i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Parallel scheduling of concurrent VLSI simulation modules onto a
multiprocessor

PLEASE CITE THE PUBLISHED VERSION
PUBLISHER
© M.A. Rahin

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 2.5 Generic (CC BY-NC-ND 2.5) licence. Full details of this licence are available at:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LICENCE
CC BY-NC-ND 2.5

REPOSITORY RECORD

Rahin, Mohammad A.. 2019. “Parallel Scheduling of Concurrent VLSI Simulation Modules onto a
Multiprocessor”. figshare. https://hdl.handle.net/2134/27133.


https://lboro.figshare.com/

B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/




21.05C not- DX ATIHO

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE ,_
Ravim,  MA

i e o e S i v S ——— - g

ACCESS|0N/COPY NO.
0 3 Gooo ?.{?

o - -.----.----——-.———-

VOL. NO. CLASS MARK

|5FEB 5 | Lot Gofy







PARALLEL SCHEDULING OF
CONCURRENT VLSI SIMULATION
MODULES ONTO A MULTIPROCESSOR

by

MOHAMMAD A. RAHIN

- A Doctoral Thesis submitied in partial fulfilment of the
requirements for the award of Doctor of Philosophy

;. of .
' the Loughborough Universily of Technology

July 1991

_Sixpervisor : Dr. J. Sheild
Department of Electronic & Electrical Engineering .

©by M.A. Rahin, 1991



Loughborough University
of Technolezy Livrary

f«e Ng_r 41

Ghod

o, 03 Gooo LSO

Waaquf




Univerkity of Technblogy

LOUGHBOROUGH LEICESTERSHIRE LEI] STU  Telephone: 0509 268171 Ext. 4006 Telex: 34319

‘THE STUDENT OFFICE (HIGHER AWARDS)

CERTIFICATE OF ORIGINALITY -

This is to certify that I am responsible for the work submitted
in this 'thesis, that the original work is my own except as specified
in-acknowledgements or in footnotes, and that neither the thesis
nor the original work contained therein has been submitted to this
or any other institution for a higher degree.

Mochammad A. Rahin
25 July, 1991.




to my parents .




ABSTRACT

This thesis reports on the research into multiprocessor based task scheduling
algorithms as applied to the assignment of VLSI simulation modules onto
a multiprocessor. Task scheduling falls into the category of combinatorial
optimisation problems and is known to be NP-Hard. The goal of this
researchis to impienﬁent parallel heuristic scheduling algorithms for a general
purpose multiprocessor syétem and to evaluate thfough simulation their

relative performances.

The multiprocessor task 'scheduling problem in the context of VLSI
simulation is presented first followed by a taxonomy of general scheduling
algorithms. The factors determining the quality of a schedule are identified

and an objective function that guides the heuristic algorithms is then
formulated. |




ABSTRACT

The first of the two algorithms examined is the Concurrent Recursive
Binary Partitioning (CRBP) This heuristic is based on Kernighan-Lin’s
graph bi-partitioning algorithm. A l-way partition is achieved by applying
binary partitioning recursively, the procedure taking the form of a binary
tree. In its parallel iniplementation each node of this tree is executed
independently by a group of available processors and only the best among the
solutions obtained is accepted. This provides enhanced processor utilisation
and also assures improved results. The factors affecting the performance of
the l-way partitioning heuristic at different stages are examined and their
optimum values are investigated. '

The other parallel algorithm examined is the Concurrent Simulated
Annealing (CSA). Simulated annealing is a powerful and robust tool for the
solution of many difficult combinatorial optimisation problems. In spite of
its ability to produce good quality solutions, it is beset by exceptionally
long CPU time demand. The parallel implementation presented here is
~ an attempt to speed-up its convergence time and works with an 6ptirnal
number of non-interacting parallel moves thereby assuring minimal error due
to interaction between parallel moves. Two simple but effective temperature
schedules are used. These temperature schedules are in a way dependent on
the problem instance and as such adapts themselves to the varying needs of
the input problem instances.

Both the parallel heuristics are subjected to synthetic as well as some
actual VLSI simulation data instances. It is found that CRBP has an overall
edge in terms of speed of execution and performs well for small number
of processors. However, its solution quality deteriorates considerably with
the increase of processors. CSA on the other hand, performs uniformly
throughout and favours well for larger systems. For larger systems, CRBP
has the potential to be used as a pre-processor for a combined CRBP-CSA

~ heuristic.

iv




ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks and gratitude to his super-
visor Dr. J. Sheild for his continuous guidance and unending encouragement
“throughout the course of the research work. The author is also indebted
to Dr. S. Datta for his moral and material support especially during the
preparation of this thesis.

The financial support of the Association of Commonwealth Universities
under whose Commonwealth Scholarships Programme the author was spon-
sored is gratefully acknowledged. The helpful and sympathetic administra-
tion of the above scholarship by The British Council is greatly appreciated.

Last, but not the least, a special heartfelt thanks goes to all the friends
and acquaintances whose help, direct or indirect and company certainly made

the author’s time spent in Loughborough an enjoyable one.




CONTENTS

page
ABSTRACT ....cceovvivvvvevnnninnnnmiinnneeeneeenenennaaeaaees i
ACKNOWLEDGEMENTS ... cciiiiiiiiiiirinieninsnarnciannaiioes v
CONTENTS .......... SR et TR vi
CHAPTER 1: Introduction ........c.oeuviueeernernrorseseenenennens 1.
1.1 Multiprocessors & Multicomputers .......... e teesieesesarieesnen 2
1.1.1 Speed-up in a Multiprocessor .....ocevvuiervrnirnnenaennons 6
1.1.2 Factors Determining the Performance of a Multiprocessor .. 8
1.2 Application of Multiprocessors in VLSI Design ................0. 10
1.2.1 VLSI Design Processes ................ creeieiseiierainees 10
1.2.2 Acceleration of VLSI Design Process .......covvevviveennnns 12
1.2.3 VLSI Circuit Simulation .........loveinianiinieniinnennn, 14

1.3 Multiprocessor Task Scheduling ................. Ceererreereeiies 17

vi



CONTENTS

1.4 Qutline of the Dissertation .......ccceiivuernneniiiiiaennnnns .. 18
References e e esaieaetheeiseteeaaransene ittt ssrarerrrrannrntnass 20
CHAPTER 2: The Task Scheduling Problem .......... PR 22
2.1 Complexity of Task Scheduling Problem ettt enreneareneenien 23

2.1.1 Parallel Algorithms ........... FUTUTUTT rreerinanas 25
2.2 Classification of Task Scheduling Algorithms ........ccevvvenn... 26
2.2.1 Static vs. Dynamic Scheduling ...ovvvviviieriiiiirrnnensn. 28
2.2.2 Optimal vs. Sub-optimal scheduling ....... eeerienraaea, 29
2.2.3 Approximate vs. Heuristic Solutions «....c.veuvevneennn... 29
2.2.4 Load Balancing .....ccvvvviiiiiinnneninnnnnnins [P 30
2.3 Optimal and Sub-optimal Approximate Techniques .............. 31
~ 2.3.1 Solution Space Enumeration and Search .................. 31
2.3.2 Graph Theoretic +..veuvennervennnne. Creeereraeaen eeeiranes 31
2.3.3 Mathematical Programming ......ccouovviienninennnnenrenns 31
" 2.3.4 Queing Theoretic «.vuveereireeersereesenrnenenesneesannns 32
2.4 Heuristic Technique ......coovviviiiiiiiiiiniiiiiiiiiiiennn, .32
2.4.1 Constructive Method ............... P e 32
2.4.2 Iterative Improvement Method ............covvvvvvinnratL, 33
2.5 Local Minima and Optimal Solution ......ovvoiiiiiiiiiiiiinan... 35
2.6 Contribution of this Dissertation ..........cooccvvnnnnn. Creeveas 37
ST 4 o - 40
CHAPTER 3: The Graph Model .........ccoiviiiiiiiinnnnnennn. 43
3.1 Graphical Representation: Background ............cv0vvennenn.. 44
3.2 Concurrent VLSI Timing SImulation ..vveereiiiiinirireniinens 46
3.2.1 VLSI Circuit Partitioning Algorithm ............ccvvvvnt.. 50
3.3 The Graph Model .vvvenrinnrnnnnnnn. et 50
‘3.4 Communication and Computation .........cevveerrnnenssss eeeean 53
3.5 Formulation of the Cost Function ........covvvivivieinenenrnenns 55
3.6 Graph Data Storage & Cost Calculation ............oovvvvvinnin, 59
3.6.1 Graph Data SEOTage .....vvevvernrerenisinrinnnn, e 62
3.6.2 Cost Calculation .......oeviiivivinrseriesnerenionansnens 65

- 3.6.3 Cost Calculation in Iterative Improvement Environment . ..65
References .......cocoiiiiiiiiiiiiiiiiiiiiiii., v, 69

vii




CONTENTS =~

CHAPTER 4: Graph Partitioning ......... P 70
4.1 Graph Bi-Partitioning .........c.ovoviviieiiiiiiiiiieiiiinen 71

4.1.1 The Modified KL Bi-Partitioning Heuristic ........o0vu.... 73

4.1.2 The Bi-Partitioning Algorithm in Action .................. 85

4.2 Multiple-way Partitioning ....... eedaresiiesiesecsatniasna Ceenae 86

4.2.1 Recursive Binary Partitioning .......c.vieererneriernnenns 89

4,2.2 Concurrent Recursive Binary Partitioning ................. 95

4.2.3 Performance of Recursive Binary Partitioning ............. 99

References .............. TR U et irerereereeenaeraas 101

CHAPTER 5: The Simulated Ahnealing Algorithm ........... 102

5.1 Combinatorial Optimisation and Simtﬂated_Annealing .......... 103

'5.1.1 The Simulated Annealing Algorithm ............00viuien, 103

5.2 Markov Chain Model of SA ................. SOOI 108
5.3 Cooling Schedule ....cccovvvvviiinniinainn, eerenn reens eenens 113
5.3.1 A Simple Cooling Schedule ...........ccooviiiiiiiiiii, 115

53.2 A Polynomial-Time Cooling Schedule ..vevrnerenenennnn. 116

5.4 Implementation of the SA Algorithm .......ovvvvvviiererennnn. 122

5.4.1 Concise Problem'Representation ...........cooeevieiiinne 122

5.4.2 Transition Mechanism ........cioviiviiiiniiiniineineees. 122

5.4.3 The Cooling Schedule e 123

5.4.4 Performance Analysis of the SA AIgor:thm ............... 129
References e e e e easeeeaesaeaatesneasassatteatbeat et esaneraanas 145

CHAPTER 6: Concurrent Simulated Annealing ............... 147

6.1 Speeding-up the SA Algorithm ..........ccovvvviiinnenn. e 148

6.1.1 Fast Sequential ALgorithm ......... PP cerrieaaes 148

6.1.2 Hardware Accelerators ......cvvvenviiinenieinniiiniinene, 149

6.1.3 Design of Parallel Algorithms .........ccvvviiviniiines, 149

6.2 Parallel Annealing Algorithms ..........c.cooiiiiiiiiiaiiinane, 151

6.3 Concurrent Simulated Anmnealing .......iiiciiiiiiiiiiiiiiiene. 157

6.3.1 Parallel Moves and Move Interactions ........ocovvvnnnn 157

6.3.2 CSA Parallel Move Algorithm v..euveeneneneenenenennnnn. 159

6.3.3 Parallel Accept/Reject Decisions .......... ........ 168
6.3.4 CSA Implementation Models ...... e 1T

6.4 Simulation Results ...........ooiiiiiiiiiiL1TT




CONTENTS

References ..oovveevnvenrrnnennnns v enennenseseenatenteerresrsansuns 179
CHAPTER 7: Conclusions & Discussion .......ceeveversreeinnes 181
7.1 Review of Results et eteatserenetensenaseencstesentoesecannanon 182
7.2 Recursive Binary Partitioning & Simulated Annealing .......... 190
7.3 Conclusiqns ......... e nneaeeseeearerrseaseraarsarnenon eeeeeas 192
e DISCUSSION tvuetiviinnnersnoassesanonssencssaseosssnnnssosbonsns 195
References ......c.cvevvnuenes et eeteeenne e aiaaeieiaanaas ... 199
APPENDIX A oooiiiiiiiiiiiiannnnans T S 200

APPENDIX B ...... e, 211

ix



CHAPTER 1

Introduction

Ever increasing processing demands as encountered in different fields such
as image processing, artificial intelligence, finite element analysis prob-
lems, weather forecasting, wind tunnel simulations, nuclear system, particle
physics etc. have led the researchers to the development of several conven-
tional high performance computers as well as conceptually new architectures
namely non von Neumann systems and most importantly multiprocessor
syétems. | '

It has been identified quite long ago that the conventional uniproces-
sor computers are unable to meet the performance requirements of many
computing intensive applications. Since, the first electronic digital computer
(ENIAC) was built in 1945, the advances in uniprocessor computers can be
attributed primarily to development of logic technology. Switching speed
fell from one tenth of a second to nano seconds as the logic technology
moved from electro-mechanical relays to vacuum tubes to transistors and

1




Chapter 1: Introduction

then to small, medium and large scale integrated circuits. In the last
few years, it has become more difficult to achieve order of magnitude of
speed-ups in computers by solely upgrading the logic technology, as the
physical laws have been found to be the primary limiting factor, Radically
different computer architectures namely Data-Flow Machines [1] have been
proposed to overcome the bottleneck associated with the conventional von
Neumann computers, but failed to attract wide spread acceptance as initially
anticipated. The most obvious solution to the problem to date seems to
lie in the exploitation of parallelism in the applications and executing the
mutually independent task modules concurrently on a multiprocessor system.
MIMD multiprocessors with multiple instruction-streams and multiple data-
streams promise to be the general purpose computers of the future. Several
commercial MIMD computers have a.lready arrived in the market, e.g. those
manufactured by Alliant, BBN, Cray, ELXSI, Encore, IBM, Intel, NCUBE,
Sequent etc. | ' '

1.1 Multiprocessors and Multicomputers

Modern computer architectures can be classified in many different wWays.
One of the most popula.r' higher level architecture wise classification is due
to Flynn [2]. Flynn based his taxonomy of computer architectures on the
concepts of instruction stream and data stream. An instruction stream is
a sequence of instructions performed by a computer; a data stream is a
séquence of data used to execute on instruction stream. Flynn categorised an
architecture by the multiplicity of hardware used to manipulate instruction
and data streams. Given the possible multiplicity of instruction and data

streams, four classes of computers result.

1. SISD -(Single Instruction streem, Single Dala stream) : Almost all
single processor computers fall into this category. Although instruction
execution may be pipelined, computers in this category can decode only
a single instruction in unit time. A SISD computer may also have
multiple functional units (e.g. CDC 6600) being governed under the
direction of a single control unit.



Chapler 1: Introduction

Processor 0 Processor n

Interconnect Network

Fig. 1.1 A shared memory mﬁltiproceséor.




Chapter 1: Introduction

2, SIMD (Single Instruction stream, Multiple Data stream) : Processor

arrays fall into this category. A processor array executes a single stream

- of instruction, but contains a number of arithmetic processing units,

_each capable of fetching and manipulating its own data. Hence, in any

time unit, a single 6pera.tion is in the same state of execution on multiple
processing units, each manipulating different data.

3. MISD (Multiple Instruction stream, Smglc Data stream) ; No oomputers
fall into this category.

4. MIMD (Multiple Instruction stream, Muliiple Data stream) : This is by
far the most popular architecture for fnultiprocessors and well suited
for future general purpose computing needs. MIMD computers are
composed of a collection of full featured processing elements often with

their own local or private memory and are capable of executing their own
instructions independent of each other. The term MIMD is generally
reserved for multiple CPU computers designed for parallel processing;
that is, computers designed to allow interaction among their CPUs.

Flynn's classification scheme has been found to be too vague to allow
a clear cut labeling of modern high performance computers. Kuck [3]
enhanced Flynn’s classification scheme into a more detailed form. Handler’s
[4] classification however accounts for the organisation of the main functional
units of computers and uses some notations for expressing the piplining and
pa.rallehsm MIMD designs can be further classified into two ma;or groups

[5]:

1. Shared Memory Multiprocessors : Multiprocessors are characterised
by a shared memory. Shared memory multiprocessors can be further
classified into two, (a) Tightly Coupled and (b) Loosely Coupled. In the
case of the tightly coupled multiprocessors, the simplest processor inter-
communication pattern assumes that all the processors work through a
central switching mechanism to reach a shared global memory (Fig.1.1).
There are a variety of ways to implement this switching mechanism,
including a common bus to | global memory, a crossbar switch and a
packet-switched network. Examples include Carnegie-Mellon’s C.mmp,
Denelcor’s HEP, Sequent’s Balance and Symmetry.

-

4




Chapter 1: Introduction

~ MapBus | | o
_ _ |
.| Local |
CrU Switch |
Memory o |
Intercluster Bus
N Intercluster Bus
1 .
Map Bus
KMAP
Computer | Computer
Module Module .
Intercluster Buses : ‘
» ’
: . *
Qluster : Cluster Cluster
|

Fig. 1.2 The architecture of CM*, a shared memeory loosely coupled mul-
tiprocessor. Computer module (top), cluster (middle) and network
of clusters (bottom),



Chapter 1: Initroduction

~ Like tightly coupled mulfiprocessors, loosely coupled multiproces-

sors are also characterised by a shared address space. Unlike tightly
coupled multiprocessors, the shared space on a loosely coupled mul-

~ tiprocessor is formed by combining the local memories of the CPUs.
Hence, the time needed to access a particular memory on a loosely
coupled multiprocessor depends on whether that location is local to the
processor. Examples include Carnegie-Mellon’s Cm*, BBN Butterfly.

2. Message Passing Multicomputers : Figure 1.3 shows the general struc-
ture of a message passing multicomputer. Each processor has its own
-local memory, and process cooperation occurs either through sending

| or receiving messages. The performance and scalability of the mul-
ticomputer is primarily determined by the interconnection network,
The simplest interconnection network for a multicomputer is a bus
capable of handling interprocessor messages (i.e. a local area network).
Distributed systems have this structure and can indeed be used as

a multicomputer for applications with sufficiently large granularity.
Intel’s iPSC, NCUBE’s NCUBE/10, Ametek’s S/14 are commercial

multicomputers.

1.1.1 Speed-up in a Multiprocéssor
The speed-up that can be achieved by a multiprocessor with n identical

processors working concurrently on a single problem is at most n times faster
than a single processor running the same program. In practice, the speed-up
is much less, since some processors are idle at a given time because of conflicts
over memory access or communication paths, inefficient algorithm that fails
to exploit the natural concurrency in the problem etc. Fig.1.4 shows the
various estimates of the actual speed-up, where speed-up is defined as the
ratio between the time taken by that parallel computer executing the fastest
serial algorithm and the time taken by the same parallel computer executmg
the pa.ra.llel algorithm usmg n processors,

The lower bound in Fig.1.4 is known as s the Minsky’s Conjecture, giving
a rather pessimistic view. The upper bound (13:7) can be derived using
simple assumptions and approximations [6].



Chapter 1:

Interconnect Network

Memory

Memory

CPU

CPU

Processor

Processor n

Fig. 1.3 A message passing multicomputer.

Introduction



Chapfer 1: Introduction

1.1.2 Factors Determmmg the Performance of a
Multlprocessor -

The followings are the factors considered to be associated with the
performance capability of a multiprocessor system : |

1 Granularity: An lmporta.nt issue in multiprocessor performance is the
granularity of program execution. The granularity of a parallel program
can be defined as the average size of a sequentxal unit of computation in
the program, with no interprocessor synchronisation or communication
(e.g. the average task size). For a given multiprocessor, there is a
minimum program granularity value below which performance degrades
significantly. This threshold value can be termed granularity of the
multiprocessor. It is desirable for a mu_ltiproc&ssof to have a small
granularity, so that it can efficiently support a wide range of programs.
It is also desirable for a parallel program to have a large granularity, so
that it can be executed efficiently on a wide range of multiprocessors.

2. Scalab:hty Scalability is another 1mporta.nt property of multiproces-
s. Scalability is the ability of a multiprocessor to provide a linear
speed-up with an increase in the number of processors, assuming that
the program being executed has sufficient parallelism and a large enough
granularity. A multiprocessor architecture is usually designed to be
scalable up to some specific number of processors. There is a fine balance
between granularity and scalability in a multiprocessor. Increased
scalability is typically achieved at the cost of large granularity. On a
general note, tightly coupled systems usually have a smaller granularity
and scalability than loosely coupled systems.

3. Computation vs. Commaunication : The introduction of parallelism has

led to problems of communication which did not exist in uniprocessor

systems. In the mult1processor environment, one would expect to gplit
the computation and assign the task modules to dJﬁ'erent processors.

Consequently, the processors need to communicate the results of their

computations. The more complex the task division, the more complex
will be the communication pattern. One has to be more careful not to
degrade the system performance by overwhelming the communication.

8




10241

256

S (Speedup)

16 1

Chapter 1: Introduction

-+—n
[ vinln)
~+ log,(n)
Ideal case
Upperbound |

Lower bound : Minsky's conjecture

T I 1 ] I ! I 1 | I

2 4 8 i6 32 64 128 256 512 1024

Number of processors, n

Fig. 1.4 Various estimates of the speedup of an n-processor system over a

single processor.



Chapter 1: Introduction

There is & trade-off between communication and computation in parallel

systems. Ideally, one would like to reduce the communication overhead

and increase the parallelism by further splitting of the computation. It
is well established that the communication time in 2 multiprocessor
environment can not be neglected. Agerwala [7] has studied the
relationship between communication and computation and concluded
that the reason for decreased performance of present multiprocessor
systems is insufficient emphasis on the role of communication. '

1.2 Application of Multiprocessors in VLSI Design

The rapid deve!opment of mult:processors as well as the fall of their

prices has opened up many new engineering application areas which have -

been suffering from heavy computing demand. One of these new application
areas is VLSI engineering. In recent years, due to the availability of advanced
semiconductor process technologies as well as computer aided design (CAD)
systems coupled with ever increasing drive for higher integration, a tremen-
dous growth in chip density is being observed. Already VLSI chips containing
more than 1 million transistors has been announced [8]. This very high chip
density is forcing an unacceptably long design turn around time. The size and
complexity of the design are the main factors responsible for this. Different
phases of VLSI design is bestowed with rich inherent parallelism. These can
be effectively exploited and their multiprocessor implementation would then
provide a much faster design and verification turn around time.

1.2.1 VLSI Design Processes

Design methodology in the context of VLSI circuits can be defined as a
set of codified techniques that is applicable to the VLSI desig:i process. De-
Sign functions of interest in the VLSI design methodology can be categorised
as follows [9] : | |

1. Chip specification and partitioning;

- 2. Chip design planning and initial implementation;
3. Subcircuit and module synthesis;
4. Simulation at different levels;

10




Chapter 1:

Introduction

Specification
- Algorithms
Simulation

Architecture

l

- |. - Simulation

l |

Coo >

_ Testing

Fabrication

I

Verification

I

Routing

I

Placement

I

Building Blocks

]_

Top-down process

Bottom-up brocess

' Fig. 1.5 The general design processes of a VLSI circuit.

11




Chapter 1: Introduction

5.. IC mask layout;
6. Design verification;
7. Testability in design and product;
8. Test sequence generation;
9. Database management;
10. Design documentation.

The ultimate objective of s'tudyin'g'design methodology is to facilitate
the creation of better designs in less time. The prevalent design methodology
today, and in the foreseeable future, is hierarchical in nature [10], where a
set of universalcifcuits are designed, optimised, and stored in the library of
a CAD system and the library circuits can be repeatedly accessed, modified,
and used as building blocks to construct the desired system.

Figure 1.5 presents the overview of a typical VLSI design process. A
top-down design flow is normally used to decompose the circuit under design
into a network of smaller and simpler functional modules. Once a function
implementation strategy has been established, a bottom-up flow is used to

complete the physical design of the chip.

The design process begins by converting an idea for a VLSI circuit into

. more concrete circuit specifications. An algorithm is developed to perform
- the required operations and a suitable architecture is designed to carry out
~ the chosen algorithm. Simulations are used to verify the correctness and to

estimate the performance of both the algorithm and architecture. After the
architecture of the circuit has been established, the design process enters the
physical layout phase. Copies of the needed building blocks are fetched from
the library, placed in some optimal manner, and interconnected as they will
be on the chip. The layout is then simulated to verify its operatxon and
performance with respect to the desired specxﬁcatlons Finally layout mask
is sent to a sxhcon foundry for fabrication.

1 2.2 Acceleration of VLSI Des1gn Process
~__The szmulatxon and venﬁcat:on phases of the design process of F:g 1.5

e s et

are composed of logic, timing, electrical and fault simulation and also Design
Rule Checking (DRC) enoompassmg physma.l ‘thermal and connectivity

12



(12].




Chapter 1: Introduction

analysis. In league with the Placement and Routing phases, simulation is
one of the most time consuming phases of a VLSI design. Placement and
routing are difficult combinatorial optimisation problems and are known to
be NP-Hard [11). The simulation phase also have vora.c:ous a.ppetlte for
CPU time often taking O(n?) to O(n?) time.

: Several attempts have been made to speed-up the VLSI design process
- [11-19). Two different approaches can be observed. ‘The first approach is
based on the use of dedicated special-purpose hardware device known as
Point Accelerators [13-17). These are usually single processor based special-
purpose unit where the algorithxﬁ is realised in hardware and is attached to
a design workstation. They provide very impressive speed-up factors at low
cost some times upto a factor of 225 for relatively larger circuits [16]. Their
main drawba.ck however is that for smaller circuits the I/0 bandwidth with
the host workstation is too large to give any 91gmﬁca.nt speed improvement
(Fig.1.6). Also, as the algorithm is tied to the hardware, modification and
upgrading becomes very difficult and expensive. Furthermore, they fare very

poorly in integrating with the other phases of the VLSI design process.

The other approach is based on the exploitation of rich inherent par-
allelism present in the design phases and employing genera.l-purpose multi-
processor systems [11,12,18,19]. This approach is becoming more attractive
with the advancement of computer technology as well as with their falling
prices. The design algorithm is almost fully software based. Modification
and upgrading can thus be done very easily and inexpensively. Also, the
same hardware can be used for the rest phases of the design.

1.2.3 VLSI Circuit Simulation

Circuit simulation is one of the most important phases of a VLSI
~ design process. A thorough and detaaled a.na.lys1s of the tentative design
analysis is absolutely necessary before a very expensive fabrication begins.
Design verification of a custom VLSI circuit takes place at a number ‘of
different levels of simulation as the design progresses. These range from logic
simulation (using register-transfer level, gate level, or switch level simulation)

to electrical simulation.




Chapter 1: Introduction

Electrical sii:nuhtion usually provides a detailed and accurate analysis
of a circuit. But is often too slow for simulation of large circuits. Circuit
simulation using direct solutions, as in SPICE [20], is typically a factor of

10* to 10° slower than gate level logic simulation [21]. Several techniques for

improving the speed of simulation have been proposed [17]. These include the
exploitation of circuit latency by integrating only those circuit nodes which
are changing voltages, using tearing techniques for matrix manipulations,
deriving relaxation-based simulators that eliminate matrix decomposition.
These improvements can give a speed-up factor of upto 102, but is still
inadequate for large circuits. |

Switch level simulation, exemplified by RSim [22] and MOSSIM [23],

uses event driven techniques and a'logic level approximation of the network
state. This results a very fast simulation compared to direct electrical
simulation. Although the approximations are valid for many circuits, tﬁey
often fail to produce correct results for many others. Another disadvantage
of switch level simulation is that it typically provides only unit-delay timing
information, or timing information that can have large errors for common
circuits. | - _

Timing simulation is a compromise between direct electrical simulation
and switch level simulation. Compared to direct simulation this provides
much higher performance at the cost of slightly lower accuracy. Also com-
pared to switch level simulation, timing simulation provides better accuracy
with limited analog effects such as rise and fall times, charge and current
sharing and feedback. EMU [24] and MOTIS [25] identifies the regular
use of driver-load gate structures and uses an approximate series-parallel
- formulae. Speed improvement techniques like discretisation of voltage into a
small number of levels, and the calculation of time step for each node. Timing
simulation claims improvements of upto 10® compared to direct electrical
circuit simulation. '

The accuracy of timing simulators can be improved further by decreasing
the size of the time step. But, unfortunately, this increases the simulation
time and for relatively larger circuits this may become very long. Table
1.1 shows the simulation time for four representative circuits ranging from

15




Chapter 1: Introduction

Fig. 1.7 A Computatlona.l Flow Graph (CFG), each node represents a sub-
task to be performed

- 16




Chapler 1: Introduciion

small to medium sizes for different time step when simulated with EMU on

a conventional uniprocessor system.

Table 1.1 Simulation time with EMU for different time steps.

Time Steps | 4x4 Phased Locked 16x16 Vector

_ in Multiplier Loop Multiplier Coder
pico Seconds | (168 Nodes) (167 Nodes) (2577 Nodes) | (1746 Nodes)
100 11.00 Mins, 18.78 Mins, 10.12 Hrs. 10.96 Hrs.
200 8.10 Mins, 15.78 Mins. 7.32 Hrs. 10.00 Hrs.
500 6.93 Mins. 12,77 Mins. 5.84 Hrs. 10.11 Hrs.
1000 6.70 Mins. 12.62 Mins, 5.94 Hrs. 10.13 Hrs.

Further unprovements in simulation time can be achieved by exploiting
the inherent parallelism of a cxrcmt -and then runnmg\the simulationon‘a
multiprocessor. CEMU [24] is a step in that direction. In CEMU the circuit
‘under investigation is pa.rtxtlone_d into a number of regions so that each region
can be simulated independent of each other. Each such region which we
shall call simulation modules, is comiposed of a number of voltage controlled
current sources {e.g. a transistor) connected together to a capacitive node.
The partitioned circuit can then be run on a multiprocessor by assigning each

region or module to each of the processors. However, the performance of the

multiprocessor implementation of the timing simulation is heavily dependent

“on the quality of region or module assignment onto the multiprocessor. An
optimal assignment or scheduling guarantees higher throughput. However,
‘the process of opfima.! scheduling or assignment is itself a difficult combina-
torial optimisation problem for which no polynomial time optimal algorithm
is known to exist [26]. In this dissertation the main theme will be the study
of heuristic parallel multiprocessor scheduling algonthms in the context of
VLSI timing simulation.

1.3 Nfﬁltiprocessor Task Scheduling

The multiprocessor task scheduling problem can be defined as the
process of allocating task modules to processors. The goal is to minimise the

17




Chapter 1: Introduction

parallel execution time. The parallel execution time depends on processor
ut1hsa.t10n and on the overhead of interprocessor communication.

List scheduling algorithms [27] have been found to be quite successful for
general task scheduling problems when communication overhead is ignored.
They have linear time characteristics with a constant performance bound of
2 [28], meaning that the maximum execution time for a particular schedule
generated By the list scheduling algorithm is twice that of the optimal paralle] -
execution time.

Unfortunately, the scheduling problems become more difficult when
communication overhead with arbitrary data sizes are considered. Even
quite simple instances of the scheduling problems are often intractable. For
example, let us consider the Computation Flow Graph (CFG) as illustrated
in Fig.1.7. We are given a set of seven task modules with the direction of
flow of information highlighted by the edges of the graph. Furthermore,
the execution time needed by each task module is fixed and known in
advance. Three processors are available. Scheduling the task modules onto

" the processors to minimise the time needed to complete all the task modules

_is an NP-Hard problem, meaning that it is unlikely that a polynomial time
algorithm exits that can always find an optimal schedule, given an arbitrary
CFG. Therefore, in general, we must resort to a approximate scheduling
algorithm that gives a near optimal schedule in acceptable polynomial time.

The term task allocation is often used to describe task scheduling
problems. These are almost synonymous terms with the former being posed
in terms of resource allocation (from the resources’ i.e. processors, memory
etc. view point) and the latter from the consumer’s view point. Task
assignment is also used as an alternate term for task scheduling.

1.4 Outline of the Dissertation
The rest of the disseration is organised as follows ;

- Chapter 2 starts with a proof of the NP-Completeness of the multi-
processor task scheduling problem. An overview of the scheduling problems

and different approaches taken in solving these problems are then presented.




' Chﬁptcr 1: Introduction

Section 2.4 briefly describes the available heuristic techniques and finally a
summary of the contributions made by this dissertation are presented.

Chapter 3 describes The Graph Model, used to represnt the concurrent
VLSI simulation system and it’s scheduling onto a multiprocessor. It also
presents a cost assignment for the task system considered — communication
and computation costs are discussed in this respect. A generic multprocessor
system is considered. This chapter also contains detailed data structure and
various primitives used throughout. |

Chapter 4 describes the modified Kernighan-Lin graph partitioning
algorithm and it’s parallel implementation. A hierarchical partitioning
.strategy is adopted. Various aspects of the it’s implementation are also
' d1scussed | — | - '

E The Slmulated Annealmg (54) a,lgonthm is’ mtroduced in chapter 5. An -

1mplementatxon suitable for graph partmomng is used. Two different tem-

perature schedules are used and their performances are compared.

Chapter 6 starts with a review of parallel SA algorithms in existence
and describes the problems relating to their implementation. The Concurrent
- Simulated Annealing (CSA) algorithm is proposed here and some implemen-
tations are suggested. Simulation results are also presented and an overall

performance comparison is made.

Chapter 7 wraps up with some general discussion and concluding
remarks. Some suggestions for future work are also made.

Appendix A contains the data and stat1st1cs for the various data flow
: graphs used throughout.

Append1x B contains proof of a corollary used in chapter 5.

19




‘Chapter 1: Iniroduction

References :

1.

10.

11.

12,

13.

14.

15.

Gurd, J.R., Kirkham, C.C. and Watson, 1., The Manchester Proto-type
Data Flow Computer, Comm. of ACM, 28(1), Jan 1985.

Flynn, M.J., Very High-Speed Computing Systems, Proc. IEEE, Vol.
54. No. 12, Dec 1966, pp. 1901-1909.

Kuck, D.J., The Structure of Computers and Computations, John

‘Wiley, 1978.

Héndler, W., The Impact of Cla.ss:ﬁcatjon Schemes on Computer
Architecture, Proc. 1977 Intl. Conf. Parallel Processmg, IEEE, August
1977, pp. 7-15.

Quinn, M.J., Designing Efficient Algorithms for Paralle! Processing,
McGraw- Hill Book Co., 1987. :

Hwang, K. and Briggs, F.A., Computer Architecture and Parallel
Processing, McGraw-Hill Book Co., 1985.

. Agerwala, T., Communication, Computati'oﬁ and Computer architec- ..

ture, in Proc. Intl. Comm. Conf., June 1977, pp. 209-215. _
Perry, T.S., Intel’s Secret is Qut, IEEE Spectrum, Vol. 26, No. 4, April
1989, pp. 22-28. '

. David, M.E. and Gwyn,CW CAD Systems for IC Design, IEEE

Trans. CAD, Vol. CAD-1, No. 1, Jan 1982, pp. 2-12.

Wallich, P., The One-Month Chip Design, IEEE Spectrum, Vol. 21,
No. 9, Sept. 1984, pp. 30-34.

Kravitz, S.A., Multiprocessor Based Placement by Simulated Anneal-
ing, M.Sc. Thesis, Carnegie-Mellon Univ., USA, 1986.

Ambler, A.P., An Overview of CAD Acceleration, IEE Colloquium :
Hardware Accelerators for VLSI CAD — A Tutorial,’ Sept. 1988.
Schmid, R. and Ba.tinger, U., A Hardware Accelerator to Support Ef-
fective Chip Floorplanning, Intl Workshop on Hardware Accelerators,
Oxford, England, 1987. |

Bayer, J., Application of a Pipelined Processor for Fast and Econo:mc
Design Rule Checking and Circuit Routing, Intl. Workshop or Hard-
ware Accelerators, Oxford, England, 1987.

Sieler, S.D., A Hardware Assisted Methodology for VLSI Desxgn RuIe
Checking, Ph.D. Thesis, MIT, USA, 1985.

20




16.

17,
18.
19.
- 20.
21.

22,
23.

24,
25.
26.

27.

28,

Chapter 1: Introduction

Blank, T., A Survey of Hardware Accelerators Used in Cbmputei‘ Aided
Design, IEEE Design & Test, Vol. 1, No. 3, Aug 1984,

Lewis, D.L., Hardware Accelerators for Timing Simulation of VLSI .

Digital Circuits, IEEE Trans. CAD, Vol. CAD-7, No. 11, Nov 1986,
pp. 1134-1149,

Deutsch, J.T. and Newton A.R., A Multiprocessor Implementation
of Relaxation Based Electrical Circuit Simulation, ACM-IEEE Design
Automation Conf., USA, June 1984, ' | '
Coleman, N. and Ambler, A.P., A Multiprocessor for General VLSI
design Acceleration, Intl. Workshop on Hardware Acceleratoré, Oxford,
England, 1987.

Vladimirescu, A. and Lui, S., The Smmlatxon of MOS' Integrated
Circuits Under SPICE2, Elec. Research Lab., Univ. of Calif. Berkley,
USA, ERL Memo M80/7, 1980.

Kleckner, J.E., Saleh, R.A. and Newton, A.R., Electrical Consistency
in Schematic Simulation, in Proc. IEEE Conf. on Computer Aided
Design, Nov 1984. ‘
Terman, C.J., Simulation Tools for ngxta.l LSI Design, Lab. for
Computer Science, MIT, USA, Tech. Rept. MIT/LCS/304.

Bryant, R.A., A Switch-Level Model and Simulation for MOS Digital
Systems, Calif. Inst. of Tech., USA, tech. Rept. 5065:TR:93, 1983.
Ackland, B.D., Ahuja, S.R., Linstrom, T.L. and Romero, D.J., CEMU
— A Concurrent Timing Sih:ulator, in Proc. IEEE Intl. Conf.
Computer Aided Design, 1985.

Chawla, B.R., Gummel, HK. and Kozak, P., MOTIS — A MOS
Timing Simulator, IEEE_Trans. Circuits & Syst., Vol. 22, No. 12,
Dec 1975, pp. 751-756.

Garey, M.R. and Johnson, D.S., Computers and Intractabzhty A
Guide to the Theory Of NP-Completeness, Freeman, San Fransisco,
USA, 1979. |

Helrnbold D.P., Parallel Algontbms for Scbedu]mg and Related Prob-
lems, Ph.D. Thesis, Stanford Univ., USA, 1987.

Graham, R.L., Bounds on Multiprocessor Timing Anomalies, SIAM J.
of App. Math., 17(2), March 1969.

21




CHAPTER 2

The Task Scheduling Problem

Scheduling problems are combinatorial optimisation problems, Each instance
consists of task modules to be scheduled on a certain number of processors.
The solution is a schedule indicating when and where each task module is
- to be executed. A schedule of task modules to processors can formally be
described by a function from the set of task modules to the set of processors,
f:T ~ n. In asystem of T task modules and n processors there are n7
possible schedules of tasks to processors. The difficulty, is therefore, to pick
out an optimal schedule from the exponentially many different possibilities.
A performance criterion in the form of a function is thus used to compare
the nT possible schedules and to associate a cost with each schedule. An
optimal schedule is one which minimises the cost function.

22




Chapter 2: The Task Scheduling Problem

2.1 Complexity of Task Scheduling Algorithms
The complexity of an algorithm can be given by a function f: IN — IN

(where IN is the set of all natural numbers), which characterises the execution -

time of the algorithm in terms of the size of its input. Algorithmic charac-
terisation of f(-) (i.e., constant, logarithmic, linear, polynomial, exponential
etc.) are used to identify the complexity of the associated algorithm.
Let, P be the set of all problems = for which there exists a deterministic
polynomial time algorithm to solve the problem #. Likewise, let NP be the
set of all problems which have non-deterministic polynomial time algorithmic
solutions. The term, .NP-Complete is used to describe probléms that are the

hardest ones in NP. A problem = is said to be NP;Complete ifi) r € NP, |

and furthermore ii)' 7 € P implying P= NP. Since, it is widely believed that
P+ NP, a proof that a problem = is NP-Complete is equivalent to showing
" that 7 can not be solved efficiently and that probably the best deterministic
algorithm to solve « is at least of exponential time complexity. NP-Complete
problems are posed in the form of a decision problem and the corresponding
‘optimisation problem is know to be in the class of NP-Hard problems.

Vairavan and DeMillo [1] using & synchronous parallel computation
model showed that any algorithm designed to generate an optimal n-
“processor (n fixed) schedule of a loop free computer program, when such
a schedule exists, would demand exponential time. We here also present a
proof of the NP-Completeﬁess of the multiprocessor task scheduling problem
using thereducibility property of NP-Complete problems. This is a two part
proof, where in Part I v}e show that the problem is in NP. In the second
part, the scheduling problem is shown to be polynomially transformable to
a quadratic assignment problem which is NP-Complete.

Theorem (2.1). The above mentioned multiprocessor task scheduling prob-
lem is NP-Complete, |

Proof :
PartI:

We consider a non-deterministic Turing machine (NDTM). The
NDTM would make a first guess at picking a processing element (PE)

23




Chapter 2: Thé Task Scheduling Problem

" out of n such PEs and assign it to the first node of the task graph. In
the next step another PE would be selected for allocation. This process
‘would continue until all the nodes of the task graph are allocated. A
guess should be such that the communication overhead of the resulting
‘schedule is minimised and computational loads are evenly balanced
among the PEs. This would take O(n) time on the NDTM, which
proves that the problem is in NP.

Part I :
We define an assignment matrix X[T,n] with components,

o)1 if task ¢ is assugned to PE ¢, ' |
Fig = {0 ; Otherwise. (21)
Then,
Y ozig=1; 1<i<T, (2.2)
=1 ' .

 since each task must be assigned to exactly one processor. Also, for
cases T > n, each processor can have more than one task assigned to it.

_Therefore,

T .
Y zig20 5 1<¢<n (2.3)
i=1 ) '

We now define,
ij = Amoun_t of data | transfer from node { to node j of the task graph.

| Wig = computatlona.l load of ‘node i of the task ‘graph on preessor q

It can be easily seen from the above that the tqtal_commumcat:on
cost may now be expressed as,

Z E €ij Tig Tiry ' (2‘.4)

fj=1 g ,r=l
i - gedr

and the total execution cost, .

l C’e = max {Ew.q:c.q} : (2.5)

| g=1en | =1 ‘

24




Chaj)ter 2: The Task Scheduling Problem

Therefore, the scheduling problém is transformed to the following
~ optimisation problem, '

- minimise{a|Cc| + B|C.|} (2.6)
subject to,
Ymg=1; 1Zi<T, 2.1
g=1 |
and
T o
Y 720 ; 1<g<n (2.8)

: i=1 .
This is equivalent to a quadi‘a.tic assignment problem. Since, the -
quadratic assignment problem is NP-Complete[2,3], the present mul-
tiprocessor task scheduling problem is also NP-Complete.
' Q.E.D.

2.1.1 Paralle] Algorithms.

The major driving force behind the research and development of parallel
computers is to speed-up the solution process of difficult algorithmic prob-
lems. But, surely an undecidable problem can not be solved by a parallel
computer no matter how large or complex it is. The reason being that every
pa.rallel computer can be simulated by a sequential processor, running around
and doing every processor’s work in an appropriate order. In this sense, the
Church/Turing thesis also applies to parallel models of computation too: the .
class of solvable problems is insensitive even to the addition of parallelism.

But, can parallelism turn intractable problems into tractable ones? In
other words, is it possible to have a polynomial time algorithm for a problem
having exponential time sequenfial solution? To answer this, we recall that
all problems in NP have reasonable (polynomial) solutions that are non-
deterministic. If a correct guess is made out of a large possibilities, it
would lead to a positive solution. Now, if we have an unlimited number
of processors, we can employ each processor to explore each possibility, If
one of the processors finds a correct solution then indeed a polynomial time

25




Chapter 2: The Task Scheduling Problem

parallel solution exists. On the other hand, if none of the processors find a
solution then the problem can be thought of as truly intractable.

It is, therefore, seen that reasonable parallel solutions for intractable
problems are theoretically feasible. But, in reality many practical problems
exist. NP-Complete problems are not known to be intractable — they
are merely conjectured to be so. Thus, the possibility of simulating NP-

Complete problems in parallel in polynomial time does not izripl_y ‘that

parallelism can get rid of a problem of its inherent intractibility, since we do
not know whether or not NP-Complete problems are actually intractable.
Furthermore, the number of processors required to solve an NP—Cornplete
- problem in reasonable time is itself exponential, requiring billions or trillions
of processors in some cases. Even, if it is possible to have that many
processors in a multiprocessor system with the advent of technology, the
communication overhead would be too large to cope with. The algorithm to
control the communication links and channels would also be of exponential
complexity. With all this overhead, a super-polynomial number of processors
would require a super-polynomial amount of real time to carry out even
a polynomial number of instructions. In practical terms, therefore, it 1s
not possible to have a reasonable parallel counterpart for an unreasonable
(exponential) sequential algorithmic solution.

Nonetheless, a practical multiprocessor system, both coarse and fine
grained, are of immense importance for many real world applications. In
many cases an almost linear speed-up is possible. Again, for the solution of

difficult NP-Complete problems, a heuristic algorithm can be chosen overan -

exact algorithm, which when properly implemented on a parallel machine,
would give reasonably good solution within a time of practical value.

2.2 Classification of Task Scheduling Algorithms

The multiprocessor task scheduling problem bears a close resemblance
to the classical jo_b'sequencing problems as encountered in production man-
agement. These types of problems have been described a number of times and
in a number of different ways in the literature [1,4-6] . In this classification,
however, we take a slightly different view and concentrate on the mechanism

or policy of efficient and effective management of the access to and on the

26




XA

Task scheduling problem

PN

Optimal Sub-optimal

Static Dynamic :
Distributed | Non-distributed

N\

e [

Approximate Heuristic

Co-operative Non-cooperativ

o

Constructive

Iterative
Improvement

<

Optimal Sub-optimal

Enumeration | | Graph Queing

Theoretic{| Theoretic

Math.
Programming

'Adaptive vs. Non- adaptive

P

Approximate Heuristic

Load Balancing vs. Minimum Interprocessor ‘Communication (IMC)

Policy Mechanlsm vs. Bidding

Fig. 2.1 Classification of different task scheduling approaches

wWalqod g burnpIyog Yo YL g 43140Y)




Chapter 2: The Task Scheduling Problem

use of various resources by its various consumers. Obviously, in this scenario, |
the processors form part of the resources and the program tasks constitute
the consumers waiting to be executed on the processors.

In this short classification, the goal here is to familiarise with a com-
monly accepted set of terms and also to present a means to compare past
works in the area of multiprocessor task (or distributed process) schedulingin

a qualitative way. A hierarchical classification proceeds first, to be followed
| by a flat classification scheme which is felt necessary as some choices of
characteristics may be made independent of previous design choices and thus
require different attention. The classification tree is presented in Fig. 2.1.
This classification however does not take into consideration the different
possible strategies for the parallelisation of the scheduling algorithms itself.
In the following sections we ’present some of the selected and pertinent
categories of the classification tree. The selected classification presented
here is based on Casavant and Kuhl’s taxonomy [7] which can be consulted
for detailed study.

2.2.1 Static vs. Dynamic Scheduling

In the case of static scheduling also known as deterministic scheduling
[4], the task modules are preassigned to the processors before the execution
actually begins. Hence, each executable task in a system has a static
assignment to a particular processor, and each time that task is submitted
for execution, it is assigned to that same processor, Static scheduling can
be successful only when & priori knowledge of the execution behaviour of
the tasks is available, This includes the input-output profile as well as the
computational load of each task. Static scheduling is attractive because
it eliminates scheduling overhead entirely at run time. Fi_uther, there is
a greater opportunity to optimise the interprocessor communication. The
disadvantage is that the execution behaviour estimate may be inaccurate
leading .to inefficient schedule and that also static schedule is tied to a
particular hardware configuration and a new schedule is thus necessary every
time there is a change in hardware architecture or topology.

On the other hand, in the case of dynamic scheduling the assignment
of tasks to processors is left till the run time. The assignment procedure

28




Chapter 2: The Task Sckedul:;ng‘Problem

takes place dynamically along with the actual processing of the tasks. This
leads to a heavy run time scheduling problem. Nevertheless, this approach
is favoured when execution behaviour of the tasks is not available or difficult
to ascertain. Dynamic scheduling can again be grouped into distributed and
non-distributed (or centralised) scheduling. As the names suggest, in the case
of non-distributed scheduling the task of global dynamic scheduling should
reside in a single processor and in the other case it is physically distributed

among the processors.

2.2.2 Optimal vs. Sub-optimal Scheduling

In some cases of multiprocessor task scheduling, where all the informa-
tion regarding the state of the system as well as the execution behaviour
of the tasks are known, an optimal assignment is feasible [6, 8-9). These
optimal assignments are based on some simple criterion functions and results
of their appropriate optimisations. Examples include minimising total
process completion time, maximising utili_sdtion of resources in the system, or
maximising system throughput. In the event that a more robust and accurate
criterion function is used resulting the solution computationally infeasible,

sub-optimal solutions may be more desired [10-11]. As shown in section 2.5 -

an optimal solution for the multiprocessor task scheduling problem is very
difficult to achieve and as such a sub-optimal solution is more realistic and
desirable.

2.2.3 Approximate vs. Heuristic Solutions

In the approximate method, use of the s‘am§ computationﬁl model for
the algorithm is used. However, instead of searching the whole solution
space which is deemed very time expensive, search is stopped when a good
solution is found. This is taken as the sub-optimal approzimate solution.
The difficulty, however, arises in the determination of a good solution. In
the cases where a metric is available for evaluating a solution, this technique

“can be used to decrease the time taken to find an acceptable solution.

Heuristic methods are favoured for the solution of many combinatoz_'i_al
optimisation problems due to its ability to provide near-optimal solutions

29




C’hapte.r 2: The Task Scheduling Problem

in reasonable time. Different heuristic scheduling algorithms have been
proposed [5, 10-14]. This method is best suited when a good and realistic
assumption about a priori knowledge concerning the execution behaviour of
the tasks can be made. Heuristic schedules often use an indirect rather than
direct approach to monitor the system performance and this indirect ap-
proach is much s_impler to implement_ and calculate. For example, clustering
of tasks [5] can be employed so that heavily communicating tasks are grouped
together and assigned to the same processor and also physically sepaa:ating
* the tasks which would benefit from parallelism. This directly decreases the
overhead involved in passing information between processors while reducing
~ the interference among tasks which may run without synchronisation with
one another. o '

'2.2.4 Load Balancing

Load balancing has received a great deal of attention [14-17]. This is
more of & design choice than a separate algorithmic approach and as such
placed under the flat classification in the classification tree of‘Fig. 2.1. This .
brings fairness to the hardware resource utilisation. The basic idea is to
attempt to balance (in some sense) the load on all processors in such a way
as to allow progress by all tasks on all processing elements to proceed at
approximately the same rate. This approach is best suited for homogeneous
multiprocessor system since this allows all processors to know a great deal
about the structure of the other processors.

Incorporation of load balancing criterion in the cost function of a
heuristic algorithm is very important and brings highér processor utilisation.
A heuristic algorithm which minimises the interprocessor communication in
a schedule totally ignoring load balancing, would assign all the tasks to a
single processor as the communication overhead between tasks assigned to
the same processor is considered negligibly small. As a result the schedule
though an optimal one for the criterion considered would be taken as highly

inefficient.




Chapter 2: The Task Scheduling Problem

2.3 Optimal and Sub-optimal Approximate
Techniques |

For both optimal and Sub-optima_l approximate solutions of static mul-
tiprocessor scheduling there are four basic categories of algorithms that can
be used. These are described in the following sub-sections :

2.3.1 Solution Space Enumeration and Search

A compiete enumeration and search for the optimal solution can be vefy
time'expénsive and of exponential time complexity. However, the problem
~ can be transformed into a simpler one and state-space search can then be
used to arrive at an optimal or acceptable sub-optimal solution. Shen and
Tsai {9] restated the problem as weak homomorphic graph matching problem
and used the A* algorithm after collecting relevant heuristic informations for
an optimai solution. |

2.3.2 Graph Theoretic

In graph theoretic approach the scheduling problem is modelled as a
network with undirected edges and an attempt is then made to find the
maximum flow across a cut, resulting in an optimal solution. Stone [18]
used Ford-Fulkerson’s Maz Flow Min Cut [19) algorithm to find an optimal
schedule. However, his algorithm is applicable for 2-processor systems only.
Stone and Bokhari [20] used this idea for n-processor homo/heterogeneous
systems. However, this works only when the intertask communication
pattern is constrained to be tree structured. Lo [10] also proposed a three
stage ﬂgoﬁthm composed of graph theoretic and heuristic method for a near
optimal n-procéssor schedule. The two main drawbacks of graph theoretic
approach is its lack of mechanism to accommodate load balancing and to

_incorporate various resource constraints into the model.

'2.3.3 Mathematical Programming

" Various mathematical programming techniques like branch-and-bound,
backtracking, 0-1 integer programming etc. can be successfully applied
to solve multiprocessor scheduling problems. Chu [21] used 0-1 integer

31




. Chapter 8: The Task Scheduling Problem

programming technique for optimal file allocation in a multiprocessor system

‘which bears close resemblance to our problem in hand. Ma et. al [6] used
branch-and-bound m_ethod to minimise the interprocessor communication
and also for balanced processor utilisation. Kasahara and Narita [22] used
a combination of branch-and-bound and critical path methods. Though
mathematical programming techniques‘ are flexible enough to incorporate
many system constraints, they are still of exponential time complexity. These
techniques can be used in some cases, but their generalisation is reduced by
their demand for large time and space. '

2.3.4 Queing Theoretic |

Queing theory can also be applied for the solution of multiprocessor
scheduﬁng problems [15, 19]. Klinrock and Nilsson [23] considerd a M/G/1
- queing system model. Their cost function is based on task waiting time
and their required service time. The problem is posed as an optimisation
problem and mathematical programming technique is used to optimise the
total cost. However, the solution is found to be sub-optimal. Generalisation
for a n-processor model is also found difficult.

2.4 Heuristic Technique

Heuristic algorithms by their very nature can adopt many different
possible approaches. However, for the multiprocessor task scheduling and
also for many other similar combinatorial optimisation problems a simple
- classification can be attempted. Two different basic approaches can be
thought of., These are:

1. Constructive Method
2. Iterative Improvement Method.

2.4.1 Constructive Method

The constructive scheduling algorithm begins with the assignment of one
or a few seed task modules and then gradually builds up the total schedule by
assigning a new free task module in succession each to a processor, always
taking the best momentary decision for any particular assignment. The

32




Chapter 8: The Task Scheduling Problem

approach is however greedy in nature as the decision at each instant is based
" on the current effect and not on the global effect. As a result the resultmg
~ solution often turns out to be rather inferior. ‘

Still, there are many combinatorial optimisation problems where greedy
constructive algorithms can be used to produce good solutions with high
probability. For many such problems an exhaustive search is far too imprac-
tical and in the absence of other fast heuristic algorithms, greedy constructive
algorithms are the only realand wise choice. One classical example is for the
solution of Travelling Salesman Problem (TSP), where greedy constructive
algorithms have been found very effective. For the multiprocessor task
scheduling problem a good use of the constructive algorithm can be made
whereby heavily connected task modules are grouped together and assigned
to the same processor, This would hel;i to minimise the communication cost

component of the objective function.

2.4.2 Iterative Improvement Method

The iterative improvement method is of special interest in this disser-
tation. As mentioned earlier, the task scheduling problem falls into the
class of combinatorial optimisation problems involving large solution space.
Though’, theoretically it is possible to find the best solution by generating
and evaluating all possible solutions, in practical terms it turns out to be
an impossible task due to the exponential growth of complete enumeration
algorithms.

Heuristic algorithms provide much promise to find a good solution
in reasonable time. Due to the greedy nature, the constructive heuristic
algorithms often fail to keep ﬁp to this promise. The iterative improvement
~ method is a viable alternatwe which can be thought of made up of two

pha.ses

For the solution of task scheduling problem, an initial schedule is
generated in the first phase either by a constructive algorithm or by random
method. This initial schedule is then iteratively improved in the second

phase. A new schedule is generated at each step by introducing some




Cost

Chapter 2 The Task Scheduling Problem

Global Minima

Schedule (Configuration)

Fig. 2.2 The local minima traps of a cost function.

34



Chapter 8: The Task Scheduling Problem

modifications to the present schedule (configuration). The modifications
that can be made are :

- 1. Changing the assignment of a task module to a new processor.
2. Swapping the assignments of two task modules.

A cost (objective) function is defined to guide the heuristic search in a

direction that will improve the schedule. If the cost of a new schedule is-
lower than that of the previous one, the new one is accepted and further

modifications are inflicted upon it. Otherwise, if the cost is increased

in the new schedule, it is rejected and the previous one is retained for

. further modifications. The iterative improvement process is continued until

" no further improvement can be obtained or any other predefined stopping .
criterion is satisfied. |

2.5 Local Minima and Optimal Solution

- Most heuristic algorithms search for a solution only in the direction
that improve the cost functions. One inherent drawback of this type of
heuristic search is that it can be easily trapped into a local minimia of the
cost function. The example presented in Fig. 2.2 is used to demonstrate this
problem; -

The curve in Fig. 2.2 may be considered as the cost function of an
iterative improvement process and the circles can be used to indicate the
costs of certain schedules. Since a new schedule is generated by introducing
small modifications to the present schedule; its corresponding location on
the curve is most likely to be somewhere near that of the presnt st:hedulé.
The traditional iterative improvement algorithm only accepts schedules that
have reduced the cost. This 'criterion_ of schedule accéptance implies that the
process can only go downhill into & local minima and any uphill movement
is forbidden. Thus, the search ‘process can not chmb over the peak of the
curve to reach the global minima.

Different alogorithmic solutions have so far been proposed [24-26] that
gives a certain degree of hill climbing capability to the basic iterative
improvement heuristics. This ensures a good near optimal solution for NP-
Hard problems. As an illustration we here present a brief introduction of the

35




Chapter £: The Task Scf;eduh'ng Problem

Accepted with probability Accepted B ' )
exp(-ACT) "| Unconditionally
A ~ A

Cost

Global Minima

Schedule (Configuration)

Fig. 2.3 The hill climbing capability of simulated annealing algorithm.

36




Chapter 2: The Task Scheduling Problem

Simulated Anncdling [24] algorithm which is recently being successfully used
for the solution of many difficult problems including network partitioning,
VLSI cell placement, numerical problems using Monte-Ca.rlo method as well
as task scheduling problem. An analogy is made with the statistical mechan-
ics which deals with the behaviour of systems with many degrees of freedom
in thermal equilibrium at a finite temperature, to combinatorial optimisation
which finds the minimum of a given function depe_ﬁdihg on many parameters.
Simulated annealing brings minor but, vital modification to the traditional
iterative improvement method. Instead of rejecting outright a new schedule
(or conﬁguration in genéral case) which results in an increase in the cost
function (AC), the modified algorithm accepts this new configuration with
a certain probability, :
FPisy = e(—8Cspl/t . : (2.9)

where S; represents a certain configuration at any instant i.

This conditional probability is dictated by the Maxwell-Boltzmann
statistics of statistical physics. The parameter ¢, an analog of temperature
in the physical process is & very important control parametei'. This control
parameter t, also known as temperature, is slowly reduced from an initial
" high value to a final very low value, where the solution is thought to be
“frozen (converged). A conﬁghration has a high probability of being accepted

at high temperature for the same cost increase. On the other hand, when
the temperature is lowered, the probability of accepting a cost increasing
configuration is smaller. This is equivalent to high hill climbing capability at
the initial high temperature which is hecéssa.ry to explore the overall solution
space as much as possible without being trapped into a local minima. A slow
reduction to a very low temperatufe over a good number of steps, ensures
the configuration to settle down either to the global minima or somewhere
very near to it. Fig. 2.3 shows the effect of simulated annealing algorithm.

2.6 Contribution of this Dissertation

Static scheduling is favoured over dynamic scheduling. The main reason
being that a detailed a priori knowledge about the execution and input-
output behaviour of the VLSI simulation modules can be easily obtained.

37




Chapter 2: The Task Scheduh’ﬁg Problem

Apart from this, in & typical VLSI design, the same circuit may have to be
simulated a few times, each time with a new set of parameters to test all
the possible eventualities. The cumulative scheduling overhead of dynamic
scheduling would be much too high to render this almost impractical.

'The item that is conspicuously absent from the classification tree of Fig.
2.1 is the distributed static scheduling algorithm and its siblings. A parallel
or distributed static scheduling algorithm is much desired for practical appli-
cations. Apart from the obvious speed-up advantage, a parallel scheduling
algorithm would definitely improve the machine utilisation of the available
hardware system. In the VLSI design environment the same hardware
can then be used for a variety of purposes including electrical/logic/timing
szmu]atxon, floor pla.n design, wire routing, fault analys1s ete.

Unfortunately not much research has been addressed to the problem
of paralle! static scheduling algorithm, although some research into parallel
heuristic algorithm for the VLSI cell placement problem has been reported
[27-29]). The VLSI cell placement problem bears a close similarity with
the multiprocessor task scheduﬁng algorithm. In this dissertation, the main
theme is concentrated on the design and performance study of various parallel
heuristic task scheduling algorithms. In addressing the general problem
of paralle]l task scheduling this dissertation makes the following specific .
contributions :

1. The definition of a problem and system independent graph represen-
tation of the simulation task, With appropriate modification this can
be used to represent pa.rallel programs waiting to be executed on a -
multiprocessor.

2. The definition of a cost model for the task assignment. This model
is general and flexible enough to represent a wide range of VLSI
simulation problems and also different multiprocessor architecture.

3. The scheme for the incorporation of both execution and communica-
tion load on the target system.

38




" Chapter 2: The Task Scheduling Problem

* 4. Use of simple hierarchical partitioning met_hod which can be easily im-

~ plemented in a parallel environment. This, coupled with Kernighan-

~ Lin's 2-way partitioning algorithm [25] has been found to be favourable
for smaller multiprocessor system.

5. vAV parallel implementation of the simulated annealing heuristic with ‘
optimal 'numb_er of parallel moves. this is thought to achieve faster |
convergence than other similar approach. . ' |

39




C;'hapter 9: The Task Scheduling Problem

References :

1.

Vairavan, K. and DeMillo, R.A., On the Computat:onal Complexity of
Generalised Scheduling Problem, IEEE Tra.ns Comp., Vol. 2-25, No.
11, Nov, 1976, pp. 1067-1073.

Garey, M.R. and Johnson, D.S., Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman Press, 1979.
Sahni, S. and Gonzalez, T., P-Complete Approximation Problems, J.
ACM, Vol. 23, March 1976, pp. 555-565.

Gonzalez, Deterministic Processor Scheduling, ACM Computing Sur-
veys, Vol. 9, No. 3, Sept. 1979, pp. 173-204.

Chu, W.W.,, Holloway, L.T., Lan, M. and Efe, K., Task Scheduling in
Distributed Data Processmg, Computer, Vol. 13, No. 11, Nov 1980,
pp. 97-67.

Ma, P.R., Lee, E.Y.S. and Tsuchiya, M. , A Task AHocat:on Model for
Distributed Computing Systems, IEEE Trans. Comp., Vol. C-31, No.

- 1, Jan. 1982, pp.41-47.

10.
11,

12,

. Casavant, T.L. and Kuhl, J.G., A Taxonomy of Scheduling in General

Purpose Distributed Computing Systems, Tech. Report, Dept. Elect.
& Comp. Engg., Univ. of lowa, 1986.

. Bokhari, S.H., A Shortest Tree Algorithm for Optimum Assignment

Across Space and Time in a Distributed Processor Systems, IEEE
Trans. Soft. Engg., Vol. SE-7, No. 6, Nov, 1983, pp. 335-341.

Shen, C. and Tsai, W., A Graph Matching Approach to Optimal
Task Assignment in Distributed Computing System; Using a MinMax
Criterion, IEEE Trans. Comp., Vol. C-34, No. 3, March 1985, pp.
197-203. - | |
Lo, V., Task Assignment in Distributed Systems, Ph.D. Thesis, Univ.
of Illinois at Urbana-Champaign, 1985. | -

Efe, K., Heuristic Models for Task Scheduling in Distributed Systems, - |

Computer, Vol. 15, June 1982, pp. 50-56.
Ward, M.O. and Romeo, D.J., Assigning Parallel Executable Intercon-
necting Subtasks to Processors, 1984 Intl. Conf. Parallel Proc. Aug.

.1984, pp. 392-394.

40



Chapter 2: The Task Scheduling Problem

13.

14,

13,

16.

17.

18.
19.
20.
21,

22,

23.
24,
25.

26.

Ibrra, O.H. and Kim, C.E., Heuristic Algorithms for Scheduling Inde-
pendent Tasks on Nonidentical Processors, J. ACM, Vol. 24, No.-
April 1979, pp. 280-289.
Sheild, J., Pa.rtxt:omng Concurrent VLSI Simulation Programs onto a
Multiprocessor by Simulated Annealing, IEE Proc., Vol. 134, Pt. E,
No. 1, Jan 1987, pp. 24-30.
Chow, T.C.K. and Abraham, T.A., Load .Bala.nmng in Distributed
Systems, IEEE Trans. Soft. Engg., Vol. SE-8, No. 4, july 1982,
pp. 401-417.
Chow, Y.C. and Kohler, W H., ModeIs for Dynamic Load Balancing in
a Heterogeneous Multiple Processor System, IEEE Trans. Comp., Vol.
C-28, No. 5, May 1979, pp. 354-361.
Ni, L.M. and Hwang, K., Optimal Load BaJa.ncmg in a Multiple
Processor System with Many Job classes, IEEE Trans. Soft. Engg.,
Vol. SE-11, No. 5, May 1985, pp. 491-496.
Stone, H., Multiprocessor Scheduling With the Aid of Network Flow
Algorithms, IEEE Trans, Soft. Engg., Vol. SE-3, Jan 1977, pp. 85-93.
Ford, L.R. and Fulkerson, D.R., Flows in Networks, Princeton Univ.
Press, N.J., USA, 1962. |
Stone, H. and Bokhari, S.H., Control of DJStnbuted Processes, Com-
puter, Vol. 11, July 1978; PpP- 97-106. ‘
Chu, W.W., Optimal File Allocation i in Multiple Computing Systems,
IEEE Trans. Comp., Vol. C-18, No. 10, Oct. 1969, pp. 885-889.
Kasahara, H. and Narita, S., Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing, IEEE Trans. Comp .y Vol.
C-33, No. 11, Nov. 1984, pp. 1025-1029.
Klinrock, L. and Nilsson, A., On Optimal Scheduling Algorithms for
Time-shared Systems, J. ACM, Vol. 28, No. 3, July 1981, pp. 477-486.
Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by Simu-
lated Annealing, Science, Vol. 220, No. 4598, May 1983, pp. 671-680.
Kernighan, B.W. and Lin, S., A heuristic procedure for partitioning
graphs, Bell Syst, Tech. J., 1970, pp. 291-307.
Holland, J.H., Adaptation in Natural and Artificial Systems, Univ, of
Michigan Press, Ann Arbor, Mi, USA, 1975.

41




Chapier 2: The Ta.sk Sc‘heduling Problem

27. Casotto, A., Romeo, F. and Sangiovanni-Vincentelli, A.A., A Paralle!

Annealing Algorithm for the Placement of Macro Cells, IEEE Trans.
CAD, Vol. CAD-6, No. 5, Sept. 1987, pp. 838-847. .

28. Darema, D., Kirkpatrick, S. and Norton, Parallel Algorithms for Chip -

" Placement by Simulated Annealing, IBM J Res., Vol. 31, No. 3, May
1987, pp. 391-402.
29. Kravitz, S.A., Multiprocessor Based Placement by Simulated Anneal-
~ ing, M.Sc. Thesis, Carnegie-Mellon Univ., 1986,

42




CHAPTER 3

The Graph Model

This chapter describes the graphical model used to represent the concurrent
VLSI time simulation systems. Also described are the formulations of
the cost function for the scheduling of these simulation systéms onto a
multiprocessor. The method of calculating the communication and load
_imbalance costs of a particular schedule is also discussed.

The scheduling techniques described later are based on estimates of the
VLSI simulation system’s performance characteristics, such as parallelism
and a measure for the costs for execution time and communication overhead. _
The graph model as used expresses these performance characteristics and
leaves the remaining aspects (i.e., circuit simulation principles) unspeciﬁed.
This facilitates the graph model to be flexible over many different circum-
stances, as in the scheduling of parallel programs onto multiprocessors.

The scheduﬁhg of the graph model assumes a general purpose Multiple
Instruction stream, Multiple Data stream (MIMD) computer organisations.

43




Chapler 3: The Graph Model

A multiprocessor is a collection of communicating processing elements. The
performance characteristics which are of prime interest are the Processor
execution times and scheduling and communication overheads.

3.1 Graphical Representation: Background

Graphs are a popular data structure in many different applicationé_
including performance evaluation iechniquea like PERT, CPM and RAMPS
[1), computer program representation, control ﬂow aha.lysis etc. Dags, flow
graphs and data flow graphs have common use in program representation.

To represent program expressions containing common sub-expressmns,
expression dags (directed acyclic graph) are used [2]. An internal node
represents an operator and its children réprésent its operands. An edge in an
expression dag thus represent the data dependenée. Likewise, a basic block
dag being similar to an expression dag, represents an entire basic block. It .
however requires extra precedence edges to represent operators with side
effects correctly (e.g. array and pointer assignment, function calls). The
flow graph [2] of a program is another kind of graph used to represent
computer programs. Its nodes represent computation and edges represent
flow of control. A path in the flow graph represents a possible execution
sequence in the program.

The data flow model of computation is also based on a graphical
representation of programs. A data flow graph is the executable machine
code for a data flow machine [3]. Asin a dag, nodes represent operé.tors and
edges represent operands. All the data are represented by tokens which flow
along the edges of the data flow graph. A node which has tokens on all of its
input edges is ready to fire. It executes by consumxng all its input tokens and
producing a token on each of its output edges. Data flow’s parallelism lies
in the node’s ability to fire concurrently and in the pipelining due to token
streams. Data flow graphs are in fact networks which unplement programs

rather than just program representation. ‘

Process flow graphs introduced by Shaw [4] are used to describe a system
of processes with precedence constraints. The process flow graph is a dual
of the dag representation in the sense that it inverts the use of nodes and

44




Chapter 8: The Graph Model

Events :1->8
Activities:A->L

Fig 3.1 Examples of graphs. An expression dag (top) and a process flow
- graph (bottom).

45



Chapter 3: The Graph Model

‘edges. Edges in a process flow graph represent processes and nodes enforce

* precedence constraints by serving as synchronisation points.

\ Process flow graphs are a form of Activity On Edge (AOE) | networks,
where the a.ctmty occurs on edges and the nodes define t the precedence

constraints. PERT, CPM and RAMPS are of this type. Dags are a form of -

Act_iin'ty On Vertez (AOV) networks, where the activity occurs in the vertices
(nodes) and the edges define the precedence constraints, Fig. 3.1 shows two’
examples of AOV and AOE graphs.

3.2 Concurrent VLSI Timing Simulation

A VLSI timing simulator like EMU [5] models an MOS circuit as a set of
c’apaéitive nodes interconnected by various voltage controlled current sources
as shown in Fig. 3.2. A single transistor (whc;se channel current depends on
gate, drain and source voltages) or combm_atlona.l logic gates (whose output
~ current depends on the various gate input valtages) can be thought of as such
current sources. Two such unidirectional sources can be used to represent
a bidirectional circuit element, e.g. a pass transistor. Decomposition of all
combinatorial gates to their transistors yields greater accuracy, but in such

cases the simulator takes longer time to complete.

In the circuit the voltage V; at any node i can be obtained by adding the
currents generated by all current sources driving that node and integrating
their charging effect on the node capacitance Cy. For a sufficiently small time
step t — to, the voltage on node ¢ can thus be calculated as,

v.(t) = v;(to) + % (3.1)

The choice of time step above dictates the accuracy and numerical stability
of this forward integration scheme.

EMU has an automatic means to control the time step. It starts with

'a maximum allowable time step ¢,, and during t'he simulation it sub-divides

this time step dynamically according to circuit activity. During simulation,

EMU tries to maintain the change in voltage at a node dﬁring a time step

- close to a preset threshold value and thus adjusts the size of the time step
accordingly. ' '

46




D '= Current Source

® = Capacitive Node

© Fig. 3.2 An MOS circuit model. Adapted from [5].

PPOJN Yava® YL 1§ 43260y




Chapter 8: The Graph Model

A\ / cl

Fig. 3.3 .Partitioning an MOS circuit into regions (top) and the resulting
simulation graph (bottom). Adapted from [5].

48 .




Chapter 8: The Graph Model

EMU has two different operating modes. In eircuit mode, the time
step for the whole circuit is adjusted if the activity of any node exceeds
the threshold. This gurantees accuracy but means the whole circuit has
to be simulated in minute detail even if only a few nodes are active. In
_ node mode, each node’s own activity determines the size of its simulation
 time step. This method provides certain speed-up but s prone to numerical
instability especially when the behaviour of one node is closely linked to that
of another. |

Circuit mode simulation is favoured by VLSI designers because of its
improved stability. But, in a multiprocessing environment circuit mode
simulation is amenable to a number of problems. It requires a global
knowledge of the current value of the time step. This further requires that |
all processors be exactly synchronised in terms of simulation time. Also, it .
requires large volume of interprocessor data transfer to update node voltages
during high circuit activity. Dividing the circuit into some loosely coupled
regions would help to alleviate these problems. Time step sub-division can
thus be performed locally within regions without sacrificing accuracy or
succumbing to numerical stability.

For the purpose of circuit sub-division, two circuit nodes are considered
tightly connected when they are joined by a bidirectional component. In
other words, in a transistor only model, two circuit nodes joined by a pass
transistor can be placed in the same region. The power supply nodes Vs
and Vpp can not be affected by any other node and as such they belong to

no region.

An example of region sub-division is shown in Fig. 3.3. Region
boundaries are only crossed by nodes driving transistor gate inputs. A sub-
divided MOS circuit can be modelled as a directed acyclic graph (dag) where
the nodes (vertices) of the graph can be used to represent the circuit regions
and edges of the graph can represent the electrical connection between the
regions of the circuit. A node (vertex) weight of the dag can be assigned
proportional to the simulated electrical activity and an edge weight can also
be assigned proportional to the voltage value transferred. The resﬁlting dag |
is thus an activity on vertex (AOV) graph. '

49




Cﬁapter 3: The Graph Model

3 2.1 VLSI Circuit Partitioning Algorithm

The algorithm [5] used to sub-divide an MOS circuit into regions where
each region can be simulated independently on a processor can be described
as follows: '

Regions are identified by constructing directed tree graphs linking
-all the nodes in a region. For each node i, a pointer P; is defined and

then if possible P; is made to point to another node in the same region
whose node number is less than that of i. From each region a root is

' jdentified whose pointer is set to NULL. The node with the lowest node
number in the region is the root node.

The algorithm starts with allocating exactly one node, the root
" node, to each region and holding all the nodes of circuit disjoint.
For each transistor the source and drain nodes s and d are identified
respectively. These nodes are placed in regions R, and Ry respectively.
The root nodes of__ these regions r, and ri are then determined by
simply following the linked pointers through to the end of the list. Then
whichever root node has the higher node number, its pointer is set to
point to the other root node.

Once all transistors have been processed, each node belongs to a
region characterised by its root node number. This root node number
can be easily determined for each node by following the linked pointers
thrélugh to the end of the list.

3.3 The Graph Model -

In this section we define a graph model designed to support auto-

matic scheduling for the concurrent VLSI tnmng simulation modules onto -

" 2 multiprocessor. As outlined in the preceding section, each module of the -
simulation graph can be thought of as a separate computing tesk. However,
it is to be borne in mind that the partitioning of the MOS VLSI circuit into
regions which can be simulated concurrently is more of a data decomposition
‘than the decomposition of the simulation program itself. Also, when these
regions (nodes of the concurrent simulation gi'aph) are scheduled onto a
multiprocessor and submitted to run, essentially the same timing simulation

50




Chapter 9: The Graph Model

l Eﬂge Wt Node Wt.

Fig. 3.4 Graph represenfa.tion of a 9-node, 3-processor task system.

51




Chapter 3: The Graph Model

Communication Network

‘mayshs Jossacoadnfnuraauad y ¢ fig

@

- 52




Chapter 3: The Graph Model

program runs on each’ processor albeit asyﬁchmously depending on the
nature of the circuit regions. Nevertheless, for the scheduling purpose it is
quite safe to treat each node of the simulation graph as a separate computing
task. '

In the task scheduling problem, we consider the fask system as a
set of k task modules, T = {t1,t2,...., 2} and a set of n processors,
P = {p1,P2,+,Pn} With execution costs zi4, 1 £t <k, 1 < ¢ < n and
communication costs ¢ij, 1 < i,7 < k. The cost of a schedule can be
defined as the total sum of the ezecution and interprocessor communication -
(IPC) costs as incurred by the schedule. An optimal schedule results in
the minimum cost and there may be more than one optimal schedule for a
particular task system.

~ For the scheduling problem a weighted and and directed network flow
graph is a suitable problem representation. We consider such a graph
G = (V,E), where V = {v;,v;,...,vx} are the weighted nodes of the
graph__represéntir;g the task modules of the simulation graph and E =
{ei 7»1 24,5 <k} are the weighted edges between nodes representing the
intermodule communication (IMC) costs. Comparing this model with task
system T = {ti,t2,.csts}y P = {p1,p2,...,Pn} we find that except for
the execution costs z;, (cost of executing task module { on processor ¢)
there exists a straight mapping of the task system onto the graph model
G = (V,E). With a homogeneous multiprocessor system with identical
processors which lends itself to present day technology, the execution cost
;g of any task module i on any processor ¢ is the same for every processor
in the ensemble. In such circumstances, the weight of the nodes of the graph
= (V, E) can represent the execution costs or the execution complexity
of the task modules. Fig. 3.4 shows a 9-node task graph scheduled onto a

" 3-processor system, ' |

' 3.4 Communication and Computation

Multiprocessing enhances system performance by employing several
processors to handle the processing load. A representation of a generic
multiprocessing system is shown if Fig. 3.5. The main elements are a set
of task modules {#;, s, ....,¢x} and a module allocation mechanism A, which

<

53




12']

IPC Overhead

\

IMC Overhead

Partition

Fig. 3.6 Intermodule communication cost (IMC) across a partition giving rise
to interprocessor communication cost (IPC) overhead.

1poJy ydvin oy :§ 421d0Y)



Chapter §: The Graph Model

assigns each of the k modules to one of the n processors {p1,P2,.sPn}.
Here we consider each module as a sub-task of a single processing job.
These modules may need to transfer data among themselves giving rise
to intermodule communication (IMC) costs, Modules may be assigned to
different processors. When modules may have data to communicate to one
another, the processors to which they are assigned must then communicate
with each other. This constitutes the interprocessor commaunication (IPC)
overhead. IPC, is therefore, a function of IMC and the module assignment.
Clearly IPC = IMC where the communicating modules are not coresident.

'Assuming independent processing modules, the most intuitive maximum
"throughput allocation strategy is to assign modules to processors so that all
processors in the system are eve:ily balanced. Such a balanced load assign-
ment strategy is shown in Fig. 3.7. We consider six non-communicating
modules to be assigned to a set of three identical processors and also that
the processing demands for all the six modules are identical.

“We now consider introducing the IMC profile information in the above
system. If we then attempt to maximise the system throughput by minimis-
ing IPC without considering load balancing, all modules will be assigned to
the same processor. The resulting scheduling would provide minimum IPC
overhead but the processing time for the job would increase by a factor of
three. This situation is shown in Fig. 3.8. |

It is clear from the above that the two conflicting factors, namely IPC
and load balancing, influence the design of an optimal schedule. The task
scheduling f)roblem is to assign modules to processors for maximum system
performance by balancing these two conflicting factors.

3.5 Formulation of the Cost Function

Contimiing with the graph model it is easy to visualise that the process
of scheduling a set of VLSI simulation modules onto a n- processor MIMD
system is simply the partitioning of the simulation graph itself into n non-
empty disjoint sub-graphs and then to allocate each of these sub-graphs to



Chapter 3: The Graph Model

Communication Network

Fig. 3.7 Aload balanced assignment strategy.

56




Chapter 8: The Graph Model

Communication Network

® ® ®

a
7]
3
“
[~
[}

* Fig.3.8 Aminimum IPCoverhead schedule.

57



Chapier §: The Graph Model

a separate processor. So for n-Way partltxomng of the graph G = (V, E), we
have

Us=¢ (3.2)

where g1, 92, ..., §n are the resulting non-empty disjoint sub-graphs.

The cutset of the partition is the sum of all the weighted edges with
nodes in more than one sub-graph and accounts for the communication cost
in the final schedule. The load imbalance is the maximum difference between

the total weights of any two sub-graphs, thus a.ccountmg for the completion
time of the final schedule.

To formulate an equation for the total cost of a partition (i.e., that of
the schedule) we identify the following two as the contributing factors :-

a. Interprocessor Communication (IPC) Cost
b. Cost due to load 1mbala.nce
and then proceed as follows.

Let, there be k nodes in the simulation graph and n identical processors
in the multiprocessor system, where as we take a coarse grain model n < k.
if the execution cost of node i is w;(= |vi|), then we calculate the average
load on each processor as,

Clearly this is the expected load on each processor for a perfectly load .
balanced schedule.

When a partition z is allocated to processor ¢, then total execution load
on that processor is,

Load, = Z sl | Vi € G

vi€gr

=§:ml | (3.4)

vi€ge

58




Chapter §: The Graph Model

Borrowing the definition of load imbalance from the graph partition analogy,
we find the load imbalance cost of the schedule, |

Ch= max (Y |vi) - ?fn.(): i)  ; Vui€G

smich © e,‘ ) .j. v Gy.
= max ( Z w;) — min ( Z w;) (3.5)
oml---h vi €ge aml.-k

To calculate the total communication cost of the schedule we note that
only those edges which are in the cutset of a partition, in other words only
those edges between nodes assigned to different processors contribute to the.

-communication cost. If, e;; represents the intermodule communication cost,
a measure of data transmission from node ¢ to node j when ¢ # j, then for
C., the total communication cost we have, |

k
Co= Y eij vi€gp vi€gy; PF4. (3.6)

f,5=1 . ) :
An overall cost function can then be formulated by combining the two

components

C; = Cy + 2.C., 93.7)

where z is a relative weight factor between costs due to communication
between nodes of the graph across a partition and the load imbalance in the
schedule. The value of z is thought to be dependent on the simulation graph
itself and also on the hardware interconnection topology of the multiprocessor
system. A large value of » may make the multiprocessor implementation
of VLSI simulation very difficult and a small value of z may demand for
algorithms utilising fine grain parallelism as a means for improved load
‘balance in the system [6)]. |

3.6 Graph Data Storage & Cost Calculation

In this section we introduce three sub-sections. In sub-section 3.6.1 we -
discuss the data storage method used to represent the graph information in
the computer programs. Sub-section 3.6.2 describes the methods used to
calculate the communication and load-imbalance costs. In sub-section 3.6.3

59 -



09

Node-1d Allocation

Edge Weights

n X W A n E
Y 1

4 ) n E
_ 2 2

~ Degree Node Weight /
Adjacent Nodes

n E
n n

Fig. 3.9 Structure of a single record used for graph data storage.

19?0}{ yaonio YL 8 42142Y))




Chapter 8: The Graph Model

0,0 : Edge Wt.
/ Node-id
1 /Nodc Allocation
Node Wt.

Flg 3.10 A typical graph and the corresponding data aa;‘;é; table.

61

Degrec | Node-id { Node Wt JAllocation| AdjacentNode1 | AdjacentNode2 | Adjacent Node 3
Node-id | Edge-wt { Node-id | Edge-wi | Node-id | Edge-wt
3 0 2 0 1 1 2 1 3 1
2 1 3 0 0 1 4 3 - -
3 2 2 1 0 1 4 2 5 1
2 3 3 0 0 1 5 2 - -
3 4 3 1 1 3 2 2 6 1
3 5 4 1 $ 2 1 3 2 6 2
2 6 1 0 4 1 5 2 - -
\
\




Chapter 3: The Graph Model

we describe an improved method of cost calculations based on change in the
configuration of a task system in an iterative improvement environment.

3.6.1 Graph Data Storage

Since graphs are selected as the chosen data representatxon of the VLSI
simulation system, a suitable and efficient data storage method is necessary
for the fast simulation of their scheduling algorithms. There are many ways
to do this, and the subject is by no means trivial, since certain methods of
graph data storage are particularly efficient for certain kinds of calculations.
The three most common graph data storage methods are,

a. The Branch-List Method
b. The Adjacency-List Method
c. The Adjacency-Matrix Method.

For the simulation of the task scheduling algorithms to be discussed in
later chapters, we have selected the adjacency-list method of data storage.
This method allows faster search than the branch-list method. Another
consideration is that it takes much less storage.than the adjacency-mairiz
method. '

A node ¢ in a graph is defined as adjacent to another node j in the
same graph if there exists an edge between nodes i and j. An adjacency-
list method of graph data storage is essentially a one dimensional array of
 a record each describing a separate node of the graph. The first field of
such a record describes the degree of the node which is defined as the total
number of incoming and outgoing edges at the node dnd the other field is a
list of all its adjacent nodes. For our purpose, we however extend the above
rudimentary data storage scheme by introducing some more additional fields
to the record which gives the node identification number, node weight, node
allocation and in the list of connected nodes an additional field to each of
the entry which gives the weight of the edge concerned. Fig. 3.9 shows the
structure of such an enhanced record. In Fig. 3.10 we show a graph thh an
arbitrary allocation and the corresponding data storage table.

62




" Chapter 3: The Graph Model

Function Imbalance.Cost : Integer;
| Initialise the processor load list;
For i := 0 To MaxNode Do
Processor_No := Find.Allocation(Graph[i].node-i\d)';
i.oad[Processor-Ho] 1= LoadfProcessor.No] +
Graph [i] .node.id;
EndFor; _
Find the processors with the heaviest. (Heavy) & lightest (Light)
loads;
Imbalance.Cost := Heavy - Light;
EndFunction;

Fu.nction Communication.Cost : Integer;
C:=0;
For i := 0 To Max.Node Do
Present_Node := Graph[i].node_id;
For j := 1 To Degree(Present_Node) Do
Adjacent_Node := Graph[Present_Node].adjacent[j];
Are Present.Node & Adjacent Node co-resident ?;
If Not co-resident Then
- C := C + Graph[Present.Node] .Edge Wt[jl;
~ EndIf;
EndFor;
EndFor;
Ccmmunicat._ion_Cos't := ¢ Div 2;

EndFunction; _

Fig. 3.11 Pseudo-Pascal description of the two cost evaluating functions.

63



Chapter 3: The Graph Model

Procedure Iterative.Improvement;
Get starting conﬁguration ; : .
Present_Conf iguration := Start.Configuration;
Repeat. _
' New.Conﬁgura.tio.n 1= Hove(Present_(fonfigqration);
Determine Diff _Cost;
If Diff Cost < 0 Then
Present_Configuration := New.Configuration;
EndIf;
Until Squtiox_: Is E‘ozen; '

EndProcedure;

Fig. 3.12 Pseudo-Pascal description of an iterative improvement
| algorithm. '

64




Chapter 8: The Graph Model

3.6.2 Cost Calculation

In an algorithm that tries to minimise an objective or cost function the
evaluation of the function itself at ‘different moments during the running of
the algorithm is a regular phenomenon. If the evaluation procedure itself is
too mathematically involved, & far too long time would then be spent for

function evaluation. A fast evaluation is thus always favoured. -

Fortunately in the model used for the task scheduling, the mathematical
expressions for the cost function is a simple one. Equations 3.5 and 3.6 give
the algebraic expression for the two components of the cost function given in
eq. 3.7. A simple computer program translation of eqs. 3.5 and 3.6 is easily
possible. The data storage method used also helps in fast evaluation of these
equations. Figs. 3.11a and 3.11b show the Pseudo-Pascal representation
of the functions used to evaluate eqgs. 3.5 and 3.6 respectively. For the
evaluation of the communication cost, a simple scanning through each and
every node’s adjacency list and also obtaining a cumulative sum of the edge
weights for non-coresident nodes is all that is necessary. This sum however
needs to be halved as each edge is traversed exactly twice. Similarly, for the
process of evaluating imbalance cost we need to produce a list of processor
loads and then to scan through it to find the most heavily and lightly loaded
processors. Their difference would then give the imbalance cost, a measure
of the completion time of the execution for that particular schedule.

3.6.3 Cost Calculation in Iterative Improvement
Environment

Both the components of the cost function can be evaluated in linear
time and thus appear: to be very promising. However, a heuristic algorithm
‘that employs an iterative improvement, technique even a linear time cost
calculation may appear to be too high. An iterative improvement type of
algorithm usually starts with a random initial allocation (or any other initial
allocation provided by a pre-processor) and then iteratively improves it by
bringing in small local changes at each iteration to the current conﬁguration‘
In the most simplest form this is achieved either by changing the allocation of
‘any chosen node to another processor or by swapping the allocations of any
two chosen nodes. This simple task can be thought of as a unit task and we

65




99

~

. Processor 2

Processor 3 Processor 3

Fig.3.13A 'mm;e' duringan iterative improvement procedure. Configurations before (left) and
after (right) the move.

13POJY ydvar) YL :§ 423dDY)H



L9

Processor 1

Processor 3 ) Processor3

Fig. 3.14 A’swap’ during an iterative improvement procedure. Configurations before (left) and
after (right) the swap. ‘

12p0Jy 4d045) YL f 43340Y)




Chapter §: The Graph Model

could call this a move or swap. A Pseudo-Pascal des_criptioh of an iterative
improvement algorithm is shown in Fig. 3.12. A graphical representation of
a single move and also a swap and their resulting consequence is shown in
Figs. 3.13 and 3.14 respectively. Such moves are repeatedly attempted until
the solution is frozen. The criterion for the determination of the freezing of
the solution can be formulated in many different ways. But, whatever the
criterion is used, & large number of iterations is ﬁsua.lly needed. This large
number of iterations compounded with the linear time demand of the cost
~ evaluation at each iteration may become a serious bottleneck especially for
larger graphs.
Looking back into the Pseudo-Pascal description of the iterative im-
. provement method, we find that the algorithm itself is more concerned with
the difference in cost after a move is made than the cost of each new and
changed configuration to be evaluated afresh. In each move, whether it is a
single move or a swap, only the nodes and the processors to which they are
allocated are involved in any change in the current configuration. This fact
can be usefully utilised to evaluate the change in cost in a constant time. In
all subsequent discussions the differential cost calculation is always used.

68




Chapter 3: The Graph Model

References :

1.

Horowitz, E. and Shani, 5., Fundamentals of Data Structures, Com-
puter Science Press Inc., 1976.

Aho, A.V., Sethi, R. and Ullman, J.D. CompderPnnmpIes, Techniques
and Tools, Addison Wesley, 1978.

Gurd, J.R., Kirkham, C.C. and Watson, J., The Manchester Prototype
Data Flow Computer, Comm. of the ACM, 28 (1), Jan 1985.

Shaw, A.C., The Logical Design of Operating Systems, Prentice-Hall
Inc., N.J., USA, 1974, |

. Ackland, B., Ahuja, S. and Romero, D.J., A Partitioning AIgorithm for

Concurrent Timing Simulation, AT&T Bell Lab. Tech. Report, 1984.
Sheild, J., Partitioning concurrent VLSI simulation programs onto a
multiprocessor by simulated annealing, IEE Proc. Vol. 134, Pt. E,
No. 1, Jan 1987.

69




CHAPTER 4

Graph Partitioning

This chapter describes the partitioning of a graph with costs on its edges and
nodes into a given number of disjoint non-empty sub-graphs so as to minimise
the sum of the costs on all edges cut and also to balance the sum of the .
costs of nodes in each sub-graph. This problem arises in parallel processing
applications ‘where it is required to assign a large number of processing '
jobs to a fixed (relatively smaller) number of processors, and also in VLSI
design applications such as component layout. The multi-way partitioning
algorithm presented here is adapted from the graph bi-partitioning procedure
due to Kernighan and Lin [1). The adapted algorithm is hierarchical in nature
and lends itself for an easy implementation on a hypercube multiprocessor -
system. '

It is known that graph and network partitiohing problems are NP- Hard
[2]. Therefore, attempts to solve these problems have concentrated on finding
heuristics which will yield approximate solutions in polynomial time. Several

70




- Chapter {: Greph Partitio'ning

different approaches have been taken to devise approximate aigorithms for -
the graph partitioning problems [1,3,4]. The heuristic proposed by Kernighan
and Lin [1] is easy to implement for general purpose partitioning problems
and provides good quality near-optima.l solutions in a relatively faster time
of O(k?log k) for k nodes in the graph. It has also become the basis for most -
of the iterative improvement partitioning a:lgorithms generally used.

4.1 Graph Bi-Partitioning

| Graph partitioning arises .naturally in scheduling concurrently exe-
~ cutable task modules onto a multiprocessor. For example, in Stone’s [5] maz-
flow, min-cut assignment algorithm which provides an optimal assignment
of modules to processors. The graph répresenting the task system is cut in
such a way that the number of edges cut is minimal. |

The 2-way graph partitioning problem can be described as follows :
Given an arbitrary graph G with k weighted nodes the graph must be
partitioned into two disjoint and non-empty sub-graphs or blocks. The
objective behind this partitioning is to minimise the number of edges cut
across the partition and also to maintain a rough balance on the total weights
of each block. Let the number of nodes in the two blocks are k1 and &2, such
that k = k1+ k2. '

For & task system with & fa.sk modules and two processors, the total
number of possible schedules is given by,

k!

2ELI ko] 4.1

Total =

For large k the expression above would result in a very large number
indeed and there is no computationally efficient algorithm to arrive at an’
optimal schedule. Kernighan-Lin’s iterative procedure however produces
near-optimal solution in reasonable polynomial time. _

The Kernighan-Lin (KL) algorithm starts with an arbitrary partition
with two eqﬁa.! sized blocks A and B and then repeatédly improves the
 partition to obtain a near-optimal solution. The essential idea behind the
KL heuristic is the assumption that there are some nodes in block A and an
equal number of nodes in block B that are out of place in the sense that if

7




Chapter 4: Graph Partitioning

A=A X+Y
B'=B.Y+X

- Fig. 4.1 Generating an optimal 2-way partition from an arbitrary 2-way
partition.

72



Chapter {: Graph Partitioning

' these are interchanged, the resulting partition would improve. The algorithm
spends bulk of its time finding these out of place nodes. The KL algorithm

in its original form works with graphs with unity weighted even number of
nodes such that the bi-partition splits the graph evenly minimising only the
number of edges cut. Howéver, the graph representing the task system as
used in the multiprocessor task scheduling problem have nodes with different
weight values and also the partitioning criterion in such cases place equal
‘emphasis on minimising the number of edges cut and maintaining a balance
on the total weights of the two resulting blocks (sub-graphs). This essentially
does not result in equal sized blocks. Slight modification to the original KL
algorithm is thus in order. In the following sub-section the modified KL
heuristic is described and associated formulae are derived.

" 4.1.1 The Modified KL Bi-Partitioning Heuristic

We consider a graph G = (V, E), where V = {v3,v2,---,v;} are the k
weighted nodes with the weights represented by a weight matrix W = (w; =
lvil}, i = 1,-+- , k. The edges are represented by E = {e;;,1 <1,j < k}. We
assume that the edge weights are non-negative and also we rule out any loop
at any node, i.e., e;; = 0. We wish to partition the graph V into two non-
empty disjoint blocks A and B such that the sum of weights of the edges
across the partition is minimal and also that the total weights of the two

blocks A and B are evenly matched. We thus have, ‘

V=AUB. | 42

The partition cost due to mismatch of total weights of blocks 4 and B,

ch=§:wp-23m 4.3

v;,€EA v, ER

and that due to the edges cut in the pa.rtit‘ion,

e T
j C.= Eeij 3 v.-eA,v,-e'Bl ' 44
| ig=t -

\

73



Chapter {: Graph Parlitioning -

The 2-way gfaph partitioning problem can thus be transformed to the
following optimisation problem, '

minimise{a|C. + B|Cs}

subject to

Cy= E w; - Z w;
wEA vEDB
1: I k - ] "
;C¢=Zc,-_,-? ; vi€Ajv;€eB.
| ij=1 :

W=

and

Central to any iterative improvement heuristic the Kernighan-Lin (KL)
heuristic starts with an arbitrary 2-way partition A and B so that,

anB={}. R 48

Kernighan and Lin suggested that there exists two sub-sets X C A and
Y c B with |X] < |A| and |Y| < |B|, which if interchanged would produce
the minimum cost 2-way partition as shown in Fig. 4.1. These two sub-sets
~ are built by repeatedly choosing two nodes, one each from A and B, so that
their interchange would produce best gain in the cost and then separating
them from A and B for not to be used again in that iteration until all the
nodes in the graph are similarly used. A single such iteration constitutes a
pass and in each pass a pair of lists is maintained one for each sub-set (block)
in decreasing order of the gain values associated with each node chosen for
an interchange. At the end of a pass an equal number of nodes from A and B
which constitute X and Y respectively are actually interchanged such that
maximum gain in partition cost is achieved. The resulting A* and B* are
then renamed to A and B respectively and the whole procedure is repeated
once agaiﬂ until no further gain in partition cost can be obtained. The final
partition is then taken as the optimal (near optimal to be precise) solution.
One drawback of the above procedure is that it fails to address the
essential load-balance criterion of a partition. The modification presented
here is similar to that proposed by Fidducia and Matheyeses {6] and works
with moving only one node at a time from one block to the other instead

4




Chapter {: Graph Pariitioning

Fig. 4.2 The mterna.l and external cost cornponents of nodea € A (top) and
“mnode b € B (bottom).

(5]




Chapter {: Graph Partitioning

F1g 4 3 The internal and external cost components of node z € 4 — {a},
after node a is removed (top) and node y € B — {b}, after node b 1s
removed (bottom).

76




Chapter {: Graph Parﬁt:'oning

of an interchange of two nodes. This provides far more flexibility in size
of the blocks and can effectively incorporate the load-balance criterion. To
derive the formulae for computing and updating the gain values we proceed

as follows : -

Let us define for each node a € A external and internal‘costs E,

- and I, respectively as follows,

CEBa=) ey | ~ 4.6a
yEB

and

L=) t: . 4.6b

and similarly for each node b € B,

ZE€EA
and o _ |
"= z: eby _ ‘ 4.6d
yEB .

~ The internal cost of a node signify how strongly it is connected
to all other nodes in the same block and the external cost signifies its
contribution to the communication component of the partition cost.

We now let,

T= totai cost due to all external connections between the blocks of a
2-way partition.
Z= total cost due to all connections bétw_een A and B that do not

involve a € A.

Therefore, _
T=Z+E, L 4.7

When node a € A is moved form A tb-B, the value of T is changed to
T, : _ '
T'=2+1, 48

7




Procedure 2-Way-Partition (4,B);
Repeat |
- X:=A4; Y :=B;
Compute the D values for all a€ A andforall b€ B;
Fori := 1 Ton Do | |

Find anode Z; from either X or Y that maximises g ;
Move Z; from its current block to the other;

Remove Z; from further consideration in this pass;

Update D values for allnodesin X—{Z2;} or Y-{Z;};

EndFor;
Find K that maximises gmar = Zfil gi:
If gmazr >0 Then -
Move all Z1,22,-+,Zx from A or B to the other
block;
Endlf;
Until gpqer =0;

EndProcedure;

Fig. 4.4 The modified KL 2-way partitioning algorithm.

78

Chapter {: Graph Partitioning




Chapter {: Graph Partitioning

= Vs

1’\
\ ’\

U\\/V\/\/ vw VV,_.

20 . 3 40
Moves

— Y&

am

A IS A AAMA' [R’

\\

A [N A
— AN A N~ g v v v M A

#
-
l/ \‘..

v

— MoveGain

---- Total Gain

/

!‘\VAVQ\L \_/ \% V A
AN ’\ l ‘\/
\\/ . \\\ RN .

AAA A N A AN
Y U

Flg 4.5 Move-Gain profile of three passes in Kermgha.n-Lm s 2-way

aph

partitioning procedure A representative graph with 58 nodes is

used as the data instance.

79




 Chapier {: Graph Partitioning

Therefore, the gain in partition cost when node a is moved from A to
B is,

Gain = OldCost — NewCost

=T-T
. .=E¢-‘Ia _
Ga =Dc 4.9a

Similarly, for moving any node b € B from B to A, we get

Gy=E; - Ib‘
=D, | 4.95

Once a node a € A (or b € B) is selected for a move from A to B (or
from B to A) it is isolated from rest of the nodes and the internal and
external gain values of all other nodes which are affected because of the
move, are updated.

When a node a € A is selected for a move and kept aside from rest
of the nodes, the D values of all free nodes (those which are not yet
selected for a move in the pass) in A (nodes in B are unaffected at this
moment ) are changed. These can be calculated as follows,

For any free node = € A — {a},

D,=E. -1
-D; = (Ez + eza) - (Ix - e:c)
_A -D:; = E: I, + z_e::a. i
D, =D, + 2¢;, _ 4.10a
Similarly, when a node b € B is selected for a move and kept aside
from rest of the free nodes, for any free node y € B — {8} we can

have,
D', = Dy + 2ep, 4,106

80



18

* Table 4.1 Table showing the performance of the three rules considered in the modified KL 2;way partitioning heuristic.

" o, o ~ Rule A Rule B - Rule C
'::%. g % : E‘ o g-ﬁ o Final Cost Final Cost Final; Cost
M 2 o o o+ O
[iH (& .

o = “ 3: a kA& Max. Min, Ave.| Max. Min. | Ave.| Max. Min. | Ave.
6N2C 6 3.00 6.36 | 94.27| 47.13] 61.27] 92.10| 46.05| s0.65} a7.21| 47.21]47.21
4x4 58 2.83 | 46.88| 81.07| 27.73] s53.03] 32.47| 19.48| 23.85| 30.23| 19.24|22.72

Multiplier - - |

Fm‘ﬁgg"y 68 a.09 | 89.26| 85.14} 12.32| s3.88] 37.18] 6.56| 16.238] 31.78 .81 15.16

Loop : _ .

16x16 215 | 5.31 | 667.23| 74.49] 59.35] 67.19| 44.090 23.90] 32.57| 41.44] 24.29 31.04

Multiplier

'\éf;a 899 1.53 l1104.53] 77.77 62.021 €9.93| 24.16] 6.61]| 15.93| 28.16] 11.04| 19.61
er

bupuonnung ydoig 1y 1a3doy)




Chapier {: Graph Partitioning

The essential steps of the modified KL bi-partitioning procedure is
shown in Fig. 4.4 in pseudo-Pascal form. The outer Repeat-Until loop
represents the passes while the inner For-End loop shows the activities in
“each pass. .

The basic 2-way partitioning procedure used here is similar in spirit
to the Fiduccia-Matheyeses variant of the KL heuristic. An initial 2-way
* partition from a pre-processor or randomly generated one is taken first.
A sequence of maximally improving node transfers from one block of the
partition to the other are then attempted. This iterative improvement
heuristic is otherwise very similar to the Kernighan and Lin'’s min-cut
heuristic except for the use of one-way node movements instead of node
exchanges. The use of node transfers in this fashion ensures acceptable level
of load-balance even when the node weights vary by a wide margin.

"The success of the graph bi-partitioning heuristic depends on the choice
of a candidate node for a transfer. Consequently, the procedure of Fig. 4.4
spends most of the time in selecting the best node for a transfer. In the
modified KL heuristic where a single node is nominated for a transfer in
each iteration of a pass, the choice of the block as a supply pool of the
nominated node also needs to be explored. The following three different
rules were examined.

A : Two candidate nodes one each from blocks A and B are selected so that
each has the highest gain value in it’s respective block. These are then
* nominated for transfers in sequence. This rule is very similar to the KL
move exchange with the notable exception that the interaction (edge)
between the two nodes is ignored as the two node transfer procedures
are actually carried out separately a.nd also that a total of odd number

of node transfers are allowed.

B : Of the two blocks A and B, any one is selected at random as the source
of the node in the current iteration. The node with the highest gain
value in the selected block is then nominated for transfer. This rule
adds Monte-Carlo flavour to the heuristic. '

C: At each step, two nodes one each from blocks A and B with the highest
gain value in its own block are considered. The node with the higher

82




~ Fig. 46 Bi-partitioning of a 6-node graph in

Gein

Gain

Gain

three passes The bar graphs on the
left column show the gains assodia-
ted with a single move and ako the
total gains upto that move in the

pass corresponding to that of the|

figure to its right.

] . Move Guin
1 Total Guin

K=

7 . Move Galn
T Totsl Gain
K=t

Chapter {: Graph Partitioning

Cut

LY
w

b. Partition after pass 1, Cost = §,

GIORG

Cut

4

AN
NN

O

c. Partition after pass 2. Cost » 3,

CO—Co—

Cut

e

[/
77

83

CO—

d. Partition after pass 3. Cost = 3,



Chapter {: Graph Partitioning

22

Stage 2

Vim M Ma M2 M Vo Vi Yoy

Fig.4.7 Recursive binary partitioning for a 8-processor task system.

84




Chapter 4: Graph Partitioning

gain value among these two is then actually taken as the nominated

node.

In each case, in the event of any one of the two blocks becdming exhausted
of free nodes, the other block is taken as the sole pool of free nodes. The

gain value computation for each free node in all cases involves both the

load-balance and communication aspects of the partition cost.

4.1.2 The Bi-partitioning Algorithm in Action
As expected the three different rules used for the nomination of a

node for an eventual node transfer performed differently. Their relative
performances are presented in Table 4.1.

Five different simulation graph instances are used to compare the
performances of the three rules described earlier. Of these the last four
graphs are taken from actual VLSI simulation systems and the first one is a
simple artificially generated graph with a known optimal partition cost of 3.
In each case a total of 50 runs are made and the maximum, minimum and
average final partition cost values are tabulated. These are presented in the
form of percentage of the average random partition cost which is calculated
from 200 random partitions. As expected, Rule A which is a distorted replica
of the KL move exchange mechanism, performed very badly throughout and
proved to some extent the inability of the KL move exchange to handle graphs
w1th vith unequal node weights in sxtuatmns where load-balance is an important
issue. Rules B and C performed very sumlarly with the performance of the
. latter maxgmally better in all cases. The only exception is with the la.rgest
graph (Vector Coder) where Rule B performed better than Rule C. The
variation in the graph instances is thought to have an important effect on

the apparent failure of Rule C in the above case.

Not all moves that are nominated in a single pasé of the bi-partitioning
procedure actually improire the partition, even though in each iteration of
the pass, nodes with highest gain values are selected. Duriﬁg a single pass
a running sum of the gain values associated with each node nominated for a
move is maintained. At the end of a pass this running sum value is analysed
and its maximum value is determined. A number of moves starting from the

83




Chapter {: Graph Partitioning

move in iteration 1 to the move in iteration ¢, where the maximum value
of the running sum is fdu_nd are then actually carried out. This process is
. repeated only to be stopped when the maximum value of the running sum is
zero, i.e., when further improvement is found infeasible. The moves that are
carried out at the end of each pass may contain some moves that actually
worsens the pa.rtltlon This quality of the KL heuristic to accept moves
that actually worsen the partition allows the heuristic to perform better
then other comparable heuristics such as randomised iterative improvement
method. Moves with a negative gain (i.e., those which worsen the partition)

gives the KL heuristic some kind of hill climbing capability and helps it to .

come out from a local minima and to settle in somewhere very close to the
global minima of the optimisation surface. However, there is no mechanism

available to control this hill climbing capability and as a result a globally

optimal solution can not be guaranteed at all times. -

To illustrate the activities in a bi-partitioning procedure we present two
figures 4.5 and 4.6. In Fig. 4.5 a graph with 58 nodes is partitioned into two
blocks where a total of three passes are needed. The gain values associated
with each nominated move (continuous line} and the corresponding running
~ sum upto that move (broken line) are plotted. The vertical dotted line on the
moves axis shows the point where the running sum is highest in that pass
and the corresponding number on the moves axis is the number of moves
that are actually carried out in that pass. Fig. 4.6 graphically describes the
process of bi-partitioning of a 6 node graph with known optimal bi-partition
cost of 3 . The process starts with an arbitrary partition. with a cost of
7. The partitions after the end of each pass are also shown along with the
profiles of the moves made in that pass.

4.2 Multiple-way Partitioning |

Multiple-way graph partitioning is a natural progression from a graph
bi-partitioning process. There are several ways in which a 2-way iterative
improvement graph partitioning algorithm can be adapted to multiple block
partitioning. Three such methods can be immediately thought of. The first
two of these are suggested in [1] and they both involve repeated use of 2-way
. partitioning.

86



Fig. 4.8 An arbitrary graph partitioned into 8b15}:1_§é in three levels (left to right). Aﬂapted from [8]).

busuontpin g ydosy) iy 49;dm.10 ‘




| Chapter {: Graph Partitioning

0.60 1

0.40 7

0.30 1

0.20 1

Execution Time, Seconds

0.10 ]

Problem Size (No. of Graph Nodes)

F.ig. 4.9 Average execution time as function of the problem size for vari-
ous number of partitions for the KL recursive binary partitioning
algorithm. ' -

88




Chapter {: Graph Partitioning

The first consists of starting with an arbitrary l-way pertition and
successively choosing pairs of blocks and applying the 2-way partitioning
dgoﬁthm to these pairs. Sincé, this method tries to maintain pairwise
optimality explicitly, the final solution is often of not very good quality.
The number of passés required grows with I, the number of total partitions
sought and &, the total number of nodes in the graph. The result is also
.~ sensitive to the choice of initial partition and the way the pairs of blocks are
chosen.

The second method consists of the hierarchical use of 2-way partitioning
algorithm. For this method to work the number of partitions I, must be an
integer power of 2. This method provides fast convergence and can be used
to produce the starting partition for use in method described above or any
other iterative imprévement algorithm. ' ‘

As an alternative to the repeated use of 2-way partitioning algorithm, |
the third method attempts to improve the partition uniformly at each step.
In this scheme, at each iteration during a pass all possible moves of each
free node from its home block to all other blocks are considered and only
the best move is accepted. This method though appears to give good quality
solutions, is computationally too involved and as such is not suitable for time
critical applications. .

Of the three different methods described above, we shall concentrate
on the second method only because of its fast convergence ability and also
because of the ease of exploiting macro level parallelism from the procedure.
The following section describes the hierarchical partitioning procedure in
detail. '

4.2.1 Recursive Binary Partitioning

The recursive binary partitioning (RBP) method for the solution of
multi-way graph partitioning problem addressed in this- section is very
efficient in terms of run time and also gives reasonable quality solution.
Similar technique for the solution of multiprocessor scheduling of finite
element modelling problems have been reported [7,8].

89




Chapter 4: Graph Partilioning

707 0.25

607
" 0.20
0

%
8 g
£ :
2 éms
g 401 %
3 :

0.10

w
—=

20 0.05 1
2 4 8 16 2 4 8 16
Number of Partitions Number of Partitions
707 0.40
601 0.35
B . 130
5 §
¢ :
5 £
5301 5
[~
: L

-2

% 4 5 1 4 8 16

Number of Partitions Number of Partitions
Fig. 4.10 Partition cost and the execution time as functions of the number of

partitions for the KL recursive binary partition algorithm. Graph

instances used are 4x4 multipler ckt. (top) and frequencey locked
loop ckt. (bottom).’

90




Chapter §: Graph Partitioning

Level 1
Processor carrying
Stage 1 out the dissection.
10101010 (D 0]0J0) [/
Level 2 .
Stage 1 ' Stage 2
(OOOD,  «|OOOD
0 3 6 4 _ 7 2 1 5

Level 3

Stage 1

Stage 2 Stage 4

@@ CDCD o0 [0

v
211 212 221 222

Fig. 4.11 Concurrent rec_ur.sive binary partition process in action.

9



Chapter {: Graph Partitioning

The procedure proceeds as follows. The given graph with k nodes is
first split into two blocks such that the optimisation criterion established
earlier (eqs. 4.3 & 4.4) is properly maintained. These two blocks are then
recursively subdivided as many times as required. Clearly, the number of
blocks the graph can be partitioned must be exactly 2V, where I' is an
integer and represents the depth of partitioning. Thus, this procedure is
useful for scheduling problems when the number of processors is a power
of 2. The time required by recursive binary partitioning procedure can
be estimated as follows. Each pass of Kernighan-Lin's 2-way partitioning
algorithm requires O(k? logk) time. The number of passes required for
the convergence is generally small and lies between 2-6 and as such is not
strongly dependent on the size of the graph. Again by employing better
search algorithm for selecting a candidate node for its transfer from its home
block to the other, a lower bound run-time O(k?) can be easily obtained.
For a l-way partitioning using the recursive binary partitioning procedure
the total run-time requirement becomes O(k? log ).

Being a heuristic procedure, the recursive binary partitioning procedure
does not gua.x:a.ntee an optimal solution. However, reasonably good quality
solution is expected, Igbal et. al [9] found the upper bound on the difference
between the optimal solution and the solution yielded by the recursive binary
partitioning procedure when load balance is the sole optimising criterion
and the task system considered is a chain of structured parallel or pipelined
program and a chain of processors. Their upper bound is controlled by the
most heavily weighted module in the chan.

~ The overall partitioning strategy in a recursive binary partitioning takes
the form of a binary tree. This is illustrated in Fig. 4.7. Fig. 4.8 shows
& mesh structured arbitrary graph partitioned into 8 blocks in three levels
of partitioning. The results obtamed through simulation are presented in
Figs. 4.9 & 4.10. The average execution time required by the Kernighan-Lin
recursive binary partitioning (KL-RBP) algorithm is shown in Fig. 4.9 for
different .sizés of the problem graph. The problem size here is defined as the
number of nodes of the graph representing a task system. In this investigation
some synthetically generated graphs with nodes ranging from 10 to 100 with
average degree ranging from 2.8 to 3.6 are used. For all the partition sizes

92




Chapter {: Graph Partitioning

mn

~ SRBP

Final Partition Cost

4x4 Muttiplier Ckt
20 T T ]
2 4 8 16
Number of Partitions
804

~— SRBP

3

2

4

£60f

& -

k!

© 40

™
] j6x 16 Multiplier Ckt.
2 4 8 16
' Numborofparﬁtipns

707

Final Partition Cost
LS 8 & 8 38

e
2

Frequency Locked Loop Ckt

707

“1* CRBP

8

Final Partition Cost
8

4 g8 16

Number of Partitions

— SRBP

Vector Coder Ckt.

F T

2 4 8 16

Number of Partitions

Fig. 4.12 Graphs showing the performance comparison between the serial
- (SRBP) and concurrent (CRBP) [-way recursive partitioning algo-
rithms. Four representative graph data instances are used.

93




76

Table 4.2 : Table showing the relative performances of the serial and concurrent I-way (Recursive Binary Partitioning)
KL algorithms, - . ' :

Graphs —® | 4x4 Muiplier ° Frequency Locked | 16x16 Multiplier . Vector Coder

¥ Number of Partitions | SRBP | CRBP | SRBP | CRBP | SRBP | CRBP | SRBP | CRBP

Maximum 32.12 | 28.48 | 29.45 | 29.39 | 37.04 | 35.93 | 28.59 | 26.87

2 Average 23.00 | 22.12 | 13.32 | 10.04. | 31.77 | 29.68 | 19.94 | 18.08

Minimum 19.27 | 19.72 6.80 '6.78 | 26.16 | 24.35 | 11.15 { 10.15

Maximum 36.67 | 33.50 [ 35.75 | 26.94 | 42.10 | 37.72 |.29.50 | 24.14

4 Average 33.41 | 31.29 | 26.08 | 22.07 | 37.16 | 34.84 23.44 | 19.62

Minimum | 29.34 { 29.13 | 21.76 | 20.01 | 33.93 | 30.03 | 18.19 | 13.04

Maximum | 46.85 | 43.35 | 42.10 | 38.69 | 47.08 | 44.43 | 34.18 | 25.19

8 Average | 42.95 | 41.39 | 37.81 | 34.85 | 43.62 | 40.66 | 28.59 | 22.28
Minimom | 39.26 | 38.25 | 33.27 | 31.90 | 39.79 | 37.11 | 24.43 | 19.00

Maximum .| 68.35 | 68.33 | 71.40 | 65.75 | 77.93 | 71.33 | 70.57 | 64.27

16 | Average | 64.63 | 59.82 [ 66.82 | 61.68 | 72.87 | 68.02 | 65.29 | 60.45

Minimum | 57.55 | 55.15 | 62.88-| 55.89 | 66.75 | 63.03 -] 50.94 | 51.04

SRBP : Serial Recursive Binary Partitioning,
CRBP : Concurrent Recursive Binary Partitioning (Best of Bunch enabled).

burnospin g ydvan f sardoy)




- : e Chapter {: Graph Partitioning

(2, 4,8 and 16) considéred the KL-RBP has a time requirement roughly

' l equal to O(k?). It is also observed that the execution time does not grow very
j ra.i)idly with the increase in number of partitions.”Fig. 4:10 shows the aveiage “
. partition cost (with the standard deviation shown as.the lower and upper

{ bound) and the corresponding average execution time as a function of the

1

| cost obtained deteriorates with an increase of number of partitions.
|

.4.2,2 Concurrent Recursive Binary Partitioning

A heuristic I-way graph partitioning algorithm requiring O(k? log!)
is a great improvement in terms of practicality considering the NP-Hard
nature of the problem . However, large graphs often require far too much
time for convergence. Further reduction in solution time is always desired
particularly in a VLSI design environment where a quick design turn around
time is an absolute mecessity. A parallel implementation of the graph
partitioning algorithm on a general or special purpose multiprocessor system
is an obvious choice. A multiprocessor system is thought to have the
capability of further reducing the solution timé. for lI-way graph partitioning
problem. Ravikumar et al. [10} have exploited the micro or fine grain
parallelism present in Kernighan-Lin’s 2-way graph partitioning algorithm
and devised a parallel implementation on an array of processors working in
SIMD mode with shared memory. However, their algorithm is not suitable
for a asynchronous message-passing, distributed memory systemﬁvorking
in MIMD mode because of excessive synchronisation and communication
overhead. The alternate approach i.e., the exploitation of macro or coarse
grain parallelism is more favoured in such situations and is adopted here.

The recursive binary partitioning procedure lends itself to parallel
implementation. Except for the first partitioning (level 1), partitioning
at different stages in all other levels can be carried out indepeﬁdently of
each other as can be visualised from the binary tree like structure of the .
overall recursive binary partitioning strategy as shown in Fig. 4.7. These
independent partitioning procedures can be assigned to different processors

95

\ number of partitions. Two representative simulation graphs, 4x4 multiplier *
ckt. and frequency locked loop ckt. are used. It is observed that the partition '




Chapter {: Graph Partitioning

‘of the multiprocessor ensemble and can be run concurrently. A breadth-
first partitioning would then take place. However, for a n-processor system,
maximum processor utilisation is achieved only at the bottom (leaf) level.

A modification that utilises all the processor resources and improves _
the quality of the final solution can be made. This involves allowing more
than one processor when available, to carry out the bi-partitioning in each
stage of every level. The next is to accept the best partitions from the set
of all partitions offered by the group of processors assigned to the stage
and level concerned. The besf_ partitions thus generated and accepted are
moved forward to the next level and so on. We call this best-of-bunch
technique. As an illustration we consider a 8 processor system and a 8-
way graph partitioning problem (Fig. 4.11). At level 1 we have 8 separate
bi-partitioning operations on the same input graph all running in parallel
and only the best resultmg partitions are accepted for level 2 partitioning,
whereby at level 2, two concurrent partitioning operations are required
because there are now two input sub-graphs. Qut of the total 8 processors, 4
processors can thus be allocated for each of the two partitioning stages. At

“the bottom level (level 3) 2 processors can thus be allocated for each of the -
4 partitioning stages. |

The modification described above provides faster descent and guarantees'
a better solution that can be achieved otherwise. Fig. 4.12 shows the
performance comparison between the serial and concurrent recursive binary
partitioning (SRBP & CRBP respectively) procedures for four representa-
tive graphs. In all, cases the concurrent version where the best-of-bunch
technique is employed outperformed its serial counterpart.

It can be seen from the above that minimum processor utilisation is
achieved at the top level (level 1) and it increases by a factor of 2 as the
partitioning process progresses. This accounts for the speed-up factor logn
and since the same number of processors as the number of partitions are
employed i.e., n = [, the total run-time requirement of the concurrent re-
cursive binary partitioning procedure becomes O(k?). In a message-passing,
distributed memory multiprocessor system the processors communicate via
a high speed communication channel. In this concurrent implementation a
total of k data objects, k being the node count of the input graph need to be

96




Chapler 4: Graph Partitioning

i l-‘
- a8

'-*-l-_-18

Final Partition Cost

Weight Factor, z

—_ l=d
- =8
—~— =18

Final Partition Cost

T T

20
0.001 0.01 0.1 ? 10

Weight Factor, z

Fig. 4.13 Variation in final pa.rtltlon cost with the weight factor, z for
partition sizes 4, 8 and 16. Adjustments are m%evel 1 (top) and
levels 1 & 2 (bottom) only. Data flow graph instance for the 4x4
multlpher ckt. is used.

97




" Chapiler {: Graph Partitioning

200 7 I
—— a4
1809 | = I=8

- |a {8

1601

140

120 1

100 -

80 1

Final Partition Cost

20 T :
0.001 0.01 ' 0.1 1 . 10

—— ad
1801 —* I1=8
‘ —— =18 \

160 -
140 1
1201

100 1

Final Partition Cost

20 - ¥ 1 1 1
0.001 0.0% 0.1 1 10

Weight Factor, z

Fig. 4.14 Variation in final partition cost with the wei%ht factor, z for
partition sizes 4, 8 and 16. Adjustments are in level 1 (top) and
levels 1 & 2 (bottom) only. Data flow graph instance for the 16x16
multiplier ckt. is used.

98




Chapter §: Graph Paﬁitioning

transferred between the processors at the start of each level. Since, the depth
of partitioning is log I, the total communication overhead becomes O(k log!).

-4.2.3 Performance of Recursive Binary Partitioning

The major drawback of the recursive binary partitioning heuristic is its
dependence on its top level partitioning, As pointed out in [1], a bad result
in the first partitioning may bias the second and so on, with the largest
occurring for large I. Also the first partitioning will try to minimise the .
number of edges between the first two blocks, thus tending to maximise
- the number of edges inside these blocks and making it harder to obtain
good partitions thereafter. A general decline in the solution quality is thus
expected with increasing I. This is clearly seen in the graphs of Fig. 4.12,

“where the final partition cost is expressed as a percentage of the average
random initial partition cost. The decline in solution quality becomes more
noticeable when the number of partitions [ exceeds 8.

The objective (cost) function used throughout is a combination of both
the communication cost due to the edges cut in the partition and cost due
to load imbalance,

Ci=C.+z.C, 4.11

where 2z is the weight factor maintaining a balance between the two compo-
nents. The value of z was held at 1 for all the results obtained so far which
signifies an equal emphasis placed on both the two cost components. How-
ever, by changing the value of z the roles that the two cost components play
can be altered. A small z would mean greater emphasis on communication
cost as compared to the cost due to load imbalance. A very small z(< 0.1)
would practically ignore load-balance from the optimisation criterion and in
such cases, the 2-way partitioning algorithm would find an pseudo-optimal
solution very easily where all the nodes are placed in one block only with the
other going empty. ‘ .

1t has already been mentioned that the first level partitioning in a I-way
recursive binary partitioning dictates the final partition cost by minimising
the number of edges between the first two blocks. This action leaves the
heavily connected nodes inside these blocks and subsequent partitioning of

99




Chapter {: Graph Partitioning

these as a result fails to produce good partitions. An alternate scheme can
be thought of where the 2-way partitioning heuristic in the first (and second)
level can be directed to put more emphasis on load-balance than to minimise
the number of edges cut. It is expected that this modification will produce
slightly inferior first (and second) level partitions compared to which can be
obtained otherwise and as such, will leave less heavily connected nodes inside
the resulting pa;r.titions. These on subsequent partitioning thus stand better
chance to produce good [-way final partitfons. Changing the value of the
~ weight factor z can bring in the above modification. The results are shown
in Figs. 4.13 and 4.14 for two representative graphs with 58 and 415 nodes
respectively.

The value of z is varied between 0.01 and 10 and three different partition
- sizes of 4, 8 and 16 are considered. For each graph the value of z is changed
~ in level 1 alone and also in levels 1 and 2. For very small z(< 0.1) the final
partition cost is predominantly due to load imbalance and for large z(> 2.5)
it is mostly due to communication cost. In all cases the final partition cost is
found to secure a steady low value for z between 0.25 and 1. This shows that
the roles of the communication and load-balance are equally important in
l-way recursive binary partitioning procedure and also proves that the gain
obtained by placing more emphasis on load-balance in early partitioning
levels is defeated by the bad results fromm these levels being propagated
throughout. '

100




Chapter {: Graph Partitioning

References :

1.

10.

Kernighan, B.W. and Lin, S., An Efficient Heuristic Procedure for
Partitioning Graphs, Bell Syst. Tech. J., Feb. 1970., pp. 291-307.
Garey, M.R. and Johnson, D.S., Computers and Intractibility : A
Guide to the Tbeory of NP-Completeness, Freeman, San Frans1sco
1979.

. Barnes, E.R., An algorithm for partitioning the nodes of a graph, Tech.

Rept. IBM T.J. Watson Research Centre, Feb. 1981.

. Bui, T., Chaudhuri, S., Leighton, T. and Spiser, M., Graph bisection

algorithms with good average case behaviour, Tech. Rep 85-236, Dept
Elect. Engg & Comp. Sci., MIT, 1985.

. Stone, H.S. Muj'txprocessor Scheduling With the Aid of Network Flow

Algorithms, IEEE Trans, Software Engg., Vol. SE—3 No.1, Jan 1977,
pp. 85-93.

. Fiduccia, C.M. and Matthyeses, R.M., A linear-time heuristic for

improving network partitions, Proc. 19th Design Automation Conf.,
1982, pp. 175-181. u

Berger, M. J. and Bokhari, S. H A partxtmmng strategy for non-
uniform problems on multiprocessors, IEEE Trans. Comp. Vol.36,
No.5, May 1978,pp. 570-580. ' |

. Sadayappan, P., Ercal, F. and Ramanujam, J., Cluster partitioning

approaches to mapping parallel programs onto a hypercube, Parallel
Computing, Vol. 13, No.1, Jan 1990, pp. 1-16. -

. Igbal, M.A., Saltz, J.H., and Bokhari, S.H., A Comparative Ana.Iyszs '

of Static and Dynamic Load Balancing Strategies, Proc. Parallel
Processing, 1986, pp. 1040-1047.

Ravikumar, C.P., Sastry, S. and Patnaik, L.M., Parallel circuit par-
titioning on a reduced array architecture, Computer Aided Design,
Butterworth & Co (Publishers) Ltd., Vol.21, No.7, Sept 1989, pp. 447-
455, : '

101



CHAPTER 5

The Simulated Annealing Algorithm

In this chapter we examine a heuristic task scheduling algorithm which has its
roots in classical statistical physics. Simulated ennealing (SA), is a technique
modelled on the annealing process of physical matter and closely follows a
probabilistic mechanism, similar to Boltzmann statistics used to analyse its
physical counterpart. Simulated annealing has been found to be a robust
tool for the solution of many difficult combinatorial optimisation problems.
In this chapter, we first present the background informa_tion of SA heuristic,
with due emphasis on the main factors that affect its performance. Two
different cooling schedules that guide the SA algorithm to the convergence
are described and their relative performances are compared. The para.meters
that influence the performa.nce of the SA algorithm are also highlighted. -

102




Chapter 5: The Simulated Annealing Algorithm

5.1 Combinatorial Optimisation and Simulated
Annealing '.

- Solving a combinatorial optimisation problem like the task scheduling
problem amounts to finding the best or optimal solution among a finite
or countably infinite number of alternative solutions. Over the past few
decades, a wide va.riety' of such problems has emerged from such diverse
fields as management science, computer science, engineering, VLSI design
etc. Over the years, it has been shown that many theoretical and practical
combinatorial optimisation problems belong to the class of NP-Complete
problems. However, large NP-Complete problems still must be solved and
in this regard two different classes of algorithms exist. The first, known as the
optimisation algorithms searches for and often provides the optimal solution
" but requires very large and possibly impractical amount of solution time.
Well known exapmles in this class are enumeration methods using cutting
plane, branch and bound or dynammic programming techniques. The other
alternative known as approzimetion or heuristic algorithms provides solution
in reasonably quick time but often sub-optimal soultion results. Examples

include local search or randomisation methods.

_ Furthermore, one may distinguish in both classes between general
algorithms and tailored algorithms. General algorithms are applicable to a
wide variety of problems and therefore may be called proble_m independent.
Tailored a.lgorithms use problem-specific information and their applicability
is therefore limited to a restrictive set of problems. The Simulated Annealing
(SA) algorithm, which is the main subject of this chapter is a high quality
general algorithm. In nature it is a randomisation algorithm and its
“asymptotic behaviour can be viewed as that of an optimisation algorithm [1].
However, in any practical implementation it behaves as a heuristic algorithm.

5.1.1 The Simulated Annealing Algorithm -

_In solid state physics, annealing is known as a thermal process whereby
low energy states of a solid in a heat bath can be obtained. The process can
be summarised by the following two steps :

103



Chapter 5: The Simulated Annealing Algorithm

a. increase the temperature of the heat bath to a maximum high at which
the solid melts. '

b. decrease carefully the‘ tehiperature of the heat bath until the particles
arrange themselves in the ground energy state of the solid.’

. In the liquid pha.se all the particles of the solid arrange themselves
randomly. In the ground energy state these particles are arranged in a highly
structured lattice and the energy of the system is minimal. This ground
energy state is obtained only if the maximum temperature is sufficiently

| hlgh and the cooling is done sufficiently slowly Otherwise, the solid will be

frozen into & meta-stable state rather than into the ground state. If the
temperature of the heat bath is lowered very quickly a meta-stable state will

result. This is converse of annealing and is known as guenching.

The physical annealing process can be modelled successfully by using
computer simulation methods from solid state physics. Metropolis et al.
~ [2] introduced a simple algorithm (Metropolis algorithm) for simulating the
evohition of solid in a heat bath to thermal equilibrium. This algorithm
is based on Monte-Carlo technique and genei'ates a sequence of states of
the solid in the following manner. Given a current state ¢ of the solid with
energy E;, then a subsequent state j with energy E; is generated by applying
a perturbation mechanism which transforms the current state ¢ into the next
state j by & small distortion. If the energy difference, E; — Ej, is less than
or equal to zero, the state j is accepted as the new current state. If, on the
other hand the enérgy difference becomes greater than zero, the state j is
accepted with & certain probability given by,

exp (—-———_(?B}E")) - 5t

where T denotes the temperature of the heat bath and Kp, a physical
constant known as Boltzmann constant.

If the heat bath is cooled sufficiently slow, the solid can reach thermal
equilibrium at each temperature. In the Metropolis algorithm this is achieved
by generating a large number of transitions (perturbations) at each temper-
ature. Thermal equilibrium in such cases is characterised by the Boltzmann

104




Chapler 5 The Simulated Annedh’ng Algorithm

Procedure Local_Search;

Initialise(igart);
i = i(gtart);
| Repeat
| Generate(Configuration j ﬁ'om neighbourhood Si of
configuration 1) ; |
If £(j) < £(i) Then
i:=3;
EndIf;
Until £(3) = £(i), V j € 8;;

EndProcedure; : |

Fig. 5.1 Pseudo-Pascal description of the local search algorithm.

105




Chapter 5: The Simulated Annealing Algorithm

distribution and gives the 'piobabiﬁty of the solid being in a state i with
. energy E; at temperature T and is given by,

\ N 1 —E; n B
.IPT{X = z} = -Z_(ECXP(KBT)’ 9.2 |

where X is a stochastic variable denoting the current state of the sohd Z(m
is the partition function, which is defined as,

| -E; '
Z(T) = 2 eXp (ﬁ) ) 5.3
¥

where the summation extends over all possible states.

Kirkpatrick et. al [3] assumed an analogy between a physical many-
particle system and combinatorial optimisation problems based on the fol-
lowing equivalences,

a. Solutions in a combinatorial optimisation problem are equivalent to
states of a physical matter.

b. The cost of a solution is equivalent to the energy of a state.

~ However, temperature in the physical system does not have a direct
analog and as such a control parameter to be called temperature is used to
play its role. The simulated annealing (SA) algorithm can now be viewed
as an iteration of the Metropolis algorithm, evaluated at descending values
of the control parameter, temperature, where a large number of candidate
solutions are generated at each temperature.

The following formal definitions can be used to descnbe the SA a.lgo— '
rithm in relation to the solution of combinatorial optimisation problems.

Let, (S, f) denote an instance of a combinatorial optimisation prob-
lem and ¢ and j are two solutions with cost f(i) and f(5), respectwely |
The ‘accepiance criterion determines whether 7 is accepted from t by' :
applying the following acceptance probability :

i f(G) < f(3)

L IG) > £,

IPg{accept j} = {:xp( E!"!';E('J)

106




- Chapler 5: The Simulated Annealing Algorithm

Proceaure ‘Simulat ed_Annaal.{ng;
't ‘Initialise(igtart); |
A =0
i = i(gtart):;
Repeat 7
For 1 := 1 To Ly Do

Generate(Configuration j from neighbourhood Sy
~ of configuration i); '
If £(j) < £(i) Then.
izm=j
Else _
If Exp((£(j) - £(i))/Cs) > Random[0,1] Then
i=j;
EndIf;
EndFor;
A=)+ 1;
Caleculate Length(Ly);
Calculate.Control(Cy);
Until Stop.Critérioﬁ;

EndProcedure;

Fig. 5.2 Pseudo-Pascal description of the simulated annealing algorithm.

107




Chapter 5: The Simulated Annealing Algorithm

where t € RY denotes the control parameter, temperature.

The generation mechanism in the SA algorithm corresponds to the
perturbation algorithm in the Metropolis algorithm, whereas the acceptance
“criterion corresponds to the Metropolis criterion.

Let, t) denote the value of the control parameter and L, the length of
the number of transitions generated at the A*® iteration of the Metropolis
algorithm. Then the SA algorithm can be described in pseudo-Pascal as
in Fig. 5.2. Fig. 5.1 shows similar description of its pre-cursor, the local

. search algorithm. A notable feature of the SA algorithm is that besides
accepting transitions that improves the cost, it also, to a limited extent,
accept cost deteriorating transitions. This is what is known as the so called

hill climbing capability of an optimisation algorithm. Initially, at large values .

of t, large number of cost deteriorating transitions are accepted and as ¢
approaches zero, almost all bad transitions are rejected. This controlled hill
climbing capability of the SA algorithm allows it to escape from local minima
while still exhibiting the favourable features of local search (simple iterative
improvement) algorithms, i.e., simplicity and general applicability.

‘SA can be viewed as a generalisation of the local search algorithm, In
fact, for cases where the value of the control parameter is set to zero, the
former algorithm behaves similar to the latter. In the physiéal anslogy, the
local search algorithm can be viewed as the quenching process and like its

physical counterpart though quick, often produces inferior quality results.

5.2 Markov Chain Model of SA

The SA algorithm can be modelled mathematically by using the theory
of Markov chains. It is, therefore, possible to predict the asymptotic
behaviour of the SA algorithm by using different properties of Markov chain.
However, before going further into the discussion some definitions relating
to the SA algorithm and combinatorial optimisation are first presented[1].

Definition 5.1 : An instance of a combinatorial optimisation problem
can be formally declared as a pair (5, f), where the solution space §

108




Chapter 5: The Simulated Annealing Algorithm

denotes the finite set of all possible solutions and the cost (objective) -~
function f is a mapping defined as,

f:5-1R. o - 5.5

In the case of minimisation, the problem is that of finding the solution
fopt € S which satisfies,

Such a solution i,p; is the globally-optimal solution, or simply optimum;

Jopt = f(iopt) denotes the optimal cost, and Sope the set of optimal

. solutions.

Similar definition for maximisation problem can be made without loss
of generality since maximisation is equivalent to minimisation with the sign
of the cost function reversed. In the multiprocessor task scheduling problem,
which is an instance of combinatorial optimisation problem, every feasible
schedule is a solution and the goal is to find the schedule with minimum
overhead. Henceforth, in all subsequent discussions unless explicitly stated,
we consider combinatorial optimisation problems as minimisation problems.

Definition 5.2 : We consider an instance of combinatorial opfimisa.tion
problem (S, f). A neighbourhood structure can then be defined as the
mapping o -
N:5-25 5.7
~which defines for each solution i € S, a set S; C S of solutions that
are close to i in some sense. The set S; is called the neighbourhood of
solution ¢, and each § € 8; is called a neighbour of 1. Furthermore, it is
‘also assumed that j € §; <=1 € ;.

Definition 5.3 : An instance of combinatorial optimisation problém
(5, f) and also it’s neighbourhood structure N are considered. A
generation mechanism is then defined as a means of selecting a solution

\

\

\

\

\

| \

- f(iopt) £ £(2), Vie S. ‘ 5.6 )
|

|

|

j from the neighbourhood S; of :.
|

109




Chapter 5: The Simulated Annealing Algorithm

‘Comparison of combinatorial optimisation problems and thermody-
namic behaviour of physical systems yields an expression for the probability
distribution of the solutions due to SA algorithm similar to that given in
€q.5.2. Therefore, given an instance (S, f) of a combinatorial optimisation
problem and a suitable neighbourhood structure then, after a sufficiently
large number of transitions at a fixed velue of the temperature ¢, applying
the acceptance probability of eq.5.4, the SA algorithm will find a solution
¢t € § with a probability .equa.l to,

P{X =i} 2 ¢(t)

__1 —f(i)

= w2 - 58

where X is a stochastic variable representing the current solution resulting -

from the SA algorithm, and 7
No(c) = Eexp( f(J)) - 59

Jj€S

represents a normalisation constant.

The above probability distribution (eq.5.8) is called the stationary or
equilibrium distribution and is the equivalent of the Boltzmann distribution
of eq.5.2. The normalisation constant Ny(c) is equivalent to the partition
function of eq.5.3. |

If, in the SA algorithm sufficient number of transitions are allowed at
each value of the temperature ¢ so that the stationary distribution (eq.5.8)
is attained, and that the temperature ¢ is slowly reduced to very close to
zero, it is then expected that the SA algorithm will find an optimal solution.
The corollary[1] below represent the above and it’s result is very important
since it guarantees asymptotic convergence of the SA algorithm to the set of

globally optimal solutions under the above mentioned conditions.




Chapter 5: The Simulated Annealing Algorithm

Corollary 5.1 : An instance (S, f) of a combinatorial optimisation
problem, a suitable neighbourhood structure and the stationary distri-
bution of eq. 5.8 are considered. We can then have,

lt‘ﬁ‘q'( EEH

1 ‘
= — H 5.10
ISOP!I xsopt( )’ . ;

where S,p¢ represents the set of globally optimal solutions. 1

The proof of the above corollary is given in Appendix B.

As mentioned eatlier, the SA algorithm can be modelled mathematically
by using the theory of Markov chains. In such cases, the current solutions at
any temperature ¢ obtained by the SA algorithm are considered as stochastic
variables (eq.5.8), the corresponding transition probabilities are then defined
as follows : |

Vi,j€S:  Pij())=PFits).
Gij(ta)Aij(ty) fist]
1= 3 Pu(ts)  #i=j, 5.11

lgs
Iyki

where Gij(t)) represents the generation probabilily, i.e., the probability
of generating a solution j from a solution {, and Aij(f)) represents the
acceptance probability, i.e., the probability of accepting the solution j, once
it is generated from solution i. |

The Gi;(t») and A;j(ta) are both conditional probabilities a.nd are
' deﬁned as follows :

a. Generation Probability :

VijjeS:  Gi(ta)=Gij= exa () (5.12)

1 Let, A and A’ C A be two sets. Then the characteristic function x( A
A = {0,1} of the set A' is defined as y(4y(a) = 1if a € A, and x(41y(a) =0
otherwise.

111



Chapter 5: The Simuleted Annealing Algorithm

where © = |Si|, foralli€ 5.
" b. Acceptance Probability :

| Y= FEN
Vi,j€S: Aij(ta) = exp (—- (f6) lt'\f(t)) ) ) (5.13)
where, for all ¢ € IR, at =aifa>0,and a* = 0 otherwise.

" Thus, the generation probabilities are independent of the control pa-
rameter £) and spread - uniformly over the neighbourhoods S, where it is
assumed that all neighbourhoods are of equal size, i.e. |S;| = ©, for alli € S.
The accpetance probabilities are given by the acceptance criterion of eq.5.4
and is thusidentical to the Metropolis criterion. The matrices corrersponding
to transition and generation probabilities, P(t5) (transition matrix) and °
 G(t,) (generation matrix) respectively are stochasitic, but the acceptance
_matrix A(t)) corresponding to the accpetance probabilitiy A;(2,) is not.

- The definitions of the generation and acceptance probabilities (eqs. 5.12
& 5.13) supporting the Markov chain model of the SA algorithm, correspond
fully to the original definition of the algorithm and closely follow- the physical
-analogy discussed earlier in Sec.5.1.1. Furthermore, the above definitions
formalising the SA algorithm generally apply to all forms of combinatorial
optimisation problems.

Formulation of a set of conditions that ensures asymptotic convergence
of the SA algorithm for general class of generation and acceptance proba-
bilities would then give a sound basis for the Markov chain model of the
SA algorithm. These conditions apply totally or partially to the following
properties of the SA algorithm.

a. Reachability of the set of global optimum. The set of global optima is
reached from every starting solution with probability 1.

b. Asymptotic independence of starting solution. The dependence of the
distribution of f;(A) for all i € S and at temperature ¢ with respect to
the starting solution vanishes as A = co.

c. Convergence in distribution. f;()) converges in distribution.

112




Chapler 5: | The Stmulated Annealing Algorithm

d. G'bnvergénce toa globa.l‘ optimum. The algorithm converges td the set
of global optima with probability 1.

Sufficient conditions for all or some of the above convergence properties
were independently obtained by various researchers [4-9). As for the conver-
gence to the set of global optima, the SA algorithm finds with probability
one an optimal solution if, after a large number of trials, we have |

The condition for asymptotic co_ﬁvergence of the SA algorithm to the set of
optimal solutions can then be formulated as,

)li_?:oIF’{X(A)GSo,g}=1. 815

The asymptotic convergence of the SA algorithm __lléfs__bgen ‘proved for both
homogeneous and inhomogeneous Markov chain models[1,9]. The proof for
the homogeneous chain model requires an infinite number of transitions to -
approximate a statibnary distribution arbitrarily close. Thus, implemen-
tation of the SA algorithm along this line would require generation of a
sequence of infinitely long homogeneous Markov chains at descending values
of temperature. This is visibly impractical. However, some moderations
can be made whereby, the SA algorithm can be described as a sequence of
homogeneous Markov chains of finite length, generb.ted at descending values
of temperature. This in turn converts the homogeneous Markov chains into
one single inhomogeneous Markov chain. In this way, it is possible to reduce
the sequence of infinitely long homogeneous Markov chain to a single inho-
~ mogeneous Markov chain of infinite length. The practical implementations
to be discussed later are approximations of this inhomogeneous Markov chain
model of the SA algorithm. ' '

5.3 Cooling Schedule

A practical implementation of the SA algorithm involves an implemen-
tation in which a sequence of Markov chains is generated at descending
values of the control parameter, temperature. To achieve this, the set of
parameters that governs the convergence of the algorithm must be specified.

113




Chapter 5: The Simulated Annealing Algorithm

The combination of these parameters are known as cooling schedule . A
" cooling schedule specifies : |

- a finite sequence of values of the control parameter, i.e.
- an initial value of the control parameter to,
-8 d_ecrerﬁent function, a for decreasing the value of the control
parameter, S

- a final value of the control para.zﬁeter, tena specified by a stop
criterion, and |
- a finite number of transitions at each value of the control parameter,
ie. —

- a finite length of each homogeneous Markov chain. |

In this section, we discuss some general features and characteristics of a
cooling schedule and also present two simple but effective cooling schedules.
However, we first introduce a new term the quasi equilibrium [1] which can
be defined as follows. '

Definition 5.4 : Let Ly represent the length of the A** Markov chain
and ¢ the corresponding value of temperature. Then guast equilibrium
is achieved if a(Ly, %)), i.e. the probability distribution of the solutions
after Ly trials of the At* Markov chain, is ’sufficiently close’ to q(t,\),
the stationary distribution at ¢», defined by eqs.5.8 and 5.9, i.e.

lla(Za,ta) — q(tr)l] <&, 5.16

“for some specified positive value of €.

A very large number of transitions quadratic in the size of the solution
space will be required to hold for arbitrarily small values of €. This leads for
most combinatorial optimisation problemé to an exponéntiaLtime gxecﬁtion
of the SA algorithm. Thus, & practical implementation of the algorithm
requires a relaxation of the rigid quantification of the quasi equilibrium
condition. ' |

114




Chapter 5: The Simulaied Annealing Algorithm

A cooling schedule using the concept of quasi equilibrium can be devised
on the basis of the following arguments. Let, the acceptance probability in
the SA algonthm be given by eq.5.13, then, for £ — oo, the stationary .
distribution is given by the uniform distribution on the set of solutions S,
ie.

lim q(A) = —1, 5.17

t—00 | |

where 1 denotes the.IS' |-vector with all components equal to 1. The above
equation can also be derived from eqs.5.8 and 5.9, Therefore, by choosing the .
“value of ¢) sufficiently large — allowing acceptance probability of virtually all
proposed transitions — quasj equilibrium is directly achieved at these values
of temperature, since in this case all solutions occur with equal probability
given by the uniform distribution of eq.5.17. The length of the Markov chain
and the decrement function must then be chosen so that quasi equilibrium
is restored at the end of each individual Markov chain. The equlibrium
" distribution for the various Markov chains will thus be 'closely followed’, so
_ as to arrive eventually, as £, | 0, close to q*, the uniform distribution on the
set of optimal solutions.

~ From the above, it is evident that large decrements in ) will require .
longer Markov chain lengths in order to restore quasi equilibrium at the
next value of the temperature, ty4;. Thus, there is a trade-off between
large decrements of the control parameter and small Markov chain lengths.
The popular option is for small decrements in ¢y to avoid long chains,
or alternatively for large values for Ly in order to be able to make large
decrements in ¢ ,\.' '

Many different cooling schedules have so far been reported in search of
an efficient and adequate schedule. Reviews are given by Collins, Eglese and
Golden [10] and also by Van Laarhoven and Aarts [11),. In the following two
sub-sections we present two cooling schedules as illustrations.

5.3.1 A Simple Cooling Schedule

The cooling schedule presented here is proposed by Kirkpatrick, Gelatt
and Vecchi [3]). This particular schedule is based on a number of conceptually
‘simple empirical rules and is expected to run in polynomial time.

115




Chapter 5: The Simulated Annealing Algorithm

* Initial value of the control parameter : As already stated earlier, the
value of ¢ should be large enough to allow virtually all transitions to be -
a.ccepted. This can be achieved by setting the initsal acc_cptancé ratio

= ((to) close to 1. The setting of this initia] high temperature is
eqmva.lent to raising the temperature of the heat bath so that the solid
in the bath completely melts.

* Decrement of the control parameter : From the discussion above, the
decrement function can be defined as, |

tar=aty, A=12-- . 518

‘where & is a constant smaller than but usunally close to 1. Typical values
of a where very small changes in the value of the control parameter are
favoured, lies between 0.8 and 0.99. |

* Final value of the control parameter : The algorithm is stopped from
' further execution when the value of the cost function of the solution -
obtained in the last trial of the Markov chain remains unchanged for a
number of consecutive chains.

* Length of the Markov chain : The length of the Markov chain is
calculated from the requirement that at each value ¢, of the control
parameter quasi equilibrium js restored. The number of necessary
transitions to achieve this is calculated from the intuitive argument,
that, quasi equilibrium will be restored after acceptance of at least some
fixed number of transitions. However, since transitions are accepted
with decreasing probability, one would obtain LA'—» oo for 5 | 0. As
a result, Ly is usually bounded by some constant L to avoid extremely
long Markov chains for small values of t.

5.3.2 A Polynomial-Time Cooling Schedule
The cooling schedule proposed by Aarts and Ven Laarhoven [11] leads

to a polynomial time execution of the SA algorithm. To differentiate it from
the simple schedule of Sec.5.3.1 we shall call it Polynomial- Time Schedule in
all future references following the original nomenclature even though both

the schedules are expected to run in polynomial time. The polynomial-time

116




Chapter 5: The Simulated Annealing Algorithm

schedule is by it’s very design, more attuned with the statistical behaviour
of the problem instance and as such is expected to perform better than the
simple schedule of Sec.5.3.1. However, as is the norm of a heuristic algorithm
this schedule fails to give any guarantee for the deviation in cost between
the final solution obtained by the algorithm and the optimal cost.

* Initial value of the control parameter : The initial value ¢y of the
controllpa.rameter should be such that at this temperature virtually all
proposed transitions are accepted. For a sequence of trials generated
at a certain temperature t, we assume that m;, represents the number
of proposed transitions form ¢ to j for which f(j) < f(i), and, m, the
number of transitions for which f(j) > f(¢). Also let, K}'—+ be the
average difference in cost over the m; cost-increasing transitions. Then,
the acceptance ratio can be approximated as,

et
. Tt mg exp(—24—)
my +ma

¢ s | 5.19

from which it is easy to obtain,

. 5.20

The initial temperature ¢y can be calculated from eq.5.20 in the following
manner. Initially, io is set equal to zero and then a sequence of my trials
is generated. After each trial a new value of ¢, is calculated from €q.5.20,
where ( is set to (g, the initial acceptance ratio. The values of m; and
my correspond to the cost-decreasing and cost-increasing transitions
respectively and also my = m; + mj. The new value of ¢y is used in
the next trial. The value of the control parameter thus slowly converges
to the desired starting value g, that produces the specified acceptance
ratio Co. | |

* Decrement of the control parameter : It has already been stated
that when the temperature, t is decreased very slowly the resulting
stationary distribution of the homogeneous Markov chains will be close
to each other., As a result, after decreasing ¢y to )41, & small number of

117




Chaﬁter 5: The Simulated Aﬁneah’ng Algorithm

transitions are needed to restore the quasi equilibrium at £y4.1, provided
quasi equilibrium holds at ¢5. The condition for quasi equilibrium can
thus be assumed to be, - '

S VAZ0:  lata)—altan)ll<e 5.21

for some positive value of ¢ . Thus, we assume that quasi equilibriﬁm is
maintained throughout the optimisation process if q.5.21 holds for all
A. This requires that quasi equilibrium is achieved at £,.

For two successive values of the control parameter, the stationary

distributions need to be close to each other. This can be quantitively

expressed as,

- 1 ai(t2) -
Vie§S: < <1446 A=0,1,.-- 5.22
t€ 1+46  qi(tas1) + ’

for some small positive number §, which can be related to eq.5.21. The
above inequalities of eq.5.22 are satisfied if the the following condition
holds, '

exp(— &

R TR
exp(— s

Vies: <1446 X=0,1,--- 5.23
where §; = f(i} — fopt.

Equation 5.23 can be rewritten to give the following condition on
two successive temperature values,

VieS: tap>—— . A=0,1, 5.24
| 1+ 55898
Using the empirical knowledge[1] that the probability distribution of the
cost values of the solutions is 'normal’ near the average value of the cost
function and ’exponential’ in the region close to the optimal value of
the cost function, eq.5.24 can be simplified for 99% and 95% confidence
limits of the normal and exponential distributions as

123 oy | :
try > PRI , A=0,1,.-- 5.25

U)T; ~fopt+30tar

118




~ Chapter 5: The Simulated Annealing Algorithm

For many instances of combinatorial optimisation problems the value of
fopt is not known. However, the average value ({f}) and the spreading - -
(o) of the cost function typically exhibit a similar behaviour as a
function of the control parameter. (f)s, = fope + 30t can thus be
replaced by 3o¢) and the omission of the term {f);, — fop: can be
counterbalanced by choosing smaller value of 6. Thus eq.5.25 can be -
rewritten as -
by = — A
+1 14 ab0+8)’

ETZTY

A=0’1,"' . . 5-26

The amount by which the value of ¢ is decreased by the decrement
function of €q.5.26 is determined by the value of the distance parameter

6. Small é-values lead to small decrements and large §-values lead to
- large decrements in ¢.

* Final value of thé control paramefer : The execution of the SA
algorithm can be terminated by extrapolating the expected cost (f)s,
for ¢ty | 0. Let,

A(f)e = {f)e = fopts - 5.2
then execution of the algorithm is terminated if A(f); is very small

compared to the expected cost at 2o, {f)¢,. For sufficiently large values
of 1o, (f}t, = {f)eo. Hence, A{f): can be approximated for t < 1 as,

A{f=t rratl | 5.28
Therefore, the algorithm can be reliably terminated when,
tx O(f)e '
YA>0: —— < €, 5.29
(f )oo ot t=ty .

where g, is a small positive number. ¢, is the stop parameter and eq.5.29

is the stop criterion. '

* Length of the Markov chain : The discussion for the simple cooling

schedule (Sec.5.3.1) applies here as well. However, in practice, the length

of the Markov chain is made equal to the size © of the neighbourhoods,

ie. | '
Ly=L=9©6, A=01,.. 5.30

119




Chapter 5: The Simulated Annealing Algorithm
501."-2 . . 55'.n_2
{'n=4 _ |*n=4
‘n-a in=g ’ X
60{*n =18 ' ) 45{*n =186
x X o
___*-—-'f__-.
X X \ X ) ) . 1 X ¥ ¥ T 1
B i i I T
S 40— 7 i : S 3% . . ‘
9 e
:é ' £ T s v T
& T e v g’ ]! ' '
gSD‘ gzs ] ’ T 1 1 ' ]
20 15 . ©
4

T 1 t 1 &— ¥ "7 ¥ 5 T 1 & © 7 T Tt
1'30‘1(12!0304-05()607(!80901Cll'.)'(l102!33{1406('.'!607(1809(310(3

% Swaps = 100 - % Moves | % Swaps = 100 - % Moves
6075 a2 | | 557412 2
'n'4 1'“&4‘
in=8 . ‘n-8
X "
s0{%n=16 . : ' 451 n=16
) x
Ly < +
g 1T 7 Yo% g " e
' ]
840__‘ . . ‘1_"__‘.-‘/1"- 035 i [ i
;:é E i b
o »
-39 CNP WIS R,
€ 30 v ' 225‘ '
< J . — ] .___—r'—r‘
. [ ] L} [} 1 ]
20 ' : . d 15 R .

10 L T T T T L) T T J L 5 ¥ T ¥ | T T T T T L]
0 40 20 30 40 60 &0 70 80 €0 100 0 10 20 30 40 60 60 70 80 ©0 100
% Swaps = 100 - % Moves "% Swaps = 100 - % Moves

Fig. 5.3 Effect of different Swap-Move composition on the final cost. Both
simple cooling schedule (top) & polynomial-time cooling schedule
(bottom) are used. Graph data instances used are 4x4 multiplier
ckt. (left) & frequency locked loop ckt. (right)..

120




Chapter 5: The Simulated Annealing Algorithm

5

'n=4
1'n=8
In=16

Average Final Cost

257

20 L] L) : i L] T L T L L)
0.4 02 0.3 0.4 05 06 07 08 09 10

Initial Acceptance Ratio
501 nw2
"h=4
& . in=8
T
40 x -
X
Jos) s
an . A i b
[ ]
[*]
g
g2 ' _ 1 .
’ [ }
201 )
2 I

10 T T T T T Y T T ]
0.1 02 03 04 05 06 0.7 08 08 10

initial Acosptance Ratio

)

‘n=2
n=4
fn=8
n=16

-h
<

T
o

Exacution Time, Seconds

<

A

"

0 T T T T T T T T 1
01 02 03 04 05 06 07 08 09 10

inital Acceptance Ratio
301
13 \l
"he2 f
3 ‘ne4
' Ezo‘n-s
@ {'ne16
£ s
E 01" s ’ —
6 . —

0 T T T T T T T T ]
041 0.2 0.3 04 05 06 0.7 08 09 10

Inttial Acceptance Ratio

Fig. 5.4 Averagefinal cost (left) & average execution time (right) as functios
" of the initial acceptance ratio, (§. The simple cooling schedule is

in use. Graph data instances used are 4x4 multiplier ckt. (top) &
frequency locked loop ckt. (bottom).

121



Chapter 5: The Simulated Annealing Algorithm

5.4 Implementation of the SA algorithm

In this section, we shall discuss a simple single procéssor implementation
of the SA algorithm for the solution of the multiprocessor task scheduling
problem as encountered in concurrent VLSI timing simulation (c.f. Chapter
3). Implementatzon of the SA a.lgonthm requires a sequence of Markov chains
A generatlon mechamsm i8 devxsed and individual Markov chains are
generated, by _attemptmg to transform a current solution into a subsequent
one, by repeatedly applying the generation mechanism and the acceptance
criterion. An implementation of the SA algorithm requires the specification
of the following three items :

1. a concise problem representation,
2. a transition mechanism, and

3. a cooling schedule.

The above three items are now discussed in detail in the following sub-

sections.

5.4.1 Concise Problem Representation

A suitable concise description of the problem is necessary to repreSent'
the solution space, and also to evaluate an expression for the cost (objective)
function. The cost function must be able to represent the cost effectiveness
of the various solutions with respect to the objective of the optimisation
process. Sections 3.4, 3,5 and 3.6 cover these issues for the present problem.

5.4.2 Transition Mechanism

Three distinct steps are involved in the process of generating trials for
transforming a current solution into a subsequent one. At first, a generation
mechanism is used to generate a new solution. Secondly, the difference in
cost between the two solutions is calculated and finally, based on the result of
the second step a decision is made whether or not to accept the new solution
as the current solution. '

1929




Chapler 5: The Simulated Annealing Algorithm

The generation mechanism as described earlier is used to generate a
new solution from the current solution by bringing in a simple modification
of the current configuration of the problem instance. For the multiprocessor
task scheduling problem modelled on a directed acyclic graph (DAG), this
modification can be easily accomplished by utilising any one of two simple
processes. The first is the move and the other is the swap (c.f. Section 3.7).

- A move involves changing the processor allocation of any one node of the

graph representing the problem instance from one processor to another while
in swap, processor allocations of any two nodes with differing allocations are
interchanged. A swap, thus, can be viewed as the equivalent of two moves.
In a practical implementation of the SA algorithm or for that matter any
heuristic algorithm based on the iterative improvement method, a mix of
‘moves and swaps is deemed better than using any of these two techniques
alone.

The evaluation of trials is the most important time consuming part of
the SA algorithm and therefore, needs to be done as efficiently as possible.
The two techniques, move and swap, allow generation of new solutions by
siniple re-arrangement of the current configuration of the problem instance.
Calculation of the cost difference is needed to be done quickly and as such
methods that calculate the incremental cost difference are preferred. In
Sec.3.7.2 and 3.7.3 these issues are covered.

The decision to accept new solutions is based on the Metropolis crite-
rion, _
. 1 : ;i HAf<O0 _
TP{accept i} = {exp(—%-f) L HATSO, - '5.31
where ¢ represents the control parameter, temperature and A f the difference
in cost between a new and a current solution.

5.4.3 The Cooling Schedule

Carrying out the optimisation based on the annealing process requires
specification of the parameters determining the cooling schedule. These are
the initial value of the control parameter, temperature; a decrement function

of this control parameter, the length of the individual Markov chains and a
 stop criterion. Two different cooling schedules are examined. The first based

123




Chapter 5: The Simulated Annealing Algorithm

N1 o 0.96
‘ne i
‘n=16
601 0.94

0,82

40 ' - 80

&
Decrement Factor,

o6 0.88
g,
lll‘}}h}i]

- 0.88

| GEm pah N R St R ) SeRE SN AN SR D_Mllvvllllluli
2E;0 60 80 100 120 140 160 4 60 80 100 120 140 460
" Number of Temperature Steps Number of Temperature Steps
551 0.09
‘ ‘n= 4
n=16
& [ 0.98
45.
g §L97
E [
401 ‘
: g’ )96
M-
EREURES oo
01 [T 1 T T T I 11
25|| L

o 8 o0 10 10 Mo 180 40 e 80 100 120 140 160
Number of Temperature Steps ﬁ:rberof'!‘mat._rosmps

Fig. 5.5 Average final cost (left) and the decrement factor (right? as func-

tions of the number of temperature steps. The simple cooling

schedule is in use, Data flow gra.ph for the 4x4 multiplier ckt. is
used. Initial acceptance ratio, (g = 0.99 (top) & (§ = 0.10 (bottom).

1)

124




Chapter 5: The Simulated Annealing Algon’th%n

§07 ' ' 0.961.
*ne4 ' ‘n=4

‘ne=16

/l

“ I“]‘}-r{--}- Feped |

30-
25.
20.

B 13 T T Y T T T Y T .: Lo 1 0,82 T Y T T T T Y T T Y
40 60 80 100 120 140 . 160 4 60 80 100 120 140 160
Number of Temperature Steps Number of Temperature Steps
ol [ R T
‘n=16 {*n=16

45.

5
e
]
-
_—
.
-t
!
A
L
+
8

ESS‘ 33:.97
£ 3
|

11
m 111_11111 . 095

15 T T Y T T T T T T T T ] 0,94 T T T ¥ T T T T T T T 1
40 60 80 100 120 140 160 40 60 80 100 120 140 160
Numbar of Temperature Steps Numbaer of Temperature Steps
Fig. 5.6 Average final cost (left) and the decrement factor (right? as func-
tions of the number of temperature stegs. The simple cooling
schedule is in use. Data flow graph for the frequency locked loop

ckt. is used. Initial acceptance ratio, {{ = 0.99 (top) & (5 = 0.10
(bottom). |

125




Chapter 5: The Simulated Annealing Algorithm -

on empirical experience and is very similar to that of Sec.5.3.1. The other
is an implementation of Aarts and Van Laarhoven’s (Sec.5.3.2) polynomial-
time cooling schedule. It is to be noted that both of these schedules run in
- polynomial time and is expected to provide near-optimal solutions.

Simple Cooling Schedule

Here we adopt a very simple definition for the initial acceptance ratio,
which is necessary to set the initial high temperature. The initial acceptance
ratio ¢} is defined as follows :

Co = exp (— g—) , 5.32
to
where as before, 1, is the corresponding initial liigh temperature and Af is
average difference in cost for all cost-increasing and cost-decreasing transi-
- tions. From the above, the value of {y can be obtained as,

__.Af | |
= ln(({,)' 5.33

Though the above is a static definition as compared to the more accurate

one of eq.5.19, the results obtained are accpetable.

Unlike the simple schedule of Sec.5.3.1 we here, place 2 bound on the

number of temperature steps, i.e. the number of homogeneoﬁs Markov chains
" at descending values of temperature. From experience, it is found that an
upper bound of 100 temperature steps is acceptable for almost all small to
medium sized instances of the task scheduling problem. In order to make
this implementation of the SA algorithm independent of the problem size, it
is decided to set the number of temperature steps to 100. It is also assumed
that the probability of accepting a cost-increasing transition at the last
temperature step is very small. This assumption leads to the calculation
of the decrement function. We let,

g = probablhty of accepting a cost-mcreasmg transition
~ at the last temperature step,
t.nd = the corresponding temperature (c.f. eq.5. 33),
and,

126




' Chaﬁtér 5: The Simulated Annealing Algorithm

501 . _ , 80

nez ‘ne2
‘n=4 : ne=d
451 | goj'n=®
*n=16

5 i
" -

e £
§30' §20*

251

26 L] L) L ‘ L) T L) T T L] 0 L) L] L) L) L) Ll T L 1
0.1 02 03 04 05 06 07 08 09 10 0.1 02 03 04 05 05 0.7 08 09 10

Initial Acceptance Ratio _ initlal Acceptance Ratio
807 un A 80%,,- 5
th=4 ‘ {'n=4
45.‘“'8 80 ‘nsa
In=16 {th=16
P 70

g

Averags Final Cost
&
Bxacution Time, Ssconds
g 3

&

]
8

3
3

|

ol
L4 L4

1 02 03 04 05 06 0.7 0.8 0.9 1.0

o

01 0z 03 04 05 06 07 08 09 10
Fig. 5.7 Average final cost (left) & average execution time (right) as functios
of the initial acceptance ratio, (o. The polynomial-time cooling

schedule is in use. Graph data instances used are 4x4 multiplier
ckt. (top) & frequency locked loop ckt. (bottom).

127




Chapter 5: The Simulated Annealing Algorithm

Nt = = the total number of temperature steps.

~ Then the decrement function can be expressed as,

a=(t;—:d)#._ - | 5.34

The total number of transitions allowed i.e. the length of the Markov

chain at each velue of temperature is bounded by the size of the neighbour-

hood structure. We recall that for the task scheduling problem the suitable
transition mechanisms are moves and swaps. For simplicity, we here take the
case of move. When a node of the graph representing the problem instance
is selected for a move, the number of available processors to which it can

be allocated (moved) to is n — 1, where n is the number of processors. For
k nodes of the graph the total number of choices for a single move is thus,

k{(n —1) and this is the number of neighbouring solutions of any arbitrary
solution i. From this it is easy to derive an expression for the length of
the Markov chain (i.e. the number of transitions allowed) at each value of

temperature, ¢y as,
Lg=mk(n—l), A=0,1,... - 5.3

where m is a constant whose value defermines_ a widening or shortening of

the Ma;kdv chain, Evidently, a high valued m resﬁlting in a long Markov
chain would result in better solutions, as it would approach an infinitely long

Markov chain more closely. But, this advantage could be inhibited by very
long computing time. A sensible value of m is between 1 and 5.
For the practical implementation of the simple cooling schedule, the
following parameter values are used
initial acceptance ratio, ¢} = 0.99,
final acceptance ratio, ¢!, 4 = 0.00001,

total number of temp. steps, N = 100,
neighbourhood size parameter, m = 1.

and the value of Af is determined from a trial run involving Ly
. transition with m set at 5. '

128




Chapter 5: The Simulated Annealing-Algorithm

The Polynomial-Time Cooling Schedule

This implementation adheres fuliy to the Aarts and Van Laarhoven’s11]
polynomial-time schedule. The following parameter values are used

initial acceptance ratio, (o . = 0.98,
distance parameter, § ' =01,
stop parameter, £, - = 0.00001,

neighbourhood size parameter, m = 1.

The lengths of the Markov chains (i.e. the total number of transitions
attempted) at each value of the control parameter, temperature is similar to
that of preceding cooling schedule.

The noticeable- difference between these two cooling schedules is that
the latter is more cdmputafiona]ly intensive and also for very small but
reasonable value of the stop parameter, €, would require more temperature
steps, thereby taking more time to reach the stop criterion of the SA
algorithm. However, the perceptible benefit is that better solutions are
expected.

5.4.4 Performance Analysis of the SA Algorithm

The two cooling schedules namely, the simple cooling schedule and
the polynomial-time cooling schedule described earlier were implemented
on a single processor in order to ascertain their performance in solving the
multiprocessor task scheduling problem. The performance analysis described
here involves the finite-time behaviour of the SA algorithm. This analysis is
based on both the cooling schedules investigating the performance of the SA

~ algorithm as a function of the following parameters : -

a. Simple cooling schedule: swap-move ratio, initial .a.ccepta.nce ratio ((3),
the number of temperature steps (N7) and size parameter (m). '

b, Polyndm.ial—time cooling schedule: swap-move ratio, initial acceptance
ratio ((o), stop pé.rameter (¢,), distance parameter (§) and size param-
eter (m).

129




Chapler 5: The Simulated Annealing Algorithm

”oT
e FrTEET
A /
g 80+ i 7 !
o /
E T, )P
I.I. m"' 3 4 A
© £ A
. g i ’/ i /
' S LERHAE-TT
S w7 T %
< E i = .
20 T T ns= 4 L
-=- ne18
0 P : i i : - ; " ;
1E-8 0.00001 0.0001 0.001 0.01 0.1 1
Stop Parameter
m -
m-- ‘-‘--‘.- l - el .
\“ -
g 07 N
‘% \
\\ \\
™l A\
g . ] ‘\
- i\
g 180 \\\
% \ \\
= 10071 \\ \
\ \
— 4 ‘\ H
0T n= N
== ne16 \g \\
1E-8 0.00001 0.0001 0.001 0.01 Y 1
Stop Parameter

Fig. 5.8 Average final cost (top) & the number of temperature steps (bot- -
tom) as functions of the stop parameter, ¢, for fixed values of
(o(= 0.98) and §(= 0.1). The polynomial-time cooling schedule
& the graph instance for the 4x4 multiplier ckt. are used.

130




Chapter 5: The Simulated Annealing Algorithm

1w H » -
318 [ o Ll
HIRR
i
F;
g | AL /
‘a ey
.E 3 i"
I-; 80 T I i
o fill T#
d dliihg k
[ e R . //
> & e 1 A
- 4 sl 3
27T 3 iilly ; ] — ne4
4l == nei$
0 ! } + . T Ty
1E-6 0.00001 0.0001 0.001 0.01 0.1 1
Stop Parameter
m-‘ .
300 T '\
\"_vp_-»— L
J \
4 250 B o H
(=8 — \ 1Y
@ ~ Y
m \"h.i-..-‘l'_‘
® 2007 ‘\
=
5 N
g \\ \\
g w7 N
g S
= 1001 X \
: X
] LN
é\\\\"»\\ !‘..-— n‘ 16 R
o : : : : :i ~ "--»-u.;_ H I :::r:
1E-8 6.00001 0.0001 0.001 0.01 o1 1

Stop Parameter

Fig. 5.9 Average final cost (top) & the number of temperature steps (bot-
tom) as functions of the stop parameter, ¢, for fixed values of
g:(: 0.98) and é(= 0.1). The polynomial-time cooling schedule

the graph instance for the frequency locked loop ckt. are used.

131




Chapter 5: The Simulated Annealing Algorithm

As is the norm, the performance of the heuristic algorithm is related
to the quality of the final solution obtained by the algorithm and also the
‘running time required. As in chapter 4, the final solution here is expressed as
. the percentage of the average initial random scheduling cost. The running-
time of the algorithm for the polynomial-time schedule is in some cases
represented as the number of temperature steps required. This is valid,
as a direct relationship between the number of temperature steps and the
actual running-time can be easily established.

The performance of the SA algorithm has been mvest:ga.ted by carrying
out an average-case analysis, which relates to the average value of the
final solution and the running-time (or the number of teniperature steps) -
computed from the probability distribution over the set of final solutions that
can be obtained by the algorithm for a given problem instance. This results
directly from the probabilistic nature of the SA algorithm. The number of
iterations for each investigation lies between 30 and 50.

. The proBlem instances used here for the investigation are the graphs
representing the 4x4 multiplier circuit (58 nodes) and the frequency locked
loop circuit (68 nodes). The larger graph instances are avoided here for the
sake of investigation time. The processor sizes (graph partition sizes) used
are 2, 4, 8 and 16 similar to that used in chapter 4. Apart from the two
graph instances mentioned above, some synthetic graphs of known sizes and
connectivities are also used to find the time-complexity of the SA algorithm.

Fig. 5.3 shows the final cost as a function of the swap-move composition.
The total number of transitions attempted for different processor sizes are
goverend by eq. 5.35. This number is the same Ai;é_s_ﬁéa:i—w:é of the nature
(swap or move) of the attempted transition. No significant dependence of
the final cost value on the swap-move composition is observed. However, the
final cost values at the two extreme compositions (0% swap & 100% swap)
are found, in most cases worse than at other values of the composition.
When 100% swap is used the load-imbalance issue is not properly addressed
and as a result the final solution contains significant load-imbalance. This
-result here substantiates the observation made in Sec.5.4.2. Wide statistical
variation is also observed in all cases. As swapé take more time to than the

132




Chapter 5: The Simulated Annealing Algorithm

65T
§0°T “,_[
/]
. iy 1\ i
r’/ s
= 4 _If” . =
u:— - - "'E
it 4t
o
§
5 BT <
=8 {\ 4
L
W"' _ n.4 }— :: __’_V T i
== n=16 :
0.001 0.01 0.1 1 10
Distance Parameter
\
A
\\
2600 T \
A
a \
@ 20007 \
() \
1500 T
8 5
[ )] \
g | \l
E 1000 T \
- - \\\

x
. N
S500T | — n=4 \;\\\

== n~18 - Eh

gl
/

b =11

0.001 0.04 01 10

- Distance Parameter

Fig. 5.10 Average final cost (top) & the number of temperature steps (bot;
tom) as functions of the distance parameter, § for fixed values of
@(: 0.98) and.¢,(= 10~%). The polynomial-time cooling schedule

the graph instance for the 4x4 multipkier ckt. are used.

133




Chaptef 5: The Stmulated Annealing Algorithm.

75“ ! E 3
es+
T /
: /
o BT 8
‘| + /
£ /
W 45+ ,} /
& i ,’l \\ ,I
& Eo--toi-foliy” | TrET |
> BT i
€ | - _
%+ | —p- T ‘ T T
. ned | Pt P —F 7 ﬁ’
1l |-—-n«18 Ti
18 ERIEEERLI : } 4
0.001 0.01 - 0.1 1 10
Distance Parameter
3000 T
2600 T
a
O 20007
(/)
S
1500 T
g \
Q -
Q X
E 10001 \\
. \
ool [ one N
\ g
== ne18 e
0 : I I : } : ¥ ] i
0.001 0.01 0.1 1 10
Distance Parameter

Fig. 5.11 Average final cost (top) & the number of temperature steps (bot-
tom) as functions of the distance parameter, é for fixed values of

gg(= 0.98) and ¢,(= 107%). The polynomial-time cooling schedule
the graph instance for the frequency locked loop ckt. are used.

134



Chapier 5: The Simulated Annealing Algorithm .

moves, it is advantageous to use more moves than éwaps. A perceniage figure
of 20%-30% of swaps in most cases produced acceptable results.

- In Fig. 5.4, the average final cost and also the average running-timeas a
function of the initial acceptance ratio, {; for the simple cooling schedule are
shown. The observed results are quite unexpected. A deterioration of the.
final cost with the decrease in the initial acceptance ratio was anticipated.
However, it is to be remembered that the implementation here is only a
finite length approximation of the Markov theory of the SA algorithm which
fequirés infinite length Markov chains to be generated at the descending
values of temperature. Moreover, the simple cooling schedule always works
with a fixed number of temperature steps (number of Markov chains) for all
values of ¢;. Smaller values of the initial acceptance ratio, ¢ result in lower
values of the initial temperature. Since, a fixed number of temperature
steps, Nz (= 100) and also a fixed terminating condition based on a pre-
determined value of the final acceptance ratio (¢lna = 0.00001) are used,
a very slow cooling take place for smaller values of the initial acceptance
ratio, ¢§. On the other hand, higher values of the initial acceptance ratio
forces a relatively much larger temperature decrement factor, « and since the
number of transitions at each temperature step is not very large (m = 1),
the resulting quasi equilibrium distribution can not come close enough to
the stationary distribution (eq.5.8). The reason that the final cost obtained
for smaller values of ¢} is not much better than that for higher values of ¢}
for the same number of transitions, even though cooling.is very slow in the
former case is due to the fact that not many perturbations are allowed in
that situation and also that the initial condition for quasi ethbnum (high
initial temperature) is not met.

The running-times for all values of {j for both the problem instances
are fairly uniform. This is expected as the running-til.ﬁe of the algorithm is
directly proportional to the product of the number of temperature steps and
the number of attempted transitions at each temperature step. However, if

. the number of temperature steps are increased (or decreased), the decrement
factor, « is changed accordingly. An improvement in the final cost is expected
~with an increase in the number of temperature steps. Figs. 5.5 & 5.6
illustrates the above in graph form. The change in average final cost with

135



Chapter 5: The Simulated Annealing Algorithm

10001 _,

-=n=16

20 R - . 0.01 ; ; - -
0001 0.0 0.4 1 10 0008 0.0 0.1 1 10

Size Parametsr, m

-_I'I-4
““n=16

1E-3 001 0.4 1 10

Size Parameter, m Size Parameter, m

Fig. 5.12 Average final cost (left) & avera%s: execution time (right) as func-
tions of the size parameter, m. The simple cooling schedule is in
use, Graph data instances used are 4x4 multiplier ckt. (top) &

frequency locked loop ckt. (bottom).

136



Chapter 5: The Simulated Annealing Algorithm

30"_n_4 1“”1,_11-4
“n=18 “~n=18
[ 100
w-
g 10
£ £
f .
w-
0.1
301
T L] v v 0.01 1 T L) )
20?(.’0‘3 . 0.0 0.1 ) 10 0.001 0.01 0.1 1 10
Size Parameter, M Size Parameter, m
801 — n=4&
‘—n=18
704
Bo-l
3
He
gw.
a0
201
Y — v y .01 T T T \
10?001 0.01 0.4 1 10 0.001 0.01 0.1 1 10

Size Parameter, m Size Parameter, m

Fig. 5.13 Average final cost (left) & average execution time (right) as
functions of the size parameter, m. The polynomial-time cooling
schedule is in use. Graph data instances used are 4x4 multiplier
ckt. (top) & frequency locked loop ckt. (bottom).

137



Chaptei; 5: The Simulated Annealing Algoritﬁm

15
-]
©
=
o
‘§ 10
)
£
=
c
o
. g 5
i
00 20 0 4 60 & 70 80 0 100
Problem Size (No. of Graph Nodes)
80
~— d=0.10
== d=100
o r " d=100
e
c
0
Q
O
7))
¢
E
=
=
.° :
g
i

Problem Size (No. of Graph Nodes)

Fig. 5.14 Average execution time as a function of the problem size for a
fixed number of temperature steps, Nr(= 1005) [simple schedule,
top] and for different values of the distance parameter, é and
- fixed values of {o(= 0.98) & €,(= 10~%) [polynomial-time schedule,
bottom]. . '

138



Chapter 5: The Simulated Annealing Algorithm

' the number of temperature steps however, in most cases, has not been found
very significant. '

Fig. 5.7 once again shows the average final cost and the average running
time as a function of the initial acceptance ratlo, Co. In this case, the
polynomial-time cooling schedule is used and the values of the distance
parameter, § (= 0.1) and the stop parameter, €, (= 0.00001) are fixed. It
is seen that smaller values of (o leads to faster execution time, This is
expected since the algorithm starts off at smaller values of fempérature while
it terminates at approximately the same temperature. It is also observed that
~ the average final cost deteriorates as (o decreases. This can be explained as
follows. Smaller values of the initial acceptance ratio, (o result in lower values
of the starting temperature. As a consequence, for these smaller values, the
initial condition for quasi equilibrium, i.e., high starting temperature is no
longer met. This predictably results in a deterioration of the quality of
the final solution, since the stationary equilibrium distribution is no longer
reached. An important observation here is that the SA algorithm (with
polynomial-time cooling schedule) has failed to reach convergence for some
very small values of (.

Figs. 5.8 & 5.9 show the average final cost and also the average number
of resulfing temperature steps, an indicator of the running-time as a function
of the stop parameter, ¢,, the values of (o (= 0.98) and & (= 0.1) are fixed.
The expected behaviour is clearly in evidence. As the value of ¢, increases,
the stop criterion of eq. 5.29 is more ‘easily met and consequently the
running-time decreases, while the quality of the final solution deteriorates.
_ From the plots however, three distinct regions an be clearly seen, viz. (a)
0.00001 < &, < 0.001, (b) 0.001 < ¢, < 0.01 and (c) &, > 0.01. The SA
algorithm appears to show it’s calibre as ¢, assumes values less than 0.01.
Within region (a) very little nnprovementm the final solution is achieved
with commensurate little increase in the running-time.

The effect of the distance parameter, & on the average final cost and
also on the ruuning time (number of temperature steps) is shown in Figs.
5.10 & 5.11. As can be seen, smaller values of § result in better results but
at the expense of much increased execution time. A value of § lying between
0.1 and 0.5 is more acceptable for a practical implementation. '

139




Chapter 5: The Simulated Annealing Algorithm

110; 400
1w- 350
300
901 g }
§ e
g 801 }
Lol
_ 707 B
gm‘
) Bo.' . .
1001
50 501
0.01 4000  0.01 1000
1107
1001
mi
Beo
£
£ 701
i
50-
‘0‘
w L] T 1 L) L) L] !
0.1 1 10 - 100 (11 | 1 10 300

Temperature _ " Temperature

Fig. 5.15 Temperature profiles of the simple (top) and polynomial-time
(gottom) cooling schedules. Graph data instance is 4x4 multiplier
ckt.

140




Chapter 5: The Simulated Annealing Algorithm

1209

04 1 10 100 1000

Temperature Temperature

Average Final Cost
2 8

3

100
"~ Temperature Tomperature
Fig. 5.16 Temperature profiles of the simple (top) and polynomial-time

(bottom) cooling schedules. Graph data instance is frequency
locked loop ckt. ' '

141



. Chapter 5: The Simulated Annealing Algorithm

Figs. 5.12 & 5.13 show the effect of the size parameter, m on the average
final cost and the running time for both the schedules, The observed result is
evidence of the Markov theory of the SA algorithm. An increased m result in
a larger neighbourhood size and consequently more attempted transitions for
each Markov chain (eq.5.35) bringing a closer approximation to the required
infinite length Markov chain. The penalty of a better result with higher m
is however the much increased execution time which grows lineai-ly with m.

Fig. 5.14 shows the time dependence of the SA algorithm with problem
size. As in chapter 4, the problem size is defined as the number of nodes of
the graph representing a task system. For this investigation, the same set
of synthetic graphs as used earlier in chapter 4 with nodes ranging from 10
to 100 with average degree ranging from 2.8 to 3.6 are used. The nodes and
edges of theses synthetic graphs are unity weighted. A processor size of 8
(n =8, number of partitions in the graph) is considered. The simple cooling
schedule resulted in a linear time (O(k)) the problem size relationship with
the problem size, a direct consequence of the very simplistic convergence

condition.

The polynomial-time cooling schedule however, behaves slightly differ-
ently. It is observed that the average-case time complexity is the same for
the different §-values and is estimated to be slightly worse than O(k logk).
Finally, it should be noted that the running times may be very large at small
values of 6 for the larger problem"instances.

In Figs. 5.15-5.18 the performance of the two cooling schedules are
compared. The default parameter values (Sec.5.4.3) were used. The profile
of a single complete cooling schedule for both the graph instances are
depicted in Figs. 5.15 & 5.16, where the number of transitions rejected
at each temperature steps and also the cost value at that temperature are
shown. It is observed that the simple cooling schedule starts off from a
much higher temperature than the polynomial-time schedule, a result of
differing formulations (eqs.5.32 & 5.19). The consequence of this is that the
polynomial-time schedule cools very slowly, approximating the ideal physical
a.nneali'ng process more closely. It is also observed that there is more activify
in the polynomial-time schedule which helps to explore the optimal solution

more rigorously.

142




Chapter 5: The Simulated Annealing Algorithm

~ Simple

+ Polnomiai-Time
s0
£
g 4
3 £
g 301
3 1
s o
< §207
2

20 ! Al ' 0 7 ¥ 1
2 4 8 16 2 4 8 16

Number of Processors Number of Processors

- Simple
 Polynomial=Time

& 8 8

8

Average Final Cost
Average Execution Time, Seconds

8

Number of Processors

- Fig. 5.17 Performance comparison of the two cooling schedules , viz, simpié
& polynomial-time, Graph data instances are 4x4 multiplier ckt.
(top) & frequency locked loop ckt. (bottom).

143




Chapler 5: The Simulated Anﬁealigg Algorithm

Measure of Comparative Performance

—_— Simple
=%~ Polynomial-Time

Measure of Comparative Performance

Number of Processors

1 ¥ L

4 8 : 16

Number of Processors

Flg 5.18 Performance comparison of the simple & polynom:a,l—txme two
~ cooling schedules using the measure of comparative performance.
Graph data instances are 4x4 mult:pher ckt. (top) & frequency
locked loop ckt. (bottom)

144




Chapter 5: The Simulated Annealing Algorithm

Fig. 5.17 shows the performance comparison of the two cooling sched-
ules for different processor (graph partition) sizes. The solutions created
by the polynomial-time schedule always outperformed those created by
the simple schedule, though not by a wide margin. However, it’s time
requirement is also significantly higher compared to that of the simple
schedule. In order to be able to make a subjective comparison of the two, we
indtroduce a measure of comparative performanée, 7 figure.’ This is defined
as follows,

1=bfm, 5%

where f.na is the average final cost value and T, is the average execution
time. This definition, though, clearly favours the polynomial-time cooling
schedule (Fig. 5.18) nonetheless expressés the emphasis given on the ability
of a schedule to produce better final solution even at the cost of increased
running-time. It is seen in Fig. 5.18 that the simple cooling schedule based
on eﬁlpirical knowledge performed better throughout. The performance of
the polynomial-time schedule is close to that of the simple schedule for small
processor sizes (n) but starts to worsen as the processor size is increased.

In conclusion, it can be said that the polynomial-time cooling schedule is
more robust and amenable to different problem instances than its counterpart
because of its good statistical foundation. It is also found that for the
polynomia.l-ti.me schedule, the performance of the SA algorithm is more
sensitive to the value of the stop parameter, €,, a judicious value of the
distance parameter, § would reduce the running time of the algorithm with-
“out sacrificing much in the solution quality and that starting the a.lgorlthm
from a higher temperature would yield a better solution. |

In its support it can be said that the simple cooling schedule is i*ery
easy to implement, runs relatively faster and generally performs very well.

However, in many practical situations the running-time demanded by
the SA algorithm is considered far too long and this poses the major hinder-
ance of the general applicability of the SA algorithm. The succeeding chapter

discusses this issue and proposes a concurrent multiprocessor implementation

of the SA algorithm.




Chapter 5: The Simulated Annealing Algorithm

References :

1,

Aarts, E. and Korst, J., Simulated Annealing and Boltzmann Machines,
John Wiley & Sons, 1989.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A and Teller.
A., Equation of state calculation by fast computing machines, J.Chem.
Physics, Vol. 275, 1953, pp. 1087-1092.

Kirkpatrick, S., Gelatt C.D. and Vecchi, M.P., Optimisation by Simu-
lated Annealing, Science, Vol. 220 1983, pp. 671-680.

Aarts, E.H.L. and Van Laarhoven, P.J.M., Statistical cooling: a gen-
eral approach to combinatorial optimization problems, Philips J. of
Research, Vol. 40, 1985, pp. 193-226.

5 Anily, S. and Federgruen, A., Simulated annealmg methods with

10.

11.

general acceptance probabilities, J. Applled Probability, Vol. 24, 1987,
pp. 657-667.

Romeo, F. and Sangiovanni-Vincentelli, A.L., Probabilistic hill climb-
ing algorithms: properties and applications, Proc. Chapel Hill Conf.
on VLSI, USA, 1985, pp. 393-417.

Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images, IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol. 6, 1984, pp. 721-741.

. Hajek, B., Cooling schedules for optimal annealing, Mathematics of

Operations Research, Vol. 13, 1988, pp. 311-329.

Mitra, D., Romeo, F. and Sangiovanni-Vincentelli, A.L., Convergence
and finite-time behaviour of simulated a.nnealing, Advances in Applied
Probability, Vol: 18, 1986, pp. 747-771. |

Collins, N.E., Eglese, R.W. and Golden, B.L., Simulated annealmg —
an annotated bibliography, Cambridge Univ. Press, UK, 1987.

Aarts, EH.L. and Van Laarhoven, P.J.M., A new polynomial- time ~

cooling schedule, Proc. IEEE Intl. Conf. CAD, Santa Clara, USA,
1985.

146



CHAPTER 6

Concurrent Simulated Annealing

The advantage of the simulated annealing (SA) algorithm as a general tool for
the solution of combinatorial optimisation problems are its potential to find
near-optimal solutions, it’s general applicability, it's flexibility and it’s ease of
implementation. However, the major disadvantage it carries is the potential
length -~ .~ of time required to converge to a near-optimal solution.

The amount of computational requirement of the SA algorithm strongly
depends on the nature and size of the optimisation problem. It ranges from
a few seconds, e.g. for small instances of the travelling salesman problem,
up to a few days, e.g. for large instances of the VLSI cell placement
problem [1]. Generally, the situation with respect to the compgtat_iona.l
requirement worsens as problems increase in size. An effort to speed-up
the algorithm, in order to keep the computation times within acceptable
limits is a reasonable thought. The increasing availability of multiprocessor

[

147




|
1
i

Chapier 6: Concurrent Simulated Annealing

systems offers a suitable platform to explore the possibility of parallelisation
of the SA algorithm. '

6.1 Speeding-up the SA Algorithm

There exist many different means of speed-up of the SA algorithm.
Design of a fast sequentml SA algorithm results in a more efficient implemen-
tation of the algorithm. Also, use of special hardware accelerators produces

" good performance in many demanding situations. Last but not the least,

parallelisation is an exciting possibility especially in the realm of present
days’s technology. These three major speed-up approaches are described
below.

6.1.1 Fast Sequential Algorithms

" The generation mechanism and/or the. cooling schedule of the SA
algorithm may be improved for an efficient implementation of the algorithm
w1thout deterioration of the quality of the final solution. ‘

/ " The state generation mechanism in Szu & Hartley’s [2] Fast Simulated

Annealing (FSA) uses Cauchy distribution instead of the usual Gaussian |
distribution resulting in an inverse linear cooling: rate. thereby requiring
less time.. The FSA algorithm was found very efficient for the solution of
continuous valued functlons The usefulness of Szu & Ha.rtley s a.ppraoch
for the solutlon of combinatorial optmnsatlon problems is however debatable _
[4] The main difficulty is with the different formalism and with the lack of
a.dequate statistical knowledge of the problem instances requlred to generate

| ' moves that correctly follow the Cauchy distribution. -

In the rejectionless method by Greene and Supowit (3], new v solutions are

' generated with probabﬂlty proportional to the effect of a transition on the

cost function. This results in the subsequent solution being chosen directly
from the neighbourhood of the current solution and thus the rejections are
eliminated. This method leads to_ shorter Markov chains in a number of
problems. Ho_wever, the efficient use of this method requires some additional
conditions to be met by the neighbourhood structure, which ux;fort'unately
can not be met by many combinatorial optimisation problems.

148



Chapier 6: Concurrent Simulated Annealing

It is generally held that cooling schedules alone can not improve the
efficiency of the SA algorithm [4]. However, it is also expected that certain
schedules which are tailored to a given problem or a set of problems have
the possibility of improving the efficiency of the SA algorithm. Cathoor,
DeMan and Vanderwalle [5] proposed an efficient cooling schedule in which
clustering occurs. ' B

Derivatives of the SA algorithm have also been proposed. Hoptroff and
Hall [6] have proposed a method of optimisation for learning in multilayer
perceptron which is essentially the simulation of annealed diffusion process.
A better than an order of magnitude of improvement in run-time and also
a superior quality of solution is reported. Bart and Miller’s [7] Mean Field
Algorithm, which combines the characteristics of the SA algorithm and the
Hopfield neural network has been used for the graph partitioning problems
and is found to be as much as 50 times faster than the SA algorithm.

6.1.2 Hardware Accelerators

Dedicated hardware accelerators can be used to evaluate the time-
consuming parts of SA algorithm. Josupovici, King and Breuer’s {8] point
accelerator was used to evaluate the incremental wire lengthsin a pla.cém'ent '
problem. Using a different approach, Spira and Hage [9] rewrote the time-
consuming parts of the algorithm in micro code to be executed on a fast
genera! purpose micro engine attached to a workstation host. Speed-up factor

" upto 20 was reported for the placement problem.

6.1.3 Design of Parallel Algorithms

The parallelisation of the SA algorithm involves the distribution of the -
execution of various parts of algorithm over a number of communicating
parallel processors. This approach promises significant speed-up of the SA
algorithm, but is by no means a trivial task. This is mainly due to the
intrinsic sequential nature of the algorithm, where in order to hold the
Markov property and the convergence criterion transitions are to be chrefuuy
carried out one after another.

149




Chapter 6: Concurrent Simulated Annealing

Serialmovetime

Reject  Accept

TT LT

Seriallteration -

. Manymoves are completed
inoneéquivalentserial movetime

N
[T T 10T T 1T I |
|
1] e
l_ l Rejecn

Fig. 6.1 Variousappraoches of moves for iterative improvement. Serial move
top), move decomposition (middle) and parallel moves (bottom).

dapted from [10].

150




Chapter 6: Concurrent Simulaled Annealing

Recently there is seen a growing interest in the research for the design
and analysis of a parallel SA algorithm. In the next section we shall discuss
the basic aspects related to the design and analysis of parallel SA algorithms,
and also a brief review of various approaches will be presented.

6.2 Parallel Annealing Algorithms

The SA algorithm can be characterised by a sequence of accept/reject
decisions on attempted trials that constitute a Markov chain (Fig. 6.1a). It
can be easily seen that the algorithm spends most of the time in generating
this sequence of trials. The length of the sequence and the computing time to
propose, evaluate and 'a:-.ccept [reject each trial determines the total solution
time. An efficient parallel SA algorithm should concentrate on this part of
- the algorithm for the exploitation of maximum parallelisation. Decomposing
each t_:rial,"we'g‘et the following four constituent tasks :

a. selecting a new solution from the neighbours of the current solution,
b. calculating the difference in cost between these two solutions,

deciding whether or not the new solution is to be replaced,

o

d. replacing the current solution by the new solution if it is accepted.
The sequence of trials can then be written in algorithmic form as:

Repeaf.

1. select new solution;

2. evaluate Ac, the cost difference;

3. decide to accept or reject the new solution;

4. if accept, execute REPLACE & UPDATE operations;
Until ThisLoopConditionSatisfied;

- The four steps of the above loop must be executed sequentially because
it is not possible to evaluate the cost of a move (transition) without having
knowledge of the cost of the move and so on. Kravitz and Rutenbar {10]
attempted to break each step into smaller subtasks, thus defining upto 15
different small jobs, some of which can be carried out in parallel. In this way,

151




Chapler 6: Concurrent Simulated Annealing

the sequential nature of the SA algorithm is retained. This decomposition of
a single move s referred to as'_Functioual Decomposition of a move or simply
Move Decomposition (Fig. 6.1b). Strong inherent precedence relationships in
various steps of a complete move reduces the opportunity for parallelism. As
such, scheduling of the subtasks must be synchronised carefully. Very little
speed-up is expected with this technique, especially for larger multiprocessor
systems as fine grain parallelism is difficult to achieve with this technique.
. The reported speed-up is less tl_ian 2 for 3 processors and is projected to
increase only slightly with the addition of more processors.
The obposité to move decomposition is the Parallel Move (or Multiple
Move) approach, where several complete moves are executed simultaneously
in parallel (Fig. 6.1c). Different variations in this approach are possible.
One such is the Division Algorithm proposed in [11], where decomposition
of the serial SA is done at the Markov chain level. At each temperature
step, the Markov chain is divided into subchains each of which can be
generated by a different processor. Thus, the algorithm achieves parallelism
by having the processors work on different copies of the data. The speed-up
is obtained by spending less time at each temperature, carefully selecting
the initial conditions for each stage of the cooling schedule in an attempt to
preserve the quési-cquilibrium. In this respect, two variations of the division
algorithm strategy exist. In the first strategy, there is no communication
in between the generation of consecutive Markov chains, i.e, each processor
continues the generation of a subsequent subchain with the solution given
by the outcome of the last trial of the preceding subchain obtained by the-
same processor (Fig. 6.2a). In the second strategy, the best solution found
by the processors that each generate their own subchain is used as the
outcome of the Markov chain constituted by the n subchains where n is
the number of processors.In between subseqﬁent Markov chains the solution
is communicated to all processors and used as initial solution for generating
the subchains constituting the next Markov chain (Flg 6.2b). The first
strategy returns n solutions — one for each processor — the best of which is
chosen as final solution. Aarts et. al [11] used both strategies for the solution
of a 100-city travelling salesman problem and found very little performance .
difference. They reported speed-up of about 6 using 8 processors. However,

152




Chapler 6: Concurrent Simulated Annealing

" Subchains
IE L} —— L
% / /
g L] L] —
g / / . .
| N
el - l
Final Cost
&
f:
3]
g
-

i“inal Cost

Fig. 6.2 Pictonal representatlon of the division algorithm, without commu-
nication (top) and with communication %bottom) Adapted from

153




Chapter 6: Concurrent Simulated Annealing -

it was found that the efficiency of processor utilisation drops as the number of

processors increases and extrapolation of results shows that no further gam :

can be obtained for about 30 processors. Woodhams and Price [12] adopted

! a similar approach (division algorithm) for their parallel SA implementation ;
| for the solution of VLSI cell placement problem. They also reported linear
|

speed up upto 4 processors. e

There is another variation of the parallel move approach to the problem
of perallelising SA, whose distinctive feature is that only one copy of the

data is shared among all the processors. An example in this class is reported
in [10]. It uses the concept of serializable subset of moves. A subset M’ of
 p moves M = {my,m3y,---,m,} is serializable if all of the moves in M’ do
not interact with each other (¢f. Sec.6.3.1). This means that the decision of
accepting or rejecting a particular move m; does not depend on the order in

which the moves in M’ are executed. Only serializable moves are allowed in
such move set. The authors found it difficult to determine large serializable
subset of moves and as such, their algorithm restricts it’s attention to the
simplest serializable subsets, i.e. subsets in which all but possibly one moves
are rejected. This simplest serializable subsets of moves are obtained by
attempting many moves in parallel, and by executing (i.e. if the move is
~ accepted by replacing the current solution with the new solution) only the
move that is accepted first and aborting all the rest. One drawback of this
procedure is that it seems to favour those simple moves whose cost can be
evaluated faster than the others. This approach shows & linear speed-up at
very low temperatures, where most of attempted moves a?é expected to be
rejected, but it's performance is poor at high temperatures. '

Darema, Kirkpatrick and Norton [13] proposed a different variety of
multiple move parallel SA algorithm for the placement of gate arrays. They
considered only pair-wise exchange of cells as valid moves. In order to
minimise erroneous calculation of costs due to move interactions, care is
taken to avoid situations in which the same cell is moved by more than one
processor at the same time, Connected cells having common edges are also
avoided. Each processor selects a pair of cells at random; if the pair (or any
one cell of the pair) is found to be already taken by another processor, the
attempt to move that pair is aborted and another pair is selected. When

154



Chapter 6: Concurrent Simulated Annealing

a pair is found, flags are raised to mark the cells as locked, the processor

can now attenipt to interchange the cells of the pair, at the end of which
the processor clears the flags and the loop continues. This procedure makes
heavy use of synchronisation mechanisms such as locks. The probability of
finding free pair of cells decreases as the number of processors is increased
relative to the size of the problem instance. Consequently, the speed-up falls
with larger multiprocessor system.

Another class of parallel SA algorithm adopting the parallel move
approach is the Error Algorithm. This is so called as no explicit attempt
is made to minimise the errors due to interaction between parallel moves. At
high temperatures where most of the attempted moves are accepted, there
is a very high probability of such errors to enter into the solution, However,
as the system is gradually cooled to low temperatures such. possibility is -
virtually eliminated and a near-optimal convergence is expected. In the
error algorithm parallelism is achieved by leiting all available processors
cooperatively generate the same Markov chain, No division into subchains
and no communication is used. Therefore, the algorithm is well suited for
execution on an asynchronous MIMD machine. |

Casotto et al's [14] implementation of parallel SA algorithm for the
macro-cell placement problem is based on the error algorithm. The dataset
is decomposed into as many nearly equal sized subsets as the number of
available processors. Each processor is allocated one such subset and then
allowed to execute SA asynchronously thereby allowing parallel moves that
might result in erroneously calculated cost functions. In order to obtain
a wider solution space the cells of the subsets are periodically allowed to
migrate between the subsets. This migration is governed by another SA
process satisfying a different optimisation criterion. It is found that the
error reduces to almost zero near the freezing temperature for the processor
configurations tested (2, 4 and 8). An 80% processor utilisation with 8
processors is reported. Vai's [15) parallel SA implementation is almost
similar with the difference that it requires a serial SA preprocessor to create
the subsets which are to be assigned to the available pi-bcessors in such
a way that the neighbour cells belong as much as possible to the same

155



Chapter 6: Concurrent Simulated Annealing

Prooessor21

Loads in processors:

-

L=7

=8
"
‘ L‘=6

ImbalanceCost=2
CommunicationCost = 1

TotalCost= 15 ‘

Processor2

Node A* is chosen for both
the concurrent moves;

from processor 1 to 2 as well
. as from processor 1 1o 3.

ool

Processor3

/ . " Imbalancecost =3

Communication cost = 10

_ Totalcost= 13

Move 1

~

 Imbalance cost =2 :
Communicationcost=10 ~ Move 2
Total cost =12

Fig. 6.3 A 14-node, 4-processor task systeni Sﬁog). Node A* is involved
e

in both the concurrent moves (mid

which when calculated

independently (bottom) result in accepting decisions. This brings
in contradiction, as the same node can not be moved simultaneously
‘to two different places. |

156



Chapier 6: Concurrent Simulated Annealing

subset. No migration of cells between subsets are allowed in this particular
implementation,

The advantage of the error algorithm is the absence of communication
requirements, enabling simple and straightforward implementation on asyn-
chronous MIMD machine. However, as a result of the presence of erroneously
calculation of moves it no longer follows the SA serial algorithm strictly and
consequently, the asymptotic convergence propertxes of serial SA presented
in Chapter 5 can no longer be assumed to hold.

6.3 Concurrent Siinulated Annealing

The Concurrent Simulated Annealing (CSA) [16] follows the parallel
move approach. CSA uses move sets which are conceptually similar to those
presented in [10]. However, the main difference is that, where in [10] the
serializable subsets of moves are discarded because of difficulty in determining
them and a very simple approximation is used, in CSA an explicit attempt
is made to create non-interacting sets of parallel moves. The main thrust
in the design of CSA lies in the determination of such non-interacting move
sets. In the subsections to follow, some salient features of CSA are presented.

- 6.3.1 Parallel Moves and Move Interactions

The simplest way to execute {evaluate cost difference, accept/reject
decision, possible update) several moves in parallel is to generate several
random independent moves and then to execute them in parallel. But, the
major problem is that such concurrently executed moves often interact. The
interaction of concurrently executed moves limits the effective parallelism of

the SA algorithm. -

‘When moves are executed in parallel it is important to control how,

moves that have been a,ccepted by the normal annealing criterion are ac-

cepted and applied to the problem database. At the lowest level, moves which
are attempted in parallel should not be contradictory among themselves
(e.g. when concurrent moves involving the same node are accepted in more
than one processors). Furthermore, erroneous accept/reject decisions are
possible when moves are executed in parallel. During the execution of each

157




Chapter 6: Concurrent Simulated Annealing

Processor1 | Processor2

Nodes A* and B* are the chosen
nodes for moves from processor .
110 2 and processor 3 to 1 '

respectively.

. _ % '
, : a : _
Processor2 0 ‘ '
/ Imbalancecost=3 l __/ % 1 11
Communication cost = 10 8 >
Total cost = 13 & T
. ’ : Imbalancecost =3
Move 1 Communication cost = 11
Totalcost =14 Move 2

1 Imbalancecost =4
1 Communicationcost =12
Totalcost=16
D——r

Processor3 Processor4

Fig. 6.4 Nodes A* & B* are selected for the concurrent moves (top). When

' calculated independently (middle) both results in accepting deci-

sions. However, the final result after accepting both moves turns
out worse than the original.

158




Chapter 6: Concurrent Simulated Annealing

move, the processor executing the move works within it's own domain and -
therefore, can not foresee or predict the effect of it’s own decision on other
activities being performed concurrently. As a result, a correct local decision
of accepting a move might prove wrong in the global scene. These erroneous
decisions may result in oscillations in the system and also most importantly
disrupt the proven convergence of the SA algorithm. The erroneous decisions
which result from concurrent execution of movesin turn result in uncontrolled
hill-climbing. I

Two examples in which concurrently executable moves interact are
shownin Figs. 6.3 and 6.4. In both cases, both the shown moves when carried
out independently show cost improvement but their net effect is that of cost
increase. The example in Fig. 6.3 shows moves which are contradictory and
highlight the dilemma of handling these effectively.

6.3.2 CSA Parallel Move Algorithm

CSA works with non-interacting serializable move sets. Moves from
each such move set can be executed in parallel without the risk of them
interacting and thereby disrupting the convergence to a near-optimal final
solution. As mentioned earlier, the main thrust in the design of CSA is in
the determination of such move sets.

It is difficult to generalise exactly how and under what conditions
_ independent moves executed in parallel would interact. As mentioned in
the previous subsection contradictory moves (those involving the same node)
need to be avoided. Fm-therxhore, by limiting the interdependency between
moves in a move set one would hope that the resulting move set will improve.
In order to achieve that, we slightly extend the scope of the definition of
move interaction and postulate that move interaction would occur if the
nodes of the graph within the different movcs'of the move set are connected
through common edges and also if such moves cause concurrent read/write
access conflict. One advantage of this extended definition is that a non-
interacting move set will not require use of any operating system assisted
mutual exclusion primitives (which usually results in costly overheadsj
This however, does not address the overheads imposed by the hardware

159



Chapler 6: Concurrent Simulated Annealiﬁg

Procedure Algorithm A;
MaxMove := NoDfProcessors Div 2;
‘Select any random node for the move;
Propose a new but different allocation for the node;
For i := 2 To MaxMove Do
Repeat | |
Pick a random node for move;
Has this node already been selected? ;
Is it a direct neighbour of any node already selected? ;
Until Both of the above are non-affirmative;
Propose a new but diferent allocation for the node;
EndFor;

EndProcedure;

Fig. 6.5 General structure of Algorithm A.

160




Number of Transitions

600 -

400 -

-~ >
- »
U bl T

.'-"--0'
»
‘ﬂn-_—‘—-"“

— - s T e

12 18

14

Number of Processors

Fig. 6.6 Efficacy of Algorithm A.

Phase 1

Phase 2

Fuypauuy pajpjnwiig juaianduoe) (9 133doy)



dhapter 6: Concurrent Simulated Annealing.

architecture of the machine (e.'g; overheads of accessing the same page/ block
of shared memory). '

In CSA it is assumed that the execution of the parallel moves (eva.lu-
ating cost change, accept/reject decision, possible update) are if not totally
synchronous, synchrbnous in a way that not any single move in any set of
parallel moves starts before all the moves in the previous set are completed. It
is also noted that, when a move is executed, loads in only the two processors
involved are affected. Smce, it has been already pointed out that each move
is executed 1ndependently, then i in order to minimise interaction it can be
safely proposed ] that |n/2], where n is number of available processors is the
maximum number of moves i in & move set. Furthermore, it is also noted that
selecting the same node in more than one move will result in contradiction
and as such needs to be avoided. Additionally, it is also observed that
selecting a node which is neighbour (sharing a common edge) to any other
already selected node will cause interaction.

The starting points for the necessary control procedure for the determi-
n_ation of non-interacting move sets are thus :

a. size of the move iset is [_n/ 2]], where n is the number of available

PTrOCESSOrs;

b. Neighbour nodes can not be chosen.

In the following, three move genei'ation algorithms are examined and
their comparative results are presented. The performance of these three
algorithms A, B and C are studied using a specially written simulation
software. The results to be presented here are for demonstration purpose
only and shows the relative efficacies of the algorithms A, B and C. Different
processor sizes ranging from 2 to 20 processors are considered. For each
processor size, 1000 move sets are generated using the three algorithms
separately. Moves in these move sets are then classified according to how
they interact with other moves. Those moves, which do not interact with any
other move are placed in group 1. Group 2 consists of moves which interact
with only one other move, wheras moves which interact with two other moves
are placed in group 3 and so on. The sizes of these resulting groups can thus

162




Chapter 6: Concurrent Simulated Annealing

Y .
- Procedure Algorithm_B;

MaxMove := NoOfProcessors Div 2;
Select any random node for the mo;re :
For i := 2 To NaxMove Do
Repeat o
" Pick a random node for move;
Has this node already been selected 7 |
Is this a direct neighbour of any node already selected?;
Until Both of the above are non-affirmative;
EndFor;
Repeat

Select a random new allocation for the 1st node;
Until none of the current allocations of the moves in the move set
is repeated;
For i := 2 To MaxMove Do
Repeat
Propose a new random allocation for the i** selected node;
Is any current allocation of the nodes in the chosen move
set repeated?; |
Is this a repeat of any newly chosen allocations?;
Until Both of the above are non-affirmative; |
EndFor;

EndProcedure;

Fig. 6.7 General structure of Algorithm B.

163



¥91

Number of Transitions

1 ¥

8 10 12 14 18

Number of ProceSsors '

Fig. 6.8 Efficacy of Algorithm B.

Phase 1
Phase 2

Phase 3

Phase 3

bugppauuy paippnuitg puaLINIU0Y) (g L3dDY))



Chapter 6: Concurrent Simulated Annealing

be taken as indicators for the efficacy of the move generating algorithm used.
For very high processor utilisation, one would hope to have all the moves in
the move sets to be in group 1, i.e., only non-interacting moves are desirable
for such demands. For cases where significant number of moves in groups
higher than 1 is resulted, processor utilisation, efficiency and consequently
the throughput of the multiprocessor system would be affected. In order to
execute all the moves in such circumstances, one would require more than
one phase of concurrent move operations. In the first such phase all moves
from group 1, some from group 2 and some more from other groups will
be executed. Only those moves from higher groups which can be executed
without causing' any interaction with any other moves are to be considered in
the first phase. Similarly, for second phase, all the remaining moves needs to
be examined and only those satisfying the above criterion will have a realistic
chance to be included. Higher phases of concurrent operations can be carried -
out in similar fashion so long as there are free moves available. It is clear
that the upper limit of the maximum number of phases required is M, where
M is the size of each move set. In the efficacy graph to be presented later,
we show the number of moves in different phases (according to their degree
of interaction) plotted against different processor sizes and in oder to keep
the graph uncluttered, data values upto phase 5 are plottéd. The data flow
graph instance of the VLSI logic simulation graph of 4x4 mﬁltipler circuit is
used.

Algorithm A :

This is the simplest of the three algorithms tested. In fact in Algorithm
A is a over simplification of the move selection criterion deriving from the two
starting presumptions already established. The structure of the algorithm is
shown in Fig.6.5. Fig.6.6 shows the plot of the results from the simulation
run of Algorithm A, It is cleé.rly seen that the éfficacy of the algorithm
deteriorates very quickly as the number of .processors is increased. The high
interaction for large processor systems make Algorithm A unsuitable for -
practical use. -

165



Chapter 6: Concurrent Simulated Annealing

Procedure Algorithm.C;
MaxMove := NoQfProcessors Div 2;
Select any random node for the move;
For i := 2 To MaxMove Do
Repeat |
Pick a random node for move;
Has this node already been selected? ;
Is this a direct neighbour of any node already selected?;
Is this node’s present allocation is the same as that of any
other node already selected?;
Until All of the above are non-affirmative;
EndFor;
Repeat _
- Select a random new allocation for the 1st node;
Until none of the current allocations of the moves in the move set
is repeated;
For i := 2 To MaxMove Do
Repeat | |
Propose a new random allocation for the it* selected node;
Is any current allocation of the nodes in the chosen move
- set repeated?; ‘
Is this a repeat of any newly chosen allocations?;
Until Both of the above are non-affirmative;
EndFor;

EndProcedure;

Fig. 6.9 General structure of Algorithm C.

166



L91

Number of Transitions

1200 '|

1000

800 ~

600 -

400 -

200

8 10 12 14 16

Number of Proce:‘ssors

Fig. 6.10 Efficacy of Algorithm C.

18-

20

Phase 1

Phase 2

buymruuy pajopnusg ;ua.unoﬁoo g 4apdoy)




Chapier 6: Concurrent Simulated Annealing

~Algorithm B :

This is almost similar to Algorithm A with an additional restriction
incorporated into it. As before, the nodes are first selected one at a time
following the rule we have set before. But, this time the new allocations for
each node are proposed only after all the nodes to be moved in the move set
are first selected. The new allocations are proposed one by one in such a way
that not any one of the old allocations or new allocations already proposed

are repeated. This way interaction between the moves in a move set are
further reduced.

The simulation results of Algorithm B performed for the same graph
instance with processors ranging from 2 to 20 are presented in Fig.6.8. As
before, a total of 1000 move sets were generated in each processor case. An
improvement is clearly seen. But, again the result is far from the ideal one.

Algorithm C :

In this, we incorporate more control procedures in the way a move is
proposed. Here, in addition to the rules we have already used for the selection
of a node in a move set, we also make sure that it’s present allocation is not
the same as that of any already chosen node in the same move set. Once all
the nodes in the move set are chosen, we then propose the new allocations
for the nodes chosen in the same way as in Algorithm B.

Simulation results of Algorithm C is presented in Fig.6.10. As is evident,
this algorithm produces the ideal result, i.e. move sets without interacting
moves and obviously best suited for parallel implementation. The moves
thus selected are optimal concurrent moves., The price for the excellent
performance of Algorithm C is however the increased complexity and the
resulting higher execution time.

6.3.3 Parallel Accept/Reject Decisions

The accept/reject decision of a move is dependent on the change of cost
(Ac) resulting from the move. This decision is governed by the acceptance
criterion of eq.5.4. In a parallel implementation of SA based on parallel
move approach, the decision to accept or reject a new solution can be done
globally or locally. In the global decision scheme, the individual processors

168




Chapter 6: Concurrent Simulaied Annealing

report their cost changes associated with the moves they were executing to
a master processor. The master processor sums up the costs and decides
whether or not to accept the summed up new solution. '

The other possible scheme for accepting a solution generated by multiple
moves is to consider the cost changes separately for each move. The
accept/reject decision is locally made by the processors involved.

Since the moves are evaluated locally and independently, it is possible |

that not all, but part of the moves attempted will be accepted and appear

*in the new solution. We consider a solution produced by the local decision

scheme and using simple statistical analysis similar to [15] compare this with

. its'probability of being accepted in a multiple move SA process using global |

decision scheme. We suppose that M is the size of the move set and let ¢;

indicate the cost changes associated with each move ¢ =.1,%-., M. Three

i "different cases are possible and we here explore these to compare the relative .

- suitability of th‘?ﬁ?WOAF_!?‘?iSiSI,‘ﬁChem"’_S:,,:,_____ | o

Case A:

The cost changes due to the moves are A¢; > 0, for i = 1,--+, M,
which suggests that all of them are cost increasing moves. In the local
decision scheme, the probability of accepting the move i is exp(—Ac;/t).
The probability of accepting all the moves is the same regardless of
whether the decision is made locally or globally This probability can

. be expressed as,

M
A= Lewn(-ar
( EAC./t) , 6.1

i=1

In the local decision schem_e, there is also a finite probability of accepting

z moves out of M moves in the resulting solution. These can be-



Chapter 6: Concurrent Simulated Annealing

numbered as 1 to z. The probability of accepting these moves in local
decision scheme is, - '

z ' - M : '
Py =J[exo(-ac/t) T] (1-exp(-Ac;/t)

|'=_1 ) . j=z-:; |
= exp(—EAc,-/t) H (1 —exp(—Acift)). 6.2
=1 . ,

J=z+1

Case B:

The cost changes resulting from the moves are Ac; < 0,i =
1,+--,M. These changes indicate that none of the moves has worsened
the cost function. Since, Ac; < 0, a solution with these moves will be

- accepted in both the schemes.

Case C:
Mixed cost changes are produced in this case. Of the M total

moves, y moves numbered from 1 to y are cost increasing moves while

the rest improve or at least do not deteriorate the cost value. These

 cost changes can be written as, A¢; > 0,i =1,.--,y and A¢; £0,j =

y+1,-+-+, M. In the local decision scheme, the moves j =y +1,---; M
will definitely be accepted. In addition, we assume that z out of the y
cost increasing moves are accepted. The probability of accepting such
a solution through local decisions is,

v

Py=J]exp(~acift) [ (1-exp(-Ac;ft))

=1 J=z+1
= exP(—ZAC.'/t) H (1 —exp(—Ac;/ft)). 6.3
i=1 J=z+1 .

If the cost is evaluated globally and Y0, Aci + T/, Ac; < 0, the
cost improving moves dominate the cost evaluation and the probabil-
ity of accepting all moves is 1. On the other hand, if } 7_; Ac; +

170



Chapter 6: Concurrent Simulated Annealing

Y c418¢; > 0, the global effect of all the moves is cost increasing
and probability of accepting them is, -

P, =ex1¥ (—{iAca/t+ ilAc,-/t)) . 6.4

i=1 J=z+

The global decision scheme considers all the moves at the same time
and they are either totally accepted or totally rejected. This eliminates
the possibility of accepting erroneously calculated cost values. In the local
decision scheme, moves that improve the cost will definitely be accepted,
while the cost increasing moves are handled using probability of eq.5.4. This
is an advantage of the latter scheme. Since, it will not discard the cost
improving moves thus ensuring enough' perturbations to satisfy the quasi-
equilibrium condition of the SA process. This feature is especially useful
at the lower temperatures and thus the capability of locating the optimal
solutions at the final stages of the SA process is enhanced.

Since, in CSA non-interacting parallel moves are always used, the
advantage of global decision scheme is rendered redundant and as such, the
local decision scheme employed ensures that sufficient perturbations are used.

6.3.4 CSA Implementatioh Model

The concurrent simulated annealing (CSA) algorithm makes use of
only one copy of the problem database and also no data decomposition is
used. This necessitates the use of a shared-memory closely-coupled MIMD
multiprocessor system. This requirement contrasts with the message-passing
~distributed memory MIMD machine required by the concurrent recursive
binary partitioning (CRBP) algorithm discussed in chapter 4.

From Sec.6.3.2 we find that CSA relies on pseudo-synchronous concur-
rent execution of moves and also that the maximum number of concurrent
moves in a single move set is at best only half of the available processors. This
frees the other half of available processors to carry out the move generation
tasks. The available processors can thus be divided into two separate groups.
One group is given the task of generating the moves to be executed by the

171




Chapter 6: Concurrent Simulated Annealing

Server Processors

I 1
Proocessor 3 Processor 2 Processor 1 Processor 0

e Slaves T // Master

—

Processor 7| | Processor 6 Processor § Processor 4

Client Processors

Server Processors Base
‘ Processor]
]
Processor 3 Processor 2 Processor 1 Processor 0

Processor 7 Processor 6 Processor 5 Processor 4

~Client Processors

Fig. 6.11 CSA implerﬁentation models. Server is in master-slave mode (top)-
and server is in pipe-lined mode (bottom). - '

172




. Chapter 6: Concurrent Simulated Annealing

other group and can be referred to as move server. One other vital task
to be performed by this group is the task of coordinating the whole CSA
process. The processors in the other group receive move instructions from
the move server and execute them. This group can thus be referred to as
the move client. CSA can thus be considered as based on the client-server
model (Fig.6.11). The transfer of moves between the server and the client is
accomplished through shared variables and synchronised through the use of -
shared flags and counters.

The processors in the client group execute the moves handed over to
them by the server group independently and non-cooperatively. The code
that each of the client processors execute can be represented as :

Forall clientprocessors in Parallel Do
Repeat |
1. Wait for th_e move instruction from server;
-2, Evaluate cost difference, Ac;
3. Make an accept/reject decision;
4. If accepted, update the database;
Until StopCriterionSatisfied;
EndForall;

Steps 2 to 4 above can be carried out by each client processor at full
speed ﬁsing the shared global memory and no mutual exclusion operation
would be necessary for these steps. However, step 1 may become a potential
performance constraint for CSA. The efficiency of CSA depends on the wait
time at step 1 and in turn depends on the performance of the move server.
The wait operation can be realised by using a P(Wait) or V(Signal) on a
semaphore. This however, requires an operating systein involvement and
also process rescheduling. Furthermore, the time that the waiting process
remain idle can not be used effectively by another process in the current -
situation. Instead, simple spin-lock synchronisation primitive using a shared
lock variable can be used. A client processor clears the lock when it is ready.
to execute a move and would then loop indefinitely until the server sets the

173



Chapter 6: Concurrent Simulated Annealing

Average Final Cost

20 — : .
2 o 4 8 16

Average Final Cost

5 L T L]
2 4 . 8 16
' Numner of Processors

Fig. 6.12 Performance comparison of the three move generating algorithms
A, B & C. The polynomial-time cooling schedule is used. Graph
data instance are 4x4 multiplier circuit gtop) and frequency locked
loop circuit (bottom). :

174




Chapter §: Concurrent Simulated Annealing

——= Sequential SA
== Concurrent SA

Average Final Cost

20 T T 1
2 .4 8 16

Number of Processors

501
— Sequential SA
== Cohcurrent SA

"Average‘ Final Cost

10 l T - - T -I
2 ' 4 8 16
Number of Processors : \

Fig. 6.13 Performance comparison of the sequential (SSA) and the concur-
rent (CSA) implementations of the simulated annealing algorithm.
Data instances are 4x4 multiplier ckt. (top) & frequency locked
loop ckt. (bottom). The polynomial-time cooling schedule is used.

175




Average Final Cost

20 L] ] : i 1
2 4 : 8 16
Number of Processors .

— Simple Schedule
- Potynorripl—Tim Schadule

Average Final Cost

10 . . T s
2 4 8 16
Number of Processors

Fig. 6.14 Performance comparison of the two cooling schedules for the con-
current simulated annealing (CSA) algorithm. Data instances are
4x4 multiplier ckt. (top) & frequency locked loop ckt. (bottom).

176



Chapter 6: Concurrent Simulated Annealing

lock at which point it is assumed that a move instruction has arrived. The
latter method is simple to implement and as the synchronisation times are
assumed short, the CPU cycles wasted by the spin locks will be less than the
cycles wasted by all the operating system traps generated by the semaphore
|operation [17].

The processors in the move server group carry out the task of generating

non-interacting concurrent moves to be executed by the client processors.

The code for move generation is decomposed and assigned to the server
processors. Exact decomposition is not shown here, as it depends on the
number of processors used, However, the two possible decomposition models
which can be used are,

a. master-slave operation (Fig.6.11a), and

b. pipe-lined operation (Fig.6.11b).

The efficiency of CSA largely depends on the performance of the move
server. As such, the decomposition of move generation task requires careful
attention. In thus connection, the rich repertoire of parallel algorithms in
[17, 18] can be consulted. The move generation task requires a good number
of search for neighbouring nodes (Algorithms A,B and C, Sec.6.3.2). Since,
the average degree of practical VLSI simulation graphs generally lie between
2 and 5 [19], it is hoped that the search for neighbouring nodes can be
‘accomplished sufficiently quickly. With large number of nodes in the problem
graph instance relative to the number of processors, using the pipe-lined
operation model, it is also possible to generate the moves in truly pipe-lined
fashion and thereby improving the performance of the move server. l

6.4 Simulation Results

Simulation was carried out to assess the performance of the CSA
algorithm. Because of the non-availability of a suitable multiprocessor

system or a simulator, CSA was simulated on a sequential computer. The -

CSA simulation program executes sequentially different concurrent processes
of CSA in appropriate sequence and avoids overlappings or interactions
between them. The concurrent moves are first generated in one module

177



~ Chapter 6: Concurrent Simulated Annealing

and are then fed to the second module where these moves are executed in
sequence. This simulation program carries out only the functional simulation
* of the CSA algorithm and as such records only the scheduling cost and other
related parameters. Parameters such as processor utilisation, message queue
statistics etc. are not thus available.

Fig.6.12 shows the performance comparison between the three move
generating algorithms A, B and C. Unlike Figs. 6.6, 6.8 and 6.10, here the
‘average final costs of the resulting solutions due to these algorithms used
in CSA implementa'tions are reported. It is to be noted that, as CSA is
proposed, interaction between concurrently executable moves are not at all
accepted and so by that account algorithms A and B are to be avoided (as
_very few of their resulting moves are interaction free). However, in order
to show their efficiency, the CSA simulation program executes all the moves
generated by all the three move generating algorithms nontheless. The results
obtained are interesting in that, for all the processor sizes considered (2, 4,
8 and 16) CSA implmentation based on algorithm C always outperformed
the other two implementations. The margin of difference is however variable
for different processor sizes and also different data instances considered. We
recall here that, algorithm C is very selective in the way it generates moves
resulting in non-interacting moves in move sets. The likelyhood is then
that, these non-interacting moves in turn cause perturbations in the solution
space which are not localised in normal sense and thereby searches the entire
solution space more exhaustively for an optimal solution.

However, the above hypothesis does not seem to hold good in Fig.6.13,
where the resulting average scheduling costs from CSA (using algorithm
C) and the sequentla.l SA are compared. The performances of both the
implementations are very similar. By being selective for the generation of
moves, CSA with algorithm C, deviates slightly from the true spirit of SA
where truly random moves are used to simulate the physical process of metal
annealing. On the other hand, however, CSA conforms to the asymptotic

. convergence properties outlined in chapter 5. .

Finally, average final (scheduling) costs from the simple cooling schedule
and the polynomial-time cooling schedule are compared in Fig.6.14. As
before, the latter schedule is found to produce more acceptable solutxons,
however at the cost of increased running time.

178




Chapter 6: Concurrent Simulated Annealing. '

References :

1.

10.

11.

12

13.

Sechen, C. ‘and Sangiovanni-Vincentelli, A.L., The Timber Wolf place-
ment and routing package, IEEE J. Solid Stae Ckts., Vol. 30, 1985,
pp. 510-522.

. Szu, H. and Hartley, R Fast simulated annealing, Physics Letters, A

122, 1987, pp. 157-162. ,
Greene, J.W., and Supowit, S.J., Simulated annealing without rejected

moves, IEEE Trans. CAD, Vol. CAD-5, 1986, pp. 221-228.

Aarts, E. and Korst, J., Simulated Annealing and Boltzmann Machines,

John Wiley & Sons, 1987. |

Cathoor, F., De Man, H. and Vanderwelle, J., SAMURAI: a general

and efficient simulated annealing schedule with fully adaptive annealing

parameters, Integration, Vol. 6, 1988, pp. 147-178.

Hoptroff, R.G. and Hall, T.J., Learning by Diffusion for Multilayer
Perceptron, Elect. Letters, Vol. 25, No. 8, 1989, pp. 531-532.

Bout, D.E. Van den and Miller, T.K., Graph Partitioning using An-

nealed Neural Networks, IEEE Conf. Neural Networks, 1989, pp. 521-

528.

. Iosupovici,-A'.C., King, C. and Breuer, M., A module interchange

placement machine, Proc. IEEE 2oth Design Automation Conf., 1983,
pp. 171-174, - |

. Spira, C. and Hage, C., Hardware acceIerat:on of gate array layout,

Proc. IEEE 22nd Design Automation Conf 1985, pp. 359-366.
Kravitz, S.A. and Rutenbar, R.A., Multiprocessor-based placement by
simulated annealing, IEEE Trans. CAD, Vol. CAD-6, J uly 1987, pp.
534-549. _
Aarts, EH.L., De Bont, F.M.J., Habors, J.H.A. and Van Laarhoven,
P.J.M., Parallel implementation of the statistical cooling algorithm,
Integration, Vol. 4, 1986, pp. 209-238.

Woodhams, F.W.D. and Price, W.L., Optimising acherator for CAD

- workstation, IEE Proc. Vol. 135, Pt. E, July, 1988, pp. 214-225.

Darema, F., Kirkpatrick, S. and Norton, V.A,, Parallel algorithms for
chip placement by simulated annealing, IBM J. Research Dev., Vol.
31, No. 3, May 1987, pp. 391-402. ' |

179




Chapter 6: Concurrent Simulated Annealing

14. Casotto, A., Romeo, F. and Sangiovamni-Vincentelli, A.L., A Paralle]
~ Simulated Annealing Algorithm for the Placement of Macro Cells,
IEEE Trans. Cad, Vol. CAD-6, No. 5, Sept. 1987, pp. 838-847.
15. Vai, M.K., Acceleration of Simulated Annealing Building Block Place-
ment Process, Ph.D, Thesis, Michigan State Univ., USA, 1987.
16. Rahin, M.A. and Sheild, J., Concurrent Partitioning of VLSI Sim-
" ulation Graphs, Proc. Conf. Parallel Computing ’89, Leiden, The
Netherla.nds, 1989.

17. Quinn, M. J., Efficient Parallel Algoritbms, McGraw Hill Book Co., .

' USA, 1987.
18. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Solman, J. and Walker,
D., Solving Problems for Concurrent Processors,. Prentice-Hall, USA,
1988. o
19. Goldberg, M.K., and Burstein, M., Heuristic improvement technique
for bisection of VLSI networks, IEEE Proc. Int. Conf. on Computer
Design, Port Chester, New York, USA, 1983.



CHAPTER 7

Conclusions & Discussion

This chapter provides an overview of the work as a whole. The results
obtained so far are reviewed and the performances and suitability of the
algorithms investigated are discussed. Finally, a conclusion of the overall
work is made and those aspects requiring further research are highlighted.

In this thesis, the problem of scheduling VLSI simulation systems on
a general or special purpose muliiiprbcessor systems is considered. The
concurrent VLSI timing simulation system considered is based on the data-
flow computation model. A simple directed acyclic graph (dag) model is
adopted for the VLSI simulation system. This allows easy mapping of
the simulation system onto the target multiprocessor system. However, in
order to achieve an efficient and Anear—optirhal mapping scheduling algorithms

~are used. Because of the NP-Hardness of scheduling problem, heuristic

procedures are favoured over exhaustive enumeration search procedures.
Two heuristic procedures are investigated in detail and their concurrent

181



Chapter 7: Conclusions & Discussion

'implementa.tion's are proposed. The first of these two heuristics involve a
hierarchical partitioning of an input graph and the other one has its root in
classical statistical physics.

7.1 Review of Results

‘The focus of the research reported in this thesis is on heuristic algo-
rithms. Two heuristic algorithms - the recursive binary partitioning (RBP)
and the simulated annealing (SA) are investigated in detail. Being heuristic
and approximate in nature, the above two algorithms are not expected to
provide optimal solutions for all cases of the multiprocessor task scheduling ‘
problems all the time. Indeed, for most of the test cases considered, their |
optimal solutions are not known. The performance analysis of the RBP and
SA algorithms as such involves their average performance. Furthermore, all
the results unless explicitly stated are expressed as the percentage of the
average (random) initial scheduling cost of the task system.

The recursive binary partitioning (RBP) algorithm is based on
Kernighan-Lin’s [1] graph bi-partitioning procedure.  The basic bi-
partitioning procedure used is a slightly modified version of KL’s original
heuristic. This is needed to bring the load-imbalance criterion in the objec-
tive function of the multiprocessor task scheduling problem presently posed
as a graph partitioning problem. The modification involves repetitive move
operations as opposed to the original repetitive swap operations. The move
operations are accomplished by transferring a single node from one of the
sub-graphs of the tentative partition to the other sub-graph. Three different
move selection rules are explored. Among these three rules considered, Rule
C is found to be most efficient as far as the graph partitioning objectives are
considered (Sec. 4.1.2) and as such this rule is used in all subsequent versions
of RBP and also in its concurrent implexhentation, CRBP algorithm.'

The multi-way partition in chapter 4 is accomplished through the
application of hierarchical partitioning process. At each level of partitioning, .
starting from level 1, the modified KL bi-partitioning procaés is applied and
.the resulting partitions are then propagated to the next higher level. This is
repeated until the desired number of partitions (a power of 2) are obtained.
This major criticism of the recursive binary partitioning prbcess is that for

182




8 oaf| n-8 | g
c -
g
¢
E
=
-
g
[
&
707
— na=2
= n-‘ ’./'
60 -
O n=8 /.,
-g """ n=18 ’,a'/
O 60- o
Q - v
$ ',r"/
: 40- I"
:
=
[ = 30- "I
(o] P
.g ’_’.r ‘‘‘‘‘‘‘
8 201 - ST e
10 - e B N
—.u..“::;-'—-'_-‘l-_--— T T T T T T 1
10 20 %0 40 60 80 70 80 90 100

Problem Size (No. of Graph Nodes)

Fig. 7.1 Execution time as function of the problem size for different processor
. sizes. Results from the Recursive Binary Partitioning algorithm
(top) & the Simulated Annealing algorithm with polynomial-time
* cooling schedule (bottom) are presented. Synthetically generated

graph nstances are used. :

183



Chapler 7: Conéluaiona & Diséus.si.on

cases where larger than quite & few partitioning levels are required, the final -

‘partition cost often turns out {o be of inferior quality. This is explained by the

fact that the early levels of partitions (mostly levels 1 & 2) tend to minimise
the number of edges cut at the cost of kéeping more heavily connected nodes
of the input graph within the single sub-graphs and these sub-graphs then
as a result have less chance of attaining a near-optimal cut in the next bi-
partitioning process. This amounts to a greedy approach at earlier levels. In
our experiment, it has been found that, for cases where partition levels upto 3
(three) resulting in 8 partitions are required, the resulting final solutions are
quite acceptable. A marked deterioration of the quality of the final pa.rtxt:on
cost is noticed when 16 partitions are created.

In a separate experiment, an attempt is made to reduce the adverse

affect of the result of the earlier (levels 1 & 2) partitions on the final partition

‘cost for multi-way (2> 4) partitions. This is accomplished by varying the
relative emphasis on the two cost components, viz. communication and
load-imbalance costs. However, the results obtained failed to show any
improvement achieved. It is found that the final partition cost is practically
invariant beyond a certain value of the weight factor, z (eq. 4.11). For
smaller z, the final partition cost is mostly made up of load-imbalance cost as
expected and larger values of z result in final partition costs with a significant
communication overhead. It is however, to be noted that the above findings
need to be judged with the actual formulation of the partition cost, which
for the present case places equal emphasié on both the two cost components.

The concurrent recursive binary partitioning (CRBP) procedure is a

logical progression of the RBP algorithm. In the CRBP algorithm presented
in chapter 4, the best-of-bunch, which means engaging a group of processors
whenever available, to perform independently the bi-partitioning procedure
at various stages at different levels of a multi-way partitioning process
but accepting the best result only is used. This resulted in an 1mproved
- performance (Fig. 4.12) for all the cases considered. '

The simulated annealing (SA) [2] algorithm and its concurrent imple-

mentation (CSA) are investigated in detail in chapters 5 and 6 respectively.
In chapter 5, the SA algorithm is introduced as modeled on Markov chains.
Two cooling schedules are investigated. Both of these are approximations of

184




Chapter 7: Conclusions & Discussion

1007

Lo IO A R N BN B BN B B N B

.0. o' ™
i€ 20 25 30 3B 40 45 16 20 26 30 45

Fnal Cost Final Cost

120 _ 1209

100

-51015202630_3540 ‘510152025303540
Final Cost | Final Cost

Fig. 7.2 Frequency distribution of final scheduling costs for 2-processor

system. Results from CSA are on the left & that from CRBP are on

the right. Graph data instances used are 4x4 multiplier ckt. (top)
& frequency locked loop ckt. (bottom). _

185



Chapter 7: Conclusions & Discussion

120 . 120

pr—T—T—
26

15

Final Cost - " Final Cost

Fig. 7.3 Frequency distribution of final scheduling costs for 4-processor
system. Results from CSA are on the left & that from CRBP are on
the right. Graph data instances used are 4x4 multiplier ckt. (top)
& frequency locked loop ckt. (bottom). _

186



Chapter 7: Conclusions & Discussion

the inhomogeneous Markov chains and are expected to run in polynomial-
time. "Two transition mechanisms, swap and move and also various composi-
tions of these two are considered. It has been found that for most of the cases
the final cost obtained has very Little dependence on the choice of transition
mechanism (or their compositions). However, 100% swap definitely have a
deteriorating effect on the final schedule. This is so because of the inability

of swaps to address the load-imbalance issue properly.

The performahces of the two cooling schedules are analysed by varying
different control parameters as applicable. As expected, both schedules
provided improved results with the increase in the size parameter, m (i.e.,
when number of attempted transitions are increased) but at the cost of a
commensurate linear growth in solution time. The performance of the simple -
cooling schedule is found to be practically invariant with the choice of initial
‘accep'tance ratio, whereas the polynomial-time cooling schedule showed a
marked dependence with this control parameter. Overall, the simple cooling
schedule is found to be quicker in reaching a solution compared to the
polynomial-time cooling schedule. However, the latter consistently provided

. better quality solutions than the former and also the latter is more robust

and amenable to the variation in problem instance by virtue of its design.
In retrospect, however, the choice of any of these two cooling schedules is
difficult and needs to be carefully weighed in relation to the problem instance.

" The concurrent simulated annealing (CSA) algorithm is discussed in
detail in chapter 6. One unique feature of CSA is that it works with
totally interaction free parallel moves thus ensuring conformance with the
asymptotic convergence properties of the SA algorithm. Three move gener-
ation algorithms are explored from which Algorithm C is found to be 100%
successful in producing totally interaction free move sets. Comparing the

. performances of these three move generation algorithms it is also found that

Algorithm C produces the best scheduling cost. This is attributed to the
non local perturbation activities within the solution space. Finally, the two

cooling schedules, viz. simple and polynomial-time schedules are applied in
CSA and as before, the latter is found to produce better solutions.




Chapter 7: Conclusions & Discussion

Final Cost Final Cost

Fig. 7.4 Frequency distribution of final scheduling costs for 8-processor
-system. Results from CSA are on the left & that from CRBP are on
the right. Graph data instances used are 4x4 multiplier ckt. (top)

& frequency locked loop ckt. (bottom).

188



Chapter 7: Conclusions & Discussion

Final Cost
801 80
60 50
: :
20‘ 201

[1} rrnTrrrrTrrnﬂ'lﬂ'rTrrrm 1 :

30 35 40 45 50 55 60 65 70 75 030354045505550_557075
Final Cost | . Final Cost

Fig. 7.5 Frequency distribution of final scheduling costs for 16-processor

: system. Results from CSA are on the left & that from CRBP are on

the right. Graph data instances used are 4x4 multiplier ckt. (top)
& frequency locked loop ckt. (bottom). S

189



Chapter 7: Conclusions & Discussion

7.2 Recursive Binary Partltlomng vs. S1mulated
Annealing

In this section the two heuristic algorithms studied so far are compared
Fig. 7.1 compares the time requirement of both the algorithms. Since, the
concurrent implementations are simulated with a functional simulator, the
exact determination of their time requirement is thus difficult and as such
Fig 7.1 depicts the time requirement of their serial implementations. For the
SA algorithm the polynomial-time cooling schedule is used with the following
parameter set, (o = 0.98, ¢, = 0.00001, § = 0.1 and m = 1. Synthetically
generated graph instances with number of nodes ranging from 10 to 100 with
roughly uniform connectivities are used. Four different processor sizes 2,4,8
and 16 are considered. ‘ |

It is interesting to note that the observed time complexity of both RBP
and SA algorithms for the different processor sizes considered differs quite
significantly. The RBP algorithm requires roughly O(k?) time and the SA
‘algorithm’s requirement is slightly worse than O(k log k), where k is the
number of nodes in the input graph instance. However, the actual time
taken by the SA algorithm is much higher than it’s counterpart. RBP is
found to be in cases about 130 times faster than SA. Furthermore, in SA the
time requirement is very strongly dependent on the processor size.” This is
a direct consequence of the formulation of the length of the Markov chain
used (eq. 5.35). On the other hand, in RBP, there is significantly lower
dependence of time requirement on processor size. This can. be explained
as follows. Even though, for large processor sizes, more partitioning levels
are required thereby causing increased demand for completion time, the sub-
graphs ready to be bi-partitioned at the last level become comparatively

much smaller in size to warrant a significant increase in completion time.

| Figs. 7.2 to 7.5 give a performance comparison between the CRBP and
CSA algorithms. The figures show the frequency distribution of the schedules
obtained through the two algorithms, A total of 200 iterations are made for
each of the two algorithms and for different processor sizes considered. The
data instances considered are the simulation graph data for a 4x4 multiplier
ckt. and also for a frequency locked loop ckt. The hlstogra.ms in Figs. 7.2
to 7.5 show the final schedule cost expressed as percentage of the average

190




Chapier 7: Conclusions & Discussion

(random) initial scheduling cost against their frequency of occurrences, It
is observed that for smaller processor size, the spread of the final schedule-

cost for CSA is comparatively larger than that for CRBP. However, this
is reversed as the processor size is increased. Also, the mode (the most
frequent result) for CRBP tend to be nearer to the lower edge of the spread

_ as compared to the CSA suggesting that the CRBP is statistically superior

than its counterpart. The most important observation is that the overall
performahce of CRBP is comparatively much superior than that of CSA
for very small processor size (2). But, as the processor size is increased,
CSA slowly outperforms CRBP and for processor size 16, CSA comes out as
the winner with a significant margin. This behaviour is, however, expected,
~ as the result of successive partitioning in CRBP leaves the final result less
acceptable and is now vindicated in a comparative study.

The variation in the pattern of these histograms strongly suggest a
dependence of the graph structure on the final scheduling cost. Where
the graph for the 4x4 multiplier ckt. has most of the nodes more or
~ less uniformly connected except for few branches showing strong sequential

" activity (Appendix A), the graph for the frequency locked loop ckt. shows
wide variance in the connectivity pattern, where one node is very heavily
connected in relation to the other nodes. This variance in graph structures,
it is believed, favour a certain natural partitions in some cases and offer
difficulty in attaining non-natural partitions.

Tables 7.1 and 7.2 sumimarize the results depicted in the above his-
tograms. Here, the maximum, minimum and average scheduling cost as well
as the standard deviation is expressed as the actual scheduling cost. The last
column, however, expresses the figures as percentage of the average (random)
initial scheduling cost as expressed throughout this thesis.

The final phase of this comparative study of CRBP and CSA algorithms
involve subjecting these algorithms to problem instances with known optimal
scheduling cost. These problem instances are synthetically generated from
some basic graph instances. Multiple (the same number as the number of
partitions or process.or size is required), but disjoint copies of the basic graph
instance is used as a single graph data instance. The resulting optimal
scheduliilg cost thus becomes zero. Three basic graph instances are used

191




Chapter 7: Conclusions & Discussion

— (a) a small synthetic graph with 6 nodes and two visible clusters, (b) 4x4
multiplier. ckt. and (c) frequency locked loop ckt. Table 7.3 summarizes the
result. The final scheduling cost is once again expressed as the percentage of
average (random) initial scheduling cost. The total success column shows the
number of times either algorithm achieves the optimal solution. The relative
success column shows the number of times either algorithm performed better
than the other. It is clearly seen that for the basic graph instances (a) and
(b), optimal solutions are more easily achievable. Basic graph instance (c)
proved to be much more difficult to partition optimally. For the first two
basic graph instances and for processor sizes upto 8, CRBP outperformed
CSA. The variation in graph structure in the basic graph instance (c) as
stated in the preceding paragraph is thought to have influenced a change
in the pattern of results. This again is another demonstration of structures
of certain graph data instances affecting the natural partition. Overall it is
observed that CRBP is more at home in finding the natural partitions for
simple graphs, whereas for difficult graphs like the basic graph (c) CSA has
shown a definite edge.

7.3 C_onclusions

_ Summarizing the above results, we present the following conclusions :

" a. Concurrent heuristic a.lgonthms proposed in this thésis'(-)ifef a'_inable“ :
a,lternatwe for the solution of a class of dlfﬁcult combmatona,l optlml- ‘

!
|
| satlon problems

‘toexpect a general speed-up of the concurrent VLSI timing simulation
system in an actual run. ‘

solution quality. Concurrency in many instances enhances the solution
quality.
d. Structure of the graph data instance is thought to have an influence

~on the solution quality.

e. For the data instances considered, CRBP algorithm is found to be
‘faster than the CSA algorithm. However, the latter is algonthmlcally
~ superior to the former.

192

b. Inview of the 1mprovements in scheduling overheads obtamed itis fa.lr |

" ¢. For the heuristic algbritlims studied, concurrency does not affect the



Chapter 7: Conclusions & Discussion

| =% Final Scheduling Cost
w2 | 8 o As % of
.és g - \ : Standard |- Initial
:E 2 €8 |Maximum| Average |Minimum | Deviation {Scheduling
Z = 25 _ - Cost
[72] .
2 | 200 |46.42] 13 10.07 9 | 1.21 |21.69
4 | 200 | 69.85 24 21.46 20 0.75 | 30.72
g | 200 | 79.49 36 32.72 31 0.95 | 41.17
16 | 200 |83.35| 56 49.60 | 44 2.09 | 59.51
=8 Final Scheduling Cost
Sp| o | EO
s8 | & —~g As % of
28| B | &3 Standard | Initial
-.:.-E 2 B8 |Maximum| Average |Minimum | Deviation |Scheduling
Z 23 Cost
2 | 200 |46.93} 42 13.06 9 3.28 | 27.84
4 | 200 |69.39| 23 21.00}) 19 0.85 | 30.26
8 200 |79.25| 33 30.28 | 29 1.01 | 38.21
16 | 200 | 83.24 35 34,30 34 0.45 | 41.20

Table 7.1 Table comparing the performances of the Concurrent Recursive

Binary Partitioning (
Annealing (CSA) (bottom)
Graph data instance is the 4x4 multiplier ckt.

RBP

193

(top) & the Concurrent Simulated
gorithms for different processor sizes.



Chapter 7: Conclusions & Discussion
=8 Final Scheduling Cost
o . | €9 ~
N E g = _%0 . ' As % of
.é g | g &3 ‘ ' Standard | Initial
-.;.»E 21 $8 |Maximum| Average |Minimum | Deviation |Scheduling
Z, — > £ _ o
<3 st
2 | 200 | 90.54 27 9.09| 6 4.66 | 10.04
4 200 131.58 37 28.87 25 _2.14 .21.94
g8 | 200 [14658 | s | si.82| 47 | 2.03 [35.35
16 200 151.96 106 93.07 g3 4.10 61.24
=8 Final Scheduling Cost
e | o | 28 _
5 2 S "o .E As % of
] $=] = o
23 = e : Standard { Initial
3 é £ 68 |Maximum| Average | Minimum | Deviation [Scheduling
. 2& Cost
2 200 90.34 71 15.20 6 7.48 16.83
4 200 129.05 39 29.42 24 2.87 22.80
8 | 200 | 14704 | 99 a3.74| 38 4,78 | 29.74
16 200 152.04 57 55.40 54 0.66 37.52

Table 7.2 Table comparing the erformances of the Concurrent Recursive
- Binary Partitioning (CRBP) {top) & the Concurrent Simulated

Graph data instance is the frequency locked loop ckt.

194

Annealing (CSA) (bottom) algorithms for different processor sizes.




Chapler 7: Conclusions & Discussion

f. The CRBP though gives very good quality solution for smaller pro-
cessor sizes, a deterioration in the solution quality is observed with
the increase in processor size. CRBP however is well suited for finding
the natural partition present in some graph instances. -

g The CSA algorithm has a consistent performance behaviour,

h. The idealised speed-up of CRBP is not expected to grow lmearly with | .

| the increase of processors, but is expected to stay within the lower '
L |

boundoflogn . . e

i. The maximum speed-up with CSA is only ha.lf of the processors en-

-9. 4 Dlscussmn

Through the snnulatlon results presented so far, it is established that the
“recursive binary partitioning (RBP) algorithm offers a fast and reasonable
means for the solution of multiprocessor task scheduling problems. However,
where slightly larger multiprocessor systems are considered, the advantage
of RBP, especially its ability to provide reasonable quality solutions slowly
disappears. The simulated annealing algorithm, on the other hand, though
comparatively slower is much more effective for handling larger multipro-
‘cessor systems. It is however, to be appreciated that, the discussion here
~ applies for coarse grain model of parallel processing. The complexity of the
scheduling problem for the other competing model, viz. fine grain parallelism
is much too high for the two heuristics considered here to possibly make
.them unsuitable. For this scenario a oompletely different strategy needs to
be considered.

Apart from the speed-up of SA algorithm through concurrency as
suggested in CSA, there exists other potential means — namely by util-
ising a more efficient cooling schedules, pre-processing of problem instance
~ for which the RBP algorithm is eligible, improved approximations of the
inhomogeneous Markov chain ete. These,' however, were not considered in
the current study in order to keep the problem of parallelising SA algorithm
simple. It would provide an interesting exercise for the future to incorporate
some of these ideas into CSA.

195

gaged, but is expected to grow hnea.rly with thei mcrease of processors. .



Chapter 7: Conclusions & Discussion

“ w Total Relative . s“;;faﬁ | Standard
s B Bef | o | Success Success ¢ Co:t IR | Deviation
cwd| 285 |E8 | |
3 .E.*z.a ‘g3 3
= E z° 3 | &8 ' '
“ {CSA [CRBP|CSA [CRBP|{CSA |CRBP|CSA |CRBP
2 2 o (20 {20 -1 - ]o.0o00.00[0.00{0.00
4 1 0o |20 {20 | - - |0.00} 0.00]|0.00|0.00
8 g8 | o |20 f20] -] - |o.00]{0.00]|0.00/0.00
16 | 16 0 {19 ] o |20 | o fo.14[39.77]0.62]3.47
. Total Relative | Average Standard
y & “EE—E, _ | Success Success Schgﬂ;n&mg Deviation
2% £oh [E
£ E E.ﬁ,&. = 3 .
L7 ze 8 8'00)
CSA |cRBP|CSA [CRBP|CSA |CRBP |CSA |CRBP
2 2 o | o|l20] o |20 |6.96]|0.00]|3.21]0.00
4 a | o) o201} o020 |s.06]0.00]1.71f0.00
8 8 0 o |20.{-0 {20 |1.80f0.00}1.04]f0.00
16 16 0 o| o ]20 | o |0.34{49.54/0.52]1.10
- o Total Relative | (AVETEEC | Standard
y E| 228 |_ o | Success Success st & | Deviation
B f 25b |ES "
B -
- CSA |CRBP|CSA |CRBP|CSA |CRBP{CSA [CRBP
2 2 o | of o] & |12 [4.00f10.36}2.86|3.65
4 a | o o] of1s | s |e.70[t0.76|2.89]1.76
; e8| & | o of o1 | 1 |632h2.33[1.09/1.29
‘16 | 16 0 o | o f20| o]4.96[55.88]0.21|1.30

€

Table 7.3 Table comparing the relative performances of the algorithms CSA
& CRBP when the optimal scheduling cost is known. Data
instances are made of multiple but disjoint copies of a 6-node,
two cluster graph (top), 4x4 multiplier ckt. (middle) & frequency
locked loop ckt. (bottom). ‘

196



"Chapter 7: Conclusions & Discussion

It has been found that with CSA, free from interactions between parallel
moves, the upper limit of the achievable speed-up is oﬁly half of the processors
engaged. However, a linear growth of speed-up with processors is expecied.
The above restriction is a direct result of the identification of interaction
between parallel moves being executed simultaneously and is a consequence
of the way the problem is enclosed within it’s own bound, i.e., the processors
trying to find an optimal mapping of nodes onto themselves. This speed-up
limitation however, does not apply to the VLSI cell layout problem which
bears a close resemblance with the multiprocessor task scheduling problem.

In order to achieve further speed-up with CSA an adaptive strategy can
be employed. This involves the merging of CSA with another concurrent
variant of SA perhaps modeled on the error algorithms. CSA can be applied
at the early high temperature stages when there is a greater probability
of errors occurring and then to use the alternate algorithm which engages
all the available processors to take over the annealing process at lower
temperatures. This hybrid strategy has the potential to offer increased speed-
up performance, but is riddled with experimental difficulty. The switch over
point needs to be very carefully determined so as not to affect the final
solution. The speed-up advantage needs to be carefully weighed against

“the effect on the final solution, which-might be adulterated by accepting
erroneous transitions at lower temperatures.

Apart from the two heuristics investigated there are many other heuris-
tic algorithms which might have the potential to offer acceptable solution at
reasonable speed for the current problem. Preliminary investigations with
the Genetic (or Evolution) Algorithm (GA) (3] and Artificial Neural Network
(ANN) [4] were made. The initial results were not very encouraging. How-
ever, both promise . easy parallelisation and modifications in the algorithm
or setting up right parameters could improve their pefformance.

The scheduling problem considered in this thesis is that of static schedul-
ing. This is made possible as the proBlem and the graph data instances used
have sufficient a priori information to support static scheduling. It is has
been shown that for multiprocessor task scheduling problem, when sufficient
a priori execution profile information is available the static scheduling always
performs better than dynamic scheduling [5]. However, the success of the

197




Chapter 7: Conclusions & Discussion

static scheduling depends on the accuracy or gathéring of enough execution
-~ profile informsation. Though, the dynamic scheduling approach gives rise to
unwanted execution oyerhead, it is better suited to handle dynamic variations
in the program. A case that can be thought of is when variable simulation
time step is demanded by the timing simulation syst'em. Also for many
actual parallel programs, it is very difficult to predict actual execution profile
information. A static scheduling algorithm that provides some degree of
support for dynamic scheduling would be very useful in these circumstances
and presents an interesting but challenging future research.

In the present thesis, preceaence constraints within the concurrent VLSI
timing simulation modules is' not considered. This is valid as the simulation
system considered is based on true data-flow computation model. ‘However,
most of the practical problems involving scheduling parallel programs onto
multiprocessor systems encounter precedence constraints. An appropriate
formulation of the cost function taking into account of this thus need to be
devised. Fortunately, both the RBP using KL heuristic and SA algorithm can
be made to work with this revised cost function. It would thus be interesting
- to note the performance of these two algorithms in such circumstances.
Also, the cost function used in this thesis does not consider the effect of
_ multiprbcessor architecture, especially hardware communication overhead.
In the light of previous work in this area [6], it would thus be desirable to

investigate more on this aspect.

And last but not the _least, the immediate future research would be to
port the CRBP and CSA algorithms on appropriate hardware:,



Chapter 7: Conclusions & Discussion

References :

1.

Kernighan, B.W. and Lin, S., An Efficient Heuristic Procedure for
Partitioning Graphs, Bell Sys. Tech. J., Feb. 1970, pp. 291-307.
Kirkpatrick, S., Gelatt, C.D._and Vecchi, M.P., Optimisation by Simu-
lated Annealing, Science, Vol. 220, 1983, pp. 671-680.

. Booker, L.B., Goldberg, D.E. and Holland, J.F., Classifier Systems and

Genetic Algorithms, Artificial Intelligence, Vol. 40, 1989, pp. 235-282.
Hopfield, J.J. and Tank, D.W., Neural computation of decisions in
optimisation problems, Biological Cybernetics, Vol. 52, 1985, pp. 141-
152. | |

Sarker, V., Partitioning and Scheduling Parallel Programs for Multi-
processors, Pitman, London, 1989,

Pathak, G.C. and Aga.rwal D.P., Task division and muIt:computer
systems, IEEE 5th Intl Conf. on Distributed Computing Systems,
1985, pp. 273-280.

199




APPENDIX A

Appendix A contains various data and pictorial representations of the graph

data instances used in this thesis. The subsequent pages in this appendix

carry these data and figures.




_APPENDIX A

Table A.1 Statistics of various concurrent simulation graph instances.

| Ax4 Frequency . .16x16 Vector
multiplier | locked loop | multiplier coder
Verﬁces o 58 o es | ais ‘899
Nodes.inc;'ircui.t o " .168. | 157. s 1746
 Communication Links 82 | 139 1102 2034
AvcréchodesNenéx 2.89 | 2.46 ] 6.02 1.94
.AverageDengc._ | 1,41 2.04 | 2.65 2.26

201.




" APPENDIX A

Fig. A.1 Concurrent simulation graph for the 'sy'hthesiséd graph instance
6n2c.grf. | - o




W s B W N

APPENDIX A

Table A.2 Data for the—synthesised graph 6n2c.grf. Each line correspnds to
| the data structure shown in Fig. 3.9 ' :

100 101 411

101 001 201 411
102 101 301 411 511
103 201 511 :
114 001 101 201 511
115 201 301 411

203



_APPENDIX A

| Fig. A.2 Concurrent simulation graph for the 4x4 Multiplier Curcuit showing
processor allocation at the nodes. :

204



APPENDIX A

Table A.3 Data for the VLSI simulation graph 4x4 Multiplier Circuit.,Each

line corresponds to the data structure of Fig. 3.9

16 11

0

46 4 1

46 4 1

-

(=3

47 7 1
48 2 1
49 7 1.

3
4
5

0
‘15

1

44 1 1
43 6 1
41 51
3911

6
7
8

=t [~
— o

L= |

7 9

10

- 11

13 12

2 117 13

14
12

0
2

16 1 1
18 51
20 31

47 71
48 21
49 7 1

17 14
2 12 15

42 4 1

16 11
12 31

2221

1851

15 2.1

1

01
22 21

18 51
16 11
20 31

16
17
18

— o

o

20 31 23 6 1

17 41

1371

5 15

23 61

19

1
4 13 20

i471 1911 2411

2411

18 51
4 11
17 41

40 3 1 5131

26 51

21
22

~ =

N W

1611

5271

1911 1851 26 51 27 6 1

6 16 23

5131

53 71

20 31

28 01 51 31

27 61

21 51
54 31

6 11 24

28 01
2221

43 6 1
23 61

2 12 25
6 15 26

801 5271

3041

53 71

55 3 1
2411

30 41

23 6 1

6 16 27

3121

55 3 1
25 2.1

3121 3231 54 31

2411

6 10 28

55 3 1
41 51

3231

2 16 29
5 14 30
5 12 31

26 51 34 61 52171 56

2761

27 6 1 3511 5371 56

28 01

Contd...

205



APPENDIX A

2061 2801 3671 S431 5611

5 13 32
2 16 33

3911

3771

0 7
2 7 ,
53 71 57 61

0
1
3231

3
3
17 36

Lo N | i

w o (4]

-~ o un

ol w

A~ -
o) WO W0 WO
T O MO N
N W™ N
o
W N
MO OoON
M-

~ @ MO
Lo I B L s
-~ O~ M
oA A
M MNNMN

5131

50 6 1
2521

21 51

851

1521
11

42
43

< w0
—

™ N

1

44
45

1
1

N o

231 1
301 12 31
451 1371

46
47
48

4
7
2

N NN

14 7 1
40 3 1
2411

17 49 11
16 50 42 4 1
4 13 51

34 61
22 21

3801
23 61

4

42 41
3511

26 51 22 2 1

30 41

52

7
7

1
1

4
4
4

27 61 23 6 1

3121
3231
28 01

53 3671
13 54

4 13 55
4 11 56

24 11

28 01

3771

40 31
3801

26 51

27 6 1

3121 3041

3231

36 71 3511 34 61

16 57 3771

4

206




_ APPENDIX A

master clock

A
Cadan®

%

S>>

SpaSpadlnd;

Fig. A.3 Concurrent simulation graph for the Frequency Locked Loop Cur-

/oAAAA..

' cuit showing processor allocation at the nodes.
207




APPENDIX A

Table A.4 Data for the VLSI simulation graph Frequency Locked Loop

Circuit. Each line corresponds to the data structure of Fig. 3.9

58 51

57 6 1

59 2 2 52 71
€3 0 1 62 1 1
66 4 2
26 5.1

60 5 1

0

1

65 3 1
2361

61 41
64 0 1
24 11

50 6 1.
25 21

64 0 1
67 71
2761

1
2
3

™

-

16 12 0

51
‘44 1 1

21 51 20 31 1911
14 7 1

1611

22 21

43 6 1

17 4 1

45 11
46 4 2
14 71

1

61

44 1 1

15 14

1
1

5

1
1

51

4
28 01

7

17

8 30241

9

15
17

3231

113 12
5 17 13
4 17 14
12 42 15

56 1 1 55 3 1 54 31 42 41

57 6 1

1

30
2411

43 6 1 51
2521

48 2 2
2761

2361

26 51
21 51
1611
3
3

18 51

1811

20 31

22 21

17 41

15 2 1
15 2 1
1521
15 2 1

01
01

1

1

1

1

1

1
301

30

17 4 1.

41 16
4 4 4 17
4 45 18

4
4

42 4 1

1611

1311

1911

41 5 1
18 5 1
2151

17 41

30
3
3

41 19
4 43 20
4 45 21
4 42 22

41 5 1
2031

1521
1521

0
0
0
0

23 61

23 6 1

1521
1521

3
3

40 3 1
22 21

2151

4 6 23
4 41 24
4

4
4

25 2 1

301
3

27 61

42 25
45 26

27 61

1521
15 2 1

1
1

0
0

3
29 61

42 41

2651
7

2521

3121
29 61
3361

8§ 51
3041

"2 14 3

971

Contd, ..

208




APPENDIX A

3231 40 3 1
3511

3511

3 26 33

10 41

16 34
2 11 35
2 17 36
3 21

2

3361

3461
1121
39112
12 31
3801

37171

42 41

3671
3911

37

10 38
2 11 39

2

3771

26 51

2221
18 51
1371

2411
2031
1611

3361
29 61
3771

40
41
42

— —

" N <

1371

43 301
3 11 44 45 1 1
3

2 16
2 11

451

301
44 1 1

1

45
46
47
48

5271 5371

4 5 2
46 4 2
1472
47 7 2
49 7 1
48 2 1
47 71
47 7 1
56 1 2
54 31
54 3 2
59 2 1
1371

47 7 2
49 7 2
49.7 2
48 2 2
51 31
49 7 1

4

4
5 57

52 71 5371

51 31

50 6 1
50 61

51 31
5131

4 2

4

5371

7 49
€ 50
4 13 51

—

50

48 2 1
47 771
46 4 1

1

4

4 17 52

011,
52171
55

5371

46 4 1
1371

4 17 53 49 7 1
4 33 54 57 6 1
4 33 55 57 6 2

56 1 1
5761

1371

55 3 2

56 11

1371
58 5 1

55.3 1
6051
0

56
57

™M ™M

=

54 31

11

‘59 2 1

60

1 57 6 1
57 61

01

60 5 2

35 58
4 32 59
4 35

4

012
58 5 2
63 0 2

61 41
61 42

58 5°1

011

59 21

60

6212

1
63 01
64 0 1
63 01

111
111
111
65 3 1

66 4 1

64 0 1
64 0 2
62 1 1
67 71
231
67 7 2
65 3 1
66 4 1

61 4 1
64 01
64 01
231

11
31
32

1
2

2
65 3 2

66 4 1

4 33 65
4 3
4 3

67 71
64 0 1

4
7

6
67

209



APPENDIX A

The concurrent VLSI timing simulation graphs for the circuits 16x16
multiplier ckt. (416 nodes) and the vector coder ckt. (900 nodes) are much
- too large to be placed in figures or tables in this thesis.




APPENDIX B

In Appendix B the ‘proof of Corollary 5.1 us:ad in Chapter 5 is presented.
This proof is due to Aarts and Korst (Ref. [1] in Chapter 5.)

. Corollary 5.1 : An instance (S, f) of a combinatorial optimisation
problem, a suitable neighbourhood structure and the stationary distri-
bution of eq. 5.8 are considered. We can then have,

- , O ¥
limgi(t) £ ¢
. BENG
|Sopt| .(SO")

where S,p¢ represents the set of globally optimal solutions.

Proof: It is known that,

: e _J1 3 ifa=0
Va <0, limexpe = {0 ; otherwise



APPENDIX B

Using this fact we get,

o (242
ltlfgq 0= 111{51 E:es exXp i:%!l) |
exp (—!—Z" =G )
_ltlirgl fogt ~f(4)
2je am( )
K 2jes . exp (f. fopi=1G) ) X(S0pe)(7)
. exp (.fa Sope=£(i)
+ lim

X(5\Spe)(F)
o EJ exp(f" t-f(.‘l)) (5\Sopt)

lS Ix(supc)(‘) + 0

which completes the proof.

212




lasC

TEACHING AS A CAREER

Teaching offers a

challenging and

rewarding career
Some 16,000 places are
available annually for
post-graduate courses for
Secondary Teaching,
Most are full time and
include teaching practice.
They cover all secondary
curriculum subjects but
there is a particular need
for candidates to train to
teach the sciences,
maths, technology and
modern languages
An appropriate degree
with English language
and maths 1o GCSE
grade C, or equivalent, is
required
Why not find out more
about this impornant and
satisfying career? Send
for the FREE brochure on
Secondary Teaching by
returning the coupon.

TASC Publicity Unit,
6th Floor,
Sanctuary Buildings,
Great Smith Street,
London SW1P 3BT

Please send to:
TASC Publicity Unit,
6th Floor,
Sanctuary Buildings,
Great Smith Street,
London SWI1P 3BT

AS

TEACHING AS A CAREER




f A
Q5355 10574

The Bookstore To Your Door

dHIIV)
ONIIVAATT

daNV
ONIONATIVHD
V S44110
ONIHOVAL




i

Parallel Com unn 89 ' .
“ DJ. Evans, oubert, F.J. Peters (Editors) ‘ S
© Elsevier Sc1ence Publishers B.V. (North-Holtand), 1990 =~ . . S 383

¢

M. A Rahin and J, Sheild
Department of Electronic & Electrical Engmeenng
Loughborough University of Technology.

_ Loughborough LEll 3TU. ENGLAND

Parallel Pamtlomng of Concurrcnt VLSI Sunulatlon Graphs

The concurrent electrical actmty occurring in a VLSI circuit can be evaluated by -
running & suitable simulation model on a computer, These simulations are usually very
time consuming and this has led to the use of parallel computers for acceleration. The .
underlying electrical model of the simulation may be represented as a concurrent data
flow graph, which when optimally partitioned and assigned to the participating’

processors of a multiprocessor system ensure maximum achicvable acceleration. In this o

paper two parallel graph partitioning algorithms (CKL & CSA) are reported and their
simulation results are compared. -

1. Introduction .
Electrical circuit simulation is an important part of the VLSI design process in CAD as tentative
designs can be confidently verified before expensive manufacture. A timing simulator offers better
accuracy than a switch level logic simulator but is not as computation intensive as detailed analysis
like SPICE [1] However, the increasing growth of VLSI desxgn complexities demand farther
reductions in simulation time whilst retaining simulation accuracy. Consequently concurrent
versions of timing sunula;ors like CEMU [2] have béen developed for possible execution on a’

multiprocessor system.

A timing simulator gencrally models the electronic circuit as a welghted graph, where a vertex
Tepresents a set of capacitive nodes of the circuit which share a common bidirectional voltage

controlled current source. The vertex weights in the graph represent the number of circuit nodes that .

are grouped together to form the vertices and so represent the amount of simulated electrical activity
of the set of circuit nodes. The edges in the graph represents the discrete voltage values that are

~ passed between groups of circuit nodes along the interconnection at any simulation txme step. This’

leads to a simple concurrent implementation on a mult1processor system as the rich inherent data
flow representation of the graph model can be easily exploited. The overall task here is to optimally
partition the circuit to be simulated into different sub-units which are then assigned to different
processors. This partitioning and assignment procedure is however, quite sophisticated and closely

" resembles VLSI cell placement and layout problems, Problems of this kind fall into thE_:'class of -

combinatorial optimisation and have been identified as NP-Hard [3]. - _

Heuristic solutions for NP-Hard problems have been favourcd over exhausnvc search ‘
algorithms for the:r ability to prov:de approxlmate near optimal solutlons in polynom1al time.
Iterative improvement is one of the more common types of heuristic algorithms in use. In this -
paper, a parallel 1mp1ementanon of such an algorithm based on the 2-way partitioning procedure
due to Kernighan and Lin [4] is reported. The results obtained were compared with a concurrent
version of the Simulated Annealing [5] algorithm and was found favourable for smaller
mulnproccssor configuratlons T . L S N

- .. (\




354 * M.A. Rahin and J. Sheild
"2, Problem description
-For the partitioning of a VLSI logic simulation graph and subsequent assignment on to a set of
P processors of a homogeneous multiprocessor system, we assume a perfect synchronous
~ concurrent data-flow representation in the input graph and consequently there are no precedence
- * relations. Mathematically, the graph can thus be represented by a weighted and undirected network
flow graph G = (V, E), where V= {v{,v2, ....., vp} arethe N weightéd vettices of the graph
~andB= {e; J ij=1.n} are the weighted edges bctWeenlthc vertices reprcsentirig the amount of
data-flow between the vertices. F;ar'any positive integer'K, a K-way partitioning of G is a set of
non-empty, disjdint sub-sets ( or blocks ) of G, g1, g2, ..., gk such that

The 'cutset’ of the partition is the sum of al! the weighted edges with vertices in more than one
sub-set and accounts for the communication cost in the final task scheduling, The load-imbalance’
is the maximum difference between the total weights of any two sub-sets, thus accounting for the
completion time of the final scheduling, The optimal partition cost is the partition where assignment
of tasks to the P sets of processors results in the mmunum data communication bctween the
processors and minimal load imbalance. '

. 3.2-way and K-way partitioning algorithm .
In [4], Kernighan and Lin described a heuristic procedure for graph partitioning. Their
algorithm dealt with the problem of partitioning a graph with N vertices, where N is even, into two
disjoint sub-sets of N/2 vertices each, The algorithm functions by successively choosing. all
R possible pairs of vertices, taking one from each sub-set, and keeping aside the pair which if
| swapped would produce the best cost improvement. This procedure is rcpcéted for the remaining
" pairs, keeping a record of the point when the best cost improvement is seen, until all N/2 pairs have
been set aside. Those pairs set aside preceding and including the point when the best cost
improvement was recorded are then actually swapped to produce a new starting partition. The
whole procedure or pass is then repeated again frorn this new partition. The algorithm terminates
when no-cost improvement can be generated from swappmg any paJrs The runmng time of each

' pass of the algorithm is O( N2jog N). :
However, for a graph with an odd number of vertices, non-uniform vertex weights, edge
weights and requiring load balancing in the final partition some modifications are necessary in the
driginal Kernighan-Lin algorithm. In the modified algoriihm, instead of swapping two chosen
vertices, a single vertex from a randomly chosen sub-set that would give the best cost improvernent
if moved across, moved over to the other side and kept aside. This is repeated until all the vertices
have been moved across and then as before, the set of moves that produced the minimum partition
cost is selected, the two sub-sets updated accordingly and used as the startmg parutxon for the next

pass. S S

 Kernighan & Lm s 2-way partltlomng procedure can easily be extended to produce XK number



Parallel Partitioning of Concurrent VLSl Logic Simulation Graphs 355 4

of partitions. This uses the recursive 2-way partitioning algorithm until the desired number of

sub-sets, which must be an integer power of 2; is obtained. This method promises good run-time -

behaviour but, as mentioned in [4, 6] can produce a bad result in the first partition (level O partition)

~ which may bias the second and so on. Also the level O partition will try to minimise the number of

connections between the first 2 blocks thus tending to maximise the connections inside these

blocks, making it harder to obtain good partitions thereafter. This would suggest thata good level 0 .

pamuon will always result in a bad final pamnon (for K> 2) However, cxpenmental results for
smaller partition sizes were found favourable and thus needed further explorauon

4. Concurrent K-way partitioning (CKL)
The binary dissection procedure lends itself to parallel implementation. Except for the first

- partition (level 0), partitioning at all other levels can be carried out independently of each other as

can be visualised from the binary tree like structure of the overall dissection strategy as shown in
Fig. 1. These independent partitioning procedures can be assigned to different processors and can
be run concurrently, A breadth-first partitioning would then take place, However, for a P—procéssof
system, maximum processor utilisation is achieved only at the bottom level (leaf level).

A modification that utilises all the processor resources and improves the quality of the final
soluuon is made. A multiple d1ssecnon operation, limited by the available number of processors, is
carried out in each partitioning stagc of every level and only the one giving the best result is
accepted. The best partitions thus generated are moved forward to the next level and so on, So for
an § processor 'system, at level 0 we have 8 separate partitioning operations on the same input graph

- all running in parallel and only the best resulting partitions are accepted for lével 1 partitioning,

whereby at level 1, two concurrent partitioning operations‘ are required because there are now two

: mput sub-graphs. Out of 2 total of 8 processors, 4 processors can thus be allocated for each of the
two partitioning stages. At the bottom level (level 2) 2 processors can thus be allocated for each of -

the 4 partitioning stages. This modification provides a fast descent and gua.rantees a better solution
that could be achieved otherwise.
The run-time reqquiremnent of ¢ach pass of KCrmghan-Lm ] 2-way pamuonmg algonthm is 0(

N2 logN ). The number of passes required for the convergence has always found to be bctwgen 2

and 4 and thus is not strongly dependent on the size of the graph. Again, by employing better
search algorithms for selecting the candidate vertex for a move over to the other side, a lower bound

run-time O N2 ) can be obtained. Fora K-way partition using the binary dissection method the

run-time requirement becomes O( N2 log K.). In the parallel 1mp1ementat10n mlmmum processor
utilisation is obtained at the top level and it increases by a factor of 2 as the pamnomn £ progresses
from one level to the other. This provides a speed-up factor of Iog P, giving run time complexity of
O(N2),asP =K ' 7 5 o l

5. Concurrent Simulated Annealing (CSA)

" Simulated Annealing (SA) [5] has been found to be a powerful and robust tool for the solution
of many different types of difficult NP-Hard combinatorial optimisation problems. While this
technique provides good quality solutions, the computation time requirement is very high, Several




356 : . 'MA.Rahin and J. Sheild - -

: accelerating techniques using multiprocessors have been reported [7, 8,9].
Stage 1 '

B

Stage 2

" Level 0.

B

Level 1

v
1

Stagd 1 7

B, oy
2 . »

Stage 4

Stage 2 Stage 3
Level

22

v v 1
111 - I'l112 “121 . UIZZ ?11 212 21 222
Figure 1. Overall 8-way dissection structure,

Our concurrent implemcnuition of the SA algorithm (CSA) is based on the parallel move
approach due to Kravitz & Rutenbar [71; which however has the problem of interaction between
para]lel moves giving rise to possible erroneous solutions. Unlike Kravitz & Rutenbar, where they
- have used the snmplest serialisable sub-set' of the parallel move set obtained by attempting many
moves i parallcl and by executing only the move that is accepted first (cost improving move) and
aborting all other, our CSA algorithm works with a move set consisting of an optimal number of
non-interacting parallel moves. This eliminates the etror due to interacting parallel moves. '

The annealing schedule adopted is a simple one and is as follows: a move acceptance probability
of 0.999 at starting maximum temperature and 0.001 at final minimum temperature obtained by 100
- geometric reductions in temperature. The total number of moves allowed at each temperature step is

o "dependent of the problem size and is given by Npoves = M. N. (P - 1) where, the constant Mis =

defined in [10] and other notations have their usual meanings. A value of 2 for M was used in the
simulation runs. - :

Table 1, Statistics of the four chosen concurrent VLSI simulation graph instances.

4x4 Frequency 16x16 Vector

rhultiplier locked léop multiplier coder
Vertices 58 68 415 - 899
Nodes in circuit 168 167 2517 1746
~ Communication Links - 82 . 139 1102 2034 | 28
Average Nodes/Vertex 286 = 246  6.02 234 . j
Average Degree 283 409 531 453 | ' ‘




" Parallel Partitioning of Concurrent VLSI Logic Simulation Graphs 387

6. Results and Dlscussmn

Parallel programs o implement the concurrent Kermghan-Lm (CKL) and concurrent Slmulated
Annealing (CSA) algorithms were written for the Intel iPSC/2 hypercube, a message-passing,
distributed memory multiprocessor system. The programs were written in C and Pascal languages
~ and tested with an Intel iPSC/2 simulator on a SUN 3 minicomputer, As the programs were run
under a sunulated environment the true run-times could not be perfectly ascertained and only the
simulation results obtained are reported, - : - .
Four examples of VLSI logic simulation graphs were used to evaluate the concurrent heuristic
algorithms, These were chosen on the variety of their size, complexity and functional behéviour.

The sizes and the statistics of these four logic simulation graphs are given 1n Table. 1.

1007 ' - 100
. U‘ | ) : &) |
.g 50 . /i é 60
i : = g
2 407 S 401
B 201 - - CKL| § 201
= = CSA | =
0 ¥ T T T T 0 T T T T
2 4 8 16 2 4 8 . 16.
Number of Processors. : Number of Processors.
. a.Graph: 4x4 multiplier circuit. b. Graph: Frequency locked loop circuit.
100 100
4 81 : 5 807
S S S ]
g 607 § 604 T
g g, ]
£ wi 2w
-« . ) _ _ o 1
g 20 - kL | F 20 - - ot
S -~ CSA | K - -~ CSA
0 T T T T T ' 0-1 T T Y T
2 4 8 16 2 4 3 16
*. Number of Processors. . R Number of Processors. .
c Graph' 16x16 multiplier circuit.  ©* -~ d: Graph: Vector coder circuit.

different processor configurations.

v Each of the two programs (CKL & CSA) were performed 50 times on each of the four graph
instances. Processor configurations with 2, 4, 8 and 16 processors were considered. The average
partition costs for each graph instance and each system configuration were noted, The partition cost
was thcn expressed as a percentage of the average cost of the random starting pamtxons The results
obtained are presented in F1g 2.

Fig, 2 Graphs showing the performance compartson between algomhms CKL and CSA for ‘



358 S M.A. Rahin and J. Sheild

The graphs in Fig, 2 reveal that the CKL algorithm is better than CSA for small processor
configurations. However, a gradual decline in the performance of CKL is observed as the number
of processors {same as the number of partitions) is increased and asymptotically fares worse
compared to CSA for larger configurations (>= 16). This observation is in line with the
disadvantage of the recursive binary dissection method for K-way partitioning as discussed in [4,
6). The intrinsic disadvantage of the rccurswe binary dissection method gradually becomes more
noticeable as the depth of partition increases.

On the other hand CSA performed more or r less conmstcntly throughout. However, for the two
© large graph instances the results are comparatively inferior than the other two. This is perhaps due
. to the behaviour and nature of the two large graph instances. For the frequency locked loop circuit,
a steady and gradual improvement in the performance of CSA is observed, which however is absent
in the other cases. For the 4x4 multiplier circuit the performance curve has a uneven profile possibly
due to the i'andom behaviour of the SA algorithm coupled with some long sequential data flow
modules present in the graph.

A fairly adequate number of moves per temperature step (M 2) were allowed for CSA,
However, if more generous number of moves were permitted, CSA might have produced much
' better and improved solutions. The very long computing time demand of CSA however, precluded
us to permit more moves. Though an exact run time could not be ascertained for reasons described
earlier, CSA was always found to be approximately 100 times slower than CKL in their simulation
runs. CKL is thus more suitable than CSA for smaller system configuration (<= & processors) by
~ virtue of it's speed and quality of result. One of the ways to improve the quality of results obtained

from CKL is to post process the partitions so that they become mutually and pairwise optimal. .

Essentially pairwise optimality is a necessary condition for global optimisation. This can be
achieved by repetitively selecting any two partitions and moving some chosen vertices from one to
anothcr, so that the cost of partition between these two is minimised.

Refcrences

[1). D.M. Lewis, 'Hardware Accelerators for Timing Simulation of VLSI Digital Circuits,' IEEE

Trans. CAD, Vol. 7, No. 11, pp. 1134-1149, Nov 1988.

. [2]. - B. Ackland, 5.R. Ahuja, T.L. Lindstorm & D. . Romero, 'CEMU - A concun‘ent timing

simulator,’ Proc. IEEE Intl, Conf. CAD, 1985.

[3].. M. R. Garey & D. S. Johnson, ‘Computers and Intractability - A guide to theory of NP

. -Completeness,' W.H. Freeman Company, San Fransisco, USA, 1979,

[4]. B.W. Kernighan and S.Lin, ' An efficient heuristic procedure for partitioning graphs,'Bell

. Syst. Tech, J. , Vol. 49, pp. 291-307, Feb. 1970.

[5]. S.Kirkpatrick, C.D Gelatt and M.P. Vecchl ‘optimisation by Simulated Annealmg,'Sczence

. Vol. 220, pp. 671-680, 1983,
{6]. L.A. Sanchis, 'Multiple-Way Network Parunomng, IEEE Trans. Comp., Vol. 38 No. 1
- pp- 62-81, Jan 1989, .

[7). S.A. Kravitz and R.A. Rutenbar, 'Multiprocessor-based placement by smmlated anneahng,

‘ Proc. of Decisions and Control, June 1986,

" [8]. F.Darem-Rogers, S. Kirkpatrick and V.A. Norton, 'Parallel VLSI Placement by Simulated
- Annealing,' IBM J. Res. & Dev., May 1988.

[9]). A. Cosotto, F. Romero and A. Sanglovanm Vmcentelh, 'A paralle]l Simulated Annealing
Algorithm for the Placement of Macro-Cells,' IEEE Trans. CAD, Vol. CAD-6, No. 5, pp.
838-847, Sept 1987,

[10]. J. Sheild, 'Partitioning concurrent VLSI simulation programs onto a multiprocessor by
simulated annealing,' JEE Proc., Vol. 134, Pt. E, No. 1, pp. 24-30, Jan 1987. :







