
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Parallel scheduling of concurrent VLSI simulation modules onto a
multiprocessor

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© M.A. Rahin

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 2.5 Generic (CC BY-NC-ND 2.5) licence. Full details of this licence are available at:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LICENCE

CC BY-NC-ND 2.5

REPOSITORY RECORD

Rahin, Mohammad A.. 2019. “Parallel Scheduling of Concurrent VLSI Simulation Modules onto a
Multiprocessor”. figshare. https://hdl.handle.net/2134/27133.

https://lboro.figshare.com/


 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



i 

I 
LOUGHBOROUGH 

UNIVERSITY OF TECHNOLOGY 
LIBRARY 

I AUTHOR/FILING TITLE .. . . . 

\ ___________ ~ ~_1:lJ.!':' _1 ___ .t'_B ___ --------------, 
\ 

I 

I
, ------------------------..:------- --.- ----- ---------' .. 
I 'ACCESSION/COPY NO. .... • 

! 03bcoo2.S"<) 
i ---------c------- ------- ----------------------- ~ --
, VOL. NO. CLASS MARK ' :,' 

. j 
: 
'1 _____ +-----.-----'---
i 1 5 FEB 1995 Ll)~ ece--, 
\ 
I 
[ 

i 

I 
I 
I , 
I 
I 

\ 

:.:.;.I·0360~0025ir-r··T·;,;~;>,';·r:;7.1 . 

111111111111111111111 m 1111111111111111111·'· 'i . ......... . 





PARALLEL.SCHEDULING OF 
CONCURRENT VLSI SIMULATION 

MODULES ONTO A MULTIPROCESSOR 

by 

MOHAMMAD A. RAHIN 

. A Doctoral Thesis submitted in partial fulfilment of the 

requirements for the award of Doctor of Philosophy 

of 

the Loughborough University of Technology 

July 1991 

Supervisor: Dr. J. Sheild 
Department or Electronic & Electrical Engineering . 

©by M.A. Rahin, 1991 



Loughborough Unrversity 
of Techno!r~y LI~mry 

, ~ .. ,'2 !"Iv'i'l.. 

r.t~:' 0 ~ b~?-~ 0 

\.l et '1.1 q It</':> 



University of Technology 

LOUGHBOROUGH LEICESTERSHIRE LEII!TU T~_26!171 £xL_ T ... .,,"I' 

THE STUDENT OmCE (HIGHER AWARDS) 

CERTIFICATE OF ORIGINALITY 

This is to certify that I am responsible for the .work submitted 

in this thesis, that the original work is my own except as specified 

in· acknowledgements or in footnotes, and that neither the thesis 

nor the original work contajned therein has been submitted to this 

or any other institution for a higher degree. 

Mohammad A. Rahin 

25 July, 1991. 



to my parents 



ABSTRACT 

This thesis reports on the research into multiprocessor based task scheduling 

algorithms as applied to the assignment of VLSI simulation modules onto 

a multiprocessor. Task scheduling falls into the category of combinatorial 

optimisation problems and is known to be NP-Hard. The goal of this 

research is to implement parallel heuristic scheduling algorithms for a general 
purpose multiprocessor system and to evaluate through simulation their 

relative performances. 

The multiprocessor task scheduling problem in the context of VLSI 

simulation is presented first followed by a taxonomy of general scheduling 

algorithms. The factors determining the quality of a schedule are identified 

and an objective function that guides the heuristic algorithms is then 

formulated. 
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ABSTRACT 

The first of the two algorithms examined is the Concurrent Recursive 

Binary Partitioning (CRBP). This heuristic is based on Kernighan-Lin's 

graph bi-partitioning algorithm. A I-way partition is achieved by applying· . 

binary partitioning recursively, the procedure taking the form of a binary 

tree. In its parallel implementation each node of this tree is executed 

independently by a group of available processors and only the best among the 

solutions obtained is accepted. This provides enhanced processor utilisation 

and also assures improved results. The factors affecting the performance of 

the I-way partitioning heuristic at different stages are examined and their 

optimum values are investigated. 

The other parallel algorithm examined is the Concurrent Simulated 

Annealing (CSA). Simulated annealing is a powerful and robust tool for the 

solution of many difficult combinatorial optimisation problems. In spite of 

its ability to produce good quality solutions, it is beset by exceptionally 

long CPU time demand. The parallel implementation presented here is 

an attempt to speed~up its convergence time and works with an optimal 

number of non-interacting parallel moves thereby assuring minimal error due 

to interaction between parallel moves. Two simple but effective temperature 

schedules are used. These temperature schedules are in a way dependent on 

the problem instance and as such adapt. themselves to the varying needs of 

the input problem instances. 

Both the parallel heuristics are subjected to synthetic as well as some 

actual VLSI simulation data instances. It is found that CRBP has an overall 

edge in terms of speed of execution and performs well for small number 

of processors. However, its solution quality deteriorates considerably with 

the increase of processors. CSA on the other hand, performs uniformly 

throughout and favours well for larger systems. For larger systems, CRBP 

has the potential to be used as a pre-processor for a combined CRBP-CSA 

heuristic. 
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CHAPTER 1 

Introduction 

Ever increasing processing demands as encountered in different fields such 

as image processing, artificial intelligence, finite element analysis prob­

lems, weather forecasting, wind tunnel simulations, nuclear system, particle 

physics etc. have led the researchers to the development of several conven­

tional high performance computers as well as conceptually new architectures 

namely non von Neumann systems and most importantly multiprocessor 

systems. 

It has been identified quite long ago that the conventional uniproces­

sor computers are unable to meet the performance requirements of many 

computing intensive applications. Since, the first electronic digital computer 

(ENIAC) was built in 1945, the advances in uniprocessor ,computers can be 

attributed primarily to development of logic technology. Switching speed 

fell from one tenth of a second to nano seconds as the logic technology 

moved from ~lectro-mechanical relays to vacuum tubes to transistors and 
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Chapter 1: Introduction 

then to small, medium and large scale integrated circuits. In the last 

few years, it has become more difficult to achieve order of magnitude of 

speed-ups in computers by solely upgrading the logic technology, as the 

physical laws have been found to be the primary limiting factor. Radically 

different computer architectures namely Data-Flow Machine& (1) have been 
proposed to overcome the bottleneck associated with the conventional tlon 

Neumann computers, but failed to attract wide spread acceptance as initially 

anticipated. The most obvious solution to the problem to date seems to 

lie in the exploitation of parallelism in the applications and executing the 

mutually independent task modules concUrrently on a multiprocessor system. 

MIMD multiprocessors with multiple instruction-streams and multiple data­

streams promise to be the general purpose computers of the future. Several 

co=ercial MIMD computers have already arrived in the market, e.g. those 

manufactured by Alliant, BBN, Cray, ELXSI, Encore, IBM, Intel, NCUBE, 

Sequent etc. 

1.1 Multiprocessors and Multicomputers 

Modem computer architectures can be classified in many different ways. 

One of the most popular higher level architecture wise classification is due 

to Flynn (2). Flynn based his taxonomy of computer architectures on the 

concepts of instruction stream and data stream. An instruction stream is 

a sequence of instructions performed by a computer; a data stream is a 

sequence of data used to execute on instruction stream. Flynn categorised an 

architecture by the multiplicity of hardware used to manipulate instruction 

and data streams. Given the possible multiplicity of instruction and data . . 

streams, four classes of computers result. 

1. SISD (Single In&truction &tream, Single Data &tream): Almost all 

single processor computers fall into this category. Although instruction 

execution may be pipelined, computers in this category can decode only 

a single instruction in unit time. A SISD computer may also have 

multiple functional units (e.g. CDC 6600) being governed under the 

direction of a single control unit. 

2 
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Fig. 1.1 A shared memory multiprocessor. 
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Chapter 1: Introduction 

2. SIMD (Single Indrudion &tream, Multiple Data &tream) : Processor 

arrays fall into this category. A processor array executes a single stream 

of instruction, but contains a number of arithmetic processing units, 
each capable of fetching and manipulating its own data. Hence, in any 
time unit, a single operation is in the same state of execution on multiple 

processing units, each manipulating different data. 

3. MISD (Multiple In&truction &tream, Single Data &tream): No computers 

fall into this category. 

4. MIMD (Multiple In&truction &tream, Multiple Data &tream) : This is by 

far the most popular architecture for inultiprocessors and well suited 

for future general purpose computing needs. MIMD computers are 

composed of a collection of full featured processing elements often with 
their own local or private memory and are capable of executing their own 

instructions independent of each other. The term MIMD is generally 
reserved for multiple CPU computers designed for parallel processing; 

that is, computers designed to allow interaction among their CPUs. 

Flynn's classification scheme has been found to be too vague to allow 

a ~lear cut labeling of modern high performance computers. Kuck [3] 

enhanced Flynn's classification scheme into a more detailed form. Hiindler's 

[4] classification however accounts for the organisation of the main functional 

units of computers and uses some notatio~s for expressing the piplining and 
parallelism. MIMD designs can be further classified into two major groups 

[5]: 

1. Shared Memory Multiproce&&or&: Multiprocessors are characterised 

by a shared memory. Shared memory multiprocessors can be further 

classified into two, (a) Tightly Coupled and (b) Loo&ely Coupled. In the 

case of the tightly coupled multiprocessors, the simplest processor inter­

communication pattern assumes that all the processors work tln;ough a 

central switching mechanism to reach a shared global memory (Fig.1.I). 

There are a variety of ways to implement this switching mechanism, 

including a co=on bus to global memory, a crossbar switch and a 

packet-switched network. Examples include Carnegie-Mellon's C.=p, 

Denelcor's HEP, Sequent's Balance and Sr=etry. 
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Fig. 1.2 The architecture of CM·, a shared memeory loosely coupled mul­
tiprocessor. Computer module (top), cluster (middle) and network 
of clusters (bottom). 
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Chapter 1: Introduction 

Like tightly coupled multiprocessors, loosely coupled multiproces­

sors are also characterised by a shared address space. Unlike tightly 

coupled multiprocessors, the shared space on a loosely coupled mul­

tiprocessor is formed by combining the local memories of the CPUs. 

Hence, the time needed to access a particular memory on a loosely 

coupled multiprocessor depends on whether that location is local to the 

processor. Examples include Carnegie-Mellon's Cm", BBN Butterfly. 

2. Me$$age Pa$$ing Mu/ticomputer$: Figure 1.3 shows the general struc­

ture of a message passing multicomputer. Each processor has its own 

-local memory, and process cooperation occurs either through sending 

L_~i receiving messages. The performance and scalability of the mul­

ticomputer is primarily determined by the interconnection network. 

The simplest interconnection network for a multicomputer is a bus 

capable of handling interprocessor messages (i.e. a local area network). 

Distributed systems have this structure and can indeed be used as 

a multicomputer for applications with sufficiently large granularity. 

Intel's iPSC, NCUBE's NCUBE/lO, Ametek's S/14 are commercial 

multicomputers. 

1.1.1 Speed-up in a Multiprocessor 

The speed-up that can be achieved by a multiprocessor with n identical 

processors working concurrently on a single problem is at most n times faster 

than a single processor running the same program. In practice, the speed-up 

is much less, since some processors are idle at a given time because of conflicts 

over memory access or communication paths, inefficient algorithm that fails . 

to exploit the natural concurrency in the problem etc. Fig.1A shows the 

various estimates of the actual speed-up, where speed-up is defined as the 

ratio between the time taken by that parallel computer executing the fastest 

serial algorithm and the time taken by the same parallel computer executing 

the parallel algorithm using n processors. 

The lower bound in Fig.1.4 is known as the Mimky'$ Conjecture, giving 

a rather pessimistic view. The upper bound (lO~ n ) can be derived using 

simple assumptions and approximations [6]. 
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Fig. 1.3 A message passing multicomputer. 
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1.1.2 Factors Determining the Performance of a 
Multiprocessor 

The followings are the factors considered to be associated with the 

performance capability of a multiprocessor system: 

1. Granularity: An important issue in multiprocessor performance is the 

granularity of program execution. The granularity of a parallel program 

can be defined as the average size of a sequential unit of computation in 

the program, with no interprocessor synchronisation or co=unication 
(e.g. the average task size). For a given multiprocessor, there is a 

minimum program granularity value below which performance degrades 

significantly. This threshold value can be termed granularity of the 

multiprocessor. It is desirable for a multiprocessor to have a small 

granularity, so that it can efficiently support a wide range of programs. 

It is also desirable for a parallel program to have a large granularity, so 

that it can be executed efficiently on a wide range of multiprocessors. 

2. Scalability: Scalability is another important property of multiproces­

sors. Scalability is the ability of a multiprocessor to provide a linear 

speed-up with an increase in the number of processors, assuming that 

the program being executed has sufficient parallelism and a large enough 

granularity. A multiprocessor architecture is usually designed to be 

scalable up to some specific number of processors. There is a fine balance 

between granularity and scalability in a multiprocessor. Increased 

scalability is typically achieved at the cost of large granularity. On a 

general note, tightly coupled systems usually have a smaller granularity 

and scalability than loosely coupled systems. 

3. Computation 11$. Communication: The introduction of parallelism has 

led to problems of communication which did not exist in uniprocessor 

systems. In the multiprocessor environment, one would expect to split 

the computation and assign the task modules to different processors. 

Consequently, the processors need to co=unicate the results of their 

computations. The more complex the task division, the more complex 

will be the co=unication pattern. One has to be more careful not to 

degrade the system performance by overwhelming the communication. 

8 
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There is a trade-off between co=unication and computation in parallel 

systems. Ideally, one would like to reduce the co=unication overhead 
and increase the parallelism by further splitting of the computation. It 

is well established that the co=unication time in a multiprocessor 

environment can not be neglected. Agerwala (7) has studied the 

relationship between co=unication and computation and concluded 

that the reason for decreased performance of present multiprocessor 

systems is insufficient emphasis on the role of co=unication. 

1.2 Application of Multiprocessors in YLSI Design 

The rapid development of multiprocessors as well as the fall of their 

prices has ~pened up many new engineering application areas which have 
been suffering from heavy computing demand. One of these new application 

areas is VLSI engineering. In recent years, due to the availability of advanced 

semiconductor process technologies as well as computer aided design (CAD) 

systems coupled with ever increasing drive for higher integration, a tremen­

dous growth in chip density is being observed. Already VLSI chips containing 

more than 1 million transistors has been announced (8). This very high chip 

density is forcing an unacceptably long design turn around time. The size and 

complexity of the design are the main factors responsible for this. Different 

phases of VLSI design is bestowed with rich inherent parallelism. These can 

be effectively exploited and their multiprocessor implementation would then 

provide a much faster design and verification turn around time. 

1.2.1 YLSI Design Processes 

Design methodology in the context of VLSI circuits can be defined as a 

set of codified techniques that is applicable to the VLSI design process. De­

sign functions of interest in the VLSI design methodology can be categorised 

as follows (9) : 

1. Chip specification and partitioning; 

2. Chip design planning and initial implementation; 

3. Subcircuit and module synthesis; 

4. Simulation at different levels; 

10 
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Fig. 1.5 The general design processes of a VLSI circuit. 
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5. IC mask layout; 

6. Design verification; 

7. Testability in design and product; 

8. Test sequence generation; 

9. Database management; 
10. Design documentation. 

The ultimate objective of studying design methodology is to facilitate 

the creation of better designs in less time. The prevalent design methodology 

today, and in the foreseeable future, is hierarchical in nature [10], where a 

set of universal circuits are designed, optimised, and stored in the library of 

a CAD system and the library circuits can be repeatedly accessed, modified, 

and used as building blocks to construct the desired system. 

Figure 1.5 presents the overview of a typical VLSI design process. A 
top-down design flow is normally used to decompose the circuit under design 

into a network of smaller and simpler functional modules. Once a function 

implementation strategy has been established, a bottom-up flow is used to 

complete the physical design of the chip. 

The design process begins by converting an idea for a VLSI circuit into 

more concrete circwt specifications. An algorithm is developed to perform 

- the required operations and a suitable architecture is designed to carry out 

the chosen algorithm. Simulations are used to verify the correctness and to 

estimate the performance of both the algorithm and architecture. After the 

architecture of the circuit has been established, the design process enters the 

physical layout phase. Copies of the needed building blocks are fetched from 

the library, placed in some optimal manner, and interconnected as they will 

be on the chip. The layout is then simulated to verify its operation and 

performance with respect to the desired specifications. Finally layout mask 

is sent to a silicon foundry for fabrication. 

1.2.2 Acceleration of VLSI Design Process 

The simulation and verification phases of the design process of Fig.1.5 --- -- ---------- ------- -
are composed of logic, timing, electricBl and fault simulation and also Design 

Rule -Checking (DRC) encompassing -physical, thermal and connectivity 

12 
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.. Simulation TIme t 

.. O>mpilationTIme ~ 

Software Simulator Point Accelerator 

• 
Fig. 1.6 I/O overhead in a typical point accelerator. Adapted from [12]. 
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Chapter 1: Introduction 

analysis. In league with the Placement and Routing phases, simulation is 

one of the most time consuming phases of a VLSI design. Placement and 

routing are difficult combinatorial optimisation problems and are known to 

be NP-H;u.d (11). The simulation phase also have voracious appetite for 

CPU time often taking O(n2) to O(n3 ) time. 

Several attempts have been made to speed-up the YLSI design process 

[11-19). Two different approaches can be observed. The first approach is 

based on the use of dedicated special-purpose hardware device known as 

Point Accelerator~ [13-17). These are usually single processor based special­

purpose unit where the algorithm is realised in hardware and is attached to 

a design workstation. They provide very impressive speed-up factors at low 

cost some times upto a factor of 225 for relatively larger circuits (16). Their 

main drawback however is that for smaller circuits the I/O bandwidth with 

the host workstation is too large to give any significant speed improvement 

(Fig.l.6). Also, as the algorithm is tied to the hardware, modification and 

upgrading becomes very difficult and expensive. Furthermore, they fare very 

poorly in integrating with the other phases of the YLSI design process. 

The other approach is based on the exploitation of rich inherent par­

allelism present in the design phases and employing general-purpose multi­

processor systems [11,12,18,19). This approach is becoming more attractive 

with the advancement of computer technology as well as with their falling 

prices. The design algorithm is almost fully software based. Modification 

and upgrading can thus be done very easily and inexpensively. Also, the 

same hardware can be used for the rest phases of the design. 

1.2.3 VLSI Circuit Simulation 

Circuit simulation is one of the most important phases of a YLSI 

design process. A thorough and detailed analysis of the tentative design 

analysis is absolutely necessary before a very expensive fabrication begins. 

Design verification of a custom YLSI circuit takes place at a number of 

different levels of simulation as the design progresses. These range from logic 

~imulation (using register-transfer level, gate level, or switch level simulation) 

to electrical ~imulation. 

14 
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Electrical simulation usually provides a detailed and accurate analysis 

of a circuit. But is often too slow for simulation of large circuits. Circuit 

simulation using direct solutions, as in SPICE (20), is typically a factor of 

104 to 105 slower than gate level logic simulation (21). Several techniques for 

improving the speed of simulation have been proposed (17). These include the 

exploitation of circuit latency by integrating only those circuit nodes which 

are changing voltages, using tearing techniques for matrix manipulations, 

deriving relaxation-based simulators that eliminate matrix decomposition. 

These improvements Can give a speed-up factor of upto 102, but is still 

inadequate for large circuits. 

Switch level simulation, exemplified by RSim (22) and MOSSIM (23), 

uses event driven techniques and a logic level approximation of the network 

state. This results a very fast simulation compared to direct electrical 

simulation. Although the approximations are valid for many circuits, they 

often fail to produce correct results for many others. Another disadvantage 

of switch level simulation is that it typically provides only unit-delay timing 

information, or timing information that can have large errors for common 

circuits. 

Timing &imulation is a compromise between direct electrical simulation 

and switch level simulation. Compared to direct simulation this provides 

much higher performance at the cost of slightly lower accuracy. Also com­

pared to switch level simulation, timing simulation provides better accuracy 

with limited analog effects such as rise and fall times, charge and current 

sharing and feedback. EMU (24) and MOTIS (25) identifies the regular 

use of driver-load gate structures and uses an approximate series-parallel 

formulae. Speed improvement techniques like discretisation of voltage into a 

small number of levels, and the calculation of time step for each node. Timing 

simulation claims improvements of upto 103 compared to direct electrical 

circuit simulation. 

The accuracy of timing simulators can be improved further by decreasing 

the size of the time step. But, unfortunately, this increases the simulation 

time and for relatively larger circuits this may become very long. Table 

1.1 shows the simulation time for four representative circuits ranging from 
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Fig. 1.7 A Computational Flow Graph(CFG), each node represents a sub­
task to be performed. 
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small to medium sizes for different time step when simulated with EMU on 

a conventional uniprocessor system. 

Table 1.1 Simulation time with EMU for different time steps. 

Time Steps 4x4 Phased Locked 16x16 Vector 

in Multiplier Loop Multiplier Coder 

pico Second. (168 Nodes) (167 Nodes) (2577 Nodes) (1746 Nodes) 

100 11.00 Min •. 18.78 Min •• 10.12 Hrs. 10.96 Hrs. 

200 8.10 Min •• 15.78 Min •. 7.32 Hrs. 10.00 Hrs. 
. 500 6.93 Min •. 12.77 Min •. 5.84 Hr •. 10.11 Hrs. 

1000 6.70 Min •. 12.62 Min •. 5.94 Hr •. 10.13 Jirs. 

Further improvements in simulation time can be achieved by exploiting 

the inherent parallelism of a circuit!an~t~en~unninglthe si~ulation on·' a 

multiprocessor. CEMU [24] is a step in that direction. In CEMU the circuit 

under investigation is partitioned into a number of regions so that each region 

can be simulated independent of each other. Each such region which we 

shall call &imulation module&, is composed of a number of voltage controlled 

current sources (e.g. a transistor) connected together to a capacitive node. 

The partitioned circuit can then be run on a multiprocessor by assigning each 

region or module to each of the processors. However, the performance of the 

multiprocessor implementation of the timing simulation is heavily dependent 

on the quality of region or module assignment onto the multiprocessor. An 

optimal assignment or scheduling guarantees higher throughput. However, 

the process of optimal scheduling or assignment is itself a difficult combina­

torial optimisation problem for which no polynomial time optimal algorithm 

is known.to exist [26]. In this dissertation the main theme will be the study 

of heuristic parallel multiprocessor scheduling algorithms in the context of 

VLSI timing simulation. 

1.3 Multiprocessor Task Scheduling 

The multiprocessor task scheduling problem can be defined as the 

process of allocating task modules to processors. The goal is to minimise the 
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parallel execution time. The parallel execution time depends on processor 

utilisation and on the overhead of interprocessor communication. 

List scheduling algorithms [27] have been found to be quite successful for 

general task scheduling problems when communication overhead is ignored. 

They have linear time characteristics with a constant performance bound of 

2 [28], meaning that the maximum execution time for a particular schedule 

generated by the list scheduling algorithm is twice that of the optimal parallel 
execution time. . 

Unfortunately, the scheduling problems become more difficult when 
communication overhead with arbitrary data sizes are considered. Even 

quite simple instances of the scheduling problems are often intractable. For 

example, let us consider the Computation Flow Graph (CFG) as illustrated 

in Fig.1.7. We are given a set of seven task modules with the direction of 

flow of information highlighted by the edges of the graph. Furthermore, 

the execution time needed by each task module is fixed and known in 

advance. Three processors are available. Scheduling the task modules onto 

the processors to minimise the time needed to complete all the task modules 

is an NP-Hard problem, meaning that it is unlikely that a polynomial time 

algorithm exits that can always find an optimal schedule, given an arbitrary 

CFG. Therefore, in general, we must resort to a approximate scheduling 
algorithm that gives a near optimal schedule in acceptable polynomial time. 

The term task allocation is often used to describe task scheduling 

problems. These are almost synonymous terms with the former being posed 

in terms of resource allocation (from the resources' i.e. processors, memory 

etc. view point) and the latter from the consumer's view point. Ta~k 

a~~ignment is also used as an alternate term for task scheduling. 

1.4 Outline of the Dissertation 

The rest of the disseration is organised as follows: 

Chapter 2 starts with a proof of the NP-Completeness of the multi­

processor task scheduling problem. An overview of the scheduling problems 

and different approaches taken in solving these problems are then presented. 
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Section 2.4 briefly describes the available heuristic techniques and finally a 

summary of the Contributions made by this dissertation are presented. 

Chapter 3 describes The Graph Model, used to represnt the concurrent 

VLSI simulation system and it's scheduling onto a multiprocessor. It also 

presents a COJt aJJignment for the task system considered - communication 

and computation costs are discussed in this respect. A generic multprocessor 

system is considered. This chapter also contains detailed data structure and 

various primitives used throughout. 

Chapter 4 describes the modified Kernighan-Lin graph partitioning 

algorithm and it's parallel implementation: A hierarchical partitioning 

strategy is adopted. Various aspects of the it's implementation are also 
. '-'-' 

discussed. . 

i TheSimulated Ann~aling (SA) algorithm is introduced in chapter 5. An 

imple~entation suitable for graph parliti~ci;g· is used. T;~ctifF;~tt~~~ 
perature schedules are used and their performances are compared. 

Chapter 6 starts with a review of parallel SA algorithms in existence 

and describes the problems relating to their implementation. The Concurrent 

Simulated Annealing (CSA) algorithm is proposed here and some implemen­

tations are suggested. Simulation results are also presented and an overall 

performance comparison is made. ' 

Chapter 7 wraps up with some general discussion and concluding 

remarks. Some suggestions for future work are also made. 

Appendix A contains the data and statistics for the various data flow 

graphs used throughout. 

Appendix B contains proof of a corollary used in chapter 5. 
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CHAPTER 2 

The Task Scheduling Problem 

Scheduling problems are combinatorial optimisation problems. Each instance 

consists of task modules to be scheduled on a certain number of processors. 

The solution is a $chedule indicating when and where each task module is 

to be executed. A schedule of task modules to processors can formally be 

described by a function from the set of task modules to the set of processors, 

f : T -+ n. In a system of T task modules and n processors there are nT 

possible schedules of tasks to processors. The difficulty, is therefore, to pick 

out an optimal schedule from the exponentially many different possibilities. 

A performance criterion in the form of a function is thus used to compare 

the nT possible schedules and to associate a cost with each schedule. An 

optimal schedule is one which minimises the cost function. 
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2.1 Complexity of Task Scheduling Algorithms 

The complexity of an algorithm can be given by a function f : IN -+ IN 

(where IN is the set of all natural numbers), which characterises the execution 

time of the algorithm in terms of the size of its input. Algorithmic charac­

terisation of f(·) (i.e., constant, logarithmic, linear, polynomial, exponential 

etc.) are used to identify the complexity of the associated algorithm. 

Let, P be the set of all problems 11' for which there exists a deterministic 

polynomial time algorithmto solve the problem 11'. Likewise; let NP be the 

set of all problems which have non·deterministic polynomial time algorithmic 

solutions. The term, NP-Complete is used to describe problems that are the 

hardest ones in NP. A problem 11' is said to be NP·Complete if i) 11' E NP, 

and furthermore ii) '/I' E P implying P= NP. Since, it is widely believed that 

P;6 NP, a proof that a problem 11' is NP-Complete is equivalent to showing 

that 11' can not be solved efficiently and that probably the best deterministic 

algorithm to solve 11' is at least of exponential time complexity. NP·Complete 

problems are posed in the form of a decision problem and the corresponding 

optimisation problem is know to be in the class of NP·Hard problems. 

Vairavan and DeMillo [1) using a synchronous parallel computation 

model showed that any algorithm designed to generate an optimal n· 

processor (n fixed) schedule of a loop free computer program, when such 

a schedule exists, would demand exponential time. We here also present a 

proofof the NP-Completeness of the multiprocessor task scheduling problem 

using thereducibilityproperty of NP·Complete problems. This is a two part 

proof, where in Part I we show that the problem is in NP. In the second 

part, the scheduling problem is shown to be polynomially transformable to 

a quadratic a$$ignment problem which is NP·Complete. 

Theorem (2.1). The above mentioned mu/tiproce$Mr ta$k ~cheduling prob· 

lem i~ NP·Complete. 

Proof: 

Part I : 

We consider a non·determini~tic Turing machine (NDTM). The 

NDTM would make a first guess at picking a proce~~ing element (PE) 
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out of n such PEs and assign it to the first node of the task graph. In 

the next step another PE would be selected for allocation. This process 
would continue until all the nodes of the task graph are allocated. A 

guess should be such that the co=unication overhead of the resulting 

schedule is minimised· and computational loads are evenly balanced 

among the PEs. This would take O(n) time on the NDTM, which 

proves that the problem is in NP. 

Part II : 

We define an assignment matrix X[T,n) with components, 

Then, 
n 

, 
if task i is assigned to PEq, 
Otherwise. 

(2.1) 

~Xig = 1 1$ i $ T, (2.2) 
g=1 

since each task must be assigned to exactly one processor. Also, for 

cases T ;:: n, each processor can have more than one task assigned to it . 

. Therefore, 

1 $ q $ n. (2.3) 

We now define, 

. eij _ Am0.'IDt..0f data_tra1sfer from node i to node j of the task graph. 

I -;;'iq = computational load of node i of the t~k~aph on Pr-cessor-q-:: 

It can be easily seen from the above that the total communication 

cost may now be expressed as, 

T n 

Cc = ~ ~ eij Xig Xjr, 
i,i-l 9,r-l 
,yli ft',. 

and the total execution cost, / 
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Therefore, the scheduling problem is transformed to the following 

optimisation problem, 

minimise{alCcl + PlC. I} (2.6) 

subject to, 
" 
~Xil = 1 l$i$T, (2.7) 
1=1 

and 
T 

~Xil ;:: 0 1 $ q $ n. (2.8) 
i=l 

This is equivalent to a quadratic assignment problem. Since, the 

quadratic assignment problem is NP-Complete[2,31, the present mul­

tiprocessor task scheduling problem is also NP-Complete. 

Q.E.D. 

2.1.1 Parallel Algorithms . 

The major driving force behind the research and development of parallel 

computers is to speed-up the solution process of difficult algorithmic prob­

lems. But, surely an undecidable problem can not be solved by a parallel 

computer no matter how large or complex it is. The reason being that every 

parallel computer can be simulated by a sequential processor, running around 

and doing every processor's work in an appropriate order. In this sense, the 

Church/Turing thesis also applies to parallel models of computation too: the 

cla$$ of &olvable problem$ i$ in$en$itive even to the addition of paralle/i$m. 

But, can parallelism turn intractable problems into tractable ones? In 
other words, is it possible to have a polynomial time algorithm for a problem 

having exponential time sequential solution? To answer this, we recall that 

all problems in NP have reasonable (polynomial) solutions that are non­

deterministic. If a correct guess is made out of a large possibilities, it 

would lead to a positive solution. Now, if we have an unlimited number 

of processors, we can employ each processor to explore each possibility. If 

one of the processors finds a correct solution then indeed a polynomial time 
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parallel solution exists. On the other hand, if none of the processors find a 

solution then the problem can be thought of as truly intractable. 

It is, therefore, seen that reasonable parallel solutions for intractable 

problems are theoretically feasible. But, in reality many practical problems 

exist. NP-Complete problems are not known to be intractable - they 

are merely conjectured to be so. Thus, the possibility of simulating NP­

Complete problems in parallel in polynomial time does not imply that 

parallelism can get rid of a problem of its inherent intractibility, since we do 

not know whether or not NP-Complete problems are actually intractable. 

Furthermore, the number of processors required to solve an NP-Complete 

problem in reasonable time is itself exponential, requiring billions or trillions 

of processors in some cases. Even, if it is possible to have that many 

processors in a multiprocessor system with the advent of technology, the 

communication overhead would be too large to cope with. The algorithm to 

control the communication links and channels would also be of exponential 

complexity. With all this overhead, a super-polynomial number of processors 

would require a super-polynomial amount of real time to carry out even 

a polynomial number of instructions: In practical terms, therefore, it is 

not possible to have a reasonable parallel counterpart for an unreasonable 

(exponential) sequential algorithmic solution. 

Nonetheless, a practical multiprocessor system, both coarse and fine 

grained,· are of i=ense importance for many real world applications. In 

many cases an almost linear speed-up is possible. Again, for the solution of 

difficult NP-Complete problems, a heuristic algorithm can be chosen over an 

exact algorithm, which when properly implemented on a parallel machine, 

would give reasonably good solution within a time of practical value. 

2.2 Classification of Task Scheduling Algorithms 

The multiprocessor task scheduling problem bears a close resemblance 

to the classical job sequencing problems as encountered in production man­

agement. These types of problems have been described a number of times and 

in a number of different ways in the literature [l,4-6J. In this classification, 

however, we take a slightly different view and concentrate on the mechanism 

or policy of efficient and effective management of the access to and on the 
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use of various resources by its various consumers. Obviously, in this scenario, 

the processors form part of the resources and the program tasks constitute 
the consumers waiting to be executed on the processors. 

In this short classification, the goal here is to familiarise with a com­

monly accepted set of terms and also to present a means to compare past 

works in the area of multiprocessor task (or distributed process) scheduling in 

a qualitative way. A hierarchical classification proceeds first, to be followed 

by a fiat classification scheme which is felt necessary as some choices of 

characteristics may be made independent of previous design choices and thus 

require different attention. The classification tree is presented in Fig. 2.1. 

This classification however does not take into consideration the different 

possible strategies for the parallelisation of the scheduling algorithms itself. 
In the following sections we present some of the selected and pertinent 
categories of the classification tree. The selected classification presented 

here is based on Casavant and Kuhl's taxonomy (7) which can be consulted 

for detailed study. 

2.2.1 Static vs. Dynamic Scheduling 
In the case of $tatic o$cheduling also known as determini$tic scheduling 

(4), the task modules are preassigned to the processors before the execution 
actually begins. Hence, each executable task in a system has a static 

assignment to a particular processor, and each time that task is submitted 

for execution, it is assigned to that same processor. Static scheduling can 

be successful only when a priori knowledge of the execution behaviour of 

the tasks is available. This includes the input-output profile as well as the 

computational load of each task. Static scheduling is attractive because 

it eliminates scheduling overhead entirely at run time. Further, there is 

a greater opportunity to optimise the interprocessor communication. The 

disadvantage is that the execution behaviour estimate may be inaccurate 

leading to inefficient schedule and that also static schedule is tied to a 

particular hardware configuration and a new schedule is thus necessary every 

time there is a change in hardware architecture or topology. 

On the other hand, in the case of dynamic $cheduling the assignment 

of tasks to processors is left till the run time. The assignment procedure 
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takes place dynamieally along with the actual processing of the tasks. This 

leads to a heavy run time scheduling problem. Nevertheless, this approach 

is favoured when execution behaviour of the tasks is not available or difficult 

to ascertain. Dynamic scheduling can again be grouped into di"tributed and 

non-di"tributed (or centrali"ed) scheduling. As the names suggest, in the case 

of non-distributed scheduling the task of global dynamic scheduling should 

reside in a single processor and in the other case it is physically distributed 

among the processors. 

2.2.2 Optimal vs. Sub-optimal Scheduling 

In some cases of multiprocessor task scheduling, where all the informa­

tion regarding the state of the system as well as the execution behaviour 

of the tasks are known, an optimal assignment is feasible [6, 8-9]. These 

optimal assignments are based on some simple criterion functions and results 

of their appropriate optimisations. Examples include minimising total 

process completion time, maximising utilisation of resources in the system, or 

maximising system throughput. In the event that a more robust and accurate 

criterion ftinction is used resulting the solution computationally infeasible, 

$ub-optimal solutions maY' be more desired [10-11]. As shown in section 2.5 

an optimal solution for the multiprocessor task scheduling problem is very 

difficult to achieve and as such a sub-optimal solution is more realistic and 

desirable. 

2.2.3 Approximate vs. Heuristic Solutions 

In the approximate method, use of the same computational model for 

the algorithm is used. However, instead of searching the whole solution 

space which is deemed very time expensive, search is stopped when a good 

solution is found. This is taken as the $ub-optimal approximate solution. 

The difficulty, however, arises in the determination of a good solution. In 

the cases where a metric is available for evaluating a solution, this technique 

can be used to decrease the time taken to find an acceptable solution. 

H euri$tic methods are favoured for the solution of many combinatorial 

optimisation problems due to its ability to provide near-optimal solutions 
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in reasonable time. Different heuristic scheduling algorithms have been 

proposed [5, 10-14]. This method is best suited when a good and realistic 

assumption about a priori knowledge concerning the execution behaviour of 

the tasks can be made. Heuristic schedules often use an indirect rather than 
, . 

direct approach to monitor the system performance and this indirect ap-

proach is much simpler to implement and calculate. For example, clustering 

of tasks [5] can be employed so that heavily co=unicating tasks are grouped 

together and assigned to the same processor and also physically sep~ating 
the tasks which would benefit from parallelism. This directly decreases the 

overhead involved in passing information between processors while reducing 

the interference among tasks which may run without synchronisation with 

one another. 

2.2.4 Load Balancing 

Load balancing has received a great dcal of attention·[14-17]. This is 

more of a design choice than a separate algorithmic approach and as such 
placed under the flat classification in the classification tree of Fig. 2.1. This 

brings fairness to the hardware resource utilisation. The basic idea is to 

attempt to balance (in some sense) the load on all processors in such a way 
as to allow progress by all tasks on all processing elements to proceed at 

approximately the same rate. This approach is best suited for homogeneous 

multiprocessor system since this allows all processors to know a great deal 

about the structure of the other processors. 

Incorporation of load balancing criterion in the cost function of a 

heuristic algorithm is very important and brings higher processor utilisation. 

A heuristic algorithm which minimises the interprocessor communication in 

a schedule totally ignoring load balancing, would assign all the tasks to a 

single processor as the co=unication overhead between tasks assigned to 

the same processor is considered negligibly small. As a result the schedule 

though an optimal one for the criterion considered would be taken as highly 

inefficient. 
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2.3 Optimal and Su~optimal Approximate 
Techniques 

For both optimal and sub-optimal approximate solutions of static mul­

tiprocessor scheduling there are four basic categories of algorithms that CRn 
be used. These are described in the following sub-sections: 

2.3.1 Solution Space Enumeration and Search 
, 

A complete enumeration and search for the optimal solution can be very 

time expensive and of exponential time complexity. However, the problem 

can be transformed into a simpler one and state-space search can then be 

used to arrive at an optimal or acceptable sub-optimal solution. Shenand 

Tsai [9] restated the problem as weak homomorphic graph matching problem 

and used the A· algorithm after collecting relevant heuristic informations for 

an optimal solution. 

2.3.2 Graph Theoretic 

In graph theoretic approach the scheduling problem is modelled as a 

network with undirected edges and an attempt is then made to find the 

maximum flow across a cut, resulting in an optimal solution. Stone [18] 

used Ford-FUlkerson's Maz Flow Min Cut [19] algorithm to find an optimal 

schedule. However, his algorithm is applicable for 2-processor systems only. 

Stone and Bokhari [20] used this idea for n-processor homo/heterogeneous 

systems. However, this works only when the intertask communication 

pattern is constrained to be tree structured. 10 [10] also proposed a three 

stage algorithm composed of graph theoretic and heuristic method for a near 

optimal n-processor schedule. The two main drawbacks of graph theoretic 

approach is its lack of mechanism to accommodate load balancing and to 

incorporate various resource constraints into the model. 

2.3.3 Mathematical Pro'gramming 

Various mathematical programming techniques like branch-and-oound, 

backtracking, 0-1 integer programming etc. can be successfully applied 

to solve multiprocessor scheduling problems. Chu [21] used 0-1 integer 
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programming technique for optimal file allocation in a multiprocessor system 

which bears close resemblance to our problem in hand. Ma et. al [6] used 

branch-and-bound method to minimise the interprocessor co=unication 

and also for balanced processor utilisation. Kasahara and Narita [22] used 
a combination of branch-and-bound and critical path methods. Though 
mathematical programming techniques are flexible enough to incorporate 

many system constraints, they are still of exponential time complexity. These 

techniques can be used in some cases, but their generalisation is reduced by 

their demand for large time and space. 

2.3.4 Queing Theoretic 
Queing theory can also be applied for the solution of multiprocessor 

scheduling problems [15, 19]. Klinrock and Nilsson [23] considerd a M/G/l 
queing system model. Their cost function is based on task waiting time 

and their required service time. The problem is posed as an optimisation 

problem and mathematical programming technique is used to optimise the 

total cost. However, the solution is found to be sub-optimal. Generalisation 

for a n-processor model is also found difficult. 

2.4 Heuristic Technique 
Heuristic algorithms by their very nature can adopt many different 

possible approaches. However, for the multiprocessor task scheduling and 

also for many other similar combinatorial optimisation problems a simple 

classification can be attempted. Two different basic approaches can be 

thought of. These are: 

1. Constructive Method 

2. Iterative Improvement Method. 

2.4.1 Constructive Method 
The constructive scheduling algorithm begins with the assignment of one 

or a few 8eed task modules and then gradually builds up the total schedule by 

assigning a new free task .module in succession each to a processor, always 

taking the best momentary decision for any particular assignment. The 
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approach is however greedy in nature as the decision at each instant is based 

on the current effect and not on the global effect. As a result the resulting 

solution often turns out to be rather inferior. 

Still, there are many combinatorial optimisation problems where greedy 
constructive algorithms can be used to produce good solutions with high 

probability. For many such problems an exhaustive search is far too imprac­

tical and in the absence of other fast heuristic algorithms, greedy constructive 

algorithms are the only real and wi.!e choice. One classical example is for the 

solution of Travelling Sale$man Problem (TSP), where greedy constructive 

algorithms have been found very effective. For the multiprocessor task 

scheduling problem a good use of the constructive algorithm can be made 
whereby heavily connected task modules are grouped together and assigned 

to the same processor. This would help to minimise the communication cost 

component of the objective function. 

2.4.2 Iterative Improvement Method 

The iterative improvement method is of special interest in this disser­

tation. As mentioned earlier, the task scheduling problem falls into the 

class of combinatorial optimisation problems involving large solution space. 

Though, theoretically it is possible to find the best solution by generating 

and evaluating all possible solutions, in practical terms it turns out to be 

an impossible task due to the exponential growth of complete enumeration 

algorithms. 

Heuristic algorithms provide much promise to find a good solution 

in reasonable time. Due to the greedy nature, the constructive heuristic 

algorithms often fail to keep up to this promise. The iterative improvement 

method is a viable alternative which can be thought of made up of two 

phases. 

For the solution of task scheduling problem, an initial schedule is 

generated in the first phase either by a constructive algorithm or by random 

method. This initial schedule is then iteratively improved in the second 

phase. A new schedule is generated at each step by introducing some 
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modifications to the present schedule (configuration). The modifications 

that can be made are : 

1. Changing the assignment of a task module to a new processor. 

2. Swapping the assignments of two task modules. 

A cost (objective) function is defined to guide the heuristic search in a 

direction that will improve the schedule. If the cost of a new schedule is 

lower than that of the previous one, the new one is accepted and further 

modifications are inflicted upon it. Otherwise, if the cost is increased 

in the new schedule, it is rejected and the previous one is retained for 

further modifications. The iterative improvement process is continued until 

no further improvement can be obtained or any other predefined stopping. 

criterion is satisfied. 

2.5 Local Minima and Optimal Solution 
Most heuristic algorithms search for a solution only in the direction 

that improve the cost functions. One inherent drawback of this type of 

heuristic search is that it can be easily trapped into a local minimia of the 

cost function. The example presented in Fig. 2.2 is used to demonstrate this 

problem. 

The curve in Fig. 2.2 may be considered as the cost function of an 
iterative improvement process and the circles can be used to indicate the 

costs of certain schedules. Since a new schedule is generated by introducing 

small modifications to the present schedule, its corresponding location on 

the curve is most likely to be somewhere near that of the presnt schedule. 

The traditional iterative improvement algorithm only accepts schedules that 

have reduced the cost. This criterion of schedule acceptance implies that the 

process can only go downhill into a local minima and any uphill movement 

is forbidden. Thus, the search process can not climb over the peak of the 

curve to reach the global minima. 

Different alogorithmic solutions have so far been proposed [24-26J that 
gives a certain degree of hill climbing capability to the basic iterative 

improvement heuristics. This ensures a good near optimal solution for NP­
Hard problems. As an illustration we here present a brief introduction of the 
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Simulated Annealing (24) algorithm which is recently being successfully used 

for the solution of many difficult problems including network partitioning, 

VLSI cell placement, numerical problems using Monte-Carlo method as well 

as task scheduling problem. An analogy is made with the statistical mechan­

ics which deals with the behaviour of systems with many degrees of freedom 

in thermal equilibrium at a finite temperature, to combinatorial optimisation 

which finds the minimum of a given function depending on many parameters. 

Simulated annealing brings minor but, vital modification to the traditional 

iterative improvement method. Instead of rejecting outright a new schedule 

(or configuration in general case) which results in an increase in the cost 

function (AC), the modified algorithm accepts this new configuration with 

a certain probability, 

(2.9) 

where Si represents a certain configuration at any instant i. 

This conditional probability is dictated by the Maxwell-Boltzmann 

statistics of statistical physics. The parameter t, an analog of temperature 

in the physical process is a very important control parameter. This control 

parameter t, also known as temperature, is slowly reduced from an initial 

high value to a final very low value, where the solution is thought to be 

. frozen (converged). A configuration has a high probability of being accepted 

at high temperature for the same cost increase. On the other hand, when 

the temperature is lowered, the probability of accepting a cost increasing 

configuration is smaller. This is equivalent to high hill climbing capability at 

the initial high temperature which is necessary to explore the overall solution 

space as much as possible without being trapped into a local minima. A slow 

reduction to a very low temperature over a good number of steps, ensures 

the configuration to settle down either to the global minima or somewhere 

very near to it. Fig. 2.3 shows the effect of simulated annealing algorithm. 

2.6 Contribution of this Dissertation 

Static scheduling is favoured over dynamic scheduling. The main reason 

being that a detailed a priori knowledge about the execution and input­
output behaviour of the VLSI simulation modules can be easily obtained. 
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Apart from this, in a typical VLSI design, the same circuit may have to be 

simulated a few times, each time with a new set of parameters to test all 

the possible eventualities. The cumulative scheduling overhead of dynamic 

scheduling would be much too high to render this almost impractical. 

Theitem that is conspicuously absent from the classification tree of Fig. 

2.1 is the distributed static scheduling algorithm and its siblings. A parallel 

or distributed static scheduling algorithm is much desired for practical appli­

cations. Apart from the obvious speed-up advantage, a parallel scheduling 
algorithm would definitely improve the machine utilisation of the available 

hardware system. In the VLSI design environment the same hardware 

can then be used for a variety of purposes including electrical/logic/timing 

simulation, floor plan design, wire routing, fault analysis etc. 

Unfortunately not much research has been addressed to the problem 

of parallel static scheduling algorithm, although some research into parallel 

heuristic algorithm for the VLSI cell placement problem has been reported 

[27-29]. The VLSI cell placement problem bears a close similarity with 

the multiprocessor task scheduling algorithm. In this dissertation, the main 

theme is concentrated on the design and performance study of various parallel 

heuristic task scheduling algorithms. In addressing the general problem 

of parallel task scheduling this dissertation makes the following specific . 

contributions: 

1. The definition of a problem and system independent graph represen­

tation of the simulation task. With appropriate modification this can 

be used to represent parallel programs waiting to be executed on a 

multiprocessor. 

2. The definition of a cost model for the task assignment. This model 

is general and flexible enough to represent a wide range of VLSI 

simulation problems and also different multiprocessor architecture. 

3. The scheme for the incorporation of both execution and communica­

tion load on the target system. 
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4. Use of simple hierarchical partitioning method which'<:an be easily im­

plemented in a parallel environment. This, coupled with Kernighan­

Lin's 2-way partitioning algorithm (25) has been found to be favourable 

for smaller multiprocessor system. 

5. A parallel implementation of the simulated annealing heuristic with 

optimal number of parallel moves. this is thought to achieve faster 

convergence than other similar approach .. 
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CHAPTER 3 

The Graph Model 

This chapter describes the graphical model used to represent the concurrent 
VLSI time simulation systems. Also described are the formulations of 

the cost function for the scheduling of these simulation systems onto a 

multiprocessor. The method of calculating the communication and load 
imbalance costs of a particular schedule is also discussed. 

The scheduling techniques described later are based on estimates of the 

VLSI simulation system's performance characteristics, such as parallelism 

and a measure for the costs for execution time and communication overhead. 

The graph model as used expresses these performance characteristics and 

leaves the remaining aspects (i.e., circuit simulation principles) unspecified. 
This facilitates the graph model to be flexible over many different circum­

stances, as in the scheduling of parallel programs onto multiprocessors. 

The scheduling of the graph model assumes a general purpose Multiple 

[lI$truction &tream, Multiple Data &tream (MIMD) computer organisations. 
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A multiprocessor is a collection of communicating processing elements. The 

performance characteristics which are of prime interest are the processor 

execution times and scheduling and communication overheads. 

3.1 Graphical Representation: Background 
Graphs are a popular data structure in many different applications 

including performance evaluation technique~ like PERT, CPM and RAMPS 

[1), computer program representation, control flow analysis etc. Dag~, flow 

graph~ and data flow graph~ have common use in program representation. 

To represent program expressions contajning common sub-expressions, 

expression dags (directed acyclic graph) are used [2). An internal node 

represents an operator and its children represent its operands. An edge in an 

expression dag thus represent the data dependence. Likewise, a basic block 

dag being similar to an expression dag, represents an entire basic block. It 
however requires extra precedence edges to represent operators with side 

effects correctly (e.g. array and pointer assignment, function calls). The 

flow graph [2) of a program is another kind of graph used to represent 

computer programs. Its node~ represent computation and edges represent 

flow of control. A path in the flow graph represents a possible execution 

sequence in the program. 

The data flow model of computation is also based on a graphical 

representation of programs. A data flow graph is the executable machine 

code for a data flow machine [3). As in a dag, nodes represent operators and 

edges represent operands. All the data are represented by token~ which flow 

along the edges of the data flow graph. A node which has tokens on all of its 

input edges is ready to fire. It executes by consuming all its input tokens and 

producing a token on each of its output edges. Data flow's parallelism lies 

in the node's ability to fire concurrently and in the pipelining due to token 

streams. Data flow graphs are in fact networks which implement programs 

rather than just program representation. 

Proce88 flow graph~ introduced by Shaw [4) are used to describe a system 

of processes with precedence constrajnts. The process flow graph is a dual 

of the dag representation in the sense that it inverts the use of nodes and 
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edges. Edges in a process flow graph represent processes and nodes enforc~ 

precedence co_nstraints by serving as synchronisation points. 

I Process flow graphs are a form of Activity On Edge (AOE) networks,. 
where the activity, occurs on edges and the nOdes define the precedence' 

constraints. PERT, CPM and RAMPS are of this type. Dags are a form of 

Activity On Vertez (AOV) networks, where the activity occurs in the vertices 

(nodes) and the edges define the precedence constraints. Fig. 3.1 shows two 

examples of AOV and AOE graphs. 

3.2 Concurrent VLSI Timing Simulation 

A VLSI timing simulator like EMU (5) models an MOS circuit as a set of 

capacitive nodes interconnected by various voltage controlled current sources 

as shown in Fig. 3.2. A single transistor (whose channel current depends on 

gate, drain and source voltages) or'cOll1l.>iIlati<>.nallogic gates (whose output 

current depends on the various gate input voltages) can be thought of as such 

current sources. Two such unidirectional sources can be used to represent 

a bidirectional circuit element, e.g. a pass transistor. Decomposition of all 

combinatorial gates to their transistors yields greater' accuracy, but in such 

cases the simulator takes longer time to complete. 

In the circuit the voltage Vi at any node i can be obtained by adding the 
currents generated by all current sources driving that node and integrating 

their charging effect on the node capacitance Cl. For a sufficiently small time 

step t - to, the voltage on node i can thus be calculated as, 

VI(t) = VI(tO) + Ilol(~~ to) (3.1) 

The choice of time step above dictates the accuracy and numerical stability 

of this forward integration scheme. 

EMU has an automatic means to control the time step. It starts with 
a maximum allowable time step tm and during the simulation it sub-divides 

this time step dynamically according to circuit activity. During simulation, 

EMU tries to maintain the change in voltage at a node during a time step 

close to a preset threshold value and thus adjusts the size of the time step 

accordingly. 
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EMU has two different operating modes. In circuit mode, the time 

step for the whole circuit is adjusted if the activity of any node exceeds 

the threshold. This gurantees accuracy but means the whole circuit has 

to be simulated in minute detail even if only a few nodes are active. In 
node mode, each node's own activity determines the size of its simulation 

time step. This method provides certain speed-up but is prone to numerical 

instability especially when the behaviour of one node is closely linked to that 

of another. 

Circuit mode simulation is favoured by VLSI designers because of its 

improved stability. But, in a multiprocessing environment circuit mode 

simulation is amenable to a number of problems. It requires a global 

knowledge of the current value of the time step. This further requires that 

all processors be exactly synchronised in terms of simulation time. Also, it 

requires large volume of interprocessor data transfer to update node volt ages 

during high circuit activity. Dividing the circuit into some loosely coupled 

regions would help to alleviate these problems. Time step sub-division can 

thus be performed locally within regions without sacrificing accuracy or 

succumbing to numerical stability. 

For the purpose of circuit sub-division, two circuit nodes are considered 

tightly connected when they are joined by a bidirectional component. In 

other words, in a transistor only model, two circuit nodes joined by a pass 

transistor can be placed in the same region. The power supply nodes Vss 

and VDD can not be affected by any other node and as such they belong to 

no region. 

An example of region sub-division is shown in Fig. 3.3. Region 

boundaries are only crossed by nodes driving transistor gate inputs. A sub­

divided MOS circuit can be modelled as a directed acyclic graph (dag) where 

the nodes (vertices) of the graph can be used to represent the circuit regions 

and edges of the graph can represent the electrical connection between the 

regions of the circuit. A node (vertex) weight of the dag can be assigned 

proportional to the simulated electrical activity and an edge weight can also 

be assigne<J. proportional to the voltage value transferred. The resulting dag . 

is thus an activity on vertex (AOV) graph. 
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3.2.1 VLSI Circuit Partitioning Algorithm 
The algorithm [5) used to sub-divide an MOS circuit into regions where 

each region can be simulated independently on a processor can be described 

as follows: 

Regions are identified by constructing directed tree graphs linking 

all the nodes in a region. For each node i, a pointer Pi is defined and 

then if possible Pi is made to point to another node in the same region 

whose node number is less than that of i. From each region a root is 

identified whose pointer is set to BULL. The node with the lowest node 

number in the region is the root node. 

The algorithm starts with allocating exactly one node, the root 

node, to each region and holding all the nodes of circuit disjoint. 

For each transistor the source and drain nodes 8 and d are identified 

respectively. These nodes are placed in regions R. and Rd respectively. 

The root nodes of these regions r. and r d are then determined by 
simply following the linked pointers through to the end of the list. Then 

whichever root node has the higher node number, its pointer is set to 

point to the other root node. 

Once all transistors have been processed, each node belongs to a 

region characterised by its root node number. This root node number 

can be easily determined for each node by following the linked pointers 

through to the end of the list. 

3.3 The Graph Model 

In this section we define a graph model designed to support auto­

matic scheduling for the concurrent YLSI timing simulation modules onto 

a multiprocessor. As outlined in the preceding section, each module of the 

simulation graph can be thought of as a separate computing ta$k. However, 

it is to be borne in mind that the partitioning of the MOS YLSI circuit into 

regions which can be simulated concurrently is more of a data decompo$ition 

than the decomposition of the simulation program itself. Also, when these 

regions (nodes of the concurrent simulation graph) are scheduled onto a 

multiprocessor and submitted to run, essentially the same timing simulation 
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program runs on each' processor albeit asynchrnously depending on the 

nature of the circuit regions. Nevertheless, for the scheduling purpose it is 

quite safe to treat each node of the simulation graph as a separate computing 

task. 

In the task scheduling problem, we consider the tad: '!Idem as a 
set of k task modules, T = {tJ,t2, .... ,tk} and a set of n processors, 

p = {P1>P2, ... ,Pn} with execution costs Xig, 1 :s; i :s; k, 1 :s; q :s; n and 
co=unication costs Cij, 1 :s; i,j :s; k. The cost of a schedule can be 

defined as the total sum of the ezecution and interproce$$or communication 

(IPC) costs as incurred by the schedule. An optimal schedule results in 

the minimum cost and there may be more than one optimal schedule for a 

particular task system. 

For the scheduling problem a weighted and and directed network flow 

graph is a suitable problem representation. We consider such a graph 

G = (V, E), where V = {Vl,V2, ••• ,Vk} are the weighted nodes of the 
graph _ representing the task modules of the simulation graph and E = 
{eij, 1 :s; i,j :s; k} are the weighted edges between nodes representing the 

• _ 'J 

intermodule communication (IMC) costs. Comparing this model with task 

system T = {h't2, .... ,tk}, P = {P1>P2, ... ,Pn} we find that except for 
the execution costs Xig (cost of executing task module i on processor q) 
there exists a straight mapping of the task system onto the graph model 

G = (V, E). With a homogeneous multiprocessor system with identical 
processors which lends itself to present day technology, the execution cost 

Xig of any task module i on any processor q is the same for every processor 

in the ensemble. In such circumstances, the weight of the nodes of the graph 

G = (V, E) can represent the execution costs or the execution complexity 

of the task modules. Fig. 3.4 shows a g·node task graph scheduled onto a 

3-processor system. 

3.4 Communication and Computation 
Multiprocessing enhances system performance by employing several 

processors to handle the processing load. A representation of a generic 

multiprocessing system is shown if, Fig. 3.5. The main elements are a set 

of task modules {tJ, t2, .... ,tk} and a module allocation mechanism A, which 
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assigns each of the k modules to one of the n processors {Ph 1'2, ... , Pn}. 
Here we consider each module as a sub-task of a single processing job. 

These modules may need to transfer data among themselves giving rise 

to intermodule communication (IMC) costs. Modules may be assigned to 

different processors. When modules may have data to communicate to one 

another, the processors to which they are assigned must then communicate 

with each other. This constitutes the interproce$$or communication (IPC) 

overhead. IPC, is therefore, a function of IMC and the module assignment. 

Clearly IPC = IMC where the commUnicating modules are not coresident. 

Assuming independent processing modules, the most intuitive maximum 

. throughput allocation strategy is to assign modules to processors 80 that all 

processors in the system are evenly balanced. Such a balanced load assign­

ment strategy is shown in Fig. 3.7. We consider six· non-communicating 

modules to be assigned to a set of three identical processors and also that 

the processing demands for all the six modules are identical. 

We now consider introducing the IMC profile information in the above 

system. If we then attempt to maximise the system throughput by minimis­

ing IPC without considering load balancing, all modules will be assigned to 

the same processor. The resulting scheduling would provide minimum IPC 

overhead but th~ processing time for the job would increase by a factor of 

three. This situation is shown in Fig. 3.8. 

It is clear from the above that the two conflicting factors, namely IPC 

and load balancing, influence the design of an optimal schedule. The task 

scheduling problem is to assign modules to processors for maximum system 

performance by balancing these two conflicting factors. 

3.5 Formulation of the Cost Function 

Continuing with the graph model it is easy to visualise that the process 

~ of scheduling a set of VLSI simulation modules onto a n- processor MIMD 
system is simply the partitioning of the simulation graph itself into n non­

empty disjoint sub-graphs and then to allocate each of these sub-graphs to 
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a separate processor. So for noway partitioning of the graph G = (V, E), we 

have 

(3.2) 
;=1 

where g1> g2, .... , gn are the resulting non-empty disjoint sub-graphs. 

The cut6et of the partition is the sum of all the weighted edges with 

nodes in more than one sub-graph and accounts for the communication C06t 

in the final schedule. The load imbalance is the maximum difference between 

the total weights of any two sub-graphs, thus accounting for the completion 

time of the final schedule. 

To formulate an equation for the total cost of a partition (i.e., that of 

the schedule) we identify the following two as the contributing factors : 

a. Interprocessor Communication (IPC) Cost 

b. Cost due to load imbalance 

and then proceed as follows. 

Let, there be k nodes in the simulation graph and n identical processors 

in the multiprocessor system, where as we take a coarse grain model n <t: k. 
if the execution cost of node i is w;( = Iv; I), then we calculate the average 

load on each processor as, 

1 n 

Load •• = - LW; 
n ;=1 

(3.3) 

Clearly this is the expected load on each processor for a perfectly load 

balanced schedule. 

When a partition x is allocated to processor q, then total execution load 

on that processor is, 

Load, = L Iv; I "Iv; E G 

= LW; (3.4) 
Vi ege 
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Borrowing the definition of load imbalance from the graph partition analogy, 

we find the load imbalance cost of the schedule, 

VVi E G 

= max (L Wi)- min (L Wi) 
•• 1···. VI Eg. __ 1···' v, E,. 

(3.5) 

To calculate the total co=unication cost of the schedule we note that • 

only those edges which are in the cutset of a partition, in other words only 

those edges between nodes assigned to different processors contribute to the 

. co=unication cost. H, eij represents the intermodule co=unication cost, 

a measure of data transmission from node i to node j when i ~ j, then for 

Cc, the total co=unication cost we have, 

k 

Cc = L eij 
i,j=1 

Vi E gp; Vj E g,; p ~ q. (3.6) 

An overall cost function can then be formulated by combining the two 

components 

Ct = Cb + z.Cc, 93.7) 

where z is a relative weight factor between costs due to co=unication 
between nodes of the graph across a partition and the load imbalance in the 

schedule. The value of z is thought to be dependent on the simulation graph 

itself and also on the hardware interconnection topology of the multiprocessor 

system. A large value of z may make the multiprocessor implementation 

of VLSI simulation very difficult and a small value of z may demand for 

algorithms utilising fine grain parallelism as a means for improved load 

balance in the system [6]. 

3.6 Graph Data Storage & Cost Calculation 

In this section we introduce three sub-sections. In sub-section 3.6.1 we 

discuss the data storage method used to represent the graph information in 

the computer programs. Sub-section 3.6.2 describes the methods used to 

calculate the communication and load-imbalance costs. In sub-section 3.6.3 
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. ~ Edge Wt. 

~ /Node-id 
1 /' /Node Allocation 

3,0 Node Wt. 

Degree Node-id NodeWt Allocation Adjacent Node 1 Adjacent Node 2 Adjacent Node 3 

Node-id Edgc-wt Node-id Edge-wt Node-id Edge-wt 

3 0 2 0 1 1 2 1 3 1 
. 

2 1 3 0 0 1 4 3 - -

3 2 2 1 0 1 4 2 5 1 

. 

2 3 3 0 0 1 5 2 - -

3 4 3 1 .1 3 2 2 6 1 

3 5 4 1 2 1 3 2 6 2 

2 6 1 0 4 1 5 2 - -

~~--

Fig. 3.10 A typical graph and the corresponding data storage table. 
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we describe an improved method of cost calculations based on change in the 

configuration of a task system in an iterative improvement environment. 

3.6.1 Graph Data Storage 

Since graphs are selected as the chosen data representation of the VLSI 

simulation system, a suitable and efficient data storage method is necessary 

for the fast simulation of their scheduling algorithms. There are many ways 

to do this, and the subject is by no means trivial, since certain methods of 

graph data storage are particularly efficient for certain kinds of calculations. 

The three most common graph data storage methods are, 

a. The Branch-List Method 

b. The Adjacency-List Method 

c. The Adjacency-Matrix Method. 

For the simulation of the task scheduling algorithms to be discussed in 

later chapters, we have selected the adjacency-li8t method of data storage. 

This method allows faster search than the branch-lut method. Another 

consideration is that it takes much less storage than the adjacency-matrix 

method. 

A node i in a graph is defined as adjacent to another node j in the 

same graph if there exists an edge between nodes i and j. An adjacency­

list method of graph data storage is essentially a one dimensional array of 

a record each describing a separate node of the graph. The first field of 

such a record describes the degree of the node which is defined as the total 

number of incoming and outgoing edges at the node Md the other field is a 

list of all its adjacent nodes. For our purpose, we however extend the above 

rudimentary data storage scheme by introducing some more additional fields 

to the record which gives the node identification number, node weight, node 

allocation and in the list of connected nodes an additional field to each of 

the entry which gives the weight of the edge concerned. Fig. 3.9 shows the 

structure of such an enhanced record. In Fig. 3.10 we show a graph with an 

arbitrary allocation and the corresponding data storage table. 
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Function Imbalance_Cost: Integer; 

Initialise the processor load list; 

For i :- 0 To Max..Node Do 

Chapter 9: The Graph Model 

Processor_No :- Find-Allocation(Graph[i).node_id); 

Load [Processor_No) :- Load[Processor..No) + 

Graph[i).node_id; 

EndFor; 

Find the processors with the heaviest (Heavy) & lightest (Light) 

loads; 

Imbalance_Cost :- Heavy - Light; 

EndFunction; 

Function Communication_Cost Integer; 

C := 0; 

For i := 0 To Max..Node Do 

Present-»ode :s Graph[i).node_id; 

For j := 1 To Degree(Present_Node) Do 

Adjacent..Node := Graph[Present_Node).adjacent[j); 

Are Present_Node & Adjacent..Node co-resident ?; 

If Not co-resident Then 

C := C + Graph[Present..Node).Edge_Wt[j); 

EndIf; 

EndFor; 

EndFor; 

Communication_Cost :- C Div 2; 

EndFunction; 

Fig. 3.11 Pseudo-Pascal description of the two cost evaluating functions. 
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Procedure. Iterative_Improvement; 

Get starting configuration; 

Chapter 3: The Graph Model 

Present_Configuration :- Start_Configuration; 

Repeat 

New_Configuration :- Move(Present_Configuration); 

Determine Diff _Cost; 

If Diff_Cost < 0 Then 

Present_Configuration := New_Configuration; 

EndIf; 

Until Solution Is Frozen; 

EndProcedure; 

Fig. 3.12 Pseudo-Pascal description of an iterative improvement 

algorithm. 
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3.6.2 Cost Calculation 
In an algorithm that tries to minimise an objective or cost function the 

evaluation of the function itself at different moments during the running of 

the algorithm is a regular phenomenon. If the evaluation procedure itself is 
too mathematically involved, a far too long time would then be spent for 

function evaluation. A fast evaluation is thus always favoured. 

Fortunately in the model used for the task scheduling, the mathematical 

expressions for the cost function is a simple one. Equations 3.5 and 3.6 give 

the algebraic expression for the two components of the cost function given in 

eq. 3.7. A simple computer program translation of eqs. 3.5 and 3.6 is easily 

possible. The data storage method used also helps in fast evaluation of these 

equations. Figs. 3.11a and 3.11b show the Pseudo-Pascal representation 

of the functions used to evaluate eqs. 3.5 and 3.6 respectively. For the 

evaluation of the communication cost, a simple scanning through each and 
every node's adjacency list and also obtaining a cumulative sum of the edge 

weights for non-coresident nodes is all that is necessary. This sum however 

needs to be halved as each edge is traversed exactly twice. Similarly, for the 

process of evaluating imbalance cost we need 'to produce a list of processor 

loads and then to scan through it to find the most heavily and lightly loaded 

processors. Their difference would then give the imbalance cost, a measure 

of the completion time of the execution for that particular schedule. 

3.6.3 Cost Calculation in Iterative Improvement 
Environment 

Both the components of the cost function can be evaluated in linear 

time and thus appear 1 to be very promising. However, a heuristic algorithm 

that employs an iterative improvement, technique even a linear time cost 

calculation may appear to be too high. An iterative improvement type of 

algorithm usually starts with a random initial allocation (or any other initial 

allocation provided by a pre-processor) and then iteratively improves it by 

bringing in small local changes at each iteration to the current configuration. 

In the most simplest form this is achieved either by changing the allocation of 

any chosen node to another processor or by swapping the allocations of any 

two chosen nodes. This simple task can be thought of as a unit task and we 
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could call this a move or 'wap. A Pseudo-Pascal description of an iterative 

improvement algorithm is shown in Fig. 3.12. A graphical representation of 

a single move and also a swap and their resulting consequence is shown in 

Figs. 3.13 and 3.14 respectively. Such moves are repeatedly attempted until 

the solution is frozen. The criterion for the determination of the freezing of 

the solution can be formulated in many different ways. But, whatever the 

criterion is used, a large number of iterations is usually needed. This large 

number of iterations compounded with the linear time demand of the cost 

evaluation at each iteration may become a serious bottleneck especially for 

larger graphs. 

Looking back into the Pseudo-Pascal description of the iterative im-

. provement method, we find that the algorithm itself is more concerned with 

the difference in cost after a move is made than the cost of each new and 

changed configuration to be evaluated afresh. In each move, whether it is a 
single move or a swap, only the nodes and the processors to which they are 

allocated are involved in any change in the current configuration. This fact 

can be usefully utilised to evaluate the change in cost in a constant time. In 

all subsequent discussions the differential cost calculation is always used. 
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CHAPTER 4 

Graph Partitioning 

This chapter describes the partitioning of a graph with costs on its edges and 

nodes into a given number of disjoint non-empty sub-graphs so as to minimise 

the sum of the costs on all edges cut and also to balance the sum of the 

costs of nodes in each sub-graph. This problem .arises in parallel processing 

applications where it is required to assign a large number of processing 

jobs to a fixed (relatively smaller) number of processors, and also in VLSI 

design applications such as component layout. The multi-way partitioning 

algorithm presented here is adapted from the graph bi-partitioning procedure 

due to Kernighan and Lin [1]. The adapted algorithm is hierarchical in nature 

and lends itself for an easy implementation on a hypercube multiprocessor 

system. 

It is known that graph and network partitioning problems are NP- Hard 

[2]. Therefore, attempts to solve these problems have concentrated on finding 

heuristics which will yield approximate solutions in polynomial time. Several 
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different approaches have been taken to devise approximate algorithms for 

the iraph partitioning problems [1,3,4). The heuristic proposed by Kernighan 

and Lin [1) is easy to implement for general purpose partitioning problems 

and provides good quality near-optimal solutions in a relatively faster time 
of O( k2 log k) for k nodes in the graph. It has also become the basis for most 

of the iterative improvement partitioning algorithms generally used. 

4.1 Graph Bi-Partitioning 
Graph partitioning arises naturally in scheduling concurrently exe­

cutable task modules onto a multiprocessor. For example, in Stone's (5) max­

flow, min-cut assignment algorithm which provides an optimal assignment 

of modules to processors. The graph representing the task system is cut in 

such a way that the number of edges cut is minimal. 

The 2-way graph partitioning problem can be described as follows : 

Given an arbitrary graph G with k weighted nodes the graph must be 

partitioned into two disjoint and non-empty sub-graphs or blocks. The 

objective behind this partitioning is to minimise the number of edges cut 

across the partition and also to maintain a rough balance on the total weights 

of each block. Let the number of nodes in the two blocks are k 1 and k2, such 

that k = kl + k2. 

For a task system. with k task modules and two processors, the total 

number of possible schedules is given by, 

k! 
Total = 2 kl! k2! 4.1 

For large k the expression above would result in a very large number 

indeed and there is no computationally efficient algorithm to arrive at an 

optimal schedule. Kernighan-Lin's iterative procedure however produces 

near-optimal solution in reasonable polynomial time. 

The Kernighan-Lin (KL) algorithm starts with an arbitrary partition 

with two equal sized blocks A and B and then repeatedly improves the 
partition to obtain a near-optimal solution. The essential idea behind the 

KL heuristic is the assumption that there are some nodes in block A and an 

equal number of nodes in block B that are out of place in the sense that if 
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A·=A-X+Y 

B·=B-Y+X 
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B 

B* 

Fig. 4.1 Generating an optimal 2-way partition from an arbitrary 2-way 
partition. 
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these are interchanged, the resulting partition would improve. The algorithm 
. 'I spends bulk of its time finding these out of place nodes. The KL algorithm 

in its original form works with graphs with unity weighted even number of 

nodes such that the bi-partition splits the graph evenly minimising only the 

number of edges cut. However, the graph representing the task system as 

used in the multiprocessor task scheduling problem have nodes with different 

weight values and also the partitioning criterion in such cases place equal 

emphasis on minimising the number of edges cut and maintaining a balance 

on the total weights of the two resulting blocks (sub-graphs). This essentially 

does not result in equal sized blocks. Slight modification to the original KL 

algorithm is thus in order. In the following sub-section the modified KL 

heuristic is described and associated formulae are derived. 

4.1.1 The Modified KL Bi-Partitioning Heuristic 

We consider a graph G = (V,E), where V = {VloV2,··· ,Vk} are the k 
weighted nodes with the weights represented by a weight matrix W = (Wi = 
IVi!), i = 1,,,, ,k. The edges are represented by E = {eij,1 ~ i,j ~ k}. We 

assume that the edge weights are non-negative and also we rule out any loop 

at any node, i.e., eii = O. We wish to partition the graph V into two non­
empty disjoint blocks A and B such that the sum of weights of the edges 

across the partition is minimal and also that the total weights of the two 

blocks A and B are evenly matched. We thus have, 

V=AUB. 4.2 

The partition cost due to mismatch of total weights of blocks A and B, 

Ch= L Wi- L Wi 4.3 
~;EA ~;EB 

and that due to the edges cut in the partition, 
-~.----------.. --, 
I k 1 

I, CC = L eij 'j Vi E A, Vj E B 
, i,j=l 

4.4 
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The 2-way graph partitioning problem can thus be transformed to the 

following optimisation problem, 

minimise{alCc + PlC.} 

subject to 

C.= L Wj- L Wj 

~,EA ~,EB 

and 

" Vi E A, Vj E B l 

Central to any iterative improvement heuristic the Kernighan-Lin (KL) 

heuristic starts with an arbitrary 2-way partition A and B so that, 

AnB={}. 4.5 

Kernighan and Lin suggested that there exists two sub-sets X C A and 

Y C B with IXI ~ IAI and IYI ~ IBI, which if interchanged would produce 
the minimum cost 2-way partition as shown in Fig. 4.1. These two sub-sets 

are built by repeatedly choosing two nodes, one each from A and B, so that 

their interchange would produce best gain in the cost and then separating 

them from A and B for not to be used again in that iteration until all the 

nodes in the graph are similarly used. A single such iteration constitutes a 

pa&& and in each pass a pair of lists is maintained one for each sub-set (block) 

in decreasing order of the gain values associated with each node chosen for 

an interchange. At the end of a pass an equal number of nodes from A and B 

which constitute X and Y respectively are actually interchanged such that 

maximum gain in partition cost is achieved. The resulting AO and BO are 

then renamed to A and B respectively and the whole procedure is repeated 

once again until no further gain in partition cost can be obtained. The final 

partition is then taken as the optimal (near optimal to be precise) solution. 

One drawback of the above procedure is that it fails to address the 

essential load-balance criterion of a partition. The modification presented 

here is similar to that proposed by Fidducia and Matheyeses [6) and works 

with moving only one node at a time from one block to the other instead 
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z 

z 

Fig. 4.2 The internal and external cost components of node a E A (top) and 
. node b E B (bottom). 
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Fig. 4.3 The internal and external cost components of node x E A - {a}, 
after node a is removed (top) and node y E B - {b}, after node b IS 
removed (bottom). . 
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. of an interchange of two nodes. This provides far more flexibility in size 
of the blocks and can effectively incorporate the load-balance criterion. To 

derive the formulae for computing and updating the gain values we proceed 

as follows: 

Let us define for each node a E A external and internal costs E. 
. and I. respectively as follows, 

and 

E. = ~e.v 
,EB 

I. = ~eu: 
:rEA 

and similarly for each node b E B, 

and 

4.6a 

4.6b 

4.6c 

4.6d 

The internal cost of a node signify how strongly it is connected 

to all other nodes in the same block and the external cost signifies its 

contribution to the communication component of the partition cost. 

We now let, 

T= total cost due to all external connections between the blocks of a 

2-way partition. 

Z= total cost due to all connections between A and B that do not 

involve a E A. 

Therefore, 

T=Z+E. 4.7 

When node a E A is moved form A to B, the value of T is changed to 
Tt. 

Tt = Z+I. 4.8 
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Procedure 2-Way-Partition (A,B); 

Repeat 

X :=A; Y:=B; 

Chapter 4: Graph Partitioning 

Compute the D values for all a E A and for all bE B;. 

For i :. 1 To n Do 

Find a node Zj from either X or Y that maximises g; 

Move Zj from its current block to the other; 

Remove Zj from further consideration in this pass; 

Update D values for all nodes in X-{Zj} or Y-{Zj}; 

EndFor; 

Find K that maximises gm.., = 2:~1 gj; 

If gmar > 0 Then 

Move all ZIt Z2, ... , Z K from A or B to the other 

block; 

EndIf; 

Until gmar = 0; 

EndProcedure; 

Fig. 4.4 The modified KL 2-way partitioning algorithm. 
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Fig. 4.5 Move-Gain profile of three passes in Kernighan-Lin's 2-way graph 
partitioning procedure. A representative graph with 58 nodes is 
used as the data instance. 
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Therefore, the gain in partition cost when node a is moved from A to 

B is, 

Gain = OldCost - NewCost 

=T-T' 

Similarly, for moving any node b E B from B to A, we get 

4.9a 

4.9b 

Once a node a E A (or b E B) is selected for a move from A to B (or 

from B to A) it is isolated from rest of the nodes and the internal and 

external gain values of all other nodes which are affected because of the 

move, are updated. 

When a node a E A is selected for a move and kept aside from rest 

of the nodes, the D values of all free nodes (those which are not yet 

selected for a move in the pass) in A (nodes in B are unaffected at this 

moment) are changed. These can be calculated as follows, 

For any free node x E A - {a}, 

D'-E'I' I! - 1:.- % 

D~ = (E", + ezo) - (I", - e"'4) 

. D~ = E. - I", + 2ezo 

D~ = D", +2ezo 4.10a 

Similarly, when a node b E B is selected for a move and kept aside 

from rest of the free nodes, for any free node y E B - {b} we can 

have, 

4.10b 
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Table 4.1 Table showing the perfonnance of the three rules considered in the modified KL 2·way partitioning heuristic. 

., QJ QJ ... Rule A Rule B Rule C 
.<: ... QJ 0> QJ 0> III Final Cost 0. QJ '0 III QJ cd • .-t .j.J Final Cost Final; Cost 
III 1l 0 ... ... ... '"' ., ... :z: QJ 0> d).,-i 0 
(!) " ~ 

QJ > c: u 
:z: .... 0 .0: H Max . Min. Ave. Max • Min • Ave. Max. Min. Ave. 

. 0 
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6N2C 6 3.00 6.36 94.27 47.13 61.27 92 .10 46.05 50.65 47.21 47.21 47.21 

4x4 58 2.83 46.88 81.07 27.73 53.03 32.47 19.48 23.85 30.23 19.44 22.72 
Multiplier 

Frequency 
Locked 
Looo 

68 4.09 89.26 85.14 12.32 53.88 37.18 6.56 16.38 31.78 6.81 15.16 

16x16 415 5.31 667.23 74.49 59.35 67.19 44.09 23.90 32.57 41.44 24.48 31.04 
Multiplier 

Vector 899 4.53 1104.53 77.77 62.02 69.93 24.16 6.61 15.93 28.16 11.04 19.61 
Coder _____ L -- .. - ------- --- -- --

I 
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The .essential steps of the modified KL bi-partitioning procedure is 

shown in Fig. 4.4 in pseudo-Pascal form. The outer Repeat-Until loop 

represents the passes while the inner For-End loop shows the activities in 

each pass. 

The basic 2-way partitioning proce<iw:e used here is similar in spirit 

to the Fiduccia-Matheyeses variant of the KL heuristic: An initial 2-way 

partition from a pre-processor· or randomly generated one is taken first. 

A sequence of maximally improving node transfers from one block of the 

partition to the other are then attempted. This iterative improvement 

heuristic is otherwise very similar to the Kernighan and Lin's min-cut 

heuristic except for the use of one-way node movements instead of node 

exchanges. The use of node transfers in this fashion ensures acceptable level 

of load-balance even when the node weights vary by a wide margin. 

The success of the graph bi-partitioning heuristic depends on the choice 

of a candidate node for a transfer. Consequently, the procedure of Fig. 4.4 

spends most of the time in selecting the best node for a transfer. In the 

modified KL heuristic where a single node is nominated for a transfer in 

each iteration of a pass, the choice of the block as a supply pool of the 

nominated node also needs to be explored. The following three different 

rules were examined. 

A : Two candidate nodes one each from blocks A and B are selected so that 

each has the highest gain value in it's respective block. These are then 

nominated for transfers in sequence. This rule is very similar to the KL 

move exchange with the notable exception that the interaction (edge) 

between the two nodes is ignored as the two node transfer procedures 

are actually carried out separately and also that a total of odd number 

of node transfers are allowed. 

B : Of the two blocks A and B, anyone is selected at random as the source 

of the node in the current iteration. The node with the highest gain 

value in the selected block is then nominated for transfer. This rule 

adds Monte-Carlo flavour to the heuristic. 

C : At each step, two nodes one each from blocks A and B with the highest 

gain value in its own block are considered. The node with the higher 
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Fig. 4.6 Bi-paItitioning of a 6-node graph in L---+I----t4-\,..------1 
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Fig.4.7 Recursive binary partitioning for a 8-processor task system. 
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gain value among these two is then actually taken as the nominated 

node. 

In each case, in the event of anyone of the two blocks becoming exhausted 

of free nodes, the other block is taken as the sole pool of free nodes. The 

gain value computation for each free node in all cases involves both the 

load-balance and communication aspects of the partition cost. 

4.1.2 The Bi-partitioning Algorithm in Action 
As expected the three different rules used for the nomination of a 

node for an eventual node transfer performed differently. Their relative 

performances are presented in Table 4.1. 

Five different simulation graph instances are used to compare the 

performances of the three rules described earlier. Of these the last four 

graphs are taken from actual VLSI simulation systems and the first one is a 

simple artificially generated graph with a known optimal partition cost of 3. 

In each case a total of 50 runs are made and the maximum, minimum and 

average final partition cost values are tabulated. These are presented in the 

form of percentage of the average random partition cost which is calculated 

from 200 random partitions. As expected, Rule A which is a distorted replica 

of the KL move exchange mechanism, performed very badly throughout and 

proved to some extent the inability of the KL move exchange to handle graphs 

with unequal node weights in situations where load-balance is an important 
issue~Rule~B ~d d perforxii.ed-very;i~ilarly with-the performance of the 

latter marginally better in all cases. The only exception is with the largest 

graph (Vector Coder) where Rule B performed better than Rule C. The 

variation in the graph instances is thought to have an important effect on 

the apparent failure of Rule C in the above case. 

Not all moves that are nominated in a single pass of the bi-partitioning 

procedure actually improve the partition, even though in each iteration of 

the pass, nodes with highest gain values are selected. During a single pass 

a running sum of the gain values associated with each node nominated for a 

move is maintained. At the end of a pass this running sum value is analysed 

and its maximum value is determined. A number of moves starting from the 
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move in iteration 1 to the move in iteration i, where the maximum value 
of the running sum is found are then actually carried out. This process is 

repeated only to be stopped when the maximum value of the running sum is 

zero, i.e., when further improvement is found infeasible. The moves that are 

carried out at the end of each pass may contain some moves that actually 

worsens the partition. This quality of the KL heuristic to accept moves 

that actually worsen the partition allows the heuristic to perform better 

then other comparable heuristics such as randomised iterative improvement 

method. Moves with a negative gain (i.e., those which worsen the partition) 

gives the KL heuristic some kind of hill climbing capability and helps i~ to 

come out from a local minima and to settle in somewhere very close to the 
global minima of the optimisation surface. However,' there is no mechanism 

available to control this hill climbing capability' and as a result a globally 

optimal solution can not be guaranteed at all times .. 

To illustrate the activities in a bi-partitioning procedure we present two 

figures 4.5 and 4.6. In Fig. 4.5 a graph with 58 nodes is partitioned into two 

blocks where a total of three passes are needed. The gain values associated 

with each nominated move (continuous line) and the corresponding running 

sum upto that move (broken line) are plotted. The vertical dotted line on the 

moves axis shows the point where the running sum is highest in that pass 

and the corresponding number on the moves axis is the number of moves 

that are actually carried out in that pass. Fig. 4.6 graphically describes the 

process ofbi-partitioning of a 6 node graph with known optimal bi-partition 

cost of 3. The process starts with an arbitrary partition with a cost of 

7. The partitions after the end of each pass are also shoWn along with the 

profiles of the moves made in that pass. 

4.2 Multiple-way Partitioning 

Multiple-way graph partitioning is a natural progression from a graph 

bi-partitioning process. There are several ways in which a 2-way iterative 

improvement graph partitioning algorithm can be adapted to multiple block 

partitioning. Three such methods can be i=ediately thought of. The first 

two of these are suggested in [1] and they both involve repeated use of 2-way 

partitioning. 
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Fig. 4.9 Average execution time as function of the problem size for vari­
ous number of partitions for the KL recursive binary partitioning 
algorithm. 
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The first consists of starting with an arbitrary I-way partition and 

successively choosing pairs of blocks and applying the 2-way partitioning 

algorithm to these pairs. Since, this method tries to maintain pairwise 

optimality explicitly, the final solution is often of not very good quality. 

The number of passes required grows with I, the number of total partitions 

sought and k, the total number of nodes in the graph. The result is also 

sensitive to the choice of initial partition and the way the pairs of blocks are 

chosen. 

The second method consists of the hierarchical use of 2-way partitioning 

algorithm. For this method to work the number of partitions I, must be an 

integer power of 2. This method provides fast convergence and can be used 
to produce the starting partition for use in method described above or any 

other iterative improvement algorithm. 

As an alternative to the repeated use of 2-way partitioning algorithm, 

the third method attempts to improve the partition uniformly at each step. 

In this scheme, at each iteration during a pass all possible moves of each 

free node from its home block to all other blocks are considered and only 

the best move is accepted. This method though appears to give good quality 

solutions, is computationally too involved and as such is not suitable for time 

critical applications. 

Of the three different methods described above, we shall concentrate 

on the second method only because of its fast convergence ability and also 

because of the ea:se of exploiting macro level parallelism from the procedure. 

The following section describes the hierarchical partitioning procedure in 

detail. 

4.2.1 Recursive Binary Partitioning 
The rectmive binary partitioning (RBP) method for the solution of 

multi-way graph partitioning problem addressed in this section is very 

efficient in terms of run time and also gives reasonable quality solution. 

Similar technique for the solution of multiprocessor scheduling of finite 

element modelling problems have been reported [7,8). 
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The procedure proceeds as follows. The given graph with k nodes is 

first split into two blocks such that the optimisation criterion established 

earlier (eqs. 4.3 & 4.4) is properly maintained. These two blocks are then . 

recursively subdivided as many times as required. Clearly, the number of 

blocks the graph can be partitioned must be exactly 2", where I' is an 

integer and represents the depth of partitioning. Thus, this procedure is 

useful for scheduling problems when the number of processors is a power 

of 2. The time required by recursive binary partitioning procedure can 

be estimated as follows. Each pass of Kernighan-Lin's 2-way partitioning 

algorithm requires O(P logk) time. The number of passes required for 

the convergence is generally small and lies between 2-6 and as such is not 

strongly dependent on the size of the graph. Again by employing better 

search algorithm for selecting a candidate node for its transfer from its home 

block to the other, a lower bound run-time O(k2) can be easily obtained. 

For a I-way partitioning using the recursive binary partitioning procedure 

the total run-time requirement becomes O(k2 log I). 

Being a heuristic procedure, the recursive binary partitioning procedure 

does not guarantee an optimal solution. However, reasonably good quality 

solution is expected. Iqbal et. al [9J found the upper bound on the difference 

between the optimal solution and the solution yielded by the recursive binary 

partitioning procedure when load balance is the sole optimising criterion 

and the task system considered is a chain of structured parallel or pipelined 

program and a chain of processors. Their upper bound is controlled by the 

most heavily weighted module in the chain. 

The overall partitioning strategy in a recursive binary partitioning takes 

the form of a binary tree. This is illustrated in Fig. 4.7. Fig. 4.8 shows 

a mesh structured arbitrary graph partitioned into 8 blocks in three levels 

of partitioning. The results obtained through simulation are presented in 
. . 

Figs. 4.9 & 4.10. The average execution time required by the Kernighan-Lin 

recursive binary partitioning (KL-RBP) algorithm is shown in Fig. 4.9 for 

different sizes of the problem graph. The problem size here is defined as the 

number of nodes of the graph representing a task syste~. In this investigation 

some synthetically generated graphs with nodes ranging from 10 to 100 with 

average degree ranging from 2.8 to 3.6 are used. For all the partition sizes 
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Table 4.2 : Table showing the relative perfonnances of the serial and concurrent I-way (Recursive Binary Partitioning) 
KL algorithms. 

Graphs ~ 4x4 Multiplier . Frequency Locked 16x16 Multiplier Vector Coder 
LoOn 

t Number of Partitions SRBP CRBP SRBP CRBP SRBP CRBP SRBP CRBP 

Maximum 32_12 28_48 29_45 29.39 37.04 35.93 28.59 26.87 

2 Average 23.00 22.12 13.32 10.04 31-77 29.68 19.94 18.08 

Minimum 19.27 19.72 6.80 6.78 26.16. 24.35 11-15 10.15 

Maximum 36.67 33.50 35.75 26.94 42.10 37.72 .29.50 24.14 

4 Average 33.41 31-29 26.08 22.07 37.16 34.84 23.44 19.62 

Minimum 29.34 29.13 21.76 20_01 33.93 30.03 18.19 13.04 

Maximum 46.85 43.35 42.10 38.69 47.08 44.43 34.18 25.19 

8 Average 42.95 41.39 37.81 34.85 43.62 40.66 28.59 22.28 

Minimum 39.26 38.25 33.27 31. 90 39.79 37.11 24.43 19.00 

Maximum 68.35 68.33 71.40 65.75 77.93 71.33 70.57 64.27 

16 Average 64.63 59.82 66.82 61.68 72.87 68.02 65.29 60.45 

Minimum 57.55 55.15 62.88 55.89 66.75 63.03 50.94 51.04 
'--
SRBP : Serial Recursive Binary Partitioning. 
CRBP : Concurrent Recursive Binary Panitioning (Best of Bunch enabled). 

---
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I (2, 4,' 8 and 16) considered the KL-RBP has a time requirement roughly 

equal to O(P). It is also observed that the execution time does not grow very 

rapidly with the increase in number of partitions: Fig. 4:10 shows the average' 

partition cost (with the standard deviation shown as the lower and upper 

bound) and the corresponding average execution time as a function of the 

. number of partitions. Two representative simulation graphs, 4x4 multiplier I 

ckt. and frequency locked loop ckt. are used. It is observed that the partition 

cost obtained deteriorates with an increase of number of partitions . 

. 4.2.2 Concurrent Recursive Binary Partitioning , 

A heuristic I-way graph partitioning algorithm requiring O(k2 logl) 

is a great improvement in terms of practicality considering the NP-Hard 

nature of the problem. However, large graphs often require far too much 

time for convergence. Further reduction in solution time is always desired 

particularly in a VLSI design environment where a: quick design turn around 

time is an absolute necessity. A parallel implementation of the graph 
partitioning algorithm on a general or special purpose multiprocessor system 

is an obvious choice. A multiprocessor system is thought. to have the 

capability of further reducing the solution time for I-way graph partitioning 

problem. Ravikumar et al. (10) have exploited the micro or fine grain 

parallelism present in Kernighan-Lin's 2-way graph partitioning algorithm 

and devised a parallel implementation on an array of processors working in 

SIMD mode with shared memory. However, their algorithm is not suitable 

for a asynchronous message-passing, distributed memory system working 

in MIMD mode because of excessive synchronisation and communication 

overhead. The alternate approach i.e., the exploitation of macro or coarse 

grain parallelism is more favoured in such situations and is adopted here., 

The recursive binary partitioning procedure lends itself to parallel 

implementation. Except for the first partitioning (level 1), partitioning 

at different stages in all other levels can be carried out independently of 

each other as can be visualised from the binary tree like structure of the 

overall recursive binary partitioning strategy as shown in Fig. 4.7. These 

independent partitioning procedures can be assigned to different processors 
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of the multiprocessor ensemble and can be run concurrently. A breadth­

first partitioning would then take place. However, for a n-processor system, 

maximum processor utilisation is achieved only at the bottom (leaf) level. 

A modification that utilises all the processor resources and improves 

the quality of the final solution can be made. This involves allowing more 

than one processor when available, to carry out the bi-partitioning in each 

stage of every level. The next is to accept the best partitions from the set 

of all partitions offered by the group of processors assigned to the stage 

and level concerned. The best partitions thus generated and accepted are 

moved forward to the next level and so on. We call this be&t-of-bunch 
technique. As an illustration we consider a 8 processor system and a 8-

way graph partitioning problem (Fig. 4.11). At level 1 we have 8 separate 

bi-partitioning operations on the same input graph all running in parallel 

and only the best resulting partitions are accepted for level 2 partitioning, 
whereby at level 2, two concurrent partitioning operations are required 

because there are now two input sub-graphs. Out of the total 8 processors, 4 

processors can thus be allocated for each of the two partitioning stages. At 

the bottom level (level 3) 2 processors can thus be allocated for each of the 

4 partitioning stages. 

The modification described above provides faster descent and guarantees' 

a better solution that can be achieved otherwise. Fig. 4.12 shows the 

performance comparison between the serial and concurrent recursive binarY 

partitioning (SRBP & CRBP respectively) procedures for four representa­

tive graphs. In all, cases the concurrent version where the best-of-bunch 

technique is employed outperformed its serial counterpart. 

It can be seen from the above that minimum processor utilisation is 

achieved at the top level (level 1) and it increases by a factor of 2 as the 

partitioning process progresses. This accounts for the speed-up factor log n 

and since the same number of processors as the, number of partitions are 

employed i.e., n = 1, the total run-time requirement of the concurrent re­

cursive binary partitioning procedure becomes O(k2). In a message-passing, 

distributed memory multiprocessor system the processors communicate via 

a high speed communication channel. In this concurrent implementation a 

total of k data objects, k being the node count of the input graph need to be 
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Fig. 4.13 Variation in final partition cost with the wei1ht factor, z for 
partition sizes 4, 8 and 16. Adjustments are in evel! (top) and 
levels 1 & 2 (bottom) only. Data flow graph instance for the 4x4 
multiplier ckt. is used. 
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Fig. 4.14 Variation in final partition cost with the weight factor, z for 
partition sizes 4, 8 and 16. Adjustments are in level 1 (top) and 
levels 1 & 2 (bottom) only. Data flow graph instance for the 16x16 
multiplier ckt. is used. 
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transferred between the processors at the start of each level. Since, the depth 

of partitioning is log " the total communication overhead becomes O( k log 1). 

4.2.3 Performance of Recursive Binary Partitioning 

The major drawback of the recursive binary partitioning heuristic is its 

dependence on its top level partitioning. As pointed out in [1), a bad result 

in the first partitioning may bias the second and so on, with the largest 

occurring for large 1. Also the first partitioning will try to minimise the . 

number of edges between the first two blocks, thus tending to maximise 

the number of edges inside these blocks and making it harder to obtain 

good partitions thereafter. A general decline in the solution quality is thus 

expected with increasing 1. This is clearly seen in the graphs of Fig. 4.12, 

where the final partition cost is expressed as a percentage of the average 

random initial partition cost. The decline in solution quality becomes more 

noticeable when the number of partitions 1 exceeds 8. 

The objective (cost) function used throughout is a combination of both 

the communication cost due to the edges cut in the partition and cost due 

to load imbalance. 

Ct = Cc+ z,Cc 4.11 

where z is the weight factor maintaining a balance between the two compo­

nents. The value of z was held at 1 for all the results obtained so far which 

signifies an equal emphasis placed on both the two cost components. How­

ever, by changing the value of z the roles that the two cost components play 

can be altered. A small z would mean greater emphasis on communication 

cost as compared to the cost due to load imbalance. A very small z( < 0.1) 

would practically ignore load-balance from the optimisation criterion and in 

such cases, the 2-way partitioning algorithm would find an pseudo-optimal 

solution very easily where all the nodes are placed in one block only with the 

other going empty. 

It has already been mentioned that the first level partitioning in a I-way 

recursive binary partitioning dictates the final partition cost by minimising 

the number of edges between the first two blocks. This action leaves the 

heavily connected nodes inside these blocks and subsequent partitioning of 
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these as a result fails to produce good partitions. An alternate scheme can 

be thought of where the 2-way partitioning heuristic in the first (and second) 

level can be directed to put more emphasis on load-balance than to minimise 

the number of edges cut. It is expected that this modification will produce 

slightly inferior first (and second) level partitions compared to which can be 

obtained otherwise and as such, will leave less heavily connected nodes inside 

the resulting partitions. These on subsequent partitioning thus stand better 

chance to produce good I-way final partitions. Changing the value of the 

weight factor z can bring .in the above modification. The results are shown 
in Figs. 4.13 and 4.14 for two representative graphs with 58 and 415 nodes 

respectively. 

The value of z is varied between 0.01 and 10 and three different partition 

sizes of 4, 8 and 16 are considered. For each graph the value of z is changed 

. in level 1 alone and also in levels 1 and 2. For very small z( < 0.1) the final 

partition cost is predominantly due to load imbalance and for large z(> 2.5) 

it is mostly due to co=unication cost. In all cases the final partition cost is 

found to secure a steady low value for z between 0.25 and 1. This shows that 

the roles of the communication and load-balance are equally important in 

I-way recursive binary partitioning procedure and also proves that the gain 

obtained by placing more emphasis on load-balance in early partitioning 

levels is defeated by the bad results fro= these levels being propagated 

throughout. 
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CHAPTERS 

The Simulated Annealing Algorithm 

In this chapter we examine a heuristic task scheduling algorithm which has its 

roots in classical statistical physics. Simulated annealing (SA), is a technique 

modelled on the annealing process of physical matter and closely follows a 

probabilistic mechanism, similar to Boltzmann statistics used to analyse its 

physical counterpart. Simulated annealing has been found to be a robust 

tool for the solution of many difficult combinatorial optimisation problems. 

In this chapter, we first present the background information of SA heuristic, 

with due emphasis on the main factors that affect its performance. ,Two 

different cooling schedules that guide the SA algorithm to the convergence 

are described and their relative performances are compared. The parameters 

that influence the performance of the SA algorithm are also highlighted. 
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5.1 Combinatorial Optimisation and Simulated 
Annealing 

Solving a combinatorial optimisation problem like the task scheduling 

problem amounts to finding the be~t or optimal solution among a finite 

or countably infinite number of alternative solutions. Over the past few 

decades, a wide variety of such problems has emerged from such diverse 

fields as management science, computer science, engineering, VLSI design 
etc. Over the years, it has been shown that many theoretical and practical 

combinatorial optimisation problems belong to the class of NP-Complete 

problems. However, large NP-Complete problems still must be solved and 

in this regard two different classes of algorithms exist. The first, known as the 

optimi~ation algorithms searches for and often provides the optimal solution 

but requires very large and possibly impractical amount of solution time. 

Well known exapmles in this class are enumeration methods using cutting 

plane, branch and bound or dynammic programming techniques. The other 

alternative known as approximation or keumtic algorithms provides solution 

in reasonably quick time but often sub-optimal soultion results. Examples 

include local ~earch. or randomi.!ation method~. 

Furthermore, one may distinguish in both classes between general 

algorithms and tailored algorithms. General algorithms are applicable to a 

wide variety of problems and therefore may be, called problem independent. 

Tailored algorithms use problem-specific information and their applicability 

is therefore limited to a restrictive set of problems. The Simulated Annealing 

(SA) algorithm, which is the main subject of this chapter is a high quality 

general algorithm. In nature it is a randomisation algorithm and its 

asymptotic behaviour can be viewed as that of an optimisation algorithm [1]. 

However, in any practical implementation it behaves as a heuristic algorithm. 

5.1.1 The Simulated Annealing Algorithm 

In solid state physics, annealing is known as a thermal process whereby 

low energy states of a solid in a heat bath can be obtained. The process can 

be summarised by the following two steps: 
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a. increase the temperature of the heat bath to a maximum high at which 

the solid melts. 

b. decrease carefully the temperature of the heat bath until the particles 

arrange themselves in the ground energy state of the solid. 

In the liquid phase all the particles of the solid arrange themselves 

randomly. In the ground energy state these particles are arranged in a highly 

structured lattice and the energy of the system is minimal. This ground 

energy state is obtained only if the maximum temperature is sufficiently 
! high and the cooling is done sufficiently slowly. Otherwise, the solid will be 
-- ----~~ --.-----.. --.--------.----~-- --

frozen into a meta-stable state rather than into the ground state. If the 

temperature of the heat bath is lowered very quickly a meta-stable state will 

result. This is converse of annealing and is known as quenching. 

The physical annealing process can be modelled successfully by using 

computer simulation methods from solid state physics. Metropolis et al. 

[2] introduced a simple algorithm (Metropolis algorithm) for simulating the 

evolution of solid in a heat bath to thermal equilibrium. This algorithm 

is based on Monte-Carlo technique and generates a sequence of states of 

the solid in the following manner. Given a current state i of the solid with 

energy Ei, then a subsequent state i with energy Ej is generated by applying 

a perturbation mechanism which transforms the current state i into the next 

state i by a small distortion. If the energy difference, Ej - Ei. is less than 

or equal to zero, the state i is accepted as the new current state. If, on the 

other hand the energy difference becomes greater than zero, the state 'i is 

accepted with a certain probability given by, 

(
-(Ej -Ei») 

exp KBT 5.1 

where T denotes the temperature of the heat bath and KB, a physical 

constant known as Boltzmann cOn.!tant. 

If the heat bath is cooled sufficiently slow, the solid can reach thermal 

equilibrium at each temperature. In the Metropolis algorithm this is achieved 

by generating a large number of transitions (perturbations) at each temper­

ature. Thermal equilibrium in such cases is characterised by the Boltzmann 
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Procedure LocaLSearch; 

Initialise(istart); 

i :- i(start); 

Repeat 

Generate(Configuration j from neighbourhood Si of 

configuration i); 

If f(j) < f(i) Then 

i :- j; 

EndIf; 

Until f(j) ~ f(i). V j E Si; 

EndProced ure; 

Fig. 5.1 Pseudo-Pascal description of the local search algorithm. 
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distribution and gives the probability of the solid being in a state i with 

energy Ei at temperature T and is given by, 

. 1 (-E,) JPT{X = i}. = -exp --' , 
Z(T) KBT 

5.2 

where X is a stochastic variable denoting the current state of the solid. Z(T) 

is the partition function, which is defined as, 

Z(T) = Lexp(~E~), 
i B 

5.3 

where the summation extends over all possible states. 

Kirkpatrick et. al [3] assumed an analogy between a physical many­

particle system and combinatorial optimisation problems based on the fol­

lowing equivalences, 

a. Solutions in a combinatorial optimisation problem are equivalent to 

states of a physical matter. 

b. The cost of a solution is equivalent to the energy of a state. 

However, temperature in the physical system does not have a direct 

analog and as such a control parameter to be called temperature is used to 

play its role. The simulated annealing (SA) algorithm can now be viewed 

as an iteration of the Metropolis algorithm, evaluated at descending values 

of the control parameter, temperature, where a large niunber of candidate 

solutions are generated at each temperature. 

The following formal definitions can be used to describe the SA algo­

rithm in relation to the solution of combinatorial optimisation problems. 

Let, (S, f) denote an instance of a combinatorial optimisation prolr 

lem and i and j are two solutions with cost f( i) and fU), respectively. 

The acceptance criterion determines whether j is accepted from i by 

applying the following acceptance probability: 
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Procedure S1mulated-Annealing: 

Initialise(istart): 

A :- 0: 

i :- i(start): 

Repeat 

For 1 := 1 To L>. Do 

Generate(Configuration j from neighbourhood Si 

of configuration i): 

If f(j) ~ f(i) Then 

i :- j 

Else 

If Exp«f(j) - f(i»/C>.) > Random[O,l] Then 

i :- j: 

EndIf: 

EndFor: 

A :- A + 1: 

Calculate_Length(L>.) : 

Calculate_Control(C>.): 

Until Stop_Criterion: 

EndProcedure: 

Fig. 5.2 Pseudo-Pascal description of the simulated annealing algorithm. 
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where t E m+ denotes the control parameter, temperature. 

The generation mechanism in the SA algorithm corresponds to the 

perturbation algorithm in the Metropolis algorithm, whereas the acceptance 

criterion corresponds to the Metropolis criterion. 

Let, t). denote the value of the control parameter and L)., the length of 

the number of transitions generated at the A'Ia iteration of the Metropolis 

algorithm. Then the SA algorithm can be described in pseudo-Pascal as 

in Fig. 5.2. Fig. 5.1 shows similar description of its pre-cursor, the local 

search algorithm. A notable feature of the SA algorithm is that besides 

accepting transitions that improves the cost, it also, to a limited extent, 

accept cost deteriorating transitions. This is what is known as the so called 

hill climbing capability of an optimisation algorithm. Initially, at large values 

of t, large number of cost deteriorating transitions are accepted and as t 
approaches zero, almost all bad transitions are rejected. This controlled hill 

climbing capability of the SA algorithm allows it to escape from local minima 

while still exhibiting the favourable features of local search (simple iterative 

improvement) algorithms, i.e., simplicity and general applicability. 

SA can be viewed as a generalisation of the local search algorithm. In 
fact, for cases where the value of the control parameter is set to zero, the 

former algorithm behaves similar to the latter. In the physical analogy, the 

local search algorithm can be viewed as the quenching process and like its 

physical counterpart though quick, often produces inferior quality results. 

5.2 Markov Chain Model of SA 

The SA algorithm can be modelled mathematically by using the theory 

of Markov chains. It is, therefore, possible to predict the asymptotic 

behaviour of the SA algorithm by using different properties of Markov chain. 

However, before going further into the discussion some definitions relating 

to the SA algorithm and combinatorial optimisation are first presented!l). 

Definition 5.1 : An instance of a combinatorial optimisation problem 

can be formally declared as a pair (S,!), where the solution space 5 
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denotes the finite set of all possible solutions and the cost (objective) 

function 1 is a mapping defined as, 

I:S-+ffi. 5.5 

In the case of minimisation, the problem is that of finding the solution 

i.pl E S which satisfies, 

I(i.pl ) :5 I(i), Vi E S. 5.6 

Such a solution i.pl is the globally-optimal solution, or simply optimum; 

f.pl = f(i.pl ) denotes the optimal cost, and S.pl the set of optimal 

solutions. 

Similar definition for maximisation problem can be made without loss 

of generality since maximisation is equivalent to minimisation with the sign 

of the cost function reversed. In the multiprocessor task scheduling problem, 

which is an instance of combinatorial optimisationproblem, every feasible 

schedule is a solution and the goal is to find the schedule with minimum 

overhead. Henceforth, in all subsequent discussions unless explicitly stated, 
we consider combinatorial optimisation problems as minimisation problems. 

Definition 5.2 : We consider an instance of combinatorial optimisation 

problem (S,I). A neighbourhood $tructure can then be defined as the 

mapping 
5.7 

which defines for each solution i E S, a set Si C S of solutions that 

are close to i in some sense. The set Si is called the neighbourhood of 

solution i, and each j E Si is called a neighbour of i. Furthermore, it is 

also assumed that j E Si <=? i E Sj. 

Definitio~ 5.3 : An instance of combinatorial optimisation problem 

(S,I) and also it's neighbourhood structure N are considered .. A 

generation mechanMm is then defined as a means of selecting a solution 

j from the neighbourhood Si of i. 
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Comparison of combinatorial optimisation problems and thermody­

namic behaviour of physical systems yields an expression for the probability 

distribution of the solutions due to SA algorithm similar to that given in 

eq.5.2. Therefore, given an instance (5,1) of a combinatorial optimisation 

problem and a suitable neighbourhood structure then, after a sufficiently 

large number of transitions at a fixed value of the temperature t, applying 

the acceptance probability of eq.5.4, the SA algorithm will find a solution 

i E 5 with a probability equal to, 

IP{X = i} A qi(t) 

1 (-f(i)) = No(t) exp -t - , 5.8 

where X is a stochastic variable representing the current solution resulting· 

from the SA algorithm, and 

No(c) = Lexp(-~(j)), 
;ES 

5.9 

represents a normalisation constant. 

The above probability distribution (eq.5.8) is called the ~tationary or 

equilibrium distribution and is the equivalent of the Boltzmann distribution 

of eq.5.2. The normalisation constant No( c) is equivalent to the partition 

function of eq.5.3. 

If, in the SA algorithm sufficient number of transitions are allowed at 

each value of the temperature t so that the stationary distribution (eq.5.8) 

is attained, and that the temperature t is slowly reduced to very close to 

zero, it is then expected that the SA algorithm will find an optimal solution. 

The corollary!l] below represent the above and it's result is very important 

since it guarantees a~ymptotic convergence of the SA algorithm to the set of 

globally optimal solutions under the above mentioned conditions. 
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Corollary 5.1 : An instance (S,!) of a combinatorial optimisation 

problem, a suitable neighbourhood structure and the stationary distri­

bution of eq. 5.8 are considered. We can then have, 

limqi(t) ~ qi 
IlO 

= IS~PII Xs ••• (i), 

where S.pl represents the set of globally optimal solutions. 1 

The proof of the above corollary is given in Appendix B. 

5.10 

As mentioned earlier, the SA algorithm can be modelled mathematically 

by using the theory of Markov chains. In such cases, the current solutions at 

any temperature t obtained by the SA algorithm are considered as stochastic 

variables (eq.5.8), the corresponding tran$ition probabilitie$ are then defined 

as follows: 

if i oF j 
if i = j, 5.11 

where Gij(f.I.) represents the generation probability, i.e., the probability 

of generating a solution j from a solution i, and Aij(fA) represents the 

acceptance probability, i.e., the probability of accepting the solution j, once 

it is generated from solution i. 

The Gij(h.) and Aij(f.I.) are both conditional probabilities and are 

defined as follows : 

a. Generation Probability : 

Vi,j E 5 : (5.12) 

1 Let, A and A' C A be two sets. Then the characteristic function X(A') : 

A -. {O, I} of the set A' is defined as X(A,)(a) = 1 if a E A', and X(A,)(a) = 0 

otherwise. 
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where S = ISil, for all i E S. 

b. Acceptance Probability: 

Vi,j E S: Aij(h) = exp( (f(j)- f(i»+) 
t>, ., (5.13) 

where, for all a E m., a+ = a if a > 0, and a+ = 0 otherwise. 

Thus, the generation probabilities are independent of the control pa­

rameter h and spread .. uniformly over the. neighbourhoods Si, where it is 

assumed that all neighbourhoods are of equal size, i.e. ISil = S, for all i E S. 
The accpetance probabilities are given by the acceptance criterion of eq.5.4 

and is thus identical to the Metropolis criterion. The matrices corrersponding 

to transition and generation probabilities, P(t>,) (transition matrix) and 

G(t>,) (generation matrix) respectively are stochasitic, but the acceptance 

matrix A(t>,) corresponding to the accpetance probabilitiy Ai;(h) is not . 

. The definitions of the generation and acceptance probabilities (eqs. 5.12 

& 5.13) supporting the Markov chain model of the SA algorithm, correspond 

fully to the original definition of the algorithm and closely follow- the physical 

. analogy discussed earlier in Sec.5.1.1. Furthermore, the above definitions 

formalising the SA algorithm generally apply to all forms of combinatorial 

optimisation problems. 

Formulation of a set of conditions that ensures asymptotic convergence 

of the SA algorithm for general class of generation and acceptance proba­

bilities would then give a sound basis for the Markov chain model of the 

SA algorithm. These conditions apply totally or partially to the following 

properties of the SA algorithm. 

a. Reachabilitll of the ~et of global optimum. The set of global optima is 

reached from every starting solution with probability 1. 

b. A~lImptotic independence of ~tarting ~olution. The dependence of the 

distribution of J;(>..) for all i E S and at temperature t>, with respect to 

the starting solution vanishes as >.. -+ 00. 

c. Convergence in di~trib!J.tion. fi(>") converges in distribution. 
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d. Convergence to a global optimum. The algorithm converges to the set 

of global optima with probability 1. 

Sufficient conditions for all or some of the above convergence properties 

were independently obtained by various researchers [4-9]. As for the conver­

gence to the set of global optima, the SA algorithm finds with probability 

one an optimal solution if, after a large number of trials, we have 

IP{X("\) E SoP'} = 1. 5.14 

The condition for asymptotic convergence of the SA algorithm to the set of 

optimal solutions can then be formulated as, 

lim lP{X("\) E Sop'} = 1. 
).. ..... 00 , 

5.15 

The asymptotic convergence of the SA algorithmllas b!!en . proved for both 

homogeneous and inhomogeneous Markov chain models[l,9]. The proof for 

the homogeneous chain model requires an infinite number of transitions to 

approximate a stationary distribution arbitrarily close. Thus, implemen­

tation of the SA algorithm along this line would require generation of a 

sequence of infinitely long homogeneous Markov chains at descending values 

of temperature. This is visibly impractical. However, some moderations 

can be made whereby, the SA algorithm can be described as a sequence of 

homogeneous Markov chains of finite length, generated at descending values 

of temperature. This in turn converts the homogeneous Markov chains into 

one single inhomogeneous Markov chain. In this way, it is possible to reduce 

the sequence of infinitely long homogeneous Markov chain to a single inho­

mogeneous Markov chain of infinite length. The practical implementations 

to be discussed later are approximations of this inhomogeneous Markov chain 

model of the SA algorithm. 

5.3 Cooling Schedule 

A practical implementation of the SA algorithm involves an implemen­

tation in which a sequence of Markov chains is generated at descending 

values of the control parameter, temperature. To achieve this, the set of 

parameters that governs the convergence of the algorithm must be specified. 
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The combination of these parameters are known as cooling schedule. A 

cooling schedule specifies: 

- a finite sequence of values of the control parameter, i.e. 

- an initial value of the control parameter to, 

- a decrement junction, a for decreasing the value of the control 

parameter, 

- a final value of the control parameter, tend specified by a stop 

criterion, and 

- a finite number of transitions at each value of the control parameter, 

i.e. 

- a finite length of each homogeneous Markov chain. 

In this section, we discuss some general features and characteristics of a 

cooling schedule and also present two simple but effective cooling schedules. 

However, we first introduce a new term the qua~i equilibrium (1) which can 

be defined as follows. 

Definition 5.4 : Let L). represent the length of the ).Ih Markov chain 

and t). the corresponding value of temperature. Then quasi equilibrium 

is achieved if a(L)., t).), i.e. the probability distribution of the solutions 

after L). trials of the ).Ih Markov chain, is 'sufficiently close' to q(t).), 

the stationary distribution at t)., defined by eqs.5.8 and 5.9, i.e. 

Ila(L)., h) - q(t).)11 < e, 5.16 

for some specified positive value of e. 

A very large number of transitions quadratic in the size of the solution 

space will be required to hold for arbitrarily small values of e. This leads for 

most combinatorial optimisation problems to an exponential-time execution 

of the SA algorithm. Thus, a practical implementation of the algorithm 

requires a relaxation of the rigid quantification of the quasi equilibrium 

condition. 
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A cooling schedule using the concept of quasi equilibrium can be devised 

on the basis of the following arguments. Let, the acceptance probability in 

the SA algorithm be given by eq.5.13, then! for t -+ co, the stationary 

distribution is given by the uniform distribution on the set of solutions S, 
i.e. 

I~~ q(A) = 1~ll, 5.17 

where 1 denotes the ISI-vector with all components equal to 1. The above 

equation can also be derived from eqs.5.8 and 5.9. Therefore, by choosing the 

value of h sufficiently large - allowing acceptance probability of virtually all 

proposed transitions - quasi equilibrium is directly achieved at these values 

of temperature, since in this case all solutions occur with equal probability 

given by the uniform distribution of eq.5.17. The length of the Markov chain 

and the decrement function must then be chosen so that quasi equilibrium 

is restored at the end of each individual Markov chain. The equlibrium 

distribution for the various Markov chains will thus be 'closely followed', so 

as to arrive eventually, as t). ! 0, close to q*, the uniform distribution on the 

set of optimal solutions. 

From the above, it is evident that large decrements in t). will require 

longer Markov chain lengths in order to restore quasi equilibrium at the 

next value of the temperature, t).+1' Thus, there is a trade-off between 

large decrements of the control parameter and small Markov chain lengths. 

The popular option is for small decrements in t). to avoid long chains, 

or alternatively for large values for L). in order to be able to make large 

decrements in t).. 

Many different cooling schedules have so far been reported in search of 

an efficient and adequate schedule. Reviews are given by Collins, Eglese and 

Golden [10) and also by Van Laarhoven and Aarts [11). In the following two 

sub-sections we present two cooling schedules as illustrations. 

5.3.1 A Simple Cooling Schedule 

The cooling schedule presented here is proposed by Kirkpatrick, Gelatt 

and Vecchi [3). This particular schedule is based on a number of conceptually 

. simple empirical rules and is expected to run in polynomial time. 
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* Initial value of the control parameter: As already stated earlier, the 

value of to should be large enough to allow virtually all transitions to be 

accepted. This can be achieved by setting the initial acceptance ratio 

Co = ((to) close to 1. The setting of this initial high temperature is 
equivalent to raising the temperature of the heat bath so that the sOlid 

in the bath completely melts. 

* Decrement of the control parameter: From the discussion above, the 

decrement function can be defined as, 

A = 1,2,··· 5.18 

where ex is a constant smaller than but usually close to 1. Typical values 

of ex where very small changes in the value of the control parameter are 

favoured, lies between 0.8 and 0.99. 

* Final value of the control parameter: The algorithm is stopped from 
further execution when the value of the cost function of the solution 

obtained in the last trial of the Markov chain remains Unchanged for a 
number of consecutive chains. 

* Length of the Markov chain: The length of the Markov chain is 

calculated fr~m the requirement that at each value f>. of the control 

parameter quasi equilibrium is restored. The number of necessary 

transitions to achieve this is calculated from the intuitive argument, 

that, quasi equilibrium will be restored after acceptance of at least some 

fixed number of transitions. However, since transitions are accepted 

with decreasing probability, one would obtain L" --+ 00 for t" ! O. As 

a result, L" is usually bounded by some constant l to avoid extremely 

long Markov chains for small values of t". 

5.3.2 A Polynomial-Time Cooling Schedule 
The cooling schedule proposed by Aarts and Van Laarhoven [11) leads 

to a polynomial time execution of the SA algorithm. To differentiate it from 

the simple schedule of Sec.5.3.1 we shall call it Polynomial- Time Schedule in 

all future references following the original nomenclature even though both 

the schedules are expected to run in polynomial time. The polynomial-time 
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schedule is by it's very design, more attuned with the statistical behaviour 

of the problem instance and as such is expected to perform better than the 

simple schedule of Sec.5.3.I. However, as is the norm of a heuristic algorithm 

this schedule fails to give any guarantee for the deviation in cost between 

the final solution obtained by the algorithm and the optimal cost. 

• Initial value of the control parameter: The initial value to of the 

control parameter should be such that at this temperature virtually all 

proposed transitions are accepted. For a sequence of trials generated 

at a certain temperature t, we assume that ml, represents the number 

of proposed transitions form i to j for which f(j) ~ f(i), and, m2 the 

number of transitions for which f(j) > f(i). Also let, Af+ be the 

average difference in cost over the m2 cost-increasing transitions. Then, 

the acceptance ratio can be approximated as, 

5.19 

from which it is easy to obtain, 

5.20 

The initial temperature to can be calculated from eq.5.20 in the following 

manner. Initially, to is set equal to zero and then a sequence of mo trials 

is generated. After each trial a new value of to is calculated from eq.5.20, 

where ( is set to (0, the initial acceptance ratio. The values of ml and 

m2 correspond to the cost-decreasing and cost-increasing transitions 

respectively and also mo = ml + m2. The new value of to is used in 

the next trial. The valueof the control parameter thus slowly converges 

to the desired starting value to, that produces the specified acceptance 

ratio (0. 

• Decrement of the control parameter: It has already been stated 

that when the temperature, t is decreased very slowly the resulting 

stationary distribution of the homogeneous Markov chains will be close 

to each other. As a result, after decreasing 1>. to 1>.+1> a small number of 
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transitions are needed to restore the quasi equilibrium at t>'+I, provided 

quasi equilibrium holds at h. The condition for quasi equilibrium can 

thus be assumed to be, 

V>" ~O: 5.21 

for some positive value of e; • Thus, we assume that quasi equilibrium is 

maintained throughout the optimisation process if eq.5.21 holds for all 
>... This requires that quasi equilibrium is achieved at to. 

For two successive values of the control parameter, the stationary 

distributions need to be close to each other. This can be quantitively 

expressed as, 

Vi E S: _1_< qi(h) <1+6, >..=0,1, ... 
1 +.5 qi(h+J) 

5.22 

for some small positive number 6, which can be related to eq.5.21. The 

above inequalities of eq.5.22 are satisfied if the the following condition 

holds, 

Vi E S: 
exp(-k) 

-":"':'---!;~'~ < 1 + 6, >.. = 0,1,· .• 
exp( -if.::t) 

5.23 

where 6i = f( i) - f.pl' 

/ Equation 5.23 can be rewritten to give the following condition on 

two successive temperature ·values, 

Vi E S: 
t>. 

h+1 > 1 f, In 1+6' >.. = 0,1, .. • 
+ I i-I.,. 

5.24 

Using the empirical knowledge!l] that the probability distribution of the 

cost values of the solutions is 'normal' near the average value of the cost 

function and 'exponential' in the region close to the optimal value of 

the cost function, eq.5.24 can be simplified for 99% and 95% confidence 

limits of the normal and exponential distributions as 

h 
t>'+J > f, In 1+6 

1+ 1.,-1.,.+3",. 
>.. = 0,1, .. · 5.25 
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For many instances of combinatorial optimisation problems the value of 

fopt is not known. However, the average value ((f) and the spreading. 

(tr) of the cost function typically exhibit a similar behaviour as a 

function of the control parameter. (f),A - fopt + 3trt.\ can thus be 
replaced by 3trh and the omission of the term (f),A - fopt can be 
counterbalanced by choosing smaller value of 6. Thus eq.5.25 can be . 

rewritten as 

h 
h+1 = 1 + t, In(1+6) , A = 0,1,·· . 

311'.\ 

5.26 

The amount by which the value of t is decreased by the decrement 

function of eq.5.26 is determined by the value of the di&tance parameter 

6. Small 6-values lead to small decrements and large 6-values lead to 

large decrements in t. 

* Final value of the control parameter: The execution of the SA 
algorithm can be terminated by extrapolating the expected cost (I),A 

for h ! o. Let, 

ll.(I)t = (I)t - foph 5.27 

then execution of the algorithm is terminated if ll. (I) t is very small . 

compared to the expected cost at to, (I), •. For sufficiently large values 

of to, (I),. RI (1)00. Hence, ll.(I)t can be approximated for t « 1 as, 

5.28 

Therefore, the algorithm can be reliably terminated when, 

"lA ~ 0: t.\ 8(1)t I ---- <e 
(f)oo at t=tA .. 

5.29 

where e. is a small positive number. e, is the stop parameter and eq.5.29 

is the &top criterion. 

* Length of the Markov chain: The discussion for the simple cooling 

schedule (Sec.5.3.1) applies here as well. However, in practice, the length 
of the Markov chain is made equal to the size S of the neighbourhoods, 

i.e. 

L.\ = L = S, A = 0,1,· .. 5.30 

119 



Chapter 5: The Simulated Annealing Algorithm 

60 en. 2 55 • n. 2 

'n-4 'n-4 

'n - 8 'n-8 , 
60 In .18 46 'n -16 

i - !.-, , , 
i i , , x , i , 

,;; , , ,;; 

840 I 
, 

835 

~ 
111 • i 
~ .. • §> i' I • , • , • • • 

l30 
~25 

~ • ! 

, 
20 

101--..-..--.--.--.---.---r--r--r--. 
o 10 20 30 40 50 60 70 60 90 100 

60 +n-2 

'n-4 
In - 8 

5O'n-16 

" Swaps - 100 - " Moves 

10l--~-,---,-~~~~~r--r-~ 
o 10 20 30 40 50 60 70 80 90 100 

" swaps - 100 - " Moves 

15 

51---r--'---r--,-~-r-T~~--' 
o 10 20 30 40 50 60 70 80 90 100 

" swaps - 100 - " Moves 

55 'n-2 

In- 4 

'n-8 
45 'n -16 , 

, , • -, , 
1;; 

835 . , 
I 

~ ---I , , 
11 .. 
l25 .. , -' i , , , 

15 -
5l---r--'---r--'-~-r-T~~--' 

o 10 20 30 40 50 80 70 60 90 100 

"swaps -100 -" Moves 

Fig. 5.3 Effect of different Swap-Move composition on the final cost. Both 
. simple cooling schedule (top) & polynomial-time cooling schedule 

(bottom) axe used. Graph data instances used axe 4x4 multiplier 
ckt. (left) & frequency locked loop ckt. (right). 

120 



Chapter 5: The Simulated Annealing Algorithm 

60 20 

°n_2 

, '0-4 
r 15 In·8 

4li , 
~ 'n-16 • !i 

'* 

I 

1040 
'n-2 8 

~ 10 !35 'n c 4 
"n-8 

Cl 

!i 
• ~ 

.!i to In .. 16 

• • 
5 

25 

20 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

klItiaI Aceeptance RaUo klItiaI Aceeptance Ra1Io 

50 on- 2 30 

In .. 4 
45 'n .. 8 25 

In .16 on- 2 • 
40 -p 

J .. In.4 

§35 , )20 'n .. 8 

'n -16 

~30 .... ! 15 
Cl 
D> i 10 

I!! 

t 25 - • • -• 20 
5 • 

15 

0 10 
0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

WtiaI AcceptaIoce Ratio WtiaI Acceptance Ratio 

Fig. 5.4 Average final cost (left) & average execution time (right) as functios 
of the initial acceptance ratio, (~. The simple cooling schedule is 
in use. Graph data instances used are 4x4 multiplier ckt. (top) & 
frequency locked loop ckt. (bottom). 

121 



Chapter 5: The Simulated Annealing Algorithm 

5.4 Implementation of the SA algorithm 
In this section, we shall discuss a simple single processor implementation 

of the SA algorithm for the solution of the multiprocessor task scheduling 

problem as encountered in concurrent VLSI timing simulation (c.f. Chapter 

3)~ Implementation of the SA algorithm requires a sequence of Markov chains 

I to be generated at des~ending values of the control parameter, temperature . 
. -. --- .... ---------,.--.---... _._--- ---

A generation mechanism is devised, and individual Markov chains are 

generated, by attempting to transform a current solution into a subsequent 

one, by repeatedly applying the generation mechanism and the acceptance 

criterion. An implementation of the SA algorithm requires the specification 

of the following three items: 

1. a concise problem representation, 

2. a transition mechanism, and 

3. a cooling schedule. 

The above three items are now discussed in detail in the following sub­

sections. 

5.4.1 Concise Problem Representation 

A suitable concise description of the problem is necessary to represent 

the solution space, and also to evaluat~ an expression for the cost (objective) 

function. The cost function must be able to represent the cost effectiveness 

of the various solutions with respect to the objective of the optimisation 

process. Sections 3.4, 3,5 and 3.6 cover these issues for the present problem. 

5.4.2 Transition Mechanism 
Three distinct steps are involved in the process of generating trials for 

transforming a current solution into a subsequent one. At first, a generation 

mechanism is used to generate a new solution. Secondly, the difference in 

cost between the two solutions is calculated and finally, based on the result of 

the second step a decision is made whether or not to accept the new solution 

as the current solution. 
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The generation mechanism as described earlier is used to generate a 

new solution from the current solution by bringing in a simple modification 

of the current configuration of the problem instance. For the multiprocessor 

task scheduling problem modelled on a directed acyclic graph (DAG), this 

modification can be easily accomplished by utilising anyone of two simple 

processes. The first is the move and the other is the ,wap (c.f. Section 3.7). 

A move involves changing the processor allocation of anyone node of the 
graph representing the problem instance from one processor to another while 

in swap, processor allocations of any two nodes with differing allocations are 
interchanged. A swap, thus, can be viewed as the equivalent of two moves. 

In a practical implementation of the SA algorithm or for that matter any 

heuristic algorithm based on the iterative improvement method, a mix of 

moves and swaps is deemed better than using any of these two techniques 

alone. 

The evaluation of trials is the most important time consuming part of 

the SA algorithm and therefore, needs to be done as efficiently as possible. 

The two techniques, move and swap, allow generation of new solutions by 

simple re-arrangement of the current configuration of the problem instance. 

Calculation of the cost difference is needed to be done quickly and as such 

methods that calculate the incremental cost difference are preferred. In 

Sec.3. 7.2 and 3.7.3 these issues are covered. 

The decision to accept new solutions is based on the Metropolis crite-

rion, 

lPt{accept i} = {!xp(_¥) if ill $ 0 
if ill > 0, 5.31 

where t represents the control parameter, temperature and ill the difference 

in cost between a new and a current solution. 

5.4.3 The Cooling Schedule 

Carrying out the optimisation based on the annealing process requires 

specification of the parameters determining the cooling schedule. These are 

the initial value of the control parameter, temperature; a decrement function 

of this control parameter, the length of the individual Markov chains and a 

stop criterion. Two different cooling schedules are examined. The first based 
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on empirical experience and is very similar to that of Sec.5.3.1. The other 

is an implementation of Aarts and Van Laarhoven's (Sec.5.3.2) polynomial­
time cooling schedule. It is to be noted that both of these schedules run in 

polynomial time and is expected to provide near-optimal solutions. 

Simple Cooling Schedule 

Here we adopt a very simple definition for the initial acceptance ratio, 

which is necessary to set the initial high temperature. The initial acceptance 

ratio (~ is defined as follows : 

5.32 

where as before, to is the corresponding initial high temperature and f1f is 

average difference in cost for all cost-increasing and cost-decreasing transi­

tions. From the above, the value of to can be obtained as, 

f1f 
to = -In((~)' 5.33 

Though the above is a static definition as compared to the more accurate 

one of eq.5.19, the results obtained are accpetable. 

Unlike the simple schedule of Sec.5.3.1 we here, place a bound on the 

number of temperature steps, i.e. the number of homogeneous Markov chains 

at descending values of temperature. From experience, it is found that an 

upper bound of 100 temperature steps is acceptable for almost all small to 

medium sized instances of the task scheduling problem. In order to make 

this implementation of the SA algorithm independent of the problem size, it 

is decided to set the number of temperature steps to 100. It is also assumed 

that the probability of accepting a cost-increasing transition at the last 

temperature step is very small. This assumption leads to the calculation 

of the decrement function. We let, 

(~nd = probability of accepting a cost-increasing transition 

. at the last temperature step, 

tend = the corresponding temperature (c.f. eq.5.33), 

and, 
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NT = the total number of temperature steps. 

Then the decrement function can be expressed as, 

Cl' = (tend) 7fT. 
to . 

5.34 

The total number of transitions allowed i.e. the length of the Markov 

chain at each value of temperature is bounded by the size of the neighbour­

hood structure. We recall that for the task scheduling problem the suitable 

transition mechanisms are moves and swaps. For simplicity, we here take the 

case of move. When a node of the'graph representing the problem instance 

is selected for a move, the number of available processors to which it can 

be allocated (moved) to is n -1, where n is the number of processors. For 

k nodes of the graph the total number of choices for a single move is thus, 

k (n - 1) and this is the number of neighbouring solutions of any arbitrary 

solution i. From this it is easy to derive an expression for the length of 

the Markov chain (i.e. the number of transitions allowed) at each value of 

temperature, t~ as, 

L~=mk(n-1), ).=0,1,,,, 5.35 

where m is a constant whose value determines a widening or shortening of . 
the Markov chain. Evidently, a high valued m resulting in a long Markov 

chain would result in better solutions, as it would approach an infinitely long 

Markov chain more closely. But, this advantage could be inhibited by very 

long computing time. A sensible value of m is between 1 and 5. 

For the practical implementation of the simple cooling schedule, the 

following parameter values are used 

initial acceptance ratio, (b 
final acceptance ratio, '~nd 
total number of temp. steps, NT 

= 0.99, 

= 0.00001, 

= 100, 

neighbourhood size parameter, m = 1. 

and the value of t::.! is determined from a trial run involving L~ 

transition with m set at 5. 
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The Polynomial-Time Cooling Schedule 

This implementation adheres fully to the Aarts and Van Laarhoven's[ll) 

polynomial-time schedule. The following parameter values are used 

initial acceptance ratio, '0 = 0.98, 
distance parameter, 6 = 0.1, 

stop parameter, e. = 0.00001, 

neighbourhood size parameter, m = 1. 

The lengths of the Markov chains (i.e. the total number of transitions 

attempted) at each value of the control parameter, temperature is similar to 

that of preceding cooling schedule. 

The noticeable- difference between these two cooling schedules is that 

the latter is more computationally intensive and also for very small but 

reasonable value of the stop parameter, e. would require more temperature 

steps, thereby taking more time to reach the stop criterion of the SA 
algorithm. However, the perceptible benefit is that better solutions are 

expected. 

5.4.4 Performance Analysis of the SA Algorithin 

The two cooling schedules namely, the simple cooling schedule and 

the polynomial-time cooling schedule described earlier were implemented 

on a single processor in order to ascertain their performance in solving the 

multiprocessor task scheduling problem. The performance analysis described 

here involves the finite-time behaviour of the SA algorithm. This analysis is 

based on both the cooling schedules investigating the performance of the SA 

algorithm as a function of the following parameters: 

a. Simple cooling schedule: swap-move ratio, initial acceptance ratio ('~), 

the number oftemperature steps (NT) and size parameter (m). 

b. Polynomial-time cooling schedule: swap-move ratio, initial acceptance 

ratio ('0), stop parameter (e.), distance parameter (6) and size param­

eter (m). 
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As is the norm, the performance of the heuristic algorithm is related 
to the quality of the final solution obtained by the algorithm and also the 

running time required. As in chapter 4, the final solution here is expressed as 

the percentage of the average initial random scheduling cost. The running­

time of the algorithm for the polynomial-time schedule is in some cases 

represented as the number of temperature steps required. This is valid, 

as a direct relationship between the number of temperature steps and the 

actual running-time can be easily established. 

The performance of the SA algorithm has been investigated by carrying 

out an average-case analysis, which relates to the average value of the 

final solution and the running-time (or the number of temperature steps) 
computed from the probability distribution over the set of final solutions that 

can be obtained by the algorithm for a given problem instance. This results 

directly from the probabilistic nature of the SA algorithm. The number of 

iterations for each investigation lies between 30 and 50. 

. The problem instances used here for the investigation are the graphs 

representing the 4x4 multiplier circuit (58 nodes) and the frequency locked 

loop circuit (68 nodes). The larger graph instances are avoided here for the 

sake of investigation time. The processor sizes (graph partition sizes) used 

are 2, 4, 8 and 16 similar to that used in chapter 4. Apart from the two 
graph instances mentioned above, some synthetic graphs of known sizes and 

connectivities are also used to find the time-complexity of the SA algorithm. 

Fig. 5.3 shows the final cost as a function of the swap-move composition. 

The total number of transitions attempted for different processor sizes are 

goverend by eq. 5.35. This number is the same. irresJ>-ect~; of the nature 

(swap or move) of the attempted transition. No significant dependence of 

the final cost value on the swap-move composition is observed. However, the 

final cost values at the two extreme compositions (0% swap & 100% swap) 

are found, in most cases worse than at other values of the composition. 
When 100% swap is used the load-imbalance issue is not properly addressed 

and as a result the final solution contains significant load-imbalance. This 

result here substantiates the observation made in Sec.5.4.2. Wide statistical 

variation is also observed in all cases. As swaps take more time to than the 
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moves, it is advantageous to use more moves than swaps. A percentage figure 

of 20%-30% of swaps in most cases produced acceptable results. 

In Fig. 5.4, the average final cost and also the average running-time as a 

function of the initial acceptance ratio, ,~ for the simple cooling schedule are 

shown. The observed results are quite unexpected. A deterioration of the. 

final cost with the decrease in the initial acceptance ratio was anticipated. 

However, it is to be remembered that the implementation here is only a 

finite length approximation of the Markov theory of the SA algorithm which 

requires infinite length Markov chains to be generated at the descending 

values of temperature. Moreover, the simple cooling schedule always works 

with a fixed number of temperature steps (number of Markov chains) for all 

values of C~. Smaller values of the initial acceptance ratio, C~ result in lower 

values of the initial temperature. Since, a fixed number of temperature 

steps, NT(= 100) and also a fixed terminating condition based on a pre­

determined value of the final acceptance ratio (C!nd = 0.00001) are used, 

a very slow cooling take place for smaller values of the initial acceptance 

ratio, C~. On the other hand, higher values of the initial acceptance ratio 

forces a relatively much larger temperature decrement factor, a and since the 
number of transitions at each temperature step is not very large (m = 1), 

the resulting quasi equilibrium distribution can not come close enough to 

the stationary distribution (eq.5.8). The reason that the final cost obtained 

for smaller values of C~ is not much better than that for higher values of C~ 

for the same number of transitions, even though cooling. is very slow in the 

former case is due to the fact that not many perturbations are allowed in 

that situation and also that the initial condition for quasi equilibrium (high 

initial temperature) is not met. 

The running-times for all values of ,~ for both the problem instances 
are fairly uniform. This is expected as the running-time of the algorithm is 

directly proportional to the product of the number of temperature steps and 

the number of attempted transitions at each temperature step. However, if 

. the number of temperature steps are increased (or decreased), the decrement 

factor, a is changed accordingly. An improvement in the final cost is expected 

with an increase in the number of temperature steps. Figs. 5.5 & 5.6 

illustrates the above in graph form. The change in average final cost with 

135 



Chapter 5: The Simulated Annealing Algorithm 

80 -n-4 
.- n -16 

70" 
, , , 

'1 
\ 
\ 

1000 -n-4 
--n-16 

100 
/ 

/ 
/ 

/ 
/ 

/ 
/ J \ / 

\ 10 / 

k / 

! / , / 

'i''i''~_l~ 
/ 

j 
/ 

1 
/ 

/ 
/ 

/ 
/ 

/ 

0.1 
30 

201-----,,--'--..,.---....---, 0.011-----.---....--.....-----. 
0.001 0.01 0.1 1 10 0.001 0.01 0.1 10 1 

80 :-n-4 
.- n -16 

70 

30 

SIze l'Irorneter, m 

100 

/ 

0.1 

SIze Parameter, m 

/ 
/ 

// 
/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

, 

201-----,,---..,.---....--"--f 0.01+----,,---,----.-----, 
0.001 0.01 0.1 1 10. lE-3 0.D1 0.1 10 1 

SIze l'Irorneter, m SIze l'Irameter, m 

Fig. 5.12 Average final cost (left) & average execution time (right) as func­
tions of the size parameter, m. The simple cooling schedule is in 
use. Graph data instances used are 4x4 multiplier ckt. (top) & 
frequency locked loop ckt. (bottom). 

136 



70 

30 

20 
0.001 0.01 0.1 

SIze Perametor. m 

80 -n-4 
.- n .18 

70 

80 
U 
8

60 I 
, 40 

30 

20 

10 
0.001 0.01 0.1 

SIze PerMltler. m 

Chapter 5: The Simulated Annealing Algorithm 

1 

1 

1000 -n-4 

-- n -18 

100 

0.1 

// 

" 

" " " " / 

I 

" " " 
/ 

" " 

/ 

" " 
/ 

/ 

" / 

0.01~----.---'----r-----' 
10 0.001 0.01 0.1 1 10 

100 

" " " " / 
/ 

/ 

" " 
0.1 

" " " " I 

" 
" " / 

/ 
/ 

, 
" / 

0.011----.---.----.-----. 
10 0.001 0.01 0.1 1 10 

SIze Per .... tor. m 

Fig. 5.13 Average final cost (left) & average execution time (right) as 
functions of the size parameter, m~ The polynomial-time cooling 
schedule is in use. Graph data instances used are 4x4 multiplier 
ckt. (top) & frequency locked loop ckt. (bottom). 

137 



- d-0.10 
._- d -1.00 

. d-10.0 

o -
10 

Chapter 5: The Simulated Annealing Algorithm 

Problem Size (No. of Graph Nodes) 

/ 

60 70 100 

Problem Size (No. of Graph Nodes) 

Fig. 5.14 Average execution time as a function of the problem size for a 
fixed number of temperature steps, NT(= 100) [simple schedule, 
. top] and for different values of the distance parameter, S and 

. fixed values of '0(= 0.98) & e.( = 10-5) [polynomial-time schedule, 
bottom]. ' 

138 



Chapter 5: The Simulated Annealing Algorithm 

the number of temperature steps however, in most cases, has not been found 

very significant. 

Fig. 5.7 once again shows the average final cost and the average running 

time as a function of the initial acceptance ratio, (0. In this case, the 

polynomial-time cooling schedule is used and the values of the distance 

parameter, 6(= 0.1) and the stop parameter, e.(= 0.00001) are fixed. It 

is seen that smaller values of (0 leads to faster execution time. This is 

expected since the algorithm starts off at smaller values of temperature while 

it terminates at approximately the same temperature. It is also observed that 

the average final cost deteriorates as (0 decreases. This can be explained as 

follows. Smaller values of the initial acceptance ratio, (0 result in lower values 

of the starting temperature. As a consequence, for these smaller values, the 

initial condition for quasi equilibrium, i.e., high starting temperature is no 

longer met. This predictably results in a deterioration of the quality of 

the final solution, since the stationary equilibrium distribution is no longer 

reached. An important observation here is that the SA algorithm (with 

polynomial-time cooling schedule) has failed to reach convergence for some 

very small values of (0. 

Figs. 5.8 & 5.9 show the average final cost and also the average number 

of resulting temperature steps, an indicator of the running-time as a function 

of the stop parameter, e., the values of (0 (= 0.98) and 6(= 0.1) are fixed. 

The expected behaviour is clearly in evidence. As the value of e. increases, 

the stop criterion of eq. 5.29 is more easily met and consequently the 

running-time decreases, while the quality of the final solution deteriorates. 

From the plots however, three distinct regions an be clearly seen, viz. (a) 

0.00001 $ e. < 0.001, (b) 0.001 $ e. < 0.01 and (c) e. > 0.01. The SA 

algorithm appears to show it's calibre as e. assumes values less than 0.01. 

Within region (a) very little improvementin the final solution is achieved 

with commensurate little increase in the running-time. 

The effect of the distance parameter, 6 on the average final cost and 

also on the ruuning time (number of temperature steps) is shown in Figs. 

5.10 & 5.11. As can be seen, smaller values of 6 result in better results but 

at the expense of much increased execution time. A value of 6 lying between 

0.1 and 0.5 is more acceptable for a practical implementation. 
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Figs. 5.12 & 5.13 show the effect of the size parameter, m on the average 

final cost and the running time for both the schedules. The observed result is 

evidence of the Markov theory of the SA algorithm. An increased m result in 

a larger neighbourhood size and consequently more attempted transitions for 

each Markov chain (eq.5.35) bringing a closer approximation to the required 
infinite length Markov chain. The penalty of a better result with higher m 

is however the much increased execution time which grows linearly with m. 

Fig. 5.14 shows the time dependence of the SA algorithm with problem 

size. As in chapter 4, the problem size is defined as the number of nodes of 

the graph representing a task system. For this investigation, the same set 

of synthetic graphs as used earlier in chapter 4 with nodes ranging from 10 

to 100 with average degree ranging from 2.8 to 3.6 are used. The nodes and 

edges of theses synthetic graphs are unity weighted. A processor size of 8 

(n =8, number of partitions in the graph) is considered. The simple cooling 

schedule resulted in a linear time (O( k)) the problem size relationship with 

the problem size, a direct consequence of the very simplistic convergence 

condition. 

The polynomial.time cooling schedule however, behaves slightly differ· 

ently. It is observed that the average-case time complexity is the same for 

the different O'·values and is estimated to be slightly worse than O(k logk). 

Finally, it should be noted that the running times may be very large at small 

values of 0' for the larger problem instances. 

In Figs. 5.15-5.18 the performance of the two cooling schedules are 

compared. -The default parameter values (Sec.5.4.3) were used. The profile 

of a single complete cooling schedule for both the graph instances are 

depicted in Figs. 5.15 & 5.16, where the number of transitions rejected 

at each temperature steps and also the cost value at that temperature are 

shown. It is observed that the simple cooling schedule starts off from a 

much higher temperature than the polynomial. time schedule, a result of 

differing formulations (eqs.5.32 & 5.19). The consequence of this is that the 

polynomial. time schedule cools very slowly, approximating the ideal physical 

annealing process more closely. It is also observed that there is more activity 

in the polynomial-time schedule which helps to explore the optimal solution 

more rigorously. 
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Fig. 5.17 shows the performance comparison of the two cooling sched­

ules for different processor (graph partition) sizes. The solutions created 

by the polynomial-time schedule always outperformed those created by 

the simple schedule, though not by a wide margin. However, it's time 

requirement is also significantly higher compared to that of the simple 

schedule. In order to be able to make a subjective comparison of the two, we 

indtroduce a mea4ure of comparative performance, '1 figure.' This is defined 

as follows, 

1/ = In(fend T.), 5.36 

where fend is the average final cost value and Te is the average execution 

time. This definition, though, clearly favours the polynomial-time cooling 

schedule (Fig. 5.18) nonetheless expresses the emphasis given on the ability 
of a schedule to produce better final solution even at the cost of increased 

running-time. It is seen in Fig. 5.18 that the simple cooling schedule based 

on empirical knowledge performed better throughout. The performance of 

the polynomial-time schedule is close to that of the simple schedule for small 

processor sizes (n) but starts to worsen as the processor size is increased. 

In conclusion, it can be said that the polynomial-time cooling schedule is 

more robust and amenable to different problem instances than its counterpart 

because of its good statistical foundation. It is also found that for the 

polynomial-time schedule, the performance of .the SA algorithm is more 

sensitive to the value of the stop parameter, e .. a judicious value of the 

distance parameter, 8 would reduce the running time of the algorithm with­

out sacrificing much in the solution quality and that starting the algorithm 

from a higher temperature would yield a better solution. 

In its support it can be said that the simple cooling schedule is very 

easy to implement, runs relatively faster and generally performs very well. 

However, in many practical situations the running-time demanded by 

the SA algorithm is considered far too long and this poses the major hinder­

ance of the general applicability of the SA algorithm. The succeeding chapter 

discusses this issue and proposes a concurrent multiprocessor implementation 

of the SA algorithm. 
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CHAPTER 6 

Concurrent Simulated Annealing • 

The advantage of the simulated annealing (SA) algorithm as a general tool for 

the solution of combinatorial optimisation problems are its potential to find 

near-optimal solutions, it's general applicability, it's flexibility and it's ease of 

implementation. However, the major disadvantage it carries is the potential 

length .. -- , of time required to converge to a near-optimal solution. 

The amount of computational requirement of the SA algorithm strongly 

depends on the nature and size of the optimisation problem. It ranges from 

a few seconds, e.g. for small instances of the travelling salesman problem, 

up to a few days, e.g. for large instances of the VLSI cell placement 

problem [1]. Generally, the situation with respect to the comp~tational 

requirement worsens as problems increase in size. An effort to speed-up 

the algorithm, in order to keep the computation times within acceptable 

limits is a reasonable thought. The increasing avajlability of multiprocessor 
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systems offers a suitable platform to explore the possibility of parallelisation 

of the SA algorithm. 

6.1 Speeding-up the SA Algorithm 
There exist many different means of speed-up of the SA algorithm. 

Design of a fast sequential SA algorithm results in a more efficient implemen­

tation of the algorithm. Also, use of special hardware accelerators produces 

good performance in many demanding situations. Last but not the least, 

parallelisation is an exciting possibility especially in the realm of present 

days's technology. These three major speed-up approaches are described 

below. 

6.1.1 Fast Sequential Algorithms 
The generation mechanism and/or the cooling schedule of the SA 

algorithni may be improved for an efficient implementation of the algorithm . 

without deterioration of the quality of the final solution. 

/ The state generation mechanism in Szu & Hartley's [2] Fast Simulated 
( Annealing (FSA) uses Cauchy distribution instead of the usual Gaussian , 

distribution resulting in an inverse linear cooling rate. thereby requiring 
less time. The FSA algorithm was found very efficient for the solution of , 
continuous valued functions. The usefulness' of Szu & Hartley's appraoch . 
for the sol~tion of combinatorial optimisation problems is however debatable 
[4] .. The m~in difficulty is with the different formalism ~~ ~ith the lack of 
adequate statistical knowledge of the problem instances required to generate 

I moves that correctly follow the Cauchy distribution. 

In the rejectionl~$$ method by Greene and Supowit [3], new solutions are 

generated with probability proportional to the effect of a transition on the 

cost function. This results in the subsequent solution being chosen directly 

from the neighbourhood of the current solution and thus the rejections are 

eliminated. This method leads to shorter Markov chains in a number of 

problems. However, the efficient use of this method requires some additional 

conditions to be met by the neighbourhood structure, which unfortunately 

can not be met by many combinatorial optimisation problems. 
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It is generally held that cooling schedules alone can not improve the 

efficiency of the SA algorithm [4]. However, it is also expected that certain 

schedules which are tailored to a given problem or a set of problems have 

the possibility of improving the efficiency of the SA algorithm. Cathoor, 

D~Man and Vanderwalle [5] proposed an efficient cooling schedule in which 

clustering occurs. 

Derivatives of the SA algorithm have also been proposed. Hoptroff and 

Hall [6] have proposed a method of optimisation for learning in multilayer 

perceptron which is essentially the simulation of annealed diffusion process .. 

A better than an order of magnitUde of improvement in run-time and also 

a superior quality of solution is reported. Bart and Miller's [7] Mean Field 

Algorithm, which combines the characteristics of the SA algorithm and the 

Hopfield neural network has been used for the graph partitioning problems 

and is found to be as much as 50 times faster than the SA algorithm. 

6.1.2 Hardware Accelerators 

Dedicated hardware accelerators can be used to evaluate the time­

consuming parts of SA algorithm. Iosupovici, King and Breuer's [8) point 

accelerator was used to evaluate the incremental wire lengths in a placement 

problem. Using a different approach, Spira and Hage [9) rewrote the time­

consuming parts of the algorithm in micro code to be executed on a fast 

general purpose micro engine attached to a workstation host. Speed-up factor 

upto 20 was reported for the placement problem. 

6.1.3 Design of Parallel Algorithms 

The parallelisation of the SA algorithm involves the distribution of the 

execution of various parts of algorithm over a number of communicating 

parallel processors. This approach promises significant speed-up of the SA 

algorithm, but is by no means a trivial task. This is mainly due to the 

intrinsic sequential nature of the algorithm, where in order to hold the 

Markov property and the convergence criterion transitions are to be carefully 

carried out one after another. 
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Adapted from [10]. 
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Recently there is seen a growing interest in the research for the design 

and analysis of _~ parallel SA algorithm. In the next section we sh!ill discuss 

the basic aspects related to the design and analysis of parallel SA algorithms, 

and also a brief review of various approaches will be presented. 

6.2 Parallel Annealing Algorithms 

The SA algorithm can be characterised by a sequence of accept/reject 

decisions on attempted trials that constitute a Markov chain (Fig. 6.1a). It 

can be easily seen that the algorithm spends most of the time in generating 

this sequence of trials. The length of the sequence and the computing time to 

propose, evaluate and accept/reject each trial determines the total solution 

time. An efficient parallel SA algorithm should concentrate on this part of 

the algorithm for the exploitation of maximum parallelisation. Decomposing 

each trial, we get the following four constituent tasks: 

a. selecting a new solution from the neighbours of the current solution, 

b. calculating the difference in cost between these two solutions, 

c. deciding whether or not the new solution is to be replaced, 

d. replacing the current solution by the new solution if it is accepted. 

The sequence of trials can then be written in algorithmic form as: 

Repeat 

1. select new solution; 

2. evaluate Ac, the cost difference; 

3. decide to accept or reject the new solutioD; 

4. if accept, execute REPLACE t UPDATE operatioDs; 

Until ThisLoopConditionSatisfied; 

The four steps of the above loop must be' executed sequentially because 

it is not possible to evaluate the cost of a move (transition) without having 

knowledge of the cost of the move and so on. Kravitz and Rutenbar [10) 

attempted to break each step into smaller subtasks, thus defining upto 15 

different small jobs, some of which can be carried out in parallel. In this way, 
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the sequential nature of the SA algorithm is retained. This decomposition of 

a single move is referred to as Functional Decompo,ition of a move or simply 

Move Decompo,ition (Fig. 6.1b). Strong inherent precedence relationships in 

various steps of a complete move reduces the opportunity for parallelism. As 

such, scheduling of the subtasks must be synchronised carefully. Very little 

speed-up is expected with this technique, especially for larger multiprocessor 

systems as fine grain parallelism is difficult to achieve with this technique. 

The reported speed-up is less than 2 for 3 processors and is projected to 

increase only slightly with the addition of more processors. 

The opposite to move decomposition is the Parallel Move (or Multiple 

Move) approach, where several complete moves are executed simultaneously 

in parallel (Fig. 6.1c). Different variations in this approach are possible. 

One such is the Diwion Algorithm proposed in [11], where decomposition 

of the serial SA is done at the Markov chain level. At each temperature 

step, the· Markov chain is divided into subchains each of which can. be 

generated by a different processor. Thus, the algorithm achieves parallelism 

by having the processors work on different copies of the data. The speed-up 

is obtained by spending less time at each temperature, carefully selecting 

the initial conditions for each stage of the cooling schedule in an attempt to 

preserve the qua.si-equilibrium. In this respect, two variations of the division 

algorithm strategy exist. In the first strategy, there is no co=unication 

in between the generation of consecutive Markov chains, i.e. each processor 

continues the generation of a subsequent subchain with the solution given 

by the outcome of the last trial of the preceding subchain obtained by the 

same processor (Fig. 6.2a). In the second strategy, the best solution found 

by the processors that each generate their own subchain is used as the 

outcome of the Markov chain constituted by the n subchains where n is 

the number of processors.1n between subsequent Markov chains the solution 

is co=unicated to all processors and used as initial solution for generating 

the sub chains constituting the next Markov chain (Fig. 6.2b). The first 

strategy returns n solutions - one for each processor - the best of which is 

chosen as final solution. Aarts et. al [11] used both strategies for the solution 

of a lOO-city travelling salesman problem and found very little performance 

difference. They reported speed-up of about 6 using 8 processors. However, 
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it was found that the efficiency of processor utilisation drops as the number of 

processors increases and extrapolation of results shows that no further gain 

can be obtained for about 30 processors. Woodhams and Price [12] ad6pted 

a similarapproacn (division algorithm) for their parallel SA implementation 

for the solution of VLSI cell placement problem. They also reported linear 

speed up upto 4 processors. 
----.~.---.-----

-------
There is another variation of the parallel move approach to the problem 

of parallelising SA, whose distinctive feature is that only one copy of the 

data is shared among all the processors. An example in this class is reported 

in [10]. It uses the concept of serializable subset of moves. A subset M' of 

I' moves M = {mhm2,"·,m,.} is serializable if all of the moves in M' do 
not interact with each other (d. Sec.6.3.1). This means that the decision of 

accepting or rejecting a particular move mj does not depend on the order in 

which the moves in M' are executed. Only serializable moves are allowed in 
such move set. The authors found it difficult to determine large serializable 

subset of moves and as such, their algorithm restricts it's attention to the 

~imple~t ~erializable ~ub~e~, i.e. subsets in which all but possibly one moves 

are rejected. This simplest serializable subsets of moves are obtained by 

attempting many moves in parallel, and by executing (i.e. if the move is 
. / 

accepted by replacing the current solution with the new solution) only the 

move that is accepted first and aborting all the rest. One drawback of this 

procedure is that it seems to favour those simple moves whose cost can be 

evaluated faster than the others. This approach shows a linear speed-up at 

very low temperatures, where most of attempted moves are expected to be 

rejected, but it's performance is poor at high temperatures. 

Darema, Kirkpatrick and Norton [13] proposed a different variety of 

multiple move parallel SA algorithm for the placement of gate arrays. They 

considered only pair-wise exchange of cells as valid moves. In order to 

minimise erroneous calculation of costs due to move interactions, care is 

taken to avoid situations in which the same cell is moved by more than one 

processor at the same time. Connected cells having common edges are also 

avoided. Each processor selects a pair of cells at random; if the pair (or any 

one cell of the pair) is found to be already taken by another processor, the 

attempt to move that pair is aborted and another pair is selected. When 
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a pair is found, flags are raised to mark the cells as locked, the processor 

can now attempt to interchange the cells of the pair, at the end of which 

the processor clears the flags and the loop continues. This procedure makes 

heavy use of synchronisation mechanisms such as loch. The probability of 

finding free pair of cells decreases as the number of processors is increased 

relative to the size of the problem instance. Consequently, the speed-up falls 

with larger multiprocessor system. 

Another class of parallel SA algorithm adopting the parallel move 

approach is the Error Algorithm. This is so called as no explicit attempt 

is made to minimise the errors due to interaction between parallel moves. At 

high temperatures where most of the attempted moves are accepted, there 

is a very high probability of such errors to enter into the solution. However, 

as the system is gradually cooled to low temperatures such possibility is 

virtually eliminated and a near-optimal convergence is expected. In the 

error algorithm parallelism is achieved by letting all available processors 

cooperatively generate the same Markov chain. No division into subchains 

and no communication is used. Therefore, the algorithm is well suited for 

execution on an asynchronous MIMD machine. 

Casotto et ai's (14) implementation of parallel SA algorithm for the 

macro-cell placement problem is based on the error algorithm. The dataset 

is decomposed into as many nearly equal sized subsets as the number of 

available processors. Each processor is allocated one such subset and then 

allowed to execute SA asynchronously thereby allowing parallel moves that 

might result in erroneously calculated cost functions. In order to obtain 

a wider solution space the cells of the subsets are periodically allowed to 

migrate between the subsets. This migration is governed by another SA 

process satisfying a different optimisation criterion. It is found that the 

error reduces to almost zero near the freezing temperature for the processor 

configurations tested (2, 4 and 8). An 80% processor utilisation with 8 

processors is reported. Vai's [15) parallel SA implementation is almost 

similar with the difference that it requires a serial SA preprocessor to create 

the subsets which are to be assigned to the available processors in such 

a way that the neighbour cells belong as much as possible to the same 
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156 



Chapter 6: Concurrent Simulated Annealing 

subset. No migration of cells between subsets are allowed in this particular 

implementation. 

The advantage of the error algorithm is the absence of co=unication 

requirements, enabling simple and straightforward implementation on asyn­

chronous MIMD machine. However, as a result of the presence of erroneously 

calculation of moves it no longer follows the SA serial algorithm strictly and 

consequently, the asymptotic convergence properties of serial SA presented 
in Chapter 5 can no longer be assumed to hold. 

6.3 Concurrent Simulated Annealing 

The Concurrent Simulated Annealing (CSA) [16] follows the parallel 

move approach. CSA uses move sets which are conceptually similar to those 

presented in [10]. However, the main difference is that, where in [10] the 

serializable subsets of moves are discarded because of difficulty in determining 
them and a very simple approximation is used, in CSA an explicit attempt 

is made to create non-interacting sets of parallel moves. The main thrust 

in the design of CSA lies in the determination of such non-interacting move 

sets. In the subsections to follow, some salient features of CSA are presented. 

6.3.1 Parallel Moves and Move Interactions 

The simplest way to execute (evaluate cost difference, accept/reject 

decision, possible update) several moves in parallel is to generate several 

random independent moves and then to execute them in parallel. But, the 

major problem is that such concurrently executed moves often interact. The 

interaction of concurrently executed moves limits the effective parallelism of 
the SA algorithm .. 

When moves are executed in parallel it is important to control how, 

moves that have been accepted by the normal annealing criterion are ac­

cepted and applied to the problem database. At the lowest level, moves which 

are attempted in parallel should not be contradictory among themselves 

(e.g. when concurrent moves involving the same node are accepted in more 

than one processors). Furthermore, erroneous accept/reject decisions are 

possible when moves are executed in parallel. During the execution of each 
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move, the processor executing the move works within it's own domain and 

therefore, can not foresee or predict the effect of it's own decision on other 

activities being performed concurrently. As a result, a correct local decision 

of accepting a move might prove wrong in the global scene. These erroneous 

decisions may result in oscillations in the system and alsomost importantly 

disrupt the proven convergence of the SA algorithm. The erroneous decisions 

which result from concurrent execution of moves in turn result in uncontrolled 

hill-climbing. " 

Two. examples in which concurrently executable moves' interact are 

shown in Figs. 6.3 and 6.4. In both cases, both the shown moves when carried 

out independently show cost improvement but their net effect is that of cost 

increase. The example in Fig. 6.3 shows moves which are contradictory and 

highlight the dilemma of handling these effectively. 

6.3.2 CSA Parallel Move Algorithm 
CSA works with non-interacting serializable move sets. Moves from 

each such move set can be executed in parallel without the risk of them 

interacting and thereby disrupting the convergence to a near-optimal final 

solution. As mentioned earlier, the main thrust in the design of CSA is in 

the determination of such move sets. 

It is difficult to generalise exactly how and under what conditions 

independent moves executed in parallel would interact. As mentioned hi 

the previous subsection contradictory moves (those involving the same node) 

need to be avoided. Furthermore, by limiting the interdependency between 

moves in a move set one would hope that the resulting move set will improve. 

In order to achieve that, we slightly extend the scope of the definition of 

move interaction and postulate that. move interaction would occur if the 
node8 of the graph within the different move6 of the move 8et are connected 

through common edge8 and aLso if 8uch move8 came concurrent read/write 
acce88 conflict. One advantage of this extended definition is that a non­

interacting move set will not require use of any operating system assisted 

mutual exclusion primitives (which usually results in costly, ov~"i-heads):-' 
This however, does not address the overheads imposed by the hardware 

159 



Chapter 6: Concurrent Simulated Annealing 

Procedure AlgorithmJ.; 

MaxMove :- lIo0fProcessors Div 2; 

Select any random node for the move; 

Propose a new but different allocation for the node: 

For i : - 2 To MaxMove Do 

Repeat 

Pick a random node for move: 

Has this node already been selected?: 

Is it a direct neighbour of any node already selected?: 

U ntU Both of the above are non-affirmative: 

Propose a new but diferent allocation for the node: 

EndFor: 

EndProced ure: 

Fig. 6.5 General structure of Algorithm A. 
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architecture of the machine (e.g. overheads of accessing the same page/block 

of shared memory). 

In CSA it is assumed that the execution of the parallel moves (evalu­

ating cost change, accept/reject decision, possible update) are if not totally 

synchronous, synchronous in a way that not any single move in any set of 

parallel moves starts before all the moves in the previous set are completed. It 

is also noted that, when a move is executed, loads in only the two processors 

involved are affected. Since, it has been already pointed out that each move 

is executed independently, then in order to minimise interaction it can be 

safely' proposed that l n/2 J, where'n is number of available processors is the 

maximum number of moves in a move set. Furthermore, it is also noted that 
selecting the same node in more than one move will result in contradiction 

8.Il;d as such needs to be avoided. Additionally, it is also observed that 

selecting a node which is neighbour (sharing a common edge) to any other 

already selected node will cause interaction. 

The starting points for the necessary control procedure for the determi­

nation of non-interacting move_ sets are thus: 

a. size of the move Iset is In/2JI' where n is the number of available 
processors; .----

b. Neighbour nodes can not be chosen. 

In the following, three move generation algorithms are examined and 

their comparative results are presented. The performance of these three 

algorithms A, B and C are studied using a specially written simulation 

software. The results to be presented here are for demonstration purpose 

only and shows the relative efficacies of the algorithms A, B and C. Different 

processor sizes ranging from 2 to 20 processors are considered. For ell:ch 

processor size, 1000 move sets are generated using the three algorithms 

separately. Moves in these move sets are then classified according to how 

they interact with other moves. Those moves, which do not interact with any 

other move are placed in group 1. Group 2 consists of moves which interact 

with only one other move, wheras moves which interact with two other moves 

are placed in group 3 and so on. The sizes of these resulting groups can thus 
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Procedure Algorithm..B; 

MaxMove :- }/oOfProcessors Div 2; 

Select any random node for the move; 

For i : - 2 To KaxMove Do 

Repeat 

Pick a random node for move; 

Has this node already been selected?; 

Is this a direct neighbour of any node already selected?; 

Until Both of the above are non-aJfinnative; 

EndFor; 

Repeat 

Select a random new allocation for the 1st node; 

Until none of the current allocations of the moves in the move set 

is repeated; 

For i :" 2 To MaxMove Do 

Repeat 

Propose a new random allocation for the i Ih selected node; 

Is any current allocation of the nodes in the chosen move 

set repeated?; 

Is this a repeat of any newly chosen allocations?; 

Until Both of the above are non-afflnnative; 

EndFor; 

EndProcedure; 

Fig. 6.7 General structure of Algorithm B. 
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be taken as indicators for the efficacy of the move generating algorithm used. 

For very high processor utilisation, one would hope to have all the moves in 

the move sets to be in group 1, i.e., only non-interacting moves are desirable 

for such demands. For cases where significant number of moves in groups 

higher than 1 is resulted, processor utilisation, efficiency and consequently 

the throughput of the multiprocessor system would be affected. In order to 

execute all the moves in such circumstances, one would require more than 

one pha$e of concurrent move operations. In the first such phase all moves 

from group 1, some from group 2 and some more from other groups will 

be executed. Only those moves from higher groups which can be executed 

without causing any interaction with any other moves are to be considered in 

the first phase. Similarly, for second phase, all the remaining moves needs to 

be examined and only those satisfying the above criterion will have a realistic 

chance to be included. Higher phases of concurrent operations can be carried ' 

out in similar fashion so'long as there are free moves available. It is clear 

that the upper limit of the maximum number of phases required is M, where 

M is the size of each move set. In the efficacy graph to be presented later, 

we show the number of moves in different phases (according to their degree 

of interaction) plotted against different processor sizes and in oder to keep 

the graph uncluttered, data values upto phase 5 are plotted. The data flow 

graph instance of the VLSI logic simulation graph of 4x4 multipler circuit is 

used. 

Algorithm A : 

This is the simplest of the three algorithms tested. In fact in Algorithm 

A is a over simplification of the move selection criterion deriving from the two 

starting presumptions already established. The structure of the algorithm is 

shown in Fig.6.5. Fig.6.6 shows the plot of the results from the simulation 

run of Algorithm A. It is clearly seen that the efficacy of the algorithm 

deteriorates very quickly as the number of processors is increased. The high 

interaction for large processor systems make Algorithm A unsuitable for 

practical use. 
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Procedure Algorithm_C; 

MaxMove :- NoOfProcessors I)iv 2; 

Select any random node for the move; 

For i : - 2 To MaxMove 1)0 

Repeat 

Pick a random node for move; 

Has this node already been selected?; 

Is this a direct neighbour of any node already selected?; 

Is this node's present allocation is the same as that of any 

other node already selected? ; 

Until All of the above are non-affirmative; 

EndFor; 

Repeat 

Select a random new allocation for the 1st node; 

Until none of the current allocations of the moves in the move set 

is repeated; 

For i : - 2 To MaxMove 1)0 

Repeat 

Propose a new random allocation for the i Ch selected node; 

Is any current allocation of the nodes in the chosen move 

set repeated?; 

Is this a repeat of any newly chosen allocations?; 

Until Both of the above are non-affirmative; 

EndFor; 

EndProcedure; 

Fig. 6.9 General structure of Algorithm C. 
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Algorithm B : 
This is almost similar to Algorithm A with an additional restriction 

incorporated into it. As before, the nodes are first selected one at a time 

following the rule we have set before. But, this time the new allocations for 

each node are proposed only after all the nodes to be moved in the move set 

are first selected. The new allocations are proposed one by one in such a way 

that not anyone of the old allocations or new allocations already proposed 

are repeated. This way interaction between the moves in a move set are 

further reduced. 

The simulation results of Algorithm B performed for the same graph 

instance with processors ranging from 2 to 20 are presented in Fig.6.S. As 

before, a total of 1000 move sets were generated in each processor case. An 

improvement is clearly seen. But, again the result is far from the ideal one. 

Algorithm C : 
In this, we incorporate more control procedures in the way a move is 

proposed. Here, in addition to the rules we have already used for the selection 

of a node in a move set, we also make sure that it's present allocation is not 

the same as that of any already chosen node in the same move set. Once all 
the nodes in the move set are chosen, we then propose the new allocations 

for the nodes chosen in the same way as in Algorithm B. 

Simulation results of Algorithm C is presented in Fig.6.10. As is evident, 

this algorithm produces the ideal result, i.e. move sets without interacting 

moves and obviously best suited for parallel implementation. The moves 

thus selected are optimal concurrent moves. The price for the excellent 

performance of Algorithm C is however the increased complexity and the 

resulting higher execution time. 

6.3.3 Parallel Accept/Reject Decisions 

The accept/reject decision of a move is dependent on the change of cost 

(~c) resulting from the move. This decision is governed by the acceptance 

criterion of eq.5.4. In a parallel implementation of SA based on parallel 

move approach, the decision to accept or reject a new solution can be done 

globally or locally. In the global decision scheme, the individual processors 
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report their cost changes associated with the moves they were executing to 

a master processor. The master processor sums up the costs and decides 

whether or not to accept the summed up new solution. 

The other possible scheme for accepting a solution generated by multiple 

moves is to consider the cost changes separately for each move. The 

accept/reject decision is locally made by the processors involved. 

Since the moves are evaluated locally and independently, it is possible 

that not all, but part of the moves attempted will be accepted and appear 

. in the new solution. We consider a solution produced by the local decision 

scheme and using simple statistical analysis similar to [15] compare this 'with :' 

its' probability of being accepted in a multiple move SA process using global 
\ decision scheme. We suppose that M is the size of the move set and let c; 

I indicate the cost changes associated with each move i =.1,;", M. Three 

I: . differenfcasesare possible and we here explore these to compare the relative 
, 

suitability of the two_~ecision_ schemes .... 

Case A: 

The cost changes due to the moves are Ac; > 0, for i = 1,···, M, 
which suggests that all of them are cost increasing moves. In the local 

decision scheme, the probability of accepting the move i is exp( -Aea/t). 

The probability of accepting all the moves is the same regardless of 

whether the decision is made locally or globally. This probability can 

. be expressed as, 

M 

Pl = IT exp (-Aea/t) 
i=l 

M 

= exp (-?: Aea/t) • 
.=1 

6.1 

In the local decision scheme, there is also a finite probability of accepting 

x moves out of M moves in the resulting solution. These can be 
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numbered as 1 to:c. The probability of accepting these moves in local 

decision scheme is, 

z M 

P2 = IT exp (-t:.c;/t) IT (1- exp (-t:.Cj/t» 
;=1 j=z+1 

=exp(- ~t:.C;/t) jlL (1-exp(-t:.c;/t». 6.2 

Case B: 

The cost changes resulting from the moves are t:.c; :5 0, i = 
1", " M. These changes indicate that none of the moves has worsened 

the cost function. Since, t:.c; :5 0, a solution with these moves will be 

accepted in both the schemes. 

Case C: 

Mixed cost changes are produced in this case. Of the M total 

moves, y moves numbered from 1 to y are cost increasing moves while 

the rest improve or at least do not deteriorate the cost value. These 

cost changes can be written as, t:.Cj > 0, i = 1,,,,, y and t:.c; :5 0, i = 
y + 1"" , M. In the local decision scheme, the moves i = y + 1, ... ; M 
will definitely be accepted. In addition, we assume that :c out of the y, 

cost increasing moves are accepted. The probability of accepting such 

a solution through local decisions is, 

z , 

Pa = IT exp (-Ac;/t) IT (1- exp( -t:.Cj/t» 
;=1 j=z+1 

= exp(- ~AC;/t) jfty -exp(-t:.cj/t». 6.3 

If the cost is evaluated globally and EI=1 t:.c; + EJ=z+! t:.Cj :5 0, the 
cost improving moves dominate the cost evaluation and the probabil­

ity of accepting all moves is 1. On the other hand, if EI=1 t:.c; + 
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EJ=Z+1 ~Cj > 0, the global effect of all the moves is cost increasing 
and probability of accepting them is, 

6.4 

The global decision scheme considers all the moves at the same time 

and they are either totally accepted or totally rejected. This eliminates 

the possibility of accepting erroneously calculated cost values. In the local 

decision scheme, moves that improve the cost will definitely be accepted, 

while the cost increasing moves are handled using probability of eq.5.4. This 

is an advantage of the latter scheme. Since, it will not discard the cost 

improving moves thus ensuring enough perturbations to satisfy the quasi­

equilibrium condition of the SA process. This feature is especially useful 

at the lower temperatures and thus the capability of locating the optimal 

solutions at the final stages of the SA process is enhanced. 

Since, in CSA non-interacting parallel moves are always used, the 

advantage of global decision scheme is rendered redundant and as such, the 

local decision scheme employed ensures that sufficient perturbations are used. 

6.3.4 CSA Implementation Model 
The concurrent simulated annealing (CSA) algorithm makes use of 

only one copy of the problem database and also no data decomposition is 

used. This necessitates the use of a shared-memory closely-coupled MIMD 

multiprocessor system. This requirement contrasts with the message-passing 

distributed memory MIMD machine required by the concurrent recursive 

binary partitioning (CRBP) algorithm discussed in chapter 4. 

From Sec.6.3.2 we find that CSA relies on pseudo-synchronous concur­

rent execution of moves and also that the maximum number of concurrent 

moves in a single move set is at best only half of the available processors. This 

frees the other half of available processors to carry out the move generation 

tasks. The available processors c8.n thus be divided into two separate groups. 

One group is given the task of generating the moves to be executed by the 
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,---------------------------------------------------------------------------------------, 
i Server Processors 

I Processor 1 

l _________ ~-::::::::::_~_~~_:::==:::=~~_____ __ 

Processor 7 Processor 6 ProcessorS Processor 4 

Oient Processors 

Processor 3 Processor 2 Processor 1 

---------------- ----------------- --------~ 

Processor 7 Processor 6 Processor 4 

Oient Processors 

Fig. 6.11 CSA implementation models. Server is in master-slave mode (top) 
and server is in pipe-lined mode (bottom). . . 

172 



Chapter 6: Concurrent Simulated Annealing 

other group and can be referred to as move ,erver. One other vital task 

to be performed by this group is the task of coordinating the whole CSA 

process. The processors in the other group receive move instructions from 

the move server and execute them. This group can thus be referred to as 

the move client. CSA can thus be considered as based on the client-server 

model (Fig.6.11). The transfer of moves between the server and the client is 

accomplished through shared variables and synchronised through the use of 

shared flags and counters. 

The processors in the client group execute the moves handed over io 

them by the server group independently and non-cooperatively. The code 

that each of the client processors execute can be represented as : 

Forall clientprocessors in Parallel Do 

Repeat 

1. Wait for the move instruction from server; 

2. Evaluate cost difference, ~c; 

3. Make an accept/reject decision; 

4. If accepted, update the database; 

Until StopCriterionSatisfied; 

EndForall; 

Steps 2 to 4 above can be carried out by each client processor at full 

speed using the shared global memory and no mutual exclusion operation 

would be necessary for these steps. However, step 1 may become a potential 

performance constraint for CSA. The efficiency of CSA depends on the wait 

time at step 1 and in turn depends on the performance of the move server. 

The wait operation can be realised by using a P(Wait) or V(Signal) on a 

semaphore. This however, requires an operating system involvement and 

also process rescheduling. Furthermore, the time that the waiting process 

remain idle can not be used effectively by another process in the current . 

situation. Instead, simple ,pin, lock synchronisation primitive using a shared 

lock variable can be used. A client processor clears the lock when it is ready 

to execute a move and would then loop indefinitely until the server sets the 
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Fig. 6.12 Perfonnance comparison of the three move generating algorithms 
A, B & C. The polynomial-time coolin~ schedule is used. Graph 
data instance are 4x4 multiplier circuit l top) and frequency locked 
loop circuit (bottom). . 
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Fig. 6.13 Performance comparison of the sequential (SSA) and the concur­
rent (CSA) implementations of the simulated annealing algorithm. 
Data instances are 4x4 multiplier ckt. (top) & frequency locked 
loop ckt. (bottom). The polynomial-time cooling schedule is used. 
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Fig. 6.14 Performance comparison of the two cooling schedules for the con-
. current simulated annealing (CSA) algorithm. Data instances are 

. 4x4 multiplier ckt. (top) & frequency locked loop ckt. (bottom). 
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lock at which point it is assumed that a move instruction has arrived. The 

latter method is simple to implement and as the synchronisation times are 

assumed short, the CPU cycles wasted by the spin locks will be less than the 

cycles wasted by all the operating system traps generated by the semaphore 
i, operation [17]. , . 

The processors in the move server group carry out the task of generating 

non-interacting concurrent moves to be executed by the client processors. 

The code for move generation is decomposed. and assigned to the server 

processors. Exact decomposition is not shown here, as it depends on the 

number of processors used. However, the two possible decomposition models 

which can be used are, 

a. master-slave operation (Fig.6.Ua), and 

b. pipe-lined operation (Fig.6.Ub). 

The efficiency of CSA largely depends on the performance of the move 

server. As such, the decomposition of move generation task requires careful 

attention. In thus connection, the rich repertoire of parallel algorithms in 

[17, 18] can be consulted. The move generation task requires a good number 

of search for neighbouring nodes (Algorithms A,B and C, Sec.6.3.2). Since, 

the average degree of practical VLSI simulation graphs generally lie between 

2 and 5 [19], it is hoped that the search for neighbouring nodes can be 

. accomplished sufficiently quickly. With large number of nodes in the problem 

graph instance relative to the number of processors, using the pipe-lined 

operation model, it is also possible to generate the moves in truly pipe-lined 

fashion and thereby improving the performance of the move server. 

6.4 Simulation Results 

Simulation was carried out to assess the performance of the CSA 

algorithm. Because of the non-availability of a suitable multiprocessor 

system or a simulator, CSA was simulated on a sequential computer. The 

CSA simulation program executes sequentially different concurrent processes 

of CSA in appropriate sequence and avoids overlappings or interactions 

between them. The concurrent moves are first generated in one module 
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and are then fed ,to the second module where these moves are executed in 
sequence. This simulation program carries out only the functional simulation 
of the CSA algorithm and as such records only the scheduling cost and other 
related parameters. Parameters such as processor utilisation, message queue 
statistics etc. are not thus available. 

Fig.6.12 shows the performance comparison between the three move 

generating algorithms A, B and C. Unlike Figs. 6.6, 6.8 and 6.10, here the 
average final costs of the resulting solutions due to these algorithms used 
in CSA implementations are reported. It is to be noted that, as CSA is 
proposed, interaction between concurrently executable moves are not at all 
accepted and so by that account algorithms A and B are to be avoided (as 
very few of their resulting moves are interaction free). However, in order 
to show their efficiency, the CSA simulation program executes all the moves 
generated by all the three move generating algorithms nontheless. The results 

obtained are interesting in that, for all the processor sizes considered (2, 4, 

8 and 16) CSA implmentation based on algorithm C always outperformed 
the other two implementations. The margin of difference is however variable 
for different processor sizes and also different data instances considered. We 
recall here that, algorithm C is very selective in the way it generates moves 
resulting in non-interacting moves in move sets. The likelyhood is then 
that, these non-interacting moves in turn cause perturbations in the solution 
space which are not localised in normal sense and thereby searches the entire 
solution space more exhaustively for an optimal solution. 

However, the above hypothesis does not seem to hold good in Fig.6.13, 

where the resulting average scheduling costs from CSA (using algorithm 
C) and the sequential SA are compared. The performances of both the 
implementations are very similar. By being selective for the generation of 
moves, CSA with algorithm C, deviates slightly from the true spirit of SA 
where truly random moves are used to simulate the physical process of metal 
annealing. On the other hand, however, CSA conforms to the asymptotic 

_ convergence properties outlined in chapter 5. 

Finally, average final (scheduling) costs from the simple cooling schedule 
and the polynomial-time cooling schedule are compared in Fig. 6. 14. As 
before, the latter schedule-is found to produce more acceptable solutions, 
however at the cost of increased running time. 
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CHAPTER 7 

Conclusions & Discussion 

This chapter provides an overview of the work as a whole. The results 
obtained 50 far are reviewed and the performances and suitability of the 

algorithms investigated are discussed. Finally, a conclusion of the overall 

work is made and those aspects requiring further research are highlighted. 

In this thesis, the problem of scheduling YLSI simulation systems on 

a general or special purpose multiprocessor systems is considered. The 

concurrent YLSI timing simulation system considered is based on the data­

flow computation model. A simple directed acyclic graph (dag) model is 

adopted for the YLSI simulation system. This allows easy mapping of 

the simulation system onto the target multiprocessor system. However, in 
order to achieve an efficient and near-optimal mapping scheduling algorithms 

are used. Because of the NP-Hardness of scheduling problem, heuristic 

procedures are favoured over exhaustive enumeration search procedures. 

Two heuristic procedures are investigated in detail and· their concurrent 
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implementations are proposed. The first of these two heuristics involve a 

hierarchical partitioning of an input graph and the other one.has its root in 

classical statistical physics. 

7.1 Review of Results 
The focus of the research reported in this thesis is on heuristic algo­

rithms. Two heuristic algorithms - the recursive binary partitioning (RBP) 

and the simulated annealing (SA) are investigated in detail. Being heuristic 

and approximate in nature, the above two algorithms are not expected to 

provide optimal solutions for all cases of the multiprocessor task scheduling 

problems all the time. Indeed, for most of the test cases considered, their 

optimal solutions are not known. The performance analysis of the RBP and 
SA algorithms as such involves their average performance. Furthermore, all 
the results unless explicitly stated are expressed as the percentage of the 

average (random) initial scheduling cost of the task system. 

The recursive binary partitioning (RBP) algorithm is based on 

Kernighan-Lin's [1) graph bi-partitioning procedure. The basic bi­

partitioning procedure used is a slightly modified version of KL's original 

heuristic. This is needed to bring the load-imbalance criterion in the objec­
tive function of the multiprocessor task scheduling problem presently posed 

as a graph partitioning problem. The modification involves repetitive move 
operations as opposed to the original repetitive swap operations. The move 

operations are accomplished by transferring a single node from one of the 

sub-graphs of the tentative partition to the other sub-graph. Three different 

move selection rules are explored. Among these three rules considered, Rule 

C is found to be most efficient as far as the graph partitioning objectives are 

considered (Sec. 4.1.2) and as such this rule is used in all subsequent versions 

of RBP and also in its concurrent implementation, CRBP algorithm. 

The multi-way partition in chapter 4 is accomplished through the 
application of hierarchical partitioning process. At each level of partitioning, ' 

starting from level 1, the modified KL bi-partitioning process is applied and 

,the resulting partitions are then propagated to the next higher level. This is 

repeated until the desired number of partitions (a power of 2) are obtained. 

This major criticism 'of the recursive binary partitioning process is that for 
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Fig. 7.1 Execution time as function oUhe problem size for different processor 
sizes. Results from the Recursive Binary Partitioning al~orithm 
(top) & the Simulated Annealing algorithm with polynomial-time 
coohn~ schedule (bottom) are presented. Synthetically generated 
graph Instances are used. 
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cases where larger than quite a few partitioning levels are required, the final 
partition cost often turns out to be of inferior quality. This is explained by the 

fact that the early levels of partitions (mostly levels 1 & 2) tend to minimise 

the number of edges cut at the cost of keeping more heavily connected nodes 

of the input graph within the single sub-graphs and these sub-graphs then 

as a result have less chance of attaining a near-optimal cut in the next bi­

partitioning process. This amounts to a greedy approach at earlier levels. In 

our experiment, it has been found that, for cases where partition levels upto 3 

(three) resulting in 8 partitions are required, the resulting final solutions are 
quite acceptable. A marked deterioration of the quality of the final partition 

cost is noticed when 16 partitions are created. 

In a separate experiment, an attempt is made to reduce the adverse 

affect of the result of the earlier (levels 1 & 2) partitions on the final partition 

. cost for multi-way (~ 4) partitions. This is accomplished by varying the 

relative emphasis on the two cost components, viz. communication and 

load-imbalance costs. However, the results obtained failed to show any 

improvement achieved. It is found that the final partition cost is practically 

invariant beyond a certain value of the weight factor, z (eq. 4.11). For 
smaller z, the final partition cost is mostly made up ofIoad-imbalance cost as 

expected and larger values of z result in final partition costs with a significant 
communication overhead. It is however, to be noted that the above findings 

need to be judged with the actual formulation of the partition cost, which 

for the present case places equal emphasis on both the two cost components. 

The concurrent recursive binary partitioning (CRBP) procedure is a 

logical progression of the RBP algorithm. In the CRBP algorithm presented 

in chapter 4, the be$t-of-bv.nch, which means engaging a group of processors 

whenever available, to perform independently the bi-partitioning procedure 
at various stages at different levels of a multi-way partitioning process 

but accepting the best result only is used. This resulted in an improved 

performance (Fig. 4.12) for all the cases considered. 

The simulated annealing (SA) (2) algorithm and its concurrent imple­

mentation (CSA) are investigated in detail in chapters 5 and 6 respectively. 

In chapter 5, the SA algorithm is introduced as modeled on Markov chains. 

Two cooling schedules are investigated. Both of these are approximations of 
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Fig. 7.2 Frequency distribution of final scheduling costs for 2-processor 
system. Results from CSA are on the left & that from CRBP are on 
the right. Graph data instances used are 4x4 multiplier ckt. (top) 
& frequency locked loop ckt. (bottom). 
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Fig. 7.3 Frequency distribution of final scheduling costs for 4-processor 
system. Results from CSA are on the left & that from CRBP are on 
the right. Graph data instances used are 4x4 multiplier ckt. (top) 
& frequency locked loop ckt. (bottom)~ 
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the inhomogeneous Markov chains and are expected to run in polynomial­

time. Two transition mechanisms, swap and move and also various composi­

tions of these two are considered. It has been found that for most of the cases 

the final cost obtained has very little dependence on the choice of transition 

mechanism (or their compositions). However, 100% swap definitely have a 

deteriorating effect on the final schedule. This is so because of the inability 

of swaps to address the load-imbalance issue properly. 

The performances of the two cooling schedules are analysed by varying 

different control parameters as applicable. As expected, both schedules 

provided improved results with the increase in the size parameter, m (i.e., 

when number of attempted transitions are increased) but at the cost of a 

co=ensurate linear growth in solution time. The performance of the simple 

cooling schedule is found to be practically invariant with the choice of initial 

acceptance ratio, whereas the polynomial-time cooling schedule showed a 

marked dependence with this control parameter. Overall, the simple cooling 

schedule is found to be quicker in reaching a solution compared to the 

polynomial-time cooling schedule. However, the latter consistently provided 

better quality solutions than the former and also the latter is more robust 

and amenable to the variation in problem instance by virtue of its design. 

In retrospect, however, the choice of any of these two cooling schedules is 

difficult and needs to be carefully weighed in relation to the problem instance. 

The concurrent simulated annealing" (CSA) algorithm is discussed in 

detail in chapter 6. One unique feature of CSA is that it works with 

totally interaction free parallel moves thus ensuring conformance with the 

asymptotic convergence properties of the SA algorithm. Three move gener­

ation algorithms are explored from which Algorithm C is found to be 100% 

successful in producing totally interaction free move sets. Comparing the 

" performances of these three move generation algorithms it is also found that 

Algorithm C produces the best scheduling cost. This is attributed to the 

non local perturbation activities within the solution space. Finally, the two 

cooling schedules, viz. simple and polynomial-time schedules are applied in 

CSA and as before, the latter is found to produce better solutions. 
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Fig. 7.4 Frequency distribution of final scheduling costs for 8-processor 
system. Results from CSA are on the left & that from CRBP are on 
the right. Graph data instances used are 4x4 multiplier ckt. (top) 
& frequency locked loop ckt. (bottom). 
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Fig. 7.5 Frequency distribution of final scheduling costs for 16-processor 
system. Results from CSA are on the left & that from CRBP are on 
the right. Graph data instances used are 4x4 multiplier ckt. (top) 
& frequency locked loop ckt. (bottom). 
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7.2 Recursive Binary Partitioning vs. Simulated 
Annealing 
In this section the two heuristic algorithms studied so far are compared. 

Fig. 7.1 compares the time requirement of both the algorithms. Since, the 

concurrent implementations are simulated with a functional simulator, the 

exact determination of their time requirement is thus difficult and as such 

Fig 7.1 depicts the time requirement of their serial implementations. For the 

SA algorithm the polynomial-time cooling schedule is used with the following 

parameter set, (0 = 0.98, f. = 0.00001, 8 = 0.1 and m = 1. Synthetically 

generated graph instances with number of nodes ranging from 10 to 100 with 

roughly uniform connectivities are used. Four different processor sizes 2,4,8 

and 16 are considered. 

It is interesting to note that the observed time complexity of both RBP 

and SA algorithms for the different processor sizes considered differs quite 

significantly. The RBP algorithm requires roughly O(P) time and the SA 

algorithm's requirement is slightly worse than O(k logk), where k is the 

number of nodes in the input graph instance. However,' the actual time 

taken by the SA algorithm is much higher than it's counterpart. RBP is 

found to be in cases about 130 times faster than SA. Furthermore, in SA the 

time requirement is very strongly dependent on the processor size.' This is 
a direct consequence of the formulation of the length of the Markov chain 

used (eq. 5.35). On the other hand, in RBP, there is significantly lower 

dependence of time requirement on processor size. This can· be explained 

as follows. Even though, for large processor sizes, more partitioning levels 

are required thereby causing increased demand for completion time, the sub­

graphs ready' to be bi-partitioned at the last level become comparatively 

much smaller in size to warrant a significant increase in completion time. 

Figs. 7.2 to 7.5 give a performance comparison between the eRBP and 

CSA algorithms. The figures show the frequency distribution of the schedules 

obtained through the two algorithms. A total of 200 iterations are made for 

each of the two algorithms and for different processor sizes considered. The 

data instances considered are the simulation graph data for a 4x4 multiplier 

ckt. and also for a frequency locked loop ckt. The histograms in Figs. 7.2 

to 7.5 show the final schedule cost expressed as percentage of the average 
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(random) initial scheduling cost against their frequency of occurrences. It 
is observed that for smaller processor size, the spread of the final schedule· 

cost for CSA is comparatively larger than that for CRBP. However, this 

is reversed as the processor size is increased. Also, the mode (the most 
frequent result) for CRBP tend to be nearer to the lower edge of the spread 

. as compared to the CSA suggesting that the CRBP is statistically superior 

than its counterpart. The most important observation is that the overall 

performance of CRBP is comparatively much superior than that of CSA 

for very small processor size (2). But, as the processor size is increased, 

CSA slowly outperforms CRBP and for processor size 16, CSA comes out as 

the winner with a significant margin. This behaviour is, however, expected, 

as the result of successive partitioning in CRBP leaves the final result less 

acceptable and is now vindicated in a comparative study. 

The variation in the pattern of these histograms strongly suggest a 

dependence of the graph structure on the final scheduling cost. Where 

the graph for the 4x4 multiplier cid. has most of the nodes more or 

less uniformly connected except for few branches showing strong sequential 

activity (Appendix A), the graph for the frequency locked loop ckt. shows 

wide variance in the connectivity pattern, where one node is very heavily 

connected in relation to the other nodes. This variance in graph structures, 

it is believed, favour a certain natural partitions in some cases and offer 

difficulty in attaining non-natural partitions. 

Tables 7.1 and 7.2 summarize the results depicted in the above his­

tograms. Here, the maximum, minimum and average scheduling cost as well 

as the standard deviation is expressed as the actual scheduling cost. The last 

column, however, expresses the figures as percentage of the average (random) 

initial scheduling cost as expressed throughout this thesis. 

The final phase of this comparative study of CRBP and CSA algorithms 

involve subjecting these algorithms to problem instances with known optimal 

scheduling cost. These problem instances are synthetically generated from 

some basic graph instances. Multiple (the same number as the number of 

partitions or processor size is required), but disjoint copies of the basic graph 

instance is used as a single graph data instance. The resulting optimal 

scheduling cost thus becomes zero. Three basic graph instances are used 
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- (a) a small synthetic graph with 6 nodes and two visible clusters, (b) 4x4 

multiplier ckt. and (c) frequency locked loop ckt. Table 7.3 summarizes the 
result. The final scheduling cost is once again expressed as the percentage of 
average (random) initial scheduling cost. The total success column shows the 

number of times either algorithm achieves the optimal solution. The relative 
success column shows the number of times either algorithm performed better 

than the other. It is clearly seen that for the basic graph instances (a) and 

(b), optimal solutions are more easily achievable. Basic graph instance (c) 

proved to be much more difficult to partition optimally. For the first two 

basic graph instances and for processor sizes upto 8, CRBP outperformed 

CSA. The variation in graph structure in the basic graph instance (c) as 

stated in the preceding paragraph is thought to have influenced a change 
in the pattern of results. This again is another demonstration of structures 

of certain graph data instances affecting the natural partition. Overall it is 

observed that CRBP is more at home in finding the natural partitions for 

simple graphs, whereas for difficult graphs like the basic graph (c) CSA has 

shown a definite edge. 

7.3 Conclusions 
Summarizing the above results, we present the following conclusions: 

-a:. Concurrent heuristic algorithms proposed in this thesis offer a viable 
al ternative for the solution of a class of difficult combimi.toriai optimi-' 
~ation problems. . . 

b. in view of th~ impro~ements in scheduling overheads obtained, it i~'faii 
to expect a general speed-up of the concu~ent VLSI timing simUlation 
system in an actual run. 

c. For the heuristic algorithms studied, concurrency does not affect the 

solution quality. Concurrency in many instances enhances the solution 

quality. 

d. Structure of the graph data instance is thought to have an influence 
on the solution quality. 

e. For the data instances considered, CRBP algorithm is found to be 
faster than the CSA algorithm. However, the latter is algorithmically 

superior to the former. 
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- Final Scheduling Cost ca ~ . .... :Eu Of! ., 
.. 0 " "OIl As%of 0 .... " .8~ . ., Cl·_ Standard Initial 00-SCl ~ e " Maximum Average Minimum Deviation Scheduling i~ .... ~] Cost <~ 

2 200 46.42 13 10.07 9 1.21 21. 69 

4 200 69.85 24 21.46 20 0.75 30.72 

8 200 79.49 36 32.72 31 0.95 41.17 

16 200 83.35 56 49.60 44 2.09 59.51 

- Final Scheduling Cost Ol'" .... ·=8 Of! .,. .-
.. 0 " "OIl As%of 0 .... c 
.8~ . ., ~~ Standard Initial Se> ~ e" 
i~ ~] Maximum Average Minimum Deviation Scheduling .... Cost <~ 

2 200 46.93 42 13.06 9 3.28 27.84 

4 200 69.39 23 21.00 19 0.85 30.26 

8 200 79.25 33 30.28 29 1.01 38.21 

. 

16 200 83.24 35 34.30 34 0.45 41.20 

Table 7.1 Table comparing the performances of the Concurrent Recursive 
Binary Partitioning (CRBP) (top) & the Concurrent Simulated 
Annealing (CSA) (bottom) algorithms for diffel;ent processor sizes. 
Graph data instance is the 4x4 multiplier ckt. 
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Ol~ Final Scheduling Cost 
.... :E8 
o~ '" § oS 00 , As%of .8~ .'" c.>.S Standard Initial 

~ 
00-s" e = i£ "il Maximum Average Minimum Deviation Scheduling - ~13 Cost 
'" 

I 
2 200 90.54 27 9.09 6 4.66 10.04 

4 200 131.58 37 28.87 25 2.14 . 21. 94 

8 200 146.58 59 51.82 47 2.03 35.35 

16 200 151.96 106 93.07 83 4.10 61.24 

.. 

- Final Scheduling Cost Ol'" ._ 0 .... .~U o~ '" 
.. 0 C Coo As%of 0 -c 
0'" .", 0._ 
.0'" 00- Standard Initial SO ~ e= i£ oil Maximum Average Minimum Deviation Scheduling - >.0 Cost <0 

'" 
2 200 90.34 71 15.20 6 7.48 16.83 

4 200 129.05 39 29.42 24 2.87 22.80 

8 200 147.04 99 43.74 38 4.78 29.74 

16 200 152.04 57 55.40 54 0.66 37.52 

. 

Table 7.2 Table comparing the performances of the Concurrent Recursive 
Binary Partitioning (CRBP) (top) & the Concurrent Simulated 
Annealing (CSA) (bottom) algorithms for different processor sizes. 
Graph data instance is the frequency locked loop ckt. 
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f. The CRBP though gives very good quality solution for smaller pro­

cessor sizes, a deterioration in the solution quality is observed with 
the increase in processor size. CRBP however is well suited for finding 

the natural partition present in some graph instances. 

g. The CSA algorithm has a consistent performance behaviour. 

h. The idealised speed-up of CRBP is not expected to grow linearly with 1. 
the increase of processors, but is expected to stay within the lower :. 

I 

bound of log n. I , 

i. The ~aximum speed-up with CSA is only half of the processors en­
gaged, but is expe~ted to grow linearly with the increase of processors. 

'7.4 Discussion 
Through the simulation results presented so far, it is established that the 

recursive binary partitioning (RBP) algorithm offers a fast and reasonable 

means for the solution of multiprocessor task scheduling problems. However, 

where slightly larger multiprocessor systems are considered, the advantage 

of RBP, especially its ability to provide reasonable quality solutions slowly 

disappears. The simulated annealing algorithm, on the other hand, though 

comparatively slower is much more effective for handling larger multipro­

cessor systems. It is however, to be appreciated that, the discussion here 

applies for coarse grain model of parallel processing. The complexity of the 

scheduling problem for the other competing model, viz. fine grain parallelism 

is much too high for the two heuristics considered here to possibly make 

. them unsuitable. For this scenario a completely different strategy needs to 

be considered. 

Apart from the speed-up of SA algorithm through concurrency as 

suggested in CSA,' there exists other potential means - namely by util­

ising a more efficient cooling schedules, pre-processing of problem instance 

for which the RBP algorithm is eligible, improved approximations of the 

inhomogeneous Markov chain etc. These, however, were not considered in 

the current study in order to keep the problem of parallelising SA algorithm 

simple. It would provide an interesting exercise for the future to incorporate 

some of these ideas into CSA. 
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Relative 
Success 

Average Standard 
Scheduling Deviation 

Cost cas 
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CSA CRBP CSA CRBP CSA CRBP CSA CRBP 

20 20 -. 0.00 0.00 0.00 0.00 

20 20 - 0.00 0.00 0.00 0.00 

2020 - 0.00 0.00 0.00 0.00 

19 o 20 o 0.14 39.77 0.61 3.47 

Total 
Success 

Relative 
Success 

Average Standard 
Scheduling Deviation 

Cost 

CSA CRBP CSA CRBP CSA CRBP CSA CRBP 

o 20 o 20 6.96 0.00 3.21 0.00 

o 20 o 20 5.06 0.00 1.71 0.00 

o 20.' 0 20 1.80 0.00 1.04 0.00 

o 

Total 
'Success 

O. 20 o 0.34 49.54 0.52 1.10 

Relative 
Success 

Average Standard 
Scheduling Deviation 

Cost 

CSA CRBP CSA CRBP CSA CRBP CSA CRBP 

o o 8 12 14.0010.36 2.86 3.65 

o o 15 58.7010.761.891.76 

o o 19 1 6.52 12 •33 1.09 1.29 

o o 20 o 4.9655.88 0.21 1.30 

Table 7.3 Table comparing the relative,performances of the algorithms CSA 
& CRBP when the optimal schedulin~ cost is known. Data 
instances are made of multiple but disjoint copies of a 6-node, 

. two cluster graph (top), 4x4 multiplier ckt. (middle) & frequency 
locked loop ckt. (bottom). 

196 

., 



, Chapter 7: Concl'U~ion~ & Di~c'U~~ion 

It has been found that with CSA, free from interactions between parallel 

moves, the upper limit of the achievable speed-up is only half of the processors 

engaged. However, a linear growth of speed-up with processors is expected. 

The above restriction is a direct result of the identification of interaction 

between parallel moves being executed simultaneously and is a consequence 

of the way the problem is enclosed within it's own bound, i.e., the processors 

trying to find an optimal mapping of nodes onto themselves. This speed-up 

limitation however, does not apply to the VLSI celll.ayout problem which 

bears a close resemblance with the multiprocessor task scheduling problem. 

In order to achieve further speed-up with CSA an adaptive strategy can 
be employed. This involves the merging of CSA with another concurrent 

variant of SA perhaps modeled on the error algorithms. CSA can be applied 

at the early high temperature stages when there is a greater probability 

of errors occurring and then to use the alternate algorithm which engages 

all the available processors to take over the annealing process at lower 

temperatures. This hybrid strategy has the potential to offer increased speed­

up performance, but is riddled with experimental difficulty. The switch over 
point needs to be very carefully determined so as not to affect the final 

• 
solution. The speed-up advantage needs to be carefully weighed against 

the effect on the final solution, which might be adulterated by accepting 

erroneous transitions at lower temperatures. 

Apart from the two heuristics investigated there are many other heuris­

tic algorithms which might have the potential to offer acceptable solution at 

reasonable speed for the current problem. Preliminary investigations with 

the Genetic (or Evolution) Algorithm (GA) [3] and Artificial Neural Network 

(ANN) [4] were made. The initial results were not very encouraging. How­

ever, both promise, easy parallelisation and modifications in the algorithm 

or setting up right parameters could improve their performance. 

The scheduling problem considered in this thesis is that of static schedul­

ing. This is made possible as the problem and the graph data instances used 

have sufficient a priori information to support static scheduling. It is has 

been shown that for multiprocessor task scheduling problem, when sufficient 

a priori execution profile information is available the static scheduling always 

performs better than dynamic scheduling [5]. However, the success of the 
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static scheduling depends on the accuracy or gathering of enough execution 

profile information. Though, the dynamic scheduling approach gives rise to 

unwanted execution oyerhead, it is better suited to handle dynamic variations 

in the program. A case that can be thought of is when variable simulation 

time step is demanded by the timing simulation system. Also for many 
actual parallel programs, it is very difficult to predict actual execution profile 

information. A static scheduling algorithm that provides some degree of 

support for dynamic scheduling would be very useful in these circumstances 

and presents an interesting but challenging future research. 

In the present thesis, precedence constraints within the concurrent VLSI 

timing simulation modules is' not considered. This is valid as the simulation 

system considered is based on true data-flow computation model. . However, 

most of the practical problems involving scheduling parallel programs onto 

multiprocessor systems encounter precedence constraints. An appropriate 

formulation of the cost function taking into account of this thus need to be 

devised. Fortunately, both the RBP using KL heuristic and SA algorithm can 

be made to work with this revised cost function. It would thus be interesting 

to note the performance of these two algorithms in such circumstances. 

Also, the cost function used in this thesis does not consider the effect of 

multiprocessor architecture, especially hardware communication overhead. 

In the light of previous work in this area [6), it would thus be desirable to 

investigate more on this aspect. 

And last but not the least, the immediate future research would be to 

port the CRBP and CSA algorithms on appropriate hardware· . 
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APPENDIX A 

Appendix A contains various data and pictorial representations of the graph 

data instances used in this thesis. The subsequent pages in this appendix 

carry these data and figures. 
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Table A.l Statistics of various concurrent simulation graph instances. 

4x4 Frequency 16x16 Vector 
multiplier locked loop multiplier coder 

Vertices 58 68 415 899 

Nodes in circuit . 168 I· 167 2577 1746 

Communication Links 82 . 139 1102 2034 
--c-

Average Nodes/V ertex 2.89 2.46 6.02 1. 94 

Average Degree 1.41 2.04 2.65 2.26 
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Fig. A.l Concurrent simulation graph for the synthesised graph instance 

6n2c.grf. 

202 



2 
3 
4 

APPENDIX A 

Table A.2 Data for the synthesised graph 6n2c.grf. Each line correspnds to 

the data structure shown in Fig. 3.9 

1 0 0 1 o 1 4 1 1 
1 0 1 0 o 1 2 o 1 4 1 1 
1 0 2 1 0 1 3 o 1 411 5 1 1 

2 1 0 3 2 0 1 511 
4 1 1 4 001 1 0 1 2 o 1 511 
3 115 201 301 411 
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Fig. A.2 Concurrent simulation graph for the 4x4 Multiplier Curcuit showing 

processor allocation at the nodes. 
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Table A.3 Data for the VLSI simulation graph 4x4 Multiplier Circuit .. Each 

line corresponds to the data structure of Fig. 3.9 

2 1 1 0 
o 1 1 1 
1 1 3 2 
1 1 0 3 
1 1 5 4 
1 1 1 5 
o 1 1 6 
1 1 7 7 
1 1 5 8 
1 1 7 9 
1 1 4 10 
o 1 2 11 
2 1 3 12 
2 1 7 13 
2 1 7 14 
2 1 2 15 
5 1 1 16 
2 1 4 17 
5 1 5 18 
2 1 1 19 
4 1 3 20 
2 1 5 21 
6 1 2 22 

6 1 6 23 

6 1 1 24 

2 1 2 25 
6 1 5 26 

6 1 6 27 

6 1 0 28 

2 1 6 29 
5 1 4 30 
5 1 2 31 

46 4 1 

46 4 1 
47 7 1 
48 2 1 
49 7 1 

44 1 1 
43 6 1 
41 5 1 
39 1 1 

47 7 1 
48 2 1 
49 7 1 
16 1 1 
12 3 1 
18 5 1 
16 1 1 
20 3 1 
18 5 1 
44 1 1 
17 4 1 
52 7 1 
19 1 1 
53 7 1 
21 5 1 
54 3 1 
43 6 1 
23 6 1 
55 3 1 
24 1 1 
55 3 1 
252.1 
55 3 1 
41 5 1 
27 6 1 
28 0 1 

16 1 1 

16 1 1 
18 5 1 
20 3 1 
42 4 1 
o 1 1 

22 2 1 
13 7 1 
23 6 1 
14 7 1 
24 1 1 
16 1 1 

18 5 1 

20 3 1 

28 0 1 
22 2 1 

23 6 1 

24 1 1 

32 3 1 
26 5 1 
27 6 1 
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15 2 1 

17 4 1 

19 1 1 

26 5 1 

26 5 1 

27 6 1 

30 4 1 

30 4 1 

31 2 1 

34 6 1 
35 1 1 

18 5 1 

20 3 1 

24 1 1 

40 3 1 

27 6 1 

28 0 1 

38 0 1 

31 2 1 

32 3 1 

52 7 1 
53 7 1 

22 2 1 

23 6 1 

51 3 1 

51 3 1 

51 3 1 

52 7 1 

53 7 1 

54 3 1 

56 1 1 
56 1 1 
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5 1 3 32 29 6 1 28 0 1 36 7 1 54 3 1 56 1 1 
2 1 6 33 39 1 1 37 7 1 
3 1 6 34 30 4 1 50 6 1 57 6 1 
3 1 1 35 31 2 1 52 7 1 57 6 1 
3 1 7 36 32 3 1 53 7 1 57 6 1 
3 1 7 37 33 6 1 54 3 1 57 6 1 
3 1 0 38 26 5 1 50 6 1 56 1 1 
2 1 1 39 10 4 1 33 6 1 
3 1 3 40 22 2 1 50 6 1 55 3 1 
2 1 5 41 9 7 1 29 6 1 
3 1 4 42 15 2 1 50 6 1 51 3 1 
2 1 6 43 8 5 1 25 2 1 
2 1 1 44 7 7 1 21 5 1 
0 1 1 45 
2 1 4 46 2 3 1 0 1 1 
2 1 7 47 3 0 1 12 3 1 
2 1 2 48 4 5 1 13 7 1 
2 1 7 49 5 1 1 14 7 1 
4 1 6 50 42 4 1 40 3 1 38 0 1 34 6 1 
4 1 3 51 42 4 1 24 1 1 23 6 1 22 2 1 
4 1 7 .52 35 1 1 30 4 1 26 5 1 22 2 1 
4 1 7 53 36 7 1 31 2 1 27 6 1 23 6 1 
4 1 3 54 37 7 1 32 3 1 28 0 1 24 1 1 
4 1 3 55 40 3 1 28 0 1 27 6 1 26 5 1 
4 1 1 56 38 0 1 32 3 1 31 2 1 30 4 1 
4 1 6 57 37 7 1 36 7 1 35 1 1 34 6 1 
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mast"r clock 

Fig. A.3 Concurrent simulation graph for the Frequency Locked Loop Cur­

cuit showing processor allocation at the nodes. 
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Table AA Data for the VLSI simulation graph Frequency Locked Loop 

Circuit. Each line corresponds to the data structure of Fig. 3.9 
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3 2 6 33 35 1 1 32 3 1 40 3 1 

2 1 6 34 10 4 1 35 1 1 
2 1 1 35 34 6 1 33 6 1 
2 1 7 36 11 2 1 37 7 1 
3 2 7 37 39 1 1 36 7 1 42 4 1 

2 1 0 38 12 3 1 39 1 1 
2 1 1 39 38 0 1 37 7 1 
3 1 3 40 33 6 1 24 1 1 22 2 1 

3 1 5 41 29 6 1 20 3 1 18 5 1 
4 1 4 42 37 7 1 16 1 1 13 7 1 26 5 1 

2 1 6 43 3 0 1 14 7 1 
3 1 1 44 45 1 1 3 0 1 4 5 1 
2 1 1 45 3 0 1 44 1 1 
4 4 4 46 47 7 2 4 5 2 52 7 1 53 7 1 

5 5 7 47 49 7 2 46 4 2 51 3 1 52 7 1 53 7 1 

4 4 2 48 49 7 2 14 7 2 50 6 1 51 3 1 

5 5 7 49 48 2 2 47 7 2 50 6 1 51 3 1 53 7 1 

4 1 6 50 51 3 1 49 7 1 48 2 1 2 3 1 

4 1 3 51 49 7 1 48 2 1 47 7"1 50 6 1 

4 1 7 52 53 7 1 47 7 1 46 4 1 0 1 1 

4 1 7 53 49 7 1 47 7 1 46 4 1 52 7 1 
4 3 3 54 57 6 1 56 1 2 13 7 1 55 3 1 

4 3 3 55 57 6 2 54 3 1 13 7 1 56 1 1 
4 3 1 56 55 3 1 54 3 2 13 7 1 57 6 1 

8 3 6 57 60 5 1 59 2 1 58 5 1 56 1 1 55 3 2 
0 1 1 13 7 1 54 3 1 

4 3 5 58 60 5 2 0 1 1 57 6 1 59 2 1 
4 3 2 59 58 5 1 0 1 2 57 6 1 60 5 1 
4 3 5 60 59 2 1 58 5 2 0 1 1 57 6 1 
4 3 4 61 64 0 1 63 o 2 1 1 1 62 1 1 

4 3 1 62 64 0 2 61 4 1 1 1 1 63 0 1 
4 3 0 63 62 1 1 61 4 2 1 1 1 64 0 1 

8 3 0 64 67 7 1 66 4 1 65 3 1 63 0 1 62 1 2 
2 3 1 1 1 1 61 4 1 

4 3 3 65 67 7 2 2 3 1 64 0 1 66 4 1 
4 3 4 66 65 3 1 2 3 2 64 0 1 67 7 1 
4 3 7 67 66 4 1 65 3 2 2 3 1 64 0 1 
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The concurrent VLSI timing simulation graphs for the circuits 16x16 

multiplier ckt. (416 nodes) and the vector coder ckt. (900 nodes) are much 

too large to be placed in figures or tables in this thesis. 
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, 
In Appendix B the proof of Corollary 5.1 used in Chapter 5 is presented. 

This proof is due to Aarts and Korst (Ref. [1] in Chapter 5.) 

Corollary 5.1 : An instance (S,I) of a combinatorial optimisation 

problem, a suitable neighbourhood structure and the stationary distri­

bution of eq. 5.8 are considered. We can then have, 

Jimqi(t) ~ qi 
I!O 

= IS~PIIX(s •• ,)(i) 
where S.pl represents the set of globally optimal solutions. 

Proof: It is known that, 

'Va:5 0, Ji • {1 mexp" = 0 ,,!O 
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Using this fact we get, 
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The concurrent electrical activity occurring in a VLSI circuit can be evaluated by 
running a suitable simulation model on a computer. These simulations are usually very 
time consuming and this has led to the use of parallel computers for acceleration. The . 
underlying electrical model of the simulation may be represented as a concurrent data 
flow graph. which when optimally partitioned and assigned to the participating 
processors of a multiprocessor system ensure maximum achievable acceleration. In this 
paper two parallel graph partitioning algorithms (CKL & CSA) are reported and their 
simulation results are compared. 

1. Introduction 
Electrical circuit simulation is an important part of the VLSI design process in CAD as tentative 

designs can be confidently verified before expensive manufacture. A timing simulator offers better 

accuracy than a switch level logic simulator but is not as computation intensive as detailed analysis 

like SPICE [I). However, the increasing growth of VLSI design complexities demand further 

reductions in simulation time whilst retaining simulation accuracy. Consequently concurrent 

versions of timing simulators like CEMU [2) have been developed for possible execution on a 

multiprocessor system 

A timing simulator generally models the electronic circuit as a weighted graph. where a vertex 

represents a set of capacitive nodes of the circuit which share a common bidirectional voltage 

controlled current souree. The vertex weights in the graph represent the number of circuit nodes that . 

are grouped together to form the vertices and so represent the amount of simulated electrical activity 
• 

of the set of circuit nodes. The edges in the graph represents the discrete voltage values that are 

passed between groups of circuit nodes along the interconnection at any simulation time step. This' 

leads to a simple concurrent implementation on a multiprocessor system as the rich inherent data 

flow representation of the graph model can be easily exploited. The overall task here is to optimally 

partition the circuit to be simulated into different sub-units which are then assigned io different 

processors. This partitioning and assignment procedure is however, quite sophisticated and closely 

resembles VLSI cell placement and layout problems. Problems of this kind fall into the class of 

combinatorial optimisation and have been identified as NP-Hard [3] .. 

Heuristic solutions for NP-Hard problems have been favoured o~er exhaustive search . 

algorithms for their ability to provide approximate near optimal solutions ili polynomial time. 

Iterative improvement is one of the more. common types of heuristic algorithms in use. In this 

paper, a parallel implementation of such an algorithm based on the 2-way partitioning procedure 

due to Kernighan and Lin [4] is reported. The results obtained were compaied with a concurrent 

version of the Simulated Annealing [5) algorithm and was found favourable for smaller 

multiprocessor confignrations. . 
( 
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-2. Problem description 
For the partitioning of a VLSI logic simulation graph and subsequent assignment on to a set of 

P processors of a homogeneous multiprocessor sys\em. we assume a perfect synchronous 

concurrent data-flow representation in the input graph and consequently there are no precedence 

relations. Mathematically. the graph can thus be represented by a weighted and undirected network 

flow graph G = (V. E). where V = (vI> V2 ....... vnl are the N weighted vertices' of the graph 

and E = ("i j. ij = l..n 1 are the weighted edges between the vertices representing the amount of 

data-flow between the vertices. For any positive integer K. a K-way partitioning of G is a set of 

non-empty. disjoint sub-sets ( or blocks) of G. gl. g2 ...... ~ such that 

k 
Ug% = G 

% .1 

The 'cutset' of the partition is the sum of all the weighted edges with vertices in more than one 

sub-set and accounts for the communication cost in the fmal task scheduling. The 10ad-imbalance' 

is the maximum difference between the total weights of any two sub-sets. thus accounting for the 

completion time of the final scheduling. The optimal partition cost is the partition where assignment 

of tasks to the P sets of processors results in the minimum data communication between the 

processors and minimal load imbalance. 

3.2-way and K-way partitioning algorithm 
In [41. Kemigban and Lin described a heuristic procedure for graph partitioning. Their 

algorithm dealt with the problem of partitioning a graph with N vertices. where N is even. into two 

disjoint sub-sets of N/2 vertices each. The algorithm functions by successively choosing all 

possible pairs of vertices. taking one from each sub-set. and keeping aside the pair which if 

swapped would produce the best cost improvement. This procedure is repeated for the remaining­

pairs. keeping a record of the point when the best cost improvement is seen. until all N/2 pairs have 

been set aside. Those pairs set aside preceding and including the point when the best cost 

improvement was recorded are then actually swapped to produce a new starting partition. The 

whole procedure or pass is then repeated again from this new partition. The algorithm terminates 

when no cost improvement can be generated from swapping any pairs. The running time of each 

paSs of the algorithm is O( N2 log N ). 

However. for a grapIi with an odd number of vertices. non-uniform vertex weights. edge 

weights and requiring load balancing in the final partition some modifications are necessary in the 

original Kernighan-Lin algorithm. In the modified algorithm. instead of swapping two chosen 

vertices. a single vertex from a randomly chosen sub-set that would give the best cost improvement 

if moved across. moved over to the other side and kept aside. This isrepeated until all the vertices 

have been moved across and then as before. the set of moves that produced the minimum partition 

cost is selected. the two sub-sets updated accordingly and used as the starting partition for the next 

pass. 

Kemighan & Lin's 2-way partitioning procedure can easily be extended to produce K number 

( 
r 
-, 
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of partitions. This uses the recursive 2-way partitioning algorithm until the desired number of 
sub-sets, which must be an integer power of 2, is obtained. This method promises good run-time 

behaviour but, as mentioned in [4, 6) can produce a bad result in the first partition (level 0 partition) 

which may bias the second and so on. Also the level 0 partition will try to minimise the number of 
connections between the first 2 blocks thus tending to maximise the connections inside these 

blocks, making it harder to obtain good partitions thereafter. This would suggest thau good level 0 . 

partition will always result ina bad final partition (for K > 2). H?wever, experimental results for 
smaller partition sizes were found favourable and thus needed further exploration . 

4. Concurrent K-way partitioning (CKL) 
The binary dissection procedure lends itself to parallel implementation. Except for the first 

partition (level 0), partitioning at all other levels can be carried out independently of each other as 

can be visualised from the binary tree like structure of the overall dissection strategy as shown in 
Fig. 1. These independent partitioning procedures can be assigned to different processors and can 

be run concurrently. A breadth-first partitioning would then take place. However, for a P-processor 
system, maximum processor utilisation is achieved only at the bottom level (leaf level). 

A modification that utilises all the processor resources and improves the quality of the final 

solution is made. A multiple dissection operation, limited by the available number of processors, is 

carried out in each partitioning stage of every level and only the one giving the best result is 
accepted. The best partitions thus generated are moved forward to the next level and so on. So for 

an 8 processor system, at level 0 we have 8 separate partitioning operations on the same input graph 
. all running in parallel and only the best resulting partitions are accepted for level 1 partitioning, 

whereby at levell, two concurrent partitioning operations are required because there are now two 

input sub-graphs. Out of a total of 8 processors, 4 processors can thus be allocated for each of the 
two partitioning stages. At the bottom level (level 2) 2 processors can thus be allocated for each of 

the 4 partitioning stages. This modification provides a fast descent and guarantees a better solutij)n 

that could be achieved otherwise. 
The run-time requirement of each pass of Kernighan-Lin's 2-way partitioning algorithm is O( 

N2 10gN ). The number of passes required for the convergence has always found to be between 2 

and 4 and thus is not strongly dependent on the size of the graph. Again, by employing better 
search algorithms for seleering the candidate venex for a move over to the other side, a lower bound 

run-time O( N2 ) can be obtained. For a K-way partition using the binary dissection method the 
run-time requirement becomes O( N2 log K). In the parallel implementation, minimum processor 

utilisation is obtained at the top level and it increases by a factor of 2 as the partitioning progresses 
from one level to the other. This provides a speed-up factor of log P, giving run-time complexity of 

O( N2), asP = K. 

5. Concurrent Simulated Annealing (CSA) 
Simulated Annealing (SA) (5) has been found to be a powerful and robust tool for the solution 

of many different types of difficult NP-Hard combinatorial optimisation problems. While this 
technique provides good quality solutions, the computation time requirement is very high. Several 
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accelerating techniques using multiprocessors have been reported [7. 8.9]. 

. Level 0 

UU2 PI21 

Stage 1 

U 
211 

u 

u U 
212 221 

Figure 1. Overa1l8-way dissection structure. 

U 
222 

Our concurrent implementation of the SA algorithm (CSA) is based on the parallel move 

approach due to Kravitz & Rutenbar [7]. which however has the problem of interaction between 

panillel moves giving rise to possible erroneous solutions. Unlike Kravitz & Rutenbar. where they 

have used the 'simplest serialisable sub-set' of the parallel move set obtained by attempting many 

moves in parallel. and by executing only the move that is accepted fIrst (cost improving move) and 

aborting all other. our CSA algorithm works with a move set consisting of an optimal number of 

non-interacting parallel moves. TIris eliminates the error due to interacting parallel moves. 

The annealing schedule adopted is a simple one and is as follows: a move acceptance probability 

of 0.999 at starting maximum temperaiure and 0.001 at fmal minimum temperature obtained by 100 

. geometric reductions in temperature. The total number of moves allowed at each temperature step is 

. dependent of the problem size and is given by Nmoves = M. N. (P - I) where. the constant M is 

defmed in [10] and other notations have their usual meanings. A value of 2 for M was used in the 

simulation runs. 

Table 1. Statistics of thefour chosen concurrent VLSI simulation graph instances. 
4x4 Frequency 16xl6 Vector 

multiplier locked loop multiplier coder 

Vertices 58 68 415 899 
Nodes in circuit 168 167 2577 1746 

Communication Links 82 139 1102 2034 

Average NodesN ertex 2.86 2.46 6.02 2.34 
Average Degree 2.83 4.09 5.31 4.53 

, 
~ 
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6. Results and Discussion 
Parallel programs to implement the concurrent Keroighan-Lin (CKL) and concurrent Simulated 

Annealing (CSA) algorithms were written for the Intel iPSC/2 hypercube, a message-passing, 

distributed memory multiprocessor system. The programs were written in C and Pascal languages 

and tested with an Intel iPSC/2 simulator on a SUN 3 minicomputer. As the programs were run 
under a simulated environment the true run-times could not be perfectly ascertained and only the 

simulation results obtained are reported. 
Four examples of VLSI logic simulation graphs were used to evaluate the concurrent heuristic 

algorithms. These were chosen on the variety of their size, complexity and functional behaviour. 

The sizes and the statistics of these four logic simulation graphs are given in Table. I. 

lOO lOO 

.J 80 tl 80 
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:I 40 ,§ 0 = < < 

-; 20 .... CKL -; 20 .9 .5 ... .... CSA ... .... CSA 
0 0 

2 4 8 16 2 4 8 16 
Number of Processors. Number of Processors. 

a. Graph: 4x4 multiplier circuit. b. Graph: Frequency locked loop circuit. 
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tl 80 .; 80 

c3 / 
~ 
u 

= 60 = 60 
.51 .51 

~. ii 40 ! 40 ,§ 
< 
-; 

20 ..... CKL 11 20 . 9 ... ..... CSA l.i; ..... CSA 
0 0 

2 4 8 16 2 4 8 16 
Number of Processors. Number of Processors. . 

c: Graph: 16x16 multiplier circuit. d: Graph: Vector coder circuit. 

Fig. 2 Graphs showing the performance comparison between algorithms· CKL and CSA jor 
different processor configurations. 

Each of the two programs (CKL & CSA) were performed 50 times on each of the four graph 

instances. Processor configurations with 2, 4, 8 and 16 processors were considered. The average 

partition costs for each graph instance and each system configuration were noted. The partition cost 

was then expressed as a percentage of the average cost of the random starting partitions. The results 

obtained are presented in Fig. 2. 
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The graphs in Fig. 2 reveal that the CKL algorithm is better than CSA for small processor 

configurations. However, a gradual decline in the perfonnance of CKL is observed as the number 

of processors (same as the number of partitions) is increased and asymptotically fares worse 

compared to CSA for larger configurations (>= 16). This observation is in line with the 

disadvantage of the recursive binary dissection method for K-way partitioning as discussed in [4, 

6]. The intrinsic disadvantage of the recursive binary dissection method gradually becomes more 

noticeable as the depth of partition increases. 

On the other hand CSA performed more or less consistently throughout However, for the two 

large graph instances the results are comparatively inferior than the other two. This is perhaps due 

to the behaviour and nature of the two large graph instances. For the frequency locked loop circuit, 

a steady and gradual improvement in the performance of CSA is observed, which however is absent 

in the other cases. For the 4x4 multiplier circuit the performance curve has a uneven profile possibly 

due to the random behaviour of the SA algorithm coupled with some long sequential data flow 

modules present in the graph. 

A fairly adequate number of moves per temperature step (M = 2) were allowed for CSA. 

However, if more generous number of moves were permitted, CSA might have produced much 

better and improved solutions. The very long computing time demand of CSA however, precluded 

us to permit more moves. Though an exact run time could not be ascertained for reasons described 

earlier, CSA was always found to be approximately lOO times slower than CKL in their simulation 

runs. CKL is thus more suitable than CSA for smaller system configuration «= 8 processors) by 

virtue of it's speed and quality of result. One of the ways to improve the quality of results obtained 

from CKL is to post process the pardtions so that they become mutually and pairwise optimal. 

Essential1y pairwise optimality is a necessary condition for global optimisation. This can be 

achieved by repetitively selecting any two partitions and moving some chosen vertices from one to 

another, so that the cost of partition between these two is minimised. 
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