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ABSTRACT 

ABSTRACT 

Imaging photoplethysmography (IPPG) is one of the emerging medical imaging 

modalities to visualise peripheral blood perfusion of a specific tissue. Blood 

perfusion. defined as the blood volume exchange. can provide numerous information 

of physiological function for tissue and for cardiac-vascular system. 

For current IPPG, most published observations are based upon a qualitative nature of 

blood perfusion. The performance of IPPG is difficult to investigate in these 

measurements as it is difficult to determine experimentally the effect of changes in 

the optical properties of segmented biological tissues on the output signals. Thus a 

representative model for the quantification of this effect is necessary to better 

understand the underlying principle of the IPPG signal and further improve the 

applicability of IPPG. This research aims to develop such an appropriate 

opto-physiological model to quantify IPPG signals with segmented optical 

properties oftissue. 

The opto-physiological model is created by redefining the path length of the 

Beer-Lambert law. The redefined path length, referred to as mean path length, is 

derived through the outputs of the Monte Carlo simulation on multi-layered tissue 

with layered optical properties and specified geometries. The simplified 

representation of the opto-physiological model eliminates the mathematic 

complexity of some current propagation models such as photon diffusion model and 

thus it can be applied in complicated tissue. On the other hand, the accuracy of the 

model prediction increases by taking scattering into account. This approach is similar 

to the modified Beer-Lambert law which has been. widely used to quantify the 

concentration of tissue chromophores by a ratiometric approach. Differently, this 

opto-physiological model quantifies the blood perfusion in a multi-layered format by 

treating the tissue in a multi-layered structure with respective blood volume changes, 

rather than a whole and static tissue. 

The opto-physiological model is validated via high correlation with corresponding 

in-vitro experiments based upon the multi-layered phantom. This correlation proves 

the capability of the opto-physiological model, which not only can accurately predict 
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the output in the range of pa and p, close to human tissue, but also predict the effect of 

changes of pa and p, on the output. There is expected variation between the model 

prediction and the in-vivo experimental outputs due to the difficulty to quantify 

surface reflection and the sensitivity of the current approach based upon a predefined 

tissue structure. The model prediction approaches the experimental result when 

increasing the thickness of the top layer and decreasing the pulsatile volume fraction 

of tissue. Consequently, as the parameters of the predefined tissue approach real life, 

the outputs of the opto-physiological model and the experiment increasingly 

correlate. This research would greatly benefit from a c1ose-to-real tissue structure 

with accurate measurement of the internal makeup of the tissue bed. 

The opto-physiological model contributes to quantifying the output signals of IPPG 

with the segmented optical properties of tissue and then constructing the layered 

perfusion mapping of a designated tissue. The layered mapping mainly provides 

information about optical properties of tissue and illustrates the quantitative 

relationship between the segmented and the total IPPG signal. There is no blood 

perfusion in epidermis and top dermis layers as these two layers contain no pulsatile 

blood. The deep dermis layer is the main contributor up to 80% to the total blood 

perfusion. 

It is concluded that the opto-physiological model is effective and applicable to 

quantify the IPPG signal with segmented optical properties in a complex tissue 

structure. The model helps to understand the fundamental of the !PPG signal and 

implement IPPG with the layered mapping functionality. 

ij 
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NOTATION TABLE (in order of appearance) 

AC: dynamic component of PPG signal 

DC: static component of PPG signal 

n: refractive index 

v: speed of light transportation 

9: angle of light deflection 

d: thickness of medium 

10: incident light intensity 

I: direct transmitted light intensity 
without considering scattering or 
scattered light intensity with scattering 

fls: scattering coefficient 

g: anisotropic factor 

fl's: reduced scattering coefficient 

fla: absorption coefficient 

--> 

r : position vector 

--> 

h : direction vector 

Pd: scattering probability density 
function 

0: solid angle 

I: path length 

A: absorbance 

B: scattering-dependent factor 

Sen: sensor-dependent factor 

Geo: geometry-dependent factor 

M: a composite medium 

m: a layer in a composite medium 

k: total number of layers in a medium 

i: number of layer 

A: wavelength 

Is: scattered light intensity when fl.=O 

x,y,z: axes of coordinate system 

f: volume fraction 

j: component of a medium 

V: vertex structure 

S: segment structure 

D: detector structure 

G: Global structure 

p: pointer 

t: time 

ac: mean peak-to-peak amplitude of 
AC 

dc: mean value of DC 

N: total number 

R: ratio 

dis: distance between lens and imaging 
plane or object plane 

dia: diameter of lens 

NA: numerical aperture 

fl: focal length of lens 

Mag: magnification oflens 

Res: resolution 

w: weight function 
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SECTION 1 INTRODUCTION 

1. SUMMARY OF RESEARCH 

Imaging PPG (IPPG) is one of the medical imaging modalities 

based upon the light-tissue interaction to monitor peripheral 

blood perfusion oftissue. It takes the advantages of conventional 

PPG, but removes the primary limitations of spot measurement 

and contact sensor. However, lack of a sufficiently accurate 

model to quantitatively describe the principle has limited the 

development of this technology. As such, this is the potential 

area of research when attempting to increase the applicability of 

the technology. 
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INTRODUCTION 

1.1 BACKGROUND 

Photoplethysmography (PPG) is an optical bio-monitoring technique that 

non-invasively measures peripheral blood perfusion in-vivo. Its ease of use and 

convenience make it an attractive area of research in the biomedical and clinical 

community. However, spot measurement, contact sensor and over simplified model 

have limited its applicability and have halted its evolution to a near standstill. 

The past few years have witnessed the revolutionary development of some 

conventional medical optical technologies into imaging or more specifically 

tomography as a result ofthe considerable advances in understanding light migration 

through tissue and the resulting development of tomographic algorithms. The 

potential that conventional PPG could be evolved into imaging PPG was soon 

realised. Different from Doppler related technologies [1][21, IPPG aims to detect the 

blood volume change of tissue rather than blood velocity. Besides, IPPG can deliver 

other important physiological parameters such as heart rate variability (HRV) and 

pulse transit time (PTT). IPPG takes the advantages of conventional PPG, but 

removes the primary limitations of spot measurement and contact sensor. It 

facilitates the continuous and real-time measurement of blood perfusion in different 

compartments of tissue. It has excellent potential towards remote sensing, reducing 

the physical restrictions and cabling associated with patient monitoring. 

To better understand the underlying principle of IPPG and further increase the 

applicability of the technology, an appropriate model is essential to quantify the 

effects of the optical properties of biological tissues on the output signal and 

contributes to blood perfusion mapping of a designated tissue. 

In this thesis, the approach to generate such a model of IPPG IS to create an 

opto-physiological model through the use of Monte Carlo (MC) simulation on 

multi-layered tissue. The concept behind this approach is to describe the complex 

light-tissue interaction in a simplified format with representative parameters. As the 

parameters of the opto-physiological model approach those occurring in the 

corresponding real-life situation, the outputs of the model and empirical 
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measurement increasingly correlate. The high correlation proves the validity of the 

model and hence its ability to predict the real-life output. 

1.2 AIM AND OBJECTIVES 

The aim ofthis research is to create an appropriate opto-physiological model of IPPG 

to mathematically describe the relationship between segmented optical properties 

and the !PPG signal. The model can be validated through the correlation between the 

prediction of the opto-physiological model and the experimental output. 

Subsequently, this validated model can be applied into real-life measurements to 

construct the segmented perfusion mapping of a designated tissue. 

From the aim, the following objectives are inferred: 

I) For PPG and IPPG, the relevant concepts of physiology, the principles of 

operation, the applicability, the engineering issues and the limitations are recounted 

(Chapter 2). 

2) Relevant concepts of optics, specifically those which pertain to human tissue 

optics is examined and put into context (Chapter 3). 

3) The strengths and weaknesses of the currently used mathematical models 

including the Radiative Transport Theorem (RTT), the Beer-Lambert law and the 

modified Beer-Lambert law are discussed from the standpoint of the application in 

IPPG. Based on the advantages of these existing models, an opto-physiological 

model of IPPG is created by redefining the key parameter in the Beer-Lambert law 

through the use of the MC simulation, which is regarded as a numerical solution of 

RTT (Chapter 3). 

4) The structure and dataflow of the MC simulation for optical propagation through 

tissue of arbitrary geometries is detailed along with all output data processing 

algorithms to generate the redefined parameter, referred to as mean path length MPL, 

for the opto-physiological model (Chapter 4). 
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5) Specifications of validation experiments including all hardware setup, control 

layout, phantom preparation, and data processing algorithms used for generation of 

experimental results are provided (Chapter 5). 

6) The validation procedure based upon the output of the opto-physiological model 

and real-life experiments is detailed. Additionally, the function of per fusion mapping 

is detailed (Chapter 5). 

7) The results of the opto-physiological model and corresponding validation 

experiments are distilled with emphasis on the correlation between theoretical and 

experimental outputs, followed by an in-depth discussion of their accuracy and 

sensitivity (Chapter 6). 

8) The results of segmented perfusion mapping in a designated tissue are presented, 

followed by a detailed explanation of the underlying principle (Chapter 6). 

9) The conclusions which the results lead to are summarised, and suggestions are 

made for future work with respect to the MC simulation (Chapter 7). 
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1.3 RELEVANT PUBLICATIONS 

The following articles related to this work have been published: 

Zheng J., Hu S, Echiadis A. S., Azorin-Peris V., Shi P., and Chouliaras V., 

"A remote approach to measure blood perfusion from the human face," Proc. 

SPlE, 7169, 716917 (2009). 

Zheng J., Hu. S., Azorin-Peris V., Echiadis A., Chouliaras V. and Summers 

R., "Remote simultaneous dual wavelength imaging photoplethysmography: a 

further step towards 3-D mapping of skin blood microcirculation," Proc. SPIE, 

6850, 68500S(2008). 

Hu S., Zheng J., Chouliaras V., and Summers, R., "Feasibility of Imaging 

Photoplethysmography," BMEI 2008 International Conference, 2, pp. 72 - 75 

(2008). 

Zheng J. and Hu S., "The preliminary investigation of imaging 

photoplethysmographic system," J. Physics: Conference Series, 85, 012031 

(2007). 

Other publications related to work carried out in relevant areas of research are 

listed below: 

Zheng J., Hu S., Xin S. and Crabtree V. P., "The effect of postural changes 

on lower limb blood volume with non-invasive photoplethysmography," J. 

Med. Eng. Technol., 32(5), pp. 358-364 (2008). 

Xin S., Hu, S., Crabtree V. P., Zheng J., Azorin-Peris V., Echiadis A., Smith 

P. R., "Investigation of blood pulse PPG signal regulation on toe effect of 

body posture and lower limb height," J. Zheijiang University - Science A, 8, 

pp. 916-920, 2007. 

Chouliaras V., Hu S., Azorin-Peris V., Echiadis A., Summers R., Zheng J., 

King I., "Real-time VLSI architecture for bio-medical monitoring," Proc. 

ITAB 2008, Shenzhen, China, 2008. 
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2. RESEARCH IN IMAGING PHOTOPLETHYSMOGRAPHY 

PPG is an optical bio-monitoring technique that non-invasively 

measures peripheral blood perfusion in-vivo. Among its 

applications, IPPG is recently emerging and is most attractive 

thanks to its great capability of remote imaging. By a need of 

understanding and predicting the effect of optical properties on 

the IPPG signal, modelling of the optical propagation in 

biological tissue is under research. 
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2.1 PHOTO PLETHYSMOGRAPHY 

PPG, the origin of IPPG, is an optical bio-monitoring technique firstly devised in the 

1930's for the non-invasive measurement of peripheral blood perfusion in-vivo [31. 

Blood perfusion generated by heartbeat, defined as the blood volume change in PPG, 

can provide a measure of physiological function for tissue and for the 

cardiac-vascular system. The ease of use and convenience of PPG make it an 

attractive area of research in the biomedical and clinical community [41. 

Plethysmography is a combination of the Greek words, 'plethysmos' meaning 

increase and 'graph' which translates as write, and is used mainly to detennine and 

register the volume variations within an organ or whole body [5 I. The term 

photoelectric plethysmography, also known as photoplethysmography (PPG), 

meaning optical plethysmography, is therefore to describe the electro-optic 

technique of measuring the cardio-vascular blood volume change at a measurement 

site [61. The observed pulse wave now referred to as the PPG signal can deliver 

clinically valuable information for the study of cardiovascular system [71 and skin 

microcirculation [81 

PPG is the core technology on which IPPG is based. An introduction of the 

fundamental concepts of PPG can help to understand the development of I PPG and 

its principle. First of all, a basic knowledge of the human circulatory system and of 

the optical principle is required. 

2.1.1 Background of physiology 

The main functions of the human circulatory system are to deliver oxygen and 

nutrients to all the cells in the body and to remove waste products from the cells. The 

system is also responsible for the transportation of hormones and for regulation of 

body temperature. The human circulatory system is essentially composed of the 

lungs, the heart, and the venous and arterial trees. The closed path of blood 

circulation is as follows: The heart pumps blood out of the right ventricle into the 

lungs via the pulmonary arteries. In the lungs, carbon dioxide is released from the 

blood and replaced by oxygen. Oxygenated blood from the lungs gathers in the left 
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atrium of the heart and passes to the left ventricle. The left ventricle pumps this blood 

out to the whole body via the arteries. After the oxygen in the blood is released into 

the tissue and organs of the body and carbon dioxide is collected, the blood returns to 

the right atrium via the veins, where it passes into the right ventricle and the cycle 

repeats, as shown in Figure 2. J. 

Head & arms 

Left Lung 

Trunk & legs 

Figure 2. I A simplified diagram of the circulatory system (image courtesy of 

https:lleapbiolield.wikispaces.com/FRF+Circulatory+System). 
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Figure 2. 2 Structure orthe vascu lar tree, with relative vessel wall thicknesses and 

capillary-tissue fluid exchange (image coun'esy of www.merck.com). 

Blood circulation as described above covers two stages of the heartbeat: during 

systole, the heart pumps blood both to the body and to the lungs, and during diastole, 

both ventricles fill will1 blood. The arteries are the thick walled vesse ls that withstand 

the highest pressures and largest pressure oscillations in the vascular tree as shown in 

Figure 2. 2. Arteries branch into arterioles and then into capillaries, thus reducing 

blood pressure, pressure oscillation and velocity due to an increase in corresponding 

cross-sectional area in the capillaries, as detailed in Figure 2. 3. Blood leaving the 

capillaries converges into venu les and then veins. The latter are large, thin walled 

vessels, where blood travels with ll1e aid of gravitational pressure. The effect 

anastomosis also exists, in which arterial blood is shunted directly to lhe venous 

system without traversing capillaries. 
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The heart pumps blood into the blood circulation, the arteries then expand hence 

increasing the blood volume fraction and therefore the absorption of light in the 

(issue increases. Thus the fraction of light attenuated by the blood fluctuates as a 

function of this pumping action of the heart. PPG measures changes in blood volume; 

therefore the pulsatile nature of arterial blood is inherently important to the 

technology. 

Blood 
Pressure 

Blood 
Velocity 

Area 
of 

Vessels 

BloOd Pressure, Velocr/y, and Cross·sectlonalerea of vessels 

" I Venules Ve/lls 

Figure 2. 3 Comparative cross-sectional analyses or scales in the cardiovascular tree 

(image courtesy orhttp ://www.coolschool.callorIBI12Iunit9IU09L08.htm). 

An exchange of oxygen, nutrients and waste products takes place between the blood 

and adjacent tissues as the blood traverses the capillaries, where its reduced speed 

allows this to occur effectively. Out of all the organs of the body that are perfused 

with blood, skin has a high relevance in PPG as its surface is the site onto which 

sensing probes are placed. Consequently. its anatomical and physiological 

characteristics always influence the technology. Human skin is essentially divided 

into three layers, namely, epidermis, dermis and subcutaneous rat. The epidermis is 

the outermost layer, in which the skin pigment melanin is produced by cells called 

melanocytes. This pigment is responsible for the protection of the skin against 

harmful radiation by means of absorption. The dermis houses blood vessels which 
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are largely categorised as two vascular beds, namely the superficial and deep 

vascular plexus. Subcutaneous tissue is a layer of fat which houses lager blood 

vessels, nerves and connective tissue and it plays an important role in the regulation 

of skin and body temperature. A diagram of skin is presented in Figure 2. 4. 

Pigment 

Superficial 
vascular 
plexus 

Deep 
vascular 
plexus 

Figure 2. 4 A diagram of skin [9] 

2.1.2 Optical Principles 

Epidermis 

Dermis 

Subcutis 

As an optical bio-monitoring technique, PPG requires a light source and detector to 

function, and relies on the optical properties of biological tissue. The fundamental 

modus-operandi of PPG technology is the optical detection of the pulsatile 

cardio-vascular pulse wave, referred to as blood perfusion, as it travels throughout 

the body. PPG can be performed in transmission mode or reflection mode (101. In the 

former, the light source and detector are facing each other and are usually placed on 

opposite sides of the tissue under inspection, where as in reflection mode, the light 

source and detector are facing the same direction and are usually adjacent. 

In the transmission mode as shown in Figure 2.5, observation of the PPG signal can 

be achieved by illumination of a suitable pulsating vascular bed. The monitoring 

sites for the transmission mode are limited to well perfused areas of the body that are 

transparent enough for the transmitted light to be easily detected, such as the fingers 

and earlobes. 
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~ y 
Probe 

Figure 2. 5 PPG probe in transmission mode. 

In the reflection mode as shown in Figure 2. 6, both the source and the detector are 

positioned at the skin surface, with back-scattered light returning from a range of 

depths within the highly scattering tissue. In the near-infrared (NIR) spectral region, 

light can penetrate several millimetres into tissue [11] where the dynamic absorption 

of the pulsatile vascular bed modulates the total scattered light. There are certain 

advantages in using reflection mode rather than transmission mode. The design of 

the reflection probe is simpler with greater mechanical strength, and the reflection 

mode relies on backscattered light returning to the skin surface, which allows it to be 

used in most parts of the human body, such as the forehead, limbs and chest [12J 

Light 
Photodetector 

Figure 2. 6 PPG probe in reflection mode. 

Ideally for PPG, blood would absorb greatly and all other tissue would absorb 

weakly as this would provide high contrast, allowing for accurate monitoring of 

blood perfusion. Besides blood, the main absorption components of human tissue are 

mainly water and the pigment melanin. Figure 2.7 and Figure 2. 8 illustrate that light 
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is increasingly absorbed by melanin towards the ultra-violet (UV) band and greatly 

absorbed by water towards the microwave band. 
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Figure 2. 7 Absorption spectra of water 1131. 
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Figure 2. 8 Absorption spectra of melanin 1141. 
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These factors limit practical wavelengths of a PPG light source roughly to the NIR 

spectral range of 600-1000 nm. Since the volume fraction of blood accounts for only 
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a few percent of the total tissues, its effect on light transport is moderate. On the other 

hand. when light in the range of600-1 000 nlll strikes a blood vessel, it encounters the 

full strong absorption of whole blood. Hence. blood governs light absorption in the 

NI R spectral range, and tissue governs light transport. 

There are two primary absorbers in blood of light 111 the N IR spectra l region 

including both oxygenated and deoxygenated haemoglobin [15[. The simultaneous 

region of absorption at NIR wavelengths of these two absorbers in tissue is illustrated 

in Figure 2. 9. 
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Figure 2. 9 Absorption spectra or oxygenated (HbO,) and deoxygenated (lib) 

haemoglobin (16) in the NIR spectral region. 

The concemrati ons of oxygenated and deoxygenated haemoglobin change according 

to the function and metabolism of the tissue. The corresponding changes in 

concentration can be renected in absorption variation and thus provide clinically 

useful physiological information. \\ hich is the fundamental principle of pulse 

oximetry I )7]. another application of PPG. 

2.1.3 Operation Principles 

Due to the limited wavelength selection in the NIR spectral range, PPG can monitor 

blood. Moreover. the technique itselfis only made possible by the dynamic pulsation 
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of arterial blood. During the systole stage, the amount of blood increases resulting in 

more light absorption. During the diastole stage. the amount of blood decreased 

resulting less light absorption. Thus the measured waveform of PPG, referred to as 

the PPG signal, contains a dynamic signal AC due to tile arterial pulsation of blood 

cOITesponding to the absorption change in the systole and diastole stage, and a much 

larger, slowly changing quasi-static signa l DC governed to a large extent by the static 

component in tissue such as baseline arterial and venous blood, bloodless tissue and 

bone etc., as shown in Figure 2. 10. 

Absorption due to 
amic arterial blood 

Absorption due to 
non-blood tissue 

AC 

DC 

Figu re 2. 10 Relative absorption of blood and tissue. 

Observation of the measured intensity in both transmission and renection modes 

indicates that the pulsatile component accounts for only a very small proportion of 

the total intensity 1181. TIlis results from the fact that a skin vascular bed contains only 

a small amount of blood about 2%-5% 119 1, which itself experiences only a 

volumetric change ofa few percent about 5% (10] with the cardio-vascular pulse wave. 

A significant correlation has been reported between AC signals and Ihe dynamic 

strain-gauge plethysmography 1211 which measures the changes of the lengthening of 

the gauge due to blood volume change. This correlation verifies that the predominant 
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cause of AC is the plllsatile blood (22(. It has also been demonstrated that the 

amplitude of AC signal is related to variations in blood volume, i.e. blood perfusion, 

throughout the cardiac cycle (23(. 

Assuming that the optical characteristics of blood less tissue remain constant, the 

resultant dynamic component AC of the PPG signal can be so lely attributed to 

pulsatile arterial blood, i.e. blood perfllsion (6(, as shown in Figure 2. (I , and any 

quasi-static DC components can be attributed to changes in non-pulsatile arterial 

and venous blood due to breathing or otherwise 1241 (
25

11
26

1. 
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Bloodless 
liuut 

~ 

Time (~ec) 

Figure 2. 11 Components of a raw PPG signal. 

2.2lMAGrNG PPG 

6 7 

Remote-sensing imaging offers additional values for any parameter by appealing to 

human cognition and literally faci li tates insights that would otherwise be dimcult or 

even impossible to obtain. Thus non-contact or remote camera-based I PPG has 

recently developed from PPG to meet this demand. In this section, the operation 

principles, applicability, engineering issues and chall enges of IPPG are recounted. 

2.2.1 Emergence 

Compared to other measurement techniques of blood perfusion such as Laser 

Doppler, PPG is easy to setup, simple to use, abso lutely safe and low in cost. 
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However, current PPG can only monitor the blood perfusion at a single site with a 

volume of a few cubic centimetres. Another obvious disadvantage is that its sensor 

must be attached to the tissue of the subject, which restricts its applications to some 

clinical situations such as wound diagnostics. 

The last decade has witnessed the enormous progress of optical imaging 

technologies for biomedical applications. With the recent evolution of several 

technologies such as laser Doppler and spectroscopy into imaging area, it is soon 

realised that PPG could be extended to imaging as well. The basic concept of this, 

namely imaging PPG (IPPG), is to illuminate the specific tissue with an array oflight 

sources and to measure the light leaving the tissue with multiple detectors. The 

introduction of the fast digital camera inspires the development of this concept to 

allow non-contact monitoring from a larger field of view by applying 

multi-wavelength illumination sources. 

IPPG has been created towards remote sensing and reduction of the physical 

restrictions and cabling associated with patient monitoring. It can benefit in removal 

of potentially injurious wires from magnetic resonance imaging (MRI) machines [271. 

Different with other technologies of perfusion imaging such as laser Doppler 

perfusion imaging (LDPI) and laser speckle contrast analysis (LASCA) [281, IPPG is 

aiming to detect the blood volume change of tissue, rather then blood velocity. Blood 

perfusion refers to the process of nutritive delivery of arterial blood to a capillary bed 

in biological tissue 1291. Strictly speaking, perfusion implies both the amount of blood 

volume change and the blood velocity. Thus IPPG, LDPI or LASCA look at blood 

perfusion from different aspects. Besides blood perfusion, IPPG can deliver other 

important physiological parameters such as heart rate variability (HRV) 1301 which 

reflects the time-varying influence of the autonomic nervous system and pulse transit 

time (PTT) [31] which is related to the arterial compliance. 

The feasibility of a non-contact camera-based PPG has been well illustrated for the 

visualisation of blood perfusion [321, which demonstrated the simultaneous capture of 

PPG waveforms from the extremities at three wavelengths (660nm, 840nm and 

905nm) in both transmission and reflection modes. Another work has reported a 

reflection mode capture of "heartcycIe-related" pulsatile variations using a CMOS 

camera 1331, with illumination at 660, 810, and 940 nm. An additional research 134] 
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presented a camera-based system capable of capturing two PPG signals at two 

wavelengths simultaneously in a non-contact manner. 

2.2.2 Operation Principles 

IPPG has relatively similar background physiology and optical principles with 

conventional PPG. IPPG measures blood perfusion of multi-layered tissue from a 

large area. The measured waveform oflPPG, referred to as the \PPG signal, contains 

a dynamic component AC that represents the arterial pulsation, i.e. blood perfusion, 

and a static component DC governed by the static component in tissue such as the 

venous blood and bloodless tissue as shown previously in Figure 2. 10. 

Similar with conventional PPG, the practical wavelength choice of the illumination 

source for IPPG is limited in the NIR spectral range of 600-1 OOOnm, allowing high 

contrast in the absorption of blood compared to other compounds of tissue such as 

water and melanin as shown previously in Figure 2. 7, Figure 2. 8 and Figure 2. 9. 

The key sensing part of an \PPG system is the camera which collects the scattered 

photons coming from the illuminated tissue. The camera needs to have a high 

sensitivity over the NIR spectral range, and the flexibility of choosing variable 

readout speed and exposure time. CCD (charge-coupled device) and CMOS 

(complimentary metal-oxide semiconductor) camera sensors are currently in a wide 

range of biomedical research, which aim to convert light into electrons. The camera 

with CCD sensors creates high-quality, low-noise images, while consumes more 

power and more expensive. CMOS sensors, traditionally, are more susceptible to 

noise, but capable of reaching higher frame rate, consume less power and are less 

expensive. 

2.2.3 Prospects 

IPPG is non-invasive, non-ionizing, inexpensive and portable, making it possible as 

a widespread use for biomedical research. These combined features can have a 

significant impact on a number of many medical and health-care situations. The 

following section outlines some potential applications of IPPG. 
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Burned assessment: IPPG is configured to be a contactless way to image the blood 

perfusion of tissue, so perfusion mapping for burned assessment is an obvious 

application area. High perfusion corresponds to superficial dermal burns, which heal 

with dressings and conservative management; burns with low perfusion require 

surgical management (351. 

Healing processes: IPPG could also be a new tool of blood perfusion in assessment 

of the healing progress. Vladimir Blazek (361 has observed perfusion increases at the 

bases of the ulcers, and has demonstrated the capability of IPPG in the contactless 

and spatially resolved assessment of rhythmical blood volume changes in an ulcer. 

Verkruysse el.al. [371 have investigated IPPG can be useful for the characterization of 

vascular skin lesions after therapy. 

Brain Function: A brain-computer interface (BCI) is a direct communication 

pathway between a brain and an external device [381. A BCI transforms mental 

decision and reaction into control commands by analyzing the bioelectrical brain 

activity [39 I. Electroencephalography (EEG) is the most studied potential 

non-invasive interface. But as well as the technology's susceptibility to electronic 

noise, the extensive training required before operation is another substantial barrier 

when using EEG as a BCI. IPPG has the capability of detecting the blood perfusion 

from the human forehead where information is contained about the neural system [401. 

It is easily operated and insusceptible to electronic noise. All of the advantages lead 

to the possible application of IPPG in BCI. IPPG of brain function can help to 

elucidate the hemodynamic response to neuronal activity and thus lead to an 

understanding of the underlying mechanisms. 

2.3 RESEARCH DIRECTION IN IMAGING PPG 

The ideallPPG system should make an accurate measurement of blood perfusion in 

any specific part of the body and for any subject regardless of physiology, state of 

health, and condition under which the measurement is made. For current IPPG, most 

published observations [331 [3611371 are based on a qualitative nature of blood perfusion. 

The performance of IPPG is difficult to investigate in these measurements as it is 

difficult to determine experimentally the effect of changes in the optical properties of 
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segmented biological tissues on the output signals. Thus a representative model for 

the quantification of this effect is necessary to better understand the underlying 

principle of the IPPG signal and further improve the applicability of IPPG. As this 

effect is modulated by the light propagation in tissue, such a model needs to be on the 

basis of an accurate description of the light propagation in tissue. 

This research aims to develop such an appropriate opto-physiological model to 

quantify IPPG signals with the optical properties of segmented tissues. The model is 

created by redefining the path length of the Beer-Lambert law through the outputs of 

the MC simulation on multi-layered tissue, and validated subsequently via 

correlation with corresponding real-life experiments. To this end, the model can 

contribute to quantifying the output signals of IPPG with the segmented optical 

properties of tissue, and then constructing the layered perfusion mapping of a 

designated tissue. 
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3. OPTO-PHYSIOLOGICAL MODEL 

The objective of this chapter is to arrive at an opto·physiological 

model that can quantitatively describe the relationship between 

segmented optical properties of tissue and the IPPG signals. 

The chapter begins by explaining of the optical and 

physiological phenomena that govern the light-tissue interaction 

In optical bio-monitoring techniques, revisits relevant 

engineering models currently used for in-vivo optical 

propagation, and finally creates an appropriate model to 

mathematically quantify the IPPG signal in a multi-layered 

format. 
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3.1 PRINCIPLES OF TISSUE OPTlCS 

Figure 3. I illustrates the situation how light may travel in tissue. The optical 

propagation in turbid biological media is jointly governed by the absorption and 

scattering properties of tissue. The vast majority of light follows a meandering 

trajectory in tissue due to scattering. 

Input 
Specular 
reflection 

Back­
scattered 
reflection 

Absorption 

Direct transmission 

Scattered transmission 

Figure 3. I The propagation paths of light in tissue. 

The quantification of the optical propagation in tissue is a question of growing 

concern in many medical applications. Numerous models that predict nuence rates in 

tissue. or reflection and transmission of light by tissue have been developed. The 

accuracy or lhese models ultimately depends upon how well the optical properties of 

the tissue are known. Hence clearly understanding these optical propet1ies will be of 

great help when creating an appropriate model for IPPG. This section reviews some 

key optical properties governing the behaviour of light propagating through an 

optically dense medium such as human skin. 

3_1.1 Refraction 

Refraction occurs under any circumstance where propagating I ight encounters a 

change in refractive index n as shown in Figure 3. 2. Surface effects due to index 

mismatched macroscopic boundaries such as those between tissue layers are one 

CHAPTER 3 22 



METIIODOLOGY 

such occurrence. Churmakov et al. 1411 concluded that the spatial photon sensitivity 

profile which shows the photon density distribution under normal conditions was 

nearly identical to that achieved when disregarding total internal reflection at the 

boundary between a highly scattering and ab orbing medium and vacuum. This 

conclusion proves the insignificance of this effect in this investigation. Furthermore, 

the refractive indices of most sofltissue types at a macroscopic scale are in the range 

of 1.3&_1.41 1421, yielding inter-tissue boundary efTects which are disregarded in most 

photontran port models 12011431. 

Figure 3. 2 Refraction of light between two media with different refractive index 

(n, nl ), where 0, is the angle of incidence, 01 is the angle of refraction, and '" and 

"1 are the speeds of light in each media. 

3.1.2 Sea tiering 

Refractive index mismatches within tissues also exist at a microscopic scale, where 

collagen fibres, blood vessels. cell membranes and organelles etc. submit light to 

rerractive effects I 44 I. This microscopic refraction is ca lled scaltering, the 

effectiveness of which is described with scallering coemcientps(mm·'). callering is 

a physical process by which light interacts with maller to change its direction. so if 

the medium is scattering, the path taken by the photons is no longer straight as 

shown in Figure 3. 3. The scallering oflight through a medium has a straight effect 

on its distribution, thus making scallering a dominant effect in such studies. 
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I 

10 

• 
d 

Figure 3.3 Scattering oflight through a scattering medium, where I is the intensity of 

the scattered transmitted light, 10 is the incident light intensity, and 1', is the scattering 

coemeient of the homogenous medium of thickness d. 

In practice. rnost rnodels approximate the scattering effects through the use of an 

experimentally determined scattering coefficient p, and an anisotropy factor g to 

describe tissue types at a macroscopic scale. / /p, is the rnean free path (I/~fp, mm) 

between scattering events and g is the mean cosine of the scattering angle as shown 

in Figure 3. 4. An anisotropy factor g is used to describe the scattering an isotropy of 

a medium, where g = 0 represents isotropic scattering and g = I as scattering 

becomes more forward peaked. In the photon diffusion (PO) theory, the scattering 

effect is further approxirnated by using a reduced scallering coefficientp ', (nlll1" ), 

which incorporates the scattering coefficientp, and the an isotropy g: 

11: = p , x (l-g) 13. I] 
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Figure 3. 4 A simple description of the scattering effect using 1'" g, and I' '.,. mfp is 
the mean fTee path of each small step with anisotropic deflection angles 0, and mfp' is 
the equivalent reduced mean free path of one big step. 

The scattering effect is determined by the ultra-structure of the tissue [45]. Tissue 

ultra-structure extends from membranes to membrane aggregates to collagen fibres 

to nuclei to cells. Light is most strongly scattered by those whose size matches the 

wavelength of light. In this research, the attention is focused on NIR spectral region. 

In this region, the structures of skin that contribute most to scattering such as 

collagen fibre bundles and red blood cells are considerably at least three times larger 

[46] than the NIR wavelength. Thus the scattering coefficient is expected to change 

slightly with the shift of wavelength. 

3.1.3 Absorption 

Absorption is an effect that is explained at an atomic scale as the conversion of 

photons into thermal energy upon collision with atoms. More specifically, this effect 

is most likely to occur when the energy of a photon (determined by its frequency) 

coincides with one of the excited states of the atom it is colliding with. Its direct 

relationship to the effective transmission of light through a medium makes this a key 

effect in the present study. 
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The absorption coefficient /la (mm' I) of a medium for a given wavelength A. describes 

the effectiveness of ab sorption as shown in Figure 3.5 and it represents a probability 

per unit length of a photon being absorbed. 

I 

( 

d 

Figure 3. 5 Absorption of light through a non· scattering medium, where I is the 

intensity of the direct transmitted light, 10 is the incident light intensity, and lIa is the 

absorption coefficient of the homogenous medium of thickness d. 

In tissue, the main absorbers of light in the NIR spectral region include oxygenated 

and deoxygenated haemoglobin. Each has its own particular absorption spectrum 

which describes the level of absorption at each wavelength [471. The absorption 

spectra of the two absorbers have been previously presented in Figure 2. 9. 

3.2 EXISTING MODELS OF LIGHT PROPAGATION 

Optical bio-monitoring modalities can be described in general terms as systems that 

modify a specific light intensity, where the transfer function is determined by a 

number of anatomical and optical properties of biological tissues. Most biological 

tissue is a turbid medium with strong scattering; thus light follows a complicated 

path, the signal strength attenuates rapidly, and the propagation is inherently 3-D [481. 

This makes the modelling of light propagation extremely difficult. A wide variety of 

linear and non-linear propagation models have been developed attempting to address 

the problem in conventional PPG, especially in pulse oximetry. Kubelka-Munk 

theory incorporated scattering in a heuristic approach to deriving optical density, and 
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was applied to in-vitro and in-vivo pulse oximetry [491; however, its assumption of 

isotropic scattering was unrealistic. A highly accurate description of the physical 

system like the radiative transport equation (RTE) [501 incorporates anisotropic 

scattering more accurately reflecting the tissue characteristics, however the greatly 

increasing mathematic complexity with the tissue structure makes the application of 

this model extremely difficult in complicate description of tissue [431 [44] . An 

oversimplified format of the Beer-Lambert law, would, for example, disregard 

scattering effects within human tissue, thus tending to invalidate it as a 

representation of the system. The following section introduces three main models 

used for in-vivo optical propagation which lay the foundation of the 

opto-physiological model of IPPG. 

3.2.1 Radiative Transport Theory 

Propagation of light in tissue can, in principle, be described using fundamental 

electromagnetic theory. Based upon radiative transfer theory (RTT), the propagation 

can be simplified by only considering the flow of energy through the medium, which 

gives a very good approximation for large thicknesses (>several mm) of biological 

tissue in the NI R region. The following formulation of the radiative transport 

equation (RTE) considers monochromatic light and disregards polarisation [50]: 

~ ~ 

af(r,ii) 

aii 

. . 
~ -+ f.1 -+ --+ -+ -+ 

- f.1,! (r , ii) + -' J f (r , ii )~ (r , ii )df,i 
41T 411" 

[3.2] 

The left side of Equation [3. 2] represents the net change in energy due to energy 

~---+- -+--+ 

flow, where I( r , i\) is the radiance at a position r in direction ii . The first term of 

the right side represents the radiance lost due to absorption and scattering, where 

IIt=Pa+P" Ps is the scattering coefficient and pa is the absorption coefficient. The last 

term denotes the gain in f(r, ii) per unit length in direction ii due to scattering from 

~ 

all other directions ii '. The light power per unit area confined within solid angle dQ 

~ ~ ~ 

coming from direction ii 'is f(r, ii) dQ' with scattering probability density function 

~ ~ 

Pd(r,ii) for scattering from 11' to direction ii. While exact solutions for the RTE 
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exist only for simple cases such as isotropic scattering in a simple geometry (50(, 

there is no general solution. Therefore further approximations and computing 

numerical solutions have been developed. 

3.2.1.1 Analytic approximation-photon diffusion model 

The diffusion approximation, also known as photon diffusion (PO) model (51) 

assumes isotropic scattering through all media by using the reduced scattering 

coefficient J.I's as Equation [3. I). Schmitt (52) derived approximate analytical 

solutions of PO theory based on a homogeneous tissue model for pulse oximetry. 

Marble et af. (53) found in-vivo results from the fingers of 50 health subjects for a 

transmission mode PPG sensor followed PO model predictions when considering the 

tissue as a slab medium. Takatani et af. (54] and Schmitt et al. (43) obtained the analytic 

PO solutions based on two- and three-layered tissue with simplifying assumptions. 

Until now only one tissue model up to four layers has been proposed by Van Gemert 

et al. (44) in studying laser dosimetry, but an analytic solution was not published. The 

greatly increasing mathematic complexity with the tissue structure makes the 

application of photon diffusion (PO) model extremely difficult in multi-layered 

tissue. 

3.2.1.2 Numerical solution-Monte Carlo simulation 

Monte Carlo (MC) simulation, a numerical solution to RTE as Equation [3. 2], refers 

to a technique first proposed by Metropolis and Ulam (55) to solve various physical 

problems using a statistical model based upon RTT. In case of the light-tissue 

interaction, the tissue can be generally considered as a strongly scattering turbid 

media, and the light injected into tissue undergoes events including absorption, 

scattering and reflection at the interface of different tissue layers. MC methods 

simulate the optical propagation process in turbid tissues at a macroscopic level and 

evaluate the multiple physical quantities simultaneously. 

Inexpensive computing capability has removed a major obstacle to the successful use 

of MC methods. MC simulations offer a numerical modelling scheme that has shown 

good correlation with practical results in situations where an analytic solution is 

either unnecessary or impractical. The scheme can be conceptually applied to any 
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analytic theory and complex geometric configurations even heterogeneous media. 

Graaff et al. [56) employed MC simulations oflight travelling through a homogeneous, 

single-layer tissue model to demonstrate the importance of light scattering in 

understanding reflectance pulse oximetry. Tuchin [48) used MC methods to solve the 

inverse problem of obtaining optical parameters from tissue samples based upon a 

five-layer model. 

3.2.2 Beer-Lambert law 

The Beer-Lambert law describes the effective optical absorbance of a medium when 

light travels through a given path length commonly employed in pulse oximetry [57) 

[58). The degree of absorption depends on the nature ofthe trans-illuminated material 

and the wavelength of the illumination. Experimental measurements are usually 

made in terms of incident and transmitted light intensity in a transmission mode. 

Ignoring the light transmitted directly from the light source to the receiver or light 

which does not pass through arterially perfused tissue, the relationship between the 

incident and transmitted light is obtained from the Beer-Lambert law as: 

1= 10 xexp(-,ua xl) [3.3] 

where 

10 incident light intensity 

1 transmitted light intensity 

,ua the wavelength-dependent absorption coefficient, mm-! 

I the path length, mm. 

In the transmission mode, the Beer-Lambert law is normally simplified to regard the 

path length as the thickness of a medium and does not take scattering into account. 

Nonetheless, it yields the ratiometric approach to oxygen saturation calculation; 

empirical calibration removes the effects of other tissue characteristics as long as 

they remain close to their state at calibration. In the reflection mode, the 

simplification of the Beer-Lambert law is of limited accuracy and applicability, as 

the optical path is less well defined than that in the transmission mode, and may 

differ between two wavelengths. 
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3.2.3 Modified Beer-Lambert law 

The Beer-Lambert law defines the absorbance A of tissue as the log to the base e of 

the ratio of the intensity of the incident light to the transmitted light: 

[3.4) 

If scattering is present, the incident light is attenuated due to both scattering and 

absorption. Consequently, the overall attenuation, in optical density OD, can be 

expressed as the sum of the attenuation due to absorbance and scattering: 

OD = A+B =Pax DP+B [3.5) 

where DP is the differential path length [59J depending upon both absorption and 

scattering coefficients, and B is a geometry-dependent factor, which is independent 

of absorption and represents attenuation caused by scattering. This equation is often 

referred to as the modified Beer-Lambert law [60J. The modified Beer-Lambert law 

has been widely applied in the near-infrared tissue spectroscopy to quantify the 

concentration changes oftissue chromophores, mainly oxy- and deoxyhaemoglobin 

[61] [62J. Humphreys et af. also introduced the modified Beer-Lambert law into IPPG 

to calculate the oxygen saturation [34J. 

3.3 PROPRIETARY OPTO-PHYSIOLOGICAL MODEL 

A linear increase in the accuracy of a model for light propagation in biological tissue 

results in an exponential increase in its complexity. The high computational cost of 

MC simulation as a numerical solution to RTE is a clear illustration of this. On the 

other hand, the simplification of the Beer-Lambert law normally disregards 

scattering. This research alms to create an accurate, yet applicable 

opto-physiological model to quantify the effect of the segmented optical properties 

of tissue on the blood perfusion, which is represented by the IPPG signal. To achieve 

both accurate and applicability, a simply representation with descriptive parameters 

is desired. 
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3.3.1 Opto-Physio\ogica\ Modelling 

The modified Beer-Lambert law demonstrates that a modification in path length can 

be used to take into account the effects of scattering and increase the accuracy of the 

model prediction. The modified Beer-Lambert law is usually applied to static 

homogeneous scattering media. In the model developed in this thesis, the tissue is 

treated as a multi-layered structure with respective dynamic blood volume changes, 

rather than a whole and static tissue. Such a model is named as the 

opto-physiological model, where 'opto' referring to the light-tissue interaction and 

'physiological' indicating that the model is used to mathematically quantify the 

effect of segmented optical properties of tissue on the blood perfusion, represented 

by the IPPG signal. Following this idea, quantification of !PPG signals in such 

multi-layered tissue requires knowledge, or at least an estimate, of the optical path 

length in each layer. 

To date, various methods have been proposed for analysing optical path length 

through tissue. In the application of the modified Beer-Lambert law, DP can be 

measured by using the time-resolved and intensity-modulated spectroscopy that 

determines the photon mean time-of-flight or the phase shift of an intensity 

modulated light wave [601 [63] The complexity and the cost of these systems prohibit 

the implementation of these measurements in IPPG. Some continuous wave 

spectroscopic systems use some tabulated DP values [641, but none of these values is 

specialised for segmented human skin. Another approach has been the MC method, 

which can be applied to an inhomogeneous medium and calculate the path length 

directly. Moreover, this method offers the chance to connect the optical path length 

with the various parts or segments of a biological tissue. This will help to quantify 

IPPG signals with segmented optical properties. Thus the MC method is selected to 

derive the optical path length of a multi-layered tissue in this investigation. 

Following above, an opto-physiological modelling is employed to introduce 

scattering-related path length into the Beer-Lambert law. In this investigation, the 

path length named as mean path length (MPL) is derived from the output of the MC 

simulation based upon a multi-layered tissue model. The process of the 

opto-physiological modelling is illustrated in Figure 3. 6. MPL is yielded by the MC 

CHAPTER 3 31 



METHODOLOGY 

simulation on a multi-layered tissue model with wavelength-dependent distinct 

optical properties and sensor parameters of the actual measurement such as the size 

and position of the light source and the detector. The opto-physiological model 

relying on MPL and the optical properties of tissue is derived following the 

formulation ofthe Beer-Lambert law. This model can be used to quantify the tissue 

absorbance and the lPPG signal. 

Empirical measurement Numerical simulation Theoretical model 

- - -1 --------- - - -- --

Sensor parame!ers ..... Monte Carlo Mea path length (MPL) 
simulation .... (RTE) 

!fa. Ji.\ g n & geometry j 
IL 

, , 
. 

. Turbid tissue Pa .. 
Beer-Lamber1law 

measurement 

_1 
... I 

-- -
, Ir 

Quantification of tissue absorbance aud measured light intensity I 
Figure 3. 6 A diagram of the oplo-physiological modelling. 

3.3.2 Revised Beer-Lambert Formulation 

The path length in the Beer-Lambert law is redefined by MPL, a more descriptive 

characterisation of light-tissue interaction: 

[3.6] 

where 

10 the incident light intensity 

1 the scattered light intensity 

fla the wavelength-dependent absorption coefficient, mm-' 

MPL the mean path length, mm. 

MPL, yielded by the MC simulation, takes account of anisotropic scattering, as well 

as the characteristics of the light source and the detector, and the geometry of tissue: 
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MPL = (Sen+ Geo) x l(I1",I1, ,g) [3.7) 

where 

Sen a factor that accounts for the sensor parameters in Figure 3. 6 

Geo a factor that accounts for a specific tissue model including the geometry 

and the layered-interaction 

l(I1",I1."g) the path length modulat~d by the wavelength-dependent absorption 

coefficient ,ua, scattering coefficientI', and the anisotropy factor g. 

3.3.3 Resultant Formulation of Opto-physiological Model 

As introduced in Chapter 2, the I PPG signal contains a dynamic component due to 

the pulsation of arterial blood, and a quasi-static component governed by the static 

part oft issue. The arterial blood volume changes upon each heart beat resulting in the 

dynamic path length, MPLdynamic. This allows the dynamic component to be 

expressed separately from the static component. 

The revised Beer-Lambert formulation can then be derived as: 

1= 10 x exp[ -(JiayHUfiC x MPL'\'f(l/ic + J.iaP/ood x MPL"ynUmic)] [3.8) 

where 

11".,,,,,,, the wavelength-dependent absorption coefficient of the static component 

of tissue, mm'l 

" the wavelength-dependent absorption coefficient of arterial blood, mm'l ra,blood 

MPL,,",,c the static component of MPL, mm 

MPLdyn"",,, the dynamic component of MPL, mm. 

Separating the static and the dynamic component, Equation [3. 8] can be expressed 

as: 

I = I,,",,c x exp( -l1a,blood x MP L"',~m,J [3.9) 

where 
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1.uotiC = 10 x exp(-J1U .. ~IUliC x MPL.da,ic ) 13. 101 

The dynamic component of the absorption accounts for only a few percent about 

0.1-2% (18] of the total absorption, i.e. the exponent of the second part in Equation [3. 

9] is very small. The approximation in mathematics: 

exp(x) = I +x for Ixl« I 13. ltl 

can be applied to Equation [3. 9] as: 

J = I.,'wlle X (1- J.lu,h/Ilod x MPLdJ'namiJ 13. 121 

This light intensity can easily be broken down into two components, a 

time-independent I"aric: 

13. 131 

and a time-variant ldynamic: 

I d)'llumic = J.I/lIlic x Pa.h/ooJ x MP Ldynamlc 13. 141 

Following Equation [3. 13] and [3. 14], the dynamic component can be further 

separated from the static component by normalisation as: 

Idynumic is/a/le X l'u,b1ood X MP Ldynamic = I X MP L 
I perjmi(Jn = -1-.- = I ' J a,h/I/od dynamic 

,./(Jlle .~IUIIC 

[3.1S[ 

where Ipa!uSiO" refers to the normalised intensity of the dynamic component, which 

represents the blood perfusion of tissue. 

Equation [3. 151 is the general formulas of the blood perfusion in the 

opto-physiological model, which can be extended into a multi-layered format. 
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3.3.4 Extended Opto-physiological Model 

3.3.4.1 Description of Multi.layered tissue 

To extend the opto-physiological model into a multi-layered format, the tissue is 

treated as a composite medium M= {m (I), m(2) ... m(k)} composed of k-layer media 

(k=1,2 ... ). MPL(i) is the mean path length for each layer m(i). Each layer is defined 

by a set of optical coefficients such as pa, Ps, g, n and the geometry such as the 

thickness d. 

m(1) 

Incident 
light 

Scattered 
light 

Figure 3.7 A diagram ofa two-layered tissue M=(m(l), m(2)}. 

This treatment of a tissue is in line with previous research [431 [541, which facilitates 

the quantitatively description of the relationship between the segmented optical 

properties and the lPPG signal. 

3.3.4.2 Multi-layered absorbance 

For such a given lPPG system composed of k-layered optical media (k=l, 2 ... ), every 

medium m(i) experiences a MPL(i) that translates to absorbance according to the 

absorption coefficientPa(i) of the medium: 

A(i) = lI)i) x MPL(i) (3. 16( 
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Following Equation [3. 16], the system absorbance of light through the k-Iayered 

media can be derived as: 

, , 
A= IAU)= ILu"(i) x MPLU)] [3. 17) 

i=1 1=1 

3.3.4.3 Multi-layered blood perfusion 

The static light intensity of multi-layered tissue can be expressed as the product of 

the steady absorption from individual layers following Equation [3. 13]: 

, 
I,,",," = 10 x exp(-'ua.,w<iC x MPL"u"J = 10 x TI[exp(-,Uu."u"cU)x MPL,,",,"U))] [3. 181 

where 

J.1u,.~fUlit .. (i) 

1:1 

the wavelength-dependent absorption coefficient of the static 

component from layer i, mm·' 

the static component of MPL of layer i, mm. 

The blood perfusion of multi-layered tissue can be expressed as the sum of the 

dynamic absorption of individual layers following Equation [3. 15]: 

, 
I peifu.lion = Jlu,h/oO(/ X MPL'{l'lIamic = ~)Jlu,h!o",/(i) x MPL"YfllJlllh;(i)] 

i=] 

where 

[3. 19) 

the wavelength-dependent absorption coefficient of the arterial blood 

from layer i, mm·' 

MPLd;'ffumicU) the dynamic component of MPL from layer i. 

3.3.4.3 Specific-layered blood perfusion 

Consequently, the static component of a specific layer i can be derived with its 

weight II'Slalicri) and the total static component following Equation [3. 18] as: 
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I. ( .) - I ( .) -I -=re--=xp....:( ---=P--""",.""",,;,,-,-U.:...-, A....:)_X _M_P-,L,~,a'~j, (:...:i).:...-) _ 
. I - . xw .. I - . xn 

<~/aIlC MaliC ,11,me .~laIlC ex (_ . (k A) x MP L (k» 
P f-La,sloIlC ' .~Iallc , 

[3.20[ 
= 1'\'lallc X --;e, ------------

n exp(-p"."",,,(i', A) x MPL '"",;,(i'» 
,',..i 

Similarly, the perfusion Ip"jusion(i) of a specific layer i can be expressed as the 

product of the total perfusion and Wpajusion(i) following Equation [3. 19]: 

MPL . (.) = I x dynamic I 
peif",ja" "MP L . (k) 

L..J 'd)namlC 

[3. 21) 

, 

3.3.5 The applicability of Opto-physiological model 

3.3.5.1 Detector-dependent opto-physiological model 

Equation [3. 6) is the fundamental formula of the opto-physiological model 

assuming an infinite detector which collects all the scattered light. If considering 

finite size of detector in reality, even with Po=O, there is attenuation because of the 

scattering of light away from the detector. Thus the light Is arriving at the detector 

when Po=O is introduced into Equation [3.6) as: 

I' = I, xexp(-Pa X MPL') [3.22) 

where I' is the detector-dependent scattered light intensity and MPL' is the 

detector-dependent mean path length. 

Thus the detector-dependent static component l'''oli' is derived following Equation [3. 

13) as: 

J '.~Ialic = I J x exp( - Jla,.flallc x MP '.I'lalic ) [3. 23) 

and the detector-dependent dynamic component l'pajusion following Equation [3. 15) 

as: 
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/' l' '. = Ilynam;c MPL I 
petju.\"/On / I. Pa,Mood X dynamic 

.,'clllc 

[3. 24] 

Following Equation [3. 17], the detector-dependent absorbance A ' of light through 

the k-Iayered media can be derived as: 

k 

A'= ~),u,,(i)xMPL'(i)] [3.25] 
;=1 

Equation [3. 18] [3. 19] [3. 20] and [3. 21] are revised according to Equation [3. 23] 

and [3. 24] as: 

k 

1'.""0' = I, x rr [exp( - ,u".""o, (i) x MPL '''a'a' (i»] [3. 26] 
i=1 

k 

/'l"~i"iOO = ~),ua.h1a~I(i)xMPL'", ... "mi,,(i)] [3.27] 
;;1 

I'. . (i) - /' . x w (i) - /' x [3 28] 
MaliC - .,'ulle SIa/IC - .~/atlc k • rr exp( -P".-""'i,(i', A) x MPL ',,,,,o,(i'» 

,'",.; 

MPL' (') 
I'. '. (') /' '. . . (') /' . dyoum'" I 

perjwwn 1 = pcrju.\wn
X 

l1'pel:!uw!n I = perjuslOn
X ~ MPL' _ (k) 
~ ~'naml(, 

[3.29] 

k 

3.3.5.2 Transmission mode and reflection mode 

The opto-physiological model can be applied in both transmission mode and 

reflection mode. In transmission-model IPPG, MPL is largely dependent on the 

geometry and the layered-interaction of tissue model, rather than the characteristics 

of the light source and the detector. In reflection-mode IPPG, the characteristics of 

the light source and detector, especially the distance and size 1431, are crucial factors 

in determining MPL. It should be noted that the surface reflection can not be 

disregarded in reflection-mode I PPG, especially in remote-capturing configurations. 
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4. MONTE-CARLO SIMULATION 

The opto-physiological model oflPPG relies on the output of the 

MC simulation. The objectives of this chapter are to build up a 

MC simulation platform as a virtual environment to describe the 

light propagation in multi-layered tissue and to yield the key 

parameter MPL for the opto-physiological model. 

The main procedures of the MC simulation include three stages: 

the model preparation to export a constructed anatomical tissue 

model, the MC ray tracing to output the coordinates of traced ray 

vertices from the tissue model, and the post data processing to 

generate MPLs. 
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4.1 SIMULATION OVERVIEW 

The MC simulation of this research offers a flexible, yet rigorous approach to photon 

transport in turbid tissue. The simulation aims to provide a detailed description of the 

light propagation in a multi-layered tissue with dynamic blood volume changes in a 

virtual environment. 

The platfonn utilises two commercially available software packages (OptiCAD and 

MA TLAB), and can be sectioned into several phases of operation: model preparation, 

simulation and post-processing. OptiCAD was selected by virtue of its being one of 

the only available software platforms capable of performing MC simulations of 

optical propagation in arbitrary geometries. The software offers a direct perception 

how rays travel in tissue. Moreover, the basic unit for each ray can be directly related 

to the path length which makes the calculation of MPL much easier and more 

straightforward. MATLAB was chosen as a highly efficient development language 

for data processing algorithms. 

The main procedures of the MC simulation are shown in Figure 4. I. Model 

preparation was performed in MATLAB (Mathworks Co., USA) using "STL" 

function to export the 3-D CAD data of a constructed anatomical tissue model into 

OptiCAD. The main process of MC ray tracing was performed by OptiCAD 

(OptiCad Co., USA), which outputs the coordinates of traced ray vertices from the 

tissue model onto a file. Post data processing was performed in MA TLAB through 

the use of custom algorithms specific to the outputs of the previous phases. 
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Figure 4. I The block diagram of MC ray·tracing platform where MA TLAB 
functions are labelled in blue blocks and OPTICA D in red blocks. 

Results of the MC simulation from OptiCAD and post-processing were utilised 

solely for the generati on of MPL in the oplo- physiologica l model. The following 

assumptions determine how MC ray-tracing and subsequent post-proce sing is 

performed: 

• Time varying physiological components lead to changes in absorption and 

scattering, but not in tissue geometry. As introduced in Chapter 2, a skin 

vascular bed contains only a sma ll amount of blood about 2-5% and the blood 

experiences only a volumetric change about 5% percent with the 

cardio-vascular pulse wave 11 911201. Thus the small amount of the pulsatile 

blood brings insignificant change in the macroscopic geometry of the whole 

tissue. 

• Differences between indices of refraction of tissue layers are considered 

negligible as introduced in section 3. 1. 1 that inter-tissue boundary effects are 

disregarded in most photon transport models 120] [431. 

The first assumption entails the use of time-varying absorption and scattering 

coefficients. For the second assumption, the only macroscopic indeK mismatch that 

is considered in the model is that found in the outermost surface of the measuring 

site. 
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4.2 TISSUE MODEL PREPARATION 

A tissue model of complexity sufficient to approximate mammalian skin tissue 

requires mUltiple layers with distinct optical properties. 

4.2.1 Model Structure 

MPL is defined in Equation [3.7] taking account of optical properties, as well as the 

geometry of tissue Geo and the characteristics of the light source and the detector Sen. 

Geo is a factor that accounts for a specific tissue model including lhe geometry and 

the layered-interaction, which is defined in the tissue model such as the arrangement 

of layers and the thkkness of each layer. 

In the general tissue model as shown in Figure 4. 2, a Cartesian coordinate system 

was used to define the model geometry Geo and trace photon movemenl. The origin 

of the coordinate system was the centre of model surface; the z-axis was the normal 

of the surface pointing toward the inside of the model ; and the xy-plane was 

therefore on lhe model surface. Geometrical symmetry was assumed, and the tissue 

was defined by the specific size in xy-plane and finite thickness d along the z-axis. 

, 
z+ 

figure 4.2 A diagram of a general tissue model with three layers. 

In the current model, all the layers were assumed to be homogeneous, and each layer 

was characterised by a bulk absorption coefficient P. , scattering coefficient Ps, 

anisotropy factor g and refractive index 11. Contrary to this assumption, the layers that 

make up tissue are neither homogeneous nor well-defined and planar. Nonetheless, 

CHAPTER 4 42 



METHODOLOGY 

results of a previous study [65[ indicate that the optical properties of whole tissue 

samples and tissue homogenates are similar. Therefore the model abstractions seem 

justified when the source and the detector apertures cover a large enough area of the 

tissue surface that small inhomogeneities do not substantially affect the final 

measurements. 

4.2.2 Choice of Optical Properties 

The light propagation In turbid biological media is jointly governed by the 

absorption and scattering properties of tissue. Most of these properties are 

wavelength-dependent. In simulation, the effect of illumination at different 

wavelength on light propagation is reflected by setting different optical properties 

such as}1a and}1s with the changes of wavelength. 

Absorption and scattering ofNIR light in tissues depend on numerous components of 

tissue, including pigmentation, blood content, and the size, shape, and distribution of 

collagen fibres that give tissue its structural integrity. The values of the absorption 

and scattering coefficients of biological tissues have been reported in previous 

literature (66) (67) [68] Lack of agreement among experimental values obtained by 

different investigators for similar types of tissue is a consequence of inherent 

biological variability as well as of differences in measurement techniques and tissue 

preparation methods. 

For the MC simulation In this research, the tissue was treated as a mixture of 

components, such as bloodless tissue and whole blood. Thus the absorption and 

scattering coefficient was calculated as a linear combination of the coefficients of 

each component weighted by its respective fraction: 

[4. I [ 

f.L., = L (~ x f.L,) [4.21 
J 

where 

~ the volume fraction of component) 
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fl the absorption coefficient of component)', mm"' 
d.} 

fl.,.) the scattering coefficient of component}, mm"' 

4.3 RAy-TRACING SETTINGS 

OptiCAD treats the imported components of the 3-D model as solids and allows the 

volumetric optical properties of each to be computed from Equation [4. I] and [4. 2]. 

The scattering coefficient /1s together with anisotropy factor g was used rather than 

approximately reduced scattering coefficient /1 's in order to increase the accuracy, 

and rays were traced using Cartesian coordinate to locate the position of each step. 

Simulations were configured in accordance to the simplifying assumptions. Internal 

reflection and refraction between interfaces were disregarded, with the exception of 

the refraction between epidermis and air. Apart from yielding an intrinsic reduction 

in ray tracing times, this ensured minimisation of inaccuracies due to the inherently 

difficult task of modell ing the microscopic textures of interfaces, which would 

otherwise pose a significant level of complexity in contrast to their mInor 

contribution to the output. 

The sensor parameters Sen in Equation [3. 7] account for the position and size of the 

light source and detector. For the illumination, all ray traces were performed using 

multiple spherical light sources with defined view angles. This approach was used as 

a simplification to the illumination covering the whole tissue surface to simulate the 

actual configuration in IPPG. The total output power of light source was set to be I, 

and the threshold for traced ray setting was setto be 0.001 % of ray's incident energy. 

A lens with the defined aperture was positioned over the tissue model to collect rays. 

The user interface of OptiCAD is presented in Appendix I. 

4.4 POST DATA PROCESSING 

Several algorithms were made into functions for the processing and analysis of 

output data from OptiCAD, all of which have been optimised in terms of speed, 

memory usage and data pipelining capability. Pipelining was achieved by 
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subdivision of raw data into files containing full subsets of rays, and subsequent 

generation of files for processed data. All coding was performed using MA TLAB 

2007a. 

Several functions, namely Ray2Ma/, RayProcess, and RayDelecl, served as post 

processing of the raw simulation data generated by OptiCAD. The block diagram of 

these functions and model preparation functions is presented in Figure 4.3. 

L-------------------------I-~j 
~ 

" 

Figure 4. 3 The block diagram of interfacing functions. 
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Ray2Mal.m function reads raw OptiCAD ray tracing data, splits it into full subsets of 

rays, and compresses the data into multiple files ready to be read by subsequent 

algorithms. 

The function RayProcess.m removes unwanted rays, delimits rays with respect to 

vertices and segments, labels ray segments by layer, and measures segment path 

lengths as shown in Figure 4. 4. 

V.verts (x,y,z) and V.power 

Incident 
light 

for each vertex ________ 

The short separation 

Scattered 
light 

the start and end vertices of 

one of the segments in layer I 

between layers ----..~=;~::::;:::::;:::::;:~~;;~ 
boundary vertices of segments: the 

V.length for the length 
difference ofV.power =0 

between each vertex pair 

segment in layer 2 9 

S.length (length ofsegment)=L_ V.lengths(pwJ 
Pw.-I 

Figure 4. 4 An example of the RayProccess.m function to process a single ray in a 
two-layered tissue model. 

The RayProcess.m function divides the ray tracing data into data structures (Ray. V, 

S), which group relevant ray data in terms of the ray, vertex, segment. The ray 

structure Ray stores the sum total of rays waiting to be processed. The components of 

the vertex structure Vare all as long as the sum total of vertices for all stored rays. In 

the context of simulation, a ray segment refers to the portion of a ray within a single 

layer of the model. Thus, the components of the segment structure S are all as long as 

sum total of segments for all stored rays. Segments are delimited through the use of 

V.powers, where the vertices at which the difference of Vpowers=O are the boundary 

vertices. This effect was due to the finite separation that OptiCAD required between 

layers of the model, which results in the generation of short ray sub-segments 

connecting model layers during ray tracing. 
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Segment lengths are determined in two steps: 

In the vertex domain, 

V Jengths(p,.",) = IV.verts(p,,")- V.verts(p"" -1)1 (4.3( 

where Pm/ is the vertex pointer. 

In the segment domain: 

S./engths(p ) = S"·K"~'('.2) 
."'K L V.lengths(p,.",) (4.41 

P"m""S,I'1!.NlUp.I'(,f,l) 

where Pseg is the segment pointer. 

RayDetect.m is used to stores the rays within the designated detector and generate 

MPL' for the defined detector position in Equation [3. 22]. This process is the final 

stage in the post processing, and as such consists of the defining detector structure D 

and the global data structure G containing data pertaining to the complete set of the 

MC data, such as MPL '. 

The detector-dependent MPL ' is yielded as follows: First, segment path lengths are 

accumulated for every layer for the stored rays according to detector position as: 

G.Det{i,x,y,o) = "IS.lengths (4.51 
S.<I 

where Ssel contains pointers to all segments within layer i for all ray ends within the 

detector area, and the detector area is defined by the size xxy and the centre o. 

It follows that 

G.MPL'{i,x,y,o) = G.Det{i,x,y,o)/ G.Detnrays(x,y,o) (4.61 

where G.Detnrays(x,y,o) is the number of rays in S",(x,y,o). 

G.MPL '(i,x,y,oj serves as the fully processed core data MPL' in Equation [3. 25] to 

be used for the quantification of absorbance A based upon the opto-physiological 

model. 
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When considering tissue with dynamic blood volume changes, the arterial pulsation 

is simulated by adding the pulsatile blood into the non-pulsatile tissue and thus 

changing the volume fraction of each component in tissue. So the scattering and 

absorption properties of tissue are changed in the non-pulsatile and pulsatile stage 

following Equation [4. I] and [4. 2], which affects the light propagation in tissue and 

thus the MPL' in each stage. This simulation procedure is in accordance with the 

separation of the static and dynamic component in Equation [3. 13] and [3. 14]. 

Consequently, MPL 'dynamic is calculated as: 

GMPL' . =GMPL' . -GMPL' • ,JYl1umlc • pul,l'ull/e' mm-pul.vulile (4.7( 

where G.MPLnon-pulsari/e is derived following Equation [4. 3] to [4. 6] from the 

simulations based upon the tissue model with non-pulsatile optical properties, and 

G.MPLpulsali/e based upon the tissue model with pulsatile properties. 
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5. VALIDATION PLATFORM 

The opto-physiological model is generated based upon the 

Beer-Lambert law and the MC simulation on multi-layered 

tissue. To validate the model, a reflection-mode IPPG setup and 

a series of in-vitro and in-vivo experimental protocols are 

developed. The experimental outputs serve as reference for the 

validation of the opto-physiological model. 

The objectives of this chapter are to build up the experimental 

platform, define the validation procedure, and finally build up 

the mapping function of blood perfusion. 
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5.1 IMAGING PPG SYSTEM 

The basic concept of IPPG is to illuminate the tissue with an array of light sources 

and to detect the light leaving the tissue with multiple detectors. The introduction of 

the fast digital camera facilitates the development of the concept to allow 

non-contact monitoring from a large field of view by applying illumination covering 

a large area as shown in Figure 5. I. The basic elements in the current IPPG system 

including the ringlight illuminating a large area, the lens and the CCD sensor as the 

detector, and the skin tissue defined by optical coefficients and its geometry. In this 

investigation, a reflection-mode IPPG setup was built up for the validation 

experiment. 

L2i1~~~~~~7 ~;:~ sensor 
(imaging plane) 

area 

tissue: P a' P S'g, n and geometry 

Figure 5. 1 The schematic diagram of IPPG setup including the ringlight, lens, CCD sensor and 

skin tissue. 

S.I.l Engineering Setup 

5.1.1.1 Imaging Hardware 

The key part of IPPG is a camera to collect the transmitted photons coming from 

tissue. The camera requirements should include the flexibility to choose variable 

readout speed, sensitivity and exposure time. CCD and CMOS cameras are currently 

in wide applications of biomedical research. The CCD camera creates high-quality 

and low-noise images, while it consumes more power and is more expensive. The 

CMOS camera is susceptible to noise, yet capable of reaching higher frame rates. 
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In this investigation, both camera solutions by virtue of each were selected as the 

imaging hardware. 

A. Mikrolron CMOS camera 

The Mikrotron camera (MC 1311, Mikrotron GmbH, Germany) has a CM OS sensor 

with dimension IS.36x 12.29 mm2
• The sensor has a maximum resolution of 

I 280x I 024 pixels with square pixels measuring 12~m. The pixels are encoded in 10 

bits, making it eligible to detect the weak arterial pulsation. The camera was 

connected to a personal computer (PC) via a Camera Link® frame grabber PCI card 

(Inspecta-S, Mikrotron GmbH). With the custom image capture and control software 

developed in LabVIEW (National Instruments Co., USA), the camera can deliver 

quality images, and the frame rate can be as high as 32 fps in a full resolution and up 

to 48S2 fps using a region of interest (ROI) mode. The system used an 

industry-standard C-Mount zoom lens (Focal length: 8mm, F/#: lA, M0814-MP, 

Computar, Japan). Depending upon the lens, it is possible to observe arbitrary parts 

of tissue, from a few square millimetres to several square centimetres as requested in 

the actual measurement. 

B. Hamamalsu CCD camera 

The CCD camera (C I 0000-20 I, Hamamastu, Japan) has a maximum resolution of 

2048x 128 pixels. The pixels are encoded in 12 bits, providing a high digitization 

resolution, i.e. 4096 intensity levels. The CCD camera was connected to a PC via the 

same frame grabber card as the CMOS camera and the streamed frames were 

recorded in the custom image capture and control software in LabVIEW. An 

industry-standard F-Mount zoom lens (focal length: SOmm, f/#= 1.8, AF Nikkor, 

Japan) was attached to the camera. The CCD camera has a much narrower capturing 

window. This limits its application in in-vivo measurements, as a large captured area 

is always desired to facilitate the comparison between different compartments of 

tissue. Nevertheless, the CCD camera has a much better spectra response as shown in 

Figure S. 2 and a higher dynamic range when compared with the Mikrotron CMOS 

camera. Better digitisation resolution can greatly increases the quality of the detected 

signal, which directly affects the accuracy of the validation. 
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Figure 5. 2 (a) The spectral response of the CMOS camera; (b) The spectral response 

of the CCD camera. 

5.1.1.2 I1Jumination Configuration 

A. Illumination source 

The light-emitting diode (LED) has been used as the illumination source for the 

PPG-based instrumentation. However the LED does have some disadvantages, 

which could reduce the accuracy of detecting signals and the model prediction: 

- The LED is not strictly monochromatic so that the optical properties such as /1a and 

/1, can not be estimated accurately based on the peak wavelength; 

- The peak wavelength of the LED shifts over extended operation caused by the high 

temperature; 

- Owing to the production spreads, there is a variation in the peak wavelength of 

different diodes up to 15nm 1691. 

To overcome these disadvantages of LED, resonant cavity light-emitting diode 

(RCLED) was introduced as the illumination source of the custom I PPG platform. 

The RCLED is a kind of high-speed LED which has been employed as potential light 

sources for several optoelectronic applications, such as optical communication 

systems and optical interconnections. RCLED retains the non-coherent 

characteristics of LED, but has a narrower spectral bandwidth which can help the 

estimation of the optical properties with a smaller deviation. Also it has good 

temperature stability proving superior to conventional LED (701. All those advantages 
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brings benefits in the acquisition of better signal to noise ratio (SNR) and hence 

increasing the reliability of the output signal of IPPG. 

B. Opticalou/line 

The illuminator is expected to be the ring light, which can distribute the light over a 

large area of tissue. The ideal position of the ring light is around the camera lens, thus 

a hole the same size as the camera lens is required in the middle of the ring light as 

illustrated in Figure 5. 3. 

Figure S. 3 The position of the ringlight with lens in the middle. 

The ringlight arrangement shown in Figure 5. 3 with a large hole in the centre results 

in a non uniform light distribution. Thus a parabolic reflector with multiple LEDs 

facing backwards towards the reflector was employed to compensate the shadow and 

collimate the light from multiple RCLEDs. This configuration is simulated in 

OptiCAD as shown in Figure 5. 4. 
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Multiple spnericalllgltt .ourees around the hole, 
each with view angle 180· and racing 
backwards to the reflector "" 

The hole 
for the lens 

Parabolic 
reflector 

Relatively 
wufoml 
distribution of 
rays on tlle film 

Fibn to collect ray. 

Figure 5. 4 A screen shot of the illumination configuration simulated in OptiCAD. 

Four spherical light sources are designed to simulate multiple RCLEDs, each with 

180· view angle and facing backwards towards the refleclor. The parabolic reflector 

is designed with a hole in the middle same size as the lens. A film with size of 

100x 100 mm is designed to collect the rays represented by the dots on it. 

Figure 5. 4 illustrates the rays on the film relatively uniform distribute all over the 

detection area. Following this configuration, a custom dual-wavelength RCLED 

ring light with a parabolic reflector (8&Q, UK) was built up to provide an relatively 

uniform illumination covering the measurement site. The reflector was mounted 

around the camera lens (the CM OS camera: DIA. 14cm, depth: 5cm & the CCD 

camera: DIA: 18cm, depth: 6.5cm). The ring light consisted of20 RCLEDs - 10 

with a peak wavelength of 650 nm and spectral bandwidth 30nm (TRC650SM D0603. 

WelTek Co. Ltd., Taiwan), and 10 with a peak wavelength of 870 nl11 and spectral 

bandwidth 20nm (TRC870SMD0603, WelTek Co. LLd .. Taiwan). The arrangement 

of the 650 and 870 nm RCLEDs is depicted in Figure 5.5. 

RCLED "r .... ng."'ent of the 
dual.wavel.ngth ,·jng light 

• 650nm 

. 87011111 

Figure 5. 5 The arrangement of dual·wavelength RCLED ringlighl. 
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5.1.1.3 Control layout 

A control circuit with a microcontroller (PICI6F876A, MicroChip Inc., USA) was 

configured to operate in 2 modes which can be manually selected according to the 

experimental requirement. The relative timing of the 2 modes is illustrated in Figure 

5. 6. In this investigation, mode I was configured to be continuous illumination of 

single wavelength and mode 11 was to be alternative illumination of two wavelengths. 

The circuitry was triggered by the 'frame valid' signal from the camera, which 

indicates the period of exposure of each frame. 

Mode I 

Mode II 

Timing signals 

650nm 

L--...,;8;,;70nm 

650nmor 
870nm 

Figure S. 6 The relative timing of the signal. 

The captured frames from the camera were directly streamed into the PC via the 

frame grabber. The custom LabVIEW control software was developed to control 

frame grabber, change camera settings, acquire the images in on-line mode and load 

them for off-line processing. By changing the readout speed and the exposure time, 

the sample rate can be adjusted to meet requirements. The custom LabVIEW control 

software is detailed in Appendix 11. 

5.1.2 Post Signal Processing 

The outputs of the camera were a set of raw frames containing the information of the 

detected light intensity. Post signal processing of these raw frames was performed to 

yield discrete values of detected light intensity for a designated ROl ip which 

represents the ROI in the imaging plane as illustrated in Figure 5. I. The processing 

follows the three steps: 
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- De-multiplexing of the raw frame sequence into separate sequences of each 

wavelength; 

- Definition of a ROl ip of arbitrary size; 

- Averaging pixel values of the ROlip to form raw waveforms over frame number 

for the frame sequence of each wavelength. 

The process is illustrated in Figure 5. 7. 

/ 
r--g-70-n-m-fr-a-m-.-s-'1 

Imaging 
plane 

........ . ........ ,-.l..L-':-'---!=o::"-.L-i.-,' 

0 .. Cl/a'l r \ r-J '''I 
.' .V·· , "/ 
t-~ 11 . /-.. 

J~y 
columns 

51 •• ,. 
Fnmr-mrr 

Figure 5. 7 A schematic diagram of post signal processing of detected light 

intensity. 

The average pixel value represents the detected light intensity and the frame number is 

related to the time t by the frame rate of camera: 

t=Frame number/Frame rate (5. I( 

The discrete-time waveform represents the raw IPPG signal. 
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5.2 VALIDATION PROCEDURE 

The ray data processing functions in section 4.2 used to process MC data generated 

MPL' for the opto-physiological model, and the post data processing functions 

yielded IPPG signals for the validation study. The MC simulation and the 

experimental platform are then ready for the validation of the opto-physiological 

model. The CCD camera with F-mount lens was selected as the detector in the 

validation experiment due to its better spectral response and higher dynamic range. 

The validation procedure was achieved in two stages including the in-vitro validation 

on the multi-layered phantom and in-vivo validation on the healthy subject. Figure 5. 

8 illustrates the concept of the validation. As the assumptions and parameters of the 

opto-physiological model approach those occurring in the corresponding real-life 

experiment, the outputs of the opto-physiological model and the experiment 

increasingly correlate. The high correlation proves the validity of the model. 

Correlation 

Figure 5.8 The concept of the validation. 
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5.2.1 Phantom-Based Validation 

5.2.1.1 Experimental phantom preparation 

The following factors should be considered during the preparation of appropriate 

tissue phantoms: 

- The structure of the phantom should be suitable for the experimental platform of 

IPPG; 

- The scattering and absorption properties should be close to those of human tissues; 

- The absorption and scattering coefficients should be controlled independently to 

test the accuracy of the opto-physiological model under different conditions; 

- The materials should be easy to obtain, safe to use, and acceptably stable. 

Balancing the above factors, commercial milk (semi-skimmed, Sainsbury 

Supermarkets Ltd., UK), food dye (FD&C blue #1, ROHA Ltd., UK) and gelatine 

(Somerfield Stores Ltd., UK) were selected as the main components of the phantom 

in the experiment. The milk serving popularly as a scattering substance f7IJ [72) is 

close to the scattering properties of human skin about 7 mm". It can be easily diluted 

with water to change the scattering properties of the phantom with negligible 

absorption about 0.0085 mm" in near infrared range [73)[74). The dye, FD&C Blue # I, 

was added to increase light absorption preferentially at 650 nm. As the dye can be 

fully dissolved in water, it does not introduce scattering [75J. The gelatine mainly 

provided the structural support so that the solidified layers could be formed to fit into 

the setup of the reflection-mode IPPG. 

A. Phantom construction 

The gelatine was firstly dissolved into the dye solution. Measured volume of 

water-dye-gelatine was then mixed with measured volume of diluted milk. The 

mixture was poured into a container with a magnetic stirrer (HI 200M, Hanna 

Instruments Ltd., UK) underneath to keep the mixture homogeneous in the container. 

When intensive mixing, the container with the mixture was placed in the refrigerator 
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to solidify. The two-layered phantom was formed by pouring 

water-milk-gelatine-dye on top of a layer of solidified phantom. Absorption and 

scattering coefficients can be changed by adjusting the concentrations of dye and 

milk solution. The procedure of the phantom construction is presented in Figure 5. 9. 

+ + 

Figure S. 9 The construction of phantoms with different absorption and 

scatlering coefficients. 

B. Measurement %pticed properties 

Following Equation 4.1 and 4.2, the absorption and scattering coefficients of the 

phantom were computed as a linear combination of the absorption and scattering 

coefficients of each component. As introduced previously. watcr-dye-gelatine and 

milk are the only components attributed to absorption and scattering coefficients 

respectively, Equation [4. I] and [4.2) can be derived as: 

P" = I (/1 x P".I ) = / d),< X P"-'~~~'I""n' 
J 

P., = I u; X jI,., ) =/."" x jI, .• ,,/k , 

where 

jI •. dJ<-gd"". , the absorption coefficient of water-dye-gelatine, mm-/ 

11 the scattering coefficient of 111 ilk solution, mm-/ 
r~.",flk 

h~<-... /"",.. the volume fraction of water-dye-gelatine 

r the volume fraction of milk solution. J UlIlII 
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The absorption and scattering coefficients of water-dye-gelatine and milk were 

derived from the measurements using a spectrometer (USB4000, Ocean Optics Inc., 

USA) and a tungsten halogen lamp (LS-I, Ocean Optics Inc.. USA). The 

measurement was performed in an optical transmission method as shown in Figure 5. 

10. 

Figure 5. 10 The setup of the measurement of optical properties including a cuvelle 

holder (right), the speclrometer (left bottom), and the lamp (left top). 

A 10 111111 cuvette loaded with the sample of mixtures was placed in a cuvette holder 

(CUV-UV holder for I cm cuvette, Ocean Optics Inc. , USA). The tips of the source 

and the detector fibre were connected to both sides of the holder and perpendicular to 

the cuvette. The measurement was repeated three times for each sample and the 

mean absorbance Am •• n at the wavelength of 650 nm was recorded for the calculation 

of fla. 

To calculate the absorption coefficient fladye.stlalme. the cuvette was filled with the 

sample of water-dye-gelatine. Following Equation [3 . 4J, flati;" 'g./alme can be derived 

as: 

[5.41 

where path length I is the thickness of the cuvette's cavity, i.e. 10111111. 

CHAPTER 5 60 



METHODOLOGY 

The scattering coefficient fis.mUk can not be directly measured as fia.dye-geialine, as the 

expected values are too high beyond the measuring range of the spectrometer. An 

indirect method was employed to address this problem. The cuvette was loaded with 

a sample of low concentration milk. When the acceptance angle of the optical 

detector is very small at best close to zero, single scattering can be assumed in the 

case of a thin cuvette and low concentration (761. The absorbance of diluted milk can 

be expressed as: 

A=c xCxd ., (5.5( 

where 

C the concentration of milk solution, % 

I the thickness of the cuvette's cavity, mm 

c, the wavelength-dependent molar scattering coefficient, M-'mm-'. 

In this investigation, the commercial milk serves as the stock solution and 100% 

concentration refers to non-diluted of the stock. When fixing the thickness of the 

cuvette, the molar scattering coefficient Cs of the milk solution was deduced to be 

proportional to the slope of the A-C plot in Figure 5. 11. 

Based on the thickness of 10 mm, Cs was calculated as O. 156 mm-JI(%Cj. The value is 

nearly identical with the previous literature, in which Cs was calculated as 

O. I48mm- JI("/OCj 1771. For a specific concentration of milk solution, the scattering 

coefficient fis.mUk can then be derived as: 

Ji., ,milk = C., X C (5_ 6( 

The specification and the optical properties of the food dye are detailed in Appendix 

IV. 
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Figure 5. 11 The A-C plot of diluted milk. The square blocks represent absorbance A 

corresponding to different concentration C of milk. The straight line is the linear trend 

of these blocks. The 100% concentration refers to non-diluted of milk stock. 

5.2.1.2 Multi-layered phantom model in simulation 

To simulate the actual phantom, the multi-layered phantom model was constructed 

consisting of up to two homogeneous layers. Each layer was uniformly thick and the 

geometry of the model was defined by the size of the experimental phantom. The 

absorption and scattering coefficients were set close to those of actual phantoms at 

6S0nm. 

In the experiment, the diameter of the diaphragm aperture of the F-mount zoom lens 

of the CCD camera with focal length (FL)=SO mm, f/#=1.8 was calculated as 

SOmmll.8;o:e28 mm. To simulate this lens, a double-convex lens in the Edmund Optics 

catalogue (Dia: 30 mm, FL: SO mm, Centre thickness: 6.5S mm, R,=-R2: SO.67 mm) 

was selected to be closest to the F -mount lens in the experiment. The double-convex 

lens was positioned 130 mm away from the surface of the tissue model in OptiCAD. 

Light impinging upon the tissue was simulated using parabolic reflector and multiple 

spherical light sources which were designed to the same arrangement as shown in 

Figure S. 3. Only the rays that fall into the lens aperture are considered for the 

calculation of MPL. 
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5.2.1.3 Validation analysis 

As parameters and optical properties of the model in MC simulation were close to 

those of the actual phantom, the simulation was expected to give a good 

approximation to the real light propagation in tissue. The theoretical A ',heo of 

multi-layered phantom can be expressed following Equation [3. 25] as: 

, 
A' -"[ (')xMPL '(.)] thell - L... P/J I uprrlure I 15.7] 

i=1 

where flo(i) is the absorption coefficient of layer i, k is the total number of tissue 

layers and the MPLop",ure '(i) represents the aperture-dependent MPL' calculated 

using Equation [4. 6] based on the group of rays collected by the defined lens 

aperture. 

In phantom-based experiments, the experimental absorbance Aexp can be derived as: 

l' 
A =-In(-) 

crp 1 , 
15.8] 

where I, is the light arriving at the camera when flo=O and f' is the scattered light 

intensity collected by the camera. 

With the change of the optical properties in both simulation and experiment, the 

phantom-based validation of the opto-physiological model can be achieved by the 

comparison between A ',heo and Aexp. 

5.2.2 Subject-Based Validation 

5.2.2.1 Experiment preparation 

In the subject-based experiment, the IPPG signal consists of a static component DC 

and a dynamic component AC. To yield discrete values of DC and AC from the raw 

data, the following steps were performed: 

- Extraction of quasi-static DC components from raw signals via low-pass 

filtering; 
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- Extraction of AC components via subtraction of DC from the raw signal. 

A moving average method ("smooth" in MA TLAB) was introduced when 

performing low-pass filtering for the extraction of the quasi-static DC component 

from the raw IPPG signal. For extraction of quasi-static DC components, the 

window size should be such that it keeps the DC signal within all peaks and troughs 

of the raw signal while showing negligible rippling of the heart rate (HR) 

fundamental frequency found in the latter as shown in Figure 5. 12. 

Once the optimum filter parameter was determined, it was kept constant within all 

signals produced under the specific hardware configuration. 

ID BR_ 
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Figure S. 12 Visual assessments of low-pass filter parameters for quasi-static DC 

extraction. The raw signal and filtered dc signals in time domain are plotted in the 

left figure. The Fourier spectra of these signals are plotted in the right figure. 

To represent the static light intensity i"alic and dynamic light intensity idynamic in the 

opto-physiological model, the mean value of the DC signal and the mean amplitude 

of the AC signal are yielded by a custom "PPI" function in Matlab as the following 

steps: 

- The aCPPI is defined as the absolute value from the peak to the trough of the AC 

signal, and the interval is defined as the absolute value between two wave troughs, 

tenned 'pulse to pulse interval' (PPI) as shown in Figure 5. 13. The AC amplitude for 

each PPI was calculated, and the mean amplitude ac was obtained by: 

ac 15.9) 
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where NpPJ is the total number of PPI during the period of recording and GC IS 

calculated to represent I'dynamlc in Equation [3.24]. 

2r-----------~----------_r----------_. 

o 2 j 

Time (sec) 

Figure 5. \3 A diagram of the pulse·pulse inlerval PPI and AC amplilude aCPPI for 
each PPG. 

- The raw !PPG signal is formed by averaging pixel values of the specific RO! over 

frame number of the frame sequence and the frame number is transformed to time as 

shown previously in Figure 5. 7 and Equation [5. I]. dC/rame is defined as the value of 

the DC signal for each frame as shown in Figure 5. 14, and mean value dc was 

calculated by: 

de = I de frome 

NJhlnll' 

15.10) 

where N/rame is the total number of frames during the period of recording and dc 

represents I'''allc in Equation [3.24]. 
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Figure 5. t 4 A diagram of the dc/rom,. 

- Following Equation [3. 24], J'peifus'on can be represented by the calculation of the 

ratio Rexp of the experimental ac and dc as: 

R = ac 
exp de 

5.2.2.2 Skin tissue model in simulation 

[5. 11 [ 

Since the mean penetration depth of the light source emitting at 650nm and 870nm is 

into deep dermis layer of human skin [781, a tissue model in MC simulation consisting 

of six layers up to hypodermis was constructed. 

The description of a multi-layered skin tissue is described from a simplified anatomy, 

as shown in Figure 5. 15. The layer was numbered from 1 (most shallow) to 6 

(deepest). Each layer was given a name suggestive of the corresponding anatomical 

structure. 
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Epidermis 
2' Dermis 

Papillary plexus 

• Dermis 

It Cutaneous plexus 

• Hypodermis 

Figure 5.15 A six-layered description of skin tissue model. 

A blood free layer of dermis separated the epidermis from the papillary plexus. The 

bottom four layers perfused with blood were the main contributors of pulsatility in 

the tissue model. The melanin content was not considered in the epidermal layer of 

this tissue model. The contribution of melanin to absorption becomes 10 times 

smaller in the NIR region [79J compared to the UV region as Figure 2. 8 shows. 

Moreover, since the volume fraction of melanin in the epidermis accounts only very 

low percent around 6% [SOl in tissue, it just modestly affects the light transport. Apart 

from the difference of the optical characteristics, the geometry of the tissue model is 

similar to the five-layer skin model utilized by Tuchin [4SI and the six-layer skin 

model by Reuss [20J. 

In blood perfused layers, the principal absorbers in the NIR region are blood as 

introduced in section 2.1.2. Hence the bulk absorption coefficients of dermis and 

other highly vascularised tissues in this spectral region depend on the blood content. 

In the NIR region, scattering in the dermis and in the sub-dermal tissues dominates 

absorption. The structures that contribute most to scattering in skin are collagen fibre 

bundles and red blood cells, which cause highly forward-directed scattering [SIJ. The 

wavelength-dependent optical properties of blood and tissue from literature [20J [44J [52J 

are listed in Table 5. I. 
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Var. Meaning 
J.i',bloodless (mm·l)absorption, bloodless tissue 
J.ia,blood (mm· I) absorption, blood 
J.is,bloodless (mm· l) scattering, bloodless tissue 
J.is,blood (mm· l) scattering, blood 

650nm 
0,0285 
0.397 
7.150 

161.374 

870nm 
0.0245 
0.583 
4.45 

106.888 

Table 5. I Optical properties of blood and bloodless tissue at 650nm and 870nm 

illumination. 

The total blood fraction (nominal 5%) is the mean concentration of blood in the total 

tissue volume during the diastolic state. Layer thickness d(i), and blood fractionf(i) 

for each layer in the diastolic state with nominal total blood fraction of 5% 1201 is 

listed in Table 5, 2, 

Layeri Name d(mm) f(%) 
I Epidermis 0.06 0 
2 Dermis 0.2 0 
3 Papillary Plexus Superficial 0.2 5.56 
4 Dermis 0.8 4.17 
5 Cuteneous Plexus Profundus 0.6 20.4 
6 hypodermis 8.0 4.17 

Table 5. 2 Layer thickness d; and blood fractionJi for each layer in the non-pulsatile 

state. 

Following Equation [4. I] and [4. 2], the absorption and scattering coefficients of the 

skin tissue model were computed as the combination of those coefficients of whole 

blood and bloodless tissue weighted by their respective volume fractions: 

J.1.~ = (1- ihlood) X JI.\·/1/mldh'.H + /"lof.Jd X Jl.f)l!O()J 

where 

J-lu,h/ooJle.H 

JI.~.bI00J 

the total blood volume fraction 

the absorption coefficient of bloodless tissue, mm·! 

the scattering coefficient of bloodless tissue, mm·! 

the absorption coefficient of whole blood, mm·! 

the scattering coefficient of whole blood, mm·!. 

CHAPTER 5 

(5. 12) 

(5. 13) 

68 



METHODOLOGY 

Since each layer was assumed uniformly thick, its relative volume was expressed by 

its relative thicknesses alone. The pulsatile fraction is the fraction of the total tissue 

volume displaced by the arterial pulse. A nominal diastolic blood fraction/blooded was 

5% with nominal pulsatile fraction;;'ut" as 0.25% [201. The pulsatile blood fraction 

was applied uniformly to all perfused layers: 

[5. 14[ 

where 

/p"" (i) the pulse blood fraction of layer 

d(i) the thickness of layer i, mm. 

d the total thickness, mm. 

The optical properties at 870nm for each layer are listed in Table 5.1, calculated from 

the Equation [5. 12) and [5. 13). 

Layer Jla,non-pulsalilc 

{mm·l} 
!ls,non-pulsatilc 

{mm'l} 
Ila,pulsatiie 

{mm·l} 
Jls,pulsatile 
{mm' I} 

Epidermis (1) 0.02450 4.4500 0.02450 4.4500 
Dermis (2) 0.02450 4.4500 0.02450 4.4500 
Dermis Plexus (3) 0.05556 10.1455 0.05559 10.1507 
Dermis (4) 0.04779 8.7217 0.04791 8.7424 
Dermis Plexus Profundus (5) 0.1383 25.3166 0.1384 25.3321 
hypodermis (6) 0.04779 8.7217 0.04892 8.9294 

Tab[e 5. 3 The optical properties of each tissue layer of870nm. 

As introduced in section 4.2, the arterial pulsation was simulated by adding the 

pulsatile blood into non-pulsatile tissue and thus increasing the blood volume 

fraction. Consequently, MPLdynamic was calculated by Equation [4. 7) based upon the 

tissue models with pulsatile optical properties and non-pulsatile properties, 

respectively. 

The anisotropy factor g was set to be 0.8 [431. Although certain components of the 

tissue volume such as collagen [82 1 and red blood cells [83 1 are more 

forward-scattering, the value of 0.8 is more representative of overall dermal 

scattering. The refractive index for all the layers was set to be 1.4, based upon the 
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results of a recent study [841. It should be noted that the model layer interfaces are 

artificial, in the respect that the actual structural interfaces in tissue (e.g., vessel walls) 

are at a finer level of detail than the model represents. The simplifying assumptions 

made here are similar to those used in other studies [20J [43J [52J. 

Similar to the multi-layer phantom model in simulation in section 5.2.1.2, the 

double-convex lens in the Edmund Optics catalogue (Dia: 30 mm, FL: 50 mm, Centre 

thickness: 6.55 mm, RJ=-R2: 50.67 mm) was selected to simulate the F-mount lens. 

The double-convex lens was positioned 130 mm away from the surface of the tissue 

model in OptiCAD. Light impinging upon the tissue was simulated using parabolic 

reflector and multiple spherical light sources which were designed to the same 

arrangement as shown in Figure 5. 3. 

5.2.2.3 Validation analysis 

In the subject-based experiment, the ratio R"p of the static and dynamic light 

intensity can be calculated in Equation [5. 11]. 

In the opto-physiological model. the ratio of the value of the static and dynamic 

components can be derived following Equation [3. 27] as: 

k 

R'hcf) = IJPa.b!floc/(i)xMPL '~'nami<'.Clf'l'''llm,(i)] 
i=l 

(5. IS) 

where the MPL'd;·namic.aperlure(i) represents the aperture-dependent MPL'dynamic 

calculated using Equation [4. 6] based upon the rays that fall into the lens aperture. 

The correlation between R'h," and R"p indicates the validity of the 

opto-physiological model in real-life measurement. The ratio can also be compared 

with heuristic values that the dynamic component accounts for only 0.1-2% of the 

total intensity [18J. 

5.3 MAPPING FUNCTION 

When the opto-physiological model is validated, it can be applied in biological 

measurement to construct blood perfusion mapping. The CMOS camera with 

CHAPTER 5 70 



METHODOLOGY 

C-mount lens was selected as the detector in this investigation, as its large capturing 

area can benefit the perfusion mapping. 

5.3.1 2-D mapping of static and dynamic component 

A custom mapping function in MA TLAB was called to map the blood perfusion 

from a designated tissue. The dynamic, static light intensity and normalised 

intensity are represented by ac, de and R calculated in Equation [5. 9). [5. 10) and [5. 

11) of each ROI,p. The ROI,p-dependent ac, dc and R are then mapped to the 

corresponding physical location of each ROI,p' Figure 5. 16 illustrates an example of 

the ac mapping function. 

7 

o 

RnU'lmaging Pt-I'fusion mapping 

Figure 5. 16 An example orthe 2-D ac mapping. aCROI is calculated from Equation 15. 
9J. 

5.3.2 Layered mapping of blood perfusion 

The conversion of 2-D mapping to 3-D perfusion mapping is performed by applying 

the opto-physio logical model at each ROl ,p on the 2-D mapping, where tbe model 

allows for the determination of the relative contributions of different layers to the 

ROI ,p-dependent perfusion of the 2-D surface mapping. 

The double-convex lens in the Edmund Optics catalogue (Dia: 8 mm, FL: 6 mm, 

Centre thickness: 2.54 mm, Rj=-R2: 7.59 mm) was selected to simulate the C-mount 

lens. The double-convex lens was positioned I 10 mm away from the surface of the 

tissue model in OptiCAD. Light impinging upon the tissue was simulated using 
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parabolic reflector and multiple spherical light sources which were designed to the 

same arrangement as shown in Figure 5. 3. Only rays that fall into the lens aperture 

are considered for the calculation of MPL. 

The layered perfusion RRO"li) of each ROl,p can be derived following Equation (3 . 

29) as: 

MPL' (i) 
R (i) = R x IV (i) = R x = __ "'_-_ '-,'·'_"0-,1.,,-_ 

MM,!, Hol., pcrjlmon.Roi., HoI., ~ MPL I (k) 
L.J dyna",11: .Rol'l' 

k 

15. 16) 

where MPL ·dy"wmc.RO"li) is the ROI,p-dependent dynamic MPL calculated by the 

difference of MPL"o".puls,mle. ROI.li) and MPLpul,oli/e. ROloliJ in Equation [4. 7). To derive 

MPL"o".pul",ule.nol.p and MPLpulsoule. ROI.p for each position of the ROI,p in the image 

plane, the rays that go through the lens aperture is traced back in the corresponding 

ROl op in the object plane as illustrated in Figure 5. 17. The ROlop is defined by the 

size Xhwx Y h" and it can be moved over the object plane by step of X,n' and YIO" 

MPL"o".pulsaule. ROI.p and MPLpulsoule. ROI.p are calculated following Equation [4. 6) based 

on thc rays going through each ROlop. 

Object plane (the sUl'face of tissue model) 

Figure 5. 17 A diagram of the ROlop for lhe derivation ofMPL. The ROlop is delined 

by the center C and the size X .. x I'h •. It can be moved overthe object plane by step of 

Xstcp and Y 5ltp' 
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Subsequently, the layered mapping can be achieved by mapping layered RROI,,(i) of 

each ROl,p calculated from Equation [5. 16]. Figure 5. 18 illustrates an example of 

the mapping function for three layers. 

)·D mapping ofhly.red R(i) 

2-D mapr»ng oftoml R ~~~~,"- Layer 1 

ROI dependenl R=w ......... (l)·R(I)+w .. , .... (2)· R(2)+w •• , .... (J)"R(3) 

Figure 5. 18 An example oflhe 3-D mapping oflayered R into three Jayers. \II(ij is the 

weight function for layer i. 

Such kind of layered mappi ng ill ustrates the re lationship between layered AC and 

DC signal, and the relationship between segmented signa l and the totallPPG signal. 

5.3.3 Spatial Resolution 

The spatial resolution of the 2-D and layered perfusion mapping is detennined by 

the size of ROI,p, which is affected by the resolution of the captured frame. the 

quality of the IPPG signal and the tissue's spatial point spread function . 

5.3 .1 .1 Effect of camera pa ra meters on imllging resolution 

The I PPG system captures a set of frames from the surface of tissue over a period 

of time. The resolution of each captured frame is dependent on the optical 

resolution of lens and the pixel size of the camera sensor. As shown in Figure 5. 19, 

the optical resolution of lens is determined by the diameter of diffraction-limited 

spot size (dsp). 
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z 

Object 
plane 

Imaging 
plane 

1.,..( -----~)I.,..( ---~)I 
diso dis; 

Figure 5. 19 A schematic diagram of optical resolution Res,,,,, through a single lens 

with aperture diameter diG. 

The dsp through a circular aperture is the Airy function of width as: 

d 
2.44x dis x A 

sp= ' 
dia 

in which 

I I I 
--+-=-
diso dis, fl 

u dis, JVLag=­
dis o 

yields 

dis, = (Mag + I)fl 

The minimum resolution to distinguish two spots can be derived as: 

Res = dsp = 1.22x (l + Mag) x Ax fl 
lens 2 dia 

where 

Mag the magnification 

A. the wavelength of illumination 
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n the focal length oflhe lens, i.e. 8 mm for the C-mountlens 

dia the diameter oflhe aperture, i.e. 5.7 mm for the C-mount lens 

In the current setup, diso is the distance between the measurement site and lens, i.e. 

110 mm. dis j was calculated from Equation [5. 19) as 8.5 mm and the Mag was 

calculated as 1/13 by Equation [5.20). Following Equation [5. 21), the optical 

resolution Res,,,,,, for the C-mount lens was calculated as 1.0" 1.0 p"l of 650 nm 

and 1.5" 1.5 pm] of 870 nil! which are much smaller tban the pixel size of the 

CM OS camera 12" 12 ,,"l. Thus the resolution of the captured frame is mainly 

determined by the pixel size of the camera. 

5.3.1.2 Effect of quality of IPPG signal on ROI;p 

Looking at the imaging plane in Figure 5. 7, each captured frame is divided into 

small ROI,p' Averaging pixel values of each ROl ip forms the raw IPPG signal. The 

relationship between the size of ROI,!> and the quality of AC signals is presented in 

Figure 5. 20 from the sequence of frames under 870nm illumination. Figure 5. 20 

illustrates that larger ROl ,p yields a signal with smaller distortion and consistent 

peak-to-peak intensity compared to the signals from smaller sizes of ROI ,p. This 

means spatial averaging orthe pixel value is a useful approach to significantly reduce 

the effect of motion artefacts and improve SNR. 

AC sigmtls r.'om il1l~lgiltg I'P(, wif-h val1nble I{Olip si1.e undel' 870uIII 

I 20x20 - U):L!O - SxS - 2x2! 

o 2 J 4 S 6 7 8 9 10 
Time (sec) 

Figure 5. 20 AC signals generated with different sizes ofROI,. (20)<20, lOxia, 5x5, 
2x2 pixee) under 870nm illumination following the procedure in Figure 5. 7. 
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On the other hand, to distinguish bet\\een different compartments of the 

measurement tissue such as the nose and cheek of the face. the smaller ROl ,p is 

preferred as shown in Figure 5. 21. which presents the mapping of ROI ,.-dependent 

de calculated using Equation [5. 10] under 870nm illumination is presented in a 2-D 

format with different sizes ofROl'r to illustrate the static component of the face . 

..... '" 

Figure S. 2t The de mapping with ROI,. of size 40x40, 20x20, 4x4 pixd under 

870nl11 illumination on human face. ROI ,p·dependent de was calculated using 

Equation 15. 10]. 

Thus the suitab le size of ROl,p needs to balance both the aspects to guarantee the 

relatively high SNR of the IPPG signal and also maintain the basic structure of the 

illuminated area. 

5.3.1.3 E ffect of tissue's spatia l point spread function on ROi l. 

As previously discussed in section 5.3.2. MPLRO/", is derived by tracing back the rays 

that go through the lens aperture in the corresponding ROlop in the object plane as 

illustrated in Figure 5. 17. The relationship between ROlop and ROI,. follows: 

Ra'," = Ra',,,, x Mag (5.22 ) 

where M(Jg is the magnification calculated as 1113 by Equation [5.20). 

The ROlop needs to be big enough to cover enough information to derive 

representative MPL for each layer. which is determined by the tissues spatial point 

spread function of each layer. As the pulsatile component accounts for only a very 

small proportion of the total intensity, it just modestly affects the total light transport. 

Thus tissue 's spatial point spread function based onnon-pulsatile and pulsatilc tissue 
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model should be quite simi lar. Thus, the tissue model with non-pulsatile optical 

coefficients was selected to demonstrate the efTect of the tissue's spatial point spread 

function on ROlop and thus ROI,p' 

The tissue' s spatial point spread function is illustrated by the contour plot of ray 

power distribution at a function of position in an x-y plane at the surface of each 

tissue layer. The plot was derived from the simu lation using a narrow collimated 

beam with diameter = single pixel sizex(I /Mag), i.e. 0.156 111111, based upon the 

non-pulsatile six-layered tissue model in section 5.2.2.2. The diagram of ray power 

used in the contour plot is presented in Figure 5. 22. The rays travelling in tissue 

contains multiple venices due to scattering, each of which is defined by its position 

v.verts (x,y,z) and power V.power illustrated previously in Figure 4. 4 . 

• 0.156 mm 

Incident light 

...---~-\--===". Vertex at the surface oflhe whole 
lissue IV.verts(l"!y,J.~),V. puwerl 

!;':h:::==~~:tF:'orward Ilath 

Vertex at the bottom of each 
layerIV.\·erlll(x,y,z=d,),V.powerJ 

Spr.ld dIstance 

Figure S. 22 A schematic diagram of the ray power of the surface venex for the 

contour plot, where d, =the thickness of layerl . The inter-layer space is required by 

OptiCAD for layer separation, which is set to be 0.00 I 111111 . The incident light was 

designed to be a narrow collimated light bundle of diameter- (size of single 

pixel)x(l fMag), i.e. 0. 156111111. Each vertex is defined by its position V " errs (x.)'.=) 

and power Vpower. The contour plot is based upon /cpoll'er of the venex al the 

surface of the whole tissue or the bOllom of a specific layer in the forward path of a 

ray. 

The contour plot is implemented in MA TLA B based upon the V.power of the venex 

at a specific depth in the forward path of a ray as shown in Figure 5. 23. 
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Figure 5. 23 The contour plots of V.power at specific depths based upon six-layer 

tissue model in simulation except the hypo-dermis layer as no detected rays coming 

fTom that layer. 

The contour plots in Figure 5. 23 demonstrate a loss orthe definition in the Gaussian 

distribution with respect to depth. which may be due to a limited number of traced 

rays. The deeper the light penetrates, the higher the probability that rays have been 

backscattered out of the model. It is difficult to estimate by eye the spread distance of 

the tissue's spatial point spread function , especially in the deeper layers. By applying 

Gaussian fining to the 2-D data of these contour plots at each depth. the standard 

deviation cr=Ju;+ u: is taken as a measure orthe spread distance of the tissue's 

spatial point spread function, where cr. and cry are the standard deviations along x and 

y dimension in a 2-D Gaussian distribution. Figure 5.24 demonstrates the 

relationship between cr and the depths of tissue layers. 
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Figure 5. 24 The relationship between the tissue layer depth and the standard 

deviation cr of the Gaussian fitting to the 2-D data in the contour plots in Figure 5.23 

at each layer. 

Figure 5. 24 demonstrates cr of the Gaussian fitting of the cross sectional plots 

increases with respect to depth, which exhibits a diffusion of power distribution. 

This illustrates the reduction of optical spatial resolution when penetrating deeper. 

As about 95% of the values lie within mean± 2cr for a Gaussian distribution, the 

spread distance of tissue's spatial point sprcad function at each layer is estimated as 

4xcr. 

Given that the uniform illumination and the homogenous tissue model, the MPL for 

all layers should remain constant as long as ROlop size is above the optical spatial 

resolution of the deepest layer, i.e. (4 x cr,u,eneous)2=15.32 mm, corresponding to the size 

of ROlip I OOx I 00 pixeli. 
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SECTION 3 RESULTS 

6. EXPERIMENTS, RESULTS AND DISCUSSIONS 

Having developed the opto-physiological model and the 

experimental platform, this chapter moves on to detailing 

in-vitro and in vivo validation studies performed with both of 

these. 

This chapter begins by presenting the results of the in-vitro 

validation based on multi-layered phantoms with emphasis on 

the correlation between opto-physiological and experimental 

outputs. The results of the in-vivo validation performed on 

healthy subjects were then refined and presented followed by 

an in-depth discussion of the sensitivity of the 

opto-physiological model and the limitation of the current setup. 

Finally, the application of the opto-physiological model to 

layered map blood perfusion is demonstrated. 
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6.1 VALIDATION BASED ON ONE-LAYERED PHANTOM 

In this section the in-vitro validation was performed on a one-layered phantom to test 

the MC simulation platform and validate the assumptions of the opto-physiological 

model. This was achieved by investigating the relationship between the absorbance A 

and the optical properties of tissue, i.e. pa and p" in both the opto-physiological 

model and the experiments. 

6.1.1 Results of Experiment 

6.1.1.1 Experimental setup 

As described previously about the phantom construction in section 5.2.1. I, 

commercial milk (semi-skimmed, Sainsbury Supermarkets, Ltd., UK), food dye 

(FD&C blue #1, ROHA Ltd., UK) and gelatine (Somerfield Stores Ltd., UK) were 

selected as the main components of the phantom in the in-vi/ro experiment. The 

room temperature was maintained at 20 ± 2 ·C during the experiment, and all the 

experiments from preparation to measurement were finished within a 4 hour period 

to keep the properties of milk stable ISSI. 

Considering the effect of gelatine on the absorption coefficient, the portion of 

gelatine for all the measurements was kept constant as 5.72 g. The absorption 

coefficient of the water-dye-gelatine was thus mainly determined by the 

concentration of the dye solution. The absorbance Adye.gelali"e of the 

water-dye-gelatine sample was measured by the spectrometer. The measurement was 

repeated three times and the mean absorbance A mea" at the wavelength of 650 nm was 

recorded for the calculation of pa.dye.gelaline using Equation [5.4]. ps.milk was calculated 

using Equation iI}~! *:f.IG¥IJ'3lffllml •. 

30mi water-dye-gelatine was then mixed with equal volume of diluted milk to keep 

the calculation of Pa andps in a simplified format. The mixture was then poured into a 

rectangular container with base dimensions of 100 mmx60 mm, resulting in the 

thickness of the phantom 10 mm. The magnetic stirrer was used to keep the mixture 
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homogeneous. When intensive mixing, the mixture was placed in the refrigerator to 

solidify for 2 hours. 

As the scattering coefficient of water-dye-gelatine and the absorption coefficient of 

milk were disregarded, and the volumes of both were equal,Pa and Ps of this phantom 

can be calculated following Equation [5. 2] and [5. 3] as: 

)la = L Cl) X Jiaj) =-fe/ye-getatine X f..La,dye-geloline + Imilk X Pa,milk 

) 

= "2 X Jio,dye-gelutine 

16. 1] 

I 
f-l.\' = ~ (fi X Ps;) = 1fT/ilk X Ps,nl/lk + fdye-gelaline X Jls,dye-gelalme :;;:"2 X P.I,milk [6. 2] 

I 

The concentrations C of the dye and milk solution were varied to obtain different 

absorption and scattering coefficients. To simulate in-vivo tissue, the scattering 

coefficients f/s were prepared to lie between I and 8 mm", corresponding to the 

concentration of milk between 10% and 100%. Absorption coefficientsf/a were set to 

vary between 0.01 and 0.1 mm", corresponding to the concentration of dye solution 

between 1.5xlO'4 and 3.8x10,J M%. 

The CCD camera was configured to capture 20jps. The ring light was adjusted to 

continuously illuminate at the single wavelength of 650nm. To increase SNR, the 

output power was con figured to the highest possible value on the condition of not 

saturating the camera's sensor. 

6.1.1.2 Experimental protocol 

All the measurements were performed in a dark room to avoid the effect of ambient 

light. The phantom was positioned on an optical bench with black curtain underneath. 

The camera with the ring light around the lens was set to be 130 mm away from the 

optical bench with focus on the centre of the bench. Each measurement was set to 

capture 5 sec, i.e. 100 frames. Post signal processing of these raw frames was 

performed following the steps in Figure 5.7. The mean values of the detected light 

intensity were yielded by averaging the pixel values of the whole captured area over 
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all the frames. The purpose for this is to minimise the effect of small inhomogeneities 

on the results of measurements. 

The experiment was performed following four steps: 

- Firstly, The dark noise Idark of camera itself was firstly captured for 5sec without 

any illumination; 

- The ring light was then set to continuously illuminate at 650nm, and a reflectance 

standard (SRS-99, Labsphere Inc., UK) was positioned at the centre of the optical 

bench. The detected light I,.d" was captured from the surface of the reflectance 

standard, whose intensity consists of the scattered light I, arriving at the detector 

when !la=O in Equation [3. 22] and the dark noise Idark; 

- A phantom consisting of only distilled water and gelatine was then positioned on 

the bench for capturing. As there was no scattering in the water-gelatine phantom, 

the detected light was mainly coming from the surface reflection of the phantom, 

whose intensity was referred to as the reflected light intensity I"f, 

-Finally, the milk-dye-gelatine phantom was placed at the same position as detailed 

in the last two steps. The detected light Id" mainly consists of the reflected light Ire! 

from the surface and the detector-dependent backscattered light ]' through the 

internal components of the phantom. Thus the detector-dependent absorbance Aexp of 

the phantom-based experiment can be derived following Equation [5. 8] as: 

l' I -I 
A = -In(-) = -In( de< re{) 
~ I I-I 

.I' .\" ,del durk 

[6.3) 

6.1.1.3 Experimental Results and discussion 

Experimental results ofthe relationship between the absorbance Aexp calculated using 

Equation [6. 3] and absorption coefficients !la are presented in Figure 6. I. The 

concentration Cmilk of milk solution was prepared to 100%, resulting in the scattering 

coefficients!l, of the phantom constant as 7.79mm·1 calculated using Equation [6. 2]. 

The absorption coefficients !la were calculated using Equation [6. I] as 0.0122, 

0.0263, 0.0455, 0.0612 and 0.0789 mm· 1 respectively corresponding to different 
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concentrations of dye solution from I x I 0-4 to l.2x I 0-3 J.1'1o. The curve fitting for the 

data is performed in Excel. 

0.12 ,-------------------------., 

0.08 
y = t.268lx - 0.0004 

0.04 

O~--~----_r----._--_,----.,_----,_--_,----.,_--~ 

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

u, (mm-') 

Figure 6. 1 Experimental results of A"pof one-layered phantoms with different fla. 

The diamond blocks represent Aap corresponding to fl,,=O, 0.0122,0.0263,0.0455, 

0.0612 and 0.0789 mm". The solid line is the linear trend of these blocks. 

In Figure 6. I, Aexp of the one-layered phantom changes directly with the absorption 

coefficients fla. The approximate linear trend indicates that the absorbance can be 

regarded as a linear function of }la in the range of 0-0.08 mm-] when the scattering 

effect is constant. 

Figure 6. 2 presents the experimental results of the relationship between Aexp 

calculated using Equation [6. 3] and scattering coefficients }l,. The concentrations 

Cdye of the dye solution were prepared to 6.2x 10-4 M% resulting in Pa of the 

phantom constant as 0.0263 mm'] calculated using Equation [6. I].}l, were calculated 

from Equation [6. 2] as 3.89, 5.19, 6.23 and 7.79 mm-] respectively, corresponding to 

different concentrations of milk solution from 50% to 100%. 
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Figure 6. 2 Experimental results of A~pof one-layered phantoms with different 1',. 

The diamond blocks represent A~p corresponding to 1'.,=3.89,5.19,6.23 and 7.79 
mm". The solid curve is the logarithm trend of these blocks. 

Figure 6. 2 demonstrates a non-linear relationship between Aexp and Ps. This indicates 

the significant effect of scattering on light propagation in a turbid medium. The 

absorbance non-linearly decreases when the scattering coefficients ps increase. 

6.1.2 Results of Simulation 

6.1.2.1 Simulation setup 

In the simulation, the phantom model was constructed to approach the properties of 

the experimental phantom. As introduced previously about the phantom model of 

simulation in section 5.2.1.2, the one-layered phantom model was assumed to be 

homogeneous, and waS characterised by a bulk absorption coefficient I'a, scattering 

coefficient Ps. anisotropy factor g and an index of refraction n. The geometry of the 

model was 100 mmx60 mmx 10 mm defined by the size of the experimental phantom. 

To simulate the optical properties of the actual phantom, Ps was set to lie between I 

and 10 mm,l. pa was set between 0.0 I and 0.1 mm,l. The anisotropy g was set to 0.72 

and the refractive index n was to 1.41, identical to the properties of milk 1731. The 

surface reflection was disregarded. 
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6.1.2.2 Simulation Results and discussion 

The main function of the simulation was to generate the aperture-dependent MPL' 

for the opto-physiological model. The aperture-dependent MPL' for the one-layered 

phantom model was calculated using Equation [4. 6] in a one-layered format 

following the procedure of the post data processing of the simulation in section 4.4. 

The results of the relationship between MP L ' and fla of the one-layered phantom 

model are presented in Figure 6. 3. fl' was set to 7.79 mm'!. fla was set to 0.01,0.03, 

0.05, 0.07 and 0.09 mm'! respectively close to the optical properties in the 

phantom-based experiments. 

1.4 

1.2 

~ e S 0.8 

:. .. 0.6 
:E 

0.4 

0.2 

0 

0 

.. * * .. .. 

0.01 0.02 0.03 0.04 0.05 0.06 0,07 0.08 0.09 0.1 

u, (mm") 

Figure 6. 3 Simulation results of MPL' on the one-layered phantom model with 

different !la. The triangle blocks represent MPL' corresponding to !la ~O.O I, 0.03, 

0.05,0.07 and 0.09 mm". The solid curve is the linear trend ofthese blocks. 

The MP!.' in Figure 6. 3 shows little variation with change of fla. This indicates 

MPL' is mainly determined by scattering properties in the range of low fla from 0 

mm'! to 0.09 mm'!. 

Figure 6. 4 presents the results of MPL' yielded by the simulation on the one-layered 

tissue model with same fla, but different fl,. The absorption coefficient fla was set to 

0.0263 mm'!. The scattering coefficients fl, were set to 0, 3, 5, 7 and 9 mm'! 

respectively, close to those of the experiments. 
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Figure 6_ 4 Simulation results of MPL' on the one-layered phantom model with 

different P.,. The triangle blocks represent MPL corresponding to P., =il,3, 5, 7 and 9 
mnfl. 

The MPL' in Figure 6. 4 demonstrates a non-linear function of 11" i.e. MPL' increases 

when the scattering coefficient decreases. With less effect of scattering, the light 

propagation tends to be more forward-directed and can transmit deeper into tissue. 

Thus the smaller the scattering coefficient is, the longer the path length is. When the 

scattering coefficient is 0, the path length is equal to the thickness of the phantom, i.e. 

10mm. 

6.1.3 Validation Analysis 

In the opto-physiological model, the absorbance A ',heo of the one-layered phantom 

model was derived in a one-layered format following Equation [5. 7] as: 

A' -H xMPL ' theo - ru aperture [6_ 4[ 

where 

Pu the wavelength-dependent absorption coefficient, mm-! 

MPLapmare' the aperture-dependent mean path length generated by the simulation as 

shown in Figure 6. 3 and Figure 6. 4. 
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In phantom-based experiments, the absorbance Aexp was calculated from Equation [6. 

3]. 

A ',heo and Aexp of the one-layered phantoms with same absorption coefficients I'a, but 

different scattering coefficients I's are presented in Figure 6. 5. 

0.1,---------------------------------------------, 

• 

-< 0.05 • A'theo 

• Aexp 

- Logarithm trend of A'theo 

- - - Logarithm trend of Aexp 

o~~==~==~==~~--~--~--~~--~ 
o 2 3 4 5 6 7 8 9 10 

u, (mm") 

Figure 6. 5 Results of A ·,h.o and Aap of the one-layered phantoms with different 1',. 

The absorption coefficient 1'" was set to 0.0263 mm". The round blocks represent 

A ',heo corresponding to Ji.v =3, 5, 7 and 9 mm-I and the diamond blocks represent Aexp 

corresponding to 1', ~3.89, 5.19, 6.23 and 7.79 mm". The solid line represents the 

logarithm trend of A ',hco and the dotted line represents the logarithm trend of Aap. 

Comparing A ',heo with Aexp in Figure 6. 5, there is little difference over most of the 

scattering coefficienls. This effectively validates that the opto-physiological model 

can predict the scattering effect on absorbance. In addition, the validation proves the 

MC simulation can provide a reliable environment to simulate the light propagation 

in tissue in \PPG and generate accurate MPL' based upon the tissue model with 

properties close to those in the experiment. 

The relationship between A ',heo and Aexp of the one-layered phantoms with different 

absorption coefficients I'a are presented in Figure 6. 6. 
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Figure 6. 6 Results of A ',h,,, and Aar of the one-layered phantoms with different 1-'0' 

The scattering coefficient 1-', was set to 7.79 mm". The round blocks represent A,h,,, 

corresponding to 1-'0 ~O, 0.01,0.03,0.05,0.07 and 0.09 mm", and the square blocks 

represent Acxr corresponding to 1-'0 ~O, 0.0122,0.02625,0.0455,0.0612 and 0.0789 
mm"l. The solid line represents the linear trend of A1heo and the dotted line represents 

the linear trend of A<xp, 

In the opto-physiological model, when the scattering effect and thus MPL' is 

constant, the absorbance of tissue is solely determined by the absorption coefficient. 

The high correlation between A ',10'0 and A,xp in Figure 6. 6 validates this assumption 

well and proves the opto-physiological model can predict the absorbance over most 

of the absorption range. Both of the absorbance from the experiments and the 

opto-physiological model show a linear function of !la. The greatest deviation from 

this linearity occurs at the highest absorption coefficient. This deviation comes from 

the underestimation of !la due to the spectrometer without sufficient sensitivity in 

high values when it was used to measure the absorbance of the dye-gelatine sample 

to calculate !la,dy,-g,lalin, in Equation [5. 4]. 

CHAPTER 6 89 



RESULTS 

6.2 V ALIDA TION BASED ON MUL TJ-LA YERED PHANTOM 

Following the validation of the opto-physiological model in a simplified 

single-layered format, the two-layered phantom was prepared for the in-vitro 

experiment to validate the model in a multi-layered format. 

6.2.1 Results of Experiment 

6.2.1.1 Experimental protocol 

The engineering setup was identical to that of the experiment based on the 

one-layered phantom. The two-layered phantom consisted of a top layer with low 

scattering and low absorption coemcient and a bottom layer with high scattering as 

shown in Figure 6. 7. 

Figure 6. 7 An example of the two-layered phantom with a top layer with low 

scattering and low absorption coefficient and a bottom layer with high scattering. 

The preparation of the two-layered phantom follows three steps and all the 

cocmcients were calculated from Equation [6. I) and [6. 2]: 

- Firstly, the bottom layer was prepared following the steps of the one-layered 

phantom preparation described in the last section. The scattering coemcients p sbollom 

of the bottom layer were maintained constant as 7.79 mm,l and the absorption 

coemcients Ilabollom were prepared to 0.0122, 0.0263. 0.0455, 0.0612 and 0.0789 
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mm-! respectively, by changing the concentrations of dye solution in the bottom 

layer; 

- Two liquid mixtures were prepared for the top layer: a mixture of dye and gelatine 

with non-scattering /1s./op=O mm-! and low absorption coefficient /10.'op=O.0263 mm-!, 

and a mixture of milk, dye and gelatine with low scattering coefficient I's.,op=O.779 

mm-! and low absorption coefficient /1a.,op=O.0263 mm'!; 

- The water-milk-dye-gelatine mixture was then poured on top of the solidified 

bottom layer. The two-layered mixture was placed in the refrigerator to solidify for 2 

hours. The geometries of both the two layers are nearly identical, i.e. I OOx60x I 0 
3 mm. 

The experiment was performed following the same protocol of the experiment based 

on the one-layered phantom. The absorbance Aexp of the two-layered phantom can 

thus be calculated from Equation [6. 3]. 

6.2.1.2 Experimental Results and Discussiou 

The relationship between Aexp and the bottom absorption coefficients I'a.bo/lo", of the 

two-layered phantom with the dye-gelatine top layer (Ps./op=O mm-!, l'a.'op=O.0263 

mm-i) is presented in Figure 6. 8. Aexp of the experiments based on the one-layered 

phantom is also presented for comparison. 
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/ y ~ 0.0377Ln(x) + 0.7381 
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top layer 
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y ~ 1.268lx - 0.0004 
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Figure 6. 8 Experimental results of A"pofthe one-layered phantom and two-layered 

phantom with dye-gelatine top layer. The square blocks represent A"p of the 

two-layered phantoms corresponding to l'a,ho"om~O, 0,0122.0,02625,0,0455,0,0612 

and 0.0789 mm", The solid curve is the logarithm trend of these square blocks, The 

diamond blocks represent A,xp of the one-layered phantoms corresponding to the 

above absorption coefficients, The straight line is the linear trend of the triangle 

blocks, 

Figure 6. 9 illustrates the relationship between A"p and /-la,bottom of the two-layered 

phantom with the milk-dye-gelatine top layer (p.',lOp=O.779 mm-I, /-la,'op=O.0263 mm-I), 

together with the results of the experiments based on the one-layered phantom. 
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Figure 6. 9 Experimental results of A,xp of the one-layered phantom and the 

two-layered phantom with milk-dye-gelatine gel on top. The square blocks 

represent Aexp of the two-layered phantoms corresponding to /-lu,ho//om=O, 0.0122, 

0.02625,0.0455,0.0612 and 0.0789 mm· 1 The solid curve is the logarithm trend of 

these square blocks. The diamond blocks represent A,xp of the one-layered phantoms 

corresponding to the above absorption coefficients. The straight line is the linear 

trend of the diamond blocks. 

In Figure 6. 8 and Figure 6. 9, Aexpofthe two-layered phantom performs a non-linear 

function of the absorption coefficients rather than the linear function from the 

experiment based upon the one-layered phantom. When comparing Aexp of the 

two-layered phantom with that of the one-layered phantom, there is a significant 

increase in the absorbance of the two-layered phantom developing from the 

absorbance of the additional top layer. 

6.2.2 Results of Simulation 

6.2.2.1 Simulation setup 

All aspects of simulation setup were similar to that of the simulation based on the 

one-layered phantom model. The geometry of the model consisted of two layers, 

each with the dimensions of 100 mmx60 mmX 10 mm defined by the size of the actual 

two-layered phantom. To simulate the actual phantom, the absorption and scattering 
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coefficients of the top layer were set to either # ..,op=O 111111- ', #o,lOp=0.0263 mm" or 

#,.lop=O.779 mm" , #0.lop=0.0263 mm" . For the bottom layer, the scattering coefficient 

11,.bollom was set to 7.79 mm" , and the absorption coefficients #o.bollom were set 10 lie 

between 0.0 I and 0.1 111111'/. The anisotropy g for both layers was set to 0.72 and the 

refractive index n was to 1.41. The surface and internal reflection was disregarded. 

6.2.2.2 Simulation Results and Discussion 

The aperture-dependent MPL ' for each layer was calculated by Equation [4. 6] 

following the procedure of the post data processing of the simulation in section 

4.2based on the above two-layer phantom model. Figure 6. 10 illustrates the 

relationship between absorption coefficients on MPL' of both tile top and bottom 

layers. The simulation was performed on the two-layered phantom model with 

non-scattering and low-absorption layer on top, i.e. #,.101'=0 mm" and l/o.lop=0.0263 

mm-'. The MPL' of the simulation based on the one-layered phantom is also 

presented as a reference. 
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Non·scattering and low 
absorption top layer 

Bottom tayer 

oil ~ 
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0.07 0.08 0.09 O.t 

Figure 6. 10 The simulation results of MPL' of the one-layered and the two-layered 

phantom model with the non-scattering top layer. The red blocks represent MPL ' of 

the one-layered phantom model corresponding to difTerent absorption coefficients 

!lo .• ",._I'M",t=O.O I, 0.03, 0.05, 0.07 and 0.09 mm". The black blocks represent MPL ' 

of the bottom layer of the two-layered phantom model corresponding to the same 
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absorption coefficients. The blue blocks represent AfPL' of the top layer jl. ,.",={) 

mm-I. J.iu,lop==O.0263 mm-). 

Figure 6. I I presents MPL' of the top layer and the bottom layer respectively yielded 

by the simulation on the two-layered phantom model consisting of low-scattering 

and low absorption top layer, i.e. /1s.top=0.779 /ll/11-
1 and /10 1Dp=O.0263 11111'-', together 

with the MPL ' by simulation based on the one-layered phantom_ 
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\ 
Low-scattering and low­
absorption top layer 

Bottom layer 

0.01 0-02 0.03 0.04 0_05 0.06 0.07 0.08 0.09 0.1 

Figure 6. 11 The simulation results of MPL' of the one-layered and the two-layered 

phantom model with the low-scattering and low-absorption top layer. The red blocks 

represent the MPL' of the one-layered phantom model corresponding to jlu,m~-I",mJ 

=0.01, 0.03, 0.05, 0.07 and 0.09 IIIm-'. The black blocks represent MPL' of the 

bottom layer of the two-layered phantom model corresponding to the same 

absorption coefficients. The blue blocks represent MPL of the top layer jlx./op=0.779 

mm' ), f/u,h!p=O.0263 mn(l , 

The simulation results of MPL' on the two-layered phantom model in Figure 6. 10 

and Figure 6. II demonstrate little variation with the change of /10' which is in 

accordance with the simulation results on the one-layered phantom model. MPL of 

the top layer with either low-scattering or non-scattering coefficients is nearly two 

times the thickness of the top layer, i.e. 20mm. This indicates that when the 

scattering is small, the light propagation is mainly forward-directed_ 

In Figure 6. 10, when the top layer is non-scattering, MPL of the bottom layer is 

smaller than that of the one-layered model. This is due to the limitations of the 
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simulation using OptiCAD. In the construction of the tissue model, the small spaces 

between layers are required by OptiCAD. Although the differences of refractive 

index between layers are set to be negligible, the refractive index change still exists 

among these small spaces. Thus the light experiences a small refraction when 

travelling between layers, which results in the variation of MPL between 

one-layered and two-layered phantom model. On the other hand, when the 

scattering coefficient I',.t of the top layer increases, MPL of the bottom layer is 

longer than that of the one-layered model as shown in Figure 6.1 I. When the top 

layer is a scattering medium, the light penetrates into the next layer with an ambient 

incident angle, which results in a considerable effect on the path length. 

6.2.3 Validation Analysis 

Based on the opto-physiological model, the absorbance A"h," was calculated 

following Equation [5. 7] in a two-layered format: 

A' -f.1 xMPL' +f.1 x MPL' Iheo - a,lop apenuf'l',lop u,houom upertun!,hollom (6.5( 

where 1'0. lap and I'o,bollom are the wavelength-dependent absorption coefficients of top 

and bottom layer, and MPL 'aperture,lop and MPL 'aperture,bollom are the 

aperture-dependent mean path length of top and bottom layer as shown in Figure 6. 

10 and Figure 6. 11. 

A 'theo and Aexp of the two-layered phantom with non-scattering layer on top are 

presented in Figure 6. 12. 
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Figure 6. 12 Results of A ',}". and A.,p on the two-layered phantom with the 

non-scattering layer on top with Ji •. ,.p=O mm" , Jia .. up~0.0263 mm". The round blocks 

represent A "h"" corresponding to different Jiu,""am=O, 0.01 , 0.03,0.05,0.07 and 0.09 

mm' 'and the diamond blocks represent Aap corresponding to different Jiu} ... ",m=O, 

0.0122, 0.0263,0.0455,0.0612 and 0.0789 mm-'. The solid line represents the linear 

trend of A ',h<. and the dolled curve represents the logarithm trend of Aap 

In Figure 6. 12, A ',10.0 demonstrates a linear function of the absorption coefficients 

same with the results of the one-layered phantom. The slope varies a little bit from 

that of the one-layered phantom due to the refractive index change of the inter-layer 

spaces. However, as the absorbance still performs a linear trend, the effect of the 

refractive index change can be considered to be stable and controllable. Compared to 

the results of the one-layered phantom model, there is a significant increase in 

absorbance of the two-layered phantom, due to the absorbance of the additional top 

layer. 

Figure 6. 12 illustrates relatively good correlation between the results of the 

opto-physiological model and the experiments. There are small deviations due to the 

refractive index change between layers in simulation. Nevertheless, the deviation is 

not significant, thus the opto-physiological model can still be regarded as accurately 

predicting the absorbance in the two-layered phantom with the non-scattering top 

layer. 
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A ',heo and A."p of the two-layered phantom with low-scattering top layer are 

presented in Figure 6. 13. 
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Figure 6. 13 Results of A,h,. and Aap on the two-layered phantom with the 

low-scattering layer on top j1,",p=0.779 1/11/1" , j1u.I",,=0.0263 1/1111". The round blocks 

represent A '/IIL'(} corresponding to /1U./)OIIO"'= O, 0.0 I J 0 .03 , 0.05, 0.07 and 0 .09 mm- I 

and the diamond blocks represent A"" corresponding to Jlu.h,,".m=O, 0.0122, 

0.0263 , 0.0455,0.0612 and 0.0789 1/11/1". The solid line represents the linear trend 

of A ""0 and the dotted curve represents the logarithm trend of Aap. 

In Figure 6. 13. A ',h.o performs an approximate linear function of the absorption 

coefficients. There is a significant increase in the absorbance of the two-layered 

phantom, due to the absorbance of the top layer. Also there is an increase of the slope 

from two-layered phantom model compared to that from one-layered phantom 

model. This is due to the scattering effect of the top layer as discussed previously. 

There is some small deviation from this linearity. When the incident light penetrates 

into the bottom layer with an arbitrary incident angle, the effect on mean path 

length and total absorbance is random. Ilowever, this random effect is not 

significant enough to affect the whole propagation tendency. Thus it is reasonable 

to assume the linearity relationship between the absorbance and the multi-layered 

absorpl ion coefficient. 

The relatively high correlation between the absorbance of opto-physiological model 

and the experiment in Figure 6. 12 and Figure 6. 13 indicates that the 
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opto-physiological model predicts the absorbance over most of the ranges. When 

scattering is constant, the absorbance of the phantom can be regarded as a linear 

function of the multi-layered absorption coefficient. 

In the validation on one-layered and two-layered phantoms, the output of the 

opto-physiological model and the experiment highly correlate when the properties of 

the phantom model in simulation approach those occurring in the actual phantom. 

This correlation proves the feasibility and applicability of the methodology of this 

thesis, in which the MC simulation provides a reliable environment to simulate the 

light-tissue interaction underlying IPPG and generate accurate MPL for the 

opto-physiological model. The model not only can accurately predict the output in 

the range of fia and fis close to human tissue, but also predict the effect of changes of 

fia and fis on the output. 

6.3 SUBJECT-BASED VALIDATION 

The opto-physiological model with the MC simulation was validated in-vitro to 

evaluate the performance of simulation platform and the accuracy of the model in a 

controlled environment. This section moves onto the in-vivo validation based upon 

experiments performed on healthy subjects and corresponding simulation on the 

multi-layered tissue model to imitate human skin. 

Similar to the phantom-based validation, the experimental results serve as a 

reference for the validation of the opto-physiological model. In the subject-based 

validation, the ratio R ofthe static and dynamic components in both the experiment 

and the simulation are compared as introduced previously about the in-vivo 

validation analysis in section 5.2.2.3. According to Equation [5. 11], the 

experimental Rexp largely relies on the mean amplitude ac of the dynamic AC signal 

and mean value de of the static DC signal. Thus the quality oflPPG signals directly 

affects the accuracy of the validation. The performance of the current IPPG system 

needs to be evaluated in reliability to deliver quality signals. Owing to the cardiac 

rhythm, the absorption of light due to the haemoglobin in blood, increasing during 

systole and decreasing during diastole, results in the dynamic AC signal containing 

numerous cardiac-vascular information. These measurements of cardiac-vascular 
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parameters such as heart rate provide an effective and straight-forward way to 

evaluate the performance of the current IPPG system. In this section, the 

performance was assessed by comparing the PPG signal from a conventional PPG 

sensor and IPPG system in both time domain and frequency domain. The 

experiments for reliability in statistics were performed on 8 healthy subjects to 

compare the heart rate derived from convention PPG sensor and IPPG system. The 

similar approach can also been found in previous research to evaluate the hardware 
(331 

6.3.1 Display of PPG waveform 

6.3.1.1 Experimental protocol 

An IPPG system was configured to capture signals under illumination with a 

dual-wavelength RCLED ring light at two different wavelengths of 650nm and 

870nm in a remote reflection mode. Both the CCD camera and CMOS camera were 

employed for this protocol. The CMOS camera was configured to capture at a speed 

of 16fps and CCD camera at 15fps. A conventional PPG system (DISC04, Dialog 

Devices Ltd., UK) was employed to provide the reference signals to compare with 

IPPG signals. The custom LabVIEW control software of DISC04 is detailed in 

Appendix Ill. The output power of the ring light for each wavelength reached 8mW 

by setting the forward current for each RCLED as 20mA of 650nm and 10mA of 

870nm. A trigger signal was sent simultaneously to the camera system and the 

conventional PPG data acquisition system, initiating a 10s capture of data by both. 

A healthy male and female subject participated in this study and the experimental 

protocol was performed in a dark room. The male subject was requested to sit in an 

upright position with his right hand resting on a cushioned bench under the CMOS 

camera; the female subject was requested to perform the experiment in an upright 

position with her face opposite the CCD camera. The camera with the lens 

surrounded by the ring light was positioned and focused on the subject's designated 

area for each posture: the palm of the right hand and the forehead as shown in Figure 

6. 14. A conventional transmission mode pulse oximetry probe (P861 RA, ViaMed, 
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UK) connected to the DISC04 PPG board was attached to the subjects' left index 

finger. 

CMOS 
camera ---..... 

Surt"ounded 
RCLEDs 

F mouot lens 
Surrounded by 

CCD RCLEDs 
signal camera l 

\:,,-,r-.. 1I1: 

Camera link 

Figure 6. 14 A schematic diagram of the experimental setup and protocol. 

The off-line processing follows the procedure of post data processing as shown in 

Figure 5. 7 and Figure 5. 12 in section 5.2.1 and section 5.2.2. 1. The size of each ROI 

of 20x20 pixel2 was chosen to derive I PPG signals from each se! of frames for each 

posture and wavelength. 

6.3.1.2 Experimental Results and discussion 

The AC signals of the male hand from I PPG and conventional PPG are presented in 

Figure 6. 15 . The detected IPPG signal corresponds to the received light intensity. 

The upwards slope represents the diastole phase and the downwards slope the systole 

phase. The presence of a second, smaller pulse within an arterial pulsation, called 

dicrotic notch 186J, represents closure of the aortic valve at the onset of ventricu lar 

diastole. 
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PPG AC signals from contact and imaging PPG 

icr re notch 

c-Contact PPG R Imaging PPG - IR imaging PPGl 
- L I I I ~ , --' 

I 2 3 4 5 6 7 8 9 10 
Time (sec) 

Figur.6. IS The PPG AC signals ill time domain or the male subject's hand from 

the conventional contact PPG and IPPG using CMOS camera under 650nm and 

870nm illumination. 

The PPG dynamic information such as the oscillations for heart rate is clearly 

indicated in Figure 6. 15 . The profiles of IPPG AC signals are clearly recognised in 

accordance with those of the contact PPG signal. The IPPG system demonstrates 

increased sensitivity to the dicrotic notch. Originated from the same heartbeat, 

different shape and amplitude of the IPPG AC signals are observed from the outputs 

illuminated by the two different wavelengths. This phenomenon may come from the 

different spectral sensitivity of the camera at the two wavelengths, and also the 

different penetration depths depending on the emitter wavelength. 

Figure 6. 16 presents the AC signals of the female forehead from IPPG and 

conventional PPG . In Figure 6. 16. the characteristics of the IPPG AC signal are 

clearly identified" ith the contact PPG signal. 
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Figure 6. 16 The PPG AC signals in lime domain of the female subject ' s race ITom 

contact PPG and IPPG using CCD camera under 650nm and 870nm illumination. 

Attention should be drawn to the phenomenon that the dicrotic notch under 650nm 

illumination consistently appears at the opposite position to that under 870nm 

illumination in Figure 6. 16. This phenomenon does not occur in Figure 6. 15 . This 

might be due to the different underlying physiological mechanism in the hand and 

forehead, which needs further investigation. 

6.3.2 Cardiac-Vascular parameters 

6.3.2.1 Experimental protocol 

Based upon the above AC signals, Fast Fourier transforms ("FFT" in Matlab) were 

performed to determine the spectra of these signals. A custom short-time frequency 

transform C'STFr' in Matlab) was performed to present the spectrogram in both the 

time-based and frequency-based views of the AC signal. The spectrogram can 

provide visualized information about both when and at what frequencies a signal 

event occurs. 

6.3.2.2 Experimental Results and discussion 

The Fourier spectra and the time-frequency spectrograms are plotted in Figure 6. 17 

corresponding to the AC signals from the CMOS camera in Figure 6. 15 . 
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Figure 6. 17 The Fourier spectra (a) and time-frequency spectrograms (b) for AC 

signais from conlacl PPG and IPPG under 650nm and 870nm illumination from the 

hand. 

The fundamenta l heart rate (HR) frequency is clearly vis ible in all spectra around 1.4 

Hz 14 i, which is 1.409Hz for contact PPG signals and 1.387 Hz for IPPG signals. The 

fundamental IIR frequency of IPPG AC signals can be clearly identified in Figure 

6.17(a) and (b). The 2nd and 3ni harmonics of the AC signal under 870nm 

illumination can even be recognised in both Fourier spectrum and the time-frequency 

spectrogram. The detection of the harmonics indicates Ihat both the heart rate and the 

shape of the waveform can be determined. 
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Figure 6. 18 illustrates the Fourier spectra and the time-frequency spectrograms of 

the AC signals from the CCD camera in Figure 6. 16. 
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Figure 6. 18 The Fourier spectra (a) and time-frequency spectrograms (b) for AC 

signals from contact PPG and I PPG under 650nm and 870nm illumination from the 

face. 

In Figure 6.18, the fundamental HR frequency is identical of the contact PPG signal 

and that of IPPG signals 1.31Iz. These results demonstrate the comparability of IPPG 

in displaying Ihe dynamic waveform with a conventional contact PPG instrument 

and exhibit the ystem with the capability of obtaining qual it) PPG AC signals from 

different tissue areas of human subjects. There is abnormal rippling in the low 

frequency range of the IPPG signal in Figure 6. 18 (a), which does not appear in the 
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contact PPG signal. The spectrograms in Figure 6. 18 (b) clearly demonstrate this 

rippling occurs at the time of about 6sec. Referring to the Figure 6. 16 of these 

signals in time domain, the profiles of the signals especially at 650nm illumination 

are truly not clearly recognised at this period of time. Physiological signals such as 

IPPG signal are generally transient, so the usage of the Fourier transform sometimes 

leads to ambiguous results. Combining the Fourier transform and the time-frequency 

analysis can give a more comprehensive analysis in Frequency domain for the IPPG 

signal. 

6.3.3 Reliability 

6.3.3.1 Experimental protocol 

Eight healthy Chinese subjects (3 females, 5 males) participated in this study and all 

subjects gave their informed consent to participate in the study. The experimental 

protocol was performed in a dark room. The subjects were requested to sit in an 

upright position with their head resting on a bench. A conventional transmission 

mode pulse oximetry probe connected to the DISC04 PPG board was attached to the 

subjects' right index finger. The CCD camera was chosen for this investigation as the 

fundamental HR frequency of the IPPG AC signal was found to be more significant 

in the previous section. The camera with the ring light was positioned 130 mm from 

the face and focused on the subjects' forehead. The camera was configured to 

capture at 30jps. A trigger signal was sent simultaneously to the camera system and 

the PPG board, initiating a 10s data acquisition in both systems. 

The pulse rate PR (beat/minute) can be calculated as: 

PR = 60x_l­
',,1'1 

(6.6( 

where (PPI is the mean duration of pulse-to-pulse intervals (PPI) as shown in Figure 5. 

13. The pulse rate and the HR fundamental frequency from IPPG and contact PPG 

signals were compared to each other. Bland-Altman and correlation methods were 

employed to assess the level of agreement between the devices. 
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6.3.3.2 Results and Discussion 

Figure 6. 19 shows a scatter plot of the pulse rate measurement from the contact PPG 

versus the measurement from IPPG. The results of contact and IPPG under 870nm 

measurements are plotted as circles, and those under 650nm measurements as 

crosses. The regression line y=0.933x+5.22 is plotted in Figure 6. 19, showing a high 

correlation (r2=0.932) between the contact PPG and IPPG, while a small offset is 

evident from the regression line equation. The IPPG slightly overestimates the pulse 

rate. 
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Figure 6. 19 The scatter plot showing the pulse rate from IPPG and PPG 

measurement at 870 nm (circles) and 650 nm (crosses) for each subject Also shown 

is the line y=0.933x+5.22, where both methods are highly correlated. 

Figure 6. 20 shows a Bland-Altman plot of the two methods by comparing the 

frequency difference of the cardiac component between IPPG and contact PPG, 

versus the mean frequency resulting from those two methods. Again data pertaining 

to 870nm are represented by circles and 650nm by crosses. The Bland-Altman plot 1871 

is a popular method of assessing the level of agreement between a tested clinical 

device and a second device used as a gold standard. 
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Figure 6. 20 The Bland-Allman plot, showing the frequency difference of cardiac 

component between IPPG and contact PPG, versus the mean frequency resulting 

from the two methods of measurement for each subject. The circles indicate 

measurements at 87011111, and the crosses a1650nlll. The solid line indicates the mean 

frequency difference and the dOlled lines represent the ± 1.96 standard deviations. 

A visual inspection of the Bland-Altman plot enables to identify the type and level of 

error by comparison to the true value of the variable of interest. The mean frequency 

difference between the two techniques is -0.00125 Hz and the standard deviation (SD) 

is 0.0334 Hz. Assuming that the mean difference is normally distributed, the 95% 

confidence interval can be calculated as ±1.96 SD, which means that pulse rate from 

IPPG might be 3.873 beats/minute above or 4.023 beats/minute below that from 

contact PPG. The insignificant mean difference means that the two methods can be 

used interchangeably for the measurement of pulse rate. 

This study has demonstrated Ihe reliability of the IPPG system 10 detect IPPG AC 

signals. Although the camera is more susceptible to ambient light and motion artefact 

than a conventional contact probe, the AC signals captured by the imaging system 

have still shown a strong simi larity with those captured by the conventional PPG 

sensor in both time domain and frequency domain and deliver reliable 

cardiac-vascular parameters i.e. heart rate with good reliability. Thus il is ready for 

the in-vivo validation of the oplo-physiological model. 
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6.3.4 Validation Analysis 

6.3.4.1 Results ofsubject-based experiment 

The experimental study was performed based upon the same database of the 

experiments in section 6.3.3. It is difficult to quantify the reflected light intensity Ire! 

in the subject-based experiment. Previous research 1881 demonstrates polarization 

gating as a simple and effective method to eliminate surface reflection. It is difficult 

to implement this method in the current platform ofIPPG as the polarizer reduces the 

light intensity, resulting in a critical loss of quality in the measurement of the weak 

AC component of IPPG signals. When assuming no surface reflection, the ratio Rexp 

of the experiment can be calculated following Equation [5.11] as: 

QC 
Rexp =-

de 
[6. 7] 

where QC and de are calculated using Equation [5. 9] and [5. 10] as shown in Figure 5. 

13 and Figure 5. 14. The results of Rexp from 8 subjects under 870nm illumination are 

presented in Figure 6. 21. 
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Figure 6. 21 The results of R"p from 8 subjects under 870nm illumination. The 
triangle blocks represent the mean of Rexp with standard deviation for each subject. 
The straight line represents the mean of Rap over all the subjects. 
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Figure 6. 21 illustrates a little variation between the mean values of Rexpover the 8 

subjects. The variation may be due to the different surface reflection between 

subjects. Nonetheless, as the variation is not significant, the surface reflection and 

tissue properties between subjects can be regarded comparable in this controlled 

group. Thus one tissue model in MC simulation can represent a specific group or 

characterised tissue. This makes the opto-physiological model more applicable in 

biological tissue measurements, as it is not necessary to construct tissue models for 

individual subjects. 

6.3.4.2 Results of skin-model-based simulation 

The preparation of the six-layered tissue model has been previously described about 

skin tissue model in simulation in section 5.2.2.2. All tissue layers are set to be 

homogeneous with different blood fractions. 

Light impinging upon the tissue was simulated using multiple spherical light sources 

each with 180 degree view angle and confined to the same arrangement as the right 

light in experiments in Figure 5.3. The light source was set to be 130 mm away from 

the surface. As introduced previously about the lens in the phantom-based simulation 

in section 6.1.2.1, the same double-convex lens (Dia: 30 mm, FL: 50 mm, Centre 

thickness: 6.55 mm, RJ=-R2: 50.67,) was selected in the subject-based simulation. 

The lens was positioned 130mm away from the tissue model in OptiCAD. The 

layered detector-dependent MPL '''al;c(ij was calculated by Equation [4.6] following 

the procedure of post data processing of the simulation in section 4.2. This 

simulation was based on the skin tissue model with the optical properties of 

non-pulsatile tissue in Table 6.1 corresponding to the static stage. The dynamic stage 

was simulated with the optical properties of pulsatile tissue in Table 6.1. 

Consequently, layered MPL 'dynam;c was calculated using Equation [4. 7] based on the 

skin tissue model in both the static and dynamic stage. 

Following above, the MPL 'of each tissue layer are listed in Table 6.2, including the 

static component static component MPL '"al;c and the dynamic component 

MP L 'dynamic. 
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Layer 
Epidermis 
Dermis 
Dermis papillary plexus 
Dermis 
Dermis cutaneous plexus 
Hypodermis 

RESULTS 

static(mm)dynamic(mm) 
0.1832 0 
0.6499 0 
0.5101 0.000305 
1.8996 0.00196 
0.7605 0.000128 

o 0 

Table 6. I MPL' of each tissue layer with the static component MPL ',"a", and the 

dynamic component MPL 'dYllamic-

The MPL' in Table 6.2 presents the dynamic component of MPL' which accounts 

only a small portion of the total. This is due to the small portion of arterial pulsatile 

blood. The simulation assumed no blood pulsation in epidermis and top dermis layer, 

thus MPL 'dy"amic is equal to O. The fourth dermis layer is the main contributor to both 

static and dynamic component of MPL '. 

6,3.4.3 Validation Results 

In the opto-physiological model, the ratio of the amplitude of the static and dynamic 

component related only to the absorption coefficient of blood and dynamic MPL. It 

was calculated following Equation 5. 15 as 

6 

R',h," = ~).ua.hl"ad(i)X MPL '<hoam;,(i)] =0.14% 16.81 
i=l 

where MPL 'dy"amic is the dynamic component of MPL' in Table 6.2. 

As the surface reflection was disregarded in the experimental results, there are 

certainly expected deviations between Rexp calculated using Equation [6. 7] and R ',heo 

calculated using Equation [6. 8] as shown in Figure 6. 22. 
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Figure 6. 22 The results of Re .. p and R ·,hoo. The black triangle blocks represent the 

mean of R"p with standard deviation for each subject. The red square blocks represent 

R'""o based on the simulation of multi-layered tissue model. 

Another factor that may affect the deviation is the degree of the correlation between 

the tissue model and the group of subjects in the experiment. The sensitivity of the 

current approach largely depends on the setup of the tissue model including the 

choice of optical properties and the definition of the tissue geometry, all of which 

were quoted from literature. Actually, these tissue properties may vary between 

people and tissue types . Thus the variation between the tissue model and real tissue 

could affect the above deviation. This was tested by changing the thickness of 

epidermis layer from 0.06 mm to 2 mm and changing the volume fraction of pulsatile 

blood from 0.25% to 0.15% based upon the current six-layered tissue structure. The 

Figure 6. 23 illustrated R,,,.o calculated from Equation 5. 15 based upon the model 

with thickness of epidermis layer 0.06 mm, I mm and 2 mm respectively. 
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Figure 6. 23 The results of R,hoo calculaled from Equation 5. 15 based upon 

six-layered tissue models with different thickness of epidermis. The dotted line 

represents the mean value of R in the experiment. The blocks represent R 
corresponding to the thickness of epidermis 0.06111m (original setup), J 111111 and 211101, 

respectively. The curve represents logarithmic trend of these blocks. 

As introduced in section 4.2, the arterial pulsation was simulated by adding the 

pulsatile blood into non-pulsatile tissue and thus increasing the blood volume 

fraction. The values of f/ a.pulsmile and f/s.pulsalile with the volume fraction of pulsatile 

blood changing from 0.20% to 0.15% were calculated from Equation [5. 12] and [5 . 

13] as shown in Table 6. 2. Comparing to those values in Table 5.1, the decrease in 

total volume fraction of pulsatile blood results in the smaller pulsatile volume 

fraction and thus the optical properties of each layer. 

Fnul'" (%) 0.2 0.15 

Layer fla.pu,sal';c fl s,PUI5a\)e fl ltpulsattle ~::pul~ll)e (mm-I (mm-I (mm-I ) mm 
Epidermis (I) 0.0245 4.45 0.0245 4.45 
Dermis (2) 0.0245 4.45 0.0245 4.45 
Dermis Plexus (3) 0.05558 10.14970 0.05557 10.14866 
Dermis (4) 0.04789 8.73828 0.04786 8.73412 
Dermis Plexus 

0.13836 25.32905 0.13834 25.32593 
ProFundus (5) 
hypodermis (6) 0.04870 8.88788 0.048475 8.84633 

Table 6. 2 The optical properties of each lissue layer of 870nm with!,...", 0.20% and 

0. 15%. 
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The R,heo was calculated from Equation 5. 15 based upon the model with volume 

fraction of pulsatile blood 0.25%, 0.20% and 0.15% as shown in Figure 6. 24. 
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Figure 6. 24 The results of R calculated from Equation 5. 15 based on Lissue models 

WiLh different volume fTaction of pulsatile blood. The blocks represent R 

corresponding to the volume fTaction ofpulsatile blood 0.25% (original setup), 0.20% 

and 0.15%, respectively. 

The results in Figure 6. 23 and Figure 6.24 demonstrate the effect of the thickness of 

epidermis layer and the volume fraction of pulsatile blood on R,,,.o. The epidcrmis is 

the top layer of the whole tissue model, and the change of the properties such as 

thickness in this layer leads to a significant effect on the whole light propagation in 

tissue. The change in volume fraction of pulsatile blood and thus the optical 

properties results in the change of MPL 'dJ'''on"c and thus R,,,.o following Equation 5. 15 

of the opto-physiological model. Consequently, the R,,,.o approaches the 

experimental result when increasing the thickness of the top layer and decreasing the 

pulsatile volume fraction. Thus a close-to-real tissue model will largely increase the 

accuracy and applicability of the current research. 
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6.4 R ESULTS OF P ERFUSION MAPPING 

After va lidation, the opto-physiological model can thus be applied in biological 

measurements to construct blood perfusion mapping. Considering all the effects on 

the spatial resolution, i.e. the pixel resolution of camera, the tissue's spatial point 

spread function and the quality of /PPG signal, the size of ROl,p is selected to be 

100x l00 pixel; to guarantee the relatively high SNR of the IPPG signal in the 

experiment and also cover enough information to derive representative MPL. The 

size of ROl,p may be decreased to maintain the basic structure when considering the 

limited size of the measurement sites such as fingers. 

6.4.1 Experimental setup and protocol 

The CMOS camera with the ring light was positioned 50 mm from the tissue surface. 

The camera was configured to capture 30jps at a resolution of 1280x I 024 pixd. The 

ring light was contigu red to illuminate at a single wavelength 870nm, and the output 

power reached 8m W by setting the forward current for each RCLED as 10mA. A 

female subject participated in this investigation. A ll the measurements were 

performed in a dark room to avoid the ambientlighl. 

6.4.2 2-D Mapping of Static and dynamic component 

As described previously about the mapping function in Figure 5. 16 in section 5.3 , 

the 2-D mappings of static and dynamic components were based upon de and Ge 

which can illustrate the average tissue state and perfusion strength respectively. 

6.4.2.1 Static component mapping 

The 2-D mapping and the corresponding contour plot of ROI ,p-dependent de under 

870nm illumination on the human hand are presented in Figure 6. 25. 
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Figure 6. 25 The mapping of ROI,.-dcpendent de under 870n01 illumination plotted 

in the 2-D and contour formats. 

Figure 6. 25 demonstrates a direct visualisation of the static component of tissue. in 

which the finger and palm can be clearly distinguished. In Figure 6. 25. the de of the 

palm shows higher values than that of the finger. This is due to the uneven surface of 

the hand. When the hand is laid nat on a surface. the palm usually protrudes more 

than the finger; thus the light illumination on the palm is stronger compared to the 

adjacent tissue areas. This results in the higher value of dc. 

6.4.2.2 Dynamic component mapping 

The 2-D blood perfusion mapping and the corre ponding contour plot of 

ROI,p-dependent ac calculated by Equation [5. 9] and R by Equation [5 . 11] under 

870nm illumination on the hand are presented in Figure 6. 26 and Figure 6. 27. 
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Figure 6. 26 The mapping of ROJ,p-dependent ac under 870nm illumination plotted 

in the 2-D and contour fomlats. 
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Figure 6. 27 The mapping ofROJ,p-dependent R under 870nm illumination plotted in 

the 2-D and contour formats . 

In Figure 6. 27, the variation of the normalised amplitude is smaller than that in 

Figure 6. 26, as R is mainly attributed to the optical properties of blood following the 

Equation (3. 15]. 

In Figure 6. 27, the abnormal amplitude in the area of the index figure may come 

from the effect of motion artefact. Although motion artefact has no significant effect 

on heart rate, it can not be overlooked when generating perfusion mapping. Figure 6. 
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28(a) and (b) present the original image and the corresponding perrusion mapping or 

ac from the human race . Similarly as the results of the hand, motion arteract has a 

severe effecl on the quality of perrusion mapping in Figure 6. 28(b). In this 

investigation. a simple method is developed to reduce the effect or motion arteract on 

perfusion mapping. This method is based upon the power mapping generated by 

averaging the amplitude or the AC spectrum at the bandwidth or interest as shown in 

Figure 6. 29. Motion artefact mainly induces lower or higher rrequency noise than 

the HR frequency 1891. To avoid the effect or motion artefact, the power mapping was 

generated by mapping the ampl itude, named as ac". ... " . at the HR fundamental 

rrequency i.e. 1.3Hz in frequency domain over the illuminated area as shown in 

Figure 6. 28(c). 

(It) (b) (c) 

Figure 6.28 (a) The original image. (b) Corresponding ac map. (c) Corresponding ac 

power map at (-( R 1.3 Hz. 
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Figure 6. 29 An illustration ofacpo.~ of the !PPG signal. 
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Figure 6. 28(c) shows the capability of the power mapping in reducing the effect of 

motion artefact. Based on this approach, the normalised pulsatile power R,,,,,,,,, can be 

calculated as 

(6.9( 

The 2-D mapping of ROI,p-dependent Rpo"." is presented in Figure 6. 30. 
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Figure 6. 30 The 2-0 mapping of RI"N" under 870nl11 illumination on hand. 

Figu re 6. 30 indicates a beller result of blood perfusion mapping than that in Figure 6. 

27. especially in the palm area, where the effect of motion artefact has been reduced 

in most areas. 

6.4.3 Layered Mapping of Blood Perfusion 

In this section. the results of constructing the 3-D layered blood perfusion mapping 

using the opto-physiological model are detailed and discussed. Based upon the MPL ' 

yielded by simulation in Table 6.2, the layered mapping was constructed following 

the procedure as shown in Figure 5. 18 in section 5.3.2. 

The segmented ROI 'p-dependent Rpo'", calculated from Equation [6. 9) under 870nm 

illumination is plotted in a 3-D format to illustrate the layered dynamic blood 

perfusion of the illuminated hand as shown in Figure 5. 4. 
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Figure 6. 31 The layered power mapping ofROI,p-dependent R"..." ofthe multi-layer 

skin tissue under 870nrn illumination. 

Through this, the IPPG signal is quantitatively related with the layered optical 

properties of each layer. By mapping the layered components of R of each ROI,p, all 

the poin1s within layered tissue's spatial point spread function in Figure 5.23 

contribute to the ROI,p-dependent R. uch kind of layered mapping illustrates the 

relationship between segmented AC and DC signal, and the relationship between 

segmented signal and the total IPPG signal. 

Figure 5. 4 indicates that the deep dermis layers are the main contributor to blood 

perfusion up to 80% of the total perfusion, which is in accordance with simulation 

setup and empirical value. As the top two layers contain no pulsatile blood, there is 

no blood perfusion. Based upon the current results, when the geometry of individual 

layers of tissue is static and identical, the normalised layered power mapping can 

mainly provide information about optical properties of tissue. 

The spatial resolution decreases with respect to depth as shown in the contour plot of 

tissue's spatial point spread function in Figure 5.23 and so these layered mapping 

does not provide a Inle representation of the actual physical distribution of light. To 

achieve this, the spatial distribution needs to convolve the corresponding tissue's 

spatial point spread function at each layer. 
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The current approach does suffer from the uncertainty of the degree of 

correspondence between this model and the real tissue. The uncertainty has been 

demonstrated in Figure 6. 23 and Figure 6. 24 by the simulation based on the tissue 

model with different thickness epidermis. Consequently, this research would greatly 

benefit from an accurate measurement of the internal makeup of the tissue bed. More 

discussions are detailed into the next chapter of further work. 
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SECTION 4 CONCLUSIONS 

7. CONCLUSIONS AND FURTHER WORK 

This chapter summarises the experimental results of this 

research and the resultant conclusions. These are followed by a 

discussion of the areas which warrant further research and 

development, as suggested by the conclusions. Specifically, 

improvements are suggested to enhance the accuracy of the 

simulation for actual human tissue, including the 

implementation of other optical technologies to generate tissue 

models for simulation, the development of a proprietary MC 

simulation engine specific for this application to allow a much 

higher efficiency in the simulation process, and the more 

c1ose-to-real setting for the tissue model including tissue optical 

properties. 
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7.1 CONCLUSIONS 

In this research, an opto-physiological model was created to quantify the effect of 

optical properties on the I PPG signal through the use of MC simulation on 

multi-layered biological tissue. The approach to achieving this involved the 

redefinition of the path length in the Beer-Lambert law with mean path length (MPL). 

MPL was yielded by the MC simulation on a multi-layered tissue model with 

segmented close-to-real optical properties. Based upon this approach, the 

opto-physiological model was generated to mathematically describe the relationship 

of the output IPPG signal and the layered optical properties in a complex tissue 

structure. A series of in-vitro and in-vivo experiments were performed to provide 

reference outputs for the validation of the model. The validity of such data is a 

function of the quality of convergence achieved when correlating the results of 

experiment measurements with the corresponding data of the opto-physiological 

model. The quality of convergence depends on both the quality of experimental data 

and the accuracy of the tissue model employed in the MC simulation. After 

validation, the model was applied into the biological measurement to construct the 

3-D mapping of layered blood perfusion. 

7.1.1 Opto-Physiological Modelling 

A linear increase in the accuracy of a model for optical propagation in biological 

tissue results in an exponential increase in its complexity. The thesis aims to create 

an accurate, yet applicable model to describe the effect of optical properties on the 

output signal in a complex tissue structure. The basic concept of this is to describe 

the complicated light-tissue interaction by a simplified representation with optimised 

parameters. This concept was achieved through the use of the MC simulation on 

multi-layered tissue model defined by c1ose-to-real optical properties and geometries. 

The simulation yielded MPL for the opto-physiological model. Based upon MPL and 

the optical properties, the opto-physiological model was generated to quantify the 

effect of layered optical properties on the absorbance A and IPPG signals. The 

segmented A and I PPG signals for a specific tissue layer were hence derived as a 

directly linear function of the corresponding absorption coefficients fla when the 

scattering effect was constant. 
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7.1.2 Experiments 

To validate the opto-physiological model, a custom IPPG setup and a series of 

in-vitro and in-vivo experimental protocols were generated towards high reliability 

standards. The accuracy of validation depends greatly on the quality of experimental 

outputs, which served as reference for the validation of the opto-physiological model. 

The validation platform configuration included a standard arrangement of 

reflection-mode IPPG and a RCLED ring light. The results demonstrated the 

capability of the IPPG system to detect quality and reliable signals from different 

tissue areas. 

7.1.3 Validation 

The concept of the validation is that as the assumptions and parameters of the 

opto-physiological model approach those occurring in the corresponding real-life 

experiment, the outputs of the opto-physiological model and the experiment 

increasingly correlate. Results of the in-vitro validation based upon the multi-layered 

phantom demonstrated a good correlation between the outputs of experiments and 

the opto-physiological model. This correlation proves the capability of the 

opto-physiological model, which not only can accurately predict the output in the 

range of /1a and /1., close to human tissue, but also predict the effect of changes of /1a 

and /1, on the output. In the in-vitro validation, the greatest deviation from the 

correlation occurred at the lowest and highest absorption coefficients. This was due 

to the spectrometer having insufficient sensitivity in these ranges. In the in-vivo 

validation, certainly variations between the outputs of experiments and the model 

were expected, due to the unknown effect of the surface reflection and the sensitivity 

of the current approach. The theoretical R'heo approaches the experimental result 

when increasing the thickness of the top layer and decreasing the pulsatile volume 

fraction of the tissue model. 

7.1.4 Perfusion Mapping 

The layered mapping illustrates the relationship between segmented AC and DC 

signal, and the relationship between segmented signal and the totallPPG signal. The 
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spatial resolution of the 2-D and layered perfusion mapping is determined by the 

size of ROlip, which is affected by the resolution of the captured frame, the quality 

of the IPPG signal and the tissue's spatial point spread function. Through the 

perfusion mapping, the IPPG signal is quantitatively related with the segment optical 

properties of each layer. By mapping the layered components of R of each ROlip, all 

the points within layered tissue's spatial point spread function in Figure 5.23 

contribute to the ROlip-dependent R. The Rpo ... " mapping indicates that the deep 

dermis layers are the main contributor to blood perfusion up to 80% of the total 

perfusion, which is in accordance with simulation setup and empirical value. As the 

top two layers contain no pulsatile blood, there is no blood perfusion. Main issues 

limiting the accuracy of the current approach are the motion artefact and the 

uncertainty of the degree of correspondence between this model and the real tissue. 

To address the first, the data processing of spatial averaging and power mapping of 

interested bandwidth has been developed. Furthermore, this issue may be further 

addressed by improved positioning of the volunteers, software to laterally 

synchronize frames and more uniform illumination. For the uncertainty of the tissue 

model, this research would greatly benefit from an accurate measurement of the real 

tissue. More discussions are detailed into the next section of the further work. 

7.2 FURTHER WORK 

7.2.1 Effective Monte-Carlo Engine 

OptiCAD was used as a prototype for a MC engine in order to perform a feasibility 

study in the least possible amount of time. Unfortunately, its limitations have proven 

to be a hindrance even at these early stages of platform development. Firstly, the 

software is closed source and is protected by a hardware key, which poses several 

problems. Processing power applied to MC simulation is limited to that of a single 

workstation and its rate of data output is severely limited as a consequence. Also, the 

data output of OptiCAD is an ASCII text file, which poses a bottleneck when 

importing the data into MA TLAB. Finally, the output data does not include 

information pertaining to the medium in which ray segments are contained. A 

significant amount of reverse engineering was necessary to overcome this issue. 
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The limitations posed by the use of OptiCAD make it essential to develop an 

open-source MC engine in a flexible and efficient programming language such as 

CIC++. A proprietary engine specific to the application presented in this research 

would inherently remove the bottlenecks and unnecessary steps found in the current 

implementation. An open-source solution would allow the possibility of distributed 

computing, the ongoing optimisation of the platform, and the development of new 

features. 

7.2.2 Close-to-real Tissue model 

MC simulation in this project was performed on a flat, empirical tissue model; 

therefore, the degree of correspondence between this model and the real tissue has an 

important impact on the accuracy of the opto-physiological model. Consequently, 

this research would greatly benefit from an accurate measurement of the internal 

makeup of the tissue bed in question. Some optical tomographic technologies might 

be suitable to produce cross-sectional images of designated tissue area, such as MRI 

or optical coherence tomography (OCT). 

Figure 7.1 DICOM image from MRI scan ofadul! male hand performed in Glenfield 

Hospital, University Hospital of Leicester, UK. 

An example image of a MRI scan from an adult finger is shown in Figure 7.1. The 

resultant data indicates that the information gathered from MRI scans with low 

resolution can only be used to determine the major dimensions and positions of 

internal structures such as blood vessels. 
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The limitations posed by the use of OptiCAD make it essential to develop an 

open-source MC engine in a flexible and efficient programming language such as 

C/C++. A proprietary engine specific to the application presented in this research 

would inherently remove the bottlenecks and unnecessary steps found in the current 

implementation. An open-source solution would allow the possibility of distributed 

computing, the ongoing optimisation of the platform, and the development of new 

features. 

7.2.2 Close-to-real Tissue model 

MC simulation in this project was performed on a flat, empirical tissue model; 

therefore, the degree of correspondence between this model and the real tissue has an 

important impact on the accuracy of the opto-physiological model. Consequently, 

this research would greatly benefit from an accurate measurement of the internal 

makeup of the tissue bed in question. Some optical tomographic technologies might 

be suitable to produce cross-sectional images of designated tissue area, such as MRI 

or optical coherence tomography (OCT). 

Figure 7.1 DICOM image from MRI scan of.dult male hand performed in Glenfield 

lIospital, University Hospital of Leicester, UK. 

An example image of a MRI scan from an adult finger is shown in Figure 7.1. The 

resultant data indicates that the information gathered from MRI scans with low 

resolution can only be used to determine the major dimensions and positions of 

internal structures such as blood vessels. 
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OCT is another optical tomography modality with high resolution and 

cross-sectional imaging. An example image ofOCT from the layered retina is shown 

in Figure 7.2 . 

Figure 7.2 An example image ofOCT scan of 8 retina 8( 800nm with an axial resolution 
of311m (image courtesy ofhllp:llen .wikiocdia.org/wiki/File:Retina-OCT800.png). 

OCT 1901 is particularly suited to ophthalmic applications and other tissue imaging 

requiring micrometer resolution and millimetre penetration depth. Ilowever, its 

imaging penetration is limited to millimetre depth, due to the highly scattering 

property of the medium. If the advantage of MRI scanning and OCT can be 

integrated to provide a high resolution and whole structure tissue model, it will 

largely increase the accuracy and applicability of the current research. 

7.2.3 Model Settings 

MC simulations were performed on a five-layered skin model without taking the 

melanin layer into account. Therefore, a more accurate methodology should include 

modelling of melanin in the epidermis. Additionally, it would be ideal to account for 

the inhomogenity and the geometry change during the pulsatile stage. 

With the complexity of the model increasing, the rate of data production 111 the 

current MC simulation poses a significant limitation. Any experiment that could 

elucidate potential ways to increase the efficienc) of ray tracing is therefore justified. 

One such experiment would be to perform a series of comparative simulations to 

determine the relationship between ray traces resulting from three-dimensional 

arbitrary geometry and a corresponding two-dimensional simulation of a specific 

cross-section of the full geometry. If little gcometrical variation is expected with 

respect to a change in cross-section, it may be possible to simplify the simulation to 
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two dimensions while still maintaining the precise nature of results resulting from an 

arbitrary geometry. Another feature that should be considered is the virtual definition 

of the light source, which was limited to a near-point source with Lambertian 

distribution. Characterisation of responses with respect to the light source beam 

parameters would be advantageous as an expansion of the capabilities of the 

platform. 

It is clear that the accuracy of coefficients plays an important part in the accuracy of 

the opto-physiological model. In the context of this project, there is a need for full 

relational reviews of optical properties in which coefficients are given certain ranges 

with respect to relevant physiological parameters such as perfusion. As the 

availability and accuracy of these coefficients increases, so will the convergence of 

the results from this platform. As model settings of this sort are improved, it is 

possible that inverse Monte Carlo techniques of arbitrary geometries could be used 

to determine increasingly accurate in-vivo optical properties of biological tissues. 

7.2.3 Dynamic Component Validation 

When considering the perfusion as tissue with dynamic blood volume change, this 

change is simulated by adding the pulsatile blood into the non-pulsatile tissue and 

thus changing the volume fraction of each component. Consequently, this leads to 

the variation of {la and {Is in tissue. The current validation was performed using 

static layered phantom but with different {la and {Is. The phantom-based validation 

using multi-layered phantom with different {la and {Is proves the ability of the 

opto-physiological model, which not only can accurately predict the output in the 

range of {la and {Is close to human tissue, but also predict the effect of changes of {la 

and {Is on the output. The changes of {la and {Is can be related to the dynamic change, 

and this means the dynamic part of the opto-physiological model has been validated 

through in-vitro validation. This kind of validation for the dynamic component can 

also be achieved by using a phantom with an artificial vessel network pumped with 

a blood substitute. This leads a further work for this research. 
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ApPENDICES 

The following appendices have been included: 

I. Graphical user interface for OptiCAD software (OptiCAD Corporation, USA), 

11. LabVIEW front panel and block diagram for the virtual instrument developed for 

the control of the Inspecta-5 frame grabber (Mikrotron, Germany) and 

communications with a range of cameras via the CameraL ink serial interface. 

Ill. LabVIEW front panel and block diagram for the virtual instrument developed for 

the control of the DISC04 PPG board (Dialog Devices, UK) and USB data 

acquisition device NI-DAQ M-60 15 (National Instruments, USA). 

IV. Specification and optical properties of dye, FD&C # I (ROHA CALEB Ltd., UK). 
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VI OPTICAL PROPERTIES OF FD &C BLUE # 1 

The dye, FD&C Blue #1 (ROHA Ltd. UK), was selected as one of the mam 

components of the phantom to increase light absorption preferentially at 650 nm. The 

dye, also known as Brilliant Blue FCF, is a colorant for food and other substances to 

induce a colour change with the appearance of a reddish-blue powder. It is soluble in 

water, thus the scattering coefficient is negligible when it is fully dissolved. The 

solution has a maximum absorption at 629 nm. Its molecular weight is 792.84 g/mol. 

The dye solution performs in a stable way over temperature (up to 100 oC) and time 

(up to days). 

The measurement of the absorption of dye used a spectrophotometer (USB4000, 

Ocean Optics Inc., USA) and a tungsten halogen lamp (LS-I, Ocean Optics Inc., USA) 

in a transmission method. The calculation of absorption coefficients is usually quoted 

to be a base-IO format in the Beer-Lambert law because of the relation to optical 

density. The absorption A can be described as: 

A = -IOg(f) = 6" xCxd 
o 

(A-I( 

where 

C the concentration of dye with units of M(mol / I), 

d the thickness of cuvette with units of mm, 

6" the wavelength-dependent molar absorption coefficient with units of Ar'mm-', 

10 and I the incident and transmitted intensity, 

A the absorption. 

Equation A-I is satisfied by distilled water: 
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I. 
A = -Iog(-") = 6 xCxd I U,II' 

o 
[A-2[ 

Assuming the absorption coefficient of water is negligible, the absorption is 

approximate to 0 and the incident light intensity can be represented by the transmitted 

light intensity of water Iw. 

In the actual measurement of absorption coefficient of a dye solution, the dark noise 

of the camera itselfwas subtracted from the transmitted light intensity. Thus Equation 

A-I can be modified as: 

1-1 
A = -Iog( d,,,' ) = 6" x C x d 

Ill' -[dark 

[A-3[ 

where 

1 the transmitted light intensity from sample 

1" the transmitted light intensity from distilled water 

1.la,' the dark noise of the device. 

When tixing the thickness of the cuvette, the molar absorption coefficient 6" of a 

dye solution is deduced to be proportional to the slope of the 
I-I 

log( .,,,' ) - C 
I -I 

Ir .Iark 

plot. 

as shown in Figure A.I. 
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Figure A.I The relationship between the absorption and dye concentration. 

Performing a linear least squares regression, the molar absorption coefficients of dye, 

measured using the cuvette with thicknesses of 10 mm , is calculated 

as Ga = 52.503mm-1 
/ (%C). For a specific concentration of dye solution, the 

absorption coefficient /I" can be derived as: 

11 = G xC " (/ 
IA-41 

where 

G" the molar absorption coefficient 

C the concentration of dye solution. 
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