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ABSTRACT 
 

Light reflection from the glass surface of a photovoltaic (PV) module is a significant 

source of energy loss for all types of PV devices. The reflection at the glass and air 

interface accounts for ~4% of the total energy.  Single layer anti-reflection coatings with 

sufficiently low refractive index have been used, such as those using magnesium 

fluoride or porous silica, but these are only effective over a narrow range of 

wavelengths. Multilayer-antireflection coatings reduce the weighted average reflection 

over the wavelength range used by solar technologies more effectively by utilising 

interference effects. Multilayer stacks consisting of silica and zirconia layers deposited 

using reactive magnetron sputtering and single layer porous silica coatings were 

compared in terms of effectiveness and durability.  Details of the stack design, sputter 

deposition process parameters, and the optical and micro-structural properties of the 

layers of the multilayer coating are provided and similar properties where applicable for 

the single layer coatings.  

Anti-reflection coatings on glass exposed to the outdoors must not degrade over the 

lifetime of the module. A comprehensive set of accelerated environmental durability 

tests has been carried out in accordance with IEC 61646 PV qualification tests.  The 

durability tests confirmed no damage to the coatings or performance drop as a result of 

thermal cycling or damp heat. All attempts to perform pull tests on either coating 

resulted in either adhesive or substrate failure, with no damage to the coating itself. 

Scratch resistance, abrasion resistance, and adhesion tests have also been conducted. 

The optical performance of the coatings was monitored during these tests and the 

coatings were visually inspected for any sign of mechanical failure. These tests provide 

confidence that broadband anti-reflection coatings are highly durable and will maintain 

their performance over the lifetime of the solar module.  Additionally heat treatment 

experiments demonstrated both coatings can withstand up to 600°C temperatures and 

can thereby withstand CdTe manufacturing processes allowing for pre-coated glass.  

Additionally experiments demonstrated that multi-layer coatings are resistant to acid 

attack. 

Thin film photovoltaic devices are multilayer opto-electrical structures in which light 

interference occurs. Light reflection at the interfaces and absorption within the window 

layers reduces transmission and, ultimately, the conversion efficiency of photovoltaic 
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devices. Optical reflection losses can be reduced by adjusting the layer thicknesses to 

achieve destructive interference within the structure of the cell. The light transmission 

to the CdTe absorber of a CdS/CdTe cell on a fluorine doped tin oxide transparent 

conductor has been modelled using the transfer matrix method. The interference effect 

in the CdS layer and high resistance transparent buffer layers (SnO2 and ZnO) has been 

investigated. The modelling shows that due to relatively high absorption within the 

SnO2 layer, there are modest benefits to engineering anti-reflection interference in the 

stack. However, a ZnO buffer layer has limited absorption and interference can be 

exploited to provide useful anti-reflection effects. Additionally the light transmission to 

the perovskite absorber of a thin film solar cell using fluorine doped tin oxide (FTO) 

transparent conductor has been modelled. Alternative transparent conductor materials 

have also been investigated including aluminium doped zinc oxide (AZO) and indium 

tin oxide (ITO) and shown to be beneficial to transmission. 
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1 INTRODUCTION 

As resources become more prevalent and easily accessible, humanities’ ability to 

consume becomes greater, travel becomes faster, war becomes deadlier, and light 

production becomes more abundant. Because of this, energy consumption since the 

industrial revolution has exploded and there is little evidence to indicate this trend is 

nearing an end [1]. Within the last ten years, humankind’s energy usage has exceeded 

the equivalent of 130 billion tons of oil. [2]. Fossil fuels continue to supply this growth 

in energy consumption in the form of coal, oil and gas, which are abundant and readily 

accessible with current technology. However, the use of fossil fuels has produced 

greenhouse gases, most notably CO2, in large volumes [1], [3], [4]. 

Due to solar re-emittance of incoming radiation back into space, the average surface 

temperature of the earth remains stable [3]. Since CO2 absorbs light in the infra-red 

region of the electromagnetic spectrum, a greater percentage of the CO2 present in the 

atmosphere leads to a greater percentage of incoming light initially being re-emitted 

back into space. However, a greater concentration of CO2 means that light reaching the 

surface of the earth and re-emitting into the atmosphere has a lower chance of 

penetrating the atmosphere and escaping into space. Therefore, more light remains in 

the atmosphere or is reflected back to the surface of the earth more often. The net effect 

is that CO2 reduces the heat flux from earth to space [1], [3], thus causing a warming 

effect. 

It is extremely unlikely that humankind would seriously consider lowering energy usage 

in a way that limits entertainment, defence, transport, research, or private use (even that 

which is completely unnecessary). Considering the entirety of human history as 
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evidence, this is an unfortunate truth. Any attempts to curtail energy usage would be 

rightfully viewed as totalitarian and arbitrary. As the technology required to remove 

vast quantities of CO2 from the atmosphere safely and easily does not exist, this leaves 

only one possible solution: the use of power sources that provide abundant energy, 

while producing minimal or no CO2 [1]. Candidate non-fossil fuel sources include 

nuclear power, hydro, biomass, tidal, wind, geothermal, and solar.  

1.1 The sun as a power source 
Most energy sources on earth can be traced back to the sun; the notable exceptions are 

geothermal and nuclear. Assuming a solar constant of 1.361 kW/m2, around 174 PW is 

delivered to the atmosphere from solar radiation [3]. This energy source, after 

accounting for reflectance and absorption in the atmosphere, is 10 thousand times 

greater than the amount humanity uses over a given time period. Assuming even modest 

solar cell efficiencies leads to the conclusion that 0.1% of the earth’s surface is all that 

is needed to produce enough energy to power all of civilisation [5]–[7]. Logistically, 

some issues may occur as much of the incoming solar energy is delivered between the 

tropics. Powering Reykjavik with a solar farm in Europe would prove challenging. 

Regardless, solar energy is an abundant and attractive resource. 

In order to develop effective technologies to utilise solar power, one must have an 

understanding of the solar spectrum and how it varies depending on global position, 

environment, and altitude [5], [8], [9]. The spectrum at ground level differs from the 

spectrum at the top of the atmosphere due to absorption by gases in the atmosphere; 

most apparently water (particularly in Britain), but also ozone, dust, smog, aerosols, and 

CO2. A comparison of the spectrum at the top of the atmosphere and the average 

spectrum at ground level in Europe is shown in Figure 1.1. 
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Figure  1.1: A plot of the AM0 spectrum and the AM1.5 spectrum both direct (d) 

and global (g)[10]. 

Because of all the parameters to consider, perfectly optimising any one solar installation 

for photon collection would be highly complex. As a result, systems are normally 

optimised for use in the standard Air Mass (AM) 1.5 spectrum [5], [9]. The AM system 

describes the amount of atmosphere light must penetrate in order to reach mean sea 

level at different points on the globe. When the sun is directly overhead, near the 

equator when incoming light is normal to the mean ground surface, the spectrum is 

labelled AM1, so named because the light has travelled through 1 atmosphere thickness 

of “Air Mass”. 

For comparison, the spectrum at the top of the atmosphere is designated AM0 and 

AM1.5 is the spectrum after penetrating 1.5 times the thickness of the atmosphere 

assumed in the AM1 spectrum[9]. In the AM1.5 spectrum, the angle of incidence of 

light at ground level is ~48.2°. The AM1.5 spectrum is therefore an accurate assumption 

for most areas where solar cells are likely to be installed, such as Europe, North 

America, Australia, southern Africa, and north Asia [5], [9]. 

1.2 Photovoltaics 
The photovoltaic (PV) effect is the use of photons to excite electrons into an excited 

state within a material, so they are free to move. Under such circumstances an excited 

electron would usually collapse back to the original unexcited state, emitting the photon 

to conserve energy. However, in a PV device there is built in asymmetry, which ensures 
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the electron does not relax by removing the electron from the excitation site and feeding 

it into a circuit [11]. 

Solar cells typically utilise a p-n junction, which is comprised of a p-type and an n-type 

semiconductor in close proximity to one another, as to be touching. N-type and p-type 

semiconductors are doped with electrons and holes (electron vacancies) respectively [5]. 

In silicon solar cells, for example, doping is achieved through the addition of group 3 

elements to produce p-type silicon, and doped with group 5 elements to produce n-type 

silicon [5], [12]. When such materials are in contact, holes diffuse from the p-type 

material to the n-type and electrons from the n-type diffuse into the p-type. As the p-

type material bleeds holes to the n-type, a net negative charge builds in the p-type 

material. In the same way, a net positive charge builds in the n-type material due to loss 

of electrons to the p-type. This area in the cell is known as the ‘space charge region’ and 

it results in a potential difference and the creation of an electromagnetic field. Electrons 

can be excited by impinging photons to create electron-hole pairs, these pairs can then 

be can be separated from each other by the field in the space charge region and removed 

from the system to do work [13]. The amount of energy a photon requires to excite an 

electron from the valence band into the conduction band is known as the band-gap. The 

band-gap is dependent on the absorbing material and is usually between 1.0 and 1.65eV. 

This energy range corresponds to a wavelength range of ~750nm (perovskite) ~1200nm 

(crystalline silicon). The difference between the Fermi levels in the p-type and n-type 

semiconductors within the stack determines the open circuit voltage (Voc) of a solar cell. 

The short circuit current of a device (Isc) is the current through the cell when the voltage 

is zero, such as when the cell has short-circuited. Isc is related to the short circuit current 

density (Jsc). The cell cannot operate under either open circuit or short circuit 

conditions. These electronic properties of PV technologies are highly dependent on the 

band-gap; a low band gap device will suffer from a low Voc, but will have a large 

amount of photons capable of exciting electrons across the band-gap. High band-gap 

devices have a high Voc and have less available photons of a suitable energy for electron 

excitation, resulting in a low Isc.  As a result, Isc and Voc are negatively correlated. This 

relationship limits the theoretical maximum efficiencies of PV technologies, as ideally 

both parameters should be as high as possible. The ideal band-gap for a single-junction 

cell, for producing maximum efficiency, has been estimated to be between 1.4 and 

1.5eV [14]. 
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There are two main types of p-n junction, hetero and homo-junctions. If both the n-type 

and p-type semiconductors are doped with the opposite charge but maintain the same 

material, the resulting p-n junction is considered a homo-junction.  A diagram of the 

band structure of a p-n junction and a visual representation of a space charge region is 

shown in Figure  1.2. If the materials differ completely then the p-n junction is 

considered a hetero-junction.  

 

Figure  1.2: (a) A diagram of the band structure of a simple p-n junction, and (b) a 

visual representation of the p-n junction. 

1.3 Photovoltaic technologies 
The majority of solar cells bought in the worldwide PV market are Silicon PV. Mono 

and multi-crystalline silicon accounted for just over 90% of all power generated through 

PV [15]. The competing thin-film technology with the largest market share is CdTe. at 

5% of total PV energy generation[15]. There are many reasons for the popularity of 

silicon: as an element in the earth’s crust it is abundant, and is already used in the 

manufacturing of computer chips and other devices. Because of this, silicon has already 

been mined in large amounts. Silicon is also convenient as it can be doped to be both an 

n-type and p-type semiconductor, and can therefore form a homo-junction, negating the 

need for a second material.  

In silicon semiconductors, in momentum space, the highest point in the valence band is 

not directly below the lowest point in the conduction band. As a result, light is not 

readily absorbed in silicon because interaction with a phonon is necessary to 

successfully excite an electron into the conduction band from the valence band. 

Therefore, the absorber in silicon solar cells (or any technology based on a material with 

an indirect band-gap) must have a thick absorbing layer. Materials with direct band-

gaps can have much thinner absorbing layers [16]. Total absorption is achieved with 



Anti-reflection Coatings and Optical Interference in Photovoltaics 

6  Gerald Womack - June 2017 

~300µm and high purity silicon is needed for the manufacture of highly efficient cells. 

However, once electrons are in the conduction band re-absorption is just as difficult as 

the initial excitation. As a result, silicon PV is both inexpensive and efficient, which 

partly explains silicon PV’s stranglehold on the PV market. Multi-crystalline silicon has 

lower production costs when compared to mono-crystalline, but the addition of grain 

boundaries within the absorber creates opportunities for recombination of excited 

electrons, and thus results in a less efficient solar cell.  

Crystalline silicon devices have a theoretical maximum efficiency of 30%. The highest 

recorded efficiency of a mono-crystalline silicon solar cell in the AM1.5 spectrum is 

26.3% [17] and silicon PV is nearing the maximum possible cell efficiency of 29.8% 

[18]. The record efficiency for mono-crystalline silicon is high compared to other 

technologies, such as multi-crystalline silicon (20.8%), and thin film solar cells like 

Cu(InGa)Se2 (22.6%), and CdTe (22.1%)[17]. Considering the cost of maintenance and 

installation, in addition to the cost of the panel proper, the total cost of mono-crystalline 

silicon solar panels is ~$0.37/Wp. In contrast, multi-crystalline is slightly cheaper due 

to lower manufacturing costs at ~$0.35/Wp [19]. The price of PV has been reduced by a 

factor of 4 in just a few short years. As silicon is expensive to produce and reaching 

theoretical maximum efficiency, it is important to research alternative PV technologies 

to further reduce the cost per watt.  

Thin film solar cells, such as CdTe, offer high efficiencies- but unlike silicon cells, thin 

film technologies can be produced quickly and, thanks to a direct band-gap, offer low 

material usage for near complete photon absorption. The most prominent company to 

adopt CdTe as a commercial product is First Solar, Inc. As previously stated, CdTe 

devices offer efficiencies of 22.0% over a small area under standard test conditions. The 

highest recorded efficiency outside of standard test conditions is 22.1% [20], recorded 

by First Solar, Inc [21]. 

The CdTe solar cell is a thin film stack with a total thickness typically ~3µm. The 

standard CdTe stack consists of (from the bottom to the top): a back contact, the 

cadmium telluride (CdTe) absorbing layer, the cadmium sulphide (CdS) window layer, 

a buffer layer, and a transparent conducting oxide (TCO) layer. All of which is beneath 

a glass superstrate. For commercial modules, the layers are deposited on to a low-cost 

soda lime glass substrate pre-coated with a TCO. CdTe has a direct band-gap, so unlike 

silicon solar cells, photons are absorbed and directly excite electrons into the conduction 

band,  allowing for much thinner absorption layers in the CdTe stack compared to 
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traditional silicon cells. Additionally, the band-gap of cadmium telluride is near ideal 

and therefore has very high maximum theoretical efficiency. As CdTe is a p-type 

absorber and has a high electron affinity, CdTe devices require very high work function 

materials as back contacts. Unfortunately no common metals have work functions high 

enough [22]. This necessitates the use of expensive metals or doped common materials, 

such as NiO. 

1.4 Scope of this thesis 
PV technologies have a clear role in providing significant power to meet global 

demand. PV can be applied in many situations and is a clean and renewable source of 

energy, growing cheaper year-on-year. This consistent price drop is beneficial because, 

ultimately, PV energy needs to be as cheap as possible in order to compete with fossil 

fuel energy sources. Ideally, alternative energy should be so cheap it should not be 

considered an alternative at all, but the logical economic choice, no government 

incentivisations needed. To achieve cheaper solar panels, one or both of two things must 

be improved: the efficiency of the panels must be raised, or the cost of production must 

be lowered. 

The air-glass interface at the front of any mainstream PV technology is responsible for 

~4.23% loss of light into the cell. One way to improve the efficiency of PV technologies 

is by applying an anti-reflection coating (ARC) to reduce the amount of light reflected 

at said interface. The different kinds of ARCs and the physics behind the application of 

these coatings are described in full in Chapter 2, in addition to the effect of hydrophobic 

coatings on ARC performance. Chapter 3 describes the various deposition techniques 

involved in the deposition of both single layer and multilayer ARCs. Chapters 4 and 5 

consider the application of a multilayer anti-reflection coating to different PV 

technologies, with a focus on CdTe. ARCs applied to solar panels need to withstand all 

standard tests that assess the long-term survivability of solar panels. Durability testing 

and information regarding adhesion for ARCs can be found in Chapter 6. 

Another route to improve solar cell efficiency is through the optical optimisation of the 

layers within the cell. Destructive interference can be achieved between different layers 

within the stack to improve transmission to the absorber. In order to find optimal 

beneficial interference, the behaviour of light was predicted by the transfer matrix 

method, outlined in chapter 2, when varying the structure of PV technologies. Models 
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of the CdTe and perovskite stacks used to optimise each system optically are presented 

in Chapter 7. 
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2 ANTI-REFLECTION COATINGS 

Solar cell efficiencies can be increased by reducing optical losses, such as reflection and 

absorption. One of the most apparent sources of reflection loss in any PV system is the 

air-glass interface at the front of the module. Reflection reduces the photon flux into the 

cell by ~4.3%. The application of an anti-reflective coating (ARCs) addresses some of 

this loss of potential photocurrent.  

2.1 Design principles 
To design effective ARCs it is necessary to understand the nature of reflection. 

Reflection occurs at the interface between 2 materials of varying refractive indices. The 

percentage of incident light reflected depends on the angle of incidence at the interface, 

as well as the polarity of the light and the magnitude of the difference between the 

refractive indices of the respective layers. Reflectance can be described by the following 

equations derived from the Fresnel equations [23]: 

 
𝑅𝑅𝑠𝑠 = �

𝑛𝑛1 cos𝜃𝜃𝑖𝑖 − 𝑛𝑛2 cos 𝜃𝜃𝑡𝑡
𝑛𝑛1 cos𝜃𝜃𝑖𝑖 + 𝑛𝑛2 cos 𝜃𝜃𝑡𝑡

�
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�
2

 
( 2.2) 

Where n1 is the refractive index of the entrance medium, n2 is the refractive index of the 

exit medium, θi is the angle of incidence, and θt is the angle of transmitted light. ( 2.1 

and ( 2.2) represent s-polarised light and p-polarised light respectively.  
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Sunlight is unpolarised (an even mixture of different polarisations of light), so for the 

purposes of solar cell application, or any outdoor application, the following equation 

holds: 

 𝑅𝑅𝑇𝑇 =  
1
2

(𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑝𝑝) 
( 2.3) 

Where RT is the total reflection at the material interface; due to conservation of energy, 

any non-reflected light is transmitted; that is transmission equals 1 minus the reflection. 

2.2 The transfer matrix method 
It is possible to calculate the reflection and transmission of light through optical systems 

of varying complexity in several different ways [24]. It is common in thin film optics to 

calculate reflection by employing matrix methods. As the equations governing the 

propagation of the electric field are linear [25], and the tangential electric field is 

continuous at media interfaces [26], structures with distinct parallel-plane material 

interfaces and isotropic and homogenous layers can be described as a series of 2×2 layer 

matrices and interface matrices[24], [27]. Layer and interface matrices can be combined 

into a single ‘transfer matrix’ which takes both absorption and reflection into 

consideration. Transfer matrices can be resolved to find the transmission and reflection 

coefficient for an incident electric field.  

According to Leif A. A. Pettersson, each layer in the system is denoted by a “j” value 

(j=1, 2, 3…), and has a thickness of value dj [24]. The optical properties of a material 

are governed by the complex index of refraction nj=nj+ikj, where nj is the refractive 

index of material “j” and kj is the magnitude of the imaginary absorption coefficient. 

This refractive index of a system can be described in terms of a complex dielectric 

function and is a function of the energy of incoming light. The field (which includes 

light) within the material can be resolved into 2 components, one travelling in the 

positive “x” direction and one travelling in the negative direction. Each interface within 

an optical system can be described by the Fresnel complex reflection and transmission 

in an interface matrix, shown in equation ( 2.5). 

 
�
𝐸𝐸𝚥𝚥+�

𝐸𝐸𝚥𝚥−�
� = 𝐼𝐼𝑎𝑎𝑎𝑎 �

𝐸𝐸𝑘𝑘+�

𝐸𝐸𝑘𝑘−�
� 

( 2.4) 

 
𝐼𝐼𝑗𝑗𝑘𝑘 =

1
𝑡𝑡𝑗𝑗𝑘𝑘

�
1 𝑟𝑟𝑗𝑗𝑘𝑘
𝑟𝑟𝑗𝑗𝑘𝑘 1 � 

( 2.5) 



Chapter  2: Anti-reflection coatings 

Gerald Womack - June 2017   11 

Where rjk represents the Fresnel complex reflection and tjk represents the Fresnel 

complex transmission, at the interface between material “j” and “k”.  𝐸𝐸𝚥𝚥+�  and 𝐸𝐸𝚥𝚥−�  are the 

electrical field of the light propagating in the positive and negative x-direction through 

the material labelled ‘j’, respectively. When the electric field of the incoming light is 

perpendicular to the plane of incidence, the reflection and transmission coefficients are 

represented by equations ( 2.6) and ( 2.7) respectively.  

 

 𝑟𝑟𝑗𝑗𝑘𝑘 =
𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑘𝑘
𝑞𝑞𝑗𝑗 + 𝑞𝑞𝑘𝑘

 ( 2.6) 

 
𝑡𝑡𝑗𝑗𝑘𝑘 =

2𝑞𝑞𝑗𝑗
𝑞𝑞𝑗𝑗 + 𝑞𝑞𝑘𝑘

 
( 2.7) 

When the electric field of the incoming light is parallel to the plane of incidence, the 

reflection and transmission coefficients are described by equations ( 2.8) and ( 2.9). 

 

 
𝑟𝑟𝑗𝑗𝑘𝑘 =

𝒏𝒏𝑘𝑘2𝑞𝑞𝑗𝑗 − 𝒏𝒏𝑗𝑗2𝑞𝑞𝑘𝑘
𝒏𝒏𝑘𝑘2𝑞𝑞𝑗𝑗 + 𝒏𝒏𝑗𝑗2𝑞𝑞𝑘𝑘

 
( 2.8) 

 
𝑡𝑡𝑗𝑗𝑘𝑘 =

2𝒏𝒏𝑗𝑗𝒏𝒏𝑘𝑘𝑞𝑞𝑗𝑗
𝒏𝒏𝑘𝑘2𝑞𝑞𝑗𝑗 + 𝒏𝒏𝑗𝑗2𝑞𝑞𝑘𝑘

 
( 2.9) 

Where qj=nj cos(φj) and φj is the angle of refraction within layer ‘j’. The interface 

matrix does not describe the behaviour of light through the bulk of the material, so to 

describe many layered systems layer matrices must be used. The layer matrix of any 

given layer ‘j’, is described by equation ( 2.10). 

 

 

 𝐿𝐿𝑗𝑗 = �𝑒𝑒
−𝑖𝑖𝜁𝜁𝑗𝑗𝑑𝑑𝑗𝑗 0

0 𝑒𝑒𝑖𝑖𝜁𝜁𝑗𝑗𝑑𝑑𝑗𝑗
� ( 2.10) 

where 

 𝜁𝜁𝑗𝑗 =
2𝜋𝜋
𝜆𝜆
𝑞𝑞𝑗𝑗 

( 2.11) 

Where ζada is the phase thickness of the layer and “λ” is the wavelength of the light 

traversing the layer. Similar to a single interface matrix, the behaviour of light though 
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the entire system— from the entrance material to the exit material— can be described 

by the combination of layer and interface matrices. The resultant matrix is known as the 

transfer matrix, defined in equation ( 2.12). 

 
𝑺𝑺 = �𝑆𝑆11 𝑆𝑆12

𝑆𝑆21 𝑆𝑆22
� = ��𝐼𝐼(𝑛𝑛−1)𝑛𝑛𝐿𝐿𝑛𝑛

𝑚𝑚

𝑛𝑛=1

� ∙ 𝐼𝐼𝑚𝑚(𝑚𝑚+1) 
( 2.12) 

The complex reflection and transmission coefficients for the entire system can be 

expressed in terms of the matrix elements of the transfer matrix shown in equation 

( 2.12), so: 

 
𝑟𝑟 =

𝐸𝐸0−�

𝐸𝐸0+�
=
𝑆𝑆21
𝑆𝑆11

 
( 2.13) 

 
𝑡𝑡 =

𝐸𝐸𝑚𝑚+1
+�

𝐸𝐸0+�
=

1
𝑆𝑆11

 
( 2.14) 

Using this technique, it is possible to calculate the internal electric field in any given 

layer within a system by considering the transfer matrices for the system either side of 

the layer of interest. So the transfer matrix can be written: 

 
�𝐸𝐸0

+�

𝐸𝐸0−�
� = 𝑆𝑆𝑗𝑗′ �

𝐸𝐸′𝚥𝚥+�

𝐸𝐸′𝚥𝚥−�
� 

( 2.15) 

 
𝑺𝑺𝒋𝒋′ = �

𝑆𝑆′𝑗𝑗11 𝑆𝑆′𝑗𝑗12
𝑆𝑆′𝑗𝑗21 𝑆𝑆′𝑗𝑗22

� = ��𝐼𝐼(𝑛𝑛−1)𝑛𝑛𝐿𝐿𝑛𝑛

𝑗𝑗−1

𝑛𝑛=1

� ∙ 𝐼𝐼(𝑗𝑗−1)𝑗𝑗 
 

( 2.16) 

Where 𝐸𝐸′𝚥𝚥+�  and 𝐸𝐸′𝚥𝚥−�  denotes the electric field within layer j at the (j-1) to j layer 

boundary, in the positive and negative x-direction respectively. For the system after the 

j-layer the partial transfer matrix is:  

 
�
𝐸𝐸′′𝚥𝚥+�

𝐸𝐸′′𝚥𝚥−�
� = 𝑆𝑆𝑗𝑗′ �

𝐸𝐸𝑚𝑚+1
+�

𝐸𝐸𝑚𝑚+1
−�� 

( 2.17) 

 
𝑺𝑺′𝒋𝒋′ = �

𝑆𝑆′′𝑗𝑗11 𝑆𝑆′′𝑗𝑗12
𝑆𝑆′′𝑗𝑗21 𝑆𝑆′′𝑗𝑗22

� = � � 𝐼𝐼(𝑛𝑛−1)𝑛𝑛𝐿𝐿𝑛𝑛

𝑚𝑚

𝑛𝑛=𝑗𝑗+1

� ∙ 𝐼𝐼𝑚𝑚(𝑚𝑚+1) 
 

( 2.18) 

Where 𝐸𝐸′′𝚥𝚥+�  and 𝐸𝐸′′𝚥𝚥−�  are the electric field inside the j-layer at the j to (j+1) layer 

boundary, in the positive and negative x-direction respectively. The Fresnel complex 
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reflection and transmission coefficients in terms of matrix elements are then defined as 

such: 

 
𝑟𝑟′𝑗𝑗 =

𝑆𝑆𝑗𝑗21′

𝑆𝑆𝑗𝑗11′
 

( 2.19) 

 𝑡𝑡′𝑗𝑗 =
1
𝑆𝑆𝑗𝑗11′

 
( 2.20) 

 
𝑟𝑟′′𝑗𝑗 =

𝑆𝑆𝑗𝑗21′′

𝑆𝑆𝑗𝑗11′′
 

( 2.21) 

 𝑡𝑡′′𝑗𝑗 =
1
𝑆𝑆𝑗𝑗11′′

 
( 2.22) 

From the combination of equations ( 2.13)-( 2.22) we can derive the internal transfer 

coefficient for the electric field in the positive x-direction at the (j-1) to j interface. 

Shown below: 

 

And the electric field in the negative x-direction at the same interface: 

From equations ( 2.23) and ( 2.24), the entire electric field inside a given layer within the 

system can be derived [24], [27]. In terms of distance from the (j-1) to j boundary, “x”, 

and the electric field of the incident plane, “𝐸𝐸0+� ”, in the region 0≤x≤dj, the electric field 

is given by: 

Using 

the 

transfer 

matrix 

method, 

the transmission of photons through a stratified system can be calculated. This is useful 

𝑡𝑡𝑗𝑗+ =
𝐸𝐸𝚥𝚥+�

𝐸𝐸0+�
=

𝑡𝑡𝑗𝑗′

1 − 𝑟𝑟𝑗𝑗−1′ 𝑟𝑟𝑗𝑗′′ ∙ 𝑒𝑒
𝑖𝑖2𝜁𝜁𝑗𝑗𝑑𝑑𝑗𝑗

 
( 2.23) 

   𝑡𝑡𝑗𝑗− =
𝐸𝐸𝚥𝚥−�

𝐸𝐸0−�
=

𝑡𝑡𝑗𝑗′𝑟𝑟𝑗𝑗′′ ∙ 𝑒𝑒𝑖𝑖2𝜁𝜁𝑗𝑗𝑑𝑑𝑗𝑗

1 − 𝑟𝑟𝑗𝑗−1′ 𝑟𝑟𝑗𝑗′′ ∙ 𝑒𝑒
𝑖𝑖2𝜁𝜁𝑗𝑗𝑑𝑑𝑗𝑗

= 𝑡𝑡𝑗𝑗+𝑟𝑟𝑗𝑗′′ ∙ 𝑒𝑒𝑖𝑖2𝜁𝜁𝑗𝑗𝑑𝑑𝑗𝑗 
( 2.24) 

 𝐸𝐸𝚥𝚥� (𝑥𝑥) = 𝐸𝐸𝚥𝚥+� (𝑥𝑥) + 𝐸𝐸𝚥𝚥−� (𝑥𝑥)  

 = [𝑡𝑡𝑗𝑗+𝑒𝑒𝑖𝑖𝜁𝜁𝑗𝑗𝑥𝑥 + 𝑡𝑡𝑗𝑗−𝑒𝑒−𝑖𝑖𝜁𝜁𝑗𝑗𝑥𝑥]𝐸𝐸0+�  ( 2.25) 

 = 𝑡𝑡𝑗𝑗+[𝑒𝑒𝑖𝑖𝜁𝜁𝑗𝑗𝑥𝑥 + 𝑟𝑟𝑗𝑗′′𝑒𝑒−𝑖𝑖𝜁𝜁𝑗𝑗(2𝑑𝑑𝑗𝑗−𝑥𝑥)]𝐸𝐸0+�   



Anti-reflection Coatings and Optical Interference in Photovoltaics 

14  Gerald Womack - June 2017 

for predicting the effectiveness of ARCs (particularly multi-layer ARCs) due to their 

complexity. Another application is calculating the transmission to the absorbing layer of 

a solar cell. 

The transfer matrix method has been implemented fully in a software package, 

‘Essential MacLeod’[28], which has been used to calculate the transmission and 

reflection of optical systems throughout this thesis. Single layer AR 

Different techniques can be implemented to create effective ARC designs. The simplest 

ARC is a single layer index matching coating. Index matching involves a coating with 

an interstitial refractive index with a value between the refractive index of glass and air. 

Single layer coatings create an antireflection effect through a combination of two 

separate effects. 

Independent of the wavelength of light and the thickness of the coating, small changes 

in refractive index will always result in less reflection than that of one large step change 

in refractive index. If, the refractive index gradually changed from the refractive index 

of one medium to the refractive index of the other medium at a material boundary, there 

would be no reflection at all. The ideal refractive index of a coating to maximise 

transmission was first derived by Lord Rayleigh[29]. The ideal refractive index for a 

single-layer ARC, with clearly defined step changes in refractive index, is the square 

root of the refractive index of the exit medium multiplied by the square root of the 

refractive index of the entry medium [30]: 

 𝑛𝑛𝑐𝑐 = �𝑛𝑛1𝑛𝑛2 ( 2.26) 

Where nc is the refractive index of the coating, n1 is the refractive index of the entrance 

medium, and n2 is the refractive index of the exit medium. In the case of an air-glass 

interface, assuming the refractive index of glass is ~1.5, the ideal refractive index for a 

single layer ARC is ~1.22. 

The second form of single layer antireflection is achieved through the manipulation of 

different reflections to create destructive interference, between the glass-coating 

interface and the coating-air interface. As shown in Figure  2.1, the ideal thickness of 

interference based single layer coatings is a quarter the wavelength of incident light. As 

the thickness of a coating can only be a quarter of a single wavelength, the effectiveness 

of single layer ARCs is greatest around a single wavelength. Additionally, as the path 

length through the single layer ARC depends on the path taken through the coating, 

destructive interference is most effective at a single angle of incidence. 
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Figure  2.1: Destructive interference in a single layer AR coating 

The lowest refractive index of any solid is magnesium fluoride (MgF2) with a refractive 

index of 1.32 at 550nm on the electromagnetic spectrum [31]. The use of a quarter 

wavelength thick layer of MgF2 provides an effective ARC on glass. 

An alternative material to MgF2 for single layer ARCs is sol-gel processed porous silica 

coatings. In porous coatings, materials of lower refractive index, usually air, are 

introduced into the coating to artificially reduce the refractive index of the coating. The 

refractive index of sol-gel ARCs can be as low as 1.08 [32]. However as sol-gel 

coatings are so highly tuneable the refractive index of sol-gel ARCs can be chosen to fit 

the requirements based on the entrance and exit media at the interface. This brings the 

refractive index closer to the ideal index of 1.22. SiO2 has a low refractive index. 

Although materials with lower refractive indices exist (such as the previously 

mentioned MgF2), SiO2 retains greater mechanical strength as void percentage is 

increased than competing materials of lower refractive indices.  

Sol-gel derived coatings are an attractive choice for many reasons. Sol-gel ARCs have a 

high manufacturing speed and low production costs. It is also possible to use many 

different precursor materials [33]–[35]. Due to these characteristics, sol-gel is suitable 

for mass production. An attractive property of sol-gel coatings is that they can possess  

a variety of useful functions simultaneously [36], such as hydrophobicity and scratch 

resistance. However, improving the coating adhesion or hydrophobicity usually has an 

adverse effect on the optical properties of the coating.  

Porous silica (SiO2) is the most commonly used material in single layer ARCs deposited 

through the sol-gel method. It is also possible to control many aspects of sol-gel 

deposition, providing greater control over the dimensions of microstructures in sol-gel 

surfaces. This includes surface area, void radius, and volume [37]. 
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2.3 Multilayer AR 
Multilayer AR (MAR) coatings, similarly to interference based single layer ARCs, use 

the interference of light at medium boundaries to create destructive interference. This 

reduces reflection at the air-glass interface, thereby improving transmission through the 

surface. A schematic diagram of a typical MAR coating design is shown in Figure  2.2. 

The structure of the MAR alternates between high and low refractive index materials. 

The low index material used is almost always thin film silicon dioxide (SiO2) with a 

refractive index of ~1.46 at 550nm. There are several candidate materials for the high 

index layers, including zirconium dioxide (ZrO2 ~2.23), titanium dioxide (TiO2 ~2.23), 

and hafnium oxide (HfO2 ~1.93). The thicknesses of the layers in the design are 

manipulated to cause destructive interference on a scale similar to the wavelength range 

of the light being captured. Consequently, the thicknesses of layers, when changed 

slightly, can have a considerable effect on the effectiveness of the MAR coating. 

Therefore, deposition methods capable of reliably producing flat, smooth surfaces of 

deposited material, ion beam sputtering[38], ion assisted electron beam evaporation[38] 

and magnetron sputtering [39]), are necessary when manufacturing MAR coatings. 

 

Figure  2.2: Schematic diagram of a generic 4-layer MAR coating on glass. 

The greater the number of layers in an MAR design, the greater the reduction in 

reflection. However, a more layered design means more stages in the deposition process 

(which means greater cost and manufacturing time), and a thicker, possibly less stable 

coating.  

2.4 Textured AR Coatings 
Surfaces can be modified through etching or deposition to produce 3-dimensional 

pyramidal structures, grooves, or other structures to produce an anti-reflection effect 

[40]. Interestingly, when considering the light of wavelengths larger, smaller, or of 
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equivalent size to the surface structures, the reflection reduction is explained by 

different mechanisms.  

Large wavelengths interact with the surface as if it were a gradient of refractive index. 

Reflection is therefore reduced considerably across a broad range of angle of incidence. 

Wavelengths of light smaller than the structure size are reflected in many directions as 

they impinge on surfaces on the structures[41]. Most paths lead into the desired 

medium, and traces leading back to the source are comparably rare when compared to 

smooth bare glass. Reflection in the case of smaller wavelengths can be calculated using 

ray tracing, as the system utilises simple optical geometry in these conditions[42]. 

 

 

2.5 Addition of Hydrophobic Coating 
ARCs are sometimes susceptible to water ingress, which lowers the effectiveness of the 

AR by changing the refractive index of the coating. A coating that holds water is also 

more likely to degrade faster over time from erosion and mineral deposition. The 

application of an additional hydrophobic layer can address water related weathering in 

ARCs susceptible to water ingress. Hydrophobic coatings can be modified porous silica, 

which has some AR properties [43], [44]. Alternatively, a very thin layer of a material 

detrimental to the AR properties of the system can be used. The layer must be very thin 

to minimise interference with the ARC.  Layers 100 times smaller than the wavelength 

of light being transmitted through the system have a negligible effect on the 

transmission. For example, if the ARC is designed to increase the transmission of light 

in the wavelength range of 350-850nm, it would be beneficial to deposit a hydrophobic 

layer below 3.5nm in thickness. Therefore, it is possible to add a small hydrophobic 

material with poor optical properties without destroying the effectiveness of the ARC. 

Texturing the ARC can lead to hydrophobic properties, potentially removing the need 

for an additional layer for certain ARC technologies [45]. 
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3 DEPOSITION TECHNIQUES 
FOR THIN FILMS 

The deposition of anti-reflective coatings and the internal layers of PV technologies can 

be achieved in a myriad of ways, including physical and chemical methods. The 

properties of a thin film are determined by the deposition method used in production. 

When choosing an appropriate deposition technique used to produce the layers of PV 

technologies, the opto-electrical properties of the film must be taken into consideration. 

In the case of AR coatings, both the optical properties and the mechanical durability of 

the coatings need to be considered. Chemical methods are predominately performed in 

atmospheric conditions and involve chemical precursors reacting to produce the desired 

material to be deposited. Chemical vapour deposition (CVD) can be used to deposit the 

transparent conducting oxide (TCO) layer of PV technologies. This deposition is 

performed at the end of the glass production line while the substrate is still hot [46]. The 

heat aids in the deposition of the TCO as the deposited materials need to be in the 

vapour phase to adhere successfully to the surface of the substrate. An alternative 

chemical method similar to CVD is spray pyrolysis. The main difference between the 

two deposition methods is the phase of the deposited matter; in contrast to the vapour 

phase of CVD, spray pyrolysis deposits liquid phase precursors. Chemical methods 

have a history of poor control over the chemical composition of produced films due to 

precursor impurities and because they are performed in atmospheric conditions. 

However these difficulties have been overcome in the certain cases, such as Pilkington 
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TEC glass [46]. Screen printing, electrospray and doctor blading are other atmospheric 

techniques less relevant to this thesis [5], [47], [48]. 

An alternative form of deposition commonly used in the manufacturing of thin film PV 

technologies (such as CdTe and CIGS) is physical deposition techniques, performed in a 

vacuum. Physical deposition techniques provide films of greater and more consistent 

quality in comparison to chemical deposition techniques. This is because physical 

deposition takes place in a vacuum. For example, in the case of sputtering, the chamber 

is pumped down to a high vacuum and then an inert gas is introduced to the system, 

raising the pressure to a low vacuum of ~5mbar. This means that the only possible 

impurities in the deposited films come from contamination of the sample, system, or the 

target. When taking precaution and correctly sourcing targets, these sources of 

contamination can be easily minimised. Other physical deposition techniques include: 

thermal and electron beam evaporation, ion assisted electron beam evaporation, ion 

beam sputtering, close space sublimation (CSS), Vapour Transport Deposition (VTD), 

and magnetron sputtering [49]–[54]. 

3.1 Thin film deposition methods 

3.1.1 Reactive Magnetron Sputtering 
In this work, magnetron sputtering was used as a deposition method of thin film multi-

layered AR Coatings. Sputtering is a process involving the bombardment of a solid 

target with energetic gaseous ions to eject material from the surface of the target [55]. 

After the material is ejected, it travels typically ~10cm where it condenses as a thin film 

on a substrate, see Figure  3.1.  

In magnetron sputtering, the target is a cathode and the substrate is an anode, typically 

grounded or electrically floated. The target is held at a negative potential, a voltage 

pulse is used to induce ionisation in the argon atoms and a plasma is then formed. This 

creates a potential difference between the negatively charged target and the positively 

charged argon ions, and accelerates the ions towards the target for bombardment. As 

atoms and fragments are ejected from the target, secondary electrons are also emitted 

from the surface. Such electrons are confined to the surface of the target by a magnetic 

field, preventing damage to the target from high energy electrons. Free electrons on the 

surface collide with argon atoms, creating argon ions and sustaining the plasma. The 

electrons can also collide with argon ions and form a neutral atom. In the event of an ion 
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accepting a free electron, a photon is emitted which results in the glow of the plasma. 

Theoretically, when sputtering is performed in a perfect vacuum the ejected particles 

travel in a straight line to the substrate. The particles then condense onto the substrate, 

which is commonly glass but can be any material needed. The direct high energy impact 

of sputtered material onto condensed material on the substrate can cause resputtering of 

the deposited material from the substrate.  When an inert gas is introduced into the 

system, the ejected matter interacts more with the gas in the chamber. The particles 

therefore arrive at the substrate, or on the sides of the vacuum chamber, after a random 

walk with reduced kinetic energy. The percentage of particles that make a direct impact 

with the substrate and the percentage that interact with the vacuum chamber gas can be 

controlled by manipulating the pressure within the chamber, effectively changing the 

mean free path of particles through the gas, this in turn allows the deposition energy to 

be manipulated. Ideally, the energetic particles used for bombardment should have a 

similar atomic weight to those in the target material, allowing for efficient transfer of 

kinetic energy. 

 

Figure  3.1: Schematic diagram of the apparatus used in magnetron sputtering, 

showing magnets and magnetic field lines. 

Reactive magnetron sputtering involves the introduction of a reactive gas [56], such as 

oxygen or nitrogen, into the deposition plasma typically present during magnetron 

sputtering. The added gas becomes chemically active during the deposition process 

through excitation by the existing plasma. The reactive gas then reacts with the surface 

of the target, altering its chemical makeup before sputtering. The gas also reacts with 
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the growing film on the surface of the substrate. This allows for composition control of 

deposited films, allowing for the production of nitrides, carbides, and, in the case of this 

work, oxides[57]. The reactive sputtering process allows for the control of the structure 

and chemical composition of thin films. 

3.2 Solution Gelation 
An option for AR production is solution gelation (sol-gel) processing. Sol-gel involves 

the mixtures of a solution that, through an applicatory process, goes through a gelation 

process on a substrate, forming a coating. Sol-gel has many possible precursor materials 

[35], [58], [59], has a high manufacturing speed, and has a low production cost. Due to 

these characteristics, sol-gel is suitable for mass production. Sol-gel coatings can have a 

variety of functions simultaneously [36]. Porous silica (SiO2) is the most common 

material used in single layer AR coatings deposited through the sol-gel method. SiO2 

has a low refractive index (n<1.45) and although materials with lower refractive indices 

exist, (e.g. magnesium fluoride) SiO2 retains greater mechanical strength as void (air 

pocket within the film) percentage is increased, than competing materials of lower 

refractive indices. It is also possible to control many aspects of sol-gel deposition, 

which provides greater control over the dimensions of microstructures in sol-gel 

surfaces, such as surface area, void radius and volume [37]. 

Due to the vast array of possible Sol-Gel solutions, the characteristics of sol-gel 

coatings vary greatly. Many different AR coatings have useful properties, such as 

hydrophobicity and antistaticity [60]–[62]. The reflectance, transmittance, and 

absorption of coatings, when well designed, depend on the intended use of the coating. 

Given a suitably designed coating, Sol-Gel can reduce reflectance at air-glass interfaces 

to about 0.6% for many wavelength ranges. AR coatings with sufficient adhesion and 

mechanical strength have been produced on both glass and plastic [63]. 

3.2.1 Dip coating 
In this work, dip coating was used to deposit basic sol-gel coatings for comparison 

against commercial sol-gel, and high vacuum, physical deposition techniques. Dip 

coating has three distinct stages: Substrate immersion in the solution to be deposited, 

substrate removal from the solution, and a curing stage, as can be seen in Figure  3.2. 

The thickness of the resulting film is controlled by several competing forces; drag 

upwards on the solution from the substrate as it moves upwards, the gravitational force 
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downwards, the surface tension of the solution, viscosity, ambient temperature, 

humidity, and the disjoining and conjoining pressure of the solution. 

 

Figure  3.2: The stages of the dip coating process: The substrate is dipped into a sol, 

the substrate is then removed from the sol forming a wet layer coating, the coating 

is then left to dry and condense into a gel. 

In cases where the solutions viscosity is low and the substrate is removed at a 

sufficiently slow speed the resulting coating has a thickness (h) that can be expressed by 

the equation below: 

 
ℎ =

0.94(𝜂𝜂𝜂𝜂)
2
3

𝛾𝛾LV
1
6 (𝜌𝜌𝜌𝜌)

1
2

 
( 3.1) 

Where η is the solution viscosity, U is the substrate withdrawal speed, ρ is the density of 

the solution and γLV is the liquid-vapour surface tension.  This equation was derived by 

Landau and Levich and verified by Brinker and Scherer [37]. The accuracy of this 

equation in the context of acid catalysed silicate sol was confirmed to be in accordance 

with experimental results by James and Strawbridge [64]. 

The dip coating method is the most common technique used in sol-gel thin film 

deposition. The ubiquity of the dip coating method can be explained by the flexibility of 

the procedure. Substrates can be of many different shapes and sizes— the only 

requirement of a substrate is that is can be dipped into the solution. Dip coating can coat 

substrates on the order of square meters in surface area. Substrates can be dipped while 

other substrates are concurrently lifted from the solution, or run in batches that enter and 

leave the solution simultaneously. 
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3.2.2 Spin coating 
Spin coating involves applying an excess of the solution to slowly spinning or stationary 

substrate. The substrate is then rotated at an accelerated pace, pushing the deposited 

material to the outer edge of the substrate by means of centrifugal force, where it 

collects and leaves the substrate. As the film gets thinner, the rate of thickness change 

decreases. The film thins further during spin down and then through evaporation and 

solidification as any solutes and particulates concentrate. A diagram of this can be seen 

in Figure  3.3 below. 

 

Figure  3.3: The spin coating process: 1. An excess of sol is applied to the substrate, 

2. The substrate is spun and excess sol is removed by way of the centrifugal force, 

3. The coating thins further as the substrate spins slower and stops through 

evaporation, 4. The coating is deposited and condensed after annealing. 

Damon and Kodak  modelled the film thickness of a sample deposited by spin coating 

to simply be [65]: 

 
ℎ =

𝑘𝑘𝑐𝑐02

𝑓𝑓
1
2

 
( 3.2) 

Where h is the thickness of the coating, on a spinner platform rotation rate of f, with an 

initial solids concentration of the solution. To give greater detail, the films thickness is 

determined predominantly by the following equations during the rotation of the 

substrate (spinoff). As shown by Meyerhofer [65]. 
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Where hspinoff is the resulting height at any point during spinoff without an evaporation 

phase, and tspinoff is the time needed to attain the desired film thickness. ρA is the density 

of volatile solvent within the solution ρA0 is the initial density, and e is a constant 

evaporation rate, ω is the angular velocity of the substrate, and μ is the solutions 

viscosity. After the spinoff stage, the evaporation stage begins. After evaporation is 

complete, a given film’s thickness is determined by the following equations: 

 
ℎfinal = �1 −

𝜌𝜌𝐴𝐴0
𝜌𝜌𝐴𝐴

� �
3𝜇𝜇𝑒𝑒
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( 3.5) 

 𝑡𝑡final = 𝑡𝑡spinoff + ℎspinoff
𝜌𝜌𝐴𝐴0
𝑒𝑒𝜌𝜌𝐴𝐴

   ( 3.6) 

Using equations ( 3.3( 3.6 allows for the deposition of films of particular thicknesses in a 

standardised predictable manner, with little waste in comparison to dip coating. Dip 

coating requires the substrate to be placed into a volume of deposition solution, whereas 

spin coating only requires the amount of solution necessary to cover the platform. 

 

3.2.3 Meniscus coating 
The meniscus coating method involves forcing the coating solution through a porous 

metal applicator tube, resulting in a thin film over the surface of the applicator. The 

applicator tube is then lowered to the substrate until the film is only just touching the 

substrate, forming a meniscus. The substrate is then moved relative to the applicator and 

a liquid film is deposited and, after drying, a gelled film. The main benefit to this 

method of deposition is the minimal wastage of coating solution. The thicknesses of 

films deposited using the meniscus coating method are dependent on the substrates 

translation rate, suspension viscosity, geometry, and film flowrate [66]. 

Both meniscus and spin coating are attractive deposition methods and have benefits, 

such as solution efficiency and precision. However, due to constraints in available 
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equipment and time, only dip coated chemically deposited coatings are investigated in 

this thesis. 

3.3 Industrial Sol-Gel coatings 
Both chemical and physical coatings were deposited for this work, specifically dip 

coating method and reactive magnetron sputtering. In chapter 6, a comparison is drawn 

between the mechanical and anti-weathering properties of MAR coatings deposited by 

magnetron sputtering, and single layer porous silica AR deposited through sol-gel 

processes (such as dip and spin coating). However, the dip coated basic sol-gel coatings 

created for this work were highly friable. Therefore for this comparison, ‘AR1’ from 

Prinz Optic®, a single layer AR that utilises an inverted porous silica structure, has been 

used as a commercial bench mark. This section describes the science and deposition of 

coatings like AR1 that use the method created by DSM®. 

3.3.1 Porous Silica and Nano Spheres 
Voids within a coating help to reduce the refractive index of any given layer. As the 

lowest refractive index of any known solid material is in the region of 1.35[67], 

implementing air pockets in the coating allows the refractive index to more closely 

approach that of air.  This results in a reduction of reflection at the coating – air 

interface. 

The refractive index of silicon can be varied greatly through oxidation and the inclusion 

of voids within the film. Unfortunately, achieving useful refractive indices, such as 

n=1.3, has proven difficult. The initial porosity in a pure silica film before oxidisation 

(that, when oxidised, results in a silica film of n=1.3) is around 70%. This high 

percentage of voids meant that early attempts at low refractive index films resulted in 

mechanically weak samples. In addition, the production of lower porosity films has 

proved more difficult than anticipated, as oxidation processes close smaller voids. This 

further complicates the production and marketing of viable Sol-Gel AR coatings [68]. 

Theoretically, the resulting refractive index of any given film of certain porosity can be 

calculated using equation ( 3.7 seen below: 

 
𝑛𝑛𝑐𝑐 = �𝜑𝜑𝑝𝑝𝑛𝑛𝑃𝑃2 + (1 −  𝜑𝜑𝑃𝑃)𝑛𝑛𝑎𝑎2�

1
2,

𝑑𝑑𝑝𝑝
𝜆𝜆
≪ 1 

( 3.7) 

Where nc is the refractive index of the coating, np is the refractive index of the particles 

making up the bulk of the film, na is the refractive index of the void gas (most likely 
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air), φP is the volume fraction of particles in the coating, dp is the maximal particle 

diameter, and λ is the wavelength of light relevant to the refractive indices. (dp)/λ≪1 is a 

condition on the equation, and if not met renders the equations inaccurate.  This is 

because the voids are of the same order of magnitude as the wavelength of the incident 

light, the amorphous refractive index interfaces cause diffraction and therefore increase 

the length that light must travel through the coating, resulting in greater absorption [68]. 

Silica based coatings have shown to reduce reflection by up to 88%, by mixing different 

sized silica particles in the sol. 

The manipulation of refractive index by the application of voids within a film was first 

patented in 1949 by American Optical Corp. The patent’s title describes the idea as: 

“[A] Method of producing thin micro-porous silica coatings having reflection reducing 

characteristics and the articles so coated”. The proposal to apply this technology to glass 

to create a low reflectance glass was first patented by Nicoll Frederick H in 1951[69]. 

After the concept of a chemically derived porous antireflective coating was first 

suggested, it took 50 years before the first commercially available AR using the 

technology was marketed. Low academic interest, low resistance to weathering, and 

difficulties in coating method scaling, coating adhesion, and mechanical stability 

contributed to this delay [70]. 

3.3.2 DSM Hard Coat 
In 2003, DSM filed a patent for a newly developed coating technology. This new 

method results in coatings that are mechanically robust and durable in interior and 

exterior environments [71]. This technology has been applied to museum display glass 

to reduce unwanted glare and to provide greater visibility of displayed items. DSM’s 

display glass has been commercially available under the product name Claryl since 

2007. The coating method utilises silica nano spheres to support the voids so they do 

not close during processing; and low refractive index silicon resins (n<1.35) to produce 

antireflective films. The structure of hard coats can be seen in Figure  3.4. 
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Figure  3.4: Comparison of a traditional nano-porous sol-gel coating and a silica 

shell/resin coating. 

Traditionally, sol-gel anti-reflective coatings have consisted of masses of nanoparticles 

in amorphous shapes. By manipulating the ratio of abundance between specific 

compounds within the layer, it is possible to grade the refractive index of subsequent 

layers using traditional sol-gel methods. Coatings produced through the method 

developed by DSM implement silica shells, which have hollow cores and gaps between 

the shells which are filled with a silica binder. The performance of such coatings as 

reported by DSM, using khepricoat as an example can be seen in Figure  3.5. This 

effectively inverts the traditional structure, allowing the top of the coating to have fewer 

bumps and therefore lower surface area. This also allows the coating to retain structural 

integrity at greater void percentages.  

 

Figure  3.5 The transmittance of uncoated glass compared to the transmittance of 

Khepricoat coated glass between 300 and 2500nm wavelength. Taken from 

Innovation at DSM: State of the Art Single Layer Anti-Reflective Coatings for 

Solar Cell Cover Glass [72]. 
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Khepricoat has undergone several tests to establish that the coating is robust. The 

coatings have undergone the following tests specifically: abrasion resistance (EN 1096-

2), damp-heat (IEC 61215), humidity-freeze (IEC 61215), and thermal cycling (IEC 

61215). The samples withstood all tests with minimal reduction in optical efficiency 

resulting in a loss of about 0.5% of the total inward flux. Damp heat tests were carried 

out at PI Berlin and showed a consistent transmission gain regardless of the duration of 

the test up to 1500 hours. 

 

3.4 Glass substrate preparation 
Soda-lime glass (SLG) substrates are used often throughout this thesis, as a deposition 

substrate and as a standard material used for modelling the glass layer within solar 

stacks. The SLG substrates (Menzel-Gläser, Germany) used to deposit both physical 

and sol-gel AR coatings, were 1mm thick with very low iron content.  This gives the 

glass a transmission of over 90% across the usable PV wavelength range. Before 

deposition, the substrates were scrubbed and then cleaned in an ultrasonic bath with a 

50%-50% solution of de-ionised (DI) water and isopropyl alcohol. The substrates were 

then removed from the solution, cleaned, and stored in DI water until ready for 

deposition. A pure nitrogen gun was used to dry the samples before deposition. This 

method gives exceptionally clean substrates fit for deposition, resulting in high quality 

films. The samples of AR1, a commercially available sol-gel AR coating from Prinz 

Optics, were prepared in a separate laboratory and so the cleaning method for these 

samples is unknown. However, it is the authors’ opinion that the samples were prepared 

in such a manner to give the best quality films. 
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4 APPLICATION OF ANTI-
REFLECTION COATINGS TO 
THIN FILM CDTE 

CdTe has a band-gap that is close to the ideal (~1.45eV) for photovoltaic devices which, 

after considering absorption in the glass substrate, results in a wavelength range of 

350nm-850nm. This places the useable wavelength range of CdTe at a midpoint 

compared to other PV technologies. In this chapter, anti-reflection coatings fabricated 

using reactive sputtering and sol-gel techniques both designed for thin film CdTe 

devices are examined and compared optically.  

The first part of this study examines the effectiveness and optimisation of MARs for 

CdTe devices. The coatings are initially modelled and optimised. Once materials are 

chosen and the coating is optimised, the coatings are deposited using reactive 

magnetron sputtering and their performance measured using spectrophotometry. The 

second part of this study considers the performance of basic porous silicon sol-gel and 

commercially available sol-gel coatings for CdTe devices. These are deposited through 

dip coating and a sol-gel technique respectively. 

4.1 Thin film MAR coatings for CdTe 
Thin Film CdTe, like all PV modules, experience reflection losses due to the difference 

between the refractive index of the glass superstrate and the air. The front surface 

reflections are responsible for losses of over 4% of the incident light. The reflection 
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losses can be reduced by the application of an anti-reflection (AR) coating. The simplest 

option is to deposit a single layer refractive index, matching AR with a material with a 

low refractive index.  MgF2 has a low refractive index (n=1.34  at 550nm)[31].  A thin 

film of MgF2 provides an effective AR coating over a narrow range of wavelengths.  

However, MgF2 is a soft material and suitable for laboratory use only. Porous silica is 

another single layer option, although long-term stability can be an issue for this type of 

coating due to potential problems with water ingress[73]. Multilayer anti-reflection 

coating (MAR) is a more complex design, but is effective over a broader wavelength 

range.  The design of a MAR is based on high/low refractive index material pairs and 

does not require a material with a refractive index lower than glass. 

4.1.1 Coating Design Principles 
The design of a broadband anti-reflection coating uses a combination of materials with 

low and high refractive index. The low index material is always thin film Silicon 

dioxide (SiO2), with a refractive index of ~1.46 at 550nm. A wide choice of materials is 

available for the high index thin films, which are listed in Table  4.1 with their important 

optical and mechanical properties. The choice of high index material depends on the 

application, but there is often a compromise between optical properties, durability, and 

cost.  As solar modules must last a long time in the outdoors, possibly in extreme 

weather conditions, durability is essential.  For this reason, we have chosen to use 

zirconium dioxide (ZrO2) for fabrication of MAR coatings, because it has exceptional 

scratch resistance and is relatively abundant and cost effective.. The refractive index 

dispersion of thin films of zirconia and silica used for the MAR coating deposition is 

shown in Figure  4.1. The dispersion was measured by spectroscopic ellipsometry. 
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Figure  4.1: The refractive index dispersion of (A) ZrO2 and (B) SiO2 used for the 

MAR deposition. 

However, titanium dioxide (TiO2) and other candidate materials are also considered 

here from a purely modelling standpoint. The optical and thermal properties of these 

materials are presented in Table  4.1. 
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Table  4.1: The optical constants and important mechanical properties of candidate 

high index materials for use in MARs. 

Material  Coefficient 
of thermal 
expansion 
(10-6/C) 

Hardness – 
Vickers (GPa) 

Refractive 
index (n) at 
550nm 

Extinction 
Coefficient (k) 
at 550nm 

Silicon Dioxide 
(SiO2) 

0.4 [74] ~12.4 [75] 1.46 0 

Zirconium 
Dioxide (ZrO2) 

13.5 [76] ~13.0 [77] 2.23 0 

Titanium 
Dioxide-anatase 
(TiO2-a) 

8.6 [78] ~11.0 [75] 2.49 0 

Titanium 
Dioxide -rutile 
(TiO2-r) 

8.4 [78] ~12.0 [79] 2.61 0 

Hafnium-Oxide 
(HfO2) 

5.9 [80] ~14.7 [81] 1.93 0 

Tantalum 
Pentoxide 
(Ta2O5) 

3.0 [82] ~13.7 [81] 2.15 0 

Niobium 
Pentoxide 
(Nb2O5) 

~3.0 
(similar to 
Ta2O5)[82] 

~15 [80] 2.32 0 

The MAR requires accurate control of each layer thickness to maximize destructive 

interference and minimize the overall reflection.  The coatings are designed using 

optical constants derived from spectroscopic ellipsometry measurements. The MAR 

coatings are designed to minimize average reflection over the specific spectral range 

corresponding to the PV absorber band gap.  In the case of a CdTe absorber, the band 

gap is ~1.45eV which corresponds to a wavelength of ~855nm but CdTe begins to 

absorb light less efficiently at the higher wavelengths. Since glass begins to absorb at 

350nm, the wavelength range used by CdTe devices is between 350nm and 850nm.  In 

comparison, a single layer design optimizes at a single wavelength to create a ‘V-coat’ 

AR. MAR coatings are broadband and their use results in a much greater reduction in 

average reflection. The bandwidth can be tuned for the different band gaps used in 

various PV absorbers  by controlling the thickness of the  layers within the MAR[83].   
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The coating layer thicknesses were optimised to reduce reflection using the optical 

modelling package ‘Essential Macleod’, developed by the Thin Film Center Inc[28]. 

This package uses the transfer matrix method to calculate transmittance and reflectance 

in optical coating systems. The transfer matrix method allows an optical system that is a 

sum of optical matrices to be considered as a single matrix: a ‘transfer matrix,’ as 

outlined in chapter 2. The thickness of each layer in the four layer design was optimised 

to lower the weighted average reflection (WAR) from the glass-air interface. A WAR is 

the weighted average of reflection of all solar photons across the wavelength range of 

interest. To accurately calculate the WAR from bare glass and MAR coated glass, the 

relative flux of photons in the solar spectrum must be taken into consideration at each 

point in the 350nm to 850nm range. In addition, the wavelengths must be given 

appropriate weightings in accordance with the AM1.5 solar spectrum[83].   The WAR is 

described by equation ( 4.1) which shows the product of the AM1.5G solar spectrum (Φ) 

and the reflectance (R), integrated over the defined wavelength range (λ). 

 
𝑊𝑊𝑊𝑊𝑅𝑅(𝜆𝜆𝑚𝑚𝑎𝑎𝑥𝑥, 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛) =

∫ 𝛷𝛷 ∙ 𝑅𝑅𝑑𝑑𝜆𝜆 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

∫ 𝑅𝑅𝑑𝑑𝜆𝜆 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 
( 4.1) 

MAR coatings vary in the number of layers used.  When designing MAR coatings, the 

addition of extra layers results in lower reflection. However, in terms of reflection 

reduction, the difference between a 6 layer and a 4 layer design is much less than the 

difference between a 4 layer and a 2 layer design. Evaluating the benefits of greater 

reduction in reflection against the greater material costs and increased coating 

complexity, a 4 layer design is optimum for the 350nm-850nm wavelength range. 

4.1.2 Modelled Coatings 
Although ZrO2 was chosen as the high refractive index material for MAR coatings 

studied in this work, alternative materials were considered. Modelled designs using 

TiO2, HfO2, Nb2O5, and Ta2O5 coatings are presented in this section. SiO2/ZrO2 are 

presented in section  4.1.3, with modelled and measured reflectance shown in 

Figure  4.12. 

When considering the glass substrate, the modelled spectrum of the reflection from a 

1mm thick soda lime glass substrate is shown in Figure  4.2. The solid black curve 

shows the reflection when both (front and back) interfaces are considered; the total 
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incident energy loss is ~8%. The dotted red curve is the reflection characteristic of only 

the front glass/air surface, which accounts for ~4% energy loss of incident light. 

 

Figure  4.2: The modelled reflection spectra of an uncoated 1mm glass surface.  The 

black solid curve models the reflection from both the front and back glass surfaces. 

The red dotted curve represents the front surface losses only. 

The refractive indices of the modelled but not deposited MAR high refractive materials 

are shown in Figure  4.3. Figure  4.3 shows that the shape of dispersion between the 

materials varies considerably. Nb2O5 has an exceptionally high refractive index but 

underperforms in modelled coatings. The materials that perform the best in an MAR 

coating (HfO2 and Ta2O5) have a comparatively low refractive index across the entire 

usable wavelength range. In contrast, the refractive indices of Nb2O5 and TiO2 increase 

between 500nm and 400nm. This compromises the effectiveness of the coating by 

making light of differing wavelengths difficult to accommodate. 

 

Figure  4.3: The refractive index dispersions of high refractive index material 

candidates, Nb2O5, TiO2, Ta2O5, and HfO2. 



Chapter  4: Application of Anti-reflection Coatings to thin film CdTe 

Gerald Womack - June 2017   35 

4.1.2.1 Titanium Dioxide (TiO2) 

A MAR coating designed for use on CdTe devices with a TiO2 high refractive index 

layer is presented in Table  4.2. Overall, the coating is ~226nm thick. The design 

reduced the weighted average reflectance (WAR) at the glass interface to 1.92% from 

4.22%. 
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Table  4.2: The structure of a modelled MAR coating optimised for use on CdTe 

Solar cells, where TiO2 is the high refractive index material. 

Layer Designed d [nm] 

SiO2 78.99 

TiO2 115.94 

SiO2 11.41 

TiO2 19.53 

The modelled reflection across the usable wavelength range of CdTe solar cells is 

shown in Figure  4.4. Figure  4.4 shows how the optimal design for TiO2 MARs gives 

greater reflectance than bare glass when considering wavelengths greater than 800nm. 

However, this is compensated through reduction in reflection in other areas of the 

spectrum. 

 

Figure  4.4: Reflection at air glass interface with and without a SiO2/TiO2 MAR 

coating. 

4.1.2.2 Hafnium Dioxide (HfO2) 

An MAR coating designed for use on CdTe devices with a HfO2 high refractive index 

layer is presented in Table  4.3. Overall the coating is slightly thicker than that of TiO2 at 

a total thickness of ~264nm. However, since the use of HfO2 gives a greater reduction 

in WAR, the WAR at the glass interface is reduced to just 1.17%. 
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Table  4.3: The structure of a modelled MAR coating optimised for use on CdTe 

Solar cells, where HfO2 is the high refractive index material. 

Layer Designed d [nm] 

SiO2 85.22 

TiO2 133.88 

SiO2 23.04 

TiO2 21.68 

The modelled reflection across the usable wavelength range of CdTe solar cells is 

shown in Figure  4.5. The optimal design for HfO2 results in a reduction of reflectance 

across the entire usable wavelength range of CdTe solar cells. 

 

Figure  4.5: Reflection at air /glass interface with and without a SiO2/HfO2 MAR 

coating. 

4.1.2.3 Tantalum Pentoxide (Ta2O5) 

An MAR coating designed for use on CdTe devices with a Ta2O5 high refractive index 

layer is presented in Table  4.4. Overall, the coating is slightly thicker than that of TiO2, 

but less so than HfO2, at a total thickness of ~244nm. Similarly, the use of Ta2O5 gives a 

greater reduction in WAR than TiO2, but less than HfO2 –the WAR at the glass interface 

is reduced to just 1.35%. 
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Table  4.4: The structure of a modelled MAR coating optimised for use on CdTe 

Solar cells, where Ta2O5 is the high refractive index material. 

Layer Designed d [nm] 

SiO2 83.56 

Ta2O5 120.74 

SiO2 18.21 

Ta2O5 21.49 

The modelled reflection across the usable wavelength range of CdTe solar cells is 

shown in Figure  4.6. The optimal design for Ta2O5 results in a reduction of reflectance 

across the entire usable wavelength range of CdTe solar cells. 

 

Figure  4.6: Reflection at air glass interface with and without a SiO2/Ta2O5 MAR 

coating. 

4.1.2.4 Niobium Pentoxide (Nb2O5) 

An MAR coating designed for use on CdTe devices with a Nb2O5 high refractive index 

layer is presented in Table  4.5. Overall, the coating is ~233nm, only TiO2 based 

coatings are thinner. Nb2O5 gives a greater reduction in WAR than TiO2, to a lesser 

extent than Ta2O5 and HfO2. The WAR at the glass interface is reduced to 1.80%. 
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Table  4.5: The structure of a modelled MAR coating optimised for use on CdTe 

Solar cells, where Nb2O5 is the high refractive index material. 

Layer Designed d [nm] 

SiO2 83.48 

Nb2O5 111.69 

SiO2 16.96 

Nb2O5 20.45 

The modelled reflection across the usable wavelength range of CdTe solar cells is 

shown in Figure  4.7. The optimal design for Nb2O5 results in a reduction of reflectance 

up to ~820nm. 

 

Figure  4.7: Reflection at air glass interface with and without a SiO2/Nb2O5 MAR 

coating. 

4.1.2.5 Dependence on angle 

Using different high refractive index materials changes the amount of light reflected 

from the air-glass interface at all angles. A side by side comparison of the coatings 

presented so far is shown in Figure  4.8. This point on the wavelength range was chosen 

across all coatings for a fair comparison. It is highly active in the am1.5 solar spectrum, 

and it is relatively close to a minimum for all coatings. 



Anti-reflection Coatings and Optical Interference in Photovoltaics 

40  Gerald Womack - June 2017 

 

Figure  4.8: Comparison of angular dependence of MAR coatings of varying high 

refractive index material. 

This data may initially seem unserviceable since is unfair to compare only the 

wavelength 550nm across all the coatings. However, this data shows that the Nb2O5 

coating becomes drastically less effective as the angle of incidence is varied away for 0° 

(at ~60° it is better to have no coating at all than to have an Nb2O5 MAR). It is also 

worth noting that HfO2 performs very well in a MAR coating although not as good as 

ZrO2. 

4.1.3 Deposited SiO2/ZrO2 Coatings for thin film CdTe photovoltaics 
SiO2/ZrO2 MAR coatings were modelled and optimised using Essential MacLeod and 

then deposited using magnetron sputtering (outlined in section  4.1.3.1) to test the 

effectiveness of the coatings. In this section the optical and electrical results of MAR 

application are presented.  

Optical Macleod has a variety of optimisation techniques; in this work ‘simplex’ was 

used. Simplex involves changing the thickness of layers in the system by small 

increments and recording the reflectance/transmittance after each thickness. If the 

thickness change results in an increase to transmission the thickness is kept and the 

process begins again. Once incremental change results in greater reflectance, lower 

transmission (or any other undesired effect, depending on the application) the operation 

ceases. In this work the program was run for a maximum of 10000 iterations, it updated 

the thickness of the coating if a 0.00001% improvement was recorded, and the thickness 

was varied by 0.01nm at each instance. Although this program finds near perfect 
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designs for optical optimisation, it does not take into consideration the solar spectrum 

when considering gains. As such further gains were obtained by calculating the WAR or 

WAT of the system and changing the thicknesses manually to find WAT maxima and 

WAR minima. 

Figure  4.9 shows the detailed structure of the MAR design on top of a simple CdTe PV 

stack.  The decision to have a 4 layer design and ZrO2 as the high refractive index 

material leads to a relatively thin multilayer stack (~277nm) which is affordable in 

material usage and fabrication time. 

 

Figure  4.9: A schematic diagram of the MAR coating design on a CdTe device, the 

refractive index of the glass superstrate is n=1.51 at 550nm. For modelling, the 

glass was assumed to be standard soda-lime glass. 

4.1.3.1 Multilayer Anti-Reflection Coating Deposition 

Multilayer anti-reflection coatings can be deposited using a number of techniques, 

including electron beam evaporation with ion assist[38], ion beam sputtering[38], and 

magnetron sputtering[39]. These are relatively high energy techniques that deposit 

compact thin films with refractive indices close to bulk values.  

The MAR coatings were deposited by reactive magnetron sputtering using a ‘PV Solar’ 

system from PowerVision Ltd. A 3-Dimensional layout of the system is shown in 

Figure  4.10. Prior to being loaded into the deposition chamber, soda lime glass 

substrates were cleaned in an ultrasonic bath in a 50%-50% solution of de-ionised water 

and isopropyl alcohol. After cleaning, the substrates were loaded into the deposition 

chamber via a load lock.   
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The system uses a vertical substrate carrier which rotates at ~120 rpm.  The vacuum 

chamber is equipped with 3 vertically mounted 150 mm diameter circular magnetrons 

and a separate DC plasma source.  The rotating carrier can accommodate up to six 5cm 

x 5cm glass substrates. Two of the magnetrons were fitted with Zirconium metal and 

Silicon planar targets. The deposition chamber is pumped using a turbomolecular pump 

(Edwards nEXT300D) mounted vertically, above the plasma source. The pre-process 

pressure is typically 1 x 10-5 mbar. Argon working gas is admitted in front of the 

magnetrons and the pressure (2.5mTorr) is controlled using mass flow controllers (MKS 

1179A). Argon and oxygen gas flows into the plasma source were also controlled by 

mass flow controllers. During the SiO2 deposition, the gas flow was set at 16 sccm (Ar) 

and 10 sccm (O2). For the deposition of ZrO2, the gas flow was set to 20 sccm (Ar) and 

6 sccm (O2). The operation of each magnetron and all process parameters are under 

computer control. 

 

Figure  4.10: A 3D schematic diagram of the reactive sputtering system used to 

deposit the MAR coatings. 

A120 second argon/oxygen plasma pre-treatment was used for surface activation. This 

pre-treatment increases the substrate surface energy as determined by a water contact 

angle measurement. Surface activation improves adhesion. The argon flow to the 

plasma source was subsequently terminated to produce an oxygen plasma for oxidation 

of the Zirconium and Silicon layers. A thin layer of metal, typically ~1nm thickness, is 

deposited in each pass of the rotating carrier, which is fully oxidised as it passes through 
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the oxygen plasma to produce an optical quality oxide. High deposition rates can be 

achieved with this reactive sputtering strategy because the metal layer is deposited using 

a pulsed dc power supply (Advanced Energy Inc. Pinnacle Plus 5kW) and hysteresis 

effects are also avoided [56], [84], [85].  The frequency of the pulse was set to 150 kHz 

(6.6 µs per pulse) for both materials. The zirconium was sputtered at 1kW using a 1.5µs 

(~ 25% reverse time), while the silicon was deposited at 1.5kW and 2.5µs (~50% 

reverse time).  The deposition rate was 0.67nm/s for SiO2 and 0.7nm/s for ZrO2 films at 

each position on the rotating substrate carrier. The metal deposition zone and the plasma 

oxidation zone are separated by internal baffles to avoid poisoning of the metal targets. 

Layer thickness is controlled using time only since the metal sputtering rate is highly 

stable. Quartz crystal monitoring is not required.   The computer control is set to switch 

between the magnetrons for pre-selected times corresponding to each layer thickness 

required.  Further details of  the deposition system and the deposition parameters are 

available elsewhere[39]. 

4.1.3.2 Coating microstructure 

Samples for Transmission Electron Microscopy (TEM) were prepared by Focused Ion 

Beam (FIB) milling using a dual beam FEI Nova 600 Nanolab.  An electron beam 

evaporated platinum (e-Pt) over-layer was deposited followed by an ion assisted layer to 

define the surface and homogenize the final thinning of the samples down to ~100 nm. 

The TEM analysis was carried out using a Tecnai F20, operating at 200 kV to 

investigate the detailed microstructures of the MAR cross sections. Bright Field STEM 

images were obtained, revealing the layer thicknesses, uniformity and microstructure. 

Figure  4.11 shows a STEM image of a cross section of the MAR produced by FIB. The 

image shows that the coating is dense and uniformly covers the surface. No voids or 

pinholes are observed.  Voids would degrade the optical performance by affecting the 

refractive index. Film density is also critical for achieving the coating durability 

required for the PV application.  The presence of voids or pinholes provides access for 

water ingress and leads to degradation. The excellent coating uniformity observed is 

crucial for achieving and maintaining AR performance across large area PV modules.  

The SiO2 appears amorphous while the structure in the ZrO2 is columnar and typical for 

a sputtered thin film. 
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Figure  4.11: STEM image of a cross –section of the MAR coating design presented 

in Figure  4.9, deposited using reactive sputtering.  The SiO2 is amorphous and the 

ZrO2 has a columnar structure.  

4.1.3.3 Increase in photocurrent and efficiency 

MAR coatings were deposited on the glass superstrate of thin film CdTe devices to 

confirm that the cell performance improvement corresponds to the optical modelling.  

The thin film CdTe devices used in this study were fabricated  at Colorado State 

University using their advanced research deposition system [86].  

A 4 layer MAR corresponding to the design shown in Figure  4.9 was deposited 

sequentially using reactive magnetron sputtering. The reflection from the uncoated glass 

surface and the MAR coated surface was measured using a UV-vis spectrophotometer. 

As shown in Figure  4.12 the application of the MAR reduces the WAR of soda lime 

glass by 2.9% in absolute terms, corresponding to a relative reduction in reflection of 

69% [83]. In Figure  4.12 the modelled data does not include the reflection from the 

second air glass interface on the MAR samples, the accounts for the large discrepancy 

between measured and modelled reflectance data. Reducing reflectance and increasing 

transmission at the glass surface results in greater cell efficiency. Figure  4.13 shows the 

J-V characteristics of a thin film CdTe cell before and after application of the broadband 

anti-reflection coating. The maximum short circuit current density was increased by 

0.65mA/cm2 while the open-circuit voltage was unchanged.   This increased the overall 

efficiency of the device from 10.6% to 10.9%, a useful relative increase of 3.6%.  
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Table  4.6 summarizes the design and performance of the MAR designed for CdTe and 

its effect on short circuit current.  

 

Figure  4.12: The modelled reflectance of MAR coated glass with no back 

reflectance, compared to the measured reflectance of bare glass and MAR coated 

glass. 

 

Figure  4.13: The J-V characteristics of a CdTe solar cell at full sun illumination, 

before and after the application of a MAR, also showing power decrease.  

 

 

 



Anti-reflection Coatings and Optical Interference in Photovoltaics 

46  Gerald Womack - June 2017 

 

Table  4.6: Measured performance of MAR for CdTe. 

 Layers D 
[nm] 

WAR 
[%] 

Reflection 
reduction 
[%] 

Jsc [mA/cm2] Voc 
[mV] 

Efficiency 
[%] 

CdTe 4 277 1.30 69 29.88(+3.1%) 770 10.93(+3.6% 
relative 
increase) 

4.1.3.4 Performance with Angle of Incidence 

The angle at which light enters a solar cell will vary depending on the position of the 

sun. As a result of the sun’s changing position in the sky and diffuse conditions such as 

occurs in cloudy weather, the MAR must be functional over a broad range of angles of 

incidence.  The MAR reduces reflection at all angles of incidence and is effective in 

both direct and in diffuse illumination. The effect of angle of incidence on WAR 

reflectance for the MAR design presented in Figure  4.9  is shown in Figure  4.14. 

 

Figure  4.14: The modelled WAR for the MAR design and compared with uncoated 

glass for a range of angles of incidence. 

4.1.3.5 Effect of the optical properties of the CdTe stack 

Designing an MAR coating for use across the CdTe wavelength range, without taking 

the whole stack into consideration, results in increased transmission. However, a slight 

benefit can be found when judging the MAR by how much light gets to the absorber 

rather than how little is reflected. To determine the best thicknesses of layers in the 

MAR it is necessary to model the entire CdTe device. In this work all deposited samples 
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designed for CdTe are based on the design shown in Figure  4.9, which considers only 

the air-glass interface. Considering the entire CdTe stack, to optimise transmission to 

the absorber, results in a slightly different design Table  4.7. The author wishes to stress 

that the coating design used for the CdTe wavelength range throughout the rest of the 

paper is that of Figure  4.9. 

Table  4.7: Modelled MAR coating design optimised for use on a specific CdTe 

solar cell. 

Layer Material Thickness [nm] 

SiO2 96 

ZrO2 123 

SiO2 26 

ZrO2 17 

Below is a comparison of transmission to the absorber (weighted average transmittance, 

WAT), WAR, and absorption (Weighted Average Absorption, WAA); between an 

MAR designed to reflect as little as possible from the glass surface and an MAR 

designed to transmit as much as possible to the absorber.  Transmission only sees a 

0.07% percent increase when taking the cell into consideration but an unexpected 

finding was that–when properly optimised for maximum transmission– the MAR’s 

reflection had increased at regions of the spectrum that are readily absorbed within the 

cell to allow for the transmission of less readily absorbed photon energy. Therefore a 

decrease in WAA is observed. A comparison of the different designs can be seen in 

Table  4.8. 

Table  4.8: MAR coating performance when optimised for different optical systems. 

Design focus WAT [%] WAR [%] WAA [%] 

Optimised AR for glass-air interface only 78.69 1.75 19.56 

Optimised AR for use on CdTe stack 78.76 1.81 19.43 

 
 



Anti-reflection Coatings and Optical Interference in Photovoltaics 

48  Gerald Womack - June 2017 

4.2 Single layer coatings 
In this section, single layer coatings deposited at TWI (formerly The Welding Institute) 

in Cambridge and AR1 from Prinz Optic are compared over the wavelength range of 

CdTe solar cells. 

4.2.1 Deposition methods 
The TWI coatings were deposited using the dip coating method outlined in Chapter 3. 

The TWI coatings are a basic porous silica coating produced by drying a solution of 

silica nano-spheres, uniform in radius, into a coating. It was found that nano-spheres 

that result in a coating with ideal anti-reflective properties have a radius of 12nm. 

However, it is difficult to take images of nano-spheres this small, so an image taken 

with a scanning electron microscope (SEM) of silica particles with a larger radius 

(~200nm) is shown in Figure  4.15. A wetting agent is used to give the desired viscosity 

during deposition. The thickness of the coating can be controlled by changing the pull 

rate of the substrate, allowing for coatings designed for specific wavelengths. However, 

only a reflective minimum at a single point on the electro-magnetic spectrum can be 

manipulated by changing the thickness of a single layer design. Creating designs that 

accommodate for broader wavelength ranges is difficult without refractive index control 

and/or additional layers. The thickness of the coatings proved too difficult to control, 

but the most effective coatings were produced at a pull rate of 10mm per minute. 

 

Figure  4.15: SEM image of a porous silica coating with a sphere diameter of 

~200nm. Sphere size varies, ideal AR properties were found using silica spheres of 

12nm diameter. 
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AR1, a commercial sol-gel hard coat, was sourced from Prinz Optic. AR 1 is designed 

to reduce reflection in the visible light wavelength range for solar and display glass 

application, however when considering the effectiveness of single layer coatings the 

performance depends on how close the refractive index is to the ideal and maintaining a 

quarter wavelength thickness. Across a larger spectrum these demands become more 

difficult to accommodate and optimisation involves selecting the wavelength to be the 

reflection minimum. Generally, no matter how broad the wavelength range being 

considered is, the minimum should be placed between 500nm-550nm, as this is the most 

energy dense region of the AM1.5 solar spectrum. Because of this, the same design can 

be used for most wavelength ranges and only lose slight gains in efficiency when 

compared to optimised ARCs.  

The exact deposition technique for preparing the commercial AR 1 coatings is 

undisclosed. The coating is designed for use across the 380nm-780nm wavelength 

range. This is a similar wavelength range to that given by the band-gap of CdTe 

devices, which ends at ~850nm. The coatings use the hard coat method described in 

chapter 3 to reduce the refractive index of the coating. Although this is not an ideal 

coating it serves as a good chemical, commercial comparison with physically deposited 

MAR coatings for CdTe.  

4.2.2 TWI sol-gel coatings 
The measured reflectance of TWI ARCs is shown in Figure  4.16. The measurement was 

taken using a spectrophotometer and demonstrates how the simple porous silica coating 

is effective in reducing reflection from the air glass interface. As the samples are dip 

coated, both sides of the glass are coated and so the reflection shown in Figure  4.16 is 

the cumulative reflection from both interfaces. It is worth noting that in the case of 

CdTe dip coating would not be an option as one side of the glass is already coating with 

a thin 2 layer anti-reflection coating and a transparent conducting oxide (TCO). 

However the effectiveness of this coating is indicative of similar coatings deposited 

through other sol-gel deposition methods that are capable of coating one side only. The 

TWI coating reduced the reflectance at the air-glass interface from ~8.4% to only 

~3.6%. This is a total absolute reflection reduction of ~4.8%. The coatings were 

deposited on 1mm glass as with the MAR samples. In the case of TWI coatings, the 

reduction in reflection directly translates into gains in transmission, as shown in 
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Figure  4.17. The WAT of the glass rises from ~91.6% to ~96.4% across the 350nm-

850nm wavelength range. 

 

Figure  4.16: Measured reflection of Sol-Gel Coated glass (Red) compared to 

uncoated glass (Black). 

 

Figure  4.17: Measured transmission of Sol-Gel coated glass (Red) compared to 

uncoated glass (Black). 

4.2.3 Commercial sol-gel hard coats 
The spectrophotometer measured reflectance of the AR 1 hard coat is shown in 

Figure  4.18, compared to that of glass. Again, as with the TWI samples, the glass is 

coated on both sides and therefore the reflectance shown in Figure  4.18 is the 

cumulative reflection from both interfaces. AR 1 reduced reflectance from the basic 

~8.4% to only ~2.2%. This is a reflection reduction of 6.2%, as this reduction is across 

2 interfaces. However, transmittance measurement of AR1 samples shows possible 

issues with absorption or internal light scattering within the coating. Figure  4.19 shows 

the transmittance across the 350nm-850nm range. The WAT of the samples was 94.6%, 
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a gain of just 3.0% compared to the reduction in reflectance of 6.2%. This indicates a 

trade-off between the optical properties and the impressive damage resistance achieved 

with the hard coat technique. It is the author’s opinion that absorption in the complex 

structure of hard coats reduces the transmission of coatings while achieving an 

impressively reflection. Both basic sol-gel coatings developed at TWI and MAR 

coatings developed at Loughborough University have this issue; the transmittance of 

MAR coatings for CdTe is ~97.4%. A consideration that may explain this absorption 

discrepancy is the substrate thickness: AR 1 was deposited on 3mm soda-lime glass, but 

exhibits far greater absorption – more than 3 times that of the other coatings.  

 

Figure  4.18: Measured reflection AR 1 Coated glass (Red) compared to uncoated 

glass (Black). 

 

Figure  4.19: Measured transmission of AR1 coated glass (Red) compared to 

uncoated glass (Black). 
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4.3 Discussion 
ARCs were produced through dip coating, reactive magnetron sputtering, and an 

unknown sol-gel method. All ARCs presented in this work are effective to different 

extents. MARs are the most effective coating; the reduction in reflection is directly 

translated to transmission due to the low absorption coefficients of silica and zirconia. 

Although the commercial sol-gel coating gives excellent reflection reduction, a direct 

improvement in transmission of the same magnitude has not been observed. This is 

likely due to absorption and scattering occurring in the coating because of the more 

complex structure of the coating. An optical comparison of the different coatings can be 

seen in Table  4.9. On a CdTe device only one air-glass interface need be considered, as 

such WAR values that represent transmission through a single interface are given in 

Table  4.9. This explains the discrepancy between the data shown Figure  4.18 and 

Figure  4.19, and the reflectance and transmittance given in Table  4.9 

 

Table  4.9: A comparison of the optical properties of the ARCs presented in this 

chapter. 

Design focus Uncoated 

glass 

MAR Sol-gel 

TWI 

AR1 

Deposition 

method 

None Reactive 

magnetron 

sputtering 

Dip 

coating 

A sol-gel method 

(unknown) 

Reflectance 8.4% 1.3% 1.8% 1.1% 

Transmittance 91.6% 98.7% 98.2% 97.6% 

 

Modelling was used effectively to predict optimal designs for MAR coatings, and 

deposited coatings gave reflection reduction as predicted. 
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5 APPLICATION OF ANTI-
REFLECTION COATINGS TO 
OTHER PV TECHNOLOGIES 

5.1 Introduction 
In the previous chapter, the design and application of ARCs (including Multilayer Anti-

Reflection (MAR) Coatings and sol-gel coatings) were evaluated for thin film CdTe 

photovoltaics (PV). The work showed that the STC efficiency of a thin film CdTe solar 

cell can be improved by 3.6% through the application of a MAR. However, thin film 

CdTe is only one kind of second generation PV device; other important types include 

CIGS, perovskite, and a-Si thin film PV.  Perovskite is an emerging competitor in the 

solar PV landscape and has shown promising results in terms of high efficiency [87]. 

The cover glass on all PV devices suffers similar reflection losses. The reflection loss is 

dependent on the wavelength range utilised by the absorber layer.  Coatings used for 

thin film CdTe are not optimal for the other technologies due to differences between 

their band gaps. The MAR coating design must accommodate these differences and 

adjust for a band gap of ~1.7eV (a-Si), ~1.5eV (perovskite), ~1.45eV (CdTe), and 

~1.1eV (CIGS).). The coatings must be transparent across the entire wavelength range 

of the technology, with ideal refractive index. 

As with the CdTe designs, MAR coatings utilise the interference of light at medium 

boundaries to reduce reflection and improve the light transmittance of glass. At any 

interface between media where there is a difference in the refractive index, a fraction of 
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the light is reflected and the rest is transmitted through the boundary. The amplitude of 

the transmitted and reflected waves can be calculated using the Fresnel equations. 

Multilayer thin film anti-reflective coatings utilise destructive interference of light 

waves reflecting at different medium boundaries to reduce the reflection. The 

interference is controlled using the phase difference of interfering waves, which is 

defined by the refractive index and the thickness of the layer. 

5.2 Multilayer Anti-Reflection coatings 

5.2.1 Multilayer anti-reflection experimental and Design 
The structure of the MAR coatings was designed using optical modelling software 

similar to the CdTe design. The coatings were optimised to minimise the reflection 

based on destructive interference using the transfer matrix method [28]. The coatings 

were optimised for maximum performance in the wavelength ranges utilised by the thin 

films; CdTe, CIGS, a-Si, and perovskite solar cells.  

The performance of the coatings was assessed by calculating their weighted average 

reflection (WAR). 

Following the design, the thin film layers required for the MAR were deposited using a 

pulsed DC magnetron sputtering process, in a “PV Solar” deposition system from 

Power Vision Ltd., (Crewe, UK)[39]. The glass substrates were cleaned using the RCA 

cleaning procedure to ensure a good quality clean surface for the thin film deposition 

[88].  The refractive index, extinction coefficient, and thickness of the deposited films 

were measured using a Horiba Jobin Yvon UVISEL iHR320FGAS spectroscopic 

ellipsometer. The transmission and reflectance of the deposited films was measured 

using a spectrophotometer. 

5.2.2 Multilayer Anti-Reflection coating for thin film a-Si PV 
The band gap of the a-Si solar cell is ~1.7eV and is higher compared with CdTe. 

Therefore the wavelength range is narrowed to the range 350nm to 750nm. Table  5.1 

shows the structure of a four layer anti-reflective coating designed for use on an a-Si 

solar cell.  The total thickness of the MAR coating is only 248nm. The coating design 

shown in Table  5.1 reduces the WAR across the relevant wavelength range (350,700) to 

0.61% in modelling from 4.25% for the uncoated glass. This is a relative 85% reduction 

in reflection.  This WAR allows the a-Si solar cell to generate a maximum current 
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density of Jsc=24.47mA/cm2 which is 3.8% higher than using uncoated glass. Only 

0.14mA/cm2 is lost due to reflection at the front surface of the solar cell. 

Table  5.1: The structure of the MAR designed for thin film a-Si solar cells. 

Layer Designed d [nm] 

SiO2 87.03 

ZrO2 117.59 

SiO2 27.50 

ZrO2 15.41 

The modelled reflection spectra with and without an MAR coating are shown in 

Figure  5.1 the front reflection of the MAR coating (blue line), the front and back 

reflection (black line), and the front and back reflection of uncoated glass (red line). 

 

Figure  5.1: Modelled performances of a four layer MAR coating for thin film a-Si 

PV. 

The film designed in Table  5.1 was deposited onto a 1mm thick soda lime glass slide, 

and the optical properties of the film were then measured using a spectrophotometer. 

The reflection spectrum of the deposited coating compared to the modelled data and 

uncoated glass is shown in Figure  5.2. 
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Figure  5.2: The measured reflectance spectrum for 4layer MAR coating designed 

for a-Si solar cells (black line), the modelled reflectance (blue line), and that of 

uncoated glass (red line). 

The measured WAR for the MAR designed for use on a-Si solar cells was 5.32%. The 

WAR of uncoated glass over the same wavelength was measured at 8.58%. This result 

agrees well with the modelled data.  The deposited MAR reduces the reflection by 

3.36% compared to 3.8% modelled. 

5.2.3 Multilayer Anti-Reflection coating for Perovskite PV 
The band gap of Perovskite is ~1.5eV. The MAR was tailored to work in a wavelength 

range from 350nm to 800nm. Table  5.2 shows the structure of the four layer anti-

reflective coating designed for use on perovskite solar cells.  The total thickness of the 

MAR coating designed for perovskites is only 252nm. The coating design shown in 

Table  5.2 reduces the WAR over the perovskite usable wavelength range (350,800) to 

0.8% in modelling from 4.24% for uncoated glass. This is a relative reduction in 

reflection of 81%. This WAR enables the perovskite solar cell to generate a maximum 

current density of Jsc=27.7mA/cm2. This is 3.5% higher compared to uncoated glass 

and only 0.24mA/cm2 is lost due to reflection at the front surface of the solar cell. 
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Table  5.2: Structure of the MAR designed for use on perovskite solar cells. 

Layer Designed d [nm] 

SiO2 89.62 

ZrO2 120.72 

SiO2 25.07 

ZrO2 16.64 

The modelled reflection spectra of glass with and without a MAR coating are shown in 

Figure  5.3. 

 

Figure  5.3: Modelled performances of a four layered MAR coating for perovskite 

PV; the front reflection of the MAR coating (blue line), the front and back 

reflection (black line), and the front and back reflection of uncoated glass (red 

line). 

The designed MAR was deposited on to 1mm thick soda lime glass, and then the optical 

properties of the coating were measured. The reflection spectrum of the deposited 

coating compared to the modelled spectra, and to uncoated glass is shown in Figure  5.4. 
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Figure  5.4: The measured reflectance spectrum for six layer MAR coating 

designed for perovskite solar cells (black line), the modelled reflectance (blue line), 

and that of uncoated glass (red line). 

The measured WAR of the MAR designed for use on perovskite solar cells was 5.40%. 

Glass over the same wavelength range has a measured WAR of 8.54%. This result 

agrees with the modelled data.  Without reflection from the back surface of the glass, 

the MAR reduces the reflection by 3.14% compared to the 3.5% modelled. 

5.2.4 Multilayer Anti-Reflection coating for CIGS 
The CIGS material has a tuneable band gap. However, the high efficiency devices have 

a band gap of ~1.1eV [89]. This means the MAR used on a CIGS solar cell must reduce 

reflection from the surface of the cell between wavelengths of 350nm and 1100nm. This 

wavelength range is much broader than the range for CdTe, a-Si, or perovskite 

photovoltaics. Due to this extended bandwidth, an MAR for CIGS is more challenging. 

A four layer design was found to be ineffective.  However, six layer designs are 

effective over this wavelength range, and therefore suitable for use with thin film CIGS. 

Table  5.4 lists the detailed structure of the 6 layer MAR coating designed for CIGS. The 

total thickness of this MAR coating is 335nm which is slightly thicker than the previous 

designs. 
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Table  5.3: The structure of a six layer MAR designed for thin film CIGS solar 

cells. 

Layer Designed d [nm] 

SiO2 101.89 

ZrO2 22.13 

SiO2 17.75 

ZrO2 143.95 

SiO2 29.76 

ZrO2 19.61 

The six layer MAR design reduces the modelled WAR to only 1.49% from a WAR for 

the uncoated glass of 4.19% over the wavelength range used by CIGS solar cells (350, 

1130). The modelled reflection spectra of MAR coated glass and uncoated glass are 

plotted in Figure  5.5. The reduced WAR predicts that the CIGS solar cell will generate a 

maximum current density of Jsc=44.25mA/cm2, which is 2.8% higher than the use of 

uncoated glass. 

 

Figure  5.5: Modelled performances of six layered MAR coating for thin film CIGS 

PV; the front reflection of the MAR coating (blue line), the front and back 

reflection (black line), and the front and back reflection of uncoated glass (red 

line). 
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The designed coating was deposited on to a 1mm thick soda lime glass slide, and then 

the optical properties were measured using a spectrophotometer. A comparison of the 

reflection is shown in  Figure  5.6. 

 

Figure  5.6: The measured reflectance spectrum for a six layer MAR coating 

deposited for a CIGS solar cell (black line), compared to uncoated glass (red line), 

and the modelled reflectance (blue line). 

The measured WAR in the case of the six layer MAR designed for use on CIGS solar 

cells was 5.88%. The WAR for glass over the same wavelength range was measured to 

be 8.52%. This result agrees well with the modelled data. The MAR reduces light 

reflection by 2.64% compared to 2.8% for the modelled value. 

5.2.5 MAR Comparison 
MAR coatings have been designed for four types of thin film photovoltaics; CdTe, 

CIGS, a-Si, and perovskite. It has been shown for CdTe, perovskite, and a-Si devices 

that four layer designs are sufficient to suppress the reflection to 1.22%, 0.80%, and 

0.61% respectively from optical modelling. The designs have been used to generate 

MAR coatings using a pulsed DC magnetron sputtering process, and their reflection has 

been measured using a spectrophotometer. The WAR for a-Si, Perovskite, and CdTe 

was 0.61%, 0.80 %, and 1.22% respectively, which corresponds to a reduction in light 

lost from the front surface of 85%, 81%, and 70%. However, in the case of CIGS, due 

to its extended wavelength bandwidth, a six layer coating was required to bring the 

WAR down to 1.49%.  This is a 64% decrease in light loss from the front surface.  The 

results are summarised in Table  5.4. All four types of coating are very thin and total 

thicknesses are less than 340nm.  
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Table  5.4: The number of layers, the thickness, Weighted Average Reflection 

(WAR), relative reduction in reflection, and the increased maximum Jsc 

(improvement over uncoated glass in brackets). 

 Layers Total 

d[nm] 

WAR [%] Reflection 

reduction [%] 

Max Jsc [mA/cm2] 

a-Si 4 247 0.61 85 24.47 (+3.8%) 

Perovskite 4 252 0.80 81 27.7 (+3.5%) 

CdTe 4 277 1.22 70 29.88 (+3%) 

CIGS 6 335 1.48 66 44.253 (+2.8%) 

5.3 Sol-Gel anti-reflection coatings 
The effectiveness of single layer coatings depends on the refractive index and thickness 

of the coating. When changing the wavelength range, the coating needs to be effective 

over changes to the most effective point on the spectrum in order to have a reflection 

minimum. However, as the solar spectrum is heavily weighted in the 350nm to 650nm 

wavelength range, the ideal coating changes minimally in terms of WAR. As a 

consequence, it is fair to use a coating designed for use in the visible light wavelength 

across broader wavelength ranges, as long as the coating does not heavily absorb light at 

these wavelength ranges. Both AR1 and TWI sol-gel coatings do not heavily absorb in 

the 350nm-1100nm wavelength range and can therefore be used in all solar 

applications. The candidate coating’s performance was considered over different 

wavelength ranges by calculating the WAR across said ranges. The measured reflection 

from AR1 coated glass compared to uncoated glass is shown in Figure  5.7, and that of 

the TWI sol-gel ARC is shown in Figure  5.8. 
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Figure  5.7: A comparison of the measured reflectances at uncoated glass and AR1 

coated glass surfaces, between 350nm and 1100nm. 

The reflectance of AR1 samples was measured using a spectrophotometer. The WAR 

from a 3mm soda-lime glass slide, coated on both sides with AR1, is reduced to 2.72% 

from 8.72% on bare glass, across the a-Si wavelength range (350nm, 750nm). Across 

the perovskite wavelength range (350nm, 800nm) WAR is reduced to 2.56% from 

8.67%. Across the CIGS wavelength range (350nm, 1100nm) WAR is reduced to 

2.71% from 8.62%.  

 

Figure  5.8 A comparison of the measured reflectances at uncoated glass and TWI 

sol-gel coated glass surfaces, between 350nm and 1100nm. 

The reflectance of TWI sol-gel coatings on 1mm thick soda lime glass was measured 

over the same wavelength ranges. Across the a-Si wavelength range, the WAR was 

reduced to 5.67% from 8.91% without a coating. Across the perovskite wavelength 

range, the WAR was reduced to 5.40% from 8.78%. Across the CIGS wavelength 

range, WAR was reduced to 5.38% from 8.64%.  
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5.3.1 Comparison and discussion 
The sol-gel coatings reduced the WAR across all wavelength ranges and therefore can 

be used on all PV technologies. The basic porous silicon AR was less effective than 

AR1; a side-by-side comparison is shown in Table  5.5. The results show that because 

the AM1.5 solar spectrum is so heavily weighted in the visible light region of the 

electro-magnetic spectrum, extending the wavelength range of interest has a negligible 

effect on the overall effectiveness of the coating. However when the sub 500nm 

wavelength range is a large percentage of the wavelength range, such as with a-Si, the 

WAR is greater, as with the very large wavelength range of CIGS. The commercial 

ARC was much more effective at reducing WAR than basic porous silica. However, 

both technologies had greater reflectances than glass coated by MARs designed for use 

over specific wavelength ranges. 

Table  5.5: Comparison of sol-gel coatings for various PV technologies. 

 TWI 

WAR 

[%] 

AR1 

WAR 

[%] 

Percentage 

reduction 

TWI [%] 

Percentage 

reduction 

AR1 [%] 

a-Si 5.67 2.72 36 69 

Perovskite 5.40 2.61 38 70 

CIGS 5.38 2.71 38 69 
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6 DURABILITY OF ANTI-
REFLECTION COATINGS 

6.1 Introduction 
Anti-reflection coatings are used in conjunction with photovoltaic technologies to 

reduce reflection from the air-glass interface. Commercial coatings for solar modules 

must be durable on a timescale comparable to the industry standard for solar panels, 

which are normally provided with a 25 year warranty. Any solar cell technology must 

undergo rigorous testing to ensure that the solar modules can endure decades of outdoor 

exposure. Any coating applied to solar modules must have an equivalent durability.   

A variety of tests are available to assess the durability of ARCs.  For example, micro-

indentation scratch tests can be used to measure the scratch resistance of a coating[90], 

whereas the pull test and crosshatch test are useful to evaluate the adhesion of the 

coating. Additionally, in the case of pre-coated glass, resistance to the high temperatures 

involved in the solar stack deposition is necessary[91]. A coating resistant to all forms 

of mechanical and environmental damage can be considered durable.  Resistance to 

weathering damage, related to use of the solar module in the field, can be determined 

using tests such as damp heat [92], cyclic humidity[92], and acid attack[93].  

Acceptable durability is considered to be the ability of the coating to withstand exposure 

to subsequent module manufacturing processes, long term environmental exposure, and 

operational maintenance work.  

Single layer anti-reflection coatings using magnesium fluoride (MgF2), or porous silica 

(with sufficiently low refractive index), have been used on solar cells and solar 
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modules.  However, these coatings are only effective over a relatively narrow 

wavelength range. Additionally, because MgF2 is hydrophilic it has poor durability to 

weathering, so it is unsuitable for outside use. MgF2 has been used only to increase light 

transmission into champion devices[94]. Porous silica coatings, typically deposited by 

sol-gel deposition methods, integrate air pockets into the coating to lower the overall 

refractive index. This results in reduced scratch-resistance and coating hardness[63]. To 

address adhesion issues, commercially available porous sol-gel coatings use resins and 

coating microstructure to produce coatings with good adhesion. In comparison to bare 

glass, light transmission through the air-glass interface is improved.  However, the 

improvements to adhesion and scratch-resistance of the coating may compromise the 

optical properties. When compared to basic porous silica, the more mechanically stable 

sol-gel coatings have reduced anti-reflective properties, as their complex porous/net-like 

structure increases light scattering and absorption due to increased density[63]. 

We report on the durability of broadband anti-reflection coatings, consisting of all 

dielectric multilayers of metal-oxides and sol-gel hard coat ARC, AR1 developed by 

Prinz Optic. We have investigated the performance, durability, heat resistance, 

microstructure, and adhesion of AR1 and silica/zirconia multilayer anti-reflection 

coatings, deposited using reactive magnetron sputtering. Some details of the stack 

design of the MAR, sputtering process parameters, and the optical and micro-structural 

properties of the layers are provided in chapter 4[39]. MARs avoid the mechanical 

issues that arise from reducing the packing density of a material because a layer with a 

very low refractive index is unnecessary. Metal-oxide dielectric coatings also have high 

hardness coefficients and very low extinction coefficients. 

The MAR and AR1 coatings are examined separately for ease of reading, to allow the 

reader to focus on the performance of each coating separately. The coatings are 

compared in section 1.4, after the coating result sections. 

6.2 Durability of the Multilayer Anti-Reflection Coatings 

6.2.1 Adhesion 
Adhesion is an important factor for coatings on thin-film PV modules. High adhesion 

results in a coating with greater durability since the coating is harder to remove from the 

glass. Adhesion of the MAR coatings was measured using the pull test and the cross 

hatch test. The samples were on 1mm thick soda lime glass. 
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6.2.1.1 Pull Test 

Adhesion was measured using a Positest Adhesion tester in accordance with standards 

ISO 4624 and ASTM D4541[95], [96]. Aluminium dollies were fixed to the surface of 

the coating with an ethyl-2-cyanoacrylate based adhesive. The dollies were left to set 

and then loaded into the Positest adhesion tester and held firmly in place using a quick 

coupling mechanism. The Positest instrument was then used to apply a uniform and 

increasing force to remove the dolly from the surface of the coating. A stand-off is used 

to keep the substrate in place while the pull-off force is increased. A schematic diagram 

of the Positest is shown in Figure  6.1. The load is increased at a steady rate until the 

coating fails and delaminates from the substrate. 

 

Figure  6.1: A schematic diagram of a dolly fixed to the coating surface using an 

adhesive, showing the dolly, stand-off, coupling, and uniform pull-off force lines. 

Applying the pull test to the MAR surface failed to delaminate the coating from the 

surface of the glass. All experiments resulted in the glass substrate failing before the 

MAR delaminated, destroying the sample. Figure  6.2 shows the result of a test 

conducted with the highest recorded pull force of 0.98MPa. This demonstrates that the 

MAR coatings have excellent adhesion. However, applying the pull test to thicker – and 

therefore stronger – MAR coated glass could reveal the true failure point of the coating. 
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Figure  6.2: (a) The base of a dolly with glass adhered to the surface, indicating no 

coating delamination. (b) A fractured sample of the sputtered SiO2/ZrO2 MAR 

coating on glass after a pull test.  The coating remained undamaged. 

6.2.1.2 Cross-Hatch Test 

 

Figure  6.3: A cross-hatch test on the sputtered SiO2/ZrO2 MAR coating before (a) 

and after the application of tape (b). 

The standard test is to create a pattern consisting of 6 parallel lines by scratching the 

coating using a round, 6-bladed, steel cutting knife manufactured by Dyne Technology 

Inc. (model number: CC1000). Then, 6 parallel lines are scratched, intercepting the 

initial lines at 90° and creating a cross-hatch pattern. However, the coating was too hard 

to be scratched by the standard round, 6-bladed cutting knife, and a diamond scribe was 

used to scratch the samples instead. Semi-transparent pressure sensitive tape 

(manufactured by q-connect Ltd) was then applied to the cross-hatched area and 

removed at a 90 degree angle from the surface of the coating, as quickly as possible. 

The coating was then assessed in accordance with ISO 9211-4 [93]. The coating was 

given a rating between 0 and 5 based on observed delamination after the application and 

removal of tape. A score of 0 indicates excellent adhesion; a score of 5 indicates coating 

removal and extremely poor adhesion. 
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As shown in Figure  6.3 (b), the coatings showed minor damage after the application of 

tape: less than 5% of the total area was delaminated. However, some flaking can be 

observed at scratch intersections – this is caused by the diamond scribing and not by the 

tape. Therefore, the coating has an adhesion rating nearing 0. This confirms the MAR 

has excellent adhesion on glass. A full description of the classifications from the rating 

system is provided in the ISO 9211-4 specifications. 

6.2.2 High temperature stability 
Many processes in thin film CdTe solar cell manufacturing involve high temperatures, 

such as the CdTe deposition and the cadmium chloride (CdCl2) activation treatment.  It 

is likely that module manufacturers would prefer to source glass with the MAR already 

applied.  This would provide the benefit of improved module efficiency without the 

need to include another process step or incur its associated capital expenditure.  Glass 

companies are familiar with magnetron sputtering processes and there should be no 

technical barrier for coating glass directly from a float line.  However, this strategy is 

only feasible if the pre-coated MAR on glass can withstand the subsequent high PV 

manufacturing process temperatures. MAR glass samples were heated to increasingly 

high temperatures to test the heat resistance of the coatings.  

Three types of substrate have been investigated: Soda lime glass, Eagle glass (EG), and 

TEC 7. The WAR on uncoated soda lime glass was 4.23%, for non-heated MAR the 

WAR was 1.6%; a reflection decrease of 2.63%. Figure  4.2 shows the modelled 

reflection of the deposited MAR coating used in this study. The measurements also 

confirmed excellent repeatability between the samples.  

Variations in the WAR of as deposited samples are small and are caused by variations 

in the deposition conditions; the standard deviation of WAR of samples on Eagle glass, 

and TEC 7 is 0.077, and 0.073 percentage points respectively showing excellent 

reproducibility. 

6.2.2.1 Soda-Lime Glass 

Figure  6.4 Shows SEM images of the surface of four MAR coated glass substrates; as 

deposited and then heat treated for 30min at 200ºC, 400ºC and 500ºC. The images show 

that the surface of the as deposited samples was smooth and defect free. The surface 

was not damaged due to the exposure of the glass even up to 580ºC. The reflection 
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measurements confirmed that the optical properties of the coatings remained 

unchanged. 

The lowest temperature that caused signs of slight crazing to appear was 590º, in the 

form of isolated fissures in the surface of the MAR. An example of these fissures can be 

seen in Figure  6.6. Figure  6.7 shows an optical image of a coating exposed to a 

temperature of 600ºC. Comparison with Figure  6.5 shows that at 600ºC the coating has 

crazed completely.  

 

Figure  6.4: SEM surface images of as deposited sputtered SiO2/ZrO2 MAR coated 

glass surface and surfaces exposed to temperatures of 200ºC, 400ºC and 500ºC for 

30 min. No crazing is observed. 

 

Figure  6.5: An optical microscope image of a sputtered SiO2/ZrO2 MAR sample 

exposed to 580 ºC for 30 min, showing no visible damage. 
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Figure  6.6: Optical microscope images of a sputtered SiO2/ZrO2 MAR sample 

exposed to 590ºC for 30 min, showing an isolated fissure in the surface of the 

coating. 

 

Figure  6.7: Optical microscope image of a sputtered SiO2/ZrO2 MAR sample 

exposed to 600ºC for 30 min revealing the occurrence of mild crazing. 

A comparison of the reflectance of MAR coated glass after heat treatment at 500°C, 

590°C and 600°C can be seen in Figure  6.8. The reflectance in terms of WAR for 

uncoated soda lime glass was 4.23%, for as deposited MAR the WAR was 1.61%, 

exposed to 500°C the WAR was 1.59%, exposed to 590°C the WAR was 1.41%, and 

exposure to 600°C the WAR was 1.36%.  This suggests that heat treatment has a 

negligible effect on the WAR of the samples. 
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Figure  6.8: Measured reflectance spectrum of as deposited sputtered SiO2/ZrO2 

MAR coated soda lime glass (SLG)(black line) and sputtered SiO2/ZrO2 MAR 

coated glass heat treated to 500oC (red line), 590oC (green line) and 600oC (blue 

line) for 30min, including back surface reflectance. 

Fissures are produced in the surface of the MAR samples only after the soda lime glass 

has begun to warp due to the heat. Figure  6.9 provides a series of CCI images showing 

that the shape of the substrate changes depending on temperature. The corners curl up 

significantly, at this point the coating crazes and RMS roughness begins to increase. 

Experiments on Eagle glass were carried out to investigate the effect of using a high 

temperature glass substrate with a lower coefficient of thermal expansion on the surface 

roughness of the coating after heat treatment. 
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A. CCI Image of as deposited sample. 

 

B. CCI Image of MAR sample on SLG exposed to 500ºC. 

 

C. CCI Image of MAR sample on SLG exposed to 600ºC

 

Figure  6.9: CCI images of MAR samples. A: As deposited. B: Heat treated at 

500ºC. C: Heat treated at 600ºC. 

6.2.2.2 Pilkington TEC 7 Glass 

Figure  6.10 shows a comparison of the surfaces of MAR coatings deposited onto 

Pilkington TEC 7 glass after heat treatment at 500ºC, 580ºC, 590ºC, and 600oC. Again 

the images show that the surface of the as deposited samples was smooth and defect free 
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and the samples show no sign of crazing under SEM imaging. As the soda lime glass 

used in TEC7 is 3mm thick the glass warped less at temperatures approaching 600oC 

than the 1mm thick soda lime glass samples. Slight crazing could only be found at the 

edges of the sample at temperatures above 590oC. This supports the view that crazing in 

the coating is primarily caused by the mechanical movement of the substrate as it 

approached its melting point. An optical image of crazing at 590oC is shown in 

Figure  6.11.    

The Transparent Conducting Oxide (TCO) on the opposing side of the glass to the 

MAR was unaffected by the heat treatment as inspection at all temperatures showed no 

signs of crazing.  

 

Figure  6.10: SEM surface images of the central area of sputtered SiO2/ZrO2 MAR 

coatings deposited on TEC 7 and then exposed to temperatures of 500ºC (top left), 

580ºC (top right), 590ºC (bottom left) and 600ºC (bottom right). The coatings show 

no signs of crazing. 
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Figure  6.11: Optical microscope image of a sputtered SiO2/ZrO2 MAR coating 

deposited on TEC 7 and exposed to 590ºC for 30 minutes showing very mild 

crazing at the warped edges of the glass. 

A comparison of the reflectance of MAR coated TEC 7 glass after heat treatment at 

500ºC, 590ºC and 600°C is shown in Figure  6.12. The reflectance in terms of WAR for 

non-heat treated MAR on TEC 7 was measured at 1.45%. Samples before and after heat 

treatment showed negligible difference in WAR. 

Table  6.1: Comparison of WAR of samples on TEC 7 before and after heat 

treatment at different temperatures. Numbers exclude back surface reflection. 

Heat treatment  

temperature [ºC] 

WAR As  

Deposited [%] 

WAR  Post  

Treatment[%] 

500 1.46 1.72 

580 1.45 1.46 

590 1.47 1.60 

600 1.38 1.73 
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Figure  6.12: Measured reflectance spectrum of as deposited sputtered SiO2/ZrO2 

MAR on TEC 7 glass (black line), and MAR coated glass heat treated to 500°C 

(red line), 590°C (green line) and 600°C (blue line), including back surface 

reflectance. 

6.2.2.3 Corning Eagle Glass 

To distinguish whether the MAR coating on soda lime glass crazes due to the heat 

treatment or the deformation of the substrate, we repeated the tests using Corning Eagle 

Glass™. The annealing point of a glass is the temperature at which the glass is still hard 

to deform but has been softened enough to allow for stresses to relax within the glass. 

Eagle glass has an annealing point of 722°C, allowing for greater temperature heat 

treatment compared to soda lime glass which has an annealing point of 546°C. 

Figure  6.13 shows a comparison of the surfaces of MAR coatings deposited onto Eagle 

glass after heat treatment at 590ºC, 600ºC, and 700oC. The images show that the surface 

of the as deposited samples was smooth and defect free and the samples show no sign of 

crazing. Reflection measurements from the spectrophotometer show that heat treatment 

has a negligible effect on the WAR of the coated samples. 



Anti-reflection Coatings and Optical Interference in Photovoltaics 

76  Gerald Womack - June 2017 

 

Figure  6.13: SEM surface images of sputtered SiO2/ZrO2 MAR samples deposited 

on Eagle Glass exposed to temperatures of 590ºC, 650ºC and 700ºC. The samples 

show no signs of crazing. 

Figure  6.14 shows an optical image of a coating exposed to a temperature of 800ºC. 

Comparison with Figure  6.13 shows that at 800ºC the coating has begun to craze. 

However, only small examples of fissures in the coatings surface are observed at this 

stage. This difference in the damage compared with soda lime glass is due to the 

comparatively higher annealing point, higher melting point, and lower coefficient of 

thermal expansion of Eagle glass. 

 

Figure  6.14: Optical microscope images of a sputtered SiO2/ZrO2 MAR sample 

deposited on Eagle glass exposed to 800ºC for 30 minutes with no crazing 

occurring, revealing mild crazing. 

A comparison of the reflectance of MAR coated Eagle glass as deposited and after heat 

treatment at 590ºC, 700ºC, and 800°C can be seen below in Figure  6.15 and 
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Figure  6.16. The reflectance in terms of WAR for untreated MAR on Eagle glass was 

measured at 1.76%. The WAR after heat treatment is provided in Table  6.2. 

Table  6.2: Comparison of WAR of samples on EG before and after heat treatment 

at different temperatures. 

Heat treatment  

temperature [ºC] 

WAR As  

Deposited [%] 

WAR  Post  

Treatment[%] 

590 1.76 1.70 

650 1.71 1.62 

700 1.89 1.77 

800 1.76 1.50 

 

 

Figure  6.15: Measured reflectance spectrum of uncoated glass (black line) MAR 

coated glass (red line), and MAR coated glass heat treated to 700°C (green line) 

and 800°C (blue line), including back surface reflectance. 
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Figure  6.16: Plot of heat treatment temperature against WAR for sputtered 

SiO2/ZrO2 MAR coated Eagle glass. 

6.2.3 Resistance to temperature and humidity 
Solar modules are used in many climates, some of which are particularly hot and humid 

such as occur in Equatorial regions. MAR coatings used on all solar cell technologies 

must be able to withstand high humidity, high temperatures, and temperature cycling.   

A damp heat (DH) test was performed, in accordance with the IEC 61646 standard. The 

three samples were stressed in a Sanyo Gallenkamp HCC065 environmental chamber at 

85ºC and 85% relative humidity (RH) for a total of 1000 hours. Prior to the test, the 

samples were visually inspected and reflectance measurements were taken. The samples 

were then taken from the chamber for testing at 20, 85, 160, 250, 325, 420, 500, and 

1000 hours. Figure  6.17 shows the measured WAR of the samples after each was 

exposed to damp heat up to 1000 hours. 



Chapter  6: Durability of Anti-reflection Coatings 

Gerald Womack - June 2017   79 

 

Figure  6.17: Measured weighted average reflectance (WAR) of sputtered 

SiO2/ZrO2 MAR samples after exposure to 85% humidity at a temperature of 

85ºC, for up to 1000 hours. 

The WAR remained relatively constant after 1000 hours of 85ºC/85% Damp Heat 

testing carried out in accordance with the IEC 61646 test for Photovoltaics devices. 

These accelerated tests show that humidity has little effect on the coating stability and is 

unlikely to cause delamination or other damage in the field. 

6.2.4 Contact angle 
Another quality used to measure the ability of a coating to resist water damage over 

long periods of time is the water contact angle. Contact angle is the angle at which a 

water droplet connects with the surface it is resting on. A high contact angle indicates 

high water repellence (hydrophobicity). A high contact angle indicates a lower run-off 

angle for water resting on a surface. This means that when a surface has high 

hydrophobicity, detritus and excess water is removed from the surface through gravity 

at a greater rate; maintaining a cleaner, drier surface. As ARCs are the outermost layer 

of the solar cell, it is therefore beneficial for ARCs to have a high contact angle. A 

water drop on the surface of a coating is shown in Figure  6.18, the contact angle is 35°. 

The application of a thin hydrophobic coating, (hexamethyldisilazane abbreviated to 

HMDS) to the surface of the MAR changes the contact angle from 72° to 107°, as 

shown in Figure  6.19.  
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Figure  6.18: A water drop on the surface of a sputtered SiO2/ZrO2 MAR coating 

with a contact angle of 35°. 

 

Figure  6.19: A water drop on the surface of a sputtered SiO2/ZrO2 MAR coating, 

coated in HMDS. The contact angle is 107°. 

6.2.5 Stability against thermal cycling 
Solar modules in the field will experience changing temperatures over 24 hours due to 

the day/night cycle and the seasonal weather patterns. Accelerated lifetime testing of the 

MAR was performed by cycling the MAR coatings at -40ºC to 85ºC in a Vötschtechnik 

VCS 7430-4 H climatic chamber, with a minimum dwell time of 10 minutes at each 

temperature extreme. The WAR of the samples was then measured after 0, 100, 150, 

and 200 cycles. Figure  6.20 shows the WAR measured for three samples, which were 

cycled 200 times in accordance with the IEC 61646 protocol. 
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Figure  6.20: The measured weighted average reflectance (WAR) of sputtered 

SiO2/ZrO2 MARs cycled 0, 100, 150, and 200 times between -40ºC and 85ºC in a 

climatic chamber. This is a minimum of 2000mins (~33hrs) at each temperature 

extreme. 

No coating degradation was observed as a result of the thermal cycling test, according 

to the IEC 61646 test for Photovoltaic devices. This qualifies the coating for use on 

photovoltaic modules and provides confidence that the coating will not be damaged by 

the day /night cycle. 

6.2.6 Water solubility testing 
MAR coatings must be resistant to prolonged exposure to water. MAR coated glass 

surfaces were exposed to different tests to measure the coating resistance to water, 

according to the ISO 9211-4:2012 protocol[93]. The standard test uses conditions of 

increasing severity. The least aggressive test involves immersion of the glass samples 

for 6 hours in de-ionised (DI) water. DI water is defined as water with a resistivity 

greater than 0.2 MΩ-cm. This test is then extended to 24h and 96h. Tests increase in 

severity to involve immersing the samples in boiling DI water for 5, 15, and 30 minutes. 

The most severe test involves submerging the sample in boiling DI water for 2 minutes, 

and moving it immediately into a bath of DI water at room temperature for 1 minute.  

The tests were carried out using semiconductor grade DI water (18 MΩ-cm resistivity).  

A sample was exposed to boiling DI water for 5, 15 and 30 minutes. The sample 

showed no sign of physical degradation. Figure  6.21 shows recorded WAR values 

obtained using a spectrophotometer.   
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Figure  6.21: The weighted average reflectance (WAR) of sputtered SiO2/ZrO2 

MAR samples after immersion in boiling DI water for 0, 5, 15, and 30mins. 

The samples were then placed in boiling water for 2 minutes and then placed in room 

temperature DI water for one minute. According to ISO 9211-4:2012, this process 

constitutes a single test cycle. Ten cycles were applied to the sample, followed by visual 

inspection and spectrophotometer measurements. No changes were observed visually 

after each cycle. The WAR measurements are shown in Figure  6.22. The samples 

passed the ISO 9211-4:2012 test with no sign of degradation. This result predicts that 

MAR coatings can withstand wet climates and extreme weather. 

 

Figure  6.22: The weighted average reflectance (WAR) of sputtered SiO2/ZrO2 

MAR coated glass after 0, 1, 2, 5 and 10 cycles of boiling water cycling. Cycles 

consisted of 2min of boiling DI water and 1min cooling in room temperature DI 

water. 
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6.2.7 Acid attack 
Acid rain is common in many cities around the world. To test the acid resistance of the 

MAR coatings, samples were submerged in dilute sulphuric acid[97] with ~3.5pH. The 

type of acid and pH were selected to simulate acid rainwater[98]. The pH was measured 

using an Accumet AB150 pH meter. The WAR of the coating was measured after every 

30 minutes of exposure. Figure  6.23 shows that the WAR of the coatings was not 

reduced after acid attack and demonstrates that the coating is resistant to acid rain. 

 

 

Figure  6.23: The weighted average reflectance (WAR) of sputtered SiO2/ZrO2 

MAR samples after exposure to dilute sulphuric acid simulating the effect of acid 

rain for 0, 30, 60, 90, and 120mins. 

6.2.8 Abrasion resistance 
It is necessary for MARs to be abrasion resistant to simulate the effect of transport, 

handling, maintenance, cleaning  and falling debris in certain environments. Abrasion 

resistance was measured using a reciprocating abrader adapted from BS EN 1096-2[97].  

Materials such as cheesecloth [93] and felt pads[97], are used as abraders as industrial 

standards for optical coatings to simulate the effect of cleaning. A felt pad abrasion test 

from BS EN 1096-2 (which uses a slow turning circular abrader) was adapted into a 

linear abrasion test. In the adapted test, a felt abrader with a surface area of ~7.5mm2 

was applied to the surface of the MAR coating with a force of 10N and passed across 

the surface 100 times, with a stroke length of 30mm and a speed of 60 cycles per 

minute. Though more aggressive than the circular test found in BS EN 1096-2, the felt 

pad test caused no visible damage and had no effect on the WAR of MAR coated 

samples. 
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A CS-10 abrader[99], a rubbery material with sand like grains within it, which produces 

a mild to medium abrasion, was used to further test the durability of MAR coatings. The 

CS-10 abrader was pressed to the surface of the MAR coated glass with a force of 5N 

and 10N.  The abrader was then repeatedly passed over the sample surface at 60 cycles 

per minute with a stroke length of 30mm. After 100 cycles at each force, the coatings 

were cleaned in an ultrasonic bath and the WAR was measured. 

After the abrader was applied to the surface of the MAR the WAR was slightly reduced, 

by 0.2% and 0.4% for 5N and 10N respectively. The reduction in WAR is due to minor 

damage to the MAR coating. CS-10 abrasion is an aggressive test for optical coatings 

but the coating sustained only minor scratches. This demonstrated that the coatings can 

pass all industrial abrasion resistance standards for optical coatings and confirms the 

excellent durability of the MAR coatings. 

6.2.9 Scratch Resistance 
The scratch-resistance of the MAR coatings was measured using micro-indentation with 

a micro-scratch test [100]. The micro-scratch test is used to measure hardness using a 

diamond micro-indenter which is pressed into the surface of the sample using an 

increasing load. The surface of the sample then moves relative to the micro-indenter, 

scratching the surface. Recording the force at which the coating is penetrated, deforms 

elastically and inelastically, and begins to flake, provides a quantitative measurement of 

the scratch-resistance of a coating. Additionally, images of the scratches provide 

qualitative evidence of the extent of the damage.  For example, images show the size of 

flakes from the coating, and the size and number of fractures caused by the scratches.  

A round end cone micro-indenter with a tip radius of 5μm was used. Initially, the micro-

indenter was held at a force of 0.1mN at the surface of the sample. The load was then 

increased at a rate of 1mN per 1μm as the micro-indenter travelled across the surface.  

The micro-indenter travelled 400μm and applied a maximum force of 400mN over the 

5μm micro-indenter tip, ~5kPa pressure.  

An image of the resulting scratch from the micro-scratch test is shown in Figure  6.24. 

The image shows that debris begins to appear next to the scratch at about ~120-140mN: 

this is the point at which partial delamination of the sample begins to occur. This point 

on the scratch is indicated in Figure  6.24 with a label reading ‘Delamination initiates’. It 

is probable that the top layers of the coating failed, and the debris observed is likely to 

be from the top layers of the coating. At ~200-220mN it appears that the debris from the 
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coating is much larger and displays interference effects, which indicates that the coating 

has begun to delaminate as a whole rather than in layers. In Figure  6.24, this point is 

indicated by the label reading ‘Total delamination occurs’. There are no cracks 

protruding from the scratch and the flake size is very small.  This confirms the coating 

is very hard and structurally sound. 

 

Figure  6.24: Scratches in the surface of a sputtered SiO2/ZrO2 MAR sample. The 

scratches were produced by pressing a micro-indenter into the surface of the 

coating and moving the sample as the load is increased. 

The dependence of the penetration depth on applied load is shown in Figure  6.25.   

Throughout the scratch process, the relationship between applied load and scratch depth 

remains linear, except for a few slight variations at the coating failure. This indicates 

that the resistance to deformation of the coating is similar to that of the glass substrate.  

 

 

Figure  6.25: Plot of the load applied to the micro-indenter against depth 

penetrated into the surface of the sputtered SiO2/ZrO2 MAR sample. 
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6.3 Durability of the Sol-gel Coatings 

6.3.1 Adhesion 

6.3.1.1 Pull Test 

As with the MAR coatings, the Positest Adhesion tester was applied to AR1 and the 

TWI porous silica coating. In both cases the glass substrate failed and the coating was 

not removed from the substrate surface. When testing the TWI coatings, the adhesive 

permeated the coating and adhered to the glass surface itself. The coating is extremely 

friable due to the porous nature of the coating.  

Pull tests for AR1 were carried out using a dolly size of 20mm, with the standard ethyl-

2-cyanoacrylate based adhesive. The dollies were sanded with 120 grit sandpaper and 

were glued 6 days prior to testing. The dollies were pulled at a rate of 0.7MPa/s. The 

coating withstood a maximum load of 4.92MPa before the glass substrate failed. 

Figure  6.26 shows the glass substrate cracked and still partially stuck to the dolly 

(~45%). The glue is on the remaining surface of the dolly and was removed from the 

surface of the coating. Across the entire surface of the glass the coating was still intact 

—this result shows that AR1 has impressive adhesion. The failure of the glass substrate 

happens at a greater pull load when compared to MAR coatings, as the substrate was 

3mm rather than 1mm thick. 

 

Figure  6.26: (a) The base of a dolly with glass adhered to the surface, indicating no 

coating delamination. (b) A fractured sample of AR1 on glass after a pull test.  The 

coating remained undamaged. 

6.3.1.2 Cross-Hatch Test 

The TWI porous silica coating was removed by the application of tape alone, resulting 

in an adhesion score of 5. In contrast, AR1 displayed no visible damage after the cross-

hatch test. However, the coating could be scratched using the standard stainless steel 4-
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bladed knife. AR1  has a score of 0 according to ISO 9211-4 [93], indicating excellent 

adhesion, as with the MAR. 

6.3.2 High temperature stability 
As the TWI coatings are simple dip-coated porous silica, heat treatment is used to aid 

the evaporation of the solvent. However, the effect of heat treatment has a negligible 

effect on the coating’s effectiveness up to the temperature at which the glass melts. AR1 

has a complex structure with internal bubbles. The AR1 coatings were heated at 100°C 

intervals up to 600°C.  Untreated AR1 is featureless, but only minor heat treatment 

appears to damage the optical properties of the coating. Figure  6.27 shows that damage 

begins to occur in the coating after just 100°C heat treatment and Figure  6.28 shows that 

severe damage is established by 200°C.  

 

Figure  6.27: The surface of an AR1 sample after heat treatment at 100°C for 

30min. 

 

Figure  6.28: The Surface of an AR1 sample after heat treatment at 200°C, showing 

high damage for 30min. 
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However, across the 350nm to 850nm wavelength range, the WAR of the samples had 

decreased from 2.6% to 2.28% after exposure to 400°C and 2.02% after exposure to 

500°C. Figure  6.29 shows that bubbles formed within the AR1 coating, causing the 

increase in WAR. After exposure to 700°C, the WAR had increased to 3.2%; a sample 

is shown in Figure  6.29.  

 

Figure  6.29: The surface of an AR1 sample after exposure to 700°C for 30min. 

6.3.3 Resistance to temperature and humidity 
In accordance with IEC 61646, 2 samples of AR1 were loaded into an environmental 

chamber (Sanyo Gallenkamp) and held at 85°C and 85% RH for a total of 1000 hours. 

The reflectance of the samples was measured using a spectrophotometer at the 

beginning and end of the 1000 hours, and at the mid-way point at 500 hours. Table  6.3 

shows the result of DH exposure on 2 AR1 samples. Before each measurement the 

samples were cleaned in a 50-50 IPA and DI water mix, to localise the effect of the DH 

test. 

Table  6.3: Measured WAR of AR1 samples after DH exposure: 

 Sample 1 Sample 2 

Initial 2.25% 2.35% 

500 hours 2.25% 2.23% 

1000 hours 3.19% 2.85% 

After 500 hours, the change in WAR was negligible. After 1000 hours, the WAR of the 

samples had increased considerably. The WAR of sample 1 and 2 had increased by 
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0.94% and 0.62% —this indicates that the coating is susceptible to damage from hot 

and humid environments. The surfaces of the samples appeared to have collected 

impurities from the DH test. The WAR, after 500 hours, was not affected since these 

impurities were not abundant. However, after 1000 hours, the impurities are clearly 

visible with the naked eye, as shown in Figure  6.30. 

 

Figure  6.30: Photograph of sample 1 showing signs of water damage after 1000hrs 

of DH exposure. 

6.3.4 Contact angle 
The contact angle of the TWI ARC was measured at 100° and slightly increased by the 

application of HMDS to 111°. Porous silica is the most hydrophobic coating studied in 

this work. A water drop on the surface of a TWI ARC before and after the application of 

HMDS can be seen in Figure  6.31 and Figure  6.32 respectively. The high 

hydrophobicity can be explained by the roughness of the coating on the glass preventing 

the water drop from moving on the surface. In the long term, however, the TWI coatings 

wash off the surface of the glass due to their high friability. 
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Figure  6.31: A water drop on the surface of a TWI ARC with a contact angle of 

100°. 

 

Figure  6.32: A water drop on the surface of a TWI ARC coated in HMDS, the 

contact angle is 111°. 

The contact angle of AR1 was measured at 9°, which is very low. The coating appears 

to absorb water. This is a concern for the long term effectiveness of AR1 coatings: if the 

coating absorbs water, the optical properties are diminished as the presence of water 

raises the refractive index of the coating. The application of HMDS increased the 

contact angle drastically to 89°, so the application of a hydrophobic layer (thin enough 

to have a negligible effect on the optical properties of the ARC) may be a solution. A 

water drop on the surface of AR1 and HMDS coated AR1 is shown in Figure  6.33 and 

Figure  6.34 respectively. 
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Figure  6.33: A water drop on the surface of an AR1 with a contact angle of 9°. 

 

Figure  6.34: A water drop on the surface of an AR1 coated in HMDS. The contact 

angle is 89°. 

6.3.5 Stability against thermal cycling 
As with the MAR samples, samples of AR1 were exposed to thermal cycling in 

accordance with IEC 61646. The samples were loaded into a Vötschtechnik VCS 7430-

4 environmental chamber and cycled between -40ºC and 85ºC, with a minimum dwell 

time of 10 minutes at each temperature. As shown in Figure  6.35, thermal cycling had a 

positive effect on the WAR of the samples, indicating that the samples are resistant to 

thermal damage. However, the change in WAR suggests the mechanical properties may 

have been compromised. This result agrees with the resistance to remarkably high 

temperatures demonstrated in section  6.3.2. 
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Figure  6.35: The measured WAR of AR1 samples cycled 0, 100, 150, and 200 times 

between -40ºC and 85ºC in a climatic chamber (~33Hrs). 

Due to the small surface area of the AR1 samples (5cm2), irregularities in the coating 

can lead to the initial WAR can vary considerably from sample to sample. Nevertheless, 

when considering the effect of thermal cycling, the difference in WAR before and after 

the treatment is still meaningful when discussing the effects of thermal cycling. 

6.3.6 Water Solubility Test 
As with the MAR coatings, AR1 samples were exposed to solubility tests sequentially 

in accordance with ISO 9211-4. The least aggressive test is the immersion of the 

samples into DI water for up to 96 hours. After immersion the samples were dried and 

the reflectance of the sample was measured. The WAR of AR1 samples was raised 

slightly, as shown in Figure  6.36. The WAR is raised after 6 hours immersion, and then 

remains constant for the remainder of the experiment. This suggests that slight damage 

occurs after very little contact with water. The WAR of the sample was measured after 

6, 24, and 96 hours. 
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Figure  6.36: The WAR of AR1 samples after immersion in DI water for 0, 6, 24, 

and 96Hrs. 

The samples were then placed in boiling DI water for 5, 15, and 30 minute periods. No 

physical degradation was observed after 30 minutes. The WAR of the sample improved 

after 5 minutes in boiling water, after this point a slight increase in WAR was observed, 

as shown in Figure  6.37. This is consistent with heat having a positive effect on coating 

uniformity and suggests that damage from water occurs in a timescale of hours. 

 

Figure  6.37: The WAR of AR1 samples after immersion in boiling DI water for 0, 

5, 15 and 30mins. 

Finally, the samples were placed in boiling DI water for 2 minutes and then immersed 

in room temperature DI water for 1 minute. This process was repeated 10 times and 

WAR measurements were taken after the 1st, 2nd, 5th, and 10th cycle. The samples 

displayed no visible degradation in quality. However, the WAR was increased after the 

first cycle. The WAR of the samples is shown in Figure  6.38. 
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Figure  6.38: The WAR of samples of AR1 after 0, 1, 2 , 5, and 10 cycles of 2 

minutes in boiling DI, followed by 1 minute in room temperature DI water. 

6.3.7 Abrasion Resistance 
A felt pad abrasion test from BS EN 1096-2 [97] (which uses a slow turning circular 

abrader) was adapted into a linear abrasion test. In the adapted test, a felt abrader with a 

surface area of ~7.5mm2 was applied to the surface of the AR1 coating with a force of 

10N and passed across the surface 100 times, with a stroke length of 30mm and a speed 

of 60 cycles per minute. This increased the WAR of the sample relatively by 33% from 

2.75% to 3.65%. 

The CS-10 abrader was pressed to the surface of AR1 samples with a force of 5N and 

10N. The abrader was then repeatedly passed over the sample surface at 60 cycles per 

minute with a stroke length of 30mm. After 100 cycles at each force, the coatings were 

cleaned in an ultrasonic bath and the WAR was measured. This resulted in an absolute 

increase in WAR of 1.32% and 2.21% for 5N and 10N respectively. The reduction in 

WAR is due to severe damage to the AR1 coating. This result suggests damage from 

wear and tear during operational cleaning is to be expected when using AR1 as a 

commercial anti-reflective coating. 

6.3.8 Scratch resistance 
As with the MAR coatings, a round end cone micro-indenter with a tip radius of 5μm 

was used. The micro-indenter was held at a force of 0.1mN at the surface of the sample, 

and then the load was increased at a rate of 1mN per 1μm as the micro-indenter 

travelled across the surface. The micro-indenter travelled 400μm and applied a 

maximum force of 400mN over the 5μm micro-indenter tip, ~5kPa pressure.  
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An image of the resulting scratch from the micro-scratch test is shown in Figure  6.39. 

The resting pressure of 0.1mN deformed the coating considerably in comparison with 

MARs, deforming the coating by ~30nm compared to ~0.5nm with an MAR. 

Figure  6.39 shows that debris begins to appear next to the scratch very early, implying 

partial delamination at ~20-40mN. This point on the scratch is indicated in Figure  6.39, 

with a label reading ‘Delamination initiates’. At ~180-200mN it appears that the debris 

from the coating is much larger and displays interference effects, which indicates that 

the coating has begun to delaminate completely. In Figure  6.40, this point is indicated 

by the label reading ‘Total delamination occurs’. There are no cracks extending from 

the scratch, implying the coating is structurally sound. However, the flake size is larger 

than that produced by the MAR scratch test. The greater amount of debris is explained 

by the greater thickness of the AR1, and the deeper penetration into the softer AR1 

surface.  

 

Figure  6.39: Scratches in the surface of an AR1 sample. The scratches were 

produced by pressing a micro-indenter into the surface of the coating and moving 

the sample as the load is increased. 
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Figure  6.40: Plot of the load applied to the micro-indenter against depth 

penetrated into the surface of the AR1 sample. 

6.4 Summary and Conclusions 
The adhesion and durability of the coating is a primary concern. Solar modules are 

installed with a 25 year warranty even in countries with harsh climates. Not only is the 

coating expected to withstand humidity and temperature cycling, it may also endure 

dilute acid attack from atmospheric pollution.  Furthermore, the coating must have 

sufficient scratch resistance to withstand regular cleaning and maintenance. 

The adhesion of the MAR and AR1 coatings have been tested using a battery of 

standardised tests.  The pull test (ISO 4624) failed to remove both types of coatings 

from the substrate. The highest recorded pull strength that the coating survived was 

0.98MPa for MAR and 4.92MPa for AR1 (due to a thicker substrate). The substrate was 

destroyed in both instances. The cross-hatch test (ISO 9211-4), typically requires a 4-

bladed steel knife to scratch the samples, but this had to be adapted and a diamond tool 

was used to scratch the grid pattern into the coating. Very little delamination from the 

application and removal of tape was observed in both coatings. In addition to these 

standard test methods, a micro-indentation scratch test was carried out on the candidate 

coatings.  The micro-indentation scratch test showed that the MAR coating has similar 

hardness to the glass substrate, confirming exceptional adhesion to the glass surface. 

AR1 was more easily penetrated and deformed by the scratch test. 

It may be cost-effective for MAR coatings used on solar modules to be readily available 

to PV manufacturers on pre-coated glass. This would be ideal for cover glass 
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applications for crystalline silicon, thin film amorphous silicon, CIGS, CZTS, or 

superstrate perovskite devices. However, for this to be feasible for thin film CdTe 

devices using the conventional superstrate configuration, the coatings must be resistant 

to the temperature levels used at every stage of the thin film CdTe PV manufacturing 

process. This study has shown that both the magnetron sputtered coatings and the 

commercial sol-gel coatings are heat resistant and begin to craze at temperatures greater 

than those used in the CdTe absorber deposition and activation processes (~500°C). The 

first signs of crazing of MAR samples on soda lime glass were observed at 590°C, as 

the glass substrate began to deform beneath the coating, applying mechanical stress. 

Applying the coating to Eagle glass® (which has a lower coefficient of thermal 

expansion) confirms that the coating crazes once the underlying glass deforms at 800°C. 

The WAR of the MAR coated surfaces was unaffected by heat treatment, even after 

crazing. The resistance of the MAR coatings to extreme heat makes its application 

attractive for all PV technologies. Heat treatment of samples of AR1 coatings had no 

adverse effect on WAR, until heat treatment temperatures well exceeded 500°C. 

Beyond 700°C, bubbles within the coating appeared to form. 

Temperature and humidity thermal cycling, contact angle, and acid attack tests resulted 

in no degradation of the MAR coating quality. This confirms that MAR coatings are 

suitable for use in any climate —tropical or otherwise— and are even suitable for use in 

areas of high ambient pollution. AR1 performed well in all experiments that involved 

exposure to high temperatures; however, the coating is vulnerable to water ingress and 

has a very low contact angle. 

The combination of tests presented in this work demonstrates the remarkable robustness 

of MAR coatings.  The 3.6% increase in relative conversion efficiency, available by 

using pre-coated glass superstrates, is also an attractive feature.  Its use would add a 

further ~100MW of capacity to the current ~3GW of thin film CdTe production without 

any physical modification to the manufacturing line.  It would also have no effect on the 

manufacturing time.   

The cost of MAR coatings on cover glass or superstrate glass configurations could be 

reduced dramatically at high volumes.  Although we have used planar magnetrons, it is 

feasible to use sputtering sources such as rotatable magnetrons with higher target 

utilization and deposition rates. These are  the  standard in large scale industrial glass 

coaters[101].  
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The dielectric metal-oxide multilayers used in MARs have remarkable durability, 

adhesion, and resistance to environmental factors. Not only do they increase the power 

output of solar modules, their mechanical properties are consistent with a long 

warranty—even when exposed to regular cleaning cycles and maintenance. 
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7 MODELLING OF 
INTERFERENCE EFFECTS IN 
CDTE 

7.1 Introduction 
Thin film CdTe solar cells have achieved commercial success through low 

manufacturing costs and increasingly high efficiencies. Energy conversion efficiencies 

of 22.1% have been reported for thin film CdTe solar cells [102]. However, the 

theoretical efficiency limit for this type of device is ~30% [103]. Both optical and 

electrical losses occur in CdTe solar cells. Electrical losses are normally of greater 

magnitude than optical losses, but if light fails to reach the active layer of the stack, a 

photocurrent is not generated. As such, optical losses precede electrical losses, imposing 

limitations on photocurrent if not addressed. The losses occur due to reflection and light 

absorption in layers which do not contribute to the photocurrent, such as the CdS 

window layer [104]. 

Light interference effects occur in the multilayer structure of the cell. The reflection 

losses can be controlled and reduced by tuning the thickness of individual layers to 

achieve an interference minimum.  The absorption losses in the window layer can be 

reduced by thinning the window layer thickness, which usually requires use of a high 

resistance transparent layer to prevent voltage and shunt losses [105]. Optical modelling 

has been used to assess the optical losses within the CdTe solar stack in a simpler model 

[106], and to evaluate internal reflection losses in a-Si solar cells [107]. In this work, 
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optical modelling was used to investigate how optimizing the various layer thicknesses 

can increase light transmission to the CdTe absorber layer to increase the photocurrent 

generated. 

7.1.1 The thin film CdTe solar cell 
The CdTe solar cell is a thin film stack with a total thickness typically ~3µm. For 

commercial modules, the layers are deposited on to a low cost soda lime glass substrate 

coated with a transparent conducting oxide (TCO). NSG Pilkington TEC glass is an 

industrial standard substrate. The TEC glass consists of SnO2, SiO2 and SnO2:F layers 

deposited on 3.2mm thick float glass. Depending on the properties required, there are 

different types of TEC glass characterised by different light transmission, sheet 

resistance, and surface roughness. TEC 10 glass is an option for CdTe solar cells. The 

glass is characterised by 70%  light transmission in the AM1.5 solar spectrum and a 9 

Ω/□ sheet resistance [108]. 

The CdTe solar cell is deposited onto a TCO coated glass. A simple cell structure 

consists of CdS-CdTe hetero-junction and a back contact. The CdS layer is usually 

~100nm thick. The CdS acts as an n-type semiconductor and enables the photovoltaic 

effect in the solar cell. The band-gap of CdS is 2.4eV which corresponds to an 

absorption edge at ~500nm. The photons absorbed in the window layer do not 

contribute to the photocurrent of the solar cell, as recombination is very likely to occur, 

resulting in scattering of light. Therefore, absorption in the CdS layer is a source of 

significant loss. In a typical cell utilizing CdS, the photocurrent is limited to 22-

23mA/cm2, although 31mA/cm2 is available in the spectrum utilised by CdTe absorber 

[109], [110].  

CdTe is a semiconductor material with a band-gap of 1.45eV which corresponds to an 

850nm absorption edge. Soda lime glass absorbs light at wavelengths of 350nm and 

below [111]. Optically, therefore, the CdTe device absorbs wavelengths between 350nm 

and 850nm. 

The ideal refractive index of a typical single layer anti-reflection coating, to maximise 

transmission, is the product of the refractive indices of the materials at the media 

interface, square rooted as seen in equation ( 2.26).  

7.1.2 High resistance transparent (HRT) buffer layers 
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High resistance transparent buffer layers have been shown to improve solar cell 

efficiencies by reducing the necessary thickness of the CdS layer and reducing shorting 

through the CdS layer [113], [114]. 

The buffer layer is located between the CdS layer and the fluorine doped tin oxide TCO 

layer. The refractive indices are 1.9 and 2.5 respectively, at the maximum in the AM1.5 

spectrum ~550nm wavelength. Using equation ( 7.1, the ideal refractive index to 

maximize transmission at a wavelength of 550nm is ~2.2. The refractive indices of ZnO 

and SnO2 are 2.0 and 1.9 respectively. As the refractive index of ZnO is closer to that of 

an ideal anti-reflection layer in the 350nm to 850nm region, the destructive interference 

of reflections from different interfaces within the system is more complete. This results 

in lower reflection minima when ZnO is implemented as the buffer layer.  

Bulk SnO2 is a transparent n-type semiconductor with a band-gap of 3.6eV and a 

refractive index of ~1.9 at 550nm [115], [116]. Thin film SnO2 has been used as a HRT 

buffer layer in CdTe solar cells at a variety of thicknesses between 12.5nm and 100nm 

[117]. Figure  7.1 shows the structure of a thin film CdTe solar cell incorporating an 

HRT buffer layer. It has been shown that the inclusion of a SnO2 HRT buffer layer in a 

standard CdTe/CdS solar cell, with Fluorine doped tin oxide transparent conducting 

oxide, leads to a 90mV improvement to open-circuit voltage (Voc) and a 6% 

improvement in Fill Factor [117]. The inclusion of a SnO2 HRT buffer layer has a 

negligible effect on spectral response and Jsc, whilst raising the shunt resistance of the 

device [117].  

An alternative HRT buffer layer material to SnO2 is Zinc Oxide (ZnO). The refractive 

index of ZnO at 550nm is ~2.0 and the band-gap of ZnO is ~3.3eV [118]. ZnO has been 

modelled previously as a HRT buffer layer in CdTe solar cells using a thickness of 

115nm [119]. The addition of a ZnO HRT buffer layer has been shown to be beneficial 

to CdS/CdTe solar cell efficiency [120]. ZnO has also been used as a HRT buffer layer 

in Cu(InGa)Se2 (CIGS) solar cell devices [121].  

The dispersion relationships and absorption coefficients of SnO2 and ZnO are shown in 

Figure  7.2 and Figure  7.3 respectively. 
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Figure  7.1: A schematic diagram of the CdTe solar cell structure showing the 

position of (from bottom to the top), the back contact, the CdTe absorber, the CdS 

window layer, the buffer layer, the TCO layer, and the glass substrate. 

 

Figure  7.2: The refractive index dispersion for SnO2 and ZnO, the candidate high 

resistance buffer layer materials. 

 

Figure  7.3: The extinction coefficients of SnO2 and ZnO, the candidate high 

resistance buffer layer materials. 
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7.2 Optical modelling 
The thin film CdTe solar cell was modelled and optimised for maximum light 

transmission to the CdTe layer,  using software based on the transfer matrix method 

[28]. The performance of the solar cells was assessed by calculating the weighted 

average transmission (WAT) of light into the CdTe absorber in the 350nm – 850nm 

spectral range, by incorporating the photon flux in the AM1.5g solar spectrum (Φ) [83]. 

 
𝑊𝑊𝑊𝑊𝑊𝑊(𝜆𝜆𝑚𝑚𝑎𝑎𝑥𝑥,𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛) =

∫ 𝛷𝛷 ∙ 𝑊𝑊𝑑𝑑𝜆𝜆 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

∫ 𝑊𝑊𝑑𝑑𝜆𝜆 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 
( 7.1) 

Initially, a simple solar cell consisting of TEC10 substrate with a CdS (thickness 50nm - 

300nm) and CdTe junction was modelled for comparison. Complete light absorption in 

the CdTe layer was assumed. Such devices can usually achieve ~12% conversion 

efficiency with a photocurrent of 22mA/cm2 [103], [105]. The effect of the addition of a 

HRT buffer layer on the optical performance was then modelled. Because thicknesses 

below 50nm are not electrically viable, the buffer layer materials initially were 

investigated at thicknesses in the range 50nm to 500nm. However, low thickness HRT 

buffer layer interference effects were investigated at select thicknesses of CdS, despite 

being electronically unsuitable. TEC 10 glass has a sheet of fluorine doped tin oxide 

(FTO) with a sheet resistance of 9Ω/□ and a thickness of 350nm. Therefore, to create an 

accurate model of a possible CdTe cell design the TCO layer was modelled as a FTO 

layer at a thickness of 350nm.  

The refractive index and extinction coefficient data for CdS and SnO2 were measured 

using a Horiba, Jobin Yvon, UVISEL Spectroscopic ellipsometer. The refractive index 

and extinction coefficient for ZnO was obtained from Sun and Kwok [122].  The 

refractive index and extinction coefficient values for CdTe were taken from the 

Handbook of the Optical Constants of Solids I [123]. 

7.3 Results 

7.3.1 Varying the thickness of the CdS layer  
The effect of modelling the variation in the thickness of the CdS layer was investigated. 

The effect of varying thickness was first modelled in a stack without a HRT buffer 

layer. The results are shown in Figure  7.4. The CdS thickness reduces light 

transmittance to the CdTe layer at all thicknesses. The thin film CdS is usually between 
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50nm and 150nm thick in CdTe devices [124]. Figure  7.4 shows that the optical 

transmission is highly sensitive to the thickness of the CdS layer. Transmittance is 

77.9% at 50nm thickness, but at 300nm it reduces dramatically to 59.4%.  

 

Figure  7.4: The modelled optical weighted average transmission (WAT) to the 

CdTe layer in a CdTe photovoltaic device, plotted against the thickness of the CdS 

layer. The effect of a high resistance buffer layer is not included. 

7.3.2 Varying the thickness of the SnO2 High Resistance Transparent 
buffer layer 
The effect of a SnO2 HRT buffer layer on transmittance was calculated by varying the 

thickness of the CdS layer between 50nm and 300nm at 10nm intervals, and by varying 

the thickness of the SnO2 layer up to 500nm at 10nm intervals. The optical transmission 

into the active layer was calculated at each point and a 3D grid was generated from the 

data. The 3D plot is shown in Figure  7.5. 

A maximum transmittance at a CdS thickness of 50nm was calculated to be 78.0% at a 

SnO2 layer thickness of 50nm. At thicknesses greater than 70nm the absorbing 

properties of SnO2 become more influential and the transmission to the absorber is 

reduced. Reducing the thickness of the CdS layer to below 50nm increases the 

transmittance. However, CdS thicknesses below 50nm have not been considered since 

layers this thin are likely to be discontinuous and lead to shorting of the cell [125]. 
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Figure  7.5: The modelled WAT to the absorbing layer of a CdTe solar cell as a 

function of CdS and the SnO2 layer thickness. Thicknesses of CdS and SnO2 layers 

(nm) are plotted on the X-Y plane and the modelled value for WAT is plotted 

along the Z-axis. In this region a maximum transmission occurs at 50nm CdS and 

48nm SnO2. 

In practice, it is important to be aware of the effect of thickness tolerance on 

transmission. It is possible to achieve thickness accuracy, using time control, of +/-2% 

with magnetron sputtering. Evaporation (thermal or electron beam) can be achieved 

with similar accuracy using quartz crystal control. Varying the thickness of the CdS and 

HRT buffer layer around the transmission maximum by 1nm (a variation of +/-2%) 

results in an insignificant relative loss of 0.002% transmittance.  This illustrates the 

sensitivity of transmission on layer thickness and also confirms that transmission is 

most sensitive to the CdS layer thickness. The dependence is predominantly flat, 

indicating that although there is an interference effect, it is not significant in terms of 

device design. The use of a SnO2 HRT buffer layer is dictated more on its effect on Voc 

than any increase in transmission caused by engineering layer thicknesses. 

7.3.3 Varying the thickness of the ZnO High Resistance Transparent buffer 
layer 
The thickness of the CdS layer was again varied between 50nm and 300nm at 10nm 

intervals and the ZnO HRT buffer layer thickness was varied between 50nm and 500nm 

at 10nm intervals. A value for transmission to the active layer was calculated at each 

point and a 3D grid was generated from the data. The 3D plot in Figure  7.6 shows how 
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the use of ZnO as a buffer layer results in more significant interference effects. These 

effects maintain the transmission nearly level across all thicknesses of ZnO. Only a 

slight decrease in transmission is observed as the ZnO layer thickness is increased. It is 

also shown that, as with a SnO2 HRT buffer, the CdS thickness has the greatest effect 

on transmission to the absorber when a ZnO HRT buffer is used. 

 

Figure  7.6: The modelled WAT to the absorber layer for a CdTe solar cell with 

CdS window and a ZnO high resistance buffer layer. The thickness of the CdS and 

ZnO layers (nm) are plotted on the X-Y plane and the modelled value for WAT is 

plotted along the Z-axis. 

In general, the addition of a ZnO HRT buffer layer improves light transmission to the 

absorbing layer, with interference effects resulting in maximum transmission occurring 

at non-zero thicknesses. Interference effects result in maxima in transmittance at 

different thicknesses of ZnO at each thickness of the CdS layer. The ZnO layer does not 

suffer from significant absorption losses as occurs with SnO2, and therefore thicker 

HRT buffer layers can be used without significant losses. 

A maximum transmittance at a CdS thickness of 50nm was calculated to be 78.5% at a 

ZnO thickness of 58nm.  As with a SnO2 HRT buffer layer, transmission values can be 

greater at CdS thicknesses less than 50nm due to the absorbing effect of the CdS layer, 

but these are disregarded as they are not considered practical. As with SnO2, variation of 

+/-2% in ZnO layer thicknesses results in an insignificant relative loss of 0.002%. 
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Therefore, the accuracy of layer thickness control during deposition is achievable with 

magnetron sputtering or evaporation techniques allied with quartz crystal monitoring. 

The addition of a ZnO HRT buffer layer is beneficial to transmission at both 50nm and 

100nm CdS thicknesses. The benefits are still present at ZnO thicknesses greater than 

100nm, but interference effect maxima occur at different thicknesses of ZnO depending 

on the thickness of CdS.  Consequently, a HRT buffer layer thickness that is beneficial 

at a CdS thickness of 100nm might be slightly detrimental or relatively less effective at 

a CdS thickness of 50nm. 

7.3.4 A comparison of the optical effects of introducing SnO2 and ZnO 
high resistance buffer layers  
A direct comparison of transmission to the absorbing layer with a ZnO HRT layer and a 

SnO2 HRT layer is provided in Figure  7.7. Although buffer layer thicknesses below 

50nm are usually unsuitable, for clarity Figure  7.8 draws out the comparison of the 2 

candidate HRT buffer layer materials, highlighting the effect of interference when using 

thin layers.  

 

Figure  7.7: Modelled WAT to the absorber layer of the CdTe stack plotted against 

thickness for the two candidate HRT layers. ZnO data is represented by solid lines 

and SnO2 data is represented by dashed lines. Values are given at selected 

thicknesses of CdS layer; 50, 100, 150, 200, 250 and 300nm. 

The HRT buffer layer materials are compared at two CdS layer thicknesses often used 

in devices, 50nm and 100nm. The comparison shows that the use of ZnO as a HRT 
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buffer layer results in a greater transmission to the CdTe absorber, regardless of the 

respective thickness of the HRT buffer layer and the CdS layer. The use of SnO2 is 

optically beneficial only at certain layer thicknesses. 

 

Figure  7.8: Comparison of modelled WAT to the CdTe layer in the solar cell 

plotted against the thickness of the ZnO and SnO2 buffer layers. The ZnO data is 

represented by solid lines and SnO2 data is represented by dashed lines. Values 

are given at selected thicknesses of CdS layer; 50nm and 100nm. 

7.4 Conclusions 
Table  7.1 provides a comparison of the optimization of the optical effects using a SnO2 

or ZnO high resistance transparent buffer layer above the transparent conductor in a thin 

film CdTe device. Optical interference occurs in the multilayer thin film stack design 

structure used in thin film CdTe photovoltaic devices. It also occurs in other thin film 

device structures such as CIGS, CZTS, amorphous Silicon, and perovskite solar cells. It 

is important to optimize layer thicknesses within the stack to engineer maximum light 

transmission to the absorber layer so that the highest possible photocurrent is produced. 

In order to achieve the thickness tolerance required in these optically active layers, 

control of the deposition rate is key to this process. When considering only optical 

effects, thickness control in the absorber layer is unimportant once complete absorption 

is achieved. 
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Table  7.1: Comparison of HRT layer performance 

 ZnO SnO2 

Maximum WAT (CdS 50nm) 78.5% 78.0% 

Buffer layer thickness at maximum WAT (optimum) 58nm 48nm 

WAT at buffer layer 50nm    

thickness (CdS50nm) 78.5% 78.0% 

Absolute transmission gain at optimum HRT layer 

thickness compared to no buffer layer at 50nm CdS 

0.6% 0.1% 

Relative maximum transmission loss due to a +/-2% 

thickness variation at maximum transmission 

0.002% 0002% 

The maximum transmission possible using a SnO2 HRT buffer layer was calculated to 

occur with 50nm of CdS and 48nm of SnO2. At these values, the beneficial interference 

effects of incorporating a SnO2 layer increases transmission and outweighs the 

absorption effects within the SnO2 layer. The transmission gained by optimising HRT 

and CdS layer thicknesses would lead to a gain in photocurrent of 0.6% for ZnO and 

0.1% for SnO2. Incorporation of the optimised SnO2 layer leads to a maximum weighted 

average transmission (WAT) of 78.0%. Varying the thickness of the HRT and CdS 

layers around maximum transmission by +/-2%, results in an insignificant transmittance 

loss of 0.002%. This tolerance is achievable by using magnetron sputtering, or 

thermal/electron beam evaporation using quartz crystal control. 

The maximum WAT of 78.5%, using a ZnO buffer layer with a 50nm CdS layer, was 

calculated to occur using a thickness of 58nm. Therefore it is possible to use a thicker 

HRT layer for ZnO than SnO2 which could have electrical benefits. Varying thickness 

of a ZnO HRT layer around maximum transmission by +/-2% also resulted in negligible 

losses, similar to those calculated for SnO2 (0.002%). However, testing a layer thickness 

tolerance of +/-5nm (~+/-10%) resulted in an absolute WAT loss of 1%, which is 

significant. Therefore, layer thickness control is important. 

The anti-reflection properties of a ZnO HRT layer are more pronounced than those for 

the SnO2 HRT layer. This is due to better refractive index matching between the HRT 

layer, the window layer, and the TCO. Moreover, the ZnO HRT layer has low 
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absorption losses, so the interference effect can be exploited at greater thickness to 

minimize the reflection losses. 

The work presented here has shown that the use of a ZnO HRT buffer generally results 

in a higher WAT than SnO2 at all layer thicknesses. The maximum WAT transmission 

achievable is 78.5% which is 0.5% greater than the maximum achievable with SnO2. 

ZnO also has a greater maximum transmission at 58nm thickness compared to SnO2 at 

48nm thickness. The layer thickness of ZnO can be increased while still retaining 

increases in transmission. This is important in practice because one of the benefits of 

incorporating a high resistance layer is the prevention of shorting. This is more likely to 

be successful as the thickness of the high resistance layer increases. 

It should be recognised that this work has considered only optical interference effects to 

maximize light transmission to the absorber layer, thereby maximising the current 

density. Electrical benefits also accrue from the insertion of a high resistance 

transparent buffer layer which increases Voc. Consequently, the choice of material will 

be influenced by a combination of optical and electrical effects. 
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8 OPTIMISATION OF 
PEROVSKITE SOLAR CELL 
STRUCTURE FOR MAXIMUM 
CURRENT COLLECTION 

High conversion efficiencies have recently been demonstrated for perovskite thin film 

photovoltaic devices. Perovskite thin film solar cells are multilayer opto-electrical 

structures in which light interference occurs. This phenomenon can be exploited to 

maximise the light transmission into the absorber material and increase the device 

efficiency. Fine tuning of layer thicknesses within the stack can be used to control 

interference at the interfaces. Optical reflection losses can be reduced by achieving 

destructive interference within the structure of the cell. The light transmission to the 

perovskite absorber of a thin film solar cell using a fluorine doped tin oxide (FTO) 

transparent conductor has been modelled using the transfer matrix method. Alternative 

transparent conductor materials have also been investigated including aluminium doped 

zinc oxide (AZO) and indium tin oxide (ITO). The model showed that replacing FTO 

with ITO could increase the photocurrent by as much as 4.5%. This gain can be further 

increased to 6.5% by using AZO as the TCO material. Fine tuning of the TiO2 layer 

thickness can increase the current density by 0.3%. Furthermore, the current density of a 

Perovskite solar cell can be increased by another 3.5% by application of a multilayer 
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anti-reflective coating. Optical optimisation of the stack design offers a significant 

increase in conversion efficiency. 

8.1 Introduction 
Photovoltaic (PV) devices are becoming an attractive energy source even without 

subsidies. Grid parity has been reached in a number of locations around the world and it 

is only a matter of time before PV technology will be economically viable globally 

[126]. The market is currently dominated by crystalline silicon based devices. At the 

same time new technologies are being developed which can offer additional cost and 

performance advantages. The most important recent innovation is the discovery of solar 

cells based on metal-organic perovskite materials [87]. The astonishing rate of increase 

of device efficiency for these cells has not been observed for any other type of PV 

device. Long term stability remains an issue for the technology [127]. It is still an 

immature technology however; it has scope for significant future impact.  

Perovskite solar cells in common with all other PV materials suffer from a range of 

electrical and optical losses. As the optical losses occur prior to exploitation of the 

photovoltaic effect, it is important to reduce them as much as possible. Optical losses in 

PV are associated with light reflection and absorption in the  solar cell structure [128], 

[129]. Reflection losses can be eliminated through interference, which is controlled by 

the layer thickness and the refractive index of materials used. Absorption can only be 

addressed by thinning the responsible layer or by replacement with a more transparent 

material. 

8.2 Experimental details 
The perovskite solar cell was modelled as a thin film stack. The structure reported by 

Ball has been used as the model for this work, and is shown in Figure  8.1 [128]. The 

cell is deposited on FTO coated glass and comprises layers of TiO2 and methyl-

ammonium lead iodide perovskite. First, the model was used to investigate interference 

effects within the model solar cell structure. We then focused on the performance of the 

Transparent Conductive Oxide (TCO) by investigating the effects of replacing the FTO 

layer with indium doped tin oxide (ITO) or aluminium doped zinc oxide (AZO) [130]. 

The modelling was completed by adding a multilayer anti-reflective coating (MAR) on 

the surface of the cover glass. The calculations were carried out using software based on 

the transfer matrix method [28]. In all calculations, the transmission into the perovskite 
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layer was considered. Based on the maximum transmitted light, estimates of the 

corresponding attainable current have been calculated.  

 

Figure  8.1: Structure of perovskite solar cell used for optical modelling. 

8.3 Results 
Figure  8.2 shows the modelled reflection losses at the glass surface and transmission to 

the absorber layer for the perovskite cell structure shown in Figure  8.1. The average 

transmission weighted by photon flux in the AM1.5 spectrum to the absorber layer for 

wavelength between 350nm and 800nm was calculated to be 86.55%. 

 

Figure  8.2: Performance of standard solar cell. Light reflections at the glass 

surface and the transmission into absorber layer have been modelled. 

8.3.1 TiO2 
The TiO2 layer is located between the front contact and the absorber layer. To 

investigate the effect on transmission to the absorbing layer, the thickness of the TiO2 

layer within the model was varied between 30nm and 70nm; the FTO layer was held at 
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a thickness of 340nm. Figure  8.3 shows a plot of the transmission as a function of both 

wavelength and thickness of the TiO2 layer. The transmission data were then used to 

calculate the resulting photocurrent density at each thickness of TiO2. A plot of current 

density against TiO2 is shown in Figure  8.4. 

 

Figure  8.3: A 3D plot of transmittance against TiO2 layer thickness and 

wavelength. 

 

Figure  8.4: A graph showing the photocurrent density [mA/cm2] dependence on 

the thickness of the TiO2 layer [nm]. 

Figure  8.4 shows that a 41nm thick TiO2 layer as reported by Ball, has near optimal 

thickness [128]. It achieves current densities up to 24.19mA/cm2. The results show 

scope for a modest increase of the attainable current density.  A 0.3% gain, increasing 

the limit to 24.27mA.cm2, can be obtained if the thickness of the layer is reduced to 

30nm.  
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8.3.2 Transparent conductor selection 
Transparent conductors play a vital role in any thin film solar cell [131], [132]. The 

choice is usually dictated by a compromise between the conductivity of the front contact 

and transparency. Increasing the thickness of the TCO layer improves electrical 

performance but may reduce the light transmission into the absorber. In this work, the 

modelled reference cell is built on NSG-Pilkington TEC 15 glass substrate. The 

refractive index, extinction coefficient and the thickness of the TCO layer can be very 

important for the photocurrent of the solar cell. Alternative TCO materials have 

therefore been investigated in order to identify any potential gains over FTO. Two of 

the most popular TCO materials, ITO and AZO, are examined in this study. 

The conductivity of TCO materials is achieved by the introduction of free electrons 

through doping [133]. This leads to more efficient extraction of current from the device. 

Unfortunately, the adverse effects of doping include additional absorption and hugely 

increased reflectivity in some parts of the spectrum. The spectral properties are specific 

for each TCO material. The refractive index of the TCO depends on the host material 

and is altered by the dopant [134], [135]. Selecting the material with optimal optical 

properties can significantly improve light transmission into the absorber layer [136]. 

Increasing the thickness of the TCO layer improves electrical performance but may 

have a negative influence on the light transmission into the absorber.  

The conductivity of a TCO is material specific, defined by the dopant and the doping 

concentration. The starting point in TCO modelling was therefore to choose the material 

thickness that delivers the same R□ as the reference FTO layer. The required thickness 

was calculated to be 100nm for ITO (ρ=1.5 10-4Ω-cm) and 233nm for AZO (ρ=3.5 10-

4Ω-cm). Both materials required a much thinner layer to achieve same sheet resistance 

as FTO. The refractive index matching structures, which are used in TEC15 glass, were 

not included in AZO and ITO models. 

8.3.3 ITO 
ITO is a very commonly used transparent conductor in both PV devices and consumer 

electronics applications [137]. It is a highly conductive material and hence at 15Ω/□ 

(100nm) it is thinner than AZO and FTO. To investigate the effect of varying the ITO 

layer thickness, the thickness of the TiO2 layer was held constant at 41nm. The 

thickness of the ITO layer was varied between 50nm (30 Ω/□) and 450nm (3 Ω/□), and 
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the photocurrent density was calculated from the resulting transmission data. Current 

density was plotted against the thickness of the ITO layer (Figure  8.5).  

 

Figure  8.5: Dependence of the photocurrent density [mA/cm2] on the thickness of 

the ITO layer [nm]. 

Figure  8.5 shows that the transmission into the absorber layer decreases with increased 

ITO thickness. The loss is a result of increased absorption losses. The maximum 

transmission was found at a thickness of 62nm; this gave a photocurrent density of 

26.93mA/cm2. At 100nm (corresponding to the reference 15 Ω/□) replacing FTO with 

ITO results in a 1.17mA/cm2 (4.5%) increase in current density. 

Though the effect of increasing the ITO layer thickness results in a lower photocurrent 

density the rate at which the current decreases is not constant due to interference effects.  

Figure  8.6 shows the modelled current density loss based on the reflection from the ITO 

back to the cover glass. Using interference enables the thickness of ITO to be increased 

without optical losses. In a solar cell this reduces electrical losses without affecting the 

optical properties of the stack.  

The optical performance of ITO in perovskite solar cells is driven by absorption which 

dominates the characteristics. Interference can however be used to reduce the losses. 

Thickness variation between 175nm and 200nm has little effect on the light 

transmission into the cell. In this thickness range the interference compensates for the 

absorption losses. This allows a reduction in TCO sheet resistance from 10Ω/□ to 

7.5Ω/□ with no corresponding increase in optical losses. For ITO thickness between 

140nm and 175nm increased reflection and absorption losses result in a reduction of 

current density.  
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Figure  8.6: Reflection losses as function of ITO thickness. 

8.3.4 AZO 
AZO is a transparent conducting oxide which has received increasing interest in recent 

years [130]. The model was altered to incorporate a layer of AZO as the TCO to 

compare the optical and electrical qualities of the materials. Figure  8.7 shows a 3D plot 

of the transmission as function of light wavelength in range from 200nm to 1000nm and 

thicknesses of AZO between 50nm and 500nm. The data presented in Figure  8.7 were 

used to calculate the resulting photocurrent in the perovskite solar cell. A plot of 

photocurrent against AZO thickness can be seen in Figure  8.8. 

 

Figure  8.7: A 3D plot of transmittance against AZO layer thickness and 

wavelength. 
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Figure  8.8 shows photocurrent as a function of AZO layer thickness. For AZO a sheet 

resistance of 15 Ω/□ is achieved at 232nm; at this thickness the current density is 

1.58mA/cm2 higher than in the FTO based cell. The maximum is achieved for a 244nm 

thick AZO layer. This gives both a small increase in photocurrent and a minor reduction 

in sheet resistance to 14.3Ω/□. AZO has the lowest optical losses amongst the 

commonly considered TCO materials. Current losses due to absorption and reflection 

for different AZO thicknesses are plotted in Figure  8.9. The analysis shows that AZO 

has larger interference effects within the perovskite stack than ITO. Compared to FTO 

the use of AZO resulted in a 6.5% increase in current density.  

 

Figure  8.8: A graph showing the photocurrent [mA/cm2] dependence on the 

thickness of the AZO layer [nm]. 

 

Figure  8.9: Reflection losses modelled for perovskite solar cells as a function of 

AZO thickness. 
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Figure  8.10 shows comparisons between the FTO and AZO T% and R% characteristics. 

AZO offers higher transmission despite higher reflection losses in some region of the 

spectrum. 

 

Figure  8.10: Optical properties of perovskite solar cells using AZO (dotted lines) 

and FTO (solid lines) as TCO. 

8.4 Multi-Layer AR 
Figure  8.11 shows reflection modelled for uncoated glass and values recorded for multi-

layer antireflective (MAR) coated glass. The design details of the MAR coating can be 

found in chapter 5 [83]. Applying an MAR coating to perovskite solar cells could 

achieve an additional 3.5% gain in power from the cell. 

 

Figure  8.11: Reflection spectra of MAR-coated glass designed for perovskite solar 

cells. 
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8.5 Summary 
The optical performance of perovskite solar cells has been modelled. Altering the layer 

thicknesses within the perovskite solar cell showed that modest gains can be achieved 

by reducing the TiO2 layer thickness to 32nm. This would increase photocurrent by 

0.3%.  

The influence of the TCO has been investigated. TEC15 was used as the reference, and 

the maximum performance was compared to that for cells using different thicknesses of 

ITO and AZO as the TCO layer. The optical properties of these alternative materials 

enable increases in photocurrent. The calculated gains were 4.5% for ITO and 6.5% for 

AZO. 

For AZO it was possible to increase the TCO thickness to reduce resistance losses 

without any corresponding reduction in the transmission. This offered relatively small 

optical gains, but because of the reduced sheet resistance could be industrially 

significant. During the thin film PV manufacturing process the PV material is divided 

into cells which are interconnected in series to avoid resistance losses and ensure 

efficient generation [138]. The pitch used during the solar cell formation defines the 

number of interconnects required per m2 of module. The interconnects are required to 

avoid resistance losses but introduce dead areas into the module. The choice of pitch 

used for interconnect formation is a compromise between resistance and optical losses. 

With high quality PV devices the resistive losses should mainly rely on the TCO 

properties. Thus TCOs with higher conductivity could enable reduced losses at the 

interconnect level. 

The above benefits can be further improved by application of an anti-reflective coating, 

which can provide additional 3.5% gains. This is in addition to the 6.8% gain possible 

with replacing the FTO with AZO and using thinner TiO2. Combining AZO with MAR 

coatings and thinner TiO2 could increase the photocurrent of the cell by up to 10.3%. 
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9 CONCLUSIONS AND FUTURE 
WORK 

Anti-reflection coatings (ARCs) have a wide range of applications. The possible 

increase in transmission through the glass superstrate or cover glass of solar 

technologies, through the reduction of reflection at the air glass interface, is significant.  

The application of ARCs to solar panels has been shown to increase energy output. 

ARCs would therefore increase the impact of solar installations in combating global 

climate change by reducing the cost per watt. The financial case for investment in ARCs 

is therefore compelling. However, achieving durable, low cost and efficient anti-

reflection solutions has proved challenging. The ideal AR solution for each 

circumstance is unique, as each PV technology and environment brings different 

technical demands. ARCs have proven effective in reducing reflectance, however 

further research can be done on optimising interference based coatings in different 

environments, such as in space or at the equator. MAR can be effectively optimised on 

an installation by installation basis; however the benefits from only small differences in 

installation environment would be minimal. Single layer coatings are a less complicated 

and often cheaper alternative but less effective than MAR coatings at reflection 

reduction. In this work, a selection of novel ARCs are designed and compared to an 

ARC currently used in the solar industry. 

Zirconia/silica MAR coatings developed at Loughborough University were optically 

optimised to maximise transmission through the air-glass interface. Designs were 

created for a variety of solar cell technologies including, CdTe, Perovskite, a-Si, and 
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CIGS. These designs were then deposited onto glass substrates and the WAT of the 

samples was measured. To further prove the effectiveness of MARs, samples were used 

in conjunction with CdTe cells produced at Colorado State University. The coating was 

compared to alternative ARCs produced through sol-gel deposition methods. The WAT 

of sol-gel coatings developed at TWI Ltd and the commercially available AR1 from 

Prinz Optic were compared across the usable wavelength ranges of the technologies. 

This allowed for a direct comparison between all three types of ARC. In addition to the 

deposited zirconia/silica coatings, alternative high refractive index materials to zirconia 

were modelled to compare their performance theoretically. The most effective MARs 

used zirconia according to modelled transmission of optimised MAR designs, despite 

the relatively low refractive index of zirconia. This is explained by the shape of the 

dispersion relationship of the candidate high index materials. 

ARCs used on solar installations will need to endure weathering and mechanical 

damage over a period of decades. MARs and AR1 samples underwent several 

experiments, in accordance with industry standards, to determine the durability of the 

coatings. MAR coatings were found to be more durable than or just as durable as AR1 

samples. MAR coatings also proved suitable for use on solar installations, as the 

longevity of the coatings is likely greater than 25 years. Additionally the hydrophobicity 

of the coatings was measured using the water contact angle. A high contact angle 

correlates with low surface energy. A hydrophobic surface is less likely to adhere to 

soiling and should also ease the task of cleaning. In this regard MARs are considerably 

more hydrophobic than the AR1 (35° contact angle compared to 9°), however greater 

hydrophobicity would be desirable in an ARC. In future it would be interesting to 

research the optical and mechanical effects of the application of hydrophobic coatings in 

conjunction with MARs and ARCs in general. These results could then be compared 

and contrasted with competing anti-reflection solutions in terms of cost, friability, 

susceptibility to weathering damage, and effectiveness. All things considered silica-

zirconia MAR coatings appear to be damage resistant and durable to all forms of 

weathering damage, passing all industry standards for solar cells and optical coatings. 

In addition to the reflection at the air-glass interface, thin film solar cell technologies 

experience optical losses from material absorption and reflected light at media 

boundaries within the solar stack. The implementation of electronically sound designs, 

that take advantage of optical interference within the solar stack, has been shown to 

improve transmission to the absorbing layer. The ground work for the optical 
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optimisation of CdTe and perovskite solar cells has been developed. The optimisation of 

the transparent conducting oxide layer in CdTe solar cells and internal anti-reflection 

layers may be suitable for crystalline silicon solar cells. A summary of the findings of 

this work is shown in Table  9.1. 

Table  9.1: Summary of candidate ARCs. The coatings are compared on anti-

reflective performance, durability, hydrophobicity, and deposition expense. 

 Uncoated 
soda-Lime 
Glass 

TWI Sol-Gel 

Coating 

Commercial Sol-
Gel hard coat, 
AR1 

Silica and 
Zirconia 
Multilayer 
ARC 

Cost N/A Very cheap Cheap Moderate cost 

Transmittance 91.6% 96.4% 94.6% 97.4% 

Reflectance 8.4% 3.6% 2.0% 2.6% 

Deposition 
Method 

N/A Dip coating An established 
Sol-Gel 
deposition 
method 

Reactive 
magnetron 
sputtering 

Adhesion N/A Poor  Very good Excellent 

Contact angle 11° 100° (111° 
with HMDS) 

9° 35° 

 

The thickness and material of the buffer layer in CdTe devices was shown to be 

influential over the transmission of light to the absorbing layer. ZnO and TiO2 buffer 

layer were compared and contrasted with one another. ZnO gave greater transmission to 

the absorber at all modelled thicknesses. ZnO was also thicker at maximum 

transmission, with a thickness of 58nm compared to the thickness of TiO2 at 48nm. The 

maximum transmission to the absorber when using ZnO as a buffer layer was 78.5%, 

for TiO2 the maximum transmission was 78.0%. The results suggest that ZnO benefits 

from having more pronounced interference effects and lower absorption. The more 

pronounced interference effect allows for a thicker buffer layer compared to layers of 

TiO2, which is electronically desirable to reduce the risk of shorting. 

Modelling the perovskite stack showed a small improvement to transmission can be 

made by optimizing the thickness of the TiO2 layer. Alternative TCO materials showed 

significant increases in photocurrent when thickness is optically optimised. The 
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calculated photocurrent using the candidate materials in perovskite stack resulted in 

photocurrent increases of 4.5% for ITO and 6.5% for AZO. Coupled with a MAR 

coating this gave a maximum photocurrent increase of 10% for optimised perovskite 

devices. 

Looking forward the author would like to point out some possible research 

opportunities. The development of an ARC that transmits visible light, but blocks infra-

red, would allow for solar installations to remain cooler in hot weather. Additionally, 

MARs designed to maximise transmission through crystalline silicon cover glass are an 

interesting prospect. Finally, MARs designed for use in the AM0 solar spectrum, for use 

on space installations, may prove to be a light weight and therefore viable choice for 

extra-terrestrial solar installations. 
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