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Abstract

The predominant game-theoretic solutions for distributed rate-maximization
algorithms in Gaussian interference channels through optimal power control
require perfect channel knowledge, which is not possible in practice due to
various reasons, such as estimation errors, feedback quantization and latency
between channel estimation and signal transmission. This thesis therefore
aims at addressing this issue through the design and analysis of robust game-
theoretic algorithms for rate-maximization in Gaussian interference channels
in the presence of bounded channel uncertainty.

A robust rate-maximization game is formulated for the single-antenna
frequency-selective Gaussian interference channel under bounded channel
uncertainty. The robust-optimization equilibrium solution for this game is
independent of the probability distribution of the channel uncertainty. The
existence and uniqueness of the equilibrium are studied and sufficient condi-
tions for the uniqueness of the equilibrium are provided. Distributed algo-
rithms to compute the equilibrium solution are presented and shown to have
guaranteed asymptotic convergence when the game has a unique equilibrium.

The sum-rate and the price of anarchy at the equilibrium of this game
are analyzed for the two-user scenario and shown to improve with increase in
channel uncertainty under certain conditions. These results indicate that the
robust solution moves closer to a frequency division multiple access (FDMA)
solution when uncertainty increases. This leads to a higher sum-rate and a
lower price of anarchy for systems where FDMA is globally optimal.

A robust rate-maximization game for multi-antenna Gaussian interfer-
ence channels in the presence of channel uncertainty is also developed along
similar principles. It is shown that this robust game is equivalent to the
nominal game with modified channel matrices. The robust-optimization
equilibrium for this game and a distributed algorithm for its computation
are presented and characterized. Sufficient conditions for the uniqueness of
the equilibrium and asymptotic convergence of the algorithm are presented.

Numerical simulations are used to confirm the behaviour of these algo-
rithms. The analytical and numerical results of this thesis indicate that
channel uncertainty is not necessarily detrimental, but can indeed result in
improvement of performance of networks in particular situations, where the
Nash equilibrium solution is quite inefficient and channel uncertainty leads
to reduced greediness of users.
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Statement of Originality
The following aspects of this thesis are believed to be original:

• The extension of the MIMO iterative waterfilling algorithm to broad-
band Gaussian interference channels and the study of the effect of
channel estimation errors on the performance of the MIMO iterative
algorithm in Chapter 3.

• The robust rate-maximization game formulation for frequency-selective
SISO Gaussian interference channels and the analysis of its equilibrium
(Theorem 4.2 on page 105) in Chapter 4.

• The analysis of the effect of channel uncertainty on the sum-rate in
the robust SISO rate-maximization game for the two-user case (The-
orem 5.1 on page 125 and Theorem 5.2 on page 128) in Chapter 5.

• The robust rate-maximization game formulation for MIMO Gaussian
interference channels in Chapter 6.
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Chapter 1

INTRODUCTION

Wireless communications technology has become an ubiquitous element of

our society, ranging from remote controllers and paging systems to cellular

phones and wireless local area networks. With the advent of better battery

technology and the relentless progress of Moore’s law, today’s portable de-

vices can support a great amount of processing power. This has led to an

exponential increase in the usage of portable devices such as cellular phones,

tablet computers and laptops for data-intensive broadband internet applica-

tions (Figure 1.1).

This huge increase in demand has led to heavy congestion in the radio-

frequency (RF) spectrum allocated to these applications. Issues such as call

dropping, low download speeds and sporadic availability of network access

have become commonplace, particularly in areas with high density of users.

This was exemplified at the launch of the popular iPhone 4 cell-phone last

year, when Steve Jobs (CEO of Apple Inc.), who is famous for delivering

impeccable product-launches, had to briefly suspend the launch midway as

the demonstration phone could not access the network. He finally had to

18



Section 1.1. Radio frequency bands and spectrum management 19

Figure 1.1: Projected number of subscriptions (in billions) for mobile
broadband and wired broadband internet connections globally [1].

request the 500+ members of the audience to turn off their WiFi devices in

order to continue the demonstration [2].

1.1 Radio frequency bands and spectrum management

Wireless communication devices for various applications and services oper-

ate in specific pre-determined ranges of the electromagnetic spectrum called

radio frequency (RF) bands. The radio waves used for communication are

transmitted and received through antennas which transform electrical en-

ergy to radio waves that propagate through the atmosphere from the source

to the destination. Due to varying propagation characteristics of radio waves

of different frequencies, specific applications are allocated specific RF bands.

For instance, the RF spectrum allocation in the United States of Amer-

ica is presented in Figure 1.2. These allocations are determined by various
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national and international regulatory bodies (e.g.: the Federal Communi-

cations Commission (FCC) in the USA and the Office of Communications

(Ofcom) in the UK).

When multiple wireless devices operate in the same environment, they

often interfere with each other. Spectrum management is needed to control

the usage of RF spectrum in order to mitigate interference among wire-

less devices and services. The current practice for spectrum allocation by

regulatory bodies is known as the command-and-control model [4]. In this

approach, the regulators make centralized decisions regarding spectrum al-

location and usage, often through an auctioning process commonly referred

to as a spectrum auction. After a successful bid, a user/company is awarded

the allocation, which is often valid for extended periods of time and over

large geographical regions. While the majority of the RF spectrum is man-

aged under this scheme, a small region of the RF spectrum, known as the

industrial, scientific and medical (ISM) band, is unlicensed and open to any

device/application. Some of the technologies using these band are cord-

less telephony, bluetooth radio, wireless local area networking and radio-

frequency identification (RFID).

The command-and-control model of spectrum management and alloca-

tion ensures interference-free operation for the licensed user as it is operating

in the band exclusively. Since most of the spectrum is already allocated

to various applications (Figure 1.2), emerging wireless applications such

as wireless broadband communications face an apparent spectrum scarcity.
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However, field studies on actual spectrum usage have shown that the cur-

rent spectrum management policy results in highly inefficient spectrum uti-

lization (Figure 1.3). This has led to the evolution of new paradigms and

technologies for future spectrum management models and wireless commu-

nication devices which aim to improve the efficiency of their own spectrum

utilization and to exploit the inefficiency of licensed spectrum users.

1.2 Emerging wireless paradigms and technologies

The growing demand for high-throughput wireless communication has led

to the emergence of new paradigms and technologies as contenders for next-

generation wireless communication networks. In this section, a few of these,

namely cognitive radio, dynamic spectrum access, orthogonal frequency-

division multiplexing (OFDM) and multi-antenna systems are briefly de-

scribed.

1.2.1 Cognitive radio and dynamic spectrum access

Cognitive radio is an emerging paradigm of wireless communication in which

an intelligent wireless system utilizes information about the radio environ-

ment to adapt its operating characteristics in order to ensure reliable com-

munication and efficient spectrum utilization [6]. The main goal of this

paradigm is to enable the cognitive radio to exploit the inefficiently utilized

licensed spectrum for its own communication needs without significantly af-

fecting the licensed user. The band of RF spectrum that is licensed to a user
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Measured Spectrum Occupancy At Seven Locations

0.0% 25.0% 50.0% 75.0% 100.0%

Riverbend Park, Great Falls, VA

Tysons Corner, VA

NSF Roof, Arlington, VA

New York City

NRAO, Greenbank, WV

SSC Roof, Vienna, VA

Chicago, IL

Average

Spectrum Occupancy

(a) Overall spectrum occupancy measured at seven locations

Measured Spectrum Occupancy Averaged over Seven Locations

0.0% 25.0% 50.0% 75.0% 100.0%

PLM, Amateur, others: 30-54 MHz
TV 2-6, RC: 54-88 MHz

Air traffic Control, Aero Nav: 108-138 MHz
Fixed Mobile, Amateur, others:138-174 MHz

TV 7-13: 174-216 MHz
Maritime Mobile, Amateur, others: 216-225 MHz

Fixed Mobile, Aero, others: 225-406 MHz
Amateur, Fixed, Mobile, Radiolocation, 406-470 MHz

TV 14-20: 470-512 MHz
TV 21-36: 512-608 MHz
TV 37-51: 608-698 MHz
TV 52-69: 698-806 MHz

Cell phone and SMR: 806-902 MHz
Unlicensed: 902-928 MHz

Paging, SMS, Fixed, BX Aux, and FMS: 928-906 MHz
IFF, TACAN, GPS, others: 960-1240 MHz

Amateur: 1240-1300 MHz
Aero Radar, Military: 1300-1400 MHz

Space/Satellite, Fixed Mobile, Telemetry: 1400-1525 MHz
Mobile Satellite, GPS, Meteorologicial: 1525-1710 MHz

Fixed, Fixed Mobile: 1710-1850 MHz
PCS, Asyn, Iso: 1850-1990 MHz

TV Aux: 1990-2110 MHz
Common Carriers, Private, MDS: 2110-2200 MHz

Space Operation, Fixed: 2200-2300 MHz
Amateur, WCS, DARS: 2300-2360 MHz

Telemetry: 2360-2390 MHz
U-PCS, ISM (Unlicensed): 2390-2500 MHz

ITFS, MMDS: 2500-2686 MHz
Surveillance Radar: 2686-2900 MHz

Spectrum Occupancy

(b) Measured spectrum occupancy in the 30 MHz-3,000 MHz range averaged over
the seven locations

Figure 1.3: Average spectrum occupancy measured at seven locations
in the USA in the 30 MHz-3,000 MHz range demonstrating inefficient
spectrum utilization [5].
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Time

Dynamic
spectrum

access

Frequency

Spectrum in use

“Spectrum hole”

Power

Figure 1.4: Concept of spectrum hole represented in power, time and
frequency space wherein there is an opportunity for a cognitive radio
to operate [7].

but is not utilized by the licensed user at a particular time and location is

called a spectrum hole (Figure 1.4).

One of the key enabling technologies for cognitive radio is dynamic spec-

trum access. The overarching idea behind dynamic spectrum access is to

temporarily borrow unused spectrum from licensed users (spectrum holes)

without interfering with their operation [8]. Research on various aspects of

cognitive radio and dynamic spectrum access has received a great deal of

interest in recent times [9, 10, 11, 12, 13] and will help design wireless com-

munication systems of the future.
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1.2.2 OFDM technology

Orthogonal frequency-division multiplexing (OFDM) is a frequency-division

multiplexing scheme developed to transmit multiple digital signals simulta-

neously over a large number of closely-spaced orthogonal sub-carriers [14].

OFDM transmission is used for wideband digital communication, both wired

and wireless, and has been adopted for a variety of applications, ranging from

digital television to wireless networking.

OFDM technology has many advantages. It has a high spectral effi-

ciency and is resilient to interference and multipath effects. It can also

easily adapt to severe channel conditions without complicated time-domain

equalization and can be efficiently implemented using the fast Fourier trans-

form. However, OFDM technology is quite sensitive to Doppler shift and

frequency-synchronization issues, despite which it has become the de-facto

physical (PHY) layer broadband transmission technology and is particularly

advantageous for multiple access systems.

1.2.3 Multi-antenna technology

Multiple antennas at the receiver and/or transmitter of a wireless commu-

nication system can be used to improve link performance [15]. The term

multiple-input multiple-output (MIMO) is used to describe systems which

exploit such antenna diversity. MIMO technology can significantly improve

the data throughput and coverage without additional bandwidth or trans-

mission power. This is because signals transmitted from multiple antennas
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experience differing multipath fading and are received by multiple anten-

nas. The different multipath signals can be combined coherently to achieve

higher data rates and/or lower bit-error rates by using clever signal process-

ing techniques. However, this can significantly increase the complexity of

the communication system.

1.3 Motivation

The aforementioned technologies and paradigms are integral features of to-

day’s high performance networks and/or are strong contenders for wireless

networks of tomorrow. OFDM and MIMO technologies are already exten-

sively used in wireless networks through standards such as IEEE 802.11n and

WiMAX. They are also strong candidate technologies for the next-generation

of wireless communication networks [16,17,18], which will incorporate prin-

ciples of cognitive radio and dynamic spectrum access [19, 20].

A prominent feature of these paradigms is the provision for greater free-

dom of action for the users in the network. In such a network, “intelligent”

users actively and dynamically manage the resources and characteristics of

their transceivers, such as transmit power and bandwidth, in order to op-

timize their communication performance in terms of various criteria such

as information rate, utilized power and achieved quality-of-service (QoS).

With the advent of cognitive radio and dynamic spectrum access, multiple

heterogenous wireless technologies and standards of tomorrow are expected

to function seamlessly in the same environment and RF spectrum [21]. In
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such a setting, interference among the users1 becomes a critical issue and

precludes the traditional approach of interference mitigation through prede-

termined non-overlapping frequency allocation (FDMA) due to significant

demands on coordination among the users. This form of centralized control

determining the communication parameters of users leads to heavy signalling

overhead as information from all the users needs to be collected, processed

and disseminated by the controller.

The issue of maximizing information rates of users in an interference

channel by optimizing the power spectral density of the transmitted signal

under certain power constraints is of interest in this thesis. The sum-rate

maximization problem in a frequency-selective Gaussian interference channel

has been proved to be NP-hard [22] and the optimal solution of this problem

is of the form of frequency division multiple access (FDMA) [23]. Thus, a

centralized solution to this problem not only requires information (in the

form of channel state information and noise variances) from all users, but

also is computationally unattractive.

The solution to these limitations lies in the framework of distributed algo-

rithms, which enable users of the network to compute their optimal solutions

autonomously with limited (locally available) information. The analysis of

such a system of multiple interactive autonomous intelligent users operating

in the same environment falls well within the purview of game theory, which

1Such a system with multi-user interference in a frequency-selective medium (as
seen in OFDM transmission) can be modelled as an interference channel, described
in Section 3.3 on page 61.
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was devised to analyze and predict the outcome of situations where multi-

ple entities (typically people, companies and nations) interact. In addition,

solutions from such a game-theoretic analysis can often be implemented as

distributed algorithms. These factors make game theory an attractive tool

for the design and analysis of tomorrow’s wireless communication networks.

Indeed, it has been shown that the problem of maximizing information rates

of users in an interference channel, which is of interest in this thesis, can be

modelled as a noncooperative game [24].

However, a vast majority of game-theoretic solutions proposed for wire-

less networks in the current literature, including the rate-maximization game,

assumes perfect knowledge of channel state information, which is not pos-

sible in practice, where such information is estimated with a certain degree

of uncertainty. This uncertainty could be introduced though several mecha-

nisms, such as estimation errors, feedback quantization and latency between

channel estimation and signal transmission. If these solutions are to be

implemented in practice, the effect of such uncertainty on the perfor-

mance of these game-theoretic solutions needs to be characterized

and robust game-theoretic algorithms which perform satisfacto-

rily in spite of such uncertainty need to be designed and analyzed.

This issue of uncertainty in the parameters of game-theoretic solutions is the

central theme of this thesis.

In summary, the design of distributed algorithms based on ideas

from game theory for maximizing the information rates of users
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having limited transmit power in single-antenna and multi-antenna

interference channels with uncertainty in channel state informa-

tion is the focus of this thesis.

1.4 Thesis outline

The aforementioned approaches and issues are addressed over the following

chapters of this thesis:

Chapter 2: Game Theory: Fundamentals, Nash Equilibrium and

Robust Game Theory

This chapter presents a brief description of the game-theoretic concepts that

are of interest in this thesis. The chapter begins with an introduction to

game theory and the conditions needed for its application in a given sce-

nario, described in Section 2.1 on page 35. This is followed by a discussion

on strategic noncooperative games and the concept of Nash equilibrium in

Section 2.2 on page 40 and the notion of equilibrium efficiency as a method

to quantify the quality of the Nash equilibrium solution in Section 2.3 on

page 42.

In Section 2.4 on page 45, a discussion on some of the limitations of

the Nash equilibrium concept and the traditional game-theoretic approach

to the issue of uncertainty in games is presented. Finally, the robust game

model, which is a union of ideas from robust optimization theory and game

theory, is introduced in Section 2.5 on page 47 as a suitable candidate for
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resolving the issue of uncertainty in channel state information affecting the

performance of game-theoretic solutions.

Chapter:3: Iterative Waterfilling Algorithms

This chapter presents a specific game-theoretic solution and its associated

conceptual and mathematical foundations within which the issue of channel

uncertainty is investigated in this thesis. This includes results from contrac-

tion and fixed point theory, which addresses the formulation and character-

ization of distributed algorithms (Section 3.1 on page 52) and information

theory, which introduce the waterfilling solution as the optimal solution to

the problem of rate-maximization in a single-user context (Section 3.2 on

page 57). This is followed by the description of the Gaussian interference

channel in the multi-user scenario and a review of the current literature using

game theory to address the problem of rate-maximization in this medium in

Section 3.3 on page 61.

The predominant game-theoretic solution, namely the iterative water-

filling algorithm (IWFA), to the problem of rate-maximization in single-

antenna frequency-selective Gaussian interference channels and multi-antenna

(MIMO) Gaussian interference channels are presented respectively in Sec-

tion 3.4 on page 66 and Section 3.5 on page 72 and extended to broadband

MIMO Gaussian interference channels in Section 3.6 on page 80.

Finally, in Section 3.7 on page 85, the effect of channel state information

errors on the performance of the MIMO iterative waterfilling algorithm is
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investigated, which demonstrates the need for robust solutions presented in

the subsequent chapters.

Chapter 4: Robust IWFA for SISO Frequency-Selective Systems

In this chapter, the analytic framework for a robust formulation of the rate-

maximization game for single-input single-output (SISO) frequency-selective

Gaussian interference channels is presented. Section 4.1 on page 93 is a re-

view of the state-of-the-art in methods that address and investigate the is-

sue of channel state information uncertainty in rate-maximization games for

Gaussian interference channels. The system under consideration is described

in Section 4.2 on page 95. A distribution-free robust rate-maximization game

based on the robust game model is formulated in Section 4.3 on page 98. The

optimal solution of each user in the form of a robust waterfilling operation

is derived and characterized in Section 4.4 on page 100.

In Section 4.5 on page 104, the equilibrium solution of this game, termed

the robust-optimization equilibrium, is presented and shown to exist for possi-

ble channel values and initializations, and further, to be unique under certain

sufficient conditions. A distributed algorithm to compute the equilibrium so-

lution iteratively is presented and proved to asymptotically converge when a

unique equilibrium is guaranteed in Section 4.6 on page 105. Finally, numer-

ical simulations to confirm the behaviour of the algorithm are presented in

Section 4.7 on page 108, where an interesting effect of increase in sum-rate

with greater channel uncertainty is observed, which merits further analysis.
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Chapter 5: Sum-Rate Analysis in the Two-User Scenario

This chapter is an analytical investigation of the improvement in sum-rate

with greater channel uncertainty in the robust SISO rate-maximization game

proposed in Chapter 4 for the two-user case. To begin with, the effect of

increasing channel uncertainty on the sum-rate and the price of anarchy of a

simple two-frequency system are analyzed in Section 5.1 on page 124. Based

on these results, conditions for improvement in the sum-rate and the price

of anarchy of a system with asymptotically large number of frequencies with

an increase in uncertainty are derived in Section 5.2 on page 127. Finally,

these results are supported using simulations in Section 5.3 on page 129.

Chapter 6: Robust IWFA for MIMO Systems

In this chapter, a robust rate-maximization game in MIMO Gaussian inter-

ference channels in the presence of bounded channel uncertainty is developed.

The system model for which the robust game is developed is described in

Section 6.1 on page 151. A robust MIMO rate-maximization game for this

system is formulated and shown to be a modified MIMO rate-maximization

game (Section 3.5) in Section 6.2 on page 153. The robust-optimization

equilibrium for this game and an iterative waterfilling algorithm to compute

it are presented, along with sufficient conditions for the uniqueness of the

equilibrium and asymptotic convergence of the algorithm, in Section 6.3 on

page 157. The behaviour of the algorithm under different settings is con-

firmed though numerical simulations in Section 6.4 on page 161.
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Chapter 7: Summary, Conclusions and Future Work

The novel results of this thesis and their conclusions are summarized in

Section 7.1 on page 167. The work presented in this thesis could be extended

in various directions, some of which are described in Section 7.2 on page 171.



Chapter 2

GAME THEORY —

FUNDAMENTALS, NASH

EQUILIBRIUM AND ROBUST

GAME THEORY

The past decade has seen the increasing application of concepts from game

theory in wireless communication systems to solve a variety of problems

[25, 26, 27, 28, 29, 30, 31]. Game theory has been utilized to solve various

resource allocations problems in different scenarios and the problems con-

sidered involve bandwidth allocation, power control, medium access control,

flow control, routing and pricing issues in wireless networks [32]. Game

theory has also been extensively applied in cognitive radio and dynamic

spectrum access, particularly to solve issues in spectrum management and

spectrum sharing [33,34,35,36,37].

34
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In this chapter, a brief overview of game-theoretic concepts relevant to

this thesis is presented. The chapter begins with an introduction to game

theory and a brief discussion on the classification of games. This is followed

by a description of the strategic noncooperative game model, the Nash equi-

librium and the notion of equilibrium efficiency. Finally, the robust game

model is introduced as a way of moving beyond the concept of the Nash

equilibrium in static noncooperative games having uncertainty in payoff func-

tions, with the marriage of ideas from robust optimization theory and game

theory.

2.1 Introduction to game theory

Game theory is a collection of mathematical tools designed for the analysis

of situations where decision-makers meet and interact. In such situations,

the success of individual decision-makers depends on the actions of others.

Though game theory was developed to analyze and understand economic

behaviour [38, 39], the underlying concepts of game theory are far-reaching

and have seen applications in diverse fields such as biology, political science,

international relations, computer science, engineering, social psychology, phi-

losophy and management.

In its broadest sense, a game is a description of strategic interaction

among decision makers, termed as players. It specifies the constraints on

the players when deciding on a possible action, but does not state what

action they decide to take. A solution concept of a game refers to a formal
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rule that predicts the actions of the players when the game is played. These

predictions are called solutions and describe the action each player will select,

which is called a strategy. The most common form of the solution concept

is the equilibrium concept. At an equilibrium, the various forces influencing

the game are balanced and the players will not change their strategies in the

absence of external influences.

Game theory is built upon the theory of rational choice, which assumes

that the action decided by a player is at least as good as every other available

action. The players are also assumed to reason strategically by taking into

account the possible actions of other players while deciding their own actions.

In order to apply game theory to analyze a given scenario, a few basic

requirements need to be satisfied. First of all, there must be well-defined

decision making processes in the scenario. Also, the decisions from these

processes should have a predictable impact on performance. This is typically

achieved by clearly identifying the players of the game and specifying their

preferences explicitly through utility/payoff functions which are mappings

from the set of possible actions to the profits delivered. Furthermore, in order

to ensure that the scenario being modelled does not result in a trivial game,

there must be multiple interactive decision makers and each decision maker

must have multiple possible actions. The term “interactive” in this context

indicates that the actions of any decision maker should have an impact on

the actions of the others. In other words, the scenario being modelled as

a game should not be a simple single-objective optimization problem. In
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most cases, having a multi-user scenario with a separate objective function

for each user will be adequate for this to be ensured.1

Traditionally, game theory was developed in order to analyze and pre-

dict the outcomes of situations, particularly in economics, wherein multiple

decision makers interacted, given their decision making processes. In a com-

munications network context, this implies that applying game theory in this

fashion will help to predict the performance of networks and to analyze the

effect of various network parameters on the network performance when the

users are operating under a certain protocol or utilizing a specified algorithm.

In engineering (and particularly in communications), there is a great

range of decision making processes and possible actions that could exist in a

certain scenario (system), unlike in the case of economics or political science

where people, companies and nations are being modelled. Further, in the

case of economics or political science, the game-theorist has little control or

influence on the actions of the set of people, companies or nations being mod-

elled and game theory is primarily an analytical tool in such cases. However,

there could be certain specific decision making processes and ranges of ac-

tions whose outcome predicted by game theory is more desirable than others,

which indicates that game theory could also be used as a design tool. In a

1This does not necessarily mean that game theory is only applicable in multi-user
problems. In some cases, inventing fictitious users playing an imaginary game may
be useful in achieving a desired solution. For instance, a single-user robust (worst-
case) power allocation problem in MIMO channels with no channel information or
statistics has been analyzed by modelling the problem as a user vs. malicious-nature
game [40] . In this case, the interaction between the user and nature occurs through
the varying levels of receiver noise of the user.
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communications network setting, this translates to designing (engineering!)

the protocols or algorithms utilized by the users in the network in order to

achieve specific predetermined performance targets at the user and/or net-

work level.2 It is this “engineering” perspective of applying game theory as

a design tool that is of great interest in the field of wireless communications

and networking.

2.1.1 Types of games

A game is a mathematical model of interacting decision makers and has

three basic components [42]:

• a set of players

• a set of actions (for each player)

• a set of preferences (for each player)

The set of actions of each player is called the set of admissible strategies

or the strategy space. The preferences of each player are typically specified

using payoff/utility functions which explicitly describe the relation between

actions and profits.

There is a huge diversity in game-theoretic approaches and classifying

this seemingly bewildering variety of games under a universal classification

2This is quite similar to the concept of reverse engineering [41], where the goal is
to discover/reinvent the process that resulted in a solution/product, given the final
solution/product, through the analysis of its structure, function and operation.
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scheme is not easy. This has led to many classifications of game-theoretic

methods along different criteria, some of which are:

• Cooperative and noncooperative games: If the players in a game

are aiming to mutually benefit by reliably cooperating with each other,

this leads to cooperative games. On the other hand, if the users are

aiming to improve only their own selfish objectives, the game is said

to be noncooperative.

• Static and dynamic games: These are also known as strategic

games and extensive games, respectively. In static games, all play-

ers make their decisions simultaneously (or if at different points in

time, without knowing other players’ strategies), whereas in dynamic

games, there is a temporal component where the players may take

turns to make decisions or play the game repeatedly and try to take

advantage of knowing the history of the game.

• Zero-sum and non-zero-sum games: In zero-sum games (and

more generally, constant-sum games), the total available resources in

the game is constant and unaffected by the players’ actions, with the

gain by any player being offset by a corresponding loss of others. How-

ever, in non-zero-sum games, the total available resources in the game

is not constant and depends on the strategies of the players. In such

cases, a careful design of the game may lead to improvement of many

or all the payoffs of the players in the game.
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• Symmetric and asymmetric games: In symmetric games, all the

players have identical payoff functions and strategy-spaces and the

payoff for a particular strategy is independent of the identity of the

player. However, in asymmetric games this is not the case, where

the payoff functions and/or strategy-spaces are non-identical and the

payoffs of the players are non-identical.

The games considered in this thesis are static noncooperative asymmet-

ric non-zero-sum games. In the following section, a brief description of the

strategic noncooperative game and its solution concept, the Nash equilib-

rium, is presented.

2.2 Static noncooperative game — Nash equilibrium

This section formalizes the strategic noncooperative game model and the

definition of the Nash equilibrium solution concept.3

Consider the following static noncooperative game, G :

• Set of players: Ω = {1, . . . , Q}.

• Set of admissible strategies (Strategy-space): Aq 6= { } ∀q ∈ Ω.

• Payoff (Utility) functions: Uq(aq,a−q) : A1 × · · · × AQ 7→ R ∀q ∈ Ω

3The discussion presented here has been limited to pure strategies, i.e., actions
that are deterministic. The notions presented here have been extended to mixed
strategies, where the pure strategies are associated with a probability of applica-
tion. However, as all the games discussed in this thesis have pure strategies, game-
theoretic concepts involving mixed strategies are beyond the scope of this thesis.
Refer to [42,43] among others for further information on mixed strategies.
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where aq ∈ Aq and a−q = {ai}i6=q.

where each player is assumed to know the strategy-space and payoff func-

tions of every other player. This knowledge is not always necessary in all

noncooperative games. For instance, in the robust MIMO rate-maximization

game analyzed in Section 6.2 on page 153, the players do not explicit share

any information.

The solution concept of this game is the famous Nash equilibrium, based

on the concepts introduced by Nobel Prize winner John Nash in [44,45]. The

notion of a Nash equilibrium is presented in the following result:

Proposition 2.1. Given the game G , the joint strategy a∗ , [a∗1, . . . , a
∗
Q] is

a Nash equilibrium if

Uq(a
∗
q ,a

∗
−q) ≥ Uq(aq,a

∗
−q) ∀aq ∈ Aq, ∀q ∈ Ω. (2.2.1)

In other words, no single player can profit by unilaterally deviating from

a Nash equilibrium. An alternate interpretation of the Nash equilibrium is

through the concept of best response strategies. A best response strategy of

a player is the action (or set of actions) which results in the most favourable

outcome for a player, given other players’ strategies. At the Nash equilib-

rium, each player’s strategy is a best response to all other strategies in the

equilibrium. Thus, the Nash equilibrium of a game can be said to be a

joint-best-response strategy of the players.

The question of whether a given game has any equilibrium or not is one
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that has been extensively investigated over the years. Most of these are built

upon various fixed point theorems,4,5 and present various conditions under

which a game will be guaranteed to have an equilibrium (Refer to [50] for

a detailed treatment on the topic). A further question to be addressed is

whether there is a unique Nash equilibrium in a game, and if so, ways to

compute it. This is because the equilibrium solution concept only indicates

that if the players are initialized with a Nash equilibrium solution, then they

will continue to remain there. It does not specify the dynamics of the game,

and how long the players may take to converge to an equilibrium, if they

converge at all.

2.3 Equilibrium efficiency

The “joint-best-response” interpretation of the Nash equilibrium is of sig-

nificant interest when dealing with distributed optimization. It implies that

each player is at a locally optimal solution which can be computed by a

distributed algorithm whose convergence properties could be characterized

and analyzed. This leads to the idea of competitive optimality, where each

player in a competitive environment settles down to a (locally) optimal sta-

ble solution. The term “optimality” here is slightly fallacious and this idea

4It is interesting that the equivalence between the Nash equilibrium and the
concept of a fixed point is only mentioned in passing, if at all, in most general
textbooks on game theory, when John Nash’s work is actually built on this inter-
pretation, using Kakutani’s fixed point theorem [46] in his seminal paper [44] to
prove the existence of an equilibrium.

5A few of the important fixed point theorems in game theory are the ones by
Brouwer [47], Lefschetz [48], Hopf [49] and Kakutani [46].
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should be applied with caution. This is because the emphasis in such an

approach is on achieving a stable (stationary) situation in the game with

all the players settling to a single action each, rather than an emphasis on

optimizing the total (or individual) utility of the players in the game. In

fact, there is no guarantee that such a decentralized noncooperative solution

will yield a utility as good as one from a centralized optimization approach.

This leads to the concept of equilibrium efficiency which tries to quantify

this issue and measure the trade-off between achieving decentralized control

and having globally optimal solutions.

The popular measures of equilibrium efficiency are as follows:

1. Social welfare

2. Pareto optimality

3. Price of anarchy/stability

2.3.1 Social welfare

Given the joint strategy a , [a1, . . . , aQ], the social welfare of game G is

defined as the sum of all the utilities of the players

w(a) =
Q∑

q=1

Uq(aq,a−q) (2.3.1)

When the payoff functions of the players are the information rates of the

users (as is the case in this thesis), the social welfare is equivalent to the

sum-rate of the system.
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2.3.2 Pareto optimality

A solution is Pareto optimal if there is no possible way to improve the payoff

of a (non-empty) subset of players without leaving any other player worse-off.

Proposition 2.2. Given the game G , a joint strategy a∗ , [a∗1, . . . , a
∗
Q] is

said to Pareto optimal if there does NOT exist any a ∈ A1 × · · · × AQ such

that

U(a) > U(a∗) (2.3.2)

where U(a) , [U1(a1,a−1), . . . , UQ(aQ,a−Q)].

The set of solutions which are Pareto optimal forms the boundary of the

joint-utility region of the game and is known as the Pareto frontier [51].

2.3.3 Price of anarchy and price of stability

The concept of price of anarchy, introduced in [52], aims to measure the

“price of uncoordinated individual utility-maximizing decisions”. Together

with the price of stability, it helps quantify the trade-off between having

distributed algorithms and optimal social welfare.

The price of anarchy is defined as the ratio between the objective function

value at the socially optimal solution and the worst objective function value

at any equilibrium of the game [53]. The price of stability is defined as the

ratio between the objective function value at the socially optimal solution

and the best objective function value at any equilibrium of the game [53].
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Thus, in game G ,

PoA =
max
a∈A

w(a)

min
a∈ANE

w(a)

PoS =
max
a∈A

w(a)

max
a∈ANE

w(a)

(2.3.3)

where A , A1 × · · · × AQ is the joint strategy space, ANE is the set of

Nash equilibrium solutions and w(a) is the social welfare of the game as

defined in (2.3.1). Note that PoA ≥ PoS ≥ 1 and that a lower price of

anarchy indicates a more efficient game. Thus, price of anarchy and price

of stability help quantify the worst-case and best-case equilibrium efficiency

respectively. In games with unique Nash equilibrium solutions, such as the

ones considered in this thesis, the price of anarchy and stability are identical.

2.4 Moving beyond Nash equilibrium — robust game theory

The Nash equilibrium concept discussed in the previous section is one of the

cornerstones of noncooperative game theory and has been utilized to solve

a great many problems in a diverse range of applications. However, the

concept of Nash equilibrium is not without limitations. As seen in the pre-

vious section, the Nash equilibrium concept generally provides a distributed

solution at the cost of equilibrium efficiency. However, it suffers from scala-

bility issues. In games with large number of players and large action spaces,

the computation of the Nash equilibrium solution and the verification of



Section 2.4. Moving beyond Nash equilibrium — robust game theory 46

the conditions for existence and/or uniqueness often become inefficient or

even intractable. Furthermore, these costly computations to evaluate the

equilibrium solution may not even be Pareto optimal.

The scalability issue is even more complicated in large games as they

typically yield large number of equilibria and could result in a high price

of anarchy. In such a scenario, it is quite difficult to predict which equilib-

rium is achieved or to ensure that a specific subset of equilibria is achieved

as different initializations could lead to different equilibria. Techniques to

identify and select an appropriate equilibrium in such cases lead to the the-

ory of equilibrium selection [54]. The issue of multiple equilibria is not of

importance in this thesis as the focus of the methodologies here are in en-

suring a unique equilibrium and ways to compute it easily in a distributed

fashion, which is presented in Section 3.1 on page 52. Scalability issues in

large games are beyond the scope of this thesis and is a possible avenue of

future research.

Another limitation of the concept of Nash equilibrium is that it assumes

complete knowledge of all the players’ actions by each player and that these

actions and the payoffs of each player are known accurately. However, this

might not be possible in many cases and the players are often uncertain

about some aspects of the game. Uncertainty in the payoffs of the play-

ers is of particular interest in this thesis, as perfect knowledge of channel

state information is not available in wireless networking games. Thus, alter-

nate equilibrium concepts which model the presence of uncertainty need to
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considered.

The traditional game-theoretic solution to the uncertainty issue is Harsanyi’s

Bayesian game model [55,56,57] which is essentially analogous to the stochas-

tic programming approach [51] to uncertainty in data-sets in optimization

theory. In the Bayesian game model, each player aims to maximize the

expected payoff, given the full prior probability distribution of all the pa-

rameters with uncertainty. This model assumes that all the players have

the same prior probability distribution and is known to all the players. Al-

though this model has been extended to relax the assumptions of common

prior and common knowledge, the drawback of this approach is that it is dif-

ficult, in practice, to estimate the prior probability distributions accurately

and often leads to complicated probability distributions which results in the

analysis of the game being intractable. Thus, it is desirable to move to novel

“distribution-free” game models, which are defined to be independent of the

prior probability distributions of the parameters with uncertainty.

2.5 Robust game model

The robust game model, proposed independently in [58,59], incorporates the

concept of robust optimization [60], which is independent of the probability

distribution of the parameters with uncertainty, into the framework of static

noncooperative game theory. This approach models incomplete-information

games as distribution-free robust games where the players use a worst-case

robust optimization approach to counter bounded payoff uncertainty. The



Section 2.5. Robust game model 48

solution of this robust game model is a distribution-free equilibrium concept

called the robust-optimization equilibrium.6 In [58], the robust game model

is proposed for finite N-person games with linear payoff functions and un-

certainty in the parameters of the payoff function. The robust game model

proposed in [59] is for two-person games (bimatrix games) with linear pay-

off functions and uncertainty in the actions of the opposing player and each

player’s payoff function parameters. This model has been extended in [61] to

N-person games with nonlinear payoff functions, where it is reformulated as

second-order cone complementary problems in order to solve certain classes

of games. The work presented in this thesis is based on the robust game

model in [58].

In worst-case robust optimization [51], the parameters are assumed to

belong to “uncertainty sets” (set of all possible parameter values), and the

objective function is optimized for the worst-case parameter value (i.e., the

parameter value which results in the worst objective function value). In the

robust game model, each player formulates a best response as the

solution to a worst-case optimization problem. It is to be noted that

the players apply a worst-case perspective only to the uncertain parameters

that define their own payoff functions, given the actions of the other players,

and that the actions of other players are beyond the scope of consideration of

each player. In other words, the optimization performed by each player is for

6The equilibrium concept is called “robust Nash equilibrium” in [59] and “robust-
optimization equilibrium” in [58]. In this thesis, the term robust-optimization equi-
librium is used exclusively in order to highlight the fact that this concept has its
roots in robust optimization theory.
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worst-case payoff function parameters (presumably determined by “nature”)

and not for worst-case actions of the other players.

If it is commonly known to all players that each one of them is adopt-

ing the above robust-optimization approach to payoff function uncertainty,

then it is possible for the players to mutually predict each other’s behaviour,

similar to the complete-information game whose solution is the Nash equi-

librium.7 The players reach an equilibrium when their mutual predictions

coincide and this leads to the notion of the robust-optimization equilibrium.

This robust game approach is utilized in Chapters 4 and 6 to formulate

a robust rate-maximization game in the presence of bounded channel uncer-

tainty in SISO frequency-selective and MIMO Gaussian interference channels

(For a discussion on Gaussian interference channels, refer to Section 3.3 on

page 61).

2.6 Summary

This chapter presented an overview of the various concepts and methodolo-

gies from game theory that are of interest in the thesis. A brief introduction

to game theory and the underlying assumptions needed to apply game the-

ory were discussed. This was followed by a review of some of the commonly

7Since the players of the complete-information noncooperative game are rational
and know the payoffs and action-space of each other, each player can compute the
best responses of every other player, which will help predict the actions of the
other users. Based on these predictions, each player formulates a best response
strategy. The Nash equilibrium is the set of all mutually-coinciding predictions of
the players. This idea may not be not straightforward to apply in practice, where
all the information may not be available and multiple equilibria could exist.
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observed types of games. Following this, the strategic noncooperative game

model and the Nash equilibrium solution concept were formally defined and

explained. The concept of equilibrium efficiency and measures to quantify

it were then presented. The subsequent section elaborated some of the limi-

tations of the Nash equilibrium and reviewed the traditional game-theoretic

approach to address the issue of uncertainty. Finally, the concept of robust

game theory as an amalgamation of approaches from robust optimization

theory and game theory was explored.



Chapter 3

ITERATIVE WATERFILLING

ALGORITHMS

This chapter presents the conceptual foundations and specific game-theoretic

problem formulations on which the contributions of this thesis are based.

The chapter starts with a brief overview of relevant results in contraction

mappings and fixed point theory. This is followed by a brief summary of clas-

sical single-user waterfilling solutions. Next, the issue of rate-maximization

in multi-user Gaussian interference channels is considered and the predom-

inant game-theoretic approach to competitive rate-maximization in single

antenna and multi-antenna Gaussian interference channels is outlined. The

effect of channel estimation errors on the performance of this method is then

investigated, setting the stage for the robust solutions proposed in this thesis

in subsequent chapters. Finally, a short appendix on Karush-Kuhn–Tucker

conditions is included for completeness.

51
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3.1 Contraction and fixed point theory

In this section, some of the central concepts involved in solving nonlinear

problems using distributed iterative algorithms are summarized (Refer to [62]

for a rigorous treatment of the topic). The key motivation behind using these

well-studied analytical tools lies in the interpretation of the Nash equilibrium

as a fixed point and the representation of the waterfilling function as an

Euclidean projection, enabling its interpretation as a contraction mapping.

3.1.1 Existence and uniqueness of a fixed point

Let F : X 7→ X be any mapping from a subset X ⊆ R
n to itself which is

associated to a dynamic system described by

x(n + 1) = F
(
x(n)

)
, n ∈ N+ = {0, 1, 2, . . . }, (3.1.1)

where x(n) ∈ R
n is the state variable vector at discrete-time n, with x(0) ∈

R
n. If this mapping has the property

∥∥F(x)− F(y)
∥∥ ≤ α

∥∥x− y
∥∥, ∀ x,y ∈ X , (3.1.2)

with ‖ ·‖ being some norm and α being a constant in the interval [0, 1), then

such a mapping is called a contraction mapping. The scalar α is called the

modulus of F. A mapping F : X 7→ Y where X ,Y ⊂ R
n that satisfies (3.1.2),

is also called a contraction mapping, even if X 6= Y.

Any vector x∗ ∈ X satisfying x∗ = F(x∗) is called a fixed point of the



Section 3.1. Contraction and fixed point theory 53

mapping and the relation (3.1.1) can be seen as an iterative algorithm to

compute such a fixed point. This is possible because x∗ is a fixed point if F

is continuous at x∗ and the sequence {x(n)} converges to x∗.

The following result provides the conditions for the existence and unique-

ness of such a fixed point [63]:

Theorem 3.1. Given the dynamic system in (3.1.1) with F : X 7→ X and

X ⊆ R
n,

Existence: If X is nonempty, convex and compact1, and F is a continuous

mapping, then there exists some x∗ such that x∗ = F(x∗);

Uniqueness: If X is closed and F is a contraction mapping in some vector

norm ‖ · ‖, with modulus α ∈ [0, 1), then the fixed point of F is unique.

It is noteworthy that the conditions in Theorem 3.1 are only sufficient

conditions for the existence and uniqueness of a fixed point of a dynamic

system. Further, this result, more specifically the contraction mapping, is

norm-dependent. It is possible for mappings to be contractive under some

norm and yet fail to be a contraction under a different norm. Thus, the

choice of a suitable norm is critical in the application of this theorem. On the

other hand, this flexibility in the choice of norm could lead to a more varied

characterization of sufficient conditions for the existence and uniqueness of

the fixed point of the mapping under different norms.

1A subset of the Euclidean space R
n is called compact if it is closed and bounded.
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3.1.2 Convergence of distributed algorithms to a fixed point

The iterative algorithm described by x := F(x) of dimension n can be trans-

formed into a distributed algorithm whose components can be computed

locally (at different times, if necessary) by suitably partitioning the system.2

Let the partition of x be x = (x1, . . . ,xQ) with xq ∈ R
nq and n1+· · ·+nQ = n

such that F = {Fq}
Q
q=1, with each Fq : Xq 7→ Xq such that X = X1×· · ·×XQ,

with each Xq ⊆ R
nq . According to this partition, the block-maximum norm

on R
n is defined as

‖F‖block = max
q
‖Fq‖q (3.1.3)

where ‖ · ‖q is any vector norm on R
nq for each q. The mapping F is called

a block-contraction with modulus α ∈ [0, 1) if it is a contraction in the

block-maximum norm with modulus α.

Thus, the distributed implementation of the iterative algorithm (3.1.1)

can be written as

xq = Fq(x), ∀ q = 1, . . . , Q. (3.1.4)

The fixed point of F, i.e., x∗ = F(x∗) is equivalent to computing the fixed

point of each component locally,

x∗
q = Fq(x

∗), ∀ q = 1, . . . , Q. (3.1.5)

2Since the joint admissible strategy set of the games in this thesis is a Cartesian
product of the set of admissible strategies of each player, the results presented here
are limited to mappings whose domain can be written as a Cartesian product of
lower dimensional sets.
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Let xq(n) be the value of the qth component at time n. Let the discrete

set T ⊆ N+ = {1, 2, . . . } be the set of times at which one or more of the

components are updated and Tq be the set of time instants n when the

component xq(n) is updated. Further, the most recent values of the other

components may not be available during the computation of xi; thus, when

n ∈ Tq,

xq(n + 1) = Fq

(
x1
(
τ q
1 (n)

)
, . . . ,xq−1

(
τ q
q−1(n)

)
,

xq+1
(
τ q
q+1(n)

)
, . . . ,xQ

(
τ q
Q(n)

))
,

(3.1.6)

where τ q
r (n) is the time of the most recent value of component r available to

user q at time n.

Different update order and scheduling of the components of a distributed

algorithm lead to different classes of algorithms. The most common of these

are:

Jacobi scheme: All components (x1, . . . ,xQ) are updated simultaneously,

via the mapping F.

Gauss-Seidel scheme: All components (x1, . . . ,xQ) are updated sequen-

tially, one after the other, via the mapping F.

Totally asynchronous scheme: The components (x1, . . . ,xQ) are updated

fully asynchronously, i.e., in no particular order or even with the same

frequency, and the computation of some components may involve the
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use of outdated values of other components.3

The update order is of particular importance in the design of distributed

algorithms. The convergence properties of the same mapping may differ sig-

nificantly across different update schemes, possibly converging at different

rates, to different fixed-points or even not converging at all. The Gauss-

Seidel and Jacobi schemes are special cases of the totally asynchronous

scheme. The algorithm model described and characterized in this section

is totally asynchronous, which is the most general case of the classes de-

scribed above, and thus most useful to help characterize a larger class of

algorithms.

The following weak assumptions are made for each component q for the

system to be totally asynchronous:

1. The system is causal.

0 ≤ τ q
r (n) ≤ n (3.1.7)

2. Out-dated information is eventually purged.

lim
k→∞

τ q
r (nk) = +∞ (3.1.8)

3. No component fails to update its value eventually as time n progresses.

|T| =∞ (3.1.9)

3Variations of this scheme, such as having constraints on maximum tolerable
delay, leads to a class of partially asynchronous algorithms.
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These assumptions are generally satisfied in any practical implementa-

tion of distributed algorithms. The sufficient condition for convergence of

a totally asynchronous distributed algorithm as described in this section is

given in the following theorem [63]:

Theorem 3.2. Given the dynamic system in (3.1.1) with the mapping F =

{Fq}
Q
q=1 : X 7→ X with X = X1 × · · · × XQ, if the mapping F is a block-

contraction with modulus α ∈ [0, 1), then the totally asynchronous algorithm

based on the mapping F asymptotically converges to the unique fixed point

of F for any set of initial conditions in X and updating schedule.

3.2 Waterfilling: classical results — single-user systems

In this section, the core concepts in information theory which led to the

development of waterfilling as a solution to rate-maximization problems are

presented.

Many common communication channels are modelled as a Gaussian

channel, which is a time-discrete channel that models the noise at the re-

ceiver as an additive Gaussian random variable,

y = x + n, n ∼ NC(0, σ2), (3.2.1)

where x is the data transmitted in the current time-slot, y is the signal re-

ceived and n is the complex noise drawn from a circularly symmetric complex

Gaussian distribution of zero mean and variance σ2.
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If the average power constraint for transmission is P , then the capacity

of the Gaussian channel with noise variance σ2 is given by [64]

C =
1

2
log

(
1 +

P

σ2

)
nats/transmission. (3.2.2)

3.2.1 Parallel Gaussian channels

Now consider N independent Gaussian channels which transmit data in par-

allel with a common power constraint, P . This channel models a wideband

non-white additive Gaussian noise channel, where each parallel component

represents a different frequency. Let p , [p(1), . . . , p(N)] where p(k) is the

power allocated to the kth channel and σ2(k) be the variance of the additive

Gaussian noise in the kth channel. The goal is to allocate the power across

the different channels in order to maximize the overall information rate. The

solution to this rate-maximization problem, known as waterfilling, is given

by the following result [64]:

Proposition 3.1. The solution to the optimization problem

max
p

N∑

k=1

log

(
1 +

p(k)

σ2(k)

)

s. t. p(k) ≥ 0,

N∑

k=1

p(k) = P,

(3.2.3)
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Channel index 

 
Power allocated
1/Noise variance

Figure 3.1: A typical waterfilling solution for parallel Gaussian channels
showing the inverse noise variance levels and optimal power allocations
for each channel.

is given by

p∗(k) =

(
µ−

1

σ2(k)

)+

, (3.2.4)

where µ is chosen suitably to satisfy
∑N

k=1 p(k) = P , with (x)+ , max(0, x).

A typical solution is illustrated in Figure 3.1. The reason for the term

“waterfilling” is evident from the figure. If the inverses of the noise variances

are assumed to be represented by the topography of the bottom of a vessel

and the total power to be allocated by a certain amount of water, then the

waterfilling solution indicates that the optimal power allocation across the
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channels is given by the depth of the water when the water is poured into

the vessel. The water level is reflected in the parameter µ.

3.2.2 MIMO Gaussian channel

The Gaussian channel model can be extended to describe single-user sys-

tems with multiple transmitter and/or receiver antennas. Let nT and nR be

the number of transmitter and receiver antennas respectively. The MIMO

Gaussian channel is given by

y = Hx + n (3.2.5)

where y ∈ C
nR×1 is the signal at the receiver, x ∈ C

nT×1 is the transmitted

signal, H ∈ C
nR×nT is the (nonsingular) channel matrix and n ∈ C

nR×1 is

the receiver noise, which is assumed to be a zero-mean circularly symmetric

complex Gaussian vector with the covariance matrix InR
.

The observed information rate for this system is given by [64]

R = log det
(
InR

+ HQHH
)

. (3.2.6)

where Q , E{xxH} is the covariance matrix of the transmitted signal. If

the total power available is P , the rate-maximizing power allocation is given

by the following result [65]:
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Proposition 3.2. The solution to the optimization problem

max
Q

log det
(
InR

+ HQHH
)

s. t. Q � 0,

Tr(Q) = P,

(3.2.7)

is given by

Q∗ = U
(
µI−D−1

)+
UH (3.2.8)

where U and D are calculated from the eigendecomposition

UDUH , HHH. (3.2.9)

Thus, for MIMO Gaussian channels, the optimal power allocation is to

perform waterfilling along “spatial modes” of the channels, as suggested by

its eigendecomposition.

3.3 Gaussian interference channel — multi-user systems

In an environment with multiple users, the previous two models break down.

This is because the channels of different users are no longer independent, and

transmission by one user causes interference to the others. Such a scenario

is modelled as a Gaussian interference channel (GIC). In this model, the

interference caused by other channels is modelled as an additive Gaussian

noise in addition to the usual receiver noise. When there are many paral-
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lel Gaussian interference channels, the resulting wideband system is called

a vector Gaussian interference channel. The vector Gaussian interference

channel could be frequency-flat or frequency-selective in nature.4

The capacity region of the Gaussian interference channel is an open

problem in information theory [64] and has been an area of active research

[66, 67, 68, 69, 70]. A myopic approach where each user independently and

simultaneously performs classical waterfilling [64] based only on its own chan-

nel state information (CSI) without taking the interference caused by other

users into account will be inefficient and unstable when the cross-channel

gains are not small enough that the interference caused is negligible. The

alternate approach of modelling the rate-maximization problem as a single

sum-rate maximization problem involving all the users and computed by a

centralized controller, leads to a non-convex optimization problem and has

been shown to be strongly NP–hard [22].

The focus in this thesis is on systems where the various users act with

minimal coordination, which precludes the use of multi-user coding/decoding

and interference-cancelation techniques. This is of interest because practical

systems have significant limitations on decoder complexity, signalling and

coordination among users. Under these constraints, multi-user interference

is treated as noise and the design of the transmission strategy reduces to

finding the optimum power allocation for each user. Due to the nature

4In this thesis, it is assumed that the various users in the vector Gaussian interfer-
ence channel (the frequency-selective Gaussian interference channel, in particular)
are single-antenna (SISO) systems, unless specifically stated.
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of competition and interdependent performance, game theory provides an

excellent set of tools to analyze this problem.

3.3.1 Competitive rate-maximization in the Gaussian interference

channel

Cooperative and noncooperative game theory have both been extensively ap-

plied to analyze power control problems in wireless networks [71,72,73,74,75].

Cooperative game-theoretic approaches to the problem of power control in

wireless networks have been surveyed in [76, 77, 78]. The distributed power

control problem for both single-channel and multi-channel wireless networks

has been characterized using supermodular game theory in [79, 80]. Coali-

tion, coordination and Nash bargaining theory for resource allocation in

interference channels have be investigated in [81,82,83,84,85,86].

In this thesis, the noncooperative scenario where the users are competing

against one another and aiming to maximize their own information rates is

considered. This approach transforms the centralized multi-objective opti-

mization problem into a set of mutually coupled competitive single-objective

optimization problems. This competitive rate-maximization problem can be

modelled as a strategic noncooperative game. The Nash equilibrium [42]

of this game can be achieved via a distributed waterfilling algorithm where

each user performs waterfilling by considering the multi-user interference as

an additive coloured noise.

The seminal work on competitive rate-maximization [24] has used a
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game-theoretic approach to design a decentralized algorithm for two-user

dynamic power control in a digital subscriber line (DSL) environment mod-

elled as a frequency-selective Gaussian interference channel. This work

has proposed a sequential iterative waterfilling algorithm for reaching the

Nash equilibrium in a distributed manner. A Nash equilibrium of the rate-

maximization game implies that given that the power allocations of other

users is constant, no user can further increase the achieved information rate

unilaterally. A vector power control problem for frequency-flat Gaussian in-

terference channels has been presented in [87]. The issue of multiple Nash

equilibria occurring in the presence of strong interference has been investi-

gated in [88]. Analysis of the sequential iterative waterfilling algorithm for an

arbitrary number of users using a linear complementary problem formulation

has been presented in [89]. Sufficient conditions for global convergence of an

asynchronous iterative waterfilling algorithm by formulating the waterfilling

function as a piecewise affine function have been presented in [90]. A matrix

game formulation for competitive rate-maximization in frequency-selective

Gaussian interference channels, along with a novel interpretation of the wa-

terfilling function as an Euclidian projection of a vector onto a convex set

have been presented in [91,92,93]. The convergence properties of the iterative

waterfilling algorithm to multiple Nash equilibria in flat-fading Gaussian in-

terference channels under different levels of interference and different update

strategies have been investigated in [94, 95, 96] and with sequential update

strategy in frequency-selective Gaussian interference channels in [97].
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An early work, [98], has looked into waterfilling algorithms for MIMO

interference systems, but without any analytical results on the existence of

an equilibrium and global convergence of the algorithm. The different ap-

proaches in [89, 90, 93] for the iterative waterfilling algorithm in frequency-

selective Gaussian interference channels have been unified under the formu-

lation of the waterfilling function as a Euclidean projection and extended

to MIMO Gaussian interference channels with square (nonsingular) chan-

nels in [63]. A complete characterization of the MIMO rate-maximization

game and the MIMO waterfilling algorithm for arbitrary channel matrices

has been investigated in [99]. This has been extended to the MIMO cognitive

radio scenario in [100].

The subsequent sections present an overview of the rate-maximization

game for frequency-selective and MIMO Gaussian interference channels,

along with the sufficient conditions for the existence and uniqueness of the

Nash equilibrium and convergence of the iterative waterfilling algorithm to

the equilibrium. The Euclidean projection interpretations of the respective

waterfilling functions are also presented as they are useful in the analysis of

the properties of the equilibrium.
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3.4 Iterative waterfilling for frequency-selective GICs

3.4.1 System model

Consider a Gaussian frequency-selective interference channel with N fre-

quencies, composed of Q SISO links. The quantity Hqr(k) denotes the fre-

quency response for the kth frequency bin of the channel between source r

and destination q. The variance of the zero-mean circularly symmetric com-

plex Gaussian noise at receiver q over the frequency bin k is denoted by σ2
q (k).

The channel is assumed to be quasi-stationary for the duration of the trans-

mission. Each receiver is assumed to know the channel between itself and the

corresponding transmitter, but not other transmitters. Also, each receiver

is assumed to be able to measure, with no errors, the overall power spectral

density of the noise plus multi-user interference generated by other users.

Based on this information, each receiver computes the optimal power allo-

cation across the frequency bins for its own link and transmits it back to the

corresponding transmitter through a low bit-rate error-free feedback chan-

nel. Let the vector sq , [sq(1)sq(2) . . . sq(N)] be the N symbols transmitted

by user q on the N frequency bins and pq(k) , E
{
|sq(k)|2

}
be the power

allocated to the kth frequency bin by user q and pq , [pq(1)pq(2) . . . pq(N)]

be the power allocation vector. The maximum achievable information rate

by user q is given by [64]

Rq =
1

N

N∑

k=1

log(1 + sinrq(k)), (3.4.1)
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where sinrq(k) is the signal-to-interference plus noise ratio (SINR) on the

kth frequency bin of the qth user,

sinrq(k) ,
|Hqq(k)|2pq(k)

σ2
q (k) +

∑
r 6=q |Hqr(k)|2pr(k)

. (3.4.2)

3.4.2 Rate-maximization game

The problem of power allocation across the frequency bins is cast as strategic

noncooperative game with the SISO links as players and their information

rates as pay-off functions, under the following two constraints:

• Maximum total transmit power for each user:

E
{
‖sq‖

2
2

}
=

N∑

k=1

pq(k) ≤ NPq, q = 1, . . . , Q, (3.4.3)

where Pq is power in units of energy per transmitted symbol.

• Spectral mask constraints:

E
{
|sq(k)|2

}
= pq(k) ≤ pmax

q (k) (3.4.4)

for k = 1, . . . , N and q = 1, . . . , Q, where pmax
q (k) is the maximum

power that is allowed to be allocated by user q for the frequency bin

k.
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Mathematically, the game can be written as

(G S) :
max
pq

1

N

N∑

k=1

log(1 + sinrq(k))

s. t. pq ∈ Pq

∀q ∈ Ω (3.4.5)

where Ω , {1, . . . , Q} is the set of the Q players (i.e. the SISO links) and

Pq is the set of admissible strategies of user q, which is defined as

Pq ,

{
pq ∈ R

N :
1

N

N∑

k=1

pq(k) = 1, 0 ≤ pq(k) ≤ pmax
q (k), k = 1, . . . , N

}
.

(3.4.6)

The inequality constraint in (4.2.1) is replaced with the equality constraint

as, at the optimum of each problem in (3.4.5), the constraint must be satisfied

with equality. To avoid the trivial solution pq(k) = pmax
q (k) ∀k, it is assumed

that
∑N

k=1 pmax
q > N . Further, the players can be limited to pure strategies

instead of mixed strategies, as shown in [91].

3.4.3 Nash equilibrium

The solution to the game G S is the Nash equilibrium. At any Nash equilib-

rium of this game, the optimum action profile of the players {p⋆
q}q∈Ω must

satisfy the following set of nonlinear equations:

p⋆
q = WFS

q(p
⋆
1, . . . ,p

⋆
q−1,p

⋆
q+1, . . . ,p

⋆
Q) = WFS

q(p
⋆
−q) ∀q ∈ Ω. (3.4.7)
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The waterfilling operator WFS
q(·) is defined as [93]

[
WFS

q(p−q)
]
k

,

[
µS

q −
σ2

q (k) +
∑

r 6=q |Hqr(k)|2pr(k)

|Hqq(k)|2

]pmax
q (k)

0

k = 1, . . . , N

(3.4.8)

where µS
q is chosen to satisfy the power constraint 1

N

∑N
k=1 p∗q = 1.The Eu-

clidean projection [x]ba is defined as

[x]ba =





a if x ≤ a

x if a < x < b

b if x ≥ b

(3.4.9)

Waterfilling as a projection

The waterfilling function WFS
q(·) can be equivalently represented as a Eu-

clidean projection. This is the key concept that allows the analytical study

of convergence of the iterative waterfilling-based algorithms.

Theorem 3.3. The waterfilling operation WFS
q(·) in (3.4.8) can be equiva-

lently written as [92]

WFS
q(p−q) = [− isnrq(p−q)]Pq

, (3.4.10)

where

[isnrq(p−q)]k ,
σ2

q (k) +
∑

r 6=q |Hqr(k)|2pr(k)

|Hqq(k)|2
. (3.4.11)
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Existence and uniqueness of the Nash equilibrium

Let Dmin
q ⊆ {1, . . . , N} denote the set of frequency bins {1, . . . , N} from

which the frequency bins that user q would never use as the best response

set to any strategies adopted by the other users are removed [91]

Dmin
q ,

{
k ∈ {1, . . . , N} : ∃ p−q ∈ P−q such that

[
WFS

q(p−q)
]
k
6= 0

}

(3.4.12)

where P−q , P1 × · · · × Pq−1 × Pq+1 × · · · × PQ. Given the game G S , the

non-negative matrix Smax ∈ R
Q×Q
+ is defined as

[Smax]qr ,





max
k∈Dq∩Dr

|Hqr(k)|2

|Hqq(k)|2
Pr

Pq
, if r 6= q,

0, otherwise

(3.4.13)

The sufficient condition for existence and uniqueness of the Nash equilibrium

of game G S is given by the following theorem [91]:

Theorem 3.4. Game G S has at least one Nash equilibrium for any set of

channel matrices and transmit powers of the users. Furthermore, the Nash

equilibrium is unique if

ρ(Smax) < 1 (3.4.14)

where Smax is defined in (3.4.13).
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3.4.4 Asynchronous iterative waterfilling algorithm

Let the discrete set T ⊆ N+ = 1, 2, . . . be the set of times at which one

or more users update their strategies. Let p
(n)
q denote the vector power

allocation of user q at the discrete time n, and let Tq ⊆ T represent the set

of time instants n when the power vector p
(n)
q of user q is updated. Let τ q

r (n)

denote the time when the most recently perceived interference from user r

was computed by user q at time n (Note that 0 ≤ τ q
r (n) ≤ n). Hence, if user

q updates his strategy at time n, then

p

(
τq(n)

)

−q ,

(
p

(
τq
1
(n)
)

1 , . . . ,p

(
τq
q−1

(n)
)

q−1 ,p

(
τq
q+1

(n)
)

q+1 , . . . ,p

(
τq

Q
(n)
)

Q

)
. (3.4.15)

The asynchronous iterative waterfilling algorithm (AIWFA) for comput-

ing the Nash equilibrium of game G S in a distributed fashion is described in

Algorithm 3.1. The convergence of Algorithm 3.1 is guaranteed under the

following sufficiency condition [93]:

Theorem 3.5. The asynchronous iterative waterfilling algorithm described

in Algorithm 3.1 converges to the unique Nash equilibrium of game G S as

T → ∞ for any set of feasible initial conditions if condition (3.4.14) is

satisfied.

The global convergence of the asynchronous iterative waterfilling algo-

rithm to the unique Nash equilibrium is guaranteed by Theorem 3.5 using

condition (3.4.13) despite game G S and the waterfilling operation WFS
q(·)

being nonlinear.
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Algorithm 3.1 – Asynchronous Iterative Waterfilling Algorithm
Input:

Ω: Set of users in the system
Pq: Set of admissible strategies of user q
Tq: Set of time instants n when the power vector p(n)

q of user q is
updated
T : Number of iterations for which the algorithm is run
τ q
r (n): Time of the most recent power allocation of user r available

to user q at time n
WFS

q(·): Waterfilling operation in (3.4.8)

Initialization: n = 0 and p(0)
q ← any p ∈ Pq, ∀q ∈ Ω

for n = 0 to T do

p(n+1)
q =





WFS
q

(
p

(τq(n))
−q

)
, if n ∈ Tq,

p(n)
q , otherwise,

∀q ∈ Ω.

end for

3.5 Iterative waterfilling for MIMO GICs

3.5.1 System model

Consider a narrowband MIMO Gaussian interference channel composed of

Q MIMO links. The signal vector yq ∈ C
nRq×1 measured at the receiver of

user q is

yq = Hqqxq +
∑

r 6=q

Hrqxr + nq (3.5.1)

where Hrq ∈ C
nRq×nTr is the channel matrix between source r and des-

tination q, xq ∈ C
nTq×1 is the signal vector transmitted by source q and

nq ∈ C
nRq×1 is the receiver noise vector of user q, which is assumed to be a

zero-mean circularly symmetric complex Gaussian vector with an arbitrary

(nonsingular) covariance matrix Rnq . The second term in the right hand
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side of (3.5.1) is the multi-user interference observed at the destination q,

which is treated as additive spatially coloured Gaussian noise at the receiver

of user q. The channel is assumed to be quasi-stationary for the duration

of the transmission. At each receiver q, the channel matrix Hqq is assumed

to be known. Also, each receiver is assumed to be able to measure the co-

variance matrix of the noise plus multi-user interference generated by other

users. Based on this information, each destination q computes the optimal

covariance matrices Qq , E{xqxq
H} for its own link and transmits it back to

its transmitter through a low bit-rate error-free feedback channel. This gives

the optimal transmitter beamformer for each of the users. The information

rate of user q, Rq(Qq,Q−q), for this system can be written as [63]

Rq(Qq,Q−q) = log det(I + HH
qqR

−1
−q(Q−q)HqqQq) (3.5.2)

where

R−q(Q−q) , Rnq +
∑

r 6=q

HrqQrH
H
rq (3.5.3)

is the interference plus noise covariance matrix observed by destination q,

and Q−q , {Qr}
Q
r 6=q is the set of covariance matrices of all users except the

qth user.

3.5.2 Rate-maximization game

Consider the system in (3.5.1) as a strategic noncooperative game with the

MIMO links as players and information rates of the respective links as payoff
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functions. Each player q competes rationally against other users in order to

maximize its own information rate Rq(Qq,Q−q) by designing the optimal

covariance matrix Q⋆
q , given the constraint

E{‖xq‖
2
2} = Tr(Qq) ≤ Pq (3.5.4)

where Pq is the maximum average power transmitted in units of energy per

transmission. Mathematically, the game can be written as

(G M ) :
max
Qq

Rq(Qq,Q−q)

s. t. Qq ∈ Qq

∀q ∈ Ω (3.5.5)

where Ω , {1, . . . , Q} is the set of the Q players (i.e. MIMO links), Rq(Qq,Q−q)

is the payoff function of player q as given in (3.5.2) and the set of admissible

strategies of player q, Qq, is defined as

Qq ,
{
Q ∈ C

nTq×nTq : Q � 0, Tr(Qq) = Pq
}
. (3.5.6)

The inequality constraint in (3.5.4) is replaced with the equality constraint

as, at the optimum of each problem in (3.5.5), the constraint must be satisfied

with equality [99]. Further, it can be proved that the players can be limited

to pure strategies instead of mixed strategies, as shown in [91].
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3.5.3 Nash equilibrium

The solution to the game G M is the Nash equilibrium. Given Q−q ∈ Q−q ,

Q1× · · · ×Qq−1×Qq+1× · · ·QQ at any Nash equilibrium of this game, the

optimum action profile of the players {Q⋆
q}q∈Ω must satisfy

Q⋆
q = WFM

q (Q⋆
1, . . . ,Q

⋆
q−1,Q

⋆
q+1, . . . ,Q

⋆
Q) = WFM

q (Q⋆
−q) ∀q ∈ Ω. (3.5.7)

The waterfilling operator WFM
q (·) is defined as [99]

WFM
q (Q−q) , Uq(µ

M
q I−D−1

q )+UH
q (3.5.8)

where µM
q is chosen to satisfy Tr

(
(µM

q I−D−1
q )+

)
= Pq. The (semi)-unitary

matrix of eigenvectors Uq = Uq(Q−q) ∈ C
nTq×rq and the diagonal matrix

Dq = Dq(Q−q) ∈ R
rq×rq

++ with rq , rank(HH
qqR

−1
−q(Q−q)Hqq) = rank(Hqq)

positive eigenvalues are calculated from the eigendecomposition

HH
qqR

−1
−q(Q−q)Hqq , UqDqU

H
q . (3.5.9)

Waterfilling operation as a projection

The waterfilling operation WFM
q (·) can be interpreted as a matrix projection

onto a convex set [92]. The projection expression depends on the nature of

the channel matrices Hqq, i.e. whether it is square and nonsingular or not.

Theorem 3.6. For the system in (3.5.1) with an arbitrary (possibly singu-

lar) set of channel matrices, the MIMO waterfilling operator WFM
q (Q−q) in
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(3.5.8) can be equivalently written as [99]

WFM
q (Q−q) =

[
−
(
(HH

qqR
−1
−q(Q−q)Hqq)

♯ + cqPN (Hqq)

)]

Qq

(3.5.10)

where cq ≥ cq(Q−q) , Pq + maxi∈1,...,rq

[
Dq(Q−q)

]−1

ii
is a positive constant.

The projection operator PN (A) is defined as

PN (A) , NA(NA
HNA)−1NA

H (3.5.11)

where NA is any matrix whose columns span the null space of A given by

N (A).

Corollary 3.6.1. If the direct channel matrices Hqq are square and non-

singular for every user q, then the MIMO waterfilling operator WFM
q (Q−q)

in (3.5.8) can be equivalently written as [63]

WFM
q (Q−q) =

[
−
(
HH

qqR
−1
−q(Q−q)Hqq

)−1
]

Qq

(3.5.12)

In this case, Uq becomes a unitary matrix and Dq will be of dimension

nTq
× nTq

with nTq
eigenvalues as the matrix Hqq will be a full-column rank

matrix with rq = rank(Hqq) = nTq
. It can easily be verified that the result

in (3.5.12) is a special case of (3.5.10), as PN (Hqq) = 0 when the channel

matrices Hqq are square and nonsingular, and thus full column-rank.



Section 3.5. Iterative waterfilling for MIMO GICs 77

Existence and uniqueness of the Nash equilibrium

Given the MIMO system in (3.5.1), the non-negative matrices S ∈ R
Q×Q
+

and Sup ∈ R
Q×Q
+ are defined as

[S]qr ,





ρ
(
HH

rqH
♯H
qq H♯

qqHrq
)
, if r 6= q,

0, otherwise

(3.5.13)

and

[Sup]qr ,





innrq ·ρ(HH
rqHrq)ρ(H♯H

qq H♯
qq), if r 6= q,

0, otherwise,

(3.5.14)

where innrq is the interference-plus-noise to noise ratio and is defined as [99]

innrq ,
ρ
(
Rnq +

∑
r 6=q PrHrqHrq

H
)

λmin(Rnq)
≥ 1, ∀q ∈ Ω. (3.5.15)

Given Sup and S, the matrix S
up
∈ R

Q×Q
+ is defined as

[S
up

]qr ,





[S]qr, if rank(Hqq) = nRq
,

[Sup]qr, otherwise,

(3.5.16)

The sufficient condition for existence and uniqueness of the Nash equi-

librium of game G M is given by the following theorem [99]:

Theorem 3.7. Game G M has at least one Nash equilibrium for any set of

channel matrices and transmit powers of the users. Furthermore, the Nash
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equilibrium is unique if

ρ(S
up

) < 1 (3.5.17)

where S
up

is defined in (3.5.16)

Corollary 3.7.1. If the direct channel matrices Hqq are square and non-

singular for every user q, then the sufficient condition for the uniqueness of

the Nash equilibrium of game G M is [63]

ρ(S) < 1 (3.5.18)

where S is defined as

[S]qr ,





ρ
(
HH

rqH
−H
qq H−1

qq Hrq
)
, if r 6= q,

0, otherwise.

(3.5.19)

3.5.4 MIMO iterative waterfilling algorithm

Let the discrete set T ⊆ N+ = 1, 2, . . . be the set of times at which one or

more users update their strategies. Let Q
(n)
q denote the covariance matrix

of user q at the discrete time n, and let Tq ⊆ T denote the set of time

instants n when the covariance matrix Q
(n)
q of user q is updated. Let τ q

r (n)

denote the time when the most recently perceived interference from user r

was computed by user q at time n (Note that 0 ≤ τ q
r (n) ≤ n). Hence, if user



Section 3.5. Iterative waterfilling for MIMO GICs 79

Algorithm 3.2 – MIMO Iterative Waterfilling Algorithm
Input:

Ω: Set of users in the system
Qq: Set of admissible strategies of user q
Tq: Set of time instants n when the covariance matrix Q(n)

q of user q
is updated
T : Number of iterations for which the algorithm is run
τ q
r (n): Time of the most recent power allocation of user r available

to user q at time n
WFM

q (·): Waterfilling operation in (3.5.8)

Initialization: n = 0 and Q(0)
q ← any Q ∈ Qq, ∀q ∈ Ω

for n = 0 to T do

Q(n+1)
q =





WFM
q

(
Q

(τq(n))
−q

)
, if(n) ∈ Tq,

Q(n)
q , otherwise

∀q ∈ Ω,

end for

q updates his strategy at time n, then

Q

(
τq(n)

)

−q ,

(
Q

(
τq
1
(n)
)

1 , . . . ,Q

(
τq
q−1

(n)
)

q−1 ,Q

(
τq
q+1

(n)
)

q+1 , . . . ,Q

(
τq

Q
(n)
)

Q

)
. (3.5.20)

The MIMO iterative waterfilling algorithm (MIWFA) for computing the

Nash equilibrium of game G M in a distributed fashion is described in Al-

gorithm 3.2. The convergence of Algorithm 3.2 is guaranteed under the

following sufficiency condition [99]:

Theorem 3.8. The MIMO iterative waterfilling algorithm, described in Al-

gorithm 3.2 converges to the unique Nash equilibrium of game G M as T →∞

for any set of feasible initial conditions if condition (3.5.17) is satisfied.

The global convergence of the MIMO iterative waterfilling algorithm to
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the unique Nash equilibrium is guaranteed by Theorem 3.8 using condition

(3.5.17) despite game G M and the waterfilling operation WFM
q (·) being non-

linear and is valid for arbitrary channel matrices, either tall/fat or singular.

3.6 Iterative waterfilling for broadband MIMO GICs

The previous section introduced the MIMO iterative waterfilling algorithm

for narrowband systems. Here, this framework is extended to broadband

(OFDM) systems, limited to systems with square (nonsingular) direct chan-

nel matrices. The challenge in such a scenario is that the power allocation

has to be performed across both frequency and space (viz. transmit an-

tennas). This is achieved by modifying the constraints in the waterfilling

expression so that power allocation is optimal in both space and frequency.

The spatial optimality is essentially designing the optimal beamformer and

the spectral optimality is the magnitude of power spectral density at each

frequency bin.

3.6.1 System model

Consider a broadband MIMO Gaussian interference channel with N fre-

quencies composed of Q MIMO links. At any frequency f , the signal vector

yf
q ∈ C

nRq×1 measured at the receiver of user q is

yf
q = Hf

qqx
f
q +

∑

r 6=q

Hf
rqx

f
r + nf

q , (3.6.1)
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where Hf
rq ∈ C

nRq×nTr is the channel matrix between source r and destina-

tion q, xf
q ∈ C

nTq×1 is the vector transmitted by source q and nf
q ∈ C

nRq×1

is the receiver noise of user q, which is a zero-mean circularly symmetric

complex Gaussian vector with an arbitrary (nonsingular) covariance matrix

Rf
nq

. The second term in the right hand side of (3.6.1) is the multi-user inter-

ference observed at the destination q, which is treated as additive spatially

coloured noise. The channel is assumed to be stationary for the duration of

the transmission. At each receiver q, the channel matrix Hf
qq is assumed to

be known. Note that there are no constraints on the dimensions or rank of

the channel matrices. Also, each receiver is assumed to be able to measure

the covariance matrix of the noise plus multi-user interference generated by

other users. The covariance matrix of the noise plus multi-user interference

observed by destination q at frequency f is given by

R
f
−q , Rf

nq
+
∑

r 6=q

Hf
rqQ

f
rH

f
rq

H
. (3.6.2)

Based on this information, each destination q computes the optimal covari-

ance matrices Qf
q , E{xf

qx
f
q

H
} for each frequency f for its own link and

informs its transmitter through a low bit-rate error-free feedback channel.

Let Q̂q and R̂nq be the set of the transmitter covariance matrices and

noise covariance of player q for the N frequency bins written in block-
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diagonal form respectively,

Q̂q , Diag
(
Q1

q , . . . ,Q
N
q

)
=




Q1
q 0

. . .

0 QN
q




, (3.6.3)

and

R̂nq , Diag
(
R1

nq
, . . . ,RN

nq

)
=




R1
nq

0

. . .

0 RN
nq




. (3.6.4)

The channel matrices and the noise plus multi-user interference covariance

matrices can be written in block-diagonal form respectively as

Ĥrq , Diag
(
H1

rq, . . . ,H
N
rq

)
=




H1
rq 0

. . .

0 HN
rq




, (3.6.5)

and

R̂−q , Diag
(
R1

−q, . . . ,R
N
−q

)
=




R1
−q 0

. . .

0 RN
−q




. (3.6.6)

The information rate achieved by user q over all frequency bins is given by

Rq(Q̂q, Q̂−q) = log det(I + ĤH
qqR̂

−1
−qĤqqQ̂q). (3.6.7)

Each player q competes rationally against other users in order to maximize
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its own information rate Rq(Q̂q, Q̂−q) by designing the optimal covariance

matrix Q̂⋆
q , given the constraint

E
{ N∑

f=1

‖xf
q ‖

2
2

}
=

N∑

f=1

Tr(Qf
q ) = Tr(Q̂q) ≤ Pq, (3.6.8)

where Pq is the maximum average power transmitted in units of energy per

transmission.

3.6.2 Rate-maximization game

The game can be cast in mathematical form as

(G BM ) :

max
Q̂q

Rq(Q̂q, Q̂−q)

s. t. Q̂q ∈ Q̂q,

∀q ∈ Ω, (3.6.9)

where Ω , {1, . . . , Q} is the set of the Q players (i.e. MIMO links), Rq(Q̂q, Q̂−q)

is the payoff function of player q as given in (3.6.7) and the set of admissible

strategies of player q, Q̂q, is defined as

Q̂q ,
{
Q̂ :

N∑

f=1

Tr(Qf
q ) = Pq; Qf

q ∈ C
nTq×nTq ,

Qf
q � 0 ∀f = 1, . . . , N

}
.

(3.6.10)

This game can now be solved using the MIMO iterative waterfilling algorithm

[99] as the new matrices Q̂q, R̂−q and Ĥrq satisfy the necessary conditions

and assumptions.
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Figure 3.2: System with 3 MIMO links and 4 frequencies. θqr is the
electrical angle of the signal observed at destination r from source q.

3.6.3 Numerical results

To confirm the operation of the algorithm in a broadband setup, a broad-

band system having 3 MIMO links and 4 frequencies is considered. In order

to show the coherence of the beamformer direction across frequencies, the

signal received at destination r from source q is assumed to be at an elec-

trical angle θqr + ǫ, where ǫ is a small Gaussian random variable that varies

across different frequencies. The sources have 6, 5 and 3 antennas and their

corresponding destinations have 4, 7 and 4 antennas respectively placed as a

uniform linear array as shown in Figure 3.2. Figure 3.3a shows the informa-

tion rate achieved by each user against iteration index for the system shown

in Figure 3.2, with θ11 = 5π/6, θ12 = π/6, θ13 = π/4, θ21 = −π/6, θ22 =

7π/6, θ23 = −π/4, θ31 = 2π/3, θ32 = 5π/6 and θ33 = π/3. As seen in the
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figure, the broadband MIMO waterfilling algorithm has very fast conver-

gence as expected from [99]. The information rates of the users reach their

equilibrium values with 2-3 iterations.

Figure 3.3b shows the plot of the beamforming patterns associated with

the dominant eigenvalues of the optimal covariance matrices computed using

the broadband MIMO iterative waterfilling algorithm for the above setup.

The major lobes are in the direction of the appropriate receiver at all fre-

quencies for both users. There are no side lobes as the system considered

does not have multipath propagation. The fast convergence and appropriate

beamformer directions have been observed for many channel realizations and

different number of users and frequencies.

3.7 Effect of CSI estimation errors

In this section, the effect of errors in the CSI on the Nash equilibrium of the

MIMO iterative waterfilling algorithm is investigated. The MIMO iterative

waterfilling algorithm [99] assumes that the direct channel matrices Hqq can

be estimated accurately, which is not possible in practical systems. The

estimate of the direct channel matrices in the presence of errors, H̃qq, can

be written as

H̃qq = Hqq + Nq, (3.7.1)

where Nq is a nRq
× nTq

matrix with zero mean complex Gaussian random

elements of variance σ2. The optimal covariance matrices {Q̃∗
q}q∈Ω are com-

puted based on the channel matrices H̃qq using the waterfilling algorithm
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Figure 3.3: System with two links with 4 antennas each and θ11 =
5π/6, θ12 = π/6, θ13 = π/4, θ21 = −π/6, θ22 = 7π/6, θ23 = −π/4, θ31 =
2π/3, θ32 = 5π/6 and θ33 = π/3.
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Figure 3.4: Histograms of total information rates achieved using the
MIMO iterative waterfilling algorithm (a) in the absence of CSI esti-
mation errors and (b) in the presence of CSI estimation errors. It can
be seen that the information rate achieved by the algorithm is reduced
in the presence of CSI estimation errors.

and the total information rate achieved by all users with these covariance

matrices is compared with the total information rates that would have been

achieved in the absence of CSI estimation errors.

Consider a two user case, each with 4 receive and 4 transmit antennas.
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The elements of the channel matrices Hqr are complex Gaussian random

variables of unit variance and σ = 0.5. This setup is run for 100,000 dif-

ferent channel realizations. The histograms of the total information rates

achieved in the absence and presence of CSI estimation errors are presented

in Figures 3.4a and 3.4b respectively. It is clear that CSI estimation errors

have a significant effect on the performance of the MIMO iterative water-

filling algorithm. The average loss in performance is about 7.45%. This

indicates the necessity for the study of the robust distributed algorithms for

optimal power allocation in the presence of CSI errors.

3.8 Summary

In this chapter, the conceptual and mathematical foundations from different

areas needed for the techniques proposed in this thesis were summarized.

This included results from contraction and fixed point theory, information

theory (Gaussian channels and waterfilling) and the main game-theoretic ap-

proach to competitive rate-maximization in Gaussian interference channels.

A brief investigation into the effect of channel state information errors on

the performance of the MIMO iterative waterfilling algorithm was also pre-

sented, setting the scene for the robust solutions proposed in the subsequent

chapters.
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Appendix 3.A KKT Conditions

A convex optimization problem can be defined in the standard form as

min
x

f0(x)

s. t. fi(x) ≤ 0, i = 1, . . . , m, (3.A.1)

hi(x) = 0, i = 1, . . . , p,

where the vector x ∈ R
n is the optimization variable of the problem, the

functions f0, · · · , fm are convex functions and the functions h1, · · · , hp are

linear functions. The function f0 is the objective function or cost function.

The inequalities fi(x) ≤ 0 are called the inequality constraints and equalities

hi(x) = 0 are called the equality constraints. If there are no constraints,

then the problem is said to be an unconstrained problem. The domain of

the optimization problem (3.A.1) is the set of points for which the objective

and the constraints are defined and is denoted as

D =
m⋂

i=0

domfi ∩
p⋂

i=0

domhi. (3.A.2)

A point x ∈ D is feasible, if it satisfies all the constraints fi(x) ≤ 0 i =

1, · · · , m and hi(x) = 0 i = 1, · · · , p. Problem (3.A.1) is said to be feasible

if at least one feasible point exists and is infeasible otherwise. The optimal

value or the solution of the optimization problem is achieved at the optimal
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point x⋆ if and only if

f0(x
⋆) ≤ f0(x) ∀x ∈ D. (3.A.3)

The Lagrangian L : R
n×R

m×R
p 7→ R for the original problem in (3.A.1)

can be defined as [51]

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x), (3.A.4)

where λi and νi are the Lagrange multipliers associated with the ith inequal-

ity constraint fi(x) ≤ 0 and equality constraint hi(x) = 0 respectively. The

objective f0(x) in (3.A.1) is called the primal objective and the optimiza-

tion variable x is termed the primal variable. Lagrange multipliers λ and ν

associated with the problem (3.A.4) are called the dual variables.

The Karush–Kuhn–Tucker conditions (also known as the Kuhn–Tucker

or KKT conditions) are given by [51]:

1. Primal feasibility:

fi(x) ≤ 0 i = 1, 2, . . . , m, (3.A.5)

hi(x) = 0 i = 1, 2, . . . , p. (3.A.6)

2. Dual feasibility:

λi ≥ 0 i = 1, 2, . . . , m. (3.A.7)
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3. Complementary slackness:

λifi(x) = 0 i = 1, 2, . . . , m. (3.A.8)

4. Stationarity:

∇f0(x) +
m∑

i=1

λi∇fi(x) +
p∑

i=1

νi∇hi(x) = 0. (3.A.9)

The KKT conditions are necessary conditions for optimality in general but

not sufficient conditions.



Chapter 4

ROBUST IWFA FOR SISO

FREQUENCY-SELECTIVE

SYSTEMS

In the previous chapter, the rate-maximization games for frequency-selective

and MIMO Gaussian interference channels were introduced and the adverse

effect of uncertainty in channel state information on the performance of

these games was demonstrated. The results therein indicate that there is a

necessity for the development of robust rate-maximization games that can

perform well under channel state information uncertainty. In this chapter, an

analytical framework for the robust rate-maximization game for a frequency-

selective Gaussian interference channel is developed and characterized.

The chapter begins with a discussion of other work in the literature which

has addressed the channel uncertainty issue in rate-maximization games.

This is followed by the introduction of a distribution-free robust frame-

92
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work for rate-maximization games under bounded channel uncertainty. The

closed-form equilibrium solution of this game is then derived, followed by

analytical proofs for existence and uniqueness of the equilibrium. An asyn-

chronous iterative algorithm to compute the equilibrium is then proposed.

Finally, simulation results to demonstrate the behaviour of the algorithm

are presented.

4.1 Related work

Uncertainty in game-theoretic and distributed-optimization problems in wire-

less communications has only recently been investigated. The issue of bounded

uncertainty in specific distributed optimization problems in communication

networks has been investigated in [101] wherein techniques to define the

uncertainty set such that they can be solved distributively by robust opti-

mization techniques are presented.

A robust optimization approach for the rate-maximization game with

uncertainty in the noise-plus-interference estimate has been briefly investi-

gated in [102], where the authors present a numerically computed algorithm

unlike the closed form results presented in this chapter. Such a numerical

solution prevents further mathematical analysis of the equilibrium and its

behaviour under different uncertainty bounds. Also, this uncertainty model

is different from the one adopted in this work, where the availability of CSI

of the interfering channels with bounded uncertainty is assumed.

A similar problem of rate-maximization in the presence of uncertainty in
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the estimate of noise-plus-interference levels due to quantization in the feed-

back channel has been considered in [103]. This problem has been solved

using a probabilistically constrained optimization approach and as in the

work presented in this chapter, also results in the waterfilling solution mov-

ing closer to an FDMA solution, with corresponding improvement in sum-

rate. However, the effect of quantization on the conditions for existence and

uniqueness of the equilibrium and convergence of the algorithm have not

been considered. The results presented in [103] are for a sequentially up-

dated algorithm whereas the results of this chapter allow asynchronous (and

thus sequential or simultaneous) updates to the algorithm. Also, the power

allocations computed by such a probabilistic optimization formulation do

not guarantee that the information rates expected will be achieved for all

channel realizations, unlike the worst-case optimization formulation in this

chapter. Furthermore, the relative error (and not just the absolute error due

to quantization) in the interference estimate as defined in [103] is assumed to

be bounded and drawn from a uniform distribution, which is inaccurate. In

addition, this bound on the relative error can only be computed if the noise

variance at the receivers is assumed to be known (which is not the case). The

bounds computed in such a fashion are very loose and will degrade system

performance. The other assumption that this relative error bound is in the

range [0, 1) means that the absolute quantization error has to be less than

the noise variance at the receivers, which restricts the applicability of the

approach. The problem formulation in this chapter has no such limitation
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on the uncertainty bound based on the noise variances in the system.

Dynamic robust games for MIMO systems, where a learning framework

is used to develop suitable power allocations in repeated games with chan-

nel uncertainty and delayed imperfect payoffs (information rate), have been

recently proposed in [104]. A robust rate-maximization game for a cogni-

tive radio scenario with uncertainty in the channel to the primary user has

been presented in [105]. This leads to a noncooperative game formulation

without any uncertainties in the payoff functions of the game (unlike the

game formulation in this chapter) with robust interference limits acting as

a constraint on the admissible set of strategies. This game is then solved

using numerical techniques as there is no closed form solution.

4.2 System model

Consider a system similar to the one in [93], which is a SISO frequency-

selective Gaussian interference channel with N frequencies, composed of

Q SISO links. Ω , {1, . . . , Q} is the set of the Q players (i.e. SISO

links). The quantity Hrq(k) denotes the complex frequency response of

the k-th frequency bin of the channel between source r and destination

q. The variance of the zero-mean circularly symmetric complex Gaussian

noise at receiver q in the frequency bin k is denoted by σ̄2
q (k). The chan-

nel is assumed to be quasi-stationary for the duration of the transmission.

Let σ2
q (k) , σ̄2

q (k)/|Hqq(k)|2 and the total transmit power of user q be Pq.

Let the vector sq , [sq(1) sq(2) . . . sq(N)] be the N symbols transmitted
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by user q on the N frequency bins and pq(k) , E{|sq(k)|2} be the power

allocated to the k-th frequency bin by user q and pq , [pq(1) pq(2) . . . pq(N)]

be the power allocation vector. The power allocation of each user q has two

constraints:

• Maximum total transmit power for each user

E
{
‖sq‖

2
2

}
=

N∑

k=1

pq(k) ≤ Pq, (4.2.1)

for q = 1, . . . , Q, where Pq is power in units of energy per transmitted

symbol.

• Spectral mask constraints

E
{
|sq(k)|2

}
= pq(k) ≤ pmax

q (k), (4.2.2)

for k = 1, . . . , N and q = 1, . . . , Q, where pmax
q (k) is the maximum

power that is allowed to be allocated by user q for the frequency bin

k.

Each receiver estimates the channel between itself and all the transmit-

ters, which is private information. The power allocation vectors are public

information, i.e. known to all users. Each receiver computes the optimal

power allocation across the frequency bins for its own link and transmits it

back to the corresponding transmitter in a low bit-rate error-free feedback

channel. Note that this leads to sharing of more information compared to

other work in the literature such as [93]. The channel state information
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estimated by each receiver is assumed to have a bounded uncertainty of un-

known distribution. An ellipsoid is often used to approximate complicated

convex uncertainty sets [51]. The ellipsoidal approximation has the advan-

tage of parametrically modelling complicated data sets and thus provides a

convenient input parameter to algorithms. Further, in certain cases there

are statistical reasons leading to ellipsoidal uncertainty sets and also results

in optimization problems with convenient analytical structures [60, 106].

At each frequency, the uncertainty in the channel state information of

each user is deterministically modelled under an ellipsoidal approximation1

Fq =

{
Frq(k) + ∆Frq,k :

∑

r 6=q

|∆Frq,k|
2 ≤ ǫ2q ∀k = 1, . . . , N

}
, (4.2.3)

where ǫq ≥ 0 ∀ q ∈ Ω is the uncertainty bound and

Frq(k) ,
|Hrq(k)|2

|Hqq(k)|2
, (4.2.4)

with Frq(k) being the nominal value. It is possible to consider uncertainty

in Frq(k) instead of Hrq(k) because bounded uncertainties in Frq(k) and

Hrq(k) are equivalent, but with different bounds.2

1More specifically, the uncertainty set in (4.2.3) is a spherical approximation.
2The model considered here has some redundancy in the uncertainty for the case

when Frq(k) = 0 which leads to including Frq(k) + ∆Frq,k < 0 in the model which
can never happen in practice. However, this does not affect the solution in this
method due to the nature of the max-min problem formulation in (4.3.3) which
leads to selection of positive values of ∆Frq,k.
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The nominal information rate of user q can be written as [64]

Rq =
N∑

k=1

log

(
1 +

pq(k)

σ2
q (k) +

∑
r 6=q Frq(k)pr(k)

)
, (4.2.5)

where σ2
q (k) , σ̄2

q (k)/|Hqq(k)|2.

A robust rate-maximization game is formulated and analyzed based on

this system model in the subsequent sections of this chapter and in Chapter 5.

4.3 Robust rate-maximization game formulation

According to the robust game model presented in Section 2.5 on page 47,

each player formulates a best response as the solution of a robust (worst-case)

optimization problem for the uncertainty in the payoff function (information

rate), given the other players’ strategies. If all the players know that everyone

else is using the robust optimization approach to the payoff uncertainty, they

would then be able to mutually predict each other’s behaviour. The robust

game G S
rob where each player q formulates a worst-case robust optimization

problem can be written as, ∀ q ∈ Ω,

max
pq

min
F̃rq∈Fq

N∑

k=1

log

(
1 +

pq(k)

σ2
q (k) +

∑
r 6=q

F̃rq(k)pr(k)

)

s. t. pq ∈ Pq,

(4.3.1)

where Fq is the uncertainty set which is modelled under ellipsoid approxi-

mation as shown in (4.2.3), Ω , {1, . . . , Q} is the set of the Q players (i.e.



Section 4.3. Robust rate-maximization game formulation 99

the SISO links) and Pq is the set of admissible strategies of user q, which is

defined as

Pq ,

{
pq ∈ R

N :
N∑

k=1

pq(k) = Pq, 0 ≤ pq(k) ≤ pmax
q (k), k = 1, . . . , N

}
.

(4.3.2)

This optimization problem using uncertainty sets can be equivalently written

in a form represented by protection functions [101] as, ∀q ∈ Ω,

max
pq

min
∆Frq,k

N∑

k=1

log

(
1 +

pq(k)

σ2
q (k) +

∑
r 6=q

(Frq(k) + ∆Frq,k)pr(k)

)

s. t.
∑

r 6=q

|∆Frq,k|
2 ≤ ǫ2q , k = 1, ...N

pq ∈ Pq.

(4.3.3)

Using the Cauchy-Schwarz inequality [107], ∀k = 1, . . . , N ,

∑

r 6=q

∆Frq,kpr(k) ≤

[∑

r 6=q

|∆Frq,k|
2
∑

r 6=q

|pr(k)|2
] 1

2

(4.3.4)

≤ ǫq

√∑
r 6=q p2

r(k) (4.3.5)

Using (4.3.5), the robust game can be formulated as, ∀q ∈ Ω,

(G S
rob) :

max
pq

N∑

k=1

log

(
1 +

pq(k)

σ2
q (k) +

∑
r 6=q

Frq(k)pr(k) + ǫq

√∑
r 6=q

p2
r(k)

)

s. t. pq ∈ Pq.

(4.3.6)
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Having defined the problem for robust rate-maximization under bounded

channel uncertainty, the solution to the optimization problem in (4.3.6) for

a single-user is presented in the following section.

4.4 Robust waterfilling solution

The closed-form solution to the robust optimization problem in (4.3.6) for

any particular user q is given by the following theorem:

Theorem 4.1. Given the set of power allocations of other users p−q ,

{p1, . . . ,pq−1,pq+1, . . . ,pQ}, the solution to the robust optimization problem

of user q,

max
pq

N∑

k=1

log

(
1+

pq(k)

σ2
q (k) +

∑
r 6=q

Frq(k)pr(k)+ ǫq

√∑
r 6=q

p2
r(k)

)

s. t. pq ∈ Pq. (4.4.1)

is given by the waterfilling solution

p⋆
q = RWFS

q(p−q), (4.4.2)

where the waterfilling operator RWFS
q(·) is defined for k = 1, . . . , N, as

[
RWFS

q(p−q)
]
k

,

[
µq − σ2

q (k)−
∑

r 6=q

Frq(k)pr(k)− ǫq

√∑

r 6=q

p2
r(k)

]pmax
q (k)

0

(4.4.3)

where µq is chosen to satisfy the power constraint
∑N

k=1 p⋆
q(k) = 1.
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Proof. See Appendix 4.A.

The robust waterfilling operation for each user is a distributed worst-

case optimization under bounded channel uncertainty. Compared with the

original waterfilling operation in [93] under perfect CSI (i.e. ǫq ≡ 0), it can

be seen that an additional term has appeared in (4.4.3) for ǫq > 0.

This additional term can be interpreted as a penalty for allocating power

to frequencies having a large product of uncertainty bound and norm of the

powers of the other players currently transmitting in those frequencies. This

is because the users assume the worst-case interference from other users and

are thus conservative about allocating power to such channels where there

is a strong presence of other users.

4.4.1 Robust waterfilling as a projection operation

Let Φq(k) represent the denominator terms in (4.4.1), which is the worst-case

noise-plus-interference

Φq(k) , σ2
q (k) +

∑

r 6=q

Frq(k)pr(k) + ǫq

√∑

r 6=q

p2
r(k). (4.4.4)

It has been shown in [92] that the waterfilling operation can be interpreted as

the Euclidean projection of a vector onto a simplex. Using this framework,

the robust waterfilling operator in (4.4.3) can be expressed as the Euclidean

projection of the vector Φq , [Φq(1), . . . ,Φq(N)]T onto the simplex Pq de-
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fined in (4.3.2):

RWFS
q(p−q) =

[
−Φq

]
Pq

, (4.4.5)

which can be conveniently written as

RWFS
q(p−q) =

[
− σq −

∑

r 6=q

Frqpr − ǫqfq

]

Pq

, (4.4.6)

where

σq ,
[
σ2

q (1), . . . , σ2
q (N)

]T
, (4.4.7)

Frq , Diag
(
Frq(1), . . . , Frq(N)

)
, (4.4.8)

fq ,

[√∑
r 6=q p2

r(1) , . . . ,
√∑

r 6=q p2
r(N)

]T
. (4.4.9)

Let N = {1, . . . , N} be the set of frequency bins. Let D◦
q denote the set

of frequency bins that user q would never use as the best response to any

set of strategies adopted by the other users,

D◦
q ,

{
k ∈ {1, . . . , N} :

[
RWFS

q(p−q)
]
k

= 0 ∀p−q ∈ P−q

}
(4.4.10)

where P−q , P1× · · · ×Pq−1×Pq+1× · · · ×PQ. The non-negative matrices

E and Smax ∈ R
Q×Q
+ are defined as

[E]qr ,





ǫq, if r 6= q,

0, otherwise,

(4.4.11)



Section 4.4. Robust waterfilling solution 103

and

[Smax]qr ,





max
k∈Dq∩Dr

Frq(k), if r 6= q,

0, otherwise,

(4.4.12)

where Dq is any subset of {1, . . . , N} such that N −D◦
q ⊆ Dq ⊆ {1, . . . , N}.

Contraction property of the waterfilling projection

The contraction property of the waterfilling mapping is given by the following

lemma:

Lemma 4.1. Given w , [w1, . . . , wQ]T > 0, the mapping RWFS(·) defined

in (4.B.1) satisfies

∥∥RWFS (p(1))−RWFS (p(2))∥∥w
2,block

≤ ||Smax+E||w∞,mat×
∥∥p(1)−p(2)

∥∥w
2,block

,

(4.4.13)

∀p(1),p(2) ∈ P, E and S as defined in (4.4.11) and (4.4.12) respectively.

Furthermore, if

||Smax + E||w∞,mat < 1, (4.4.14)

for some w > 0, then the mapping RWFS(·) is a block contraction with

modulus α = ||Smax + E||w∞,mat.

Proof. See Appendix 4.B.

Having derived and characterized the robust waterfilling solution in the

presence of channel uncertainty, the issue of whether a stable equilibrium for
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the system exists is to be considered. If so, its properties and computation

are to be considered. This is undertaken in the subsequent sections.

4.5 Robust-optimization equilibrium

The solution to the game G S
rob is the robust-optimization equilibrium. At any

robust-optimization equilibrium of this game, the optimum action profile of

the players {p⋆
q}q∈Ω must satisfy the following set of simultaneous waterfilling

equations: ∀q ∈ Ω,

p⋆
q = RWFS

q(p
⋆
1, . . . ,p

⋆
q−1,p

⋆
q+1, . . . ,p

⋆
Q) = RWFS

q(p
⋆
−q). (4.5.1)

It can easily be verified that the robust-optimization equilibrium reduces

to the Nash equilibrium of the system [93] when there is no uncertainty in

the system. In Chapter 5, the global efficiency of the robust-optimization

equilibrium for the two-user case is analyzed and it is shown that the robust-

optimization equilibrium has a higher efficiency than the Nash equilibrium

due to a penalty for interference which encourages better partitioning of the

frequency space among the users.

4.5.1 Analysis of the equilibrium of game G S
rob

The contraction property of the waterfilling mapping is useful in the analysis

of the equilibrium of game G S
rob. A sufficient condition for existence and

uniqueness of the robust-optimization equilibrium of game G S
rob is given by
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the following theorem:

Theorem 4.2. Game G S
rob has at least one equilibrium for any set of channel

values and transmit powers of the users. Furthermore, the equilibrium is

unique if

ρ(Smax) < 1− ρ(E), (4.5.2)

where E and S are as defined in (4.4.11) and (4.4.12) respectively.

Proof. See Appendix 4.C.

In the absence of uncertainty, i.e. when ǫq = 0 ∀q ∈ Ω, this condition

reduces to condition (C1) in [93] as expected. Since ρ(E) ≥ 0, the condition

on Smax becomes more stringent as the uncertainty bound increases, i.e. the

set of channel coefficients for which the existence of a unique equilibrium is

guaranteed shrinks as the uncertainty bound increases.

4.6 Iterative algorithm for robust waterfilling

In this section, an iterative waterfilling algorithm, based on the framework

presented in Section 3.1.2, for computing the robust-optimization equilib-

rium is presented.

Let the discrete set T ⊆ N+ = {1, 2, . . . } be the set of times at which one

or more users update their strategies and T be the number of iterations for

which the algorithm is run. Let p
(n)
q denote the vector power allocation of

user q at the discrete time n, and let Tq ⊆ T denote the set of time instants

n when the power vector p
(n)
q of user q is updated. Let τ q

r (n) denote the time
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Algorithm 4.1 – Robust SISO Iterative Waterfilling Algorithm
Input:

Ω: Set of users in the system
Pq: Set of admissible strategies of user q
Tq: Set of time instants n when the power vector p(n)

q of user q is
updated
T : Number of iterations for which the algorithm is run
τ q
r (n): Time of the most recent power allocation of user r available

to user q at time n
RWFS

q(·): Robust waterfilling operation in (4.4.3)

Initialization: n = 0 and p(0)
q ← any p ∈ Pq, ∀q ∈ Ω

for n = 0 to T do

p(n+1)
q =





RWFS
q

(
p

(τq(n))
−q

)
, if n ∈ Tq,

p(n)
q , otherwise,

∀q ∈ Ω.

end for

of the most recent power allocation information of user r which is available

to user q at time n (Note that 0 ≤ τ q
r (n) ≤ n). Hence, if the strategy of user

q is updated at time n, then

p

(
τq(n)

)

−q ,

(
p

(
τq
1
(n)
)

1 , . . . ,p

(
τq
q−1

(n)
)

q−1 ,p

(
τq
q+1

(n)
)

q+1 , . . . ,p

(
τq

Q
(n)
)

Q

)
. (4.6.1)

The robust asynchronous iterative waterfilling algorithm for computing

the equilibrium of game G S
rob in a distributed fashion is described in Al-

gorithm 4.1. The convergence of Algorithm 4.1 is guaranteed under the

following sufficiency condition:

Theorem 4.3. The asynchronous iterative waterfilling algorithm described

in Algorithm 4.1 converges to the unique robust-optimization equilibrium of
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game G S
rob as the number of iterations for which the algorithm is run, T →∞

for any set of feasible initial conditions if condition (4.5.2) is satisfied.

Proof. See Appendix 4.D.

The global convergence of the distributed robust iterative waterfilling

algorithm to the unique robust-optimization equilibrium is guaranteed by

Theorem 4.3 using condition (4.5.2) despite game G S
rob and the waterfilling

operation RWFS
q(·) being nonlinear. Also, from Lemma 4.1, the modulus of

the waterfilling contraction increases as uncertainty increases. This indicates

that the convergence of the iterative waterfilling algorithm becomes slower

as the uncertainty increases, as seen in the simulation results in Section 4.7.

Also, the set of channel coefficients for which convergence of the algorithm

is guaranteed reduces as the uncertainty bound increases.

Corollary 4.3.1. When the uncertainties of all the Q users are equal (say

ǫ), the robust-optimization equilibrium of game G S
rob is unique and Algo-

rithm 4.1 converges to the unique robust-optimization equilibrium of game

G S
rob as T →∞ for any set of feasible initial conditions if

ρ(Smax) < 1− ǫ(Q− 1) (4.6.2)

Proof. When the uncertainties of all Q users is ǫ, ρ(E) = ǫ(Q− 1).

The above corollary explicitly shows how the uncertainty bound and the

number of users in the system affect the existence of the equilibrium and the

convergence to the equilibrium using an iterative waterfilling algorithm. For
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a fixed uncertainty bound, as the number of users in the system increases,

there is a larger amount of uncertain information in the system. Hence, the

probability that a given system for a fixed uncertainty bound will converge

will decrease as the number of users in the system increases. Also, if ǫ(Q−

1) ≥ 1, a unique equilibrium for non-zero uncertainty bounds cannot be

guaranteed regardless of the channel coefficients. This will help determine

the number of users that could be allowed to operate in the system based

on the uncertainty bounds.

The modified waterfilling operation in (4.4.3) can also be used as a pricing

mechanism to achieve improved sum-rate performance in a system with no

uncertainty where ǫ is a design parameter, with all the analytical results

presented here still being valid.

4.7 Simulation results

In this section, the behaviour of the equilibrium under varying uncertainty

bounds is investigated through numerical simulations. The simulations are

computed for a system with Q users and N frequencies averaged over 5000

channel realizations. The channel gains are Hrq(k) ∼ NC(0, 1) for r 6= q

and Hqq(k) ∼ NC(0, 2.25). The channel uncertainty model used is nominal

value Frq(k) = F true
rq (k)(1 + erq(k)) with erq(k) ∼ U(− δ

2 , δ
2), δ < 1. The

specific parameter values used for the simulations are provided with each

figure. In these simulations, the actual convergence of the algorithm for

every channel realization is tested, i.e., the simulations are not limited only
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Figure 4.1: Sum-rate of the system vs. uncertainty δ.
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Figure 4.2: Sum-rate of the system vs. number of users, Q.
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Figure 4.3: Sum-rate of the system vs. number of frequencies, N .
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Figure 4.4: Average number of channels occupied per user vs. uncer-
tainty, δ.
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Figure 4.5: Average number of channels occupied per user vs. number
of users, Q.
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Figure 4.6: Average number of iterations vs. uncertainty, δ.
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Figure 4.7: Average number of iterations vs. number of users, Q.

to channels satisfying the convergence condition (4.6.2). (Refer to Section 5.3

for simulations which are limited to channels satisfying (4.6.2). It can be seen

that there is little difference in the average behaviour of the equilibrium.)

Note that the zero uncertainty solution corresponds to the Nash equilib-

rium and the nominal solution is the solution resulting from using the erro-

neous channel values in the traditional rate-maximization game G S without

accounting for its uncertainty. The effect of uncertainty, number of users and

number of frequencies on the average sum-rate of the system, the average

number of frequencies occupied by each user and the average number of iter-

ations for convergence are examined. In these figures, the Nash equilibrium

point is when the uncertainty is zero.

In Figure 4.1, it can be observed that the sum-rate at the Nash equilib-
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rium under perfect CSI is less than the sum-rate at the robust-optimization

equilibrium under imperfect CSI and that the gap in performance increases

to about 20% as the uncertainty δ increases to 0.5. Under imperfect CSI,

the power allocation using the robust-optimization equilibrium in (4.4.3) and

(4.5.1) has higher sum-rate as uncertainty increases.3 This is because the

users are more cautious about using frequencies with significant interference,

thus reducing the total amount of interference in the system.

In Figure 4.2, it can be observed that the sum-rate of the system under

the robust solution drops from about 105 nats/transmission to about 80

nats/transmission when the number of users rises from 2 to 7. This is because

having a greater number of users results in higher interference for all users

and this effect is strong enough to counter user diversity which would have

resulted in higher sum-rates if the users were on an FDMA scheme. In

Figure 4.3, it can be observed that the sum-rate of the system improves

with increase in number of frequencies and also that the robust solution

continues to perform better than the nominal solution even when the number

of frequencies increases.

In Figure 4.4, it can be seen that the robust solution results in a lower

average number of channels per user as the uncertainty, δ increases. Also,

the total number of channels each user occupies at the robust-optimization

equilibrium is less than at the nominal solution, regardless of the number of

users, as can be seen in Figure 4.5. This implies that the users are using a

3(4.4.3) and (4.5.1) are in terms of absolute uncertainty ǫ while the simulations
use relative uncertainty δ. They are equivalent to one another.
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smaller number of frequencies, which demonstrates the better partitioning

of the frequency space among the users to reduce interference. Hence, this

leads to the higher sum-rates as observed in Figure 4.1.

In Figures 4.6 and 4.7, it can be observed that the average number of

iterations for convergence increases as the uncertainty δ and the number

of users Q increase respectively. This is as expected from Lemma 4.1 and

Corollary 4.3.1, as the modulus of the block-contraction in (4.4.13) increases

as the uncertainty increases. This indicates that the step size of each itera-

tion reduces as uncertainty increases, leading to slower convergence. Thus,

the trade-off for robust solutions with higher sum-rates is in a higher number

of iterations before convergence.

4.8 Summary

In this chapter, a robust framework for rate-maximization games under

bounded channel uncertainty was developed. After defining the robust rate-

maximization game, closed-form expressions for the equilibrium solution

were derived. An asynchronous iterative waterfilling algorithm for comput-

ing the equilibrium was proposed. Sufficient conditions for the existence and

uniqueness of the equilibrium and convergence of the iterative algorithm to

the equilibrium were presented. Finally, simulation results demonstrating

the effect of uncertainty on the performance of the game were presented.

The interesting effect of improvement in sum-rate with higher channel un-

certainty bounds was observed in the simulation results and is the focus of
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analysis in the next chapter.

Appendix 4.A Proof of Theorem 4.1

The optimization problem in (4.4.1) is convex and admits a unique solution

since the cost function is strictly concave for pq > 0. The Lagrangian L for

this problem can be written as,

L =
N∑

k=1

log

(
1 +

pq(k)

Φq(k)

)
−

1

µq

( N∑

k=1

pq(k)− 1

)

−
N∑

k=1

vkpq(k)+
N∑

k=1

λk

(
pq(k)− pmax

q (k)
)

,

(4.A.1)

where Φq(k) is defined in (4.4.4). Note that Φq(k) is independent of the

optimization variable pq(k).

The KKT optimality conditions [Refer Appendix 3.A] for problem (4.4.1)

are

(
1 +

pq(k)

Φq(k)

)−1
1

Φq(k)
−

1

µq
− vk + λk = 0, (4.A.2)

λk ≥ 0; vk ≥ 0, (4.A.3)

pq(k) ≥ 0; pq(k) ≤ pmax
q (k), (4.A.4)

λk

(
pq(k)− pmax

q (k)
)

= 0; vkpq(k) = 0, (4.A.5)

N∑

k=1

pq(k) = 1. (4.A.6)

for k = 1, . . . , N .
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To avoid the problem becoming infeasible or having the trivial solution

pq(k) = pmax
q (k) ∀k, it is assumed that

∑N
k=1 pmax

q > 1. From constraint

(4.A.6), pq(k) > 0 for at least one k. Since Φq(k) > 0, it implies that

−1/µq − vk + λk < 0. Further, at any instance, at most one among λk

and vk can be non-zero for a feasible solution, based on the complementary

slackness conditions in (4.A.5) which implies that µq > 0.

When 0 < pq(k) < pmax
q (k), λk = 0 and vk = 0, from the complementary

slackness conditions in (4.A.5). Thus, from (4.A.2)

(
1 +

pq(k)

Φq(k)

)−1
1

Φq(k)
−

1

µq
= 0, (4.A.7)

which gives

pq(k) = µq − Φq(k), (4.A.8)

where µq is chosen such that constraint (4.A.6) is satisfied. Substituting for

Φq(k) from (4.4.4) and including the boundary values 0 and pmax
q (k), the

optimum power allocation for the problem (P1) is the following waterfilling

solution:

p∗q(k) =

[
µq − σ2

q (k)−
∑

r 6=q

Frq(k)pr(k)− ǫq

√∑

r 6=q

p2
r(k)

]pmax
q (k)

0

(4.A.9)
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Appendix 4.B Proof of Lemma 4.1

Given the waterfilling mapping RWFS(·) defined as

RWFS(p) = (RWFS
q(p−q))q∈Ω : P 7→ P, (4.B.1)

where P , P1 × · · · × PQ, with Pq and RWFS
q(p−q) respectively defined in

(4.3.2) and (4.4.6), the block-maximum norm is defined as [62]

∥∥RWFS(p)
∥∥w
2,block

, max
q∈Ω

∥∥RWFS
q(pq)

∥∥
2

wq
, (4.B.2)

where w , [w1, . . . , wQ]T > 0 is any positive weight vector. The vector

weighted maximum norm is given by [107]

||x||w∞,vec , max
q∈Ω

|xq|

wq
, w > 0, x ∈ R

Q. (4.B.3)

The matrix weighted maximum norm is given by [107]

||A||w∞,mat , max
q

1

wq

Q∑

r=1

|[A]qr|wr, A ∈ R
Q×Q. (4.B.4)

The mapping RWFS(·) is said to be a block-contraction4 with modulus

α with respect to the norm
∥∥ ·
∥∥w
2,block

if there exists α ∈ [0, 1) such that,

4The mapping T is called a block-contraction with modulus α ∈ [0, 1) if it is a
contraction in the block-maximum norm with modulus α [62].
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∀p(1),p(2) ∈ P,

∥∥RWFS(p(1))− RWFS(p(2))
∥∥w
2,block

≤ α
∥∥p(1) − p(2)

∥∥w
2,block

, (4.B.5)

where p(i) =
(
p

(i)
q , . . . ,p

(i)
q

)
for i = 1, 2.

Given f
(i)
q =

[√∑
r 6=q p2

r(1)(i), . . . ,
√∑

r 6=q p2
r(N)(i)

]T
for i = 1, 2, for each

q ∈ Ω, let ∆fq ,
∥∥∥f (1)

q − f
(2)
q

∥∥∥
2

and p−q(k)(i) ,
[
p1(k)(i), . . . , pq−1(k)(i),

pq+1(k)(i), . . . , pQ(k)(i)
]
. Then,

∆fq =




N∑

k=1



√∑

r 6=q

p2
r(k)(1) −

√∑

r 6=q

p2
r(k)(2)




2



1
2

, (4.B.6)

=

[
N∑

k=1

(∥∥p−q(k)(1)
∥∥
2
−
∥∥p−q(k)(2)

∥∥
2

)2
] 1

2

, (4.B.7)

≤

[
N∑

k=1

∥∥∥p−q(k)(1) − p−q(k)(2)
∥∥∥
2

2

] 1
2

, (4.B.8)

=




N∑

k=1

∑

r 6=q

(
p2

r(k)(1) + p2
r(k)(2) − 2pr(k)(1)pr(k)(2)

)



1
2

, (4.B.9)

=

[∑

r 6=q

∥∥∥p(1)
r − p(2)

r

∥∥∥
2

2

] 1
2

. (4.B.10)

where (4.B.8) follows from [107, Lemma 5.1.2]. Now, define for each q ∈ Ω,

eRWFS
q

,
∥∥∥RWFS

q

(
p

(1)
−q

)
− RWFS

q

(
p

(2)
−q

)∥∥∥
2
, (4.B.11)

eq ,
∥∥∥p(1)

q − p(2)
q

∥∥∥
2
. (4.B.12)
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Then, using (4.4.6) in (4.B.11), eRWFS
q

can be written as

eRWFS
q

=

∥∥∥∥
[
− σq −

∑
r 6=q Frqp

(1)
r − ǫqf

(1)
q

]

Pq

−
[
− σq −

∑
r 6=q Frqp

(2)
r − ǫqf

(2)
q

]

Pq

∥∥∥∥
2

, (4.B.13)

≤
∥∥∥
∑

r 6=q Frqp
(1)
r + ǫqf

(1)
q −

∑
r 6=q Frqp

(2)
r − ǫqf

(2)
q

∥∥∥
2
, (4.B.14)

=

∥∥∥∥
∑

r 6=q

Frq

(
p(1)

r − p(2)
r

)
+ ǫq

(
f (1)
q − f (2)

q

)∥∥∥∥
2

, (4.B.15)

≤

∥∥∥∥
∑

r 6=q

Frq

(
p(1)

r − p(2)
r

)∥∥∥∥
2

+ ǫq

∥∥∥f (1)
q − f (2)

q

∥∥∥
2
, (4.B.16)

≤
∥∥∥
∑

r 6=q

Frq

(
p(1)

r − p(2)
r

)∥∥∥
2
+ ǫq



∑

r 6=q

∥∥∥p(1)
r − p(2)

r

∥∥∥
2

2




1
2

(4.B.17)

≤
∑

r 6=q

(
max

k
Frq(k)

)∥∥∥p(1)
r − p(2)

r

∥∥∥
2

+ ǫq



∑

r 6=q

∥∥∥p(1)
r − p(2)

r

∥∥∥
2

2




1
2

, (4.B.18)

=
∑

r 6=q

(
max

k∈Dq∩Dr

Frq(k)

)
er + ǫq

[∑

r 6=q

e2
r

] 1
2
, (4.B.19)

≤
∑

r 6=q

(
[Smax]rq + ǫq

)
er, (4.B.20)

∀ p
(1)
q ,p

(2)
q ∈ Pq and ∀ q ∈ Ω, where: (4.B.14) follows from the nonexpansive

property of the waterfilling projection [92, Lemma 3]; (4.B.16) follows from

the triangle inequality [107]; (4.B.17) follows from (4.B.10); (4.B.18) and

(4.B.19) follow from the definitions of Frq and eq respectively from (4.4.7)

and (4.B.12); and (4.B.20) follows from the definition of Smax in (4.4.12)

and Jensen’s inequality [51].
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The set of inequalities in (4.B.20) can be written in vector form as

0 ≤ eRWFS ≤ (Smax + E)e, (4.B.21)

where E is defined in (4.4.11) and the vectors eRWFS and e are defined as

eRWFS ,
[
eRWFS

1
, . . . , eRWFS

Q

]T
, and e = [e1. . . . , eQ]T . (4.B.22)

Using the vector and matrix weighted maximum norms from (4.B.3) and

(4.B.4) respectively, (4.B.21) can be written as

∥∥eRWFS

∥∥w
∞,vec

≤
∥∥(Smax + E)e

∥∥w
∞,vec

, (4.B.23)

≤
∥∥Smax + E

∥∥w
∞,mat

·
∥∥e
∥∥w
∞,vec

, (4.B.24)

∀ w > 0. Using the block-maximum norm (4.B.2),

∥∥eRWFS

∥∥w
∞,vec

=
∥∥RWFS (p(1))− RWFS (p(2))∥∥w

2,block
, (4.B.25)

≤
∥∥Smax + E

∥∥w
∞,mat

∥∥∥p(1)
r − p(2)

r

∥∥∥
w

2,block
, (4.B.26)

∀p(2),p(2) ∈ P, with E and S as defined in (4.4.11) and (4.4.12) respectively.

It is clear that RWFS(·) is a block contraction when ||Smax + E||w∞,mat <

1.
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Appendix 4.C Proof of Theorem 4.2

From [108], every concave game5 has at least one equilibrium. For the game

G S
rob:

1. The set of feasible strategy profiles, Pq of each player q is compact

and convex.

2. The payoff function of each player q in (4.3.6) is continuous in p ∈ P

and concave in pq ∈ Pq.

Thus, the game G S
rob has at least one equilibrium. From Lemma 4.1, the

waterfilling mapping RWFS(·) is a block-contraction if (4.4.14) is satisfied

for some w > 0. Thus, the robust-optimization equilibrium of game G S
rob is

unique (using [63, Theorem 1]). Since Smax + E is a nonnegative matrix,

there exists a positive vector w̄ such that

||Smax + E||w̄∞,mat < 1 (4.C.1)

Using [62, Corollary 6.1] and the triangle inequality [107], this is satisfied

when

||Smax||w̄∞,mat + ||E||w̄∞,mat < 1 ⇒ ρ(Smax) < 1− ρ(E). (4.C.2)

5A game is said to be concave if the payoff functions are concave and the sets of
admissible strategies are compact and convex.
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Appendix 4.D Proof of Theorem 4.3

From Lemma 4.1 and (4.C.1) the waterfilling mapping RWFS(·) is a block-

contraction. From [63, Theorem 2], the robust iterative waterfilling algo-

rithm described in Algorithm 4.1 converges to the unique robust-optimization

equilibrium of game G S
rob for any set of feasible initial conditions and any up-

date schedule.



Chapter 5

SUM-RATE ANALYSIS IN

THE TWO-USER SCENARIO

In this chapter, the effect of uncertainty on the sum-rate and efficiency of the

system for the two-user scenario in the game G S
rob presented in the previous

chapter is analysed (Refer to Section 2.3 for a discussion on equilibrium

efficiency). The sum-rate of the system, S, is given by

S =
Q∑

q=1

Rq. (5.0.1)

where Rq is the information rate of user q as defined in (4.2.5). In game

G S
rob, the price of stability and anarchy are the same under the sufficient

conditions in Theorem 4.2 due to the existence of a unique equilibrium.

Thus, the price of anarchy, PoA, defined as the ratio of the sum-rate of the

system at the social optimal solution, S∗, and the sum-rate of the system at

123
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the robust-optimization equilibrium, Srob, is given by

PoA =
S∗

Srob
. (5.0.2)

Note that a lower price of anarchy indicates that the robust-optimization

equilibrium is more efficient.

For the two user case in the game G S
rob, the worst-case interference in

each frequency reduces to
(
Frq(k)+ ǫq

)
pr(k) with q, r = 1, 2 and q 6= r. This

means that the robust waterfilling operation for the two user case (Q = 2)

is simply the standard waterfilling solution with the worst-case channel co-

efficients. For the sake of clarity, the analysis here is restricted to both users

having identical noise variance σ2
1(k) = σ2

2(k) = σ2 ∀k across all frequencies,

identical uncertainty bounds ǫ1 = ǫ2 = ǫ and identical total power con-

straints
∑N

k=1 p1(k) =
∑N

k=1 p2(k) = PT . The results presented here can be

extended to the non-identical case along similar lines. In order to develop a

clear understanding of the the behaviour of the equilibrium, the sum-rate of

the system is first analyzed for a system with two frequencies (N = 2) and

then extended to systems with large (N →∞) number of frequencies.

5.1 Two frequency case (N = 2)

Consider a two-frequency anti-symmetric system as shown in Figure 5.1

where the channel gains are |H11(1)|2 = |H11(2)|2 = 1, |H22(1)|2 = |H22(2)|2 =

1, |H12(2)|2 = |H21(1)|2 = α and |H12(1)|2 = |H21(2)|2 = mα with m > 1
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Tx 1

Tx 2

Rx 1

Rx 2

[α,mα]

[mα,α]

[1,1]

[1,1]

Figure 5.1: Anti-symmetric system with Q = 2, N = 2, ǫ1 = ǫ2 = ǫ.
The noise variances for both users in both frequencies are σ2. The
channel gains are: |H11(1)|2 = |H11(2)|2 = |H22(1)|2 = |H22(2)|2 =
1; |H12(2)|2 = |H21(1)|2 = α and |H12(1)|2 = |H21(2)|2 = mα with
m > 1 and 0 < α < 1. The power allocations for this system at the
robust-optimization equilibrium are presented in (5.1.1).

and 0 < α < 1. The total power constraint for the two users is p1(1)+p1(2) =

1 and p2(1)+p2(2) = 1. From (4.4.3) the power allocations at the equilibrium

are,

p1(1) =
(
µ1 − σ2 − (α + ǫ)p2(1)

)+
,

p1(2) =
(
µ1 − σ2 − (mα + ǫ)p2(2)

)+
,

p2(1) =
(
µ2 − σ2 − (mα + ǫ)p1(1)

)+
,

p2(2) =
(
µ2 − σ2 − (α + ǫ)p1(2)

)+
.

(5.1.1)

The following theorem presents the effect of uncertainty on the sum-rate and

price of anarchy of the system for the high interference and low interference

cases:
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Theorem 5.1. For the two-user two-frequency anti-symmetric system de-

scribed in Figure 5.1:

• High interference: When σ2 ≪ α(1−p), the sum-rate increases and the

price of anarchy decreases as the channel uncertainty bound increases.

• Low interference: When σ2 ≫ mαp, the sum-rate decreases and the

price of anarchy increases as the channel uncertainty bound increases.

Proof. See Appendix 5.A.

From this result, it is evident that the robust-optimization equilibrium

behaves in opposite ways when there is high interference and when there is

low interference in the system. This suggests that there might be a certain

level of interference where the sum-rate and price of anarchy do not change

with change in uncertainty. This is given by the following proposition:

Proposition 5.1. At the level of interference α = αo, where

αo =
σ2

2m

((
(m + 1)2 +

4m

σ2

) 1
2

−m− 1

)
, (5.1.2)

the sum-rate and the price of anarchy are independent of the level of uncer-

tainty or the power allocation used. Furthermore, at this value of interfer-

ence, the price of anarchy is equal to unity.

Proof. See Appendix 5.B

It can be seen that even for such a simple system, the global behaviour of

the robust-optimization equilibrium appears to be quite complex. This in-
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dicates that the global properties of the robust-optimization equilibrium for

larger systems is quite strongly dependent on the level of interference in the

system, which is seen in the subsequent results for systems with large num-

ber of frequencies. However, the underlying behaviour of the equilibrium for

the two-frequency case is that the equilibrium moves towards the frequency

division multiple access (FDMA) solution as the uncertainty bound increases

(from (5.A.2)). This helps in providing a way to analyze the equilibrium be-

haviour for systems with large number of frequencies in the following section.

5.2 Large number of frequencies (N →∞)

In this section, the equilibrium behaviour is characterized for the two-user

system with a large number of frequencies. As seen from the previous section,

the equilibrium tends to move towards the FDMA solution as uncertainty

bound increases. In order to quantify this effect, the quantity J(k), defined

as

J(k) , −p1(k)p2(k), (5.2.1)

is used as a measure of the extent of partitioning of the frequency k between

the two users. It is minimum (J(k) = −1) when both the users allocate all

their total power to the same frequency k and is maximum (J(k) = 0) when

at most one user is occupying the frequency k. Note that J(k) = 0 ∀k ∈

{1, . . . , N} when the users adopt an FDMA scheme.

The following lemma describes the effect of the uncertainty bound on

the extent of partitioning of the system:
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Lemma 5.1. For the two-user case in the game G S
rob, when the number of

frequencies, N → ∞, the extent of partitioning in every frequency is non-

decreasing as the uncertainty bound of the system increases for any set of

channel values, i.e.,

∂

∂ǫ
J(k) ≥ 0 ∀k ∈ {1, . . . , N} when N →∞, (5.2.2)

with equality for frequencies where J(k) = 0, where J(k) is defined in (5.2.1).

Proof. See Appendix 5.C.

The above lemma suggests that the robust-optimization equilibrium moves

towards greater frequency-space partitioning as the uncertainty bound in-

creases when there is a large number of frequencies in the system. In other

words, the equilibrium is moving closer to an FDMA solution under increased

channel uncertainty. When the FDMA solution is globally (sum-rate) op-

timal, this will lead to an improvement in the sum-rate at the equilibrium.

This is stated in the following theorem:

Theorem 5.2. For the two-user case in the game G S
rob, as the number of fre-

quencies, N →∞, the sum-rate (price of anarchy) at the robust-optimization

equilibrium of the system is non-decreasing (non-increasing) as the uncer-

tainty bound increases if, ∀ k ∈ {1, . . . , N},

(
F21(k)− ǫ

)(
F12(k)− ǫ

)
>

1

4
. (5.2.3)

Proof. See Appendix 5.D.
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For the special case of frequency-flat systems, at the equilibrium, all

users have equal power allocation to all frequencies. This solution is not

dependent on the uncertainty in the CSI. This leads to no change in the

extent of partitioning and thus sum-rate and price of anarchy are not affected

by uncertainty.

Also, the results of this section are not just limited to the robust-optimization

equilibrium for the system presented here. When the uncertainty ǫ = 0, the

framework presented here can be used to analyse the behaviour of the Nash

equilibrium of the iterative waterfilling algorithm as a function of the inter-

ference coefficients.

5.3 Simulation results

In this section, some simulation results to study the impact of channel un-

certainty on the equilibrium are presented. Figure 5.2 shows the simulation

results for the two user and two frequency scenario and Figure 5.3 shows the

results for a two user case with N = 8 frequencies.

The sum-rate of the system in Figure 5.1 under high interference condi-

tions is plotted as a function of interference and uncertainty in Figure 5.2a.

The flat region corresponds to the sum-rate at Pareto optimal solution

(FDMA) and the edge of the surface corresponds to the sufficient condition

in (4.5.2). It can be seen that the Nash equilibrium (when the uncertainty

bound ǫ = 0) moves closer to the Pareto optimal solution as the interference

increases. It is also evident that the sum-rate increases for a fixed interfer-
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Figure 5.2: Simulation results for the anti-symmetric system in Fig-
ure 5.1. Note that the zero uncertainty corresponds to the Nash equi-
librium
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(c) Average number of iterations vs. uncertainty δ.

Figure 5.3: Simulation results demonstrating the effect of channel un-
certainty on (a) Sum-rate, (b) Average number of channels/user, (c)
Average number of iterations for a system with σ = 0.1, Q = 2
users and N = 8 frequencies averaged over 1000 runs. Channel gains
Hrq(k) ∼ NC(0, 1) for r 6= q, Hqq(k) ∼ NC(0, 4). Channel un-
certainty model: nominal value Frq(k) = F true

rq (k)(1 + erq(k)) with

erq(k) ∼ U(− δ
2
, δ

2
), δ < 1. The simulations are limited to channels

which satisfy the sufficiency condition in (4.5.2). Note that the zero
uncertainty solution corresponds to the Nash equilibrium.

ence as uncertainty increases, as expected from Theorem 5.1. In Figure 5.2b,

the sum-rate at low interference is plotted as a function of interference and

uncertainty. As expected from Theorem 5.1, the sum-rate decreases as the

uncertainty bound increases. Simulation results similar to those in Sec-

tion 4.7 for a two-user system with 8 frequencies are presented in Figure 5.3.
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As seen before, improvement in sum-rate due to lower channel occupancy

leads to a trade-off in increased number of iterations to convergence.

From these simulations it can be seen that the analytical results derived

in Section 5.2 for very large number of frequencies also hold true for a fi-

nite number of frequencies. From the simulation results and the theoretical

analysis, it can be concluded that the robust-optimization equilibrium moves

towards an FDMA solution as the uncertainty bound increases.

5.4 Summary

In this chapter, the efficiency of the equilibrium of the robust rate-maximization

game proposed in Chapter 4 was investigated for the two-user scenario. In

order to develop a clearer understanding of the behaviour of the equilibrium,

a simple two-frequency system was first analyzed. The effect of uncertainty

on the sum-rate and the price of anarchy of this two-frequency system were

derived for two regimes, viz. high interference and low interference. Fol-

lowing this, the effect of uncertainty on the sum-rate and price of anarchy

of a two-user system with asymptotically large number of frequencies were

characterized. Finally, these effects were demonstrated through simulation

results.

Appendix 5.A Proof of Theorem 5.1

Let p1(1) = p. Hence, by symmetry, p1(2) = p2(1) = 1 − p, p2(2) = p and

µ1 = µ2 = µ. Consider the interior operating points of the robust waterfilling
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operator RWFS
q(·) where it is linear. Eliminating µ from (5.1.1),

p =
1− α− ǫ

2
(
1− (m + 1)α

2 − ǫ
) ≥ 0.5. (5.A.1)

The gradient of p with respect to ǫ is

∂ p

∂ ǫ
=

(m− 1)α

4
(
1− (m + 1)α

2 − ǫ
)2 > 0. (5.A.2)

Thus, the robust-optimization equilibrium moves towards the FDMA solu-

tion as the uncertainty bound increases.

The signal-to-interference-plus-noise ratio (SINR) for the two users in

the two frequency bins is given by

SINR1(1) = SINR2(2) =
p

σ2 + α(1− p)
, (5.A.3)

SINR1(2) = SINR2(1) =
1− p

σ2 + mαp
. (5.A.4)

and the sum-rate of the system is

S , 2 log
(
1 +

p

σ2 + α(1− p)

)
+ 2 log

(
1 +

1− p

σ2 + mαp

)
. (5.A.5)

Case 1: High interference scenario

In the high interference scenario, σ2 ≪ α(1− p). Let ξ = p/α(1− p). Then,

the SINR for the two users in the two frequency bins can be approximated



Section 5.A. Proof of Theorem 5.1 135

as

SINR1(1) = SINR2(2) ≈
p

α(1− p)
= ξ ,

SINR1(2) = SINR2(1) ≈
1− p

mαp
=

1

mα2ξ
.

(5.A.6)

The sum-rate of the system at high interference can be approximated as

S ≈ 2 log

(
(1 + ξ)

(
1 +

1

mα2ξ

))
, (5.A.7)

= 2 log

(
1 +

1

mα2
+ ξ +

1

mα2ξ

)
. (5.A.8)

The goal here is to analyse the behaviour of the sum-rate S as the uncer-

tainty ǫ increases. To this end, it has to be shown that the gradient of the

sum-rate with respect to ǫ is positive. Since log(x) increases monotonically

with x, consider

∂

∂ ǫ
(ξ +

1

mα2ξ
) =

(
1−

1

mα2ξ2

)
∂ ξ

∂ ǫ
,

=

(
1−

(1− p)2

mp2

)
∂ ξ

∂ ǫ
,

(5.A.9)

and (1− (1−p)2

mp2 ) > 0 since p ≥ 0.5 and m > 1. Now,

∂ ξ

∂ ǫ
=

1

α(1− p)2
∂ p

∂ ǫ
. (5.A.10)

From (5.A.2), (5.A.9) and (5.A.10),

∂ S

∂ ǫ
> 0. (5.A.11)
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Thus, the sum-rate of the system increases as the uncertainty ǫ increases.

This also shows that the robust-optimization equilibrium achieves a higher

sum-rate in the presence of channel uncertainty (ǫ > 0) than the Nash equi-

librium at zero uncertainty (ǫ = 0).

The social optimal solution for this system at high interference is fre-

quency division multiplexing [23]. In other words, the frequency space is

fully partitioned at the social optimal solution. The sum-rate at the social

optimal solution for the given system at high interference, S∗, is given by

S∗ = 2 log
(
1 +

1

σ2

)
. (5.A.12)

The price of anarchy at high interference, PoA, is

PoA =
log

(
1 + 1

σ2

)

log
(
1 + 1

mα2 + ξ + 1
mα2ξ

) . (5.A.13)

Since ∂ S
∂ ǫ > 0, it implies that ∂ PoA

∂ ǫ < 0.

Case 2: Low interference scenario

In the low interference scenario, i.e. when mαp≪ σ2, the signal-to-interference+noise

ratio SINR for the two users in the two frequency bins can be approximately

written as

SINR1(1) = SINR2(2) ≈
p

σ2
,

SINR1(2) = SINR2(1) ≈
1− p

σ2
.

(5.A.14)
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The sum-rate of the system at low interference can be approximated as

S ≈ 2 log

((
1 +

p

σ2

)(
1 +

1− p

σ2

))
, (5.A.15)

= 2 log

(
1 +

1

σ2
+

p− p2

σ2

)
. (5.A.16)

Now,

∂ S

∂ ǫ
=

(
1 +

1

σ2
+

p− p2

σ2

)−1
(1− 2p)

σ2

∂ p

∂ ǫ
< 0. (5.A.17)

At low interference, the system behaves similar to a parallel Gaussian

channel system. The social optimal solution in this scenario is the waterfill-

ing solution and leads to equal power allocation to both bins. The sum-rate

at the social optimal solution for the given system at low interference, S∗,

is given by

S∗ = 4 log
(
1 +

1

2σ2

)
. (5.A.18)

The price of anarchy at low interference, PoA, is

PoA =
4 log

(
1 + 1

2σ2

)

2 log
(
1 + 1

σ2 + p−p2

σ2

) =
log

(
1 + 1

σ2 + 1
4σ4

)

log
(
1 + 1

σ2 + p−p2

σ2

) . (5.A.19)

Note that, at low interference, mαp ≪ 1. From (5.A.1), p ≈ 0.5. Thus

the PoA is close to unity. Since ∂ S
∂ ǫ < 0, ∂

∂ ǫ PoA > 0.
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Appendix 5.B Proof of Proposition 5.1

The gradient of the sum-rate Srob with respect to ǫ is

∂ Srob

∂ ǫ
=

∂ Srob

∂ p

∂ p

∂ ǫ
. (5.B.1)

From (5.A.2), we have ∂ p
∂ ǫ > 0. Now,

∂ Srob

∂ p
= 2

1
σ2+α(1−p)

+ αp

(σ2+α(1−p))2

1 + p
σ2+α(1−p)

− 2

1
σ2+mαp

+ (1−p)mα

(σ2+mαp)2

1 + 1−p
σ2+mαp

. (5.B.2)

Setting ∂ Srob

∂ p = 0, we solve for α to get the following roots,

α =





0,

−σ2

2m

(
m + 1±

(
4m/σ2 + (m + 1)2

) 1
2

)
,

σ2(2p−1)
(m−1)p2+2p−1

.

(5.B.3)

The positive root that is independent of ǫ and p (which is a function of the

uncertainty ǫ, from (5.A.1)) is the required solution where the sum-rate is

constant regardless of uncertainty. Thus, the required interference value is

given by

αo =
σ2

2m

((
4m/σ2 + (m + 1)2

) 1
2 −m− 1

)
. (5.B.4)

Since the root αo of ∂ Srob

∂ p is independent of p, different power allocation

schemes (resulting in different values of p) will result in the same sum-rate

at α = αo. Thus, the price of anarchy at α = αo is unity.
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Appendix 5.C Proof of Lemma 5.1

From (4.4.3), the power allocations for the two users at the robust-optimization

equilibrium in the kth frequency are

p1(k) =
(
µ1 − σ2 − (F21 + ǫ)p2(k)

)+
, (5.C.1)

p2(k) =
(
µ2 − σ2 − (F12 + ǫ)p1(k)

)+
, (5.C.2)

with
∑N

k=1 p1(k) =
∑N

k=1 p2(k) = PT .

Let D1,D2 and Dol be the sets of frequencies exclusively used by user

1, user 2 and by both respectively and n1 , |D1| and n2 , |D2| be the

number of frequencies exclusively used by user 1 and user 2 respectively at

the equilibrium. Then, from (5.C.1), p1(k) = µ1−σ2
1 and p2(k) = 0 ∀ k ∈ D1

and p1(k) = 0 and p2(k) = µ2 − σ2
1 ∀ k ∈ D2. The power remaining for

allocation to the frequencies in Dol , {k1, . . . , kol} by user 1 and user 2 is

(1− n1(µ1 − σ2)) and (1− n2(µ2 − σ2)) respectively.

This separation of the frequency-space into exclusive-use and overlapped-

use frequencies allows us to analyse the system without the nonlinear opera-

tion (·)+. Thus, the power allocations at the fixed point in the overlapped-use

frequency-space can be expressed as a system of linear equations,

p1(k) +
(
F21(k) + ǫ

)
p2(k)− µ1 − σ2 = 0, k ∈ Dol (5.C.3)

(
F12(k) + ǫ

)
p1(k) + p2(k)− µ2 − σ2 = 0, k ∈ Dol (5.C.4)

∑
k∈Dol

p1(k) + n1(µ1 − σ2) = PT , (5.C.5)
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∑
k∈Dol

p2(k) + n2(µ2 − σ2) = PT . (5.C.6)

Writing these in matrix form,




Ak1
0 −I2

. . .
...

0 Akol
−I2

I2 · · · I2 D







p(k1)

...

p(kol)

µ




=




02

...

02

pt




(5.C.7)

where

Ak ,




1 F21(k) + ǫ

F12(k) + ǫ 1


 , D ,



n1 0

0 n2


 ,

p(k) ,



p1(k)

p2(k)


 , pt ,



PT

PT


 and µ ,



µ1 − σ2

µ2 − σ2


 .

(5.C.8)

Let

A ,




Ak1
0

. . .

0 Akol




, B ,




−I2

...

−I2




,

C ,
[
I2 . . . I2

]
and P ,




p(k1)

...

p(kol)




.

(5.C.9)



Section 5.C. Proof of Lemma 5.1 141

so that (5.C.7) can be written as



A B

C D






P

µ


 =




0

pt


 . (5.C.10)

This system can be solved to get



P

µ


 =



A B

C D




−1 


0

pt


 =



W X

Y Z







0

pt


 =



Xpt

Zpt


 , (5.C.11)

where 

A B

C D




−1

=



W X

Y Z


 . (5.C.12)

Using [109, Fact 10.12.9] and differentiating (5.C.11) with respect to ǫ,

∂

∂ǫ



P

µ


 = −



A B

C D




−1 


∂
∂ǫ A 0

0 0






A B

C D




−1 


0

pt


 , (5.C.13)

= −



W X

Y Z







∂
∂ǫ A 0

0 0






W X

Y Z







0

pt


 , (5.C.14)

= −



W( ∂

∂ǫ A)X pt

Y( ∂
∂ǫ A)X pt


 . (5.C.15)

Due to the nature of the waterfilling function, n1 and n2 are non-decreasing

piecewise-constant functions of ǫ. The above derivative exists only in the

regions where n1 and n2 are constant. Using [109, Proposition 2.8.7], the
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partitioned matrix inverse can be written as

W = A−1 + A−1B(D−CA−1B)−1CA−1, (5.C.16)

X = −A−1B(D−CA−1B)−1, (5.C.17)

Y = −(D−CA−1B)−1CA−1, (5.C.18)

Z = (D−CA−1B)−1. (5.C.19)

Using

A−1 =




A−1
k1

0

. . .

0 A−1
kol




, (5.C.20)

it can be shown that (the detailed derivations are provided at the end of this

proof),

W =




A−1
k1
−A−1

k1
ZA−1

k1
· · · −A−1

k1
ZA−1

kol

...
...

−A−1
kol

ZA−1
k1

· · · A−1
kol
−A−1

kol
ZA−1

kol




, (5.C.21)

X =




A−1
k1

Z

...

A−1
kol

Z




, (5.C.22)

Y = −

[
ZA−1

k1
· · · ZA−1

kol

]
, (5.C.23)
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Z =
1

∆̂




n2 +
∑

k∈Dol

1

∆i

∑

k∈Dol

F21(i) + ǫ

∆i

∑

k∈Dol

F12(i) + ǫ

∆i
n1 +

∑

k∈Dol

1

∆i




, (5.C.24)

where

∆i , det(Ai) = 1−
(
F21(i) + ǫ

)(
F12(i) + ǫ

)
, (5.C.25)

∆̂ ,


n1 +

∑

k∈Dol

1

∆i




n2 +

∑

k∈Dol

1

∆i




−



∑

k∈Dol

F21(i) + ǫ

∆i





∑

k∈Dol

F12(i) + ǫ

∆i


 , (5.C.26)

A−1
i =




1
∆i

−F21(i)+ǫ
∆i

−F12(i)+ǫ
∆i

1
∆i


 . (5.C.27)

Thus, from (5.C.11) and (5.C.15),

P = Xpt =

[
A−1

k1
Zpt . . . A−1

kol
Zpt

]T
, (5.C.28)

and

∂ P

∂ ǫ
= −W(

∂ A

∂ ǫ
)X, (5.C.29)

=




kol∑

i=k1

A−1
k1

ZA−1
i GA−1

i Zpt −A−1
k1

GA−1
k1

Zpt

...
kol∑

i=k1

A−1
kol

ZA−1
i GA−1

i Zpt −A−1
kol

GA−1
kol

Zpt




, (5.C.30)



Section 5.C. Proof of Lemma 5.1 144

where

G =
∂ Ai

∂ ǫ
=



0 1

1 0


 ∀ i = 1, . . . , N. (5.C.31)

Therefore, for k = k1, . . . , kol,

p(k) =



p1(k)

p2(k)


 = A−1

k Zpt (5.C.32)

and

p′(k) =
∂

∂ǫ
p(k), (5.C.33)

=



p′1(k)

p′2(k)


 , (5.C.34)

=
kol∑

i=k1

A−1
k ZA−1

i GA−1
i Zpt −A−1

k GA−1
k Zpt, (5.C.35)

= A−1
k Z

kol∑

i=k1

A−1
i GA−1

i Zpt −A−1
k GA−1

k Zpt (5.C.36)

Consider the extent of partitioning J(k) at any frequency k. For fre-

quencies where J(k) = 0, at least one of the users has zero power allocation

and that will not change with change in uncertainty. Thus ∂
∂ǫ J(k) = 0 for

k ∈ D1 ∪ D2. Also, in cases when n1 or n2 change due to some frequency k̄

dropping from the set Dol, J(k̄) increases from some negative value to zero.

Now consider the extent of partitioning for frequencies where both users

have non-zero power allocation. Differentiating the extent of partitioning for
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frequency k ∈ Dol with respect to ǫ,

∂

∂ǫ
J(k) =

∂

∂ǫ
(−p1(k)p2(k)) , (5.C.37)

= −p′1(k)p2(k) + p1(k)p′2(k), (5.C.38)

= −



p1(k)

p2(k)




T 

p′2(k)

p′1(k)


 , (5.C.39)

= −



p1(k)

p2(k)




T 

0 1

1 0






p′1(k)

p′2(k)


 , (5.C.40)

= −p(k)TGp′(k), (5.C.41)

= −
(
A−1

k Zpt

)T
G
(
−A−1

k GA−1
k Zpt

+A−1
k Z

kol∑

i=k1

A−1
i GA−1

i Zpt

)
, (5.C.42)

= pt
TZTA−1

k
T
GA−1

k

(
− Z

kol∑

i=k1

A−1
i GA−1

i G−1Ak

+I
)
GA−1

k Zpt. (5.C.43)

Let qk , GA−1
k Zpt. Using GT = G−1 = G, GA−1

i G = A−T
i and GAkG =

AT
k , (5.C.43) can be written as

∂

∂ǫ
J(k) = qT

k

(
A−1

k −A−1
k Z

∑kol

i=k1
A−1

i A−T
i AT

k

)
qk (5.C.44)

Let Mk =
∑kol

i=k1
A−1

i A−T
i AT

k and Qk = A−1
k −A−1

k ZMk. When nol = o(N)

(i.e., when limN→∞
nol

N = 0), the total number of frequencies, n1 + n2 =

O(N). Since A−1
i A−T

i AT
k = O(1) for each i and k, Mk = O(nol) and
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Z = O(1/N). Thus,

lim
N→∞

A−1
k ZMk = 0 (5.C.45)

which means that

lim
N→∞

Qk + QT
k = A−1

k + A−T
k ≻ 0 (5.C.46)

from the convergence condition. Thus, xTQkx > 0 ∀x ∈ R
2×1 as its sym-

metric part Qk + QT
k is positive definite [107]. Hence, ∂

∂ǫ J(k) ≥ 0 when

N →∞, with equality when J(k) = 0.

Derivation of Inverses

Consider

CA−1B =
[
I2 . . . I2

]




A−1
k1

0

. . .

0 A−1
kol







−I2

...

−I2




(5.C.47)

=
[
A−1

k1
. . . A−1

kol

]




−I2

...

−I2




= −
∑

k∈Dol

A−1
i (5.C.48)

= −




∑

k∈Dol

1

∆i
−
∑

k∈Dol

F21(i) + ǫ

∆i

−
∑

k∈Dol

F12(i) + ǫ

∆i

∑

k∈Dol

1

∆i




(5.C.49)
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where ∆i is defined in (5.C.25). Thus,

D−CA−1B =




n1 +
∑

k∈Dol

1

∆i
−
∑

k∈Dol

F21(i) + ǫ

∆i

−
∑

k∈Dol

F12(i) + ǫ

∆i
n2 +

∑

k∈Dol

1

∆i




(5.C.50)

and

Z =
(
D−CA−1B

)−1

=
1

∆̂




n2 +
∑

k∈Dol

1

∆i

∑

k∈Dol

F21(i) + ǫ

∆i

∑

k∈Dol

F12(i) + ǫ

∆i
n1 +

∑

k∈Dol

1

∆i




(5.C.51)

where ∆̂ is defined in (5.C.26). Therefore,

X = −A−1B
(
D−CA−1B

)−1
(5.C.52)

=




A−1
k1

0

. . .

0 A−1
kol







Z

...

Z




(5.C.53)

=




A−1
k1

Z

...

A−1
kol

Z




(5.C.54)

and

Y = −
(
D−CA−1B

)−1
CA−1 (5.C.55)
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= −

[
Z . . . Z

]




A−1
k1

0

. . .

0 A−1
kol




(5.C.56)

= −

[
ZA−1

k1
· · · ZA−1

kol

]
(5.C.57)

Also,

W −A−1 = A−1B(D−CA−1B)−1CA−1 (5.C.58)

=




A−1
k1

0

. . .

0 A−1
kol







−I2

...

−I2







ZA−1
k1

...

ZA−1
kol




T

(5.C.59)

= −




A−1
k1

...

A−1
kol




[
ZA−1

k1
· · · ZA−1

kol

]
(5.C.60)

= −




A−1
k1

ZA−1
k1
· · · A−1

k1
ZA−1

kol

...
...

A−1
kol

ZA−1
k1
· · · A−1

kol
ZA−1

kol




(5.C.61)

Hence,

W = A−1 + A−1B(D−CA−1B)−1CA−1 (5.C.62)

=




A−1
k1

0

. . .

0 A−1
kol



−




A−1
k1

ZA−1
k1
· · · A−1

k1
ZA−1

kol

...
...

A−1
kol

ZA−1
k1
· · · A−1

kol
ZA−1

kol




(5.C.63)
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=




A−1
k1
−A−1

k1
ZA−1

k1
· · · −A−1

k1
ZA−1

kol

...
...

−A−1
kol

ZA−1
k1

· · · A−1
kol
−A−1

kol
ZA−1

kol




(5.C.64)

Appendix 5.D Proof of Theorem 5.2

Using [23, Corollary 3.1], the sum of the rates of the two users in the fre-

quency k is quasi-convex only if F21(k)F12(k) > 1/4. Let C be the min-

imum number of frequencies occupied by any user. When there are only

two users and a large number of frequencies, C ≫ 1. If the condition

F21(k)F12(k) > 1
4(1 + 1

C−1)2 is satisfied for some C ≥ 2 for all frequen-

cies k ∈ {1, . . . , N} (thus satisfying F21(k)F12(k) > 1/4), then the Pareto

optimal solution is FDMA [23, Theorem 3.3]. This needs to be satisfied for

the worst-case channel coefficients which leads to (5.2.3). Thus, the solution

moving closer to FDMA will improve the sum-rate of the system. From

Lemma 5.1, the robust equilibrium moves closer to FDMA as uncertainty

increases and thus will result in an improvement in sum-rate.

The Pareto optimal solution under this condition (which is FDMA) is

constant under varying uncertainty bounds as such an uncertainty in the

interference coefficients F12(k) and F21(k) does not affect the FDMA solution

where there is no interference. Thus, an increase in sum-rate will result in

an decrease in price of anarchy.



Chapter 6

ROBUST IWFA FOR MIMO

SYSTEMS

In chapters 4 and 5, a robust rate-maximization game in SISO frequency-

selective Gaussian interference channels under bounded channel uncertainty

was presented and analyzed. In this chapter, a robust framework for rate-

maximization games in multi-antenna systems (MIMO Gaussian interference

channels) based on the robust game model is presented.

The chapter begins with a description of the system model under which

the robust waterfilling solution is developed. This is followed by the formu-

lation of the robust MIMO rate-maximization game under bounded chan-

nel uncertainty. This framework is shown to be a modified MIMO rate-

maximization game (Section 3.5). The equilibrium for this game is then

presented, along with an iterative waterfilling algorithm to compute it. Suf-

ficient conditions for the uniqueness of the equilibrium and convergence of

the algorithm are then presented. Finally, simulation results are presented

to demonstrate the behaviour of the algorithm.
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6.1 System model

Consider a MIMO Gaussian interference channel composed of Q MIMO

links. The signal vector yq ∈ C
nRq×1 measured at the receiver of user q

is

yq = H̃qqxq +
∑

r 6=q

Hrqxr + nq (6.1.1)

where H̃qq ∈ C
nRq×nTq is the direct-channel matrix between source q and

destination q, Hrq ∈ C
nRq×nTr is the cross-channel matrix between source

r and destination q, xq ∈ C
nTq×1 is the signal vector transmitted by source

q and nq ∈ C
nRq×1 is the receiver noise vector of user q, which is assumed

to be a zero-mean complex Gaussian vector with an arbitrary (nonsingular)

covariance matrix Rnq . The second term in the right hand side of (6.1.1)

is the multi-user interference (MUI) observed at the destination q, which is

treated as additive spatially coloured noise at the receiver of user q.

The system is assumed to be quasi-stationary for the duration of the

transmission. Each receiver is assumed to be able to measure accurately

the covariance matrix of the noise plus MUI generated by the other users.

The direct-channel matrix H̃qq is assumed to be square and nonsingular.

It is estimated by receiver of user q and is assumed to have a bounded

uncertainty of unknown distribution. The uncertainty set Hq of the direct-

channel matrix H̃qq is deterministically modelled as an ellipsoid centered

around the nominal value Hqq,

Hq ,
{
H̃qq , Hqq + ∆q : ‖∆q‖F ≤ ǫq

}
(6.1.2)
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Based on this information, each destination q computes the optimal co-

variance matrix Qq , E{xqx
H} for its own link and transmits it back to

its transmitter over a low bit-rate error-free feedback channel. From this

optimal covariance matrix, the beamformer weights of the transmitter can

be computed as

xq =

nTq∑

i=1

λqi
vqi

(6.1.3)

where λqi
is the i-th eigenvalue of Qq and vqi

is its associated eigenvector.

The nominal information rate of user q, Rq(Qq,Q−q), for this system

can be written as [63]

Rq(Qq,Q−q) = log det(I + HH
qqR

−1
−q(Q−q)HqqQq) (6.1.4)

where

R−q(Q−q) , Rnq +
∑

r 6=q

HrqQrH
H
rq (6.1.5)

is the interference plus noise covariance matrix observed by destination q,

and Q−q , {Qr}r 6=q is the set of covariance matrices of all users except the

q-th user. Each player q competes rationally against other users in order to

maximize its own information rate Rq(Qq,Q−q) by designing the optimal

covariance matrix Q⋆
q , given the constraint

E
{
‖xq‖

2
2

}
= Tr(Qq) ≤ Pq (6.1.6)

where Pq is the maximum average power transmitted in units of energy per
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transmission for user q.

6.2 Robust rate-maximization game formulation

The robust game model (Section 2.5) suggests that when players have un-

certainties in their payoff functions, formulating their best response to the

worst-case payoff functions leads to a stable equilibrium. Motivated by this

approach, a protection function (which is a lower bound on the payoff func-

tion) is formulated for each user, which is then maximized by each user.

Defining the matrices Mq and Eq as

Mq , HH
qqR

−1
−q(Q−q)Hqq, (6.2.1)

Eq , I + H−1
qq ∆q, (6.2.2)

the protection function for user q, based on the channel uncertainty model

in (6.1.2), is formulated as

R̃q(Qq,Q−q) = log det(I + H̃H
qqR

−1
−q(Q−q)H̃qqQq), (6.2.3)

= log det(I + EH
q MqEqQq), (6.2.4)

=

nq∑

i=1

log λi(I + EH
q MqEqQq), (6.2.5)

=

nq∑

i=1

log
(
1 + λi(E

H
q EqMqQq)

)
, (6.2.6)

≥
nq∑

i=1

log
(
1 + λmin(E

H
q Eq)λi(MqQq)

)
. (6.2.7)
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where (6.2.4) follows from (6.2.1) and (6.2.2); (6.2.5) follows from [107, The-

orem 1.2.12]; (6.2.6) follows from Weyl’s Theorem [107, Theorem 4.3.1];1

and (6.2.7) follows from [109, Fact 8.19.17].2

Now,

λmin(E
H
q Eq) = λmin

(
I + ∆H

q H−H
qq + H−1

qq ∆q

+∆H
q H−H

qq H−1
qq ∆q

)
, (6.2.8)

≥ 1 + λmin
(
∆H

q H−H
qq + H−1

qq ∆q
)

+λmin
(
∆H

q H−H
qq H−1

qq ∆q
)
, (6.2.9)

≥ 1− 2σmax
(
H−1

qq ∆q
)

+λmin
(
∆H

q H−H
qq H−1

qq ∆q
)
, (6.2.10)

≥ 1− 2σmax
(
H−1

qq ∆q
)

+λmin
(
H−H

qq H−1
qq

)
λmin

(
∆H

q ∆q
)
, (6.2.11)

≥ 1− 2σmax
(
H−1

qq ∆q
)

(6.2.12)

≥ 1− 2σmin
(
H−1

qq

)
σmax

(
∆q
)
, (6.2.13)

= 1− 2
σmax

(
∆q
)

σmax
(
Hqq

) , (6.2.14)

1Let A,B ∈ C
N×N be Hermitian. For each k = 1, 2, . . . , N , we have

λk(A) + λmin(B) ≤ λk(A + B) ≤ λk(A) + λmax(B).

2Let A,B ∈ C
N×N be Hermitian and positive definite. For each k = 1, 2, . . . , N ,

we have
λk(A)λmin(B) ≤ λk(AB) ≤ λk(A)λmax(B).
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≥ 1−
2ǫq

σmax
(
Hqq

) , (6.2.15)

where (6.2.9) follows from Weyl’s Theorem [107, 4.3.1]; (6.2.10) follows

from [109, Fact 5.11.25]; (6.2.11) follows from [109, Fact 8.19.17]; (6.2.13)

follows from [109, Proposition 9.6.6] and (6.2.15) follows from the definition

of Frobenius norm.

Using (6.2.15) in (6.2.7), the protection function for user q can be for-

mulated as

R̃q(Qq,Q−q) ≥
nq∑

i=1

log
(
1 + γqλi(MqQq)

)
, (6.2.16)

= log det
(
I + γqH

H
qqR

−1
−q(Q−q)HqqQq

)
, (6.2.17)

where (6.2.17) follows from [107, Theorem 1.2.12] and γq is defined as

γq , 1−
2ǫq

σmax
(
Hqq

) . (6.2.18)

Note that the lower bound indicated by γq could be too loose if the

uncertainty bound ǫq is too high or if the largest singular value of the direct

channel, σmax(Hqq) is too small. In particular, this could lead to γq ≤ 0.

However, λmin(E
H
q Eq) ≥ 0. Hence, the range of γq is limited to 0 < γq ≤ 1.

Based on the protection function in (6.2.17), the robust MIMO rate-
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maximization game can be mathematically formulated as

G
M
rob

max
Qq

log det
(
I + γqH

H
qqR

−1
−q(Q−q)HqqQq

)

s. t. Qq ∈ Qq

∀q ∈ Ω (6.2.19)

where Ω , {1, . . . , Q} is the set of the Q players (i.e. MIMO links), Rq(Qq,Q−q)

is the payoff function of player q as given in (6.1.4) and the set of admissible

strategies of player q, Qq, is defined as

Qq ,
{
Q ∈ C

nTq×nTq : Q � 0, Tr(Qq) = Pq
}
. (6.2.20)

The inequality constraint in (6.1.6) is replaced with the equality constraint

in (6.2.20) as, at the optimum of each problem in (6.2.19), the constraint

must be satisfied with equality [99].

Note that the quantity γq of user q is dependent only on its own direct-

channel Hqq and its uncertainty bound ǫq, and thus does not need any addi-

tional information (other than the uncertainty bound), such as other users’

transmit covariances or channel matrices, when computing the robust so-

lutions. Furthermore, the quantity γq is related to the relative uncertainty

in the direct channel matrices (determined by the ratio ǫq/σq(Hqq)). In

addition, this formulation has the advantage of not needing any additional

computational hardware, as the eigendecomposition is performed anyway in

every iteration of the algorithm when computing the waterfilling solutions.

Moreover, the additional computational cost is not going to be significant,
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as the quantity γq needs to be computed only once, at the beginning of the

game.

It can be observed that the robust game G M
rob is equivalent to the nominal

game described in Section 3.5 (and in [63]), with the modified channels

{γ
1/2
q Hqq}q∈Ω instead of the original channels {Hqq}q∈Ω.

6.3 Robust-optimization equilibrium

Recall from Section 3.5 that the solution to the nominal game is the Nash

equilibrium. In this game, given Q−q ∈ Q−q , Q1 × · · · ×Qq−1 ×Qq+1 ×

· · ·QQ, the optimum action profile of the players {Q⋆
q}q∈Ω at equilibrium

must satisfy, ∀q ∈ Ω,

Q⋆
q = RWFM

q (Q⋆
1, . . . ,Q

⋆
q−1,Q

⋆
q+1, . . . ,Q

⋆
Q) = RWFM

q (Q⋆
−q). (6.3.1)

The robust waterfilling operator RWFM
q (·) is defined as

RWFM
q (Q−q) , Uq(µqI−

1
γq

D−1
q )+UH

q (6.3.2)

where µq is chosen to satisfy Tr
(
(µqI−

1
γq

D−1
q )+

)
= Pq. The unitary matrix

of eigenvectors Uq = Uq(Q−q) ∈ C
nTq×nTq and the diagonal matrix Dq =

Dq(Q−q) ∈ R
nTq×nTq

++ are calculated from the eigendecomposition

UqDqU
H
q , HH

qqR
−1
−q(Q−q)Hqq. (6.3.3)
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Given the MIMO system in (6.1.1), the non-negative matrix Sγ ∈ R
Q×Q
+ is

defined as

[Sγ ]qr ,





1

γq
ρ
(
HH

rqH
−H
qq H−1

qq Hrq
)
, if r 6= q,

0, otherwise

(6.3.4)

The sufficient condition for existence and uniqueness of the equilibrium of

game G M
rob is given by the following theorem:

Theorem 6.1. Game G rob has at least one equilibrium for any feasible set

of channel matrices and transmit powers of the users. Furthermore, the

equilibrium is unique if

ρ(Sγ) < 1 (6.3.5)

where Sγ is defined in (6.3.4).

Proof. Refer [63, Theorem 6].

It can be verified that the above condition reduces to the nominal con-

dition (3.5.18) when there is no uncertainty (γq = 1 ∀q ∈ Ω). An iterative

algorithm to compute the equilibrium is presented and characterized in the

following section.

6.3.1 Iterative algorithm for robust waterfilling

Let the discrete set T = N+ = 1, 2, . . . be the set of times at which one or

more users update their strategies. Let Q
(n)
q denote the set of covariance

matrices of user q at the n-th iteration, and let Tq ⊆ T denote the set of
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Algorithm 6.1 – Robust MIMO Iterative Waterfilling Algorithm
Input:

Ω: Set of users in the system
Qq: Set of admissible strategies of user q
Tq: Set of time instants n when the covariance matrix Q(n)

q of user q
is updated
T : Number of iterations for which the algorithm is run
τ q
r (n): Time of the most recent covariance matrix of user r available

to user q at time n
RWFM

q (·): Robust waterfilling operation in (6.3.2)

Initialization: n = 0 and Q(0)
q ← any Q ∈ Qq, ∀q ∈ Ω

for n = 0 to T do

Q(n+1)
q =





RWFM
q

(
Q

(τq(n))
−q

)
, if n ∈ Tq,

Q(n)
q , otherwise

∀q ∈ Ω,

end for

time instants n when the strategy Q
(n)
q of user q is updated. Let τ q

r (n)

denote the time when the most recently perceived interference from user r

was computed by user q at time n (Note that 0 ≤ τ q
r (n) ≤ n). Hence, if user

q updates its strategy at time n, then

Q

(
τq(n)

)

−q ,

(
Q

(
τq
1
(n)
)

1 , . . . ,Q

(
τq
q−1

(n)
)

q−1 ,Q

(
τq
q+1

(n)
)

q+1 , . . . ,Q

(
τq

Q
(n)
)

Q

)
. (6.3.6)

A fully distributed asynchronous iterative algorithm to compute the equi-

librium of game G M
rob is described in Algorithm 6.1. The convergence of

Algorithm 6.1 is guaranteed under the following sufficiency condition:

Theorem 6.2. The robust MIMO iterative waterfilling algorithm, described

in Algorithm 6.1 converges to the unique equilibrium of game G M
rob as T →∞
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for any set of feasible initial conditions if (6.3.5) is satisfied.

Proof. Refer [63, Theorem 7].

When the relative uncertainties, i.e, the ratio ǫq/σq(Hqq), of all users is

the same, the quantities γq of all users is identical. In this case, the sufficient

condition in (6.3.5) can be simplified as follows:

Corollary 6.2.1. When the uncertainties of all the users is identical, i.e.,

when γq = γ, ∀q ∈ Ω, the sufficient condition for the uniqueness of the

equilibrium and the guaranteed convergence of Algorithm 6.1, described in

(6.3.5), reduces to

ρ(S) < γ (6.3.7)

where S is defined as

[S]qr ,





ρ
(
HH

rqH
−H
qq H−1

qq Hrq
)
, if r 6= q,

0, otherwise

(6.3.8)

This result helps analyze the effect of uncertainty on the set of channel

matrices for which the equilibrium is guaranteed to be unique and Algo-

rithm 6.1 is guaranteed to converge. In the absence of uncertainty, this

occurs when ρ(S) < 1, (Corollary 3.7.1). When the uncertainty bound of

the system increases, the value of γ reduces, and thus, the set of matrices

that satisfy (6.3.7) shrinks. Thus, to achieve a robust solution, there is a

trade-off between allowed uncertainty and guaranteed convergence of the

algorithm.
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6.4 Simulation results

In this section, the average behaviour of the robust MIMO algorithm under

different scenarios is investigated. The effect of the amount of uncertainty,

number of users, the number of transmit/receive antennas of each user and

the level of interference on the average sum-rate of the system are presented

here. Also, these results are compared with the nominal solution (i.e. using

the MIMO waterfilling algorithm (Algorithm 3.2) with erroneous channel

matrices).

The simulation results are provided for a system with Q users averaged

over 10000 trials with random channel matrices. The cross-channel matrices

Hrq ∈ C
Nt×Nr are generated with elements drawn from NC(0, 1) for r 6= q

and the direct-channel matrices Hqq ∈ C
Nt×Nr are generated with elements

drawn from NC(0, d2
r). The channel uncertainty model is H̃qq , Hqq + ∆q

where ‖∆q‖F ≤ ǫ (from (6.1.2)). The specific parameters are provided with

each figure. It is to be noted that the quantity dr is the ratio between the

standard deviation of the elements of the random direct-channel matrices

and the standard deviation of the elements of the random cross-channel

matrices. A higher value of dr indicates weaker interference in the system.

In Figure 6.1, it can be observed that the sum-rate under the robust solu-

tion improves with rise in uncertainty while the sum-rate under the nominal

solution falls with increase in uncertainty. This gap in performance can be

observed to be zero under zero uncertainty (since the two solutions coincide)

and rise to about 1.2 nats/transmission when the uncertainty bound is 0.5.
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The average number of iterations required to converge to the robust solu-

tion against the uncertainty bound of the system is depicted in Figure 6.2. It

can be observed that the robust solution takes longer to converge with higher

uncertainty in the system, rising from about 6 iterations at zero uncertainty

to about 8 iterations when the uncertainty bound is 0.5.

In Figure 6.3, the average sum-rate of a system with 2 users is plotted

against the number of transmit/receive antennas of each user. It can be

observed that the average sum-rate of the robust solution increases with the

number of antennas, from about 10 nats/transmission when there are 2 an-

tennas to about 13 nats/transmission when it is increased to 6 antennas,

as expected in MIMO systems. Furthermore, the robust waterfilling solu-

tion consistently performs better than the nominal solution for the observed

number of transmit/receive antennas, retaining an improvement of about 1

nat/transmission.

Figure 6.4 demonstrates the effect of number of users on the average

sum-rate of the system. Increasing the number of users from 2 users to 6

users results in a lower sum-rate, reducing from about 8.5 nats/transmission

to about 6 nats/transmission. This is because a higher number of users in

the system results in more interference for all users, given a fixed value of

dr. In addition, it can be observed that the robust solution performs better

than the nominal solution regardless of the number of users in the system.

In Figure 6.5, the effect of the level of interference on the average

sum-rate of the system is demonstrated. The average sum-rate at the ro-
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Figure 6.5: Sum-rate vs. direct-channel matrix standard deviation, dr.

bust solution increases with reduction in interference, rising from about 7.5

nats/transmission when dr is 0.75 to about 12 nats/transmission when dr

is 2. Note that a higher value of dr indicates weaker interference in the

system. It can also be observed that the gap in performance between the

robust solution and the nominal solution is higher when the system has

higher interference (1 nat/transmission when dr is 0.75) and falls with re-

duction in interference (0.2 nats/transmission when dr is 2). This can be

explained as follows: the robust solution encourages each user to be less

greedy, which results in lower interference for all users. In systems with

stronger cross-channel matrices, this plays a greater role in determining the

observed information rates of the users, when compared to systems with

weak cross-channel matrices. Thus, when dr increases, the robust solution
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moves closer to the nominal solution.

6.5 Summary

In this chapter, a robust formulation for the rate-maximization game in

MIMO Gaussian interference channels in the presence of bounded channel

uncertainty was developed. Inspired from the robust game model, best re-

sponse of each user was based on a lower bound of the payoff function (pro-

tection function) and resulted in a distribution-free equilibrium solution.

Furthermore, the robust MIMO rate-maximization game was observed to

be equivalent to the nominal MIMO rate-maximization game with modified

direct-channel matrices. This enabled the characterization and computation

of the equilibrium utilizing an iterative waterfilling algorithm. Finally, sim-

ulation results demonstrated that the robust solution leads to better global

performance, with higher achieved sum-rates.



Chapter 7

SUMMARY, CONCLUSIONS

AND FUTURE WORK

In this chapter, the novel results of this thesis and the conclusions that can

be drawn from them are summarized, followed by a discussion on future

work that this work could lead to.

7.1 Summary and conclusions

The focus of this thesis has been the design of distributed algorithms to

maximize the information rates of users in single-antenna and multi-antenna

Gaussian interference channels in the presence of uncertainty in channel state

information based on game theory.

In Chapter 1, the challenge of multiuser interference in next-generation

wireless technologies was given as the motivation for the work contained

in this thesis. Game theory has evolved as a suitable framework to design

resource allocation schemes for such users. The majority of the current liter-

167
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ature on game-theoretic solutions for resource allocation in wireless commu-

nications has assumed the availability of perfect channel knowledge, which

is not possible in a practical situation. Hence, this thesis addressed the

need for the analysis of the effect of imperfect channel knowledge on the

performance of such game-theoretic methods and for the design of robust

game-theoretic solutions which perform satisfactorily despite having imper-

fect channel knowledge.

In Chapter 2, relevant concepts from game theory have been briefly de-

scribed. This included an overview of game theory and its underlying as-

sumptions, followed by an introduction to the strategic noncooperative game

and the concept of the Nash equilibrium. This was followed by a discussion

on the idea of equilibrium efficiency and a few popular measures to quantify

it. Finally, the limitations of the concept of the Nash equilibrium have been

considered, and a robust optimization based approach to mitigating uncer-

tainty in game theory called the robust game model has been introduced as

the basis for the solutions presented in this thesis.

In Chapter 3, the conceptual foundations from fixed point theory, con-

traction mapping and information theory underpinning the work presented

in this thesis have been summarized. In addition, this chapter introduced

the specific game-theoretic problem formulations under which the issue of

channel uncertainty is considered in this thesis. Finally, the effect of channel

uncertainty on the performance of the MIMO iterative waterfilling algorithm,

which demonstrates the need for robust solutions, has been investigated in
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this chapter.

In Chapter 4, a review of the current literature addressing the issue of un-

certainty in rate-maximization games for interference channels has been pre-

sented. Following this, a robust formulation for the rate-maximization game

in SISO frequency-selective Gaussian interference channels under bounded

channel uncertainty has been developed. A distribution-free robust optimiza-

tion equilibrium for this problem has been derived and proved to exist for all

feasible channel realizations and to be unique under certain sufficient con-

ditions. An iterative algorithm to compute the equilibrium in a distributed

fashion has also been developed and shown to asymptotically converge when

the equilibrium is unique. Simulation results have confirmed the behaviour

of the algorithm and also have revealed an interesting effect of improvement

in sum-rate of the system when channel uncertainty increases.

In Chapter 5, the improvement in sum-rate with increase in uncertainty

that was observed in the previous chapter has been analytically investigated

in a two-user setting. Based on the analysis of a simple two-frequency system,

sufficient conditions for the improvement of sum-rate and price of anarchy

in a system with asymptotically large number of frequencies with increase in

uncertainty have been derived. In a nutshell, these results indicate that the

robust-optimization equilibrium moves towards a frequency division multiple

access (FDMA) solution as the uncertainty increases, thereby resulting in

the improvement of sum-rate and price of anarchy when FDMA solutions

are known to be globally optimal.
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In Chapter 6, a robust formulation for the rate-maximization game in

MIMO Gaussian interference channels in the presence of bounded channel

uncertainty has been developed. The robust game thus developed has been

shown to be equivalent to the nominal MIMO rate-maximization game with

modified channel matrices. The robust-optimization equilibrium for this

game and an iterative algorithm to compute it distributively have been pre-

sented and characterized. Numerical simulations on the behaviour of this

solution have indicated that the robust solution (in the presence of channel

uncertainty) performs better than the nominal solution (with perfect channel

knowledge), similar to the robust SISO iterative waterfilling algorithm.

Based on the results presented in this thesis, it can be concluded that

a robust game theoretic approach which unifies robust optimization tech-

niques and traditional noncooperative game theory is a suitable approach

to addressing channel uncertainty in rate-maximization games. Worst-case

robust optimization is often too conservative in traditional single-objective

optimization problems (such as beamformer design [110]) in order to en-

sure zero outage which results in a loss in performance. However, such a

worst-case approach results in having the opposite effect in the multi-user

game-theoretic setting where there are multiple coupled optimization prob-

lems.

The conservative solutions forced upon each user by worst-case optimiza-

tion reduces their greediness which causes lesser interference to the other

users in the system. When the system has significant interference (i.e. the
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cross-channels are comparable to the direct-channels), such a conservative

approach by all users results in reduced interference for all users, which

in turn leads to improved information rates for the users. This provides

valuable insight into the design of better utility functions and mechanisms

which, in some fashion, encourages reduced competition among selfish users

(in the form of interference) and yields solutions which are closer to Pareto

optimality, and yet enable distributed computation.

7.2 Future work

There are several directions in which the research presented in this thesis

can be extended. The solutions presented here are for systems with open

spectrum access, but they could be extended to the cognitive radio sce-

nario, where there is an interference constraint which limits the interference

observed at a licensed user. In addition, the robust MIMO iterative wa-

terfilling algorithm presented in Chapter 6 is limited to square nonsingular

channels, and can be extended to apply to systems with arbitrary channels.

Another problem that could be considered is the robust rate-maximization

game for MIMO systems with not just a total power constraint, but also a

per-antenna power constraint. Also, the robust MIMO iterative waterfill-

ing algorithm considers only uncertainty in the channel matrices, but not in

the estimation of the covariance matrix of noise-plus-multiuser interference.

Accounting for uncertainty in the estimation of the covariance matrix is par-

ticularly challenging, as such an estimation occurs in every iteration of the
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algorithm, and will lead to the breakdown of the definition of fixed points in

such cases.

The robust solutions and techniques proposed in this thesis could also be

extended to other power-control problems such as utilized power minimiza-

tion subject to quality-of-service (QoS) constraints. This leads to problem

formulations beyond the Nash equilibrium, in the area of nonlinear comple-

mentary problems and variational inequalities.

Another issue of interest is the behaviour of robust waterfilling algorithms

in the multiple equilibria regime (when the cross-channels are very strong),

which has received attention only recently for the situation when there is

perfect channel knowledge [96]. Some of the questions that are of interest

are: Is the multiplicity of equilibria affected by channel uncertainty? Are

certain equilibria favoured at certain levels of uncertainty? Does the update

order of the algorithm affect convergence and/or the equilibrium achieved?

Does the initialization affect the convergence and/or equilibrium achieved?

Security considerations in the robust SISO iterative waterfilling algo-

rithm presented in Chapter 4 are also of interest. This algorithm assumes

public knowledge of the power allocation vectors, and has no safeguards

against malicious users reporting false values. Designing mechanisms which

discourage collusion and jamming though such means are necessary.

The methods proposed in this thesis also assume quasi-stationarity of

the environment for the duration of the game. Extending these solutions

to the dynamic case where channels could be changing states is of interest.
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Another open problem of this general area is the scalability issue, as the

Nash equilibrium has significant limitations when there are large number of

users in the systems, each having large action-spaces.
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