-TRIMMEDCURVE-009', (20., 19., O. )); 
#57=CARTESL, kN_POINT('CARTESLAN_POINT_001_OF_PLINE_0101, (20., 19., O. )); 
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#58=CARTESIAN_POINT('CARTESIAN_POINT_002_OF_PLINE_010', (20., I., O. )); 
#59=CARTESIAN 

- 
POINT('CENTRE-POINT-OF-CIRCLE-010, (19., I., O. )); 

#60=CARTESIAN 
- 
POINT('START_POINT_OF-TRIMMEDCURVE-010, (20., I., O. )); 

#61=CARTESLA, N 
- 

POINT('END POINT 
- 

OF TRIMMEDCURVE-010', (19., O., O. )); 
#62=CARTESLA, N_POINT('CAR7TESIAN POINT-001-OF_PLINE 011', (19., 0., 0. )); 
463=CARTESIAN POINT('CARTESIAN_POINT_002_OF_PLINCOI 1', (1., 0., 0. )); 
t164=CARTESIAN POINT('CENTRE 

- 
POINT 

- 
OF 

- 
CIRCLE 

- 
011', (1., 1., 0. )); 

#65=CARTESIAN_POfNT('START_POINT_OF_TRIMMEDCURVE_01 I l, (I., O., O. )); 
#66=CARTESLkN 

- 
POINT('END 

I 
POINT_OF_TREAMEDCLJRVE_01 ll, (O., 1., O. )); 

t/67=CARTESIAN-POINT('CARTESIAN-POINT-001-OF-PLM-012', (O., I., O. )); 
#68=CARTESIAN POINT('CARTESIAN POINT 

- 
002 OF PLINE_012', (0., 19., 0. )); 

#69=CARTESIAN7POINT('CENTRE_PGý54T_OF CIRCLE- 012"(l., 19., O. )); 
#70=CARTESLkN 

- 
POINT('START 

- 
POINT OF TRlMMEDCURVE_012', (0., 19., 0. )); 

#71=CARTESIAN 
- 

POINT('END 
- 

POINT 
- 
OF 

- 
T-RIMMEDCURVE_012', (I., 20., O. )); 

tt72=CARTESIAN_POINT('SOI', (O., O., 26. )); 

#73=DIRECTION('FEATZAXIS', (O., O., I. )); 
#74=DIRECTION('FEATXAXIS', (I., O., O. )); 
#75=DIRECTION('AXIS_Z_OF 

- 
BLOCK 

- 
001', (1., 0,0)); 

#76=DIRECTION('AXIS_X_OF 
- 

BLOCK 001', (0,1., 0. )); 
#77=DIRECTION('Z-AXIS_OF_CIRCLE-009', (O., O., -I. )); 
#78=DIRECTION('Z-AXIS_OF_CIRCLE_010', (O., O., -I. )); 
#79=DIRECTION('Z-AXIS_OF_CIRCLE_01 
#80=DIRECTION('Z-AXIS_OF_CIRCLE_012', (O., O., -I. )); 

#81=AXIS2_PLACEMENT_3D('FEAT_FRAME', #47, #73, #74); 
#82=AXIS2_PLACEMENT 3D('POSITION OF BLOCK 001', #48, #75, #76); 
#83=AXIS2_PLACEMEN'C3D('POSTION_OF -CIRCLE_009', #54, #77, $); 
#84=AXIS2_PLACEMENT_3D('POSTION_OF_CIRCLE_0101, #59, #78, $); 
#85=AXIS2_PLACEMENT_3D('POSTION_OF_CIRCLE_01 1', #64, #79, $); 
#86=AXIS2_PLACEMENT_3D('POSTION_OF_CIRCLE_012', #69, #80, $); 
#87=AXIS2 PLACEMENT_3D('SECPLANE_FRAME', #72, $, $); 

#88=COMPOSITE_CURVE('POCKET', (#25, #26, #27, #28, #29, #30, #3 1, #32),. F. ); 

H89=GENERAL_OUTSIDE_PROFILE('WORKI', H34, (#91, tt92, #93, #94, #95), #81, #45, #46, $, 
$, $, iU88, $, $); 

#90--WIRE_TOOL(VIREI', #36,0.1,0.2,160., $); 

491=WIRE_EDM_MACHINING_OPERATION($, $, 'ROUGHING', S, 10., #49,490, #100, 
# 114,0.01,496, #97, #5 0, #5 1); 

#92=WfRE_EDM_MACHINfNG_OPERATION($, $, 'CUT_THROUGH', #12,10., #49, #90, #9 
9, $, 0.01, $, $, #50, #51); 

#93=WIRE_EDM-MACHINING-OPERATION($, $, 'SLUG-REMOVAU, #Il, 10., #49, #90, # 
99, $, 1., $, $, #50, #51); 

#94=WIRE_EDM_MACHINING_OPERATION($, $, 'FRZSHING', $, 10., #49, #90, #98, #1 14,0. 
1, $, $, #50, #49); 

#95=WIRE_EDM_MACHINING_OPERATION($, $, 'SURFACE_FINISHINGI, $, 10., #49, 
#90, # 10 1, # 114,0.01, $, # 10, #50, #49); 
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#96--LINEAR_STRATEGY($, $); 
497=LINEAR_STRATEGY($, $); 

#98=WIRE_EDM_TECHNOLOGY(O.,. TCP., $, $, # 103, # 108, # 109, # 110»; 
iY99=WIRE-EDM_TECHNOLOGY(O.,. TCP., $, $, (»; 
#100=WIRE_EDM-TECHNOLOGY(O., $, $, $, (#102, #105, #107, #106»; 
# 10 1 =WIRE_EDM_TECHNOLOGY(O.,. TCP., $, $, (# 104, # 111, # 112, # 113»; 

#102=DESCRIPTIVE_PARAMETER('ID', 'Q2'); 
#103=DESCRIPTIVE_PARAMETER('ID', 'Q3'); 
#104=DESCREPTIVE_PARAMETER('ID', 'Q8'); 

#105=NUMERIC-PARAMETER('RA', 1.8, 'MICM'); 
#106=NUMERIC-PARAMETERCTKM', 10., 'MICM1); 
#107=NUMERIC-PARAMETER('TE', 10.,, 'MICMI); 
#108=NUMERIC-PARAMETER('RA', 0.8, 'MICM'); 
#109=NUMERIC-PARAMETER('TKM', 6., 'MICMI); 
NII 0--NUMERIC-PARAMETER(TE', 6., MICM'); 
#I II =NUMERIC-PARAMETER(RA', 0.4, 'MICM); 
#1 12=NUMERIC_PARAMETER(TKM, 3., 'MICM'); 
#1 13=NUMERIC-PARAMETERCTE', 3., 'MICM'); 

#1 14=WIRE_EDM_MACHENE_FUNCTIONS(. T., $,. T.,. F., O); 

#I I S=CHANNEL('CHANEL-l'); 

#1 16=PLANE($, #87); 

#1 17=SETUP('SETUP, $, #1 16, ()); 

ENDSEC; 
END-ISO-10303-21; 
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CASE STVDYBASED ON THE EXAMPLE PART 2 

PRON IDED IN ISO/DIS 14649-13 

ISO-] ()')()., -2 1, 
III 'A DI -R, 

FILF DESCRIPTION( 
/* DESCRIPTION *, ( 
'THIS I'll-FCONTAINS THE STFP-NC FILE OF A WIRE-EDM MANUFACTURING% 
/* INIPLENIFNTATIONLEVEL */'2; 1'); 

FILF N. -\Nll-'( 
/*NANII-'* 'SANIP[-E'vý'ITHRUI-EDSURFACESR', 
/*TINIF STAN11" '-)003-02-28'FI3: 09: 21+02: 00', 
/* AUTHOR *, (VII-LYNIAEDER'), 
/* ORG-\NIZATION * (CADCAMATION SA, ONEX-GENEVA, SWITZERLAND'), 
/* PRFPROCESSOR VERSION */'ST-DEVELOPER V8% 
/* OlMiINATING SYSTEM 
/* AUI I IOR ISATION 

1-*ILI--_SC'111-, 'NIA (('NIACHINING_SCHEMA', 'WIPE_EDM_SCHEMA')); 
FNDSFCý 

DATA, 
42=('ARTFS IAN-POINT(", (-50.0,30.0,20.0)); 
H3=CAR'I'FSIAN-I'OINT(", (0.0,30.0,20.0)); 
#4=CAR IT SIAN_POINT(", (-46.0,26.0,0.0)); 
#5=CARTFSIAN_ POINT(", (-3.762857145299775,26.0,0.0)); 

#6=B 
_SPI-INF_SURFACF_Wll'l 

I- KNOTS(", 1,1, ((#2, #4), (#3, #5)),, UNSPECIFIED.,. F.,. F., 
A 1., (2,2), (2,2), (-50.0,0.0), (0.0,1 -0), - UNSPECIFIED. ); 

07 --CARITS JAN POINT(", (S. 786796564403 542,8.786796564403606,20,0)); 
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#8=CARTESLA, N_POINTC', (6.935595340170893,10.637997788636259,20.0)); 
#9=CARTESLA, NPOR*4T(", (3.720779449950078,14.827639903211258,20.0)); 
#I O=CARTESIAN_POINT(", (0.689306233719310,22.146263655806401,20.0)); 
#I I=CARTESIAN_POINT(", (-2.645847E-015,27.382006122008541,20.0)); 
#12=CARTESLkN_POINT(", (0.0,30.0,20.0)); 
#13=CARTESIAN 

- 
POINT(", (8.955855216991068,3.295244424414630,0.0)); 

#14=CARTESLkN POINT(", (6.625202790118829,5.131868128801239,0.0)); 
#15=CARTESIAN7POINT(", (2.447738076337918,9.418653244101920,0.0)); 
#16=CARTESIAN 

- 
POINT(", (- 1.940637859416365,17.251877607654784,0.0)); 

#17=CARTESIAN 
- 

POINT(", (-3.414762067389234,23.053144355453618,0.0)); 
#I 8=CARTESIAN_POINT(", (-3.763871791715616,25.999879797732245,0.0)); 

#19=B_SPLINE 
- 

SURFACE 
- 

WITH KNOTS(", 3,1, ((#7, #13), (#8, #14), (#9, #15), (#10, #16), 
(# 11, # 17), (# 12, # 1 8)),. UNSPECIFIED.,. F.,. F.,. U., (4,1,1,4), (2,2), 
(-3.926990816987240, -3.665 191429188091, -3.4033920413 8894 1, 
-3-1415926535 89792), (0.0,1.0),. UNSPECIFIED. ); 

#20=CARTESIAN_POINT(", (8.786796564403602,8.786796564403602,20.0)); 
#21=CARTESLkN_PO[NT(", (30.0,30.0,20.0)); 
#22=CARTESIAN_POINT(", (8.955855216991086,3.295244424414616,0.0)); 
#23=CARTESIAN-POINT(", (31.656854249492397,26.0,0.0)); 

424=B-SPLINE 
- 

SURFACE-WrFH-KNOTS(", I, I, ((#20, #22), (#21, #23)),. UNSPECIFIED., 

. F.,. F.,. U., (2,2), (2,2), (-30.0,0.0), (0.0,1.0),. UNSPECIFIED. ); 

425=CARTESIAN-POINT(", (30.0,30.0,20.0)); 
#26=CARTESIAN_POINT(", (70.0,30.0,20.0)); 
#27=CARTESIAN_POrNT(", (31.656854249492397,26.0,0.0)); 
#28=CARTESIAN_POINT(", (66.0,26.0,0.0)); 

#29=B_SPLINE 
- 

SURFACE 
- 

WITH 
- 

KNOTS(", 1,1, ((#25, #27), (#26, #28)),. UNSPECIFIED., 

. F.,. F.,. U., (2,2), (2,2), (-40.0,0.0), (O. 0,1 . 0),. UNSPECIFIED. ); 

#30=CARTESIAN-POINTC', (70.0,30.0,20.0)); 
#3 1 =CARTESIAN_POINT(", (70.0, -50.0,20.0)); 
#32=CARTESIAN_POINT(", (66.0,26.0,0.0)); 
#33=CARTESIAN_POINT(", (66.0, -46.0,0.0)); 

#34=B 
- 

SPLINE 
- 

SURFACE-WITH-KNOTS(", I, I, ((#30, #32), (#31, #33)),. LJNSPECIFIED., 

. F.,. F.,. U., (2,2), (2,2), (-80.0,0.0), (0.0,1.0),. UNSPECIFIED. ); 

#35=CARTESIAN_POINT(", (70.0, -50.0,20.0)); 
#36=CARTESIAN_POINT(", (-20.0, -50.0,20.0)); 
#37=CARTESLkN_POINT(", (66.0,46.0,0.0)); 
#38=CARTESIAN_POINT(", (-20.0,46.0,0.0)); 

#39=B_SPLM_SURFACE_WrrH_KNOTS(", I, I, ((#35, #37), (#36, #38)),. LJNSPECIFIED., 

. F.,. F.,. U., (2,2), (2,2), (-90.0,0.0), (O. O, I . 0),. UNSPECIFIED. ); 

#40=CARTESIAN_POINT(", (-50.0, -20.0,20.0)); 
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#41=CARTESLA, N 
- 
POINT(", (-50.0,30.0,20.0)); 

#42--CARTESIATý POINT(", (-46.0, -20.0,0.0)); 
#43--CARTESIAN_POINT(", (-46.0,26.0,0.0)); 

944=B_SPLINE 
- 

SURFACE WITH KNOTS(", 1,1, ((#40, #42), (#41, #43)),. LJNSPECIFIED., 

. F.,. F.,. U., (2,2), (2,2), C-50.0,0.0), (0.0,1.0),. UNSPECIFIED. ); 

445=CARTESIAN 
- 
POINT(", (-50.0, -20.0,20.0)); 

946=CARTESIAN 
- 
POINT(", (-50.0, -22.243994752564106,20.0)); 

#47=CARTESIAN 
- 
POINT(", (-49.494332216275893, -26.731874096003608,20.0)); 

448=CARTESIATý POINT(", (-47.256861435762637, -33.126216647277602,20.0)); 
#49=CARTESIAN 

- 
POR, ýr(", (-43.652618263109133, -38.862332356046295,20.0)); 

450=CARTESIAN POrNT(", (-38.862332356046380, -43.652618263109090,20.0)); 
n5l=CARTESIA14-POINT(", (-33.126216647277673, -47.256861435762580,20.0)); 
#52=CARTESLkN 

- 
POrNT(", (-26.731874096003700, -49.494332216275879,20.0)); 

tt53=CARTESLA, N 
- 

POINT(", (-22.243994752564198, -50.0,20.0)); 
#54=CARTESIAN POINT(", (-20.0, -50.0,20.0)); 
#55=CARTESIAN 

- 
POINT(", (-46.0, -20.0,0.0)); 

#56=CARTESLA, N 
- 
POrNT(", (-46.0, -21.940717585790633,0.0)); 

#57=CARTESLA, N 
- 

POINT(", (-45.561751785744534, -25.83618342787815 1,0.0)); 
#58=CARTESLA, N 

- 
POINT(", (-43.622623050258596, -31.375547320925282,0.0)); 

#59=CARTESLA, N 
- 

POINT(", (-40.498899405998614, -36.347490590759556,0.0)); 
#60=CARTESIAN 

- 
POINT(", (-36.347490590759676, -40.498899405998628,0.0)); 

#61=CARTESIAN 
- 
POINT(", (-31.375547320925357, -43.622623050258554,0.0)); 

H62=CARTESIATý POrNT(", (-25.836183427878254, -45.561751785744747,0.0)); 
#63=CARTESLA, N POINT(", (-21.940717585790722, -46.0,0.0)); 
464=CARTESIAN_POINTC', (-20.0,46.0,0.0)); 

065=B_SPLINE 
- 

SURFACE-WITH-KNOTS(", 3,1, ((#45, #55), (#46, #56), (#47, #57), (#48, 
#58), (#49, #59), (#50, #60), (#5 1, #6 1), (#52, #62), (#53, #63), (#54, #64)),. LJNSPECIFIED., 

. F.,. F.,. U., (4,1,1,1,1,1,1,4), (2,2), (3.141592653589792,3.365992128846206, 
3.590391604102619,3.814791079359032,4.039190554615447,4.263590029871861, 
4.487989505128275,4.712388980384688), (0.0,1.0),. LJNSPECIFIED. ); 

HI 10=DESCRIPTIVE_PARAMETER(7KMI,, +/-Io MICROM'); 
#I I I=DESCREPTIVE_PARAMETER(TE', '10-15 MICROM'); 

#1 12=WIRE_EDM_TECHNOLOGY(O., $, $, $, (9113, #l I 1, #l 10)); 
#1 13=NUMERIC-PARAMETER('RA', 1.8, 'MICROMI); 

#1 14=LINEAR_STRATEGY($, $); 

#1 15=WIRE_EDM_MACHINE_FUNCTIONS(. T., 2.3,. F.,. F., O); 

#1 16=WIRE-TOOL('WIRE TOOU, #120,0.25,0., O., $); 

#1 17=PROJECT('SAMPLE 2', #121, (#l 18)); 

#I 18=WORKPIECE('WORKPIECE', # 119, $, $, $, $, $); 
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#I 19=MATERIAL(", 'COLD DIE STEEI!, $); 
#I 20--MATERIAL(", 'COBRA CUT, $); 

#121=WORKPLAN('WORKPLANI', (9122), $, $); 

#122=MACHINING_WORKINGSTEP('STEPI', $, 4125, #163); 

#125=REGION 
- 

SURFACE-LIST(REGIONI', #l 8, (#l 63), $, (#6, #19, #24, #29, #34, #39, #44, 
#65)); 

#163=WIRE 
- 

EDM MACHINING_OPERATION($, $, 'OPERl', $, $, #94, #116, #112, #115,2., $, 
#114, #95, iF96); 

ENDSEC; 
END-ISO-10303-21; 
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STEP-NC (ISO 14649-10) ENTITY 

SETUP 

SETUP 
coordInate system 

y 

X,: ýl 
ýz 

c -" cffiýý 

machlne orlgln 

AT 0, ý, i'l 

WORKPIECE 
coordinate system 

STEP-NC setup entity 
ENTITY setup; 
its-id: identifier; 
its 

- 
origin: OPTIONAL axis2_placement-3d; 

its, 
_secplane: 

elementaryjurface; 
its 

- 
workpiece_setup: LIST [0:? ] OF workpiece-setup; 

Informal proposition: 
If its 

- 
origin is not set, the default for the origin 

of the setup is identical with the machine origin. 

END_ENTITY; 

Description 
its-id: The identification of the setup. 
its-origin: Position and orientation of the setup's cartesian coordinate system 

relative to the machine coordinate system. 
its-secplane: The security plane for the whole setup. On or above this plane, i. e. for 

z values greater than those of the elementaryjurface, a safe movement 
of the tool without danger of collision is possible. The dimensions 
given are relative coordinates as measured from the origin of the setup. 

its-workpiece_setup: Each workpiece which is included within the setup and which will be 
machined within the respective workplan 
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NC PART PROGRAM GENERATED FROM 

FANUC PC FAPT CUT I 

NOW 00001 
N020 GOO G40 G50 
N030 GIO Pl X1 Yl Z4 U3 V190 W25 IlO J10 KI A30 C10 E7 QO IA8 (D2. A2/30/. 10/3H) 
N040 GII PI X1 10 
N050 GIO P2 XI Y3 D U2 V200 W40 10 JO K2 A40 C13 E2 QO L290 (D2. A2/ 30/. 10/ 32) 
N060 GII P2XI 10 
N070 GIO P3 X2 Y3 U40 VIOO W33 K3 A40 C13 E2 QO L920 (D2. A2/ 30/. 10/ 33) 
N080 GII P3 XI 10 
N090 G90 
MOO GIO PI RO. 1060 
NI 10 GIO P2 RO. 0710 
N120 G 10 P3 RO. 0560 
N130 G 10 PO RO. 1060 
N140 (FIG# I /CONTOUR - 1) 
N150 M37 B30 
N160 M89 
N170 SI DI G04 X2 
N180 G92 XIO YlO 
N190 G90 GOI G41 XIO YO 
N200 X19 
N210 G03 X20 Yl JI 
N220 GOI Y19 
N230 G03 X19 Y20 I-I 
N240 GOI XI 
N250 G03 XO Y19 J-1 
N260 GOI Yl 
N270 G03 X1 YO Il 
N280 GOI X9 
N290 MOI 
N300 XIO 
N310 MOO 
N320 G40 YIO 
N330 MOO 
N340 (FIG# I /CONTOUR - 2) 
N350 G90 GOO XIO YIO 
N360 M38 B30 HO 
N370 M88 
N380 S2 D2 G04 X2 
N390 G92 XIO YlO 
N400 G90 GOI G41 XIO YO 
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N410 X19 
N420 G03 X20 YI JI 
N430 GOI Y19 
N440 G03 X19 Y20 I-I 
N450 GOI XI 
N460 G03 XO YI 9 J-1 
N470 GOI YI 
N480 G03 XI YO 11 
N490 GOI XIO 
N500 G40 YIO 
N510 (FIGNI/ CONTOUR- 3) 
N520 G90 GOO XIO YIO 
N530 M38 B30 HO 
N540 M88 
N550 S3 D3 G04 X2 
N560 G92 XIO YIO 
N570 G90 GOI G41 XIO YO 
N580 X19 
N590 G03 X20 YI JI 
N600 GOI Y19 
N610 G03 X19 Y20 1-1 
N620 GOI XI 
N630 G03 XO Y19 J-1 
N640 GOI YI 
N650 G03 XI YO 11 
N660 GOI XIO 
N670 G40 YIO 
N680 /M50 
N690 G90 GOO XIO YIO 
N700 M30 

Total Time of Rapid: 00: 00,00" 
Total Time of Cutting: 05: 49'03" 
Total Length: 294.85 
Max. Wire Inclination Angle: 0.0 
Wire Cut Start Points: X10 YlO 
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NC PART PROGRAM GENERATED FROM 

PEPS SOLID CUT 

LI 10 /FIG 
NIO (METRIC) 
N20 (H99 RESERVED - PEPS) 
N30 G71 
N40 ZI =0.00 
N50 Z2=15.00 
N60 Z5=30.00 
N70 G90 
N80 G92 XO. O YO. 0 
N90 GOO XIO. O YIO. O UO. O VO. 0 
N 100 (ROUGH CUT# I FIG-000) 
N11OM20 
N120 M78 
N130 M80 
N140 M82 
N150 M84 
N160 M89 
N170 MIOI 
N180 El FLO HI 
N 190 GO I G41 X 10.0 YO-0 M90 
N200 GOI X19.0 YO. 0 
N210 G03 X20.0 YLO 10.0 JI. 0 
N220 GO IY 19.0 
N230 G03 X19.0 Y20.0 1-1.0 JO. 0 
N240 GO IX1.0 
N250 G03 XO. O Y19.0 10-0 J-1.0 
N260 GOI YLO 
N270 G03 X1.0 YO. 0 ILO JO. 0 
N280 GOI X9.0 
N290 MO I 
N300 M78 
N310 M80 
N320 M82 
N330 M84 
N340 GOI XIO. O YO-0 
N350 G03 X1 1.0 YLO 10.0 J1.0 
N360 GOI YIO. O 
N370 GOI G40 XIO. 0 UO-0 VO. 0 
N380 M91 
N390 G04 X13.0 
N400 (TRIM CUT #2 FIG-000) 
N410 M88 
N420 E2 F2.0 H2 
N430 GOI G41 XIO .0 YO. 0 M90 
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N440 GOI X19.0 YO. 0 
N450 G03 X20.0 YLO 10.0 JI. 0 
N460 GOI Y19.0 
N470 G03 X19.0 Y20.0 1-1.0 JO. 0 
N480 GOI XLO 
N490 G03 XO. O Y19.0 10-0 J-1.0 
N500 GOI YLO 
N5 10 G03 X 1.0 YO. 0 11.0 JO. 0 
N520 GOI XIO. O 
N530 G03 XI 1.0 YLO 10.0 JI. 0 
N540 GO IY 10.0 
N550 GO I G40 X 10.0 UO. O VO. 0 
N560 M91 
N570 (TRIM CUT #3 FIG-000) 
N580 M88 
N590 E3 F3.0 H3 
N600 GO I G41 X 10.0 YO. 0 M90 
N61 0 GO IX 19.0 YO. 0 
N620 G03 X20.0 YLO 10.0 JI. 0 
N630 GOI Y19.0 
N640 G03 X19.0 Y20.0 I-1.0 JO. 0 
N650 GOI XLO 
N660 G03 XO. O Y19.0 10.0 J-1.0 
N670 GO IY1.0 
N680 G03 XLO YO. 0 ILO JO. 0 
N690 GOI XIO. O 
N700 G03 X 11.0 Y 1.0 10.0 J 1.0 
N710 GOI YIO. O 
N720 GO I G40 X 10.0 UO. O VO. 0 
N730 M91 
N740 M21 
N750 M02 

Machine Model: 
Part Number: 
Wire Type: 
Thickness: 
Operation: 
Start Point: 

FX 
0505 
Wire Dia. 0.1 Omm, 0.004" 
30.0 
Opn Exwnple 
X0.0 YO. 0 

PROFILE of Fig_000 
Taper Angle: 
Number of Cuts: 
Reverse Cutting: 
Start Hole Position 
Figure Type: 

0.0 
3 
Not Active 
x 10.0 Y 10.0 
Die 

148 



Appendix V 

H1 (-0.0) EIFI Comment for cut: 
H2 (-0.0) E2 F2 Comment for cut: 
H3 (-0.0) E3 F3 Comment for cut: 

ROUGH CUT #1 FIG 000 
TRIM CUT #2 FIG-000 
TRIM CUT #3 FIG-000 

Length of machining incl. final cuts 299.57 mrn 
Estimated Cycle Time 149.79 min 
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G Code List 
Code Description Format 
G04 Dwell G04 P_, G04 X 
G92 Abso. Coord. Sys. Preset G92 X- Y- I- J-P-B-R- 
G93 Local Position Setting G93 X Y 

- G28 Return To Machine Zero Point G28 )C Y U V 
G29 Return From Reference Point G29 k Y U v 
G30 Return To 2,3,4th Reference Point G30 P x Y UV 
G32 Reference Point Setting - Type A G32 P- 
G33 Reference Point Setting - Type B G33 P- x- Y 

-U-v- G53 Position In Machine Coord. Sys. G53 X_ Y_ U 
_ 

V_ 

G10 Setting Offset Or Condition 
GOO Rapid Traverse 
GOI Linear Interpolation 
G02 Circular Interpolation (CW) 
G03 Circular Interpolation (CCW) 

G17 Specifying The X-Y Plane 

G90 Absolute Programming 
G91 Incremental Programming 

G22 Stored Stroke Limit On 
G23 Stored Stroke Limit Off 

G94 Constant Feed 
G95 Servo Feed 

G10 P R, GIO PXYZUVW-... 
GOO XYUV 
G01 Xyuv 
G02 XYIJUVKL 
G03 X_ Y- I- J_ U_ V_ K_ L_ 

G17 

G90 
G91 

G22 XYIJ 
G23 

G94 XYF 
G95 XY 

M Code List 
Code Description Code Description 
MOO Unconditional Program Stop M27 Corner Control On (Roughing) 
M01 Optional Program Stop M28 Corner Control On (Skimming) 
M02 Program End M29 Corner Control Function Off 
M30 Program End And Rewind M37 Corner Control On Except G40 (Roughing) 
M04 Dwell (M04 Pj M38 Corner Control On Except G40 (Skimming) 
M13 Setting Feedrate Override (M 13 P_) M56 AWR Off Time Control Function Off 
M15 Selection of Tapering Mode (M 15 P_) M57 AWR Off Time Control Function On 
M31 Reset Machining Timer M88 Approach Control Function Off 
M32 Hold Water At Program End M89 Approach Control Function On 
M70 Retrace Wire Path To Start Point M92 Upper Flush Off 
M72 Start Point Of Cut Monitor M93 Upper Flush On 
M96 Reverse Copy End M94 Lower Flush Off 
M97 Reverse Copy Start M95 Lower Flush On 
M98 Subprogram Call M161 WTA Control Off 
M99 Subprogram End M162 WTA Control On 
M135 Discharge Position M70 Off M165 Skim Off 
M136 Discharge Position M70 On M166 Skim On 
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