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ABSTRACT 

Hammer drills are known to cause vibration induced injury. One method of 

alleviating this problem is to reduce the level of vibration generated by the hammer 

drill impact unit, so that less vibration is felt by the operator. The objective of this 

study was to increase the understanding of impact unit behaviour and develop 

theoretical models to assist the design process. 

The impact unit was initially simplified to a two degree of freedom vibro-impact 

system with impact excitation. The periodic Green's function method was used to 

study the system analytically. The equations of motion were solved for the initial 

two degree of freedom system for both sinusoidal and impulse excitation cases, 

without recourse to numerical methods. This is the first purely analytical solution 

that has been obtained for such a two degree of freedom system with impact 

excitation. Two solutions to the equation of motion were found but a stability 

analysis showed that only one was stable. 

The analytical solution provides a reliable basis for the development of more 

detailed numerical models of the impact unit. A Simulink model achieved a good 

agreement with the analytical solution for both sinusoidal and impulse excitation. 

It was found that the use of compliance in the impact surfaces was essential to 

avoid the accumulation of integration errors due to infinite acceleration at impact. 

A more complex model with a loose mass was also simulated. 

A two mass test rig was developed to provide data to support the development of 

the simplified models. Two resonances and an antiresonance were identified, 

confirming the modelling results. 

The first experimental rig to be based on an actual hammer drill was also 

developed, to support the development of more complex models. A laser 

vibrometer was used to measure the velocities of the internal parts. By varying the 

hammer drill speed a general understanding of its behaviour was obtained. The 

hammer drill showed periodic behaviour with the same period as the excitation but 

with some variation from cycle to cycle. 
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1 INTRODUCTION 

1.1 Hammer drills and their sources of vibration 

Hammer drills and related equipment, such as rock drills and paving breakers, use 

repetitive impact to drill or break up hard brittle materials such as rock and 

concrete. The use of repetitive impact rather than a constant feed force allows 

much higher penetration rates to be achieved. 

These devices may be hand or machine held, and may be driven by electrical, 

hydraulic or pneumatic means. The subject of this study is the widely used hand 

held hammer drill driven by an electric motor. These drills are manufactured in a 

variety of sizes from small domestic drills to large industrial drills such as the Hilti 

TE74 used in the experimental part of this study. 

Hand held vibrating equipment can cause damage to nerves, joints, muscles and the 

blood supply if used regularly over a long period of time. Vibration induced white 

finger is a common condition caused by damage to the blood supply to the fingers, 

and recently led to a £500 million compensation settlement by British Coal. 

There are several methods of reducing the incidence and severity of vibration 

induced injury. Duration of exposure to vibration can be reduced by rotating 

personnel. Regular health checks can be made and affected personnel can be 

redeployed so that their condition is not worsened. Heated handles can help in the 

case of vibration white finger because a cold working environment for the hands 

increases the risk. Manufacturers can also improve their designs to increase the 

damping within the device, and remove or reposition other features such as gas 

exhaust ports which are also believed to increase the risk of vibration induced 

injury. A more fundamental approach is to reduce the vibration levels of the 

mechanism itself. [Gemne et al 1993, Griffin 1990]. 

The main source of vibration in a hammer drill is the impact unit. A typical 

electrically driven impact unit is shown in Figure 1.1. The electric motor drives a 

piston via a gearbox and a crank, which in turn drives the striker via an air cushion. 

The striker strikes the intermediate piston, which then strikes the drill bit which in 
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turn cuts into the material (such as concrete). The intermediate piston has a buffer 

that prevents it from returning too far into the drill mechanism. The buffer may 

also be involved in the stability of the motion of the drill. These parts are all 

contained within a tube which is rotated when a drilling action is required, or is 

held stationary if only the chisel action is required. 

crank 

piston 

striker 

buffer 

intermediate piston 

drill bit 

Figure 1.1 Impact unit of a typical industrial hammer drill 

[after Kember and Babitsky 1999a[ 

The main sources of vibration for this type of impact unit are: 

I. the pressure spike generated as the air between the piston and the striker 

is compressed 

2. the motion of the various masses 

3. the impact between the intermediate piston and the buffer 

The pressure spike shape and amplitude could be modified so that it is less 

damaging to the user. The vibration from the motion of the masses could also be 

reduced by making the masses smaller or out of lighter materials (but with less 
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effective impacts) or by increasing the mass of the drill body (which may be 

unpopular with the user). 

The aim of the current study is to obtain a better understanding of the dynamics of 

the impacting parts of the impact unit, to allow the drill to be designed for reduced 

impact levels between the intermediate piston and the buffer. 

The impact unit of a hammer drill is a typical example of a vibro-impact system. 

The next section introduces vibro-impact processes and their terminology. 

1.2 Vibro-impact processes 
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Figure 1.2 Frequency response of a linear system [Den Hartog 1956] 

A vibro-impact system consists of one or more interacting processes that involve 

systematically repeated impacts. These impacts cannot be analysed individually if 

the frequency of impact is of the same order of magnitude as the natural frequency 

of the system without impact. In this case the system will still be responding to a 

previous impact when the next impact occurs [Babitsky 1998]. Such vibro-impact 

processes can be found in several areas of engineering and include impacts that 

occur at joints in mechanisms, repeated impacts within machines and the use of 

repeated impacts to attenuate unwanted vibratory motion. There are also the largely 



4 

theoretical problems of impact oscillators and of a ball repeatedly striking a 

vibrating table. These processes will be explained briefly in this section and the 

next, and methods of analysis will be described in sections 2.1 to 2.4. 

Figure 1.3 Frequency response of a damped linear system [Den Hartog 1956] 

A vibro-impact process is an example of nonlinear vibration and will therefore 

exhibit characteristics that identify it as nonlinear. A clear indicator of a system 

with nonlinearity is the shape of its frequency response curve. An undamped linear 

single degree of freedom system has the frequency response shown in Figure 1.2, 

.with a resonance (where the magnitude of the amplitude tends to infinity) when the 

frequency of excitation (J) is equal to the natural frequency llIn of the system. It 

should be noted that the phase change at resonance requires the amplitude values to 

become negative. If the system is damped then the resonant frequency is lower than 

the natural frequency of the undamped system, and the amplitude at resonance is 

less than infinity (Figure 1.3). The resonant frequency of a linear system is 

independent of the amplitude of the forcing function and has the same value 

whether the excitation frequency is swept up through the resonance or swept down 

through the resonance. This is not the case with a nonlinear system. 

The frequency response of a nonlinear system has a different shape and there are a 

variety of methods of deriving the frequency response. The method described here 
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is an approximate one [Den Hartog 1956]. Other methods include perturbation 

methods [Nayfeh 1981] and harmonic linearisation [Magnus 1965, Kolovsky 

1966]. 
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Figure 1.4 A nonlinear spring stiffness characteristic [Stoker 1950J 

Mox displ. 

"'0-

Figure 1.5 Graphical means of calculating the frequency response of a nonliriear spring 

[Den Hartog 1956J 
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If the nonlinear system is undamped and has nonlinear springs then its equation of 

motion is 

mx + f(x) = Po COSOJI (l.l) 

An approximate solution can be found by assuming that the response is sinusoidal 

and has the same frequency as the excitation so 

x = Xo cosllJl and .• 2 
X = -XoOJ cos(J){ 

The inertia force will then have its maximum vat ue -mxool when the forcing 

function has its maximum value Po. Equation (1.1) is a condition of equilibrium for 

the forces at any time and so, for a given value of Xo, equation (1.1) becomes: 

(1.2) 

t 
",0 

w-
Figure 1.6 Frequency response of an undamped non linear system [Den Hartog 1956] 

IfJtxo) represents a nonlinear spring then equation (l.l) is not satisfied at all points. 

However a graphical solution may be used to analyse the system. The spring 

characteristic can be plotted on a force/displacement diagram, shown in Figure 1.4 

as a stiffening spring. If various values of OJ are inserted into the right hand side of 

equation (1.2), then a series of straight lines representing Po + mo/xo can be drawn 

on the same diagram (Figure 1.5). Where such a straight line intersects the spring 

characteristic, a point of equilibrium is found. When (J) = 0, a horizontal line from 

Po on the Faxis meets the spring characteristic at point AD. The displacement at 

this point can then be plotted on the amplitude frequency graph (Figure 1.6). When 

(J) is increased to (J)" the straight line intersects the spring characteristic at point Al. 

When (J) is increased to 0>./, the line now intersects the characteristic at three points 

A2, B2 and C2. This process is repeated to produce the frequency response. It is 
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seen that region B-C of the response is 1800 out of phase with region A and so 

would actually be negative. However, the graph in Figure 1.6 shows the magnitude 

of the amplitude. Using this procedure, Po can be varied. When Po is zero (free 

vibration) the backbone curve is obtained. As Po is increased, a family of curves 

can be drawn (Figure 1. 7, the curve marked I has the lowest value of Po). These 

curves asymptotically approach the backbone curve when the system is undamped. 

Figure 1.7 Variation of the frequency response with Po [Den Hartog 1956] 
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Figure 1.8 Frequency response of a damped nonlinear system [Kolovsky 1966] 

An equation for the amplitude a of a damped system under sinusoidal excitation 

Fcos(tJ( may be obtained by using harmonic linearisation (see harmonic balance 

method, section 2.2.4) [Kolovsky 1966]: 

F; 
a = r====':==== 

~(?c' _ (tJ')' + 4n' (tJ' 

where F; = F/m, n = c/2m, ?C' = k{ao,a}fm, (m is the mass, c is the damping 

coefficient and k(ao,a) is the linearised form of the nonlinear stiffness). If the 
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excitation frequency equals the linearised natural frequency, A.=lU, the damping line 

a = F, /2nlU will limit the amplitude at resonance. The damping line therefore 

intersects the backbone curve at the point where the frequency response curve is 

rounded off (Figure 1.8). 

A 

5 

11----~ B 

1 2 
Figure 1.9 The jump phenomenon [Magnus 1965] 

As operation in region C of the response in Figure 1.6 cannot be achieved III 

practice, the system will jump to avoid that portion of the curve (Figure 1.9). If the 

excitation frequency is slowly increased from zero, the amplitude will reach a peak 

at A and then, with a small increase in frequency, the amplitude will dramatically 

reduce (B) and then steadily decline. If the excitation frequency is now decreased, 

the amplitude will gradually increase until C when there will be a small jump in 

amplitude (D) and thereafter there will be a steady decline in amplitude to a value 

of 1. This behaviour is known as the jump phenomenon and demonstrates that the 

resonant frequency depends on the direction of frequency sweep. If the amplitude 

of the excitation (Po) is varied, this will have an effect on the frequencies at which 

the jumps occur because the position of the damping curve (Figure 1.8) will be 

affected. When the excitation amplitude is small, the two jump frequencies will be 

close together and the system behaviour is almost linear (Figure 1.I Oa). When the 

amplitude is large, the jump frequencies will be further apart (Figure 1.10b). 

Other nonlinear processes exhibit similar behaviour. A system with a softening 

spring is shown in Figure 1.1 L Some nonlinear processes have more complex 
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responses, for example that shown in Figure 1.12. A typical response of a vibro­

impact system will be shown in the next section. 

a a 

a b 

Figure 1.10 The effect of excitation amplitude on the jump phenomenon 

a small amplitude b large amplitude 

t 
o .. 

A o 

Ol 

Figure 1.11 Frequency response of a system with a softening spring [Den Hartog 1956] 

Chaos is a very active area in nonlinear vibration research. When a nonlinear 

system behaves in an apparently random manner, without the presence of a random 

excitation, then its motion may be chaotic. A clear indicator of chaos is the 

trajectory in state (or phase) space. 
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a 
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Figure 1.12 A more complicated frequency response [Kolovsky 1966] 
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Figure 1.13 State space trajectories [Hayashi 1964] 

The equations of motion of such a system can be written in terms of simultaneous 

first order differential equations. These are known as the state equations and they 

contain the minimum number of variables that completely define the system. The 
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variables, which are usually displacement and velocity, are known as the state 

variables. Sometimes a third state variable is required, and often this is time. The 

state space consists of axes representing the state variables, for example 

displacement and velocity. (If the system has only two variables, then the resulting 

state space may be described as the phase plane.) When the system behaviour is 

plotted in state space the shape of the trajectory often takes particular forms (Figure 

1.13). The trajectories can converge at a point, either by spiralling towards it (a 

focus c) or by moving towards it along a line or curve (a node a), or they can 

converge to a loop (or centre e) known as a Poincare limit cycle [Minorsky 1962]. 

If the trajectories converge to these shapes then these shapes represent a stable 

solution to the equation of motion, and are then called attractors. If the trajectories 

diverge from them, the shapes represent unstable solutions which generally cannot 

be achieved in practice due to their unstable nature. Stability is discussed further in 

sections 2.2.2 and 2.2.3. Chaotic behaviour has a stable trajectory with a complex 

shape that is usually spread over a wide area of the state space. This type of 

trajectory is known as a strange attractor. A well known strange attractor is the 

Lorenz attractor shown in Figure 1.\ 4 [Nise 1995, Cook 1986, Hilbom 1994, 

Moon 1987]. A hammer drill operating in a chaotic manner would have low 

efficiency since it has been shown that the most efficient regime is periodic with 

one impact per cycle [Zevin 19761, Chaotic behaviour is therefore not relevant to 

this study. 

Nonlinear systems can be readily identified experimentally since the amplitude of 

their response is not linearly related to the excitation amplitude. It is also likely that 

the resonant frequencies will be shifted due to the jump phenomenon. This shift 

effect can clearly be seen if the excitation frequency is slowly swept up and down. 

The jump phenomenon can also cause distorted and asymmetric frequency 

responses. If the excitation is a single frequency sinewave then the presence of 

subharmonic and superharmonic responses (responses that are at some multiple of 

the excitation frequency) as well as the response at the frequency of excitation, 

indicates that the system is nonlinear (a linear system has just one response which 

is at the frequency of excitation). Other indications are poor repeatability, low 
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coherence or random (chaotic) response to a nonrandom excitation (high levels of 

noise can also cause these effects) [Ewins 1984, McConnell 1995]. 

Figure 1.14 Lorenz attractor [Moon 1987] 

1.3 Types of vibro-impact system 

1.3.1 Impact oscillator 

f(t) /). ---
Figure 1.15 Impact oscillator. 

The simplest and most studied vibro-impact system is the impact oscillator (Figure 

1.15). It shows the jump phenomenon as described in the previous section but with 

a slight difference due to the change in behaviour when impacts start. The 

frequency response is shown in Figure 1.16. 
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Figure 1.16 Impact oscillator amplitude-frequency characteristic [after 8abitsky 1992]. 

The difference between the impact oscillator and the single degree of freedom 

system with stiffening spring described in section 1.2 is that the impact oscillator is 

a linear system with a stop. If the stop were not present, the frequency response 

would be a linear response. At low frequencies the system therefore oscillates about 

its equilibrium position, the response is linear and no impacts occur. However if the 

frequency of excitation is increased, so that the amplitude increases to .1, the mass 

will come into contact with the stop, and the response will now deviate from the 

linear frequency response shown by the dashed line. At this frequency chaotic 

behaviour is common. As the frequency is increased further, the impact oscillator 

repeatedly hits the stop in a periodic manner. The mass no longer oscillates around 

its equilibrium position and so the "amplitude" A' is defined as half the peak-to-peak 

displacement. (In the nonlinear literature there is no separate term for this form of 

amplitude.) As the frequency is increased, the value of A' increases until the peak A 

is reached. A jump then occurs to B, contact with the stop ceases and the impact 

oscillator returns to being a linear oscillator again. If the frequency of excitation is 

now decreased, the system will behave in a linear manner until the mass just begins 
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to contact the stop at C when the jump to D occurs and impacts start. The dotted 

section of the curve is unstable, as in the examples given in section 1.2. An 

interesting feature of the impact oscillator is that the system can be behaving like a 

linear system between B and C but, if it receives a shock force, it can then jump to 

the resonant impacting region between D and A. 

a 

v v V v v v v V v V 

b 
x(l) 

v v v v v V 

x(1) 
N (\f\ r 

c 

V V v V 
v 

v 

d x(l) 

Figure 1.17 Displacement traces for a variety of impact oscillator 

behaviour achieved by adjuStment of system parameters [8udd et al 

1995]. a. and b. - regular periodic behaviour, c. - periodic behaviour with 

chatter, d. - irregular or chaotic behaviour. 
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The type and pattern of contact in the impact phase of the oscillator can vary with 

the values of the system parameters. Figure 1.17 shows examples of typical 

behaviour. The behaviour seen in Figure 1.17d is irregular and apparently random 

and so could be chaos, while Figure 1.17c shows chatter. 

There have been several studies of the impact oscillator, many of them including 

chaos or chatter in their analysis. The largest energy transfer occurs with one impact 

per cycle of excitation [Zevin 1976]. 

A system closely related to the impact oscillator is a flexible beam striking a stop or 

snubber (Figure 1.18). It is an important area of study since heat exchanger and 

boiler tubes can repeatedly strike their supporting framework due to flow induced 

vibration caused by vortex shedding [Den Hartog 1956]. 

I 1 
Figure 1.18 Beam striking a stop 

1.3 .2 Impact pair 

a b • 
»h7VTR7»1 .. -

Figure 1.19 a. Impact pair b. Ball bouncing on a vibrating table. 

Impacts within mechanical joints are caused by the presence of clearances between 

the elements of the joint. These impacts result in noise and increased wear and so 

methods of detecting such behaviour, along with ways of removing or controlling it, 

are required. Theoretical studies are usually based on a generalisation known as the 

impact pair (Figure 1.19a) [Kobrinskii 1969]. A ball bouncing on a table can be 
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used as a model for the impact pair (Figure 1.l9b). Kobrinskii [1969] studied this 

system to solve its equations of motion and this has become an area of specialist 

study in a similar way to the impact oscillator. 

1.3.3 Impact vibration absorbers 

The technique of using impact to attenuate unwanted motion has been known since 

the 1930's [Paget 1937]. The earliest devices were known as acceleration dampers 

and are now more commonly known as impact dampers or impact vibration 

absorbers. The term impact vibration absorber is perhaps more accurate because 

the displacement of the secondary mass is limited but undamped [Hunt 1979]. By 

contrast, in the Lanchester damper, the secondary masses rotate against friction and 

are therefore damped but have unlimited displacement [Thomson 1993]. The 

impact vibration absorber usually consists of a small mass which oscillates and 

strikes a pair of stops in response to the motion of the main mass (Figure 1.21). 

There are also similar devices with additional masses and different configurations. 

.. . ... 
Figure 1.20 Impact vibration absorber. 

1.3.4 Vibro-impact machines 

Vibro-impact machines, sometimes known as percussion machines, make use of 

repeated impacts to carry out a task. They are routinely used for drilling or breaking 

up rock, concrete and masonry. Hand held devices include the hammer drill, the 

paving breaker and the rock drill (often supported on a stand). Larger machines are 

used in drilling deep holes for explosives in quarries or for oil and water extraction 

[MacGregor 1967] or for pile driving [Gutman 1968]. Vibro-impact machines are 

used for the vibratory transport of materials and small components, and for other 

processes. All these vibro-impact devices consist of a sequence of one or more 

masses which impact upon one another and upon the material or object to be 
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drilled or vibrated. Some of these machines, and methods of studying them, will be 

considered in more detail later. 

1.4 Research approach 

The impact unit described in section 1.1 is complex and it was therefore decided to 

start from a simplified model. A simplified model allows a greater choice of 

analysis methods and can provide a better understanding of the underlying physical 

mechanisms. Further complexity can be added at a later stage. Figure 1.21 shows 

the simplified model of the impact unit. 

f(t) 
/ 

k, c, 

c, 

Figure 1.21 The two degree of freedom model of an impact unit. 

The simplified model chosen was a two degree of freedom system consisting of: a 

linear spring-damper combination representing the buffer, two masses representing 

the intermediate piston and the drill bit, and a second linear spring-damper 

combination representing the material being worked, for example concrete. The 

two masses are assumed to be rigid bodies so that stress waves can be ignored, and 

are also assumed to be continuously in contact with the springs and dampers. The 

striker is replaced by impact excitation applied to the intermediate piston. Later 

models could be made more realistic by allowing the masses to float freely, by 

using nonlinear springs, by adding dry friction (particularly for masonry), and by 

considering stress waves (especially for the drill bit). 

It was decided to first develoQ an analytical model to provide an understanding of 

the physical mechanisms involved. It was also decided to develop a numerical 

model to allow models of greater complexity to be developed. The numerical 
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method employed was required to produce similar results to the analytical method 

for simple models. 

It is helpful to be able to use experimental data to check that the solutions given by 

both the analytical method and the numerical method are realistic. It was therefore 

decided to develop a two mass test rig and a hammer drill test rig. 
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2 LITERATURE REVIEW 

Non1inear vibration problems generally require specialist techniques. Most 

commonly used methods of vibration analysis require the assumption that the 

system is linear. For example, the principle of superposition, which applies to 

linear systems, does not apply to a nonlinear process. If the nonlinearity is small 

then a perturbation method can be used [Meirovitch 1997]. A vibro-impact process 

is strongly nonlinear and so such techniques are usually unsuitable. As a 

consequence a variety of methods have been developed for vibro-impact systems. 

Some were developed specifically for vibro-impact systems while others are 

adapted versions of techniques used for other types of nonlinearity. Most of these 

methods can be applied to all vibro-impact systems. 

Vibro-impact research methods are classified here as: analytical methods, 

numerical simulations and experimental studies. The analytical methods include 

work where there was only limited use of numerical methods, mostly to solve 

simultaneous equations or to find the eigenvalues of a matrix, after extensive 

manipulation of the equations of motion. Numerical simulations denote work 

where there was little or no manipulation of the equations of motion. A final 

section describes studies where experimental work was carried out. 

2.1 Modelling the impact process 

An important step in the analysis of a vibro-impact system is the choice of impact 

interaction. If the impact is elastic (there is no permanent deformation or damage) 

then the impact can be modelled by the equations of classical mechanics or by 

Herzian contact or by a combination of springs and dampers. Impacts that cause 

damage, as in rock drilling, are usually modelled with springs and dampers 

(friction is also included in some cases). 

2.1.1 Classical impact theory 

This is based on the impulse-momentum form of Newton's second law of motion 

which can be written as: 



20 

f' Fdt = rl d(mv) = mv I - mv, = 6(mv) 
I, .1 

where r Fdt is the impulse, and i refers to the initial value (before impact) and f 

refers to the final value (after impact). 

When two bodies collide, the impact force between them can be considered to be 

an internal force within the system so that the system's total momentum remains 

constant, provided no external forces act. This is the law of conservation of 

momentum: 

In practice this equation can be used when external forces are applied, such as the 

effect of gravity, provided these forces are small (and can be neglected) in 

comparison to the forces caused by impact. 

When calculating the velocities after an impact, another equation is required since 

there are two unknown velocities. This second equation is based on the loss of 

kinetic energy which is expressed by the coefficient of restitution: 

The coefficient of restitution R is dependent upon the materials and contact 

geometries of the two bodies and, to some extent, the relative velocity [Hunt and 

Crossley 1975]. 

The classical theory of impact is a relationship between the initial and final states 

of the bodies and the impulse due to impact. It is inherently unable to provide 

details of events during impact such as deformations or stresses, even though it can 

be shown that deformation must occur. For example a ball striking a wall must 

deform otherwise it would have to undergo infinite acceleration as it changes 

direction. 

In vibro-impact studies, the classical theory is often used in analytical studies due 

to its simplicity. One drawback is that the object would have to be perfectly rigid. 

However the classical theory can still be used provided only minimal deformation 

occurs, and there are only small losses of energy in the transmission of stress waves 

through the body (many reflections of the waves can occur during the time duration 
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of impact). The classical theory thus is a reasonable approximation for small 

compact objects such as spheres, but much less useful for bodies with high surface 

to volume ratios such as rods. Another difficulty is the choice of the value of the 

coefficient of restitution. [Den Hartog 1961, Goldsmith 1960, lohnson 1976, 

Kibble 1985] 

2.1.2 Herzian contact 

One of the disadvantages of the classical theory of impact is that deformations 

which occur at impact cannot be calculated. However Herz's law of contact can be 

used to find these deformations and also to calculate the forces involved and 

contact durations. 

The quasi-static version of Herz's law applies to friction less elastic bodies with 

non-conforming surfaces and requires that the effect of stress waves should be 

negligible. lohnson [1985] explains the applicability of this law through the 

analogy of two rigid railway trucks with light spring buffers, where all the 

deformation at impact occurs in the buffers and the trucks move as rigid bodies. 

The relationship between force and deformation is taken from the relationship for 

static elastic contact and can be written as follows: 

P = kt5'A 

where k is dependent on the surface geometries, their Young's moduli and their 

Poisson's ratios, P is the force due to contact and t5 is the relative indentation 

distance. 

As with the classical law of impact, Herz's law of contact will give good 

predictions of behaviour when the bodies are compact but will not apply to slender 

bodies like rods [Johnson 1985, Goldsmith 1960]. It is also possible to add terms to 

the basic Herzian equation to account for hysteresis and plastic deformation 

[Lankarani and Nikravesh 1994]. 

Some studies of vibro-impact devices have used the Herzian contact equation to 

add stiffness and damping to the equations of motion, thereby including surface 
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compliance on impact. A linearised form of the Herzian contact equation has been 

used to calculate stiffness and damping for the impact surfaces of an impact pair 

[Dubowsky and Freudenstein 1971aJ. Veluswami et al [1975] also used the same 

equation to calculate stiffness and damping but they also used a coefficient of 

restitution as well, to help define the surface damping which incorporated 

hysteresis. Fujita and Hattori [1980] used the Herzian contact force directly as a 

resistive force in the impact surface without calculating stiffness or damping. They 

also simplified the resistive force to an exponential function and found good 

agreement between both versions and experimental measurements. 

2.1.3 Other forms of surface compliance 

Many studies have included springs and dampers in the impact surfaces, treating 

the impact as a backlash or dead zone problem. There are several reasons for using 

such compliance models: to make numerical simulation and the use of some 

approximation methods easier, to model a snubber or stop with viscoelastic or 

hysteretic behaviour, to calculate the forces and stresses at impact, or to model an 

interaction more accurately especially where one solid is being broken down. 

Comparin and Singh [1989] studied surface stresses in an impact pair. Chatterjee et 

al [1996] and Lin and Bapat [1992] preferred to use compliance rather than 

classical impact because compliance made numerical integration easier. Both 

studies used the Harmonic Balance Method (section 2.2.4). Other studies have also 

used compliance to model beam/stop systems but without giving reasons for the 

use of compliance [Galhoud et al 1987, Bapat and Sankar 1985]. Neilson et al 

[1995] used dry friction combined with a variety of springs and dampers to model 

vibro-impact pile drivers acting against soil. The dry friction element allowed the 

pile driver model to penetrate the 'soil'. Hunt and Crossley [1975] chose to use a 

spring and damper to obtain the Kelvin-Voigt model of a viscoelastic material and 

combined it with a nonlinear contact equation rather like Herzian contact. Babitsky 

and Veprik [1998] also used a viscoelastic impact model derived from 

experimental measurements. Fu [1969] used a resisting force related to penetration 

depth of a paving breaker into the ground. 
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Care must be taken with the compliance equations to avoid physically impossible 

force directions, for instance, a spring force that might also act to draw the two 

impact surfaces together as well as forcing them apart. Luo and Hanagud [1998] 

noted that this is likely to happen if separation distance, or duration of contact, are 

used solely as the definition of contact. 

2.1.4 Stress waves 

The assumptions used for classical impact, that the entire body undergoes a change 

in velocity instantaneously, may not be acceptable if, for example, if the body is 

not small and compact, or if it is undergoing many rapidly occuring changes. In 

these situations the transmission of stress waves will have to be considered. 

There are three types of stress waves that can occur in a bounded elastic medium 

(such as a long rod): longitudinal (or extensional) waves, torsional waves and 

bending (or flexural) waves. In a long rod it is possible to reduce the stress waves 

to just one type, the longitudinal wave, but the Poisson's ratio must be set to zero. 

Despite this, the one dimensional theory (or non-dispersional theory) provides 

predictions that are close to reality, except in the immediate vicinity of sudden 

changes in section. 

The equation of motion for the longitudinal wave is 

a'u ,a'u 
--=C --
at' a x' 

where c = ~ El p is the wave propagation velocity, E is Young's modulus, p is the 

density and u is the displacement in the x direction (along the rod). 

A stress wave is transmitted through a rod, when a force is applied to one end for a 

" short time duration. This force compresses and displaces a small zone of material 

at the end. This material gains a velocity which moves it away from the end so 

compressing and displacing the next zone of material. The material at the end is 

slowed down by this process and so ceases to be compressed. This mechanism is 

repeated along the length of the rod and appears as a compressive wave. This 

continues until the wave reaches a discontinuity. If the discontinuity is a change in 
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section, a change in material properties, or two bodies touching, then two stress 

waves are produced, one is reflected back while the second travels on beyond the 

discontinuity. If the discontinuity is a free end then the wave is reflected back with 

the stress having opposite sign (a compressive wave becomes a tensile wave). 

Stress waves can also superimpose on each other when two waves meet. [Kolsky 

1963, Timoshenko and Goodier 1982, Donnell 1930] 

One dimensional stress wave theory has been used to calculate an equivalent 

coefficient of restitution [Fu and Paul 1969] though the authors do not explain how 

to calculate it, nor does their reference, Donnell [1930]. However Donnell does 

give the loss of kinetic energy due to impact for some systems based on stress wave 

theory and Goldsmith (1960] gives the loss of kinetic energy due to impact based 

on the classical theory of impact. If these two equations are equated, they can be 

rearranged to obtain the coefficient of restitution. This may be the technique that 

Fu and Paul used. The alternative to calculating the coefficient of restitution is to 

measure it experimentally. 

'-------iD=lJ=J I ID I 0 

Piston Adapter Joint Rod 

__________ D~II ____ ~UD~----~.~. __ ~O~11L~I~ 
Bit 

Figure 2.1 Percussive rock drilling system [8eccu 1996). 

Some types of vibro-impact machine such as the rock drill have long rods with 

joints, as shown in Figure 2.1. Stress waves are the means of energy transfer from 

the exciter to the drill bit. Due to the length of the rods, classical impact theory is 

inapplicable. The stress waves are liable to be dissipated by the rods and joint 

pieces and reflected at joint surfaces, and therefore correct selection of materials 

and joint types is vital for efficient drilling. Most studies consider only the 

transmission of stress waves from single impacts and so the methods used are not 
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suitable for vibro-impact studies without modification. Typical methods use the 

fast Fourier transform or the Laplace transform or time stepping to simulate stress 

wave transmission [Lundberg 1973a, 1973b, Doyle 1989, Beccu 1996, Lundberg 

1982, Nygren 1995, Wu and Lundberg 1994]. 

Stress waves can be measured experimentally. Doyle [1989] discusses some 

methods while Borg [1977] used optical measurement and Lundberg at al [1990] 

used strain gauges. 

2.2 Analytical methods 

2.2.1 Early methods 

Two early methods used to study vibro-impact processes were subsequently 

abandoned. One considered the energy used over one cycle but with fully elastic 

collisions [Lieber and Jensen 1945]. The other method involved solving the 

equations of motion with initial conditions, then resetting the equations after an 

impact and solving again. This process was repeated until a steady state was 

achieved [Grubin 1956]. A slight variation of the method allowed for phases of the 

motion to be skipped if necessary [Kaper 1961]. Park [1967] also used Grubin's 

method to study a two degree of freedom model of a vibratory transport system and 

Park described the method as being tedious. 

2.2.2 The stitching method 

This is an improvement on the work of Grubin suggested by Warburton [1957]. It 

is assumed that a steady state has been achieved with periodic impacts. The 

conditions at impact give periodicity and continuity and so require the equations of 

motion to be solved just once. The method is sometimes known as the stitching 

method. This method has been the preferred choice of most of the recent research 

into vibro-impact processes. It is often referred to by researchers as Warburton's 

method or Kobrinskii's method (as Brunshtein and Kobrinskii used it [Kobrinskii 

1969]). The technique was actually first used in vibro-impact by Rusakov and 
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Kharkevich [1942] following previous developments in this technique for control 

problems [Andronov 1945]. 

During the 1960's several studies using the stitching method were published, all 

devoted to the impact damper. All these studies used a fixed number of impacts for 

each excitation cycle. With the exception of Sadek [1965-6], all the studies also 

considered stability of the solutions. However, these studies were not in agreement 

regarding impact patterns, experimental results and stability analyses. [Egle 1967a, 

1967b, Masri 1967, Masri and Caughey 1966, Sadek and Mills 1967] 

Masri [1970] generalised the solution to any desired pattern and number of impacts 

within an excitation cycle. These solutions were checked for stability by a 

perturbation method used by Kobrinskii [1969] and Masri and Caughey [1966] 

which will be explained below. This solution method was improved by Bapat 

[1982] and applied to both the impact damper and the impact pair [Bapat et al 

1983, Popplewell et al 1983a, Bapat and Bapat 1988]. It has also been used for 

vibro-impact machines, including models of a paving breaker [Fu 1969, Fu and 

Paul 1968, 1969, Sikarskie and Paul 1969] and a one degree of freedom model of a 

vibratory soil plough [Senator 1970]. There have also been studies of a pile driver 

modelled as two perfectly symmetrical single degree of freedom systems [Peterka 

and Szollos [1996, 1997] and of a two degree of freedom model of a pipe snubber 

[Galhoud et a11987, Luo and Hanagud 1998]. 

In the stitching method the equations of motion and the continuity and periodicity 

equations are solved simultaneously (this often requires numerical solution) to 

produce several solutions. Stability methods are used to identifY the stable 

solutions. Unstable solutions are not physically possible and are opposed to the 

hypothesis that the system has stable periodic motion. Therefore stability is 

equivalent to a condition for existence of solutions. A common stability method 

makes use of the periodic nature of vibro-impact devices. It has two forms, a 

geometrical form and a more mathematical form known as difference equations. 

If the relationship between velocity and displacement is plotted in phase space 

(explained in section 1.2) and the resulting trajectory is a closed loop, the system's 
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oscillations are stable and stationary, and the loop is known as a Poincare limit 

cycle [Minorsky 1962]. To check the orbital stability following a small 

perturbation, a cross section of the trajectory is taken at the point where the cycle 

starts and finishes. This cross section is known as a Poincare section (Figure 2.2). 

The difference between the start point and end point is used to determine the 

stability of the system; the trajectory in the phase plane should converge to the 

limit cycle of a stable system. If it does not converge, the system is unstable. 

These differences, after several cycles provide a series of difference equations or 

Poincare maps [Moon 1987] which also means that a mathematical version can be 

set up without the need to produce graphs. This technique was developed, for 

automatic control problems, by Andronov [1945] and his colleagues Bautin and 

Maier. Later it was used by Masri and Caughey [1966], Kobrinskii [1969] and 

Brunshtein, Bapat [1982] and others for vibro-impact problems. 

-- -
y 

----7"~\ 

/ 
x 

Figure 2.2 Phase plane showing a Poincare section through a trajectory [Moon 1987] 

A small perturbation is applied to the solution of the equations of motion which 

will cause small changes to certain variables such as the velocity and displacement 

(depending upon the system under study). If only first order tenns are included, 

then the changes or differences after one cycle can be related to the changes after 

several cycles by a matrix. For a stable solution, the moduli of all the eigenvalues 

of that matrix must be less than unity. 
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This stability method may require numerical calculation to form the matrix and to 

find the eigenvalues, especially when the system is complicated. The calculations 

can then develop errors due to rounding. Bapat [1982] noted that these rounding 

errors might be the source of disagreements between his results and the results of 

others, particularly when the eigenvalues are close to unity. 

The main disadvantage with the stitching method is the need for numerical 

solutions for all but the simplest systems. However it remains the most popular 

method, especially for the impact oscillator. 

2.2.3 Solution by using periodic Green's functions 

An alternative approach was developed in the Soviet Union using a type of non­

smooth function known as the periodic Green's function (PGF). Babitsky [1998] 

demonstrated that this method could produce exactly the same results as the 

method explained in section 2.2.2 for simple systems. In addition he showed that 

the PGF method could also provide results for more complicated systems without 

resorting to numerical methods. A more mathematical treatment of this method 

appears in Babitsky and Krupenin [1985] and this has been used in studies of heat 

exchanger tubes [Veprik and Krupenin 1985]. 

Originally the PGF was known as the Impulse Frequency Characteristic but it was 

later renamed in honour of Green. The PGF is not to be confused with the Green's 

function which was developed by Green [Roach 1970]. The Green's function is 

often used to convert a differential equation into an integral equation, and it is 

formulated by the use of the Dirac delta function (which is also used to form a 

PGF). One use of the Green's function in vibration is in the formulation of the 

convolution integral which gives the response of a linear system to an arbitrary 

excitation constructed from impulses [Thomson 1993, Meirovitch 1986]. The 

difference between a PGF and a convolution integral is that the PGF gives the 

steady state solution immediately without calculating a transient, and without 

integration or differentiation. The convolution integral could produce the same 
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• result as the POF but it would require integration over an infinite time interval and 

the transients would need to be removed by damping. 

The POF is formed by combining a series of Dirac delta functions with the 

dynamic compliance of the system under consideration. The application of a POF 

to a one degree of freedom system is given in section 3.1. 

Figure 2.3 A vibro-impact device - [8abitsky et al 1995]. 

Once the POF is formulated, it can be inserted into the equation of motion to 

represent impulsive excitation or impact. For example Figure 2.3 shows a simple 

vibro-impact system. The equation of motion for this system is : 

X(I) = acos(OJI + <1» - JX(I) 

where x(l) is the relative displacement, X(I) is the POF and J is the impulse due to 

impact. 

By considering the classical impact equations and boundary conditions the 

equation of motion can be solved for the two unknowns J and IjJ to determine x. For 

this system J is given by [Babitsky 1998, Babitsky et al 1995]: 

-L'lX(O) ± Ja'X'(O) - ,:, [X(O) + (1+1)M J'( L'l' - all 
J = 2 (2.1) 

X
2 (O) + ,:, [;((0) + (1+k)M] 

where L1 is the distance between the two masses, R is the coefficient of restitution 

and M is (m,m2)/(m,+ml)' Vibro-impact motion can only occur if J is real but since 

there are two solutions stability must be considered to find the correct solution. 

Instead of using a perturbation method with the POF method, it is simpler to use 

the principle of balance of energy. 
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Figure 2.4 Energy balance: a Linear system. b Nonlinear system [after Magnus 1965]. 

Eo energy dissipated by damping, E. energy gained from excitation 

A periodic system has several forms of energy (for example potential energy and 

kinetic energy) which vary in value during one period of motion. Each of these will 

generally sum to zero over a whole period. However, two forms of energy that do 

not sum to zero are the energy gained from the source of excitation and the energy 

lost by dissipation through damping and impact. If the oscillation is stable and 

stationary, then these two energies will be equal and opposite. For example Figure 

2.4a shows the excitation energy and dissipation energy for a linear system. If the 

system is disturbed such that the amplitude A is less than AI then the excitation 

energy Ee is greater than the dissipation energy ED and so the amplitude will tend to 

increase towards AI. Likewise if A is greater than AI then ED is greater than Ee and 

so A will tend to decrease towards AI. The system is stable and stationary when the 

amplitude is AI and the two energies are balanced (this is an alternative definition 

for the terms stable and stationary compared to the limit cycle definition mentioned 

in the previous section). 

Nonlinear systems also show the same behaviour except that the curves often have 

more than one crossing point, and some crossing points may not be stable. For 

example, in Figure 2.4b A2 is an unstable point. [Magnus 1965] 

This principle of energy balance can be used to check for stability. To be stable the 

energy terms must be arranged so that the system will return to a stable state after a 

perturbation. If the system is not stable, the energy terms will be arranged so as to 

increase the instability. [Babitsky et al 1995, Magnus 1965] Babitsky [1998] has 
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shown, by usmg this principle of energy balance, that the stable solution for 

equation (2.1) corresponds to the positive root while the value of J corresponding 

to the negative root is the unstable solution. 

2.2.4 Solution by the harmonic balance method 

This approximate method is used in control problems and has recently been used in 

vibro-impact studies, mainly with the impact oscillator. The harmonic balance 

method (HBM) is also referred to as describing functions or equivalent 

linearisation. This method was used by Babitsky and Kolovsky [1967], Babitsky 

[1998], Blankenship and Kahraman [1995], Lin and Bapat [1992], Dubowsky and 

Freudenstein [197Ib], Tomlinson and Lam [1984], Comparin and Singh [1989], 

and Chatterjee et al [1995]. The HBM is used to obtain either a linear equation of 

motion or a linear transfer function (for control systems). 

A nonlinear equation of motion can take the form: 

mi + f(x,x) = 0 

If we assume that the solution is an approximately harmonic oscillation: 

x '" A cos rot 

then the nonlinear term can be written as a Fourier series: 

f(x, x) '" ao + a, cos rot + b, sin rol+ ..... . 

Usually the senes IS truncated to the first order terms only and the describing 

function (known in control theory as the linearised transfer function) is called a 

single input describing function (SIDF). This enables the equation of motion to be 

rewritten in linear form: 

mi+c'x+k'x=O 

where c' and k' are calculated from the coefficients of the Fourier series. 

Sometimes it is necessary to assume the following oscillation: 

x '" Ao + A, cos cui 

especially if ao in the Fourier series is not zero. This leads to a dual input 

describing function (DID F), and if the Fourier series is extended to more terms, the 
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result is known as a mUltiple input describing function (MID F) [Magnus, 1965, 

Cook, 1986]. 

A difficulty with this technique is the correct choice of AQ, AI and w. In some cases 

it is possible to make a good estimate of these values, in other cases it may be 

necessary to find these values experimentally by deriving the transfer function from 

the results of a frequency response analysis [Lin and Bapat 1992, Nise 1995]. 

However the HBM, or an alternative the incremental HBM, only works well with 

systems with smooth nonlinearities because several harmonics must often be added 

to obtain convergence when there are discontinuities [Chatterjee et al 1996, Cook 

1986]. The HBM also has difficulties finding reliable solutions for systems where 

there is chaos. 

2.2.5 Alternative methods 

The Dirac delta function in its Fourier series form has been used in a very similar 

manner to the PGF method [Palej and Niziol 1986]. The technique appears 

cumbersome in comparison with the PGF method since matrix algebra is required. 

In a similar way the Dirac delta function has been used to study a multiple damper 

[Cempel 1974]. An averaging technique has also been based on the Dirac delta 

function [Mitropolsky and Samoilenko 1985]. An improved averaging technique 

based on the Periodic Green's Function has been developed [Babitsky et al 1982]. 

Another method combined a saw tooth function with a smooth function to study 

vibro-impact problems [Zhuravlyov and Klimov 1988]. 

Methods are available for determining the size of clearances and/or system health 

from measurements taken during operation of a device containing impact pairs [Lin 

and Bapat 1992, Cempel 1978] while others consider the effect of random 

vibrations and therefore employ statistical techniques [Wood and Byrne 1981, 

1982, Lee and Byrne 1987, Lin and Bapat, 1993]. Fourier analysis has been used to 

study an impact pair under periodic loading [Bapat and Bapat 1988] and to study 

combined impact and sliding [Whiston 1983]. 
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2.3 Numerical methods 

Early computational work was usually carried out using analogue computers partly 

because of the limitations of early digital computers. Several studies mention the 

use of analogue computation but only a few describe in detail the method used 

[Mansour and Teixeira Filho 1974, Veluswami et al 1975, Comparin and Singh 

1989]. Two studies were based on vibro-impact machines: a sonic riveter 

[Gladwell and Mansour 1971] and a vibratory transport system [Park 1967]. One 

study combined an analogue computer with a mechanical impacting device [Masri 

and Ibrahim 1972]. Studies using digital computation often did not provide details 

of the numerical simulation technique used. The most common method appears to 

be a simple integration of the equation of motion using a small time step until the 

body strikes a surface or another body. The motion of the body is then modified 

and the process is repeated until a steady state is reached [Mansour and Teixeira 

Filho 1974, Masri and Ibrahim 1973, Dalrymple 1989, Semercigil et al 1992, 

Neilson et al 1995]. A complex percussion machine model consisting of two 

rotating cam disks combined with a hand/arm model has been examined using 

numerical simulation [Glocker and Pfeiffer 1992]. 

There are now several simulation packages available which can be used to simulate 

vibro-impact systems. Simulink (part of the Matlab suite of software) allows 

systems to be built up out of standard or customised blocks. The resulting circuit is 

similar to a control block diagram or an analogue computer circuit. Simulink is 

able to accept discontinuities and nonlinear elements directly and is therefore more 

convenient than programming in a standard language such as Fortran or C. 

[Moscinski and Ogonowski 1995, Matlab and Simulink Manuals]. Simulink has 

been applied to vibro-impact systems [Awrejcewicz et al 1996, Babitsky and 

Veprik 1999]. 

2.4 Experimental studies 

Most experimental measurements have been devoted to the simpler vibro-impact 

devices such as the impact oscillator, the impact pair and the impact vibration 
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absorber. These measurements were carried out principally to support analytical or 

numerical studies and were normally focussed on impact patterns and regions of 

stability. 

The impact oscillator has been studied as a beam impacting a stop [Lin and Bapat 

1992, Fang and Wickert 1994, Sin and Wiercigroch 1999). The impact pair has 

been studied as a mass on a string (simple pendulum) in a vibrating slot [Bapat et 

al 1983, Veluswami and Crossley 1975) or as a mass in a vibrating container 

[Dalrymple 1989]. The commonly studied impact vibration absorber has been a 

ball on a string vibrating in a slot [Egle 1967a, Popplewell et al 1983, Semercigil et 

al 1992). The ball has also been in a container [Bapat and Sankar 1985, Yasuda and 

Toyoda 1978). Alternatively the absorber has been in the form of a beam rattling 

between two stops [Kato et al 1976, Nigm and Shabana 1983]. 

The most commonly used transducers have been the accelerometer and the force 

gauge or impedance head and, in the case of beams, strain gauges. The behaviour 

of the masses on strings or in containers has not been measured except by 

Veluswami and Crossley (1975) who used an accelerometer inside a ball. 

Some non-contacting methods of displacement measurement used include: optical 

displacement measurement [Yasuda and Toyoda 1978), high speed photography 

[Bapat 1982), eddy current displacement probe [Fang and Wicker! 1994) and a 

Wayne-Kerr capacitance probe [Popplewell et al 1983). Often contacting and non­

contacting methods were used together. 

There have also been some studies of two degree of freedom systems similar to 

Figure 1.21. A vertical two mass experiment was carried out where the masses slid 

on linear bearings and the springs were helical springs rather than beams [Park 

1967]. Usually two degree of freedom experimental rigs have used two beams 

[Kobrinskii 1969, Galhoud et al 1987, Luo and Hanagud 1998). Other vibro-impact 

experimental studies have been of a pair of gears [Blankenship and Kahraman 

1995), high speed photography of a paving breaker with part of the casing cut away 

[Sikarskie and Paul 1969) and studies of a pile driver operating on sand (Neilson et 

al 1995). 
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Most of the experimental studies mentioned in this section used electrodynamic 

shakers to excite the structures. One recent study used piezo ceramic actuators 

attached to the surface of a beam [Luo and Hanagud 1998]. 

2.5 Discussion 

A wide variety of papers have been published on vibro-impact devices. Much of 

the early work was aimed at obtaining a better understanding of practical devices, 

mainly impact vibration absorbers, with a few studies of other types of vibro­

impact machines. However, in later studies the emphasis turned to problems that 

were generally of theoretical interest only. 

Relatively few studies have been devoted to two degree of freedom vibro-impact 

systems, which have included analytical, numerical and experimental methods. 

However, none of these studies have modelled a two degree of freedom system 

with impact excitation. It should also be stated that, in the open literature, no 

details of design methodology or modelling techniques for hammer drills have 

been published. 

The current study involves the use of an impact model. The classical impact 

equations are the best choice for the development of an analytical model because 

the equations are simple. Both compliance and Herzian contact impact models are 

well suited to numerical simulation since they avoid instantaneous changes of 

direction and infinite acceleration. A compliance model made up of springs and 

dampers is the most straightforward to set up. Stress waves add extra complexity to 

the models and so will be assumed to be of negligible effect, although in future 

studies it is likely that stress waves would be included for a closer match between 

the models and the actual hammer drill. 

Analytical methods generally provide a better physical understanding of model 

behaviour than numerical methods. The most commonly used analytical method 

for vibro-impact systems has been the stitching method. However this requires the 

solution of differential equations and much manipulation of simultaneous 

equations. These simultaneous equations invariably require numerical solution, for 
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all but the simplest cases. An alternative method, the HBM, does not work well 

with discontinuities such as impact. 

The POF method by contrast is particularly well suited to modelling systems 

involving impact since it is based on the Dirac delta function. This feature also 

makes it ideal for use with impact excitation. The equations of motion may be 

formulated directly as displacement equations, avoiding any requirement to solve 

differential equations. There are also fewer simultaneous equations to solve, thus 

making the need for numerical solution less likely. However, the POF method is 

limited to linear systems and therefore nonlinear systems require to be linearised by 

a method like the HBM before this method can be applied. 

The other analytical methods mentioned in section 2.2.5 are complex, and the 

literature on them is sparse and with limited explanation. Of the known analytical 

methods for the study of vibro-impact systems, the POF method was selected as the 

best suited to this study. 

The advantage of a numerical method over an analytical method is that more 

complex models can be solved and their behaviour studied. However, it is 

important to have first obtained a thorough understanding of simpler versions of a 

given system from analytical methods. These simpler systems, when solved 

numerically, should give results that are in close agreement with the results from an 

analytical method. The simple numerical models can then be built up into more 

complex models. Spurious results from the numerical method will thus be largely 

avoided. 

Many of the papers on analytical solutions to the various vibro-impact devices have 

also used numerical methods but seldom provide detailed explanations of the 

methods used. Early studies used analogue computers but analysis of vibro-impact 

systems by digital computer replaced these earlier studies as computer power 

increased. Oenerally programs were written in a language such as Fortran and some 

papers mention the use of Runge-Kutta methods of solving differential equations 

but with few other details. More recently computer packages consisting of basic 

model building blocks have become available and these allow more rapid 
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development of reliable models than through writing a program in Fortran. One 

such package, Simulink, was available to the current project and was therefore 

chosen for the numerical simulation work. 

Experimental studies of simple vibro-impact devices are useful for comparison 

with results from analytical or numerical models and they can also aid 

understanding of physical behaviour. Several experimental studies have been 

carried out on vibro-impact devices. However the types of system studied did not 

match the basic two degree of freedom system chosen for this study. The 

measurement methods used were commonly of the contacting type such as 

accelerometers and strain gauges. A few studies used optical methods but did not 

include the use of laser vibrometers. The equipment available for this project 

included force gauges, accelerometers, a laser vibrometer, electrodynamic shakers 

and a signal analyser. It was decided to develop a two mass rig based on the 

simplified model, with beams as springs in a similar manner to several previous 

studies. 

The more complex vibro-impact machines have rarely been studied experimentally 

and specifically there is a lack of data on the behaviour of the parts within a 

hammer drill impact unit. Eventually the models developed in this project and 

subsequent projects will need to be compared to an actual hammer drill. As a 

consequence an experimental rig ~ased on a hammer drill would provide very 

useful data. 

This study will thus consider a simplified model of a hammer drill impact unit 

consisting of two single degree of freedom systems, one with impact excitation, 

where the masses will be permitted to impact upon one another. The model will be 

studied analytically using the PGF method and numerically using Simulink. These 

results will be compared with measurements from a simple two mass test rig. 

Development of more complex numerical models will be undertaken as well as the 

development of an experimental test rig based on a hammer drill. 
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3 ANALYTICAL METHOD 

The equations of motion for the model described in section 1.4 may be solved 

analytically by the use of periodic Green's functions (PGF's). A PGF for a single 

degree of freedom system is first derived, and this is then applied to the model to 

solve the equations. The stability of the solution is then discussed. The solution can 

be simplified to a single degree of freedom system to demonstrate the general 

behaviour of a two degree of freedom system. Both sinusoidal and impulse 

excitations are considered. 

3.1 Formation of a periodic Green's function 

A periodic Green's function for the system shown in Figure 1.21 may be developed 

using the technique of Rosenwasser [1969]. Initially this function was referred to 

as an impulse-frequency characteristic but in Babitsky and Krupenin [1985], and 

more recently, the function is described as the periodic Green's function. 

, 

k 

c 
Q 

m 
x 

Figure 3.1. Single degree of freedom system 

The equation of motion for the vibration of a single degree of freedom system 

(Figure 3.1) with viscous damping is 

mX+cx+kx=f(t). (3.1) 

If the excitation is f(t) = Fe'" and, assuming a periodic solution of the form 

x(t) = X(illl)e'''' (where X(illl) is the complex amplitude), the equation of motion 

becomes: 

(m(illl Y + cilll + k )x(illl )e'''' = Fe'''' . (3.2) 
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The receptance or dynamic compliance (the ratio between the complex amplitudes 

of the steady state displacement and excitation force) is then: 

L(iw) = 1 = X(iw) 
(k - w' m )+ i(wc) F (3.3) 

The receptance gives a measure of the response of the system to a sinusoidal 

excitation and it can be rewritten in the following form: 

. I 
L(lw) = , ) mln' + (iw) +2biw 

(3.4) 

where n' = !..., 2b = 2n; = !:., n is the undamped natural frequency of the 
m m 

fundamental mode and ; is the damping ratio [Ewins 1984, Meirovitch 1986]. 

A periodic impulse excitation can be represented by a periodic series of Dirac Ii 

functions: 

ro 

/(1)= L8(I-qT) (3.5) 
q'~ 

where T is the time between pulses. 

The excitation f{I) can also be written as a Fourier senes [Lighthill 1964, 

Rosenwasser, 1969]: 

where w = 2" IT (3.6) 

The steady-state response due to the series of impulses can then be written as the 

product of the force and the receptance: 

X(I) =..!.. I,L(iqw}eiq
" 

T q=~ 
(3.7) 

which is the periodic Green's function. 

Substituting equation (3.4) into equation (3.7) gives: 

() 
I~ I iq" 

XI=-L- , e 
Tmq.~n' +(iqw) +2b(iqw) 

(3.8) 

Series (3.8) gives the steady-state response of the system to a series of impulses at 

t = ... -3T, -2T, -T, 0, T, 2T, 3T... Equation (3.8) can be transfonned to a finite 

expression to cover a single period as follows [Rosenwasser 1969]. 
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A generalised PGF may be written: 

I ~ 

X(I) = - I L(iq{j) p"'''' 
T q_~ 

(3.9) 

If the polynomial L(iq{j)) has the rational-fractional structure: 

( ) 
,,-, "-3 

L( ) = m p = mop + mlP + ... +m,,_, 
P d() d" d 'k-I d P oP + IP + ... +" 

(3.10) 

and the roots of the equation d(iq{j))=O are simple (all different), then equation 

(3.9) can be expressed as: 

(I)=~m(pp) ePpl 
X L-~d' ppT 

p=1 U IJl p J I - e 
(O<I<T) (3.11 ) 

where Pp are the roots of the equation d(ni{j))=O and 'indicates a differentiated 

variable. The proof of this transformation is given in Rosenwasser [1969]. 

Equation (3.8) may then be written: 

I n I eP,l 
X(I) = - I ppT (O<I<T) 

m P.,2pp +2b I-e 
(3.12) 

The roots of the equation d(iq{j)) =0 are: PI.' = -b ± i.Jn' -b' . 

Substituting these two roots into (3.12) gives: 

I( I e-bleib ) I( I e-ble-ih ) 
X(I) = m 2(- b + ill) + 2b 1- e bT eilT + m 2(- b - ill) + 2b 1- e bT e i.lT 

where Il = .J .0' - b'. Rearranging we have: 

-bl (ih -ib) e e e 
X(I) = -2' 'I -bT i.!T - I -bT -i.!T Im/l, - e e - e e 

Since e iO = cose + isine, equation (3.13) becomes: 

X(I) = e-
bl 

(sinAt+e-
bT 

sinll(T-I)) 
mll I + e 'bT - 2e bT cos IlT 

(O<I<T) (3.13) 

(O<I<T) (3.14) 

Equation (3.14) represents the periodic Green's function (PGF) over one period 

(used here to denote T, the time between impacts) for a single degree of freedom 

system. Note that this PGF reflects the steady state periodic behaviour of the 
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system with one impact per period occuring at (=0 (impact also occurs at (=T 

which is the beginning of the next period). 

If there is a time lead r, where 0< r:< T (impact does not occur at (=0), it is possible 

to write the PGF as: 

( ) 
I f- m(kiw) ki~(/+<) x(+r=-L., e 
T .. ~ d(kiw) 

(3.15) 

In Rosenwasser [1969], a transformation is given for a PGF with a time lag where 

the result is not one equation but two, so that the term (-r is kept within the range 

of one period as long as r is less than one period T. By analogy, a similar pair of 

equations can be set up for a PGF with a time lead as follows: 

0« < T and T < (+ r < 2T 

X((+r:) = (3.16) 

O«<TandO«+r<T 

Converting to one period gives: 

e -b(/H-T) (Sin At + e -bT sin .1.(2 T - ( - r)) 
2bT bT 0 < ( < T and T < ( + r < 2 T 

mA 1+ e- - 2e- cosAT 
X(( +r:) = 

e-b(/H) (Sin At + e-
bT sin A(T - (- r)) 

2bT bT 0 < ( < T and 0 < ( + r < T 
mA I + e - 2e cos AT 

(3.17) 

Other PGFs can be calculated for more complicated systems and systems with 

more than one impact per cycle. A nonlinear oscillator may require linearising 

before creating a PGF. Also a PGF can be developed for a system from a 

receptance (dynamic compliance) which has been measured experimentally. 

3.2 Solution for the initial model 

The formation of the conventional PGF for a single degree of freedom system has 

been described above. It is now necessary to derive a specific solution for the two 

degree of freedom system with sinusoidal excitation and then with impact 

excitation. 
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The model appears in Figure 3.2. The formulation of this model was described in 

section 1.4 . The system with subscript I will be referred to as the excited system 

while the system with subscript 2 will be referred to as the passive system. 

F 
" 

Figure 3.2 The initial model of a two degree of freedom system 

3.2.1 Sinusoidal excitation 

The displacement x, of mass rn, can be represented as the sum of two components: 

the response to the sinusoidal excitation, and the response to the impact interaction 

with mass rn2. The steady state response to the impact with mass m2 is the PGF 

given in equation (3.14) multiplied by the unknown impulse of interaction J 

between the two masses. An impact between the two masses occurs at t = 0 and at 

t = T where Tis the period of the excitation. The response is J,X,(t) where X' is 

the PGF of the single degree of freedom system containing rn, and J, is the impulse 

acting on m,. 

The sinusoidal excitation will not be in phase with the impacts between the two 

masses. There will be a time difference ,between the respective zero positions. 

The phase between the excitation Fo cos(mt + \PI) and the impact between the two 
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masses will be lP, = liJ, where, is unknown. Now the response of the system to 

the excitation is 

A cos( liJt + IP) 

where A = Fo/ J(k, -m,IiJ'Y + (c,liJ)' , IP = lP, -lP, and tpz represents the phase 

difference between the excitation and the response if there were no impacts. This 

phase difference can be shown to be [Thomson 1993]: 

_,( CliJ ) lP, = tan , 
k - mliJ 

As the mass-spring-damper system is linear, the two responses can be added to 

give the equation of motion of m,: 

x,(t) = Acos(aJI +IP)-J,X, (3.18) 

In a similar way the equation of motion for m2 is: 

x,(t) = J,X,(t) (3.19) 

where the PGFs are given by 

(t) = e-b,1 (sinA,t+e-b,T sinA,(T-t)) 
X, m,A, l+elh,T-2eb,TcosA,T 

and 

(t) = e-b,1 (SinA,t+e-b,T sinA,(T-t)) 
X, m,A, I +e >b,T -2e b,T cosA,T 

and where the following relationships apply to both systems (with appropriate 

subscripts): 

2b=2Q(=~, A=JQ'-b', 
m 

Q' =~ 
m 

, 
c 

(=2.Jkm· 

(Q is the undamped natural frequency of the first mode and (is the damping ratio.) 

The PGFs can be simplified. Let B, = e-b,T and B, = e-b,T. We then have 

A, = 1/ m,A, (I + B,' - 2B, cos A,T) and A, = 1/ m,A, (I + Bi - 2B, cosA,T). 
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If we assume that the motion of the system has reached a steady state with all 

displacements having the same period T, and that at t = ° impact between m, and 

m2 occurs, the two displacements at I = ° can be related by: 

x,(O)-x,(O)=LI . (3.20) 

There is another relationship at I = ° which is the equation relating J to velocity. At 

this instant when impact occurs, the impact forces in a typical vibro-impact device 

are much greater than any other forces that may be acting on the system (such as 

spring forces or gravity) and which may therefore be neglected. It is therefore 

permitted to use the following three equations: 

the equation for conservation of momentum: 

(3.21 ) 

(where subscript + indicates the velocity after impact and subscript - the velocity 

before impact), 

the definition of the coefficient of restitution R: 

R = ~2+ - ~l+ (3.22) 
x1_ - x2_ 

and the impulse-momentum relationship: 

J = J, = (m,x,+ - m,x,_) = -J, (3.23) 

Here J1 is the impact impulse on ml and h is the impact impulse on m2 and where 

the positive direction is defined in Figure 3.2, which implies that J ~ 0. 

The relationships (3.21), (3.22) and (3.23) can be arranged to give: 

mm 
where M= " 

m, +m, 

Therefore the displacement of the active system at I = ° is: 
x,(O) = Acosip-JX,(O) 

and the displacement of the passive system is: 

x,(O) = JX,(O) 

where X,(O) = A,B, sinA,T and X,(O) = A,B, sinA,T. 

(3.24) 

(3.25) 

(3.26) 
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Hence substituting equations (3.25) and (3.26) into equation (3.19): 

!1 = Acosrp-JX 

where X=X,(O)+X,(O). 

At 1=0, the velocities are: 

and 

x,JO) = JX,JO) 

where X,_(O) = X,(T) = A,B.(.~., cosA,T - b, sinA,T) - A,B,' A, 

and X,_(O) = X,(T) = A,B,(A, cosA,T - b, sinA,T)- A,B; A,. 

Substituting equations (3.28) and (3.29) into equation (3.24) gives: 

J = -M(I + R)Amsinrp - M(I + R)JX 

where X = X,(T) + X,(T)· 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The two simultaneous equations (3.27) and (3.30) contain two unknowns, J and rp 

which need to be determined. Rearranging equations (3.27) and (3.30): 

and 

!1+Jx = cosrp 
A 

-J(~+x) . 
= smrp. 

Am 

(3.31 ) 

(3.32) 

If equations (3.31) and (3.32) are squared and added, the terms with q.> are removed: 

J'[(M(,'+R) + X)' +m'x'] +'!(2!1Xm'] +m'!1' =m'A' 

Solving for J we have: 

J = x!1m' [-1+ , -
I . 2 2 

(M('+R) + X) + m X 

The unknown rpcan be found from (3.31) and (3.32). 

(3.33) 

The solution given by equation (3.33) is for the system with sinusoidal excitation 

considered here. However this equation is identical to that derived for a generalised 

system with sinusoidal excitation referenced in section 2.2.3. 
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3.2.2 Impulse excitation 

The steady state response to the impulse excitation is similarly formed from the 

impulse F and a PGF. As the impact from the excitation does not occur at the 

same time as the impact between the two masses, a PGF with a time lead is used. 

This is developed using the transformation in equation (3.17). The response IS 

FX,(I+ r). The total response of the active system is then: 

x, (I) = FX, (I + r) + J,X,(I) 

where 

e-~(IH-T) (sin A (I + r- T) + e-hoT sin A (2T - 1 - r)) 
x,(I+r)= ' , 

rn A I + e 2~T - 2e b,T cos A T , , , 
for 0 < 1 < T and T < 1 + r < 2T 

or 

1 + r = e-b,(IH) (sinA, (I + r) +e-b,T sin A, (T - 1 - r)) 
X, ( ) A I + 2b,T 2 b,T A T rn, , e - e cos, 

for 0 < 1 < T and 0 < 1 + r < T 

The response of the passive system is the same as that with sinusoidal excitation: 

Thus at 1=0, the displacement of the active system is: 

x, (0) = FA,e-b" (sinA, r+ B, sinAi (T - r)) - JX, (0) (3.34) 

and the displacement of the passive system is: 

x 2(0) = JX2(0) (3.35) 

where X,(O) = A,B, sinA,T and X2(0) = A2B2 sinA 2T as before. 

Using the same two equations at impact (3.20) and (3.23), and substituting 

equations (3.34) and (3.35) into equation (3.20): 

Ll = FA,e-b
" (sin A, r+ B, sinAi (T - r)) - JX (3.36) 

where X=X,(0)+X2(0). 

At 1=0, the velocities are: 

x,_ (0) = FA,e-b" (A, COSA, r - b, sinAi r) 

-FA, B,e-b"(A, COSA, (T - r) + b, sinAi (T - r)) - J%,_ (0) 
(3.37) 
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and 

x,_(O) = JX,_(O) (3.38) 

where %,_ (0) = X, (T) = A, B, (A, cosA, T - b, sin A, T) - A, B,' A, 

and X ,_(0) = X ,(T) = A, B, (A, cosA, T - b, sinA, T) - A, Bi A,. 

Inserting equations (3.37) and (3.38) into equation (3.23) gives: 

J = M(I + R)FA,e-b" (A, cos A,' - b, sin A, ,) 

-M(I + R)FA, B,e-b'(')(A, cosA, (T - ,) + b, sin A, (T - ,j) - M(I + R)JX 
(3.39) 

where % = %,(T) + X,(T). 

The two simultaneous equations (3.36) and (3.39) contain two unknowns, J and " 

which need to be determined. As the two equations are very complex, they can be 

simplified if it is assumed that the damping coefficient Cl is small, and the energy 

losses due to damping are small in comparison with the loss of kinetic energy due 

to impact (which is usual in real mechanical systems). Since bl is calculated by 

dividing Cl by 2m" b l will be close to zero. Thus the following simplifications 

can be made: 

-b" _ I 1 _ ~n' b' _ r-e """,,~ - ~.tl - 1 ""-' ~.tl' B - -b,T_I , -e -

and A, = I/{m.A, (I + B,' - 2B, cos A,T ))'" l/(m,n, (2 - 2cosn,T)) 

hence equations (3.36) and (3.39) become: 

and 

11 +Jx = sinn" +sinn.(T _ ,) 
FA, 

(3.40) 

(3.41 ) 

If equations (3.40) and (3.41) are squared and added, the terms with the time lead, 

are removed: 
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Solving for J gives: 

J = Xl'i~i [-I ± 
(( M("+R) + X)' + Qi X' )( l'i' - 2rF' A,') 

1- , , , (3.42) 
(M("+R) + X) + Qi X' X l'i Q, 

where r = l-cosQ,T. 

The time lead. can be found by solving equations (3.40) and (3.41) for sinQ,. 

and cosQ" to give the following: 

. rQ, (l'i + JX) - J(M("+R) + X )sinQ, T 
Sill Q,' = ------'----'---'----

2rFA,Q, 

Q, (l'i + Jx)sinQ,T + rJ(M(,'+R) + X) 
cosQ,,= . 

2rFA,Q, 

This solution can also be found in Kember and Babitsky [1999b]. 

3.3 Stability 

(3.43) 

(3.44) 

For both sinusoidal and impact excitation, solutions (3.33) and (3.42), two 

solutions for J are obtained, one with a positive square root and one with a negative 

square root. To identify the stable solution the energy balance principle may be 

employed, as explained in Babitsky [1998) and Babitsky and Krupenin (1985) for 

general sinusoidally excited vibro-impact systems. See section 2.2.3. This has 

been extended here to the case of impact excitation for the system being analysed. 

Based on these previous studies with sinusoidally excited systems, it is proposed 

that equations (3.32) and (3.43) represent the energy balance of the systems with 

sin tp proportional to the energy from the excitation. This is shown to be valid in 

the next section. 

For sinusoidal excitation, equations (3.31) and (3.32) can be rewritten: 

sin tp = -(a + qJ) 

and 

costp = h+dJ. 

(3.46) 

(3.47) 
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where a, q, h, and d are defined as follows: 

a=O 
, . 

M('+R) + X q = .:..:.-".-"-'--
ACIJ 

It is proposed that after a small perturbation the motion becomes: 

x,(t) = Acos(C1JI+qJ(t))-](t)X,(t) 

(3.45) 

where ~(t) and ](t) are arbitrary slowly varying variables. Since equation (3.46) 

represents the energy balance and sincp is proportional to the energy of excitation, 

the system is stable if the following condition is true: 

(3.48) 

Thus the balance of energies changes in such a manner as to compensate the 

perturbation. 

Differentiating equation (3.48) gives 

{q+cosrpd~}_ >0. 
dJ J.J 

(3.49) 

where ~ and ] are two arbitrary functions which can be related by an additional 

condition. In this case it is convenient to take this additional condition to be 

equation (3.47). Inserting the two arbitrary functions into equation (3.47) and 

differentiating gives: 

. _d~· d 
-smcp-= = . 

dJ 

Using equation (3.50) to substitute for d~, equation (3.49) becomes: 
dJ 

{q-dcotrp);.J >0 

(3.50) 

(3.51) 
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when J = J and rp = rp. If equation (3.47) is divided by equation (3.46) to give 

cot rp, then equation (3.51) may be written: 

hd+d'J b 0 ---+ > . 
a+qJ 

Multiplying equation (3.52) by a+qJ and rearranging 

J -(aq +hd) 
> q' +d' . 

Substituting for a, q, hand d from equation (3.45) we have: 

J> _ Xll.w 

(M("+R)+X)' +wx' 

(3.52) 

(3.53) 

(3.54) 

Therefore the positive root of equation (3.33) corresponds to the stable solution. 

This agrees with stability results for other vibro-impact systems [Babitsky 1998, 

Babitskyand Krupenin 1985]. 

For the case of impulse excitation, a, q, h, and d are defined as follows: 

rQ,ll. 
a=-----'--

2rFA,Q, 

-(rQ,X-(~+ x)sinQ,T) 
q= 

2rFA,Q, 

h = Q,ll.sinQ,T 

2rFA,Q, 

Q,xsinQ,T + r(M("+R) + X) 
d=-----~~~~ 

2rFA,Q, 

so that equations (3.43) and (3.44) can be rewritten: 

sinQ,T = sinrp = -(a + qJ) 

and 

COSQ,T = cosrp = c+ hJ. 

It is proposed that after a small perturbation the motion becomes: 

x,(t) = FX,(t+ r(t))-J(t)X,(t) 

(3.55) 

(3.56) 

(3.57) 
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where in a similar way to the sinusoidal case iP(t)=Q,l'(t) and qJ(t)and J(t) are 

arbitrary slowly varying variables. The remainder of the derivation is identical to 

the sinusoidal case so that substituting for a, q, h and d in equation (3.53) gives: 

Xt.Q 2 

J> ' 
( , . )2 2 2 

M(,.R) + X + Q, X 

which again means that by comparison with equation 3.42 the positive root gives 

the correct solution. 

3.4 Substantiation of the stability method 

The explanation that the equation for sin <p is proportional to the energy supplied 

by the excitation is complex [Babitsky et al 1995] and this is summarised here. 

The energy due to the excitation over one period is defined as [Ma gnus 1965]: 

T 

E = f p(t )x(t }.it (3.61 ) 
o 

where P(t) is the excitation force. 

Babitsky et al [1995] calculate the energy of excitation for a generalised system 

with sinusoidal excitation where the equation of motion has been simplified to: 

~ 

x(t) '" -JX(t) where X(t) = L: L(qiro }eq'''' 
q"'-co 

and where L(qiro) is the receptance or dynamic compliance. 

Thus the excitation energy in equation (3.61) becomes: 

We also have 

d ( . . 
therefore L:- eq"")=-L:qrosinqrot 

dt 

q >0 

q <0 

(3.62) 
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Since cos( wt + tp) = coswt cos tp - sin wt sin tp the excitation energy becomes 

T 

E = fJP(cOS((){costp-sin((){sintp)L:L(qiw)qiwsinqwt dt 
o 

Since 

,. 
fcosBsinBdB = 0 
o 

and if B = ((){ and dt = dB/w 

equation (3.62) reduces to: 

E oc J[sintp 

" 
and fSin' B dB = J[ 

o 

3.5 Reduction to a single degree of freedom system 

The stable solutions for J for both sinusoidal and impact excitation, (3.33) and 

(3.42), can be simplified to show the underlying nonlinear structure of the system. 

If Cl and C2 are made very small and R almost I so that there are no energy losses, 

then M("+R) + 'X = 0 and so equation (3.33) simplifies to: 

J=-t.+A. 
X 

and equation (3.42) for the impulse excitation simplifies to: 

J = -t. + FAJ'j; 
X 

(3.63) 

(3.64) 

If rn2 is very large so that the system is effectively a single degree of freedom 

system (an impact oscillator) then 

x=A,sinQ,T= () Q,T 
2rn,Q, tan --

2 

I 

As r = l-cosQ,T = 2sin'( Q~T) and sinQ,T = 2sin( Q~T)cos( Q{). 
equation (3.63) becomes 

(
Q,T) 2FoQ, tan --

J=-2rn,Q,Lltan(Q,T)+ 2 
2 ~(Q; -w')' 

(3.65) 
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and equation (3.64) becomes 

. (0. T) F 
J=-2rn,n,tl.tan -t- + (n,T)· 

cos --
2 

(3.66) 

If the system is under free vibration (F = Fo = 0), then either equation (3.65) or 

equation (3.66) provides a result that is identical to the result given in Babitsky and 

Krupenin [1985] for an impact oscillator, and the frequency characteristic (Figure 

3.3) is a typical backbone curve for a nonlinear system. This shape is retained as 

long as the second term in either equation is small in comparison to the first term. 
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Figure 3.3 The backbone curve 

3.6 The dynamic behaviour of the model 

In order to illustrate the dynamic behaviour of the two degree of freedom system 

(Figure 3.2), a suitable set of parameters is obtained from the experiment described 

in section 5.1 : rn, = 0.1 25kg, rn2 = 0.094kg, kl = 135N/m, k2 = 128N/m, 

Cl = 0.1 Ns/m, C2 = 0.1 Ns/m, Ll = 0.00 I m. 
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3.6.1 Sinusoidal excitation 
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Figure 3.4 Impulse frequency response from sinusoidal excitation: R=1 

Using the solution for J from equation (3.33) and varying the frequency of 

excitation, a frequency response for the impulse J between the two masses can be 

obtained. The graph shown in Figure 3.4 was generated using a Matlab program, 

jsnew.m (given in the Appendix). The parameters chosen are those given above 

with the amplitude of excitation Fo = 0.05N, O.IN, O.SN and 0.9N, and with R = I. 

As Fo increases, the response of J also increases with little change in frequency for 

the two resonances. There is a peak with a shape like that of the backbone curve 

(Figure 3.3) at win, = 2.13. Another peak also occurs at win, = 1.05. 

When Fo = 0.9N the backbone curve loses its shape suggesting that the second term 

in equation (3.65) now dominates. If R is reduced to 0.7 and c, to 0 and Fo = O.SN , 

the frequency response shows a much reduced second peak (Figure 3.5). The 

frequency responses of the displacements can also be calculated (using jsdnew.m) 

and these can be seen in Figures 3.6 and 3.7 . In Figure 3.6 there are two additional 
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peaks. A large peak appears at a.vQ=l, the natural frequency of the active system 

and another peak occurs on the approach to the natural frequency of the passive 

system. These two peaks would not occur in a real system because the PGF method 

allows the masses to pass through one another except at I = 0 and at I = T. Figure 

3.7 shows the displacement response with these two additional peaks removed. The 

second resonant peak is very small in comparison with the first peak. The passive 

mass has a greater displacement than the active mass at the minimum between the 

two resonances (also termed the anti resonance in nonlinear dynamics literature). 
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The displacement behaviour at the two peaks has been calculated (using jsdtw.m). 

In Figure 3.8 where the frequency ratio is 2.13 (11.1 Hz), and Cl = C2 = 0 and 

Fo = 0.5N, the two masses are moving in opposite directions (out of phase) - a 

clapping resonance. The resonance of the active mass has a greater amplitude. 

Figure 3.9 shows the result for the frequency ratio of 1.05 (5.5 Hz), and Cl = C2 = 0 

and Fo = 0.05. Here the two masses are moving in phase - a grazing resonance. 
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Figure 3.8 Displacements of system under sinusoidal excitation - 11.1 Hz 
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Figure 3.9 Displacements of system under sinusoidal excitation - 5.5Hz 

3.6.2 Impulse excitation 

This process was repeated for the impulse excitation result (equation 3.42) with 

similar results. Identical parameters were used except that the excitation impulse F 

was set at 0.009Ns and initially R = I and C2 = O. In Figure 3.10 the frequency 

response of J is shown. This was calculated from equation (3.42) using the Matlab 

program jinew.m. There are two peaks at the same frequency ratios with the first 

peak being very small in comparison with the second peak. It is seen that the 

second peak is very similar to the backbone curve (Figure 3.3). If R is changed to a 

more realistic value of 0.7, the impulse response at the frequency ratio of 2.13 is 

reduced and the first resonance then becomes dominant (Figure 3.11). Ifin addition 

C2 = O.INs/m then the amplitude ofthe first resonance is reduced (Figure 3.12). 



59 

3r---------r---------r---------r---------,--------, 

2.5 

2 

...., 

Cl> 1.5 
!!! 
:J 
a. 
.£ 

0.5 

.J 
O~------~A~------__ --==~~~~----~------~ 
0.5 1.5 2 2.5 3 

Frequency Ratio wiQ, 

Figure 3.10 Impulse frequency response from impulse excitation: R = 1, c, = 0 

0.00,---------,----------,---------.----------,---------, 

0.05 

0.04 

...., 

ID 0.03 
Ul 
:; 
a. 
.£ 

0.02 

0.01 

o~----~~--~----~~~~~====~ 0.5 1.5 2 2.5 3 
Frequency Ratio wlQ, 

Figure 3.11 Impulse frequency response from impulse excitation: R= 0.7, c,= 0 



60 

0.045 

0.04 

0.035 

0.03 

en 
~0.025 
...., 

Q) 
<I) 

0.02 
:; 
a. 

.5 0.015 

0.01 

0.005 

0 
0.5 1.5 2 2.5 3 

Frequency Ratio wtn, 

Figure 3.12 Impulse frequency response from impulse excitation: R = 0.7, C2 = 0.1 

The displacement frequency responses are shown in Figure 3.13 for perfectly 

elastic behaviour with R = 1 and C2 = 0 (calculated by jidnew.m). The passive mass 

again has a greater displacement at anti resonance than the active mass. Increasing 

the damping coefficient and reducing the coefficient of restitution have the same 

effect on the displacement as on the impulse J (Figs 3.14 and 3.15). The additional 

. peak is due to the natural frequency of the active system at the frequency ratio of I 

(5.23 Hz). As in the case of sinusoidal excitation, this peak exists because the 

masses pass through one another. The notch in the displacement of rn, at 

approximately 1.75 is caused by the x, having a near zero value as the clapping 

resonance begins. The displacement of rn, during the clapping resonance is 

negative in value. At this notch there is an antiresonance where rn2 has the larger 

displacement. This region is therefore a possible starting point for optimisation. 
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Figure 3.15 Displacement frequency response from impulse excitation: R= 0.7, C2= 0.1 

The displacement behaviour was calculated using jidtw,m with R = 0,7 and C2 = O. 

At the frequency ratio of l.05 (5.5 Hz) the behaviour of the system is a grazing 

resonance (Figure 3.16) while at a ratio of 2.13 (ll.l Hz) the behaviour is a 

clapping resonance (Figure 3.17 - R=O.7 and Figure 3,18 - R=I), The effect of the 

impact excitation is clearly seen in the case where R=O,7, probably because the 

amplitude of the displacernents is lower. 
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Figure 3.18 Displacements of system under impulse excitation - 11.1Hz, R = 1 

The PGF method has produced an algebraic solution for both sinusoidal and 

impulse excitation. The behaviour of the system shows two resonances, one a 

grazing resonance, the other a clapping resonance while at antiresonance the 

system behaves like a vibration absorber. This general behaviour occurs for both 

types of excitation. These results also provide a general background for the 

simulation study in the next section. 
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4 NUMERICAL STUDY 

The model used for the PGF study was also simulated numerically using Simulink, 

part of the Matlab suite. 

Simulink contains a graphical interface and several block libraries. Using a 

windows environment, the required blocks are connected to fonn a system 

diagram, resembling a control diagram. The blocks include summers, amplifiers, 

signal generators, integrators, sign blocks, oscilloscopes and other components. 

The package then simulates the perfonnance of the system. After a simulation has 

been run, the results can be sent to Matlab for further processing or stored in a file. 

This chapter describes models developed using this package. 

4.1 Impact oscillator 

The simplest vibro-impact system to model is the impact oscillator. The model in 

Simulink has two sections, one that models a single degree of freedom linear 

system and another to provide the stop. 

A single-DOF system has the equation 

mX + eX + kx = J(t) 

rearranging: 

.. J(t) - eX - kx 
x = =-.;-'----

rn 

or 

This last equation is used as a basis for the Simulink model. 

The block diagram in Figure 4.1 shows a sine wave generator, representing J(t), 

sending a signal through a summation block to an amplifier representing lIrn : the 

result is the acceleration of the mass, x. This signal passes through two integrators 

(marked lis) to give x. This result can be displayed on a virtual oscilloscope or 

sent to the Matlab workspace (the rectangular block marked x). The two upper 

feedback loops represent ex and kx. 
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Figure 4.1 Simulink model of an impact oscillator 

The lower loops describe the impact with the stop which is modelled using the 

classical theory of impact. Signals for x and x are multiplexed (by the block 

marked Mux) and then checked to see if the conditions for impact occur (d is the 

distance between the stop and the mass at rest). If the result is positive, then the 

integrator (a reset integrator) takes as its next output the input - RXfrom one of the 

lower feedback loops. If the result is negative the reset integrator continues as a 

normal integrator. The block marked 'Hit when x = d' ensures that simulation 

takes very small time steps close to the point of contact. 

The modelling principles used for this impact oscillator can be extended to more 

complex models. 

4.2 Two degree of freedom system with classical impact 

f(l) 
/ 

Figure 4.2 Two degree of freedom system 
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Using Figure 4.1 as a starting point, a Simulink model can be developed for the 

two degree of freedom (OOF) system described in section 1.5 (Figure 4.2). A 

system diagram is shown in Figure 4.3. 
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Figure 4.3 Simulink model of two degree of freedom system with classical impact 

The upper part is the single degree of freedom (SOOF) system with sinusoidal 

excitation, the lower part is another SOOF system. Between the two is the impact 

detection part, and the calculation of the two velocities immediately after impact. 

The impact detection part does not incorporate detection of the true velocity 

direction. A similar version was used to produce the result in Figure 4.4, with the 

solid line representing Xl and the dotted line for X2. This model uses the same 

values as used in the PGF study but produces results that are irregular. The results 

became more irregular for other excitation frequencies. The integration method 

(Runge-Kutta with variable step size) was altered to have smaller step sizes, but 

this did not significantly improve the results. 
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Figure 4.4 Result from Simulink model in Figure 4.3. frequency of excitation 11.1 Hz 

The Runge-Kutta integrator is the best integrator for discontinuities [Press et al 

1992] but can produce errors when there is a sudden change in a parameter. 

Another factor affecting the results is the use of the classical impact model. As 

mentioned in section 2.1.1 the moment of collision is poorly defined in the 

classical impact model and requires infinite acceleration at impact. A simulation 

of this type should calculate values of acceleration and velocity at impact (which is 

not required by the PGF method). The impact model was therefore changed to a 

compliance model, as will be described in the next section. 

4.3 Two degree of freedom system with compliance 

f(t) 
; 

k, 
C2 

m, m2 

c, 

Figure 4_5 Two degree of freedom system with compliance 

In Figure 4.5 a spring and damper pair is incorporated into one of the impacting 

surfaces, using a method proposed by Babitsky and Veprik [1998]. The equivalent 

Simulink model is shown in Figure 4.6. Again two separate SDOF systems are 



69 

located at the top and bottom of the diagram. The reset integrators used in section 

4.2 are no longer required and have been replaced by ordinary integrators. The 

compliance part is located between the two SDOF systems. 
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Figure 4.6 Simulink 2-DOF model with compliance 

The two displacements XI and X2 are combined to provide a relative displacement 

which is compared with the distance d to detect contact between the two masses. 

The Simulink model uses two nonlinear blocks, a backlash block which signals 0 

unless the input is greater than d or less than -100. This block could allow double 

sided impacts but here the choice of -\ 00 ensures that only single sided impact 

occurs. The result from this block passes through the sign block which converts 

the signal to I, 0 or -\ depending on the sign of the input. The two blocks together 

switch on the compliance, thus allowing the relative displacement to be multiplied 

by the stiffness k3 and the relative velocity by the damping coefficient C3. These are 

then added to provide the reaction force due to impact. 
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Once the masses start to move apart the simulation monitors this reaction force and 

compares its sign with that of the relative displacement. If the signs are different or 

if the reaction force is zero, the compliance is switched off. If separation distance 

alone is used to switch the compliance on and off, then it is possible under some 

circumstances for the reaction force to become positive [Luo and Hanagud 1998], 

which is not physically possible. 

A second similar model is shown in Figure 4.7 with pulse excitation instead of 

sinusoidal excitation. These two models produce output at only one frequency and 

so two further models were created with swept frequency excitation. 

Figure 4.8 shows the model with sine sweep excitation (a block provided by 

Simulink). The output shown is in the form of current root mean square (rrns) 

values to reduce the amount of data provided and to produce a displacement 

response curve. The conversion to rms is by squaring, filtering (using a low pass 

Butterworth filter) and calculating the square root. 

True rrns values are calculated using the following equation: 

lim I r' ()' - .I, x t dt 
r .... ooT 

This is not practical for a nonlinear system so the current rrns equation is used 

instead: 

~ (x{t)'dt 

with the integrator replaced by a low pass filter where the cut off frequency 

(I0rad/s) replaces liT. The result is similar to some rms detectors [McConnell 

1995, Randall 1977]. 

Here three outputs are provided, XI, X2 and reaction force and all are converted to 

rms values by the same method. 

Simulink does not provide a pulse sweep excitation block and so the pulse 

excitation model (Figure 4.9) has a section to create one from a sine sweep signal. 

The signal is converted to a square wave with range 0 to I by a backlash block 
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followed by a sign block. Figure 4.10 indicates how the square wave is converted 

to pulses by the use of a delay block. The output from this section is divided by 2 

to give unit pulses at a frequency of one pulse for each cycle of the sine sweep 

signal. The pulses have a length of 0.0 1 s. 

These two models required careful choice of the time range for the speed sweep. If 

the sweep was too fast, the behaviour of interest would be missed. If the sweep was 

too slow, the PC memory would be swamped with a very large number of data 

points giving slow running and difficulties with graphs. 

One advantage of this modelling method over the POF method is that the 

simulation runs like an experiment and it is possible to sweep up and down through 

the frequencies. The POF method calculates each displacement value at an 

individual frequency without reference to previous frequencies . 

. p 0 0 Output from sign block 

-10 '0 '0 
Output from delay block 

'r D 
n 

D 
n Summation of a and b 

0 

'r D 0 0 n D Output of absolute value block 

·r ~ ~ Summation of c and d 

Figure 4.10 Development of pulse sweep signal 
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4.4 Results from the two degree of freedom system with compliance 

For this model the same masses and stiffnesses were used as in the POF method 

(m,=0.125kg, m2=0.094kg, k,=135N/m, k2=128Nm). The gap was set to O.OOlm, 

the stiffness of the compliance (k3) to 100000N/m and all the damping values to 

0.1 Ns/m. Vibrating system models in Simulink require some damping to avoid 

very large displacements at resonance. Some adjustment to the excitation 

magnitudes was necessary to achieve vibro-impact behaviour so comparison of 

amplitude values with the POF results is not possible. 

Using sine sweep excitation (Figures 4.11 to 4.13), the 2-00F system shows the 

same type of behaviour that was also shown by the PO F model. The first peak at 

4.66Hz has a greater amplitude and is more symmetrical in form than the second 

peak at 10.6IHz. The second peak has the backbone curve shape of Figure 3.3. 

Figure 4.12 shows the displacement response of the passive mass (note that the 

passive mass starting position is at I mm). The passive mass has no motion until the 

active mass begins to strike it. The reaction force (Figure 4.13) shows that the force 

between the two masses is greatest for the second resonance. At the first resonance 

the force reduces which is expected in linear vibrating systems at resonance. 
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Figure 4.13 Displacement frequency response of reaction force between the two masses 

- up sweep 

When the frequencies are swept down (Figures 4.14 and 4.15) the second peak 

does not occur. This is particularly obvious when looking at the response of the 

passive mass. The second resonance is therefore nonlinear while the first is linear. 

The patches of noise may be due to transients if the sweep speed is not sufficiently 

slow or may be due to chaotic behaviour at the points where impacts start of finish. 
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Similar behaviour is obtained from the model with pulse excitation. For a sweep up 

through the frequencies (Figures 4.16 and 4.17) the two peaks are at 5.66Hz and 

10.72Hz. The greater levels of noise in the results are due to errors in the 

integration process caused by the use of pulses. The small peak at low frequencies 

is a subharmonic response, an additional solution which is caused by the nonlinear 

nature of the system and is especially apparent with pulse excitation. Figures 4.18 

and 4.19 show the responses when the frequencies are swept down. Again no 

second resonance occurs. The small peak at high frequency is probably due to 

errors at the start up of the simulation. 
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Fig 4.16 Displacement frequency response of active mass under pulse excitation - up sweep 
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Fig 4.17 Displacement frequency response of passive mass under pulse excitation - up sweep 
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Fig 4.18 Displacement frequency response of active mass under pulse excitation - down sweep 
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Figure 4.19 Displacement frequency response of passive mass under pulse excitation­

down sweep 

In the time domain, the behaviour of the system under both types of excitation is 

similar. At the first resonance (Figures 4.20 and 4.21) the behaviour shows a 

grazing resonance. The second resonance is a clapping resonance (Figures 4.22 and 

4.23). Generally the results are similar to the results obtained by the PGF method. 
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Figure 4.20 Grazing resonance at f = 4.66Hz sinusoidal excitation 
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Figure 4_21 Grazing resonance at f = 5.66Hz pulse excitation 
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Figure 4_22 Clapping resonance at f = 10.61Hz sinusoidal excitation 
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Figure 4.23 Clapping resonance at f = 10. 72Hz pulse excitation 

However when comparing the clapping resonance result for impulse excitation 

with the POF result when R = 0.7 (Figure 3.11), the shape in the time domain is not 

the same, probably because the pulses in the simulation are not narrow enough to 

model impact adequately. Narrowing the pulses would increase the noise level as 

more errors in the integration would occur. 

4.5 Further models 

f(t) 
/ 

m, m2 

Figure 4.24 2-DOF system with loose mass 

It is straightforward to add extra features to the models developed in Simulink by 

adding further blocks. An example is shown in Figure 4.24 and the Simulink model 

is in Figure 4.25. This model is closer to a real hammer drill than those studied so 

far, since the active mass is now not always in contact with the spring and damper 

representing the buffer. The identical method for applying compliances to the 

impacting surfaces is now applied to switch the buffer spring and damper on and 
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off. The initial gap between the active mass and its spring and damper was set to 

I mm. The other parameters remained the same as the previous models. Figures 

4.26 and 4.27 show the displacement response as the frequencies are swept up 

while Figures 4.28 and 4.29 show the response for the sweep down. 

'2 

Figure 4.25 Simulink 2-00F model with loose mass 
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Fig 4.26 Displacement frequency response of active mass (loose mass model) - up sweep 
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Fig 4.27 Displacement frequency response of passive mass (loose mass model) - up sweep 
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Figure 4.28 Displacement frequency response of active mass (loose mass model) 
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Figure 4.29 Displacement frequency response of passive mass (loose mass model) 

- down sweep 

Again there are two peaks, one at 4.73Hz and one at 1O.27Hz. The second 

resonance is nonlinear in form and occurs with reduced amplitude in the sweep 

down. If the active system is linearised, the linearised stiffness would be less than 

the system with the mass attached to the spring due to the presence of the gap. This 

causes the reduction in resonance frequency for the first resonance. Unlike the 

previous models there is a peak in the reaction force during the first resonance 

(Figure 4.30). 
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Figure 4.30 Frequency response of reaction force (loose mass model) - up sweep 

These Simulink models compare well with the behaviour of the PGF model 

although amplitudes cannot be compared due to the modified excitation amplitude. 

Adding extra features has been shown to be straightforward but with some increase 

in noise levels. Results from both the PGF method and Simulink models will be 

compared with the results from a two mass test rig. 



86 

5 EXPERIMENTAL STUDY OF A TWO MASS VIBRO-IMPACT SYSTEM 

An experimental study was carried out to obtain a better understanding of the 

impact unit behaviour and to provide data for comparison with the analytical and 

numerical models. The initial experimental work was carried out on a two mass 

test rig described here and measurements were also carried out on a test rig based 

on an actual hammer drill, explained in Chapter 6. 

5.1 Two mass experiment 

5.1.1 Test rig development 

The experimental rig consisted of a pair of masses, each attached to a strip of 

spring steel as shown in Figure 5.1. The masses were made from hexagonal steel 

bar with domed contact surfaces to obtain point contact. 

The steel strips acted as cantilevered beams and were attached to a steel block such 

that the motion of the masses was horizontal. Washers were placed between the 

strips and the block to enable the gap to be adjusted. The whole assembly was 

clamped to a table isolated from external vibrations. 

block 

shaker 1---; 

force gauge 

Figure 5.1 Diagram of the two mass experimental rig 
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Excitation was initially provided by a small electrodynamic shaker (Ling 101 with 

amplifier TP020) fitted with a rod which was pressed against one of the beams 

close to the block. Attaching the end of the rod to the beam was not possible since 

the rod would bend due to the fact that the beam moved in an arc and not in a 

straight line. Applying the excitation to a mass was not possible because of the 

large displacements at resonance. Sinusoidal excitation was used since impact 

excitation was found to be difficult to maintain and damaged the shaker. 

Since the displacements and accelerations were large, difficulties with usmg 

accelerometers were encountered because they overloaded the charge amplifiers. It 

is possible that this could be overcome by the use of accelerometers with lower 

sensitivities. A laser vibrometer which measured velocity (Polytec OFV 302 with 

controller OFV 3000 described in section 6.2) was then employed. A force gauge 

(Briiel&Kjrer type 8200 with charge amplifier type 2635) was also used and this 

was connected to the beam end of the shaker rod. Attached to the force gauge was a 

small piece of aluminium used as a contact surface for the rod against the beam. 

The diameter of the rod end contact area was approximately 3mm which produced 

a small variation in contact point location. It would have been better to use a point 

contact stinger and put the force gauge closer to the shaker as the mass of a force 

gauge can affect the results, especially when attached to a light structure like this 

experimental rig. Maia and Silva [1997] suggest putting the force gauge next to the 

shaker as a possible arrangement but Ewins [1984] considered this to be a poor 

arrangement. 

The data from the force gauge and the vibrometer were acquired and analysed in a 

Signal Processing Systems SPS390 FFT analyser. After carrying out trials with 

different methods of data collection, including random excitation (from the 

analyser) and automatic sine sweep (from both the analyser and a Hewlett Packard 

HP3330A automatic synthesizer), manual sine sweep was chosen as the most 

informative method of showing system behaviour. The two mass rig proved to 

have very long transients, sometimes as long as several seconds, so that more 

automated methods could only capture the transients since these methods acquired 

data or swept the excitation over periods of time that were too short. The spectrum 
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from the force gauge data was used to obtain the excitation frequency. The sine 

frequency was set manually to a given value and measurements were taken after 

allowing any transients to decay. The next frequency was then set and the process 

repeated. Both up and down sweeps were carried out. As only one laser vibrometer 

was available and the analyser had only two input channels, the behaviour of each 

mass was studied separately. Within the analyser, the data were integrated to 

provide displacement behaviour rather than velocity and displayed as a 

displacement spectrum (consisting of the magnitude of the signal following a fast 

Fourier transform). These spectra were further analysed in Matlab to produce the 

graphs shown in this thesis. The programs developed for this are given in 

Appendix A.1. 

The general behaviour of the experimental rig is now described. During the 

up-sweep phase, initially there were no impacts, impacts then commenced and the 

motion of both masses increased until the first (grazing) resonance was reached at 

approximately 5.6 Hz. The two masses were moving in phase with such violence at 

this point that no measurements were taken. After passing this resonance, the 

displacement amplitude of the motion and the noise of the impacts declined and 

then increased to reach the second (clapping) resonance where the two masses 

moved out of phase. As the clapping resonance was reached the impacts became 

louder until the impacts suddenly ceased. 

When the excitation frequency was swept downwards, there was a long period 

without impacts until, at a frequency lower than the clapping resonance, impacts 

commenced. The displacement amplitude then increased until the grazing 

resonance was reached at about the same frequency as before. As the frequency 

was decreased further, the displacement amplitude decreased and impacts ceased. 

The clapping resonance was completely absent. This indicates that the first 

resonance was linear while the second resonance was nonlinear. 

Difficulties were encountered with repeatability of the test rig behaviour. This was 

probably due to several factors such as the positioning of the shaker, the force 

which the shaker exerted against the beam and the amplitude of the forcing 
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function. The grazing resonance being linear was not affected by the amplitude 

variation, it consistently occurred at approximately 5.6 Hz. However, the clapping 

resonance was affected, especially the maximum frequency at which impacts 

occurred. 

The nature of the impact patterns was studied using electrical contact so that when 

an impact occurred, the circuit was completed and a spike would appear in the 

analyser display. The circuit is described in section 5.2.3. At f = 5.61Hz irregular 

impacts occur (Figure 5.2) while in Figure 5.3, at f= 7.49Hz, one impact per cycle 

occurs (checked by averaging the time difference between the peaks using a Matlab 

program timeav.m, given in Appendix A.I). There was some mains noise present 

which was removed by a Kemo VBF8 analogue filter (48dB cut off) set up as a 

30Hz low pass filter. The ringing after each impact may be due to mechanical 

chatter or the electrical circuit, but as the main impacts stand out clearly the side 

peaks may be disregarded. 
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Figure 5.2 Signal from electrical impact detection circuit at 5.61Hz 
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Figure 5.3 Signal from electrical impact detection circuit at 7.49Hz 

The sweep experiments were then repeated with a large shaker (Ling V 406 with 

amplifier PA 1 00) as the small shaker was not able to provide enough power for a 

good comparison with the analytical studies in the region of the clapping 

resonance. Similar difficulties were encountered with the positioning of the shaker 

and with consistency of the amplitude setting. As the large shaker had a higher 

power level than the small shaker, care had to be taken with the amplitude setting 

on the power amplifier as at high settings the amplitude of the shaker's motion 

became excessive and contact with the beam would be lost for part of the 

excitation cycle. A maximum frequency of II.S Hz was achieved for the second 

resonance but when the spectra were collected in a repeat test the maximum 

frequency was only 9.S Hz, suggesting that the clapping resonance was very 

sensitive to small changes in excitation amplitude. 

One additional problem was that the shaker contained a powerful permanent 

magnet and this was seen to cause some attraction between the two masses. As a 

consequence when the impact forces were low, the two masses stuck together on 

some occasions with an adverse effect on the results. 
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5.1.2 Results 

The results are shown in two forms, as a waterfall plot displaying all the spectra, 

and as a displacement frequency response created by taking the peak value from 

each displacement spectrum and plotting this against the excitation frequency used 

for that spectrum. The graphs were created using the Matlab programs sineswf.m, 

sinesw.m and sinesw3.m, given in Appendix A.1. 

Figures 5.4 and 5.5 are the upsweep results for the excited system, Figures 5.6 and 

5.7 are the upsweep results for the passive system, Figures 5.8 and 5.9 are the 

downsweep results for the excited system and Figures 5.10 and 5.11 are the 

downsweep results for the passive system. It is seen that the first peak is larger than 

the second peak and that at the anti resonance between the two resonances the 

passive mass has the greater amplitude. In the waterfall plots the peaks at very low 

frequencies are due to the analyser'S simple method of integration. The analyser 

divides each value by 2;if where f is the frequency at that point. Thus when f is 

close to zero the displacement amplitude is large. When these sets of data were 

collected, the large shaker was used to provide the excitation. 
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Figure 5.4 Waterfall plot for active system - up sweep 
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Figure 5.11 Displacement response of passive system (down sweep) 

5.1.3 Determination of system parameters 

Data from the experiments including information on the masses, stiffnesses and 

forcing function were necessary to allow comparison with the analytical and 

numerical models. The amplitude of the forcing function is difficult to determine 

since during a sweep, even if the amplitude setting did not change, the force 

applied to the structure varied as seen in Figure 5.12. This variation is due to 

feedback from the structure, which is especially noticeable at resonance when the 

force level required drops. The variation may also be due to the low frequencies 

used so that the shaker may not be behaving linearly [McConnell 1995, Ewins 

1984, Maia and Silva 1997]. Therefore for this study the amplitude of the forcing 

function was not considered. 
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Figure 5.12 Typical force spectrum (up sweep) 

The natural frequencies for the two systems were measured. One of the masses was 

removed so that no impacts occurred. The system was excited with random 

excitation from the analyser and a transfer function was calculated by the analyser 

from data collected by the force gauge and the laser vibrometer. The magnitudes of 

the transfer functions are shown in Figure 5.13 for the excited system and in 

Figure 5.15 for the passive system. The damping can be calculated from the 

Argand diagram [Ewins 1984] but requires at least six clear points on the circle for 

a good fit. The Argand diagram for the excited system (Figure 5.14) is not a well 

defined circle and does not have enough points to calculate the damping reliably. 

The small number of points on the circle and the sharpness of the resonant peak 

suggest that the damping level is low. This is also evident from the sweep 

experiments where transients sometimes took several seconds to die away. After 

taking several measurements and averaging, the natural frequency of the active 

system had a value of 5.23Hz while that for the passive system was 5.87Hz. For the 

active system mass of 0.125kg, this gave a beam stiffness of 135N/m. For the 

passive system mass of 0.094kg, this gave a beam stiffness of 128N/m. The 

damping in such systems is generally small and was estimated to be 0.1 Ns/m for 

both systems. The gap between the two masses at rest was estimated to be I mm. 
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Figure 5.13 Displacement spectrum for the active system 
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Figure 5.14 Argand diagram for the active system 



E 
oS 
.lJ a 
'il. 
• E 
jj 
E 
~ 
if 
is 

97 

3.5 

3 

2.5 

2 

1.5 

0.5 

o~~----==~~~~~~~ 
2345678 

Frequency (HzJ 

Figure 5.15 Displacement spectrum for the passive system 

The beam mounting was not symmetric, as shown in Figure S.16b. This would 

produce a greater stiffness in one direction than the other, making the spring 

nonlinear. However, experiments with and without a washer between the beam 

and the fixed block showed no measureable difference observed in the natural 

frequency, suggesting that the effect was negligible. 

a 

b 

, L-_____ ---> 

" " " " 

Figure 5.16 The beam mounting methods with and without a washer 



98 

5.1.4 Coefficient of restitution 

An approximate method was used to measure the coefficient of restitution between 

the two masses [Goldsmith 1960). One mass was placed on a sheet of paper on top 

of a large flat 10kg weight. The paper deadened the impacts between the mass and 

the weight. A tube was placed over the weight so that the first mass was 

approximately in the middle and the second mass was dropped from the top of the 

tube (Figure 5.17). The second mass had a thin wire attached to it so that when 

impact between the two masses occurred an electrical circuit (identical to the one 

used to study impact patterns, in section 5.2.1) was completed. The analyser was 

used to collect the time trace. 

h 

to analyser 

• 

Figure 5.17 Diagram of the coefficient of restitution measurement rig 

Drops were made with h = 0.57m and Figure 5.18 shows a typical trace. From 

these traces it was difficult to measure the time between impacts LIt and there was 

some variation between runs. The measured average was O.l44s. This average 

gives a value for the coefficient of restitution of 0.2 using equation 5.2 given 

below. This is probably too low due to errors in the estimation of LIt and the 

variation of initial height. Other sources of error are: non-central impact, friction in 

the pipe, restrictions on the falling mass due to the attached wire, air damping and 

ideal solid body assumptions. 



99 

1.6,------~---~---~---_, 

~ 1.4 

0.05 0.1 0.15 0.2 
Time (sI 

Figure 5.18 Time trace showing first and second impacts, estimated time between 

impacts: 0.14s 

The equation to calculate the coefficient of restitution was developed using the 

following method. 

By conservation of energy if m is the dropped mass, h is the height and v is the 

velocity of the mass just before impact: 

tmv' = mgh 

or: 

v = ~2gh 

The velocity after impact is: 

va = Rv = R~2gh 

where R is the coefficient of restitution. 

If the maximum height reached after the first impact is x, then by conservation of 

energy: 

or 

l.mv' = l.mR' 2gh = mgx 2 Q 2 • 

R' =~ 
h 

This equation is often used to measure coefficient of restitution. However, in this 

experiment the time Lit between the first and second impacts was measured. This is 
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twice the time that the dropped mass takes from the first impact to reach the height 

x and we thus have: 

Dividing by h gives 

x h::i: 1'>1 1'>1 ' -=Rv2gh--g­
h 2h 8h 

R' = RMJ g _ gl'>l' 
2h 8h 

R' - RI'>IJ g + t(I'>IJ g r = 0 
2h 2h 

R=I'>IJg 
2 2h 

5.2 Comparison with the PGF and Simulink models 

(5.2) 

Repeatability of measurements from the two mass rig was poor due to variation in 

the amplitude of the excitation force. However, the experimental results were in 

qualitative agreement with the analytical and numerical results. It should be noted 

that the PGF and Simulink models required different levels of excitation amplitude 

in order to avoid singularities or simply to achieve vibro-impact behaviour. 

Generally the Simulink model behaves much more like the experimental system 

and it shows the same variation with sweeps up and down which is not possible 

with the idealised PGF model. 

The experiment, the PGF model and the Simulink model all show the same general 

behaviour with two resonances. The grazing resonances all occur at approximately 

the same frequencies. The clapping resonances are more variable in frequency due 

to the nonlinear nature of these resonances. It should be noted that the PGF model 

frequency does not vary with excitation amplitude. The frequency in the Simulink 
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model varies only slightly. This is due to the dominance of the damping curves in 

determining resonance frequency rather than the excitation amplitude (section 1.2). 

The fact that the experimental value was dependant upon excitation amplitude 

suggests that the experiment has some nonlinear parameters, probably the stiffness 

and perhaps the damping. This indicates that the backbone curve/calculated 

response curve for the second resonance has a different formation from the 

idealised model that was used in the PGF and Simulink studies. 

The experimental results have a much lower displacement amplitude at the second 

resonance than suggested in the models. This may be due to the spring 

nonlinearities or additional features not accounted for in the models. The loudness 

of the impacts increased as the second resonance was approached, which would 

agree with an increase in impulse value between the two masses as shown by the 

graphs for J (Figures 3.4 and 3.10). 
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6 DEVELOPMENT OF AN EXPERIMENTAL HAMMER DRILL RIG 

In order to obtain experimental data that can be used directly in hammer drill 

development, it is necessary to take measurements on a test rig that is similar to an 

actual hammer drill. The design of an experimental hammer drill rig is described, 

together with measurements taken from the impact unit. 

6.1 Rig design 

The hammer drill used as the basis of this test rig was a Hilti TE74, the impact unit 

mechanism of which was discussed in section 1.3. 'The impact unit is located 

within a tight fitting tube which can rotate for drilling or be held stationary for 

chiselling. This tube is surrounded by seals, springs, bearings and a clutch 

mechanism and all the parts are located within the outer casing of the drill. To take 

measurements from this drill it was decided to use it in chiselling mode only (so 

that the inner tube does not rotate). When measuring the vibration levels at the 

handle of a hammer drill, it is usual to drill into concrete according to BS EN 

28662-3:1995. Larger devices are operated against a damper specified in the same 

British Standard. Drilling into concrete causes the destruction of the concrete and 

the whole device will move downwards which could confuse some types of 

measurement. Operating the hammer drill against a damper would produce results 

with greater repeatability without the whole body motion. Within the inner tube, 

there is a lack of space for contacting methods of measurement such as 

accelerometers to be attached to the moving parts. Strain gauges could be used but 

their wires might be trapped in the mechanism or suffer fatigue failure due to the 

rapid motion of the parts. The remaining options are telemetry or a non-contacting 

optical method. 
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Figure 6.1 Overall view of experimental hammer drill rig (the red glow in the lower acrylic 

window is due to the laser beam refiecting off the intermediate piston) 
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Figure 6.2 Close up of tube - the striker can be seen through the upper window and the 

intermediate piston through the lower window 
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Veluswamy and Crossley [1975) used an impacting device with an internal 

accelerometer. In the case of a hammer drill this would require the use of internal 

parts specially modified to take such an accelerometer and the use of telemetry. 

Optical methods require optical access. It was decided not to machine holes into 

the original inner tube because the thin tube wall made it difficult to attach acrylic 

windows. The presence of the various components surrounding the impact unit also 

made optical access difficult. The section of the drill containing the impact unit 

was therefore replaced by a tube with acrylic windows to allow optical access 

without loss of pressure (Figures 6.1 and 6.2). This tube was attached to the rest of 

the drill so that the original excitation mechanism was retained. The tube was 

bored to the same internal diameter as the original machine so that the original 

impact unit parts could be used. The tube was made in two parts for ease of 

assembly. Initially both parts of the tube were made from aluminium. However, 

friction between the striker O-rings and the aluminium bore prevented the striker 

from moving. The upper part of the tube containing the piston and striker was then 

replaced with mild steel which could be honed to provide the right degree of 

friction and gas sealing. 

The damper was also designed III accordance with BS EN 28662-3:1995. It 

consists of a hardened steel tube containing approximately 11000 4mm diameter 

ball bearings. The damper was attached to a large concrete block (also was used for 

Whole drill experiments as specified in the same standard) To prevent the ball 

bearings embedding into the concrete, a hardened steel disk was used as the base of 

the damper. A second hardened steel disk was used as the contact surface between 

the drill bit and the balls. The drill bit was a case hardened steel rod with spherical 

ends. The drill bit passed through a brass bush. A steel column was u~ed to support 

the drill and to prevent rotation during measurements. The modified drill weighed 

8.4kg while the original drill weighed 7.9kg. 

A check of the experimental rig behaviour compared to the original machine was 

made by taking measurements using an accelerometer (B&K type 4367) fitted to 

the main handle of the drill and comparing these with measurements taken (at the 

same point) when drilling with the original drill into concrete. The two sets of 
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results are in Figures 6.3 & 6.4. It can be seen that the experimental rig has lower 

acceleration amplitude and an additional 5th resonance. Ideally, an additional 

experiment would include testing the original drill on the damper. However as this 

would require modifications to the drill (to remove the hardened steel lugs used to 

provide orientation for the drill bits in the drill holder, and as means of transferring 

the rotation to the drill bit), this experiment was not carried out. 
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Figure 6.3 Acceleration frequency spectrum of hammer drill drilling into concrete 
- accelerometer on main handle 
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Figure 6.4 Acceleration frequency spectrum of experimental rig chiselling against damper 

- accelerometer on main handle 
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6.2 Transducers 

The choice of laser vibrometry was partly due to the fact that this is a technique 

that the Department of Mechanical Engineering has expertise in and many years of 

expenence. 

The laser vibrometer is based on a technique used to measure fluid flow velocity 

known as laser doppler velocimetry. A laser beam is pointed at the structure. The 

beam is reflected from the structure but with a change of frequency proportional to 

the velocity of the surface parallel to the beam (the Doppler effect). The instrument 

measures the change in frequency by comparing the reflected beam with the 

original beam. The device used in these experirnents was the Polytec laser 

vibrorneter OFV302 with processor OFV3000. This vibrorneter is based on a 

helium neon laser. The beam is polarised and split into a signal beam and a 

reference beam using a beam splitter. The signal beam passes through a lens, 

strikes the object and returns. The reference beam is frequency shifted by a Bragg 

cell (an optical/acoustic device requiring radio frequency input). This frequency 

shift is required to detect the direction of rnotion. The signal and reference bearns 

rnix together and are detected by two photodetectors. The processor provides the 

power and the radio frequency signal for the Bragg cell, and demodulates the signal 

from the photodetectors (in a sirnilar rnanner to an FM radio receiver) to produce 

an output in terms of velocity. The Polytec OFV302 has a frequency range of 

150kHz. The optirnurn distance between the object and the vibrometer is 100rnrn. 

Other distances for quality results are 305rnrn, 510rnrn and so on in steps of 

205mrn (twice the cavity length of the laser). 

When the laser beam strikes the surface of the object the light is scattered and the 

scattered waves interfere with each other to produce a pattern of light and dark 

spots known as laser speckle. To irnprove the scattering back to the instrurnent, the 

object is often coated in retroreflective tape or retroreflective paint. In this 

experirnent retroreflective tape was used. If the motion of the object is only normal 

to the surface then the detector will be looking at the same speckles throughout the 

rneasurernent. However, if the speckle pattern changes because of motion in other 
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planes, the detector interprets this as motion aligned with the beam which is known 

as pseudovibration. In the case of this experiment, pseudovibration must be 

considered as it was not possible to have the laser beam aligned with the direction 

of motion and the beam was therefore angled to measure a component of the 

motion (Figure 6.5) [Halliwell 1993]. 

Laser 
vibrometer 

I.::x-- drill 

_+--- damper 

Figure 6.5 Laser vibrometer setup for measurement 

~""",'+ __ striker 

intermediate 
piston 

~lJL,+-- drill bit 

x 
Figure 6.6 Impact unit showing the measurement points 
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The hammer drill rig had periodic excitation. In order to know at what point in the 

excitation cycle events occurred, the crank disk and surrounding metal work were 

painted matt black and a small strip of retroreflective tape was placed on the edge 

of the disk. The detector used was based on a reflective optoswitch working in the 

infrared region which produced a pulse every time the strip of tape passed the 

detector. This pulse indicated the point in the cycle when the piston was at top dead 

centre. 

Figure 6.7 Method of indicating piston top dead centre: a Crank disk with reflective 

optoswitch, b Electronic circuit for optoswitch 

6.3 Results 

The rig was set up as shown in Figures 6.1, 6.2, 6.5 and 6.6 and the behaviour of 

three parts of the impact unit were studied in turn. With the 30° beam angle, the 

velocity output was multiplied by two to obtain the actual velocity. 

The signal quality was always first checked by taking measurements from the rig 

without motion to check that the acrylic windows were not causing excessive 

noise. This gives a noise floor for each set of measurements. Figure 6.8 shows the 

noise floor for the striker. Figure 6.9 shows the measurement repeated when the rig 

was operated (over a smaller frequency range). At 2kHz the striker spectrum has 

reduced to a level of -45dB. The noise floor does not reach -45dB until 30kHz. At 
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low frequencies (below 500Hz) the motion signal is above -40dB while the initial 

peak of the noise floor peaks at -37dB and drops rapidly to below -50dB. The 

noise present in the motion signal is therefore not an important feature. 
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Figure 6.8 Velocity frequency spectrum of striker without motion (1V=2m/s) 
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Figure 6.9 Velocity frequency spectrum of striker with motion (1V=2m/s) 

The velocity of the striker is also shown in the time domain in Figure 6.10. The 

positive values indicate velocity directed upwards towards the handle. The 

behaviour is periodic but it is difficult to obtain further information. The 

experiment was therefore repeated with different pressures on the trigger. Figure 

6.11 shows the velocity of the striker when the trigger was lightly pressed. The 

motor operated at a slow speed and no impacts were audible. The data were 

exponentially smoothed using Excel but was not scaled by 2 to take into account 
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the beam angle. At this speed the motion of the striker is entirely due to the action 

of the piston, and the induced air pressure between the piston and the striker. 
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Figure 6.10 Velocity of the striker with 1/cycle signal 
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Figure 6.11 Striker motion at low speed 

In Figure 6.11, at approximately 0.05s, the striker is sucked vertically upwards so 

that it accelerates to aproximately 0.5m1s when its speed drops. The pressure in the 

air gap builds up, the striker is accelerated downwards and it reaches a velocity of 

-0.5m1s at approximately 0.09s. 
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Figure 6.12 Striker motion at medium speed 

When the trigger pressure is increased, the motor speed is increased and impacts 

occur between the striker and the intermediate piston. The velocity trace is shown 

in Figure 6.12. The positive sections of the velocity trace are similar to Figure 6.11 

indicating that this portion of the trace is controlled by the piston behaviour. Since 

the motor speed has increased, the positive velocities have also increased in 

magnitude. After the striker has travelled at -O.Sm/s for approximately 0.02s, there 

is a sudden increase in velocity, probably induced by the pressure spike, followed 

by a sudden change in direction which suggests that impact has occurred. 
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Figure 6.13 Striker motion at high speed 
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Figure 6.13 shows the striker motion when the trigger is fully depressed and the 

motor is operating at maximum speed. The shape of the trace is similar to Figure 

6.10. The positive velocity values are greater than in Figure 6.12 and the negative 

velocity reached just before impact is greatly increased. 

Returning to Figure 6.10, piston top dead centre occurs at the maximum positive 

velocity. The air pressure is then at its lowest value and the upward force of the 

piston is therefore at a maximum. The striker decelerates and, as the pressure 

builds, starts to descend. As the piston approaches bottom dead centre, the pressure 

peaks and rapidly accelerates the striker towards the intermediate piston. Impact 

occurs and the striker changes direction and, with the help of the piston'S suction 

effect, returns to its start position. The pressure peak dissipates after the striker 

starts to move downwards because the striker uncovers vent holes in the tube. 

1.5 

00.5 ·u 
o 
U 
> 0 

-0.5 

-1 

-1.5 

-2 

ff ~ 

A 
A I/cycle 

A 

~ U .,' r-,-"..-t' \f 

intennediate 
piston 

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 
Time [si 

Figure 6.14 Velocity of intermediate piston with 1/cycle signal 

The intermediate piston behaviour is shown in Figure 6.14. The behaviour is 

periodic but exhibits some variability. As the piston approaches bottom dead 

centre, the intermediate piston is accelerated downwards due to impact with the 

striker. Immediately afterwards it is accelerated upwards due to impact with the 

drill bit (the intermediate piston rests on the drill bit when the rig is stationary). 

After these two impacts, the intermediate piston experiences some reverses in 
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direction suggesting that impacts are occurring with the buffer or the drill bit, or 

both. 

The behaviour of the drill bit is similar to that of the intermediate piston (Figure 

6.15). The bit is driven downwards by the impact with the intermediate piston, and 

then upwards by impact with the damper. Variability is again observed between 

cycles and it is likely that some rattling is occurring. 

4 

i 
3 

2 

?> 
1 

." 0 

" 0 > 

-1 

-2 

-3 

-4 drill bil 

-5 
0 0.05 0.1 0.15 0.2 

Time [s] 

Figure 6.15 Velocity of the drill bit with l/cycle signal 

6-4 Determination of rig mechanical parameters 

The mechanical parameters of the hammer drill test rig were determined to provide 

realistic inputs to the simulation models. Some, such as mass, are easily 

determined but others, particularly those modelled as springs and dampers, are 

more difficult to obtain. 

The masses measured were: 

Striker O.14kg 

Intermediate piston O.28kg 

Drill bit 0.43kg 
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To obtain the spring rates and damping coefficients, for example those describing 

the interaction between the drill bit and the damper, a technique explained in 

Babitsky and Veprik [199S] was used. 

The drill bit was dropped onto the damper and its acceleration measured by means 

of a Bruel & Kjaer Type 4374 accelerometer glued to the opposite end of the drill 

bit from the impacting end. The data were filtered by a low pass filter set to 30kHz 

in the charge amplifier, to avoid picking up the accelerometer's natural frequency. 

Two graphs from these tests are shown in Figure 6.16 . They were plotted using 

Excel. From this data the time from start to end of the pulse, and the time from 

start of pulse to peak acceleration, were found. These are designated 8 and a 

respectively and are related by the following expression [Babitsky and Veprik 

1995]: 

tan-l(2~~J 
a 1- 2~2 

= ----,--~-----"-----,-
8 tan-l((4~2 -I~J 

~(3-4~1) 

where ~ is the critical damping factor for the spring-damper model. 

The equation was solved to find the critical damping factor in Excel. This was 

done by varying the value of ~ in small steps to achieve the closest result to the 

actual value of the time ratio. 

1} (s) a(s) S J(Hz) 

Run I 6.64xI0·o IS.OxIO·o O.ISI 25000 

Run 2 6.25xI0·6 IS.OxI0·6 0.207 24600 

In the above table fis the natural frequency of the spring-damper model which can 

be calculated from the critical damping factor by the relationship 

~ = c/2mwn = c/4mnf where c is the damping coefficient and wn = Jk/m where 

k is the stiffness and m is the mass. 
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The equation of motion for the spring and damper system being impacted is given 

by [Babitsky and Veprik 1998]: 

x{t) = Ae -h' sin ru 

where A = v/n, 0.' = k/m - c' 14m', h = c/2m and x is the displacement and V 

is the unknown initial velocity. 

Using Excel, the initial velocity can be found by calculating the acceleration by a 

simple difference technique (calculating the displacements over a range of time 

values, then subtracting the adjacent displacements and dividing by the time step, 

and similarly to obtain the accelerations). The calculated accelerations were 

compared with the experimental results. Excel was also used to find the smallest 

sum of squared differences between them, thus identifYing the best value of V. The 

resulting acceleration is shown in Figure 6.17 together with the experimental result 

for one run and a filtered version of the calculated acceleration (filtered using 

Matlab). The lack of correlation in shape between the calculated and experimental 

result suggests that the spring-damper model for the interaction between the drill 

bit and the damper requires improvement. It is likely that the model will require the 

addition of nonlinear stiffness where the stiffness depends on direction [Fu and 

Paul 1970, Lundberg 1973b 1 or the addition of dry friction [Neilson et al 1995] . 
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Figure 6.17 Acceleration measure for checking model: solid line - experimental data, 

dashed line - data calculated from model using Excel (filtered and x1.5), 

dotted line - data calculated from model using Excel (unfiltered). 
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6.S Discussion 

This study has demonstrated that it is possible to take measurements from an 

experimental rig based on an actual hammer drill. This rig can now be used to 

improve the simulation models. This type of rig can be used during hammer drill 

development. 

Several points need to be considered in future experiments. A thorough comparison 

between the behaviour of the original drill and the experimental rig is required, and 

between the behaviour of the damper and concrete. With the laser vibrometer, the 

angle of 30° was chosen for convenience. Ideally an investigation of other angles 

and distances between the vibrometer and target should be carried out to select the 

optimum measurement conditions. In a similar way optimum frequency ranges for 

both the vibrometer and the analyser should be obtained. However, the vibration of 

the floor may need to be considered when operating the vibrometer in its upper 

frequency. It was found that when certain pieces of equipment were operated either 

in the room below or in the surrounding area, the vibrometer output was of poor 

quality especially when set to the highest frequency range. Using the correct 

frequency range is important to ensure that the impact behaviour is captured with 

sufficient detail. 

An approximate calculation can be carried out to determine the likely frequency 

range of the response to the impulses [Meier-Domberg 1969]. The approximate 

acceleration spectrum for an impulse is shown in Figure 6.IS . The frequency f, 

can be calculated from maximum acceleration divided by maximum velocity, while 

the frequency f2 is equal to the maximum jerk divided by the maximum 

acceleration. For a section of the striker's motion in Figure 6.19 (showing the point 

where the striker strikes the intermediate piston), the maximum velocity is 7.5rn1s 

and by simple differencing the maximum acceleration is found to be 150000rnls2 

with a maximum jerk of 6.9x I 09rn1s3 
• Using these values, f, is then 20kHz and f2 

is 46kHz. Both of these values are within the range of the analyser and the 

vibrometer. This process should be repeated to check the values of velocity, 
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., 
acceleration and jerk and to make sure that the most appropriate settings are 

chosen. 

V(t) 
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f2 

Figure 6.18 Approximate acceleration spectrum of a response to an impulse 

[Halliwell et al 1999[ 
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Figure 6.19 Closeup of striker behaviour 

Other measurements can also be carried out, including measurement of the pressure 

of the air between the piston and striker, and a method of detecting impacts with 

the buffer (perhaps by using a strain gauge). An optical means of measuring the 

displacement of the moving parts and outer tube, would be useful. Noise 

generation could also be studied. 

The other system parameters, such as the buffer stiffness, will also have to be 

determined for full comparison with the models. Methods like those described in 

section 6.4 could be used. Comparative measurement of the moving parts by using 

two vibrometers would aid model improvement. 
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7 CONCLUSION 

There have been several previous studies of vibro-impact devices. Much of the 

early work was aimed at obtaining a better understanding of the simpler practical 

devices. However, in recent years the emphasis has increasingly turned to aspects 

of machine behaviour, such as chaos, which are generally of theoretical interest 

only and do not assist in the design process. 

Percussion machines are complex vibro-impact devices and this has led to a 

general lack of reliable theoretical tools to assist the design process. With the 

growing awareness of vibration induced injury there is a now a need for a more 

rational design methodology for these machines. 

The hammer drill is a percussion machine that is known to cause injury. The 

current study focussed on the impact unit of an electrically powered hammer drill. 

As· the impact unit is complex, it was initially simplified to a two degree of 

freedom system with impact excitation. 

If a vibro-impact device requires a numerical solution due to its complexity, it is 

important to first obtain an analytical solution to a simplified version of the device. 

This allows a reliable numerical model to be developed to which complexity can 

then be added, thus minimising the likelihood of errors. 

The periodic Green's function method was the analytical method selected for this 

study, since it was developed specifically for systems with discontinuities. The 

equations of motion were solved for the initial two degree of freedom system for 

both sinusoidal and impulse excitation cases, without recourse to numerical 

methods. This is the first purely analytical solution that has been obtained for such 

a two degree of freedom system with impact excitation. Two solutions to the 

equation of motion were found but a stability analysis showed that only one was 

stable. As a check the solution was simplified to a single degree of freedom system 

without damping, thus producing the frequency response of an impact oscillator. 

From this analytical solution, a good understanding of the behaviour of the basic 

two degree of freedom vibro-impact system was obtained. The frequency response 

indicated two resonances. One was a grazing resonance at a frequency slightly 
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greater than the natural frequency of the excited system. The other resonance was 

at approximately twice the natural frequency of the excited system and showed 

clapping behaviour. Previous studies of similar devices have seldom considered the 

frequency response and had generally studied only the lower of the two 

resonances. An anti resonance was identified where the system behaved like a 

vibration absorber and this operating regime is a possible area for the development 

of improved hammer drill designs. The responses obtained for the sinusoidal and 

impulse excitation cases were similar. This similarity was due to the underlying 

structure of the backbone curve. As long as the excitation term is small in 

comparison with the backbone term the differences in response between the two 

types of excitation will be small. 

The numerical method selected for this study was based on the widely used 

Simulink package. The starting point for the numerical modelling was the two 

degree of freedom model that was studied using the periodic Green's function 

method. However it was found that the use of compliance in the impact surfaces 

was essential, to avoid the accumulation of integration errors due to infinite 

acceleration at impact. This particular problem with the classical impact equations 

has seldom been mentioned in previous vibro-impact studies. The compliance was 

applied in such a way so as to avoid physically impossible reaction force directions 

in the compliance. The results obtained were in good agreement with the results 

from the periodic Green's function method for both sinusoidal and impulse 

excitation. The Simulink models had the advantage that the excitation frequency 

could be swept both up and down. The models had similar behaviour to the two 

mass experimental rig where one resonance that would occur in the up sweep 

would be completely omitted during a down sweep. 

More complex models could be rapidly created III Simulink. However the 

understanding previously obtained from the periodic Green's function analysis was 

of great assistance in avoiding erroneous results. Sources of error included the 

integration time step size, the length of time taken for a frequency sweep and 

incorrect formulation of the compliance. A slow sweep was found to be essential to 

allow transients to die away. It was found that added complexity was readily 
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achieved by making one mass a loose mass. The loose mass model showed the 

same two resonances and overall behaviour as the original model. However, there 

was a reduction in resonant frequency due to the altered natural frequency. 

A two mass experimental rig was developed to support the initial two degree of 

freedom model. The experimental results were in general agreement with the 

analytical and numerical results. Precise comparison with the analytical and 

numerical results was not possible due to variability in the magnitude of the 

excitation. A slow sweep was required to allow the transients to die away. Two 

resonances were observed, a grazing resonance and a clapping resonance. The 

clapping resonance was found to occur only on the up sweep. By varying the 

frequency of excitation a more complete understanding of the impact pattern and 

the motion of the masses was obtained. 

The first experimental rig to be based on an actual hammer drill was also 

developed. This hammer drill rig is intended to support the development of more 

complex models that may be required for some stages of hammer drill 

development, for example the loose mass model. The tests carried out 

demonstrated that it was possible to measure the velocities of the internal parts 

using a laser vibrometer. By varying the hammer drill speed a general 

understanding of its behaviour was obtained. The hammer drill showed periodic 

behaviour with the same period as the excitation but with some variation from 

cycle to cycle, particularly for the drill bit. It is possible that there may be some 

chatter between parts, especially between the intermediate piston and the drill bit. 

Further research can be carried out to improve the analytical and numerical models 

by including additional features to obtain good agreement between the model 

predictions and measurements taken from an actual hammer drill (for example, the 

hammer drill rig developed in this study). The effect of nonlinear springs, dry 

friction and stress waves should be evaluated for possible inclusion in the impact 

unit model. It is also necessary to identify the most suitable impact models for the 

various impact surfaces, both within the drill and between the drill and the material 

being worked on. Sources of vibration outside the impact unit, particularly the 

excitation pressure pulse, also require investigation before a comprehensive design 
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methodology can be developed. The experimental hammer drill rig developed here 

is well suited to development work on commercial hammer drills. Additional 

parameters can be measured including displacement, air pressure within the tube, 

buffer forces and the effect of varying speed. The rig could also be used to 

investigate design modifications such as variation of mass or changes to the 

excitation method. 
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APPENDIX 

This appendix contains the Matlab programs written to support the studies 
described in this thesis. 

A.I Programs for experimental studies 

These programs require data files from the analyser without the header information 
removed. 

A.1.I timeav.m 

This program was used to calculate the time between pulses for the impact pattern 
experiment in section 5.1.1. 

% read in data and calculate average time between pulses 
% ask for filename containing data 
nname=input('fiIename ','s'); 
% open file, read data, close file 
cd c:\sally\mdata 
fid=fopen(nname ); 
s=fscanf(fid,'%e'); 
fclose(fid); 
cd c:\sally 
n=size(s); 
% input max frequency set on the analyser 
freq=input('max frequency'); 
% calculate time between samples based on analyser's sampling frequency 
delt= 1/(2.56*freq); 
% set up vector with times for each sample 
tt=de I tde I t de It * n; 
% set up initial values of variable 'slope' to detect positive peaks 
j=O; 
if (s( 1»0)&(s(I)<s(2)) 

slope=l; 
else 

slope=O; 
end 
% run through data picking the positive peaks and storing their values 
% and times, reset 'slope' as appropriate 
for i=l:n·\ 

if s(i»O 

else 

end 

if (s(i»s(i+ 1 »&(slope= 1) 
slope=O; 
j=j+ 1; 
ptU)=tt(i); 
pU)=s(i); 

elseif (s(i)<s(i+ 1 »&(slope==O) 
slope=l; 

end 

slope=O; 



end 
% 'maxp' is number of positive peaks 
maxp=j; 
% preparation for removing the spurious peaks 
% by finding the first big peak 
if p(2»4 *p( I) 

x=2; 
elseifp(3»4*p(l) 

x=3; 
else 

x=l; 
end 
peak(l )=p(x); 
peakt( I )=pt(x); 
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:' 

% now cycle through the peaks and list the times of the big ones 
k=1; 
for i=x+ I :maxp 

if4*p(i)<p(x) 
p(i)=O; 

else 

end 
end 

k=k+l; 
peakt(k)=pt(i); 

% 'maxpeak' is final number of peaks of interest 
maxpeak=k 
diffa=O; 
for i=l:maxpeak-1 
% find the time step between each peak 

dimi)=peakt(i+ I )-peakt(i); 
% sum the time steps 

diffa=diffa+dimi); 
end 
% average the time steps 
diffav=diffa/(maxpeak-I) 
diffreq=l/diffav 

A. 1.2 sineswpf.m 

This program calculates excitation frequencies from force spectra files and creates 
files for analysis in sinesw.m and sinesw3.m. It was used for the work in section 
5.1.2. 

% read in force spectra files and calculate excitation frequencies 
% ask for filename 
nname=input('filename ','Sf); 
%open, read and close file 
cd c:\sally\mdata 
fid=fopen(nname); 
while fid<2 

end 

nname=input{'try again filename ','s'); 
fid=fopen(nname); 

q=fscanttfid,'%e'); 



126 

:' 
% read ftrst piece of data (number of excitation points i.e. half the number of ftles listed in ftle) 
N=q(I); 
% read filenames into matrix 
ftln=fscanf{ftd, '%s',[ 11,2 'N)); 
fclose(ftd); 
% second and third pieces of data in ftle are no of lines and analyser baseband fTequency 
L=q(2); 
f=q(3); 
filn=ftln'; 
% calculate fTequency step and provide fTequency array 
fd=fIL; 
xf=O:fd:f; 
% open each force ftle (ftrst N ftlenames) and extract fTequency of peak 
fori=I:N 

end 
x=x'; 

ftd=fopen( ftln(i,:»; 
z=fscanf{ftd,'%e'); 
fclose(ftd); 
x(i)=xf{ftnd(z=max(z»); 

prepare data for storing in ftle formatted for sinesw.m 
A([I:3],I)=q; 
A([4:N+3], I )=x; 
A=A'; 
ftlnf=ftln([1 :N],:); 
ftlnf=ftlnf; 
ftlnr=ftln([N+ I :2'N],:); 
ftlnr=ftlnr'; 
fuame=input('new ftlename for force ftles ','s'); 
mame=input('new ftlename for response ftles ','s'); 
% write force data to a ftle (number of mes, no of lines, baseband fTequency, list of excitation 
% fTequencies and list of ftlenames for data) 
ftd=fopen( fuame, 'w'); 
fjJrintf{ftd,'% 7.4!\n',A); 
fjJrintf{ftd, ftlnl); 
fclose(ftd); 
% repeat for response data 
ftd=fopen(mame,'w'); 
fjJrintf{ftd,'% 7.4!\n',A); 
fjJrin tf{ ftd, ftlnr); 
fclose(ftd); cd \sally; 

A.i.3 sinesw.m 

This program reads a file (created by sineswpf.m) containing list of filenames for 
the data and plots a waterfall plot. 

% read in spectra ftles and produce a waterfall plot 
% ask for ftlename 
nname=inputCfilename ','s'); 
% open, read and close ftle 
cd c:\sallylrndata 
ftd=fopen(nname); 
q=fscanf{ftd,'%e'); 



% read first piece of data no of files 
N=q(I); 
% read filenames into matrix 
filn=fscanf(fid, '%s',[ I I,N)); 
fclose(fid); 
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:1 

% calculate frequency step and provide frequncyarray from data given in the file 
L=q(2); 
f.=q(3); 
fd=fIL; 
x=O:fd:f; 
% make array from list of excitation frequencies 
yf.=q(4:N+3); 
filn=filn'; 
% open each file and extract data, create array containing the relevant excitation frequency 
% and update the overall matrices 
fori=I:N 

end 

fid=fopen( filn(i,:»; 
z=fscanf(fid,'%e'); 
fclose(fid); 
y=linspace(yf(i),yf(i),L+ I); 
Z(:,i)=z; 
X(:,i)=x'; 
Y(:,i)=y'; 

cd c:\sally 
% plot data as a waterfall plot 
plot3(X, Y ,Z) 
view(-5,60) 
% X contains the frequency range of the spectra 
% Y contains the frequencies used to excite the structure 
% Z contains the magnitudes of the spectra 

A.1.4 sinesw3.m 

This program calculates the frequency response of the system by taking the 
maximum response which occurs close to the excitation frequency. The files 
required are listed in a file created by sineswpf.m. 

% read in spectra files and produce a plot of max points 
% ask for filename 
nname=inputCfilename ','5'); 
% open file containing list of filenames of spectra files 
cd c:\sally\mdata 
fid=fopen(nname); 
while fid<2 

end 

nname=input('try again filename ','5'); 
fid=fopen(nname); 

q=fscanf(fid,'%e'); 
% read in first piece of data number of files 
N=q(I); 
% read in filenames as an array 
filn=fscanf(fid,'%s',[ II,N))'; 
fclose(fid); 
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% create array of frequencies from no of lines and baseband frequency 
L=q(2); 
f=q(3); 
fd=fIL; 
xr-<l:fd:f; 
% create array from list of excitation frequencies 
yf=q(4:N+3); 
% create an array of O's 
p=linspace(O,O,L+ I )'; 
% find max and min values of excitation frequecies 
ymax=max(yt); 
ymin=min(yt); 
% open each file 
for i=I:N 

end 

fid=fopen(filn(i,:)); 
z=fscanf(fid,'%e'); 
fclose(fid); '. 
% zero the array parts that have frequencies outside the excitation range 
z(xf<ymin & xf>ymax)=p(xf<ym,in & xf>ymax); 
% zero the array parts which are not within 3 frequency steps of the 
% relevant excitation frequency 
A=xf<(yf(i)-3 'fd); 
B=xf>(yf(i)+ 3 'fd); 
if yf( i)=ymax 

z(A)=p(A); 
elseif yf(i)==ymin 

z(B)=p(B); 
else 

z(AIB)=p(AIB); 
end 
% fmd the max value of the response 
y(i)=max(z); x(i)=yf(i); 

cd c:\sally 
plot(x,y) 

A.2 Programs used to generate graphs for section 3.6 

A.2.1 jidnew.m 

This program calculates the displacement responses to impulse excitation and plots 
them against freq uency rati o. 

% displacement against frequency - impact excitation 
ml=0.125; 
m2=0.094; 
kl=135; 
k2=128; 
c2=0.1; 
R=0.7; 
delta=O.OO I; 
F=0.009; 
Omega I =sqrt(k IIm I); 
Omega2=sqrt(k2/m2); 



b2=c2/(2'm2); 
lambda2=sqrt(Omega2A2-b2A2); 
M I =m l'm2/(m I +m2); 
M=MI'(I+R); 
6--0.7501 :0.02:2.996; 
G=linspace(O,O,length(fr»; 
omega=fr'Omega I; 
T=2 'pi.lomega; 
B2=exp(-b2'T); 
r= l-cos(Omega I'T); 
A I =I.I(m I 'Omega 1 '2'r); 

129 

A2= I.I(m2'Iambda2'( 1 +B2.A2-2'B2. 'cos(lambda2'T»); 
chi I(I,:)=AI. 'sin(OmegaI'T); 
chi2( 1,:)= A2. 'B2. 'sin(lambda2 'T); 
C=chi 1 (I,:)+chi2(l,:); 
dchi 1 =-1I(2'MI); 
dchi2=-1I(2'MI); 
D=dchi 1 +dchi2; 
q 1 =( IIM+D)/Omega 1; 
q2=qI.A2+C.A2; 
q3a=2'r'FA2.· Al. A2-deltaA2; 
q3b=abs(q3a); 
E=q3b<Ie-6; 
q3a(E)=G(E); 
q4=2'r'FA2.' A I.A2. 'c. A2+q 1. A2. 'q3a; 
q5=sqrt(q4); 
q6=-C'delta.lq2+q5.1q2; 
J=q6; 
Q=q6<0; 
J(Q)=G(Q); 

:' 

sphi=( delta+ J 'C)'m 1 'Omega 1'2. 'r.l(2'F)-J. 'q 1. 'sin(Omega I'T).I(2 ','F.' AI); 
L=sphi<O; 
phi=asin(sphi); 
tphi=pi-phi; 
tphi(L)=2'pi-asin(abs(sphi(L»); 
phi(L)=asin(abs(sphi(L»)+pi; 
tau=phi/omega; 
ttau=tphilomega; 
t( I,: )=Iinspace(O,O,Iength(fr»; 
cc 1 =F'A 1. '(sin(OmegaI'tau)+sin(OmegaI'(T-tau))); 
cc2=F' Al. '(sin(Omega I'ttau)+sin(Omega I'(T-ttau))); 
xx 1 =cc I-J. 'chi 1 (1,:); 
xx2=cc2-J. 'chi 1(1,:); 
x2( 1,:)= J. 'chi2(l,:)+delta; 
d I=abs(xx I-x2(l,:»; 
d2=abs(xx2-x2(l,:»; 
xl(I,:)=xxI; 
chit(I,:)=ccllF; 
N=dI>d2; 
chit( I,N)=cc2(N); 
xl (I,N)=xx2(N); 
tau(N)=ttau(N); 
for i=2: 101 

t(i,:)=(i-I )'TII 00; 
ift(i,I)+tau<=T 
chit(i,:)=A 1. '(sin(Omega I'(t(i,:)+tau»+sin(Omega 1 '(T-t(i,:)-tau))); 
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:' 
else 
chit(i,:)=A I. "(sin(Omega I "(t(i,:)+tau-n)+sin(Omega 1"(2"T -t(i,:)-tau))); 
end 

end 

chi l(i,:)=A I. "(sin(Omegal"t(i,:»+sin(Omegal"(T-t(i,:»»; 
chi2(i,: )=A2. "exp( -b2 "t(i,:»."( sin(lambda2 "t( i,:) )+82. 'sin( lambda2 "(T -t(i,:)))); 
x I (i,:)=Pchit(i,:)-J. "chi I (i,:); 
x2( i,:)= J. "chi2(i,: )+delta; 

px I =max(max(x I ),abs(min(x I))); 
px2=max(max(x2),abs(min(x2»); 
plot(fr,px I, 'w-' ,fr,px2,'w:') 

A.2.2 jidtw.m 

This program calculates displacements at one frequency under impulse excitation 
and plots them against time. 

% displacement against time - impact exciiation 
ml=0.125; 
m2=0.094; 
kl=135; 
k2=128; 
c2=0.1; 
R=0.7; 
delta=O.OO I; 
F=O.005; 
fr=1.50 I; 
%fr=2.1301 
Omega I =sqrt(k I1m I); 
Omega2=sqrt(k2/m2); 
b2=c2/(2"m2); 
lambda2=sqrt(Omega2A2-b2A2); 
M I =m I "m2/(m I +m2); 
M=M 1"( I +R); 
omega=fr"Omega I; 
T=2"pilomega; 
82=exp(-b2"T); 
r= l-cos(Omega I"T); 
A I =1/(m I "Omegal"2"r); 
A2= I l(m2 " lambda2 "( I +82A2-2"82"cos(lambda2"T»); 
chi I (I )=A I "sin(Omegal"T); 
chi2( I )=A2 "82 "sin(lambda2"T); 
C=chi I (I )+chi2( I); 
dchi I =-1/(2"ml); 
dchi2=-1/(2 "m2); 
D=dchil +dchi2; 
ql =(IIM+D)/Omegal; 
q2=q I A2+CA2; 
q3a=2"r"FA2" A I A2_deltaA2; 
q4=2"r"FA2" A I A2 "CA2+q I A2 "q3a; 
q5=sqrt(q4); 
J=-C"delta/q2+q5/q2; 
sphi=(delta+J"C)"ml "Omega I "2"r/(2"F)-J"q I "sin(Omegal "T)/(2"r"P A I); 
ifsphi>=O; 



else 

end 

phi~asin(sphi); 

tphi~pi-phi; 

tphi~2*pi-asin(abs(sphi»; 

phi~asin(abs(sphi»+pi; 

tau~philomega; 

ttaU=1philomega; 
t(I)~O; 
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ccl ~F* A 1*(sin(Omegal*tau)+sin(Omegal*(T-tau»); 
cc2~F* A I *(sin(Omegal*ttau)+sin(Omegal *(T-nau))); 
xx I ~cc I-J*chi 1(1); 
xx2~c2-J*chi I (I); 
x2( I )~J*chi2( I )+delta; 
x2T~ J * A2 *B2 *sin(lambda2 *T)+delta; 
d I ~abs(xx 1-x2( I »; 
d2~abs(xx2-x2(1 »; 
ifdl<d2 

else 

end 

xl(I)~xxl; 

chit(I)~ccllF; 

chit( I )~cc21F; 
x 1(1)~xx2; 
phi~tphi; 

tau=ttau; 

for i~2:IOI 
t(i)~(i-I )*T/100; 
ift(i)+tau<~T 

:' 

chit(i)~A 1*(sin(Omegal*(t(i)+tau»+sin(Omegal*(T-t(i)-tau))); 
else 

end 

chit(i)~A 1*(sin(Omegal*(t(i)+tau-T»+sin(Omega 1*(2*T-t(i)-tau))); 
end 
chi l(i)~A 1*(sin(Omegal*t(i»+sin(Omegal*(T-t(i»»; 
chi2(i)~ A2 *exp( -b2*t( i) )*( sin(lambda2 *t(i) )+B2 *sin(lambda2 * (T -t(i»»; 
x I (i)~F*chit(i)-J. *chi I (i); 
x2(i)~ J. *chi2(i)+delta; 

plot(t,x I ,'w-\t,x2,'w:') 

A.2.3 jinew.m 

This program calculates the response of impulse J to impulse excitation and plots it 
against frequency ratio. 

% impulse against frequency - impact excitation 
ml~O.125; 

m2~O.094; 

kl~135; 

k2~128; 

c2~O.I; 

R~O.5; 

delta~O.OOI; 

F~O.009; 



Omega I =sqrt(k I1m I); 
Omega2=sqrt(k2Im2); 
b2=c2/(2"m2); 
lambda2=sqrt(Omega2"2-b2"2); 
M I =m I "m2/(m I +m2); 
M=MI"(I+R); 
fr-0.7501 :0.02:2.996; 
G=linspace(O,O,length(fr»; 
omega=fr*Omega I; 
T=2"pi.lomega; 
B2=exp(-b2"T); 
r= l-cos(Omega I "T); 
A I =I.I(m I "Omega I "2"r); 
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A2= 1.I(m2"lambda2"( I +B2. "2-2"B2. "cos(lambda2"T))); 
chi I =A I. "sin(Omegal"T); 
chi2=A2. "B2. "sin(lambda2"T); 
C=chi I +chi2; 
dchi I =-I1(2"MI); 
dchi2=-1/(2"M I); 
D=dchi I +dchi2; 
q 1=(IIM+D)/Omegal; 
q2=ql."2+C."2; 
q3a=2"r"F"2." A 1."2-delta"2; 
q3b=abs(q3a); 
E=q3b<le-6; 
q3a(E)=G(E); 
q4=2"r"F"2."A 1."2. "C."2+ql."2. "q3a; 
q5=sqrt(q4); 
q6=-C"delta.lq2+q5.1q2; 
J=q6; 
Q=q6<0; 
J(Q)=G(Q); 
plot(fr,J) 

A.2.4 jsdnew.m 

:' 

This program calculates the displacement responses to sinusoidal excitation and 
plots them against frequency ratio. 

% displacement against frequency - sinusoidal excitation 
ml=0.125; 
m2=0.094; 
kl=135; 
k2=128; 
cl=O.I; 
c2=0.1; 
R=0.7; 
delta=O.OO I; 
F=O.5; 
Omega I =sqrt(kIlm I); 
Omega2=sqrt(k2/m2); 
bl=cIl(2"ml); 
b2=c2/(2"m2); 
lambda I =sqrt(Omega I "2-b I "2); 



lambda2=sqrt(Omega2A2-b2A2); 
M I =m l·m2I(m I +m2); 
M=M 1·( I +R); 
fl=[O.75:0.01 :0.91}; 
12=[ 1.03]; 
13=[1.041 :0.01:1.1]; 
f4=[ 1.2:0.01 :2.9]; 
fr=[fl 12 13 f4]; 
%fr-O. 750 I :0.0 I :2.996; 
omega=fr·lambda I; 
T=2·pi.lomega; 
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G=linspace(O,O,length(fr»; 
Fs=F.lsqrt«kl-ml·omega.A2).A2+(cl·omega).A2); 
S l=exp(-bl·T); 
S2=exp( -b2·T); 
A I =l.I(m 1·lambdal·(I +S I.A2-2·S I. ·cos(lambdal·T))); 
A2= 1.I(m2·lambda2·( I +S2. A2-2 ·S2. ·cos(lambda2·T))); 
chi 1(1 ,:)=A I.·S I. ·sin(lambdal·T); 
chi2( I ,:)=A2. ·S2. ·sin(lambda2·T); 
C=chi 1(1 ,:)+chi2(1 ,:); 
if (c I ==0&c2=0) 

else 

dchi I =-1/(2·(1 +R)·M); 
dchi2=-1/(2·(1 +R)·M); 

:' 

dchil=A I.·S 1.·«-bl·sin(lambdal·T)+lambda l·cos(lambdal·T»-S 1·lambdal); 
dchi2= A2. ·S2.·« -b2 ·sin(lambda2 ·T)+lambda2 ·cos(lambda2·T»-S2 ·lambda2); 

end 
O=dchi I+dchi2; 
qx=( IIM I +0). A2.1omega.A2; 
qq=qx+C. A2; 
q I =-delta·C.lqq; 
q2=Fs. ·C.lqq; 
q3a=Fs. A2_deltaA2; 
q3b=abs(q3a); 
q3 a( find( q3 b< I e-6) )=G(find( q3 b< I e-6»; 
q3=qx. ·q3a; 
q4=Fs.A2·C.A2; 
q4a=q4+q3; 
q5=sqrt( q4a).Iqq; 
q6=ql+q5; 
J=q6; 
J (find( q6<0) )=G( find( q6<0»; 
sphi=-J.·( IIM+O). ·sqrt(c I A2+(m I A2·(Omega I A2-omega. A2).A2.lomega. A2))/F; 
E=sphi<O; 
phi=asin(sphi); 
Iphi=pi-asin(sphi); 
phi(E)=asin(abs(sphi(E»)+pi; 
tphi(E)=2·pi-asin(abs(sphi(E»); 
I( I ,:)=linspace(O,O,length(fr»; 
cc I =Fs. ·cos(phi); 
cc2=Fs.·cos(tphi); 
j I=J. ·chi I (I,:); 
xxl=ccl-jl; 
xx2=cc2-j I; 
x2( I ,: )=J. ·chi2( I ,:)+delta; 
dl =abs(xx l-x2(1 ,:»; 



d2~abs(xx2-x2( I,:»; 
xl(I,:)=xxl; 
L=dI>d2; 
xl (I ,L)=xx2(L); 
phi(L)=tphi(L); 
for i~I:IOO 

t(i+I,:)~i*TIl 00; 
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chi I(i+ I,:)~A I. *exp(-b I*t(i+ I,:)). *(sin(lambdal*t(i+ I,:»+B I. *sin(lambdal*(T-t(i+ I,:)))); 
chi2(i+ 1,:)~A2. *exp(-b2*t(i+ I,:». *(sin(lambda2 *t(i+ 1,:»+B2. *sin(lambda2*(T -t(i+ I,:»»; 
x I (i+ 1,:)~Fs. *cos(omega. *t(i+ I,:)+phi)-J. *chi I (i+ I,:); 
x2(i+ 1,:)~J.*chi2(i+ I,:)+delta; 

end 
px I ~abs(max(max(x I ),abs(min(x I »»; 
px2~ax(max(x2),abs(min(x2»); 

plot( fr,px I ,'w-' ,fr,px2, 'w:') 

A.2.S jsdtw.m 

This program calculates displacements at one frequency under sinusoidal excitation 
and plots them against time. 

% displacement against time - sinusoidal excitation 
ml~0.125; 

m2~0.094; 

kl~135; 

k2~128; 

cl~O.I; 

c2~.I; 

R~.7; 

delta~O.OO I; 
F~0.007; 

~1.0501; 

%~2.131 

Omega I ~sqrt(kl/m I); 
Omega2~sqrt(k2/m2); 

bl~cl/(2*ml); 

b2~2/(2*m2); 

lambda I ~sqrt(Omegal "2-b I "2); 
lambda2~sqrt(Omega2"2-b2"2); 

MI~ml*m2/(ml +m2); 
M~M 1*( I +R); 
omega~fr*lambdal ; 
T~2 *pi/omega; 
Fs~F/sqrt((kl-m l*omega"2)"2+(c l*omega)"2); 
BI~exp(-bl*T); 

B2~exp(-b2*T); 

Al ~1/(m I * lambda I *(1 +B I "2-2*B I *cos(lambdal *T»); 
A2~I/(m2*lambda2*( I +B2"2-2*B2 *cos(lambda2 *T»); 
chi I(I)~AI*B I*sin(lambda I*T); 
chi2( I)~ A2 * B2 *sin(lambda2 *T); 
C~chil(1 )+chi2(1); 
if(cl=0&c2=0) 
dchi 1~-1/(2*MI); 
dchi2~-1/(2*MI); 
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else 
dehil =AI*B 1*«-bl*sin(lambdal*T)+lambdal*eos(lambdal*T))-BI*lambdal); 
dehi2=A2*B2*«-b2*sin(lambda2*T)+lambda2*eos(lambda2*T))-B2*lambda2); 
end 
D=dehi 1 +dehi2; 
qx=(IIM+D)A2/omega"2; 
qq=qx+C"2; 
q 1 =-delta*C/qq; 
q2=Fs*C/qq; 
q3a=Fs"2-delta"2; 
ifabs(q3a)<le-6 

q3a=0; 
end 
q3=qx*q3a; 
q4=Fs"2*C"2; 
q4a=q4+q3; 
q5=sqrt( q4a)/qq; 
q6=ql+q5; 
ifq6<0 

J=O; 
else 

J=q6; 
end 
sphi=-J*( IIM+D)*sqrt( cl "2+(m I "2 *(Omega 1 "2-omega"2)A2/omega"2))1F; 
ifsphi<O 

else 

end 
t(l)=O; 

phi=asin(abs(sphi))+pi; 
tphi=2*pi-asin(abs(sphi)); 

phi=asin(sphi); 
tphi=pi-asin(sphi); 

cc I =Fs*eos(phi); 
cc2=Fs*cos(tphi); 
jl=J.*chil(I); 
xxl=ccl-jl; 
xx2=cc2-j 1 ; 
x2(1)= J*chi2(1 )+delta; 
dl =abs(xxl-x2(1)); 
d2=abs(xx2-x2(1 )); 
ifdl<d2 

else 

end 

xl(l)=xxl; 

xl(I)=xx2; 
phi=tphi; 

for i=I:IOO 
t(i+I)=i*TIIOO; 

end 

chi I(i+ I)=A I*exp(-bl*t(i+ 1 ))*(sin(lambdal*t(i+ I))+B l*sin(lambda I*(T-t(i+ I )))); 
chi2(i+ I )=A2*exp( -b2 *t(i+ I ))*(sin(lambda2*t(i+ I ))+B2*sin(lambda2 *(T-t(i+ I )))); 
x I (i+ I )=Fs*cos( omega*t(i+ I )+phi)-J*chi I (i+ I); 
x2(i+ 1)= J*ehi2(i+ I )+delta; 

plot(t,x 1, 'w·' ,t,x2,'w:') 
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" 

A.2.6 jsnew.m 

This program calculates the response of impulse J to sinusoidal excitation and plots 
it against frequency ratio. 

% impulse against frequency· sinusoidal excitation 
ml=O.125; 
m2=0.094; 
kl=135; 
k2=128; 
cl=O.I; 
c2=0.1; 
R=0.7; 
delta=O.OOI; 
F=0.5; 
Omega I =sqrt(k IIm I); 
Omega2=sqrt(k2/m2); 
bl=cll(2'ml); 
b2=c2/(2'm2); 
lambda I =sqrt(Omega I A2_b I A2); 
lambda2=sqrt(Omega2A2-b2A2); 
M I =m 1'm2/(m I +m2); 
M=M 1'(1 +R); 
fl =[0.75:0.01 :0.9]; 
12=[1.03]; 
13=[ 1.041 :0.0 I: l.l]; 
f4=[1.2:0.0 I :2.9]; 
fr=[fl 12 13 f4]; 
%fr=0. 7501 :0.02:2.996; 
omega=fr'lambda I; 
T=2'pi.lomega; 
G=linspace(O,O,length(fr»; 
ifF=O 

else 

end 

Fs=G; 

fd=sqrt«k I-m l'omega.A2). A2+( c I 'omega). A2); 
Fs=F./fd; 

B I =exp( -b I'T); 
B2=exp(-b2'T); 
A I =I.I(m I 'lambda I '(I +B I.A2-2'B I. 'cos(lambdal'T»); 
A2= 1.I(m2'lambda2'(1 +B2. A2-2 'B2. 'cos(lambda2 'T»); 
chi I =A I. 'B I. 'sin(lambdal'T); 
chi2=A2. 'B2. 'sin(lambda2'T); 
C=chi I +chi2; 
if(cl=0&c2==O) 
dchi I =-1I(2'M I); 
dchi2=-1I(2'M I); 
else 
dchil =A I. 'B 1'( -b I'sin(lambda I 'T)+lambda I 'cos(lambda I 'T)-B I 'lambda I); 
dchi2=A2.'B2.'(-b2'sin(lambda2'T)+lambda2'cos(lambda2'T)-B2'lambda2); 
end 
D=dchi I +dchi2; 
qx=( IIM+D). A2.1omega. A2; 



qq=qx+C."2; 
q 1 =-delta*C.lqq; 
ifF=O 

else 
q2=Fs. *C.lqq; 

end 
q3a=Fs. "2-delta"2; 
q3b=abs(q3a); 
q3 a( find( q3 b< I e-6»=G( find( q3 b< I e-6»; 
q3=qx.*q3a; 
q4=Fs."2.*C."2; 
q4a=q4+q3; 
q5=sqn(q4a).Iqq; 
q6=ql+q5; 
J=q6; 
J(find(q6<O»=G(find(q6<O»; 
plot(fr,J) 
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