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SUMMARY 

The present work has arisen from a continuing need to improve the 

performance of round-steel lifting (hoist) and mining chains, and the 

hypothesis that this might be done by modification of the link 

geometry. The finite element (FE) method has been used to analyse the 

stresses in the chain links. The effects of link length and the bend 

radius in the crown were conside~ed. The effect of maintaining link 

i~~gt~constant and departing from the conventional straight sided 

(standard) geometry by changing the link shape from eight shape 

(pinched), through straight sided, to elliptical has been examined. 

Mining chains made from non-circular section rod have also been 

investigated. The finite element work has been supported by practical 

investigations using through-yield strain gauges. . . 

The fatigue properties of the round-steel lifting chains have been 

investigated. Chains are often calibrated by application of 

manufacturing test force as one of the last manufacturing processes, 

to raise the load to which the chain will behave elastically in 

se.vice. As a result, residual stresses are introduced, which improve 

the fatigue performance. The distribution of residual stresses has 

been examined by the finite element method and .'is' compared with '. . 
experimental results obtained by neutron diffraction, x-ray 

diffraction and strain gauge techniques. The best quantitative 

agreement between the FE predictions and experimental was obtained in 

the case of neutron diffraction. 

In terms of the peak stresses for a given applied load, which result 

from combination of the residual stresses with the elastic stresses 

caused by loading, the conventional straight-sided link appears to be 

the optimum for a given rod diaseter and pitch, although some benefit 

would result from a reduction in overall width. 
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CHAPTER 1 

INTRODUCTION · . 
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1.1 INTRODUCTION 

Chains manufactured from high-tensile steel are used in many 

applications, such as hoists, cranes, and in mining, where it is vital 

that their load-carrying capacity should be assured. The details of 

the manufacture of such chains may vary slightly but the following 

steps are generaly involved: cropping a length from bar-stock; 

forming the len6th to p~~duce the next link on a continuous tun o. 
chain; butt or flash butt welding of the adjacent cropped ends of the 

link; and heat treatment of the welded chain by quenching and 

tempering. The temperatures used in heat-treatment (for the formation 

of y Fe and the partial decomposition of martensite formed by 

quenching) depend on the steel used and the tensile strength required 

of the chain. Traditionally the final step is the application of a . . 
manufacturing test load, known as calibration in the trade, which is 
sufficient to deform the chain plastically and thus imparts the final 

dimensions to each link. It is now recognised that the residual 

stresses introduced by this process substantially affect the chain's 

mechanical properties and particularly its resistance to fracture 

under the effect of repeated tensile loads. However, there is no 

detailed knowledge of the magnitude or distribution of these residual 

stresses. 

In this chapter, a brief background study is given regarding steel 

chains, their fatigue properties, the effect of residual stresses on 

fatigue properties, and the application of finite element analysis to 

chains. Objectives and the layout of the thesis are also given here. 
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1.2 ROUND LINK STEEL CHAINS 

1.2.1 GENERAL 

The chain is one of the most familiar as well as one of the most 

useful mechanical devices. Chains are mechanically strong, 

statistically reliable, and economical, and are used in many important 

components in hoists, slings, towing devices and conveyors. 

Evidence of the manufacture of chains goes back to ancient times. The 

first chains were forged and fire-welded. At the end of the 

nineteenth century, finish-forming of the links using a die was 

introduced to improve accuracy. The turn of the twe~t~ethcentury saw 

the first chain bending and chain welding machines (resistance welding 

method). 

Increasing requirements with regard to quality, reliability and 

working life led to the development first of the heat-treated chains 

and finally to high-tensile chains. The development of corresponding 

welding methods ran in parallel. Apart from the previously mentioned 

resistance welding method, the so-called flash butt welding must also 

be mentioned because it permits welding not only of large nominal 

diameters but also highly alloyed steel. 

1.2.2 TENSILE STRENGTH OF CHAINS 

The tensile strength of chains is determined mainly by the material, 

the shape, and the surface conditions of use. Year resistant 

materials with a high breaking strength combined with a high 

ductility, high notch impact strength and a high degr~e of surface 
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hardness are preferred for round steel chains. Chains must comply 

with the strain values specified in the appropriate standards; these 

can be obtained by stretching the chain. In BS3114 a specified 

minimum ratio of extension to length at a stated load is required in 

order to assume adequate energy absorption properties, Appendix A. 

Occasional overloads in operations should not lead to fracture, but 

merely to plastic changes in length. Vellinger [1] reported that the 

static ~trength of chains is approximatcly-60 - 70 % ~f the t~nsile 

strength of the material. The elongation decreases with increasing 

ratio (t:d) where t is inside length of chain and d, the diameter of 

the wire or rod from which the link is made. 

1.2.3 MATERIAL 

Depending on their application, chains are made of either plain carbon 

or high-tensile alloy steel. Manufacture of high tensile chains calls 

for a steel which can provide a tensile strength of 1200 to 1400 MPa 

after tempering, depending on quality grade, and in addition has 

adequate ductility (minimum elongation 14 %) and a high degree of 

notch impact strength as well as being weldable and having a high 

fatigue strength. 

1.2.4 STRESS 

It is essential to know operational stresses and their change. 

frequency and sequence with respect to time in order to evaluate safe 

wor~ing conditions and service life of a chain. The effect of chaln 

shape on the tensile strength of the chain is illustrated by the 

stress charateristic of the short link chains shown in Fig. 1.1 

[2,3]. The stresses in chain links with parallel side members (Fig. 
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1.lc) are lower than in those of a barrelled shape (Fig. 1.la) dnd 

slightly higher than those in a link with a centre web (Fig. 1.1b). 

Yellinger [1] reported that for stressing below the elastic limit, for 

short link chains the region of highest tensile stress is the inside 

of the flank at the junction of the intrados with the straight sides 

(transition): for long link chains it is the outside of the crown. 

Maximum tensile stress was almost four times the nominal stress. 

Hawkes et al [4] have reported that for short link chains at loads up 

to and just beyond elastic limit the position of the maximum stress 

occurs at the transition. Beyond the elastic limit, however, changes 

in link geometry cause the position of the maximum stress to move to 

the link crown as shown by use of the photoelastic-coating technique. 

On the other hand, theory predicts that the position of maximum.st.ress 

in short link chains loaded elastically in tension is the crown [5]. 

This anomaly is due to the fact that the theoretical work assumed 

point loading between adjacent links and took no account of "bedding 

down" 0 f the links. 

The change in the pitch of a circular cross-section chain link has 

been investigated by employing the method of complementary work with 

plastic material properties [6]. The results of the work may be used 

in solving a number of practical problems connected with the 

determination of the change in pitch and load-bearing capacity of a 

different cross-sectional shapes. The results are particularly 

applicable to the standard link geometry and are not based on the 

detailed deformation of the chains. 

1.3 BRITISH STANDARDS FOR ROUND LINK STEEL CHAINS 
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British Standards for lifting gear were first discussed some forty 

years ago. Various standards have since been drawn up which specify 

the dimensions of components, the material from which they must be 

made, the tests they must undergo before they can be given a 

certificate and all other information necessary to make them as safe 

as possible. A continual watch is kept by the relevant British 

Standards Institution committeeson improvements in design, material 

and manufacturing technique and on changes in requirements. ~hen 

necessary, modifications to the standards are made. 

From the early standards, a formula was developed at NPL which, given 

the link dimensions and design stress, determined the design load 

[7,8]. The formula has stood the test of the time and has, by an 

increase in the design stress, been the basis for the design of links . . 
made of the new, stronger, alloy steels. The formula is applicable to 

all chain links [9]. 

I 

Anthony et al [7] proposed two empirical formulae for the diameter 

02 (Fig. 1.3) required for a link to have a particular working 

load limit ~: 

02 - .2 A B [ 6.7 + A - BIL ] 

02 - B [ .1 + A (1+A) - .12 LIB 

where L is the internal length of the link. 
B is the breadth of the link. 
A - [ ~/fB ] 
~ being the working load limit of the link. 
f being the maximum nominal extreme fibre stress in the link 

under the working load limit. 

The two values predicted for~~seldom differ by more than almost 1.5 

%, the larger of the two being selected in practice. 

BS 4942 (10,11,12,13,14,15),'Short link chain for lifting purposes', 
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specifies the general conditions of acceptance for electrically welded 

round steel short link chain for lifting purposes. It includes 

non-calibrated (see Section 1.1) chain use in cranes, in chain slings 

and for general lifting purposes and calibrated chain for use with 

chain hoists and other lifting appliances: they will be referred as 

lifting chain in what follows. 

BS 6521 [16),'Proper use and maintenance of calibrated round steel 

link lifting chain', specifies the principles for the use, inspection, 

in-service testing and maintenance of calibrated round steel link 

chains operating over chain wheels. The principal applications 

include manual and power driven hoists. 

'Hoist designers handbook' [17] and 'a guide to Safety practices for 

chain sling' [18] may also be consulted in relation to the BS 6521. 

BS 2969 [19],'High-tensi1e steel chains (round link) for chain 

conveyors and coal plough', specifies the requirements for a range of 

high grade special purpose calibrated, high-tensile electrically 

welded, steel chains for use with machines and equipment in mining and 

they will be!efe!r~das mining chain in what follows. 

BS 6405 [20],'Non-calibrated short link steel chain (grade 30) for the 

general engineering purposes: class 1 and 2' (mean stress at 

specified minimum breaking load is 300 MPa). This standard deals with 

non-cal~ ~ra t,ed ~s!tort_link _steEl! '~h~i~~f -g;~de _ 30 ~OE g,;ne~~i' ~~ii~e~r{ng . 

purposes and provides for two qualities, class 1 quality chain for 

arduous duties such as lashing or load binding and class 2 quality 

chain for general duties. 
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1.4 FATIGUE 

1. 4.1 GENERAL 

Fatigue is the progressive localised permanent structural change that 

occurs in a material subjected to repeated or fluctuating strains at 

stresses having a maximum value less than the tensile strength of the 

material. Fatigue may culminate in cracks or fracture after a 

sufficient number of fluctuations. 

Fatigue fractures are caused by the simultaneous action of cyclic 

stress, tensile stress and plastic strain. If anyone of these three 

is not present, fatigue cracking will not initiate and propagate. The 

cyclic stress starts the crack; the tensile stress produces crac~ 

growth (propagation). Although compressive stress will not cause 

fatigue, compression loads may do so, because of tensile stress 

induced in some parts of a structure. 

The process of fatigue may be considered as consisting of three 

stages: 

1) Initial fatigue damage leading to crack initiation. 

2) Crack propagation until the remaining uncracked cross-section of a 

part beco~es too weak to carry the loads imposed. 

3) Final, sudden fracture of the remaining cross-section. 

Stage (1) may be absent in components containing crack-like defects. 

1.4.2 PREDICTION OF FATIGUE LIFE 

In practice, pr~cii~tio~ of the fatigue life of a material is 
--- ---~ 
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complicated because, except for a few relatively brittle materials, 

the fatigue life of a material is very sensitive to small changes in 

loading conditions, local stresses and local characteristics of the 

material. Because it is difficult to account for these minor changes 

in either the dynamic stress prediction techniques or in fatigue 

failure criteria, there is a large uncertainty inherent in analytical 

prediction of fatigue life. Thus the designer also is required to 

rely on experience with similar parts and eventually on qualification 

testing of prototype or production parts. Although laboratory fatigue 

tests performed on small specimens are not sufficient for precisely 

establishing the fatigue life of a part, it is useful to examine these 

data because laboratory tests (a) are the major source of fatigue 

failure criteria, (b) are useful in rating materials in terms of their 

relative resistance to fatigue, and (c) can be used to establish the 

relative impo~tance of such items as fabrication method, surface 

finish, heat treatment, assembly technique and environment on the 

fatigue life. 

In general, fatigue life can be expected to depend on the following 

parameters [21]: 

1) Type of loading.(uniaxial,bending, torsional) 

2) Shape of loading curve 

3) Frequency of load cycling 

4) Loading pattern (periodic loading at constant or variable 

amplitude, programmed loading or random loading) 

5) Magnitude of stresses 

6) Part size 

7) Fabrication method and surface roughness 

8) Operating temperature 

9) Operating atmosphere. 
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Traditionally, fatigue life has been expressed as the total number of 

stress cycles required for a fatigue crack to be initiated and then to 

grow large enough to produce catastrophic failure. Fatigue data also 

can be expressed in terms of crack growth rate. After the advent of 

better methods for crack detection, it was discovered that the crackq 

develop early in the fatigue life of the material and grow 

continuously until catastrophic failure occurs. This discovery has 

led to the use of crack-growth rates for prediction of fatigue life, 

the subject of Fracture Mechanics. 

In operation, lifting chains used for hoisting and conveying, are 

usually subjected to variations with different loading values. Under 

these conditions, the fracture may occur at one or rarely two of the 

following positions: crown, transitions or weld. 

Some of the parameters mentioned above such as loading frequency, 

loading pattern and surface roughness were investigated by Metz [22] 

using high-tensile lifting chain (A 7X21) complying with DIN 5684 

[23), confirming their effect on the fatigue strength of chains. 

Furthermore, he reported that the effect of mean stress is irrelevant 

in the region of high stress range but as the stress ranges narrow, 

any change of mean stress has a more distinct effect on the fatigue 

life. The effect of mean stress was, however, far less than that 

caused by a comparable change in stress range. In his tests 99 % of 

the fractures--occurrediirectly adjacent the welding seams, the 

remainder occurring in the transition zone. 

Long link chains possess hig~er fatigue strength than those of short 

link chains; by contrast, an increase in link width decreases fatigue 

strength [1]. 
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Although it has been reported (Bahke (3), quoting Yellinger (1) that 

an increase in the tensile strength of a C-Mn steel chain by heat 

treatment caused an increase in the life at high stresses without a 

corresponding increase in fatigue limit (or possibly even a decrease), 

the chains compared had slightly different link shapes. Under these 

circumstances, one can regard this as only an isolated and rather 

ambiguous piece of information. Yellinger's results did, however, 

generally indicate that the-fatigue strength of chains .as fairly 

insensitive to the material's tensile strength. The chains were not 

calibrated. 

Finally, some marked improvements in fatigue strength of short link 

chains can be produced either by dry rumbling or surface grinding, 

i.e. improving surface finish [24,25). 

1.5 RESIDUAL STRESSES 

1.5.1 GENERAL 

Residual stresses are defined as stresses, which can exist in an 

elastic body, when it is free from external forces. They are 

sometimes referred to as internal or locked-in stresses. They are 

caused by mis-match between parts of the body that have been forced 

either by heat, transformation or mechanical working to expand or 

contract in a different way from the rest of the body and, in order to 

keep all these parts in a continuous whole, forces are needed between 

the various parts, and these constitute the internal stresses. 

Residual stresses can be divided into two types, macroscopic and 

microscopic stresses. Microscopic stresses act over dimensions as 
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small as several unit cells, although their effect may extend through 

most of a grain: they are caused by structural inhomogeneties, which 

can also give rise to internal stresses even under macroscopically 

uniform deformation, or changes in temperature. Macroscopic stresses, 

on the other hand, vary continuously through the volume of the body 

and act over regions which are large compared with atomic dimensions. 

They can result from mechanical and thermal operations performed on 

the body. The macroscopic stresses, which originate directly from 

non-uniform plastic flow, as in the calibration of chains,[naVCebeen a 

principal area of investigation in the present work. 

1.5.2 EFFECT OF RESIDUAL STRESSES 

Residual stresses may have a beneficial as well as a deleterious 

effect. Yhen the residual stresses are of an unfavourable type 

(tensile at surface) they result in lowered yield and tensile 

strengths and lowered fatigue strength. Residual stresses are also 

responsible for warping during machining, quench cracks, season cracks 

and grinding cracks. 

On the other hand, when the stresses are favourably distributed, i.e. 

compressive at the surface, they increase the fatigue strength of the 

materials, and are therefore intentionally produced by, for example. 

extrusion, forging operations, calibration of chains etc. This gives 

the possibility of using residual stresses to produce components with 

improved properties. 

1.5.3 DETERMINATION OF RESIDUAL STRESSES 

In view of their importance, it is not surprising that there has been 
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a continuing interest in developing methods for measuring residual 

stresses [26,27,28,29). Since research effort first became directed 

at residual stress distributions, virtually every conceivable method 

of monitoring displacements has been employed. These can be classified 

into the following groups: 

a) Mechanical: by necessity all mechanical techniques involve some 

degree of destruction; most experimental techniques have been based 

on the monitoring displacement over a defined gauge length, while 

physically relieving the locked-in stresses around the gauge by saw 

cutting, slicing, drilling or trepanning. The hole boring method (30) 

is also a mechanical technique. 

The strains resulting from the relief of the locked-in stresses.are 
~ . 

usually measured by resistance gauges. The theory of elasticity is 

then used to relate the measured strains to the pre-existing residual 

stresses. 

Moire't~ tringe:"me~tIio!ls:or holography have also been proposed for strain 

measurement in place of resistance gauges. 

b) X-ray and neutron diffraction (Chapter 4): have been applied to 

the task of measuring stresses in crystalline materials for some 

considerable time. The x-ray method is capable of measuring only 

surface stresses while neutrons because of their greater penetrations, 

can be used to measure residual stresses within a component. Both 

methods are nondestructive. 

c) Ultrasonic [26,31,32): several approaches have been attempted, all 

relying on the anisotropy created by a change in stress state. The 



13 

method is nondestructive but has not yet been developed as a reliable 

routine method. 

e) Magneto-elastic [26,331: utilises the dependence of magnetic flux 

density in ferromagnetic materials on the applied stress state. The 

obvious advantage is nondestructive nature and apparent simplicity • 

. 
f) Analytical (computational) [26,34,35,361: one, two, and three 

dimensional programmes have been developed (finite element method), 

and some experimental verification has been attempted (Chapters 6, 7, 

and 8). 

1.6 FINITE ELEMENT METHOD 

. . 
1:6.1 FINITE ELEMENT SYSTEMS 

Development and application of digital computers have accelerated the 

development of numerical techniques, finite element, finite difference 

and boundary element. Finite Element Method (FEM) being firmly 

established as a general numerical method for the solution of partial 

differential equation system, subjected to known boundary and initial 

conditions, is the most powerful numerical technique. In essence, the 

method by a process of discretisation describes the overall behaviour 

of a continuum by a number of subregions or elements. Each element is 

connected to its neighbours by nodal points, Fig. 1.2. The behaviour 

and characteristics of individual elements are derived independently 

of each other in terms of certain parameters at the nodal points of 

each element. Complications due to specifications of arbitary 

loading, geometry, and boundary conditions disappear and different and 

possibly complex constitutive relationships for each element are 
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easily allocated. 

Over the past decade or so, finite element analysis has evolved from a 

technique for large structural analysis to a tool available and 

familiar, to some extent, to most engineers. Software and hardware 

developments have reduced costs and finite element analysis is now 

viable even for small jobs. Nowadays, a large number of finite 

element systems (packages or codes) exist. At one extreme are large 

general purpose packages such as NASTRAN, ABAQUS, PAFEC and ASAS, each 

with its own strength and weaknesses, and at the other extreme, are 

micro-based packages such as SESAH for off-shore applications and 

BERSAFE for pressure vessels. The details of specific packages are 

outside the scope of this work and can be referred to the Finite 

Element Systems Handbook [37]. 

For the finite element analysis part of this research, ABAQUS finite 

element (FE) software at the Manchester Regional Computing Centre was 

used. ABAQUS is one of the most powerful nonlinear packages available 

and its capability and method of use are contained in the updated 

manuals of the package [38,39,40]. In the initial stages of the 

research PAFEC [41,42] was used, but all the results in this thesis 

were obtained by using ABAQUS. 

1.6.2 FINITE ELEMENT ANALYSIS OF CHAINS 

The finite element method was first applied into chains by SORC [43] 

to study design modifications to the 14 mm diameter wheel chain links. 

They considered two alternative geometries to that of the standard 

chain links, namely; pinched at the centre; shaved, that is with 

material removed from the outside of the barrel, and flattened leg 
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(oval cross-section), Fig. 1.3. The objective of their design study 

was to determine if such changes in the standard link geometry would 

reduce the high tensile stress in the shoulder where fatigue failures 

generally occured. Elastic beam analysis of the link geometries was 

carried out following three-dimensional stress analysis. The load was 

applied by a point load at the crown and the overall conclusions were: 

1) The standard link configuration is the optimum geoemtry to 

minimize the inner surface tensile stre~ses at the shoulder. 

2) The pinched (eight shape) design is stiffer than the standard link 
I 

design. 

3) The shaved design does not appear to offer a significant advantage 

over the standard design. In addition, a point will be reached 

where the stresses in the barrel will exceed those in the shoulder 

as more material is removed from the cross-section. 

4) The flattened leg (oval cross-section) provides a desirable means 

to reduce the shoulder stress without dramatically increasing 

the stress level in the leg. 

Hetz also reported stress distribution in the chain link using the 

finite element method [221, Fig. 1.4. 

Further three-dimensional elastic finite element analysis of chains 

were taken up by Hodlen [44,45,46] to investigate the effect of link 

geometry on strength of chains. Alternative link shapes were pinched 

and elliptical. The following conclusions were drawn. A change in 

the link geometry from pinched to elliptical causes a systematic 

change in the magnitude of the stresses under load. The most tensile 

principal stress always appears on the inside of the chain links, but 

its location moves away from the mid-plane towards the crown. At the 

same time, the overall extension of the chain under load increases; 
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i.e. the chain modulus increases. The results refer to links of a 

specific overall length made from wire rod of one diameter. 

Modlen [45] also investigated the effect of link length (length of 

straight section) on the stress pattern at the exterior and interior 

of the chain links. It was reported that the tensile stress on the 

interior of the link decreases as link length increased but the 

stresses around the crown increase and the crown becomes the location 

of the largest tensile stresses. 

In 1986, Mattheck et al [47,48] investigated the effect of wear 

between chain links on the stress concentration in chains using the 

finite element method and came up with a patented chain link. 

The loading between chain links so far was' assumed. to be a point 

load. This assumption is only true at the onset of loading for chain 

links having perfect surfaces. As the loading increases the chain 

links deform elastically and then plastically at the crown and the 

loading is no longer a point load. Ideally, a three-dimensional 

contact analysis of the chain links needs to be carried out to 

determine the contact area and contact pressure envelope. At the 

present, there does not appear to be a finite element code able to 

achieve this task and to develop one capable of this analysis was 

outside the scope of this research. Hence, an approximate contact 

area and contact pressure envelope was sought in the present work to 

give the required nominal stress at the cross-section due to the 

loading. 

1.7 OBJECTIVES AND LAYOUT OF THE THESIS 
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The main objectives of this study are: 

1) To investigate the effect of link geometry on the total and 

residual stress patterns in mining and lifting chains using FEM. 

2) To evaluate the changes in residual stresses due to increase in 

calibration loads for mining and lifting chains using FEM. 

3) To verify the total and residual stresses obtained in (1) and (2) 

using the strain gauge, x-ray and neutron diffraction techniques. 

4) To demonstrate the effect of calibration on fatigue strength 

of lifting chains. 

Manufacture of round steel chain for lifting and mining purposes will 

be described in Chapter 2 with all the required testing procedures 

according to the British Standards. Fatigue testing of 7mm lifting 

chains will be covered in Chapter 3 with the statistical . . 
interpretation of the results. The effect of increase in calibration 

load in the fatigue strength of this grade of chains are also 

illustrated with S-N curves and cumulative curves for the probability 

of fracture. The rest of the experimental work involves the 

measurement of the total and residual stresses in the 19 mm mining and 

7 mm lifting chains. The x-ray and neutron diffraction techniques 

were used for both grades of chains under various calibration loads 

and the experimental procedure and results will be presented in 

Chapter 4. The strain gauge method of total and residual stress 

measurement was used only for the mining chains (due to size limits) 

with various geometries, namely, oval cross-section, eight shape 

(pinched), standard and elliptical chain links under various 

calibration loads. The procedure and results will be given in Chapter 

5. 

The effect of link geometry on the total and residual stresses was 
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investigated in mining and lifting chains using the finite element 

method in one, two and three dimensions. An elasto-plastic material 

model will be used with work hardening. As the chains undergo a large 

deformations under loading a complete geometrically nonlinear analysis 

will be carried out with required material model (elastic or 

elasto-plastic) in one, two, and three-dimensional analysis of chains 

(Chapters 6, 7 and 8). 

The residual stresses in chains as a result of pre-loading 

(calibration) will be found by taking the finite element models of 

chains through a loading-unloading cycle. 

Beam analysis (one dimensional) of the chains will be introducedln 

Chapter 6. The load will be applied over one element at the crown to 

produce an elliptical pressure envelope and to avoid numerical 

difficulties at the crown (Chapter 6). 

The two-dimensional contact stress analysis of the chains will be 

carried out in Chapter 7. The contact area and contact pressure 

envelope obtained from this analysis was incorporated in the three 

dimensional assumption of the contact pressure envelope. 

A complete three dimensional stress analysis of the chains was carried 

out and the results will be discussed in Chapter 8. FinallY,'di~~u~~~o~s;l 

conclusions and suggestions for further work will be given in Chapter 

9 and _1~ .~ ~esp~.t~~lY~; 



CHAPTER 2 

MANUFACI'URE OF ROUND-SI'EEL LINK CHAINS . . 
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2.1 INTRODUCTION 

Round steel link chains have extremely wide ranging applications and 

only hoist (lifting) and mining chains will be considered here. The 

manufacturing processes used for these chains are quite similar. 

The strength of chains remained fairly constant based upon mean 

stresses of 200 - 300 MPa up to the mid - 1940's. They were 

manufactured from wrought iron or mild steel. The period 1950 - 1970 

saw the introduction of carbon steel and later, alloy steel chains 

with increasing strength levels up to 800 MPa, which is the present 

day norm. There is also grade D quality mining chain operating at 

1000 MPa [49]. 

The art of chain manufacture is to produce the finished link 

dimensions and mechanical properties specified by the customer while 

ensuring that the resulting chain will perform satisfactorily in 

service. It has been found that the selection of raw material and its 

heat treatment play a vital role in obtaining such a chain (Sections 

2.2 and 2.5). Hence, a balance must be struck between heat treatment 

and calibration which will minimize the problems in service (Section 

2.6). Once the degree of calibration is established the various 

intermediate link shapes can be deduced. This deduction cannot be 

based purely on calibration since, in addition to the predicted 

geometrical changes, the finished link is always longer and narrower 

than the welded link, which in turn is shorter than the formed link 

due to upsetting during welding. The formed link dimensions having 

been established, the kingpost around which each link is formed can be 

machined. All this information together with details of raw material, 

manufacturing tolerances and mechanical properties are tabulated in a 
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basic chain sheet, Fig. 2.1. Quality and operational reliability of 

the round link steel chains depend above all on the preciseness of 

each separat"l!' operation such as the reliability of the systems of 
- ~ - ~ 

testing, heat treatment, inspection, etc. In this .chapter these 

\ separate operations will be discussed in details. 

2.2 INITIAL EXAMINATION AND RAY MATERIAL SELECTION 

The selection of the material for round link chain is made according 

to the works directive and appropriate British Standards. 

Traditionally alloy steels of the Ni, Cr, Mo type have been used for 

high strength chains. Mining chain specifications leave the choice of 

steel to the manufacturer, applying certain provisos related to the 

content of sulphur, phosphorus and aluminium and to the grain size. . . 
The material having been selected, the initial examinations ought to 

be carried out before starting other manufacturing processes. 

2.2.1 INITIAL EXAMINATION OF THE RAY MATERIAL 

In order to ensure efficient chain manufacture and prevent any 

confusion or mistakes in the material supplied, chain manufacturers 

increasingly carry out spot tests despite the availability of the 

works test certificate. The starting material (cold drawn, hot rolled 

or annealed) is chemically and physically analysed, its tensile 

strength, elongation, carbon content and hardness values are 

determined, and where necessary, its heat treatment characteristic are 

investigated. In some circumstances a cold bending test is also 

applied. 

Prior to forming, surface condition and dimensional accuracy must also 
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be checked and, where necessary, the steel surface must be cleaned off 

all non-metallic material in particular of the oxides (FeO, 

Descaling can be achieved by various 

methods, like pickling with sulphuric acid [50) and drawing through a 

die to straighten the coiled material (Fig. 2.2). 

2.2.2 RAY MATERIAL SELECTION 

High tensile steel chains are produced almost exclusively from 

electric steel. They are made of low alloy manganese, chromium 

manganese or boron steel. Yhen considering steel composition to be 

used several factors must be considered: 

a) Response to heat treatment - the required mechanical proper}ies 

such as hardenability, ductility and toughness must be achieved for 

the chain size after the hardening and tempering to the desired 

strength level. 

b) Yeldability - for the steel selected, the requirement of good 

weldability places a restriction upon the total alloying addition to 

be made, and particularly on the carbon content. 

c) Formability - larger link sizes are normally hot formed at 'a 

temperature close to 8000 C, where the steel will be highly 

ductile and inherent formability of the material is unimportant. 

Smaller link sizes are, however, formed at room temperature and the 

material must be sufficiently ductile to allow this. For this reason 

drawn and annealed wire or rod must be used 

d) Grain size - material in the finished link must have fine grain 
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size to achieve optimum combination of strength and toughness. This 

is usually ensured by the use of aluminium killed steels. 

e) Steel cleanness - inclusion content of steel must be kept to 

minimum. The inclusions in the weld region become transversely 

aligned and can exert significant stress-raising effects. 

2.2.3 STEEL TYPES IN CHAIN MANUFACTURE 

Steels used in round link high tensile chain manufacture are : 

alloy (low and high) and boron steel and a brief description 

is given below for each type. 

ia)]Alloy steel - low alloy and case hardening steels are used ·almost 

exclusively in the manufacture of high tensile chains. Because of the 

larger contents of Hn (~.6) and Si (~.1) and partly because of the 

presence of alloying constituents such as er and Ni, the properties of 

the material such as tensile strength, yield point, elongation, wear 

resistance, notch impact strength, etc. are greatly modified. It 

should be pointed out that in practice a whole series of materials I iSJ 

used of different composition in accordance with the desired 

properties of the finished product. Plumbridge et al[51] investigated 

one of these materials, which is similar in chemical composition to 

the material used in this research. 

The chemical composition of the steel used for manufacture of the 19 

mm mining chain is: carbon .2-.25 %, silicon .2-.35 %, sulphur .015 

% max., phosphorus .015 % max., manganese 1.2-1.5 %, nickel .95-1.3 %, 

chromium .45-.65 %, molybdenum .5-.6 %, aluminium .02-.05 % and copper 

.25 % malt. 
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Mining chains arc used in flight bar assembly. Fig. 

the coal from the mine face. 

2.3. to convey 

l~)£OrOn steel - there are numerous technical papers [52.53.54.55 •••• ) 

concerning the application of boron as an additive to commercial 

steels together with the 'rules' that researchers have revealed. The 

fact that hardenability of steel is enhanced by the addition of boron 

makes it a potential candidate in chain manufacture. Here. a review 

of the some of the properties of the boron-treated steel as a chain 

material for use as a grade T (80) (mean stress at specified minimum 

breaking load is 800 MPa) lifting chain [14) is given in comparison 

with low alloy steel (SAB 8622). 

I) Chemical composition - boron is becoming an increasingly pop~lar 

addition for fine grained low and medium carbon alloy steels to 

increase their hardenabilities. The mechanism of this effect is 

generally agreed to be the segregation of elemental boron at prior 

austenite grain bounderies. which causes the suppression of the 

ferrite. transformation and thus improves the hardenability. In order 

to ensure that this mechanism occurs the boron must be in a soluble 

form and. therefore. be protected with aluminium deoxidation. The 

amount of boron must be about .001 % and .004 % maximum. 

The chemical composition of the steel used in manufacture of the 7 mm 

lifting chain used in this research is: carbon .18-.23 %. silicon 

.15-.35 %. sulphur .025 % max .• phosphorus .025 % max •• manganese 

.70-1.0 %. chromium .15-.3 %. nickel .40-.60 %. aluminium .02-.05 ;;':'. 

copper .25 % max. and boron .001- .003 %. 

, ' II) Hardenability - in the research carried out by Potts and Metha 
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[55,56), it was shown that the boron-treated steel has greater 

hardenability than the low alloy steel (SAE 8622) and equivalent 

hardenability to DIN 1.6542 (German specifications). 

Ill) Temper resistance - boron-treated steel has significantly better 

toughness characteristics than the SAE 8622 material [55). The work 

by King et al [57) and British Steel [58) also show good toughness and 

strength throughout the tempering temperature range up to 4000 C. 

IV) Low temperature impact properties - the results of the low 

temperature Charpy impact properties [55) show that, over the range 

o 0 -20 to 20 C, the boron-treated steel exhibits superior 

toughness properties compared with those of SAE 8622. 

V) Chain tests - analysis of production quality tests indicate that at 

the required strength level, elongations are in excess of 20 % [59) 

and improvements on the previous SAE 8622 production which gave 

typically 17 % (BS4942). 

On the whole, the boron-treated alloy steel exhibits excellent 

properties, generally superior to those of the low alloy steel SAE 

8622. 

Lifting chains of different sizes are used in various lifting tackles 

shown in Fig. 2.4. 

2.3 FORMING 

, 
Pre-bending of the individual links may be either hot or cold. It 

• 
depends upon the material diameter and its strength. The material is 
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cold formed up to about 20 mm diameter in size and pre-heated for 

larger diameters, Fig. 2.5. The material to be bent is sometimes 

lubricated with cutting oil in order to avoid damage to the material 

during bending and eliminate marks on the bent chain link while 

minimising wear between tool and material in order to prolong the 

working life of the tool. 

The forming of the links prior to welding is carried out either 

mechanically or hydraulically. The simplex and duplex bending methods 

[50) are the two main mechanical bending methods. In simplex method, 

the wire is cut and formed around the kingpost at the operating 

station, while in the duplex method, the forming is carried out in two 

(pre-bending and finished bending) operating stations., •• Xhe duplex 

bending method is therefore approximately 50 % more efficient. • • 

The exact bending is very important for all the following production 

steps, because it provides the basis for the dimensional and 

mechanical properties of the finished chain. The definitive form, the 

final dimensions and the calibration force necessary to pull the chain 

to the final dimensions, are established mainly in this process. 

2.4 VELDING (BUTT AND BUTT FLASH) 

Either the butt or flush butt welding process is used, depending on 

the wire diameter and quality required. The important features of 

both methods are given in a table, Fig. 2.6 [60,61). 

Butt welding offers shorter weld times; it is verI clean with low 

material consumption and tighter bending tolerances to obtain a better 

weld. Its application range extends up to 20 mm wire diameter. Flash 
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butt welding requires longer weld times, produces undesirable welding 

splashes and :c~nsumes: more material in upsetting and flashes, but 

less stringent bending tolerances and wire quality are needed. It is 

economical from about 13 mm diameters upwards. 

2.4.1 BENT LINK SHAPE FOR BUTT AND BUTT FLASH YELDING 

For butt welding, the chain links are bent cold and th~ welding gap is 

chiplessly formed by notching before the link lengths are cropped. 

Bending tolerances must be very close to ensure high quality chains in 

demand nowadays. Hence drawn and annealed stock is mainly used, which 

also gives clean contact surfaces for the electrodes, Fig.2.7a. For 

flash butt welding, the chain links are bent cold or, ~or higher 

tensile grades, hot from about 22 mm diameter up. The heating.o~ the 

stock blanks for bending is done by resistance or induction heating, 

Fig. 2.5. The flat cut end is sufficient for the welding gap. 

Rolled material of appropriate tolerance and finish is normaly 

adequate for flash butt welding, as wider chain bending tolerances are 

acceptable for this process, Fig 2.7b. 

2.4.2 BUTT YELOING PROCESS 

The situation at the start of the butt welding is shown in Fig. 2.8a'. 

The upsetting tools, which apply the necessary pressure during 

welding, press against the chain links bows. The saddle supports the 

back of the links while the two electrode pairs are clamped on the 

chain link legs to be welded. The upsetting tools advance to make'd 

contact at the weld joint the current is switched on, which is divided 

into the shuntback and the proper weld current. The necessary weld 

pressure is applied by the upsetting tools. The advance is controlled 
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mechanically by a cam, so that a relatively simple welding is 

obtained. 

The butt welding is three 'times as fast as flash butt welding, 

requiring high currents. The electrode contact surface is strictly 

limited by the chain geometry, a situation which becomes highly 

unfavourable with larger diameters. 

2.4.3 FLASH BUTT VELDING PROCESS 

The situation at the start of the flash butt weld is shown in Fig. 

,2.8b. The total tool system is very similar to that for butt welding, 

the difference lies in the flat ends of the weld joint, which is open 

at the start. The upsetting pressure is provided by the upsetting 
, . 

tool. The flash butt welding process is controlled by regulating 

system developed by the advances in hydraulics and electronic. It can 

be divided into three stages: 

a) Reversal for pre-heating the weld joint - the regulating systems 

controls the current, the amount of contact pressure and the time to 

heat the open ends to achieve the required temperature. 

b) Flashing - starts after the completion of the reversal phase with 

the open ends approaching each other slowly while the welding gap IS 

open and the current is on. 

c) Upsetting - after flashing, the upsetting is initiated bYI-inc~e~si~88 

the tool approach speed, the current being switched off during th~ 

upsetting and the welding is complete. 
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Butt yelding machines are controlled mechanically by cam yith 

additional elements, such as springs and pneumatics used for upsetting 

tools and electrodes. After Yelding, the yeld flash is removed by 

trimming cutters yorking in directions opposed to each other. Fig. 

2.9 shoys the york station yith electrodes, saddle and retracted flash 

trimming blade. The machines cope yith chains of up to 2 - 20 mm 

diameter. 

Flash butt yelding machines handle all grades of chain in the range 

from 13 - 40 mm diameter. The machine operation is fully hydraulic. 

In the same work station, having been once clamped the chain links are 

yelded and fully deburred. The yorking station is fully open to avoid 

problems from flashing slag, Fig. 2.10. 

. . 
2.5 HEAT TREATMENT OF CHAINS 

The heat treatment of chains is not laid doyn in the British Standards 

,and only reference to mechanical properties are made, but how these 

are obtained is left to the manufacturer. 

There are standard furnaces for heat treatment of round steel chains. 

These include furnaces with fuel firing, electric heating 

(resistance), combined heating, gas/electricity or oil/electricity and 

specially designed induction furnaces. 

a) Standard furnaces yith fuel firing - these furnaces have been used 

for decades, Fig 2.11 [62), and there arp four types according to the 

chain steel diameter and throughput, mainly for austenizing processes. 

In these furnaces, the continuous chains are surrounded by burner 

flames, avoiding direct flame contact,and are heated by radiation and 
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convection. After achieving required temperature, the chains 

singular or multi-stranded according to the diameter, are quenched and 

conveyed by the reeling device to the outside and left to cool in the 

open. 

The design of the furnace is set by the requirements of the hardening 

process. There are two important factors to be considered here: 

heating time and throughput sl'eed - a lo.er throughput speed::: results 

in incorrect quenching, i.e. the chain cools above the quenching 

tank. 

b) Standard furnaces with electrical heating - this furnace has the 

advantage of good temperature uniformity and is mainly used for the 

hardening process. Similar varieties in size as in fuel firing . . 
furnaces exist with the advantage of no over pressure. The heating in 

these furnaces is provided by the filaments in the form of rings, 

arranged along the whole height of the furnace. They are often more 

costly than the fuel firing furnaces [62]. Finally, they have cleaner 

environment - no possibility of pollution as in the case of fuel 

firing furnaces. 

c) Standard furnaces with combined heating, gas/electricity or 

oil/electricity - . these furnaces have been developed to combine the 

low energy cost of fuel firing furnaces with better temperature 

uniformity of electric furnaces. The main energy requirements is 

covered by the fuel firing part and electrically heated discharge part 

provides for the desired temperature uniformity needed in the heat 

treatment of high strength chains. 
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d) Induction furnaces - electrical induction heating has simplifi~d 

many heat-treating operations. Small parts can be through-heated and 

hardened as in other type of furnaces. Local or selective hardening, 

as well as surface hardening, is possible at a very rapid production 

rate. Furthermore, a standard induction unit can be adapted to a wide 

variety of products by simply changing the induction coil and 

adjusting the equipment settings. Continuous induction hardening has 

been in use since 1960, and has progressively replaced gas-fired 

hardening to the point where induction is now used exclusively. Until 

recently, however, tempering has been a batch operation, with a floor 

to floor time of about 10.5 hours for total heat treatment. For heat 

treatment of chains Vheway Becker Ltd. [63,64) have developed a plant 

which enables as-welded chains to be continuously hardened ana 

tempered, Fig. 2. l2a and 2. l2b. It consists of three coi~s. in 

line: 

Coil A - the chain is hardened by passing it through a solenoidal 

wound induction heating coil. The heating of the chain above the 

Curie Point of 7680 C ensures an even heat distribution around the 

link and on quenching from 9000 C into water, a uniform hardness 

of 500 BRN is achieved around each link. 

, 
Coil B - The chain is then passed through an homogenising coil. A 

series of coils wound in a unique manner result in a uniform temperlng 

of the chains. The actual hardness achieved can be controlled by the 

power input and may be varied accordingly to the service application. 

Coil C - the third coil is again solenoidal but of a different desii~ 

for the hardening coil. This coil tempers the parallel sides of the 

link whilst leaving the crowns of the link at higher hardness leveI~ 

• I 
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Again the power input can be varied to control the hardness of the 

side barrels according to the operational requirements. 

The net effect of heat treatment plant is therefore to produce a chain 

with a high crown hardness, giving improved wear resistance, greater 

toughness, greater resistance to stress corrosion cracking, greater 

breaking load, lower residual stress levels in the link, larger 

service life, greater reliability and finally competitive prica [63]. 

The chains used in this research had uniform properties. 

e) Tempering furnaces - in most cases chains are tempered in shaft 

circulating furnaces. The chains are hung onto a rack which is then 

inserted into the furnaces. Chains can also be tempered using 

continuous process, i.e. the ascending and descending channels are 
" . 

heated. The built in ventilators provide the necessary circulation 

speed and gives an optimal temperature uniformity. 

2.6 CALIBRATION 

During manufacture each heat treated round steel chain link is loaded 

with the prescribed test force, so that the weld is tested. During 

this process every"chainiink is deformed plastically: the single 

links are adjusted to the measurements in the standard specifications. 

This process is called 'calibration'. For this purpose fully 

automated calibrating machines are used. Calibration load can be 

adjusted precisely and each calibrating stroke can be shown on a 

measuring tape or digitally. Afterwards, the chain will subsequently 

behave elastically up to the calibration load: that is , the yield is 

raised. This increase in yield results in introduction of residual 

stresses into the chain improving its fatigue properties (Chapter 3). 
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If fracture occurs at or below the specified test force, the chain 

must be rejected. After having been successfully calibrated, chains 

must be inspected on all sides visually link for link for imperfect 

welds, burnt spots or cracks. Fluorescent dye-penetrant and magnetic 

testing are also used for crack detection [65]. Faulty links are 

replaced with standard quality chain links, then heat treated and 

tested again. If the number of faulty links exceeds 3 X, the chain 

must be rejected. 

2.7 MECHANICAL TESTINGS 

All requirements such as dimensional accuracy, elongation at the test· 

force, breaking force, elongation at fracture, deflection, notch 

toughness and the numbers of cycles to failure under a standard . . 
fatigue cycle of the sample are ascertained during the final control 

according to the appropriate British Standards. The dimensional and 

tensile tests are obligatory and other tests can be done in accordance 

to the customer's requirements. The chain characteristic curve is 

also determined to show the relationship between effective force and 

extension. The chains which pass the the required tests in all the 

production stages, have to be finally approved by the works inspector. 

Following final inspection, samples are taken from each production 

batch of chain and are subjected to mechanical testings as below: 

a) Hardness testing - is carried out onto flat ground onto the surface 

of a single link from each batch of chains to confirm the heat 

treatment has been carried out correctly. 

b) Bend test - individual links are bent in a shock force manner 

transversely across the weld and must withstand a miminum deflection 
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without failure or appearance of surface flaws, Fig. 2.13. The 

deflection is usually measured with the bending force applied. 

c) Notch-impact Charpy test - this test is intended for use in the 

investigation of the steel used for 
,- - - 1 

chain making and assess'il.5 the 

properties of steel using samples machined from the core of the 

straight legs of each sample link. The test is Charpy U notch and 

carried out at room temperature. 

d) Tensile test - a sample of five or seven links is tested in a 

certified testing machine, Fig. 2.14a and 2.14b. The failure is pure 

"shear" failure [66]. 

e) Fatigue test - a sample of chain is subjected to cyclic loading 

between lower and upper tensile force limits and its fatigue life is 

found. This process will be covered in full details in Chapter 3. 

2.8 SURFACE PROTECTION 

In most cases steel chains are used in nature-black condition: for 

some application bright type is usual. After a short time the 

atmospheric influences cause the formation of a rust on the surface. 

By suitable protective coatings this rust formation can be prevented 

for a longer period of time. 

As a protection during transport and as a preservative for longer 

storage various corrosion preventives proved effective. Coats of 

varnish and plastic-laminates form sufficient protection for a limited 

time, as long as the protective covering is not partially destroyed by 

external mechanical actions. 
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Chains with a bright surface are best protected by electroplated zinc', 

brass, copper, nickel, orl~chromiunlJ coatings. Often an intensive 

oiling or lubrication of the chain would be efficient. Hot 

" galvanising forms a good protection against corrosion for thicker 

chains (67). 



---------------

CHAPTER 3 

FATIGUE TESTING OF 7 mm LIFTING CHAINS . . 

\ 
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3.1 INTRODUCTION 

Fatigue usually starts by the formation of a crack at the surface and 

anything which makes crack initiation easier - e.g. decarburization, 

surface roughness, etc. will reduce fatigue life. Heat treated 

ferrous materials often have lower fatigue strength than expected 

because of inferior surface properties or poor surface finish. They 

can however be improved by removing th2 surface layer. For examplp, 

Foley et al succeeded in improving the fatigue strength of short link 

mining chains by dry rumbling and wet grinding (24). Batson and 

Bradley ([6B), quoted in (24) ) , significantly improved the 

performance of steel springs by the grinding surface. The reduction 

in fatigue strength was attributed by these workers to 

decarburization. The surface decarburization process was investigated . . 
and three distict features were postulated: 

a) A reduction in,the carbon content of the surface layer produces an 

inherently weaker material which would fail under lower cyclic 

stresses. 

b) Surface roughness accompanying decarburisation contributes to the 

lowering of the fatigue strength. 

c) Grain boundary oxidation in the surface layer acts in a similar 

manner to notches and is often the principal factor in the reduction 

of the fatigue strength of decarburized steel. 

Once the grain boundary oxidation ha;'occuri~d, nothing short of 

re-melting will remedy the situation fully. Some improvement in 

fatigue strength under tensile loading can be obtained, however, by 
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introducing residual compressive stresses into the decarburized layer, 

by surface hardening, nitriding, case hardening and shot peening. 

These techniques are described more fully by [29,69]. Surfare 

hardening was recommended by Hinuth et al [70] for the mining chains 

failing in fatigue (corrosion cracking) under surface frictions. 

It is suggested that the hardness of the core of a specimen has a 

lesser effect upon fatigue strength than does the hardness of the 

decarburized layer. The effect of the depth of the decarburized layer 

on the fatigue strength of steels has also been investigated by 

several researchers and the results are quite varied; a continual 

decrease in fatigue strength with increase in decarburized depth has 

been reported with notch specimens, on the other hand, the depth of 

the decarburized layer was found to have no significant effect 

whatsoever, but the reduction in fatigue strength depended ~n the 

microstructure of the material before carburization {24]. The 

reduction in the fatigue limit was found to be 30 %, 40 % and 50 % for 

pearlite, tempered martensite, and martensite respectively [24]. 

overstressing of pressure vessels has long been applied as ah 

inspection tool to detect any leakage in the wall and to demonstrate 

the fitness for purpose of the vessel. It was found that 

overstressing improves the fatigue life by delaying crack growth [71]. 

The study on notched aluminium alloy sheets showed that the , 
overloading of specimens produced similar beneficial effects by 

delaying the crack growth [72,73]. Preloading - generally known as 

proof or calibration loading - also improves the fatigue strength of 
stud links up to some extent [74] and short link chains significantly 

[75]. This will be thoroughly investigated in this chapter. 
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Most of the fatigue data in the literature have been determined for 

'condition of completely reversed cycles of stress (zero mean stress). 

However, conditions are frequently met in engineering practice where 

the stress situation consists of an alternating stress and a 

superimposed mean stress. There are several possible methods of 

determining S-N curve for a situation where the mean stress is not 

equal to zero [76]. Early contributions to this problem were made by 

Goodman, so that the curv~s which show the dependence of limiting 

range of stresses on mean stresses are frequently called Goodman 

diagrams. Fig. 3.1 shows one common type of Goodman diagram [76,771 

which can be constructed by a series of tests for a given material. 

Basically, the diagram shows the variation of the limiting range of 

stress, (amax - amin), with mean stress, am' The 

test data usually lie somewhat above and below the amax and 

amin lines respectively. Very few test data exist for the 

condition where the mean stress is compressive. Data [78] for SAE 

4340 ( quoted in [76]) steel tested in axial fatigue indicate that tHe 

allowable stress range increases with increasing • I 
compress~ve mean 

stress and decreases with increasing tensile mean stress up to the 

yield stress (ay)' This is an agreement with the fact that 

compressive residual stresses increase the fatigue limit. 

In this chapter, the fatigue testing procedure with its results will 

be discussed for various calibration loads and two different batches 

of chains, Section 3.2 and 3.3. The failure analysis of fatigue tests 

will be described with the use of electron scanning microscopy in 

Section 3.4. Other mechanical testing of the chains such as, hardness 

testing with metallography will be presented in Section 3.5. Finally, 

the effect of mean stress on fatigue strength of chains will be 

elaborated using a Goodman diagram approach. 
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3.2 FATIGUE TESTING PROCEDURE 

The short link chains used in this investigation are made from 7 mm 

diameter bars (RI = 5.55, R2 • 3.45, L = 5.45 mm, Fig. 1.3) 

manufactured from boron steel with the chemical composition given in 

Chapter 2 and are used for lifting purposes, BS3243:4:1 

The chain was in the hardened and tempered condition with no proof 

loading before testing. 

Fatigue tests were carried out on a 250 kN Mayes servohydraulic 

machine that is capable of generating the required sinusoidal signal 

with an appropriate number of cycles per minute (rate of testing), 

Fig. 3.2. For all the tests, 500 cycles per minute was chosen to 

eliminate any possible effect due to rate of testing. Foly et al 

[24,25,75], Celander et al [74] and Stanford [79] used 2000, 850 and 

200 cycles per minute in their work respectively. Meanwhile for the 

mining chains, the frequency ought to be in the range of 200 to 1000 

cycles per minute, BS2969. The chain links were tested in three-link 

sets released from a continuous batch of a chain supplied by Yheway 

Becker Ltd. [80]. The sample was held in the machine by specially 

designed grips, shown in Fig. 3.3, with a pair of chain crowns cut 

and filed to simulate the real contact situation between the links 

rather than a pin through the links chosen by some researchers. 

It is not possible to test under conditions of zero mean load, as is 

the norm with fatigue testing, since the links would go slack during 

the nominally compression part of each cycle. Furthermore, it was 

found that it was extremely difficult to set the machine to test under 
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conditions of zero minimum load. Hence, all the tests were conducted 

with a minimum load of 2 kN, the maximum load being varied for the 

test condition required, 12 - 24 kN. 

The links were either tested to failure or until they reached two 

million cycles, at which stage the test was terminated and the links 

were considered to have survived. The fatigue lives of the specimens 

failing under two million cycles were recorded by the use of fracture 

trip facility on the testing machine. 

To calibrate the specimens, they were first positioned in the machine 

and the load was raised up to the required level and sustained for a 

few seconds before unloading. 

3.3 FATIGUE TESTING RESULTS 

The fatigue tests were carried out with load ranges from 2 -24 kN down 

to 2 - 12 kN (the working load limit for this grade of chains is 16 

kN) to study the scatter of results at various load levels and 

different calibration loads. The results are given in Table 3.1 

showing the location of failure as well as end or centre link failure 

for a given batch. 

A considerable amount of interest has been shown in the statistical 

analysis of fatigue data and in the reasons for the variability in 

fatigue test results. Since fatigue life and fatigue limit are 

statistical quantities, it must be realised that considerable 

deviation from an average curve determined with only a few specimens 

is to be expected. This will be thoroughly investigated in the next 

section using cumulative probability curves. 
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The basic method of presenting engineering fatigue data is by means df 

the S-N curves, a plot of stress against the number of cycles to 

failure N. A log scale is almost always used for N especially in the 

case of N ~104 This method will be used later to explain the 

fatigue test results of 7 mm lifting chains. 

3.3.1 STATISTICAL PRESENTATION OF RESULTS 

There are various statistical distribution functions which describe 

the distributuion of fatigue life at constant stress, such as: 

Veibull and Gaussian or normal distribution [81,82,83). The normal 

distribution was used here because of simplicity and its common use in 

fatigue life analysis of chains (BS2969). 

. . 
In this distribution, the fatigue results are plotted on a diagram 

with: 

a) On one scale - the number of cycles to fracture (endurance) of the 

individual samples (logarithmic scale), i.e. log N : 

b) On the other scale - the probability of fracture of the sample, 

i.e., the percentage of samples having an endurance less than log N 

(Gaussian cumulative). 

the number of cycles is ranked and plotted on the ordinate 

- the probability of the fracture on the abscissa using the formula 

1/(n + 1); 

where i-the ranked value of the sample 

n a the total number of tests 

n was 10 except for load level of 16 kN when the calibration load was 

zero (n.20). The samples which survived the test will not be included 

in the plots. The best line is fitted to these points, Fig. 3.4 to 
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3.9. The shape of the line is a measure of the dispersion of the 

results, a horizontal line indicating zero dispersion. The fact that 

a good straight line is obtained indicates that the assumption that 

log N is normally distributed is consistent with the experimental 

results. 

From these plots it can be seen that the new batch has a much lower 

fatigue life. This will be elaborated in the next section. !n all 

the graphs as the calibration load increases, the fatigue life also 

increases, confirming the effect of increased calibration load on 

fatigue life of chains. In Fig. 3.S, the logarithms of the means of 

the lives of the uncalibrated and calibrated (20 kN) chains are not 

significantly different. Application of the 't' test [S4) showed that 

the chance of getting a difference of the size or bigger is greater . . 
than 30 %, that is, there is no significant difference between the 

results for the uncalibrated chain and the chain calibrated at 20 kN. 

3.3.2 S-N CURVES 

The stress values used in the S-N curves are nominal stresses with no 

adjustment made for stress concentration. Under general loading 

condition, the stresses on a gross scale are elastic, but some parts 

of chain may deform plastically in a highly localized way. specially 

under loads around 30 kN and over. Hence, the fatigue testing is 

high-cycle ( N > 105) fatigue and the S-N curves can be 

appropriately used to illustrate the fatigue results. 

L5, L20• LSO' LSO' and L95 (LS being the 

average life at which 5 % of the samples will have fractured) were 

tabulated for all the fatigue test results in Section 3.3 and are then 
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plotted in the linear-log scale (S-N curve), Fig. 3.10 to 3.14. A 

smooth curve is drawn through the points, terminating at two million 

cycles due to the convention adopted earlier. Hence fatigue limit 

determination which is subject to considerable variation will not be 

attempted. It can be seen from the S-N curves that the increase in 

calibration load results in increase in fatigue life of 7 mm lifting 

chains. This effect is evident in all the S-N curves at the various 

probabilities of failure (5 - 95 %). It can be concluded that 

calibration of chains introduces compressive residual stresses (acting 

as mean stresses) which are deducted from the applied tensile stresses 

resulting in lower service stresses; consequently a significant 

improvement in fatigue life of chains is achieved. 

3.4 ~.NALYSIS OF FATIGUE FAILURES . . 

Fatigue fractures were examined by optical microscopy, which did not 

reveal any appreciable differences among the specimens. The eight 

specimens were then examined using electron scanning microscopy. 

Fatigue cracks and fractures exhibit several features which can aid 

this recognition. Not all these features are present in any 

particular fracture but, in any individual case, consideration of 

these aspects can normally distinguish fatigue from other mechanism of 

failures [85,86]. These features are as follows: 

general appearance 
location of fracture 
beach markings 
rachet markings 
fatigue striations 

A typical chain fatigue fracture is given in Fig. 3.15, showing the 

final ductile fracture (rough zone) and a smooth appearance in the 

fatigue zone. 
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Fatigue failures often occur at regions of localized stress 

concentration, e.g. weld toes, changes in sections, an existing crack 

etc. Stress concentration zones in the chain link are at the crown 

(outside and inside surface) and the transition zone (inside surface) 

according to the elastic and elasto-plastic stress analysis (Chapters 

6, 7 and 8). All the cracks initiated from the zones of largest 

stress concentration, except for some samples fracturing at the weld. 

In case of two samples, the cracks started from an existing dent, Fig. 

3.16; Fig. 3.17 at the weld; and Fig 3.18 and 3.19 at the 

transition zone. 

As the links were heat treated after the welding processes, the Heat 

Affected Zone (HAZ) was removed and the whole link has a uniform 

microstructure, Fig. 3.20 (a and b). The more reliable reason for 
- -- --1 

fracture in the weld is mostlikely.to be either because of stress 

concentration caused by the shape there. The steel being very clean 

the inclusions were unlikely to cause any stress concentration (Fig. 

3.20a) • 

Fig. 3.21 shows the different location of fatigue failure, and Fig. 

3.22 the locations of the fractures due to the tensile test and 

fatigue test. 

Beach markings were observed, Fig. 3.16, Fig. 3.18 and Fig 3.19 

which indicate that fatigue did not propagate contlnuously but in 

steps with intermediate pauses. Ratchet markings are shown in Fig. 

3.17 which indicates that multiple crack initiation'~ccurred. 

There are a few other factors which may influence the fatigue fracture-

location such as: 
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load levels 
different batches 
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whether the link was at the centre or the end of the three 
tested links 
To investigate this a statistical software Minitab [871 was used. The 

fatigue results in Section 3.3 are presented in tabular and graphical 

forms, Table 3.1 to 3.3 and Fig. 3.23 and 3.24. Fig. 3.23 indicates 

that the percentage of fracture failures at weld zone does not change. 

significantly with increase in calibration load, whereas, the 

percentage of fractures at the crown and transition zonesi_changesj 

considerably in the opposite direction (failures at the crown zone 

increases and the transition zone decreases). Fracture appears to be 

equally likely at centre and at end links. A similar pattern of 

behaviour occurs with an increase in load level except that there is a 

slight increase in the percentage of fracture occurring in the centre 

link, Fig. 3.24. 
. . 

Different batches of chain seem to have a great deal of influence in 

the centre and end link failures, Fig. 3.25. It also affected the 

fracture location significantly - 76 % of the samples failed at the 

weld in the second batch (Fig. 3.25). In the earlier section, it was 

mentioned that the second batch of chains had shorter fatigue lives. 

This was combined with a higher rate of fracture at the weld. The 

probable explanation is that the welds of the second batch were not 

trimmed off totally as in the first batch. This may have caused local 

stress concentration at the weld zone higher than the above mentioned 

zones. Finally, the effect of centre or end links on the fracture 

position is shown in Fig. 3.26, showing that there is only a small 

difference in the percentages of the different fracture positions 

between centre and end links. 

3.5 MECHANICAL TESTING OF CHAIN MATERIAL 
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The tensile testing, hardness testing and metallography of the chain 

material was carried out on the as-received condition and the results 

are discussed below: 

3.5.1 TENSILE TESTS 

Tensile testing was carried out for two sets of specimens, namely 

welded and plain, prepared from the chain link material. Testing was 

carried out on a Hounsfield tensometer using specimen no. 12 (nominal 

cross- section, 1/40 in2• [16.29 mm2); nominal gauge length, 

.632 in. [16.053 mm). In addition to the ultimate tensile stress, 

reduction in area and percentage elongation, the yield point was 

approximated from the end of the initial elastic loading line. 

The results indicate that the weld material has ductility as good as 

the parent material. There are indications from the few tests carried 

out that the welded specimens had slightly lower values of tensile and 

yield stresses. The average tensile and yield stresses for plain and 

welded specimens are 1394, 1191 and 1285,1104 MPa respectively, Table 

3.4. 

A tensile test on a five-link specimen was carried out on a Mayes 

machine and the load-extension curve is given in Fig. 3.27. The 

ultimate load (68.4 kN) is slightly higher than the manufacturer's 

value of 64.1 kN and the elongation percentage is 29.5 %. The 

load-extension curve departs from a straight line at about 30 kN and 

breaks off at an extension of 32.3 mm. 

3.5.2 HARDNESS TESTS 
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The hardness of chain link at three cross-sections (crown, mid-section 

and transition) and one section through the weld along the side of the 

link, was found using a Vickers pyramid hardness machine. Specially 

prepared specimens used for metallography were used on this test and 

the corresponding readings were tabulated, Table 3.5. Only two sets 

of readings are given here due to the fact that the other readings 

were very similar. 

The Rockwell hardness test was also carried out on the prepared 

specimens to confirm the hardnesses given by the manufacture and 

Vickers hardness machine. The following readings were obtained for 

two specimens: 37, 37 and 39 (average 38): and 30, 43 and 42 

(average 38). The Rockwell hardness number is equivalent to 363 

Brinell hardness number, which is in the range-(360 - 400) of the 

values given by the manufacturer. 

There was not any difference in hardness corresponding to the apparent 

difference in ultimate tensile stress between plain and welded tensile 

specimens. 

3.5.3 METALLOGRAPHY 

Metallography was carried out to evaluate any microstructural defects 

in the chain link under investigation. 

Four specimens were selected: one from the crown, one from the 

transition, one from the weld, and lastly one from the leg containing 

the weld try check for the heat affected zone and signs of 

'directionality'. All these specimens were prepared and viewed under 

the microscope with no significant difference between them. A typical 
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tempered martensitic crystal structure with rectangular and cuboid 

inclusions can be seen, Fig. 3.20 (a,b). Appreciable grain-boundary 

thickening is evident at the edge of the cross-section, Fig. 3.20 b. 

The heat affected zone around the weld could not be distinguished, 

because the chain was quenched and tempered after the welding 

processes (weld going horizontally through Fig. 3.20 a). It was 

scarcely possible to distiguish any features of the structure that 

would indicate the location of the weld. 

3.6 EFFECT OF MEAN STRESS ON FATIGUE 

The effect of mean stress on fatigue strength of various metals 

specially that of steels has been very well established. This effect 

can be produced in chains by the introduction of residual stresses.as 

a result of calibration of the links. To confirm the effect axial 

loading fatigue tests were carried out on the chain material (7mm 

lifting). 

There are not any standards in the design of pull and push fatigue 

specimens, hence they had to be designed to avoid such effects as: 

stress concentration and fretting. The largest possible 

cross-sectional areas were chosen at the centre and both ends of the 

specimens to avoid high stress concentration zones as well as making 

use of the existing specimen holder. The details of the fatigue 

specimen are given in Fig. 3.28. 

The as-received material (bent bars) was first cut to size and 

straightened up before machining the centre part. The specimens were 

then hardened at 9250 C in air for about 11 minutes and water 

quenched vertically to minimize the amount of distortion. They were 
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finally tempered at 3450 C for 6 hours in air circulating furnace 

(identical heat treatment as for 7 mm lifting chain), before machining 

was finished off. At the centre of the specimens the distortion 

varied from 0.25 to 0.43 mm (off centre line). 

Three dimensional finite element elastic stress analysis of the 7 mm 

lifting chain was carried out to obtain stresses at the inside 

transition under 2 and 16 kN (working load- limit) loads (fatigue 

testing load limit). The stresses are 121 and 971 MPa with 546 MPa as 

the mean stress. To achieve the same nominal stresses in the fatigue 

specimens, the loads must be 2.38 and 19.07 kN (as lower and upper 

limits) with amplitude of a • 8.35 kN. Four specimens were tested at 

five different mean stress levels and the results are given in Table 

3.6. It can be seen that the reduction in mean stress (tensile) and . . 
increase in compressive mean stress improve the fatigue lives of the 

specimens significantly. It is certainly consistent with the fact 

that calibration of chains, introduces compressive residual stresses 

at the surface of chains acting as mean stress, improves the fatigue 

properties. 

All the specimens were polished prior to any heat treatment giving a 

much smoother surface finish similar to that of 7 mm lifting chains. 

On the other hand, the as-machined specimens similarly heat treated 

had very rough surface finish resulting in shorter fatigue lives. 

This was confirmed both bY,Talysurf, investigation of the specimen 

surfaces and fatigue testing of the as-machined specimens, Table 3.7. 



CHAPTER 4 

RESIDUAL STRESS MEASUREMENT USING X-RAY . . 

AND NEUTRON DIFFRACTION METIIODS 



49 

4.1 INTRODUCTION 

X-ray methods of measuring residual stress in crystalline materials 

have been tested and compared to other methods, and are in use 

throughout the world. Manuals have been written for their use in the 

United States and Japan [88,89), quoted in (90). 

Usually the measurements are made manually on a conventional powder 

x-ray diffractometer or with a special ,unit. But there are other 

units that can make measurements in seconds (in the field) with 

reasonable precision. 

later in this chapter. 

Both methods of measurement will be discussed 

The basis of the technique is straight forward and was first used. by 

Aborn at the U.S. Steel Co. (91), quoted in (90). Yhen a 

polycrystalline piece of metal is deformed elastically in such a 

manner that the strain is uniform over relatively large distance, the 

lattice plane spacing in the constituent grains change from their 

stress-free value to some new value corresponding to the magnitude of 

the applied stress. This uniform macros tress causes a shift of the 

diffraction lines to new 26 position. On the other hand, if the 

metal is deformed plastically, the lattice planes usually become 

distorted in such a way that the spacing of any particular (hkl) set 

varies from one grain to another and within each grain. This uniform 

microstrain causes a broadening of the corresponding diffraction line. 

Actually, both kinds of strain are usually superimposed in plastically 

deformed metals, and diffraction lines are both shifted and broadened, 

because not only do the plane spacings vary from grain to grain but 

their mean value differs from that of the undeformed metal. 
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From the line shift due to uniform strain, the strain may be 

calculated and, knowing the strain, we can determine the stresses 

present, either by using the mechanically measured elastic constants 

of the material, or by a calibration procedure involving measurement 

of the strain produced by known stress. X-ray diffraction can 

therefore be used as a method of "stress" measurement 

[90,92,93,94,95]. 

The fact that x-rays penetrate only a shallow depth is in fact useful, 

because in many cases there are steep gradients in the macros tress 

near the surface. By using neutrons, which can penetrate 2 - 3 cm of 

steel, the macros tresses are averaged over the volume from which the 

reflection is obtained (usually 2 X 2 X 2 mm). The stresses can be 

measured within the specimen volume by using appropriate slits. • The 

resolution in this case is the order of 1 - 2 mm, depending on the 

neutron intensity. This method of residual stress measurement will be 

discussed at the end of this chapter. 

In this chapter an attempt to measure residual stresses in 19 mm 

mining and 7 mm lifting chains, using a laboratory diffractometer is 

described. They were then measured in the British Steel Laboratories 

using the Rigaku Strainflex equipment. Finally, the internal residual 

stresses at the centre of the 19 mm mining chain were measured at the 

Institut Laue-Langevin, Grenoble by neutron diffraction. 

4.2 X-RAY DIFFRACTION (CAMERA METHOD) 

This method of residual stress measurement is carried out using a 

back-reflection camera with the basic principle of x-ray diffraction. 

The method and the experimental procedure is given below. 
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4.2.1 BACK-REFLECTION METHOD 

X-rays from the tube are collimated to pass through a cassette 

containing a film, and are reflected back from the specimen, mounted 

on a specimen holder, thus exposing the film, Fig. 4.1. This is a 

part of laboratory x-ray diffractometer. Both the normal and inclined 

photographs may be registered on one film by using an opaque metal 

film cover which has two· ppenings diametrically opposite. After one 

exposure is made, the film holder is rotated 900 in its own plane 

with respect to the cover and the other exposure is made. 

The stress, a, ' at any angle, , ,can be calculated from, 

this equation [93]. . • 

where a, is the normal stress parallel to the specimen 

surface, its line of action being in the plane containing the incident 

beam and the normal to the surface; W, the angle at which the 

incident beam is inclined to the normal to the surface. D is the 

distance of the film from the specimen. Si and Sn are the 

radii of the rings with the incident beam inclined and normal 

respectively and are measured from the developed film. The accuracy 

of the method can be evaluated. 

Correct specimen surface preparation is extremely important [96]. If 

dirt and scale are present, they may be ground off, the grinding must 

be followed by deep etching to remove the surface layer left in 

compression by the grinding. Then the surface is lightly polished 
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with fine emery paper, to remove the roughness caused by deep etching, 

and slightly re-etched. Depth of x-ray penetration is dependent on 

the absorption coefficient of the material for a given beam and the 

beam dimension on the experimental surface, which are defined by the 

slits and the geometry of the experiment. The effective depth of 

penetration may be calculated using appropriate formulae [97]. The 

effective depth of penetration of Cr radiation into steel for the 

(211) plane (26 s 1540
) is approximately 5.4E-6 m. 

Diffraction angle, 6 , for iron may be calculated. The lattice 

spacing (d) for a cubic crystal is given by [98): 

. . 
where a, the lattice parameter of iron is .28664 nm, giving d - .11702 

nm; From Bragg's Law: nX - 2d sin6 and taking n.1, X • 

• 154178 nm for K radiation of copper, we find the diffraction 
~ 

angle 263 82.4120
• X 3 .229092 nm for K radiation of « 

chromium, the diffraction angle 26 = 156.3940
• 

4.2.2 EXPERIMENTAL PROCEDURE 

A set-up as in Fig. 4.2 was used to measure the residual stresses· 

with an elaborate specimen holder (goniometer) which has three 

rotation axis and sliding capability. Instant Kodak film cassette or 

standard type film holder may be used to achieve exposures. Chromium 

radiation of 40 kV and 20 mA (.8 kY) was selected to carry out the 

experiment. The surface of the 7 mm lifting chain link was prepared 

as mentioned in Section 4.2.1 and mounted on the goniometer using a 

fluorescent disc, Fig. 4.3, for correct positioning. For a fixed 
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specimen to the film distance two exposures were made and the film was 

developed in usual manner, Fig. 4.4. The rings were very diffuse and 

the ring radii could not be satisfactorily measured using two 

different kinds of densitometer. Different size (medium and narrow) 

collimators were used with no s~gnificant improvement as well as 

longer exposure time (3 - 12 hours) and faster film. The standard 

x-ray film type was replaced by instant Kodak film resulting no change 

in quality of the rings, even with a flatter chain-link material. 

The chain link was tempered at 6000 C in a salt bath for one hour 

with another link annealed at 9000 C for 3 hours and 1 hour, to 

sharpen up the rings. The whole process was repeated with sharper 

rings, but still the radii of the rings could not be measured 

satisfactorily. . . 

4.3 X-RAY DIFFRACTOMETER 

The diffractometer may also be used for stress measurement. The only 

instrumental changes necessary are the addition of a specimen holder 

which will allow independent rotation of the specimen about the 

diffractometer axis and a change in the position of the receiving 

slit. In this section the laboratory diffractometer, the principles 

of stress measurement and experimental procedure will be discussed. 

4.3.1 X-RAY DIFFRACTION METHOD 

Fig. 4.5 illustrates the angular relationship involved in a 

laboratory diffractometer. Radiation divergent from the source S is 

diffracted to a focus at F' on the focussing circle and F on the 

diffractometer circle. The specimen is turned through an angle w 
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for the inclined position. Different slit arrangements can be used at 

F and F' to achieve both intensity and resolution, but a compromise 

can be made by placing narrow slits at some point between F and F' to 

obtain satisfactory results. Choice of slits, collimators and 

monochromators are thoroughly covered in the literature [90,92,99] and 

its discussion will be avoided here. 

The stress equation can be written in terms of angular position 29 

rather than plane spacing as in back-reflection [100]. 

where 29 is the observed value of the diffraction angle in the n . 

"normal" measurement (~O) and 29i its value at the inclined 

measurement (~~). The quantity measured in the diffractometer 

method is az9, (29n -29i ) which is essentially the 

shift in the diffraction line due to stress as the angle ~ is 

changed. 

4.3.2 EXPERIMENTAL PROCEDURE 

The x-ray diffractometer with its accessories to measure the residual 

stresses on the 7 mm lifting chain is shown in Fig. 4.6. The 

intensity of the diffracted x-rays can be either plotted or printed 

out for a given scanning step. 

Prior to the residual stress measurement, the diffractometer alignment 

had to be checked using a standard silicon sample (Fig. 4.3). The 

intensity, counts per second (cps) was plotted, Fig. 4.7, giving the 
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peak position (29) at 56.090 
( compared with 56.12° expected 

for the standard). 

The commercially heat-treated and calibrated link was mounted on 

specially made holders which were then placed in the chamber to carry 

out the measurement at ~ aOo and ±45°. For a given scan, 

the intensity was first plotted to locate roughly the peak diffraction 

Fig. 4.8, then the scanning step o (.01 , 

,.05° ••• ) was refined at the region of peak position to determine 

the peak diffraction angle accurately by plotting the intensity 

printed out, Fig. 4.9. The diffraction peak was not shifted equally 

on either side (± 45) to the normal direction, Fig. 4.9. To find 

the minimum scanning time needed to define the peaks, intensity versus 

diffraction angle plots were produced at scanning times of 1/4, 1/2, . . 
1, 2, 3 and 4 minutes, Fig. 4.10. Shorter scanning times seem to 

have produced fluctuating patterns and therefore scanning time of 2 

minutes was chosen. 

Two 7 mm lifting chains were tempered at 6000 C for 3 and 2 hours 

in salt bath. The normal calibration load was reduced by a factor 

equal to the fractional reduction in hardness caused by the additional 

tempering (original hardness: 345 HV30; hardness after additional 

tempering: 263 HV30; normal calibration load: 38.5 kN; reduced 

calibration load 23.28 kN). Three positions on the surface of each 

link were considered, centre of the non-welded leg and 5 mm at either 

side of it (to left and right). The diffraction angle at these 

locations at + =00 and ±4So were measured and tabulated, 

Table 4.1. The links were electro-polished instead of grinding the 

surface preparation process suggested by some workers. A solution of 

94 % acetic acid and 6 % of perchloric acid was used with a D.C. 
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supply for 30 seconds. 

The residual stresses corresponding to the Table 4.1 readings are 

given in Table4.2 and were calculated as below: 

2 
a~=-[ECoteo·nI2(1+v).180).(ale/ASin w) 

where, E= 207 GPa, v =.29 , 2e = 136.950 at W = 00 and 

eo is the diffraction angle for stress free material (usally 

replaced bye). 

(ale in degrees) 

The stresses in Table 4.2 are not consistent (the specimen rotates 

450 to the right and left) and large residual stresses exist at 

the noncalibrated state which had very little or no residual stresses. 

The errors could not be caused by the misalignment of the 

diffractometer, which was checked earlier. Generally the diffraction 

peaks are fairly broad (Fig. 4.9) specially when the specimen was 

rotated and the shift in diffraction peak could not be satisfactorily 

measured from the plot. However, all the measured stresses are 

compressive at the centre of the 7 mm lifting chain under various 

conditions. 

Other measurements on other positions (such as crown) on the 7 mm 

lifting and 19 mm mining chain links were not possible, because of the 

diffractometer chamber size. Measurements were then carried out on a 

diffractometer especially designed for residual stress determination. 
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4.4 FIELD DIFFRACTOMETER (STRAINFLEX) 

Residual stresses are measured in various ways in real part, either in 

an ordinary x-ray laboratory (Section 4.2 and 4.3) to which such 

samples may be brought occasionally, in a factory where frequent 

inspection is required, or in the field, for example in oil rigs, at 

large construction sites, pipelines or power stations or for parts 

which are too large for a commercial diffractometer. There are 

several units available for such situations, for example PARS (90) and 

Strainflex (Rigaku) which was used to carry out residual measurements 

on the 7 mm lifting and 19 mm mining chain links. The Strainflex 

equipment and results of measurements are given in this section. 

4.4.1 STRAINFLEX (RIGAKU) . . 

It consists of a goniometer, shown in Fig. 4.11 [101,102), which 

carries the x-ray tube on one rack and a scintillation counter on 

another rack. This enables the incident angle of the x-ray beam to be 

varied from ~o - 00 to 450 (Fig. 4.12) at 50 

intetvalsand the scanning to be undertaken over the angular range 2e 

_ 1700 to 1400
• Fig. 4.13 shows the central unit consisting 

of the heat exchanger, for cooling the anode of the x-ray tube, the 

x-ray generator for supplying 30 kV, 2 - 10 mA to the tube and the 

microprocessor-based control and data processing unit, which controls 

the functioning of the goniometer and produces a printout of some 

parameters used in the residual stress measurements and their values, 

Fig. 4.14. The diffraction peak profile can also be printed for 

reference. A camera attachment allows qualitative assessment of the 

grain size and texture of a material. 
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The Sin2~ , fixed ~o technique was used to determine the 

residual stresses. Vhen a material is isotropic, then a linear 

relationship is 

and Sin2~ for, 

obtained between the diffraction peak position, 29 , 

say, four ~ - angles 

150, 300, and 450). Th di f th l' . e gra ent 0 e 1near regress10n 

equation is substituted into the stress equation with elastic 

constants of the material and Cot9 at 300 to give the residual 

stress. 

The use of an approximately parallel beam allows tolerances of ±2 mm 

on the specimen position. This is achieved using transmission and 

receiving Soller slits to give parallel beam geometry in order to 

simplify the alignment procedure. Irradiated area can be varied from 

20 X 5, 10 X 5 to 5 X 5 mm by restricting the Soller slits (to give 

parallel beam) aperture and a minimum area of 2 X 2 mm can be obtained 

by suitable masking of the material surface. 

The diffraction peak position can be offset from its true position by 

the effect of 'coarse grained' and textured material [101]. The 

residual stress can vary between grains, and large grains favourably 

oriented to diffract the incident x-ray beam can contribute most to 

the diffraction profile leading to an erroneous peak position. Scans 

with different adjustments can give different residual stress values 

because the contributions to the diffraction peaks may come from 

different grains. The accuracy of the measurement made on coarse 

grained materials can be improved by oscillating the incident x-ray 

beam to allow more grains to contribute to the diffraction profile'. 

This facility is available on the Strainflex with selection of ±3, 

±5 or ±7 degrees • 

• 
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'Texture' present in a material can cause a shift from the true 

diffraction position because the number of grains contributing to 

diffraction varies with 29 whereas for an isotropic material the 

number remains constant. Therefore, a higher concentration of grains 

can giye diffracted beam of higher intensity than the grains more 

favourably oriented for diffraction. In order to overcome the 

problem, the Strainflex incorporates the fixed ~ technique. This 

differs from the fixed ~o technique in which the incident x-ray 

beam angle is kept constant, in that the angle subtended by the 

surface normal and normal to reflecting planes is maintained constant 

during the scan. This means that the x-ray tube and counter are moved 

simultanously. Although this does not eliminate entirely the effects 

of texture, it makes a significant improvement to the analysis on 

textured material. . . 

The x-ray technique is very sensitive to any surface preparation given 

to a material because the x-rays only penetrate into the surface 

approximately 10 pm. The electropolishing technique which is a 

stress-free process can be used to prepare the surfce and remove any 

undesirable stresses introduced by abrasive preparation. A solution 

of 14 X water, 45 X H3P04 and 41 X H2S04 was used with 

15 V D.C. and.5 1.5 A, in order to electropolish the region to be 

examined [103). 

4.4.2 EXPERIMENTAL PROCEDURE 

The measurement of residual stresses on chains were carried out in two 

parts using the Strainflex: 

a) 7 mm Lifting chain - a set of 7 mm lifting chain links calibrated 
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at various levels (equivalent to 30, 38.5 and 50 kN) and a 

noncalibrated link were prepared for the measurements. The links were 

all tempered at 6000 C (to sharpen diffraction peaks) in a salt 

bath (to avoid surface oxidation) for one hour and air cooled prior to 

calibration. The positions (Fig. 4.15) at which the measurements are 

to be taken were electropolished and an area of 2 X 2 mm was masked 

off. The chromium tube with 10 divergence and receiving slits was 

used to radiate (211) planes. The stresses are given in Table 4.3 and 

were calculated using elastic constants of E - 207 GPa and v-.29. 

The residual stresses at the outside of the 7 mm lifting chain are all 
, 

compressive with the highest magnitude occurring at the crown. The 

residual stresses at the centre and crown increase with increase in 

calibration load. Certainly this can be seen from the results, but 

the final calibration load did not have the expected effect On' the 

level of residual stresses. 

A typical analyser output is given in Fig. 4.14 with appropriate 

parameters illustrated in Fig. 4.16. 

b) 19 mm Mining chain - a set of 19 mm mining chain links was hardened 

at 9700 C in salt bath for 10 minutes and water quenched and 

tempered at 6000 C for one hour in a salt bath and water 

quenched/ai~ cooled. The links were calibrated at various levels. In 

all measurements, an area of 5 X 5 mm at the required positions was 

masked off. The chromium tube with 10 divergence and receiving 

slits was used to radiate (211) planes (also in case (a) ). 

A light electropolish was carried out for the water quenched link on 

positions P1 and PS to assess whether surface scale was present, 

although all the heat treatment was carried out in salt bath. It was 
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established, however, that there was no need for surface electropolish 

which did not have very significant effect on the measurements, Table 

4.4 

The residual stresses are given in Table 4.4 for water quenched links 

and Table 4.5 for the air cooled link, in which the measurements were 

made after consequent calibration. For the former case, they are all 

compressive and increase in calibration load did not have the expected 

effect on the residual stresses (at the centre and crown) which were 

initially quite high. This may imply that the links underwent a 

substantial amount of deformation as a result of water quenching, 

which consequently produced the compressive residual stresses. In the 

latter case (Table 4.5) calibration can be seen to introduce residuaL 

compressive stresses although the expected increase in these stre~ses 

on going from a calibration load of 260 to 320 kN is not observed at 

the crown. 

4.5 NEUTRON DIFFRACTION 

The x-ray method of residual stress measurement is nondestructive and 

can only be used for surface stresses. The hole drilling technique 

(30) and Sachs boring method (104) are both destructive but measure 

the stresses in the bulk of components. Recently a neutron 

diffraction procedure [90,105,106,107) has been developed which allows 

through-thickness residual stresses to be measured without the need 

for destroying the component. It does, however, require the sample to 

be transported to a high flux neutron source. 

In this section, the neutron diffraction method will be briefly 

introduced and the results of the work carried out at the Institute 
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Laue-Langevin (ILL), Grenoble, France will be presented. 

4.5.1 NEUTRON DIFFRACTION METHOD 

Neutron diffraction and x-ray methods both measure components of 

strain directly from changes in the lattice spacings of the crystals. 

Residual stresses-are then calculated from these strains. Neutrons 

can penetrate several centimeters into most materials so that bulk 

strains can be investigated. 

The principles of the neutron diffraction technique are illustrated in 

Fig. 4.17. If d is the lattice spacing in the direction of Q and 

29 is the scattering angle, then the lattice strain e, in the 

direction of the scattering vector is given explicitly as [106]:. 

£ - 6d/d - -69 Cot9 

To obtain the absolute strain the lattice spacing of the unstrained 

material do must be known. 

The sensitivity of the method depends upon the angular resolution of 

the systems and upon the volume of material sampled. The sensitivity 

of the method may be improved by using multi-slit Soller collimators 

to produce parallel beam with minimum loss in intensity. The volume 

of the material sampled is defined by the incoming beam and may be 

limited by inserting a mask just in front of the sample as illustrated 

in Fig. 4.17. 

A large volume will permit a rapid counting rate and speed recording, 

but will give average strains over the volume which may not be 



63 

satisfactory in the region of steeply changing residual stress. A 

compromise is therefore required by choosing a few cubic millimeters. 

A Bragg reflection, from a region of constant strain, usually has a 

Gaussian intensity profile, the centre of which may be determined 

accurately by a peak fitting routine, Fig. 4.18. 

4.5.2 EXPERIMENTAL PROCEDURE 

The 19 mm mining chain link (calibrated at 350 kN) which was used in 

Section 4.4, was chosen to undertake the task of residual stress 

measurement, Fig. 4.19. The measurements were carried out using the 

high resolution powder diffractometer situated on a thermal neutron 

guide from the High Flux Beam Reactor at the ILL. 

Measurements were made of (211) peak shifts and profile changes as a 

function of position and orientation in the chain link. The (211) 

reflection was chosen because it was expected that the (211) strains 

would be similar to the average engineering strains and, using a 

neutron wavelength of 0.19106 nm, the angle 29 was close to 900 

thus giving optimum spatial resolution. In the x and z directions a 

sampling volume of 2X2X2 mm was used with the link mounted 

horizontally. Measurements in the y direction a volume of 2X2X10 mm 

was used with link mounted vertically. Measurements were made in a 

region close to the centre of the long side of the link as indicatea 

in Fig. 4.20. 

The measurements can be both plotted, Fig. 4.18, and printed Table 

4.6. 
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4.5.3 RESULTS AND CALCULATIONS 

Peak centres and widths obtained by computer fitting single Gaussians 

to the data, are plotted, Fig. 4.21 and 4.22. The width of a peak, 

from a perfect unstrained crystalline powder at the angle of the (211) 

steel reflection, arising solely from instrumental factors, is about 

o 0.3. However, it is found in most experiments on engineering 

steels that have been annealed and elastically strained, that peak 

widths are usually in o 0 the region of 0.35 to 0.45 • If the 

steel has been plastically strained or there are steep strain 

gradients additional peak broadening and sometimes changes in peak 

shapes occur. 

In this experiment single Gaussians provide a satisfactory fit to ~ll 

the peak profiles but the measured peak widths are mostly in the range 

0.70 ± 0.10
• This is not exceptional and would suggest that 

there is extensive microstrain present in the chain link. At y = 6 mm 

and 13 mm the peak widths are 1.260 and 0.880 respectively for 

the z direction data but remain near 0.70 for the x and y data. 

The measuring positions at which the z peaks are extra wide 

do,however, coincide with regions of very steep z strain and their 

extra widths, and decreased peak heights, are quantitatively as woula 

be expected for the strain gradient observed and the size of sampling 

volume used. 

Fig. 4.23 shows the strains and Fig. 4.24 the stresses calculated 

from the peak centre positions assuming x, y and z directions 

correspond to the principal stress directions. As no measurement of 

diffraction angle was taken on a stress-free material, it was found 

from the stressed state of the chain link. The diffraction angle 
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corresponding to equal lattice spacing in all three directions was 

obtained from the plots of lattice spacings in the x and y-directions 

[\ verius'z-direction, Fig. 4.25 (Table 4.7). Experience and balancing 
, 

considerations would suggest that this point corresponds to position 

of minimum strain and stress, and hence it was used as the strain free 

zero for calculation purposes. From Bragg's Law, considering A _ 

.19106 nm and d = .11723 nm, the diffraction angle is calculated 

29 = 109.1540
• o Having (d9 = 29 - 29

0
j, the 

strains can be calculated from the following expression and given in 

Table 4.8, 4.9 and 4.10. 

~ - -6.207E-3 de (de in degrees) 

From these strains, stresses were calculated and are shown in Tabl~ 

4.8 and 4.9. 

The x and y strains are small and opposite in sign in comparison with 

the large z strains suggesting that they substantially arise as a 

Poisson's ratio effect. The corresponding x and y stresses are at all 

positions small, whereas the z stresses change rapidly from 

compression to tension and back to compression as a function of 

position y. There were very large strains observed around y = 5 mm. 

All three stresses are plotted along the positions with the absolute 

maximum principal stresses from the finite element analysis (Table 

4.11) Fig. 4.26. There is a good agreement between the neutron 

diffraction and finite element results. Stresses in the x and 

y-direction are very close and have opposite sign to az' All 

stresses meet at zero stress position. 
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The errors from all the measurements were also determined ranging from 

±19 to ±64 MPa. The largest errors occurred at the steepest stress . -- .~ 

gradient implying that the irradiated volume is too large and better 

results may be obtained by smaller volumes with further refinements. 

It is anticipated that the residual stresses can be measured by this 

technique to an accuracy of about 20 MPa. Furthermore, the accuracy 

may be possibly improved by a factor of 2 due to better statistics 

(better curve fitting techniques) at substantially reduced counting 

times (106). 



CHAPTER 5 

RESIDUAL STRESS MEASUREMENT USING STRAIN . . 

GAUGE METHOD 
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5.1 INTRODUCTION 

The strain gauge method of stress measurement is the most widely used 

technique in industry today. It involves the fixing of one or more 

strain gauges (length of wire or foil of known resistance and suitable 

form cemented to a non-conductive backing) to the surface of the 

material whose strain is to be determined. It is essential that 

intimate contact between the material and the gauge is assured. The 

gauge will then faithfully record the true surface strain. Surface 

preparation is probably the most vital factor effecting the adhesion 

of the gauge to the surface, and special cleaning technique must be 

adopted. 

Assuming that the gauge is correctly bonded to the surface, any strain 

in the material is then transmitted directly to the gauges, which 

therefore increases or decreases in length and cross-sectional area. 

These changes in dimension are accompanied by a change of resistance 

which can be related directly to strain by multiplying by a constant 

known as gauge factor. This is provided by the manufacturer and for 

most conventional gauges is of order of 2 to 2.2. In most strain 

gauge measurement 

automatically and 

instruments 

the strain 

or 

is 

bridges this step is done 

read directly from a dial. Strain 

gauges thus represent a relatively slmple method of obtaining a 

surface strain values. 

There are a number of specially developed gauges. These are 

self-adhesive, high sensivity semi-conductor, fatigue gauges and etc. 

[108,109,110,111,112,113,114]. 

There are hundreds of strain gauge types available, it is therefore 
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important that the potential strain gauge users be aware of the 

various factors which might influence their decision on the choice of 

a gauge for his particular application. 

The advantages of strain gauges as an experimental stress analysis 

technique can be summarised as follows: 

relatively simple and quick. 
direct reading. 
many different type of gauges to suit particularly every condition. 
used particularly in any environment. 
no component size limitation. 
good accuracy. 
repeatable technique. 
applicable to static, dynamic and transient. 
used in actual service condition. 
reduced weight and size compared with convensional mechanical 
transducers. 
temperature effect mostly eliminated. 
remote reading possible. 
sensitivity can be improved using various wire. 
finally, excellent repeatability. 

The Bauschinger effect - the change in the stress-strain curve of a 

metal following plastic deformation in the appropriate direction - is 

of interest in connection with residual stress determination using the 

strain gauge technique. 

The determination of residual stresses in the surface of 19 mm mining 

chain using the strain gauge technique is discussed with reference to 

Bauschinger effect in the next section. Apart from the standard 19 mm 

mining chain link, elliptical and eight shape links were formed, 

Section 5.3, and will be considered in the stress measurement process 

with the 22 mm oval cross-sectional mining chain. The heat treatment 

and surface preparation for the strain gauge work, on the chain links 

and test specimens to determine material stress-strain curve are 

presented is Section 5.4. The strain gauge selection and mounting 

processes are given in the following sections. Finally, the 

experimental procedure and results with calculation of the total and 



69 

residual stresses are given in Sections 5.6 and 5.7 respectively. 

5.2 PRINCIPLE OF RESIDUAL STRESS DETERMINATION AND BAUSCHINGER EFFECT 

Let us assume that the strain is followed at a particular position on 

a chain link, where the strain is uniaxial. When the chain material 

is loaded over its yield point (B), on BC in the stress-strain 

diagram, Fig. 5.1, 011 unloading, various possibilities arise._ Thus 

the material behaviour may be such that: 

a) residual tensile stress is achieved, point D. 

b) residual compressive stress is achieved, point F. 

c) no residual stress is achieved, point E. If, by any means the 

strains at points C and D or E or F could be measured, the 

corresponding residual stress could be determined. Strain gauges 

were here used for this purpose. 

If the material at the unloaded condition (E), is loaded in 

compression, it yields at ay, and follows EFG rather than EF'G' 

in tension (ay' < ay)' This phenomenon was first reported 

. . 

by Bauschinger in 1881 and carries his name, i.e. Bauschinger effect 

[115,116,117]. One way of describing the amount of Bauschinger effect 

is by the Bauschinger strain (~). This is the difference in strain 

between tension and compression curves at a given stress. As shown in 

in Fig. 5.1 permanent softening may be measured when parallelism is 

attained between forward and reverse flow curves, and is function of 

forward strain (tc ) [118]. The Bauschinger effect was not 

considered in the finite element determination of the residual 

stresses, hence the stress values (aF,) will be higher than the 

measured values (aF). Bauschinger charts can be evaluated and 

plotted from a limited number of tests using a computerised mathod for 

J 
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the determination of the intensity of the Bauschinger effect of the 

metallic materials [119]. 

5.3 FORMING OF EIGHT SHAPE AND ELLIPTICAL CHAIN LINKS 

The dimensions of the eight shape and elliptical chain links were 

worked out for e ~ ± 240 (Fig. 5.2 a) with the same pitch and 

nominal diameter as the sLandard 19 mm mining chain li~k. To achieve 

the required geometries the standard link had to be either pinched or 

pushed out by 7.4 mm (3.7 mm each side) at the barrel centre. The 

as-received standard links were first had to be annealed at 6000 C 

to ease the forming of the links. Fig. 5.3 (a,b,c and d) illustrates 

the forming processes used for eight shape and elliptical chain 

links. The rollers, pins and the punch had to be hardened after 

machining to prevent bedding in. In both cases a 60 tonne press was 

used applying about 5 and 25 tonnes of load to form the elliptical and 

eight shape links respectively. The finished links are given in Fig. 

5.2 b with the 22 mm oval cross-sectional mining chain link shown at 

the bottom. 

5.4 HEAT TREATMENT OF CHAIN LINKS AND PREPARATION OF MATERIAL TEST 

SPECIMENS 

Three kinds of heat treatment were carried out on the chain links to 

correspond to the x-ray work (air cooled/water quenched after 

tempering) and the finite element work on the as-received condition: 

a) Hardened at 9700 C in a salt bath to avoid surface decarburiza

tion for 15 minutes and water quenched; tempered at 6000 C (in 

the x-ray work to sharpen the peaks) in salt bath for one hour and 

water quenched (material 1). 
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b) As in (a) except air cooled after tempering (material 2). 

c) As in (a) except the tempering temperature and time were 

4750 C and 4.5 hours (air cooled) respectively (manufacturer's 

heat treatment), (material 3). 

The surfaces of the different links were polished prior to the marking 

off the strain gauges positions accurately using the divider head with 

appropriate packing plates machined for this purpose, Fig. 5.4. 

Tensile test specimens, Fig 5.5, were machined from the legs of the 

chain link to obtain the stress-strain curves of the material 

corresponding to the above heat treatment conditions. The threaded 

ends were used in tensile and squared parallel ends in compression 

conditions. The specimens diameter for material 1 was 7.31 mm and . . 
material 2 and 3 was 7.92 mm. 

5.5 STRAIN GAUGE SELECTION AND MOUNTING 

A brief account of steps in selection of strain gauges out of a very 

large number of gauges will be given in this section with some 

cautions on the mounting procedure. 

5.5.1 STRAIN GAUGE SELECTION 

The initial step in preparing for any strain gauge installation is the 

selection of the appropriate gauges for the task. Careful, rational 

selection of gauge characteristics and parameters can be very 

important; optimizing the gauge performance for specified 

environmental and operating conditions, obtaining accurate and 

reliable strain measurements, contributing to the case of 
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installation. 

The installation and operating characteristics of a strain gauge are 

affected by the following parameters, which are selectable in varying 

degree (109): 

strain-sensitive alloy 
backing material 
gauge length 
gauge pattern 
self-temperature compensation 
grid resistance 

There are some operating constraints which are generally expressed i~ 

the form of requirements such as : 

accuracy 
test duration 
stability 
cyclic endurance 
maximum elongation 
simplicity and ease of installation 

Since the gauge was required to remain on the link as the link was 

plastically deformed, a "post-yield" gauge was selected. A "YF" 

post-yield gauge, consists of Cu - Ni foil with plastic backing, 

operating temperature - 200 to + 700 C with 10 - 20 % strain, 

supplied by TML (109), was chosen. The YF gauge has a gauge length of 

2 mm , with 1.8 mm gauge width (the smallest available) and 7.4 X 4 mm 

base. Since the strain gauges tend to average the strain over the 

area covered by the grid and the average of any non-uniform strain 

distribution is always less than the maximum, a strain gauge which is 

noticeably larger than the maximum strain region will indicate a 

strain magnitude which is too low, hence 2 mm gauge was chosen to 

avoid or at least minimize this effect. Single grid strain gauges are 

sufficient for the measurement, because only the stresses in the 

longitudinal direction of the chain link were to be measured. The.e 

was no option to choose a gauge with 120 2 (t .3 ) rather than 

higher resistance'in reducing heat generation rate and decreasing lead 
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wire effect. The gauge factor is 2.11 for the YF strain gauges which 

are supplied in packs of 10. The CN strain gauge adhesive recommended 

by the TML for YF type gauges was chosen. The adhesive has the same 

operating temperature as the YF gauges. 

5.5.2 STRAIN GAUGE MOUNTING 

TML connecting terminals were chosen to provide convenient junction 

points to connect gauges to instrumentation leads. They are made up 

of .033 mm thick copper foil and an insulation laminated with 

glass-epoxy approximately .15 mm thick with operating temperature up 

to 1800 C. 

The following steps were taken in mounting the strain gauges: 

a) 

Surface preparation of specimens - an area of approximately 2 - 4 

times of base length in diameter was ground using an abrasive paper, 

so as to remove irregularity, rust and coating. Centre line to the 

gauge position was marked off without the line crossing the area on 

which the sensing element is directly placed. Some solvent such as 

methanol was used to clean the surface. 

b) 

Bonding to metal - a small drop of CN adhesive was used on the reverse 

side of the strain gauge and the gauge was plastered on the prepared 

surface of the specimen. The plastered gauge was set at its proper 

position and then instantly covered with a polyethylene sheet and was 

vertically pressed with thumb fairly hard for over a minute and it was 

then possible to take measurements after 15 minutes. Yhen the 

adhesive set, the polyethylene sheet was peeled off clearly. 

Similarly, the connecting terminals were bonded at convenient 
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positions. 

c) 

Coating and soldering - the gauges and lead wires were soldered to the 

terminals. The lead wires were then anchored to the specimens and 

links, to avoid damages occuring from pulling before and during the 

test, and can be seen in Fig. 5.6 and 5.7 (a and b). Also, the 

gauges were coated with silicon rubber for protection. The equipment 

used in mounting the strain gauges are shown in Fig. 5.8. Finally, 

the whole installation was checked for damage and malfunctioning. 

5.6 EXPERIMENTAL PROCEDURE 

Material test specimens and chain links were tested on different 

testing machines and the procedure for each case is given separat~ly 

below: 

a) 

Material test specimens - these specimens were tested using a 100 kM 

Instron testing machine, Fig 5.7 (a and b) and the strain gauge data 

logger with its peripherals shown in Fig. 5.9. The strain gauges 

were first soldered into the connection box before setting up the data 

logger and energizing the strain gauges (1 volt). To obtain the 

material stress-strain curve, the specimens were loaded up to the 

required strain in tension before unloading takes place, scanning at 

various load levels, Fig. s.7a. The specimens were then loaded in 

compression and unloaded to zero just before buckling (two strain 

gauges start to disagree by large amount) ~sing the compression bed, 

Fig. 5.7 b. A typical load- extension curve of a specimen depicting 

the loading-unloading cycle in tension and compression is given in 

Fig. 5.10 (extension here measured by cross-head displacement). 

b) 
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The chain links corresponding to the x-ray works were calibrated using 

the 40 tonnes Amsler testing machine with two partially surface ground 

chain link holders, Fig. 5.11, whereas , the second set of chain 

links (different geometries) were calibrated using a Losenhausen 

testing machine with 22 mm diameter holders. After soldering the lead 

wires to the connection box and energizing the strain gauges, the 

links were loaded and unloaded (up to 100 KN) a few times in steps of 

20 kM to check the response of the strain gauges. Each link was 

loaded up to the required calibration load in steps of 20 kM, scanning 

at each step before unloading in similar manner. The scanning outputs 

were printed for all 12 strain gauges, numbered as in Fig. 5.12, from 

which the loaded and unloaded strains corresponding to the calibration 

load could be read. 

5.7 RESULTS AND CALCULATION OF RESIDUAL STRESSES 

The material test specimen results are given in this section with 

results and calculation of residual stresses obtained by the x-ray and 

the finite element method. 

5.7.1 STRESS-STRAIN CURVE OF CHAIN MATERIAL 

The stress-strain curves of all three different chaIn materials are 

plotted from the material test specimen results, Fig. 5.13, 5.14, and 

5.15. The material properties of these materials can be read and were 

determined from these curves: 

Cfy(MPa) €y(II€) Hardening parameter,H' 

1) 890 4260 963 

2) 890 4250 646 

3) 1000 4780 531 
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Young modulus was found to be 209 GPa. The work hardening parameter 

is defined as the slope of plastic part of the material stress-strain 

curve. 

A four link 19 mm mining chain of material 2 was pulled using the 

Amsler testing machine. The ultimate failure load was 348 kM ( 364 kN 

for single link),- hence nominal stress is 614 MP~. The overall 

extension was 14.6 % (gauge length was 336 mm and elongation of 49 

mm), and the test speed was 3.77 mm/min. (test period was 13 

minutes). 

5.7.2 RESULTS AND RESIDUAL STRESS CALCULATION RELATING TO THE X-RAY 

YORK . . 

The strain readings from gauges in equivalent positions were found to 

be very similar, but the readings from non-equivalent positions were 

markedly different, Fig. 5.16 to Fig. 5.21 (gauge positions shown in 

Fig. 5.12). The gauges at 600 to the crown in most of the cases 

showed an unexpected increase in the strain while the link was 

unloaded, Fig 5.17. This kind of behaviour was reproduced at these 

positions using the finite element method, Chapter 8. 

The extreme strains - when fully loaded at the calibration load and 

those in the unloaded condition, are tabulated from figures similar to 

Fig. 5.16, Table 5.1 and 5.2 for the links made up of material 1 and 

2 respectively (two links of each). The residual stresses were then 

evaluated as described in Section 5.2, Table 5.3 and 5.4. The total 

stresses were also determined at the calibration levels, Tables 5.5 

and 5.6. The average total and residual stresses for each case 
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(material 1 and 2) at various calibration levels are plotted, Fig. 

5.22 and 5.23 at the outside surface of the 19 mm mining chain. It 

can be seen from the Fig. 5.22 that the links yielded at the crown 

and barrel at all calibration levels. An increase in the calibration 

load levels did not have any significant effect on the total stress 

levels at the yielded regions (crown and centre) neither did the 

material type as such, Fig. 5.22 and Table 5.7. The residual 

stresses, on the whole, are com~ressive at the outside and inside 

surface, and increase in calibration load increases the magnitude of 

the residual stresses in both cases, not so much at the inside as the 

outside, Fig. 5.23 and Table 5.7. The results obtained for material 

2 calibrated at 350 kN are not reliable because of the fact that the 

calibration load was not achieved properly (being very close to the 

failure and unable to control). 

Residual stresses obtained from the x-ray work (Chapter 4) for both 

the 19 mm mining and 7 mm lifting chains are given in Fig. 5.24 with 

the corresponding strain gauge work. The patterns of stresses are 

similar but big variation in magnitude exist at the centre of the 19 

mm mining chain for material 1. On the other hand, the agreement 

between the two sets of stresses at the crown is good for both 

materials but not at the barrel, Fig. 5.25. 

5.7.3 RESULTS AND RESIDUAL STRESS CALCULATIONS OF DIFFERENT LINK 

GEOMETRIES 

Two samples of each geometry, standard, eight shape, elliptical and 

oval cross-sectional links with the installed gauges at appropriate 

positions were calibrated at three different load levels using the 

Losenhausen testing machine and the strains at the extreme load 
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(calibration load and unloaded) levels are tabulated, Tables 5.8 to 

5.11. The residual stresses and total stresses for all the 

calibration loads were determined using the principle outlined in 

Section 5.2, Tables 5.12 to 5.19. 

Total stresses in mining chains from the strain gauge work were 

compared to those determined by the finite element method (Chapter B), 

under load before and after onset of plastic flow in the lihks, Fig. 

5.26 and 5.27. The stresses are in good agreement indicating the 

validity of both methods. 

The effect of link geometry on the total and residual stresses 

(average of two links) can be seen in Fig. 5.28 and 5.29 for the 

first calibration load, and effect of calibration load on the residual . . 
stresses for various link geometries are given in Fig. 5.30 to 5.33. 

The elliptical and oval cross-sectional links follow very similar 

pattern, (Fig. 5.32 and 5.33), the residual stresses becoming tensile 

at the outside transition, Fig. 5.29. The eight shape and straight 

side links behave similarly (Fig. 5.30 and 5.31),eight shape link 

starting with tensile at the centre,with a wider gap at the centre 

moving to the crown as the calibration load rises, resulting in larger 

stresses (in magnitude) for both links, Fig. 5.29. The residual 

stresses at the inside centre and tra~sition are, on the whole 

compressive and increase (in magnitude) as the calibration load 

increase, Table S.20. At the centre of the eight shape link (inside) 

there is very little residual stress whereas at the transition very 

high compressive residual stress exists, Fig. 5.31. 

Once, the surface of the links has yielded, there is very little 

increase in the total stress, Tables 5.20 and Fig. 5.28, except for 
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the eight shape link, Table 5.17. Hence, as the calibration loads 

increase the yielding extends to the interior from the surfaces 

leaving the surface stresses unchanged. The total stresses for 

various link geometries are given in Fig. 5.28 at the first 

calibration load with no variation at the crown. It can be seen that 

the stress near the crown depends little on link shape. 

On the whole, increase in calibration load increases the total and 

residual stresses significantly in all geometries at the outside 

surface and inside transition and centre regions. 



CHAPTER 6 

FINITE ELEMENT BEAM ANALYSIS OF CHAINS (1-1» . . 
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6.1 INTRODUCTION 

Under fatigue conditions, the varying stress caused by the external 

loading is added to any existing residual stresses: the position and 

magnitude of the resulting stress is important in determining the 

fatigue life. There are various ways of calculating these stresses 

numerically,such as: finite element beam analysis,two and three 

dimensional stress analyses. The finite element beam analysis of 

chains is extremely cost-effective in evaluating a multitude of 

different link geometric configurations. The more costly two 

dimensional contact and three dimensional solid stress analysis will 

be the theme of the following chapters. 

The selection of beam elements suitable for large rotations.sm~ll 

strain applications is of considerable interest, and many possible 

formulations exist. In some problems,warping of the cross-section is 

important; this is specially true for some open sections. Sometimes 

distortion of cross-section in the plane must be considered;the 

classical example of this is the pipe bend. There have been attempts 

to provide a library of elements broad enough to satisfy most needs 

for beam type modelling. 

In the ABAQUS library,beams in plane and beams in space are included. 

Since in chains only planar deformation occurs, due to geometry and 

loading,it is wise to use plane beam elements. Beams (Timoshenko beam 

element) that allow transverse shear are considered here. In these 

beams (element B22), additional approximation (to that of classical 

Euler-Bernoulli) is invoked in that the response to this shear is 

purely elastic: thus only 

considered in the non linear 

axial, bending and torsional strains are 

constitutive modelling. It is also 
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assumed that the cross-section does not deform in its section; the 

transverse shear is not considered to produce warping in the section: 

rather it is treated as a small relative rotation between the normal 

to the plane of the cross-section and the beam axis. The basic 

formulation of these elements is given in [39,120]. 

Work carried out by the SORe describes the study of design 

modifications to a (9/16") 14 mm nominal diameter wheel chain link 

[43]. The effect of link geometry (shaved,oval cross-section, eight 

shape,standard) given in Fig. 1.3 and 5.2a, on the position of 

highest elastic stresses at the shoulder has been mainly investigated. 

An elastic beam element with point load at the crown was used and it 

was concluded that : 

1. The standard link configuration is the optimum geometry to minimize . . 
the inner surface tensile streses at the shoulder. 

2. The shaved design does not appear to offer a significant advantage 

over the standard design. 

3. The eight shape design results in higher stresses at the shoulder 

and lower at the leg. 

4. The oval cross-section design provides a desirable means to reduce 

the shoulder stress without dramatically increasing the stress 

levels at the leg. 

The purpose of this phase of the analysls is to evaluate the merits of 

two possible design modifications of alloy steel mining chain and 

compare them with the standard design configuration for such links in 

the light of the SORe work. The basis for this is the 19 mm nominal 

diameter link design with semi-circular ends and the straight legs 

(standard). The general conceptual geometry for the two modified 

links is illustrated and given in Chapter 5. 
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The following is a description of the modified link geometries 

analysed,Chapter 4. 

1. The wire cross-section remains constant while the line of centroids 

curves inwards towards the centreline of the link,eight 

shape (pinched). 
, 

2. The wire cross-section remains constant while the line of centroids 

curves outwards from the centreline of the link, elliptical. 

In this chapter, the loading assumption used in the beam analysis of 

chains will be discussed. Later, the 19 mm mining chain is analysed 

elastically and elasto-plastically to evaluate residual stress 

distributions at various calibration levels. The stresses will also 

be given through thickness of the chains at different sections. 

Finally, a similar analysis will be carried out for the 7 mm lifting 

chains. 

6.2 LOADING ASSUMPTIONS 

The loading of the chains can be modified in many different ways. A 

point load at the crown used by the SORC is very crude and causes a 

convergence problem locally in the elasto-plastic analysis. Ideally, 

contact analysis in three dimension would give the appropriate contact 

area and pressure envelope at the crown. In the beam analysis a 

com~romise was made by assuming an elliptical pressure envelope at the 

crown. The extent of pressure was limited to one element at the crown 

only and the ratio of the loads at the nodal points are calculated as 

below: The general parabolic distribution of loads can be solved for 

the particular solution [42): 

2 q = a +bx + cx 

where q is the pressure at any point x (O<x<l). 
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A ~ a + b/2 + c/3 

where A is the area under the curve which is the total load. 

01 ~ a/6 - c/6 

02 ~ 2a/3 + b/3 + c/5 

03 ~ a/6 + b/6 +3c/20 

where 01' 02 and 03 are the loads at positions x • 0, .5 

and 1. 

General Case 

Area under the curve is unity 

At x ~ 0 , dq/dx ~ 0 

Finally, q • 0 at x = 1 

Equation (2) b ~ 0 

Equation (1) a + c/3 ~ 1 

Equation (3) a + c ~ 0 a=-- c 

Substitute (5) into (4) - c + c/3 = 

Therefore 

°1 = 11/40 

°2 • 28/40 

°3 ~ 1140 

1 

Special Case 

a + b/2 + c/3 ~ 1 

dq/dx ~ b + 2cx ~ 0 

(4) 

(5) 

c = - 3/2 and a = 3/2 

Check to. 11/40 + 28/40 + 1140 ~ 40/40 = 1 

The ratios of the loads area 11/40, 28/40 and 1140 from the crown. 

6.3 19 mm MINING CHAIN 

(1) 

(2) 

(3) 

Beam modelling of chains is the simplest and cheapest of all the 

modelling and has been attempted here to obtain an understanding of 

the total and residual stress distributions in different geometries of 
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chains. Only one quarter of the 19 mm mining chain was chosen by 

making use of geometrical and loading symmetry. The quadratic beam 

element (B22) uses Timoshenko beam theory and includes shear 

deformation [39,120). The finite element mesh consists of 15 B22 

elements (3 noded, quadratic interpolation) of approximately equal 

lengths in all the geometries, Fig. 6.1. The model is constrained at 

the crown in the x-direction, at the centre in the y-direction and 

rotation about the z-direction at both ends. The cross- section of 

the model is specified easily using the standard section in the ABAQUS 

library. The program assigns integration points on the section and 

integrates the section numerically to obtain generalised force-moment/ 

strain-curvature relations. This in conjunction with numerical 

integration along the beam length, allows complete generality in 

material response (plasticity) , since each point of each sectio~ is 

individually considered by the constitutive routines. The default 

integration for the beam in a plane (B22) is 5 points and up to 9 

points are permitted. 

Geometrical nonlinearity was also considered with residual force and 

moment tolerances of .1% and 1.% respectively. 

6.3.1 ELASTIC ANALYSIS 

The model described in the previous section was analysed elastically 

with Young's modulus, E=205 GPa. The whole loading was applied in one 

increment and the results are presented below: 

The stresses (largest absolute principal stresses) were plotted at the 

inside, centre and outside for all the geometries,Fig. 6.2. The 

loading was the manufacturer's calibration load for this grade of 
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chains. The stresses have similar pattern for all geometries at the 

inside, centre and outside, except at the leg region, vhere the 

elliptical link has higher and eight shape link lover stresses than 

that of the standard link. The position of the largest tensile stress 

at the inside of chain link is different for all the geometries: in 

the case of elliptical link it is at the centre of the leg rather than 

the transition zone for the other geometries. The standard link seems 

to be at the middle of tvo extreme geometries (elliptical and eight 

shape). The stresses at the outer and inner fibres of all the 

geometries have opposite sign. There is no variation of stress at the 

centroid of the links due to geometry, but the stress reduces to zero 

at the crown from a tensile value at the centre. It passes through 

the intersection of internal and external stress curves. 

The stresses at the crown (3 integration points) vere discarded: the 

method of load application and the approximation of the method give 

unrealistically large stresses. This viII also apply to all the other 

beam analysis results. 

6.3.2 PLASTIC ANALYSIS 

To determine residual stresses the elastic beam model vas used vitn 

material nonlinearity included. The elasto-plastic material model 

considered has the folloving properties: yield stress, ay = 

1000 HPa and hardening parameter (8')=531 HPa (experimental values 

obtained in Chapter 5). The load increments may be applied 

automatically (to find the failure load) or manually (to determine 

residual stresses). 

6.3.2.1 TOTAL STRESSES 
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Stresses at the calibration levels, 260,320,and 380 kN were computed 

for all three geometries and plotted at the inside, centre and outside 

the links, Fig. 6.3,6.4 and 6.5. At the yielded regions, the 

increase in calibration load does not have significant effect on the 

stresses, whereas in the elastic zones, it results in reduction of 

stresses for the eight shape link (Fig. 6.4 and 6.5). At all the 

calibration loads and for all the geometries the barrel and crown have 

Yielded both at the inside and outside, leaving the shoulder elastic 

except for the eight shape link which has the central region of barrel 

still elastic. The elastic analysis gave some insight into the stress 

distribution before the elasto-plastic analysis, which is not very 

different. 

All the geometries were tested to failure using automatic . . 
incrementation ,i.e. the model was loaded up to a point, where the 

solution did not converge (very small load increment produces very 

large unrealistic displacements), hence the failure was achieved. The 

failure loads were 380, 380 and 324 kN for the standard, eight shape 

and elliptical links respectively. The load carrying capacity of the' 

models are lower than the tested values: 24%, 24% and 35% 

respectively. 

Stresses may be computed through thickness of the beam models at 9 

points, and are given in Fig. 6.6,6.7 and 6.8, for all geometries at 

calibration load, (cl)=320 kN, at important positions such as central 

barrel, 30 and 60 degrees to the crown. There are no t 'apprec1ablel 
'- - --- ~- ~ -) 

differences in total stresses at the sections 30 and 60 degrees to the 

crown between different link geometries but at the centre the standard 

link stresses lie between the elliptical and eight shape link 

stresses. 
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The displacements at the centre of barrel and crown are given in Table 

6.1 for all the geometries at various calibration loads. The 

elliptical link has moved in the most, whereas the eight shape link 

appears to be the stiffest. The deformed meshes at cl=320 kM are 

given for all the geometries, Fig. 6.9. The whole mesh seems to 

pivot about a point 45 degrees to the crown. 

6.3.2.2 RESIDUAL STRESSES 

The chain models with elasto-plastic material properties were loaded 

up in 30 equal increments for all calibration levels and unloaded in 

10 equal increment to obtain the residual stresses. The residual 

stresses for all cases were plotted, Fig. 6.10,6.11 and 6.12. The 

stresses at the crown are invalid due to the load application there. 

The residual stresses are compressive at the inside of the barrel 

except for the eight shape link and tensile at around the crown. 

Higher calibration loads results in higher compressive stresses at the 

barrel and lower tensile residual stresses at the crown and nearby, 

Fig. 6.11. 

The residual stresses at the centroid of the chain links are tensile 

in all cases, nearing zero at the crown. The eight shape link starts 

with zero residual stress at the centroid in the barrel and rises to 

maximum at the transition zone, and finally drops to zero before 

rising again at the crown, Fig. 6.12. As the calibration load 

increases, the tensile residual stresses decrease at the barrel and 

some parts of the shoulder in the case of the standard and the 

elliptical links. 
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The residual stresses are compressive at the outside in all cases. 

The standard link seems to have larger residual stresses than the 

other geometries. Higher calibration loads result in higher residual 

stresses in all cases, Fig. 6.10. 

The residual stresses through the thickness of the chain models are 

also given in Fig. 6.13,6.14 and 6.15 at various important sections, 

such as centre, 30 and 60 deg=ecs to the crown. Th~ stresses are 

virtually all the same at 60 degrees and close at 30 degrees to the 

crown but vary significantly at the centre, where the standard link 

stresses have a very similar pattern to that of the results obtained 

using the neutron diffraction technique (Chapter 4), Fig. 6.13. 

6.4 7 mm LIFTING CHAIN . . 

7 mm Lifting chain which was used in fatigue testing in the 

experimental work (Chapter 3) was analysed here using the finite 

element method. The same strategy as in the 19 mm mining chain was 

taken in the elastic and elasto-plastic analysis for total and 

residual stress calculations. The mesh of 15 three noded beam (B22) 

elements was used. The material model is the same except for the 

yield stress (~1148 MPa). The elastic stresses at the inside, centre 

and outside are given in Fig. "6.16. The stresses at the inside of 

the barrel are twice that of the outside and the stresses at the 

centroid are virtually half way between the two outer fibres. All the 

stress curves meet at an angle about 47 degrees to the crown, at the 

calibration load of 38.5 kN (the manufacturer's calibration load for 

this grade of chain). The stresses from the elasto-plastic analysis 

have a similar pattern to that of the elastic analysis except for the 

centroids, where the stresses have shifted up, Fig. 6.17. The 
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stresses again all meet at an angle about 38 degrees to the crown. 

Higher calibration loads cause the stresses to rise at all locations; 

it can be seen that the stress patterns are similar to that of the 

mining chains (standard link). 

Residual stresses are also computed and presented in Fig. 6.18. They 

are compressive at the outside, inside and tensile at the centroid 

fading away at the crown. Higher calibration loads result in higher 

residual stresses, Fig. 6.18. Deformations of the model at various 

load levels are given in Fig. 6.19. 

Total and residual stresses are given in Fig. 6.20 and 6.21 for 

sections at the centre, transition, 30 and 60 degrees to the crown. 

The residual stresses at the centre and transition are equal and. the 

pattern is the same as the results obtained from the neutron 

diffraction technique. The residual stresses at two other sections 

are also equal (Fig. 6.21). 



CHAPTER 7 

FINITE ELEMENT CONTAcr ANAIXSIS OF CHAlNS C2-D) . . 
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7.1 INTRODUCTION 

In the finite element stress analysis of chains, the modelling of the 

applied load has paramount importance in the evaluation of total and 

residual stresses. This requires a full scale investigation of the 

contact between two links when loaded. Stress analysis of bodies in 

contact is an important class of structural mechanics problem. The 

extent of the contacting surfaces may depend on the level of applied 

loads, and the contact may be frictional or smooth. Such stress 

analysis problems are nonlinear and therefore quite complex solution 

methods. 

A contact problem occurs when at least two of the bodies not 

mechanically joined touch each other without becoming rigi?ly 

attached. They can touch either at a point, along a line, over a 

surface or over a combination of these elements, defining a contact 

region. The transmission of forces from one body to another is done 

through this region by normal compressive stresses and by tangential 

or shear stresses if friction exists. Vhile the initial state of 

contact is determined by the geometric features of the bodies, th.~ 

extent of the contact generally changes when the bodies are deformed 

by the applied loads or other source of stress. 

Exact solutions of contact problems exist for simple, idealised 

problems, requiring sophisticated mathematical analysis [121,122). 

Such solutions are not feasible for contact problems involving more 

complicated geometries, such as chains, although an attempt was made 

to solve the contact between links elastically in the next section. 

Chan and Tuba (123) presented an incremental procedure for frictional 
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and frictionless contact problems. An over-relaxation procedure was 

used to solve the set of nonlinear equations. The equilibrium 

equations are formulated for each body separately in terms of the 

displacements and the contact forces. Another condition is imposed, 

that the points in the contact bodies cannot interpenetrate. The 

nodal displacements can then be solved for and an iterative process 

carried out within the step to allow several points to come in 

contact. The process is repeated with higher loads to obtain new 

contact points until the external load is reached. 

Fredriksson and Urzua et al (124,125,126] presented an incremental 

formulation of contact problems of frictional and frictionless contact 

at the same time. The equilibrium equations are formulated~n terms 

of unknown nodal displacement increments and the interface tract~ons 

are computed from the stresses at the end of each step. These 

tractions are applied to the next step by computing an equivalent 

nodal load vector. At each step, the appropriate constraints are 

applied for nodes in contact. Due to finite increments, iterations 

are necessary within the increment. This procedure is very similar to 

the standard approach for elasto-plastic problems. A similar 

algorithm was coded up in ABAQUS (interface and gap elements) with two 

and three dimensional contact problems with material and geometrical 

nonlinearities. 

The primary objective of this chapter is to evaluate the contact 

pressure and contact area for 19 mm mining and 7 mm lifting chains, fn 
two dimension with no friction considered, and to investigate how the 

method of load application affects the total and residual stress 

patterns. The contact pressure and contact area between links will be 

investigated analytically for elastic conditions, and numerically 
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using interface elements for plane stress and plane strain conditions. 

Secondly, this may be used to model the contact pressure in three 

dimensional stress analysis rather than a full and costly three 

dimensional contact stress analysis (Chapter 8). 

7.2 PRESSURE BET1lEEN TllO LINKS IN CONTACT 

The contact between two elastic links may be derived from the more 

general case of contact between two elastic bodies given by Timoshenko 

and Goodier [121]. The principal radii of curvature of one of the 

bodies are R1 and R'l, and of the other body, R2 and R'2; ~ the 

angle between normal planes containing the curvatures 1/R1 and 1/R2, 

then the constants A and B are determined from the equations 

A + B _ 1/2 ( 1/R1 + 1/R'1 + 1/R2 + 1/R'2 ) 

B _ A _ 1/2 [( 1/R1 _ 1/R'1 )2 + ( 1/R2 _ 1/R'2 )2 

+ 2 ( 1/R1 - 1/R'1) ( 1/R2 - 1/R'2) Cos 2~ ]1/2 

( 1 ) 

< 2 ) 

In the case of two chain links R1 = R2 = Rand R'l = R'2 = R' 

and ~ = 90 ; (1) and (2) become 

A + B = 1/R + 1/R' 

B - A = 0 A _ B 

( 3 ) 

( 4 ) 

The contact pressure between the links is semi-elliptical with 

the major (2a), minor (2b) axis and maximum contact pressure 

(qo); where a and b are calculated from: 

113 a = m [ 3 n P ( K1 + K2 )1 4 ( A + B ) 11/3 b = n [ 3 n P ( K1 + K2 )1 4 ( A + B ) ] 

( 5 ) 

( 6 ) 

in which m and n are numbers depending on the ratio (B-A)/(A+B); 

Cos e = ( B - A )/( A + B ) 

For two links cose = 0 :;> e = 90 ; from the table [121] m=n=l 

also K1 = K2 _ ( 1 - v )1 n E: where v, Poisson's ratio, E 

, Young's modulus. P is the applied load in the links. 

. . 
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The maximun contact pressure, qo = 3*P/2na b ( 7 ) 

There are two cases to be considered in contact pressure evaluation: 

a) Mining chain 

RI = R2 = 9.5 mm 

R'1 = R'2 a -12.75 mm 

Substituting (3) and (4) 

A + B = .0268 

A a B 

Hence, A. Bc.0134 

For E • 209 GPa and v =.3 Kl = K2 a 1.386 E-6 

(5) , (6) and (7) become 

a • b •• 06246 (p)l/3 

(contact area is a circle with radius a) 

qo a 122.38 (p)l/3 

Contact angle is the internal angle subtending the contact region. 

i.e. 12.75 « = a 

Contact angle (<<) is « = 4.4938 a (in degrees) 

b) Lifting chain 

R1 a R2 = 3.45 mm 

R'l = R'2 - - 5.55 mm 

Similarly 

A + B = .1097 

A = B 

A = B = .0548 

a = b = .03905 (p)I/3 

qo= 313.14 (p)1/3 

Contact angle (<<) is 10.3236 a (in degrees) 

The values of a, q and« are given in Table 7.1 for both cases. 
o 

The maximum contact pressures are so great that there must be plastic 
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flov. 

7.3 PLANE STRESS/STRAIN ANALYSIS 

Often in stress analysis, a full three dimensional treatment of a 

problem can be avoided by assuming the structure to be adequately 

represented if plane stress or plane strain conditions adopted. 

Historicallr, plane solutions were the first attempted by the finite 

element method. The basic definitions and applicable expressions can 

be found in many standard text books on the theory of elasticity (e.g. 

[127,128]) and only a brief outline of the assumed conditions is 

included here. A fully three dimensional situation reduces to a two 

dimensional problem if all quantities are independent of one of the 

coordinate directions, usually assumed be the z-axis. Furthermore, 

for a planar condition to exist, all body forces and surface forces 

acting on the solid must act in the xy plane (i.e. have no z 

component). 

a) PLANE STRAIN 

If, in addition to the above assumption, the normal strain in the z 

direction, €z ' is zero then a plane strain condition is said to 

exist. In this case the only non-zero stress components are the 

in-plane components ax ' ay. ~xy and the 

through-thickness stress az ' All the equations of elasticity 

are satisfied and this is an exact theory within the framework of 

three dimensional elasticity. Conditions of plane strain usually 

occurs if the thickness of the solid (in the z-direction) is large in 

comparision with the representative x and y dimensions. 
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b) PLANE STRESS 

On the other hand, it is assumed that the normal stress in the 

z-direction ,az ' is zero, a plane stress condition exists. In 

this case the in-plane stress component, az ' ay, ~xy 

are again non-zero together with the normal strain component, 

Cz • This is an approximate theory since the limitations placed 

on the variation of the Cz strain over the xy plane cannot 

generally be satisfied and ~xz and ~yz are non-zero. 

However it is assumed that they can be neglected for analysis. The 

body is thin (i.e. it is small in comparision with the 

representative x and y dimensions). Also there are no surface forces 

acting on the end faces (z - ± t/2). 

7.4 INTERFACE ELEMENTS FOR STRESS ANALYSIS 

These elements are available for modelling surface interface 

conditions, principally the gap/friction interface. The elements are 

provided with an interpolation or shape function that is compatible 

with the various elements in the program,so that an appropriate choice 

can be made to match the element chosen for the modelling on each side 

of interfaces. 

Typical elements are shown in Fig. 7.1 a. First a load system is 

constructed for reporting shear and pressure stresses between the 

surfaces (if they are in contact), as well as the relativ.~ 

displacements of corresponding points. It is assumed that the nodes 

on the opposite faces of the interface elements are matched in 

position and that this local system does not rotate during the motion. 

The local directions normal and tangential to the interface can be 
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specified directly [38] or calculated by the program. If the latter 

option is chosen the local system is based on the average interface 

surface, found by taking the average of the coordinates of 

corresponding nodes on the surfaces of the bodies A and B (Fig. 7.1 

b): 

x s 1/2 ( xNA + xNB ) 

1he 'average interface surface' is then constructed using the 

element's interpolation function and these positions. The normal is 

defined as the normal to this average interface surface, pointing from 

surface A to surface B. If the average normal direction does not give 

the correct definition of the normal direction, it ought to be 

specified using *NORMAL (a module in the software to specify the 

normal direction) option. 

The program calculates the initial clearance between the surface at 

each calculation point from the coordinates specified for the surface 

nodes forming the interface elements. Thus, if the clearance is 

small, these coordinates should be given to sufficient accuracy. The 

stress calculation points are always between the corresponding node 

pairs of the two surfaces. Then at each such point, the program 

determines if the two bodies are touching or not, based on the 

relative positions of corresponding points of the nodes of the two 

surfaces, projected on the normal direction. If the bodies are not 

touching, no forces are transmitted at this point. If they are 

touching, the appropriate surface theory is applied to model the force 

transmission. 

The surface theory presently implemented in the program is a classical 

Coulomb friction law: the surfaces slide when the shear stress 
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between them tries to exceed the coefficient of friction times the 

normal stress. The coefficient of friction is assumed to be constant. 

For perfect sliding , coefficient of friction ~ ~ 0; the surfaces 

lock in shear as soon as they touch when ~ is very large (e.g. 

l.E10) • 

7.5 19 mm MINING CHAINS 

Plane stress/strain analysis of chains in contact is the second most 

economical analysis after the beam analysis (Chapter 6). To carry out 

this analysis it was necessary to model only a quarter of the 19mm 

mininig chain because of geometrical and loading symmetries. The 

mesh, Fig. 7.2, consists of 90 eight-noded quadratic isoparametric 

plane stress/strain elements with 16 three noded one dimensionaL 

interface elements. The mesh is very fine in the region of contact to 

be able to detect very closely, the effect of contact on the contact 

area, pressure, and deformations. The refinement was carried out 

using the facility called Multipoint Constraint (MPC) in the software, 

ABAQUS [38,39]. This allows the analyst to go from one element to two 

in two and three-dimensions by constraining the appropriate nodes 

[129]. I=t is.:a~very efficient way of mesh refinement and details can be 

found in the ABAQUS User's Manual. The mesh is constrained at the 
• -- f - - -- -- --- .---- -- -- - --~-..-----~----._-?- -- -- - ---
centre of the barrel is the y-direction and at the crown in the 

- --'--- ---- - --- ----- _. - - . 

x-direction. A uniform pressure was applied to the face of elements 

lying at the centre of the internal link in the y-direction. The 

magnitude of this pressure is twice the nominal stress at the centre 

of the barrel due to differential areas. This application of load is' 

more realistic than a point load at the centre of internal link 

[44,45,46]. 
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Geometrical nonlinearity was also considered with convergence 

tolerance ranging from .5 % and 1.% and automatic incrementation. 

7.5.1 TOTAL STRESSES 

The model described earlier was analysed elasto-plastically with the 

same material model as in Chapter 6. Plane stress and plane strain 

analysis were carried out at various calibration loads and up to 

failure. Fig. 7.3 shows the various stress contours (plane stress 

case) for cl- a)260 kN, b) 320 kN, c) 380 kN and failure load of 497 

kN. As the c~libration load increases, the stresses at the outside 

barrel increase and it falls as soon as the link starts failing. This 

is also,ind~c~~t~veQf yielding taking place as the calibration load 

: increase-s.: The stresses around the contact region increase wi th 
_ ~ L.h 1 

increase in calibration load. To obtain a clear picture at the 

boundaries (inside and outside), the stresses (largest absolute 

principal stresses) are plotted, Fig. 7.4 and 7.5 for both plane 

stress and plane strain. 

At the outside, the stresses at the barrel are compressive and range 

from 500 to 1500 MPa depending on the calibration level; whereas 

stresses at the crown are tensile and range from 1000 to 2000 HPa. 

Plane stress and plane strain analysis both give similar stress 

pattern with plane strain stresses rather high, Fig. 7.4. At the 

inside, the opposite is true, i.e. stresses at the barrel are tensile 

and crown are compressive. Similar patterns exist for both analyses 

with plane strain resulting in rather high stresses, Fig. 7.5. The 

stresses resemble the results from the beam analysis (Chapter 6) at 

the outside and inside. 
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The deformation at various calibration levels and failure load are 

given in Fig. 7.6 for plane stress case. Yith increase in load, the 

links get pulled in at the barrel and extended out at the crown. 

Consequently, the contact and penetration between the links increases. 

This will be investigated in the next section. 

7.5.2 CONTACT PRESSURE AND AREA 

Implementation of interface elements in two dimensional plane 

stress/strain analysis of chain resulted in the evaluation of contact 

between the chain links. The contact starts with a point at the crown 

and as the load builds up, the contact points increase to 2, 3, and so 

on. The extent of contact pressure and area for both elastic and 

elasto-plastic materials are considered below: 

A) Elastic material 

The contact pressures at the surface of contact along the outer link 

are give in Fig. 7.7 at various load levels for plane stress and 

strain conditions. The pattern for both cases is the same and is that 

of approximately quarter of an ellipse, which is expected 

theoretically for two links in contact, as established earlier 

(Section 7.2). Similar variation in contact angle and pressure exist' 

between them with somewhat higher values in the case of theory. The 

theoretical result does not take into account any deformation of the 

link as a whole, whereas in fact the load tends to reduce the radius' 

of curvature of the link, increasing the area of contact and reducing 

the pressure. Plane strain analysis results are rather higher than 

plane stress case at various calibration loads. 
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B) Elasto-plastic material 

Fig. 7.8 illustrates the results for this case. The contact pressure 

remains constant just over yield stress, and shoots up just before 

falling to zero (plane stress). Similarly, the plane strain behaves 

the same with a constant pressure of higher magnitude. Yith an 

increase in calibration load, the plane strain analysis gives higher 

contact pressures and corre5polldingly "maller contact ares.s than the 

plane stress analysis (Fig. 7.9). The contact ceases to exist 

between the links at about 53.45 degrees at the outer link, as the 

inner link starts to wedge into the outer link. The extent of contact 

area varies of course with load, Fig. 7.9. 

7.5.3 RESIDUAL STRESSES . . 

The chain model was loaded up to calibration loads automatically and 

unloaded to give the residual stresses. This was achieved in 28, 44 

and 40 increments as the calibration load built up. The Von Mises 

residual stress contours are given in Fig. 7.10. At the first 

calibration load there is about 200 MPa residual stresses at the 

barrel and crown with larger variation at higher calibration loads. 

In the region of the crown, on the inside, the residual stresses 

predicted for plane stress conditions are tensile, whereas for plane 

strain conditions they are largely compressive (Fig. 7.11). The 

stresses in the barrel for the plane stress condition are higher for 

lower calibration loads with no significant change at the largest 

calibration load, Fig. 7.12. 

There is a significant variation in the residual stress distribution 
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at the inside of chain link with higher tensile stresses at the crown 

(for plane stress) than that of in plane strain. The stresses at the 

barrel are all compressive with lower values for the plane strain 

condition, Fig. 7.11. 

Overall, the residual stresses at the boundaries of the chain link are 

compressive with larger magnitude at the inside of the shoulder and at 

the outside of the barrel except at the contact zone (tensile). Th~y 

also increase with an increase with calibration load and resemble the 

results from the beam analysis (Chapter 6). 

7.6 7 mm LIFTING CHAIN 

The mesh with element numbering is given in Fig. 7.13 for the 7 mm 

lifting chain with elasto-plastic material properties as in Chapter 6, 

(Section 6.4). Similar analysis as the mining chain (previous 

section) was carried out in plane stress condition only and the 

results are presented below: 

The Von Hises stress contours are given in Fig. 7.14 at various 

calibration loads, and stresses (largest absolute principal stresses) 

at the inner and outer surface are given in Fig. 7.15 and 7.16, and 

deformation at Fig. 7.17. Before the chain fails at 64 kM, the 

stresses drop dramatically at the inside barrel and outside crown. 

Otherwise, the stresses behave as expected - with higher calibration 

loads resulting in higher stresses. 

The plastic contact pressure remains steady with lower pressure at 

failure stages, Fig. 7.18. The elastic contact pressure variation is 

also included in Fig. 7.18 (Comparing with Table 7.1), highlighting 
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the effect of considering plasticity. The contact angle versus 

nominal pressure at the central barrel is given in Fig. 7.19, 

indicating an almost a linear relationship. 

The residual stresses are given in contour form (Von Mises Stresses) 

and plots at inner and outer boundaries of the chains, Fig. 7.20, 

7.21 and 7.22. No significant residual stresses are introduced by the 

first calibration load except at the region of inside barrel and 

crown. But as the calibration loads increase, the residual stress 

distribution changes dramatically (b and c). Similar behaviour 

appears at the boundaries with a drop for the third calibration load 

at the outside barrel. Again the stresses at the boundaries are 

compressive except at the inner contact region and are comparable to 

those obtained using the beam analysis (Chapter 6). 



-----------------

CHAPTER 8 

FINITE ELEMENT SI'RESS ANALYSIS OF CHAINS (3-D) . . 
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8.1 INTRODUCTION 

Soon after the emergence of the finite element method for analysis of 

linear elastic structural problems,it was further developed to be used 

for nonlinear problems. Initially, in the mid-sixties, these 

developments were concerned with the implementation of non linear 

constitutive equations in finite element codes which had been designed 

for linear elastic analysis (130), quoted in (131). Therefore, 

geometric nonlinearity was also included in the finite element 

analysis methods, and again the starting point for such nonlinear 

analysis was linear elastic finite element analysis (131). 

The researchers who carried out these analyses_generally _~ought of 

their nonlinear problems as modified linear problems, which resulted 

in a solution method called the initial stress (strain) method, 

nowadays known as modified Newton-Raphson method. Another type of 

method which emerged was to see nonlinear problems as a series of 

linear problems, to be solved sequentially. This is the so-called the 

tangent modulus method, nowadays recognised as the full Newton-Raphson 

method. Various other nonlinear solution methods have since been 

developed and are discussed elsewhere [127,132,133, ••• ). 

There are problems in which the above types of nonlinearity are 

combined. A paper by J.C.Negtegal (131) discusses this topic well in 

detail. There are two classes of combined nonlinear problems. One 

type of problem is the geometric instability problem with material 

nonlinearity. In this problem, the main nonlinearity is of a 

geometric nature and is supplemented by nonlinear material behaviour. 

A typical example of such a problem is a spherical cap with ring load. 

The second type of problem is characterised by large scale material 

, 
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nonlinearity, which 

must also be taken 

has as a consequence that geometric nonlinearity 

into account. Typical areas in which this 

situation arises are the 

analysis of chain links 

yielding: the latter is 

analysis of metal forming problems and the 

under loads, such as to cause plastic 

the subject of this research work. The 

finite element formulation, constitutive equations, element selection 

and solution procedure are all given in the ABAQUS theory manual [39] 

as well as in some standard text books [127,134]. 

The following preliminary general considerations apply to the finite 

element analysis of chains: 

a) Load incrementation - one of the difficulties encountered in any 

non linear incremental-iterative solution scheme is the choice ~f load 

increment. An improper choice of load increment may result in an 

expensive iteration or convergence may never be achieved. Thus from 

economical point of view, the automatic incrementation option should be 

used when the solution is not known (in the case of chain analysis to 

failure), and manual incrementation when the solution is either known 

or can be predicted (in the case of calibration of chains). 

b) Convergence criterion - at the end of each iteration, the solution 

is checked to see whether it has converged or diverged within pre-set 

tolerances. A convergence tolerance that is too loose results in an 

inaccurate solution and one that is too tight results in needless 

accuracy. Hence, in this study, a realistic convergence tolerance was 

taken in the range of 0.3 % to 1.0 % for load and moment tolerances. 

c) Analysis termination criterion - there are two criteria to end an 

incremental-iterative scheme. Firstly, the failure of a structure 
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takes place when no further loading can be sustained. This is 

provided for in ABAQUS when the load increment becomes smaller than 

0.001 percent of the applied load (as is the case in all failure load 

determination). Secondly, the failure of a structure makes the 

convergence difficult to satisfy in a specified number of iterations. 

This is implemented in ABAQUS and 20 iterations were used throughout 

this chapter. 

In this chapter a complete three dimensional analysis of chains will 

be carried out with a realistic pressure distribution due to contact 

(considering the observations in Chapter 7) between chain links. 

First, the contact pressure assumption will be disscused in detail, 

(Section 8.2). Then, the mining chains (19 mm circular and 22 mm oval 

cross-section) will be analysed to examine the effect of changes. in 

link geometry on the stress pattern under elastic and elasto-plastic 

conditions during calibration and loading to failure (Section 8.3). 

Finally, the lifting chain will be considered under similar loading 

conditions to those of mining chains (Section 8.4). 

8.2 CONTACT PRESSURE ASSUMPTION 

In the three-dimensional finite element analysis of chains, the 

modelling of loading is as important as geometrical modelling which 

will be discussed in the next section. From the theory of two elastic 

bodies in contact ([121), Chapter 7) the contact pressure envelope is 

ellipsoidal. In the case of plasticity, this will not be the case, as 

was shown in Chapter 7 for the two-dimensional contact. The ideal 

envelope can be found by application of three-dimensional contact 

analysis, which was not possible in the course of this research. But 

a compromise was made in assuming a contact pressure envelope oy 
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taking into account the elastic contact envelope and the 

two-dimensional contact analysis results. The assumed contact 

envelope is shown in Fig. 8.1 for chains of oval and circular 

cross-section. In both cases, the assumed envelope (with a pressure 

of some 3000 and 1000 MPa) is applied at the surface of elements 

refined at the inside of the link crown, shown in Fig. 8.2, where the 

contact occurs. 

Vith the above envelope, the sizes of the elements in the refined zone 

were changed (by altering the angles ~ and ~). ~ and ~ are 

the subtended angles of contact at the crown in the z and y-directions 

respectively, Fig. 8.2. In each case an elastic finite element 

analysis was carried out to determine the reactions at the .centre df 

the link (in the y-direction) for evaluation of applied load •• The 

angle ~ was then plotted against the applied load. The results of 

similar analyses for all ~, considered in this research, are given 

graphically in Fig. 8.3. The size of the elements can be adjusted 

from this graph to achieve any particular load (by choosing 

appropriate values of ; and ~). Table 8.1 shows the corresponding 

values of ~ and ~ for all the grades of chains at various load 

levels. It also shows the contact angle for 19 mm mining and 7 mm 

lifting chain from the two-dimensional contact analysis (Chapter 7),: 

at low loads the values are comparable with those assumed in the 

three-dimensional analysis but are somewhat larger at higher loads. 

The relationship between ~ and ~ is given by: 

Rl~ a R2; 

(RI is the inner radius of the link at the crown and R2 is the 

radius of cross-section of the link). 

8.3 MINING CHAINS 
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High-tensile steel chains are used in mining equipment to transport 

coal from the mine face to the surface, hence the name "mining chain". 

Their size varies from 14 to 26 mm diameter. In this research, 19 mm 

diameter and 22 mm oval cross-section (oval-link) mining chains were 

investigated. The configuration of both types of chains are given in 

Chapter 5 (Fig. 5.2 a). Geometries (eight-shape and elliptical) 

different from that of standard chains will be disscused in Section 

8.3.1 and the oval-link chains will be considered in Section 8.3.2. 

8.3.1 19 mm MINING CHAINS 

A full three-dimensional stress analysis of chains was undertaken to 

understand the state of stressing under both calibration and service 

loading as well as to determine the residual stress distribution 

resulting from the calibration processes. The finite element 

formulation of the problem was omitted but can be found in the ABAQUS 

theory manual [39] as well as in the standard text books on the 

subject [127]. 

It was necessary to model only an eigth of the chain link because of 

geometrical and loading symmetries. A suite of programs 

in the Pascal programming language was developed to generate the mesh 

by choosing appropriate values of the parameters (Fig. 8.2 and Fig. 

5.2 a). 

R1 - internal radius at the crown, , 
R2 - radius of the chain link, 

L - half the barrel length, '- -----

M1 - number of segments in the barrel, 

M2 - number of segments in the shoulder (exclusive of 6 segments in 

the refined zone), 
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e - angle of straightness ( =0,+24 and -24 for the standard, eight 

shape and elliptical), 

+ _ angle of refined zone at the section through the crown, 

~ - angle of contact. 

Solid elements with 20 or 27 nodes with reduced integration were 

chosen: these use a lower order integration to form the element 

stiffness. This can usually provide improved accuracy and 

significantly reduces running time in three-dimensional analysis. The 

multipoint constraint (*HPC) facility was used to refine the mesh in 

the region of contact between chain links, as proposed in Section 8.2. 

Application of multipoint constraint (HPC) for three-dimensional 

elements can be found in the ABAQUS manual [38,39,40). The 

formulation of the multi point constraint is also covered by Ang et al . . 
(129). *HPC enables mesh refinement to be produced by permitting two 

smaller elements to be in contact with one larger element on one face 

of the latter. 

The mesh is constrained at the centre of the barrel in the 

y-direction, at the crown in the x-direction and at the midplane in 

the z-direction. The required loading may be applied using the 

procedure established in Section 8.2 (i.e. by generating a mesh with 

appropriate parameters). 

Geometrical nonlinearity was also considered in all the analyses with 

convergence tolerances of 0.3 r. to 1.0 r. with either automatic or 

manual incrementation, depending on which was suitable. The same 

material model as in Chapter 7 was used with calibration loads of 260 

kN, 320 kN and 380 kN. 
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8.3.1.1 MESH REFINEMENT 

In finite element stress analysis, the solution depends on the mesh 

size, i.e., the finer the mesh the better the results are up to a 

point. But finer meshes result in longer running times, hence a 

compromise needs to be made. In this section, the effect of mesh 

refinement on the total and residual stresses was investigated with 

the intention of arriving at an optimum number of elements to achieve 

the best solution. 

Two parameters (M1 and M2), the number of slices in the barrel and in 

the shoulder respectively, Fig. 8.2, were chosen as follows: 

a) M1 = 1 and M2 = 1 

b) M1 s 3 and M2 = 2 . . 
c) M1 = 6 and M2 s 4 

Loading of 320 kN (its equivalent pressure) was applied in all three 

cases with the boundary conditions and material properties given in 

Section 8.3.1. The residual stresses were found by taking the model 

through a loading-unloading cycle. The total and residual stresses at 

the inside and outside of the model are plotted in Fig. 8.4 and 8.5 

for all the mesh sizes. It can be seen that the residual stresses in 

case (a) are very different from those in cases (b) and (c), which are 

virtually the same. The total stresses also behave in a similar 

manner. Since the refined zone was kept unchanged, the total and 

residual stresses were the same in that region in all cases 

considered. Hence, case (b) is the optimum case giving a shorter run 

time than case (c) and results that are in agreement with the more 

precise results to be expected from the more refined mesh (c). 

8.3.1.2 ELASTIC STRESSES 
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Elastic stress analysis was carried out for all geometries (standard, 

eight shape and elliptical) whose meshes are given in Fig. 8.6 (a,b 

and c). The elastic stresses are given in Fig. 8.7 for the outside 

and inside the links. The stress distribution is similar to that in 

which a point load was applied at the crown [45,46]. Overall, the 

eight shape link has the lowest stresses except at the inside 

transition (largest); the elliptical link has the largest stresses 

with the exception of inside transition; the standard link seems to 

have stresses intermediate between those of the other two geometries. 

8.3.1.3 TOTAL STRESSES 

The finite element elasto-plastic analysis of all the geometries was 

carried out for all the calibration levels and also to failure. The 

total stresses are plotted at the inside and outside for all the 

geometries and for all the load levels, Fig. 8.8 to 8.15. 

The total stresses at the inside of the links are tensile in the 

barrel and some part of the shoulder, and increase with increasing 

calibration load, Fig. 8.15. The stresses at the inside crown are 

compressive with large magnitude resulting from the local pressure 

loading. The overall stress pattern is the same as the elastic stress 

pattern. 

The total stresses at the outside of the links are compressive in the 

barrel and some part of the shoulder and tensile at the crown of the 

link, Fig. 8.14. As the calibration load increases, more yielding of 

the link takes place, and when the fracture load is reached, extensive 

yielding has taken place. 
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In agreement with experimental results, the numerical analysis 

indicates that the links with different geometries will fail at 

different loads (Table 8.2). The failure load of the elliptical link 

is very closely predicted by the finite element method, whereas the 

failure loads of the standard and eight shape links are underestimated 

by 6 % and 8 % respectively. 

The mesh for the elliptical link under failure lOdd was gen~rated with 

a modified version of the mesh generating programe for the standard 

and eight shape links. 

8.3.1.4 RESIDUAL STRESSES 

The residual stresses were found by taking the models through a . 

loading-unloading cycle. The loading was achieved by 15 equal 

increments ,and the unloa~ing by 5. The inside and outside residual 

stress distributions are presented below: 

The residual stresses at the inside are given in Fig. 8.16 to 8.19. 

They are compressive along the barrel except for the eight shape link 

which exhibits some tensile stress at the beginning of the barrel. 

The stresses at the refined area and nearby are tensile. The stress 

patterns appear to be the reverse of the total stresses (Section 

8.3.1.3) Fig. 8.19. 

The residual stresses at the outside are given in Fig. 8.20 to 8.23. 

They all are compressive with varying degree of magnitude and there is 

no variation in the stresses at the crown due to different geometries, 

Fig. 8.23. The residual stresses ,in general, increase as the 

calibration load increases, but some variation exists in some cases. 
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The total and residual stresses at the crown do not vary as a result 

of geometrical changes except at the inside zone (due to the 

application of pressure at this zone), Fig. 8.24. The variation due 

to geometry can be seen in Fig. 8.25 for the centre of the link. 

Residual stresses for the standard link geometry at the centre are in 

good agreement with the results obtained from the neutron diffraction 

work (Chapter 4), with appropriate material models and the pattern is 

the same as in Fig. 8.25. The stresses at the sections through the 

centre of the barrel and crown both correspond to the calibration load 

of 320 kN. 

8.3.1.5 BEHAVIOUR OF STRAIN GAUGES NO. 3 AND 10 

In the strain gauge work discussed in Chapter 5, it was found tha~ the 

strain gauges numbered 3 and 10 ,positioned at 60 degrees to the 

crown, behaved very oddly. That is to say when the links were being 

unloaded, the strains at these gauges increased (in some cases) rather 

than decreasing as expected. This phenomenon was investigated using 

the finite element analysis of the all three geometries. The results 

of the analysis are plotted either for the same position as ~s~~ 
and 10 or positions on either side of the gauges. In Fig. 8.26, the 

strains in the y-direction are plotted for a loading-unloading cycle. 

Similar variations in strain are also observed in the x and 

z-directions. The anomaly occurred in three cases : 

a) For the elliptical shape link 

b) For the standard link if the gauge is slightly closer to the 

crown than its designed position. 

c) For the eight-shape link if the gauge is slightly closer to the 

crown than its designed position. 



113 

A slight discrepancy in the gauge position is entirely possible, since 

the installation of the gauges exactly on the marked position is very 

difficult and also the marking of the position involves inaccuracies 

because of uneveness in the link caused in the manufacturing process. 

It may thus be concluded that the numerical analysis has reproduced, 

at least qualitatively the anomaly observed experimentally. The same 

conclusion may also be arrived at by considering the largest absolute 

principal stresses plot verses loading, Fig. 8.27. 

8.3.2 22 mm MINING CHAINS (OVAL-LINK AND EQUIVALENT CIRCULAR 

CROSS-SECTION LINK) 

The heavy-duty oval-link chain was designed to allow a stronger chain 

to be used in a panline of specified size (Fig. 2.3). For example, 

the 22 mm pan line originally designed to accommodate either 22 mm 

twin outboard or 26 mm twin inboard chain assemblies of the 

conventional type, will, with the development of the oval-link mining 

chain, now be capable of utilising 26 mm twin outboard and 30 mm twin 

inboard assemblies, creating obvious savings in pan line costs, 

weights and heights (135). 

The oval-link and its equivalent circular cross-section link with the 

same inner radius at the crown and the same barrel length and 

cross-sectional area were analysed using the finite element method and 

the results are presented in the following sections. The mesh for the 

oval~link was generated using another Fascal program (Fig. 8.28), 

while the equivalent link was generated with the original program. 

8.3.2.1 ElASTIC STRESSES 
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The mesh of Fig. 8.28 was loaded in two ways using either: 

a) a point load at the crown 

b) the contact pressure envelope established earlier (Section 8.2) 

The elastic stresses corresponding to the first calibration load (393 

kN) are given in Fig. 8.29 for the inside and outside the link. The 

stresses at the top layer and bottom layer (Fig. 8.28) of the 

oval-link are identical in both cases: hence, only the top layer 

stresses are given except in the region of contact, where the top 

layer experiences higher stresses under the immediate prescribed 

loading pressure. Higher stresses are experienced when the point load 

is applied, Fig. 8.30 and 8.31; stresses are ignored at the region 

of application of the load. Since the modelling is here unrealistic. 

Furthermore, the stresses of the equivalent link are higher than those 

of the oval-link when either a point load or a contact pressure. 

envelope was applied, Fig.29. 

8.3.2.2 TOTAL STRESSES 

The stresses at the inside and outside are shown in Fig. 8.32 given 

by a complete finite element analysis of the oval-link for two 

calibration loads, 393 kN and 489 kN,and for the failure load. The 

stresses generally increase with the increase in the applied load for 

both the inside and outside the link. 

Similar results occurred in the case of equivalent link, Fig. 8.33. 

The total stresses for the equivalent link are given in Fig. 8.34. 

The link behaviour under calibration load of 489 kN is shown in Fig. 

8.34 for elastic and elasto-plastic analysis. The barrel and outer 

crown yielded completely, whereas in the elastic state, the 

inside-barrel stresses are well below yield stress (Section 8.3.2.1). 
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The total stresses are given in Fig. 8.35 and 8.36 under the first 

calibration load and the failure load. The oval-link underwent 

smaller stresses than its equivalent under the first calibration load, 

Fig. 8.35, while at failure, the stresses in the oval-link are larger 

at the outside barrel and lower at the crown than those of the 

equivalent link, Fig. 8.36. The failure load of the oval-link was 

predicted to be 546 kN, 3.4 r. lower than that of the equivalent link. 

The actual failure load of the oval-link was 606 kN, the numerically 

predicted figure being 10 r. less. 

8.3.2.3 RESIDUAL STRESSES 

The residual stresses were found by taking the models through a 

loading-unloading cycle. They are plotted for the inside and outside 

of the links, Fig. 8.37 and Fig. 8.38 Vith an increase in 

calibration load, the residual stresses also increase in the case of 

both links. This is very significant in the oval-link. The stress 

pattern remains the same for both links, although they have different 

cross-sections. For both links, the peak stresses are positioned 

just after the transition zone at the inside and are roughly equal to 

the largest stresses at the outside the link. Such higher compressive 

residual stresses at the transition zone are very desirable. 

Fig. 8.39 illustrates the residual stresses caused by the calibratiou 

load of 393 kN for the two links. The equivalent circular 

cross-sectional link has larger stresses than those of the oval-link 

at the inside whereas the oval-link has larger stresses along the 

outside of the barrel. 

The stresses in the refined zone and nearby are invalid because of 
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application of pressure and ought to be ignored. 

The total and residual stresses are given through a section at the 

centre and crown for the two links under a calibration load of 489 kN, 

Fig. 8.40 and Fig 8.41. There is no difference between the two at 

the centre, but some difference at the crown, where the pressure was 

applied - at the start and end curve (invalid results because of load 

application). 

8.4 7 mm LIFTING CHAIN 

Three-dimensional stress analysis of 7 mm lifting chain was carried 

out with the material properties given in Chapter 7 and with~the same 

boundary conditions as for the mining chains. A mesh with 3 and 2· 

slices at the barrel and shoulder of the link was considered with a 

refined zone for contact pressure implementation. First an elastic 

analysis was carried out with stresses shown in Fig. 8.42 at the 

inside an outside the barrel. The model was then loaded up to 

calibration loads elasto-plastically to compute the total stresses. 

It was also loaded up to failure load (64 kN) and the stresses are 

given in Fig. 8.43. Finally the unloading was completed to give the 

residual stresses, Fig. 8.44. 

Total stresses increased with increase in calibration load. 

Similarly, the residual stresses increased, except for the third 

calibration load, in which case, the stresses do not appear to have 

changed significantly at the outside the barrel with increasing 

calibration load, Fig. 8.44. 

Fig. 8.45 to 8.47 give the stresses through section at the centre, 



117 

transition and crown to help in interpreting the effect of calibration 

load on fatigue failure. The total and residual stresses have the 

same pattern at the transition and centre sections, differing at the 

crown. The effect of increase in calibration load is very significant 

at all three sections. 

8.5 OTHER ASPECTS OF LINK GEOMETRY 

So far during this research only cross-sectional and overall link 

geometries such as inward or outwardness of the links have been 

considered. Other aspects of the link geometry such as increase in 

barrel length (pitch) and internal radius at the crown have not been 

been investigated. In this section a thorough understanding Df the 

above mentioned parameters will be attempted for the 19 mm standard 

mining chain. 

8.5.1 INTERNAL RADIUS AT THE CROYN 

Barrel length of the standard 19 mm mining chain was kept constant at 

17 mm and only the internal radius at the crown was allowed to change 

(9.5, 12.7 ,and 16 mm). The model was loaded with the pressure 

distribution established earlier (Section 8.2). A complete elastic 

and elasto-plastic analysis of the link was carried out for all three 

cases and the stresses at the boundaries (outside and inside) were 

plotted, Fig. 8.48 and 8.49. The stresses were raised by the 

increase of internal radius as expected, but considerable rise was not 

achieved in the elasto-plastic analysis except at the tensile peak 

position at the inside of the link. Most importantly, the peak 

tensile stress position was moved towards the crown with the increase 

in internal radius. Resjdual stresses were also obtained by taking 
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the models through the loading-unloading cycle and are given in Fig. 

8.50 and 8.51 at the outside and inside of the links for calibration 

load of 320 kM. The residual stresses decreased with increase in 

internal radius. The internal radius of 9.5 mm is the optimum radius 

as far as the total and residual stresses are concerned, but it is not 

practical because of the interlink configurations. Hence the second 

best radius (R1=12.7), given in the British Standards Specifications 

for this grade of chain is a satisfactory practical choice. 

8.5.2 BARREL LENGTH (PITCH) 

Three different barrel lengths were chosen for a fixed internal radius 

at the crown (12.7 mm): L= 10, 17 and 27 mm. From the elastic and 

elasto-plastic analysis of all three cases the stresses were plotted, 

Fig. 8.52 and 8.53. Vith increase in barrel length the total 

stresses were decreased in the elastic analysis and was unchanged in 

the elasto-plastic analysis. However the effect on the residual 

stresses are significant, Fig. 8.54 and 8.55. The barrel length of 

L=17 mm (given in the British Standards Specifications) is optimum a~ 

far as the total and residual stresses are concerned. 

On the whole, the British Standards Specification for the 19 mm mining 

chains has the optimum dimensions as far as the total and residual 

stresses are concerned for given link diameter. 



CHAPTER 9 

· . 

GENERAL DISCUSSIONS 
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9.1 INTRODUCTION 

In this work various experimental stress measurement techniques such 

as: x-ray, neutron diffraction and strain gauge methods were used to 

determine stresses in the 7 mm lifting chains, 19 mm mining chains and 

22 mm oval-link mining chains. In addition to the experimental work, 

FE was also used to compute the corresponding stresses which were 

either total (under calibration loads) or residual (as a result of 

calibration). Lastly, an extensive amount of fatigue testing of 7 mm 

lifting chain was carried out with some related direct stress tests on 

chain material specimens to show the effect of mean stress on fatigue 

properties of the chain material. Some of the above results were 

discussed under relevant headings and only the important overall 

features will be included in this section with special emphasis·o~ the 

potential benefits of differential heat treatment of chains. 

9.2 7 mm LIFTING CHAIN 

FE stress analysis of the 7 mm lifting chains gave the stresses under 

the calibration loads and the residual stresses as an end result of 

these loads. These stresses were obtained from various models, 

ranging from a simple beam analysis (1-0) through contact analysis 

(2-D) to three-dimentional (3-D) stress analysis. The str~sses from 

all three different analyses confirmed the existence of residual 

stresses as a result of calibration, the predicted magnitudes of the 

residual stresses being similar. Discrepancies are, of coures, 

expected because of the different theoretical modelling of the link 

and its loading, but overall the results are consistent. 

The x-ray measurement~ of the residual stresses also confirmed the 
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existence of the residual stresses, largely as expected from the FE 

work, as well as the effect of increased calibration loads on their 

magnitude. The stresses at the outer surface of the 7 mm lifting 

chain were all compressive with larger magnitudes in the middle region 

of the side and at the crown of the links. 

The effect of residual stresses on the fatigue properties of this 

grade of chain was demonstrated by fatigue testing results (Chapter 

3). Fatigue lives of the links were improved dramatically by 

calibration: up to tenfold depending on the degree of calibration. A 

calibration load of 20 kN (25 % over working load limit) did not have 

any significant effect on the fatigue lives since it was insufficient 

to cause plastic deformation. The effects were very -much more 

apparent with calibration loads of 30, 38.5 and 50 kN. The. upper 

bound for the calibration load for conformity with existing standard~ 

is 56 kN, which was calculated using the concept of energy absorption 

factor (Appendix A); in other words, the 50 kN calibration load 

chosen in the testing is permissible. Similar improvements were 

achieved in the testing of the chain material, in which the presence 

of residual stresses was simulated by a variation in mean stress. The 

results may be represented by reference to the concept of the Goodman 

diagram. The fact that the calibration of chains introduces residual 

compressive stresses at their surface produces a reduction in mean 

stress, which results in higher fatigue lives, in accordance with the 

Goodman diagram (and the experimental fatigue specimen results). 

9.3 19 mm MINING CHAIN 

A complete FE stress analysis was carried out on the 19 mm mining 

chain of different shapes (standard, eight shape and elliptical) and 
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22 mm oval-link mining chains. Experimental stress measurements on 

these links were carried out using x-ray, neutron diffraction and 

strain gauge techniques to establish confidence in the FE results. 

The link, slowly cooled after tempering, did not appear to exhibit 

surface residual stresses. Vater quenching after tempering gave rise, 

as expected, to surface residual compressive stresses. However, 

calibration (required to raise the load to which the chain behaves 

elastically) caused modification of these stresses so that the effect 

of water quenching was effectively lost. 

The neutron diffraction technique also confirmed the existence of 

residual stresses within the the link, with compressive stresses in 

the outer layer and tensile in the central region. Satisfactory 

quantitative agreement with the FE work was obtained. Strain gauge 

work also confirmed the residual stress pattern obtained by the other 

methods and was in good agreement with the FE calculations during 

loading, both under initial elastic conditions and also after 

yielding. 

The x-ray results clearly demonstrate the effect of increase in 

calibration load in increasing the magnitude of the residual stresses. 

The neutron diffraction work is particularly informative in that it 

provides quantitative confirmation of the FE results at positions 

within the body of the link. The results of the FE analysis of 

residual stresses might be made slightly more realistic by introducing 

the possibility of inelastic behaviour during unloading, which could 

not be modelled at the time this work was done. 

In the study of the optimum link geometry, to examine the way in which 
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link shape affects the load before plastic deformation begins in the 

uncalibrated condition, the following alternatives were considered: 

different link shape ( standard, eight shape and elliptical), link 

length, inside link diameter and oval cross-section (as opposed to the 

usual circular cross-section). In fact, the oval-link gave the 

highest value of nominal stress at yielding. As the service stresses 

are the summation of the residual and the stresses which would be 

produced if the links were loaded elastically, optimum link shape 

depends on whether a link is calibrated or uncalibrated. It also 

depends on the level of calibration and the applied load which may 

determine the fatigue fracture position (provided the link is not 

loaded beyond the calibration load). It is in fact found that the 

standard 19 mm mining chain link is the optimum shape as regard to the 

combination of the elastic stresses under load and the residual 

stresses; the oval-link geometry is advantageous in contrast to the 

circular cross-sectional link regarding elastic stresses only, whereas 

the situation is reversed considering residual stresses. Further 

general remarks will be made in the conclusions (Chapter 10) with 

respect to the link length and inside diameter. 

Anomalous strain gauges results (strains rising as the links were 

unloaded, Fig. 8.26 and 8.27) were obtained in determining residual 

stresses (Chapter 5). Similar anomalies were produced using the FE 

method indicating that some area at the position of strain gauges 

placed at 600 to the crown is behaving in this manner for 

standard, eight shape and 

close to the point which 

elliptical shapes. This position is very 

the maximum absolute principal stresses 

change from compressive to tensile, Fig. 9.1: Elastic FE analysis in 

which geometric changes are ignored gave a slightly different 

change-over position from that given by large-deflection elastic 
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analysis - but in the latter case the position remained unchanged with 

load. It had been thought that the anomaly might be connected with 

movement of this point during unloading, so that a change from, say, 

tension to compression at the gauge as a result of movement of the 

change-over point, would mark the expected change in strain during 

unloading. The FE results do not appear to support this hypothesis, 

however, and the cause of the anomaly remains unclear. During 

loading, the gauges involved also show a change in sign of the strains 

when plastic deformation sets in. It may be that some local 

deformation is taking place to cause the anomaly. 

9.4 FURTHER DISCUSSIONS 

The general form of residual stresses distribution in the chai~ links 

is quite complex, but in the barrel of the chain links, it can roughly 

be understood as arising from plastic flow in tension and bending 

under load, Fig. 9.2 (a). Then the tension and some of the bending 

is removed during unloading (Fig. 9.2 (b», but without refined 

analysis, the extent of bending cannot be evaluated. Hence the FE 

method plays an important role in establishing the residual stress 

distribution. 

The total force and moment operating on any section cut through the 

chain link (or body) to produce two halves must be zero to satisfy the 

static equilibrium condition within the link [291: 



124 

It is possible that there are more radical ways of affecting the 

properties of chains. If one considers load-carrying properties alone 

rather than, for example, fatigue strength, then one approach would be 

to make use of a higher tensile strength material by alteration of 

heat treatment or steel specification. This would, however, almost 

inevitably result in a reduction in the elongation of the chain at 

fracture and would not therefore be an acceptable solution. An 

approach that has been referred to (Chapter 2) is to make usa of 

differential tempering so that the crowns are harder than the barrels. 

This is done by an additional tempering operation with a specially 

designed coil so that the eddy currents are produced principally in 

the barrels. During tensile elongation, the crowns remain resistant 

to plastic deformation so that the bending moment applied to the 

barrel is much reduced. The stress state in the barrel then . . 
approximates to uniform tension, and there is no region of compression 

as in the standard chain. The extension of the chain then comes 

mainly from the barrels: the load-carrying capacity is increased 

because the barrel material, being entirely in tension, is more 

effectively used. 

Yhilst differential heat treatment is undoubtedly an effective method 

of raising the chain's load-carrying capacity, calibration is still 

employed to raise the effective elastic limit. The question of the 

effect of differential tempering on the residual stress field and on 

subsequent fatigue behaviour is unclear. 

A preforming stage to modify the chain shape has already been referred 

to, namely, the rolling of flats on the 22 mm round bar before formihg 

"oval" links. One can, of course, envisage more extensive preforming, 

carried out with the objective of raising the resistance to bending in 
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the crown, in much the same was as in the use of differential heat 

treatment, or possibly giving the barrel section a reduced resistance 

to bending. Some work has indicated that this approach might be 

effective (43), but it is questionable whether the extra manufacturing 

costs could be justified by the consequent improvement in properties. 

Although fatigue testing is specified for mining chain, it is not 

clear to what extent it is actually relevant, since most mining chain 

is withdrawn from service because of wear due to rubbing. For hoist 

chain fatigue properties are probably more relevant. However, if 

fatigue strength is important, and the chain is used with its surface 

unchanged from that produced by heat treatment in air, then the 

surface decarburization thereby produced means that the advantages of 

high tensile strength in improving fatigue strength are largely. lost, 

In these circumstances, calibration remains the only way of making use 

of the higher tensile strength, since higher residual compressive 

stresses can be produced in the higher strength material. In 

addition, as shown by Foly et al [24,25), removal of the decarburized 

surface could additionally be used as a means of raising the fatigue 

strength. 



CHAPTER 10 

CONCLUSIONS AND SUGGESTIONS FOR FUR'IHER WORK · . 
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10.1 CONCLUSIONS 

This work has dealt with the application of the finite element (FE) 

method to chains in order to determine the effect of the link shape on 

both the stress under load (total stresses) and residual stresses and 

to enable informed decisions to be made regarding the selection of 

link shape. The research was applied to 7 mm lifting chain and to 19 

mm and 22 mm mining chain, the diameter referring to the diameter of 

the circular section rod from which the link is manufactured. In the 

case of the 19 mm links, three geometries were examined: straight 

sided, pinched (eight shape) and elliptical. The 22 mm rod had flats 

rolled on it before manufacture of the chain: 

oval-link. The FE work was supported by 

it is referred to as 

theJEollowing.practical 

methods of stress determination: strain gauge (for stresses and u~der 

load and residual stresses): x-ray and neutron diffraction (residual 

stresses). Static tensile and fatigue testing (7 mm lifting chain) 

was also carried out. 

1 

Calibration of the 7 mm lifting chain significantly improved the 

fatigue performance. The improvement is ascribed to the presence of 

compressive residual stresses at the position of formation of fatigue 

cracks, which changes the mean stress in the fatigue cycle. The 

effect was reproduced with plain specimens, with a surface comparable 

to the chains', under direct stress loading. Statistical 

investigation showed that the fatigue fracture positions were affected 

by increase in calibration load and also by batch variation. 

2 

X-ray measurements of the residual stresses in 7 mm lifting chain and 

19 mm mining chain after calibration revealed the presence of 

compressive residual stresses in the surface. Residual stresses 
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within the volume of the 19 mm mining chain were measured by neutron 

diffraction and found to be in good agreement with the FE results. 

3 

Strain gauge measurements of the strains in the 19 mm mining chain (3 

link geometries) and the oval-link under load- both for the initial 

elastic strain and after yielding - were in good agreement with the FE 

work. The residual stresses measured by the strain gauges were 

predominantly compressive. There are two positions on the outside of 

the elliptical and oval-links where tensile residual stresses were 

indicated, in contradiction - of the FE work. This has little bearing 

on the chain's fatigue performance, however, since the stresses under 

load at these locations are compressive. 

4 

Most of the FE work was carried out with three-dimensional elemeqts. 

Comparable results could, however, be obtained with some reduction in 

computing time by the use of beam elements. Realistic representation 

of the loading is necessary: point loading between the links is 

inadequate. 

5 

Comparable results were obtained using two-dimensional contact 

analysis of the 19 mm standard mining and 7 mm lifting chains (Chapter 

7). Furthermore, increase in calibration load improved the surface 

residual stresses, that is, they became more compressive. The 

information on the contact area and pressure envelope was used to 

model the contact in the three-dimensional stress analysis. 

6 

A full three-dimensional stress analysis of all the above mentioned 

various link geometries were carried out. Overall, the standard 19 mm 

mining chain link geoemtry is the optimum shape as far as the total 

and residual stresses are concerned (Chapter 8). The stresses (total 
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and residual) in this link geometry tend to lie between the eight 

shape and elliptical link geometries. The residual stresses are all 

compressive except for the eight shape link which has tensile stresses 

on the inside of the barrel centre, confirmed by the strain gauge 

work. For a given nominal cross-sectional area, the oval-link 

geometry is advantageous in contrast with the circular cross-sectional 

link geometry considering total stresses only, while considering 

residual stresses the situaticn is reversed (Section 8.3.2). 

In the 19 mm standard chain link, a change in barrel length (pitch) 

and inside diameter (inside width) at the crown has a significant 

effect on the total and residual stresses at the chain link surfaces. 

For a given barrel length, the narrowest link is the optimum shape as 

long as the the inside diameter at the crown is larger than the chaln 

link's own diameter with respect to both total and residual stresses. 

On the other hand, for a giVen inside radius at the crown, the total 

stresses are decreased by an increase in barrel length and,in the case 

of the residual stresses, the situation is not clear cut, that is, the 

compressive residual stresses are larger in some regions than the 

others. 

Yhether a 
j 

link geometry is an optimum shape or not depends on the 

state of the service stresses (combination of total and residual 

stresses). This implies that for calibrated and non-calibrated chain 

links the optimum link shape would be different. All the stresses 

obtained from the FE work were validated by the use of strain gauge 

technique. Some discrepancy between the two sets of results is to be 

expected because elastic unloading was assumed in the FE work (that 

is, the Bauschinger effect was neglected). This should result in an 

over-estimate of the residual stresses. 
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10.2 SUGGESTIONS FOR FURTHER YORK 

The study reported here has shown that using the finite element method 

in conjunction with the experimental total and residual stress 

measurement techniques can provide valuable information about the 

effect of link shape on chain performance [136,137,138]. The 

experimental techniques have demonstrated the validitiy of the results 

predicted by FE analysis. The research can be extended in a number of 

ways: 

1 

The fatigue limits of the 7 mm lifting chain may be determined at 

various calibration loads with further testin~ of different batches to 

examine the effect of batch variations in the fatigue testing resu~ts. 

Better knowledge of the fatigue life statistics is needed to be able 

to predict the effect of chain length (the number of links) on fatigue 

life. 

2 

Further x-ray measurements of residual stresses are required to 

clarify the effect of increasing calibration load on the residual 

stresses in both grades of chains. In the neutron diffraction work, 

finer sampling volumes should be taken in the regions of steep stress 

gradients to establish the residual stress pattern more accurately 

within the centre of the 19 mm mining chain as well as extending the 

measurement to other critical sections such as: transition and crown 

regions. 

3 

Further work is required to establish the residual stress pattern 

thoroughly by using extra sampling points in the strain gauge work and 

further testing of the chain material specimens to complete the 
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stress-strain curve. The forming of the non-standard links needs to 

be improved so that they conform more accurately to the assumed model. 

4 

A complete three-dimensional contact analysis of the chains should be 

carried out to achieve the best solution in conjunction with other 

complicated alternatve geometries [47,48] not considered here. 

S 

Finite element analysis in conjunction with fracture mechanics should 

be applied to estimate the flaw size that the inspection techniques 

applied to chains should be capable of detecting [139]. 

6 

In service, chains can inevitably undergo impulsive or shock loading 

which can cause a sudden failure of the chain. This problem was 

approached in the appropriate standards by the introduction of· energy 

absorption factor (Appendix A) which is an empirical method and a 

through understanding of the problem may be achieved by the use of F~. 

7 

More radical changes in link shape may be considered, such as: 

variable cross-sectional area at different parts of the link geometry 

(e.g., narrower at the centre and thicker at the crown) perhaps 

coupled with differential heat treatment which is already in use in 

the chain industry. The FE can be used to take up this task. 

8 

Further work is required to clarify the anomaly ocurring in the strain 

gauge work for determination of residual stresses in the standard, 

eight shape and elliptical geometries (at the outside transition). FE 

residual stress determination should be extended to cater for the 

Bauchinger effect on unloading. 
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Fig. 2.2 Chain steel (rav material) in form of rings or bars . 
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Fig. 2.3 J . J. Series flight bar assembly. a) T~in outboard . b) 
T~in inboard. 

(Q ) 



( b ) 

Fig. 2.4 Lifting chains. a) used in lifting tackles. b) different 
sizes. 

Fig. 2 .5 Het forming of chain links over 20 mm diameter . 
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Butt welding of high grade round chains 

Butt welding Flash welding 

Characteristics 

short weld time longer weld time 
clean process dirty process 
low maLerial consumption high material consump:ion 

Chain bending requirements 

drawn annealed wire hot rolled wire 
very good surface finish cleaned rolled finish 
close bending tolerances wider bending tolerances 

acceptable 
notched weld ends plain weld ends 

Quality consistency with 
. . 

wider chain bending tolerances 

, 

poorer as operation better as operation 
mechanically controlled process regulated 

Application range 

up to 20 mm dia. approx. from approx. 13 mm dia. up 

Fig. 2.6 Butt welding 
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pitch 

Fig.7a Chain link lor butt welding 

Fig·7b Chain hnk for flash butt welding 

. , 

'or t~. s<~-:~::o:::~~ 

'\ I , 

Fig Ba At start 01 weld operation 

-,-
diameter 

- .. --

Krait fOr .• 0 - force for welding and upsetting; Gesamtstrom = total 
current, Schwelflstrom = welding current, AUckenstrorn = link back 
current. Elektroden = electrodes, Stauchstahlkraft .... upsetting 1001 
force. Gegenkraft . = chain link back reaction strength, Sattel ".. 
saddle •• 

Fig 8b AI start of weld operation 

Krait tur .... force 'or welding and upsetting, Gesamtstrom ... tot<J1 
current, SchweiBstrom '7 'Neldlng current, Ruckpnstrom".. hnk back 
current, Elektroden = electrodes. Stauchstahlkratt ... upsertlnQ 1001 
force, Gegenkrart. = cham link back reaction strength Satter ~ 
saddle ,.' 
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(Q) 

( b) 

Fig . 2 . 9 a) Vork station comprlslng of: wi r e drawing, forming, 
butt welding and trimming . b) Butt welding in one plane. 
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Fig. 2.10 Flash butt welding work station. 

Fig. 2.11 Standard furnace wit h fuel heating . 
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( Cl l 

( b l 

Fig. 2.12 a) Heat treatment centre (electrical induction) capable 
of continuous hardening and tempering of round link chains. b) 
Vater quenching in the heat treatment centre at (a). 
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Fig. 2. 13 Bend test of a single link. 

( a) 
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( b ) 

Fig . 2.14 a) Tens ile testing of 5 links (lOO t ons Av e ry) . b) 
" Pure" shear f a ilure of chains under tensile l oading . 
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Fig . 3.3a Specially designed grips vith crowns of chain link 
(holding arrangement). 



38 

3 

38 

24-

8 

46 24-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I , , 

156 

I 

i 
I 
I 
I 
i 

I . 
I 
I 
I . 

1-
I 
I 
I 

, 
1 

, , I 
I , 

I 

~ 

Threaded 

22 mm 

54-
t<1<;...-.-----~~ I R=5 

Fig. 3.3b Detail drawing of the grips (all dimensions in mm). 

. . 



157 

Centre Calibration load, kN 
Batch or Location 

End 
0 20 30 38.5 50 Total 

Trans. 12 2 3 4 3 24 
----------:------ ----- ----- ----- ----- -------. 

Centre Crown 2 0 8 7 1 18 
---------- ----- ----- ----- ----- ----- -------
Veld 5 0 9 7 8 29 

1 ~------- ---------- ----- ----- ----- ----- ----- -------. 
Trans. 21 4 15 3 5 48 

-----------f------ ----- ----- ----- ----- -------. 
End Crown 3 0 4 8 10 25 

-----------f------ ----- ----- ----- ----- -------
Veld 17 4 11 8 3 43 

Trans. 0 0 0 1 2 3 
._--------- ----- ----- ----- ----- ----- -------. 

Centre Crwon 0 0 0 0 1 1 
----------- ----- ----- ----- ----- ----- -------. 

Veld 15 0 11 5 2 33 
2 1-------------------- ----- ----- ----- ----- ----- ------_. 

Trans. 0 0 4 2 2 8 
---------- ----- ----- ----- ----- ----- -------. 

End Crown 0 0 0 0 7 7 
---------- ----- ----- ----- ----- ----- -------
Veld 4 0 10 2 11 27 

Total 79 10 75 47 55 266 

Table 3.1 A Hinitab output of the fatigue testing results of the 7 mm 
liftlng chain showing the effect of calibration on number of 
fractures. 
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(nominal stress.27-321 MPa) for various calibration loads,cl. 
D Implies that the sample is from the batch 2. 
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Fig. 3.8 Cumulative probability of failure at a load range ot 2-16 kN 
(nominal stress. 27-214 MPa) tor various calibration loads. cl. 
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Fig. 3.15 Typical chain fatigue fracture sur face showing rough and 
smooth regions . 
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Fig. 3.18 Fracture initiation from an existing dent , also beach 
markings can be seen at the transition zone (magnification factor 
65). 

Fig. 3 .19 Possible fracture initiation zone showing beach marking 
at the transition zone (magnificati on fector 130 ). 
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Fig. 3 .16 Fracture initiation from an existing dent at the we~d 
(magnitication factor 130). 

Fig. 3.17 Fracture initiation at two possible locations and rachet 
markings at the weld (magification factor 25). 
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10pm 

Fig. 3.20a General quenched and tempered structur e (containing 
inclusions) . 

Fig. 3.20b The cross-section of a chain link vith thickened grain 
boundries at the edge. 
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Fig . 3 . 21 Different locations of the fatigue fracture. 

Fig. 3.22 Location of fracture in chai n due to tensile (left) 
testing and fatigue testing. 
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Location Load level, kM 
of 

Fracture 13 14 15 16 18 19 20 22 24 

Trans. 0.0 73.3 80.0 54.4 22.2 11.1 22.2 20.0 14.0 

Crown 0.0 0.0 0.0 14.0 5.6 66.7 25.0 35.0 22.0 

-
lIeld 100. 26.7 20.0 31.6 72.2 22.2 52.5 45.0 64.0 

Centre 88.9 20.0 10.0 47.4 55.6 22.2 17.5 47.5 42.0 

End 11.1 80.0 90.0 52.6 44.4 77.8 82.5 52.5 58.0 

Table 3.2 Effect of load level, and centre and end links on the fracture 
location (in percentage). 

. . 

Location Calibration load, kM 
of 

fracture 
0 20 30 38 50 

Trans. 41.8 60.0 29.3 21.3 21.8 

Crown 6.3 0.0 16.0 31.9 34.6 

lie Id 51.9 40.0 54.7 46.8 43.6 

Centre 43.0 20.0 41.3 51.1 30.9 

End 57.0 80.0 58.7 48.9 69.1 

Table 3.3 Effect of calibration load and centre and end links on the 
fracture location (in percentage). 
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I 
I '---_______ ===--__ -''----------"1 

Batch 1 Batch 2 

Fi,. 3.25 Effect of different batches of chain on the position of 
the fatigue fracture (transition. weld and crown regions and centre 
and end link.). 
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Centrf) 

. . 

End 

Total 

Fif' 3.26 Effect of centre or end links on the position of the 
fa Igue fracture (total I! the sum of the centre and end link.). 
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Type Area Elongation l1ax. Tensile Yield Yield Diameter 
reduction ( % ) load strength load stress ( mm ) 

(%) (kN) (MPa) (kN) (MPa) 

60 7 22.5 1390 20.00 1235 4.j4 

Plain 55 8 22.8 1403 18.75 1169 4.52 

55 7 22.3 1390 18.75 1169 4.52 

Ave. 1394 1191 

55 14 19.6 1227 18.00 1127 4.51 

lIe1ded 57 8 22.5 1408 17.50 1095 4.')1 

50 14 19.6 1221 17.50 1091 4. i2 

-. 
Ave. 1285 1104 

-

Table 3.4 Tensile testing of chain link material (Ave. tensile strength, 

1340 MPa and yield stress is 1148 MPa). 
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Specimen Trial 01 02 Oave. VHN 
type number 

1 367 352 359 432 
/--------- ------- ------- --------- ---------

2 361 363 362 425 
--------- ------- ------- --------- ---------

,3 366 363 364 420 
1 --------- ------- ------- --------- ---------. 

4 362 355 358 434 
--------- ------- ------- --------- ---------. 

5 368 360 364 420 ---------- ------- ------- --------- ---------
6 354 360 357 436 

Average 428 

1 360 365 363 422 
-------- ------- ------- --------- ---------

2 355 353 354 444 
~-------- ------- ------- --------- ---------

2 3 351 357 354 444 
--------- ------- ------- --------- ---------- . . 

4 360 350 355 441 
--------- ------- ------- --------- ----------

5 357 353 355 441 

Average 438 

Table 3.5 Vickers pyramid hardness number for two specimens. 
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Fig. 3.28 Detail drawing of the chain material fatigue specimen 
(all dimensions in mm). 
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Rank Mean load, kN (amplitude is 8.35 kN) 
order 

10.73 7.06 3.34 -1.45 -6.27 

1 51530 51830 57440 84610 2000000+ 

2 94060 80610 81610 157090 2000000+ 

3 95850 108720 120290 198620 

4 110330 131710 229540 232370 

Mean 87943 93218 122220 168173 2000000+ 

Table 3.6 Effect of reduction in mean stress on fatigue life of chain 
material, mean stress varies in the range of 546 to -319 MPa-(i.e. 
corresponding to the mean load of 10.73 to -6.27 kN.), as-polished. . . 

Rank Mean load, kN (amplitude is 8.35 kN) 
order 

10.73 7.58 

1 32250 39130 

2 42310 82330 

Mean 37280 60780 

Table 3.7 Effect of mean stress on fatigue life of chain material, 
as-machined. 
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Fig. 4.1 Schematic diagram of back reflection method. 

. . 

Fig. 4.2 Back reflection experimental set-up. 
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Fi g. 4 . 3 Accessories used for the back reflection and x- ray 
diffraction experiments (flourescent disc, standard silicon sampl e , 
chain link and various specimen holders for diffractometer). 

Fig. 4.4 Typical photograph of a double exposure rings. 
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Fig . 4.5 Schematic diagram of diffractometer. 
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( b ) 
Fig. 4.6 Photographs of the laboratory x-ray diffractometer. a) 
x-ray diffractometer . b) recording equipments. 
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Tempering State of Position .p = 00 
.p = 450 

time calibration 
to left to rlgllt 

Centre 136.95 137.UO 13/.60 

Non-cal. 5 mm nght 136.9U U/.20 13/./5 
3 Hours 

5 mm left 13/.00 131.20 U/.60 

Calibrated Centre 136.95 13/.45 U/.4!l 

Non-cal.. Centre U6.90 U/.2;;, UI • 2;;, 

2 Hours Cal.ibrated 1 Centre 136.9;;, 13/.w U/.40 

Calibrated 2 Centre uO.95 137.30 137.J.:l 

Table 4.1 Diffraction peak angles for various samples at different 

positions on the 7 mm lifting chain. . . 

Tempering State of Position Residual stress, MPa, 1jI=45 0 

time cali bra t ion --To left To rignt 

Centre - 62 - 806 

Non-cal. 5 mm right -372 - 1054 
3 Hours .-

5mm left - 248 - 744 
--Callbrated Centre - 620 - 620 

Non-ca!. Centre - 434 - 434 

2 Hours Calibrated 1 Centre -310 - 5.58 

Calibrated 2 Centre - 434 - 24!l 

-Table 4.2 Residual stresses for the measurements of Table 4.1 for various 
r 

samples. 
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Calibration Residual stresses at various positions,MPa 
load (kN) 

P1 P2 P3 P4 P5 

0 - ::.3 - ::.3 
'-------------- -------- -------- -------- -------- ---------

30 - 69 - 251 
'-------------- -------- -------- -------- -------- ---------38.5 - 157 - 122 - 141 - 174 - 311 
'-------------- -------- -------- -------- -------- ---------

50 - 117 - 306 

Table 4.3 Residual stresses in 7 mm lifting chain links at various 
positions at the surface. 

Calibration Residual stresses at various positions,MPa 
load (kN) 

Pl P2 P3 P4 . P:;' 

0 - 304 - 257 
(-335) (-264) . -

-------------- -------- -------- -------- -------- ---------
260 - 167 - 321 

'-------------- -------- -------- -------- -------- --------
320 - 153 - 276 - 374 - 170 - 226 

------------- -------- -------- -------- -------- --------
380 - 280 - 270 

Table 4.4 Residual stresses in 19 mm mining chain links, as water 

quenched (the stresses inside the brackets correspond to electro-

polished case). 

Calibration Residual stresses, MPa 
load (kN) 

Pl PS 

u - 8:£ - 59 

-------------- ------------ -----------
260 - 235 - 268 

------------- ------------ -----------
320 - 288 - 253 

Table 4.5 Residual stresses in 19 mm mining chain link as air cooled_ 
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FILE HEIGHT WIDTH CENTRE AREA BAG CHISQ X Y Z 

7 0 
R8252 188. 0.705 109.075 141.27 8.6 1.21 0.0 1.0 0.0 

R8251 275. 0.700 109.026 205.21 17.3 1.57 0.0 3.0 0.0 

R8250 217. 0.693 109.203 160.54 19.9 1.00 0.0 6.0 0.0 

R8249 214. 0.730 109.214 166.00 ~o - 1.06 0.0 9.5 0.0 ::J .1 

R8248 170. 0.744 109.130 134.76 28.2 1.43 0.0 13.0 0.0 

R8247 172. 0.802 109.071 147.03 19.1 1.15 0.0 16.0 0.0 

R8246 184. 0.792 109.074 154.92 4.8 1.67 0.0 18.0 0.0 

:r= _ ACCURACY -- *'*'" 

FILE HEIGHT WIDTH CENTRE AREA BAG CHISQ X Y Z 

7 0 
R8252 - 0.021 0.009 6.51 1.3 1.21 0.0 1.0 0.0 

I. 

R8251 8. 0.018 0.008 8.05 1.8 1.57 0.0 3.0 0.0 

R8250 7. 0.023 0.009 7.54 2.2 1.00 0.0 6.0 0.0 

R8249 7. 0.027 0.010 8.41 2.8 1.06 0.0 9:5' 0.0 

R8248 7. 0.030 0.012 7.70 2.5 1.43 0.0 13.0 0.0 

R8247 6. '0.029 0.011 7.69 2.2 1.15 0.0 16.0 0.0 

R8246 6. 0.022 0.010 6.79 1.1 1.67 0.0 18.0 0.0 

Table 4.6 (211) diffraction peak data for the x-direction (0 Y 0) 
scan. ' , 

FILE HEIGHT WIDTH CENTRE AREA BAG CHISQ X Y Z 

7 0 
R8540 299. 0.697 109.020 221.64 10.1 1.24 0.0 1.0 0.0 

R8541 286. 0.662 109.000 201.65 11.1 1.71 0.0 3.0 0.0 

R8543 405. 0.610 109.220 262.82 22.4 1.69 0.0 6.0 0.0 

R8544 331. 0.778 109.218 274.15 23.2 1.50 0.0 9.5 0.0 

R8545 331. 0.750 109.158 263.74 24.0 1.47 0.0 13.0 0.0 

R8547 228. 0.745 109.100 181.07 17.5 1.32 0.0 16.0 0.0 

R8548 263. 0.744 109.036 208.48 18.7 1.42 0.0 18.0 0.0 
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... -- ACCURACY -- ••• 

FILE HEIGHT WIDTH CENTRE AREA BAG CHISQ X Y Z 

7 0 1.24 0.0 1.0 0.0 
R8540 8. 0.016 0.007 7.99 1.5 

R8541 8. 0.016 0.007 7.70 1.5 1.71 0.0 3.0 0.0 

R8543 . 11. 0.013 0.006 8.95 1.9 1.69 0.0 6.0 0.0 

R8544 9. 0.021 0.007 10.33 3.1 1.50 0.0 9.5 0.0 

R8545 8. 0.017 0.007 8.66 2.4 1.47 0.0 13.0 0.0 

R8547 7. 0.025 0.009 8.33 2.4 1.32 0.0 16.0 0.0 

R8548 8. 0.021 0.008 8.62 2.4 1.42 0.0 18.0 0.0 

Table 4.6 Cont.(211l diffraction peak data. for they-direction (O.y.O) scan 

FILE HEIGHT WIDlrl CE:'1TRE AREA BAG CHISQ X Y Z 
·7 0 . . 

R8239 136. 0.739 109.430 106.97 9.2 1.13 0.0 1.0 0.0 

R8240 134 .. 0.776 109.5"iO 1 10.51 ILl 1.28 0.0 3.0 0.0 

R8241 54. 1.257 109.068 71.62 14.6 1.25 0.0 6.0 0.0 

RS242 71. 0.761 10S.919 57.68 14.8 1.11 0.0 9.5 0.0. 

R8243 57. 0.876 109.174 53.28 10.6 1.68 0.0 13.0 0.0 

R8244 77. 0.727 109.346 59.34 13.7 1.34 0.0 16.0 0.0 

RS245 92. 0.778 109.440 76.23 8.9 1.25 0.0 lS.0 0.0 

**'" __ ACCURACY __ :o:x 

FILE HEIGHT WIDTH CENTRE AREA BAG CHISQ X Y Z 

7 0 
R8239 6. 0.030 0.011 6.1S 1.7 Ll3 0.0 1.0 0.0 

RS240 6. 0.032 0.012 6.40 1.9 1.28 0.0 3.0 0.0 

RS241 5. 0.159 0.036 11.11 4.8 1.25 0.0 6.0 0.0 

RS242 5. 0.050 0.020 5.27 1.6 1.11 0.0 9.5 0.0 

RS243 4. 0.068 0.022 5.47 2.0 1.68 0.0 13.0 0.0 

R8244 5. 0.047 0.017 5 ?- 1.8 1.34 0.0 16.0 0.0 ._1 

R8245 5. 0.043 0.015 5.68 1.8 1.25 0.0 18.0 0.0 

Table 4.6 Cont·(21l) diffraction peak data. for the z-direction (O,y,O) scan 
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X 
mm 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

201 

--
Distance X-Direction Y-Direction Z-Direction 

mm 

26 d 26 d 26 d 
deg. nm deg. nm deg. nm 

1 109.075 .117287 109.020 .117327 109.430 .117030 
3 109.026 .117323 109.000 .117342 109.570 .116929 
6 109.202 .117195 109.220 .117182 109.068 .1112n 

9.5 109.213 .117187 109.218 .117183 109.919 .1174,)1 
13 109.130 .117247 109.158 .117227 109.174 • 117H5 
16 109.070 .117291 109.100 .117269 109.346 .1170')0 
18 109.073 .117289 109.036 .117316 109.440 .1170!2 

Table 4.7 Lattice spacing measured by the neutron diffraction method 

in the direction through a section at the centre of the 19 mm minipg 

chain barrel. 

Y Z \l~X C e: 
mm mm \lJ' \lC

z 

1.0 0.0 497 838 -1707 
3.0 0.0 800 962 -2576 
6.0 0.0 -298 -404 602 
9.5 0.0 -366 -391 1465 

13.0 0.0 155 -19 -118 
16.0 0.0 521 341 -1186 
18.0 0.0 503 739 -1769 

a 
MPax a 

MPaY 

35 90 
31 57 

-60 -77 
26 22 
27 -1 
45 16 
17 55 

,r 
MPa 7. 

-
-
-

-
-
-

]19 
512 

84 
321 
-17 
230 
348 

Table 4.8 Residual stress and strain distribution versus positiion Y for 

the (0, Y ,D) scan. 



202 

x Y Z t t t a a I1
Z 

mm mm mm \.It
X 

\.Ill \.It
Z MPax MPaY MP.l 

0.0 1.0 0.0 64 53 75 21 19 23 

0.0 3.0 0.0 59 53 81 20 19 25 

0.0 6.0 0.0 64 49 226 33 31 64 
0.0 9.5 0.0 69 53 128 26 23 38 
0.0 13.0 0.0 81 53 140 29 25 41 

0.0 16.0 0.0 75 64 110 26 24 33 

0.0 18.0 0.0 69 59 98 24 22 10 

Table 4.9 Accuracy of residual stress and strain distribution yeses Y for 

the (0, Y ,O) scan. Note: 69 = 29 - 109.1540 

Distance 29 69 t 

mm deg. deg. \.It 

-9.5 109.204 .050 -310 
-8.5 109.212 .058 -360 
-6.5 109.221 .067 -416 
-3.5 109.198 .044 -273 
-0.0 109.210 .056 -348 

. . 

Table 4.10 Residual stresses at a section through the centre of the 

barrel of 19 mm mining chain (in radial direction). 

Y, mm a1 a
2 

a
3 

0.000 -484 -116 27 

2.3/!l -865 -38 152 

4. I!lU -419 -71 55 

7.125 -114 -42 107 

9.500 -49 -21 437 

TI.875 -47 -22 174 

14.250 -43 -41 -14 

!O.625 -228 -0 -3 

19.000 -409 -4 45 

Table 4.11 Residual stresses through the centre of the 19 mm mining 

chain from the finite element analysis (3-D). 
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Fig . S.2b All the geometries used in the strain gauge work . . 

• 

Fig. S.3a Rollers, pins and packing plates to form the eigh t shape 
19 mm mining cahin. 
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Fig. 5.3b Pins and punch used to form the elliptical 19 mm mining 
chain under the press. 

Fig. 5 .4 Di vider head vit h holding j igs used to mark off the strain 
gauge positions on various link geometries. 
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Fig . 5 . 6 t~o holders pat ial ly ground for calibration of chain links 
(19 mm mining). 
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Fig. S . 7a Instron testing machine used for tensile testing of the 
chain material. 

.... 

... 

.. 
Fig. S.7b Instron testing machine vith comp ression bed used for 
comparison testing of chain material. 
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Fig. 5.8 Accessories used in the strain gauge installation . 

Fig. 5 .9 The data logger with its peripherals used in calibration 

processes . 
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5.10 Typical lOdJ-extension 
Instron testing machine. 

curve for test 3 of material 2 
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. . 

Fig. 5.11 Amsler testing machine used in the calibration of the 
chain link (fo r material 1 and 2). 
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link (material 1. links a and b). 
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--
G. Cal. load = 260 kN Cal. load = 320 kN Cal. load - 380 l~ I 
N. 

Loaded Unloaded Loaded Unloaded Loaded Unload:d 
1.1£ 1.1£ \lE \lE 1.1£ 1.1£ 

1 53412 43163 91377 82266 
48604 40738 81214 73961 115097 

----- ---------- ---------- ---------- ---------- ---------- --_____ -0_-
12 45323 36384 84725 75907 158778 152369 

53783 45131 92230 84370 

2 -625 8563 3011 53435 47529 
4135 -846 7430 1876 52159 46920 

---- ---------- ---------- ---------- ---------- ---------- ------_._-
11 

3148 -1357 3968 -1240 27026 21!l L9 

--
3 -1084 -751 -2192 -4705 -65150 

-360 -1250 -737 -2287 -4381 -66 ,9 
----- ---------- ---------- ---------- ---------- ---------- -------- ----

10 -1010 -1653 -2910 -3158 -8091 . -91, !1 
-1550 -1539 -2854 -3388 -7641 :9511 

--
4 -3909 -2228 -6103 -4505 -11429 -10058 

-5516 -3325 -8174 -6305 -11503 -10~17 
---- ---------- ---------- ---------- ---------- ---------- ------- ----

8 -8166 -5395 -16090 -13483 -23152 -215!8 
-7255 -4680 -14289 -11980 -20211 -181"l2 

5 
16031 8209 29864 20700 55526 460·,4 

1----- ---------- ---------- ---------- ---------- ---------- -----------
9 24155 15096 51325 41153 96578 86~'13 

24295 15387 53713 43898 

--
6 -9047 -5993 -19073 -16250 -24003 -22~;.)2 

-10436 -7396 -20400 -17680 -24077 -221 !8 
.-

7 24536 16300 63152 53931 
25543 17501 58180 49152 73916 63119 

--

Table 5.1 Strains at extreme load levels for material 1 (first ro\( all.1 

second ro\( are for first and second links). 
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--
G. Cal. load ~ 260 kN Cal. load ~ 320 kN Cal. load ~ 350 kN 
N. 

Loaded Unloaded Loaded Unloaded Loaded Unloaded 
\.lE \.lE \.lE \.lE \.lE \.lE 

1 58121 51172 
49197 41155 88097 80105 

-----1----------- ---------- ---------- ---------- ---------- ------_ .. _--
12 92923 85369 

51549 43227 

2 4348 -128 20495 17045 47173 612)2 

----1----------- ---------- ---------- ---------- ---------- ------------
11 2854 -1589 40558 36441 70761 

3 -319 -979 -1658 -2867 -3824 -10!Jj5 

1-----~---------- ---------- ---------- ---------- ---------- ----------
10 -2839 -3183 -6843 -8693 -11555 - -32722 

-

4 -4556 -2691 -7566 -6109 -9727 -12119 _. 
----- ---------- ---------- ---------- ---------- ---------- -----------

8 -15743 -13598 -21757 -20243 -23450 -29070 

--
5 17963 10509 38143 29946 54243 

----- ---------- ---------- ---------- ---------- ---------- ------_ .. _-
9 67223 57332 

--
-15129 -12514 -20552 -18576 -20983 -23l:I1 

6 -9358 -6310 -19555 -16737 
-5458 -2822 -8992 -6712 

--
7 61044 53318 106829 98625 125322 131880 , 

-Table 5.2 Strains at extreme load levels for material 2 (first row aNi 

second row are for first and second links). 



222 

G. Cal. load = 260 kN CaL load = 320 kN Cal. load = 380 kN 
N. --

R.S. R.S . R.S. R.S . R. s. R.S . 
MPa MPaav• MPa MPaav • MPa MPaav . 

1 -398 -320 
-156 0 

1----- ----------- -242 ---------- -255 ---------- 320 
12 -250 -242 320 

-164 -203 

2 -131 109 125 
-173 -242 125 

----- ---------- -196 ---------- -131 ---------- 4 .. 
11 

-284 -259 -117 

. 
3 -227 -458 -898 

-261 -478 -898 
-----~---------- -289 ---------- -576 ---------- -8911 -

10 -345 -660 -898 . . 
-322 -708 -898 

4 -466 -492 -664 
-695 -437 -664 . 

---- ---------- -509 ---------- -421 ---------- -664 -
8 -398 -351 -719 

-477 -405 -609 

5 
-305 -469 -305 

----- ---------- -326 ---------- -391 ---------- -291 -
9 -336 -375 -289 

-336 -328 

--
6 -297 -484 -719 

-296 -453 -71l 
-294 -422 -719 

7 -289 -274 
-282 -274 , -4:~1) 

-274 -274 -430 

Table 5.3 Residual stresses at various calibration loads for materiai' 1. 
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G. Cal. load = 260 kN Cal. load = 320 kN Cal. load - 350 k.:~ 
N. --

R.S. R. S . R.S. R.S . R.S • R.S . 
HPa HPaav • HPa HPaav • HPa HPaav . 

1 -173 
-293 -220 

----- ~---------- -256 ---------- -220 ---------- -
12 -220 

-339 

2 -27 53 1013 

----- r---------- -180 ---------- 113 ---------- 1013 
11 -332 173 

3 -205 -599 -892 

----- ---------- -435 ---------- -744 ---------- -901 
10 -665 -888 -912 . -

4 -562 -679 -892 

----- ---------- -541 ---------- -649 ---------- -899 
8 -519 -619 -905 

5 -299 -313 

----- ---------- -383 ---------- -313 ---------- -
9 -466 

--
-459 -413 -905 

6 -126 -297 -333 -393 -90; 
-306 -433 

--
7 -266 -266 -213 -213 -985 -9Bj 

.-

Table 5.4 Residual stresses at various calibration loads for material 2. 
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G. Cal. load = 260 kN Cal. load = 320 kN Cal. load ~ 380 kN 
N. 

Stress Stress stress Stress Stress Stress 
MPa MPa av. MPa MPa aY. MPa MPa al. 

1 937 969 
929 961 984 

----- ---------- 931 ---------- 965 ---------- 100. 
12 929 961 1023 

929 969 

2 898 937 
864 898 937 

----- ----------- 761 r---------- 875 ---------- 92 1 

11 
658 829 907 

3 -157 • -890 
-75 -154 -890 -

----- ---------- -203 ---------- -379 ---------- -89/, 
10 -211 -608 -898 . 

-324 -596 -898 - . 

4 -817 -898 -902 
-898 -898 -902 

-----~---------- -878 ---------- -901 ---------- -90. 
8 -898 -906 -907 

-898 -902 -906 

5 
906 907 932 

-----~---------- 907 ---------- 927 ---------- 95L 
9 907 937 969 

907 937 

-898 -910 -907 
6 -898 -910 -907 

-898 -910 -907 t 

910 945 .' 
7 910 941 951 

910 937 953 

--

Table 5.5 Stresses at extreme 'load levels for material 1. 
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.-
G. Ca1- load = 260 kN Ca!. load a 320 kN Ca1- load a 350 k,1 
N. 

Stress Stress stress Stress Stress Stress 
MPa MPa av. MPa MPa av. MPa MPa aY. 

1 925 
919 953 

1---- ----------- 932 ---------- 953 ----------
12 959 

929 

2 890 889 915 

r--- ----------- 730 ---------- 901 ---------- 9<.7 
11 596 912 939 

3 -67 -346 -799 

1""----1""---------- -330 ---------- -618 -------- -8/,3 
10 -593 -890 -886 . . 

4 -890 -890 -885 

1-----1----------- -888 ---------- -890 ---------- f- -89 ! . 
8 -886 -890 -899 

5 889 909 925 

1""----1----------- 912 ---------- 909 ---------- 925 
9 935 

-892 -892 -892 
6 -885 -887 -892 -890 -8~'1 

-885 -885 

--
7 932 932 972 972 992 99l 

--

Table 5.6 Stresses at extreme load levels for material 2. 
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Fig. 5.22 Effect of callbraUon load (cl) on the stress pattern of tne 
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Stress Position Cal. loads, material 1 Cal. loads, material 2 
type 

260 kN 320 kN 380 kN 260 kN 320 kN 350 kN 

-Tran. 
(5 and 9) -326 -391 -297 -383 -313 

Res. 
stress Centre 

( 7 ) -282 -274 -430 -266 -213 ·985 

Tran. 
(5 and 9) 907 927 951 912 909 925 

Total 
stress Centre 

( 7 ) 910 941 953 932 972 992 

Table 5.7 Residual and total stresses at the inside transition 

and centre of 19 mm minimg chain at various calibration loads 
. . 

for materials 1 and 2. 
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.-
G. Cal. load = 260 kN Cal. load - 320 kN Cal. load = 380 k~ 
N. .-

Loaded Unloaded Loaded Unloaded Loaded Unload<ld 
1.11: 1.11: 1.11: 1.11: 1.11: 1.11: 

1 23675 14051 56013 45093 
10779 2585 26963 16833 50986 40405 

----- ---------- ---------- ---------- ---------- ---------- ------_ .. _--
12 26333 15806 68318 56419 

9722 2168 20922 11776 36520 270!l1) 

2 4411 -703 4987 -1139 
4741 -125 5865 -58 10181 3472 

1----- ---------- ---------- ---------- ---------- ---------- ----------
11 4493 -815 4705 -1585 

4578 2 5859 239 9727 3293 

3 -445 -878 -1115 -2038 
427 -31 508 -277 709 -6B 

i----- ---------- ---------- ---------- ---------- ---------- ------- --_. 
10 -721 -1013 -1801 -2324 

496 5 704 -188 986 . _489 

4 -4179 -1567 -7281 -4500 
-2455 -203 -3744 -1150 -4657 -21~1 

i----- ---------- ---------- ---------- ---------- ---------- ------- --_. 
8 -4302 -1667 -8741 -5739 

-2418 -166 -3628 -1072 -4547 -2110) 

5 13734 4540 28384 17046 
10397 1504 16133 4996 23996 1117Z 

i----- ---------- ---------- ---------- ---------- ---------- -----------
9 13901 4740 31467 20132 

10452 1408 15628 4428 23040 10222 

6 -5417 -1964 -13714 -9854 
-3509 -543 -6996 -3467 -14876 -1131.~ 

7 12447 3878 
9973 2293 21246 11373 47607 3625 7 

--

Table 5.8 Strains at extreme load levels for standard links (material 3). 
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G. Cal. load = 260 kN Cal. load = 320 kN Cal. load = 380 k'~ 
N. 

Loaded Unloaded Loaded Unloaded Loaded Unloaded 
\l& \l& \l& \l& \l& \l& 

1 7892 1573 18718 11108 32507 24054 
9663 2539 23761 14792 42582 33130 

-----1----------- ---------- ---------- ---------- ---------- ----------
'12 9567 2390 23933 15234 42236 32792 

9332 2408 23027 14334 37932 28821 

2 4415 139 5025 -251 6461 571. 
4046 -125 4299 -819 5285 -546 

-----fo---------- ---------- ---------- ---------- ---------- ------------
11 4009 -188 4176 -959 5015 -841 

4621 -242 5182 -560 10289 3735 

3 825 -18 335 -871 -844 -24i3 
-306 -140 -1300 -1256 -3203 -34jO 

-----r---------- ---------- ---------- ---------- -------- ----------
10 -410 -210 -1586 -1479 -3944 -4016 

632 -138 -157 -117 -1372 . -1.717 

4 -1416 -51 -2744 -1171 -4168 -2595 
-2172 -225 -4283 -1950 -7901 -5518 

;----- ---------- ---------- r---------- ---------- ---------- ----------
8 -2307 -333 -4661 -2286 -9289 -6662 

-1549 -58 -3201 -1355 -5245 -3342 

5 10187 1390 17867 6559 28330 1469l 
13042 2922 26251 12957 50856 3521:3 

----- ---------- ---------- ---------- ---------- ---------- ------- ----
9 13982 3503 28828 15204 59356 4259/, 

11003 1988 21218 9288 36951 2269') 

6 -892 71 -1622 -844 -1561 -148'! 
-1135 99 -2095 -925 -2488 -20O" 

7 4076 -112 5087 98 5480 17') 
4192 -135 5259 107 5740 2[," 

I 

Table 5.9 Strains at extreme load levels for eight shape links 
h 

(material 3). 

" 
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G. Cal. load a 260 kN Ca!. load • 320 kN Cal. load - 380 k~ 
N. 

Loaded Unloaded Loaded Unloaded Loaded Unload<'!d 
Ill: Ill: Ill: Ill: Ill: Ill: 

1 
41792 30728 80856 70239 98821 84993 

;----- ---------- ---------- ---------- ---------- ---------- -----------
12 

47033 35282 88812 77629 102535 92231 
, 
'I 

2 3845 -1148 5140 -915 7129 213 
4997 -664 13346 6422 33583 26452 

'----- ---------- ---------- ---------- ---------- ---------- -----------
11 3842 -1619 5349 -1043 8126 897 

5377 -535 15790 8561 40656 32795 

3 -1497 -1527 -1114 -1690 -936 -216 .. 
-290 -901 122 -1159 577 -1427 

----- ---------- ---------- ---------- ---------- ---------- ------- ----
10 -1761 -1977 -1244 -1971 -1108 -2428 

5 -970 392 -1267 524 -1711 . . 
4 -8661 -4964 -12391 -8794 -14067 -11018 

-5349 -2115 -7092 -4013 -7381 -4741j 
----- ---------- ---------- ---------- ---------- ---------- ------- ----

8 -9956 -6325 -14180 -10636 -16271 -132;1 
-5384 -2147 -7555 -4414 -8773 -5947 

--
5 16361 7748 24512 14577 31995 21112 

10282 2593 14946 6007 17077 7465 
1----- ---------- ---------- ---------- ---------- ---------- ----------

9 19009 10522 29123 19342 38566 27842 
10810 3106 17046 8000 22130 12199 

6 -28461 -23141 -57069 -51652 -81054 -7Mt' '. 
-15328 -10063 -43668 -38267 -64376 -596u) 

--
7 72957 60453 

42352 29442 131150 116629 

. Table 5.10 Strains at extreme load levels for elliptical links (material 3) • 

. , 
~. 

, 
.' 



232 

G. Cal. load ~ 393 kN Cal. load = 489 kN Cal. load = 574 itN 
N. 

Loaded Unloaded Loaded Unloaded Loaded Unloaded 
\lE \lE \lE \lE \lE \lE 

--
1 10219 3160 26317 18106 41194 33121 

31334 22640 43827 35540 60036 5244:-
r---- ---------- ---------- ---------- ---------- ---------- -----------

12 13004 5209 39559 29860 57215 4778l 
43929 34619 59328 50567 75693 67303 

2 4262 -185 5592 326 11358 5613 
5730 448 11492 5738 42380 36399 

----- ---------- ---------- ---------- ---------- ---------- ------- ----
11 3268 -549 3649 -1264 5783 55 

3666 -1257 5252 -295 32232 2604'l 

3 1058 -193 1393 -820 1722 -1589 
1327 -1016 1206 -2158 -1092 -5184 

f----- ---------- ---------- ---------- ---------- ---------- -------:---
10 -688 -516 -1927 -1884 -2486 -3291, 

-2142 -2400 -2852 -4114 -5146 . .:8252 
, 

4 988 179 1156 831 504 1039 
1524 1111 1084 1381 2382 3111 

---- ---------- ---------- ---------- ---------- ---------- ------- ----
8 2699 643 5993 3496 8771 66U 

6692 4373 7957 6300 7753 733J 

--
5 6105 435 9006 2119 11341 3084 

11588 3896 16255 6587 39428 28551 
r---- ---------- ---------- ---------- ---------- ---------- -----_ .. _--

9 10096 2428 24499 14015 42465 30157 
31634 19961 48783 35532 75574 61971 

--
6 -2422 -342 -4279 -2062 -4849 -3143 

-5353 -3140 -5458 -3912 -5495 -489l 

7 6507 588 11729 4273 17668 9055 
15549 7297 22278 12997 31891 2186~; 

I' 

Table 5.11 Strains at extreme load levels for oval-links (material 3). 
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G. Ca!. load ~ 260 kN Cal. load a 320 kN Cal. load a 380 k~ 
N. 

R. S. R.S • R. S. R.S • R.S. R.S . 
MPa MPaav • MPa MPaav • MPa MPaav . 

1 -357 -357 
-348 -311 -366 

1----- ---------- -337 ---------- -378 ---------- -34'3 -
12 -412 -513 

-229 -330 -330 

2 -127 -206 
-23 -10 -183 

----- ---------- 0 ---------- -115 ---------- -151 
11 148 -287 

0 43 -119 

3 -159 -369 
-6 -50 -111 

----- ---------- -48 ---------- -219 ---------- -10') 
10 -183 -421 

1 -34 -89 
. . 

4 -284 -513 
-37 -208 -389 

----- ---------- -163 ---------- -328 ---------- -38.; 
8 -302 -395 

-30 -194 -382 

--
5 -403 -495 • -431 -522 -568 -

----- ---------- -401 ---------- -541 ---------- -568 
9 -376 -623 

-412 -522 -568 

-355 -379 
6 -227 -403 -433 

-98 -426 -433 

-348 
7 -316 -256 -43l 

-284 -256 -431 

--

Table 5.12 Residual stresses at various calibration loads for standaI~ links 

(ma terail 3 ). 

, . 
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--
G. Ca!. load = 260 kN Ca!. load = 320 kN Ca!. load = 380 I:H 
N. 

R.S. R.S • R.S. R.S • R.5. R. S . 
MPa MPaav • MPa MPaav • MPa MPaav • 

1 -200 -292 -284 
-213 -347 -312 

1----- ---------- -210 ---------- -324 ---------- -325 -
12 -213 -292 -371 

-213 -363 -331 

2 25 -45 -71 
-23 -148 -99 

----- ---------- -19 ---------- -118 ---------- -1ll> -
11 -34 -174 -152 , 

-44 -101 -134 

3 -3 -158 -448 
-25 -227 -628 

1----- ---------- -23 ---------- -169 ---------- -574 -
10 -38 -268 -727 

-25 -21 -492 
. . . 

4 -9 -212 -470 
-41 -353 -537 

1----- ---------- -30 ---------- -306 ---------- -561 -
8 -60 -414 -552 

-10 -245 -605 

5 -355 -497 -623 
-489 -600 -670 

1----- ---------- -433 ---------- -565 ---------- -653 -
9 -458 -608 -679 

-426 -552 -647 

13 -153 -268 
6 16 -160 -31> 

18 -167 -363 

--
-20 18 31 

7 -23 19 38 
-25 19 45 

• Table 5.13 Residual stresses at various calibration loads for eight s11ape 

links (material 3). 
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--
G. Ca!. load = 260 kN Ca!. load = 320 kN Ca!. load • 380 kll 
N. 

R.S. R.S • R.S. R.S • R.S. R.S . 
MPa MPaav . MPa MPaav . MPa MPaav • 

1 -181 -245 -237 
-308 -205 -87 

----- ~---------- -239 ---------- -261 ---------- -22l -
12 -245 -347 -355 

-221 -245 -213 

2 -33 59 -142 
81 -142 47 

-----~---------- -70 ---------- -91 ---------- 0 -
11 -99 -229 10 

-228 -53 87 

3 -35 -148 -288 
-184 -391 -938 

-----1----------- -187 ---------- -414 ---------- -70S 
10 -93 -341 -596 

-434 -775 -1002 . -
.-

4 32 150 188 
201 250 563 

-----r---------- 210 ----------r 437 ---------- 5,i.\ -
8 116 632 529 

489 718 892 

--
5 79 -316 -355 

-331 -410 -497 
----- ---------- -264 ---------- -430 ---------- -SOl 

9 -268 -450 -568 
-537 -544 -584 , 

-62 -373 -569 
6 -315 -541 -72 7 

-568 -708 -885 

-71 -316 -355 
7 -142 -328 -403 

-213 -339 -450 

--

Table 5.14 Residual stresses at various calibration loads for ellipti~al 

links (material 3). 
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G. Cal. load s 393 kN Cal. load = 489 kN Cal. load E 575 ~~~ 
N. 

R.S. R.S . R.S. R. S . R. S. R.S . 
MPa MPaav • MPa MPaav . MPa MPaav • 

1 -165 -211 -156 
-229 -183 0 

1----- ---------- -238 ---------- -238 ---------- -149 
12 -266 -321 -284 

-293 -238 -156 

2 -33 59 -92 
-81 -92 -192 

1----- ---------- -110 ---------- -79 ---------- -43 · 
11 -99 -229 10 

-228 -53 103 

3 -35 -148 288 
-184 -391 -938 

----- ---------- -187 ---------- -406 ---------- -701) · 
10 -93 -341 -596 . . 

-434 -745 -1010 

-
4 32 150 188 

201 250 563 
----- ---------- 239 ---------- 436 ---------- 565 

8 116 633 643 
608 710 864 

5 79 -165 -330 
-247 -431 -513 

1----- ---------- -218 ---------- -391 ---------- -48l · 
9 -284 -400 -513 

-421 -568 -568 

-62 -373 -569 
6 -315 -560 -7:!7 

-568 -747 -885 

-55 -247 -293 
7 -133 -284 -33') 

-211 -321 -385 

Table 5.15 Residual stresses at various calibration loads for oval-links 

(material 3 ). 
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G. Cal. load = 260 kN Cal. load = 320 kN Cal. load = 380 kN 
N. 

Stress Stress stress Stress Stress Stress I 
HPa HPa av. HPa HPa av. HPa HPa a. 

.-
1 1018 1034 

1010 1018 1034 
----- ---------- 1015 ---------- 1027 ---------- 1031. 

12 1022 1041 
1010 1014 1030 

.-
2 798 903 

858 1006 1010 
---- ---------- 825 ---------- 942 ---------- 101') 

11 813 852 
829 1006 1010 

3 -81 -202 
-77 92 128 

---- ---------- -95 ---------- -77 ---------- 153 -
10 -131 -326 " . . 

-90 127 178 

4 -756 -1006 
-444 -678 -843 

----- ---------- -604 ---------- -838 ---------- -833 -
8 -779 -1010 

-438 -657 -823 

5 1010 1026 
1010 1010 1018 

----- ---------- 1010 f----------- 1018 ---------- 10113 -
9 1010 1026 

1010 1010 1018 
.-

-980 -1010 
6 -808 -1008 -1010 

-635 -1006 -1010 

. 
1010 , 

7 1010 1014 10~4 
1010 1014 1034 

Table 5.16 Stresses at extreme load levels for standard links (materlll 3). 



G. Cal. load = 260 kN Cal. load ~ 320 kN Cal. load = 380 kN 
N. 

Stress Stress stress Stress Stress Stress v 
MPa MPa ay. MPa MPa ay. MPa MPa a. 

. 
1 1010 1010 1026 

1010 1018 1026 
1----- ---------- 1010 ---------- 1013 ---------- 1026 · 

12 1010 1018 1026 
1010 1018 1026 

2 799 910 1006 
732 778 957 

----- ---------- 773 ---------- 846 ---------- 970 · 
11 726 756 908 

836 938 1010 

3 149 61 -152 
-55 -235 -580 

----- ---------- 34 ---------- -122 ---------- -42/, · 
10 -74 -287 -714 . 

-248 
. 

114 -28 -I 

: 
4 -256 -497 -754 

-393 -775 -1010 
----- ---------- -337 ---------- -674 ---------- -931 · 

8 -418 -844 -1010 
-280 -579 -949 

5 1010 1014 1022 
1010 1022 1034 

---- ---------- 1010 ---------- 1018 ---------- 1029 · 
9 1010 1022 1038 

1010 1014 1022 

-161 -294 -283 
6 -183 -337 -361 

-205 -379 -450 

738 920 992 
7 749 936 999 

759 952 1006 

r 

Table 5.17 Stresses at extreme load levels for eight shape links (material 

3). 
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G. Ca!. load = 260 kN CaL load s 320 kN Ca!. load s 380 1<..1 
N. 

Stress Stress stress Stress Stress Stress 
MPa MPa av. MPa MPa av. MPa MPa al. 

.-
1 

1026 1045 1057 
f----- ---------- 1028 ---------- 1047 ---------- 1053 

12 
1030 1049 1049 

2 696 930 1006 
904 1010 1026 

~---- ---------- 817 ---------- 980 ---------- 1017 
11 695 968 1010 

973 1010 1026 

3 -271 -202 -169 
-52 22 104 

'----- ---------- -160 ---------- -84 fo---------- -43 . 
10 -319 -225 -201 . . 

1 71 95 

4 -1010 -1010 -1010 
-968 -1010 -1010 

----- ---------- -991 ---------- -1010 ---------- -1011) 
8 -1010 -1010 -1010 

-975 -1010 -1010 

5 1010 1018 1026 
1010 1010 1014 -

----- ---------- 1011 ---------- 1017 ---------- 1020 -
9 1014 1026 1026 

1010 1014 1014 I 

-1018 -1034 -1045 
6 -1014 -1030 -1041 

-1010 -1026 -1041 
.-

1041 
7 1034 1073 

1026 1073 

Table 5.18 Stresses at extreme load levels for elliptical links (mate,ial 3) 
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--
G. Cal. load = 393 kM Cal. load = 489 kM Cal. load = 575 k3 
N. 

Stress Stress stress Stress Stress Stressa·! 

MPa MPa av. MPa MPa av. MPa MPa • 

1 1010 1022 1026 
1026 1026 1034 

1----- ---------- 1018 ---------- 1027 ---------- 1035 
12 1010 1026 1034 

1026 1034 1045 

2 771 1006 1010 
1006 1010 1026 

1----- ---------- 758 ---------- 907 ---------- 102'~ . 
11 592 660 1006 

664 951 1026 

3 191 252 311 
240 218 -195 

1----- ----------r -20 ---------- -99 ---------- -330 
10 -124 -349 -500 

-388 -516 -931 
. . 

4 179 209 91 
276 196 431 

1----- ---------- 488 ---------- 605 ---------- 636 
8 489 1006 1010 

1006 1010 1010 , 

5 1006 1010 1010 
1010 1010 1026 ------ ---------- 1013 1----------- 1018 ---------- 10<'7 . 

9 1010 1018 1026 
1026 1034 1045 

-438 -774 -878 
6 -704 -881 _9:\1 

-969 -988 -995 

1010 1010 1014 
7 1010 1012 102') 

1010 1014 1026 

Table 5.19 Stresses at extreme load levels for oval-links (material 3). 
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Fig. 5.26 Stresses In the 19 mm standard mining chain link at the 
outside, elastic stresses (nominal stress, 265 MPa). 
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Fig. 5.27 Stresses in the 19 mm standard mining chain link at the 
outside after the onset of plastic flow (nominal stress, 526 MPa). 
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Fig. 5.28 Effect of link geometry on the total stresses under the 
calibration load of 260 kN (393 kN for the oval-link chain). 
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Fig. 5.29 Effect ot link geometry on the residual stresses under the 
calihration load ot 260 kN (393 kN tor oval-link chaln)_ 
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Fig. 5.30 Effect of Increase in calibration load (cl) on the residual 
stress pattern of the 19 mm standard mining chain link (material 3). 
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Fie. 5.31 Effect of Increase In calibration load (cl) on the residual 
stress pattern of the 1 il mm eleht shape mlnlne chain link (material 3). 
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Fig. 5.32 Effect ot Increase In calibration load (cl) on the residual 
stress pattern ot the 19 mm elliptical mining chain link (material 3). 
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Fig. 5.33 Effect ot increase in calibration load (cl) on the residual 
stress pattern ot the oval-link mining chain link (material 3). 
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Stress Position Cal. loads, standard Cal. loads, eight snape 
type . 

260 ItN 320 ItN 380 ItN 260 ItN 320 kN ::'50 ItN 

Tran. 
(5 and 9) -401 -541 -568 -433 -565 -655 

Res. 
stress Centre 

( 7 ) -316 -256 -431 -23 19 38 

Tran. 
"(5 and 9) 10lD 1018 1018 10lD 101B 1029 

Total 
stress Centre 

( 7 ) 10lD 1014 1034 749 936 999 

Table 5.20 Residual and total stresses at the inside transition and 

centre of 19 mm mining chain at various calibration loads. 

. . 

Stress Position Cal. loads, elliptical Cal. loads, oval 
type 

260 ItN 320 ItN 380 ItN 393 ItN 489 kN !J14 kN 

Tran. 
(5 and 9) -264 -430 -501 -21B -391 -481 

Res. -stress Centre 
( 7 ) -142 -328 -403 -113 -284 -339 

-Tran. 
(5 and 9) 1011 1018 1020 1013 1018 1027 

Total -stress Centre 
( 7 ) 1034 1073 1010 1012 1020 

Table 5.20 cont. Residual and total stresses at the inside transition and 

centre of 19 mm mining chain under various calibration loads (materia: 3). 
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F.Ig.6.2 Total stresses of the 19 mm mining chain of different geometrles 
at. the Inside (I). outside (0) and centre (c) under cl=320 kN. . -
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the centre for various calibration loads, kN. 
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geoemtries at the cross-section through 60 deg. to the crown under 
calibration load of 320 kN. 

1500,--------------------------------------------------------, 

1000t------4----~~----~ 

~~ 

500 ~ 

t Oi-----------------------------------------~~~~~------------~ ., ~ ....... 

:3 "" '-, 
{? -500 ~ ",,-

-1000 

• Standard 

" Elght.hBp~ 

• Ellll!ticaL '" 
Fig. 8.8 Total .treoseo of the 19 mm mining chain of dUlerent 
eeometrieo at the cro .. -oection throulh the 30 de,. to the crown'under 
calibration load of 320 kN. 



250 

--
Geometry Centre (node 1), mm Crown (node 31), mm 

Cal. load c1=260 c1=320 c1-380 c1=260 c1=320 cl=:I'IO 
( kN ) 

Standard -2.134 -4.164 -6.69::1 1.900 !).!l93 !l.:;'40 

Eignt snape -1.649 -3.3J4 -:>.300 1. !l10 3.J:>4 3.131 

Elliptical -3.705 -6.120 2.952 4.722 4.553 

-
Cal. load c1=30 cl=38.5 cl=47 c1=30 c1=38.5 cl=47 

( kN ) 

Littlng -.436 -1.198 -1.8b~ .424 1.u86 1.648 

Table 6.1 Displacements at the centre and crown of the mining (various 

geometries) and lifting chains under various calibration loads. For 

elliptical link,cl=380 kN vas not achieved. 
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Fig. 6.9 Deformed shapes of the various link geometries under 
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Fig. 6.10 Residual stresses of the 19 mm mining chain of different 
geometries at the outside for various calibration load. kN. 
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Fig. 6.11 Residual stresses of the 19 mm mining chain ot different 
geometrles at the Inside for various calibration load. kN. 
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Fig. 6.12 Residual stresses of the 19 mm mining chain of different 
geometrles at the centre for various calibration load, kN. 
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Fig. 6.13 Residual stresses of the 19 mm mining chain of different 
eeometrie. at the cro •• -.ection through the centre under calibration 
load of 320 kN (as In neutron diffraction). 
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Fig. 6.14 Residual stresses ot the 19 mm mining chain ot ditf"erent 
geometrles at the cross-section through 60 deg. to the crown under 
calibration load ot 320 kN. 
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Fig. 6.16 Total stresses ot the Iitting chain under calibration load 
ot 36.5 kN at the inside. centre and outside (elastic analysis). 
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Fi,. 6.17 Total stresses at littin.l chain under variaus calibration 
loads at the inside (i). outside \0) and centre (c). 
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Fig. 6.18 Effect of increase in calibration loads (from 30 kN to 38.5 
kN} on the residual .tresses for the lifting chain at the inside (1). 
centre (c). and outside (0). 
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Fie. 6.21 Residual stresses at various sections through the lifting 
chain (at the centre the pattern b the same as the neutron 
diffraction results, Chapter 4). 
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Case Load (P) Major (minor) axis Max. contact Contact angle 
( kN ) a, ( mm ) pressure,q 

( MPa )0 
tt, deg. 

260 3.99 7811 17.9 
Mining 320 4.27 8370 19.2 
chain 380 4.52 8860 20.3 

500 4.96 9713 22.3 

30 1.21 9370 12.5 
Lifting 38.5 1.32 10573 13.6 

J chain 50 1.44 11536 14.9 
64 1.56 12525 16.1 

Table 7.1 Maximum contact pressure and contact angle for mining and lifting 

chains under various calibration loads (elastic conditions assumed). 
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Stress output POints Stress output pOints 

Fig. 7.1a Two and three-noded interface elements (INTER2 and 
INTER3). 

. . 
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Fig. 7.1b Geometry of "average interface surfaces". 



259 

. . 

Fig. 7.2 Finite element mesh of the quarter of the 19 mm mining 
chain link. 
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Fig. 7.3 Von Mises stress contours·of the 19 mm mining chain under 
various calibration loads. a) 260 kN. b) 320 kN. c) 380 kN. d) 
497 kN (plane stress). 
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Fig. 7.4 Effect at increase in calibration load on the total stresses at 
the outside at the mining chain tor plane stress/strain analysis 
(1,260 kN, 2, 320 kN, 3,380 kN, and 4 tor 497kN). 
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Fig. 7.5 Etfect of Increase in calibration load on the total stresses at 
the Inside of the mining chain for plane stress/strain analysis 
(1,260 kN, 2, 320 kN, 3,380 kN, and 4 for 497kN). 
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~ b)Oval cross-section. 
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cross-sectional chain links. 

2R2 

I 
I 
I I 

R1 :...If (i'P.., 
I -., , 

I , 
I I.-
I I , , ,,' .:1' ________ 

L ~ 

pressure for circular and 

M2 

MI 

oval 

. . 

Fig. 8.2 An 1/8 of chain link (in plan view) showing refined zone 
for contact pressure application with various parameters used in the 
mesh generation. 



274 

700 

70 

.to ./ 
800 " ./ Z 

• 7mm Lifting: ~.e' 
.l4 

Z c 19mmMln~ 60b .l4 #./ )0 

= as • Oval-link.. _ 0 .. 500 
R ... 0 Egu.clr.I~L 

= "./ / ... .. 50 .. 

" A/ / ..= .. " ..= 400 "yV ,,/" bD ... 
r / 

R ... .~ .. 
// 

40 ~ 
.~ 

= 
.-

0 .. 
." 300 / .2 ... 
" 30 R .. .. / 0 
~ .~ 

. / ... 
" 200 ..,a/'/ 
.. 

20 ~ 
.....---

100 10 
30 35 "0 "5 GO 55 80 85 

Angle (phi). deg. 
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Cal. 19 mm mining chain 7 mm lifting chain Oval-link Equ. Cir. 
load 

~ 1jI ~ 1jI ~ 1jI ~ 1jI 

2-D 3-D 2-D 3-D 

First 42.50 33.76 31.79 40.00 27.38 24.86 48.00 32.00 46.75 17.19 

-
Second 47.50 45.01 35.53 45.00 36.57 27.97 54.50 36.33 52.75 41.97 

Third 52.00 56.27 38.89 52.00 52.26 32.32 60.00 40.00 57.50 45.75 

Failure 56.50 42.26 60.00 37.30 61.50 41.00 5,.25 47.14 

Table 8.1 Assumed and evaluated (2-D) angle of contact (deg.) for all grades 

of chain used in the he finite element analysis (3-D). 
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Geometry Number of increments FE Failure Exp. failure 
load, kN load, kN 

Standard 28 466 497 

Eight shape 27 467 510 

Elliptical 19 479 476 

Table 8.2 Comparison of failure load for various link geometries from 

the FE beam analysis and experiments. 
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Fill:. 8.22 Effect of increase in calibration load on the residual stresses 
at the outside of the 19 mm elliptical mining chain. 
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Fig. 8.24 Ettect at link a:eometry on the stresses (total and residual) at 
the crown at the 19 mm mining chain under calibration load at 320 kN. 
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Fig. 8.26 Effect of loading-unloading cycle on the strains correspotlding 
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chaIn with different link ceometry under calibration load of 320 kN. 
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Fig. 8.29 Total stresses of the oval-link and equivalent circular cross 
section mining chains at the inside and outside under calibration load 
of 393 kN for elastic analysis (mid-plane •• b and its para11el plane. t.). 
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filii 8.30 Effect of point and distributed load on the total .tresse. of 
th" oval-link minini chains at the inside and outside under calibration 
load of 393 kN for elastio analyoi •• 



III 
p., 
::a 
rn ., ., .. ... ., -III ... 

E2 

292 

8000,--------------------------------------------------------, 

• Inside dlst . 
8000 

c Outsid.di~ 

• Inside point_ 

0 Outside point 
....,..... --- --- ........ /' --- ..- '- .... - -4 -

\ I 

4000 

O+-------------------------~~-&~~~--------~ ---0--...... .....-__ e--a--e--G- c 

-2000.l--<>--- •• --.... -- _ • ..-- ... ---
... -

-4000 

-8000~------------------------------------------------------~ 
~ ~ ~ 

# ~ ~ 

2~00 

2000 

1~00 

1000 

500 

0 

-500 

-1000 

-1500 
... 0 

~ 
<:.,0 
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outside under calibration load of 393 ItN for elastic analysis. 

Fig. 8.32 Effect of increase in callbration load on the total stresses 
of the oval-llnk mini ne chain at the inside and outside. . 
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outside under calibration load of 3/f.fI kN for elastic analysis. 
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Fig. 6.45 Total and residual stresses of the lifting chain at the 
section through the centre under increasing calibration load. 
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Fig. B.47 Total and residual stres.es of the lifting chain at the section 
through the crown under increasing calibration load • 
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Fig. 8.48 Effect of increase in the internal radius (or inside width) 
of the 19 mm mining chain on the total stresses at the outside and 
inside under calibration load of 320 kN for elastic analysis. 
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Fig. B.52 Effect of increase in the barrel length (or pitch) of the 
19 mm mining chain on the total stresses at the outside and inside 
under calibration load of 320 kN for elastic analysis. 
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Fig. B.54 Effect of increase in the barrel length (or pitch) of the 
19 mm mining chain on the residual stresses at the outside under 
under calibration load of 320 kN • 
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ENERGY ABSORPTION FACTOR 

A chain normally breaks for one of the two reasons, either the 

application of a static load equal to, or in excess of, the breaking 

load, or the sudden application of a load ('snatch' or 'shock' 

loading) which in the absence of shock would not have caused breakage. 

Static over-loading is a less frequent cause of breakage and the 

specifications guards against breakage due to this cause by laying 

down a minimum actual breaking load and the adoption of an appropriate 

safe working load. The ability of a link to withstand 'shock' loading 

is dependent on the amount of energy which a chain absorbs and is a 

function of the product of load and extension: any increase in 

either, accepted by the chains, will denote an increase in.the energy 

which the chain is capable of absorbing. This is called .energy 

absorption factor and expressed in the appropriate standards in terms 

of constant X d2 (d being the diameter of the bar of which the 

chain is made), (140). This is employed for chains made from mild 

steel. 

For the lifting chains, the total ultimate elongation shall not be 

less than 177. and 10 7. for non-calibrated and calibrated chains 

respectively [10,11,12,13,14,15). In the case of mining chain it is 

12 7. (19). 

For comparison purposes all the results are based on a test length of 

36 inches. The equivalent extension is the extension measured, 

multiplied by 36 and divided by the unstretched test length in inches. 

The equivalent extension - irrespective of the size of the chain -

shall not be less than 3.5 inches (140). 

For the 7 mm lifting chain tested in Chapter 3 the following applies: 



Before test 

After test 
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lengthllink = 4.31515 = .863 inches 

lengthllink = 3.13113 = 1.044 inches 

Equivalent extension = 36*(1.044-.863)/.863 = 7.550 in > 3.5 in (140) 

The product obtained by multiplying the equivalent extension in inches 

by the breaking load in tons shall be not less than that specified in 

B54114, i.e. 320 d2 tons in, where d is the size of the chain in 

inches (diameter of the rod used in the chain's manufacture). 

The breaking load was 68.5 kN, so the energy absorption factor when 

uncalibrated is (1 tonf • 9964 N): 

68.5*1000*7.5519964 = 51.9 ton in > 320 d2 = 24.3 ton in [140] 

Also percentage elongation for the non-calibrated chain is 

(1.044-.863)/.863 • 21 % > 17 % [10,11,12,13,14,15] 

The requirements of the standard are thus met by the uncalibrated 

chain. . . 
To examine whether the calibrated chain meets the requirements of 

the standard, let us consider calibration loads of 38.5 and 50 kN. 

a) cl=38.8 

From Fig. 3.27 the extension is .27 on the scale (.27*50/15 = .9 mm) 

i.e. .9*100/25.4*4.315 • • 82 % 

b) cl.50 kN 

From Fig 3.27 the extension is .175 on the scale (1.75*50/15= 5.83 mm) 

i.e. 5.83*100/25.4*4.315 = 5.32 % 

The remaining extension is therefore (21 - 5.32). 15.68 % > 10 % 

Hence the requirement was satisfied. 

c) Calculation of the maximum calibration load 
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If x is the maximum calibration load and lex) the corresponding 

extension then 

[5*(1.044) - l(x)]/l(x) ~ .1 

lex) = 4.745 in 

dl(x) ~ 4.745 - 5*.863 = .430 in (i.e. 3.28 on the scale) 

From Fig 3.27 maximum calibration load which can be applied is 56 kN. 

Hence, cl=50 kN used in Chapter 3 is well below the maximum 

calibration load. 

. . 




