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ABSTRACT 

As computers begin to pervade aspects of our everyday lives, so the problem of 

communication from man-to-machine becomes increasingly evident. In recent years, there 

has been a concerted interest in speech recognition offering a user to communicate freely with 

a machine. However, this deceptively simple means for exchanging information is in fact 

extremely complex. A single utterance can contain a wealth of varied information concerning 

the speaker's gender, age, dialect and mood. Numerous subtle differences such as intonation, 

rhythm and stress further add to the complexity, increasing the variability between inter- and 

intra-speaker utterances. These differences pose an enormous problem, especially for a 

multi-user system since it is impractical to train for every variation of every utterance from 

every speaker. Consequently adaptation is of great importance, allowing a system with 

limited knowledge to dynamically adapt towards a new speakers characteristics. A new 

modified artificial neural network (ANN) was proposed incorporating One-Class-One­

Network (OCON) subnet architectures connected via a common front-end adaptation layer. 

Using vowel phonemes from the TIMIT speech database, the adaptation was concentrated on 

neurons within the front-end layer, resulting in only information common to all classes, 

primarily speaker characteristics, being adapted. In addition, this prevented new utterances 

from interfering with phoneme unique information in the corresponding OCON subnets. 

Hence a more efficient adaptation procedure was created which, after adaptation towards a 

single class, also aided in the recognition of the remaining classes within the network. 

Compared with a conventional multi-layer perceptron network, results for inter- and intra­

speaker adaptation showed an equally marked improvement for the recognition of adapted 

phonemes during both full neuron and front-layer neuron adaptation within the new modified 

architecture. When testing the effects of adaptation on the remaining unadapted vowel 

phonemes, the modified architecture (allowing only the neurons in the front-end layer to 

adapt) yielded better results than the modified architecture allowing full neuron adaptation. 

These results highlighted the storing of speaker information, common to all classes, in the 

front-end layer allowing efficient inter- and intra-speaker dynamic adaptation. 
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GLOSSARY 

ACF Autocorrelation Function 

ANN Artificial Neural Networks 

BP Back Propagation Algorithm 

DFT Discrete Fourier Transform 

DTW Dynamic Time Warping 

ECG Electrocardiograph 

FFT Fast Fourier Transform 

HMM Hidden Markov Model 

LPC Linear Predictive Coefficient 

MLP Multi-Layered Perceptron 

OCON One-Class-One-Network 

OCR Optical Character Recognition 

PLP Perceptual Linear Prediction 
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CHAPTER! 

Introduction 

1.1 Introduction 

As computers begin to pervade aspects of our everyday lives, so the problem of 

communication from man-to-machine becomes increasingly evident. At present man-to­

machine communication is restricted via clumsy peripherals such as the keyboard and mouse. 

These devices offer many problems for the growing number of people who, although not 

computer literate, are expected to communicate with these machines. Even when used by an 

experienced operator, these devices often act as a communication bottleneck. For this reason, 

in recent years, there has been concerted interest in speech recognition. 

Speech is by far the most widely used and natural means of communication between people. 

It requires no additional training and by allowing the speaker to quite literally 'speak their 

mind' it has been shown that an average speaker requires only half the time to convey the 

same idea compared with that of the most experienced of typists [!]. Speech also offers a 

vast amount of freedom with numerous applications. It allows a user to communicate from a 

distance, via the telephone for example, a disabled person to control out-of-reach apparatus 

such as light switches or an operator to communicate with a device during any 'hands-busy 

eyes-busy' procedure such as whilst driving a car. 

Although the idea of speech recognition may appear to be simple enough, offering numerous 

benefits for man-to-machine communication, its implementation is actually very problematic. 

These problems, which have been researched for over forty years, are mainly due to intra- and 

inter-speaker differences causing large variations from one utterance to the next. These 

variations are caused by physical differences in speaker's vocal apparatus, dialect 

characteristics and changes in intonation, rhythm and stress to alter an utterance's meaning. 



It is impracticable to teach a speech recognition machine with every possible variation to 

allow any speaker of any age, gender, accent to speak freely and be understood. It is 

therefore necessary to normalise these variations by latching onto a speaker's vocal 

characteristics and use this information to improve the future recognition of utterances from 

the same speaker or from speakers with similar characteristics. Ideally, an initial single word 

could be used to obtain vocal-characteristic information giving rise to machines that could be 

adopted in any multi-speaker environment (public buildings and high streets for example) to 

verbally give and receive information, such as purchasing requests and location information. 

Normalisation of speaker variations may be achieved by using an adaptive process within a 

speech recognition system, using new and past stored utterances to calculate any differences 

that may exist and using these differences to adapt the system's model. This adaptation for 

the majority of speech recognition systems only occurs initially for a new utterance or 

speaker, resulting in nothing more than further training of the classifier. However, even the 

same utterance from the same speaker can vary with time and so better recognition results can 

be achieved by constantly following any variations using dynamic adaptation. Dynamic 

adaptation enables a system to not only map itself towards a new dialect, age or gender but 

also to follow changes in a present speaker's mannerisms and mood. In addition to this, the 

vast majority of speech recognition systems with adaptation, apply an adaptive process to all 

the information held within an utterance, including both the word and speaker information. 

This is inefficient and unnecessary since it is only essential for a multi-speaker speech 

recognition system to adapt towards speaker variations. Therefore for this thesis a modified 

One-Class-One-Network Artificial Neural Network (ANN) architecture is considered that 

applies dynamic adaptation to speaker characteristics only, saving processing power, 

increasing recognition rates and hence increasing efficiency. 

1.2 Thesis Objectives 

In the search for a more efficient form of dynamic adaptation for multi-speaker speech 

recognition, this thesis sets out to fulfil! three main objectives. These objectives are as 

follows: 
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(i) Develop an adaptation procedure that increases the convergence and reduces 

the processing time for each adaptation cycle. 

(ii) Concentrate adaptation only on intra- and inter-speaker variables, i.e. speaker 

characteristics. 

(iii) Allow adaptation towards a single speech class to improve recognition of 

remaining speech classes within the same vocabulary. 

To fulfill these objectives the thesis presents a new adaptation procedure applied to a 

modified One-Class-One-Network (OCON) ANN which reduces the problem of intra- and 

inter-speaker variations in an efficient manner. 

1.3 Thesis Outline 

This thesis contains eight chapters which are organised as follows: 

Chapter 2 presents the problems involved with speech recognition including a look at the 

production of speech, analysis techniques and speech classifiers and highlights the need for 

correct classifier selection for experimentation. There is also a quick insight into adaptation, 

its necessity and its application to speech recognition systems. As well as giving a general 

oversight of present speech recognition, Chapter 2 also includes some historical background 

from the earliest automated recognition systems in the early 1950s. 

Chapter 3 presents an insight into the speech data used for training, adaptation and testing 

during all experimentation. Highlighting the importance of data selection, the chapter 

explains the selection of vowel phonemes and introduces their classification with respect to 

the mouths articulator movements. The TIMIT speech database, from which all the speech 

data was obtained, is introduced with its format and content explained. From the TIMIT 
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speech database, choices concerning the selection of speech data are made to create an 

experimental 'training set' and 'test set.' Finally a large section of the chapter deals with the 

pre-processing of the selected speech data, and its formatting into a manner that can be used 

for classification. 

A review of neural networks is presented in Chapter 4. Starting with a brief insight into the 

biological model, the chapter discusses the concepts of parallelism and connectionist 

architectures to introduce the Artificial Neural Network (ANN). Using some historical 

background, several architectures, activation functions and learning rules are investigated. At 

this point Chapter 4 discusses and derives the Back-Propagation (BP) learning algorithm due 

to its comprehensive use in experimentation (Chapters 5 -7). Finally, the chapter evaluates 

some software packages that are available for the computer modelling of ANN s, leading to 

the selection of a package known as SNNS, the Stuttgart Neural Network Simulator, which 

has been used for all the experimental ANN modelling and is available from the Internet. 

Using information from Chapter 4 concerning various activation functions, architectures and 

learning rules, Chapter 5 initially deals with the selection of an ANN configuration for 

experimentation. This configuration consists of a multi-layered perceptron (MLP) 

architecture, a sigmoidal activation function and the BP learning algorithm. The One-Class­

One-Network (OCON) architecture is introduced with details of its history, theory and 

potential for computational saving. A comparative study between the OCON and the 

common MLP is initiated in Chapter 5 to investigate variations in recognition rates between 

the two architectures for adapted phonemes and the effect that this adaptation has on the 

remaining unadapted phonemes. 

Chapter 6 deals with the need for adaptation in greater detail and introduces a modified 

OCON architecture which is believed to be able to segregate speaker information, allowing 

for more efficient adaptation. This new architecture, containing a_ new front-end adaptation 

layer, is explained in detail. To investigate the effectiveness of the modified OCON 

architecture, Chapter 6 employs two adaptation procedures involving the freezing and 

unfreezing of selected network weights. By concentrating mainly on intra-speaker effects, 
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speech data from a single speaker is employed. Chapter 6 also deals with changes to the 

SNNS software code which is necessary for implementation of the adaptation procedures. 

Chapter 7 continues the theme of Chapter 6, by fully testing the newly modified OCON 

architecture for both intra- and inter-speaker adaptation. The intra-speaker adaptation 

procedure looks in detail at the effect that each vowel phoneme adaptation has on remaining 

vowel phonemes from within the same network. For the inter-speaker adaptation procedure, 

Chapter 7 initially describes the three discrete selection processes used to select the speakers 

for the test set. The Inter-speaker procedure then investigates the effect that adaptation 

towards a single speaker has on recognition rates of utterances from the remaining speakers. 

The final chapter, Chapter 8, provides a conclusion and discussion for all the experimental 

research. This includes the effectiveness of the modified OCON architecture on intra- and 

inter-speaker results along with the fulfillment of the thesis' objectives. Finally, suggestions 

for further work are made regarding experimentation, improvements, and possible 

implementation ideas for the modified OCON architecture. 

1.4 References 

[I] A. Chapanis, "Interactive Human Communication," Sci. America., Vol.232, 

No.3, pp.36-42, 1975. 

5 



CHAPTER2 

Historical Background and Problem Formulation 

2.1 Introduction 

Automatic man-to-machine communication has been the objective of researchers since the 

earliest speech recognition device in the early 1950s [1]. With the advent of digital 

computing in the early 1960s the area of speech research has seen significant advances in 

processing, coding and classification techniques. However, even with today's technology and 

advances in signal processing, the aim of a large-vocabulary multi-speaker continuous-speech 

recognition system has constantly eluded us. 

2.1.1 Speech Production 

Speech can be viewed as a sequence of basic sound elements known as phonemes. There are 

approximately 40-50 of these abstract linguistic units in the English language, depending on 

dialect deviations, which vary with respect to the shape and length of the vocal tract as well 

as the position of the mouths articulators such as the tongue, jaw and lips. Using these vocal 

variables, phonemes can be split into three distinct categories, voiced, unvoiced and plosive, 

each of which can be further split to produce a total of twelve categories (see Figure 2.1 ). 

Throughout the text, all phonemes will be described using the ARP ABET representation [2] 

as used in the TIMIT speech database [3]. Voiced phonemes are produced by forcing air 

from the lungs through the glottis which contains two vocal cords (see Figure 2.2). These 

vocal cords then vibrate, the speed of which is governed by both the vocal cord's tension and 

the flow of air between them. The quasi-periodic waveform, the fundamental frequency, 

travels via the larynx to the oral cavity which acts as a resonant chamber. The oral tract's 

length and variations in shape, due to movement of the mouths articulators, gives rise to 
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different resonant or 'forrnant' frequencies. These forrnant frequencies combine to produce 

the voiced phoneme sounds. Of all the mouths articulators, the tongue has the greatest effect 

on the voiced phonemes[4][5]. The tongue can be used to categorise the vowel phonemes 

with respect to the position of the tongue's hump within the oral cavity, front, middle and 

back. 

/iy/ 
/ih/ .. 
/eyl'i;,;; 

/eh/· 
/ae/ 

beet 
'.bit 
r:bait 

bet 
bat 

Middle' 
/er/ bird 

;~l!i'i''' 

/uw/ 
/uhi:HH,i,: 

- !oWr+ 
/aol 

Glides 

boot 
;,;book 
:;:;b-Oat 

bought 

/w/ went 
/r/ ran 

Liquids 
nt let 
/j/ you 

Figure 2.1 The English Phonemes 

Diphthongs 

/ay/ 
/oy/ 
law/ 

Affricates 

sigh 
boy 
bout 

~hi joke 
/eh/ chum 

!m! 
In! 
/ng/ 

mom 
noon 
sing 

Fricatives 
Voiceless 

Is/ sea 
Ish! she 
If! fat 
/th/ thin 
/hi hat 

Voiced 
!vi van 
lzl ---zone 
/dh/ this 
lzhl azure 

Plosives 
Voiced 

lbl bee 
Id!. day 
/g/ gay 

Unvoiced 
!pi pea 
tu tea 
lk/ key 

During the production of unvoiced phonemes, the vocal cords do not vibrate. The phoneme 

sounds are produced by forcing air through the glottis with the vocal cords open, through to 

the oral cavity during which a constriction is used to produce fricative and affricate sounds. 

Fricative sounds are produced by creating the constriction at some point within the oral tract 

causing turbulence to occur. Since this mostly occurs at the front ofthe mouth, the resonance 

of the oral tract has little or no effect. However, for affricate sounds, the constriction occurs 

at the glottis as the vocal cords are held slightly apart. Therefore the resonance of the oral 

tract influences the phoneme sound, the effect of which can be heard clearly during whispered 

speech. 
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Soft Palate 

Lips 

Larynx 

Figure 2.2 A Cross-section of the Human Vocal Apparatus 

Plosive sounds are produced by blocking the oral tract with the tongue or the lips, allowing 

the air pressure to build up until it is suddenly released to create a transient excitation. This 

transient excitation can occur with or without vibration of the vocal cords to produce voiced 

or unvoiced plosive phonemes. Other categories of phoneme sounds are the nasals, which are 

produced by lowering the soft palate to couple the nasal cavity to the oral cavity, and the 

diphthong, whose sound changes from beginning to end due to tongue movement. 

2.1.2 The Complexity of Linguistics 

Although speech may appear to be the obvious tool for man-to-machine communication, this 

deceptively simple means for exchanging information is indeed extremely complex. As well 

as gender, age and dialect, the simplest of utterances contain a vast wealth of speaker 

information. Subtle variations in the intonation, rhythm, stress and pitch, allow a speaker to 

express their mood or change the meaning of a sentence. All of these intra- and inter-speaker 

variations add to the complexity of the speech signal making recognition that much harder. 

True speech recognition can be divided into two stages: sound recognition and understanding. 
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The first problem, sound recognition, involves classifying the sounds 'phonemes' that have 

been uttered by the speaker. Although speech can be described as a series of phoneme 

sounds, these sounds are not discretely joined to one another. It takes time for the mouth's 

articulators, vocal cords and soft palate to move from one phoneme sound configuration to 

the next and so the sound of each phoneme is influenced by the phonemes surrounding it. 

This merging of one phoneme into the next is known as eo-articulation and can be clearly 

heard when comparing natural speech against a stilted utterance from an old-style speech 

synthesizer. The problem with eo-articulation is that it gives rise to an effect known as 

allophanic variation where each phoneme may have many different allophones depending on 

the surrounding phonemes. This effectively adds to the number of classifiable speech sounds, 

increasing yet further recognition difficulty. There also exists the problem of dialect 

differences where the same phoneme is produced in a different manner, creating a different 

sound. This can be heard in certain English dialects during voiced plosives. As well as 

variations in the speech sounds themselves, one of the biggest problems for an everyday 

speech recognition system is coping with noise. Speech recognition systems are rarely used 

in clinical conditions with sound-proofed environments and high quality microphones. They 

are often used in busy environments where noise varies unpredictably. Some noises can be 

eliminated using filtering techniques to improve recognition performance (high frequency 

noise for example). However, noise such as the chatter of nearby speakers around a user can 

cause severe problems for a speech recognition system. Humans on the other hand are 

somehow able to decipher speech from a speaker even in an environment such as at a party. 

This phenomena is known as the 'cocktail party effect' and allows an individual to hear their 

name uttered from across the room under a barrage of utterances from other speakers. 

Once the speech sounds have been correctly classified, their collective definition needs to be 

interpreted. This requires knowledge concerning the meaning (semantics), the rules of word 

formulation (morphology) and the rules of sentence formulation (syntax) [6]. However, 

problems first start when many expected phonemes during freely spoken speech are not 

spoken at all or are completely obliterated by surrounding sounds. Humans overcome this 

problem automatically by subconsciously predicting what the next sound or utterance may be, 

using syntax, morphology and semantic knowledge of the present utterance [7]. This can 

cause problems in itself, when the human brain expects to hear one sound and a similar sound 
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is uttered. This often occurs in words that rhyme and results in the listener being adamant 

that one word was uttered, when in fact the speaker uttered another. Unfortunately, some 

words not only rhyme but are phonetically identical. For example, when we have the 

phonetic combination '/t/ /uw/' it can refer to the word 'to', 'too' or 'two.' Also, we may 

have a situation when the correct word may be classified but its meaning confused. For 

example, if applying speech recognition to a word-processor and dictating a letter on 

punctuation, when the speaker utters the word comma, does the system write 'comma' or ', '? 

All these problems highlight the recognition systems need for intelligence. In order to 

understand a sentence fully, it must not only understand the context so as to recognise the 

correct words and punctuation, but also the intonation and stress that can subtly change a 

phrase from a reply to a statement into a rhetorical question. 

2.2 Speech Analysis 

All areas of speech research, whether is be speech recognition, synthesis or coding, require 

some form of front-end signal processing. In the case of speech recognition, some form of 

preliminary analysis is necessary before classification can occur to remove any redundant 

information and extract the acoustic information necessary for recognition. This not only 

reduces the information rate but also helps to highlight subtle differences between classes that 

might otherwise be obscured. The area of speech analysis can be split into two broad 

categories: transform domain and time domain. Transform domain techniques include 

discrete Fourier transforms, fast Fourier transforms, cepstrurn, wavelets and bandpass 

filtering. For time domain analysis, autocorrelation, zero-crossing and signal energy 

techniques are often used to extract essential information. In addition, a very powerful 

speech analysis technique used for both frequency and time domain analysis is linear 

prediction which represents a speech signal as a combination of linear predicted coefficients. 

All of these analysis techniques are applied to speech over a short time interval (I0-30ms) 

since, for periods of this length, the non-stationary speech signal is assumed to be stationary. 

This is due to the limited rate at which the mouth's articulators can move, due to physical 

constraints, which create the changes in the speech signal. Consequently most analysis 

techniques split the signal into uniform segments or 'windows' (see Section 3.3). Before any 
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analysis procedures are applied to a speech signal, the signal is pre-emphasised to improve 

the definition of its frequency spectrum. 

2.2.1 Pre-Emphasis 

During natural speech there is a combination of a -12d8/octave trend due to the voiced 

excitation source and a +6dB/octave trend due to radiation from the mouth [8]. This results 

in a -6d8/octave trend, effectively reducing the speech signals amplitude by a factor of 16 for 

every doubling of the speech signal's frequency. Consequently the speech signal needs to be 

pre-emphasised (a +6d8/octave lift to compensate for the -6d8/octave roll-oft) in order 

that important high frequency information is not lost. This is achieved using a high-pass 

filter on the digitised speech signal to reduce the dynamic range (i.e. flatten the speech 

spectrum) and is typically based on using : 

y[n] = x[n]-ax[n-1] (2.1) 

where y[n] is the current output sample of the pre-emphasis filter, x[n] is the current input 

sample, x[n-1] is the previous input sample and a (usually between 0.9 and 1) is a constant 

that determines the cutoff frequency of the filter. 

2.2.2 Frequency-Domain Analysis 

The earliest speech recognition system, built in 1952 [1], used bandpass filters to enable the 

first ten numeric digits to be classified. Constructed from extrinsic components, the 

recognition system crudely split the speech signal into its first two formants using two filters, 

a high and a low pass 900Hz filter. Information from these formants was used during the 

classification process, producing recognition rates between 97% and 99% for a single 

speaker. This filtering technique has since been employed by many systems [9][1 0][11], 

passing the speech signal through a whole bank of bandpass filters covering the speech 

bandwidth. Using the energy output from the bandpass filters, a pattern for each time frame 
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is created and sent to a matrix. This matrix, over several frames, creates a pattern for each 

spoken utterance allowing the recognition system to compare it with stored test patterns or 

templates to find the most likely match. In these very early systems, all the bandpass filters 

were linearly spaced. However, this soon changed to logarithmic spacing in an attempt to try 

and emulate the frequency response of the human auditory system. 

The discrete Fourier transform (DFT), normally computed via the fast Fourier transform 

(FFT) is one of the most widely used techniques for evaluating the frequency spectrum of 

speech. It enables a speech utterance to be represented in terms of amplitude and phase as a 

function of frequency allowing spectral data from the vocal tract, such as formant 

information, to be used for classification. Due to the non-stationary nature of speech, DFTs 

are applied over a finite time period using short-time analysis windows. The short-time DFT 

of a signal H[k} is often defined as : 

N-1 

H[k] = ~)[n]e-j2m•ktN for 0 :S: k :S: N- (2.2) 
n=O 

They were widely used for the frequency analysis of speech signals, but were slow for large 

values of N. This was due to the large number of calculations involved, N2, making real-time 

analysis almost an impossibility. However in 1963 the fast Fourier transform (FFT), 

developed by Cooly and Tukey [12], reduced the number of calculations to Nlog2N whilst 

still obtaining exactly the same result. This was a significant step for frequency analysis 

since Nlog2N is dramatically less than W, especially when N becomes large. This reduction 

was possible because the FFT algorithm exploits the symmetry properties of the discrete-time 

complex exponential of the DFT, removing redundant calculations. The only restriction with 

the FFT algorithm is the value ofN since for maximum efficiency, N must be a power of2, 

i.e. N = 2m where m is an integer. 

12 



2.2.3 Time-Domain Analysis 

The autocorrelation function (ACF) is a powerful technique for estimating the pitch-period of 

voiced speech. This is achieved by correlating the speech signal with a delayed copy of itself. 

The autocorrelation value, R[ k 1 , of a stationary signal x[ n 1 for a time-shift of k samples is 

defined as 

00 

R[k1 = Lx[n1·x[n + k1 (2.3) 
n = -oo 

When applied to voiced speech, the autocorrelation function exhibits peaks at certain time­

shifts corresponding to multiples of the pitch-period. This is because at these points, the 

speech signal is in phase with itself, giving high correlation values. However equation (2.3) 

only applies when the amplitude is known for all time and, for the summation to remain 

finite, the signal has a finite energy. As far as speech is concerned, it is not known for all 

time, so it is necessary to use a short-time auto-correlation function by isolating successive 

segments (frames) of the signal into windows. 

A simple time-domain analysis technique which provides spectral information at a low 

computational cost is the zero-crossing rate. The zero-crossing rate is quite simply the 

number of times the signal waveform crosses the time axis, i.e. the amplitude changes sign. 

Although this technique can be used to obtain simple spectral information for an entire 

utterance it is more commonly used to determine the difference between a voiced and 

unvoiced segment of speech. This is possible since the random nature of unvoiced speech 

creates a higher zero-crossing rate than voiced speech. 

Another time-domain technique which is used for discriminating between a voiced and 

unvoiced segment of speech is the signal energy function. By splitting a speech utterance 

into frames, using a simple rectangular window, and calculating the total squared values from 

each frame, the changes in the utterances energy with time are recorded. This highlights 

differences in the voiced and unvoiced segments since voiced speech generally contains more 

energy that unvoiced speech. 
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As well as the zero-crossing rate and signal energy function being used for speech signal 

analysis, they are also used for end-point detection. One of the greatest difficulties with 

speech recognition, especially if the speaker is in a noisy environment, is to detect the 

beginning and ending of an utterance. This was a problem addressed by Rabiner and Sambur 

[13] in the mid seventies who used an end-point detection algorithm based on the signal 

energy function and the zero-crossing rate of speech. It accounted for the level of background 

noise by adapting relevant thresholds on its decision criteria during the recording interval and 

because of its speed and efficiency was and still is widely used. 

2.2.4 Linear Prediction 

In the early seventies the technique of linear prediction was shown to be applicable to speech 

by Atal and Hanauer [14]. Used for both frequency and time-domain analysis, its a very 

powerful speech processing technique used in speech synthesis, recognition and coding 

systems [15]. The basic idea behind the method is that sample values of speech, x[n], can be 

approximated as a linear combination of the past p speech samples. As the value of p 

increases then so the Root Mean Square (RMS) prediction error between the sampled and 

predicted signal falls. Mathematically, the linear predictor is described by the equation 

p 

x[n]= 2>An-k] (2.4) 
k=! 

where x[n]is the predicted sample at instant n and a1,a2, .... ,aP are the Linear Predictor 

Coefficients (LPCs ). 

It is generally impossible to predict each signal sample exactly and this leads to a prediction 

error e[ n] at each sample instant: 

e[n] = x[n]-x[n] (2.5) 

By minimizing the mean squared error between the actual speech samples and the linearly­

predicted ones, the predictor coefficients can be determined by solving a set of linear 

14 



equations. However, finding the solution to a system of equations with many unknowns can 

be problematic, even if the equations are linear. Fortunately, two different methods exist for 

finding the solution of the system of equations. These are the covariance method and the 

more commonly used auto-correlation method. When using the autocorrelation method the 

system of equations created produces a symmetric matrix where all the diagonal elements are 

the same. This is known as a Toeplitz matrix and the very efficient Durbin[16]-Levinson[17] 

method, requiring much less computational effort, exists for solving this special system of 

equations. Due to the time varying properties of a speech signal it is necessary to calculate a 

new set of predictor coefficients every I 0-30ms. Consequently a speech utterance is 

segmented into short frames, 10-30ms in duration, and the short-time autocorrelation function 

applied to each. However, before the short-time autocorrelation function can be applied to a 

framed speech signal x[ n] it must be multiplied by a soft window function. A soft window 

function is essential in order to reduce prediction error at the beginning and the end of the 

segment. Large prediction errors will arise at the start of the interval ( 0 !> n !> p-I) since the 

predictor is effectively being required to predict the signal from samples which have 

arbitrarily been set to zero, while at the end of the interval (N !> n !> N + p -1) it is 

endeavoring to predict zero signal from samples that are non-zero. The covariance method 

uses the same principle of windowing the speech, only it does not use a soft window. 

Although this means that it can give accurate estimates of prediction coefficients using a 

narrower window it is, unlike the autocorrelation method, not always guaranteed to produce a 

stable predictor. 

Despite these different methods for obtaining the linear predictive coefficients they all 

approximate equally well at all frequencies which is not consistent with that of the human 

hearing system. Above 800Hz the spectral resolution of hearing reduces with frequency and 

for the volume levels in normal speech, hearing is more sensitive than in other areas of the 

audible spectrum. As a result, Hermansky[13] in 1990 proposed a new form of linear 

prediction known as Perceptual Linear Prediction (PLP) which mimicked this hearing 

response. The PLP technique incorporates three concepts from the psychophysics of hearing 

to derive an estimate of the human auditory system; the equal-loudness curve[18], the 

intensity-loudness power law [19] and the critical-band spectral resolution[20]. The use of 

these three concepts by PLP offered comparable performance with the conventional linear 
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prediction technique using a much lower order of predictive coefficients. Tests on a speaker­

independent recognition system showed that a S'h order PLP yielded a better recognition 

accuracy than a conventional 14'• order system. Although PLP is ideal for applications where 

the data rate (number of predictive coefficients) must be kept to a minimum, the method is 

computationally very costly and unnecessary for speech recognition simulation. 

2.3 Speech Classifiers 

Since the late 1960s many methodologies have been applied towards isolated/connected word 

and dependent/independent speaker recognition classifiers. However, regardless of their 

method and application, they are all based on the same principle, matching inputted speech 

patterns with stored reference patterns within the classifier. Initially a speech signal 

undergoes some type of processing to transform it into a sequence of feature vectors. It is 

then compared, using an appropriate distance measure[21][22], with a representative training 

set of reference patterns stored in the classifier during a training phase. This methodology of 

pattern matching, used by the first recognition systems (see Section 2.2.2), is now used by 

more modem classification systems such as Dynamic Time Warping (DTW), Hidden Markov 

Models (HMMs), Artificial Neural Networks (ANNs) and hybrids systems which are a 

combination of the former systems. 

2.3.1 Dynamic Time Warping 

Due to the inherent variability of speech, a speech pattern, even from the same speaker, can 

vary both locally and globally with respect to time. Hence it is necessary to time-align 

speech patterns in order to find a distance measure between them. The simplest form of time­

aligning two patterns is Dynamic Time Warping (DTW)[23][24] which maps the time axis of 

an inputted speech pattern onto the time axis of an trained reference pattern, as shown in 

Figure 2.3. In order to align the input and reference speech patterns, the mapping function 

m[n] needs to be determined. To achieve this, both the beginning and end-points of the two 

patterns have to first be detected. Once the beginning and end-points have been detected, 
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time-alignment of the two patterns can begin by solving the optimisation equation (2.6) to 

determine ro [ n ]. 

(2.6) 

where d[ I[ n ],R( ro [ n])] is the distance between frame n of the input speech pattern I and frame 

ro(n) of the reference pattern R, and D is the accumulated distance between speech patterns T 

and Rover the optimal path ro(n). 
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Figure 2.3 Graphical Representation of the Time-Aligning Procedure used by Dynamic Time Waroing fDTW) 

to Align a Test and Reference Pattern. 

Although DTW is a simple technique, it does have a few drawbacks. First DTW can have a 

heavy computational load making real-time application difficult, second is the failure of 

DTW to adequately exploit redundant information within a speech signal to aid recognition 

and finally is the problem of dealing with noisy inputs. However, these problems can be 

eased by implementing non-linear sampling when obtaining frame intervals and omitting 

highly correlated frames from a speech utterance. 
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2.3.2 Hidden Markov Models 

Hidden Markov Models (HMMs) are different from DTW in that they do not directly 

compare input patterns with stored test patterns. Instead they create stochastic models from 

known utterances to create test patterns and compare the likelihood that the input pattern was 

generated by one of the models (test patterns). The basic theory ofHMMs was published by 

Baurn [25] in the late 1960's and early 1970's and was first used in speech processing by 

Baker (26] and Jelinek [27] in the 1970's. It was not until the mid-eighties that a profound 

understanding of the subject and its application was founded. The HMM structure consists of 

an underlying Markov chain containing inter- and intra-linked states (see Figure 2.4). 

11 = ( 11, 11, 11, 11,) 

all al2 au a,. 

['" 
b21 b3! b4! 

'"] a,, a,, a,, a,, 
B = [ bjk] = b12 A= [a;i]= b, b32 b42 b, 

a31 a32 a33 a" 
bn b23 b33 b43 b53 

a41 a42 a43 a .. 

a, a, a" a" 

1 2 a,, 3 a" 4 

Figure 2.4 Graphical Representation of a 4-State Hidden Markov Model and its Control Matrices 

At a discrete instant of time 't' the HMM is in one of the states and outputs a certain speech 

pattern. At the next time instant, t+ 1, the model moves on to another state, or loops back to 

the same state again, and produces yet another pattern from the state its in. The looping back 

allows for time fluctuations from the input pattern to the test pattern. This procedure is 

repeated until the complete sequence of patterns has been produced. In a sense a HMM gives 

a description of an utterance as a concatenation of sounds from each state. Three matrices 
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control the behaviour of the chain. The first matrix (n) controls the probability of which state 

the models starts. The next is the state transition matrix, A, which controls the probability of 

changing from one state to the next and finally matrix, B, which represents the probability 

distribution function of each state. The number of states, patterns in each state and 

interconnections vary from system to system although the basic idea and architecture remain 

the same. 

2.3.3 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a family of architectures used for pattern matching. 

Although they are said to emulate the neural structure of the human brain, there are enormous 

differences between the brain and ANNs. The first attempts to model brain function were by 

McCullogh and Pitts back in 1943 [28]. However, it was not until 1986 when an adequate 

training algorithm was developed [29] that ANNs were used for serious classification 

procedures such as optical character recognition (OCR), Electrocardiograph (ECG) analysis 

and speech recognition. One of the most attractive features of ANN classifiers is their variety 

and architecture adaptability. ANNs offer a large potential for trying new architectures and 

for creating application specific classifiers. For this reason ANNs were selected for 

experimentation to fulfill the three research objectives of this thesis and so their history, 

development, implementation and limitations are detailed in Chapter 4. 

2.4 Adaptation 

Classification systems rely on a data set of trained reference patterns to classify an utterance 

from a speaker. However, the nature of speech means that utterances can contain a wealth of 

varied information, increasing their inter- and intra-speaker variability, and reducing their 

likelihood of a match with a reference pattern. Since it is not practical to train a classification 

system with every possible utterance from every possible speaker, some form of adaptation is 

necessary. Adaptation allows a system to dynamically map itself towards a new utterance, 

normalising speaker characteristics to ensure that a speech recognition system is only 
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sensitive to the phonetic information. Such adaptation can occur at either the pre-processing 

stage, which transforms the speech signal into a sequence of feature vectors, or the 

classification stage, which classifies the feature vectors into speech sounds. When adaptation 

is applied during the pre-processing stage the type of normalisation depends on the type of 

pre-processing involved. For example, if a system uses formant information for its 

recognition features then the upper and lower limits of the formant frequencies for each 

utterance can be normalised [30][31][32]. The array of adaptation techniques available for 

the classification stage is vast and, like the pre-processing adaptation, depends very much on 

the type of system being used. However, the basic concept is still the same, to normalise the 

incoming utterances making them insensitive to speaker characteristics. Despite the variety 

and large number of adaptation techniques, they can all be categorised into one of two 

groups; supervised or unsupervised. 

During supervised adaptation, an external teacher is used to inform the recogniser of either a 

correct or incorrect classification. The external teacher can be in the form of a discrete input 

from the speaker such as a keyword or an adaptation data set of input-output pairs. This 

ensures that the recogniser always adapts towards the correct speech class, but this is often 

impractical. For unsupervised adaptation the procedure requires no teacher and the selection 

of a class to adapt towards is automated. This is faster and more practical than a supervised 

system but can lead to incorrect adaptations without the users knowledge of control. Further 

information on adaptation is detailed in Chapter 6. 

2.5 Summary 

There are many problems concerning the recognition of speech, mainly due to the variability 

and complexity of even the simplest utterance. However, adaptation offers an ideal 

opportunity to overcome many of these problems and achieve multi-speaker large-vocabulary 

continuous speech recognition. This chapter has described several analysis and classification 

techniques from the earliest of systems to the present day. 
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To fulfill the research objectives, a classification and speech analysis combination was 

required that would offer a wide scope of system adaptability and variability to allow the 

creation of a new adaptation technique. To create the classifier, ANNs were selected since 

they offer a large potential for trying out new ideas and creating novel architectures. For the 

speech analysis, linear prediction was chosen due to its simplicity and well documented 

behaviour. This was necessary since all the adaptation was occurring within the classifier, the 

main area of concern. An over complicated speech analysis technique may have clouded and 

confused new adaptation-procedure results. 

The selection, preparation, and format of the speech data for all the experimentation is 

explained in the following chapter. It highlights the importance of data selection and the 

selection of the vowel phonemes from the TIMIT speech database. It then details all the pre­

processing and the final formatting of the speech data, ready for introducing to the classifier. 

An introduction into ANN s, detailing their background, various architectures and learning 

rules, is given in Chapter 4. 
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CHAPTER3 

Speech Data 

3.1 Introduction 

To obtain the desired results from a speech recognition system, usage of correct speech data is 

vitally important. The recording conditions of the speech along with the choice of speakers, 

their dialect region and gender can all dramatically influence the results. All these 

parameters, including the quantity of data, must be chosen specifically for the classification 

task at hand to ensure that the network exhibits a good generalisation. If a limited data set is 

chosen which doesn't give a good overall representation of the speech to be classified then 

the generalisation is poor, hindering the recognition of new utterances. However, if the data 

set is too large and over comprehensive then the generalisation is said to be too high causing 

problems with the convergence of the classifier during the training and adaptation phase. The 

goal of training a network is not for it to learn an exact representation of the speech data, but 

rather to build a statistical model of the process which generates each speech utterance 

wishing to be classified. It is therefore necessary to optimise the diversity and quantity of the 

speech in order to achieve the best generalisation. 

Speech has many linguistic levels such as sentences, words and syllables. Most speech 

recognition systems perform at the 'word' level since words can be uttered discretely to avoid 

any eo-articulation effects. This is fine with a limited vocabulary when a classifier need only 

be small to represent each 'word' class. However, when dealing with large vocabularies 

(1000+ words), the size of the classifier can become unmanageable. To avoid this problem it 

is best if we deal at the 'phoneme' linguistic level. Phonemes are the basic sound units of 

speech of which there are about 50 in the American-English language. This means that 

regardless of the vocabulary size it is only necessary to classify 50 sounds. Phoneme 

recognition systems are consequently the most promising approach to large vocabulary 

systems and so all experimentation will be focused at the phoneme linguistic level. The 
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experimentation is primarily concerned with intra- and inter-speaker dynamic adaptation. 

Therefore to emphasise any adaptation effects that may occur within the modified ANN 

architecture, experimentation needs to be concentrated on speaker-information rich 

phonemes. Phonemes can be categorised into 12 groups (see Figure 2.1). Of these 12 groups, 

vowel phonemes are the most spectrally well defined making them more easily and reliably 

recognised. Also, the vowel phonemes are produced solely by vibration of the vocal cords 

creating resonant frequencies (formants) in the vocal tract which are altered by the movement 

of the mouth's articulators. The nature of their production means they contain a wealth of 

speaker information making them ideal for testing intra- and inter-speaker adaptation effects. 

There are 13 vowel phonemes in American-English speech and during experimentation it is 

necessary to not only test the effect on the adapted vowels but also the effect the adaptation 

has on the remaining unadapted vowels. This is a very labour intensive procedure and so it is 

favourable to reduce the phoneme groups further. The vowel phonemes can be split into 3 

groups depending on the position of the tongue during their production. The variation in the 

cross-sectional area along the vocal tract determines the formants of each vowel phoneme. 

This cross-sectional area, particularly in the oral cavity, can be altered by the movement of 

. the articulators, primarily the tongue. The tongue movement varies the formants in two ways; 

by the tongue-hump-position (i.e. front, middle, back) and by the degree-of-constriction (i.e. 

high, middle, low) the tongue hump causes (see Figure 3.1). As a result, the tongue plays a 

fundamental part in the production of the formants in the vocal tract that make the vowel 

sounds. Peterson and Bamey [ 1] measured the first and second formants, F1 and F2 

respectively, of 10 vowel phonemes uttered by a variety of both male and female speakers. 

The information they gathered was averaged out for each vowel phoneme and a plot of F1 

against F2 constructed to obtain results for an average normalised speaker (see Figure 3.2). 

The plot created what is known as the 'Vowel Triangle' representing the extremes of the 

formant locations in the F1-F2 plane. The vowel triangle shows a pattern trend between the 

position of the vowel phonemes within the F 1-Fz plane and the position of the tongue during 

their production. As the constriction of the tongue decreases so F1 increases and as the 

position of the tongue-hump moves backwards through the oral cavity then so F2 decreases. 
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Figure 3.1 The Position of the Tongue-Hump in the Oral Cavity during the Production of the American-English 

Vowels. 

Phonemes from the same tongue-hump group are positioned closely within the F1-F2 plane. 

With this strengthened by evidence from waveform plots and spectrograms showing acoustic 

similarities between vowels of the same tongue-hump position [2], the phonemes were 

grouped with respect to their front, middle and back tongue-hump positions. Using the 

ARPABET representation [3], the front vowel phonemes are /IY/, /lW, fEY/, !EH! and /AE/, 

the middle vowel phonemes are /ER/, lAX! and /AH/, and the back vowel phonemes are 

IUW/, IUHI, IOW/, IAO/ and /AN. 
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Figure 3.2 F1 - F1 Plot of Averaged American-English Vowel Speech Data from a Variety of both Male and 

Female Speakers showing the "Vowel Triangle." 
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3.2 The DARPA TIMIT Speech Cornus 

All the speech data used in this thesis was obtained from the Texas 

Instruments/Massachusetts Institute of Technology (TIMIT) corpus of read speech available 

on a CD-ROM [4]. Sponsored by the Defense Advanced Research Projects Agency 

(DARPA), TIMIT contains speech from 630 speakers representing 8 major dialect divisions 

of American-English, each speaking 10 phonetically-rich sentences. Of these 630 speakers, 

70% are male with their dialect region defined as the geographical area in the U.S. where they 

lived during their childhood years (age 2 to 10). The 10 phonetically-rich sentences uttered 

by each speaker consist of 5 phonetically-compact sentences, 3 phonetically-diverse sentences 

and 2 dialect sentences used to expose dialect variants between speakers. The speech data on 

the CD-ROM is divided into suggested Training and Test sets using the following criteria: 

• Roughly 20 to 30% of the corpus should be used for testing purposes, leaving the 

remaining 70 to 80% for training. 

• No speaker should appear in both the training and testing sets. 

• All the dialect regions should be represented in both subsets, with at least I male and I 

female speaker from each dialect. 

• The amount of overlap of text material in the two subsets should be minimised; if possible 

the training set and test set should have no sentence texts in common. 

• All the phonemes should be covered in the test material; preferably each phoneme should 

occur multiple times in different contexts. 

Although it was favourable during experimentation to use as much speech data as possible to 

obtain good generalisation, the 2 dialect sentences from each speaker used to expose dialect 

variants were omitted. This was because the same two sentences were uttered by every 

speaker in both the training and test sets, violating one of the suggested training and testing 

criteria. 

All the experimentation was concerned with the effectiveness of adaptation on a new 

modified ANN architecture. It therefore would have made no sense using, initially, a wide 

variety of speakers from many dialect regions, since this would have made recognition 

difficult and left the possibility of clouding important subtle results. Consequently to 
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highlight the effects of any adaptation on the newly modified ANN architecture, all the 

speech data was selected from a single dialect region. The 7th dialect region, corresponding to 

the western geographical area of the U.S. was chosen for training and testing since it 

contained the most well-represented training set on the TIMIT CD-ROM. Also for exactly 

the same reasons used to select the dialect region, only speech data from 'male' speakers in 

dialect region 7 were used to train and test the new classifier. Male speakers made up -70% 

of the TIMIT speech corpus giving 59 suitable male speakers for training and a choice of 15 

male speakers for testing, all from the 71
h dialect region. The 59 male speakers from the 

dialect region 7 training set on the TIMIT CD-ROM were collectively known throughout the 

experimentation as the 'Training Set'. The number of speakers in the 'Test Set' varied 

throughout the experimentation but were always made up from speech data belonging to the 

15 male speakers in the dialect region 7 test set on the TIMIT CD-ROM. 

3.3 Speech Pre-Processing 

All the speech data was recorded in a noise-isolated recording booth and sampled at 16kHz 

with 16-bit quantisation. A sample of the TIMIT speech data is shown in Figure 3.3 which 

shows a frequency and time waveform plot of the utterance "She had your dark suit." As well 

as dialect and training/test set directories, the speech data was further catalogued into speaker 

directories. In order to identify the speaker of each utterance each directory was coded, where 

the first letter represented the speaker's gender (M for male and F for female), a further three 

letters represented the speakers initials and a single number was used avoid confusion 

between speakers with the same gender and initials. Within each speaker directory the 

recorded speech waveform files (.wav) had three associated transcription files (.txt, .wrd, 

.phn). The .txt file contained an account of the words the speaker uttered during each 

corresponding speech waveform. The . wrd and . phn files contained time-aligned 

transcriptions of the words and phonemes receptively. The time-alignment information 

referred to the boundaries of each word or phoneme in the spoken sentences allowing either 

the manual or automatic retrieval of selected sounds from any of the continuous utterances on 

the TIMIT CD-ROM. 
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Figure 3.3 Spectrogram and Time-waveform of sampled TIMIT speech data 

Due to the quantity of speech data, the retrieval of phoneme information was automated in 

terms of a look up table using 'Speech Tools' [5]. The 'Speech Tools' were a collection of 

software packages, complied for use on a UNIX machine, to specifically prepare and analyse 

TIMIT speech data. Using the .phn files, each of the desired phonemes were extracted from 

the corresponding speech waveforms to create new phoneme waveforms. Using batch files, 

this entire process was automated enabling the retrieval of all 13 American-English vowel 

phonemes from the 'Training Set' and 'Test Set'. However, it was at this stage that phoneme 

/UW I was noted as having too few occurrences within the TIMIT database. It was therefore 

decided to omit phoneme /UW I from all experimentation to avoid poor generalisation. The 

complete 'Training Set' was processed as one batch job whereas the 'Test Set' was processed, 

one speaker at a time, so as to keep phonemes from different speakers separated for 

experimentation purposes. For each phoneme class, the 'Speech Tools' automatically 
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concatenated all the relevant phonemes from the processed speech waveforms into a single 

phoneme waveform. Before any pro-processing of feature extraction could occur, each 

concatenated phoneme waveform had to be split back into single phoneme waveform files. 

This was achieved by writing a small software program which scanned the inputted 

concatenated phoneme waveform for specific periods of silence. Each of these periods of 

silence (strings of zeros in the file) were added by the 'Speech Tools' to separate each 

phoneme utterance. Between each period of silence, the waveform was copied to create a 

new single phoneme waveform. Due to the nature of speech, each of the phonemes were of 

differing duration. However the modified ANN architecture required each set of input data to 

be of equal length since the number of input nodes was fixed. To achieve this, each of the 

single phonemes were either cut off or had periods of silence added to them to achieve a fixed 

length phoneme file. Before this could be done, the ideal length of a phoneme file had to be 

investigated. If the file was too short then this would mean that vital phoneme information 

could be lost. If the files were too long, resulting in the majority containing some period of 

silence, then data resolution would be lowered. Over a short interval of time, -1 Oms, speech 

is said to be stationary since during this time the mouths articulators have little time to move. 

However, for recognition of a vowel phoneme it is necessary to see how the waveform varies 

over a greater time period. For the phonemes from the TIMIT corpus, a period of - 70ms was 

deemed sufficient to allow recognition without the waveform becoming unnecessarily long. 

Therefore phonemes longer than this period were clipped and phoneme shorter were 

concatenated with zeros. 

Before any features were extracted from the speech waveform, the signal needed to be pre­

emphasised (see Section 2.2.1) to compensate for the -6dB/octave roll-off of voiced speech. 

By using an appropriate filter (i.e. equation (3.1)) the speech signal was given a +6dB/octave 

lift to ensure a similar dynamic range across the entire vocal spectrum. The filter used was : 

y[n] = x[n]- 0.95[n -1] (3.1) 

One of the most common forms of speech pre-processing is linear prediction (see Section 

2.2.4). Since all experimentation was primarily concerned with the performance of the 

modified classifier, linear prediction with its simple coding and well documented behaviour 
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was chosen as the most appropriate form of speech pre-processing. Linear prediction creates 

a set of linear predictor coefficients (LPCs) which can predict a speech signal reasonably 

accurately over stationary portions of speech. Since speech is only considered stationary for 

-I Oms, new predictor coefficients have to be generated to follow the varying nature of the 

speech signal. Consequently, the speech signal was split into overlapping windows of equal 

size and LPCs for each window generated. However, before LPCs were generated, the size 

and shape of the over-lapping windows had to be decided. With the speech signal sampled at 

16kHz, it was important to ensure that each window represented at least lOms. Hence, each 

window contained 256 samples equal to 16ms of speech. LPCs were created by predicting 

speech samples from a linear combination of past speech samples. The auto-correlation 

linear prediction method used in the experimentation (see Section 2.2.4) assumes that 

samples outside the finite window of speech are zero. This causes large prediction errors 

since the initial samples from the windows are trying to be predicted from samples that have 

been arbitrarily set to zero. Likewise the error can be large at the end of the interval because 

· its trying to predict zero from samples that are non-zero. For this reason a window that 

tapered the segment of speech was needed, a 'soft window.' The Hamming window was 

chosen because it offered a good trade off between its tapered side lobes to reduce 

discontinuities at the edges and the large proportion of its energy held within the main lobe 

(see Figure 3.4 and equation 3.2). The hamming window is defined as : 

y = { 0.54- 0.46cos( 2n 'fN) }. O~n~N (3.2) 

= otherwise 

To avoid missing any important features within the phonemes, the sliding windows along the 

speech waveform over-lapped halfway. Therefore, to achieve total time durations of -70ms 

for each phoneme, with a time duration of 16ms for each window, 8 over-lapping windows 

were used giving a total duration of 72ms (see Figure 3.5). 
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Figure 3.4 Graph showing the Envelope of the Hamming Window 

Figure 3.5 Graphical Representation of the Eight Hamming Over-Lapping Windows Sliding Along the Speech 

Waveform 

After the phoneme speech waveforms were windowed, LPCs from each window were 

generated. The number of LPCs in each window reflected how accurately the coefficients 

matched the speech waveform. The idea behind linear prediction is to reduce the amount of 

speech data by eliminating unnecessary and redundant information. However, if too few 

LPCs are generated then important information is lost. Consequently there is a trade off 

between reducing the speech data and maintaining important information. As can be seen 
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from Figure 3.6 [6], as the number of LPCs increases so theRMS prediction error falls. The 

lower the RMS prediction error the more accurately the coefficients reflect the waveform. 

We therefore require a low RMS prediction error without the number of LPCs becoming too 

high. 

The RMS prediction error initially falls quite dramatically for both the unvoiced and voiced 

speech. Vowel phonemes are produced solely by voiced excitation of the vocal cords and so 

only the curve for the voiced speech is of interest. After 12 LPCs, the curve is relatively flat 

and so having anything greater that 12 would be of no advantage, especially since 12 LPCs is 

adequate to reflect speaker characteristics within the waveform. 
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Figure 3.6 Variations of theRMS orediction error with the number of predictor coefficients. p. 

Consequently, 12 LPCs for each window were chosen giving a total of 8x12=96 coefficients 

for each vowel phoneme. During the LPC procedure all the coefficients were normalised by 

dividing by the first. The first coefficient could therefore be eliminated since it was always 

equal to one. This left 11 LPCs for each window resulting in a total of 8x11=88 coefficients 

to be used by the classifier for training and testing. 

3.4 Classifier Input-Data Format 

Due to the selection of ANNs for creating the speech classifier, several software packages 

were investigated to model the ANN architecture (see Section 4.4). The package selected for 

experimentation was called the 'Stuttgart Neural Network Simulator' (SNNS) [7] and 

34 



required the data used for training, testing and adapting to be in a 'Pattern' format (Figure 

6.4). A 'Pattern' file consists of a header containing the date, data type and quantity 

information, along with input information (the LPCs) and the desired outputs (which vowels 

the LPCs represent). The headers were generated using an SNNS software package called 

'MKHEAD'. The headers were then appended to the LPC data along with desired output 

information. 

3.5Summary 

The selection, generation and formatting of speech data for any recognition system is vital. 

Consequently great care was taken to select speech data for the experimentation that would 

yield clear results. To allow clear recognition and adaptation results, it was necessary to have 

speech data from speakers with a consistent gender and dialect. This reduced the amount of 

speech data available and so the main selection criteria for all aspects of the speech data was 

quantity. This led to the selection of dialect-region-7 male speakers. Despite this, a large 

training and test-set was still available with dialect region 7 representing geographically about 

a third ofthe entire United States. With all the speech data,.selected, processed and formatted, 

all emphasis is now given over to the classifier. Chapter 4 presents a review of neural 

networks classifiers, detailing their background, various architectures and learning rules. As 

mentioned in Section 3.4, Chapter 4 also investigates various software packages for 

modelling ANNs. 
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CHAPTER4 

Neural Networks 

4.1 Introduction 

Modern electronics are able to process and manipulate information both faster and more 

reliably than any human brain, and yet there are many scenarios where the human brain 

outstrips the most sophisticated machines with ease. Although operating millions of times 

slower than many computers, the human brain is able to deal with many involved tasks such 

as deciphering complex images and understanding continuous noisy speech. Using past 

experiences, it is also able to gain knowledge, aiding in the recognition and adaptation 

towards new information. These tasks and many others have all beaten the best machines and 

so there has been a concerted effort to try and understand the architecture and functionality of 

the human brain in an effort to emulate its behaviour and performance. 

4.2 Biological Model 

The human brain is an immensely complex structure containing an estimated 100 billion 

neurons all inter-connected, receiving and transmitting information via 1000s of synapses 

(the links between neurons). The neuron, a specialised cell that conducts nerve impulses, 

consists of a cell body, an axon and dendrites (see Figure 4.1). The exact way in which 

neurons interact with one another remains largely uncertain. However, we do know that a 

neuron sends its output to other neurons via its axon to weighted connections known as 

synapses which link to awaiting dendrites. A neuron sums all the signals (voltage potentials) 

received from its dendrites, both positive and negative, until a threshold value, the bias, is 

achieved and the neuron 'fires,' sending its signal to other neurons. This process occurs 

throughout the brain as millions of neurons simultaneously pass information around the 
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complex network, learning and adapting to new inputs by constantly altering the weighted 

connections and the biases. 

Dendrites 

Figure 4.1 Graphical Representation of a Biological Neuron 

4.3 Artificial Neural Networks (ANNs) 

Due to the limited knowledge of the human brain's functionality and the restrictions of 

modem computational devices, the creation of an exact simulation has never yet been 

feasible. Consequently models of the human brain have always been simplistic, designed 

merely to introduce parallelism among highly interconnected nodes in order to perform non­

linear transformations. By taking a rudimentary look at the anatomy of the biological model 

we can see the comparison with modem Artificial Neural Networks (ANNs) (see Figure 4.2). 

Weighted 
Inputs 

from Adjoining ___ _, 

Neurons (Nodes) 

Figure 4.2 Simple model of an ANN 

Bias 

Activation 

Outputs to 
Adjoining 

Neurons (Nodes) 

Figure 4.2 shows the neuron's inputs passing through the weighted connections (synapses) 

into the neuron cell, where all the influences are summed together. If the sum of the 

weighted inputs and the bias satisfies the activation function (i.e. the threshold is met) then 

the neuron fires, sending its signal to the inputs of the next adjoining neurons. These 
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artificial neurons (nodes) are usually, unlike the biological model, arranged into layers with 

the first and last layers acting as the ANN's inputs and outputs respectively. Each node often 

connects fully to every other node in an adjoining layer giving by far the most common and 

simplest arrangement of nodes in an ANN. However there have been, and still are many 

variations, offering differing architectures, activation functions and training methodologies. 

The first attempts to model brain function was by McCullogh and Pitts [1] back in 1943. 

Since then the development of the ANN has led a very chequered life with a paper by Minsky 

and Pappert in 1969 [2] reporting that two-layered networks were incapable of solving some 

simple problems. They further suggested that there was no reason to believe that networks 

with more than two layers would improve the situation, resulting in a huge decrease of 

interest in ANNs. It was not until1986, when Rumelhart and Hinton [3] developed the back­

propagation algorithm to enable the training of multi-layered networks, that ANNs began to 

show a sudden re-emergence of interest. Spurred on by its loose comparisons with the 

'human brain,' this renaissance led to a vast array of architectures, training methodologies 

and application-driven networks being developed. 

An ANN may be specified by 3 basic components; the activation function, architecture, and 

training method. The selection of each component plays a vital role in the behaviour of an 

ANN and depends very much on the application for which it is intended. Consequently, 

various choices from each component area were explored to produce a set configuration for 

the experimentation. Other than the architecture, the main criteria for selecting each 

component was its well documented usage and ease of implementation. This was to create a 

standard configuration, allowing the effects made by any architectural changes to be clearly 

highlighted. 

4.3.1 The Activation Function 

The activation function, f(a), is primarily a threshold regulator for firing a node in an ANN. 

Figure 4.3(a) shows how the activation function influences the combined weighted inputs and 

bias to produce the ANN node's output. The most basic activation function is the 'step 

function,' (Figure 4.3(b )), which acts as a discrete firing switch when the sum of the weighted 

inputs and the bias reach a threshold value h. Usually h = 0, and so the node fires when the 
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sum of the weighted inputs is equal to the node's bias. However, it is best if all the nodes 

have some non-linearity to enhance a network's approximation, classification and noise­

immunity capabilities. The most often used non-linearity is the sigmoidal activation function 

because it is both continuous and differentiable, making its learning stage easier. Sigmoidal, 

meaning 'S' shaped and allows the outputs of a node to provide more than simply a 

classification; it can also be interpreted in terms of probabilities. Consequently, all nodes 

during the experimentation used the sigmoidal activation function. 
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___ ...j..:_.!..J-1------- Threshold Value (h) 

Step Activation Function Sigmoidal Activation Function 
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1, >h 

-1, Otherwise 

1 
f(a) 1 + e<•-a> 

Figure 4.3 Graphical Representation of an ANN Node (a) Showing the Two Most Common Activation 
Functions f(a); the Step Activation Function lbl and the Sigmoidal Activation Function (c). 

4.3.2 ANN Architecture 

There are many kinds of ANN architectures which describe the way in which nodes are 

interconnected. Each application-driven architecture is designed specifically for the data type 

to be classified (binary or analogue-valued input), the training methodology (supervised or 

unsupervised) and the complexity of the classification task (single or multi-layered). There 
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exists three standard and well known architectures which can be used for static pattern 

classification; the recurrent network, the feed-forward network and the self-organising 

network. From these three groups of topologies, the Hopfield and Hamming 'recurrent' 

networks, the multi-layered perceptron (MLP) 'feed-forward' network and finally the 

Kohonen 'self-organising' network will be discussed. 

Hopfield Network 

The Hopfield network, illustrated in Figure 4.4, is a feed-back 'recurrent' network in which 

the inputs to each node include both inputs as well as outputs. Requiring binary inputs, the 

Hopfield network is ideal for systems such as OCRs that use discrete black and white pixels 

as input elements from ASCII text. 

Inputs Outputs 

Figure 4.4 A Graphical Representation of a Hopfield ANN 

Used as either an associative memory or a classifier, the network is trained using class 

patterns, each represented by either a + 1 or -1 at each node input, Xo- XN.J. The network is 

initially trained for each class by converging the weights in the network, situated at every 

node input, using the Hopfield network algorithm [4]. When issued with an unknown 

pattern, the network produces an output, which during each indexed time step, is fed back 

into the input for another iterative pass. The weights within the network are constantly 

updated until they fully converge, no longer producing any changes between successive 

iterations. The pattern produced after this convergence is the networks final output. The 
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strength of this type of network is its ability, after several iterative passes, to clean up noisy 

versions of a class and produce the correct class pattern at the output. If used for 

classification purposes, this output can be compared with the stored classes to determine 

which class the output pattern matches. Although Hopfield networks do often perform well 

and are able to produce the correct outputs from noisy inputs, they do have two major 

limitations. Firstly the number of patterns that can be stored within the network is severely 

limited. If the number of classes begins to approach a sixth the number of nodes, then new 

fake patterns can be generated resulting in a 'No Match.' The second limitation is when two 

stored classes within the network are too similar. This can cause the network to converge 

inaccurately, producing an incorrect class pattern to appear at the output. 

Hamming Network 

The Hamming network [3] illustrated in Figure 4.5, is similar to the Hopfield network in that 

it requires binary inputs that for some selected nodes include both inputs and outputs. 

However, the network's output is quite different in that it does not produce a stored 

representation of the classified input, merely an indication of what the input is thought to be. 

------~ 
Lower Subnet MAXNET 

Figure 4.5 A Graphic Representation of a Hamming ANN 
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Initially the weights and thresholds are set in the lower subnet such that the output of the 

middle nodes are equal to N minus the Hamming distance for each training pattern where N 

is the number of input elements and the Hamming distance is the number of bits in the input 

which do not match the corresponding training pattern. Consequently a close match between 

an input pattern and a trained pattern results in the highest score at the corresponding output 

of the middle nodes. The upper subnet is a MAXNET which takes the outputs from the 

middle nodes and iterates until, at the output of the MAXNET, only one node is positive. 

Creating a 'Winner-Take-All' methodology, the single positive node corresponds to the 

classification of the input pattern. The Hamming network has an advantage over the 

Hopfield network in that it requires fewer connections and consequently fewer weights. In a 

network with 100 inputs and 10 classes, the Hamming network would only require 1,000 

connections compared to -10,000 for a Hopfield Network. Furthermore, the Hamming 

network does not produce new fake patterns when the number of classes is too great, 

resulting in a 'No Match' scenario. 

Multi-Layered Perceptron 

Multi-Layered Perceptrons (MLPs) are feed-forward networks with one or more layers of 

nodes between layers of input and output nodes as illustrated in Figure 4.6. 

Input 
Nodes 

Hidden Nodes 

Output 
Nodes 

Figure 4.6 A Multi-Layered Perceptron IMLPl with each Node Representing a Processing Unit with Activation 
Function 
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These additional layers, containing hidden nodes, are connected via weights to the input and 

output nodes. The number of layers a MLP is said to contain, relates to the number of weight 

layers, not the number of node layers. Consequently an MLP with an input, output and single 

hidden layer will be referred to as having two layers since an input layer contains no weights. 

The power and versatility of an MLP lies with its use of non-linearities in each node. It is 

this non-linearity (activation function) that enables an MLP to create complex decision 

boundaries. If an MLP had linear nodes, then a single-layer network with suitably chosen 

weights would be able to perform exactly the same calculations. The complexity of the 

decision boundaries is governed not only by the non-linear nodes, but also by the number of 

layers (see Figure 4.7). 

A 

Single Layer 
(a) 

Two Layers 
(b) 

Three-Layers 
(c) 

Figure 4.7. Types of decision boundaries which can be formed by networks having threshold activation 
functions and a various number of layers. 

A single layer feed-forward network is only able to classify static input patterns into two 

classes by forming a half-plane decision region. As the number of layers increases, then so 

the complexity of the decision regions increases. However, networks with more than three 

layers are usually uncommon since three-layered networks should be able to produce any 

complex decision regions with arbitrary shapes, [3]. Most ANN architectures used for speech 

recognition are designed to classify static patterns. However, speech is inherently dynamic in 

nature and so a modified ANN structure, the 'Time Delay Neural Network, (TDNN)' was 

created [6]. The TDNN, figure 4.8, extends the input to each input node to include N 

adjacent speech frames, each with a time delay, D, of d seconds. This enables each input to 

cover a range of m seconds, highlighting any phonemes variations in a speech signal. 
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Figure 4.8 A graphical Representation of a Time-Delay Neural Network ITDNNl with varying time-delayed 
inputs. !0- DN1 

Kohonen Network 

The organisation of the neurons within the human brain, although genetically predetermined 

for low-level functions, often reflects the characteristics of external stimuli during learning. 

This principal of honing a neural architecture into a more efficient and input specific network 

was adopted by Kohonen with a self-organising feature map [7]. This self-organising 

network consists of input nodes connected via weights to output nodes, usually arranged in a 

two dimensional grid, figure 4.9. 

Xo 

Input Output Nodes 

Figure 4.9 A Kohonen Self-Organising Network 
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During each iteration of the unsupervised training procedure, input patterns are fed into the 

network and the error distances between each input and corresponding node-weight 

calculated. The nearest node has all weights within its neighbourhood modified to enable the 

model to be more responsive to the applied input. After each training iteration, the initially 

large neighbourhood slowly decreases in size. Furthermore the update rate for the weights 

reduces with each iteration until it reaches zero, when the network is then able to associate 

between different classes using corresponding regions on the output grid. Because of the 

slow way in which the weights adapt during training and the fixed number of classes, the 

Kohonen network performs well with noisy inputs. 

4.3.3 Training 

The primary objective when training an ANN is not to learn an exact representation of the 

training data itself, but to build a statistical model of the process which generates the data. 

This is achieved by setting the weights and bias values within the ANN such that the network 

error is minimised for a representative training set. The network error is the sum of the 

differences between the desired and actual outputs. The algorithms used to achieve this goal 

vary depending on the ANN architecture, although by far the most common is the back­

propagation (BP) algorithm used for training MLPs. In fact the success of the MLP is 

credited to Rumelhart [8], who in 1986 proposed the efficient back-propagation training 

algorithm for optimising the weights and thresholds of multi-layered networks. 

The first stage of training an MLP is the initialisation of the weight and bias values with some 

small random values. After initialisation, supervised training begins with training pairs 

containing input/output information. The input patterns are presented to the network 

repeatedly and, on each presentation, the states of all nodes computed as the patterns pass 

through the network to the output nodes. For example let us a consider a fully connected 

MLP with each node using a sigmoidal activation function. For each node in the network the 

output y would be equal to : 
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y, y1 = 11 [1 + exp(- net1 )] 
(4.1) 

Y2 where 

• ffi;; netj = L,x,roij -ej (4.2) 
Y; i 

where j is the number of nodes in the present layer and i is the number of nodes in the 

previous layer. The BP algorithm uses a gradient descent algorithm for updating the weights 

and bias values, based on the mean squared differences between the actual and desired output 

values. The mean squared error for a single input/output pattern is: 

where tj is the desired output value for the jth output node. 

The purpose behind the training is to alter the weight Olij and bias 9i values within the 

network such that the errorE for each input/output pattern is minimised. 

(4.3) 

In order to minimise E with respect to Olii and 9j. we must apply the chain rule as follows : 

Now we introduce the notation 

o.= aE 
1 iJnet. 

1 

Using equation (4.6) with (4.4) and (4.5) we obtain: 

and 
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(4.5) 

(4.6) 

(4.7) 



Furthermore, from equation (4.2) we can obtain 

and 
anet. 
__ 1 =-1 
ae1 

Next we want to calculate 3i. Applying the chain rule again we get : 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

where (}yj{}netj is equal to the derivative of the activation function and aE!(}yj is equal to the 

derivative of the mean squared error (4.3). 

Fortunately the derivative of the sigmoidal activation function has a simple form 

()yj =y(l-y.) 
anet 1 1 

1 
(4.12) 

and 

(4.13) 

However, equation (4.13) only applies if the node is in the output layer, otherwise the error is 

propagated back from the nodes in the upper layer, i.e. 

(4.14) 

where k is the number of nodes in the next upper layer. 
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For the next upper layer we obtain 

net.= I,y/oi• -e. 
j 

Differentiating this equation with respect to Yi gives 

Using the notation from ( 4.6) we can get 

0 = dE 
• dnet k 

Therefore if j is not an output node, a weighted sum of the partial errors 

propagated from the nodes in the above layer to give 

(4.15) 

(4.16) 

(4.17) 

can be back 

(4.18) 

Now that all the partial derivatives have been defined, the weights and bias values can be 

adjusted. However, some gain term TJ, usually set to between 0 and 1, must be used to 

control the adjustment of these values to avoid instability. This gives the changes in weight 

and bias values as 

and 

dE 
!'J.(J) .. =-1]·-,, d(J) .. ,, 

(4.19) 

(4.20) 

Since the BP algorithm is only a first order gradient descent technique, controlled 

convergence if often slow. It is also prone to being trapped in local minima on the error 
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surface, preventing the weights and bias values from settling. To avoid this problem, a 

momentum term can be added to encourage a decreasing network error to pass over any local 

minima. Equation (4.21) shows the BP algorithm with the momentum variable a. 

aE 
L'ico(t) = -1] aco(t) + alico(t -1) (4.21) 

where t is the number of training iterations. 

4.4 Neural Network Software 

Although hardware offers the benefits of utilising the parallel processing power of ANNs, its 

rigid design makes it unsuitable for honing and testing new ANN architectures. 

Consequently software, although slower, offers the adaptability necessary when designing a 

new ANN. There are many ANN software packages on the market which offer a wide 

variety of modelling procedures, graphic interfaces, numerous training procedures and 

specialist ANN tools. When deciding on the software package to model the ANNs for 

experimentation, there were three main criteria used for selection. First the package had to 

permit the modelling of complex architectures, allowing the positioning of any nodes of any 

type to connect to any other. Second a graphical interface was necessary to allow the 

visualisation of the ANN since the construction of complex ANN architectures using a text­

driven package can be difficult and prone to incorrect data entry. Finally, the software 

package needed to include a variety of training algorithms, permitting large amounts of 

speech data with result analysing tools to clearly display the ANN's behaviour. For 

experimentation three popular software packages were chosen for evaluation; MATLAB 

Neural Network Toolbox, Aspirin/MIGRAINES Software tools and the Stuttgart Neural 

Network Simulator (SNNS), and each checked against the above criteria. 

4.4.1 MATLAB Neural Network Toolbox 

MATLAB [8] offers a powerful environment in which a speech signal can be pre-processed, 

classified and analysed in one operation. This is because, as well as including the neural 
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network toolbox, MATLAB also includes signal processing and statistics functions. This 

allows great flexibility during any stage of the speech recognition process, making it ideal for 

experimentation. However, the MATLAB version available, Version 3.0, included only a 

crude neural network toolbox. Although it included all the common activation functions, 

architectures and learning algorithms, its scope for adapting these parameters to produce a 

customised complex network was limited. Since this investigation into the neural network 

toolbox the latest version, Version 4.2c, has overcome these restrictions with software that 

now allows all network properties to be easily customised and collected into a single network 

object. 

4.4.2 Aspirin/MIGRAINES Software Tools 

Designed in 1986, the software consists of two elements, Aspirin which is a declarative 

language used to describe arbitrarily complex neural networks and MIGRAINES which is an 

interface for evaluating and interacting with a neural network simulation. Using a high level 

language, Aspirin attempts to describe any network architecture and a number of simulation 

routines. This is possible, according to the manual [9], by allowing each node in a destination 

layer to be connected only to a subset of the nodes in the source layer. This description code 

is then complied and linked to the 'MITRE Interactive Graphical Research and Investigation 

Neural Network Emulation System' (MIGRAINES) package. MIGRAINES probes the 

generated ANN using available analysis tools allowing a researcher to visually illustrate its 

performance. However, the description code for the ANN was actually very restrictive, 

preventing the generation of many complex architectures. Unfortunately this was not 

explained in the supplied text, resulting in a lot of wasted time. It also had limited learning 

algorithms and the graphical interface was crude. Consequently, after much investigation, 

the Aspirin/MIGRAINES software was found to fulfill none of the required criteria 

4.4.3 Stuttgart Neural Network Simulator 

Since 1989 the Institute of Parallel and Distributed High Performance Systems at the 

University of Stuttgart has developed and constantly updated the Stuttgart Neural Network 
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Simulator (SNNS) [10]. The objectives of the project were to create an efficient and flexible 

simulation environment for research on ANNs. Consisting of two main components, the 

kernel performing all internal data operations and the XGUI graphical interface, SNNS 

allows the creation and manipulation of various ANNs in a clear visual way. Containing over 

10 types of ANN architecture, 33 learning algorithms, 25 weight update functions and 24 

weights initialisation functions in the 1995 version 4.1, SNNS is also very comprehensive. 

With on-line help and easy-to-use network creation tools, complex ANNs are created quickly 

and easily with careful thought given over to inexperienced users. The package, used under 

'X-Windows,' offers several windows including a control panel, a network creation tool, a 

network error graph, weight display and information panel (see Figure 4.10). The package 

also included several analysing tools for statistically analysing the results and an inversion 

display which presented ideal input patterns necessary for specific network outputs. SNNS 

was clearly the best of the three packages chosen for evaluation and was therefore selected 

for the experimentation. However, once experimentation had begun, some of SNNS's 

limitations were experienced requiring re-writing of the kernel and XGUI source code (see 

section 6.3.3). The software also crashed occasionally in certain instances, but was an 

insignificant problem against the benefits of its versatility and performance. 

Figure 4.10 SNNS with some of the Windows available for Modeling. Training and Testing ANNs. 
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4.5Summary 

The selection of the architecture, activation function and learning rule plays a vital role in the 

behaviour of the network and the application for which it is meant. Several types of ANN 

components were investigated to enable the selection of the most suitable configuration for 

experimentation. The following chapter includes the selection process of the ANN 

configuration for experimentation and introduces the One-Class-One-Network architecture. 
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CHAPTERS 

Neural Network Architecture Selection 

5.1 Introduction 

Selecting the activation function, architecture and training of an ANN is a very application 

dependent procedure. For the purpose of experimentation, the ANN configuration had to 

fulfill certain criteria. The first was to select a common network that could be easily 

modified. It needed to be a common network to help ensure that the effects of any 

modifications could be clearly explained and documented. Also, due to the nature of the 

speech data, it had to be able to deal with analogue-valued inputs. This meant that ANNs that 

dealt solely with binary inputs could be eliminated. Finally the speech data was in the form 

of training pairs, containing both input and output information. This was purely through 

design so that the network could be adapted to a specific speech sound and the effects clearly 

noted. As a result, the training had to be supervised and so ANN s using unsupervised 

training algorithms were also eliminated from selection. Using the taxonomy tree [I] (see 

Figure 5.1) the remaining architecture that fulfilled all the criteria was the Multi-Layered 

Perceptron (MLP). 

~s~~ 

'"1- ?\,v\'"" 
,~~ srrsed 

Hopfield Hamming Multi-Layered 
Recurrent Recurrent Perceptron 
Network Network 

Figure 5.1 A Taxonomy tree showing four common ANN architectures 
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Feed-forward MLPs commonly use the well documented and easily applied back-propagation 

(BP) training algorithm. As a result the BP, along with the common sigmoidal activation 

function, was selected for experimentation, creating an ANN configuration that was well 

understood, adaptable and easy to model. This enabled the successful application and testing 

of new dynamic adaptation techniques. 

5.2 Multi-Layered Perceptrons (MLPs) 

There is no one solution when it comes to deciding on the number of nodes, layers and 

connections of an MLP architecture. However, there are some guidelines when creating an 

MLP for a specific application. The first of these application dependent parameters is the 

number of input, output and hidden nodes. One input node is necessary for each input data 

element and one output node for each class to be classified. Although some basic rules apply 

to the number of hidden nodes, a lot is down to experience, trial and error. This also applies 

to the number of hidden layers which is very much down to the complexity_ of the 

classification problem. The greater the number of the layers in an MLP, the more complex 

the decision boundaries (see Figure 4.7). Although too few layers make the decision 

boundaries over simplistic, too many layers can prevent the classification of a new 

acoustically similar utterance by making the trained network to input specific. Once the 

number of each node type has been decided, the connections between them is investigated. 

Most MLPs have fully-connected layers where the output of each node joins the inputs of 

every other node in a succeeding layer. However this is not always the case, since the 

connections can be used to split an ANN into subnets creating architectures such as the One­

Class-One-Network (OCON). 

5.3 The One-Class-One-Network (OCON) 

A large fully-connected network can potentially contain many hundreds of neurons, each 

connected via weights to many others. This can make the training and adapting of such a 

network a long and difficult task. In addition, fully connected networks are prone to cross­

class interference. Cross-class interference occurs when adapting towards a single class in a 

multi-class network, inevitably altering shared weights. As the network gets larger the 
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interference increases, drastically degrading the convergence rate of the shared weights due 

to the influence of conflicting signals. This can lead to, after adaptation towards a single 

class, the impaired classification for the remaining classes within the network. To eliminate 

these problems, I.C.Jou et al [2] proposed a new neural network architecture called the One­

Net-One-Class. The same principle was later taken on by S.Y.Kung[3][4], who named the 

architecture the 'One-Class-One-Net' or the 'OCON' for short. The OCON is similar in 

design to that of a conventional MLP, only each class has its own dedicated subnet containing 

a single output neuron. This is illustrated in Figure 5.2. which shows a fully-connected 

network which is partitioned into three subnets by eliminating all the cross-class connections 

in the upper layer. 

(a) 

(b) 

Figure 5.2 (a) A fully-connected MLP architecture. (b) A One-Class-One-Network IOCONl Neural Network 
Architecture 

Each OCON subnet is specialised for distinguishing its own class from other patterns, 

resulting in fewer nodes being required in the hidden layers. Even if an OCON has the same 
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number of nodes as an MLP, it has fewer weights as highlighted in Figure 5.2 where the 

OCON has 45 weights compared with the MLP's 63. This consequently reduces both the 

training and recognition time, which becomes more significant as the number of output 

classes increases. 

I.C.Jou first used the OCON architecture in 1991 for optical character recognition (OCR). 

Using 16 orientation angles to describe each written character, 36 alpha-numeric classes were 

used for recognition offering almost 10% improvement over a conventional network. Later 

S.Y.Kung [4) also applied the OCON architecture to OCR, achieving a training accuracy of 

99.5% compared with 94% from a conventional MLP. Such architectures have also been 

used for texture classification, ECG analysis and speech recognition. Speech recognition 

systems, using OCONs, included the classification of mandarin speech syllables and isolated 

English words with a hybrid TDNN and OCON structure [5). The OCON architecture has 

offered improved results in many areas of data classification although, in the field of speech 

recognition, has yet to be applied to phoneme speech recognition. 

5.4 Comparative Study of MLP versus OCON 

To test the performance of the OCON architecture on speech, a comparative study with the 

more conventional MLP was set. Although primarily concerned with the performance on an 

adapted class within a network, the effect the adaptation had on the remaining unadapted 

classes was also of importance. To emphasise any inter-class adaptation, the MLP and 

OCON architectures were represented by three networks each, each receiving a distinct group 

of acoustically similar vowel phonemes. These phoneme groups corresponded to the position 

of the tongue hump in the oral cavity during their production, 'front', 'middle', and 'back'. 

The vowel phonemes within the front, middle and back groups are shown in Figure 3.1. For 

each phoneme group, MLP and OCON networks (see Figure 5.3) were modeled using the 

Stuttgart Neural Network Simulator (SNNS), (see Section 4.4.3). All the networks contained 

the same number of input nodes, 88, dictated by the number of input coefficients representing 

each speech utterance (see Section 3.3). The total number of output nodes for each network 

was dependent on the phoneme group, five phoneme classes for the front and back and three 

phoneme classes for the middle. Finding the number of hidden nodes is often a case of trial 

and error, and for many applications is often a guess. Consequently, an educated guess of 15 
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hidden nodes was made for both the MLP and OCON networks. Finally the six networks, 

with every node using the sigmoidal activation function, were modelled with fully connected 

adjoining layers, except for the hidden and output layers of the OCON architecture as shown 

in Figure 5.3b. 

(8xll) Input Neurons 

~ 

(Sxlt) Input Neurons 

~ 

(a) 

(b) 

(3x5) Hidden Neurons 
for each class 
~ 

1 Output Neurons for 

~ 

1 Output Neurons for 

e~ 

• 

• 

Figure 5.3 (a) Fully connected MLP architecture. (b) Fully connected OCON architecture. 

Each network was trained with male TIMIT speech data from dialect region 7, the 'test set' 

(see Section 3.2). The weight and bias values within the networks were initially randomised 

and the standard back propagation algorithm used to train the networks towards the speech 

'training set,' producing the six 'base-classifiers' necessary for the experimentation. The 

'test set' comprised of the vowel phoneme data from the 15 male speakers of the TIMIT 

dialect region 7. Since there was only interest in intra-speaker effects and not inter-speaker 
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effects, all the speech data from every test speaker was amalgamated and categorised with 

respect to its phoneme content. The networks were then ready for adaptation and testing, but 

before that could occur, a single common back-propagation learning-rate for both the MLP 

and OCON networks had to be found. 

Learning Rate 

Each of the six base classifiers was adapted towards their relevant phonemes using speech 

data from all the male speakers within in the TIMIT test set. This was the same as the speech 

data to be used for the MLP versus OCON comparative study. Using the standard back­

propagation algorithm, six learning rates from 0.1 to 2 were used to adapt towards each of the 

phoneme classes. Each phoneme class, one at a time, was presented to the relevant network 

and adapted for a total of 20 cycles. After each of the adaptation cycles, the recognition rate 

was recorded and after the twentieth cycle the network weights and bias' were reset to the 

initial base classifiers values ready for the next adaptation procedure. Average network-error 

results over the six base classifiers were calculated for all twenty adaptation cycles for each 

of the six learning rates, Figure 5.2. The graph shows an improvement in the rate of 

adaptation as the learning rate increased. However, above a learning rate of 0.5, this 

improvement reduced and the adaptation began to becomes unstable. Therefore to achieve 

the fastest adaptation without erratic results, a back-propagation learning rate of 0.5 was 

selected. 

Average Recognition Rates obtained using 6 Learning Rates to 
adapt towards Vowel Phonemes from dialect region 711MIT test set. 

90r-----------------------------~------~~ 

~ 85 --0.1 

--0.3 

0.5 

··X····0.75 

--1 

-e-2 
65+-~~-r-+_,~~r-+-~~-r-+_,--~+-+-~-r-4 L----~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Adaptation Cycles 

Figure 5.2 Graph showing the average recognition rate results from the six base classifiers using six back­
oropagation learning rates 
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It was appreciated that selection of the learning rates depends very much on the network it is 

being applied to and that a higher learning during other areas of experimentation could well 

have improved the convergence of a network. However, throughout all experimentation, the 

same learning rate was used for consistency as experimental results of concern were mostly 

comparative, not absolute. 

After the learning rate was selected, the comparative study between the MLP and OCON 

began. Each of the six base-classifiers was adapted and tested using the 'test set.' Each 

network was adapted towards one of its relevant phoneme classes for a total of I 00 cycles, 

during which 7 result snapshots were taken at I, 3, 5, 10, 20, 50 and 100 cycles. Due to the 

non-linearity of network adaptation, the number of cycles between each result snapshot 

increased to produce a graph that offered a clear picture of the network's behaviour. The 

results taken at each snapshot were the recognition rates of both the adapted phonemes and 

the remaining unadapted phonemes within the same network. After adapting for I 00 cycles 

towards each phoneme class, the weights and bias' within each network were reset to their 

initial base-classifier values ready for the next adaptation procedure involving another 

phoneme class. For the adaptation results, 24 graphs were produced showing comparative 

results between MLP and OCON networks on the adapted phonemes and the effects these 

adaptations had on the remaining unadapted phonemes. These are given in appendix A. 

From these 24 graphs, 6 further graphs were produced containing the averaged data with 

respect to their tongue-hump group for the adapted and unadapted phonemes (Figure 5.3(a) -

(f)). As well as recognition rates, another area of interest was each network's convergence 

rate. The convergence rate for each of the 6 averaged data graphs was calculated by 

differentiating the recognition-rate data (calculating the distance between adjacent rates). 

However calculating the convergence rate in this way was viewed as being unrealistic since 

the closer that recognition rates reach the perfect goal of 100%, the greater the significance of 

recognition improvement. 

To reflect this, the convergence rate y was calculated using the following equation : 

-( 100- X. ) I Y- -
100- Xn+l 

(5.1) 
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where Xn and Xn+I are two adjacent recognition rates. The term -1 in equation (5.1) was used 

so that positive values indicated positive convergence and negative values negative 

convergence. The 6 convergence rates graphs generated (Appendix A) were averaged to 

produce convergence graphs for all the adapted vowel phonemes (see Figure 5.4(a)) and all 

the unadapted vowel phonemes (see Figure 5.4(b)). 

Figures 5.3 (a) - (c) show that for all three phoneme groups, the OCON networks show a 

clear improvement for the recognition rates of adapted vowel phonemes over the 

conventional MLP networks. On average, for all vowel phonemes, the experimentation 

shows a 12.3% increase in recognition rates for the OCON networks [6][7]. This result 

echoes the improvements shown in other data classification systems utilising OCON 

architectures [2][3][4][5]. Furthermore, the OCON architecture not only increases the 

adaptation rate but also reduces the processing time necessary for each adaptation cycle due 

to the reduction in network weights. This is shown in Figure 5.4(a) with the increased rate of 

convergence for each OCON network, offering a 273% increase against the MLP for adapted 

phonemes. However, the OCON architectures as they stand, deal badly with inter-class 

adaptation. Although the rates of convergence for both networks are roughly the same (see 

Figure 5.4(b)), Figures 5.3 (d) - (f) show that for all three phoneme groups, the OCON 

networks offer worse recognition rates for unadapted vowel phonemes over the conventional 

MLP networks. When the three Figures 5.3 (d) - (f) are combined, the average drop in 

recognition rates for the OCON networks, compared with the MLP networks, is 6.3%. 
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Figure 5.3Cal- (cl Graphs showing the average comparative MLP and OCON recognition rates for adapted 
vowel phoneme from all three tongue-hump groups. 
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(d) 

Average Recognition Rates for Unadapted Front Vowel Phonemes 
for an MLP and OCON Network 
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Average Recognition Rates for Unadapted Middle Vowel Phonemes 
for an MLP and OCON Network 
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(f) 

Average Recognition Rates for Unadapted Back Vowel Phonemes 
for an MLP and OCON Network 
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Figure 5.3(d)- (D Graphs showing the average comparative MLP and OCON recognition rates for unadapted 
vowel phoneme from all three tongue-hump groups. 
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Average Convergence Rates for Adapted Vowel Phonemes for an 
MLP and OCON Network 
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Figure 5.4Cal Graphs showing the averaged MLP and OCON convergence rates for all adapted vowel phonemes. 
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Figure 5.4Cbl Graphs showing the averaged MLP and OCON convergence rates for all unadapted vowel 
phonemes. 

5.5 Conclusion 

As expected the OCON behaves better than the MLP when adapting and testing the same 

phoneme. This is primarily due to the individual networks in each OCON network being 

dedicated to each class. Not only are there fewer connections and hence weighted axes to 

train, but each network only has to deal with information concerning a single class. As a 

result the OCON fulfills the first of the three research objectives, not only reducing the 

processing time for each adaptation cycle, but also rapidly increasing the convergence rate. 

However, the OCON architecture as it stands, deals badly with inter-class adaptation. When 

adapting to a class, the OCON shows a lower recognition rate for the remaining phonemes in 
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the network compared to that of the MLP. This indicates that there must exist some common 

speaker information within all the classes in a network which isn't being exploited in the 

isolated networks of the OCON. Although in many applications cross-class interference can 

be a problem, MLPs compared to OCON s appear to use it to their advantage for inter-class 

adaptation. As a result an ideal network would be a hybrid OCON architecture containing 

isolated networks for improved single class adaptation but with some inter-class bonding to 

profit from any common speaker information. However it would be important that any 

hybrid OCON network should concentrate adaptation only on common speaker information 

as adaptation towards common class information could result in harmful cross-class 

interference. 

5.6 Summary 

The advantages of the OCON over the MLP has been clearly shown with improved 

recognition and convergence rates when adapting to any of the 12 vowel phonemes. 

However the OCON shows the problem of poor inter-class adaptation results due to the 

isolation of each sub-network. To address this problem and to fulfill the second and third 

research objectives a modified OCON architecture is investigated in Chapter 6. 
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CHAPTER6 

Speaker Adaptation Layer 

6.1 Introduction 

Within a single utterance lies an abundance of speaker information. This information 

inherently leads to intra- and inter-speaker variations which pose an enormous problem for 

recognition, especially for multi-speaker systems. It is impractical to train a recognition 

system with every variation of every utterance from every speaker. That is why adaptation 

within a system is of such importance. Adaptation allows a system, trained with a 

representative data set, to dynamically map itself towards a new speaker or towards a change 

in a present speaker's voice. By altering the model within a recognition system, a single 

utterance can aid in the total recognition of future utterances articulated in a similar way or by 

the same speaker. 

It has been hypothesised that a listener interprets an utterance with reference to the acoustic 

space of the speaker to whom they have been listening [1]. This means that a listener 

normalises the vocal and dialectal characteristics of a new speaker in order to improve the 

recognition of further utterances. Therefore, for intra- and inter-speaker adaptation, the 

model needs only adapt with respect to the speaker's vocal characteristics, not the utterance 

itself. This speaker adaptation allows a recognition classifier to normalise incoming 

utterances with respect to the present speaker, improving recognition across the board. 

Adaptation falls into two main categories, supervised and unsupervised. Supervised 

adaptation requires an external teacher to inform the recogniser of either a correct or incorrect 

classification before adaptation can continue. The external teacher can be in the form of an 

adaptation data set of input-output pairs or a discrete input from the speaker such as a key 

press or keyword. This form of adaptation guarantees that the recogniser always adapts 

towards the correct class. However, using input-output pairs can often be difficult in a 

practical system and discrete keywords from a speaker can themselves run the chance of not 
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being recognised. Unsupervised adaptation is more automated than supervised adaptation, 

requiring no external input. Using a winner-take-all methodology, an unsupervised classifier 

can decide which class has been correctly classified and consequently which class it needs to 

adapt towards. Although faster and easier to use than a supervised system, there is always the 

risk of misclassification and consequently adaptation towards a wrong class. During the 

process of experimentation, we will be merely interested in the effect of 'correct' adaptation 

on a classifier. Therefore all forms of adaptation will be supervised, using input-output data 

pairs as the external teacher. 

In Chapter 5 we found that, compared with the conventional MLP, the OCON offered a 

higher recognition rate for an adapted vowel phoneme . However, due to the nature of the 

OCONs architecture, the vowel phoneme classes within the network were isolated from one 

another preventing any inter-class adaptation. This isolation led to poor recognition results 

for the remaining unadapted classes in each network. In an ideal system, adapting to a single 

class would improve the recognition of the remaining unadapted classes uttered by the same 

speaker. Such a system would then only require a single uttered class from each network for 

every vowel phoneme to be adapted. Therefore, to improve inter-class adaptation, it is 

necessary to build into the neural network architecture some common layer that will allow 

common inter-class information (speaker characteristics) to be stored and adapted. In this 

chapter the design and implementation of such a common layer is investigated and its impact 

on both intra- and inter-speaker adaptation tested. 

6.2 Speaker Adaptation Layer 

The purpose of a common layer within the neural network is to allow each vowel phoneme 

to share a common series of weights. To allow their equal utilisation by each class and to 

ensure that the essence of the OCON' s topology remains constant, the series of weighted 

neurons are best situated at the front of the network as shown in Figure 6.1 [2]. Forming only 

a single layer to avoid over-complex decision boundaries (Figure 5.1), the new layer would 

consist of identical neurons to those found in the rest of the network. This would prevent 

disproportionate weight changes within the network whilst training. The full training of such 

an architecture, to create a base classifier, leads to a hypothesis regarding the distribution of 

information within it. It is envisaged that information, unique to each class, will be stored in 
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each of the relevant OCON subnets. This would leave any common inter-class information 

stored in the front-end common layer. A successful system such as this would dramatically 

improve both intra- and inter-class adaptation, fulfilling the three research objectives. 

Input Layer Common Layer 

OCON Subnets for 
each class 

• 
• 

Figure 6.1 Graphical Representation of Modified OCON Network with Adaptation Layer. 

A new utterance from a new speaker is unlikely to produce an ideal output from the neural 

network classifier. The difference between the actual and ideal outputs is said to be the 

network error (see Section 4.3.3) and is used to adapt the network towards the new utterance. 

For the adaptation cycle, this network error would then be fed back through the architecture 

using the back-propagation algorithm. Each of the subnets would act as a filter for the fed­

back network error, extracting class-unique information. This, in theory, would leave only 

the network error relating to common inter-class information such as the new speaker's 

characteristics. By concentrating the adaptation only on the front end common layer, the 

fully trained network should then only adapt to the new speaker's characteristics aiding in the 

recognition of every class after a single utterance. This would then fulfill the second and 

third research objectives. 

6.3 Effectiveness of Common Adaptation Layer 

To prove the 'distribution of information' hypothesis, a test was conducted analysing three 

topologically identical pairs of base-classifiers. Each pair of base-classifiers, representing 

one of the three vowel tongue-hump groups (see Section 3.1), was subjected to one of two 

different adaptation procedures. The first procedure allowed unrestricted weight adaptation 

as the error was back-propagated through the correctly classified OCON subnet and common 
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front-end 'adaptation layer,' Figure 6.2a. The second procedure allowed only the weights 

within the adaptation layer to be altered; the area where the speaker characteristics are 

believed to be stored, Figure 6.2b. After full training by many speakers, each of the subnets 

should contain normalised raw phoneme data, each with their own unique acoustic space and 

containing no speaker information. Most neural network adaptation procedures allow the 

network error to be back-propagated through every weight within the network. This is so that 

an utterance not only adapts towards the correct class but also away from the remaining 

incorrect classes within the network. However, since each of the classes are already 

distinctly separated in their own acoustic space and a speaker's characteristics has equal 

effect on all the classes, no two classes should overlap after adaptation towards a new 

speaker. Therefore the network error need only pass through the correctly classified OCON 

subnet as adaptation away from the remaining unclassified phonemes is not necessary. 

(a) 

Direction of Back-Propagated Network 
Error through correctly classified OCON 

subnet and common adaptation layer 
(b) 

~daptationLayer ~ 
Frozen-Weight Areas 

Figure 6.2 Graphical representation of the two adaptation procedures where in network la) both the subnet and 
the adaptation layer adapt and in network lb) the subnet is frozen allowing only the adaptation layer to adapt. 

The two adaptation procedures were chosen specifically to highlight any distribution of 

speaker characteristics within the adaptation layer. If the weights within a subnet are not 

frozen they, along with the weights in the adaptation layer, will adapt to a new utterance 

containing both speaker and phoneme information. Therefore the subnet will additionally 

adapt to the speaker's characteristics and the adaptation layer to the raw phoneme 

information. Although an improvement in the recognition of the adapted phoneme may be 

seen, the tainting of the adaptation layer with the new utterance's phoneme information may 

worsen inter-class adaptation. 
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6.31 Modelling of OCON Network with Common Adaptation Layer. 

The three pairs of topologically identical networks were modelled using the Stuttgart Neural 

Network Simulator V4.1 (SNNS) [3]. Each of the networks had 88 input neurons, the 

training data format was identical to that in chapter 5, and the number of output neurons was 

dependent on the phoneme group they represented, 'front'=5, 'middle'=3 and 'back'=5. The 

general layout of the architecture had been decided (See section 6.2), with a fully connected 

subnet for each class connected to the input layer via a fully connected single adaptation 

layer, figure 6.1. Although the layout had been determined, a common problem encountered 

in the design of neural networks is deciding on the number of neurons in each layer. Finding 

the optimum number of neurons is typically found through trial and error. Some generalised 

rules do exist and have had some success in the past. Mirchandani and Cao [ 4] showed 

analytically that the maximum number of linearly separable decision boundaries M is a 

function of the number of hidden neurons Hand the number of input neurons D, as follows: 

D 

M(H,D)=L.W, (6.1) 
k=O 

where 

W=o, H<k. 

Equation (6.1) was derived by Mirchandani and Cao for a two-layered fully connected 

network. However the new network architectures had two hidden layers, making them three­

layered networks, and more importantly, due to the nature of subnets, not all adjoining layers 

were fully connected. These differences made equation (6.1) unreliable and so a method of 

trial and error using various numbers of hidden neurons was employed. During the trial and 

error procedure, three-layered networks with 88 input neurons, 3 output neurons and an 

increasing numbers of hidden neurons were trained using the 'training set' and the back­

propagation algorithm. The networks, each using the sigmoidal activation function and a 

topology of that shown in Figure 6.2, were then tested with the 'test set' until a saturation 

point in the recognition performance was found. The first network to obtain the recognition 

saturation had 15 neurons in the common hidden layer and three neurons in each of the 
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subnet hidden layers. Therefore trained networks with this number of hidden neurons were 

selected as the base-classifiers for the experiment, Figure 6.3. 

(8x11) Input Neurons 

~ 

lS Hidden Neurons 
for common front­

end adaptation layer ,...., 

Figure 6.3 OCON network with front common adaptation layer. 

6.3.2 Training Procedure 

3 Hidden 
Neurons 
for each 1 Output 

Neurons for 
each class 

• 

• 

The experiment was a comparative study between the two adaptation procedures. This 

required the networks in each of the three phoneme group pairs to have identical architectures 

and training. Therefore to produce the six base classifiers needed for testing, one network for 

each of the three phoneme groups was trained and then duplicated to produce the second of 

each pair of identical networks. Using SNNS, the three networks, 'front', 'middle' and 

'back' were initially trained. They were each trained with their relevant phoneme data from 

the 'training set' using the back-propagation algorithm set to a learning rate of 0.5. For 

experimentation, training and adaptation, the learning rate was set to the same as the previous 

experiment, 0.5, in chapter 5 for consistency. 

6.3.3 Adaptation Procedures 

All the speakers from the dialect region 7 TIMIT test set were used to monitor the effects of 

intra- and inter-class adaptation on the six base-classifiers. However, since only intra- and 
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inter-speaker effects for single speakers were needed at this stage the speech data from a 

single speaker at a time was used for the adaptation procedures. The experimentation was 

split into two sections, frozen and unfrozen adaptation, to prove the distribution of 

information hypothesis. 

Unfrozen Adaptation 

One from each pair of identical base-classifiers was adapted using the unfrozen approach. 

The unfrozen approach simply allowed adaptation to occur with all the weights in the 

network free to adapt. When the network was subjected to a new utterance from a single 

speaker a network error equal to the difference in the network's actual outputs and ideal 

outputs was created. However, only the network error for the correctly recognised class was 

noted with the network error for the unclassified outputs ignored. This was because phoneme 

information within each subnet was deemed sufficient and distinctly separated enough from 

the remaining classes to only require adaptation towards the recognised class not adaptation 

away from the unrecognised classes. The network error was fed back through the subnet of 

the recognised class and the adaptation layer using the back-propagation algorithm, Figure 

6.2a. As the error passed through each weighted axis, the weights were altered to minimise 

the error adapting the network to the new utterance. Each phoneme, one at a time, was 

offered to the network for adaptation and the effect on all the phoneme classes in the network 

tested. Due to the size of the dialect region 7 test set for each male speaker, each phoneme 

was represented by only a relatively small number of utterances. This meant that phonemes 

used for adapting were also used for testing, possibly tainting the results. To minimise this 

risk, during each adaptation cycle, a single utterance was used for adapting and testing was 

with the remaining utterances in the phoneme set. For each successive adaptation cycle with 

the same phoneme, the next phoneme utterance was used for adaptation and as before the 

remaining phonemes for testing. When every phoneme utterance had been used for 

adaptation the process recommenced with the first utterance. After adaptation towards one 

phoneme the network's weights were reset to their initial base-classifier values ready for 

adaptation towards the next phoneme. This adaptation procedure continued for each of the 

15 male speakers within the test set, obtaining recognition results for each of the speakers one 

at a time. After results from each of the 15 speakers had been collected, they were averaged 
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to obtain a clear picture of the adaptation procedures effects on intra- and inter-class 

adaptation. 

Much of this process was automated with the use of the pattern and batch files used by 

SNNS. The pattern files, for supervised adaptation, contained input-output data pairs of LPC 

coefficients representing speech data and the desired outputs for each utterance, Figure 6.4. 

SNNS result file V1.4-3D 
generated at Tue Jul 22 16:17:57 1997 

No. of patterns 1 
No. of input units : 88 
No. of output units : 3 

-0.70018 0.519 0.04137 0.32916 0.72286 
-0.04114 0.11778 0.19087 -0.76723 0.63146 
-0.24893 -0.57914 0.05548 0.07306 0.09566 
0.24123 0.36562 0.55938 -0.39435 -0.47146 
0,10712 -0.81736 0.79359 0.36735 0.25017 
0.11337 0.26979 0.07874 0.02697 -0.81913 
0.29625 -0.33828 -0.51294 0,13711 0.27034 
0.83746 0.58687 -0.11028 0.03325 -0.28173 

-0.04028 -0.16132 -0.83351 0.8895 0.54657 
-0.23504 0.28495 0.21561 -0.10303 -0.19111 
0.07306 0.09566 0.25017 0.43272 -0.4094 

0.1908 

Figure 6.4 Example of a SNNS pattern file 

# 
Type: SNNSBATCH_2 
# 

-0.12166 -0.48062 -0.04617 
0.17511 0.35802 0.65982 
0.2411 -0.80469 0.75495 
0.13155 0.16055 0.06438 
0.43272 -0.4094 -0.49095 
0.7757 0.44651 0.1662 
0.05592 0.0019 -0.83085 

-0.39598 0.26287 0.27239 
-0.21854 -0.01529 -0.30547 

0.7757 0.44651 0.05548 
-0.49095 0.11337 

Output 
Pattern 

Loaded Network 

NetworkFile: Middle_Base_Classifier.net 
LearnPatternFile: er1.pat ... f-----+----­ Adapted Pattern 

File NoOfLearnParam: 1 

LearnParam: 0.5 ~~------------------~--------------­MaxLearnCycles: 1 
M#axErrorToStop: 0 

Learning Rate 
PerformActions: 
# 
NetworkFile: <OLD> 
LearnPatternFile: er_14.pat 
ResultFile: ererl.res 
# 
PerformActions: 
# 
NetworkFile: <OLD> 
LearnPatternFile: a~l 
ResultFile: eraxl.res ,_ __ 
# 
PerformActions: 
# 
NetworkFile: <OLD> 
LearnPatternFile: ah_21.pat 
<o ......... , .. t;o~, .............. 1-.1 ........... 

Figure 6.5 Example of a SNNS Batch File for One Adaptation Cycle 
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The batch files contained instructions on how to execute the adaptation procedure with 

information regarding which network and pattern files to use, learning algorithms and 

learning rates, and the generation of result files, Figure 6.5. Each phoneme was adapted for a 

total of 100 cycles, during which 15 result snapshots were taken at 1-10, 15, 20, 50 and 100 

cycles. 

Frozen Adaptation 

The remaining unadapted networks from each pair of base-classifiers were used for the 

frozen adaptation approach. The method used was very similar to that of the unfrozen 

procedure except that selected weights within each network were frozen to concentrate the 

adaptation on the common front-end 'adaptation' layer. All the networks were modelled, 

trained and tested using the Stuttgart Neural Network Simulator 'SNNS' (see Section 4.4.3). 

This software allowed complex networks to be modelled, using a variety of neurons, 

activation functions and learning algorithms. However, the software was unable to freeze 

selected weights during the training, testing and adaptation procedures. Because the freezing 

of select weights during adaptation was an integral part of the experimentation, the 'C++' 

source code had to be rewritten and the software recompiled, (see Appendix B). The source 

code was rewritten so that two buttons would appear on the information panel allowing, when 

depressed, all weights linked to a highlighted neuron in the display panel to be either frozen 

or unfrozen. Initially the goal was to be able to freeze and unfreeze individual weights. 

However, due to the resolution of the display panel, selecting one of many weights was not 

practical. It was also unnecessary since freezing all the weights adjoining a selected neuron 

was all that was needed. To achieve this two main areas of the source code had to be re­

written. The first was the creation of two buttons in the graphical-interface source code 

which, when depressed, toggled a new flag 'FREEZE' for a selected neuron between '0' and 

'1'. The second alteration concerned the learning-algorithm's source code to restrict learning 

of the 'frozen' neurons. A conditional statement within the back-pass of each learning 

algorithm, allowed the updating of a weight to be skipped if the variable 'FREEZE' for that 

adjoining neuron was equal to 'I'. After the software had been recompiled, all the weights in 

the subnets were frozen ready for the adaptation procedure. The adaptation procedure was, 

from then on, identical to the unfrozen procedure using the same pattern and batch files on 

the 'front', 'middle' and 'back' base-classifiers. 
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6.4 Results 

After both adaptation procedures, the result files generated by the configuration files were 

ready for analysing. This was accomplished using another piece of software called 'Analyze' 

which came with SNNS. As its name suggests, it analysed each result file giving the network 

error along with the percentage of unknown, correctly and incorrectly recognised utterances. 

When dealing with a speech recognition system we are primarily concerned with the 

percentage of correctly classified utterances. However, due to the limited number of 

utterances of each phoneme from each individual speaker, subtle changes within the networks 

were often lost. Despite a clearer indication being given when the results for each speaker 

were averaged it was still felt that it was best to show the network's behaviour using the 

network error. Twelve graphs were generated, one for each vowel phoneme, showing their 

effect on the network error after 100 adaptation cycles and their effect on the remaining 

classes in the same vowel phoneme group, (see Appendix C). To get a more general view on 

the effect of the two adaptation procedures on the adapted and unadapted phonemes, four 

further graphs were generated. Three graphs showed the average effects on each phoneme 

group, Figure 6.6(a) - (c), and the fourth graph showed the total average effect on all the 

vowel phonemes, Figure 6.7. Since the percentage of recognised classes was also of 

importance, a fifth graph showing the combined average recognition rates of all the adapted 

and unadapted phonemes for both adaptation procedures was generated, Figure 6.8. 

Although for individual phonemes showing the recognition rates was not detailed enough, the 

average for all the phoneme utterances gave a clearer picture of the networks' behaviour. 

Using the total averaged recognition rates the convergence rate for each adaptation procedure 

was also calculated using equation (5.1), Figure 6.9. 
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Front 

• • • / 

Adaptation Cycles 

• • Jt -+--Unfrozen and 
Unadapted 

-11--Unfroz-en and 
Adapted 

Frozen and 
Unadapted 

-X.- Frozen and 
Adapted 

Figures 6.6(a) Graph showing the average network errors for adapted and unadapted vowel phonemes from the 

front tongue-hump groups using both the frozen and unfrozen adaptation procedures. 

Middle 
12r---------------~~=----------------, 

10 

Adaptation Cycles 

-+--Unfrozen and 
Unadapted 

-11- Unfrozen and 
Adapted 

Frozen and 
Unadapted 

--+\-Frozen and 
Adapted 

Figures 6.6(b) Graph showing the average network errors for adapted and unadapted vowel phonemes from the 
middle tongue-hump groups using both the frozen and unfrozen adaptation procedures. 

Back 
16] 

-+-Unfrozen and 

~ 

Unadapted 
g • • -11- Unfrozen and w 
~ Adapted 
0 

! 6 ~13--~ Frozen and 
" Unadapted z 

~ 4 --¥:-Frozen and 
2 Adapted 

0 
~ "' 

., .. "' "' .... "' "' 0 "' 0 Sl 8 § ~ ~ "' ~ 

Adaptation Cycles ~ 

Figure 6.6(c) Graph showing the average network errors for adapted and unadapted vowel phonemes from the 
back tongue-hump group using both the frozen and unfrozen adaptation procedures. 
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Average Network Error for all adapted and unadapted vowel 

14 I 
phonemes using both adaptation procedures 

~ 12 .. 

~ 
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~· 
Unadapted 
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Adaptation Cycles 

Figure 6.7 Graph showing the average network errors for all the adapted and unadapted vowel phonemes using 
both the frozen and unfrozen adaptation procedures. 

Average Recognition Rates for adapted and unadapted vowel 
phonemes using both adaptation procedures 

90 

90 • 

~:~ -+-Unfrozen and 
Unadapted 

---Unfrozen and 
Adapted a: 50 ........... . .. . . ... . . 
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Figure 6.8 Graph showing the average recognition rates for all the adapted and unadapted vowel phonemes 
using both the frozen and unfrozen adaptation procedures. 

~ 

Average Convergence Rates for Adapted and Unadapted Vowel 
Phonemes using both Adaptation Procedures 

0.8 -.------,,---.::_ __ __:_ ____ ----, ,--,.,.-,---., 
-+-Unfrozen and 

Unadapted 0.6 

0.4 ---- Unfrozen and 
Adapted 

Frozen and 
Unadapted 

--X- Frozen and 
Adapted 

Figure 6.9 Graph showing the average convergence rate for all the adapted and unadapted vowel phonemes 
using both the frozen and unfrozen adaptation procedures. 

79 



Figures 6.6(a) - (c) show a close comparison between the two adaptation procedures for the 

adapted phonemes. The recognition results from Figure 6.8 show that the frozen adaptation 

procedures offers a slight 0.65% average drop across the 100 adaptation cycles. However for 

the effects on the unadapted phonemes using the frozen procedure, Figures 6.6(a)- (c) show a 

definite improvement over the unfrozen procedure. Despite the recognition rates for the two 

unadapted results from Figure 6.8 falling, the frozen procedure offers a 5.5% average 

increase in performance over the 100 adaptation cycles than the unfrozen procedure. Figure 

6.9 shows a rapid change in the convergence rate for adapted vowel phonemes for both 

adaptation procedures and a lower more controlled convergence rate for the recognition rates 

of unadapted vowel phonemes. Convergence rates for the adapted and unadapted recognition 

results were very similar for both adaptation procedures although the frozen procedures had 

very slightly higher convergence rates than the unfrozen procedures. 

6.5 Conclusion 

All the graphs displayed similar trends for each of the vowel phoneme groups during both 

adaptation procedures. For the adapted phonemes in each vowel group, the network errors 

almost mirrored each other identically for both the frozen and unfrozen adaptation 

procedures. This was expected since, for adapted classes, the only difference between the 

two procedures was the number of neurons the networks could utilise during the adaptation 

process. Therefore concentrating the adaptation within just the adaptation layer had the same 

effect as spreading the adaptation over the adaptation layer and relevant subnet. 

For the unadapted phonemes, the frozen and unfrozen adaptation procedures, during the first 

9-10 adaptation cycles, had closely matched network errors. However after the first 9-10 

adaptation cycles, each vowel group began to show a difference between the two adaptation 

procedures. Both adaptation procedures showed an increase in network error and a slight 

decrease in recognition rates displaying a 'negative' adaptation. However the unfrozen 

procedure for both the network error and recognition rates displayed a larger 'negative' 

adaptation. This 'negative' adaptation persisted until, between 50-100 adaptation cycles, the 

total average recognition rate (figures 6.8) was worse than if no adaptation had occurred. The 

frozen adaptation procedure offered a more flat response after 9-10 adaptation cycles but did 

worsen slightly. 
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Although the frozen procedure yielded better results than the unfrozen procedure the failure 

of the unadapted vowel phonemes (during the frozen adaptation procedure) to positively 

adapt indicates that the adaptation layer did not contain purely speaker information. 

However, because the frozen adaptation procedure did behave noticeably better than the 

unfrozen adaptation procedure, this suggests that either the adaptation layer utilises 'some' 

speaker information, the frozen subnet does contain primarily class specific information or 

both. Had the adapting test set been larger and a mixture of phoneme classes been used 

during the same test, the frozen procedure could have given far more promising results. 

Despite these problems the results showed that the frozen procedure compared well against 

the more conventional adaptation method. In addition, more detailed results from chapter 7 

using various speakers should substantiate further the already promising results. 

6.6Summary 

To fulfill the second and third research objectives a front-end adaptation layer was 

introduced. To highlight its effectiveness two adaptation procedures, namely frozen and 

unfrozen, were used. The results indicated the presence of some common speaker 

information being utilised within the adaptation layer. However, these were only intra­

speaker results and so inter-speaker experimentation is now required to give a clearer 

indication of the distribution of information within the modified OCON ANN. Chapter 7 

describes the full intra- and inter-speaker testing using the frozen adaptation procedure. 
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CHAPTER7 

New Architecture 

7.1 Introduction 

With the proven effectiveness of the frozen training procedure on adapted phonemes for a 

single speaker, multi-speaker tests were arranged to explore the newly modified ANN's intra­

and inter-speaker adaptation effects. Intra-speaker effects relate to the behaviour of 

unadapted phonemes after adaptation towards phonemes from the same speaker. For 

experimentation, intra-speaker adaptation was restricted to the effects on vowel phonemes 

from the same tongue-hump group due to the categorisation of vowels within each of the base 

classifiers. Intra-speaker adaptation is high beneficial since it allows adaptation towards a 

single phoneme class to aid in the recognition of the remaining phoneme classes uttered by 

the same speaker. Inter-speaker effects are also highly beneficial, improving recognition 

results between speakers with acoustically similar utterances. Such a response is ideal for a 
• 

system used in a homogeneous geographical area, taking advantage of dialectal similarities 

between speakers 

For experimentation, speakers from the TIMIT test set were specifically selected to highlight 

inter-speaker variations. This required an experimental test set containing a variety of 

speakers who were both acoustically similar and dissimilar from one another. 

7.2 Test Set Selection 

Due to the labour intensive nature of experimentation, a minimal number of speakers were 

selected for the multi-speaker tests. Three were sufficient to indicate any intra- and inter­

adaptation effects, by selecting two acoustically similar speakers and a third acoustically 

dissimilar. As with all the experimentation, the three speakers were selected from the 15 
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male speakers contained within the same dialect region 7 TIMIT test set (See section 3.2). 

Although the idea behind the inter-speaker test data was to incorporate dialect differences as 

well as similarities, it was felt that if two speakers were too dissimilar with different dialects, 

then subtle adaptation effects would be difficult to monitor. Consequently all the speakers, 

although some with large acoustic differences, were from the same dialect region to indicate 

clearly any inter-speaker variations. Three analysis procedures were employed to find the 

three speakers needed for the test set. The first was a listening test. This involved 10 

listeners to audible select two speakers which they found to be the most similar and a third 

which was the most dissimilar from the first two they selected. This was achieved by 

playing, via headphones, a standard 'SA' sentence from each of the 15 male test-set speakers 

to the listener. A TIMIT 'SA' sentence was used specifically since it was common to all 

speakers and was designed to expose dialectal variants. Using the speaker coding format (see 

Section 3.3) eight of the ten listeners selected speakers MKJLO and MTWHO as the most 

similar. Of those eight listeners five selected speaker MDVCO as the furthest away the two 

selected speaker MPABO. The second analysis procedure involved the creation of a small 

two-layered ANN, trained with phoneme data from the 'SAl' sentences. Since the training 

data was in the 'training set' data format, (see Sec~ion 3.3), the ANN consisted of 88 input 

nodes and an output node was created for each of the 15 male test-set speakers. Using 

Mirchandani and Cao's equation, equation (6.1), 4 nodes were selected for the hidden layer to 

offer at least 151inearly separable decision boundaries, one for each output class. The 'SA2' 

sentences from each speaker were used for testing, noting the output scores for each speaker 

input. Ignoring the output scores relating to the present speaker, the highest scores 

represented the speakers with the most similar utterance. The results showed that speakers 

MKJLO and MTWHO were the most similar and that speaker MP ABO was the furthest away, 

followed closely by speaker MDVCO (Appendix D). The first two analysis procedures 

showed a common selection for the two closest speakers, MKJLO and MTWHO. However, 

when selecting the most distant speaker from the two closest speakers there were slightly 

conflicting results. This was expected since for an audible test it is difficult to select the two 

most distant utterances when there are so many parameters involved such as the speakers 

pitch, volume, pronunciation and intonation. The third and final analysis procedure was a 

verification of the two previous analysis procedures using spectrograms. Selecting speakers 

MKJLO, MTWHO and MPABO, the formant information from each of their two 'SA' 

utterances was studied. Analysis was concentrated on vowel phonemes which give clear 

formant definition. Speakers MKJLO and MTWHO revealed similar vowel phonemes up to 
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the second and third formant and obvious variations when both compared with the same 

vowels from speaker MP ABO. As a result the three male speakers MKJLO, MTWHO and 

MP ABO from dialect region 7 were selected for multi-speaker experimentation, offering the 

necessary inter-speaker similarities and differences. 

7.3 Intra-Speaker Adaptation 

The three base classifiers, 'front', 'middle' and 'back' (see Section 6.3.2), were adapted 

towards each of the relevant phoneme utterances, one phoneme class from each speaker at a 

time, using the frozen adaptation procedure. After adaptation towards a single phoneme 

class, with the back-propagation learning rate set to 0.5, the effects on recognition for all the 

phonemes from the same tongue-hump group and the same speaker were recorded. Each 

phoneme was adapted for a total of I 00 adaptation cycles, during which 15 result snapshots 

were taken at 1-10, 15, 20, 50 and 100 cycles. After adaptation towards each phoneme class 

the ANN weight and bias values were reset to the original base-classifier settings, ready for 

adaptation towards the next phoneme class. 

7.4 Intra-Speaker Results 

Due to the limited number of phoneme classes uttered by each speaker, the network error was 

used as an indication of the networks adaptation. This ensured that any network trend from 

one adaptation cycle to the next could be clearly seen. Initially results were represented using 

network error versus adaptation cycle plots. The network errors are not an absolute 

indication of recognition rates and the range of network errors for a phoneme class, across all 

the adaptation cycles, were small relative to the variety of network error values from one 

class to the next. Consequently plots often showed an array of what appeared to be 

horizontal lines for each phoneme class. To rectify this problem the network errors, each 

phoneme class, were normalised with respect to their maximum and minimum values using : 

(7.1) 
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,...... ______________________ _ 
where Xmin is the minimum network error value, Xmax is the maximum network error value, Xn 

is the network error after the n1
h adaptation cycle and Yn is the normalised output of the nth 

network error value. Although this showed either an increasing of decreasing trend for each 

network error, this did not include any indication of the trends magnitude. Therefore a more 

refined network error normalisation was used using : 

(7.2) 

where XI is the network error after the first adaptation cycle. 

This normalised the network errors for each phoneme class with respect to their first value. 

This ensured that all normalised network errors began at zero and both the trends and their 

magnitudes were represented. Also by multiplying the normalised network errors by I 00, it 

allowed the magnitudes of the network errors to be represented as percentage changes. 

However, this normalisation assumed that a set percentage drop in the network error was of 

equal significance, regardless of initial network error values. This is not always the case 

since network learning is often non-linear. Despite this, the normalisation offered a good 

indication of the networks intra-speaker behaviour during adaptation. 

Using the normalised network error data, graphs for each of the twelve adapted vowel 

phonemes were created, Figures 7.1(a)- 7.1(1). Each graph represented the average network 

error of the three test speakers, MTWHO, MKJLO and MP ABO. These graphs were used to 

highlight any intra-speaker trends and their relationship with respect to the tongue-hump 

constriction (see Figure 3.1). 
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Figure 7.](a). (b) and (cl Graphs showing the averaged adaptation results for all speakers MTWHO. MKJLO 
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(d) 

Averaged Adaptation of Phoneme /EI-V for all Three Speakers 
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MP ABO applied to vowel phonemes lAX!. IAHI and IUHI. 

89 



(j) 

Averaged Adaptation of Phoneme ICJN I for all Three Speakers 
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All twelve phonemes from the three tongue-hump groups exhibited some adaptation trends 

due to tongue-hump constriction. The closer a phoneme to the adapted phoneme, with 

respect to tongue-hump position, the greater the rate of adaptation. However, there were 

some fluctuations due to experimental errors and some possible misleading results due to the 

way in which the magnitude of the normalised network errors was calculated. The 

normalised network errors for the adapted phoneme fell dramatically after adaptation, as 

expected, although in some cases the network errors for the remaining unadapted phonemes 

increased. As explained in Section 6.4, the rise in network error on unadapted phonemes 

could be due to the common front-end adaptation layer of the modified ANN not containing 

pure speaker information. Although we would like to see all the network errors fall after 

adaptation towards a single class, results show from Section 6.3 that these increases in 

network error are still relatively smaller when compared with results from a conventional 

MLP. 

7.5 Inter-Speaker Adaptation 

Using the same experimentation procedure to obtain the intra-speaker results, the three base 

classifiers, 'front', 'middle' and 'back', were again adapted towards each of the relevant 

phoneme utterances, one phoneme class from each speaker at a time. After adaptation 

towards a single phoneme class, the effects on the same phoneme classes from the remaining 

two speakers was recorded. As before, each phoneme was adapted for a total of 100 

adaptation cycles, during which 15 result snapshots were taken at 1-10, 15, 20, 50 and 100 

cycles, and then the ANN weight and bias values were reset. 

7.6 Inter-Speaker Results 

The same normalisation technique, equation (7.2), was used to obtain the network error 

results with respect to their percentage change. The average results for adaptation towards 

the three speakers for the three tongue-hump groups was displayed using 9 graphs, Figure 

7 .2(a)-(i). A further 3 graphs showing the total average over all the vowel phonemes for each 

speaker offered a more general view of the networks behaviour, Figures 7.3(a)- (c). 
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Average Network Error for Middle Vowel Phonemes after Adaptation 
towards Speaker MKJLO 
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Average Network Error for Back Vowel Phonemes after Adaptation 
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10 

0 0 
~ 
0>~ -to iii g 
.r=w -20 u~ 
~ 0 

-30 ~! c ~ 

~z -40 

--MP ABO 

--MKJLO 

MlWHO 
~ -so 0.. 

-60 

Adaptation Cycles 

(g) 

Average Network Error for Back Vowel Phonemes after Adaptation 
towards Speaker MP ABO 

'5 ~10 
" 0>~ :a e -20 .r:; ~ uw 
~ ~ -30 u -40 

~ -50 

-60+--+--+--+--+--+--+--+--+--+--+--+--+--4 

Adaptation Cycles 

(h) 

--MP ABO 

--MKJLO 

MlWHO 

Average Network Error for Back Vowel Phonemes after Adaptation 
towards Speaker MTWHO 

or 
0 -to 

~ 
~ -20 
0>~ 

:a e -30 .r:; ~ 
u w -40 --MP ABO ~~ 

~i: --MKJLO 
~z MlWHO 
~ -70 
~ 
0.. -80 

-90 ' - "' "' ... "' "' 
,__ ., 0> ~ "' 0 0 8 - "' "' -

Adaptation Cycles 
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The inter-speaker results show conclusively the similarity between the speakers MKJLO and 

MTWHO and the differences they both have from the utterances of speaker MP ABO. Except 

for two accounts during adaptation towards front vowel phonemes, inter-speaker adaptation 

results in a fall in network error for all speakers. Even when adapting towards the distant 

speaker MPABO, the similar speakers MKJLO and MTWHO adapt positively. This 

demonstrates the effectiveness of the front-end adaptation layer, storing common speaker 

information in the front-end adaptation layer. The more common the speaker information 

between speakers the better the inter-speaker adaptation, improving total speaker recognition. 

7.7 Conclusion 

The results indicate an improved performance for the newly modified ANN over a 

conventional MLP with respect to both intra- and inter-speaker adaptation. For intra-speaker 

adaptation, the network error for the adapted phoneme fell as expected. However, some of 

the network errors for the remaining unadapted phonemes increased. Although as explained 

earlier, this still offers better results than a conventional MLP, this rise could also be an 

indication that there is limited acoustic information between vowel phonemes from the same 

tongue-hump position. Although vowel phoneme from the same tongue-hump position 

contain comparable formant F1 and Fz information, Figure 3.2, this may not be enough to 

incorporate a reasonable proportion of speaker information. The inter-speaker results showed 

a network error fall for the adapted speaker phonemes, as well as for phonemes from the 

acoustically similar speaker. During the inter-speaker adaptation procedure, it was seen that 

the network error for the acoustically different speaker fell as well. This was something that 

was initially unexpected since the adaptation layer already containing dialect region 7 speaker 

data from the training set. Therefore adaptation towards a speaker's characteristics contained 

within a subset of that dialect acoustic space, should alienate a speaker's characteristics 

contained with a subset at the other end of the dialect acoustic space. However, when 

training an ANN, training doesn't continue until the network error for the entire training set is 

zero. This is because over-training of a network can lead to impaired recognition of new 

classes. Consequently this adaptation towards one speaker, could be adapting the adaptation 

layer towards new speaker information that is contained within both the similar and 

dissimilar speakers with respect to the existing information in the adaptation layer. 
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CHAPTERS 

Conclusion and Future Work 

8.1 Experimental Conclusions 

In this thesis a modified one-class-one-network ANN architecture was created to fulfill the 

three main research objectives: 

(i) Develop an adaptation procedure that increases the convergence and reduces 

the processing time for each adaptation cycle. 

(ii) Concentrate adaptation only on intra- and inter-speaker variables, i.e. speaker 

characteristics. 

(iii) Allow adaptation towards a single speech class to improve recognition of 

remaining speech classes within the same vocabulary. 

The first of the three objectives was fulfilled with the implementation of the One-Class-One­

Network (OCON), details of which can be seen in Chapter 5. An OCON inherently contains 

less weighted connections than a conventional MLP resulting in a reduction in the processing 

time for each training and adaptation cycle. There is also an increase in the convergence rate 

since each OCON is dedicated to only a single class. As expected, Chapter 5 showed an 

increase in convergence rate and an improvement of adapted recognition rates against the 

MLP of over 12%. However, the OCON failed to fulfil! the second and third research 

objectives. This was due to the adaptation procedure allowing global weight changes within 

each OCON and to the isolated nature of each OCON, preventing the use of inter-class 

information. This failure to utilise inter-class information was echoed in the results 

of Chapter 5 which saw a reduction of over 6% for unadapted phonemes, compared to the 

MLP results. 
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Although these results highlighted some benefits of OCON networks for phoneme 

recognition, some modification to the architecture was necessary to allow the isolation and 

utilisation of common class information, i.e. speaker characteristics. A modification to 

achieve this goal was introduced in Chapter 6. It consisted of a common front-end layer 

joining all the OCONs from the same tongue-hump group. Vowel phonemes containing the 

same tongue-hump position were grouped since they exhibited similar Ft-F2 plane positions 

within the vowel triangle, indicating some acoustic similarities between them. The 

hypothesis for the modification was that such a layer should, after training, contain 

information common to all classes with class specific information stored in each of the 

relevant OCONs. By concentrating the adaptation only on this front-end layer such a network 

would in theory allow only common information, i.e. speaker characteristics, to be adapted. 

This would result in a more efficient adaptation procedure and should aid inter-class 

adaptation. To test this hypothesis two adaptation procedures were used, one allowing global 

weight changes throughout each OCON 'the unfrozen procedure' and the other only allowing 

weights within the front-end 'adaptation' layer to change 'the frozen procedure.' Results 

from Chapter 6 on the effects of adaptation on adapted phonemes showed a minimal 

difference between the two adaptation procedures. This was expected since the only 

differences between the two adaptation procedures was the number of neurons within each 

network that were updated. However, after adapting towards a single class, the two 

adaptation procedures showed clear differences in the recognition rates for the remaining 

classes within the same network. Despite both recognition rates for the unadapted phonemes 

falling during both adaptation procedures, the frozen adaptation procedures displayed an 

average 5.5% improvement over the unfrozen adaptation procedure. This improvement in the 

frozen adaptation procedure indicates that some common information is in fact being utilised 

by all the classes within the same network to help inter-class adaptation. Whether or not the 

common information contained speaker characteristics was not entirely clear at this stage, so 

inter-speaker experimentation was used to offer a better indication (Chapter 7). 

Chapter 7 applied the frozen adaptation procedure to three speakers selected from the dialect 

region 7 TIMIT test set; two of the speakers were acoustically similar and the third was 

considered to be the most acoustically dissimilar. Adaptation towards a single class from one 

of the similar speakers improved the recognition rates of the same class for both the similar 
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and dissimilar speakers. However, the results for the similar speakers were considerable 

better than for the dissimilar speaker, strengthening the hypothesis that the front-end 

adaptation layer contained speaker characteristics. Also, adaptation towards a class from the 

dissimilar speaker equally improved the recognition rates of the same class for both the 

similar speakers. This additionally indicated that, although within the same dialect region 

they were considered to be different, the modified OCON network was utilising some 

common dialect information from the two similar and the dissimilar speakers. The intra- and 

inter-speaker results also showed that each network begins to converge immediately after the 

first adaptation cycle and that convergence is significant within 3-5 adaptation cycles. This is 

ideal, since a spoken work can quite often contain more than 3-5 vowel phonemes ensuring 

that speaker adaptation can begin after only a single utterance. This single word adaptation 

towards a new speaker would further improve recognition with the implementation of 

networks using fricative and plosive phonemes. 

A data flow diagram of the completed system used during experimentation (see Figure 8.1) 

shows the pre-processing stage and the modified ANN classifier with its back-propagation 

feedback loop used during adaptation. The back-propagated error is fed back through the 

relevant fixed-weight OCON and used to adapt the weights within the adaptation layer. 

Raw· 
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1-.- r- Feature 
Emphasis ~indowing Extraction 
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Figure 8. I Data How Diagram of Modified ANN Recognition System 

8.2 Concluding Remarks 

·Output 
e · Scor 

The modified OCON ANN architecture fulfills all three of the research objectives offering 

improved and more efficient dynamic intra- and inter-speaker adaptation for vowel 

phonemes. However, although the behaviour of the network is decisive, the causes are not. 
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The ANN does indeed improve intra- and inter-speaker adaptation, but is this because the 

adaptation layer contains speaker characteristics? The nature of neural networks makes it 

very difficult to look at the output of a single layer or node and note what information is being 

held by its connecting weights. Consequently it is only possible to predict what is going on 

within an ANN by offering specific input data and noting its effect. This highlights the 

importance of good training and testing data and its application to the problem at hand. The 

speech data used was of high quality and obtained from a well recognised speech database 

[1]. However, the quantity of data was limited and due to the labour intensive nature of 

experimentation, only a few tests were applied. Despite this, the results obtained show 

promise for the modified OCON ANN architecture and emphasise the need for further 

experimentation with multiple speakers from multiple dialect regions. 

8.3 Future Work 

The results obtained from the research pinpoint two main areas of question. Firstly, is the 

adaptation layer within the modified ANN holding any speaker characteristics and secondly, 

what common speaker characteristics are actually contained within the vowel phonemes? 

Investigating the first question can be achieved by further experimentation with multiple 

speakers from multiple dialect regions. This would give a clearer indication of the 

information held within the adaptation layer and the limitations of its use for speaker from 

differing dialect regions. With regards to the second question, the issue of vowel grouping 

with respect to their tongue-hump position also needs to be addressed. Vowel phonemes 

from the same tongue-hump group do have similar F1-F2 plane positions but are these 

similarities used by the modified ANN? Intra-speaker results showed no obvious indication 

that tongue position influenced the rate of adaptation between phoneme classes, although 

using all the vowel phonemes in a single ANN may have degraded the results. However, it 

would be of interest to see the behaviour of the modified ANN using all the vowel phonemes 

within the same network or to train and test other phoneme classes such as fricatives and 

plosives. Finally it would be of interest to apply the modified ANN to other applications, 

such as optical character recognition, to monitor the segregation of any data into common 

class and class unique information. 
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APPENDIX A 

Chapter 5 Results 

Appendix A contains 24 graphs showing comparative recognition rate results between MLP 

and OCON networks for each of the vowel phonemes and their average effect on the 

remaining unadapted vowel phonemes from the same tongue-hump group. Appendix A 

contains a further 6 graphs showing the convergence rates for the adapted and unadapted 

vowel phonemes from the three tongue-hump groups. 
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APPENDIXB 

Alterations to SNNS Software 

The software alterations were made in two main areas, the source code's 'kernel' and the 

graphical interface 'XGUI.' 

XGUI Alterations 

The first procedure was to create two buttons on the 'Info Panel' that when depressed toggled 

a new flag 'frozen' between 0 and 1. This required alterations being made to four files, 

'Ui_info.c' to create the button, 'Ui_infop.c' to create a procedure to change the 'frozen' flag 

and two header files, 'Kr_typ.h' and 'Ui_infop.h,' to initialise the new flag and procedures. 

The altered code of 'Ui_info.c,' Figure B.!, created two buttons called 'WEIGHT FREEZE' 

and 'WEIGHT UNFREEZE' which were linked to the two procedures 'freeze_links' and 

'unfreeze _links' respectively. 

[
/************** BUTTONS & NAME TARGET **********/ 

button = 
ui xCreateButtonitern ("WEIGHT FREEZE", 
ui=infoPanel,button,tarFuncLabel); 

XtAddCallback(button, XtNcallback, (XtCallbackProc) 
freeze_links, (caddr_t) UI_TARGET); 

button = 
ui xCreateButtonitern ("WEIGHT UNFREEZE", 
ui=infoPanel,button,tarFuncLabel); 

XtAddCallback(button, XtNcallback, (XtCallbackProc) 
unfreeze_links, (caddr_t) UI_TARGET); 

Figure B. I Changes made to 'Vi info.c' code 
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The procedures 'freeze _links' and 'unfreeze_links,' called by the two new buttons, were 

initialised using changes made to 'Ui_infop.h,' figure B.2. 

extern void freeze_links (Widget, int, caddr_t); 

extern void unfreeze links (Widget, int, caddr_t); 

Figure B.2 Changes made to 'Ui infop.h' code 

Kernel Alterations 

The first kernel alteration initialised the flag 'frozen' in the header file 'Kr _typ.h,' (Figure 

B.3). Then the two procedures 'freeze_links' and 'unfreeze_links' were created in the file 

'Ui_infop.c,' (Figure B.4(a) and B.4(b)). In these two procedures the flag 'frozen' for the 

desired network node 'unit.no' was assigned either a value of 0 to unfreeze or I to freeze all 

links to that node. 

/* Link structure */ 

struct Link 
{ 
struct Unit 
Flint Type 
Flint Type 

*to; /* 
weight; 
value_a, 
value b, 
value=c; 

struct Link *next; 
FlintType frozen; 
) ; 

Figure B.3 Changes made to file 'Kr tvo.h' 

points to the source unit */ 
/* link weight */ 

/* general elements */ 
/* learning functions */ 
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/****************************************************** 
FUNCTION freeze links 

PURPOSE 
RETURNS 
NOTES 

To freeze weights connected to selected node 

UPDATES 25/11/96 
******************************************************/ 

void freeze links {Widget w, int structure, caddr t call_data) 
{ 

char buf[MAX NAME LENGTH]; 
register strUct Link *link ptr; 
register struct Unit *unit-ptr; 
register struct UnitAttribUteType unit; 

if {NOT ui_info_anyUnitSelected(UI_SOURCE}} 
{ 

ui _printMessage ("Select a Unit!"} ; 
return; 

if (NOT ui_info_anyUnitSelected(UI_TARGET}) 
{ 

ui_printMessage("Select a Unit!"); 
return; 

if (structure == UI SOURCE} 
unit ui soUrceUnit; 

else 
unit ui_targetUnit; 

ui info_storeAttributes(unit.no, unit); 

sprintf(buf,"Unit %d is now frozen.",unit.no); 
ui_printMessage(buf); 

unit_ptr ~ kr_getUnitPtr(unit.no); 

unit_ptr->frozen = 1; 

FOR ALL LINKS (unit ptr, link ptr) 
- link_ptr->froZen 1; -

Figure B.4(a) Freeze links procedure created in the file 'Ui infop.c.' 
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/************************************************************* 
FUNCTION unfreeze links 

PURPOSE 
RETURNS 
NOTES 

UPDATES 

To unfreeze weights connected to selected nodes 

25/11/96 
*************************************************************/ 

void unfreeze links (Widget w, int structure, caddr_t call_data) 
{ 

char buf[MAX NAME LENGTH]; 
register strUct Link *link ptr; 
register struct Unit *unit:Ptr; 
register struct UnitAttributeType unit; 

if {NOT ui_info_anyUnitSelected{UI_SOURCE)) 
{ 

ui_printMessage("Select a Unit!"); 
return; 

if {NOT ui_info_anyUnitSelected{UI_TARGET)) 
{ 

ui_printMessage("Select a Unit!"); 
return; 

if (structure == UI SOURCE) 
unit ui solirceUnit; 

else 
unit ui_targetUnit; 

ui_info_storeAttributes(unit.no, unit); 

sprintf(buf,"Unit %d is now unfrozen.",unit.no); 
ui_printMessage(buf); 

unit_ptr = kr_getUnitPtr(unit.no); 

unit_ptr->frozen = 0; 

FOR ALL_LINKS {unit_ptr, link_ptr) 
link_ptr->frozen = 0; 

Figure B.4(b) Unfreeze links procedure created in the file 'Ui infop.c.' 
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The final alterations to the kernel source code were to the file 'learn_f.c' which contained all 

the learning algorithms (see Figure B.5). Selecting the learning algorithms that would be 

used during experimentation, primarily back-propagation, conditional statements were added 

so that weight changes would not take place when the flag 'freeze' for a selected node were 

equal to I. 

if (flags & UFLAG_IN_USE) == UFLAG_IN_USE) 
I 

if(!unit ptr->frozen) 
unit_ptr->bias += unit_ptr->value_a * eta; 

if (flags & UFLAG SITES) 

else 
I 

I -
FOR ALL SITES AND_LINKS( unit_ptr, site_ptr, 
linkytr 1 -

if(!link ptr->frozen) 
link_ptr->weight += link_ptr->value_a * eta; 

if (flags & UFLAG_DLINKS) 
I 

FOR_ALL_LINKS( unit_ptr, link_ptr ) 

if(!link ptr->frozen) 
link_ptr=>weight += link_ptr->value a * eta; 

Figure 8.5 Changes to the file 'Learn f.c' 
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APPENDIXC 

Chapter 6 Results 

Appendix C contains 12 graphs showing the effects of the two adaptation procedures, frozen 

and unfrozen, on each of the vowel phonemes and their average effect on the remaining 

unadapted vowel phonemes from the same tongue-hump group. 
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Selective Adaptation of Speaker Characteristics within a Subcluster Neural Network 

S.J.Haskey and S.Datta 

Electronic and Electrical Engineering Department 
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ABSTRACT 

This paper aims to exploit inter/intra-speaker 
phoneme sub-class variations as criteria for 
adaptation in a phoneme recognition system based on 
a novel neural network architecture. 
Using a subcluster neural network design based on 
the One-Class-in-One-Network (OCON) feed forward 
subnets, similar to those proposed by Kung [2]and 
Jou[l], joined by a common front-end layer, the idea 
is to adapt only the neurons within the common front­
end layer of the network. Consequently resulting in 
an adaptation which can be concentrated primarily on 
the speakers vocal characteristics. Since the 
adaptation occurs in an area common to all classes, 
convergence on a single class will improve the 
recognition of the remaining classes in the network. 
Results show that adaptation towards a phoneme, in 
the vowel sub-class, for speakers MDABO and 
MWBTO improve the recognition of remaining vowel 
sub-class phonemes from the same speaker. 

INTRODUCTION 

Inter/intra speaker variations can cause significant 
problems with speaker independent recognition 
systems. Variations such as vocal tract length and 
dialect differences from speaker to speaker or the 
intonation, rhythm or stress variations from the same 
speaker. To over come this problem it is necessary to 
have a recognition system, that has been trained with 
utterances from a representative subset of speakers, to 
dynamically adapt after an initial correct utterance, 
latching onto the new speakers vocal characteristics. 
Adaptation of conventional connectionist 
architectures generally involves network-wide weight 
changes. This is undesirable for the purposes of 
phoneme recognition due in part to computational 
inefficiency, but mainly due to the fact that the 
network will be susceptible to cross-class 
interference. 
The main objectives of the new neural network 
architecture were to avoid cross-class interference 
during adaptation towards a phoneme class and to 
separate the phoneme information from the speaker 
information within the network. Separation of speaker 
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and phoneme information would allow adaptation to 
be concentrated purely on speaker variations, 
reducing the need for network-wide adaptation. An 
assumption however is made that for similar dialects, 
inter speaker phoneme sub-class variations are 
roughly constant, i.e. vowel sound differences from 
speaker to speaker are consistent for all vowel 
sounds. 

NETWORK ARCHITECTURE 

Unlike conventional subnet structures (OC0Ns)[1][2] 
, fig I, this new neural network architecture consists 
of OCONs, one for each phoneme class, joined by a 
common front-end adaptation layer, fig 2. Each 
OCON structure consists of a fully connected two 
layered network with a single output neuron. The 
adaptation layer fully connects to each of the OCON 
structures and in turn fully connects to the input layer. 
All the neurons within the network use the sigmoidal 
activation function and the weights of each 
connection are trained using the back-propagation 
algorithm [5]. 
After the network is initially trained with speech data 
it is assumed that all class specific information unique 
to that phoneme is stored in the relevant OCON 
subnet and that information common to all the 
classes, such as speaker information, is stored within 
the weights of the common front-end adaptation layer. 
When the network is introduced with speech data 
from a new speaker the score at the output is 
computed in much the same way as a conventional 
network. All the OCON outputs connect to a 
MAXNET[l] which finds the highest score, as long 
as it exceeds a minimum threshold level, which is 
assumed to be the correct utterance. Using back­
propagation, the error is then fed back through the 
OCON structure to the front-end adaptation layer 
where the weights are adapted to minimise the error. 
As each new speaker uses the system the updated 
adaptation weights are reset to their initial values 
ready for adaptation towards the next speaker. 
By concentrating the adaptation only on this front 
layer it is expected that only information unique to the 
speaker will change, resulting in a more efficiently 
controlled application-driven (speech recognition) 
connectionist regime. (Since the adaptation occurs in 



By concentrating the adaptation only on this front 
layer it is expected that only information unique to 
the speaker will change, resulting in a more 
efficiently controlled application-driven (speech 
recognition) connectionist regime. (Since the 
adaptation occurs in an area common to all classes, it 
is envisaged that convergence on a single class will 
improve the recognition of the remaining classes in 
the network, for the same speaker, by eliminating the 
need to update each class for full adaptation to take 
place.) 

ADAPTATION PROCEDURE 

Forward Pass 

When confronted with an utterance from a new 
speaker the output score is computed in much the 
same way as any conventional neural network. 

Define: 
I : Network Input. 
A( Output of the j-th adaptation neuron. 

w1;: the weights from the i-th input neuron to the j-th 
adaptation neuron. 

-;,;Jk : the weights from the j-th adaptation neuron to 
the k-th hidden neuron in the subnet m. 

wl"'' : the weights from the k-th hidden neuron to the 
output neuron in the subnet m. 
01: the bias of the j-th adaptation neuron. 

B,Jml :the bias of the k-th hidden neuron in the subnet 
m. 
elm! :the bias of the output neuron in the subnet m. 

lfi"'l : Output of the k-th hidden neuron in the sub net 
m. 
olml : Output from the subnet m. 
1J :Learning rate of the adaptation layer. 

Each neuron uses the sigmoidal activation function. 
Therefore the output of the j-th adaptation neuron is: 

Using the values of A1 the output of the k-th hidden 

neuron of the m-th subnet is calculated according to : 

H[m)_ i"-lm] A J k - ~(/)jk . j 
j 
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= 11[ 1 + exp-( ~mj;>l. A}+ B,)miJ] 

Finally, using the output of the hidden layer, H,lmJ, 

from each corresponding subnet the output of the m­
th subnet is : 

Jml(I) = 1( ~wl"'l. Hl"'l) 

= II[I+exp-(~wl"'1 ·Hl"'1 +B1"'1)] 

The outputs from each OCON subnet are fed through 
a MAXNET to find the winner, assuming the highest 
score achieves a minimum threshold score. 

Backward Pass 

Now we begin the back pass of the back-propagation 
algorithm to adapt the weights and bias values of the 
adaptation layer. Firstly we need the error E of each 
of the m subnets to feed-back. The error is : 

E1"'1(I) =(T-01"'1(!)) 
where T is the target values. 

If the input pattern I belongs to the m-th subnet then 
the target T is I. Otherwise T is 0. 

For the sigmoidal activation function, the error signal 

,Jiml, for the output of the hidden layer is given by: 

Feed-back this error through now to the hidden 
neuron: 

~1 "'1 = Hl"''( 1- Hl"'') · :Li'"''wr"'1 

k 

Feed-back this error through to the adaptation layer, 
adding the errors from all the OCON subnets. 

Now we have fed back the errors through the whole 
network we can modify the adaptation weights and 
bias values using the following: 



As the adaptation weights and bias values are 
modified, the old weight and bias values are stored so 
that the adaptation layer can be reset for each new 
user. 

RESULTS 

The main objective was to monitor the improved 
recognition rates of every phoneme class within the 
neural network after adaptation towards a single 
phoneme class from the same speaker. 
Since we made the assumption concerning inter 
speaker phoneme subwclass variations remaining 
roughly constant, all the training data was from one 
phoneme sub-class, the vowel sub-class, of the 
DARPA TIMIT database. From this sub-class, 8 
phonemes /ix, iy, eh, ah, ax, ih, ey, aal from 24 male 
speakers from dialect region one were used to train 
the network. The back-propagation algorithm was 
used for training, with all the weights within the 
network initially randomised, along with the order of 
the speech training data, to maximise convergence 
The network consisted of 8 OCON subnet structures, 
one for each of the phoneme classes, all having a 
single output and containing a I 5 neuron fully 
connected hidden layer. The 8 hidden layers from 
each of the OCONs were fully connected to the 15 
neuron adaptation layer which in turn was fully 
connected to the 7 5 neuron input layer. The input 
data comprised of the sampled phonemes being split 
into 15 overlapping hamming windows, each of 
which was represented by 5 linear predictive 
coefficients [6]. 
The test set for the experiment contained utterances 
of the 8 selected vowel sub-class phonemes spoken 
by 2 male speakers (DABO, WBTO) from the same 
dialect region as the training set. Initial recognition 
rates were noted for all the 8 phonemes from both 
speakers before adaptation began. 
The adaptation procedure involved adapting the 
network towards a phoneme by feeding back any 
errors through the network and using these to 
modifY the weights and bias values within the 
adaptation layer. After adaptation, recognition 
rates of the phonemes uttered by the same speaker 
were recorded and any variation calculated. The 
Recognition rates for speaker DABO incresed by a 
average 16.5% for adaptatio towards the same 
phonemes and an increase of 8.3% in the 
recognition of unadapted phonemes.saw a rise of 
16.5% and 20.2% for DABO and WBTO 
respectiverly with a rise See Table I and 2 for 
speakers MDABO and MWBTO respectively. 
After each test, the adaptation weights and bias 
values were reset. 
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CONCLUSION 

It can be seen from Table I and Table 2 that 
adaptation towards a phoneme, in the vowel sub­
class, for speakers MDABO and MWBTO can indeed 
improve the recognition of the remaining phonemes 
from the same speaker. After adaptation towards a 
phoneme the average recognition rate of that 
phoneme increases by I 8.35% and the recognition 
rate of the remaining phonemes increases by 8.9%. 
This highlights the idea of speaker information being 
stored in the common front end adaptation layer, 
resulting in a more efficient adaptation system. 
Further tests need to be applied to other phoneme 
sub-classes such as stops and fricatives and at 
present, adaptation itself is still slow. This is because 
only simple back propagation is being used, although 
faster existing adaptation techniques can be applied 
to the same architecture 
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# 
I MAXNET I 

t t i 
~ acto . . . acto 

Class I Class 2 Class m 

# 
INPUT 

Fig. I: Conventional OCON Architecture 

Adapted Phonemes 

ix iy eh ab 

ix +13.3% +13.3% +13.3% 0 

iy +7.1% +21.4% +7.1% +7.1% 

eh 0 +11.1% +11.1% 0 

ab +14.3% +14.3% 0 +28.6% 

ax +10% +10% 0 +10% 

ih +12.5% +12.5% 0 0 

ey +25% 0 +25% +25% 

a a 0 0 0 0 

.. Table I: Recogmtmn Results Usmg Speaker DABO 

Adapted Phonemes 

ix iy eh ab 

ix +18.2% +18.2% +18.2% +9.1% 

iy +12.5% +37.5% +12.5% +12.5% 

-eh 0 +10% +10% 0 

ab +9.1% +9.1% 0 +18.2% 

ax +12.5% +12.5% 0 +12.5% 

ih +11.1% +11.1% 0 0 

ey +16.7% 0 +16.7% +16.7% 

a a +25% +25% +25% 0 

Table 2: Recogmtion Results Using Speaker WBTO 
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# 
I MAXNET 

t t i 
~ ~ . . . ~ 

Class I Class 2 Class m 

I ADAPTATION LAYER I 
;f} 
INPUT 

Fig 2: OCON Architecture with Common Front-End 
Adaptation Layer. 

ax ih ey a a 

0 +13.3% +6.6% 0 

0 +21.4% +7.1% +7.1% 

0 +11.1% +11.1% 0 

+14.3% +28.3% +14.3% 0 

+20% +20% +10% +10% 

+12.5% +12.5% +12.5% 0 

+25% +25% +25% 0 

0 0 0 0 

ax ih ey a a 

0 +18.2% +9.1% 0 

0 +37.5% +12.5% +12.5% 

0 +10% +10% 0 

+9.1% +18.2% +9.1% 0 

+25% +25% +12.5% +12.5% 

+11.1% +11.1% +11.1% 0 

+16.7% +16.7% +16.7% 0 

0 0 0 +25% 

I 



DYNAMIC SPEAKER ADAPTATION FOR ACOUSTICALLY SIMILAR VOWEL SOUNDS USING SUB­
CLUSTER NEURAL NETWORKS 

S.J.Haskey and S.Datta 
Loughborough University 

Abstract 

In this paper we present an adaptation technique 
which exploits the inter/intra speaker phoneme 
variations of acoustically similar vowel sounds. 
The 13 vowels of American English speech can be 
classified into three acoustically similar areas 
according to the relevant tongue-hump-position. 
The vowels, taken from the DARPA TIMIT 
phonetic database [1], in each of these areas are 
classified using One-Class-in-One-Network 
(OCON) feed forward subnets, similar to those 
proposed by Kung[3] and Jou[2], joined by a 
common front-end adaptation layer [4][7]. This 
allows adaptation to be concentrated primarily on 
speaker characteristics, since speaker information is 
comparable within these areas, allowing adaptation 
towards a single phoneme to improve recognition 
of other vowel phonemes within the same network. 
This reduces the need for total vowel recital for 
complete vowel phoneme adaptation towards a new 
speaker. 
Results show increases of over 12% in the recognition 
rates of vowel phonemes after adaptation towards 
other phonemes in the same tongue-hump-position 
area. However, vowels that are well separated in the 
same group have little, even negative, effect on 
recognition after adaptation. 

Introduction 

If a speaker could consistently and precisely produce 
the English American phonemes, speech would 
amount to a flow of discrete sounds. However, due to 
inter/intra speaker variations such as vocal tract 
length, dialect differences, rhythm, intonation, stress 
and most importantly eo-articulation effects, a given 
'phoneme' will have a variety of acoustic 
manifestations in the course of continuous speech. 
This can cause significant problems with speaker 
independent recognition systems and so some form of 
dynamic adaptation is necessary to achieve a speaker 
transparent recognition system. This paper will 
concentrate on acoustically similar vowel sounds and 
in particular the inter/intra speaker similarities 
corresponding to tongue-hump-position [5]. The 
tongue-hump-position and the degree of which the 
tongue causes a constriction in the oral cavity creates 
variations in cross-sectional area along the vocal tract 
which determines the formants of the vowel. The 
position of the hump of the tongue (front, central, 
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back) divides the vowel phonemes into three main 
groups. An assumption is made that the vowel 
phonemes within each group, due to the constant 
tongue-hump-position, all contain comparable 
speaker information. Using OCON subnet structures 
[2][3] with a front-end adaptation layer [4][7] for 
each group, speaker and phoneme information can be 
separated. Therefore, common speaker information 
from the vowel phonemes can be isolated in the front­
end layer. This then allows adaptation towards a 
phoneme class to improve the recognition rate of 
other uttered phonemes sharing the same adaptation 
layer from the same speaker. The resultant system 
not only abolishes the need for total network 
adaptation but also reduces the need for every vowel 
to be recited for total vowel phoneme adaptation. 

Acoustically Similar Vowel Sounds 

The 13 vowel sounds of American English, although 
produced solely by vocal cord movement, vary 
dramatically with cross-sectional area along the vocal 
tract. This cross-sectional area, particularly in the 
oral cavity can be altered by movement of the 
articulators, mainly the tongue. Consequently the 
tongue position plays a fundamental part in the 
production of the resonant frequencies (formants) in 
the vocal tract that make up the vowel sounds. The 
tongue varies the formants in the vocal tract in two 
ways. By the tongue-hump-position and by the 
degree-of-constriction the tongue hump causes, 
Fig I. 

FRONT BACK 

flY/ fER/ f!JW/ TOP 

lflll lAX/ /UIY 

fEY/ IAIY IOW/ 
fEIY 

/AO/ 

/APJ /AN BOTTOM 

Fig I: The Position of the Hump of the Tongue in the Oral Cavity 
during the Production of the American English Vowels. 

As is shown in Fig 2 the three vowels /IY, AA, UW/ 
represent the extreme frequency locations for F1 and 
F2• It can be seen from Fig 2 that moving from /IY I 
to I AEI, !ER! to I AHI and from /UW I to I AA/ the first 
formant, Ftt increases as the tongue constriction 



F2• It can be seen from Fig 2 that moving from /IY/ 
to I A El, /ER/ to I AH/ and from /UW I to I AA/ the first 
formant, F1, increases as the tongue constriction 
increases whereas moving from IUW/ to /IY/ and 
/AA/ to /AE/ the second formant, F2, alters with the 
tongue-hump-position. As the tongue moves towards 
the front of the oral cavity so F2 increases [6]. 

2400 
nYI 

2200 

2000 nHI 
N' ::s 1800 o!EHI 

"' LL o/AFJ 
'E! 1600 m 
E 
0 

LL 1400 
o!ERI 

1200 
/AA! 

1000 

800 
200 400 600 800 

Fonnant Fl (Hz) 

Fig 2: The Vowel Triangle. A plot of Average Formants. F1 and Fll. 
for American English Vowels. - -

These fundemental frequency F0 and the first 
formants F1 are responsible for creating the raw 
phoneme sound. This allows the phoneme to be 
recognised but contains little speaker information. 
The majority of the speaker information within a 
phoneme comes from the second and third formants 
F2 and F3• 

To take advantage of the network architecture we 
need to cluster vowel phonemes into groups that 
contain comparable speaker information so that this 
information can be stored in the common front-end 
adaptation layer. Since F2 does contain some speaker 
characteristics and varies with respect to the tongue­
hump-position in the oral cavity the vowels can be 
segregated into three groups:- front, middle and back. 

Network Architecture 

Unlike conventional subnet structures, this neural 
network architecture consists of (OCONs)[2][3]. 
Each vowel phoneme class has it's own OCON, with 
the OCONs representing phonemes from the same 
tongue-hump-position group, joined using a common 
front-end adaptation layer, Fig 3. Each OCON 
structure consists of a hidden layer fully connected to 
a single output neuron. The adaptation layer fully 
connects to each of the OCON structures and in turn 
fully connects to the input layer. ·All the neurons 
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within the feed forward network use the sigmoidal 
activation function and the weights of each 
connection are trained using the back-propagation 
algorithm. 

# 
MAXNET 

i i i 
al'o al'o. . . al'o 

Class I Class 2 Class m 

"' "' 
I ADAPTATION LAYER I 

;f} 
INPUT 

Fig 3: OCON Architecture whh Common Front-End Adaptation 
Layer. 

After the network is initially trained with speech data 
it is assumed that all class specific information 
unique to that phoneme is stored in the relevant 
OCON subnet and that information common to all 
the classes, such as speaker information (F2 & F3 ), is 
stored within the weights of the common front-end 
adaptation layer. When the network is introduced 
with speech data from a new speaker the error is fed 
back through the OCON structure, using back­
propagation, to the front-end adaptation layer where 
only the weights in this layer are altered to minimise 
the error. As each new speaker uses the system the 
updated adaptation weights are reset to their initial 
post-trained values ready for adaptation towards the 
next speaker. 
Since the adaptation occurs in an area common to all 
classes within the network, it is envisaged that 
convergence on a single class will improve the 
recognition of the remaining classes, for the same 
speaker, eliminating the need to update each class 
for full adaptation to take place. Therefore by 
concentrating the adaptation only on this front layer, 
only information unique to the speaker within the 
same tongue-hump-position group will change, 
resulting in a more efficiently speech recognition 
system. 

The main objectives were to monitor the improved 
recogmtwn rates of vowel phonemes after 
adaptation towards a single vowel phoneme within 
the same tongue-hump-position group uttered by 
the same speaker. 
Since we made the earlier assumption that vowel 
phonemes within each group all contain 
comparable speaker information, training and test 
data from the DARPA TIMIT database [I] was 



split into the three tongue-hump-position groups. 
Front /IY, IH, EY, EH, AE/, middle /ER, AX, AHI 
and back /UW, UH, OW, AO, AA!. Each of the 
three networks consisted of one OCON subnet 
structures for each of the phoneme classes, all 
having a single output and containing a 3 neuron 
fully connected hidden layer. The hidden layers 
from each of the OCONs were fully connected to 
the I 0 neuron adaptation layer which in turn was 
fully connected to the 56 neuron input layer. 
Training data was concentrated on one dialect 
region only, the Western dialect region. This was 
so that testing and adapting with another dialect 
region would accentuate any speaker differences, 
primarily dialect differences. Therefore 
highlighting the effect, if any, of adaptation 
towards a vowel phoneme influencing the 
recognition of other phonemes within the same 
network. All SX and SI sentences from the 79 
male speakers of the Western dialect region were 
used as training data. The relevant vowel 
phonemes from each sentence were pro­
emphasised and then split into eight windowed 
segments, with each window represented by 7'' 
order linear prediction coefficients. The back­
propagation algorithm was used for training, with 
all the weights within the network initially 
randomised, along with the order of the speech 
training data, to maximise convergence. 
The test data contained utterances from all the male 
speakers from the dialect region three, Northern 
Midland. All the data was pre-processed 
identically to the training data and the recognition 
rates for each vowel phoneme from each speaker 
noted. Then, one speaker at a time, the network 
was adapted towards a vowel phoneme and the 
changes in recognition performance of the other 
remaining vowel phonemes in the same network 
monitored. Table I, 2 and 3 show the average 
change in recognition performance, from 23 male 
speakers, after adaptation towards other vowel 
phonemes in the same group. Table I, 
corresponding to the front of the oral cavity, shows 
an average increase of 4.4%, table 2, the middle, 
shows an average increase of 2.8% and for table 3, 
the back, we have an average increase of 4.6%. 

Conclusion 

The exhibited improvements in recognition seem 
to correlate to the distance measure between the 
tongue positions of the relevant tested and adapted 
vowels. The closer the vowels in the oral cavity the 
larger the recognition improvement. Although 
these results look promising there are some 
negative changes. This is probably caused by large 
speaker variations between well separated vowels. 
To eliminate this problem the existing groups may 
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have to be further split to reduce the maximum 
distance between adapted and tested vowels. 
However, further research is required into F2 and 
F, information and its distribution within the oral 
tract since both these formants contain the majority 
of speaker information. This additional formant 
data will undoubtedly influence the perimeters of 
further vowel grouping. 
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Vowel Phonemes Tested 

IIYI /!HI IEYI IEW IAEI 

IIYI + 16.83 +9.16 +3.82 -2.53 -1.18 

/!HI +4.34 +18.54 +6.94 0 +1.89 

IEYI +4.58 +11.20 +24.61 +7.17 +3.04 

IEW 0 +5.09 +8.28 +22.96 +9.36 

IAEI -6.67 -0.24 +11.39 +12.24 +31.53 

Table I: Average Changes(%) of23 Male Speakers after 
Adaptation to a Single Phoneme from the front of the oral cavity. 

Vowel Phonemes Tested 

/ER/ lAX/ IAEI 

/ER/ +24.67 +8.08 +0.67 

lAX/ +5.18 +28 0 

IAEI +1.09 +2.14 +18.33 

Table 2: Average Changes(%) of23 Male Speakers after 
Adaptation to a Single Phoneme from the middle of the oral 
cavitv. 

Vowel Phonemes Tested 

IUWI !UW IOW/ IAO/ 

/UWI +31.25 +4 +2.07 +10.67 

/UHI 0 +20 +10 +12 

IOW/ +6.25 +8 +22.78 +4 

IAOI +6.25 +4 +1.67 +30 

/AA! 0 0 +8.34 +5.33 

/AA! 

-1.18 

-2.35 

+5.88 

+6.47 

+23.53 

Table 3: Average Change(%) of23 Male Speakers after 
Adaptation to a Single Phoneme from the back of the oral cavity. 
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ABSTRACT 

In this paper we present an adaptation technique 
which exploits the inter/intra speaker vowel 
phoneme variations with respect to the tongue­
hump-position within the oral cavity. 
The 13 vowels of American English speech can 
be classified into three areas according to the 
tongue-hump-position. The vowels, taken from 
the DARPA TIMIT phonetic database [!], in 
each of these areas are classified using One­
Class-in-One-Network (OCON) feed forward 
subnets, similar to those proposed by Kung[3] 
and Jou[2], joined by a common front-end 
adaptation layer [4]. This allows adaptation to 
be concentrated primarily on speaker 
characteristics, since speaker information is 
comparable within these areas, allowing 
adaptation towards a single phoneme to improve 
recognition of other vowel phonemes within the 
same network. This reduces the need for total 
vowel recital for complete vowel phoneme 
adaptation towards a new speaker. 
Results show increases of over 12% in the 
recognition rate of vowel phonemes after 
adaptation towards other phonemes in the same 
tongue-hump-position area. However, vowels 
that are well separated in the same group have 
little, even negative, effect on recognition after 
adaptation. 

INTRODUCTION 

If a speaker could consistently and precisely 
produce the English American phonemes, speech 
would amount to a flow of discrete sounds. Of 
course, due to inter/intra speaker variations such 
as vocal tract length, dialect differences, 
intonation, rhythm, stress and most importantly 
eo-articulation effects, a given 'phoneme' will 
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have a variety of acoustic manifestations in the 
course of continuous speech. Consequently this 
can cause significant problems with speaker 
independent recognition systems and so some 
form of dynamic adaptation is necessary to 
achieve a speaker transparent recognition system. 
This paper will concentrate on vowel phonemes 
and in particular the inter/intra speaker 
similarities corresponding to tongue-hump­
position [5]. The tongue-hump-position and the 
degree of which the tongue causes a constriction 
in the oral cavity creates variations in cross­
sectional area along the vocal tract which 
determines the formants of the vowel. The 
position of the hump of the tongue (front, central, 
back) divides the vowel phonemes into three main 
groups. An assumption is made that the vowel 
phonemes within each group, due to the constant 
tongue-hump-position, all contain comparable 
speaker information. Using OCON subnet 
structures [2][3] with a front-end adaptation layer 
[ 4] for each group, speaker and phoneme 
information can be separated. Therefore, 
common speaker information from the vowel 
phonemes can be isolated in the front-end layer. 
This then allows adaptation towards a phoneme 
class to improve the recognition rate of other 
phoneme sharing the same adaptation layer. The 
resultant system not only abolishes the need for 
total network adaptation but also reduces the need 
for every vowel to be recited for total vowel 
phoneme adaptation. 

VOWEL FORMANT VARIATIONS 

The 13 vowel sounds of American English, 
although produced solely by vocal cord 



movement, vary dramatically with cross-sectional 
area along the vocal tract. This cross-sectional 
area, particularly in the oral cavity can be altered 
by movement of the articulators, mainly the 
tongue. Consequently the tongue position plays a 
fundamental part in the production of the resonant 
frequencies (formants) in the vocal tract that make 
up the vowel sounds. The tongue varies the 
formants in the vocal tract in two ways. By the 
tongue-hump-position and by the degree-of­
constriction the tongue hump causes, fig I. As is 
shown in fig 2 the three vowels IIY, AA, UW/ 
represent the extreme frequency locations for F 1 
and F2. It can be seen from Fig 2 that moving 
from flY/ to IAEI, /ER/ to fAH! and from /UW/ to 
I AA! the first formant, F 1, increases as the tongue 
constriction increases whereas moving from IUW/ 
to flY/ and /AA/ to /AE/ the second formant, F2, 
alters with the tongue-hump-position. As the 
tongue moves towards the front of the oral cavity 
so F2 increases [6]. These first two formants FJ 
and F2 are responsible for creating the raw 
phoneme sound. This allows the phoneme to be 
recognised but contains little speaker information. 
The majority of the speaker information within a 
phoneme comes from the third and fourth 
form ants F3 and F 4 however, some speaker 
information is retained in the second formant F2. 
To take advantage of the network architecture we 
need to cluster vowel phonemes into groups that 
contain comparable speaker information so that 
this information can be stored in the common 
front-end adaptation layer. Since F2 does contain 
some speaker characteristics and varies with 
respect to the tongue-hump-position in the oral 
cavity the vowels can be segregated into three 
groups:- front, middle and back. 

NETWORK ARCIDTECTURE 

Unlike conventional subnet structures, 
(OCONs)[2][3], this neural network architecture 
consists of one OCON for each vowel phoneme 
class, joined along with other classes of the same 
tongue-hump-position group using a common 
front-end adaptation layer, fig 3. Each OCON 
structure consists of a hidden layer fully 
connected to a single output neuron. The 
adaptation layer fully connects to each of the 
OCON structures and in turn fully connects to the 
input layer. All the neurons within the feed 

E- 11 

forward network use the sigmoidal activation 
function and the weights of each connection are 
trained using the back-propagation algorithm. 
After the network is initially trained with speech 
data it is assumed that all class specific 
information unique to that phoneme is stored in 
the relevant OCON subnet and that information 
common to all the classes, such as speaker 
information (F2, F3 & F4), is stored within the 
weights of the common front-end adaptation 
layer. When the network is introduced with 
speech data from a new speaker the error is fed 
back through the OCON structure, using back­
propagation, to the front-end adaptation layer 
where only the weights in this layer are altered to 
minimise the error. As each new speaker uses the 
system the updated adaptation weights are reset to 
their initial values ready for adaptation towards 
the next speaker. 
By concentrating the adaptation on this front layer 
only information unique to the speaker within the 
same tongue-hump-position group will change, 
resulting in a more efficiently controlled 
application driven (speech recognition) 
connectionist regime. Since the adaptation occurs 
in an area common to all classes within the 
network, it is envisaged that convergence on a 
single class will improve the recognition of the 
remammg classes, for the same speaker, 
eliminating the need to update each class for full 
adaptation to take place. 

RESULTS 

The main objectives were to monitor the 
improved recognition rates of vowel phonemes 
after adaptation towards a single vowel 
phoneme within the same tongue-hump-position 
group uttered by the same speaker. 
Since we made the earlier assumption that vowel 
phonemes within each group all contain 
comparable speaker information, training and test 
data from the DARP A TIMIT database [I] was 
split into the three tongue-hump-position groups. 
Front IIY, IH, EY, EH, AE/, middle /ER, AX, 
AH! and back IUW, UH, OW, AO, AA/. Each of 
the three networks consisted of one OCON subnet 
structures for each of the phoneme classes, all 
having a single output and containing a 3 neuron 
fully connected hidden layer. The hidden layers 
from each of the OCONs were fully connected to 
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the I 0 neuron adaptation layer which in turn was 
fully connected to the 56 neuron input layer. 
Training data was concentrated on one dialect 
region only, the Western dialect region. This was 
so that testing and adapting with another dialect 
region would accentuate any speaker differences, 
primarily dialect differences. Therefore 
highlighting the effect, if any, of adaptation 
towards a vowel phoneme influencing the 
recognition of other phonemes within the same 
network. All SX and SI sentences from the 79 
male speakers of the Western dialect region were 
used as training data. The relevant vowel 
phonemes from each sentence were pre­
emphasised and then split into eight windowed 
segments, with each window represented by 7th 
order linear prediction coefficients. The back­
propagation algorithm was used for training, with 
all the weights within the network initially 
randomised, along with the order of the speech 
training data, to maximise convergence. 
The test data contained utterances from all the 
male speakers from the dialect region three, 
Northern Midland. All the data was pre­
processed in a similar fashion to the training 
data and the recognition rates for each vowel 
phoneme from each speaker noted. Then, one 
speaker at a time, the network was adapted 
towards a vowel phoneme and the changes in 
recognition performance of the other remaining 
vowel phonemes in the same network 
monitored. Table I, 2 and 3 show the average 
change in recognition performance, from 23 
male speakers, after adaptation towards other 
vowel phonemes in the same group. Table I, 
corresponding to the front of the oral cavity, 
shows an average increase of 4.4%, table 2, the 
middle, shows an average increase of2.86% and 
for the table 3, the back, we have an average 
increase of 4.57%. 

CONCLUSION 

The exhibited improvements in recognition seem 
to correlate to the distance measure between the 
tongue positions of the relevant tested and adapted 
vowels. The closer the vowels in the oral cavity 
the larger the recogmtiOn improvements. 
Although these results look promising there are 
some negative changes. This is probably caused 
by large speaker variations between well 
separated vowels. To eliminate this problem the 
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existing groups may have to be further split to 
reduce the maximum distance between adapted 
and tested vowels. However, further research is 
required into F3 and F$ information and its 
distribution within the oral tract since both there 
formants contain the majority of speaker 
information. This additional formant data will 
undoubtedly influence the perimeters of further 
vowel grouping. 
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Vowel Phonemes Tested 

/IY/ /I HI /EY/ /EH/ /AE/ 

~~ flY/ +16.83 +9.16 +3.82 -2.53 -1.18 n /IH/ +4.34 +18.54 +6.94 0 +1.89 

"""" /EY/ +4.58 +11.20 +24.61 +7.17 +3.04 

1~ 
::;~ /EH/ 0 +5.09 +8.28 +22.96 +9.39 

/AE/ -6.67 -0.24 +11.39 +12.24 +31.53 

Table 1: Average Scores of23 Male SQeakers after Ada12;tation to a 
Single Phoneme from the front of the oral cavi!Y. 

Vowel Phonemes Tested 

~~ /ER/ lAX/ /AE/ 

h /ER/ +24.67 +8.08 +0.67 
_gF: 
"""" lAX! +5.18 +28 0 -e 
~g. 
~~ IAEI +1.09 +2.14 +18.33 

Table 2: Average Scores of23 Male Speakers after Adaptation to a 
Single Phoneme from the middle of the oral cavity. 

Vowel Phonemes Tested 

/UW/ /UH/ IOW/ IAOI /AA/ 

~~ /UW/ +31.25 +4 +2.07 +10.67 -1.18 u /UH/ 0 +20 +10 +12 -2.35 

"""" IOW! +6.25 +8 +22.78 +4 +5.88 -e 
·~ ~-~~ IAOI +6.25 +4 +1.67 +30 +6.47 

/AA/ 0 0 +8.34 +5.33 +23.53 

Table 3: Average Scores of23 Male Speakers after Adaptation to a 
Single Phoneme from the back of the oral cavi~. 
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ABSTRACT 

In this paper a comparative study between One-Class­
One-Network (OCON) and Multi-Layered Perceptron 
(MLP) neural networks for vowel phoneme 
recognition is presented. The OCON architecture, first 
proposed by I.C.Jou et all991, is similar in design to a 
conventional feed-forward MLP, only each class had 
its own dedicated sub-network containing a single 
output node. Conventional MLPs usually consist of 
fully-connected nodes which not only result in a large 
number of weighted connections but also create the 
problem of cross-class interference. Using vowel 
phoneme data from the DARPA TIMIT corpus of read 
speech, MLP and OCON architectures were trained 
and the relative effects of recognition rates and 
convergence during both intra and inter-class 
adaptation tested. The OCON showed an increase in 
the convergence rate of 273% and an improvement of 
adapted recognition rates against the MLP of over 
12%. However. due to the isolated nature of each 
OCON class, it was unable to utilise inter-class 
information. This resulted in a recognition rate 
reduction of over 6% for unadapted phonemes during 
adaptation, compared with the MLP results. 

1. THEOCON 

A large fully-connected network can potentially 
contain many hundreds of neurons, each connected via 
weights to many others. This can make the training 
and adapting of such a network a long and difficult 
task. In addition, fully connected networks are prone 
to cross-class interference. Cross-class interference 
occurs when adapting towards a single class in a multi­
class network, inevitably altering shared weights. As 
the network gets larger the interference increases, 
drastically degrading the convergence rate of the 
shared weights due to the influence of conflicting 
signals. This can lead to, after adaptation towards a 
single class, the impaired classification for the 
remaining classes within the network. To eliminate 
these problems, I.C.Jou et a! [2] proposed a new neural 
network architecture called the One-Net-One-Class. 
The same principle was later taken on- by 
S.Y.Kung[3][4], who named the architecture the 'One­
Class-One-Net' or the 'OCON' for short. The OCON 
is similar in design to that of a conventional MLP (see 
Figure 1 a) only each class has its own dedicated sub net 
containing a single output neuron (see Figure lb). 
Each OCON subnet is 
specialised for distinguishing its own dass from other 
patterns, resulting in fewer nodes being required in 

the hidden layers. I.C.Jou first used the OCON architecture in 
1991 for optical character recognition (OCR). Later S.Y.Kung 
[4] also applied the OCON architecture to OCR, achieving a 
training accuracy of 99.5% compared with 94% from a 
conventional MLP. Such architectures have also been used for 
texture classification, Electrocardiograph (ECG) analysis and the 
classification of mandarin speech syllables and isolated English 
words with a hybrid Time Delay Neural Networks (TDNN) and 
OCON structure [5]. 

(a) 

OUTPUT 

INPUT 

(b) 

OUTPUT 

INPUT 

Fignre 1: (a) A fully-connected MLP architecture. 
(b) An OCON Neural Network Architecture 

2. THE SPEECH DATA 

All the speech data used during the comparative study was 
obtained from the DARPA TIMIT corpus of read speech [1]. 12 
vowel phonemes spoken by male speakers from the TIMIT 
dialect region 7, the western geographical area of the U.S, were 
used for training and testing the ANN architectures. Vowel 
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phonemes were specifically chosen since they are the 
most spectrally well defined of all phonemes making 
them more easily and reliably recognised and ideal for 
a comparative study. For the study the phonemes were 
also from speakers with the same gender and dialect as 
large deviations between phonemes needed to be 
avoided during the comparative study. Male speakers 
from dialect region 7 were selected because of the 
availability and good representation of training and 
testing data available from this group. However, of the 
13 vowel phonemes available, using the ARPABET 
representation [6], vowel /UW/ was not used due to the 
limited number of utterances leaving the 12 vowel 
phonemes, /fY/, /IH/, /F.Y/, /EH/, IAFJ, IERJ, /AYJ, 
/AH/, /UHI, IOW/, /AO/, /AA/. During the 
experimentation it was not only of interest to test the 
effect of recognition rates and convergence on the 
adapted vowels but also the effect the adaptation had 
on the remaining unadapted vowels. Unfortunately, 
testing the effects of inter~class adaptation on 12 vowel 
phonemes is a very labour intensive procedure and so 
the phoneme groups were reduced further. They were 
split into 3 distinct groups with respect to the tongue~ 
hump position in the oral cavity during their 
production, 'front'. 'middle'. and 'back'. They were 
grouped in this way since phonemes from the same 
tongue~hump group show some acoustic similarities 
[7]. The front vowel phonemes were IIY/,IIH/, /EY/, 
/EH/ and /AEI, the middle vowel phonemes were /ER!, 
lAX/ and /AHI, and the back vowel phonemes were 
/UW/, /UH/, IOW/, IAOI and /AA/. Using 'Speech 
Tools' [8] the relevant phoneme data was extracted 
from the recorded 16kHz speech files within the 
TIMIT corpus. Each phoneme file was pre­
emphasised, to compensate for the ~6db/octave roll~off 
of voiced speech and windowed using 8 over-lapping 
hamming windows, each representing 16ms of speech. 
The speech data in each window was used to generate 
12 linear predictive coefficients (LPCs) which were 
normalised by dividing by the first. The first 
coefficient could therefore be eliminated since it was 
always equal to one. This left 11 LPCs for each 
window resulting in a Aotal of 8x11=88 coefficients 
representing each vowel phoneme. Linear prediction 
with its simple coding and well documented behaviour 
was specifically chosen as the most appropriate form 
of speech pre-processing since all experimentation was 
primarily concerned with the performance of the ANN 
architectures. 

3. ANN ARCHITECTURES 

To test the performance of the OCON architecture on 
the vowel phoneme speech data, a comparative study 
with the more conventional MLP was set. The OCON 
and MLP architectures were represented by three 
networks each, corresponding to the 'front'. 'middle' 
and 'back' tongue-hump groups of the speech data. 
For each phoneme group the MLP and OCON 
networks (see Figure 2) were modelled using the 
Stuttgart Neural Network Simulator (SNNS) [9]. All 
the networks contained the same number of input 
nodes. 88, dictated by the number of input coefficients 
representing each speech utterance. The total number 
of output nodes for each network was dependent on the 
phoneme group, five phoneme classes for the front and 
back and three phoneme classes for the middle. The six 
networks, with every node using the sigmoidal 
activation function. were modelled with fully 

connected adjoining layers, except for the hidden and output 
layers of the OCON architecture. 

(a) 

(310) Hidden Neuroll!l 

(b) 

I Output Neurons for 
each class 

(310) Hidden Neuroll!l 

for each class I Output Ncuroll!l for 
,..--'-, each class 

Figure 2: (a) Fully connected MLP architecture. 
(b) Fully connected OCON architecture. 

Each network was trained with male TIMIT training set from 
dialect region 7. The weight and bias values within the networks 
were initially randomised and the standard back propagation 
algorithm used to train the networks, producing the six 'basew 
classifiers' necessary for the experimentation. The male TIMIT 
'test set' for dialect region 7 comprised of 15 male speakers. 
Since there was only interest in intra-speaker effects and not 
inter-speaker effects, all the speech data from every test speaker 
was amalgamated and categorised with respect to its phoneme 
content. The networks were then ready for adaptation and 
testing. but before that could occur, a single common back­
propagation learning-rate for both the MLP and OCON networks 
had to be found. This was achieved by training one of the MLP 
and OCON networks with various learning rates. A learning rate 
of 0.5 was selected since it offered both networks fast 
convergen~e without any instabilities. 

Each of the six base-classifiers was adapted and tested using the 
'test set. • Each network was adapted towards one of its relevant 
phoneme classes for a total of 100 cycles, during which 7 result 
snapshots were taken at I, 3, 5, 10, 20, 50 and 100 cycles. Due 
to the non-linearity of network adaptation, the number of cycles 
between each result snapshot increased to produce a graph that 
offered a clear picture of the network's behaviour. The results 
taken at each snapshot were the recognition rates of both the 
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adapted phonemes and the remammg unadapted 
phonemes within the same network. After adapting for 
100 cycles towards each phoneme class, the weights 
and bias' within each network were reset to their initial 
base-classifier values ready for the next adaptation 
procedure involving another phoneme class. 

4.RESULTS 
Comparative results for the MLP and OCON 
architectures were obtained for adaptation towards 
each of vowel phoneme class and the effect on the 
remaining unadapted vowel phoneme classes within 
the same networks. 2 graphs were produced 
containing the averaged data from all the vowel 
phonemes for the adapted and unadapted phonemes 
recognition rates (see Figure 3(a)(b)). As well as 
recognition rates, another area of interest was each 
network's convergence rate. The convergence rate for 
each of the 2 averaged data graphs was calculated by 
differentiating the recognition-rate data (calculating the 
distance between adjacent rates). However calculating 
the convergence rate in this way was viewed as being 
unrealistic since the closer that recognition rates reach 
the perfect goal of I 00%, the greater the significance 
of recognition improvement. To reflect this the 
convergence rate y was calculated using equation : 

y = ( 100- X. ) - I 
100- x ••• 

(1) 

where Xn and Xn+l are two adjacent recognition rates. 
The term -1 in equation 1 was used for normalise the 
graphs so that positive values indicated positive 
convergence and negative values negative 
convergence. The 2 convergence rates graphs were 
generated were for all the adapted vowel phonemes 
(see Figure 4(a)), and all the unadapted vowel 
phonemes (see Figure 4(b)). Figure 3(a) shows that 
the OCON networks show a clear improvement for the 
recognition rates of adapted vowel phonemes over the 
conventional MLP networks. On average, for all 
vowel phonemes, the experimentation shows a 12.3% 
increase in recognition rates for the OCON networks 
[10][11]. This result echoes the improvements shown 
in other data classification systems utilising OCON 
architectures [2][3][4][5]. Furthermore, the OCON 
architecture not only increases the adaptation rate but 
also reduces the processing time necessary for each 
adaptation cycle due to the reduction in network 
weights. This is shown in figure 4(a) with the 
increased rate of convergence for each OCON 
network, offering a 273% increase against the MLP for 
adapted phonemes. However, the OCON architectures 
as they stand, deal badly with inter-class adaptation. 
Although the rates of convergence for both networks 
are roughly the same, figure 4(b), figure 3 (b) shows 
that the OCON networks offer worse recognition rates 
for unadapted vowel phonemes over the conventional 
MLP networks. From figures 3 (b) we find that the 
average drop in recognition rates for the OCON 
networks, compared with the MLP networks, is 6.3%. 
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Figure 3(a): Average Recognition Rates for All Adapted Vowel 
Phonemes for an MLP and OCON Network 
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5. CONCLUSION 

As expected the OCON behaves better than the ML.P 
when adapting and testing the same phoneme. 11us ts 
primarily due to the individual networks in each 
OCON network being dedicated to each class. Not 
only are there fewer connections and hence weight.ed 
axes to train, but each network only has to deal wtth 
information concerning a single class. As a result the 
OCON not only reduces the processing time for each 
adaptation cycle, but also rapidly increasing the 
convergence rate. However, the OCON architecture as 
it stands, deals badly with inter-class adaptation. 
When adapting to a class, the OCON shows a lower 
recognition rate for the remaining phonemes in the 
network compared to that of the MLP. This indicates 
that there must exist some common speaker 
information within all the classes in a network which 
isn't being exploited in the isolated networks of the 
OCON. Although in many applications cross-class 
interference can be a problem, MLPs compared to 
OCONs appear to use it to their advantage for inter­
class adaptation. As a result an ideal network would 
be a hybrid OCON architecture containing isolated 
networks for improved single class adaptation but with 
some inter-class bonding to profit from any common 
speaker information. However it would be important 
that any hybrid OCON network should concentrate 
adaptation only on common speaker information as 
adaptation towards common class infonnation could 
result in hannful cross-class interference. 
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