

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Pilkington Library

I • Lo1_1ghb_orough
.Umvers1ty

Author/Filing TitleItA?..~~/'""'§., . .';!.:

Accession/Copy No.

Vol. No. Class Mark

)

A Modified One-Class-One-Network ANN
Architecture for Dynamic Phoneme Adaptation

by

Stephen Haskey

A Doctoral Thesis submitted in partial fulfillment of the requirements for the
award of

Doctor of Philosophy of Loughborough University

May 1998

© by Step hen Haskey 1998

ABSTRACT

As computers begin to pervade aspects of our everyday lives, so the problem of

communication from man-to-machine becomes increasingly evident. In recent years, there

has been a concerted interest in speech recognition offering a user to communicate freely with

a machine. However, this deceptively simple means for exchanging information is in fact

extremely complex. A single utterance can contain a wealth of varied information concerning

the speaker's gender, age, dialect and mood. Numerous subtle differences such as intonation,

rhythm and stress further add to the complexity, increasing the variability between inter- and

intra-speaker utterances. These differences pose an enormous problem, especially for a

multi-user system since it is impractical to train for every variation of every utterance from

every speaker. Consequently adaptation is of great importance, allowing a system with

limited knowledge to dynamically adapt towards a new speakers characteristics. A new

modified artificial neural network (ANN) was proposed incorporating One-Class-One

Network (OCON) subnet architectures connected via a common front-end adaptation layer.

Using vowel phonemes from the TIMIT speech database, the adaptation was concentrated on

neurons within the front-end layer, resulting in only information common to all classes,

primarily speaker characteristics, being adapted. In addition, this prevented new utterances

from interfering with phoneme unique information in the corresponding OCON subnets.

Hence a more efficient adaptation procedure was created which, after adaptation towards a

single class, also aided in the recognition of the remaining classes within the network.

Compared with a conventional multi-layer perceptron network, results for inter- and intra

speaker adaptation showed an equally marked improvement for the recognition of adapted

phonemes during both full neuron and front-layer neuron adaptation within the new modified

architecture. When testing the effects of adaptation on the remaining unadapted vowel

phonemes, the modified architecture (allowing only the neurons in the front-end layer to

adapt) yielded better results than the modified architecture allowing full neuron adaptation.

These results highlighted the storing of speaker information, common to all classes, in the

front-end layer allowing efficient inter- and intra-speaker dynamic adaptation.

ACKNOWLEDGEMENTS

Described in this thesis is work that could not have possibly undertaken without the kind

help, support and guidance of my supervisor, Dr. S. Datta. I have learnt many things from his

approach to the subject and I offer my sincere thanks.

Thanks also go to all the members of staff from the Electronics and Electrical Engineering

Department for their advice and friendship. Thanks also to the secretarial and technical staff

who have assisted me during my time at Loughborough. Special thanks go to past and

present members of the Signal Processing Group for their friendship and assistance.

I am also very grateful to all the past and present members of the campus radio station for

their friendship and support and to the radio station itself, enabling me to wind down after

work. I would like to thank all the close friends that I have made during my time at

Loughborough, especially Mark, Adey, Chris and Jan. Finally special thanks also goes to my

parents and close family for their support, without which I may never have been able to

pursue a higher degree.

ii

GLOSSARY

ACF Autocorrelation Function

ANN Artificial Neural Networks

BP Back Propagation Algorithm

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

ECG Electrocardiograph

FFT Fast Fourier Transform

HMM Hidden Markov Model

LPC Linear Predictive Coefficient

MLP Multi-Layered Perceptron

OCON One-Class-One-Network

OCR Optical Character Recognition

PLP Perceptual Linear Prediction

RMS Root Mean Square

SNNS Stuttgart Neural Network Simulator

TDNN Time Delay Neural Network

TIMIT __ Texas Instruments/Massachusetts Institute of Technology

iii

TABLE OF CONTENTS

ABSTRACT ____________________ _

ACKNOWLEDGEMENTS ______________________________ ii

GLOSSARY ___ iii

CHAPTER 1 : INTRODUCTION

l.1 INTRODUCTION _______________________________________ l

1.2 THESIS OBJECTIVES_________________________ 2

1.3 THESIS OUTLINE ____________________ 3

1.4 REFERENCES 5

CHAPTER 2: IDSTORICAL BACKGROUND AND PROBLEM FORMULATION

2.1 INTRODUCTION _________________________ 6

2.1.1 Speech Production______ 6

2.1.2 The Complexity of Linguistics 8

2.2 SPEECH ANALYSIS 10

2.2.1 Pre-Emphasis ____ _ _ _________ 11

2.2.2 Frequency-Domain Analysis -----------------------11

2.2.3 Time-Domain Analysis 13

2.2.4 Linear Prediction 14

2.3 SPEECH CLASSIFIER 16

2.3.1 Dynamic Time Warping 16

2.3.2 Hidden Markov Models 18 --------------
2.3.3 Artificial Neural Networks 19

2.4 ADAPTATION 19

2.5 SUMMARY 20 --------------------------------
2.6 REFERENCES _________________ _ _ ___________ 21

iv

CHAPTER 3: SPEECH DATA

3.1 INTRODUCTION _____________________ 25

3.2 THE DARPA TIMIT SPEECH CORPUS 28

3.3 SPEECH PRE-PROCESSING 29

3.4 CLASSIFIER INPUT-DATA FORMAT 34

3.5 SUMMARY 35

3.6 REFERENCES __ _ --·······-··-----·-------.. ------------------------------------35

CHAPTER 4 : NEURAL NETWORKS

4.1 INTRODUCTION _____________________ 37

4.2 BIOLOGICAL MODEL 37

4.3 ARTIFICIAL NEURAL NETWORKS (ANNs) 38

4.3.1 The Activation Function 39

4.3.2 ANN Architecture 40

Hopfie1d Network 41

Hamming Network 42

Multi-Layered Perceptron 43

Kohonen Network 45

4.3.3 Training 46

4.4 NEURAL NETWORK SOFTWARE 50

4.4.1 MA TLAB Neural Network Toolbox 50

4.4.2 Aspirin/MIGRAINES Software Tools 51

4.4.3 Stuttgart Neural Network Simulator 51

4.5 SUMMARY 53

4.6 REFERENCES 53

CHAPTER 5 : NEURAL NETWORK ARCHITECTURE SELECTION

5.1 INTRODUCTION ______________________ 55

5.2 MULTI-LAYERED PERCEPTRON (MLPs) 56

5.3 THE ONE-CLASS-ONE-NETWORK (OCON) 56

5.4 COMPARATIVE STUDY OF MLP VERSUS OCON 58

Learning Rate 60

5.5 CONCLUSION 65

5.6 SUMMARY--- ___ ----------------- 66

V

5.7 REFERENCES ____ _ ____________ 66

CHAPTER 6 : SPEAKER ADAPTATION LAYER

6.11NTRODUCTION ______________________ 68

6.2 SPEAKER ADAPT AT! ON LAYER 69

6.3 EFFECTIVENESS OF COMMON ADAPTATION LAYER 70

6.3.1 Modelling of OCON Network with Common Adaptation Layer 72

6.3.2 Training Procedure 73

6.3.3 Adaptation Procedures 73

Unfrozen Adaptation 74

Frozen Adaptation 76

6.4 RESULTS. ________________________ 77

6.5 CONCLUSION 80

6.6 SUMMARY 81

6.7 REFERENCES -------·-------------81

CHAPTER 7 :NEW ARCHITECTURE

7.11NTRODUCTION 83

7.2 TEST SET SELECTION ___________________ 83

7.3 INTRA-SPEAKER ADAPTATION 85

7.4 INTRA-SPEAKER RESULTS 85

7.5 INTER-SPEAKER ADAPTATION . 91

7.6 INTER-SPEAKER RESULTS 91

7.7 CONCLUSION 97

CHAPTER 8 : CONCLUSION AND FUTURE WORK

8.1 EXPERIMENTAL CONCLUSION ________________ 98

8.2 CONCLUDING REMARKS 101

8.3 FUTURE WORK 101

8.4 REFERENCES 102

vi

APPENDIX A : CHAPTER 5 RESULTS

APPENDIX B: ALTERATIONS TO SNNS SOFTWARE

APPENDIX C : CHAPTER 6 RESULTS

APPENDIX D : CHAPTER 7 TEST SET SELECTION

APPENDIX E : PUBLISHED PAPERS

vii

CHAPTER!

Introduction

1.1 Introduction

As computers begin to pervade aspects of our everyday lives, so the problem of

communication from man-to-machine becomes increasingly evident. At present man-to

machine communication is restricted via clumsy peripherals such as the keyboard and mouse.

These devices offer many problems for the growing number of people who, although not

computer literate, are expected to communicate with these machines. Even when used by an

experienced operator, these devices often act as a communication bottleneck. For this reason,

in recent years, there has been concerted interest in speech recognition.

Speech is by far the most widely used and natural means of communication between people.

It requires no additional training and by allowing the speaker to quite literally 'speak their

mind' it has been shown that an average speaker requires only half the time to convey the

same idea compared with that of the most experienced of typists [!]. Speech also offers a

vast amount of freedom with numerous applications. It allows a user to communicate from a

distance, via the telephone for example, a disabled person to control out-of-reach apparatus

such as light switches or an operator to communicate with a device during any 'hands-busy

eyes-busy' procedure such as whilst driving a car.

Although the idea of speech recognition may appear to be simple enough, offering numerous

benefits for man-to-machine communication, its implementation is actually very problematic.

These problems, which have been researched for over forty years, are mainly due to intra- and

inter-speaker differences causing large variations from one utterance to the next. These

variations are caused by physical differences in speaker's vocal apparatus, dialect

characteristics and changes in intonation, rhythm and stress to alter an utterance's meaning.

It is impracticable to teach a speech recognition machine with every possible variation to

allow any speaker of any age, gender, accent to speak freely and be understood. It is

therefore necessary to normalise these variations by latching onto a speaker's vocal

characteristics and use this information to improve the future recognition of utterances from

the same speaker or from speakers with similar characteristics. Ideally, an initial single word

could be used to obtain vocal-characteristic information giving rise to machines that could be

adopted in any multi-speaker environment (public buildings and high streets for example) to

verbally give and receive information, such as purchasing requests and location information.

Normalisation of speaker variations may be achieved by using an adaptive process within a

speech recognition system, using new and past stored utterances to calculate any differences

that may exist and using these differences to adapt the system's model. This adaptation for

the majority of speech recognition systems only occurs initially for a new utterance or

speaker, resulting in nothing more than further training of the classifier. However, even the

same utterance from the same speaker can vary with time and so better recognition results can

be achieved by constantly following any variations using dynamic adaptation. Dynamic

adaptation enables a system to not only map itself towards a new dialect, age or gender but

also to follow changes in a present speaker's mannerisms and mood. In addition to this, the

vast majority of speech recognition systems with adaptation, apply an adaptive process to all

the information held within an utterance, including both the word and speaker information.

This is inefficient and unnecessary since it is only essential for a multi-speaker speech

recognition system to adapt towards speaker variations. Therefore for this thesis a modified

One-Class-One-Network Artificial Neural Network (ANN) architecture is considered that

applies dynamic adaptation to speaker characteristics only, saving processing power,

increasing recognition rates and hence increasing efficiency.

1.2 Thesis Objectives

In the search for a more efficient form of dynamic adaptation for multi-speaker speech

recognition, this thesis sets out to fulfil! three main objectives. These objectives are as

follows:

2

(i) Develop an adaptation procedure that increases the convergence and reduces

the processing time for each adaptation cycle.

(ii) Concentrate adaptation only on intra- and inter-speaker variables, i.e. speaker

characteristics.

(iii) Allow adaptation towards a single speech class to improve recognition of

remaining speech classes within the same vocabulary.

To fulfill these objectives the thesis presents a new adaptation procedure applied to a

modified One-Class-One-Network (OCON) ANN which reduces the problem of intra- and

inter-speaker variations in an efficient manner.

1.3 Thesis Outline

This thesis contains eight chapters which are organised as follows:

Chapter 2 presents the problems involved with speech recognition including a look at the

production of speech, analysis techniques and speech classifiers and highlights the need for

correct classifier selection for experimentation. There is also a quick insight into adaptation,

its necessity and its application to speech recognition systems. As well as giving a general

oversight of present speech recognition, Chapter 2 also includes some historical background

from the earliest automated recognition systems in the early 1950s.

Chapter 3 presents an insight into the speech data used for training, adaptation and testing

during all experimentation. Highlighting the importance of data selection, the chapter

explains the selection of vowel phonemes and introduces their classification with respect to

the mouths articulator movements. The TIMIT speech database, from which all the speech

data was obtained, is introduced with its format and content explained. From the TIMIT

3

speech database, choices concerning the selection of speech data are made to create an

experimental 'training set' and 'test set.' Finally a large section of the chapter deals with the

pre-processing of the selected speech data, and its formatting into a manner that can be used

for classification.

A review of neural networks is presented in Chapter 4. Starting with a brief insight into the

biological model, the chapter discusses the concepts of parallelism and connectionist

architectures to introduce the Artificial Neural Network (ANN). Using some historical

background, several architectures, activation functions and learning rules are investigated. At

this point Chapter 4 discusses and derives the Back-Propagation (BP) learning algorithm due

to its comprehensive use in experimentation (Chapters 5 -7). Finally, the chapter evaluates

some software packages that are available for the computer modelling of ANN s, leading to

the selection of a package known as SNNS, the Stuttgart Neural Network Simulator, which

has been used for all the experimental ANN modelling and is available from the Internet.

Using information from Chapter 4 concerning various activation functions, architectures and

learning rules, Chapter 5 initially deals with the selection of an ANN configuration for

experimentation. This configuration consists of a multi-layered perceptron (MLP)

architecture, a sigmoidal activation function and the BP learning algorithm. The One-Class

One-Network (OCON) architecture is introduced with details of its history, theory and

potential for computational saving. A comparative study between the OCON and the

common MLP is initiated in Chapter 5 to investigate variations in recognition rates between

the two architectures for adapted phonemes and the effect that this adaptation has on the

remaining unadapted phonemes.

Chapter 6 deals with the need for adaptation in greater detail and introduces a modified

OCON architecture which is believed to be able to segregate speaker information, allowing

for more efficient adaptation. This new architecture, containing a_ new front-end adaptation

layer, is explained in detail. To investigate the effectiveness of the modified OCON

architecture, Chapter 6 employs two adaptation procedures involving the freezing and

unfreezing of selected network weights. By concentrating mainly on intra-speaker effects,

4

speech data from a single speaker is employed. Chapter 6 also deals with changes to the

SNNS software code which is necessary for implementation of the adaptation procedures.

Chapter 7 continues the theme of Chapter 6, by fully testing the newly modified OCON

architecture for both intra- and inter-speaker adaptation. The intra-speaker adaptation

procedure looks in detail at the effect that each vowel phoneme adaptation has on remaining

vowel phonemes from within the same network. For the inter-speaker adaptation procedure,

Chapter 7 initially describes the three discrete selection processes used to select the speakers

for the test set. The Inter-speaker procedure then investigates the effect that adaptation

towards a single speaker has on recognition rates of utterances from the remaining speakers.

The final chapter, Chapter 8, provides a conclusion and discussion for all the experimental

research. This includes the effectiveness of the modified OCON architecture on intra- and

inter-speaker results along with the fulfillment of the thesis' objectives. Finally, suggestions

for further work are made regarding experimentation, improvements, and possible

implementation ideas for the modified OCON architecture.

1.4 References

[I] A. Chapanis, "Interactive Human Communication," Sci. America., Vol.232,

No.3, pp.36-42, 1975.

5

CHAPTER2

Historical Background and Problem Formulation

2.1 Introduction

Automatic man-to-machine communication has been the objective of researchers since the

earliest speech recognition device in the early 1950s [1]. With the advent of digital

computing in the early 1960s the area of speech research has seen significant advances in

processing, coding and classification techniques. However, even with today's technology and

advances in signal processing, the aim of a large-vocabulary multi-speaker continuous-speech

recognition system has constantly eluded us.

2.1.1 Speech Production

Speech can be viewed as a sequence of basic sound elements known as phonemes. There are

approximately 40-50 of these abstract linguistic units in the English language, depending on

dialect deviations, which vary with respect to the shape and length of the vocal tract as well

as the position of the mouths articulators such as the tongue, jaw and lips. Using these vocal

variables, phonemes can be split into three distinct categories, voiced, unvoiced and plosive,

each of which can be further split to produce a total of twelve categories (see Figure 2.1).

Throughout the text, all phonemes will be described using the ARP ABET representation [2]

as used in the TIMIT speech database [3]. Voiced phonemes are produced by forcing air

from the lungs through the glottis which contains two vocal cords (see Figure 2.2). These

vocal cords then vibrate, the speed of which is governed by both the vocal cord's tension and

the flow of air between them. The quasi-periodic waveform, the fundamental frequency,

travels via the larynx to the oral cavity which acts as a resonant chamber. The oral tract's

length and variations in shape, due to movement of the mouths articulators, gives rise to

6

different resonant or 'forrnant' frequencies. These forrnant frequencies combine to produce

the voiced phoneme sounds. Of all the mouths articulators, the tongue has the greatest effect

on the voiced phonemes[4][5]. The tongue can be used to categorise the vowel phonemes

with respect to the position of the tongue's hump within the oral cavity, front, middle and

back.

/iy/
/ih/ ..
/eyl'i;,;;

/eh/·
/ae/

beet
'.bit
r:bait

bet
bat

Middle'
/er/ bird

;~l!i'i'''

/uw/
/uhi:HH,i,:

- !oWr+
/aol

Glides

boot
;,;book
:;:;b-Oat

bought

/w/ went
/r/ ran

Liquids
nt let
/j/ you

Figure 2.1 The English Phonemes

Diphthongs

/ay/
/oy/
law/

Affricates

sigh
boy
bout

~hi joke
/eh/ chum

!m!
In!
/ng/

mom
noon
sing

Fricatives
Voiceless

Is/ sea
Ish! she
If! fat
/th/ thin
/hi hat

Voiced
!vi van
lzl ---zone
/dh/ this
lzhl azure

Plosives
Voiced

lbl bee
Id!. day
/g/ gay

Unvoiced
!pi pea
tu tea
lk/ key

During the production of unvoiced phonemes, the vocal cords do not vibrate. The phoneme

sounds are produced by forcing air through the glottis with the vocal cords open, through to

the oral cavity during which a constriction is used to produce fricative and affricate sounds.

Fricative sounds are produced by creating the constriction at some point within the oral tract

causing turbulence to occur. Since this mostly occurs at the front ofthe mouth, the resonance

of the oral tract has little or no effect. However, for affricate sounds, the constriction occurs

at the glottis as the vocal cords are held slightly apart. Therefore the resonance of the oral

tract influences the phoneme sound, the effect of which can be heard clearly during whispered

speech.

7

Soft Palate

Lips

Larynx

Figure 2.2 A Cross-section of the Human Vocal Apparatus

Plosive sounds are produced by blocking the oral tract with the tongue or the lips, allowing

the air pressure to build up until it is suddenly released to create a transient excitation. This

transient excitation can occur with or without vibration of the vocal cords to produce voiced

or unvoiced plosive phonemes. Other categories of phoneme sounds are the nasals, which are

produced by lowering the soft palate to couple the nasal cavity to the oral cavity, and the

diphthong, whose sound changes from beginning to end due to tongue movement.

2.1.2 The Complexity of Linguistics

Although speech may appear to be the obvious tool for man-to-machine communication, this

deceptively simple means for exchanging information is indeed extremely complex. As well

as gender, age and dialect, the simplest of utterances contain a vast wealth of speaker

information. Subtle variations in the intonation, rhythm, stress and pitch, allow a speaker to

express their mood or change the meaning of a sentence. All of these intra- and inter-speaker

variations add to the complexity of the speech signal making recognition that much harder.

True speech recognition can be divided into two stages: sound recognition and understanding.

8

The first problem, sound recognition, involves classifying the sounds 'phonemes' that have

been uttered by the speaker. Although speech can be described as a series of phoneme

sounds, these sounds are not discretely joined to one another. It takes time for the mouth's

articulators, vocal cords and soft palate to move from one phoneme sound configuration to

the next and so the sound of each phoneme is influenced by the phonemes surrounding it.

This merging of one phoneme into the next is known as eo-articulation and can be clearly

heard when comparing natural speech against a stilted utterance from an old-style speech

synthesizer. The problem with eo-articulation is that it gives rise to an effect known as

allophanic variation where each phoneme may have many different allophones depending on

the surrounding phonemes. This effectively adds to the number of classifiable speech sounds,

increasing yet further recognition difficulty. There also exists the problem of dialect

differences where the same phoneme is produced in a different manner, creating a different

sound. This can be heard in certain English dialects during voiced plosives. As well as

variations in the speech sounds themselves, one of the biggest problems for an everyday

speech recognition system is coping with noise. Speech recognition systems are rarely used

in clinical conditions with sound-proofed environments and high quality microphones. They

are often used in busy environments where noise varies unpredictably. Some noises can be

eliminated using filtering techniques to improve recognition performance (high frequency

noise for example). However, noise such as the chatter of nearby speakers around a user can

cause severe problems for a speech recognition system. Humans on the other hand are

somehow able to decipher speech from a speaker even in an environment such as at a party.

This phenomena is known as the 'cocktail party effect' and allows an individual to hear their

name uttered from across the room under a barrage of utterances from other speakers.

Once the speech sounds have been correctly classified, their collective definition needs to be

interpreted. This requires knowledge concerning the meaning (semantics), the rules of word

formulation (morphology) and the rules of sentence formulation (syntax) [6]. However,

problems first start when many expected phonemes during freely spoken speech are not

spoken at all or are completely obliterated by surrounding sounds. Humans overcome this

problem automatically by subconsciously predicting what the next sound or utterance may be,

using syntax, morphology and semantic knowledge of the present utterance [7]. This can

cause problems in itself, when the human brain expects to hear one sound and a similar sound

9

is uttered. This often occurs in words that rhyme and results in the listener being adamant

that one word was uttered, when in fact the speaker uttered another. Unfortunately, some

words not only rhyme but are phonetically identical. For example, when we have the

phonetic combination '/t/ /uw/' it can refer to the word 'to', 'too' or 'two.' Also, we may

have a situation when the correct word may be classified but its meaning confused. For

example, if applying speech recognition to a word-processor and dictating a letter on

punctuation, when the speaker utters the word comma, does the system write 'comma' or ', '?

All these problems highlight the recognition systems need for intelligence. In order to

understand a sentence fully, it must not only understand the context so as to recognise the

correct words and punctuation, but also the intonation and stress that can subtly change a

phrase from a reply to a statement into a rhetorical question.

2.2 Speech Analysis

All areas of speech research, whether is be speech recognition, synthesis or coding, require

some form of front-end signal processing. In the case of speech recognition, some form of

preliminary analysis is necessary before classification can occur to remove any redundant

information and extract the acoustic information necessary for recognition. This not only

reduces the information rate but also helps to highlight subtle differences between classes that

might otherwise be obscured. The area of speech analysis can be split into two broad

categories: transform domain and time domain. Transform domain techniques include

discrete Fourier transforms, fast Fourier transforms, cepstrurn, wavelets and bandpass

filtering. For time domain analysis, autocorrelation, zero-crossing and signal energy

techniques are often used to extract essential information. In addition, a very powerful

speech analysis technique used for both frequency and time domain analysis is linear

prediction which represents a speech signal as a combination of linear predicted coefficients.

All of these analysis techniques are applied to speech over a short time interval (I0-30ms)

since, for periods of this length, the non-stationary speech signal is assumed to be stationary.

This is due to the limited rate at which the mouth's articulators can move, due to physical

constraints, which create the changes in the speech signal. Consequently most analysis

techniques split the signal into uniform segments or 'windows' (see Section 3.3). Before any

10

analysis procedures are applied to a speech signal, the signal is pre-emphasised to improve

the definition of its frequency spectrum.

2.2.1 Pre-Emphasis

During natural speech there is a combination of a -12d8/octave trend due to the voiced

excitation source and a +6dB/octave trend due to radiation from the mouth [8]. This results

in a -6d8/octave trend, effectively reducing the speech signals amplitude by a factor of 16 for

every doubling of the speech signal's frequency. Consequently the speech signal needs to be

pre-emphasised (a +6d8/octave lift to compensate for the -6d8/octave roll-oft) in order

that important high frequency information is not lost. This is achieved using a high-pass

filter on the digitised speech signal to reduce the dynamic range (i.e. flatten the speech

spectrum) and is typically based on using :

y[n] = x[n]-ax[n-1] (2.1)

where y[n] is the current output sample of the pre-emphasis filter, x[n] is the current input

sample, x[n-1] is the previous input sample and a (usually between 0.9 and 1) is a constant

that determines the cutoff frequency of the filter.

2.2.2 Frequency-Domain Analysis

The earliest speech recognition system, built in 1952 [1], used bandpass filters to enable the

first ten numeric digits to be classified. Constructed from extrinsic components, the

recognition system crudely split the speech signal into its first two formants using two filters,

a high and a low pass 900Hz filter. Information from these formants was used during the

classification process, producing recognition rates between 97% and 99% for a single

speaker. This filtering technique has since been employed by many systems [9][1 0][11],

passing the speech signal through a whole bank of bandpass filters covering the speech

bandwidth. Using the energy output from the bandpass filters, a pattern for each time frame

11

is created and sent to a matrix. This matrix, over several frames, creates a pattern for each

spoken utterance allowing the recognition system to compare it with stored test patterns or

templates to find the most likely match. In these very early systems, all the bandpass filters

were linearly spaced. However, this soon changed to logarithmic spacing in an attempt to try

and emulate the frequency response of the human auditory system.

The discrete Fourier transform (DFT), normally computed via the fast Fourier transform

(FFT) is one of the most widely used techniques for evaluating the frequency spectrum of

speech. It enables a speech utterance to be represented in terms of amplitude and phase as a

function of frequency allowing spectral data from the vocal tract, such as formant

information, to be used for classification. Due to the non-stationary nature of speech, DFTs

are applied over a finite time period using short-time analysis windows. The short-time DFT

of a signal H[k} is often defined as :

N-1

H[k] = ~)[n]e-j2m•ktN for 0 :S: k :S: N- (2.2)
n=O

They were widely used for the frequency analysis of speech signals, but were slow for large

values of N. This was due to the large number of calculations involved, N2, making real-time

analysis almost an impossibility. However in 1963 the fast Fourier transform (FFT),

developed by Cooly and Tukey [12], reduced the number of calculations to Nlog2N whilst

still obtaining exactly the same result. This was a significant step for frequency analysis

since Nlog2N is dramatically less than W, especially when N becomes large. This reduction

was possible because the FFT algorithm exploits the symmetry properties of the discrete-time

complex exponential of the DFT, removing redundant calculations. The only restriction with

the FFT algorithm is the value ofN since for maximum efficiency, N must be a power of2,

i.e. N = 2m where m is an integer.

12

2.2.3 Time-Domain Analysis

The autocorrelation function (ACF) is a powerful technique for estimating the pitch-period of

voiced speech. This is achieved by correlating the speech signal with a delayed copy of itself.

The autocorrelation value, R[k 1 , of a stationary signal x[n 1 for a time-shift of k samples is

defined as

00

R[k1 = Lx[n1·x[n + k1 (2.3)
n = -oo

When applied to voiced speech, the autocorrelation function exhibits peaks at certain time

shifts corresponding to multiples of the pitch-period. This is because at these points, the

speech signal is in phase with itself, giving high correlation values. However equation (2.3)

only applies when the amplitude is known for all time and, for the summation to remain

finite, the signal has a finite energy. As far as speech is concerned, it is not known for all

time, so it is necessary to use a short-time auto-correlation function by isolating successive

segments (frames) of the signal into windows.

A simple time-domain analysis technique which provides spectral information at a low

computational cost is the zero-crossing rate. The zero-crossing rate is quite simply the

number of times the signal waveform crosses the time axis, i.e. the amplitude changes sign.

Although this technique can be used to obtain simple spectral information for an entire

utterance it is more commonly used to determine the difference between a voiced and

unvoiced segment of speech. This is possible since the random nature of unvoiced speech

creates a higher zero-crossing rate than voiced speech.

Another time-domain technique which is used for discriminating between a voiced and

unvoiced segment of speech is the signal energy function. By splitting a speech utterance

into frames, using a simple rectangular window, and calculating the total squared values from

each frame, the changes in the utterances energy with time are recorded. This highlights

differences in the voiced and unvoiced segments since voiced speech generally contains more

energy that unvoiced speech.

13

As well as the zero-crossing rate and signal energy function being used for speech signal

analysis, they are also used for end-point detection. One of the greatest difficulties with

speech recognition, especially if the speaker is in a noisy environment, is to detect the

beginning and ending of an utterance. This was a problem addressed by Rabiner and Sambur

[13] in the mid seventies who used an end-point detection algorithm based on the signal

energy function and the zero-crossing rate of speech. It accounted for the level of background

noise by adapting relevant thresholds on its decision criteria during the recording interval and

because of its speed and efficiency was and still is widely used.

2.2.4 Linear Prediction

In the early seventies the technique of linear prediction was shown to be applicable to speech

by Atal and Hanauer [14]. Used for both frequency and time-domain analysis, its a very

powerful speech processing technique used in speech synthesis, recognition and coding

systems [15]. The basic idea behind the method is that sample values of speech, x[n], can be

approximated as a linear combination of the past p speech samples. As the value of p

increases then so the Root Mean Square (RMS) prediction error between the sampled and

predicted signal falls. Mathematically, the linear predictor is described by the equation

p

x[n]= 2>An-k] (2.4)
k=!

where x[n]is the predicted sample at instant n and a1,a2, ,aP are the Linear Predictor

Coefficients (LPCs).

It is generally impossible to predict each signal sample exactly and this leads to a prediction

error e[n] at each sample instant:

e[n] = x[n]-x[n] (2.5)

By minimizing the mean squared error between the actual speech samples and the linearly

predicted ones, the predictor coefficients can be determined by solving a set of linear

14

equations. However, finding the solution to a system of equations with many unknowns can

be problematic, even if the equations are linear. Fortunately, two different methods exist for

finding the solution of the system of equations. These are the covariance method and the

more commonly used auto-correlation method. When using the autocorrelation method the

system of equations created produces a symmetric matrix where all the diagonal elements are

the same. This is known as a Toeplitz matrix and the very efficient Durbin[16]-Levinson[17]

method, requiring much less computational effort, exists for solving this special system of

equations. Due to the time varying properties of a speech signal it is necessary to calculate a

new set of predictor coefficients every I 0-30ms. Consequently a speech utterance is

segmented into short frames, 10-30ms in duration, and the short-time autocorrelation function

applied to each. However, before the short-time autocorrelation function can be applied to a

framed speech signal x[n] it must be multiplied by a soft window function. A soft window

function is essential in order to reduce prediction error at the beginning and the end of the

segment. Large prediction errors will arise at the start of the interval (0 !> n !> p-I) since the

predictor is effectively being required to predict the signal from samples which have

arbitrarily been set to zero, while at the end of the interval (N !> n !> N + p -1) it is

endeavoring to predict zero signal from samples that are non-zero. The covariance method

uses the same principle of windowing the speech, only it does not use a soft window.

Although this means that it can give accurate estimates of prediction coefficients using a

narrower window it is, unlike the autocorrelation method, not always guaranteed to produce a

stable predictor.

Despite these different methods for obtaining the linear predictive coefficients they all

approximate equally well at all frequencies which is not consistent with that of the human

hearing system. Above 800Hz the spectral resolution of hearing reduces with frequency and

for the volume levels in normal speech, hearing is more sensitive than in other areas of the

audible spectrum. As a result, Hermansky[13] in 1990 proposed a new form of linear

prediction known as Perceptual Linear Prediction (PLP) which mimicked this hearing

response. The PLP technique incorporates three concepts from the psychophysics of hearing

to derive an estimate of the human auditory system; the equal-loudness curve[18], the

intensity-loudness power law [19] and the critical-band spectral resolution[20]. The use of

these three concepts by PLP offered comparable performance with the conventional linear

15

prediction technique using a much lower order of predictive coefficients. Tests on a speaker

independent recognition system showed that a S'h order PLP yielded a better recognition

accuracy than a conventional 14'• order system. Although PLP is ideal for applications where

the data rate (number of predictive coefficients) must be kept to a minimum, the method is

computationally very costly and unnecessary for speech recognition simulation.

2.3 Speech Classifiers

Since the late 1960s many methodologies have been applied towards isolated/connected word

and dependent/independent speaker recognition classifiers. However, regardless of their

method and application, they are all based on the same principle, matching inputted speech

patterns with stored reference patterns within the classifier. Initially a speech signal

undergoes some type of processing to transform it into a sequence of feature vectors. It is

then compared, using an appropriate distance measure[21][22], with a representative training

set of reference patterns stored in the classifier during a training phase. This methodology of

pattern matching, used by the first recognition systems (see Section 2.2.2), is now used by

more modem classification systems such as Dynamic Time Warping (DTW), Hidden Markov

Models (HMMs), Artificial Neural Networks (ANNs) and hybrids systems which are a

combination of the former systems.

2.3.1 Dynamic Time Warping

Due to the inherent variability of speech, a speech pattern, even from the same speaker, can

vary both locally and globally with respect to time. Hence it is necessary to time-align

speech patterns in order to find a distance measure between them. The simplest form of time

aligning two patterns is Dynamic Time Warping (DTW)[23][24] which maps the time axis of

an inputted speech pattern onto the time axis of an trained reference pattern, as shown in

Figure 2.3. In order to align the input and reference speech patterns, the mapping function

m[n] needs to be determined. To achieve this, both the beginning and end-points of the two

patterns have to first be detected. Once the beginning and end-points have been detected,

16

time-alignment of the two patterns can begin by solving the optimisation equation (2.6) to

determine ro [n].

(2.6)

where d[I[n],R(ro [n])] is the distance between frame n of the input speech pattern I and frame

ro(n) of the reference pattern R, and D is the accumulated distance between speech patterns T

and Rover the optimal path ro(n).

Reference
Pattern

-----------------------I ~

' '

' ' ' '
' '
' '
' '

'
' ' '

' '

l ~::::::::::::::::::-::::::---:
- - - - - - - - - - - - - - - - - - ~-,-c----'--~' _;_~·~----;--.;_;_J

'
Mapping Function CO[n]

' ' ' ' I I

' '
' ' I I

' '
' '
' '
' ' ' '
' '

Test Pattern
'--~~~~~~~~~_L-

Time

Figure 2.3 Graphical Representation of the Time-Aligning Procedure used by Dynamic Time Waroing fDTW)

to Align a Test and Reference Pattern.

Although DTW is a simple technique, it does have a few drawbacks. First DTW can have a

heavy computational load making real-time application difficult, second is the failure of

DTW to adequately exploit redundant information within a speech signal to aid recognition

and finally is the problem of dealing with noisy inputs. However, these problems can be

eased by implementing non-linear sampling when obtaining frame intervals and omitting

highly correlated frames from a speech utterance.

17

2.3.2 Hidden Markov Models

Hidden Markov Models (HMMs) are different from DTW in that they do not directly

compare input patterns with stored test patterns. Instead they create stochastic models from

known utterances to create test patterns and compare the likelihood that the input pattern was

generated by one of the models (test patterns). The basic theory ofHMMs was published by

Baurn [25] in the late 1960's and early 1970's and was first used in speech processing by

Baker (26] and Jelinek [27] in the 1970's. It was not until the mid-eighties that a profound

understanding of the subject and its application was founded. The HMM structure consists of

an underlying Markov chain containing inter- and intra-linked states (see Figure 2.4).

11 = (11, 11, 11, 11,)

all al2 au a,.

['"
b21 b3! b4!

'"] a,, a,, a,, a,,
B = [bjk] = b12 A= [a;i]= b, b32 b42 b,

a31 a32 a33 a"
bn b23 b33 b43 b53

a41 a42 a43 a ..

a, a, a" a"

1 2 a,, 3 a" 4

Figure 2.4 Graphical Representation of a 4-State Hidden Markov Model and its Control Matrices

At a discrete instant of time 't' the HMM is in one of the states and outputs a certain speech

pattern. At the next time instant, t+ 1, the model moves on to another state, or loops back to

the same state again, and produces yet another pattern from the state its in. The looping back

allows for time fluctuations from the input pattern to the test pattern. This procedure is

repeated until the complete sequence of patterns has been produced. In a sense a HMM gives

a description of an utterance as a concatenation of sounds from each state. Three matrices

18

------ -----

control the behaviour of the chain. The first matrix (n) controls the probability of which state

the models starts. The next is the state transition matrix, A, which controls the probability of

changing from one state to the next and finally matrix, B, which represents the probability

distribution function of each state. The number of states, patterns in each state and

interconnections vary from system to system although the basic idea and architecture remain

the same.

2.3.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a family of architectures used for pattern matching.

Although they are said to emulate the neural structure of the human brain, there are enormous

differences between the brain and ANNs. The first attempts to model brain function were by

McCullogh and Pitts back in 1943 [28]. However, it was not until 1986 when an adequate

training algorithm was developed [29] that ANNs were used for serious classification

procedures such as optical character recognition (OCR), Electrocardiograph (ECG) analysis

and speech recognition. One of the most attractive features of ANN classifiers is their variety

and architecture adaptability. ANNs offer a large potential for trying new architectures and

for creating application specific classifiers. For this reason ANNs were selected for

experimentation to fulfill the three research objectives of this thesis and so their history,

development, implementation and limitations are detailed in Chapter 4.

2.4 Adaptation

Classification systems rely on a data set of trained reference patterns to classify an utterance

from a speaker. However, the nature of speech means that utterances can contain a wealth of

varied information, increasing their inter- and intra-speaker variability, and reducing their

likelihood of a match with a reference pattern. Since it is not practical to train a classification

system with every possible utterance from every possible speaker, some form of adaptation is

necessary. Adaptation allows a system to dynamically map itself towards a new utterance,

normalising speaker characteristics to ensure that a speech recognition system is only

19

sensitive to the phonetic information. Such adaptation can occur at either the pre-processing

stage, which transforms the speech signal into a sequence of feature vectors, or the

classification stage, which classifies the feature vectors into speech sounds. When adaptation

is applied during the pre-processing stage the type of normalisation depends on the type of

pre-processing involved. For example, if a system uses formant information for its

recognition features then the upper and lower limits of the formant frequencies for each

utterance can be normalised [30][31][32]. The array of adaptation techniques available for

the classification stage is vast and, like the pre-processing adaptation, depends very much on

the type of system being used. However, the basic concept is still the same, to normalise the

incoming utterances making them insensitive to speaker characteristics. Despite the variety

and large number of adaptation techniques, they can all be categorised into one of two

groups; supervised or unsupervised.

During supervised adaptation, an external teacher is used to inform the recogniser of either a

correct or incorrect classification. The external teacher can be in the form of a discrete input

from the speaker such as a keyword or an adaptation data set of input-output pairs. This

ensures that the recogniser always adapts towards the correct speech class, but this is often

impractical. For unsupervised adaptation the procedure requires no teacher and the selection

of a class to adapt towards is automated. This is faster and more practical than a supervised

system but can lead to incorrect adaptations without the users knowledge of control. Further

information on adaptation is detailed in Chapter 6.

2.5 Summary

There are many problems concerning the recognition of speech, mainly due to the variability

and complexity of even the simplest utterance. However, adaptation offers an ideal

opportunity to overcome many of these problems and achieve multi-speaker large-vocabulary

continuous speech recognition. This chapter has described several analysis and classification

techniques from the earliest of systems to the present day.

20

To fulfill the research objectives, a classification and speech analysis combination was

required that would offer a wide scope of system adaptability and variability to allow the

creation of a new adaptation technique. To create the classifier, ANNs were selected since

they offer a large potential for trying out new ideas and creating novel architectures. For the

speech analysis, linear prediction was chosen due to its simplicity and well documented

behaviour. This was necessary since all the adaptation was occurring within the classifier, the

main area of concern. An over complicated speech analysis technique may have clouded and

confused new adaptation-procedure results.

The selection, preparation, and format of the speech data for all the experimentation is

explained in the following chapter. It highlights the importance of data selection and the

selection of the vowel phonemes from the TIMIT speech database. It then details all the pre

processing and the final formatting of the speech data, ready for introducing to the classifier.

An introduction into ANN s, detailing their background, various architectures and learning

rules, is given in Chapter 4.

2.6 References

[1] K.H.Davis, R.Biddulph and S.Balashek, "Automatic Recognition of Spoken Digits," J

Acoustical Society of America," Vol24, No6, pp 637-642, Nov 1952.

[2] J.E.Shoup, "Phonological Aspects of Speech Recognition," pp125-138, Trends in

Speech Recognition, W. A. Lea, Ed., Prentice-Hall, Englewood Cliffs, NJ, 1980.

[3] DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus CD-ROM, Oct 1990.

Web Address: //www.ldc.upenn.edu/

[4] L.Rabiner and J.B.Hwang "Fundamentals of Speech Recognition," Prentice Hall,

NJ, 1993.

21

[5] P.B.Denes and E.N.Pinson, "The Speech Chain, The Physics and Biology of Spoken

Language," Bell Telephone Laboratories, Incorporated, March 1972.

[6] An Introduction to Language V. Fromkin R. Rodman , Harcourt Brace Jovanovich

College Publishers, 1993.

[7] G.A.Miller and S.Isard, "Some Perceptual Consequences of Linguistic Rules,"

Journal ofVerbal Learning and Verbal Behavior, Vol2, pp217-228, 1963

[8] F.J.Owens, "Signal Processing of Speech," The Macmillan Press Ltd, 1993.

[9] P.Denes and M.V.Mathews, "Spoken Digit Recognition usmg Time Frequency

Pattern Matching," J Acoustical Society of America, Vol32, pp1450-1455, Nov 1960.

[1 0] H.Dudly and S.Balashek, "Automatic Recogntion of Phonetic Patterns in Speech," J

Acoustical Society of America, Vo130, pp721-732, Aug 1958.

[11] H.F.Olson and H.Belar, "Phonetic Typewriter," J Acoustical Society of America, Vol

28, pp1072-108l, Nov 1956.

[12] J.W.Cooly and J.W.Tukey, "An Algorithm for the Machine Calculation of Complex

Fourier Series," Mathematics of Computation, Vol19, pp297-301, 1963.

[13] L.R.Rabiner and M.R.Sambur, " An Algorithm for Determining the Endpoints of

Isolated Utterances," The Bell system technical journal, pp297-315, 1975.

[14] B.S.Atal and S.L.Hanauer, "Speech Analysis and Synthesis by Linear Prediction of

the Acoustic Wave," J Acoustical Society of America, Vo150, pp637-655, 1971.

[15] Makhoul, "Linear Prediction," Procs IEEE, April1975

22

[16) J.Durbin, "The Fitting of Time-Series Models," Rev. Inst. Int. Statist., Vol.28, NoJ,

pp.233-243, 1960.

[17) N.Levinson, "The Wiener RMS (root mean square) Error Criterion in Filter Design

and Prediction," J. Math. Phys., Vol.25, No.4, pp.261-278, 1947.

[18) D.W.Robinson and R.S.Dadson, "A Predetermination of the Equal-Loudness

Relations for Pure Tones," Br. J. A pp!. Phys., Vol.7, pp.166-181, 1956.

[19) S.S.Stevens, "On the Psychophysical Law," Psycho!. Rev., Vol.64, pp.l53-181, 1957.

[20) M.R.Schroeder, "Recognition of Complex Acoustical Signals," Life Sciences

Research Report, Vol.S, pp.324, 1977.

[21] A.H.Gray and J.D.Markel, "Distance Measures for Speech Processing," IEEE Trans.,

ASSP-24, Vol.5, pp.380-391, 1976.

[22) N. Nocerino, F.K.Soong, L.R.Rabiner and D.H.Klatt, "Comparative Study of Several

Distortion Measures for Speech Recognition," Speech Communications, Vol.4, pp.317-331,

1985.

[23) F. ltakura, "Minimum Prediction Residual Principle Applied to Speech Recognition,"

IEEE Trans., ASSP-23, Vol.l, pp.67-72, 1975.

[24) C.S. Myers, L.R. Rabiner and A.E. Rosenberg, "Performance Tradeoffs in Dynamic

Time Warping Algorithms for Isolated Word Recognition," IEEE Trans., ASSP-28, Vol.6,

pp.623-635, 1980.

[25] L.E.Baum and T.Petrie, "Statistical Interference for Probabilistic Functions of Finite

State Markov Chains," Ann. Math. Stat., Vol.37, pp.l554-63, 1966.

23

[26] J.K.Baker, "The DRAGON System - An Overview," IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol.23, No.!, pp.24-9, 1975.

[27] F.Jelinek, "Continuous Speech Recogntion by Statistical Methods," Proc IEEE,

Vol.64, pp.532-6, 1976.

[28] W.S. McCullogh and W. Pitts, "A Logical Calculas of the Ideas of Immanent in

Nervous Activity," Bull, Math., Biophys., 3, pp115-133, 1943.

[29] R.P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, pp.4-22, April 1987.

[30] L.J.Gerstman, "Classification of Self-Normalized Vowels," IEEE Trans., AU-16,

Vol.l, pp. 78-80, 1968.

[31] E.P.Neuburg, "Frequency-Axis Warping to Improve Automatic Word Recognition,"

Proc. ICASSP-80, pp.l66-168, 1980.

[32] H.Wakita, "Normalisation of Vowels by Vocal-Tract Length and its Application of

Vowel Identification," IEEE Trans. ASSP-25, Vol.2, pp.l83, 1977.

24

CHAPTER3

Speech Data

3.1 Introduction

To obtain the desired results from a speech recognition system, usage of correct speech data is

vitally important. The recording conditions of the speech along with the choice of speakers,

their dialect region and gender can all dramatically influence the results. All these

parameters, including the quantity of data, must be chosen specifically for the classification

task at hand to ensure that the network exhibits a good generalisation. If a limited data set is

chosen which doesn't give a good overall representation of the speech to be classified then

the generalisation is poor, hindering the recognition of new utterances. However, if the data

set is too large and over comprehensive then the generalisation is said to be too high causing

problems with the convergence of the classifier during the training and adaptation phase. The

goal of training a network is not for it to learn an exact representation of the speech data, but

rather to build a statistical model of the process which generates each speech utterance

wishing to be classified. It is therefore necessary to optimise the diversity and quantity of the

speech in order to achieve the best generalisation.

Speech has many linguistic levels such as sentences, words and syllables. Most speech

recognition systems perform at the 'word' level since words can be uttered discretely to avoid

any eo-articulation effects. This is fine with a limited vocabulary when a classifier need only

be small to represent each 'word' class. However, when dealing with large vocabularies

(1000+ words), the size of the classifier can become unmanageable. To avoid this problem it

is best if we deal at the 'phoneme' linguistic level. Phonemes are the basic sound units of

speech of which there are about 50 in the American-English language. This means that

regardless of the vocabulary size it is only necessary to classify 50 sounds. Phoneme

recognition systems are consequently the most promising approach to large vocabulary

systems and so all experimentation will be focused at the phoneme linguistic level. The

25

,--

experimentation is primarily concerned with intra- and inter-speaker dynamic adaptation.

Therefore to emphasise any adaptation effects that may occur within the modified ANN

architecture, experimentation needs to be concentrated on speaker-information rich

phonemes. Phonemes can be categorised into 12 groups (see Figure 2.1). Of these 12 groups,

vowel phonemes are the most spectrally well defined making them more easily and reliably

recognised. Also, the vowel phonemes are produced solely by vibration of the vocal cords

creating resonant frequencies (formants) in the vocal tract which are altered by the movement

of the mouth's articulators. The nature of their production means they contain a wealth of

speaker information making them ideal for testing intra- and inter-speaker adaptation effects.

There are 13 vowel phonemes in American-English speech and during experimentation it is

necessary to not only test the effect on the adapted vowels but also the effect the adaptation

has on the remaining unadapted vowels. This is a very labour intensive procedure and so it is

favourable to reduce the phoneme groups further. The vowel phonemes can be split into 3

groups depending on the position of the tongue during their production. The variation in the

cross-sectional area along the vocal tract determines the formants of each vowel phoneme.

This cross-sectional area, particularly in the oral cavity, can be altered by the movement of

. the articulators, primarily the tongue. The tongue movement varies the formants in two ways;

by the tongue-hump-position (i.e. front, middle, back) and by the degree-of-constriction (i.e.

high, middle, low) the tongue hump causes (see Figure 3.1). As a result, the tongue plays a

fundamental part in the production of the formants in the vocal tract that make the vowel

sounds. Peterson and Bamey [1] measured the first and second formants, F1 and F2

respectively, of 10 vowel phonemes uttered by a variety of both male and female speakers.

The information they gathered was averaged out for each vowel phoneme and a plot of F1

against F2 constructed to obtain results for an average normalised speaker (see Figure 3.2).

The plot created what is known as the 'Vowel Triangle' representing the extremes of the

formant locations in the F1-F2 plane. The vowel triangle shows a pattern trend between the

position of the vowel phonemes within the F 1-Fz plane and the position of the tongue during

their production. As the constriction of the tongue decreases so F1 increases and as the

position of the tongue-hump moves backwards through the oral cavity then so F2 decreases.

26

FRONT BACK

flY/ /ER/ /UW/ TOP

IIW tAXI lUll/

fEY/ /All! IOW/

/Ell/
/AO/

/AFJ /AA/ BOTTOM

Figure 3.1 The Position of the Tongue-Hump in the Oral Cavity during the Production of the American-English

Vowels.

Phonemes from the same tongue-hump group are positioned closely within the F1-F2 plane.

With this strengthened by evidence from waveform plots and spectrograms showing acoustic

similarities between vowels of the same tongue-hump position [2], the phonemes were

grouped with respect to their front, middle and back tongue-hump positions. Using the

ARPABET representation [3], the front vowel phonemes are /IY/, /lW, fEY/, !EH! and /AE/,

the middle vowel phonemes are /ER/, lAX! and /AH/, and the back vowel phonemes are

IUW/, IUHI, IOW/, IAO/ and /AN.

2400
flY/

2200

2000 IIHI
'N e.

1800 e!Elll
~
~ etAFJ ..

1600 E
.f

1400
e!ERI

1200 .,
/AA!

1000

800
200 400 600 800

Formant Fl (Hz)

Figure 3.2 F1 - F1 Plot of Averaged American-English Vowel Speech Data from a Variety of both Male and

Female Speakers showing the "Vowel Triangle."

27

3.2 The DARPA TIMIT Speech Cornus

All the speech data used in this thesis was obtained from the Texas

Instruments/Massachusetts Institute of Technology (TIMIT) corpus of read speech available

on a CD-ROM [4]. Sponsored by the Defense Advanced Research Projects Agency

(DARPA), TIMIT contains speech from 630 speakers representing 8 major dialect divisions

of American-English, each speaking 10 phonetically-rich sentences. Of these 630 speakers,

70% are male with their dialect region defined as the geographical area in the U.S. where they

lived during their childhood years (age 2 to 10). The 10 phonetically-rich sentences uttered

by each speaker consist of 5 phonetically-compact sentences, 3 phonetically-diverse sentences

and 2 dialect sentences used to expose dialect variants between speakers. The speech data on

the CD-ROM is divided into suggested Training and Test sets using the following criteria:

• Roughly 20 to 30% of the corpus should be used for testing purposes, leaving the

remaining 70 to 80% for training.

• No speaker should appear in both the training and testing sets.

• All the dialect regions should be represented in both subsets, with at least I male and I

female speaker from each dialect.

• The amount of overlap of text material in the two subsets should be minimised; if possible

the training set and test set should have no sentence texts in common.

• All the phonemes should be covered in the test material; preferably each phoneme should

occur multiple times in different contexts.

Although it was favourable during experimentation to use as much speech data as possible to

obtain good generalisation, the 2 dialect sentences from each speaker used to expose dialect

variants were omitted. This was because the same two sentences were uttered by every

speaker in both the training and test sets, violating one of the suggested training and testing

criteria.

All the experimentation was concerned with the effectiveness of adaptation on a new

modified ANN architecture. It therefore would have made no sense using, initially, a wide

variety of speakers from many dialect regions, since this would have made recognition

difficult and left the possibility of clouding important subtle results. Consequently to

28

highlight the effects of any adaptation on the newly modified ANN architecture, all the

speech data was selected from a single dialect region. The 7th dialect region, corresponding to

the western geographical area of the U.S. was chosen for training and testing since it

contained the most well-represented training set on the TIMIT CD-ROM. Also for exactly

the same reasons used to select the dialect region, only speech data from 'male' speakers in

dialect region 7 were used to train and test the new classifier. Male speakers made up -70%

of the TIMIT speech corpus giving 59 suitable male speakers for training and a choice of 15

male speakers for testing, all from the 71
h dialect region. The 59 male speakers from the

dialect region 7 training set on the TIMIT CD-ROM were collectively known throughout the

experimentation as the 'Training Set'. The number of speakers in the 'Test Set' varied

throughout the experimentation but were always made up from speech data belonging to the

15 male speakers in the dialect region 7 test set on the TIMIT CD-ROM.

3.3 Speech Pre-Processing

All the speech data was recorded in a noise-isolated recording booth and sampled at 16kHz

with 16-bit quantisation. A sample of the TIMIT speech data is shown in Figure 3.3 which

shows a frequency and time waveform plot of the utterance "She had your dark suit." As well

as dialect and training/test set directories, the speech data was further catalogued into speaker

directories. In order to identify the speaker of each utterance each directory was coded, where

the first letter represented the speaker's gender (M for male and F for female), a further three

letters represented the speakers initials and a single number was used avoid confusion

between speakers with the same gender and initials. Within each speaker directory the

recorded speech waveform files (.wav) had three associated transcription files (.txt, .wrd,

.phn). The .txt file contained an account of the words the speaker uttered during each

corresponding speech waveform. The . wrd and . phn files contained time-aligned

transcriptions of the words and phonemes receptively. The time-alignment information

referred to the boundaries of each word or phoneme in the spoken sentences allowing either

the manual or automatic retrieval of selected sounds from any of the continuous utterances on

the TIMIT CD-ROM.

29

. Ish! : liyl :!hv/ lael (dcillyOer/: 1&. /aa! :~r~: fd Is! •:c lux/
~:

. lt/
4 •.-4 .4 •. 4 •. 4 • 4 •. .•. 4 ••• • • • •• ~ . .
;--sHE •• HAD • 4YOUR --M-DARK •. 4 SUIT

Figure 3.3 Spectrogram and Time-waveform of sampled TIMIT speech data

Due to the quantity of speech data, the retrieval of phoneme information was automated in

terms of a look up table using 'Speech Tools' [5]. The 'Speech Tools' were a collection of

software packages, complied for use on a UNIX machine, to specifically prepare and analyse

TIMIT speech data. Using the .phn files, each of the desired phonemes were extracted from

the corresponding speech waveforms to create new phoneme waveforms. Using batch files,

this entire process was automated enabling the retrieval of all 13 American-English vowel

phonemes from the 'Training Set' and 'Test Set'. However, it was at this stage that phoneme

/UW I was noted as having too few occurrences within the TIMIT database. It was therefore

decided to omit phoneme /UW I from all experimentation to avoid poor generalisation. The

complete 'Training Set' was processed as one batch job whereas the 'Test Set' was processed,

one speaker at a time, so as to keep phonemes from different speakers separated for

experimentation purposes. For each phoneme class, the 'Speech Tools' automatically

30

concatenated all the relevant phonemes from the processed speech waveforms into a single

phoneme waveform. Before any pro-processing of feature extraction could occur, each

concatenated phoneme waveform had to be split back into single phoneme waveform files.

This was achieved by writing a small software program which scanned the inputted

concatenated phoneme waveform for specific periods of silence. Each of these periods of

silence (strings of zeros in the file) were added by the 'Speech Tools' to separate each

phoneme utterance. Between each period of silence, the waveform was copied to create a

new single phoneme waveform. Due to the nature of speech, each of the phonemes were of

differing duration. However the modified ANN architecture required each set of input data to

be of equal length since the number of input nodes was fixed. To achieve this, each of the

single phonemes were either cut off or had periods of silence added to them to achieve a fixed

length phoneme file. Before this could be done, the ideal length of a phoneme file had to be

investigated. If the file was too short then this would mean that vital phoneme information

could be lost. If the files were too long, resulting in the majority containing some period of

silence, then data resolution would be lowered. Over a short interval of time, -1 Oms, speech

is said to be stationary since during this time the mouths articulators have little time to move.

However, for recognition of a vowel phoneme it is necessary to see how the waveform varies

over a greater time period. For the phonemes from the TIMIT corpus, a period of - 70ms was

deemed sufficient to allow recognition without the waveform becoming unnecessarily long.

Therefore phonemes longer than this period were clipped and phoneme shorter were

concatenated with zeros.

Before any features were extracted from the speech waveform, the signal needed to be pre

emphasised (see Section 2.2.1) to compensate for the -6dB/octave roll-off of voiced speech.

By using an appropriate filter (i.e. equation (3.1)) the speech signal was given a +6dB/octave

lift to ensure a similar dynamic range across the entire vocal spectrum. The filter used was :

y[n] = x[n]- 0.95[n -1] (3.1)

One of the most common forms of speech pre-processing is linear prediction (see Section

2.2.4). Since all experimentation was primarily concerned with the performance of the

modified classifier, linear prediction with its simple coding and well documented behaviour

31

was chosen as the most appropriate form of speech pre-processing. Linear prediction creates

a set of linear predictor coefficients (LPCs) which can predict a speech signal reasonably

accurately over stationary portions of speech. Since speech is only considered stationary for

-I Oms, new predictor coefficients have to be generated to follow the varying nature of the

speech signal. Consequently, the speech signal was split into overlapping windows of equal

size and LPCs for each window generated. However, before LPCs were generated, the size

and shape of the over-lapping windows had to be decided. With the speech signal sampled at

16kHz, it was important to ensure that each window represented at least lOms. Hence, each

window contained 256 samples equal to 16ms of speech. LPCs were created by predicting

speech samples from a linear combination of past speech samples. The auto-correlation

linear prediction method used in the experimentation (see Section 2.2.4) assumes that

samples outside the finite window of speech are zero. This causes large prediction errors

since the initial samples from the windows are trying to be predicted from samples that have

been arbitrarily set to zero. Likewise the error can be large at the end of the interval because

· its trying to predict zero from samples that are non-zero. For this reason a window that

tapered the segment of speech was needed, a 'soft window.' The Hamming window was

chosen because it offered a good trade off between its tapered side lobes to reduce

discontinuities at the edges and the large proportion of its energy held within the main lobe

(see Figure 3.4 and equation 3.2). The hamming window is defined as :

y = { 0.54- 0.46cos(2n 'fN) }. O~n~N (3.2)

= otherwise

To avoid missing any important features within the phonemes, the sliding windows along the

speech waveform over-lapped halfway. Therefore, to achieve total time durations of -70ms

for each phoneme, with a time duration of 16ms for each window, 8 over-lapping windows

were used giving a total duration of 72ms (see Figure 3.5).

32

0.9

0.8

0.7

~ 0.6

~ 0.5
E
..: 0.4

0.3

0.2

0.1

Hamming Window

0~----~--~-----+-----+----~----~----+---~

Window Samples

Figure 3.4 Graph showing the Envelope of the Hamming Window

Figure 3.5 Graphical Representation of the Eight Hamming Over-Lapping Windows Sliding Along the Speech

Waveform

After the phoneme speech waveforms were windowed, LPCs from each window were

generated. The number of LPCs in each window reflected how accurately the coefficients

matched the speech waveform. The idea behind linear prediction is to reduce the amount of

speech data by eliminating unnecessary and redundant information. However, if too few

LPCs are generated then important information is lost. Consequently there is a trade off

between reducing the speech data and maintaining important information. As can be seen

33

from Figure 3.6 [6], as the number of LPCs increases so theRMS prediction error falls. The

lower the RMS prediction error the more accurately the coefficients reflect the waveform.

We therefore require a low RMS prediction error without the number of LPCs becoming too

high.

The RMS prediction error initially falls quite dramatically for both the unvoiced and voiced

speech. Vowel phonemes are produced solely by voiced excitation of the vocal cords and so

only the curve for the voiced speech is of interest. After 12 LPCs, the curve is relatively flat

and so having anything greater that 12 would be of no advantage, especially since 12 LPCs is

adequate to reflect speaker characteristics within the waveform.

0.9

0.8

~ 0.7

§ 0.6

~ 0.5
e
Q. 0.4
(/)
::;: 0.3
a:

0.2

·-

0.1

o+----+----+----+----+---~
0 00 "'

Number of Prediction Coeffflclents

--Voiced
Speech

• • • • • • Unvolced
Speech

Figure 3.6 Variations of theRMS orediction error with the number of predictor coefficients. p.

Consequently, 12 LPCs for each window were chosen giving a total of 8x12=96 coefficients

for each vowel phoneme. During the LPC procedure all the coefficients were normalised by

dividing by the first. The first coefficient could therefore be eliminated since it was always

equal to one. This left 11 LPCs for each window resulting in a total of 8x11=88 coefficients

to be used by the classifier for training and testing.

3.4 Classifier Input-Data Format

Due to the selection of ANNs for creating the speech classifier, several software packages

were investigated to model the ANN architecture (see Section 4.4). The package selected for

experimentation was called the 'Stuttgart Neural Network Simulator' (SNNS) [7] and

34

required the data used for training, testing and adapting to be in a 'Pattern' format (Figure

6.4). A 'Pattern' file consists of a header containing the date, data type and quantity

information, along with input information (the LPCs) and the desired outputs (which vowels

the LPCs represent). The headers were generated using an SNNS software package called

'MKHEAD'. The headers were then appended to the LPC data along with desired output

information.

3.5Summary

The selection, generation and formatting of speech data for any recognition system is vital.

Consequently great care was taken to select speech data for the experimentation that would

yield clear results. To allow clear recognition and adaptation results, it was necessary to have

speech data from speakers with a consistent gender and dialect. This reduced the amount of

speech data available and so the main selection criteria for all aspects of the speech data was

quantity. This led to the selection of dialect-region-7 male speakers. Despite this, a large

training and test-set was still available with dialect region 7 representing geographically about

a third ofthe entire United States. With all the speech data,.selected, processed and formatted,

all emphasis is now given over to the classifier. Chapter 4 presents a review of neural

networks classifiers, detailing their background, various architectures and learning rules. As

mentioned in Section 3.4, Chapter 4 also investigates various software packages for

modelling ANNs.

3.6 References

[I] GE Peterson and H.L. Bamey, "Control Methods Used in a Study of the Vowels,"

J.Acoust. Soc. Am., vol. 24, pp.175-184, March 1952.

[2] L. Rabiner and B. Juang, "Fundamentals of Speech Recognition," 26-27, Ch2,

Prentice-Hall, Englewood Cliffs, NJ, 1993.

35

[3] J.E.Shoup, "Phonological Aspects of Speech Recognition," 125-138, Ch6 in Trends in

Speech Recognition, W. A. Lea, Ed., Prentice-Hall, Englewood Cliffs, NJ, 1980.

[4] DARPA TllviiT Acoustic-Phonetic Continuous Speech Corpus CD-ROM, Oct 1990.

Web Address: //www.ldc.upenn.edu/

[5] Speech Tools User Manual, Center for Spoken Language Understanding, Oregon

Graduate Institute of Science and Technology, August 1993.

[6] B.S.Atal and S.L.Hanauer, "Speech Analysis and Synthesis by Linear Prediction of

the Speech Wave," J. Acoust. Soc. Am., 50(2): pp637-655, August 1971.

[7] SNNS Stuttgart Neural Network Simulator User Manual, Version 3.1, University of

Stuttgart, Institute for Parallel and Distributed High Performance Systems.

36

CHAPTER4

Neural Networks

4.1 Introduction

Modern electronics are able to process and manipulate information both faster and more

reliably than any human brain, and yet there are many scenarios where the human brain

outstrips the most sophisticated machines with ease. Although operating millions of times

slower than many computers, the human brain is able to deal with many involved tasks such

as deciphering complex images and understanding continuous noisy speech. Using past

experiences, it is also able to gain knowledge, aiding in the recognition and adaptation

towards new information. These tasks and many others have all beaten the best machines and

so there has been a concerted effort to try and understand the architecture and functionality of

the human brain in an effort to emulate its behaviour and performance.

4.2 Biological Model

The human brain is an immensely complex structure containing an estimated 100 billion

neurons all inter-connected, receiving and transmitting information via 1000s of synapses

(the links between neurons). The neuron, a specialised cell that conducts nerve impulses,

consists of a cell body, an axon and dendrites (see Figure 4.1). The exact way in which

neurons interact with one another remains largely uncertain. However, we do know that a

neuron sends its output to other neurons via its axon to weighted connections known as

synapses which link to awaiting dendrites. A neuron sums all the signals (voltage potentials)

received from its dendrites, both positive and negative, until a threshold value, the bias, is

achieved and the neuron 'fires,' sending its signal to other neurons. This process occurs

throughout the brain as millions of neurons simultaneously pass information around the

37

complex network, learning and adapting to new inputs by constantly altering the weighted

connections and the biases.

Dendrites

Figure 4.1 Graphical Representation of a Biological Neuron

4.3 Artificial Neural Networks (ANNs)

Due to the limited knowledge of the human brain's functionality and the restrictions of

modem computational devices, the creation of an exact simulation has never yet been

feasible. Consequently models of the human brain have always been simplistic, designed

merely to introduce parallelism among highly interconnected nodes in order to perform non

linear transformations. By taking a rudimentary look at the anatomy of the biological model

we can see the comparison with modem Artificial Neural Networks (ANNs) (see Figure 4.2).

Weighted
Inputs

from Adjoining ___ _,

Neurons (Nodes)

Figure 4.2 Simple model of an ANN

Bias

Activation

Outputs to
Adjoining

Neurons (Nodes)

Figure 4.2 shows the neuron's inputs passing through the weighted connections (synapses)

into the neuron cell, where all the influences are summed together. If the sum of the

weighted inputs and the bias satisfies the activation function (i.e. the threshold is met) then

the neuron fires, sending its signal to the inputs of the next adjoining neurons. These
38

artificial neurons (nodes) are usually, unlike the biological model, arranged into layers with

the first and last layers acting as the ANN's inputs and outputs respectively. Each node often

connects fully to every other node in an adjoining layer giving by far the most common and

simplest arrangement of nodes in an ANN. However there have been, and still are many

variations, offering differing architectures, activation functions and training methodologies.

The first attempts to model brain function was by McCullogh and Pitts [1] back in 1943.

Since then the development of the ANN has led a very chequered life with a paper by Minsky

and Pappert in 1969 [2] reporting that two-layered networks were incapable of solving some

simple problems. They further suggested that there was no reason to believe that networks

with more than two layers would improve the situation, resulting in a huge decrease of

interest in ANNs. It was not until1986, when Rumelhart and Hinton [3] developed the back

propagation algorithm to enable the training of multi-layered networks, that ANNs began to

show a sudden re-emergence of interest. Spurred on by its loose comparisons with the

'human brain,' this renaissance led to a vast array of architectures, training methodologies

and application-driven networks being developed.

An ANN may be specified by 3 basic components; the activation function, architecture, and

training method. The selection of each component plays a vital role in the behaviour of an

ANN and depends very much on the application for which it is intended. Consequently,

various choices from each component area were explored to produce a set configuration for

the experimentation. Other than the architecture, the main criteria for selecting each

component was its well documented usage and ease of implementation. This was to create a

standard configuration, allowing the effects made by any architectural changes to be clearly

highlighted.

4.3.1 The Activation Function

The activation function, f(a), is primarily a threshold regulator for firing a node in an ANN.

Figure 4.3(a) shows how the activation function influences the combined weighted inputs and

bias to produce the ANN node's output. The most basic activation function is the 'step

function,' (Figure 4.3(b)), which acts as a discrete firing switch when the sum of the weighted

inputs and the bias reach a threshold value h. Usually h = 0, and so the node fires when the

39

sum of the weighted inputs is equal to the node's bias. However, it is best if all the nodes

have some non-linearity to enhance a network's approximation, classification and noise

immunity capabilities. The most often used non-linearity is the sigmoidal activation function

because it is both continuous and differentiable, making its learning stage easier. Sigmoidal,

meaning 'S' shaped and allows the outputs of a node to provide more than simply a

classification; it can also be interpreted in terms of probabilities. Consequently, all nodes

during the experimentation used the sigmoidal activation function.

e (a)

Xo

y

• m,._,
XN-1

+I

0 h

(b)

___ ...j..:_.!..J-1------- Threshold Value (h)

Step Activation Function Sigmoidal Activation Function

f(a)= {
1, >h

-1, Otherwise

1
f(a) 1 + e<•-a>

Figure 4.3 Graphical Representation of an ANN Node (a) Showing the Two Most Common Activation
Functions f(a); the Step Activation Function lbl and the Sigmoidal Activation Function (c).

4.3.2 ANN Architecture

There are many kinds of ANN architectures which describe the way in which nodes are

interconnected. Each application-driven architecture is designed specifically for the data type

to be classified (binary or analogue-valued input), the training methodology (supervised or

unsupervised) and the complexity of the classification task (single or multi-layered). There

40

exists three standard and well known architectures which can be used for static pattern

classification; the recurrent network, the feed-forward network and the self-organising

network. From these three groups of topologies, the Hopfield and Hamming 'recurrent'

networks, the multi-layered perceptron (MLP) 'feed-forward' network and finally the

Kohonen 'self-organising' network will be discussed.

Hopfield Network

The Hopfield network, illustrated in Figure 4.4, is a feed-back 'recurrent' network in which

the inputs to each node include both inputs as well as outputs. Requiring binary inputs, the

Hopfield network is ideal for systems such as OCRs that use discrete black and white pixels

as input elements from ASCII text.

Inputs Outputs

Figure 4.4 A Graphical Representation of a Hopfield ANN

Used as either an associative memory or a classifier, the network is trained using class

patterns, each represented by either a + 1 or -1 at each node input, Xo- XN.J. The network is

initially trained for each class by converging the weights in the network, situated at every

node input, using the Hopfield network algorithm [4]. When issued with an unknown

pattern, the network produces an output, which during each indexed time step, is fed back

into the input for another iterative pass. The weights within the network are constantly

updated until they fully converge, no longer producing any changes between successive

iterations. The pattern produced after this convergence is the networks final output. The
41

strength of this type of network is its ability, after several iterative passes, to clean up noisy

versions of a class and produce the correct class pattern at the output. If used for

classification purposes, this output can be compared with the stored classes to determine

which class the output pattern matches. Although Hopfield networks do often perform well

and are able to produce the correct outputs from noisy inputs, they do have two major

limitations. Firstly the number of patterns that can be stored within the network is severely

limited. If the number of classes begins to approach a sixth the number of nodes, then new

fake patterns can be generated resulting in a 'No Match.' The second limitation is when two

stored classes within the network are too similar. This can cause the network to converge

inaccurately, producing an incorrect class pattern to appear at the output.

Hamming Network

The Hamming network [3] illustrated in Figure 4.5, is similar to the Hopfield network in that

it requires binary inputs that for some selected nodes include both inputs and outputs.

However, the network's output is quite different in that it does not produce a stored

representation of the classified input, merely an indication of what the input is thought to be.

------~
Lower Subnet MAXNET

Figure 4.5 A Graphic Representation of a Hamming ANN

42

----~- -----

Initially the weights and thresholds are set in the lower subnet such that the output of the

middle nodes are equal to N minus the Hamming distance for each training pattern where N

is the number of input elements and the Hamming distance is the number of bits in the input

which do not match the corresponding training pattern. Consequently a close match between

an input pattern and a trained pattern results in the highest score at the corresponding output

of the middle nodes. The upper subnet is a MAXNET which takes the outputs from the

middle nodes and iterates until, at the output of the MAXNET, only one node is positive.

Creating a 'Winner-Take-All' methodology, the single positive node corresponds to the

classification of the input pattern. The Hamming network has an advantage over the

Hopfield network in that it requires fewer connections and consequently fewer weights. In a

network with 100 inputs and 10 classes, the Hamming network would only require 1,000

connections compared to -10,000 for a Hopfield Network. Furthermore, the Hamming

network does not produce new fake patterns when the number of classes is too great,

resulting in a 'No Match' scenario.

Multi-Layered Perceptron

Multi-Layered Perceptrons (MLPs) are feed-forward networks with one or more layers of

nodes between layers of input and output nodes as illustrated in Figure 4.6.

Input
Nodes

Hidden Nodes

Output
Nodes

Figure 4.6 A Multi-Layered Perceptron IMLPl with each Node Representing a Processing Unit with Activation
Function

43

These additional layers, containing hidden nodes, are connected via weights to the input and

output nodes. The number of layers a MLP is said to contain, relates to the number of weight

layers, not the number of node layers. Consequently an MLP with an input, output and single

hidden layer will be referred to as having two layers since an input layer contains no weights.

The power and versatility of an MLP lies with its use of non-linearities in each node. It is

this non-linearity (activation function) that enables an MLP to create complex decision

boundaries. If an MLP had linear nodes, then a single-layer network with suitably chosen

weights would be able to perform exactly the same calculations. The complexity of the

decision boundaries is governed not only by the non-linear nodes, but also by the number of

layers (see Figure 4.7).

A

Single Layer
(a)

Two Layers
(b)

Three-Layers
(c)

Figure 4.7. Types of decision boundaries which can be formed by networks having threshold activation
functions and a various number of layers.

A single layer feed-forward network is only able to classify static input patterns into two

classes by forming a half-plane decision region. As the number of layers increases, then so

the complexity of the decision regions increases. However, networks with more than three

layers are usually uncommon since three-layered networks should be able to produce any

complex decision regions with arbitrary shapes, [3]. Most ANN architectures used for speech

recognition are designed to classify static patterns. However, speech is inherently dynamic in

nature and so a modified ANN structure, the 'Time Delay Neural Network, (TDNN)' was

created [6]. The TDNN, figure 4.8, extends the input to each input node to include N

adjacent speech frames, each with a time delay, D, of d seconds. This enables each input to

cover a range of m seconds, highlighting any phonemes variations in a speech signal.

44

Xi

y

Figure 4.8 A graphical Representation of a Time-Delay Neural Network ITDNNl with varying time-delayed
inputs. !0- DN1

Kohonen Network

The organisation of the neurons within the human brain, although genetically predetermined

for low-level functions, often reflects the characteristics of external stimuli during learning.

This principal of honing a neural architecture into a more efficient and input specific network

was adopted by Kohonen with a self-organising feature map [7]. This self-organising

network consists of input nodes connected via weights to output nodes, usually arranged in a

two dimensional grid, figure 4.9.

Xo

Input Output Nodes

Figure 4.9 A Kohonen Self-Organising Network

45

During each iteration of the unsupervised training procedure, input patterns are fed into the

network and the error distances between each input and corresponding node-weight

calculated. The nearest node has all weights within its neighbourhood modified to enable the

model to be more responsive to the applied input. After each training iteration, the initially

large neighbourhood slowly decreases in size. Furthermore the update rate for the weights

reduces with each iteration until it reaches zero, when the network is then able to associate

between different classes using corresponding regions on the output grid. Because of the

slow way in which the weights adapt during training and the fixed number of classes, the

Kohonen network performs well with noisy inputs.

4.3.3 Training

The primary objective when training an ANN is not to learn an exact representation of the

training data itself, but to build a statistical model of the process which generates the data.

This is achieved by setting the weights and bias values within the ANN such that the network

error is minimised for a representative training set. The network error is the sum of the

differences between the desired and actual outputs. The algorithms used to achieve this goal

vary depending on the ANN architecture, although by far the most common is the back

propagation (BP) algorithm used for training MLPs. In fact the success of the MLP is

credited to Rumelhart [8], who in 1986 proposed the efficient back-propagation training

algorithm for optimising the weights and thresholds of multi-layered networks.

The first stage of training an MLP is the initialisation of the weight and bias values with some

small random values. After initialisation, supervised training begins with training pairs

containing input/output information. The input patterns are presented to the network

repeatedly and, on each presentation, the states of all nodes computed as the patterns pass

through the network to the output nodes. For example let us a consider a fully connected

MLP with each node using a sigmoidal activation function. For each node in the network the

output y would be equal to :

46

y, y1 = 11 [1 + exp(- net1)]
(4.1)

Y2 where

• ffi;; netj = L,x,roij -ej (4.2)
Y; i

where j is the number of nodes in the present layer and i is the number of nodes in the

previous layer. The BP algorithm uses a gradient descent algorithm for updating the weights

and bias values, based on the mean squared differences between the actual and desired output

values. The mean squared error for a single input/output pattern is:

where tj is the desired output value for the jth output node.

The purpose behind the training is to alter the weight Olij and bias 9i values within the

network such that the errorE for each input/output pattern is minimised.

(4.3)

In order to minimise E with respect to Olii and 9j. we must apply the chain rule as follows :

Now we introduce the notation

o.= aE
1 iJnet.

1

Using equation (4.6) with (4.4) and (4.5) we obtain:

and
47

(4.4)

(4.5)

(4.6)

(4.7)

Furthermore, from equation (4.2) we can obtain

and
anet.
__ 1 =-1
ae1

Next we want to calculate 3i. Applying the chain rule again we get :

(4.8)

(4.9)

(4.10)

(4.11)

where (}yj{}netj is equal to the derivative of the activation function and aE!(}yj is equal to the

derivative of the mean squared error (4.3).

Fortunately the derivative of the sigmoidal activation function has a simple form

()yj =y(l-y.)
anet 1 1

1
(4.12)

and

(4.13)

However, equation (4.13) only applies if the node is in the output layer, otherwise the error is

propagated back from the nodes in the upper layer, i.e.

(4.14)

where k is the number of nodes in the next upper layer.

48

For the next upper layer we obtain

net.= I,y/oi• -e.
j

Differentiating this equation with respect to Yi gives

Using the notation from (4.6) we can get

0 = dE
• dnet k

Therefore if j is not an output node, a weighted sum of the partial errors

propagated from the nodes in the above layer to give

(4.15)

(4.16)

(4.17)

can be back

(4.18)

Now that all the partial derivatives have been defined, the weights and bias values can be

adjusted. However, some gain term TJ, usually set to between 0 and 1, must be used to

control the adjustment of these values to avoid instability. This gives the changes in weight

and bias values as

and

dE
!'J.(J) .. =-1]·-,, d(J) .. ,,

(4.19)

(4.20)

Since the BP algorithm is only a first order gradient descent technique, controlled

convergence if often slow. It is also prone to being trapped in local minima on the error

49

surface, preventing the weights and bias values from settling. To avoid this problem, a

momentum term can be added to encourage a decreasing network error to pass over any local

minima. Equation (4.21) shows the BP algorithm with the momentum variable a.

aE
L'ico(t) = -1] aco(t) + alico(t -1) (4.21)

where t is the number of training iterations.

4.4 Neural Network Software

Although hardware offers the benefits of utilising the parallel processing power of ANNs, its

rigid design makes it unsuitable for honing and testing new ANN architectures.

Consequently software, although slower, offers the adaptability necessary when designing a

new ANN. There are many ANN software packages on the market which offer a wide

variety of modelling procedures, graphic interfaces, numerous training procedures and

specialist ANN tools. When deciding on the software package to model the ANNs for

experimentation, there were three main criteria used for selection. First the package had to

permit the modelling of complex architectures, allowing the positioning of any nodes of any

type to connect to any other. Second a graphical interface was necessary to allow the

visualisation of the ANN since the construction of complex ANN architectures using a text

driven package can be difficult and prone to incorrect data entry. Finally, the software

package needed to include a variety of training algorithms, permitting large amounts of

speech data with result analysing tools to clearly display the ANN's behaviour. For

experimentation three popular software packages were chosen for evaluation; MATLAB

Neural Network Toolbox, Aspirin/MIGRAINES Software tools and the Stuttgart Neural

Network Simulator (SNNS), and each checked against the above criteria.

4.4.1 MATLAB Neural Network Toolbox

MATLAB [8] offers a powerful environment in which a speech signal can be pre-processed,

classified and analysed in one operation. This is because, as well as including the neural

50

network toolbox, MATLAB also includes signal processing and statistics functions. This

allows great flexibility during any stage of the speech recognition process, making it ideal for

experimentation. However, the MATLAB version available, Version 3.0, included only a

crude neural network toolbox. Although it included all the common activation functions,

architectures and learning algorithms, its scope for adapting these parameters to produce a

customised complex network was limited. Since this investigation into the neural network

toolbox the latest version, Version 4.2c, has overcome these restrictions with software that

now allows all network properties to be easily customised and collected into a single network

object.

4.4.2 Aspirin/MIGRAINES Software Tools

Designed in 1986, the software consists of two elements, Aspirin which is a declarative

language used to describe arbitrarily complex neural networks and MIGRAINES which is an

interface for evaluating and interacting with a neural network simulation. Using a high level

language, Aspirin attempts to describe any network architecture and a number of simulation

routines. This is possible, according to the manual [9], by allowing each node in a destination

layer to be connected only to a subset of the nodes in the source layer. This description code

is then complied and linked to the 'MITRE Interactive Graphical Research and Investigation

Neural Network Emulation System' (MIGRAINES) package. MIGRAINES probes the

generated ANN using available analysis tools allowing a researcher to visually illustrate its

performance. However, the description code for the ANN was actually very restrictive,

preventing the generation of many complex architectures. Unfortunately this was not

explained in the supplied text, resulting in a lot of wasted time. It also had limited learning

algorithms and the graphical interface was crude. Consequently, after much investigation,

the Aspirin/MIGRAINES software was found to fulfill none of the required criteria

4.4.3 Stuttgart Neural Network Simulator

Since 1989 the Institute of Parallel and Distributed High Performance Systems at the

University of Stuttgart has developed and constantly updated the Stuttgart Neural Network

51

Simulator (SNNS) [10]. The objectives of the project were to create an efficient and flexible

simulation environment for research on ANNs. Consisting of two main components, the

kernel performing all internal data operations and the XGUI graphical interface, SNNS

allows the creation and manipulation of various ANNs in a clear visual way. Containing over

10 types of ANN architecture, 33 learning algorithms, 25 weight update functions and 24

weights initialisation functions in the 1995 version 4.1, SNNS is also very comprehensive.

With on-line help and easy-to-use network creation tools, complex ANNs are created quickly

and easily with careful thought given over to inexperienced users. The package, used under

'X-Windows,' offers several windows including a control panel, a network creation tool, a

network error graph, weight display and information panel (see Figure 4.10). The package

also included several analysing tools for statistically analysing the results and an inversion

display which presented ideal input patterns necessary for specific network outputs. SNNS

was clearly the best of the three packages chosen for evaluation and was therefore selected

for the experimentation. However, once experimentation had begun, some of SNNS's

limitations were experienced requiring re-writing of the kernel and XGUI source code (see

section 6.3.3). The software also crashed occasionally in certain instances, but was an

insignificant problem against the benefits of its versatility and performance.

Figure 4.10 SNNS with some of the Windows available for Modeling. Training and Testing ANNs.

52

4.5Summary

The selection of the architecture, activation function and learning rule plays a vital role in the

behaviour of the network and the application for which it is meant. Several types of ANN

components were investigated to enable the selection of the most suitable configuration for

experimentation. The following chapter includes the selection process of the ANN

configuration for experimentation and introduces the One-Class-One-Network architecture.

4.6 References

[I] W.S. McCullogh and W. Pitts, "A logical calculus of the ideas of immanent in

nervous activity," Bull, Math., Biophys., 3, ppl!S-133, 1943.

[2] M. Minsky and S. Pappert, "Perceptrons," Cambridge, MA: MIT Press 1969.

[3] R.P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, pp.4-22, April1987.

[4] J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective

Computational Abilities," Proc. Natl. Acad. Sci, Vol81, pp.2554-2558, April1982.

[5] G.A. Carpenter and S. Grossberg, "Neural Dynamics of Category Learning and

Recognition: Attention, Memory Consolidation and Amnesia," Brain Structure, Learning and

Memory, AAAS Symp Series, 1986.

[6] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, "Phoneme

Recognition Using Time-Delay Neural Networks," Technical Report TR-1-0006, ATR

Interpreting Telephony Research Laboratories, 1987.

[7] T. Kohonen, "Self Organization and Associative Memory," Springer-Verlag, Berlin,

1984.

53

-· ------------------------

[8] MATLAB Version 4.2c, The Math Works Inc. Address: The Math Works, Inc, 24

Prime Park Way, Natick, MA. 01760-1500

[9] Leighton, R.R, The Aspirin/MIGRAINES Software Tools, User's Manual, Release

V5.0, The MITRE Corporation, 1991. Address: MITRE Signal Processing Lab, 7525

Colshire Dr, McLean, V a. 22102, USA.

[10] Stuttgart Neural Network Simulator, User Manual, Version 4.1, Institute for Parallel

and Distributed High Performance Systems, University of Stuttgart, 1995. Web Address:

//www.informatik.uni-stuttgart.de/ipvrlbv/projekte/snns/snns.html/

54

CHAPTERS

Neural Network Architecture Selection

5.1 Introduction

Selecting the activation function, architecture and training of an ANN is a very application

dependent procedure. For the purpose of experimentation, the ANN configuration had to

fulfill certain criteria. The first was to select a common network that could be easily

modified. It needed to be a common network to help ensure that the effects of any

modifications could be clearly explained and documented. Also, due to the nature of the

speech data, it had to be able to deal with analogue-valued inputs. This meant that ANNs that

dealt solely with binary inputs could be eliminated. Finally the speech data was in the form

of training pairs, containing both input and output information. This was purely through

design so that the network could be adapted to a specific speech sound and the effects clearly

noted. As a result, the training had to be supervised and so ANN s using unsupervised

training algorithms were also eliminated from selection. Using the taxonomy tree [I] (see

Figure 5.1) the remaining architecture that fulfilled all the criteria was the Multi-Layered

Perceptron (MLP).

~s~~

'"1- ?\,v\'""
,~~ srrsed

Hopfield Hamming Multi-Layered
Recurrent Recurrent Perceptron
Network Network

Figure 5.1 A Taxonomy tree showing four common ANN architectures

55

unsurrvised

Kohonen Self-
Organising Network

Feed-forward MLPs commonly use the well documented and easily applied back-propagation

(BP) training algorithm. As a result the BP, along with the common sigmoidal activation

function, was selected for experimentation, creating an ANN configuration that was well

understood, adaptable and easy to model. This enabled the successful application and testing

of new dynamic adaptation techniques.

5.2 Multi-Layered Perceptrons (MLPs)

There is no one solution when it comes to deciding on the number of nodes, layers and

connections of an MLP architecture. However, there are some guidelines when creating an

MLP for a specific application. The first of these application dependent parameters is the

number of input, output and hidden nodes. One input node is necessary for each input data

element and one output node for each class to be classified. Although some basic rules apply

to the number of hidden nodes, a lot is down to experience, trial and error. This also applies

to the number of hidden layers which is very much down to the complexity_ of the

classification problem. The greater the number of the layers in an MLP, the more complex

the decision boundaries (see Figure 4.7). Although too few layers make the decision

boundaries over simplistic, too many layers can prevent the classification of a new

acoustically similar utterance by making the trained network to input specific. Once the

number of each node type has been decided, the connections between them is investigated.

Most MLPs have fully-connected layers where the output of each node joins the inputs of

every other node in a succeeding layer. However this is not always the case, since the

connections can be used to split an ANN into subnets creating architectures such as the One

Class-One-Network (OCON).

5.3 The One-Class-One-Network (OCON)

A large fully-connected network can potentially contain many hundreds of neurons, each

connected via weights to many others. This can make the training and adapting of such a

network a long and difficult task. In addition, fully connected networks are prone to cross

class interference. Cross-class interference occurs when adapting towards a single class in a

multi-class network, inevitably altering shared weights. As the network gets larger the

56

interference increases, drastically degrading the convergence rate of the shared weights due

to the influence of conflicting signals. This can lead to, after adaptation towards a single

class, the impaired classification for the remaining classes within the network. To eliminate

these problems, I.C.Jou et al [2] proposed a new neural network architecture called the One

Net-One-Class. The same principle was later taken on by S.Y.Kung[3][4], who named the

architecture the 'One-Class-One-Net' or the 'OCON' for short. The OCON is similar in

design to that of a conventional MLP, only each class has its own dedicated subnet containing

a single output neuron. This is illustrated in Figure 5.2. which shows a fully-connected

network which is partitioned into three subnets by eliminating all the cross-class connections

in the upper layer.

(a)

(b)

Figure 5.2 (a) A fully-connected MLP architecture. (b) A One-Class-One-Network IOCONl Neural Network
Architecture

Each OCON subnet is specialised for distinguishing its own class from other patterns,

resulting in fewer nodes being required in the hidden layers. Even if an OCON has the same

57

number of nodes as an MLP, it has fewer weights as highlighted in Figure 5.2 where the

OCON has 45 weights compared with the MLP's 63. This consequently reduces both the

training and recognition time, which becomes more significant as the number of output

classes increases.

I.C.Jou first used the OCON architecture in 1991 for optical character recognition (OCR).

Using 16 orientation angles to describe each written character, 36 alpha-numeric classes were

used for recognition offering almost 10% improvement over a conventional network. Later

S.Y.Kung [4) also applied the OCON architecture to OCR, achieving a training accuracy of

99.5% compared with 94% from a conventional MLP. Such architectures have also been

used for texture classification, ECG analysis and speech recognition. Speech recognition

systems, using OCONs, included the classification of mandarin speech syllables and isolated

English words with a hybrid TDNN and OCON structure [5). The OCON architecture has

offered improved results in many areas of data classification although, in the field of speech

recognition, has yet to be applied to phoneme speech recognition.

5.4 Comparative Study of MLP versus OCON

To test the performance of the OCON architecture on speech, a comparative study with the

more conventional MLP was set. Although primarily concerned with the performance on an

adapted class within a network, the effect the adaptation had on the remaining unadapted

classes was also of importance. To emphasise any inter-class adaptation, the MLP and

OCON architectures were represented by three networks each, each receiving a distinct group

of acoustically similar vowel phonemes. These phoneme groups corresponded to the position

of the tongue hump in the oral cavity during their production, 'front', 'middle', and 'back'.

The vowel phonemes within the front, middle and back groups are shown in Figure 3.1. For

each phoneme group, MLP and OCON networks (see Figure 5.3) were modeled using the

Stuttgart Neural Network Simulator (SNNS), (see Section 4.4.3). All the networks contained

the same number of input nodes, 88, dictated by the number of input coefficients representing

each speech utterance (see Section 3.3). The total number of output nodes for each network

was dependent on the phoneme group, five phoneme classes for the front and back and three

phoneme classes for the middle. Finding the number of hidden nodes is often a case of trial

and error, and for many applications is often a guess. Consequently, an educated guess of 15

58

hidden nodes was made for both the MLP and OCON networks. Finally the six networks,

with every node using the sigmoidal activation function, were modelled with fully connected

adjoining layers, except for the hidden and output layers of the OCON architecture as shown

in Figure 5.3b.

(8xll) Input Neurons

~

(Sxlt) Input Neurons

~

(a)

(b)

(3x5) Hidden Neurons
for each class
~

1 Output Neurons for

~

1 Output Neurons for

e~

•

•

Figure 5.3 (a) Fully connected MLP architecture. (b) Fully connected OCON architecture.

Each network was trained with male TIMIT speech data from dialect region 7, the 'test set'

(see Section 3.2). The weight and bias values within the networks were initially randomised

and the standard back propagation algorithm used to train the networks towards the speech

'training set,' producing the six 'base-classifiers' necessary for the experimentation. The

'test set' comprised of the vowel phoneme data from the 15 male speakers of the TIMIT

dialect region 7. Since there was only interest in intra-speaker effects and not inter-speaker

59

effects, all the speech data from every test speaker was amalgamated and categorised with

respect to its phoneme content. The networks were then ready for adaptation and testing, but

before that could occur, a single common back-propagation learning-rate for both the MLP

and OCON networks had to be found.

Learning Rate

Each of the six base classifiers was adapted towards their relevant phonemes using speech

data from all the male speakers within in the TIMIT test set. This was the same as the speech

data to be used for the MLP versus OCON comparative study. Using the standard back

propagation algorithm, six learning rates from 0.1 to 2 were used to adapt towards each of the

phoneme classes. Each phoneme class, one at a time, was presented to the relevant network

and adapted for a total of 20 cycles. After each of the adaptation cycles, the recognition rate

was recorded and after the twentieth cycle the network weights and bias' were reset to the

initial base classifiers values ready for the next adaptation procedure. Average network-error

results over the six base classifiers were calculated for all twenty adaptation cycles for each

of the six learning rates, Figure 5.2. The graph shows an improvement in the rate of

adaptation as the learning rate increased. However, above a learning rate of 0.5, this

improvement reduced and the adaptation began to becomes unstable. Therefore to achieve

the fastest adaptation without erratic results, a back-propagation learning rate of 0.5 was

selected.

Average Recognition Rates obtained using 6 Learning Rates to
adapt towards Vowel Phonemes from dialect region 711MIT test set.

90r-----------------------------~------~~

~ 85 --0.1

--0.3

0.5

··X····0.75

--1

-e-2
65+-~~-r-+_,~~r-+-~~-r-+_,--~+-+-~-r-4 L----~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Adaptation Cycles

Figure 5.2 Graph showing the average recognition rate results from the six base classifiers using six back
oropagation learning rates

60

It was appreciated that selection of the learning rates depends very much on the network it is

being applied to and that a higher learning during other areas of experimentation could well

have improved the convergence of a network. However, throughout all experimentation, the

same learning rate was used for consistency as experimental results of concern were mostly

comparative, not absolute.

After the learning rate was selected, the comparative study between the MLP and OCON

began. Each of the six base-classifiers was adapted and tested using the 'test set.' Each

network was adapted towards one of its relevant phoneme classes for a total of I 00 cycles,

during which 7 result snapshots were taken at I, 3, 5, 10, 20, 50 and 100 cycles. Due to the

non-linearity of network adaptation, the number of cycles between each result snapshot

increased to produce a graph that offered a clear picture of the network's behaviour. The

results taken at each snapshot were the recognition rates of both the adapted phonemes and

the remaining unadapted phonemes within the same network. After adapting for I 00 cycles

towards each phoneme class, the weights and bias' within each network were reset to their

initial base-classifier values ready for the next adaptation procedure involving another

phoneme class. For the adaptation results, 24 graphs were produced showing comparative

results between MLP and OCON networks on the adapted phonemes and the effects these

adaptations had on the remaining unadapted phonemes. These are given in appendix A.

From these 24 graphs, 6 further graphs were produced containing the averaged data with

respect to their tongue-hump group for the adapted and unadapted phonemes (Figure 5.3(a) -

(f)). As well as recognition rates, another area of interest was each network's convergence

rate. The convergence rate for each of the 6 averaged data graphs was calculated by

differentiating the recognition-rate data (calculating the distance between adjacent rates).

However calculating the convergence rate in this way was viewed as being unrealistic since

the closer that recognition rates reach the perfect goal of 100%, the greater the significance of

recognition improvement.

To reflect this, the convergence rate y was calculated using the following equation :

-(100- X.) I Y- -
100- Xn+l

(5.1)

61

where Xn and Xn+I are two adjacent recognition rates. The term -1 in equation (5.1) was used

so that positive values indicated positive convergence and negative values negative

convergence. The 6 convergence rates graphs generated (Appendix A) were averaged to

produce convergence graphs for all the adapted vowel phonemes (see Figure 5.4(a)) and all

the unadapted vowel phonemes (see Figure 5.4(b)).

Figures 5.3 (a) - (c) show that for all three phoneme groups, the OCON networks show a

clear improvement for the recognition rates of adapted vowel phonemes over the

conventional MLP networks. On average, for all vowel phonemes, the experimentation

shows a 12.3% increase in recognition rates for the OCON networks [6][7]. This result

echoes the improvements shown in other data classification systems utilising OCON

architectures [2][3][4][5]. Furthermore, the OCON architecture not only increases the

adaptation rate but also reduces the processing time necessary for each adaptation cycle due

to the reduction in network weights. This is shown in Figure 5.4(a) with the increased rate of

convergence for each OCON network, offering a 273% increase against the MLP for adapted

phonemes. However, the OCON architectures as they stand, deal badly with inter-class

adaptation. Although the rates of convergence for both networks are roughly the same (see

Figure 5.4(b)), Figures 5.3 (d) - (f) show that for all three phoneme groups, the OCON

networks offer worse recognition rates for unadapted vowel phonemes over the conventional

MLP networks. When the three Figures 5.3 (d) - (f) are combined, the average drop in

recognition rates for the OCON networks, compared with the MLP networks, is 6.3%.

62

100
90

~ 80
~ 70 ;;

80 0::
~ 50
~ 40 ~

"' 30 0

~ 20
0::

10
0

100
90

c 80

" 70
;; 60 0::
~ 50 0 :g 40

"' 30 0

" " 20 0::

10
0

(a)

Average Recognition Rates for Adapted Front Phonemes for an
MLP and OCON Network

~
0 3 5 10 20 50 100

Adaptation Cycles

(b)

Average Recognition Rates for Adapted Middle Vowel Phonemes for
an MLP and OCON Network

~

0

0

3 5 10 20 50 100
Adaptation Cycles

(c)

Average Recognition Rates for Adapted Back Vowel Phonemes for
an MLP and OCON Network

3 5 10 20 50 100

Adaptation Cycles

Figure 5.3Cal- (cl Graphs showing the average comparative MLP and OCON recognition rates for adapted
vowel phoneme from all three tongue-hump groups.

63

(d)

Average Recognition Rates for Unadapted Front Vowel Phonemes
for an MLP and OCON Network

35r--------------------------------------,

lwt:=::=:-----._ ____ ._ __ ~._--~._--~._ __ _j
~ 25 i
a: 20

~ 15 ·c
~ 10
:.: 5 a:
0+---~----~----+---~----~----+---~

0

0

0

3 5 10 20 50 100

Adaptation Cycles

(e)

Average Recognition Rates for Unadapted Middle Vowel Phonemes
for an MLP and OCON Network

3 5 10 20 50 100

Adaptation Cycles

(f)

Average Recognition Rates for Unadapted Back Vowel Phonemes
for an MLP and OCON Network

3 5 10 20 50 100

Adaptation Cycles

Figure 5.3(d)- (D Graphs showing the average comparative MLP and OCON recognition rates for unadapted
vowel phoneme from all three tongue-hump groups.

64

Average Convergence Rates for Adapted Vowel Phonemes for an
MLP and OCON Network

0.5 2 4 7.5

Adaptation Cycles

t5 35 75

Figure 5.4Cal Graphs showing the averaged MLP and OCON convergence rates for all adapted vowel phonemes.

Average Convergence Rates for Unadapted Vowel Phonemes for an
MLP and OCON Network

0.34.,-------------------...,
0.32

~ a: 0.3
g 0.28 !:-----:>4--~
~

!£ 0.26
> 5 0.24
u

0.22

0.2 +----+---+----f----+---+----1
0.5 2 4 7.5

Adaptation Cycles

t5 35 75

Figure 5.4Cbl Graphs showing the averaged MLP and OCON convergence rates for all unadapted vowel
phonemes.

5.5 Conclusion

As expected the OCON behaves better than the MLP when adapting and testing the same

phoneme. This is primarily due to the individual networks in each OCON network being

dedicated to each class. Not only are there fewer connections and hence weighted axes to

train, but each network only has to deal with information concerning a single class. As a

result the OCON fulfills the first of the three research objectives, not only reducing the

processing time for each adaptation cycle, but also rapidly increasing the convergence rate.

However, the OCON architecture as it stands, deals badly with inter-class adaptation. When

adapting to a class, the OCON shows a lower recognition rate for the remaining phonemes in

65

the network compared to that of the MLP. This indicates that there must exist some common

speaker information within all the classes in a network which isn't being exploited in the

isolated networks of the OCON. Although in many applications cross-class interference can

be a problem, MLPs compared to OCON s appear to use it to their advantage for inter-class

adaptation. As a result an ideal network would be a hybrid OCON architecture containing

isolated networks for improved single class adaptation but with some inter-class bonding to

profit from any common speaker information. However it would be important that any

hybrid OCON network should concentrate adaptation only on common speaker information

as adaptation towards common class information could result in harmful cross-class

interference.

5.6 Summary

The advantages of the OCON over the MLP has been clearly shown with improved

recognition and convergence rates when adapting to any of the 12 vowel phonemes.

However the OCON shows the problem of poor inter-class adaptation results due to the

isolation of each sub-network. To address this problem and to fulfill the second and third

research objectives a modified OCON architecture is investigated in Chapter 6.

5.7 Reference

[1] R.P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, pp.4-22, April1987.

[2] I. Jou, Y. Tsay, S. Tsay, "Parallel Distributed Processing with Multiple One-Output

Back-Propagation Neural Networks", Proc, Int Symp on Circuits and Systems, Singapore,

pp.1408-1411, 1991.

[3] S.Y.Kung, J.S.Taur, "Decision-Based Neural Networks with Signaliimage

Classification Applications," IEEE Transactions on Neural Networks, Vol.6, No.1, pp. 170-

181, January 1995.

66

[4] S.Y.Kung, "Digital Neural Networks," Prentice Hall, Englewood Cliffs, NJ.

[5] J.N.Hwang and Hang Li. Interactive query learning for isolated speech recognition.

In S.Y.Kung, F.Fallside, J.A. Sorensen, and C.A.Kamm, Neural Networks for Signal

Processing, I, pp.513-522, Proceeding of the 1991 IEEE Workshop, Princeton, NJ, 1991.

[6] S.J.Haskey and S.Datta, "Dynamic Speaker Adaptation for Acoustically Similar

Vowel Sounds using Sub-Cluster Neural Network," Conference and Workshop on New Ideas

in Computing, Part 2, Coventry University, May 1997, pp41-44.

[7] S.J.Haskey and S.Datta, "Using Tongue-Hump-Position Information for Vowel

Adaptation within a Subcluster Neural Network," Proc. of lEE Colloquium on Pattern

Recognition, London 26 Feb 1997, pp 9/1 - 9/6.

67

--- - -------- .. -------------------

CHAPTER6

Speaker Adaptation Layer

6.1 Introduction

Within a single utterance lies an abundance of speaker information. This information

inherently leads to intra- and inter-speaker variations which pose an enormous problem for

recognition, especially for multi-speaker systems. It is impractical to train a recognition

system with every variation of every utterance from every speaker. That is why adaptation

within a system is of such importance. Adaptation allows a system, trained with a

representative data set, to dynamically map itself towards a new speaker or towards a change

in a present speaker's voice. By altering the model within a recognition system, a single

utterance can aid in the total recognition of future utterances articulated in a similar way or by

the same speaker.

It has been hypothesised that a listener interprets an utterance with reference to the acoustic

space of the speaker to whom they have been listening [1]. This means that a listener

normalises the vocal and dialectal characteristics of a new speaker in order to improve the

recognition of further utterances. Therefore, for intra- and inter-speaker adaptation, the

model needs only adapt with respect to the speaker's vocal characteristics, not the utterance

itself. This speaker adaptation allows a recognition classifier to normalise incoming

utterances with respect to the present speaker, improving recognition across the board.

Adaptation falls into two main categories, supervised and unsupervised. Supervised

adaptation requires an external teacher to inform the recogniser of either a correct or incorrect

classification before adaptation can continue. The external teacher can be in the form of an

adaptation data set of input-output pairs or a discrete input from the speaker such as a key

press or keyword. This form of adaptation guarantees that the recogniser always adapts

towards the correct class. However, using input-output pairs can often be difficult in a

practical system and discrete keywords from a speaker can themselves run the chance of not

68

being recognised. Unsupervised adaptation is more automated than supervised adaptation,

requiring no external input. Using a winner-take-all methodology, an unsupervised classifier

can decide which class has been correctly classified and consequently which class it needs to

adapt towards. Although faster and easier to use than a supervised system, there is always the

risk of misclassification and consequently adaptation towards a wrong class. During the

process of experimentation, we will be merely interested in the effect of 'correct' adaptation

on a classifier. Therefore all forms of adaptation will be supervised, using input-output data

pairs as the external teacher.

In Chapter 5 we found that, compared with the conventional MLP, the OCON offered a

higher recognition rate for an adapted vowel phoneme . However, due to the nature of the

OCONs architecture, the vowel phoneme classes within the network were isolated from one

another preventing any inter-class adaptation. This isolation led to poor recognition results

for the remaining unadapted classes in each network. In an ideal system, adapting to a single

class would improve the recognition of the remaining unadapted classes uttered by the same

speaker. Such a system would then only require a single uttered class from each network for

every vowel phoneme to be adapted. Therefore, to improve inter-class adaptation, it is

necessary to build into the neural network architecture some common layer that will allow

common inter-class information (speaker characteristics) to be stored and adapted. In this

chapter the design and implementation of such a common layer is investigated and its impact

on both intra- and inter-speaker adaptation tested.

6.2 Speaker Adaptation Layer

The purpose of a common layer within the neural network is to allow each vowel phoneme

to share a common series of weights. To allow their equal utilisation by each class and to

ensure that the essence of the OCON' s topology remains constant, the series of weighted

neurons are best situated at the front of the network as shown in Figure 6.1 [2]. Forming only

a single layer to avoid over-complex decision boundaries (Figure 5.1), the new layer would

consist of identical neurons to those found in the rest of the network. This would prevent

disproportionate weight changes within the network whilst training. The full training of such

an architecture, to create a base classifier, leads to a hypothesis regarding the distribution of

information within it. It is envisaged that information, unique to each class, will be stored in

69

each of the relevant OCON subnets. This would leave any common inter-class information

stored in the front-end common layer. A successful system such as this would dramatically

improve both intra- and inter-class adaptation, fulfilling the three research objectives.

Input Layer Common Layer

OCON Subnets for
each class

•
•

Figure 6.1 Graphical Representation of Modified OCON Network with Adaptation Layer.

A new utterance from a new speaker is unlikely to produce an ideal output from the neural

network classifier. The difference between the actual and ideal outputs is said to be the

network error (see Section 4.3.3) and is used to adapt the network towards the new utterance.

For the adaptation cycle, this network error would then be fed back through the architecture

using the back-propagation algorithm. Each of the subnets would act as a filter for the fed

back network error, extracting class-unique information. This, in theory, would leave only

the network error relating to common inter-class information such as the new speaker's

characteristics. By concentrating the adaptation only on the front end common layer, the

fully trained network should then only adapt to the new speaker's characteristics aiding in the

recognition of every class after a single utterance. This would then fulfill the second and

third research objectives.

6.3 Effectiveness of Common Adaptation Layer

To prove the 'distribution of information' hypothesis, a test was conducted analysing three

topologically identical pairs of base-classifiers. Each pair of base-classifiers, representing

one of the three vowel tongue-hump groups (see Section 3.1), was subjected to one of two

different adaptation procedures. The first procedure allowed unrestricted weight adaptation

as the error was back-propagated through the correctly classified OCON subnet and common

70

-- --- ---------------

front-end 'adaptation layer,' Figure 6.2a. The second procedure allowed only the weights

within the adaptation layer to be altered; the area where the speaker characteristics are

believed to be stored, Figure 6.2b. After full training by many speakers, each of the subnets

should contain normalised raw phoneme data, each with their own unique acoustic space and

containing no speaker information. Most neural network adaptation procedures allow the

network error to be back-propagated through every weight within the network. This is so that

an utterance not only adapts towards the correct class but also away from the remaining

incorrect classes within the network. However, since each of the classes are already

distinctly separated in their own acoustic space and a speaker's characteristics has equal

effect on all the classes, no two classes should overlap after adaptation towards a new

speaker. Therefore the network error need only pass through the correctly classified OCON

subnet as adaptation away from the remaining unclassified phonemes is not necessary.

(a)

Direction of Back-Propagated Network
Error through correctly classified OCON

subnet and common adaptation layer
(b)

~daptationLayer ~
Frozen-Weight Areas

Figure 6.2 Graphical representation of the two adaptation procedures where in network la) both the subnet and
the adaptation layer adapt and in network lb) the subnet is frozen allowing only the adaptation layer to adapt.

The two adaptation procedures were chosen specifically to highlight any distribution of

speaker characteristics within the adaptation layer. If the weights within a subnet are not

frozen they, along with the weights in the adaptation layer, will adapt to a new utterance

containing both speaker and phoneme information. Therefore the subnet will additionally

adapt to the speaker's characteristics and the adaptation layer to the raw phoneme

information. Although an improvement in the recognition of the adapted phoneme may be

seen, the tainting of the adaptation layer with the new utterance's phoneme information may

worsen inter-class adaptation.

71

6.31 Modelling of OCON Network with Common Adaptation Layer.

The three pairs of topologically identical networks were modelled using the Stuttgart Neural

Network Simulator V4.1 (SNNS) [3]. Each of the networks had 88 input neurons, the

training data format was identical to that in chapter 5, and the number of output neurons was

dependent on the phoneme group they represented, 'front'=5, 'middle'=3 and 'back'=5. The

general layout of the architecture had been decided (See section 6.2), with a fully connected

subnet for each class connected to the input layer via a fully connected single adaptation

layer, figure 6.1. Although the layout had been determined, a common problem encountered

in the design of neural networks is deciding on the number of neurons in each layer. Finding

the optimum number of neurons is typically found through trial and error. Some generalised

rules do exist and have had some success in the past. Mirchandani and Cao [4] showed

analytically that the maximum number of linearly separable decision boundaries M is a

function of the number of hidden neurons Hand the number of input neurons D, as follows:

D

M(H,D)=L.W, (6.1)
k=O

where

W=o, H<k.

Equation (6.1) was derived by Mirchandani and Cao for a two-layered fully connected

network. However the new network architectures had two hidden layers, making them three

layered networks, and more importantly, due to the nature of subnets, not all adjoining layers

were fully connected. These differences made equation (6.1) unreliable and so a method of

trial and error using various numbers of hidden neurons was employed. During the trial and

error procedure, three-layered networks with 88 input neurons, 3 output neurons and an

increasing numbers of hidden neurons were trained using the 'training set' and the back

propagation algorithm. The networks, each using the sigmoidal activation function and a

topology of that shown in Figure 6.2, were then tested with the 'test set' until a saturation

point in the recognition performance was found. The first network to obtain the recognition

saturation had 15 neurons in the common hidden layer and three neurons in each of the

72

subnet hidden layers. Therefore trained networks with this number of hidden neurons were

selected as the base-classifiers for the experiment, Figure 6.3.

(8x11) Input Neurons

~

lS Hidden Neurons
for common front

end adaptation layer ,....,

Figure 6.3 OCON network with front common adaptation layer.

6.3.2 Training Procedure

3 Hidden
Neurons
for each 1 Output

Neurons for
each class

•

•

The experiment was a comparative study between the two adaptation procedures. This

required the networks in each of the three phoneme group pairs to have identical architectures

and training. Therefore to produce the six base classifiers needed for testing, one network for

each of the three phoneme groups was trained and then duplicated to produce the second of

each pair of identical networks. Using SNNS, the three networks, 'front', 'middle' and

'back' were initially trained. They were each trained with their relevant phoneme data from

the 'training set' using the back-propagation algorithm set to a learning rate of 0.5. For

experimentation, training and adaptation, the learning rate was set to the same as the previous

experiment, 0.5, in chapter 5 for consistency.

6.3.3 Adaptation Procedures

All the speakers from the dialect region 7 TIMIT test set were used to monitor the effects of

intra- and inter-class adaptation on the six base-classifiers. However, since only intra- and

73

inter-speaker effects for single speakers were needed at this stage the speech data from a

single speaker at a time was used for the adaptation procedures. The experimentation was

split into two sections, frozen and unfrozen adaptation, to prove the distribution of

information hypothesis.

Unfrozen Adaptation

One from each pair of identical base-classifiers was adapted using the unfrozen approach.

The unfrozen approach simply allowed adaptation to occur with all the weights in the

network free to adapt. When the network was subjected to a new utterance from a single

speaker a network error equal to the difference in the network's actual outputs and ideal

outputs was created. However, only the network error for the correctly recognised class was

noted with the network error for the unclassified outputs ignored. This was because phoneme

information within each subnet was deemed sufficient and distinctly separated enough from

the remaining classes to only require adaptation towards the recognised class not adaptation

away from the unrecognised classes. The network error was fed back through the subnet of

the recognised class and the adaptation layer using the back-propagation algorithm, Figure

6.2a. As the error passed through each weighted axis, the weights were altered to minimise

the error adapting the network to the new utterance. Each phoneme, one at a time, was

offered to the network for adaptation and the effect on all the phoneme classes in the network

tested. Due to the size of the dialect region 7 test set for each male speaker, each phoneme

was represented by only a relatively small number of utterances. This meant that phonemes

used for adapting were also used for testing, possibly tainting the results. To minimise this

risk, during each adaptation cycle, a single utterance was used for adapting and testing was

with the remaining utterances in the phoneme set. For each successive adaptation cycle with

the same phoneme, the next phoneme utterance was used for adaptation and as before the

remaining phonemes for testing. When every phoneme utterance had been used for

adaptation the process recommenced with the first utterance. After adaptation towards one

phoneme the network's weights were reset to their initial base-classifier values ready for

adaptation towards the next phoneme. This adaptation procedure continued for each of the

15 male speakers within the test set, obtaining recognition results for each of the speakers one

at a time. After results from each of the 15 speakers had been collected, they were averaged

74

to obtain a clear picture of the adaptation procedures effects on intra- and inter-class

adaptation.

Much of this process was automated with the use of the pattern and batch files used by

SNNS. The pattern files, for supervised adaptation, contained input-output data pairs of LPC

coefficients representing speech data and the desired outputs for each utterance, Figure 6.4.

SNNS result file V1.4-3D
generated at Tue Jul 22 16:17:57 1997

No. of patterns 1
No. of input units : 88
No. of output units : 3

-0.70018 0.519 0.04137 0.32916 0.72286
-0.04114 0.11778 0.19087 -0.76723 0.63146
-0.24893 -0.57914 0.05548 0.07306 0.09566
0.24123 0.36562 0.55938 -0.39435 -0.47146
0,10712 -0.81736 0.79359 0.36735 0.25017
0.11337 0.26979 0.07874 0.02697 -0.81913
0.29625 -0.33828 -0.51294 0,13711 0.27034
0.83746 0.58687 -0.11028 0.03325 -0.28173

-0.04028 -0.16132 -0.83351 0.8895 0.54657
-0.23504 0.28495 0.21561 -0.10303 -0.19111
0.07306 0.09566 0.25017 0.43272 -0.4094

0.1908

Figure 6.4 Example of a SNNS pattern file

Type: SNNSBATCH_2

-0.12166 -0.48062 -0.04617
0.17511 0.35802 0.65982
0.2411 -0.80469 0.75495
0.13155 0.16055 0.06438
0.43272 -0.4094 -0.49095
0.7757 0.44651 0.1662
0.05592 0.0019 -0.83085

-0.39598 0.26287 0.27239
-0.21854 -0.01529 -0.30547

0.7757 0.44651 0.05548
-0.49095 0.11337

Output
Pattern

Loaded Network

NetworkFile: Middle_Base_Classifier.net
LearnPatternFile: er1.pat ... f-----+---- Adapted Pattern

File NoOfLearnParam: 1

LearnParam: 0.5 ~~------------------~--------------MaxLearnCycles: 1
M#axErrorToStop: 0

Learning Rate
PerformActions:

NetworkFile: <OLD>
LearnPatternFile: er_14.pat
ResultFile: ererl.res

PerformActions:

NetworkFile: <OLD>
LearnPatternFile: a~l
ResultFile: eraxl.res ,_ __

PerformActions:

NetworkFile: <OLD>
LearnPatternFile: ah_21.pat
<o , .. t;o~, 1-.1

Figure 6.5 Example of a SNNS Batch File for One Adaptation Cycle

75

Unadapted Pattern
File

Result file containing
recognition information for

unadapted pattern after
adaptation towards adapted

pattern

Input
Pattern

The batch files contained instructions on how to execute the adaptation procedure with

information regarding which network and pattern files to use, learning algorithms and

learning rates, and the generation of result files, Figure 6.5. Each phoneme was adapted for a

total of 100 cycles, during which 15 result snapshots were taken at 1-10, 15, 20, 50 and 100

cycles.

Frozen Adaptation

The remaining unadapted networks from each pair of base-classifiers were used for the

frozen adaptation approach. The method used was very similar to that of the unfrozen

procedure except that selected weights within each network were frozen to concentrate the

adaptation on the common front-end 'adaptation' layer. All the networks were modelled,

trained and tested using the Stuttgart Neural Network Simulator 'SNNS' (see Section 4.4.3).

This software allowed complex networks to be modelled, using a variety of neurons,

activation functions and learning algorithms. However, the software was unable to freeze

selected weights during the training, testing and adaptation procedures. Because the freezing

of select weights during adaptation was an integral part of the experimentation, the 'C++'

source code had to be rewritten and the software recompiled, (see Appendix B). The source

code was rewritten so that two buttons would appear on the information panel allowing, when

depressed, all weights linked to a highlighted neuron in the display panel to be either frozen

or unfrozen. Initially the goal was to be able to freeze and unfreeze individual weights.

However, due to the resolution of the display panel, selecting one of many weights was not

practical. It was also unnecessary since freezing all the weights adjoining a selected neuron

was all that was needed. To achieve this two main areas of the source code had to be re

written. The first was the creation of two buttons in the graphical-interface source code

which, when depressed, toggled a new flag 'FREEZE' for a selected neuron between '0' and

'1'. The second alteration concerned the learning-algorithm's source code to restrict learning

of the 'frozen' neurons. A conditional statement within the back-pass of each learning

algorithm, allowed the updating of a weight to be skipped if the variable 'FREEZE' for that

adjoining neuron was equal to 'I'. After the software had been recompiled, all the weights in

the subnets were frozen ready for the adaptation procedure. The adaptation procedure was,

from then on, identical to the unfrozen procedure using the same pattern and batch files on

the 'front', 'middle' and 'back' base-classifiers.

76

6.4 Results

After both adaptation procedures, the result files generated by the configuration files were

ready for analysing. This was accomplished using another piece of software called 'Analyze'

which came with SNNS. As its name suggests, it analysed each result file giving the network

error along with the percentage of unknown, correctly and incorrectly recognised utterances.

When dealing with a speech recognition system we are primarily concerned with the

percentage of correctly classified utterances. However, due to the limited number of

utterances of each phoneme from each individual speaker, subtle changes within the networks

were often lost. Despite a clearer indication being given when the results for each speaker

were averaged it was still felt that it was best to show the network's behaviour using the

network error. Twelve graphs were generated, one for each vowel phoneme, showing their

effect on the network error after 100 adaptation cycles and their effect on the remaining

classes in the same vowel phoneme group, (see Appendix C). To get a more general view on

the effect of the two adaptation procedures on the adapted and unadapted phonemes, four

further graphs were generated. Three graphs showed the average effects on each phoneme

group, Figure 6.6(a) - (c), and the fourth graph showed the total average effect on all the

vowel phonemes, Figure 6.7. Since the percentage of recognised classes was also of

importance, a fifth graph showing the combined average recognition rates of all the adapted

and unadapted phonemes for both adaptation procedures was generated, Figure 6.8.

Although for individual phonemes showing the recognition rates was not detailed enough, the

average for all the phoneme utterances gave a clearer picture of the networks' behaviour.

Using the total averaged recognition rates the convergence rate for each adaptation procedure

was also calculated using equation (5.1), Figure 6.9.

77

Front

• • • /

Adaptation Cycles

• • Jt -+--Unfrozen and
Unadapted

-11--Unfroz-en and
Adapted

Frozen and
Unadapted

-X.- Frozen and
Adapted

Figures 6.6(a) Graph showing the average network errors for adapted and unadapted vowel phonemes from the

front tongue-hump groups using both the frozen and unfrozen adaptation procedures.

Middle
12r---------------~~=----------------,

10

Adaptation Cycles

-+--Unfrozen and
Unadapted

-11- Unfrozen and
Adapted

Frozen and
Unadapted

--+\-Frozen and
Adapted

Figures 6.6(b) Graph showing the average network errors for adapted and unadapted vowel phonemes from the
middle tongue-hump groups using both the frozen and unfrozen adaptation procedures.

Back
16]

-+-Unfrozen and

~

Unadapted
g • • -11- Unfrozen and w
~ Adapted
0

! 6 ~13--~ Frozen and
" Unadapted z

~ 4 --¥:-Frozen and
2 Adapted

0
~ "'

., .. "' "' "' "' 0 "' 0 Sl 8 § ~ ~ "' ~

Adaptation Cycles ~

Figure 6.6(c) Graph showing the average network errors for adapted and unadapted vowel phonemes from the
back tongue-hump group using both the frozen and unfrozen adaptation procedures.

78

Average Network Error for all adapted and unadapted vowel

14 I
phonemes using both adaptation procedures

~ 12 ..

~
• ~Unforzen and

g 10

~·
Unadapted

w 8 • • • -a-Unfrozen and
-l! Adapted
0 6 ""-~
"

. Frozen and
z 4 -.:1--'~. Unadapted

2 ~Frozen and
Adapted

0
~ "' "' ... "' CO "' 0> 0 "' 0 0 8 8 ~ ~ "' "' ~

~

Adaptation Cycles

Figure 6.7 Graph showing the average network errors for all the adapted and unadapted vowel phonemes using
both the frozen and unfrozen adaptation procedures.

Average Recognition Rates for adapted and unadapted vowel
phonemes using both adaptation procedures

90

90 •

~:~ -+-Unfrozen and
Unadapted

---Unfrozen and
Adapted a: 50

§ 40 • . ..• \ Frozen and
~ ~

Unadapted

J: -X-Frozen and
Adapted

10

0
~ "' "' ... "' CO "' 0> 0 "' 0 0 8 8 ~ ~ "' "' ~

Adaptation Cycles
~

Figure 6.8 Graph showing the average recognition rates for all the adapted and unadapted vowel phonemes
using both the frozen and unfrozen adaptation procedures.

~

Average Convergence Rates for Adapted and Unadapted Vowel
Phonemes using both Adaptation Procedures

0.8 -.------,,---.::_ __ __:_ ____ ----, ,--,.,.-,---.,
-+-Unfrozen and

Unadapted 0.6

0.4 ---- Unfrozen and
Adapted

Frozen and
Unadapted

--X- Frozen and
Adapted

Figure 6.9 Graph showing the average convergence rate for all the adapted and unadapted vowel phonemes
using both the frozen and unfrozen adaptation procedures.

79

Figures 6.6(a) - (c) show a close comparison between the two adaptation procedures for the

adapted phonemes. The recognition results from Figure 6.8 show that the frozen adaptation

procedures offers a slight 0.65% average drop across the 100 adaptation cycles. However for

the effects on the unadapted phonemes using the frozen procedure, Figures 6.6(a)- (c) show a

definite improvement over the unfrozen procedure. Despite the recognition rates for the two

unadapted results from Figure 6.8 falling, the frozen procedure offers a 5.5% average

increase in performance over the 100 adaptation cycles than the unfrozen procedure. Figure

6.9 shows a rapid change in the convergence rate for adapted vowel phonemes for both

adaptation procedures and a lower more controlled convergence rate for the recognition rates

of unadapted vowel phonemes. Convergence rates for the adapted and unadapted recognition

results were very similar for both adaptation procedures although the frozen procedures had

very slightly higher convergence rates than the unfrozen procedures.

6.5 Conclusion

All the graphs displayed similar trends for each of the vowel phoneme groups during both

adaptation procedures. For the adapted phonemes in each vowel group, the network errors

almost mirrored each other identically for both the frozen and unfrozen adaptation

procedures. This was expected since, for adapted classes, the only difference between the

two procedures was the number of neurons the networks could utilise during the adaptation

process. Therefore concentrating the adaptation within just the adaptation layer had the same

effect as spreading the adaptation over the adaptation layer and relevant subnet.

For the unadapted phonemes, the frozen and unfrozen adaptation procedures, during the first

9-10 adaptation cycles, had closely matched network errors. However after the first 9-10

adaptation cycles, each vowel group began to show a difference between the two adaptation

procedures. Both adaptation procedures showed an increase in network error and a slight

decrease in recognition rates displaying a 'negative' adaptation. However the unfrozen

procedure for both the network error and recognition rates displayed a larger 'negative'

adaptation. This 'negative' adaptation persisted until, between 50-100 adaptation cycles, the

total average recognition rate (figures 6.8) was worse than if no adaptation had occurred. The

frozen adaptation procedure offered a more flat response after 9-10 adaptation cycles but did

worsen slightly.

80

Although the frozen procedure yielded better results than the unfrozen procedure the failure

of the unadapted vowel phonemes (during the frozen adaptation procedure) to positively

adapt indicates that the adaptation layer did not contain purely speaker information.

However, because the frozen adaptation procedure did behave noticeably better than the

unfrozen adaptation procedure, this suggests that either the adaptation layer utilises 'some'

speaker information, the frozen subnet does contain primarily class specific information or

both. Had the adapting test set been larger and a mixture of phoneme classes been used

during the same test, the frozen procedure could have given far more promising results.

Despite these problems the results showed that the frozen procedure compared well against

the more conventional adaptation method. In addition, more detailed results from chapter 7

using various speakers should substantiate further the already promising results.

6.6Summary

To fulfill the second and third research objectives a front-end adaptation layer was

introduced. To highlight its effectiveness two adaptation procedures, namely frozen and

unfrozen, were used. The results indicated the presence of some common speaker

information being utilised within the adaptation layer. However, these were only intra

speaker results and so inter-speaker experimentation is now required to give a clearer

indication of the distribution of information within the modified OCON ANN. Chapter 7

describes the full intra- and inter-speaker testing using the frozen adaptation procedure.

6.7 References

[1] R. R. Verbrugge, W. Strange, D. P. Shankweiler, and T. R. Edman, "What

information enables a listener to map to a talker's vowel space?," J. Acoustical Society of

America, Vol. 60, pp. 198-212, 1976.

[2] S.J.Haskey and S. Datta, "Selective Adaptation of Speaker Characteristics within a

Subcluster Neural Network," Proc of the Seoul International Conference on Phonetic

Sciences, Seoul, Korea, October 1996, pp.464-467.

81

[3] Stuttgart Neural Network Simulator, User Manual, Version 4.1, Institute for Parallel

and Distributed High Performance Systems, University of Stuttgart, 1995. Web Address:

//www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html/

[4] G. Mirchandani, W. Cao, "On Hidden Nodes for Neural Nets," IEEE Trans on

Circuits and Systems, Vol. 36, No 5, May 1989

82

CHAPTER7

New Architecture

7.1 Introduction

With the proven effectiveness of the frozen training procedure on adapted phonemes for a

single speaker, multi-speaker tests were arranged to explore the newly modified ANN's intra

and inter-speaker adaptation effects. Intra-speaker effects relate to the behaviour of

unadapted phonemes after adaptation towards phonemes from the same speaker. For

experimentation, intra-speaker adaptation was restricted to the effects on vowel phonemes

from the same tongue-hump group due to the categorisation of vowels within each of the base

classifiers. Intra-speaker adaptation is high beneficial since it allows adaptation towards a

single phoneme class to aid in the recognition of the remaining phoneme classes uttered by

the same speaker. Inter-speaker effects are also highly beneficial, improving recognition

results between speakers with acoustically similar utterances. Such a response is ideal for a
•

system used in a homogeneous geographical area, taking advantage of dialectal similarities

between speakers

For experimentation, speakers from the TIMIT test set were specifically selected to highlight

inter-speaker variations. This required an experimental test set containing a variety of

speakers who were both acoustically similar and dissimilar from one another.

7.2 Test Set Selection

Due to the labour intensive nature of experimentation, a minimal number of speakers were

selected for the multi-speaker tests. Three were sufficient to indicate any intra- and inter

adaptation effects, by selecting two acoustically similar speakers and a third acoustically

dissimilar. As with all the experimentation, the three speakers were selected from the 15

83

male speakers contained within the same dialect region 7 TIMIT test set (See section 3.2).

Although the idea behind the inter-speaker test data was to incorporate dialect differences as

well as similarities, it was felt that if two speakers were too dissimilar with different dialects,

then subtle adaptation effects would be difficult to monitor. Consequently all the speakers,

although some with large acoustic differences, were from the same dialect region to indicate

clearly any inter-speaker variations. Three analysis procedures were employed to find the

three speakers needed for the test set. The first was a listening test. This involved 10

listeners to audible select two speakers which they found to be the most similar and a third

which was the most dissimilar from the first two they selected. This was achieved by

playing, via headphones, a standard 'SA' sentence from each of the 15 male test-set speakers

to the listener. A TIMIT 'SA' sentence was used specifically since it was common to all

speakers and was designed to expose dialectal variants. Using the speaker coding format (see

Section 3.3) eight of the ten listeners selected speakers MKJLO and MTWHO as the most

similar. Of those eight listeners five selected speaker MDVCO as the furthest away the two

selected speaker MPABO. The second analysis procedure involved the creation of a small

two-layered ANN, trained with phoneme data from the 'SAl' sentences. Since the training

data was in the 'training set' data format, (see Sec~ion 3.3), the ANN consisted of 88 input

nodes and an output node was created for each of the 15 male test-set speakers. Using

Mirchandani and Cao's equation, equation (6.1), 4 nodes were selected for the hidden layer to

offer at least 151inearly separable decision boundaries, one for each output class. The 'SA2'

sentences from each speaker were used for testing, noting the output scores for each speaker

input. Ignoring the output scores relating to the present speaker, the highest scores

represented the speakers with the most similar utterance. The results showed that speakers

MKJLO and MTWHO were the most similar and that speaker MP ABO was the furthest away,

followed closely by speaker MDVCO (Appendix D). The first two analysis procedures

showed a common selection for the two closest speakers, MKJLO and MTWHO. However,

when selecting the most distant speaker from the two closest speakers there were slightly

conflicting results. This was expected since for an audible test it is difficult to select the two

most distant utterances when there are so many parameters involved such as the speakers

pitch, volume, pronunciation and intonation. The third and final analysis procedure was a

verification of the two previous analysis procedures using spectrograms. Selecting speakers

MKJLO, MTWHO and MPABO, the formant information from each of their two 'SA'

utterances was studied. Analysis was concentrated on vowel phonemes which give clear

formant definition. Speakers MKJLO and MTWHO revealed similar vowel phonemes up to

84

the second and third formant and obvious variations when both compared with the same

vowels from speaker MP ABO. As a result the three male speakers MKJLO, MTWHO and

MP ABO from dialect region 7 were selected for multi-speaker experimentation, offering the

necessary inter-speaker similarities and differences.

7.3 Intra-Speaker Adaptation

The three base classifiers, 'front', 'middle' and 'back' (see Section 6.3.2), were adapted

towards each of the relevant phoneme utterances, one phoneme class from each speaker at a

time, using the frozen adaptation procedure. After adaptation towards a single phoneme

class, with the back-propagation learning rate set to 0.5, the effects on recognition for all the

phonemes from the same tongue-hump group and the same speaker were recorded. Each

phoneme was adapted for a total of I 00 adaptation cycles, during which 15 result snapshots

were taken at 1-10, 15, 20, 50 and 100 cycles. After adaptation towards each phoneme class

the ANN weight and bias values were reset to the original base-classifier settings, ready for

adaptation towards the next phoneme class.

7.4 Intra-Speaker Results

Due to the limited number of phoneme classes uttered by each speaker, the network error was

used as an indication of the networks adaptation. This ensured that any network trend from

one adaptation cycle to the next could be clearly seen. Initially results were represented using

network error versus adaptation cycle plots. The network errors are not an absolute

indication of recognition rates and the range of network errors for a phoneme class, across all

the adaptation cycles, were small relative to the variety of network error values from one

class to the next. Consequently plots often showed an array of what appeared to be

horizontal lines for each phoneme class. To rectify this problem the network errors, each

phoneme class, were normalised with respect to their maximum and minimum values using :

(7.1)

85

,...... ______________________ _
where Xmin is the minimum network error value, Xmax is the maximum network error value, Xn

is the network error after the n1
h adaptation cycle and Yn is the normalised output of the nth

network error value. Although this showed either an increasing of decreasing trend for each

network error, this did not include any indication of the trends magnitude. Therefore a more

refined network error normalisation was used using :

(7.2)

where XI is the network error after the first adaptation cycle.

This normalised the network errors for each phoneme class with respect to their first value.

This ensured that all normalised network errors began at zero and both the trends and their

magnitudes were represented. Also by multiplying the normalised network errors by I 00, it

allowed the magnitudes of the network errors to be represented as percentage changes.

However, this normalisation assumed that a set percentage drop in the network error was of

equal significance, regardless of initial network error values. This is not always the case

since network learning is often non-linear. Despite this, the normalisation offered a good

indication of the networks intra-speaker behaviour during adaptation.

Using the normalised network error data, graphs for each of the twelve adapted vowel

phonemes were created, Figures 7.1(a)- 7.1(1). Each graph represented the average network

error of the three test speakers, MTWHO, MKJLO and MP ABO. These graphs were used to

highlight any intra-speaker trends and their relationship with respect to the tongue-hump

constriction (see Figure 3.1).

86

(a)

Averaged Adaptation of Phoneme /IY/ for all Three Speakers

-1! 80

~ 60 ~~- --~r z
'0 40
~
Cl ~ 20 ~x~/ !ij g
ijW 0

~·· ,· ······.··.
~

.. ·;
Cl ·20
J!!
~

-40 ~

"' !,!
~ -60 a.

~ "' "' ... "' "' "' 0) 0 "' 0 0 8 ~ ~ "' "' ~

Adaptation Cycles

(b)

Averaged Adaptation of Phoneme /11-V for all Three Speakers

50~---,.
40

Adaptation Cycles

(c)

Averaged Adaptation of Phoneme /EY/ for all Three Speakers

-1! 30

~ 20
z 10 '0
~ 0
Cl~

:ii g ·10 ijW
·20

~
Cl -30 J!!
~
~ -40 !,!
~ ·50 0..

N "' ... "' "' "' 0) 0 "' 0 g 8 ~ ~ N
~

Adaptation Cycles

-+-/IY/

--/IHI

/EY/

-7<-/EH/

-'lfc-/AE/

--/IY/

--/IHI

/EY/

-·><-/EH/

-'lfc-/AE/

-+-IIY/

--/IHI
/EY/

-7<-/EH/

-'lfc-/AE/

Figure 7.](a). (b) and (cl Graphs showing the averaged adaptation results for all speakers MTWHO. MKJLO
and MP ABO applied to vowel phonemes flY/. nHI and fEY/.

87

(d)

Averaged Adaptation of Phoneme /EI-V for all Three Speakers

i! 80
~ 60

~
........

" z --/IY/ 0 40
Q) --/11-V 0 '- 20
ffi g .. :

: ···········
/EY/ tjW 0

~-
-7<--/EI-V Q)

"' -20 --'lfc-/AE/ J!!
" -40 " ""-~-(,!

" -60 "- - "' "' ... "' CO "' "' 0 "' 0 0 § - - "' "'
Adaptation Cycles

(e)

Averaged Adaptation of Phoneme I AEI for all Three Speakers

i! 60 0

~ 50

l "' z 40 --/IY/ 0
Q) 30 --/11-V
0) ... 20 :a g . .. ' --/EY/
cS UJ 10 - .•·

Q) 0 K-r-r-c-r~--;<)'i ")'i ><--·)'i ,.__)(n --x-/EI-V

"' --'lfc-/AEJ ~ -10
Q) -20 (,!
Q) -30 "- - "' "' ... "' CO "' "' 0 "' 1\1 0 8 - - "' -Adaptation Cycles

(I)

Averaged Adaptation of Phoneme /EPI for all Three Speakers

i! 5 0

~ 0 Q)

z -5

~
0
8, -10 --/ER/
:a g -15 --/AX/ -"w
" -20 /AI-V
" w -25
Q) -30
(,!
Q) -35 "- - "' "' ... "' CO "' 0) 0 "' 1\1 0 8 - - "' -Adaptation Cycles

Figure 7. l!dl. (e) and CO Graphs showing the averaged adaptation results for all speakers MTWHO. MKJLO and
MP ABO applied to vowel phonemes /EH/. I AEI and /ER/,

88

-l':
0

~
ID z
0
ID
0>~

~ g
tjW
ID
0>

~
ID
e
ID
0..

-l':

~ z
0
ID
0>~

~ e .c ~ ow
ID
0> s
0
ID
e
ID

0..

(g)

Averaged Adaptation of Phoneme /AX/ for all Three Speakers

- ~ M V ~ ~ ~ ~ m ~ ~ ~ g g
~

Adaptation Cycles

(h)

Averaged Adaptation of Phoneme /Af-V for all Three Speakers

140
120
100
80
80
40
20
0

~~f I I

"' "' ... "' "' CO "' 0
~

Adaptation Cycles

(i)

Averaged Adaptation of Phoneme /Uf-V for all Three Speakers

200

150

100

50

0 ~ .,,....o--t_'<--f_J--' I '-----),)() (X)(

I I -50 lc11
~ "' "' ... "' "'

Adaptation Cycles

--/ER/

--/AY/
... /AHI

--/UH!

--IOW/
j·--- /AO/

·X -/AA!

Figure 7. I Cgl. Chl and Cil Graphs showing the averaged adaptation results for all speakers MTWHO. MKJLO and
MP ABO applied to vowel phonemes lAX!. IAHI and IUHI.

89

(j)

Averaged Adaptation of Phoneme ICJN I for all Three Speakers

80,-------------------------------------~.

60 i
~ 40 ~·
& .._ 20 /- "" ~-/-
15 g 0 •• ~-..-#._'
t5 w -20

f
~

~
0

~ z
0
Q)

"'-@ g
tjW
Q)

"' "' E
Q)

~
Q)
<l.

~

~ z
0
Q)

"'-~ e ""-ow
Q)

:a'
E
Q)

~
Q)
<l.

-80

·00+--+--~-+--~~~~~~--~~--~~~~

Adaptation Cycles

(k)

Averaged Adaptation of Phoneme IAOI for all Three Speakers

100
00
00
40
20 ~-...,.;-

~~
~

: : : : .. I ·80 +--1--+--+--+--+--+-+-'-.-.-.-.-.-"1
"' "' ... "' "' r- "'

Adaptation Cycles

(l)

Average Adaptation of Phoneme I AA/ for all Three Speakers

20
10 V _.......
0

~
·10 . -' . .
·20
·30
-40

·50 }~··-····X-..-.

-80 ~--X- --·X x ···--->0-· 74.,":
-70

~ "' "' ... "' "' r- Q) 0> 0 "' 0 lil 8 ~ ~ "'
Adaptation Cycles

-+-IUHI

--IOW/

/AO/

-x-/AAJ

--IOW/

-+-IUH/

/AO/

-)(-/AAJ

--IOW/

/AO/

--/UHI
-)(-/AA/

Figure 7 .IlD. lkl and (]) Graphs showing the averaged adaptation results for all speakers MTWHO. MKJLO and
MP ABO applied to vowel phonemes IOW I. IAOI and /AA/.

90

All twelve phonemes from the three tongue-hump groups exhibited some adaptation trends

due to tongue-hump constriction. The closer a phoneme to the adapted phoneme, with

respect to tongue-hump position, the greater the rate of adaptation. However, there were

some fluctuations due to experimental errors and some possible misleading results due to the

way in which the magnitude of the normalised network errors was calculated. The

normalised network errors for the adapted phoneme fell dramatically after adaptation, as

expected, although in some cases the network errors for the remaining unadapted phonemes

increased. As explained in Section 6.4, the rise in network error on unadapted phonemes

could be due to the common front-end adaptation layer of the modified ANN not containing

pure speaker information. Although we would like to see all the network errors fall after

adaptation towards a single class, results show from Section 6.3 that these increases in

network error are still relatively smaller when compared with results from a conventional

MLP.

7.5 Inter-Speaker Adaptation

Using the same experimentation procedure to obtain the intra-speaker results, the three base

classifiers, 'front', 'middle' and 'back', were again adapted towards each of the relevant

phoneme utterances, one phoneme class from each speaker at a time. After adaptation

towards a single phoneme class, the effects on the same phoneme classes from the remaining

two speakers was recorded. As before, each phoneme was adapted for a total of 100

adaptation cycles, during which 15 result snapshots were taken at 1-10, 15, 20, 50 and 100

cycles, and then the ANN weight and bias values were reset.

7.6 Inter-Speaker Results

The same normalisation technique, equation (7.2), was used to obtain the network error

results with respect to their percentage change. The average results for adaptation towards

the three speakers for the three tongue-hump groups was displayed using 9 graphs, Figure

7 .2(a)-(i). A further 3 graphs showing the total average over all the vowel phonemes for each

speaker offered a more general view of the networks behaviour, Figures 7.3(a)- (c).

91

0
~

"'~ c E!
~ ~
-"W
ui!O
~ 0

i~
~z
~
a.

0
~

"'~ !ij g
-"w
ui!O
~ 0

~!
E " ~z
~
a.

(a)

Average Network Error for Front Vowel Phonemes after Adaptation
towards Speaker MKJ LO

--MP ABO

--MKJLO

MP ABO

Adaptation Cycles

(b)

Average Network Error for Front Vowel Phonemes after Adaptation
towards Speaker MP ABO

-5

·10 --MP ABO

·15 --MKJLO

·20 MP ABO

·25

-30
N ~ ~ ~ ~ ~ ro m o ~ ~ g 8

~

Adaptation Cycles

(c)

Average Network Error for Front Vowel Phonemes after Adaptation
towards Speaker MTWHO

20

10

or

'\
--MP ABO

·10 --MKJLO

· •· MlWHO ·20

·30 _;~d • • • • • 11 , r
-40

~ "' "' "' "' <0 "' 0> 0 "' 0 0 8 ~ ~ "' "' ~

Adaptation Cycles

Figure 7.2(a). (b) and (c) Graphs showing the averaged inter-speaker adaptation results for the front vowel
phonemes.

92

(d)

Average Network Error for Middle Vowel Phonemes after Adaptation
towards Speaker MKJLO

0 ,.

0 -10 ~ I " • • • • • • • • • • • "'~ -20 '
H -30 -"'w
u-1'!

-40 '' --MP ABO
" 0 N~ -50 ---MKJLO
c "
~z -60

MlWHO

" "- -70

-80
~ "' "' ... LO "'

,.._
"' 0> 0 "' 0 0 8 ~ ~ "' "' ~

Adaptation Cycles

(e)

Average Network Error for Middle Vowel Phonemes after Adaptation
towards Speaker MP ABO

o•
0 -10 m
"'~ \\ c 12 -20 ~ ~
-"'W

\\ u-1'! -30
--MP ABO

m o
~!

\~
---MKJLO

c " -40 ... MlWHO ~z

" -50 "-

-60
~ "' "' .. LO "'

,.._
"' 0> 0 "' 0 0 8 ~ ~ "' "'

Adaptation Cycles

(e)

Average Network Error for Middle Vowel Phonemes after Adaptation
towards speaker MTWHO

5

0
0 ' " " "-----<~ ',_

Q) -5 -
--~ 0) -10

~ ~ -15
'; "' -20 --MP ABO
g>! -25 ---MKJLO
'E IU -30

· --MlWHO ~ z ..ss
" -40
"- -45

-50 '
~ "' "' .. "' "'

,.._ CO "' e "' 0 0 8 "' "' ~

Adaptation Cycles

Figure 7.2(d). (e) and (f) Graphs showing the averaged inter-speaker adaptation results for the middle vowel
phonemes.

93

(f)

Average Network Error for Back Vowel Phonemes after Adaptation
towards Speaker MKJ LO

10

0 0
~
0>~ -to iii g
.r=w -20 u~
~ 0

-30 ~! c ~

~z -40

--MP ABO

--MKJLO

MlWHO
~ -so 0..

-60

Adaptation Cycles

(g)

Average Network Error for Back Vowel Phonemes after Adaptation
towards Speaker MP ABO

'5 ~10
" 0>~ :a e -20 .r:; ~ uw
~ ~ -30 u -40

~ -50

-60+--+--+--+--+--+--+--+--+--+--+--+--+--4

Adaptation Cycles

(h)

--MP ABO

--MKJLO

MlWHO

Average Network Error for Back Vowel Phonemes after Adaptation
towards Speaker MTWHO

or
0 -to

~
~ -20
0>~

:a e -30 .r:; ~
u w -40 --MP ABO ~~

~i: --MKJLO
~z MlWHO
~ -70
~
0.. -80

-90 ' - "' "' ... "' "'
,__ ., 0> ~ "' 0 0 8 - "' "' -

Adaptation Cycles

Figure 7.21g\. lh\ and lil Graphs showing the averaged inter-speaker adaptation results for the back vowel
phonemes.

94

0

" "'~ H
.CUJ
()-!!
" 0 N!
c: " ~z

" a.

0
" "'~ iii g
.cw
0-l!
" 0
~~
c: "
~z

" a.

0

" "'~
~ g
.CUJ
u .. " ~ CIO
~~
c: "
~z

" a.

20

10

0

-10

-20

-30

-40

-50

-10

-15
-20

-25

-30

-35
-40

-45

(a)

Average Network Error for all Vowel Phonemes after Adaptation
towards Speaker MKJ LO

~

~ ' ~ . --MP ABO

--MKJLO

~ .• ... MlWHO ..
""'"---t

~ "' "' ... "' "' CO "' :2 !!l 0 0 8 "' "' ~

Adaptation Cycles

(b)

Average Network Error for all Vowel Phonemes after Adaptation
towards Speaker MP ABO

--MPABO

--MKJLO

MlWHO

Adaptation Cycles

(c)

Average Network Error for all Vowel Phonemes after Adaptation
towards Speaker MTWHO

or~
_..

-10 ~'1..1-_,.___,_ - - li -:". ~ --MP ABO -20 - - ~ --MKJLO
-30 MlWHO

••

-40

-50
~ "' "' ... "' "' CO "' 0 "' 0 0 8 ~ ~ "' "' ~

Adaptation Cycles

Figure 7.3Cal. Cbl and (cl Graphs showing the averaged inter-speaker adaptation results for all the vowel
phonemes.

95

-0.2
-0.25

"! "' "' "! "! ::l ~ "! "! "! "' '" <'i ... "' "" "' "' ,.:
~ ~

Adaptation Cycles

Average Convergence Rates for all Vowel Phonemes after
Adaptation towards Speaker MP ABO

0.2,-------------------..

m 0.15

~ 0.1

0.3

m 0.25
1ij

0.2 a:
m
0 0.15 c
" !"' 0.1
!!

0.05 c
0
0

0

-0.05
"!

~ ~ ~ ~ ~ ~
Adaptation Cycles

Average Convergence Rates for all Vowel Phonemes after
Adaptation towards Speaker MlWHO

~ ~ ~ "! ::l ~ "' "' "' "' "' ~ 0

"' .; ci '" ,.: "' "' ~ ~ "'
Adaptation Cycles

96

--MP ABO

--MKJLO

MlWHO

--MP ABO

--MKJLO

MlWHO

--MP ABO

--MKJLO

MlWHO

The inter-speaker results show conclusively the similarity between the speakers MKJLO and

MTWHO and the differences they both have from the utterances of speaker MP ABO. Except

for two accounts during adaptation towards front vowel phonemes, inter-speaker adaptation

results in a fall in network error for all speakers. Even when adapting towards the distant

speaker MPABO, the similar speakers MKJLO and MTWHO adapt positively. This

demonstrates the effectiveness of the front-end adaptation layer, storing common speaker

information in the front-end adaptation layer. The more common the speaker information

between speakers the better the inter-speaker adaptation, improving total speaker recognition.

7.7 Conclusion

The results indicate an improved performance for the newly modified ANN over a

conventional MLP with respect to both intra- and inter-speaker adaptation. For intra-speaker

adaptation, the network error for the adapted phoneme fell as expected. However, some of

the network errors for the remaining unadapted phonemes increased. Although as explained

earlier, this still offers better results than a conventional MLP, this rise could also be an

indication that there is limited acoustic information between vowel phonemes from the same

tongue-hump position. Although vowel phoneme from the same tongue-hump position

contain comparable formant F1 and Fz information, Figure 3.2, this may not be enough to

incorporate a reasonable proportion of speaker information. The inter-speaker results showed

a network error fall for the adapted speaker phonemes, as well as for phonemes from the

acoustically similar speaker. During the inter-speaker adaptation procedure, it was seen that

the network error for the acoustically different speaker fell as well. This was something that

was initially unexpected since the adaptation layer already containing dialect region 7 speaker

data from the training set. Therefore adaptation towards a speaker's characteristics contained

within a subset of that dialect acoustic space, should alienate a speaker's characteristics

contained with a subset at the other end of the dialect acoustic space. However, when

training an ANN, training doesn't continue until the network error for the entire training set is

zero. This is because over-training of a network can lead to impaired recognition of new

classes. Consequently this adaptation towards one speaker, could be adapting the adaptation

layer towards new speaker information that is contained within both the similar and

dissimilar speakers with respect to the existing information in the adaptation layer.

97

CHAPTERS

Conclusion and Future Work

8.1 Experimental Conclusions

In this thesis a modified one-class-one-network ANN architecture was created to fulfill the

three main research objectives:

(i) Develop an adaptation procedure that increases the convergence and reduces

the processing time for each adaptation cycle.

(ii) Concentrate adaptation only on intra- and inter-speaker variables, i.e. speaker

characteristics.

(iii) Allow adaptation towards a single speech class to improve recognition of

remaining speech classes within the same vocabulary.

The first of the three objectives was fulfilled with the implementation of the One-Class-One

Network (OCON), details of which can be seen in Chapter 5. An OCON inherently contains

less weighted connections than a conventional MLP resulting in a reduction in the processing

time for each training and adaptation cycle. There is also an increase in the convergence rate

since each OCON is dedicated to only a single class. As expected, Chapter 5 showed an

increase in convergence rate and an improvement of adapted recognition rates against the

MLP of over 12%. However, the OCON failed to fulfil! the second and third research

objectives. This was due to the adaptation procedure allowing global weight changes within

each OCON and to the isolated nature of each OCON, preventing the use of inter-class

information. This failure to utilise inter-class information was echoed in the results

of Chapter 5 which saw a reduction of over 6% for unadapted phonemes, compared to the

MLP results.

98

Although these results highlighted some benefits of OCON networks for phoneme

recognition, some modification to the architecture was necessary to allow the isolation and

utilisation of common class information, i.e. speaker characteristics. A modification to

achieve this goal was introduced in Chapter 6. It consisted of a common front-end layer

joining all the OCONs from the same tongue-hump group. Vowel phonemes containing the

same tongue-hump position were grouped since they exhibited similar Ft-F2 plane positions

within the vowel triangle, indicating some acoustic similarities between them. The

hypothesis for the modification was that such a layer should, after training, contain

information common to all classes with class specific information stored in each of the

relevant OCONs. By concentrating the adaptation only on this front-end layer such a network

would in theory allow only common information, i.e. speaker characteristics, to be adapted.

This would result in a more efficient adaptation procedure and should aid inter-class

adaptation. To test this hypothesis two adaptation procedures were used, one allowing global

weight changes throughout each OCON 'the unfrozen procedure' and the other only allowing

weights within the front-end 'adaptation' layer to change 'the frozen procedure.' Results

from Chapter 6 on the effects of adaptation on adapted phonemes showed a minimal

difference between the two adaptation procedures. This was expected since the only

differences between the two adaptation procedures was the number of neurons within each

network that were updated. However, after adapting towards a single class, the two

adaptation procedures showed clear differences in the recognition rates for the remaining

classes within the same network. Despite both recognition rates for the unadapted phonemes

falling during both adaptation procedures, the frozen adaptation procedures displayed an

average 5.5% improvement over the unfrozen adaptation procedure. This improvement in the

frozen adaptation procedure indicates that some common information is in fact being utilised

by all the classes within the same network to help inter-class adaptation. Whether or not the

common information contained speaker characteristics was not entirely clear at this stage, so

inter-speaker experimentation was used to offer a better indication (Chapter 7).

Chapter 7 applied the frozen adaptation procedure to three speakers selected from the dialect

region 7 TIMIT test set; two of the speakers were acoustically similar and the third was

considered to be the most acoustically dissimilar. Adaptation towards a single class from one

of the similar speakers improved the recognition rates of the same class for both the similar

99

and dissimilar speakers. However, the results for the similar speakers were considerable

better than for the dissimilar speaker, strengthening the hypothesis that the front-end

adaptation layer contained speaker characteristics. Also, adaptation towards a class from the

dissimilar speaker equally improved the recognition rates of the same class for both the

similar speakers. This additionally indicated that, although within the same dialect region

they were considered to be different, the modified OCON network was utilising some

common dialect information from the two similar and the dissimilar speakers. The intra- and

inter-speaker results also showed that each network begins to converge immediately after the

first adaptation cycle and that convergence is significant within 3-5 adaptation cycles. This is

ideal, since a spoken work can quite often contain more than 3-5 vowel phonemes ensuring

that speaker adaptation can begin after only a single utterance. This single word adaptation

towards a new speaker would further improve recognition with the implementation of

networks using fricative and plosive phonemes.

A data flow diagram of the completed system used during experimentation (see Figure 8.1)

shows the pre-processing stage and the modified ANN classifier with its back-propagation

feedback loop used during adaptation. The back-propagated error is fed back through the

relevant fixed-weight OCON and used to adapt the weights within the adaptation layer.

Raw·
Da ta

_ _ _ _ _ _ _ _ _Pre-Process in!! _ _ _ _ _ _ _ _ .

Pre- Hamming
LPC

1-.- r- Feature
Emphasis ~indowing Extraction

. - - . .

Modified ANN Classifier

Adaptation -OCONs
Layer ..

·l
Back Propagated Error

Figure 8. I Data How Diagram of Modified ANN Recognition System

8.2 Concluding Remarks

·Output
e · Scor

The modified OCON ANN architecture fulfills all three of the research objectives offering

improved and more efficient dynamic intra- and inter-speaker adaptation for vowel

phonemes. However, although the behaviour of the network is decisive, the causes are not.

100

The ANN does indeed improve intra- and inter-speaker adaptation, but is this because the

adaptation layer contains speaker characteristics? The nature of neural networks makes it

very difficult to look at the output of a single layer or node and note what information is being

held by its connecting weights. Consequently it is only possible to predict what is going on

within an ANN by offering specific input data and noting its effect. This highlights the

importance of good training and testing data and its application to the problem at hand. The

speech data used was of high quality and obtained from a well recognised speech database

[1]. However, the quantity of data was limited and due to the labour intensive nature of

experimentation, only a few tests were applied. Despite this, the results obtained show

promise for the modified OCON ANN architecture and emphasise the need for further

experimentation with multiple speakers from multiple dialect regions.

8.3 Future Work

The results obtained from the research pinpoint two main areas of question. Firstly, is the

adaptation layer within the modified ANN holding any speaker characteristics and secondly,

what common speaker characteristics are actually contained within the vowel phonemes?

Investigating the first question can be achieved by further experimentation with multiple

speakers from multiple dialect regions. This would give a clearer indication of the

information held within the adaptation layer and the limitations of its use for speaker from

differing dialect regions. With regards to the second question, the issue of vowel grouping

with respect to their tongue-hump position also needs to be addressed. Vowel phonemes

from the same tongue-hump group do have similar F1-F2 plane positions but are these

similarities used by the modified ANN? Intra-speaker results showed no obvious indication

that tongue position influenced the rate of adaptation between phoneme classes, although

using all the vowel phonemes in a single ANN may have degraded the results. However, it

would be of interest to see the behaviour of the modified ANN using all the vowel phonemes

within the same network or to train and test other phoneme classes such as fricatives and

plosives. Finally it would be of interest to apply the modified ANN to other applications,

such as optical character recognition, to monitor the segregation of any data into common

class and class unique information.

101

8.4 References

[1] DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus CD-ROM, Oct 1990.

Web Address: //www.ldc.upenn.edu/

102

APPENDIX A

Chapter 5 Results

Appendix A contains 24 graphs showing comparative recognition rate results between MLP

and OCON networks for each of the vowel phonemes and their average effect on the

remaining unadapted vowel phonemes from the same tongue-hump group. Appendix A

contains a further 6 graphs showing the convergence rates for the adapted and unadapted

vowel phonemes from the three tongue-hump groups.

100
90

c 80
~ 70
1ij

60 a:
c 50 0 :g 40
C> 30 0
0 20 ~
a: 10

0

Recognition Rates of Adapted IY Phoneme for an MLP and OCON
Network

p?

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted IH Phoneme for an MLP and OCON
Network

Adaptation Cycles

A -I

100
90

c 80

" 70
1ij
a: 60
c 50 0
:g 40
0> 30 0

~ 20 a:
10
0

120

l100
g 80
w
c 60
~
c 40
~
a: 20

0

120

~100

* 80
a:
c 80 0

~
0> 40
8
" a: 20

0

Recognition Rates of Adapted EY Phoneme for an MLP and OCON
Network

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted EH Phoneme for an MLP and OCON
Network

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted AE Phoneme for an MLP and OCON
Network

0 1 3 5 10 20 50 100

Adaptation Cycles

A- 2

Recognition Rates of Adapted ER Phoneme for an MLP and OCON
Network

oor-------------~A=~~==~==~
_so /
C1o /
'*60 ~50~
.g40
·g, 30
0
g 20
a: 10

0+---~----~----+----+----~----+---~

0

100
90

c 80

'" 70 1ii
a: 60
c: 50 0
:g 40
C> 30 g 20 a:

10
0

100
90

c 80

" 70 ;;
a: 60
c: 50 0 :g 40
C> 30 0
u

20 " a:
10
0

3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted AX Phoneme for an MLP and OCON
Network

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted AH Phoneme for an MLP and OCON
Network

0 3 5 10 20 50 100

Adaptation Cycles

A-3

100
90

c 80

* 70
a: 60
c 50 0
:g 40
C> 30 0
u

20 Q>
a:

10
0

100
90

~ 80

fJ 70
a: 60
c 50
~ c 40
C>

30 ~
a: 20

10
0

100
90

c 80
m 70 ;;
a: 60
c 50 0 :g 40
C> 30 0

~ 20 a: 10
0

Recognition Rates of Adapted UH Phoneme for an MLP and OCON
Network

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted ON Phoneme for an MLP and OCON
Network

/
1--+--MLP 11
--OCON

0 1 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Adapted AO Phoneme for an MLP and OCON
Network

0 1 3 5 10 20 50 100

Adaptation Cycles

A-4

100
90

~ ao
~ 70
1;j

60 a:
" 50 0 :g 40
C> 30 0
g 20 a:

10
0

~ 20
!'!
l2. 15
§
~ 10
8'
i;l 5
a:

----- ---

Recognition Rates of Adapted AA Phoneme for an MLP and OCON
Network

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted IY Phoneme for an MLP and
OCON Network

0 3 5 10 20 50 100

30

l25

" *20 a:
" 15 g
·~ 10
0

~ 5 a:

0

Adaptation Cycles

Recognition Rates of Unadapted IH Phoneme for an MLP and
OCON Network

;----....

0 3 5 10 20 50 100

Adaptation Cycles

A-5

Recognition Rates of Unadapted EY Phoneme for an MLP and
OCON Network

30~--------------------------------------~

~ 25~~~~~--~-----+-----+----~~----~----l
~ 20

g 15

·~ 10

! 5

0~---+----+---~----+---~----~--~
0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted EH Phoneme for an MLP and
OCON Network

40~----~------------------------------------~
~ 35
~ 30

~25~
.§ 20 ---------------------.......... ·2 15

"' g 10
a: 5

0+-----+-----+-----~----~----~----r---~
0

0

3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted AE Phoneme for an MLP and
OCON Network

3 5 10 20 50 100

Adaptation Cycles

A-6

70

l60
m so
£ 40
c
g 30
"2
g 20
g

10 a:
0

Recognition Rates of Unadapted ER Phoneme for an MLP and
OCON Network_

0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted AX Phoneme for an MLP and
OCON Network

50r--.

-45t~~~~~~~==~-=====::====~====::=====i ~ 40
ID as
£ 30

~ ~~ c g 15
g 10
a: 5

o+----4----~----~---+----~----~--~
0 3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted AH Phoneme for an MLP and
OCON Network

50.------------------------------------.

Adaptation Cycles

A-7

25

~ 20 .,
" 15 15 a:
" g 10 ·c:
0>

@ 5
a:

0
0

0

0

-- --- ----------------------

Recognition Rates of Unadapted UH Phoneme for an MLP and
OCON Network

3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted OW Phoneme for an MLP and
OCON Network

3 5 10 20 50 100

Adaptation Cycles

Recognition Rates of Unadapted AO Phoneme for an MLP and
OCON Network

3 5 10 20 50 100

Adaptation Cycles

A- 8

~ 12

m 10

~ 8

:~ e
~ 4

~ 2

Recognition Rates of Unadapted AA Phoneme for an MLP and
OCON Network

o+---~----~----+---~----~----+---~

"' 1ii
a:

"' u c

" E'
" > c
0
(.)

0

0.5

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
.0.2

3 5 10 20 50 100

Adaptation Cycles

Average Convergence Rates for Adapted Front Phonemes for an
MLP and OCON Network

2 4 7.5

Adaptation Cycles

15 35 75

Average Convergence Rates for Adapted Middle Vowel Phonemes
for an MLP and OCON Network

0.5 2 4 7.5

Adaptation Cycles

15 35 75

A-9

0

0

" ~ -0.01

g .0.02

~ .0.03
g? .0.04

" 8 -0.05
-0.06

Average Recognition Rates for Adapted Back Vowel Phonemes for
an MLP and OCON Network

3 5 10 20 50 100

Adaptation Cycles

Average Convergence Rates for Unadapted Front Vowel Phonemes
for an MLP and OCON Network

-0.07 -1----+------i---+----+----1-----l
0.5 2 4 7.5

Adaptation Cycles

15 35 75

Average Convergence Rates for Unadapted Middle Vowel
Phonemes for an MLP and OCON Network

0.05 -r---------------------,

-0.2

-0.25 L ___________________ ...J

Adaptation Cycles

A-10

A~.erage Con~.ergence Rates for Unadapted Back Vowel Phonemes
for an MLP and OCON Network

0.5 2 4 7.5

Adaptation Cycles

A-ll

15 35 75

APPENDIXB

Alterations to SNNS Software

The software alterations were made in two main areas, the source code's 'kernel' and the

graphical interface 'XGUI.'

XGUI Alterations

The first procedure was to create two buttons on the 'Info Panel' that when depressed toggled

a new flag 'frozen' between 0 and 1. This required alterations being made to four files,

'Ui_info.c' to create the button, 'Ui_infop.c' to create a procedure to change the 'frozen' flag

and two header files, 'Kr_typ.h' and 'Ui_infop.h,' to initialise the new flag and procedures.

The altered code of 'Ui_info.c,' Figure B.!, created two buttons called 'WEIGHT FREEZE'

and 'WEIGHT UNFREEZE' which were linked to the two procedures 'freeze_links' and

'unfreeze _links' respectively.

[
/************** BUTTONS & NAME TARGET **********/

button =
ui xCreateButtonitern ("WEIGHT FREEZE",
ui=infoPanel,button,tarFuncLabel);

XtAddCallback(button, XtNcallback, (XtCallbackProc)
freeze_links, (caddr_t) UI_TARGET);

button =
ui xCreateButtonitern ("WEIGHT UNFREEZE",
ui=infoPanel,button,tarFuncLabel);

XtAddCallback(button, XtNcallback, (XtCallbackProc)
unfreeze_links, (caddr_t) UI_TARGET);

Figure B. I Changes made to 'Vi info.c' code

B- I

The procedures 'freeze _links' and 'unfreeze_links,' called by the two new buttons, were

initialised using changes made to 'Ui_infop.h,' figure B.2.

extern void freeze_links (Widget, int, caddr_t);

extern void unfreeze links (Widget, int, caddr_t);

Figure B.2 Changes made to 'Ui infop.h' code

Kernel Alterations

The first kernel alteration initialised the flag 'frozen' in the header file 'Kr _typ.h,' (Figure

B.3). Then the two procedures 'freeze_links' and 'unfreeze_links' were created in the file

'Ui_infop.c,' (Figure B.4(a) and B.4(b)). In these two procedures the flag 'frozen' for the

desired network node 'unit.no' was assigned either a value of 0 to unfreeze or I to freeze all

links to that node.

/* Link structure */

struct Link
{
struct Unit
Flint Type
Flint Type

to; /
weight;
value_a,
value b,
value=c;

struct Link *next;
FlintType frozen;
) ;

Figure B.3 Changes made to file 'Kr tvo.h'

points to the source unit */
/* link weight */

/* general elements */
/* learning functions */

B-2

/* next link */
/* freeze weight */

/**
FUNCTION freeze links

PURPOSE
RETURNS
NOTES

To freeze weights connected to selected node

UPDATES 25/11/96
**/

void freeze links {Widget w, int structure, caddr t call_data)
{

char buf[MAX NAME LENGTH];
register strUct Link *link ptr;
register struct Unit *unit-ptr;
register struct UnitAttribUteType unit;

if {NOT ui_info_anyUnitSelected(UI_SOURCE}}
{

ui _printMessage ("Select a Unit!"} ;
return;

if (NOT ui_info_anyUnitSelected(UI_TARGET})
{

ui_printMessage("Select a Unit!");
return;

if (structure == UI SOURCE}
unit ui soUrceUnit;

else
unit ui_targetUnit;

ui info_storeAttributes(unit.no, unit);

sprintf(buf,"Unit %d is now frozen.",unit.no);
ui_printMessage(buf);

unit_ptr ~ kr_getUnitPtr(unit.no);

unit_ptr->frozen = 1;

FOR ALL LINKS (unit ptr, link ptr)
- link_ptr->froZen 1; -

Figure B.4(a) Freeze links procedure created in the file 'Ui infop.c.'

B · 3

/***
FUNCTION unfreeze links

PURPOSE
RETURNS
NOTES

UPDATES

To unfreeze weights connected to selected nodes

25/11/96
***/

void unfreeze links (Widget w, int structure, caddr_t call_data)
{

char buf[MAX NAME LENGTH];
register strUct Link *link ptr;
register struct Unit *unit:Ptr;
register struct UnitAttributeType unit;

if {NOT ui_info_anyUnitSelected{UI_SOURCE))
{

ui_printMessage("Select a Unit!");
return;

if {NOT ui_info_anyUnitSelected{UI_TARGET))
{

ui_printMessage("Select a Unit!");
return;

if (structure == UI SOURCE)
unit ui solirceUnit;

else
unit ui_targetUnit;

ui_info_storeAttributes(unit.no, unit);

sprintf(buf,"Unit %d is now unfrozen.",unit.no);
ui_printMessage(buf);

unit_ptr = kr_getUnitPtr(unit.no);

unit_ptr->frozen = 0;

FOR ALL_LINKS {unit_ptr, link_ptr)
link_ptr->frozen = 0;

Figure B.4(b) Unfreeze links procedure created in the file 'Ui infop.c.'

B-4

The final alterations to the kernel source code were to the file 'learn_f.c' which contained all

the learning algorithms (see Figure B.5). Selecting the learning algorithms that would be

used during experimentation, primarily back-propagation, conditional statements were added

so that weight changes would not take place when the flag 'freeze' for a selected node were

equal to I.

if (flags & UFLAG_IN_USE) == UFLAG_IN_USE)
I

if(!unit ptr->frozen)
unit_ptr->bias += unit_ptr->value_a * eta;

if (flags & UFLAG SITES)

else
I

I -
FOR ALL SITES AND_LINKS(unit_ptr, site_ptr,
linkytr 1 -

if(!link ptr->frozen)
link_ptr->weight += link_ptr->value_a * eta;

if (flags & UFLAG_DLINKS)
I

FOR_ALL_LINKS(unit_ptr, link_ptr)

if(!link ptr->frozen)
link_ptr=>weight += link_ptr->value a * eta;

Figure 8.5 Changes to the file 'Learn f.c'

8-5

APPENDIXC

Chapter 6 Results

Appendix C contains 12 graphs showing the effects of the two adaptation procedures, frozen

and unfrozen, on each of the vowel phonemes and their average effect on the remaining

unadapted vowel phonemes from the same tongue-hump group.

Network Error for IY Phonemes using both Adaptation Procedures

~~~Fie~::-~Cl :::: 
=8 M~ 
Is -~ z Unadapted 

g 
w 

"' ~ 
~ z 

4 

2 

0+--+--+--+--+--+--~-+--~-+--~-+--~~ 

Adaptation Cycles 

-x- Frozen and 
Adapted 

Network Error for IH Phoneme using both Adaptation Procedures 
16-

::~ :::==+ -+-Unfrozen and 
Unadapted 

...._ -11- Unfrozen and 10 .... 
~- ' Adapted 

8 
Frozen and 

6 Unadapted 

4 .-.....x- Frozen and 

2 
Adapted 

0 
~ "' "' ... "' <0 ,._ 

"' Cl 0 "' 0 0 8 ~ ~ "' "' Adaptation Cycles ~ 

c- 1 



Network Error for EY Phonemes using both Adaptation Procedures 
14 I' 

~-~·-·-·~ 12 -+-Unfrozen and 

10 
Unadap1ed 

g I\- J ~ ._--1 . ......_____.,.'--J\ I\ 

-e- Frozen and .. .~ 

w 8 Unadapted 

"' 0 
6 Frozen and 

~ Unadapted 
z 4 -*- Frozen and 

2 
Adapted 

0 
~ "' "' ... "' "' .... "' "' 0 "' 1i1 0 8 ~ ~ "' Adap1ation Cycles ~ 

Network Error for EH Phonemes using both Adaptation Procedures 

::r=:= . ~__/ • • t -+-Unfrozen and • • . ... Unadap1ed 12 . . .. 

g 10 

~*-·· 
-11- Unfrozen and 

w Adapted 

"' 8 ----......._ 0 Frozen and 
~ 6 '---"' /' --- " 

- .. 
" Unadap1ed " z ~ 

X-··-'< 
4 ~Frozen and 

Adap1ed 
2 

0 
~ "' "' ... "' "' .... "' "' 0 "' 0 0 8 ~ ~ "' "' Adap1ation Cycles ~ 

Network Error for AE Phoneme using both Adaptation Procedures 

~~\ 0~-L / • • • 
t 

-+-Unfrozen and 

• • • Unadapted 

-e- Unfrozen and 
., ... ;.~ 

Adap1ed ... 
~ 10 

Frozen and 
~ 8 ' 
~ 6 \ 

Unadapted 

4 ' -X- Frozen and 

2 ~ .m. ~:-~ 
Adapted 

0 
/><-----x--.;fr ~ / 'QC._ 

~ "' "' ... "' "' .... "' "' ~ "' 0 0 8 "' "' ~ 

Adaptation Cycles 

C-2 



Network Error for ER Phoneme using both Adaptation Procedures 
10 rl 

\~~~~~~~H~ I 
9 --+- Unfrozen and '·. 
8 Unadapted 

g 7 _.._ Unfrozen and 
w 6 ······''C- Adapted 
i! 5 Frozen and ~ 
~ 

4 Unadapted 
z 3 --*- Frozen and 

2 

_.dt<(--
Adapted 

1 l.A -~ 0 - "' "' ... "' <0 ... ., 0) 0 "' 0 0 8 - - "' "' Adaptation Cycles -

Network Error for AX Phoneme using both Adaptation Procedures 
14 

12 

10 
-+-Unfrozen and 

g Unadapted 
w 8 _._ Unfrozen and 
i! Adapted 0 

6 ~ 
~ Frozen and z 

4 
.. . Unadapted 

2 

o--o--o--a--a--o--o--o--o--o--a--1 

~x-- Frozen and 
Adapted 

0 ""' - "' "' ... "' <D ... ., 0) 0 "' 1il 0 8 - - "' Adaptation Cycles -

Network Error for AH Phoneme using both Adaptation Procedures 
20 

18' 

~~~/ 
......

16 . --+-- Unfrozen and
14 ' ',·· Unadapted g '
12

\
--Unfrozen and w I i! 10 '

Adapted

~
I Frozen and 8

\" z 6 ,, .t-1
Unadapted

" " " "
4 --X·- Frozen and

2 /D~ !:!-!:!~-
Adapted

0 \.
~· - "' "' ... "' <0, 0) 0 "' 0 0 8 - - "' "' Adaptation Cycles -

C-3

Network Error for UH Phoneme using both Adaptation Procedures
16 "

fl 14 \, --+- Unfrozen and
12 "\ Unadapted - ---Unfrozen and g 10 A. ~· .~ Adapted w

~ 8 J~-;, Frozen and
0 Unadapted ~ 6 " ---·- -- -'-.-\

~~
-:X- Frozen and z

4 Adapted

2

0
~ "' "' ... "' CD ... CO "' 0 "' 0 0 8 ~ ~ "' "' Adaptation Cycles ~

Network Error for ON Phoneme using both Adaptation Procedures
18

16 ' ~!!I-I" --+- Unfrozen and 14 ., ..
Unadapted

g 12
~ ---Unfrozen and w 10 -"------~ Adapted

~

~ 8 . "·.......-'·' ·"' " ---- Frozen and ,. (\,-· "A ... " ~~'-
"' 6 Unadapted z

4
----X·-- Frozen and

Adapted
2

0
~ "' "' ... "' CD ... CO "' 0 "' 0 0 8 ~ ~ "' "' Adaptation Cycles

Network Error for AO Phoneme using both Adaptation Procedures
18 -·---"'
16

' -+-Unfrozen and
14 Unadapted

g 12 -a-Unfrozen and
w 10 Adapted
~ . ~ .-~~ ... - -~-~-' Frozen and
~ 8 ',..._. -'~_,.,._.. Unadapted
"' z 6 ___ v.

~~- V V -x- Frozen and
4 Adapted
2

0
~ "' "' ... "' <0 ... CO "' 0 "' 0 0 8 ~ ~ "' "' Adaptation Cycles ~

C-4

Netoork Error for AA Phoneme using both Adaptation Procedures
I--., ._.:::::;c::::::::

~· . -+-- Unfrozen and

• • • • • Unadapted

-w-Unfrozen and
Adapted

2.0

~ ~:!
0 '~

.t 12

Frozen and
Unadapted 1 z

····><··--·Frozen and
Adapted

·~"" _.,..t;k;cci--
·--··13 -·-· 13 -·- ·13 ····-· -· "' "'

..,.
"' CO "' "' 0> 0 "' 0 g § ~ ~ "' Adaptation Cycles

C-5

0

Trained Speakers
I MCHHO MDLFO I MDVCO I MERSO I MGRTO 1 MKDRO I MK.JLO I MNJMO I MNLSO I MP ABO ' MRCSO ' MRJM4 I MRMSI I MRPCO iMTWHO I

' ' ' '

MCiffiO I 98_8 41.9 22.1 24_4 29_0 36_0 31.4 32.5 31.4 20.9 29.0 13.9 49.3 41.9 50.0

- - - -,- - - - -,- - - - -,- - - - r - - - -1- - - - r - - - -, - - - - r - - - o - - - - ,- - - - -t - - - -,- - -- 1- - - - -,- - - -
MDLFO 43.5 1 100 I 32.2 1 20.9 21.2)7.) 17.7)7.) 1 21.2 1 29.0 1 29.0 1 33.9 1 46.8 1 4).5 48.4

I I I I I I I I I I I I -- --
MDVCO -4!.1- -:- 3o3- ~ -98_z- -:- 2s.O- i -3;9- ~- ll.2- i -s:J- ~ -.9.6 -;- 4,~,- i -j9_] -:- 3z~.- ~ -ii.z- -:-14:3 -~ -,2_s- ~-ls.S-

I I I I I I I I I I I ----
MERSO - JS_l- - ~s~1- 1 - z8_2 -,- 9z~6- I-~~-~- -,-ls:S- I -~;s- -,- 1s_9-: -3;:]- -:- 2i2- :- -Js~~- 1 -18.5 -,- 3s~.- 1 - sl.S -:- 2s:6-
- - - - ----'----~----'----L---~----L---~----L---~----I ____ ! ____ I ____ L ___ ~----
MGR TO 29.5 33_3 I 19.2 I 6.4 I 92.1 I 41.0 I 64.1 I 16.6 I 23.1 I 47.2 I 41.0 I 37.2 I 46.1 I 44.9 I 50.6

' '
~

-- --
MKDRO

- - - -I- - - - .!. - - - - 1- - - - >- - - - - 1- - - - 1.. - - - -1 - - - - 1- - - - ..1 - - - _I_ - - - .!. - - - -I- - - _ L ____ I ___ _
13.9 I 23.7 I 21.3 I 21.1 I 11.1 I 100 I 19.4 I 39.4 I 39.5 I 11.1 I 41.6 I 34.2 I 23.7 I 36.8 I 21.1

~
" MKJLO c.

I I I I I I I I I
-- --j--- -1-----4--- -I---- ..j ----1-- --+ ----1---- + ----1---- ... - __ _, __ --1--- --I-- --1

36.1 I 33.3 I 11.1 22.2 1 13.8 I 30.5 1 95.8 1 50.0 I 50.0 1 3.8 I 44.4 I 33.3 1 22.2 I 13.8 I 54.2

"'
I j I I I j

---. .,
MNIMO B

"' ~ MNLSO

----,---- r---,---- r--- -t--- -~---- T--- -,---- T--- -~---- r----,---- r-----,--- -1

U IU ~ IU ='- ~,~,~,n1 ~ ~ ~,~ =
I I I I I I I I I 1 I I

----,----~----,----r---~----~---~----~---1--------~----,----r---~----= U =,=,=,~,lu,= ~,IU- IU = ~,B
-- - - __ I ____ l ____ 1 ____ L ____ 1 ____ L ___ ~ ____ 1 ____ ...! ____ 1 ____ .!. ____ ; ____ I_ ____ I ____ I

MP ABO)6.6 I 7.6 I JI.J I 385 I 16.6 I 26.9 I 5.2 I 20.5 I 25.6 I 100 I 25.6 I II.S I 31.0 I 41.0 I 6.7 I
I , I I I I

____ I ____ L ___ __I ____ 1.. ____ I ____ 1.. ___ .J. ____ , ____ ..!. ____ I ____ .L ___ __1 ____ L ___ _1 ____ I

MRCSO 18.5 I 29.6 46.3 27.8 I 24.) I 9.2 I 42.6 I 24.1 I 48.1 I 24.1 I 94.4 I 18.5 11.1 I 22.2 I 16.6

' ' -- -- ----I---- .J.--- -1---- .f---- _I ____ .f- ___ -1- _--I..--- -1----1-- __ .J ___ -1- ___ .L ___ -1- __ -I

MRJM4 16.6 I 19.4 I 36.1 I 26.4 I 38.8 I 34.7 I 25.8 I 19.4 I 23.6 I 25.0 50.0 I 94.4 I 16.6 I 30.5 I 18.1
I I I I -- -- - - - -~- - - - + - - - ""1- - - - r - - - .., - - - - r - - - .,. - - - - 1- - - - -r - - - -1- - - - r - - - -.- - - - r- - - - __,- - - - 1

MRMSI 20.7 31.0 43.1 I 27.5 39.6 I 22.4 1 16.6 1 22.4 I 29.3 33.7 37.9 I 10.3 1)()() I 44.8 30.8 I
I I I I I I 1 I I I I I I I I - - - -

MRPCO
----,----,.----~----r-----t----r---~----r---,----~----,----~----r----~----~

17.5 1 20.6 1 39.7 1 20.6 1 27.0 I 36.5 1 11.1 1 22.2 1 36.5 1 36.5 1 20.6 1 25.3 1 12.7 1 98.4 1 47.6 I
I I I I I I I I I I I I I I I ----

MTWHO
--- -~---- 1--- -~---- T--- -,---- T--- I---- I----,---- 1---- I----~---- T--- -~---- r

22.5 I 12.3 1 7.8 I 15.7 I 20,5 1 J9.} I 5).6 I 19.1 I 43.8 I 16.7 I 34.8 I 8.9 I 44.9 I 22.5 I 100 1
____ I- - - _ 1. ____ I ____ L ____ I ____ L ___ .1 ____ L ___ 1 ____ I ____ 1. ____ I ____ L ____ I ____ I

Figure 0.1 Test Set Selection Results showing inter-speaker Recognition Rates for the 15 Speakers from the T!MlT
Dialect Region 7 Test Set.

n
t:l"'
.§ >
(1)

'"'d 1-1
-....l '"'d
~ ~
!;ll ~
U'.l 0 (1) 1-1
U'.l ~ (1)
(1) 0 (') -· 0
J:j

APPENDIXE

Published Papers

Appendix E contains the four following publications :

S.J.Haskey and S. Datta, "Selective Adaptation of Speaker Characteristics within a Subcluster

Neural Network," Proc of the Seoul International Conference on Phonetic Sciences, Seoul,

Korea, October 1996, pp464-467.

S.J.Haskey and S. Datta, "Using Tongue-Hump-Position Information for Vowel Adaptation

within a Subcluster Neural Network," Proc of IEE Colloquium on Pattern Recognition,

London, 26 Feb 1997, pp 9/1 - 9/6.

S.J.Haskey and S. Datta, "Dynamic Speaker Adaptation for Acoustically Similar Vowel

Sounds using Sub-Cluster Neural Network," Convergence and Workshop on New Ideas in

Computing, Part 2, Coventry University, May 1997, pp41-44.

S.J.Haskey and S.Datta, "A Comparative Study ofOCON and MLP Architectures for

Phoneme Recognition," ICSLP'98.

E- I

Selective Adaptation of Speaker Characteristics within a Subcluster Neural Network

S.J.Haskey and S.Datta

Electronic and Electrical Engineering Department
Loughborough University, Loughborough, LE!! 3TU, U.K.

S.Datta@lboro.ac.uk

ABSTRACT

This paper aims to exploit inter/intra-speaker
phoneme sub-class variations as criteria for
adaptation in a phoneme recognition system based on
a novel neural network architecture.
Using a subcluster neural network design based on
the One-Class-in-One-Network (OCON) feed forward
subnets, similar to those proposed by Kung [2]and
Jou[l], joined by a common front-end layer, the idea
is to adapt only the neurons within the common front
end layer of the network. Consequently resulting in
an adaptation which can be concentrated primarily on
the speakers vocal characteristics. Since the
adaptation occurs in an area common to all classes,
convergence on a single class will improve the
recognition of the remaining classes in the network.
Results show that adaptation towards a phoneme, in
the vowel sub-class, for speakers MDABO and
MWBTO improve the recognition of remaining vowel
sub-class phonemes from the same speaker.

INTRODUCTION

Inter/intra speaker variations can cause significant
problems with speaker independent recognition
systems. Variations such as vocal tract length and
dialect differences from speaker to speaker or the
intonation, rhythm or stress variations from the same
speaker. To over come this problem it is necessary to
have a recognition system, that has been trained with
utterances from a representative subset of speakers, to
dynamically adapt after an initial correct utterance,
latching onto the new speakers vocal characteristics.
Adaptation of conventional connectionist
architectures generally involves network-wide weight
changes. This is undesirable for the purposes of
phoneme recognition due in part to computational
inefficiency, but mainly due to the fact that the
network will be susceptible to cross-class
interference.
The main objectives of the new neural network
architecture were to avoid cross-class interference
during adaptation towards a phoneme class and to
separate the phoneme information from the speaker
information within the network. Separation of speaker

E-2

and phoneme information would allow adaptation to
be concentrated purely on speaker variations,
reducing the need for network-wide adaptation. An
assumption however is made that for similar dialects,
inter speaker phoneme sub-class variations are
roughly constant, i.e. vowel sound differences from
speaker to speaker are consistent for all vowel
sounds.

NETWORK ARCHITECTURE

Unlike conventional subnet structures (OC0Ns)[1][2]
, fig I, this new neural network architecture consists
of OCONs, one for each phoneme class, joined by a
common front-end adaptation layer, fig 2. Each
OCON structure consists of a fully connected two
layered network with a single output neuron. The
adaptation layer fully connects to each of the OCON
structures and in turn fully connects to the input layer.
All the neurons within the network use the sigmoidal
activation function and the weights of each
connection are trained using the back-propagation
algorithm [5].
After the network is initially trained with speech data
it is assumed that all class specific information unique
to that phoneme is stored in the relevant OCON
subnet and that information common to all the
classes, such as speaker information, is stored within
the weights of the common front-end adaptation layer.
When the network is introduced with speech data
from a new speaker the score at the output is
computed in much the same way as a conventional
network. All the OCON outputs connect to a
MAXNET[l] which finds the highest score, as long
as it exceeds a minimum threshold level, which is
assumed to be the correct utterance. Using back
propagation, the error is then fed back through the
OCON structure to the front-end adaptation layer
where the weights are adapted to minimise the error.
As each new speaker uses the system the updated
adaptation weights are reset to their initial values
ready for adaptation towards the next speaker.
By concentrating the adaptation only on this front
layer it is expected that only information unique to the
speaker will change, resulting in a more efficiently
controlled application-driven (speech recognition)
connectionist regime. (Since the adaptation occurs in

By concentrating the adaptation only on this front
layer it is expected that only information unique to
the speaker will change, resulting in a more
efficiently controlled application-driven (speech
recognition) connectionist regime. (Since the
adaptation occurs in an area common to all classes, it
is envisaged that convergence on a single class will
improve the recognition of the remaining classes in
the network, for the same speaker, by eliminating the
need to update each class for full adaptation to take
place.)

ADAPTATION PROCEDURE

Forward Pass

When confronted with an utterance from a new
speaker the output score is computed in much the
same way as any conventional neural network.

Define:
I : Network Input.
A(Output of the j-th adaptation neuron.

w1;: the weights from the i-th input neuron to the j-th
adaptation neuron.

-;,;Jk : the weights from the j-th adaptation neuron to
the k-th hidden neuron in the subnet m.

wl"'' : the weights from the k-th hidden neuron to the
output neuron in the subnet m.
01: the bias of the j-th adaptation neuron.

B,Jml :the bias of the k-th hidden neuron in the subnet
m.
elm! :the bias of the output neuron in the subnet m.

lfi"'l : Output of the k-th hidden neuron in the sub net
m.
olml : Output from the subnet m.
1J :Learning rate of the adaptation layer.

Each neuron uses the sigmoidal activation function.
Therefore the output of the j-th adaptation neuron is:

Using the values of A1 the output of the k-th hidden

neuron of the m-th subnet is calculated according to :

H[m)_ i"-lm] A J k - ~(/)jk . j
j

E- 3

= 11[1 + exp-(~mj;>l. A}+ B,)miJ]

Finally, using the output of the hidden layer, H,lmJ,

from each corresponding subnet the output of the m
th subnet is :

Jml(I) = 1(~wl"'l. Hl"'l)

= II[I+exp-(~wl"'1 ·Hl"'1 +B1"'1)]

The outputs from each OCON subnet are fed through
a MAXNET to find the winner, assuming the highest
score achieves a minimum threshold score.

Backward Pass

Now we begin the back pass of the back-propagation
algorithm to adapt the weights and bias values of the
adaptation layer. Firstly we need the error E of each
of the m subnets to feed-back. The error is :

E1"'1(I) =(T-01"'1(!))
where T is the target values.

If the input pattern I belongs to the m-th subnet then
the target T is I. Otherwise T is 0.

For the sigmoidal activation function, the error signal

,Jiml, for the output of the hidden layer is given by:

Feed-back this error through now to the hidden
neuron:

~1 "'1 = Hl"''(1- Hl"'') · :Li'"''wr"'1

k

Feed-back this error through to the adaptation layer,
adding the errors from all the OCON subnets.

Now we have fed back the errors through the whole
network we can modify the adaptation weights and
bias values using the following:

As the adaptation weights and bias values are
modified, the old weight and bias values are stored so
that the adaptation layer can be reset for each new
user.

RESULTS

The main objective was to monitor the improved
recognition rates of every phoneme class within the
neural network after adaptation towards a single
phoneme class from the same speaker.
Since we made the assumption concerning inter
speaker phoneme subwclass variations remaining
roughly constant, all the training data was from one
phoneme sub-class, the vowel sub-class, of the
DARPA TIMIT database. From this sub-class, 8
phonemes /ix, iy, eh, ah, ax, ih, ey, aal from 24 male
speakers from dialect region one were used to train
the network. The back-propagation algorithm was
used for training, with all the weights within the
network initially randomised, along with the order of
the speech training data, to maximise convergence
The network consisted of 8 OCON subnet structures,
one for each of the phoneme classes, all having a
single output and containing a I 5 neuron fully
connected hidden layer. The 8 hidden layers from
each of the OCONs were fully connected to the 15
neuron adaptation layer which in turn was fully
connected to the 7 5 neuron input layer. The input
data comprised of the sampled phonemes being split
into 15 overlapping hamming windows, each of
which was represented by 5 linear predictive
coefficients [6].
The test set for the experiment contained utterances
of the 8 selected vowel sub-class phonemes spoken
by 2 male speakers (DABO, WBTO) from the same
dialect region as the training set. Initial recognition
rates were noted for all the 8 phonemes from both
speakers before adaptation began.
The adaptation procedure involved adapting the
network towards a phoneme by feeding back any
errors through the network and using these to
modifY the weights and bias values within the
adaptation layer. After adaptation, recognition
rates of the phonemes uttered by the same speaker
were recorded and any variation calculated. The
Recognition rates for speaker DABO incresed by a
average 16.5% for adaptatio towards the same
phonemes and an increase of 8.3% in the
recognition of unadapted phonemes.saw a rise of
16.5% and 20.2% for DABO and WBTO
respectiverly with a rise See Table I and 2 for
speakers MDABO and MWBTO respectively.
After each test, the adaptation weights and bias
values were reset.

E-4

CONCLUSION

It can be seen from Table I and Table 2 that
adaptation towards a phoneme, in the vowel sub
class, for speakers MDABO and MWBTO can indeed
improve the recognition of the remaining phonemes
from the same speaker. After adaptation towards a
phoneme the average recognition rate of that
phoneme increases by I 8.35% and the recognition
rate of the remaining phonemes increases by 8.9%.
This highlights the idea of speaker information being
stored in the common front end adaptation layer,
resulting in a more efficient adaptation system.
Further tests need to be applied to other phoneme
sub-classes such as stops and fricatives and at
present, adaptation itself is still slow. This is because
only simple back propagation is being used, although
faster existing adaptation techniques can be applied
to the same architecture

REFERENCES

(I) I. C. Jou, Y. J. Tsay, S. C. Tsay, Q. Z. Wu,
and S.S. Yu. Parallel distributed processing with
multiple one-output back-propagation neural
networks. Proceedings, International Symposium on
Circuits and Systems, Singapore, pp 1408-11, 1991.

(2) S. Y. Kung, J. S. Taur Decision-Based
Neural Networks with SignaVImage Classification
Applications. IEEE Transactions on Neural
Networks, Vol6, No I, ppl70-8I, 1995.

(3) R. P. Lippmann An Introduction to
Computing with Neural Nets. IEEE ASSP
Magazine, Apri11987, pp 4-22.

(4) R.P.Lippmann Review of
Networks for Speech Recognition.
Computation I, pp 1-38, 1989.

(5) D.Rumelhart, J.McCielland
Distributed Processing. Cambridge,
1986.

Neural
Neural

Parallel
MIT Press,

(6) J.Makhoul Linear Prediction: a
tutorial review, Proc IEEE, Vol 63, No 4, pp 561-
580, April, I 975.

I MAXNET I

t t i
~ acto . . . acto

Class I Class 2 Class m

INPUT

Fig. I: Conventional OCON Architecture

Adapted Phonemes

ix iy eh ab

ix +13.3% +13.3% +13.3% 0

iy +7.1% +21.4% +7.1% +7.1%

eh 0 +11.1% +11.1% 0

ab +14.3% +14.3% 0 +28.6%

ax +10% +10% 0 +10%

ih +12.5% +12.5% 0 0

ey +25% 0 +25% +25%

a a 0 0 0 0

.. Table I: Recogmtmn Results Usmg Speaker DABO

Adapted Phonemes

ix iy eh ab

ix +18.2% +18.2% +18.2% +9.1%

iy +12.5% +37.5% +12.5% +12.5%

-eh 0 +10% +10% 0

ab +9.1% +9.1% 0 +18.2%

ax +12.5% +12.5% 0 +12.5%

ih +11.1% +11.1% 0 0

ey +16.7% 0 +16.7% +16.7%

a a +25% +25% +25% 0

Table 2: Recogmtion Results Using Speaker WBTO

E-5

I MAXNET

t t i
~ ~ . . . ~

Class I Class 2 Class m

I ADAPTATION LAYER I
;f}
INPUT

Fig 2: OCON Architecture with Common Front-End
Adaptation Layer.

ax ih ey a a

0 +13.3% +6.6% 0

0 +21.4% +7.1% +7.1%

0 +11.1% +11.1% 0

+14.3% +28.3% +14.3% 0

+20% +20% +10% +10%

+12.5% +12.5% +12.5% 0

+25% +25% +25% 0

0 0 0 0

ax ih ey a a

0 +18.2% +9.1% 0

0 +37.5% +12.5% +12.5%

0 +10% +10% 0

+9.1% +18.2% +9.1% 0

+25% +25% +12.5% +12.5%

+11.1% +11.1% +11.1% 0

+16.7% +16.7% +16.7% 0

0 0 0 +25%

I

DYNAMIC SPEAKER ADAPTATION FOR ACOUSTICALLY SIMILAR VOWEL SOUNDS USING SUB
CLUSTER NEURAL NETWORKS

S.J.Haskey and S.Datta
Loughborough University

Abstract

In this paper we present an adaptation technique
which exploits the inter/intra speaker phoneme
variations of acoustically similar vowel sounds.
The 13 vowels of American English speech can be
classified into three acoustically similar areas
according to the relevant tongue-hump-position.
The vowels, taken from the DARPA TIMIT
phonetic database [1], in each of these areas are
classified using One-Class-in-One-Network
(OCON) feed forward subnets, similar to those
proposed by Kung[3] and Jou[2], joined by a
common front-end adaptation layer [4][7]. This
allows adaptation to be concentrated primarily on
speaker characteristics, since speaker information is
comparable within these areas, allowing adaptation
towards a single phoneme to improve recognition
of other vowel phonemes within the same network.
This reduces the need for total vowel recital for
complete vowel phoneme adaptation towards a new
speaker.
Results show increases of over 12% in the recognition
rates of vowel phonemes after adaptation towards
other phonemes in the same tongue-hump-position
area. However, vowels that are well separated in the
same group have little, even negative, effect on
recognition after adaptation.

Introduction

If a speaker could consistently and precisely produce
the English American phonemes, speech would
amount to a flow of discrete sounds. However, due to
inter/intra speaker variations such as vocal tract
length, dialect differences, rhythm, intonation, stress
and most importantly eo-articulation effects, a given
'phoneme' will have a variety of acoustic
manifestations in the course of continuous speech.
This can cause significant problems with speaker
independent recognition systems and so some form of
dynamic adaptation is necessary to achieve a speaker
transparent recognition system. This paper will
concentrate on acoustically similar vowel sounds and
in particular the inter/intra speaker similarities
corresponding to tongue-hump-position [5]. The
tongue-hump-position and the degree of which the
tongue causes a constriction in the oral cavity creates
variations in cross-sectional area along the vocal tract
which determines the formants of the vowel. The
position of the hump of the tongue (front, central,

E-6

back) divides the vowel phonemes into three main
groups. An assumption is made that the vowel
phonemes within each group, due to the constant
tongue-hump-position, all contain comparable
speaker information. Using OCON subnet structures
[2][3] with a front-end adaptation layer [4][7] for
each group, speaker and phoneme information can be
separated. Therefore, common speaker information
from the vowel phonemes can be isolated in the front
end layer. This then allows adaptation towards a
phoneme class to improve the recognition rate of
other uttered phonemes sharing the same adaptation
layer from the same speaker. The resultant system
not only abolishes the need for total network
adaptation but also reduces the need for every vowel
to be recited for total vowel phoneme adaptation.

Acoustically Similar Vowel Sounds

The 13 vowel sounds of American English, although
produced solely by vocal cord movement, vary
dramatically with cross-sectional area along the vocal
tract. This cross-sectional area, particularly in the
oral cavity can be altered by movement of the
articulators, mainly the tongue. Consequently the
tongue position plays a fundamental part in the
production of the resonant frequencies (formants) in
the vocal tract that make up the vowel sounds. The
tongue varies the formants in the vocal tract in two
ways. By the tongue-hump-position and by the
degree-of-constriction the tongue hump causes,
Fig I.

FRONT BACK

flY/ fER/ f!JW/ TOP

lflll lAX/ /UIY

fEY/ IAIY IOW/
fEIY

/AO/

/APJ /AN BOTTOM

Fig I: The Position of the Hump of the Tongue in the Oral Cavity
during the Production of the American English Vowels.

As is shown in Fig 2 the three vowels /IY, AA, UW/
represent the extreme frequency locations for F1 and
F2• It can be seen from Fig 2 that moving from /IY I
to I AEI, !ER! to I AHI and from /UW I to I AA/ the first
formant, Ftt increases as the tongue constriction

F2• It can be seen from Fig 2 that moving from /IY/
to I A El, /ER/ to I AH/ and from /UW I to I AA/ the first
formant, F1, increases as the tongue constriction
increases whereas moving from IUW/ to /IY/ and
/AA/ to /AE/ the second formant, F2, alters with the
tongue-hump-position. As the tongue moves towards
the front of the oral cavity so F2 increases [6].

2400
nYI

2200

2000 nHI
N' ::s 1800 o!EHI

"' LL o/AFJ
'E! 1600 m
E
0

LL 1400
o!ERI

1200
/AA!

1000

800
200 400 600 800

Fonnant Fl (Hz)

Fig 2: The Vowel Triangle. A plot of Average Formants. F1 and Fll.
for American English Vowels. - -

These fundemental frequency F0 and the first
formants F1 are responsible for creating the raw
phoneme sound. This allows the phoneme to be
recognised but contains little speaker information.
The majority of the speaker information within a
phoneme comes from the second and third formants
F2 and F3•

To take advantage of the network architecture we
need to cluster vowel phonemes into groups that
contain comparable speaker information so that this
information can be stored in the common front-end
adaptation layer. Since F2 does contain some speaker
characteristics and varies with respect to the tongue
hump-position in the oral cavity the vowels can be
segregated into three groups:- front, middle and back.

Network Architecture

Unlike conventional subnet structures, this neural
network architecture consists of (OCONs)[2][3].
Each vowel phoneme class has it's own OCON, with
the OCONs representing phonemes from the same
tongue-hump-position group, joined using a common
front-end adaptation layer, Fig 3. Each OCON
structure consists of a hidden layer fully connected to
a single output neuron. The adaptation layer fully
connects to each of the OCON structures and in turn
fully connects to the input layer. ·All the neurons

E-7

within the feed forward network use the sigmoidal
activation function and the weights of each
connection are trained using the back-propagation
algorithm.

MAXNET

i i i
al'o al'o. . . al'o

Class I Class 2 Class m

"' "'
I ADAPTATION LAYER I

;f}
INPUT

Fig 3: OCON Architecture whh Common Front-End Adaptation
Layer.

After the network is initially trained with speech data
it is assumed that all class specific information
unique to that phoneme is stored in the relevant
OCON subnet and that information common to all
the classes, such as speaker information (F2 & F3), is
stored within the weights of the common front-end
adaptation layer. When the network is introduced
with speech data from a new speaker the error is fed
back through the OCON structure, using back
propagation, to the front-end adaptation layer where
only the weights in this layer are altered to minimise
the error. As each new speaker uses the system the
updated adaptation weights are reset to their initial
post-trained values ready for adaptation towards the
next speaker.
Since the adaptation occurs in an area common to all
classes within the network, it is envisaged that
convergence on a single class will improve the
recognition of the remaining classes, for the same
speaker, eliminating the need to update each class
for full adaptation to take place. Therefore by
concentrating the adaptation only on this front layer,
only information unique to the speaker within the
same tongue-hump-position group will change,
resulting in a more efficiently speech recognition
system.

The main objectives were to monitor the improved
recogmtwn rates of vowel phonemes after
adaptation towards a single vowel phoneme within
the same tongue-hump-position group uttered by
the same speaker.
Since we made the earlier assumption that vowel
phonemes within each group all contain
comparable speaker information, training and test
data from the DARPA TIMIT database [I] was

split into the three tongue-hump-position groups.
Front /IY, IH, EY, EH, AE/, middle /ER, AX, AHI
and back /UW, UH, OW, AO, AA!. Each of the
three networks consisted of one OCON subnet
structures for each of the phoneme classes, all
having a single output and containing a 3 neuron
fully connected hidden layer. The hidden layers
from each of the OCONs were fully connected to
the I 0 neuron adaptation layer which in turn was
fully connected to the 56 neuron input layer.
Training data was concentrated on one dialect
region only, the Western dialect region. This was
so that testing and adapting with another dialect
region would accentuate any speaker differences,
primarily dialect differences. Therefore
highlighting the effect, if any, of adaptation
towards a vowel phoneme influencing the
recognition of other phonemes within the same
network. All SX and SI sentences from the 79
male speakers of the Western dialect region were
used as training data. The relevant vowel
phonemes from each sentence were pro
emphasised and then split into eight windowed
segments, with each window represented by 7''
order linear prediction coefficients. The back
propagation algorithm was used for training, with
all the weights within the network initially
randomised, along with the order of the speech
training data, to maximise convergence.
The test data contained utterances from all the male
speakers from the dialect region three, Northern
Midland. All the data was pre-processed
identically to the training data and the recognition
rates for each vowel phoneme from each speaker
noted. Then, one speaker at a time, the network
was adapted towards a vowel phoneme and the
changes in recognition performance of the other
remaining vowel phonemes in the same network
monitored. Table I, 2 and 3 show the average
change in recognition performance, from 23 male
speakers, after adaptation towards other vowel
phonemes in the same group. Table I,
corresponding to the front of the oral cavity, shows
an average increase of 4.4%, table 2, the middle,
shows an average increase of 2.8% and for table 3,
the back, we have an average increase of 4.6%.

Conclusion

The exhibited improvements in recognition seem
to correlate to the distance measure between the
tongue positions of the relevant tested and adapted
vowels. The closer the vowels in the oral cavity the
larger the recognition improvement. Although
these results look promising there are some
negative changes. This is probably caused by large
speaker variations between well separated vowels.
To eliminate this problem the existing groups may

E-8

have to be further split to reduce the maximum
distance between adapted and tested vowels.
However, further research is required into F2 and
F, information and its distribution within the oral
tract since both these formants contain the majority
of speaker information. This additional formant
data will undoubtedly influence the perimeters of
further vowel grouping.

References

(I) DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus CD-ROM Oct, 1990

(2) I. C. Jou, Y. J. Tsay, S. C. Tsay, Q. Z.
Wu, and S.S. Yu: "Parallel distributed processing
with_multiple one-output back-propagation neural
networks", Proceedings, International Symposium
on Circuits and Systems, Singapore, pp 1408-11,
1991

(3) S. Y. Kung, J. S. Taur : "Decision-Based
Neural Networks with Signal/Image Classification

Applications" IEEE Transactions on
Neural Networks, Vol6, No I, ppl70-81, 1995

(4) S.J.Haskey,
Adaptation of Speaker
Subcluster Neural
464-467' 1996

S.Datta: "Selective
Characteristics within a
Network", SICOPS, pp

(5) J.R.Deller et a!: "Discrete-Time
Processing of Speech Signals" Maxwell Macmillan
International, 1993

(6) G.E.Peterson and H.L.Bamey: "Control
Methods Used in a Study of the Vowels", J Acoust
Soc Am, Vol 24, pp 175-184, March
1952.

(7) S.J.Haskey, S.Datta: "Using Tongue
Hump-Position Information for Vowel Adaptation
within a Subcluster Neural Network", lEE
Colloquium on "Pattern recognition", Feb 1997.

Vowel Phonemes Tested

IIYI /!HI IEYI IEW IAEI

IIYI + 16.83 +9.16 +3.82 -2.53 -1.18

/!HI +4.34 +18.54 +6.94 0 +1.89

IEYI +4.58 +11.20 +24.61 +7.17 +3.04

IEW 0 +5.09 +8.28 +22.96 +9.36

IAEI -6.67 -0.24 +11.39 +12.24 +31.53

Table I: Average Changes(%) of23 Male Speakers after
Adaptation to a Single Phoneme from the front of the oral cavity.

Vowel Phonemes Tested

/ER/ lAX/ IAEI

/ER/ +24.67 +8.08 +0.67

lAX/ +5.18 +28 0

IAEI +1.09 +2.14 +18.33

Table 2: Average Changes(%) of23 Male Speakers after
Adaptation to a Single Phoneme from the middle of the oral
cavitv.

Vowel Phonemes Tested

IUWI !UW IOW/ IAO/

/UWI +31.25 +4 +2.07 +10.67

/UHI 0 +20 +10 +12

IOW/ +6.25 +8 +22.78 +4

IAOI +6.25 +4 +1.67 +30

/AA! 0 0 +8.34 +5.33

/AA!

-1.18

-2.35

+5.88

+6.47

+23.53

Table 3: Average Change(%) of23 Male Speakers after
Adaptation to a Single Phoneme from the back of the oral cavity.

E-9

Using Tongue-Hump-Position Information for Vowel Adaptation within a Subcluster
Neural Network

S.J.Haskey and S.Datta

Electronic and Electrical Engineering Department
Loughborough University, Loughborough, LE!! 3TU, U.K.

S.Datta@lboro.ac.uk

ABSTRACT

In this paper we present an adaptation technique
which exploits the inter/intra speaker vowel
phoneme variations with respect to the tongue
hump-position within the oral cavity.
The 13 vowels of American English speech can
be classified into three areas according to the
tongue-hump-position. The vowels, taken from
the DARPA TIMIT phonetic database [!], in
each of these areas are classified using One
Class-in-One-Network (OCON) feed forward
subnets, similar to those proposed by Kung[3]
and Jou[2], joined by a common front-end
adaptation layer [4]. This allows adaptation to
be concentrated primarily on speaker
characteristics, since speaker information is
comparable within these areas, allowing
adaptation towards a single phoneme to improve
recognition of other vowel phonemes within the
same network. This reduces the need for total
vowel recital for complete vowel phoneme
adaptation towards a new speaker.
Results show increases of over 12% in the
recognition rate of vowel phonemes after
adaptation towards other phonemes in the same
tongue-hump-position area. However, vowels
that are well separated in the same group have
little, even negative, effect on recognition after
adaptation.

INTRODUCTION

If a speaker could consistently and precisely
produce the English American phonemes, speech
would amount to a flow of discrete sounds. Of
course, due to inter/intra speaker variations such
as vocal tract length, dialect differences,
intonation, rhythm, stress and most importantly
eo-articulation effects, a given 'phoneme' will

E- 10

have a variety of acoustic manifestations in the
course of continuous speech. Consequently this
can cause significant problems with speaker
independent recognition systems and so some
form of dynamic adaptation is necessary to
achieve a speaker transparent recognition system.
This paper will concentrate on vowel phonemes
and in particular the inter/intra speaker
similarities corresponding to tongue-hump
position [5]. The tongue-hump-position and the
degree of which the tongue causes a constriction
in the oral cavity creates variations in cross
sectional area along the vocal tract which
determines the formants of the vowel. The
position of the hump of the tongue (front, central,
back) divides the vowel phonemes into three main
groups. An assumption is made that the vowel
phonemes within each group, due to the constant
tongue-hump-position, all contain comparable
speaker information. Using OCON subnet
structures [2][3] with a front-end adaptation layer
[4] for each group, speaker and phoneme
information can be separated. Therefore,
common speaker information from the vowel
phonemes can be isolated in the front-end layer.
This then allows adaptation towards a phoneme
class to improve the recognition rate of other
phoneme sharing the same adaptation layer. The
resultant system not only abolishes the need for
total network adaptation but also reduces the need
for every vowel to be recited for total vowel
phoneme adaptation.

VOWEL FORMANT VARIATIONS

The 13 vowel sounds of American English,
although produced solely by vocal cord

movement, vary dramatically with cross-sectional
area along the vocal tract. This cross-sectional
area, particularly in the oral cavity can be altered
by movement of the articulators, mainly the
tongue. Consequently the tongue position plays a
fundamental part in the production of the resonant
frequencies (formants) in the vocal tract that make
up the vowel sounds. The tongue varies the
formants in the vocal tract in two ways. By the
tongue-hump-position and by the degree-of
constriction the tongue hump causes, fig I. As is
shown in fig 2 the three vowels IIY, AA, UW/
represent the extreme frequency locations for F 1
and F2. It can be seen from Fig 2 that moving
from flY/ to IAEI, /ER/ to fAH! and from /UW/ to
I AA! the first formant, F 1, increases as the tongue
constriction increases whereas moving from IUW/
to flY/ and /AA/ to /AE/ the second formant, F2,
alters with the tongue-hump-position. As the
tongue moves towards the front of the oral cavity
so F2 increases [6]. These first two formants FJ
and F2 are responsible for creating the raw
phoneme sound. This allows the phoneme to be
recognised but contains little speaker information.
The majority of the speaker information within a
phoneme comes from the third and fourth
form ants F3 and F 4 however, some speaker
information is retained in the second formant F2.
To take advantage of the network architecture we
need to cluster vowel phonemes into groups that
contain comparable speaker information so that
this information can be stored in the common
front-end adaptation layer. Since F2 does contain
some speaker characteristics and varies with
respect to the tongue-hump-position in the oral
cavity the vowels can be segregated into three
groups:- front, middle and back.

NETWORK ARCIDTECTURE

Unlike conventional subnet structures,
(OCONs)[2][3], this neural network architecture
consists of one OCON for each vowel phoneme
class, joined along with other classes of the same
tongue-hump-position group using a common
front-end adaptation layer, fig 3. Each OCON
structure consists of a hidden layer fully
connected to a single output neuron. The
adaptation layer fully connects to each of the
OCON structures and in turn fully connects to the
input layer. All the neurons within the feed

E- 11

forward network use the sigmoidal activation
function and the weights of each connection are
trained using the back-propagation algorithm.
After the network is initially trained with speech
data it is assumed that all class specific
information unique to that phoneme is stored in
the relevant OCON subnet and that information
common to all the classes, such as speaker
information (F2, F3 & F4), is stored within the
weights of the common front-end adaptation
layer. When the network is introduced with
speech data from a new speaker the error is fed
back through the OCON structure, using back
propagation, to the front-end adaptation layer
where only the weights in this layer are altered to
minimise the error. As each new speaker uses the
system the updated adaptation weights are reset to
their initial values ready for adaptation towards
the next speaker.
By concentrating the adaptation on this front layer
only information unique to the speaker within the
same tongue-hump-position group will change,
resulting in a more efficiently controlled
application driven (speech recognition)
connectionist regime. Since the adaptation occurs
in an area common to all classes within the
network, it is envisaged that convergence on a
single class will improve the recognition of the
remammg classes, for the same speaker,
eliminating the need to update each class for full
adaptation to take place.

RESULTS

The main objectives were to monitor the
improved recognition rates of vowel phonemes
after adaptation towards a single vowel
phoneme within the same tongue-hump-position
group uttered by the same speaker.
Since we made the earlier assumption that vowel
phonemes within each group all contain
comparable speaker information, training and test
data from the DARP A TIMIT database [I] was
split into the three tongue-hump-position groups.
Front IIY, IH, EY, EH, AE/, middle /ER, AX,
AH! and back IUW, UH, OW, AO, AA/. Each of
the three networks consisted of one OCON subnet
structures for each of the phoneme classes, all
having a single output and containing a 3 neuron
fully connected hidden layer. The hidden layers
from each of the OCONs were fully connected to

the I 0 neuron adaptation layer which in turn was
fully connected to the 56 neuron input layer.
Training data was concentrated on one dialect
region only, the Western dialect region. This was
so that testing and adapting with another dialect
region would accentuate any speaker differences,
primarily dialect differences. Therefore
highlighting the effect, if any, of adaptation
towards a vowel phoneme influencing the
recognition of other phonemes within the same
network. All SX and SI sentences from the 79
male speakers of the Western dialect region were
used as training data. The relevant vowel
phonemes from each sentence were pre
emphasised and then split into eight windowed
segments, with each window represented by 7th
order linear prediction coefficients. The back
propagation algorithm was used for training, with
all the weights within the network initially
randomised, along with the order of the speech
training data, to maximise convergence.
The test data contained utterances from all the
male speakers from the dialect region three,
Northern Midland. All the data was pre
processed in a similar fashion to the training
data and the recognition rates for each vowel
phoneme from each speaker noted. Then, one
speaker at a time, the network was adapted
towards a vowel phoneme and the changes in
recognition performance of the other remaining
vowel phonemes in the same network
monitored. Table I, 2 and 3 show the average
change in recognition performance, from 23
male speakers, after adaptation towards other
vowel phonemes in the same group. Table I,
corresponding to the front of the oral cavity,
shows an average increase of 4.4%, table 2, the
middle, shows an average increase of2.86% and
for the table 3, the back, we have an average
increase of 4.57%.

CONCLUSION

The exhibited improvements in recognition seem
to correlate to the distance measure between the
tongue positions of the relevant tested and adapted
vowels. The closer the vowels in the oral cavity
the larger the recogmtiOn improvements.
Although these results look promising there are
some negative changes. This is probably caused
by large speaker variations between well
separated vowels. To eliminate this problem the

E- 12

existing groups may have to be further split to
reduce the maximum distance between adapted
and tested vowels. However, further research is
required into F3 and F$ information and its
distribution within the oral tract since both there
formants contain the majority of speaker
information. This additional formant data will
undoubtedly influence the perimeters of further
vowel grouping.

REFERENCES

(I) DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus CD-ROM Oct,
1990.

(2) I. C. Jou, Y. J. Tsay, S. C. Tsay, Q. Z.
Wu, and S.S. Yu. Parallel distributed
processing with multiple one-output back
propagation neural networks. Proceedings,
International Symposium on Circuits and
Systems, Singapore, pp 1408-11, 1991.

(3) S. Y. Kung, J. S. Taur Decision-Based
Neural Networks with Signal/Image
Classification Applications. IEEE Transactions
on Neural Networks, Vol 6, No I, pp170-81,
1995.

(4) S.J.Haskey, S.Datta Selective
Adaptation of Speaker Characteristics within a
Subcluster Neural Network, SICOPS, pp 464-
467, 1996

(5) J.R.Deller et al Discrete-Time
Processing of Speech Signals Maxwell
Macmillan International, 1993

(6) G.E.Peterson and H.L.Barney Control
Methods Used in a Study of the Vowels, J
Acoust Soc Am, Vol24, pp 175-184, March 1952.

FRONT BACK

nvt /ER/ /UW/ TOP

nw lAX/ IUHI

/EY/ /AHI IOW/

/EH/
IAOI

/AE/ /AA/ BOTTOM

N'
<5.
"' u..
~
ro
E
0 u..

Fig I: The Position of the Hump of the Tongue in the
Oral Cavity during the Production of the American
English Vowels.

2400
nvt

2200

2000 nw

1800 o!EHI

o/AE/

1600

1400
o/ER/

1200
/AA/

1000

800
200 400 600 800

Fonnant Fl (Hz)

Fig 2: The Vowel Triangle. A Qlot of Average
Formants1 F1 and F.:,1 for American English Vowels.

I MAXNET I

i i i
cicltD cicltD . . . cicltD

Class I Class 2 Class m

...
I ADAPTATION LAYER I

1}
INPUT

Fig 3: OCON Architecture with Common Font-End Adaptation Layer.

E- 13

Vowel Phonemes Tested

/IY/ /I HI /EY/ /EH/ /AE/

~~ flY/ +16.83 +9.16 +3.82 -2.53 -1.18 n /IH/ +4.34 +18.54 +6.94 0 +1.89

"""" /EY/ +4.58 +11.20 +24.61 +7.17 +3.04

1~
::;~ /EH/ 0 +5.09 +8.28 +22.96 +9.39

/AE/ -6.67 -0.24 +11.39 +12.24 +31.53

Table 1: Average Scores of23 Male SQeakers after Ada12;tation to a
Single Phoneme from the front of the oral cavi!Y.

Vowel Phonemes Tested

~~ /ER/ lAX/ /AE/

h /ER/ +24.67 +8.08 +0.67
_gF:
"""" lAX! +5.18 +28 0 -e
~g.
~~ IAEI +1.09 +2.14 +18.33

Table 2: Average Scores of23 Male Speakers after Adaptation to a
Single Phoneme from the middle of the oral cavity.

Vowel Phonemes Tested

/UW/ /UH/ IOW/ IAOI /AA/

~~ /UW/ +31.25 +4 +2.07 +10.67 -1.18 u /UH/ 0 +20 +10 +12 -2.35

"""" IOW! +6.25 +8 +22.78 +4 +5.88 -e
·~ ~-~~ IAOI +6.25 +4 +1.67 +30 +6.47

/AA/ 0 0 +8.34 +5.33 +23.53

Table 3: Average Scores of23 Male Speakers after Adaptation to a
Single Phoneme from the back of the oral cavi~.

A Comparative Study of OCON and MLP Architectures for Phoneme
Recognition.

S.J.Haskey and S.Datta

Electronic and Electrical Engineering Department
Loughborough University, Loughborough, LEll 3TU, UK.

ABSTRACT

In this paper a comparative study between One-Class
One-Network (OCON) and Multi-Layered Perceptron
(MLP) neural networks for vowel phoneme
recognition is presented. The OCON architecture, first
proposed by I.C.Jou et all991, is similar in design to a
conventional feed-forward MLP, only each class had
its own dedicated sub-network containing a single
output node. Conventional MLPs usually consist of
fully-connected nodes which not only result in a large
number of weighted connections but also create the
problem of cross-class interference. Using vowel
phoneme data from the DARPA TIMIT corpus of read
speech, MLP and OCON architectures were trained
and the relative effects of recognition rates and
convergence during both intra and inter-class
adaptation tested. The OCON showed an increase in
the convergence rate of 273% and an improvement of
adapted recognition rates against the MLP of over
12%. However. due to the isolated nature of each
OCON class, it was unable to utilise inter-class
information. This resulted in a recognition rate
reduction of over 6% for unadapted phonemes during
adaptation, compared with the MLP results.

1. THEOCON

A large fully-connected network can potentially
contain many hundreds of neurons, each connected via
weights to many others. This can make the training
and adapting of such a network a long and difficult
task. In addition, fully connected networks are prone
to cross-class interference. Cross-class interference
occurs when adapting towards a single class in a multi
class network, inevitably altering shared weights. As
the network gets larger the interference increases,
drastically degrading the convergence rate of the
shared weights due to the influence of conflicting
signals. This can lead to, after adaptation towards a
single class, the impaired classification for the
remaining classes within the network. To eliminate
these problems, I.C.Jou et a! [2] proposed a new neural
network architecture called the One-Net-One-Class.
The same principle was later taken on- by
S.Y.Kung[3][4], who named the architecture the 'One
Class-One-Net' or the 'OCON' for short. The OCON
is similar in design to that of a conventional MLP (see
Figure 1 a) only each class has its own dedicated sub net
containing a single output neuron (see Figure lb).
Each OCON subnet is
specialised for distinguishing its own dass from other
patterns, resulting in fewer nodes being required in

the hidden layers. I.C.Jou first used the OCON architecture in
1991 for optical character recognition (OCR). Later S.Y.Kung
[4] also applied the OCON architecture to OCR, achieving a
training accuracy of 99.5% compared with 94% from a
conventional MLP. Such architectures have also been used for
texture classification, Electrocardiograph (ECG) analysis and the
classification of mandarin speech syllables and isolated English
words with a hybrid Time Delay Neural Networks (TDNN) and
OCON structure [5].

(a)

OUTPUT

INPUT

(b)

OUTPUT

INPUT

Fignre 1: (a) A fully-connected MLP architecture.
(b) An OCON Neural Network Architecture

2. THE SPEECH DATA

All the speech data used during the comparative study was
obtained from the DARPA TIMIT corpus of read speech [1]. 12
vowel phonemes spoken by male speakers from the TIMIT
dialect region 7, the western geographical area of the U.S, were
used for training and testing the ANN architectures. Vowel

E- 14

phonemes were specifically chosen since they are the
most spectrally well defined of all phonemes making
them more easily and reliably recognised and ideal for
a comparative study. For the study the phonemes were
also from speakers with the same gender and dialect as
large deviations between phonemes needed to be
avoided during the comparative study. Male speakers
from dialect region 7 were selected because of the
availability and good representation of training and
testing data available from this group. However, of the
13 vowel phonemes available, using the ARPABET
representation [6], vowel /UW/ was not used due to the
limited number of utterances leaving the 12 vowel
phonemes, /fY/, /IH/, /F.Y/, /EH/, IAFJ, IERJ, /AYJ,
/AH/, /UHI, IOW/, /AO/, /AA/. During the
experimentation it was not only of interest to test the
effect of recognition rates and convergence on the
adapted vowels but also the effect the adaptation had
on the remaining unadapted vowels. Unfortunately,
testing the effects of inter~class adaptation on 12 vowel
phonemes is a very labour intensive procedure and so
the phoneme groups were reduced further. They were
split into 3 distinct groups with respect to the tongue~
hump position in the oral cavity during their
production, 'front'. 'middle'. and 'back'. They were
grouped in this way since phonemes from the same
tongue~hump group show some acoustic similarities
[7]. The front vowel phonemes were IIY/,IIH/, /EY/,
/EH/ and /AEI, the middle vowel phonemes were /ER!,
lAX/ and /AHI, and the back vowel phonemes were
/UW/, /UH/, IOW/, IAOI and /AA/. Using 'Speech
Tools' [8] the relevant phoneme data was extracted
from the recorded 16kHz speech files within the
TIMIT corpus. Each phoneme file was pre
emphasised, to compensate for the ~6db/octave roll~off
of voiced speech and windowed using 8 over-lapping
hamming windows, each representing 16ms of speech.
The speech data in each window was used to generate
12 linear predictive coefficients (LPCs) which were
normalised by dividing by the first. The first
coefficient could therefore be eliminated since it was
always equal to one. This left 11 LPCs for each
window resulting in a Aotal of 8x11=88 coefficients
representing each vowel phoneme. Linear prediction
with its simple coding and well documented behaviour
was specifically chosen as the most appropriate form
of speech pre-processing since all experimentation was
primarily concerned with the performance of the ANN
architectures.

3. ANN ARCHITECTURES

To test the performance of the OCON architecture on
the vowel phoneme speech data, a comparative study
with the more conventional MLP was set. The OCON
and MLP architectures were represented by three
networks each, corresponding to the 'front'. 'middle'
and 'back' tongue-hump groups of the speech data.
For each phoneme group the MLP and OCON
networks (see Figure 2) were modelled using the
Stuttgart Neural Network Simulator (SNNS) [9]. All
the networks contained the same number of input
nodes. 88, dictated by the number of input coefficients
representing each speech utterance. The total number
of output nodes for each network was dependent on the
phoneme group, five phoneme classes for the front and
back and three phoneme classes for the middle. The six
networks, with every node using the sigmoidal
activation function. were modelled with fully

connected adjoining layers, except for the hidden and output
layers of the OCON architecture.

(a)

(310) Hidden Neuroll!l

(b)

I Output Neurons for
each class

(310) Hidden Neuroll!l

for each class I Output Ncuroll!l for
,..--'-, each class

Figure 2: (a) Fully connected MLP architecture.
(b) Fully connected OCON architecture.

Each network was trained with male TIMIT training set from
dialect region 7. The weight and bias values within the networks
were initially randomised and the standard back propagation
algorithm used to train the networks, producing the six 'basew
classifiers' necessary for the experimentation. The male TIMIT
'test set' for dialect region 7 comprised of 15 male speakers.
Since there was only interest in intra-speaker effects and not
inter-speaker effects, all the speech data from every test speaker
was amalgamated and categorised with respect to its phoneme
content. The networks were then ready for adaptation and
testing. but before that could occur, a single common back
propagation learning-rate for both the MLP and OCON networks
had to be found. This was achieved by training one of the MLP
and OCON networks with various learning rates. A learning rate
of 0.5 was selected since it offered both networks fast
convergen~e without any instabilities.

Each of the six base-classifiers was adapted and tested using the
'test set. • Each network was adapted towards one of its relevant
phoneme classes for a total of 100 cycles, during which 7 result
snapshots were taken at I, 3, 5, 10, 20, 50 and 100 cycles. Due
to the non-linearity of network adaptation, the number of cycles
between each result snapshot increased to produce a graph that
offered a clear picture of the network's behaviour. The results
taken at each snapshot were the recognition rates of both the

E- 15

adapted phonemes and the remammg unadapted
phonemes within the same network. After adapting for
100 cycles towards each phoneme class, the weights
and bias' within each network were reset to their initial
base-classifier values ready for the next adaptation
procedure involving another phoneme class.

4.RESULTS
Comparative results for the MLP and OCON
architectures were obtained for adaptation towards
each of vowel phoneme class and the effect on the
remaining unadapted vowel phoneme classes within
the same networks. 2 graphs were produced
containing the averaged data from all the vowel
phonemes for the adapted and unadapted phonemes
recognition rates (see Figure 3(a)(b)). As well as
recognition rates, another area of interest was each
network's convergence rate. The convergence rate for
each of the 2 averaged data graphs was calculated by
differentiating the recognition-rate data (calculating the
distance between adjacent rates). However calculating
the convergence rate in this way was viewed as being
unrealistic since the closer that recognition rates reach
the perfect goal of I 00%, the greater the significance
of recognition improvement. To reflect this the
convergence rate y was calculated using equation :

y = (100- X.) - I
100- x •••

(1)

where Xn and Xn+l are two adjacent recognition rates.
The term -1 in equation 1 was used for normalise the
graphs so that positive values indicated positive
convergence and negative values negative
convergence. The 2 convergence rates graphs were
generated were for all the adapted vowel phonemes
(see Figure 4(a)), and all the unadapted vowel
phonemes (see Figure 4(b)). Figure 3(a) shows that
the OCON networks show a clear improvement for the
recognition rates of adapted vowel phonemes over the
conventional MLP networks. On average, for all
vowel phonemes, the experimentation shows a 12.3%
increase in recognition rates for the OCON networks
[10][11]. This result echoes the improvements shown
in other data classification systems utilising OCON
architectures [2][3][4][5]. Furthermore, the OCON
architecture not only increases the adaptation rate but
also reduces the processing time necessary for each
adaptation cycle due to the reduction in network
weights. This is shown in figure 4(a) with the
increased rate of convergence for each OCON
network, offering a 273% increase against the MLP for
adapted phonemes. However, the OCON architectures
as they stand, deal badly with inter-class adaptation.
Although the rates of convergence for both networks
are roughly the same, figure 4(b), figure 3 (b) shows
that the OCON networks offer worse recognition rates
for unadapted vowel phonemes over the conventional
MLP networks. From figures 3 (b) we find that the
average drop in recognition rates for the OCON
networks, compared with the MLP networks, is 6.3%.

100r-------------~~:;::~===,
~80
" &! 60

§ 40
~ 1-+-MLP ro !---1--t--+--+-__:::;:•:::O;C:O:N:_j
0: 0

0 Lt) 0 ~

Adaptation Cycles

0

"'
g

Figure 3(a): Average Recognition Rates for All Adapted Vowel
Phonemes for an MLP and OCON Network

~ 35

"'
30

" 25 ;;
0: 20
" 0 15 E

" 10 "' 8 5
" 0: 0

~

0

~~-+-MLP r[--OCON
Cl') Lt) 0 0

"' Adaptation Cycles

0

"'
g -

Figure 3(b): Average Recognition Rates for All Unadapted
Vowel Phonemes for an MLP and OCON Network

-m 0.8
0: g 0.6

&0.4
~

~ 0.~ -1-----lt-.....C~'::::==~=---+----+----1
0.5 2 4 7.5 15 35 75

Adaptation Cycles

Figure 4(a): Average Convergence Rates for Adapted Vowel
Phonemes for an MLP and OCON Network

2 4 7.5 15
Adaptation Cycles

35 75

Figure 4(a): Average Convergence Rates for Unadapted Vowel
Phonemes for an MLP and OCON Network

E -16

5. CONCLUSION

As expected the OCON behaves better than the ML.P
when adapting and testing the same phoneme. 11us ts
primarily due to the individual networks in each
OCON network being dedicated to each class. Not
only are there fewer connections and hence weight.ed
axes to train, but each network only has to deal wtth
information concerning a single class. As a result the
OCON not only reduces the processing time for each
adaptation cycle, but also rapidly increasing the
convergence rate. However, the OCON architecture as
it stands, deals badly with inter-class adaptation.
When adapting to a class, the OCON shows a lower
recognition rate for the remaining phonemes in the
network compared to that of the MLP. This indicates
that there must exist some common speaker
information within all the classes in a network which
isn't being exploited in the isolated networks of the
OCON. Although in many applications cross-class
interference can be a problem, MLPs compared to
OCONs appear to use it to their advantage for inter
class adaptation. As a result an ideal network would
be a hybrid OCON architecture containing isolated
networks for improved single class adaptation but with
some inter-class bonding to profit from any common
speaker information. However it would be important
that any hybrid OCON network should concentrate
adaptation only on common speaker information as
adaptation towards common class infonnation could
result in hannful cross-class interference.

6. REFERENCES

[I] DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus CD-ROM, Oct
1990.

[2] Jou, 1., Tsay, Y., and Tsay, S. "Parallel
Distributed Processing with Multiple One
Output Back-Propagation Neural Networks,"
Proc, Int Symp on Circuits and Systems,
Singapore, pp.l408-1411, 1991.

[3] Kung, S.Y., and Taur, J.S. "Decision-Based
Neural Networks with Signal/Image
Classification Applications," IEEE
Transactions on Neural Networks, Vol.6, No. I,
pp. 170-181, January 1995.

[4] Kung, S.Y. "Digital Neural Networks,"
Prentice Hall, Englewood Cliffs, NJ.

[5] Hwang, J.N., and Hang Li. "Interactive query
learning for isolated speech recognition." ln
Kung, S.Y., Fallside, F., Sorensen, J.A., and
Kamm, C.A. "Neural Networks for Signal
Processing," I, pp.513-522, Proceeding of the
I99I IEEE Workshop, Princeton, NJ, 1991.

[6] Shoup, J.E. "Phonological Aspects of Speech
Recognition," 125-138, Ch6 in Trends in Speech
Recognition, W. A. Lea, Ed., Prentice-Hall, Englewood
Cliffs, NJ, 1980.

[7] Rabiner. L., and Juang, B. "Fundamentals of Speech
Recognition," 26-27, Ch2, Prentice-Hall, Englewood
Cliffs, NJ, 1993.

[8] Speech Tools User Manual, Center for Spoken Language
Understanding, Oregon Graduate Institute of Science and
Technology, August 1993.

[9] Stuttgart Neural Network Simulator, User Manual,
Version 4.1, Institute for Parallel and Distributed High
Performance Systems, University of Stuttgart, 1995.

[10] Haskey, S.J., and Datta, S. "Dynamic Speaker
Adaptation for Acoustically Similar Vowel Sounds using
Sub-Cluster Neural Network," Conference and
Workshop on New Ideas in Computing, Part 2, Coventry
University, May 1997, pp41-44.

[11] Haskey, S.J., and Datta, S. "Using Tongue-Hump
Position Infonnation for Vowel Adaptation within a
Subcluster Neural Network," lEE Colloquium on Pattern
Recognition," Feb 1997.

E- 17

