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SYNOPSIS 

The principal aim of this research was to utilize the newly
developed technology of processing partially solid alloys as 

a means of dispersing untreated graphite particles in a 
hypereutectic aluminium-silicon alloy. The optimum conditions 
for the dispersion and retention of graphite particles in the 
alloy were evaluated together with the suitability of cold 
chamber pressure diecasting as a method of producing castings 

from the alloy composite. The second aim of the research was 
to obtain information and data on the mechanical and 
tribological properties of the hypereutectic aluminium-silicon 
alloy (LM30) containing graphite particles. since the presence 
of graphite was expected to contribute low frictional losses 
and improved wear resistance to the already exploited 
properties of excellent corrosion resistance and thermal 
conductivity. By introducing the graphite particles into a 
vigorously stirred, partially-solid alloy slurry the particles 
were readily dispersed within the slurry. Providing that 

there was a suffi~ient volume fraction of solid. the particles 

of graphite were mechanically entrapped within the slurry 
preventing their rejection from the melt. The equipment used 
for production of the alloy composite consisted of a 
rheocasting unit mounted on the tie bars of a EHB No. 10 
cold chamber pressure diecasting machine. 

The LM 30 alloy used for the investigation was designed 
specifically for a diecast aluminium alloy automobile-engine 
cylinder block capable of operating without the usual cast 

iron cylinder liners. Potentially its application extends to 
a wide range of castings in which a combinat.ion.of.wear 

resistance with lightness is required. ~u~tl:all()is posse'$S 
the valuable characteristics of high flu:idl'ty and freedom 
from hot-shortness. The alloy used in thisinvestigatiori'was 

obtained in the form of commercial ingot's. 

A commercially-available syntheuic graphite was used to 
evaluate the influence of both graphite particle size and 
addition level on the mechanical properties and wear 

characteristics of the alloy. Successful dispersion of the 
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graphite was obtained for particles in the size range 75pm 

to 355pm. Sufficient alloy for each experiment was melted 

in an electric-resistance heated furnace then transferred to . 
the preheated rheocasting unit and stirred until the 
temperature of the alloy in the slurry zone reached the 
predetermined temperature. The graphite particles were then 
introduced to the alloy slurry through the base of the hollow 
stirring rotor. The composite alloy slurry was discharged from 
the rheocasting unit and transferred via the heated launder 

to the shot chamber of the pressure die casting machine. The 
slurry was injected immediately and the casting allowed to 

solidify completely before ejection from the die. 

The mechanical properties evaluation showed that strength 
and ductility were reduced in an alloy which~ontained graphite. 
Pin on disc wear tests showed that graphite additions resulted 

in less wear, reduced coefficient of friction, reduced 
steady running temperature and reduced daniage to mating 
components. 
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CHAPTER ONE 

INTRODUCTION 

The widening of markets and the increasing demands for goods 

as the affluent society progresses will favour mass production 
. methods that can be fully automated, keeping the processing 

time and finishing costs to a minimum. From the knowledge of 
the modern manufacturing processes for metal products, the 
logical trend must therefore be the search for a process 
capable of converting liquid metal directly into the finished 
product conforming as closely as possible to the final 
configuration, accuracy and the surface finish necessary and 
maximising mechanical properties. The process should also be 
adaptable to differences in casting design and common 
metallurgical features. 

1.1 PRESSURE DIE CASTING OF SEMI-SOLID SLURRY 

Conventional pressure die casting meets most of the above 
requirements of high productivity which enables it to compete 
with stamping and forging processes. Furthermore it has the 

capability of producing more detailed components with much 
closer dimensional control and less subsequent machining in 
comparison with sand castings and permanent mould castings. 
Conversion costs from basic ingot are lower and the pressure 

die casting process is more tolerant of input metal having 
higher levels of impurity and therefore lower cost. The 
tooling costs for pressure die casting are usually much higher 
than for either sand or permanent mould but tools can usually 
be amortized over hundreds of thousands of castings (I). 

The new developments in the pressure die casting process, 
such as the use of disposable cores, broaden the basis for the 

f d""" h b"l" d (2) use 0 pressure ~e cast~ng ~n t e automo ~ e ~n ustry • 
Components which require disposable cores such as intake 
manifolds and cylinder heads, currently made by either the 

sand or semi-permanent mould processes, could be produced by 
pressure die casting. 

Pressure die casting is used when (3): a large quantity of 

identical components is needed (the minimum to be economic 
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is 5,000 to 10,000 depending on the complexity of the die); 

the design of component is complex and is expensive to 
machine; machining, assembly or surface finishing accounts 
for an appreciable amount of the final cost; a reduction in 
investment in machine tools and floor space is needed; and 
undercuts and intricate holes can be produced by means of 

sliding permanent cores. 

The metals most often die cast are zinc alloys, aluminium 
alloys and magnesium alloys. All use steel moulds which last 
for hundreds of thousands of castings in the case of zinc 
alloys, and about 50.000 to 250,000 shots for aluminium and 

magnesium alloys. 
may only last for 

Dies used for higher melting point alloys 
15,000 to 50,000 shots (4). 

~~ile pressure die casting is certainly desirable from an 
economic point of view, the process does have its limitations. 

(3) 
These are : Thermal die fatigue due to the injection of 

superheated liquid metal which results in a sudden increase 
in die temperature; die design is complex due to the need to 

incorporate a weir in the die to prevent the liquid metal in 
the shot sleeve entering the die cavity prematurely; and the 
most important is that castings produced are poro~s internally 
and die castings cannot be heat treated without blistering the 
casting skin, which explains why pressure die cast components 
are not as strong as forgings. 

These deficiencies had led to the development of a new 
techinque which is claimed to overcome the above 
disadvantages. The techinque utilizes semi-solid alloy 
slurry instead of superheated liquid alloy. This can be 

achieved by heating the alloy to a temperature between the 
solidus and liquidus and then agitating it vigorously. This 
converts the material into a slurry in which the dendrites 
are broken down and globularise to form rounded particles 
(this technique is known as "rheocasting"). If agitation 
ceases, the rounded particles tend to form agglomerations 
surrounded by liquid phase and the resultant slurry has a 
relatively high viscosity enabling it to be handled as an 
apparent solid. The semi-solid slurry is thixotropic and 
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when sheared as it passes through the gate in a die casting 

machine will flow like a viscous liquid. When it is injected 

into the die cavity less turbulence occurs and die castings 

of improved soundness may be produced. The absence of 

porosity allows heat treatment operations to be carried out 

without blistering of the casting skin. In the new process 

the slurry can be cast in the form of bars of accurate weight 

which can later be reheated to 

are half molten (soft solid). 
a temperature at which they 

wnen placed in the shot sleeve 

of the die casting machine and pressurised the billet is 

converted to a slurry which flows in a non-turbulent manner 

into the die. This techinque is known as "thixocasting" . 

1.2 THE SEARCH FOR ECONOHIC HATERIALS 

Another demand is for light weight, energy efficient materials 
and this has increased activity in the material community to 

develop specific alloys and processing techniques to meet this 

new challenge. 

The increasing use of aluminium alloy castings, albeit at the 

expense of ferrous castings, in the automobile industry is a 

response to this demand. Whilst aluminium alloy castings are 

supplied to most sectors of the market, the transport sector 

consumes about 60% of the UK output and other countries are 

equally dependant on this market {51. It has been estimated 

that every 250lb (113kg) weight saving will improve a car's 
fuel consumption figure by 1 mpg (0.35km/litre) (6). Although 

the greatest potential for weight saving exists in the body 

shell, aluminium alloy castings can and do contribute to a 

weight saving in the power train and wheels. During the past 
thirty years almost every possible cast iron component {n the 

power train has been tried and proven in aluminium alloy 

castings. With few exceptions diecast parts have proven 
functionally adequate, even though the economic advantage may 

at the time have been marginal in some cases (7). However, 

the continued emphasis on fuel economy and the almost 

mandatory requirement to use aluminium alloy transmission 

parts to ensure proper weight distribution in front-wheel 
drive cars (7) will ensure an increase in the demand for 

aluminium alloy castings in the current decade. 

o 
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The weight saving potential of aluminium alloy castings over 
cast iron is demonstrated by the following examples ( ). 

A typical cylinder block and head in cast iron weigh about 
2S0lb (113kg), in aluminium alloy they would weigh about 
80lb (36kg). A gear case and clutch housing in cast iron 
weigh about SOlb (22~kg), in aluminium alloy they would weigh 
about 15lb (7kg). In the USA it was estimated that there 
was only 6l!lb (28kg) of aluminium alloy castings/vehicle 

in 1973, by 1979 this figure had risen to 7Slb(34kg) and in 
1982 it was 89lb (40kg). This trend is expected to continue, 
in 1985 it is expected to be 1021b (46kg) and by 1990 l20lb 

(S4~kg). All these figures exclude the possible introduction 
of aluminium alloy cylinder blocks (8). The cylinder block 

represents the heaviest iron casting in the power train and 
consequently the greatest weight saving potential. However, 
whilst aluminium alloy cylinder blocks have been used in 
production, they have generally featured cast iron cylinder 
liners with an associated manufacturing cost penalty. The 
combination of Reynolds Metals alloy 390 (BS 1490: 1970: LM30) 

technology and the General l/'otors Acurad Process resulted in 

the use of an aluminium alloy cylinder block in the Chevrolet 
Vega 2.3 litre engine in the USA (9). Although the engine 

was withdrawn in tpe USA the technology is being used 
successfully in European cars such as the POl:sche 928, Daimler 
Benz 450 SLC and Rolls-Royce Camargue .00). However, 
attainment of the necessary cast structure nl) and the 

special surface etching of the bore, together with the piston 
coating procedure (12), have resulted in an increased 

manufacturing cost which can only be accepted in expensive 
luxury and performance cars. 

1.3 BEARING MATERIALS 

Light weight bearing materials have been sought since at 
least the 1930s. Much of the development during this period 
has been of aluminium alloys which exhibit a high strength
to-weight ratio and excellent resistance to wear, corrosion 
and scoring. A relatively soft alloy is required to ensure 
good characteristics and this criterion has contributed to 

the development of Al-Sn and AI-Cu-Sn alloys containing very 
high percentages of alloying elements (13). Recent emphasis 
placed on the conservation of scarce materials such as tin, 
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lead, copper and zinc has diverted the search to newer 
bearing materials based on more abundantly available materials 
such as silicon which is cheap and commercially available. 
As a result, certain AI-Si, Al-Cu and Al-Zn alloys containing 
relatively lower percentages of alloying elements such as 
copper, magnesium, nickel ••• etc. and higher percentages of 
silicon such as hypereutectic aluminium-silicon alloys have 
been developed for bearing applications. Bearings made of 
these alloys performed well under normal conditions but were 
found unsuitable for limiting lubrication conditions (14~ 
Composite materials such as copper alloy-graphite (15) and 

iron alloy-tungsten disulphide made by powder metallurgical 
techniques, have been successfully used in bearings, but their 
commercial exploitation remains strictly limited due to the 
dimensional limitation of the production techniques. In 
addition, .the powder metallurgy route is expensive. These 
limitations have been overcome by the recent development of 

techniques such as "compocasting" for making as-cast metal 
particulate composites. In compocasting the slurry nature of 
rheocast metal alloy (see 1.1) permits the addition and 

retention of particulate material. The composites are made 
starting with a vigorously agitated, partially solidified 
metal alloy. Then, particulate materials (eg. graphite, 
silicon carbide, glass beads •.• etc.) are added whilst 
agitation continues. Providing that there is a sufficient 
volume fraction of primary solid particles in the alloy, the 
added particles will be mechanically entrapped within the alloy 
slurry which will prevent their rejection from the melt. The 
resultant composite slurry has a low viscosity in comparison 
to the superheated liquid alloy normally used for casting. 
The composite alloy slurry can be successfully shaped by 

pressure-assisted processes such as squeeze casting or 
pressure die casting, in addition to the conventional 
casting processes. 

Using this technique, several aluminium-based composites have 
been developed, such as aluminium alloy-graphite (16)and 

aluminium alloy-ceramic (17~ From these new materials, 

aluminium-graphite composites have created considerable 
interest because of their resistance to wear and scuffinJ18,19~ 
Work on such composites has indicated that bearings 
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made of graphitic aluminium alloys can work satisfactorily 
(20) even under marginal lubrication conditions 

1.4 BEARINGS IN AUTOHOBILE INDUSTRY 

A bearing can be regarded as a mechanism for transmitting a 
load between two surfaces in relative motion. Thus, ever 
since the invention of the wheel, bearings have played a key 
role in transport. The wide spectrum of loads and speeds 
and the high reliability which is demanded from modern motor 

vehicles make bearing performance a key factor in the overall 
behaviour of the engine or system. 

The widespread introduction of the automobile provided a spur 
to bearing development and led to the introduction of bearing 
systems capable of sustaining higher speeds and loads to meet 

the requirements of modern engines. Reliability has increased 
dramatically; most car owners would feel aggrieved if their 
car bearings or pistons had to be replaced during their period 
of ownership, whilst running-in procedures demanded by modern 
engines are far less critical and irksome to the driver than 

in the past. The major need for change in current technology 
over the last 20 years came as a response to both economical 
and social demands (21) 

The general trends in engine technology require component 
surfaces to run under more difficult conditions, particularly 
as the quality of fuel decreases. There is also a requirement 
to reduce friction and oil consumption with no accompanying 

loss in wear resistance. Castings are widely used for 
applications in the internal-combustion engine that require 

good friction and wear resistance and their use is expanding 
as the diesel engine becomes even more widely used. Critical 

components which are cast include: piston rings; cylinder 
liners; the camshaft and tappets; and the crankshaft and its 
associated bearings (IQ). Cast iron in one form or another 

is by far the most widely used material and specific 
treatments have been applied to extend the life and operating 
efficiency of these components. Piston rings are quite 
commonly electroplated with chromium or plasma sprayed with 

chromium carbide, cylinder liners are finished by cross 
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honing to produce a plateau/groove finish that enhances oil 

retention. The situation is becoming even more complex as 

other materials, including sintered iron rings cast aluminium 

alloy liners, and special surface treatments, including laser 
treatments, are becoming more widespread (IQ). The use of 

aluminium alloy bores in automotive engines dates back many 

years and their development has followed two main paths based 

on providing either the piston or the liner with a hard, 

more wear resistance overlay. In the first of these 

technologies the liner is made in a material with a high 

silicon content (17-20%) and machined on its inside diameter 

using a special technique to display the primary silicon 

polyhedra, so that they act as a hard and wear-resistant 
support against the abrasive action of the rings (22). 

Aluminium-silicon alloys fulfil this requirement, in 

combination with good casting characteristics and freedom 

from hot shortness. However, a limitation exists in their 

tribological performance in the form of a tendency to scuff 
(l]) 

in conditions where lubrication is sparse or intermittent 

The principal aim of this research was to produce a bearing 
material which will permit direct piston/liner contact, the 

use of traditional piston alloys ~nd the use of conventional 

liner finishing methods. This is very important as it allows 

those who undertake engine conversions to enlarge the bores 

by a simple diamond boring operation without chemical 

finishing, which is not possible with a hard overlay. 

It has been reported that the inclusion of evenly dispersed 

graphite particles in hypereutectic aluminium-silicon alloys 

improves their tribologica1 properties by providing solid 
(24) 

lubrication The primary silicon polyhedra provide the 

support and the graphite provides the lubrication to enable a 

direct piston/liner contact to be obtained. 

The major difficulty in the preparation of cast a1uminium
graphite particle composites by a liquid metallurgy process 

is the apparent non-wettabi1ity of graphite by liquid 
aluminium alloys and hence the rejection of graphite particles 

from the melt. Several attempts have been made by other 
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researchers to solve the problem of non-wetting between 

graphite and liquid aluminium alloys, but most of these 

methods have proved costly since they require either a 

regular supply of metal coated graphite particles, or very 

high power ultrasonic probes. The research reported in this 

thesis utilized the newly-developed technology of processing 

a partially solid hypereutectic aluminium-silicon alloy as a 

method of dispersing uncoated and untreated graphite particles 

in the alloy. The optimum conditions for the dispersion and 

retention of graphite particles in the alloy were evaluated 

together with the suitability of cold chamber pressure die

casting as a method of producing castings from the alloy 

composite. 

The results of an exploratory investigation to establish the 

effect of graphite particle size and the level of graphite 

additions on the mechanical properties and wear characteristics 

of LM30, the hypereutectic aluminium-silicon alloy, has been 

presented and discussed in this thesis. 

s 



CHAPTER TWO 

BACKGROUND AND LITERATURE SURVEY 

2.1 ALUMINIUM-SILICON ALLOYS AND THEIR: AEPLlCAl'lONS 

The growth in consumption of aluminium during the last thirty 

years has been faster than that of many other metals including 

iron and copper. The reasons for this are numerous but the 

major ones are: its high strength to weigh ratio; excellent 

co~osion resistance; ease of fabrication; high electrical 

and thermal conductivities; low cost in comparison with other 

non-ferrous materials (Foundry Trade Journal price list) and 

high scrap value. These properties, together with its 

relatively stable price and virtually inexhaustible supply in 

the foreseeable future, are encouraging metallurgists and 

engineers to find new ways by which the full potential of 

this versatile metal may be realised. One example of this is 

the continued research and development efforts in applications 

where the bearing properties are of primary importance. 

The commercial aluminium alloys employed for casting purposes 
contain various percentages of one. or more alloying elements, 

depending on the casting process and the mechanical and 

physical properties required. The alloying elements such as 

copper, magnesium and silicon are partially dissolved in 

aluminium to form a solid solution of OC:-Al, whilst the 

surplus forms a eutectic mixture of~-Al and CuA1 2 , Al3 Mg 2 

and silicon respectively (25). Silicon is probably one of 

the least expensive alloying additions commonly made to 

aluminum. Silicon improves castability, increases strength 

to weight ratio, decreases the coeffecient of thermal 
. d . . 1 .. (23) 

expans~on an ~mparts wear res~stance to a um~n~um . 

Aluminium-silicon alloys form the largest family of the 
aluminium base casting alloys, ranging from simple binary to 

more complex alloy systems. Structurally, aluminium-silicon 
alloys can be divided into three groups (26): 

(a) hypoeutectic, in which the matrix ~-Al is the major 

constituent, with smaller amounts of dispersed eutectic and/ 

or intermetallic compounds in the matrix; 



(b) eutectic, in which the eutectic mixture constituent 

predominates and contains smaller volumes of excess 

~-Al and of the other compounds; 

(c) hypereutectic, in which the hypereutectic phase and 

other compounds are dispersed in the eutectic. 

An important group of aluminium-silicon alloys has been formed 

for the automotive 

die casting, A332, 

B51490 (1970) LH25 

industry. A380, BS1490 (1970) LH24 for 

BS1490 (970) L~l13 for pistons and 319, 
(27' for sand and permanent mould I • 

The hypereutectic aluminium-silicon alloy 390, BS1490 (1970) 

LH30 has been developed recently for casting aluminium 

monoblocks. This alloy has good fluidity over its wide 

solidification range, and provides large numbers of primary 

silicon polyhedra on solidification. These precipitates, 

when brought into bas-relief, by any of several methods, 
provide a surface with excellent sliding friction properties(28~ 
The silicon surface is extremely wear resistant and from 

four to five times as long-lasting as traditional cast iron 
cylinder surfaces (22~ In addition this alloy has a low 

coefficient of thermal expansion, superior fluidity in thin 
sections and high thermal conductivity (29~ The alloy 

strength can be increased with T6 and T7 Tempers, and little 
• 0 

loss of strength occurs at temperatures up to 400 F(20S C), 

even after holding at temperature for extended periods of 
time (29 ~ 

The application of aluminium-silicon alloys for cylinder 
• liners is expanding because 6f attempts to reduce the weight of 

automobiles to improve fuel efficiency. Aluminium-silicon 

cylinder blocks have been used in many production automobiles 

from as early as 1960. The development of the Reynolds 390~ 

LM30 alloy for the Chevrolet Vega and the use of an etch 

treatment to leave the silicon particles standing proud of the 

load-bearing surface was the first success, making it possible 
to omit a cast iron liner. Considerable economic savings are 

possible if the aluminium alloy surface itself can be used 

directly as the bearing surface (6: It has been reported 

that the effect of cooling rate during solidification or 
structural modification do not significantly affect the wear 

10 



resistance of the hypereutectic aluminium-silicon alloy but 
the silicon content exerts a significant influence on wear 
rate and transition 10ad(23,30), see Figs. 1 and 2. 

For many engineering applications, such as piston and cylinder 
arrangements, it is necessary to run aluminium-silicon alloys 
in sliding contact with each other. However, unless 

lubricating conditions are ideal, they tend to seize or gall. 
The problem becomes more intense in conditions of boundary 
lubrication(23). Such conditions can occur in almost all 

cases of sliding contact. Various solutions have been tried 
to solve this problem using surface treatments and coatings(22~ 
these methods have proved effective but expensive. 

The 390 alloy:: LM30 with a silicon content of 16-18% was 
developed for aluminium cylinder blocks. This composition 

provides large and well distributed quantities of primary 
silicon on solidification. Although the'5ilicon surface 
provided by this alloy is extremely wear resistant the most 
significant problem was that of scuffing of the bore on cold 
start(31l • 

An alternative approach was undertaken by Bruni and 
Iguera(24) whereby nickel-coated graphite particles were 

incorporated into a hypereutectic aluminium-silicon alloy. 

Cylinders were produced from this alloy as a substitute for 
cast iron cylinder liners. Pistons and rings were identical 
to those used with the original cast iron cylinder liner. 
All Components were finished using a standard diamond boring 
operation with no special chemical treatment required. The 
authors stated that the graphitic aluminium-silicon alloy 
displayed superior wear and friction characteristics in all 

cases. A scuffing test was carried out and it was found that 

the properties of aluminium-graphite cylinders allowed the 
test to be extended to three times their normal duration. A 
further observation was that average power outputs were 
increased as a direct result of improved friction properties. 
Krishnan et al.(3Z) have stated that an· 

aluminium-silicon-3wt% graphite particle composite piston in 

a Shp single cylinder diesel engine could withstand an 
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endurance test of 500 hours without any apparent 
deterioration. The use of such a composite as a piston 
material resulted in: a reduction in the specific fuel 
consumption; considerable reduction in the wear of piston 
rings; reduction in the wear of the piston; and reduction in 
frictional horsepower losses, due to the continuous , 
lubrication provided by graphite particles which were smeared 
on the bearing surface. Also higher damping capacity of the 
composite pistons and reduction in the coefficient of thermal 
expansion were achieved. The authors also stated that the 
wear test results indicate that graphitic aluminium-silicon 
alloys offer a promising material for automotive pistons. 
However, adoption of graphitic. ialuminium-silicon aloys.',1n 
production engines may not have occured as a result of 
difficulties in manufacturing components from such composites 
and the methods available at present for dispersing graphite 
may not be suitable for volume production. 

2.2 PRESSURE orE CASTING 

One of the oldest methods of casting molten metal is by 
gravity pouring into sand moulds and this method, with many 
refinements, is still the single most important casting 

-process. Methods for prodUCing more precise castings, such 
as plaster casting or investment casting, are available but 
like sand casting they have the disadvantage that the mould 
must be destroyed to remove the casting. 

The permanent mould processes, such as diecasting, enable 
the mould or die to be reused many times. Whilst the metal 
may be gravity poured into a permanent die, improvements in 
appearance and accuracy and reduced section thickness can be 
obtained by the application of pressure to for'ce the metal 
into the die. Considerable improvement has been made in the 
evolution from the first manually operated plunger 'type die 
casting machine to the modern automatic plunger machines. 
Steel for dies has been refined to the stage at which 
economical die life is obtained with all the die casting 
alloys and rapid strides are being made in perfecting even 
more suitable die materials. Much progress has also been 

made in die casting techniques during the last five decades. 
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The control of casting variables, such as metal and die 
temperatures, pressures and shot speeds, is much advanced. 

Pressure die casting is undoubtedly capable of mass 
producing components requiring little or no machining, an 
advantage which none of the other metal die processes can 
offer. The most serious matter is that conventional pressure 

die casting produces castings which are porous internally, 
much of the porosity in die castings is die cavity atmosphere 

(nitrogen and/or volatilized lubricants .•• etc.) compressed 
under the high pressure imposed during solidification. When 
a die casting is solution heat treated the compressed gasses 
in the pores expand at the same time that the metal 
surrounding them is softening and the casting blisters (2~ 
Much attention has been paid to avoiding defects like air 
entrappment and shrinkage porosity, inherent to the process. 
Methods have included flushing the die cavity with inert gas 
or oxygen and evacuating the die cavity prior to injection(33~ 
However, these are only partially successful, owing to capital 
cost and difficulties in operation(2~ 

Acurad is a process developed by the General Motors Company 
for pressure die casting. The process utilizes two concentric 

plungers Fig.3. The first plunger, which is relatively 
slow speed, squeezes the molten metal into the die cavity. 
At this stage the alloy is partially solidified and most of 
the shrinkage and porosity holes has already formed, the other 
plunger now operates to complete the action,of the first 
plunger by forcing more molten metal into the die cavity to 
fill these holes and produce sound castings(34~ 

Research carried out at M.I.T. in the USA(3S)and Fu1mer 

Research Laboratories in the UK(3}has showed that it is 

possible to deform and shape metal in the semi-solid state 
between the 1iquidus and solidus provided the structure of the 

metal is controlled. Semi-solid metal injection casting is a 
new process for making precision die castings which, it is 
claimed, overcomes the defects associated with conventional 
pressure die castings produced from superheated liquid metal. 

The process uses a semi-solid aluminium alloy slurry in a 
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thixotropic condition, such an alloy can be handled as if it 
is a rather soft solid, but when sheared by the runner and 
the ingate of the die it will flow without turbulence as a 
non-newtonian fluid. This would allow the entrapped gasses 
in the die cavity to escape through the die vents and hence 
sound castings can be obtained. 

The design of dies can be simplified and the lower temperature 
of the slurry compared to liquid metal means that half of the 

Latent heat and all the superheat has been removed, thus the 
lower die temperature results in less thermal shock and faster 
cycle times, so improving the productivity of the die casting 
process (l~ 

Comparison between semi-solid pressure die casting and the 
"ACurad Process" shows no difference at all in the way they 
process the alloy, except in the first method, most of the 
shrinkage occured before injection, whilst in the latter, the 
shrinkage occured after the first injection (ie. in the shot 
chamber of the die casting machine). From the economic point 
of view, the semi-solid pressure die casting process appears 
to be less expensive than the "ACurad Process", since there 
is no need for superheating the alloy and conventional 
pressure die casting machines can be used. The semi-solid 
casting process is considered in greater detail at a later 
stage in this review. 

2.3 METHODS OF CAST COMPOSITE PRODUCTION 

The most direct route for the production of graphitic 
particulate aluminium composites would seem to be to add 
graphite powder to the molten metal and cast the resulting 
composite melt. The major difficulty with such an addition 
has been reported to be the lack of wetting between graphite 
and aluminium leading to the rejection of graphite as soon as 
it is introduced into the melt. The contact angle of 
aluminium with graphite is 160· and it is reported to remain 
non-wetting between the melting. point of aluminium 
and 1080· C06! 

Attempts have been made to solve the problem of non-wetting 
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between graphite and molten aluminium through several 
approaches. The main methods are: 
(1) Nickel and copper coated graphite particle injection by 

gas stream. 
(2) The vortex method. 
(3) Pellet method. 
(4) Ultrasonic method. 
(5) The briquette method. 
(6) Infiltration of coated graphite by molten aluminium alloy. 
(7) Compocasting method. 
(8) Other methods. 

Review of Process for the production of graphitic aluminium 
alloys 

1 - Injection into the melt of nickel coated graphite powder 
in a stream of nitrogen gas. 

This method was first described by Badia et al. (37)in 1969. 
A nickel coated powder was used which allowed nickel to be 
wetted by molten aluminium alloy. A special gun was developed 
with a hopper to contain coated powder and allow it to fall 
by gravity into a nitrogen gas stream. The melt, at a 

• temperature of 676-732 C-, was stirred whilst the nozzle of 
the gun was placed beneath the melt surface. The authors 
described a mechanism whereby a nitrogen bubble formed. in the 
melt. 

The bubble rose slowly to the surface whilst its size increased 
due to the decreasing pressure head. Coated graphite particles 
came into contact with the bubble-melt interface and either 
dispersed into the melt or were rejected. Transfer of 
graphite took place if conditions were energetically 
favourable and if graphite came to the interface. The 
necessary condition for transfer was said to be a function 
of surface energy and density. After transfer, the nickel 
dissolved in the molten aluminium, at this point vigorous 
stirring of the melt was necessary to ensure that the graphite 
did not float. Casting the composite in a permanent mould 
was essential to ensure a high cooling rate and so prevent 
graphite flotation. Badia(37) gave examples of automobile 
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pistons which were cast in this way and indicated, with 
photographs, a regular dispersion of graphite. He also 
stated that castings could be remelted but that graphite 

tends to be lost after successive remelts. This phenomenon 
has been confirmed by Krishnan et al.(32). 

However, the nitrogen stream had useful secondary effects in 
degassing the melt and protecting the nickel coated graphite 

powder from oxidation. The authors also claimed that stirring 
and mixing were sufficient to prevent graphite segregation in 
the melt, but subsequent publications did not confirm this 
finding (38-40). Later work reported that the gas injection 

method led to a large proportion of rejected graphite(16), and 

the use of nickel coated particulate resulted in the formation 
of an intermetallic compound (Ni A1 3 ) within the casting 

which caused embrittlement(4l). The copper coated method 
follows the same route. Surappa and Rohatgi(4l) haye 

reported that up to l5wt% of graphite particles could be 
introduced. In addition to the disadvantages mentioned above, 
the presence of copper in large quantities in the melt 

resulted in inferior corrosion resistance and, with both 
copper and nickel coating, both elements tend to oxidise by 
exposure to air (due to the flotation of graphite particles 
during the injection) which resulted in the rejection of the 
oxidized particles, because both copper and nickel oxides 
are not wet by molten aluminium. 

2 - The vortex method 
This involves stirring the melt to create a vortex into 

which the coated graphite particles could be placed and so 

dispersed. Work published in 1971 and carried out by 
Badia et a1. (16) concerned the development of the "vortex 

method" and also the use of copper-coated graphite particles. 
The process for copper coating was described by Pai et a1.(42) 

The "vortex method" consisted of heating the aluminium alloy 
to a completely liquid temperature. Stirring was then 

introduced using an impeller powered by an electric motor. 
The driving shaft of the impeller was usually inclined at 

• an angle of 20 to accenuate the formation of a vortex within 
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the liquid. Graphite powder, normally nickel coated, was 
then introduced to the vortex and was pulled down into the 
melt and subsequently dispersed evenly throughout the melt 
by the stirring action. To optimise the performance of the 
impeller a simulation was used which involved using a mixture 
of red polypropylene powder in water. These two substances 
offered a similar density relationship to liquid aluminium 
alloy and graphite. The extent of mixing could be easily 
seen because the powder was red. Examples were given of 
pistons, bearings, and other components, all having been cast 
in permanent moulds. The vortex method was claimed to offer 
better graphite recovery than the gas injection method and 
also the impeller could be controlled to ensure predictable 
graphite content and dispersion. Graphite segregation, due 
to flotation, could be put to good use to provide areas of 
high graphite content within a casting which would also 
contain more ductile, graphite free areas. This could be 
achieved by control of cooling ""ta"t:e$" and 11l0uld ot:ientation. 
Surappa et al. (41) published details of the use of copper 

coated graphite for the production of graphitised aluminium 
alloys. 

A later development of the vortex technique was described by 
Krishnan et a1.(43) in 1981 and termed the "UPAL" process. 

The mixing technique was similar to that described before, 
but the graphite did not require a metallic coating because 
of the special heat treatment for the graphite particles 
which made this unnecessary. This consisted of heating the 

• graphite particles to 400 C for one hour prior to stirring 
and was thought to remove all traces of aosorbed gases and 
moisture from the graphite surface and in doing so, improve 
wettability. The authors also stated that if temperature 

• exceeds 400 C, severe oxidation is encountered. However • 
• there is no indication for graphite oxidation at 400 C. 

Alloying elements such as silicon, copper and magnesium have 
been reported to aid the dispersion of graphite particles in 
aluminium alloy melts and significantly increase the recoveries 
of graphite particles in the castings. Examples of cast 
pistons and liners were shown which were produced by this 
technique. The UPAL process was claimed to offer a reduction 

in cost of composite production, although producing the 
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composite material by this method required an additional 
process (graphite treatment). Furthermore heat treatment of 
graphite might affect its lubrication property as a solid 
lubricant especially in dry friction. 

3- The Pellet Hethod 

The process involves the use of a pellet 
alloy powder and coated graphite powder. 
forward by Pai and Rohatgi(44) in 1978. 

compact of aluminium 
This method was put 

In this paper the 
authors stated that both the gas injection method and the 
"vortex method" suffered a problem during the transfer of the 
graphite particles fromfue air or the gas bubbles into the 
bath of the molten metal. Using the pellet method this 

problem was overcome since the pellet was already under the 
surface of the molten metal, being held there in a metal cup. 
The pellets were prepared by producing a powder compact of 
aluminium and coated graphite powder in the ratio of 1:2, 
with a green density of between 2.4 and 2.6g/cm3. The pellets, 
20mm in diameter and SOmm in length, were produced at a 
pressure between 3 and 5 Rg/mm2• Several pellets were plunged 

into the melt using an inverted cup whilst stirring. Expanding 
gases entrapped between the powder particles and expanding 

aluminium powder become heated to the melt temperature 
resulting in disintegration of the pellet and dispersion of 
graphite throughout the melt. The authors also stated that 
the presence of silicon in the melt was found to give higher 
recoveries of graphite, probably as a result of silicon forming 
a metastable phase with graphite, or alternatively, silicon 

may have become adsorbed on the surface of the graphite 
particles reducing their flotation rate in the melt. It was 
also found that occasionally places in castings were found 
where graphite was not evenly dispersed, perhaps due to 

incomplete disintegration of the pellets. The authors also 
stated that the pellet contains a layer of oxide of 1.Spm 
thick on aluminium powder which gets dispersed in the melt. 
The formation of the oxide layer is due to the contact 
between aluminium powder and air. However, the authors 
claimed that the oxide layer may be removed, but they did 
not say how since degassing is not permissible after graphite 
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injection and, bearing in mind that the density of aluminium 

oxide is about the same as molten aluminium, so aluminium 
. (33) 

oxides would be expected to stay suspended in the melt • 

It was concluded that the pellet technique was suitable for 
use in foundries because less skill was required and good 

results were obtained. However, the use of copper or nickel 

coated graphite particles has been considered costly for 

producing composite materials. 

4 - The Ultrasonic Method 

This method has been widely used for the production of 
aluminium alloy graphite fibre composites(4S) and stems from 

the idea that graphite will not be wet by aluminium alloys 

due to the effect of adsorbed oxygen and water on the surface 

of the graphite particles •. 

Gorbunov et al. (46) subjected the melt to ultrasonic 

vibrations using a probe 2-Smm below the surface oscillating 

at a frequency of IS-20kHz. Uncoated graphite was introduced 
• into a bath at a temperature of 20-2S C above the liquidus 

temperature resulting in a pasty mix. The temperature was 

then increased whilst the ultrasonic probe was slowly lowered 

to the full depth of the bath and left for 2-3 minutes to 

obtain additional degassing and to distribute the graphite 

particles more uniformly. Wetting was thought to be due to 

the combined action of cleaning by ultrasonic vibrations and 

surface and interface active elements, resulting in the 

formation of strong bonds. The graphite particles were 

claimed to be free from adsorbed gasses and various impurity 

films, and so the wetting was improved. The temperature of the 

composite had to be limited to ensure that graphite remained 

suspended within the melt which may have limited viscosity 

because it was stated that the most effective means of forming 

was semi-liquid stamping or pressure die casting with an 

enlarged ingate. However, the use of a high power ultrasonic 

probe make this process expensive for the production of 

composite materials. 

S - The Briquette Method(47) 

The General Motors Corporation of USA have patented a method 
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for producing graphitic aluminium castings. It consists of 

reacting nickel coated graphite particles with aluminium 

alloys at elevated temperatures in a non-oxidising environment 

to form a briquette consisting essentially of graphite 

particles and a discrete nickel-aluminium intermetallic 

phase in an aluminium matrix. The briquette can be immersed 

in an aluminium alloy melt where it melts and the graphite 

particles become suspended in the molten aluminium alloy by 

the convective forces in the melt. Although the author did 

not state that good graphite distribution was obtained by this 

method, he showed a microphotograph with some graphite 

particles distributed in the melt. 

6 - Infiltration of Coated Powder by Molten Aluminium Alloy 

The Teikoku Piston Ring Company of Japan has patented a 
method for making "Lubricated" aluminium alloys (48). In this 

method, graphite or boron nitride powder coated with nickel 

or copper, by vapour deposition or electroless plating, was 

infiltrated with molten aluminium and solidified to make 

"Self Lubricated Aluminium Alloys". 

7 - Compocasting 

The process involves adding non-metals to a partially 

solidified, vigorously agitated slurry. The high viscosity 

of the slurry prevents particles floating, settling or 

agglomerating. This process will be described in detail later. 

8 - Other Methods 

Singer(49) described a process involving the production of 

composite materials by co-depositing the matrix metal and the 

composite particles_entrained' in an inert gas. The principle 

of this method is that molten metals or alloys are atomised 

in an inert atmosphere to give a spray of liquid particles. 

The atomised liquid particles and the composite particles, 

such as graphite were directed onto a cooler surface where 

they impinge and flatten into the form of thin discs or plates. 

Although the author did not give m~ch detail about the 

mechanisms of depositing the graphite particles or about the 

equipment used he stated that good interfacial contact 
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between the metal matrix and composite material was obtained. 

Another method has been developed by Pechiney(SO). In this 

method cylinder liners of hypereutectic alloys were produced 

by powder metallurgy. In this method the optimum size of 

primary silicon can be achieved together with the addition 

to the matrix of a solid lubricant such as graphite. These 
liners can then be inserted in engine blocks produced from 

conventional alloys. 

The reason that such methods are not common is because of the 

difficulties associated with them. The first method appears 

to be very slow and the components made by this method have 

limited dimensions and appl icati6ns. In the powder metallurgy 

route the difficulties associated with the process are: 

(a) the lack of strength and the inferior wear properties due 

to the rapid oxidation of aluminium powder by air and 

(b) the difficulties in obtaining an even distribution of 

graphite in aluminium powder due to the difference in 

density between the two materials. 

2.4 RHEOCASTING AND COMPOCASTING 

The methods described so far for producing composite material, 

required either coated graphite particles or special treatment 

of the melts or particles. This has led to processes which 

are costly or excessively time consuming and complicated for 

large scale production of components made from graphitic 

aluminium alloys. 

At the M.I.T. in the USA, Flemings and his group developed a 

compocasting technique from their investigations into 
rheocasting. They found that metal alloys held at a temperature 

between the solidus and the liquidus and vigorously agitated 
exhibited an unusual non-dendritic structure(Sl). Alloys 

in this condition could be cast at a temperature lower than 
their melting points. Compocasting(S2) was a development 

in which particulate non-metallic material could be added to, 

dispersed and retained in a semi-solid alloy slurry. Reports 

make no specific reference to the inclusion of graphite 

particles in aluminium-silicon alloys by compocasting, but 
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it has been claimed that anthracite (carbon based material) 
can be included and so this method may offer a potential 
means of adding graphite. The advantage of there being no 
need to use coated or specially treated particles could be 
offered together with the established advantages of 
rheocasting(Sl) • 

2.4.1 Principle of Semi-Solid Processing 

Until recently, almost all commercial metal-forming processes 
were carried out either in the fully solid or fully liquid 
condition. This is because solidification in most castings 
and ingots is dendritic. The growing dendrites form a 
continuous skeleton in the liquid-solid zone 
fraction of solid exceeds approximately 20%. 
alloy can neither be poured successfully, to 

when the volume 
Therefore, the 

allow solidifica-
tion processing, nor can it be deformed homogeneously without 
cracking CS3 ). However, if the alloy in this state-is vigor
ously agitated the structure tends to degenerate, converting 
the material into a low viscosity slurry due to the breakdown 
of the dendrites to form rounded particles. If the alloy is 
held without further agitation the rounded particles 
agglomerate and are surrounded by liquid phase. The slurry 
viscosity rapidly increases so that it can be handled as a 
solid. However, if vigorous shearing is again introduced the 
material regains its liquid-like properties. 

Rheological slurries are thixotropic in nature so the increase 
in shear rate results in lower viscosity. It is possible to 
shape such slurries by a variety of casting processes 
including low and high pressure die casting. 

2.4.2 The Production and Casting of Semi-Solid Aluminium Alloys 

Rheocasting as described by Flemings(Sl), has been developed 

as a means of utilizing the rheological properties of 
vigorously agitated semi-solid slurries. Flemings achieved 
vigorous agitation by stirring semi-solid alloys in such a 
manner that they became "sheared". The rheocasting process 
is shown in (Fig.4). Rheocast slurry has been produced 
continuously at fraction solids ranging up to 70%. The semi
solid slurry was fed directly into a casting machine such as 
a cold chamber pressure die casting machine and formed into 
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parts. A development from the rheocasting process which has 
become known as "thixocasting,,(Sll, is shown in (Fig.S). In 

this process the metal slurry was fully solidified as an 
ingot after leaving the rheocasting unit and could be cut 
into convenient lengths or shapes. When the metal is 
required to be formed it is simply necessary to reheat the 
thixotropic slugs to the required semi-solid temperature, 
retaining the non-dendritic structure, where the material can 
be handled as a solid. The slug could be placed directly 
into the shot chamber of the die casting machine and shaped. 

Fundamental work on vigorously agitated, partially solidified 
alloys has shown that the structure and rheo10gica1 behaviour 
of an alloy slurry are a function of three process variables. 
These variables are: the average rate of agitation (shear 
rate); the average cooling rate during primary solidification; 
and the volume fraction of solid particles within the slurrjS3~ 
The general trends established, relating process variables to 
structure and viscosity of partially solid alloys, were found 
to be: 
1 - The increase in shear rate generally reduced the amount 

of entrapped liquid in solid particles resulting in a 
corresponding decrease in viscosity and reduction in the 
size of primary solid particles (at slow cooling rate). 

2 - For a given shear rate, the increase in average cooling 
rate during primary solidification reduced the size of 
primary solid particles, but increased the amount of 
entrapped liquid in the primary solid particles. This 
increased the volume fraction solid in the slurry and 
hence increased viscosity. 

3 - The increase in volume fraction solid in the slurry 
increased its viscosity. 

4 - For a given average shear and cooling rate, the relative 
viscosity (~r ) of a partially solid metal slurry at 
volume fraction solid higher than 0.20 could be 
described by an exponential equation: 

exp B gs 
Ilr = A 

where: A and B are constants depending on average shear 

and cooling rates. gs is the volume fraction solid in the 
slurry. 
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The relative viscosity of a suspension is defined 

as f\r = f\~~o' where f\~ is apparent viscosity of the 
suspension and f\o is the viscosity of the liquid. 

S - Metal slurries are thixotropic (their viscosity decreases 
with an increase in rate of shear and is time dependent 
and reversible) and show a hysteresis loop phenomenon 
similar to other well known thixotropic systems, see Fig.6. 

Measured areas of hysteresis loops (a quantitative measure 
of thixotropy) increase with increasing volume fraction 
solid, initial viscosity and time at rest. Thixotropic 
hysteresis loops were obtained by increasing shear rate 
continuously whilst torque (which reflected viscosity) 

was measured. At some point, shear rate was maintained 
constant and then reduced in the exact reverse to the 
increase in speed of rotation. The down curve was~_then 

obtained. If the two curves did not coincide the behaviour 

was thixotropic. 

2.4.3 Compocasting 

Comp05asting would appear to offer a means of dispersing non
metallic substances in aluminium alloys. Mehrabian and 
Flemings(S4) stated that particulate or fibrous non-metallic 

substances could be added to and retained in vigorously 
agitated slurries. Development of abrasion resistant and low 
friction materials, or perhaps dilution of expensive metals 
are possible areas of application. 

In general when adding non-metals to partially solidified 
vigorously agitated slurries, it appeared that the high 
effective viscosity of the slurry prevents particles floating, 

settling or agglomerating. Increasing the mixing time 
promoted interaction between particles and the semi-liquid 
matrix and so improved bonding. Particles of graphite, 
silicon-carbide, aluminium oxide, magnesium oxide, boron, mica 
and anthracite have been dispersed by this method. Particle 
size varied from sub-micron up to O.lmm. The resulting 
composite could be cast when partially solid or after allowing 
it to completely solidify and then reheating to semi-solid 
temperature before shaping (thixocasting). Compocasting was 

thought to bring the alloy close enough to the non-metal 
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surface to permit bond formation by continuous agitation of 
the liquid portion of the slurry, despite the fact that molten 
metal did not wet the non-metal by simple contact(Sl). The 

type of bond between non-metal particles and the metal matrix 
was stated to be one of five types classified by Metcalfe(SS) , 

but was thought to be peculiar to the composite system, 

conditions, time and temperature. The five bond types were: 
dissolution and wetting bond; reaction bond; exchange reaction 
bond; the oxide bond; and mixed bonds. 

The compocasting process may be particularly economical if it 
is desired to manufacture strip for bearings. Here the 
thixocasting route would appear to offer advantages .. 

If the partially solid material is held at a constant tempera
ture after shearing ceased, a large increase in viscosity 
takes place as a result of growth and welding of the primary 
particles in the liquid. At this stage the composite could 

be handled as a solid. Research has been carried out into 
rolling the material in this state(S6) to produce strip. 

Therefore an aluminium alloy containing graphite particles in 

a thixotropic state may be in a useful form for roll bonding 
onto a steel backing prior to th~ forming of bearings. 

Compocasting in aluminium graphite bearing production seems 

to be attractive for the following reasons: 

(I) No need for expensive metallic coatings on graphite powder. 
(11) Useful material form for bonding to steel strip (no need 

for two casting operations) 
(Ill) Lower casting temperature resulting in lower energy 

usage. 
(IV) Fewer problems with graphite rejection and segregation. 

However West(S7) reported that rheocasting tended to have an 

adverse effect on fatigue life which may be undesirable in 

terms of bearing performance 
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2.4.4 METHODS OF CASTING GRAPHITIC COMPONENTS 

Having dispersed and retained graphite within an aluminium 
alloy melt or slurry. the next stage to be considered is the 
manufacture of actual castings. Published works on graphitic 
aluminium alloys appear to refer to bearings as a prime target 
for graphitic aluminium alloys(32.44.46). However. for 

bearing production to be as economical as possible casting 
may not be viable. Most shell bearings are produced by 
blanking and forming operations. Thus if aluminium-graphite 
bearings are found to exhibit useful bearing properties. it 
is likely that special attention will have to be given to 
production by this method. Krishnan et al. (41) have shown 

that centrifugal casting is a viable technique for producing 
circular bearings. The density difference between aluminium 
alloy and graphite particles was put to good advantage. since 
the graphite particles tended to segregate at the inner 
bearing surface. resulting in a high graphite content at the 
bearing surface with a stronger backing. Centrifugal casting 

of aluminium alloys with graphite particles may prove to be 
an economical means of producing bearing shapes. especially 

if it can be shown that graphitic aluminium alloys offer 
similar properties to centrifugally cast tin Babbit whose 
constituents are considerably more expensive. The author 
also gave data concerning optimum particle size. casting 
temperature and spinning speeds. 

Badia et al.(37) also reported that segregation of graphite 

particles could occur in large sand castings due to the 
flotation during a slow solidification in the sand mould. 
This disadvantage can be turned to advantage by including 
high graphite content at selected areas. as in the case of 
the sand cast alloy 356 BS1490; 1970: LM25 Journal bearing. 
by the placement of a copper chill in the drag a fairly 
umiform graphite dispersion was obtained. The author also 
stated that certain sand castings could be made of graphitic 

aluminium by the use of chills and control of pouring 
temperature(16) • 

Semi-solid graphitic aluminium alloys have been reported to 

be suitable for a variety of casting processes including 
low and high pressure die casting(51) 
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2.5 SIGNIFICANCE OF WEAR AND METHODS OF TESTn;G ALLOYS 

The wear literature reveals a confusing variety of wear 
phenomenon and proposed wear mechanisms. Part of the problem 
is the very large number of variables which can influence 
wear behaviour, such as test geometry, load, interaction 
rate and time, materials properties and environmental factors, 

including temperature. Even when investigators carefully 
hold some of these variables constant, the resulting data 
may be useless for other combinations of these variables. 

Thus the territory is only partially, and some times 
imperfectly, mapped. 

Wear is one of the three most commonly encountered industrial 
problems leading to the replacement of components and 
assemblies in engineering, the others being fatigue and 
corrosion. Wear is rarely catastrophic, but it reduces 
operating efficiency by increasing the power losses, oil 
consumption, and the rate of component replacement(S8). 

Wear can be defined as the progressive loss of substance from 
the operating surface of a body occurring as a result of 
relative motion at the surface (O.E.C.D.)(59). 

Whilst in the past it was considered that two basic types of 
wear, adhesive and abrasive, predominated research has shown 
that almost every material failure mechanism plays some part 
in wear behaviour. The literature now makes reference to: 

adhesion; abrasion; erosion; fatigue; impact; plastic 
deformation and fracture; and corrosion, including oxidation. 
It can be seen, therefore, that almost every physical, 

mechanical, and chemical characteristic of a material is 

likely to play some part in wear behaviour. It is for these 
reasons that there are no simple, well defined theories of 
wear and that there is very little correlation between 
friction (cause) and wear (effect). Eyre(60) has reviewed 

some of the more common mechanisms of wear. These are: 

2.5.1 Abrasive Wear 

Abrasive wear occurs when hard particle,s penetrate a surface 
and displace material in the form of elongated chips or slivers. 
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An otherwise smooth surface becomes roughened with fairly 

regular grooves, with or without loosely attached metallic 

debris. This type of damage is described as scratching, 
scoring, or gouging, the difference being mainly in the 
degree of severity. 

In practice, abrasive wear occurs under two conditions. The 
first operates under low stress conditions and the latter 

under high stress conditions. Under low stress conditions 
particles are transported across the surface with little 
breakdown in particle size of abrasive. Under high stress 
conditions particles are reduced in size or are trapped 
between two bearing surfaces. In both cases, only a small 
fraction of the particles cause wear, owing to variations in 
the angle of the attack and the fact that those particles 
which roll or slide contribute little to wear. Wear volume 
usually increases linearly with both load and sliding distance. 

If deviations do occur they are usually due to a reduction in 
particle size, clogging of the surface or changes in surface 
conditions at the interface. 

Abrasive wear is claimed to account for 50% of wear in 
industrial situations(60). 

2.5.2 Adhesive Wear 

Adhesive wear occurs when surfaces slide against each other, 
and the pressure is high enough to cause local plastic 
deformation and adhesion. Adhesion is favoured by clean 
surfaces, non oxidising conditions and by chemical and 

structural similarities between the bearing couple. With 
increasing motion, the size of the asperities increases and 
transfer of material from one surface to another occurs 
because the asperities rupture at their weakest points. 
Adhesive wear increases where the contact area is larger, 
this usually occurs in soft materials. Chemically clean 
surfaces promote bonding and welding and so result in 
increased wear, particularly when the couple is mutually 
soluble. Transferred material may become considerably 
harder due to strain hardening and phase hardening which may 
cause associated abrasive wear(60). Adhesion is claimed to 
depend on the ability of pure metals within a bearing couple 
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to form solid solutions (61). Lead for example has a very 

low solubility in iron and therefore would represent a good 
choice for a counterface. Other constraints must however, 

be considered, the low strength of lead making it unsuitable 
for bearings other than in alloyed or mixed form. Adhesive 
wear should in theory be avoided where a metal slides against 

a non-metal, such as a ceramic or polymer. The solid 
solution theory is difficult to apply in practice because 
information is available only for pure metals under certain 
sliding conditions. 

Variations in load and speed have been found to bring about 
marked changes in wear behaviour. Transition from mild wear 
to severe wear has been found to result in the breakdown of 
an oxidised surface at the sliding couple(62,63). The 

transition is referred to as the oxidative to metallic 

transition. The oxidative layer helps prevent adhesion. 
'Very severe adhesion wear results in gross surface damage, 
this sort of damage is known as "scuffing,,(64). 

Adhesive wear is claimed to account for 15% of wear in 
industrial situations. (60) • 

2.5.3 Fretting 

Fretting is defined as: "a wear phenomenon occuring between 
two surfaces having oscillatory relative motion of small 
amplitude" (60). Fretting usually appears as reddish brown 

debris on ferrous material. Surfaces are rarely completely 
out of contact due to the small amplitude of oscillations 
and so there is little opportunity for the products of the 
action to escape. This can result in blockage of lubrication 

and may even cause seizure. Two main processes appear to be 
involved in fretting these are: 

(1) A mechanical action which removes oxide films resulting 
in rapid reoxidation followed by further removal of 
oxide with each successive cycle. 

(Il) The removal of fine particles by mechanical abrading or 
by the formation and subsequent shearing of welds at 

points of contact. 
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The particles are then broken up by direct shearing or 
fatigue • Fretting is always characterised by minute 
reciprocating motion between the wearing materials which are 
held together by a normal force, and therefore can be 
eliminated, or at least reduced, by preventing the relative 
motion between parts by designing a more rigid mount, or by 
loading the area with lubricant and increasing the abrasion 
resistance by nitriding, chromeplating •.• etc.(65). 

Fretting is claimed to account for 8% of wear in industrial 
situations(60) • 

2.5.4 Corrosive Wear 

2.5.5 

The introduction of high-sulphur fuels and contaminated 
lubricants caused considerable increase in the wear rates of 
internal combustion engines which is attributed to acidic 

formations. Modern lubricants have been developed which 
contain alkaline additions to neutralise the acidity. The 
problem of corrosive wear in modern engines is not serious 
and is usually onijevident after a long operation life(58) 

Increases in wear rate due to corrosion are difficult to 
describe in a specific sense. No set corrosion model can be 
applied universally to bearing situations. A typical 
individual example of impaired resistance occurs in white 
metal bearings where the formation of tin oxide by corrosion, 
can seriously reduce the strength of the bearing. The 
presence of the hard tin oxide particles produced increases 
abrasive wear. Corrosion can be reduced by changes in the 

. (60) structure and composition of the bearing couple mater1al • 

Fatigue 

Fatigue occurs on bearing surfaces which come into repeated 

contact at stresses in excess of the specified fatigue stress 
for the materials concerned. This type of damage is 
particularly common in cams, ball bearings and gear teeth. 

Damage may be initiated at or near the surface, in both 
cases resulting in a pitted mating surface. Corrosion or 

defects within the body of the material ~ay promote early 
fatigue failures. Fatigue problems can be seen as striations 
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2. 5.6 

2.5.7 

extending radially from the fatigue source. Fatigue 
striations may become obscured by products of corrosion or 
where surfaces continue to rub against each other after the 
initiation of fracture. S~rface treatments such as thermal 
treatment (flame hardening, laser hardening, spark 

hardening ••• etc.) which increase hardness and leave the 
surface in a condition of residual compressive stress are 
used to improve fatigue failure resistance(2l). 

Delamination 

Delamination is a recently characterised mechanism of wear 
thought to occur in "scuffing" in the internal combustion 
engines. It is also thought to be present in many other 
bearing applications and is indicated by the production of 
plate like debris. Discovery of delamination followed 
observations that the debris produced in many situations did 
not have the appearance of debris produced in abrasion or 
adhesion(66). Wear debris from delamination appearS1is plate

like debris with a length to thickness ratio in excess of 10:1. 
Cylinder liners previously thought to fail by abrasion have 
been known to fail by delamination(67). Delamination is 

indicated by a ploughed surface appearance. Both flat and 
coiled plates of debris may be produced. The effects of 

deformation are highly localised and it is sometimes possible 
to see plates originating at discontinuities in material 
structures. 

The Relationship Between Material Type and Wear Mechanisms 

The choice of materials for oil-film lubricated bearings is 
determined mainly by the requirements to avoid damage during 

start-up or momentary periods of interruption of the oil-film 

and a nice balance is required between the strength to 
support the load and deformability to en:sure the maximum 
degree of conformability with the opposing surface. Another 

property of considerable importance is embedability Le. the 
ability to absorb hard contaminant particles within the body 
of the material so that they do not score the other bearing 
surface(68). 

The Construction of bearing materials has a major influence on 
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their dominant mechanisms of wear. For example hard 

particles in a soft matrix, such as vanadium carbide in steel 
acts as a load carrying element which resists abrasive wear. 
This is due to the hard particles standing proud of the 
matrix which allows a differential wear process to occur. 

Abrasive wear 
hardness(60) • 

resistance is inversely proportional to overall 

The greater the number of hard particles the 
greater the resistance to abrasive wear. However, work 
hardening may also have some effect. Cast irons do not work 
harden and so there is a good correlation between hardness 
and abrasive wear. Some steels, for example Hadfield's 
manganese steel, offer better abrasive wear resistant above 

certain loads, when surface pressure is high enough to 
drastically work harden the surface. Resistance to abrasive 
wear is also dependent of the hardness of the abrasive 
particles. Aluminium alloys are comparatively soft and so in 
the presence of hard abrasive particles tend to suffer a high 
rate of abrasive wear. However, few wear interface conditions 

produce sufficient particles to cause major problems. Softer 
materials also allow a small number of abrasive particles to 

be embedded withour major abrasive wear damage. Because 
adhesive wear is caused by welding .and deformation of 
contacting asperities it is encouraged if the wear> couple is 
mutually soluble. Bearing materials which consist of a soft 
material dispersed throughout a hard matrix resist adhesive 
wear by allowing the soft material to smear over the hard 
matrix. The softer material (eg. lead in copper-lead alloys) 

forms a layer of material which is not mutually soluble with 
the material of the mating component and so adhesi~e wear is 
avoided. This in turn can also reduce abrasive wear by 
preventing the formation of small particles of debris which 
may abrade the mating surfaces. Bearing materials which 
operate in this manner are also associated with sharp 
transition in wear behaviour. For example, some aluminium 
alloys tend to wear at a mild rate due to the formation of 
a tenacious oxide layer on the surface. However, above a 
certain load, the layer breal<:s down and wear becomes 
considerably more severe. The use of tin in aluminium-tin 
alloys is a similar example. 
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2.5.8 

Single phase materials are used to produce bearings which 
are toughened and resistant to fatigue, allowing high loads 
to be carried at high speeds. The lack of a secondary phase 
helps to prevent the initiation of cracks. which may 
eventually cause the material to become fragmented. This 
helps prevent wear by abrasion and delamination. However, 
single phase materials may be soluble in the material of their 
mating components, which can result in adhesive wear. 
Therefore. an insoluble overlay is usually required (eg. the 
use of lead on silver). The use of non-metallic bearings 
usually eliminates adhesive wear because they are rarely 
soluble in metals. However their low dimensional stability, 
hardness and strength can result in severe abrasive wear and 
delamination. 

Wear Testing Objectives and Approaches 

The selection of a wear test depends not only on the mode of 
wear being investigated but also on the objective of the test. 
Wear tests are run for a variety of reasons, however. they 
generally fall into one of the following four categories: 
fundamental understanding; determination of the effect of 
variables; characterisation of materials and lubricants; and 
selection of materials for specific application. The type 
of test rig will be dictated by the following: the type of 
wear; the specimen geometry; the selected operating conditions; 
the type of motion desired; and the need for multiple 
testing(69) • 

A number of approaches have been used in evaluating the 
performance of bearing materials. This has led to problems 
in comparing the properties of different materials. The 
available information concerning the actual performance in 
service of different bearing materials and their comparative 
usefulness is by no means always so reliable and much of the 
published information is a matter of opinion rather than 
scientific data. The problem has arisen due to a lack of 
working standards. (70) 

Bearing materials should have a number of properties to ensure 
that the function of the bearing is maintained under> various 
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operating conditions. These properties are interdependent 
and also they depend on the properties of the mating 

component, lubrication (if any) and on operating conditions. 

This makes it difficult to design an adequate standard test 
method. However, various proposals have been and are being, 
put forward as a suitable means of assessing the tribological 

properties of bearing materials, but a problem of inconsistency 
. (71) of results appears to ex~st • As yet, no firm recommend-

ations have been made. Some of the assessment and test 
methods available for consideration are: 

(P.V.) VALUE 

Attempts have been made to classify"performance in terms of a 

p.v. value, which is the product of pressure and linear 

velocity. This is of little practical use in view of the 
number of variables unaccounted for and speed dependant 
properties in bearings. Nevertheless, the analysis is widely 
used in bearing literature and applied in many bearing 

configurations. 

ZN/P Evaluation 

The quantity ZN/P is also widely used as a criterion, where: 

Z = lubricant viscosity 

N = rotational speed 

P = bearing pressure 

In theory this relationship produces a straight line passing 
through the origin(70). However, the relationship is valid 

only to a certain level, below which the coefficient of 
friction increases sharply due to the breakdown of the 

lubricant film. Below this the bearing becomes unsuitable 
because the increased coefficient of friction causes increased 
temperature, which in turn decreases the viscosity value and 
further increases the coefficient of friction. The minimum 
value of ZN/P changes with the material in question. Softer 
materials tend to give lower values. In practice, differences 
in material may be swamped by differences in bearing design( 70.) 

Low ZN/P is useful for starting when hydrodynamic lubrication 

may not be adequate. In these cases the minimum value of 
ZN/P must inevitably be passed through. 

~a 
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A wear test which appears to be in widespread use for 
obtaining the quantity ZN/P is the "Hohman Wear Test" (72,7 3 ) . 

The principle of the test is shown in Fig. 7 and the type 
of result obtained is shown in Fig. 8. 

The whole device is immersed in an 6il bath of given viscosity. 
Referring to Fig. 8, the sudden increase in coefficient of 
friction can be seen as demonstrated by Forrester(70). This 

is in the region of boundary lubrication where the fluid 
film is breaking down and the qualities of the bearing 

material are most important. Unfortunately the analysis is 
not reliable in this region. 

Independent Assessments 

Many research workers in tribology have realised that little 
standardisation in bearing test methods exi~ts and that most 
established methods of assessment are limited. A few such 
workers have therefore embarked upon their own research 
projects using methods of test and assessment which have 
evolved and been found to offer suitable comparisons within 

individual projects. 

Two 

1 -

approaches 
(74) Neyman 

of this type are described below: 

Four basic tests were evolved as a means of comparing four 
bearing materials. The materials compared were three different 
steel backed bronze and one aluminium-tin alloy without 
backing. The tests consisted of: 

(1) Radially loading the bearing in increments until a 
transition from hydrodynamic to mixed lubrication was 
reached (load capacity test). 

(11) Constant radial load, but with an incrementally applied 
lateral load. -

(Ill) As test (I), except the lubricant contained iron powder. 

This test was stopped when the bearing temperature 
• reached 90 C. 

(IV) Constant frictional torque was applied under mixed 
lubrication conditions. Load, bush temperature and 

frictional torque were continuously monitored until 
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Fig. 7 - Hoh~an Wear Tester (Ref. 73) 
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steady state conditions were obtained. A curve was 
then drawn for load vs. time and hence a comparative 
running-in characteristic obtained. 

To summarise the results, the bronzes exhibited superior 
performance to the aluminium-tin alloy in all but test 0), 

Here the aluminium-tin alloy gave results similar to the most 
superior bronze (which was a 70% copper-lead alloy). The 

results appear to conflict with claims from other sources 
but may not be directly comparable as the aluminium-tin was 
not used in backed form. However, few reports give such 
detailed experimantal data, but tend to rely on subjective 
discussion rather than quantitative results. 

2 - BruneI University Tribology Group 

The Tribology Group in the /{etallurgy Department of BruneI 
University has established a number of interests in the field 
of trib?logy. One such interest is in the" development of 
bearing materials, with a, particular interest in aluminium 
alloys. To assess bearing materials two principle methods 
are used, these being the reciprocating diamond scratch test 

and the pin on disc test. The reciprocating diamond scratch 
testis described by Razavizadeh and Davies(S2) and was 

designed to simulate wear by abrasion and delamination. A 
single point diamond rockwell indentor with an included 

• angle of 120 is used to produce tracks of various lengths. 
The speed of the diamond can be changed by adjusting motor 
speed. Tests can be carried out with different loads and 
different numbers of passes. 

Assessment of performance is then carried out by comparing 

scratch width with the aid of travelling microscope. A 
formula may then be applied to convert scratch width into 
abraded wear volume. 

Data is usually presented in the form of graphs of wear 
volume vs. applied load and wear volume vs. number of passes. 
Wear rate may also be computed. The test is usually 

supplemented by the use of scanning electron microscope(SEM) 
examination to show the amount of plastic flow, delamination 
and abrasion which may explain changes in wear volume. 
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2.5.9 

The reciprocating diamond scratch test is shown schematically 
in (Fig.9). 

The Pin on Disc test is used extensively in evaluating 
bearing materials and has been described by Shivanath et al~23~ 
The test is shown schematically in (Fig.ID). A pin of 
bearing material is loaded in contact with the flat surface 

of a hardened steel or cast iron disc. The speed of the disc 
is carefully controlled to ensure a constant linear sliding 
velocity. Change in wear distance (ie. the length of pin 
lost) is continuously recorded with the aid of a linear 
displacement transducer. This can give useful indications 
of wear and also the point at which any transition may have 
occurred. Coeffieient of friction measurements may be obtained 

by accurately measuring the deflection of the pin in the 
direction of rotation of the disc. The force required to 
cause such a deflection is determined" and from this the 
coefficient of friction is ca1culated. The values obtained are 

not absolute because coefficient of friction is dependent on 
speed(71) but provided speed is controlled values are 

comparable between tests. 

Further data may be obtained from temperature measurements 
obtained by attaching thermocouples to the pin. 

Scanning electron microscopy may be used to provide supporting 
evidence about modes of wear and indications of the reasons 

behind any transitions which may have occurred and been 
indicated by transition in wear distance, coefficient of 
friction or temperature. There are many wear mechanisms 
present in pin on disc testing and so the test may be 
considered to be a simulation of the type of conditions which 
may be met in service. The SEM has been instrumental in 
identifying and explaining the wear mechanisms present(7S). 

Fatigue Testing 

Fatigue is a very common mechanism of bearing material 
failure. Various machines are available to test bearing 
fatigue life, a typical example being the Glacier fatigue 

tester(76). This consists of a shaft running in a bearing 
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under test, with an eccentric weighting applied to induce 
cyclic stresses. 

In common with other methods of assessing bearing materials, 
standardisation of fatigue testing does not exist and so 

results from different sources are not comparable. 
Standardisation of test conditions is particularly important 

when evaluating the fatigue life of any material. 

2.5.10 Corrosion Testing 

For the results. to be relevant, corrosion testing should take 
place under the conditions in which the bearing is likely to 
operate. Bearing materials must be tested in likely 

lubricants and coupled with the materials with which they 
will be in contact under operating conditions. Common means 
of evaluating corrosion performance, such as salt spray tests, 
have little relevance to bearing applications(77). -

2.6 SUMMARY AND PROPOSED APPROACH TO RESEARCH 

In plain bearing applications, aluminium alloy-graphite 
particulate composites have been found to offer: resistance 

to seizing and galling; low coefficient of friction; and 
resistance to wear. Load carrying capacity has been indicated 
to be similar to bronze materials and the composites offered 
outstanding performance in conditions of boundary lubrication 
due to a thin layer of graphite becoming smeared on bearing 
surfaces. It has been also reported that aluminium-silicon 
alloys containing dispersed graphite particles have been shown 
to offer an outstanding performance when used for pistons and 
cylinders in reciprocating internal combustion engines, and 

it may offer an economical solution to lubrication problems 
encountered in the all-aluminium engine. 

Special techniques are required to disperse and retain graphite 
particles in aluminium alloys because the former will not be 

wet by the latter. 

Several techniques have been developed to solve this problem 
which involve the use of coated or specially treated graphite 
particles. Methods involving completely liquid alloys, 
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described by various sources, for the preparation and casting 
of graphitic aluminium alloys appear to suffer from the 
following limitations: 

(a) special treatments have been required either to the melt 
or to the graphite particles (or both) in order to ensure 

that wetting takes place. Metal coated graphite particles 
are costly to produce, and melt treatment may result in 
means of production which are time-consuming and/or 
expensive for intustrial exploitation. In addition, in 

both cases, new elements are introduced to the alloy under 
investigation and this will result in changes in the 
alloy's properties. 

(b) Constant stirring for the composite produced in such 
methods has been widely reported to be necessary to ensure 
that graphite particles remain evenly dispersed. In 
addition the composites are usually cast into permanent 
moulds. This appears to be an attempt to avoid 

segregation and agglomeration due to the flotation of the 
graphite particles. The permanent mould provides a fast 
cooling rate which does not give the graphite particles 
the time to segregate. 

The inclusion of graphite in aluminium alloys nas been widely 
claimed to reduce the strength of the alloy in comparison 'with 

a similar alloy without included graphite. In bearing 
materials a need has been established to optimise mechanical 
properties in order to obtain good load carrying capacity and 
fatigue properties. Therefore, there may also be a need to 
ensure that the casting process used for the production of 

components manufactured from graphitic aluminium alloys 
provides high casting integrity so that mechanical properties 

are not impaired by inherent casting defects. 

Published data on mechanical and tribological properties of 
graphitic aluminium alloys does not include a fundamental 
appraisal of~he effect of graphite content, graphite particle 

size and alloying elements. Many sources have reported 
results of graphite additions to aluminium alloys. However, 
graphite contents investigated and base aluminium alloys used, 

have varied widely. There appears to be a requirement to 

45 



2.6.1 

produce a fundamental knowledge on the mechanical and 

tribological performance of graphitic aluminium alloys with 
particular reference to the effect of various graphite 
contents and graphite particle size on aluminium alloys and 
in particular aluminium-silicon alloys. 

Work Programme 

In finalizing the work programme the following was 

proposed; 

The use of compocasting, as a method for incorporating 
uncoated and untreated graphite particles in a hypereutectic 
aluminium-silicon alloy (LM30), to produce a bearing 

material which contains graphite as a solid lubricant 
and is resistant to wear. 

This material could have the potential for the production of 
monoblocks for automobile engines. The proposed technique 
appears to offer the following advantages: 

(a) no need for specially coated or heat treated graphite 

particles and no extraneous elements introduced; 
(b) lower casting temperature resulting in longer die life 

and lower heat input; 
(c) graphite dispersion without rejection, flotation, 

agglomeration or segregation; 

(d) the potential for taking advantage of the rheo10gical 
benefits of rheocasting and thixocasting (eg. improved 
die filling properties) in commercial processing of the 
composite. 

After evaluation of the optimum conditions for the dispersion 
and the retention of graphite particles in the alloy the pressure 

diecasting process was used as the method of shaping the 
composite so that the following could be achieved: 

(a) high casting integrity resulting in a minimum loss of 
properties due to the graphite inclusion; 

(b) the use of a process suitable for industrial production 
of components which might benefit by manufacture from 
semi-solid aluminium alloys,with a dispersed graphite 

particles (eg. automotive pistons and bearings); 
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(c) heat treatable components due to the absence of gas 

porosity and reduction in shrinkage cavities. 

Finally the production of specimens by the above technique and 

a comprehensive evaluation to promote understanding and 

knowledge of mechanical and tribological properties of the 

graphitic hypereutectic aluminium-silicon alloy, in 

comparison with the same alloy without graphite addition. 
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CHAPTER THREE 

DESIGN OF EQUIPMENT 

In early publications rheocasting equipment was described as 

simply stirring paddles, bobs or rotors rotated by an electric 
motor in a crucible containing the semi-solid alloy. Much 
fundamental work was carried out using systems of this type. 
At H.I.T. Spencer et al. (78) made many discoveries which 

characterised the rheocasting process using a high temperature 
viscometer based on a simple design (Fig.ll). 

Later designs became more sophisticated with mUltiple contra
rotating stirring paddles, Campbell, at Fulmer Research(79)and 
Mehrabian et al. at M.I.T. (51,80)reported similar designs of 

this type which allowed larger quantities of semi-solid alloy 
to be sheared. Early work on compocasting was carried out 
using designs of this type. The design used by 
Mehrabian et al. for compocasting is shown in (Fig.12) 

As research in rheocasting moved towards production of 
components from semi-solid material, design of equipment 

progressed towards machines which were more practical in 
terms of the amounts and quality of material produced. 
Ramati et al. (81) reported a design for continuous production 

of rheocast material. The equipment was designed with 
commercial exploitation in mind. The production, at high 
speed, of rheocast ingots was required and the design to 
achieve this is shown in (Fig.13). The alloy was continuously 
cooled from above the liquidus and agitated as it passed 
through the lower semi-solid temperature zone. The liquid 
zone in the equipment allowed a continuous supply of liquid 
metal to be added to the machine and prevented contact of the 

semi-solid zone with air. The upper liquid zone remained 
undisturbed and so prevented air penetrating the semi-solid. 
This design was developed at the University of Illinois. 

Later work at Fiat SPA, Italy(82), resulted in the patent for 

a new rheocaster in which it is claimed that very high volume 
fraction solid, of up to 80%, can be sheared. This was 
achieved by replacing, the stirring mechanism by a system of 
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stationary baffles through which the semi-solid alloy was 

forced to pass by mechanical pressure. In this way, shear 

rates far in excess of those associated with previous designs 
can be obtained see Fig.14. Such a design could provide a 
solution to the segregation of solid particles associated 
with high rotor speeds, due to the difference in density 
between the solid particles and liquid metal and it could be 
used as a continuous rheocaster for mass production in 
industry 

At loughborough University of Technology, Gibson(83) produced 

a rheocaster which is similar to that described by Ramati(5 1 ) 
and West(57), with some modifications to make it suitable for 

compocasting requirements. The rotor in this design, shown 
in Fig .15, involves four splines· placed along the length of 

the rotor which operates in the semi-solid zone. The section 
of the rotor which operates in the liquid zone was left smooth 
to ensure that the minimum of disturbance occured in this 
region. The graphite was stored within the shearing rotor 
so that the graphite particles could be injected into the melt 
by mechanical pressure when the required volume fraction solid 

and shear rate had been established. Gibson also reported 
that graphite particles needed to be at the same temperature 

as the semi-solid slurry to prevent the sudden reduction in 
slurry temperature due to the addition of cold graphite Hhich 
resulted in a rapid increase in the volume fraction solid 
and hence increased the slurry's viscosity. The general 

arrangement of this design is shOHn in Fig.16. The compocaster 
was designed to operate as a batch rather than a continuous 

rheocaster. A plug was incorporated in the base of the 
crucible which Hhen removed alloHed the composite slurry to be 

ejected through the crucible base. 
Whilst Gibson's design was adapted for manufacturing the 
rheocasting unit for production of the graphitic, hypereutectic 
alloy, the modifications to the design necessary to enable the 

unit to be used in conjunction with the pressure diecasting 
machine Here extensive. It was necessary to construct a new 

compocasting unit exclusively for use Hith the pressure 

diecasting machine and designed to ·fulfil the following 
requirements : 
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(a) The compocasting unit should have dimensions appropriate 

to the requirement for it to be mounted on the tie bars of the 

pressure die casting machine. These were dictated by the 

distance between the injection head and the fixed platen. 

(b) Provision should be made to prevent porosity due to air 

entrapment. 

(c) The resulting composite slurr'y should be directly cast 

after the rheocasting operation, eliminating the need to produce 

and remelt ingots. 

(d) The addition of graphite should be achieved with minimal 

variations of the volume fraction solid and shear rate. 

(e) There should be provision for monitoring volume fraction 

solid, shear rate and viscosity. 

(f) The output should be in a suitable form for transferring 

to the shot chamber of the pressure diecasting machine. 

Those features of the continuous rheocaster design which met 

these requirements were incorporated in the research equipment. 

For example the two zone crucible arrangement was incorporated 

with the expectation that the upper layer of liquid would 

prevent oxidation of the slurry formed in the lower zone. The 

tempera tures of the upper and the lower zones were monitored 

using Newtronic temperature controllers in conjunction with 

chromel-alumel thermocouples. The shearing rotor was powered 

by an induction motor with a hydraulic speed drive. Different 

rotor speeds were required to obtain different shear rates. 

The hydraulic variable speed drive coupled to the induction 

motor provided speed variation from 0 to 1500 rpm in both 

clockwise and anti-clockwise directions. However, in order to 

achieve higher speed, i.e. higher shear rates, the pulleys 

used to transmit the movement from the induction motor to the 

rotor were chosen to provide an increase in the speed by the 

ratio of 1.78. This was achieved by using a driving pulley 

with 32 and a driven pulley with 18 teeth. 

The compocasting unit mounted on the tie bars of the cold 

chamber pressure diecasting machine is shown pictorially in 

Fig.17 and schematically in Fig.t9'. The equipment design is 

shown in Fig.20 and the design details are described in 

Appendix 1. 
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Detail No. 

1 

2 

3 

4 

5 
6 

7 

8 

9 

10 
-

11 
12 

13 

14 

15 
16 

17 

23 

Items not show 

18 

19 

20 

21 

22 

Description 

Frame work 

Variable speed drive 

Electric motor 

Bearing housing assembly 

Ro tor drive shaft 

~otor 

Graphite injector p iston 

Push rod 

Graphite injection screw 

Crucible 

Fork arrangement 

Plug 

Semi-solid zone heater 

Liquid zone heater 

Insulation material 

Timing belt and pulleys 

Fork arrangement swivel joint 

Launder 

Liqu id zone temperature controller 

Semi - solid zone temperature controller 

Thermocouples 

Temperature readout 

Tachometer 

Fig . 20A - General Arrangement - Parts List 
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It was c ons idered preferaole tha t t he compos ite slurry should 

fall di r e ctl y into the shot c hambe r of t he d ie casting 

machine . However, t he des i g n of t he die c as ting mac hine 

i mposed a r estr a int in r espec t of t he method of transferring 

t he composite al l oy sl u rry from t he compoca s ting unit to t he 

shot sleeve due t o the limited d istance between t he injection 

head and t he f i xed platen, and t he position of t he shot 

c ha~be r in t he pr essur e die casting mach i ne. It was necessa r y 

in practice t o transfe r t he slurr y via a hea t ed launder Fig. 21 . 

The test casting design Fig .I S ~as evolved to provide t he 

re quire d specimens for mechan ical prope r t i es and wea r 

characteristics evaluation rather t han t o e v aluate the de g ree 

of casting complexity a tt ainable when pressure-diecasting a 

composite slurry. Provision was included in t he d ie- de s ign 

t o enab l e d iffe rent ga te dimens i ons t o be u sed . It was 

considered t ha t, in addition t o d i e temperature, injection 

pressure and injection speed t he ga te dimensions wo ul d be 

an i mpo rtant fact o r i n t he successful processing of the 

compos ite slurry. The d i es shown in Fig . 22 were preheated 

using thermostatically - c on trolled electric cartridge heaters . 

The des i gn deta il s a r e described in Appendix 2. 

3.1 COMPOCASTI NG UNIT . DESIGN MODIF ICATI ON , MANU FACTURE AND 

EVALUATION 

As men tioned , t he des i gn of t he p ressur e d i e c as ting mach ine, 

i mposed a restraint on the design of the c ompocasting unit, 

due to t he limited area between the injection head and the 

fixed platen . To make the compoc ast ing un i t a s compact as 

possible, the t empe rature controllers for the upper and l ower 

po rtions of t he crucible were removed from the compocasting 

unit, stored in a separate box and fixe d to th e wall ne a r 

t he die casting ma chine . The plug was provided with a "T" 

junction, Fig . 23, and the for k arrangement, Fig .24 , was 

fixe d to the bo t tom of the c ompocasting unit. \.Jhen t he slurry 

r eached t he desired volume fr a ction solid , the fork operates t o 

pull the plug down so t he slurr y can be ejected from the 

crucible . The othe r side of the fork arrangement was provided 
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• 

a - assembled die 

b - t he two die halves 

Fig . 22 - Pressure Die Casting Die De s i gn 
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3.2 

3.2.1 

3.2.2 

with a counterbalance to ensure that the plug stayed i n 

position in order to prevent t he unsche duled departure of t he 

slurry. A wire was used to connec t the plug t o the compo

casting unit to prevent t he plug running down with the slurry 

to the s ho t chamber of the die casting mac hine when the ejection 

takes place. A thermocouple was fixed to the crucib l e ~hrough 

a little hole made in the wall of the semi-solid portion to 

allow accur ate measurement of the te mpe rature of the slurry in 

t he semi - s olid zone Fig.20 . The c ompocast ing unit was 

manufactured and assembled as shown in Figs.20,2l,23-26. 

I nitial testing was carried out t o evalua t e the perfor mance of 

t he compocasting unit, and it was found that the unit 

performed well. 

DIE CASTI NG EQUIPMENT 

Gr avi t v Die Casting Eouipmen t 

A coppe r die shown in fig .27 was empl oyed as a means of 

producing grav ity die castings from which the mechanical and 

tribological properties could be determined and compared with 

similar properties of casting s produced by pressure die casting . 
. • (84) The d~e was prehea ted to 130 C and the casting s were made 

of fully liquid LK30 al loy without graphite add ition. 

Pressure Die Casting Equipment 

The pressure die c asting process has been used to inves tigate 

it's suitabil ity for making castings of the LM30 s emi-solid 

c ompos ite slurries, and to assess t he mechanical properties 

which might be achieved by using this process. 

The EMB No. l Oco ld chamber pressure die casting machine which 

existed at Loughborough University has been used . The machine 

is supposed to operate at 150 psi (10.21 Bar) air pressure, 

but the compressor which is connected t o that machine does not 

permit more t han 90 psi (6 .13 Bar) maximum. From the outset 

this presented a limitation because the production of casting s 

of reduced soundness was inevitable . 
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The die shown in Fig .22 and sche matically in Fig.23 was used 

for the production of the casting s to evaluate the compocasting 

process. The d ie consists of two halves and a simple die 

cavity was designed to provide the necessary specimens. The 

die cavity consists of four pins, of 12mm diameter and 70mm 
• 

length with 1.5 taper, to provide the pin on disc wear 

specimens and the tensile specimens. The disc is 92mm in 

diameter and l Omm thic k provided with 1.5" taper for ease o f 

extraction, and it wa s desig ned t o provide the necessary 

ha rdness test s pecimens . The die desig n a l so permits diffe r e nt 

ga te dimensions t o be used . Five g ates were produce d to t h e 

following dimensions: 

Gate No 1 20mm x Imm 

Gate ~o 2 20mm x 2mm 

Gate No 3 20mm x 3 mm 

Gate No 4 20mm x 4mm 

Gate No 5 20mm x 5mm 

It was found that gate No. 4, with moderate injection speed for 

the given volume fraction solid, produced castings with 

minimum internal porosity and g ood surface finish. The die 

was also provided with an automatic ejector see Fig . 28 , so 

that when the moving platen retracted, the ejection plate 

holding the five ejector pins hit t he ejection pl a t e fixed t o 

the machine and released the casting. The die was prehea t e d 
• to 300 C prior to injection. Heating of the die could be 

achieved by using the gas heating facilities provided with the 

cold chamber pressure diecasting machine, but difficulties in 

controlling the die temperature were experienced. Therefore, 

the system was replaced by seven compact cartridg e heaters of 

500 watt each, manufactured by Cole Equipment Ltd . , in 

conjunction with a Newtronic temperature controller and 

chromel-alumel thermocouple. This allowed accurate control of 

die temperature in the range betw2en the ambient t e mperature 
• 

and 9 9 9 C. 

The pressure die casting die was manufactured from HI3 hot 

working die tool steel, hardened, tempered and ground in 

accordance with ' the manufacturer's instructions . 
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Detail No Desc r ip t ion 

1 Moving die memoe r 

2 Bolster 

3 Ejector pin bushe s 

4 Gate 

5 Runner 

6 Sprue 

7 Fixed die membe r 

8 Bolster 

9 Shot sleeve guide bush 

10 Die guide pins 

11 Cooling system 

12 Ejector pins 

13 Ejector gu ide pins 

14 Ejector plate 

15 Stop 

Fig. 28A- - General Arrangemen t - Parts List 
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3.2 . 3 The Launder 

A launder of 200mm length and 120mm width was designed to 

direct the composite slurry from the crucible of the 

compocasting unit to t he s ho t chamber of the pressure die 

casting machine. The launder was first made of r efractory 

mate rial, since it is easy to form suc h materia l to the shape 

re quired . Ho wever, crac king , c hippi ng and t he necessity t o 

preheat the launder t o a tempe rature cl ose t o that of the 

composite slurry , t o prevent heat exchange between t he composite 

slurry and the co ld launder, ne cessitated t he use of a mecal 

l aunde r . This l aunde r was made of cast iron using t he 

r efr actory l aunde r as a patte rn, see Fig . 21 , and was provided 

with two thermos t a t ically- controlled cartridge heaters of 

750 watt each incorporated in t he body of t he launde r t o 

pr ov ide t he re qu ired tempe rature. A Eurotherm temperature 

controll e r was use d , in conjunction with a chromel - alume l 

thermoc ou ple, to e nable accurate mea sure ment of the l aunde r 

temper a t ure to be obtained. The l aunder was fixed to t he 
• bot t om of t he compocasting unit and pre hea ted to 400 C prior 

to t he e j ection of t he c omposi te slurr y from the crucib le of 

the compocasting unit. 
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CEAPTER FOUR 

MA TERIALS AND EX ?ERIt1EKTAL P~OCEDURES 

4 . 1 Materials Used 

(a) Alloy used for testing the compocasting unit as a slurry 

producer : 

An alloy of 8wt% silicon (remainder aluminium) was used to 

evaluate the compocasting unit as a composite slurry producer . 

The alloy ',.;as made up from a master alloy of 50% silicon and 

50% aluminium and L~O (99 . 6% purity) , available from L. U. T. stock . 

(b) Alloy used for the production of composite castings : 

BS 1490 , 1970 LM30 Hypereutectic aluminium silicon alloy with a 

nominal composition of : 

16 - 18% silicon 

4 - 5% copper 

0 . 4 0 . 7% magnesium 

1 . 1 max . % iron 

0 . 3 max . % manganese 

ba lance aluminium 

The alloy ,,,as supplied by "Tevacas t Limi ted", Wolverhampton , as 

foundry ingots of 8lb (4kg) weight each . The analysis 

certificate provided with the alloy stated the followin 

composition : 

(c) Graohi te 

16 . 7% 

4 . 55% 
0 . 61 % 

1 . 08% 

0 . 17% 

balance 

silicon 

copper 

ma nesium 

iron 

ma n anese 

a luminium 

Multigrade synthetic graphite with particle sizes ranging from 

44 mesh (353pm) down to dust and having a true density of 1 . 9 

/cm3 , supplied by "James Durrans & Sons Ltd ." , Barnsley , 

Sheffield was used . The graphite was sieved into differnt 

gr ades , using the mechanical sieve avai l able . The graphite was 

subjected to vigo r ous shaking for at least 2 hours to ensure 

71 



that the graphite was separated properly . The literature made 

a reference for graphite grades ranging from 40 to 400~ and 
graphi te addition _l evels up to 20wt% (16,32 , 41 , 44 ,46 , 83 , 95 , 109) . 

To enable the results obtained from this investigation to be 

comparable with those obtained in previous investigations , the 

f ollowing graphite grades and graphite addition levels were 

chosen : 

coarse graphite 

medium fine graphite 

fine graphi te 

- 44 
- 100 

- 200 

+72 mesh (353 - 21 1ym) 
+150 mesh (150- 105pm) 

+240 mesh (75 - 50pm) 
and the graphi te addition levels were : 

3%, 4t%, 6%, 7t% by weight 

(d) Refractory coating . 

Holcote 110, supplied by "Foundry Services Ltd . If, Tamworth , 

Staffs , was used for coating the rotor to prevent the molten 

aluminium from sticking to it . 

(e) Cement for sealing the plug and fixing the thermocouples. 

Triton Kaowool Cement , supplied by "Morgan Ceramics Ltd .", 

Merseyside, was used . The cement could withstand temperatures 
o 

up to 1300 C. 

(f) Aluminium f a il . 

Kitchen foil of 0 . 025mm thickness was used to keep the graphite 

inside the rotor until graphite injection took place . 

(g ) Nitrogen degassing . 

Nitrogen de a ss i ng has been reported to rele ase a bso r bed 

hydrogen and force the suspended inclus i ons to float on the 

surface of the molten aluminium so they can be removed by 

skimming the melt surface . White spot (oxygen free) nitrogen 

was used for degassing the melt . Silica gel was used for 

drying the nitr ogen and the melt was degassed for ten minutes . 

For LM30 alloy it was found that degassing the melt f or ten 

minutes typically reduced the level of hydrogen dissolved in 

the melt from 1 . 09 to 0 . 39CC/100g . Additional degassing for 

more than ten minutes, achieved no furthe r reduction in hydrogen 

content . The alloy was tested using the technique called 
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"Quantitative Reduced Pressure Test" ( QRPT) with equipment 

supplied by t~e Light Metal Founders ' Association . 

(h) Die lubrican t 

~cheson D~G 258~ graphite and water ba s e mixture , supplied by 

"Aches on Colloids Company ", Plymouth, was used as a d i e 

lubricant and relea se agent . The manufacturer ' s r ecommendation 
o 

was to spra y the die at 100 C to allow the water to evapora te , 

lea ving a continuous thin layer of graphite on the die cavi ty 

surface . A pneumatic spray provided with the die cas ting 

machine wa s used to lubricate the die and the shot chamber o f 

the diecasting machine . 

4. 2 Alloys preparation . 

4 . 3 

4.3 . 1 

(I) Aluminium- 8% sili con a lloy . 

The al l oy of 8% silicon ( r emainder aluminium) was made up from 

the maste r alloys available from L. U. T . stock . Tne alloy was 

produced by melting together the required quantities of pure 

aluminium and the 50% silicon , 50% a luminium alloy in a 

salamander crucible using a gas furnace . The melt temperature 
o 

was maintained at 800 C to al low the 50% silicon , 50% a lumini um 

al l oy to be fully dissolved . The melt was t hen degassed for 

ten minute s , skimmed and pour ed into steel i ngot moulds ',thi ch 

produced ingots of rv Hb (0 . 5kg) each. The alloy was p r oduced 

only f o r evaluat ion of the compo cast i ng unit as a slurry 

producer . 

(Il) Bat ches of 301b (13.5kg) each of 11130 alloy were melted in 

a salamande r crucible. The melt temperature was ma intained at 
o 

750 C in o r de r to p r event the precipitation of the pr i mary 

silicon ( 86) . Other prepa r a tion procedures were i dent ical to 

those ment i oned in (I) . The alloy Has us ed for the pr oduc tion 

of t est casting s . 

Composite a lloy production . 

Eval uation o f the compocasting unit as slurry produc e r . 

The compocasting unit shown in Fig . 20 was evaluated as a slurry 

producer by using an 8wt% sil i con- a luminium alloy . ~s this 

hypoeutectic alloy solidifies dendr itically it is an excellent 

materi a l for establishing whether o r not the equipment , as 

designed, woul d provide an effect ive shearing action . 

Four of the lIb (0.5kg) ingo t s were remelted (using an electric 
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4 . 3 . 2 

resistance furna c e} to above the liquidus temperature , degassed , 

skimme d and poured into the crucibl e o f the compo casting unit. 

'tlhen the alloy temperature r eached the equilibrium value , the 

r oto r was ac tivated and a shear rate of 343 sec- 1 was introduced 

and ma intained until the slurry tempe r atur e i n the semi - solid 
o 

zone r eached 595 C. The alloy was then discharged from the 

rheocasting unit and processed by the pressure diecasting r oute . 

For this tempe rature the volume fraction solid \-/as calculated 

using the "Sche il equa tion " (see Appendix 3) and it Has f ound 

to be 0 . 16 and the alloy was subj e cted t o a cooling rate o f 
o 

1 . 5 C/mi n . (constant by desi gn) . 

The mic rostruc tur e of the castings p r oduced , shown i n Fi g . 29 , 

was examined t o i nvestigate the effect of process variables on 

the microstucture , in comparison with tha t of the same alloy 

processed by sand c as ting , see Fig . 30 . Further castings He re 

made to assess the perfo r mance of the compocasting unit as a 

slurry produce r , and to evaluate the method for incorpo r a ting 

g r aphite i nto the alloy slurry . The performa nce of the g r a phite 

inj e ction system Has first evaluated by using a simila r method 

to that mentioned above except that g r aphite was inj ected when 
o 

the temperature in the semi - solid zone reached 61 0 C. This was 

a chieved by ope r ation o f the graphite in jection screw . After 

gr aphite inj e ction the alloy was stirred for at least five 

minutes before ejection to ensure good graphi t e d i stribution . 

An addition of 3wt% o f - 120 mesh, uncoated graphite wa s 

in t r odu c ed success f ul ly with even distribution , see Fig . 31 . 

Production of the GraDhitic HYDereutectic alloy. 

Ha ving established tha t t h e c ompo c a sting unit p erfo rme d 

s a tisfa cto r ily Hi th t he hypo eut ectic all o y the next stage wa s to 

utili s e LM30 (the subject of this re search) for making c a sting s 

with diffe rent graphite addition l evels and parti cle size 

distributi on . This would permit the study of these t~o 

parameters o n the mechanical properties and wear characteristics 

of the alloy processed by pressure diecasting . 

In effect the produc tion of a graphitic hypereutectic alloy 

requires the successful combination of three separate stages, 

each of which has it ' s own a ssociated process variables. 
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Fig . 29 - Alumin ium - 8% silicon alloy r heocast , 

pressure die cast . . . 1 
V =343sec , gs = o ave 

, 
0 . 18, .c ave = 1. 5 Cl min 

Fig . 30 - Aluminium - 8% silicon alloy 

processed by . sand casting . 
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Fig . 31 - Aluminium - 8% silicon alloy compocast , 

pressure diecast, 3,,,t% graphite addition . 

't ~5 50secl , gs ~ 0 .18 , [ ~l. 5 0 C/ min 
ave ave 
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~~eocasting parameters 

It has been shown that the important process vari ables in a 
continuous rheocaster (51) a r e : 

Average Shear Rate 

Average Cooling Rate 

Volume Fraction Solid 

and the signi ficance of these variables has been defined . It 

was not the intent i on in the current research to conduc t a 

comprehensive evaluation of the influence of these variables on 

the structure and properties of the hypereutectic LM30 alloy . 

However , it was expected that thes e vari ables '"ould have an 

important influence on t h e ability to p r oduce an alloy containing 

different graphi t e addition levels . Consequently it was 

necessary to cons i der the effects of some of these variables . 

The first constraint in thi s respect was the construc tion of 

the equipment which was not provided with wate r cooling coils 

because t h i s facility is usually onl y assoc i ated with a 

contiuous rheocasting unit in which the a verage cooling rate 

ha s a signi ficant i nfluence on the throughput of the equi pment . 

As the compocasting unit was to be used in a ba tch mode , wate r 

cooling coils were not pr ovided , and therefore , aver age cooling 

r a te was a constant . 

In order t o maintain a specifi c cooling rate , t he compocasting 

unit wa s preheated to a specific temperature and the molten 
o 

metal was poured into the compocasting unit a t 725 C. 
Wo rk by other r esearchers {51 , 53) showed that changes in the 

average shea r r a te, at a given volume fraction soli d and 

a verage cooling r ate , were not f ound to signifi cantl y affect 

the size of primary solid particles . HO H ever , incre a sing the 

shea r r ate was f ound to affect parti cl e geometry and r educ e 

viscos i ty . These effects Her e establi shed using alloys ',;hich 

sol i dify dendritically whereas in alloy LM30 the pr i mar y silicon

rich fi pha se precipitates in the fo r m of pol yhedra . 

From the pr act i cal viewpo i nt i t was necessar y to establ i sh the 

range of vari abl es which '"oul d produce an al l oy slurry the t 

could be shaped into a cast i ng . The viscosity or fluidity of 

the alloy slurry wa s therefore an important criter ion . 

Viscosity mea surement 

In pr i nciple it should be poss i ble to measure the pO Her 

consumed during shearing when using a 3- phase induction moto r 
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by using the t'NO 'liatt meter method described by Hughes(87) . 

Prom the power consumed, torque and apparent viscosity may be 

determined using the following formulae : 

_ power. consumed torque - angul ar velocity of rotor 

toraue apparent viscosity = constant x rotational speed 

nowever , a major problem arose because the pO\;er consumed , under 

free load condi tions and a t cons tant speed of ro ta tion, Has 

found to decrease with time . To reach the steady state power it 

was necessary to run the electric motor continuously for 60 

minutes . However, once the motor was switched off and on again 

the power value recorded by the two watt meters changed to an 

unpredictable value above the steady state value . This was due 

to two reasons: 

(I) The effective increase in oil temperature of the hydraulic 

variable speed drive coupled to the electric motor results in a 

reduction in its viscosity. This in turn reduces the frictional 

losses resulting in a reduction in the power consumed . 

(11) The increas e in tempera ture of the electric mo tor t,inding 

results in an increase in its resistance and hence a reduction 

in the amount of current passing through 'lhich resul ted in less 

po,ler consumption . 

For these reasons, the power consumed after 60 minutes of 

continuous rotation Has found to be about 50% less than that at 

the beginning of the test, see Table 1. 

For the reasons mentioned above the method was considered 

unsuitable for use in the experimenta l work and it was 

necessary to excercise a subjective assessment based on the 

observed a bility of the slurry to flow . 

Shear rate 

Shea r rate can be varied simply by increasing the speed of 

rotation of the shea ring rotor . The maximum speed of the motor 

arrangement employed was 2650 rpm but in practice a speed of 

1500 rpm could not be exceeded without severe and unacceptable 

vibration . It was evident from the lite r ature that increasing 

the shear r ate reduces the slurry viscosity and this provi des 
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Table 1 : Relationship between power consumed and time for 

three phase induction motor on free load . 

time po''[e r consumed power consumed total 

by 1st watt meter by 2nd wat t meter power 

(minutes) ( Watt ) (IN a tt) (\-I a tt) 

0 305 80 385 

5 243 2 2 265 

10 227 12 239 

15 218 6 224 

20 213 0 213 

25 210 - 1 209 

30 207 - 4 203 

35 206 - 5 201 

40 204 - 6 198 

45 202 - 7 195 

50 202 - 8 194 

55 202 - 8 19 4 

60 202 - 8 194 
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the incentive to maximise shear r a te in order to maximise 

fluidity . However , before selecting a rotor speed of 1500 rpm 

it was necessary to establish if variations in shear rat e woul d 

influenc e the primary silicon particl e siz e and distribution . 

Rheocast melts wer e therefore produced using rotor sp eed of 

750, 1000 and 1500 rpm (evident shear rates of 297, 396 and 

550 sec- 1 ) at a constant average cooling r ate (1 . 5° C/min . ) and 

volume fraction solid (0 . 075) . Examination of the microstructur·e 

of each of t hese slurries did not reveal any significant 

difference in silicon polyhedra shape or size but it did affect 

their distribution in the melt, see Figs . 31A--31C _ Under these 

circumstances there was no r eason why the maximum at tainabl e 

shear r ate should not be used . 

Vo lume fraction solid 

With the average cooling r ate a constant by des i gn and the 

shear r ate a constant by se l ection , the only vari able which 

could be mani pula t ed was volume fraction solid which would be 

affected directly by t he temperatur e selected for the slurry 

zone in the rheocasting unit . Thermal anal ys is established the 

liquidus and solidus temperatures for t h e experimental alloy 
° ° to be 650 C and 505 C respectively. At any t emperatur e between 

these limits t he volume fraction solid could be estimated from 

the relationship published by the SAE (88 ). The a ctual 

temperatures used in experimentation togethe r with the estimated 

volume fraction solid va lues and observa tions on al loy flui dity 

are shown in Table 1A . The experimenta l pr ocedur e was as 

f ollows: 
° ° (I) Liquid zone t emper ature controlle r se t at 670 C ( 20 C above 

the liquidus) . 

(11) Sl urry zone temper atur e controller set at a predetermined 

temperature . 

(III) Molt en alloy transferred by crucible from t he electric 

resistance furnace and poured into the rheocaster when it ' s 

temperature reached the predetermined temperature. 

(IV) When the alloy temperature reached an equilibrium value 

the rotor was activated and its speed set and checked u~ing a 

tachometer . 

(V) When the slurry temperature matched the pre- set temperature, 

establ i shed with an indepedent measuring system, t he slurry wa s 

discharged . 
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(VI) To shape the discharged slurry it was necessary to 

establish initial values for the pressure die casting process 

variables . These were chosen arbitrarily to be: die temperature 

250 °C; gate dimensions 20x4mm; injectio n speed fast and l aunde r 
° temperature 300 C. The discharged elurry was allowed to run 

down via the preheated launder to the shot chamber and injected 

immediately . 

(VII) The casting was then allowed to solidify completely before 

ejection from the die . 

(VIII) After solidification, the microstructures of castings 

produced with different volume fraction solid values were 

observed. 

Observations 

The microstructure observation for castings made from the 

hypoeutectic alloy revealed the effect of shear rate on the 

size and geometry of the primary 0< particles at a given volume 

fraction solid and average cooling rate in compar ison with the 

same alloy cast from above its liquidus temperature, see 

Figs . 29 - 31. 

Investigation of the microstructures for castings made of the 

hypereutetic alloy produced by different shear rates for given 

volume fraction solid and average cooling rate values revealed no 

significant difference in terms of size and geometry of silicon 

polyhedra produced . However , slurries produced with the lower 

shear rate exhibited lower fluidity and agglomerations of 

primary silicon in some areas, see Figs.31A- 31C . 
° It was established that 557 C was the lowest temperature at which 

a fluid slurry , with a volume fraction of 0.15 and sheared at 
- 1 

a rate of 550 sec ,could be processed . Below this temperature 

the slurry solidified on the launder . 

For hypoeutectic and hypereutectic al loys it was observed that 

in order to ensure good graphite distribution , shear rates in 

6 - 1 
excess of 39 sec should be used and the alloy should be 

stirred for at least five minutes after graphite injection into 

into the melt . 

The procedure for calculating the rheocasting process variables 

is shown i n Appendix 3 . 
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Table 1A : Relationship between rheocasting p r ocess variables 

and viscos i ty observations. 

Shear Ejection Volume 

rate temperature fractio n Viscos ity obser vations 

(sec - 1 ) ( °C) solid 

640 0 . 0075 very fluid 

632 0 . 02 very fluid 

E 625 0.025 very fluid 
p.. .. 620 0 . 0275 low viscosity 

0 
608 0 . 03 low viscosity 0 

lC\ 
~ ~ 589 0 . 04 low viscosi ty 

I 

" '0 
0 . 075 low enough f o r making castings QJ QJ 573 

O'l QJ 
p.. 565 0 . 10 low enough for making castings but 

0 O'l 
lC\ 

part of the slurry solidified on lC\ .. 
0 

+-' the launder . 
0 .. 

557 0 . 15 just sufficient for making castings . 

slurry hardly fille d the shot cham-

ber of the d iecasting machine 
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Pi . 31 A - Lr-!30 alloy 

v = 297 
D a v-e 

Rheocas t , 
- 1 

sec , gs 

Pressure Diecast . 
° = 0 . 075 , ~ =1. 5 C/min. 

L- a ve 

Fig . 31 B - LM30 

¥ aYe 

Alloy Rheocast , Pressure Di e ca st . 

=396 sec- 1
, g = 0 . 075 , ~ = 1. 5°c/ min. 

8 l, a ve 



F'i _. 31C - L1130 Alloy 

"6 ave = 550 

Fig.31D - LM30 Alloy 

Shear Rate 
Scale 1/1 . 

Pre ssure Dieca st . 
o 

Rheoca st , 
-1 

sec , gs = 0 .075, ~ = 1. 5 C/min . v a ve 

Graphite distribution , 
- 1 

= 297 se c , 
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ComDocastin~ oarameters 

The essential diffe rence between rheocasting and compocasting is 

the presence of the graphite particles . As these graphit e 

particles are stored within the rotor at a temperature in 

equilibrium with that of the alloy slurry, addition of the 

particles to the slurry should not change the temperature 

conditions . Howe ver, the addition of graphite particles will 

change the volume fraction solid and therefore the slurry's 

viscosity even if all other variables remained constant. Without 

the ab i lity to accurately measure viscosity there was little point 

in experimentation requiring the production of a slurry at each 

of the nine volume fraction solid contents together with each of 

the twelve graphite addition levels (four wei ght additions of 

three diffe rent gradings) . 

'Nith the objective being to produce slurries containing up to 

7twt% graphite the most difficult slurries to produce and process 

would be those containing the maximQ~ amount of graphite . 

Providing that the conditions f or processing this alloy could be 

determined it was anticipated that slurries containing less than 

7twt% graphite would presen t little difficulty . Two approaches 

could be considered: 

(1) Maintain a constant initial volume fraction sol i d for all 

graphite addition levels. 

(2) Ma intain a constant final volume fraction solid by adjus ting 

the initial volume fraction to accomodate the graphite addition 

level. 

In either case the objective would still be to obtain a final 

viscosity which would enable a fully shaped casting to be produced . 

Of these two approaches the former is the more attractive because 

it enables the three principal rheocasting variables to be 

maintained as constants . Then , by concentrating ac tivity on the 

production of the most difficult a lloy, the initia l volume fraction 

solid would be established by determining the minimum temperature 

at which a slurry containing 7 t wt% graphite could be processed. 

Using this approach would provide the advantage of improved 

fluidity as the graphite content was reduced , whilst maintaining 

standard .processing conditions. 

As three different grades of g r aphite were to be used and the 

particle size might be expected to exert an influence on viscosity 

this factor was a l so taken into account . However, in~tead of 
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considering each graphite grade at each predetermined temperature , 

the conditions for processing an alloy containing 7twt% of the 

medium fine graphi te were determined . Thes e condi tions '"ere then 

used for slurries containing 71wt% of the coarser and finer 

graphi te gr ade s respectively, and found to be a cceptabl e . 

The experimental procedure -for establishi ng the compocasting 

par ameters was essentially similar to that for es t ablishing the 

r heocast ing parameters , with the difference being that graphite 

par ticles were introduced at stage ( V) . The experimental 

conditions and observations a ~ e reported in Table 1B. 

A final concer n was that the graphite addit i on should be evenly 
" .I distributed throughout the re sultant castings . This was establ~shel 

by micro - and macro - structural evaluation of the castings produced . 

In addition , although a decision had already been made regar di ng I 

shear r at e , the effect of shear r ate on graphite distribution was 

cons i dered . Graphitic al loy slurries we r e pro cessed using shear 

6 - 1 rates of 297 , 39 and 550 sec . 'rlhilst an acceptable graphite 

distri but i on was obtained wi th the two higher shear r ates . the 

l owest shear rat e produced a casting containing agglomer ates of 

graphite particles and graphit e free areas . This was observed 

even with co"arse graphite additions, see Fig . 31D. 

Graphite was injected into the melt when the temperature in the 

s emi - solid zone r eached the r equired temperature . Thi s was achi e

ved by operation of the graphite i njection screw. 

To establ ish the relationshi p between she ar r a t e , volume fraction 

sol id and graphi t e addition level , the shear r at e and temperature 

values used previously were used again to study the e f fect of 

slurry temperature on graphit e di spersio n a nd r etention . 

Observations were made about the effect of gr aphite addition on 

the volume f r action solid of the alloy slurry and hence its 

viscosity . It was f ound that in orde r to maintain a viscosity 

which 'Hould permi t t he slurry to fi ll the sho t chambe r of the 

pressure diecasting mach ine , t he slurry should be ejected from the 
° compocasting unit a t a tempera ture of 573 C (i . e . at an initial 

volume fraction solid of 0 . 075 +7t wt% graphi t e addition) . 

For slurry tempe r ature below 57 3° C i . e . for volume fracti on solid 

in excess of 0 . 075 +graphite , the slurry either solidified on the 

launder or did not ej ect from the cr ucible of the compocasting 
uni t . It was also o-bse r ved that the fine gr ade of graphi te 

slightly reduced the fluidity of the compos i te slurry in comparison 

with medium fine and coarse graphi t e f o r the same addition level . 

-, ............ ____________________________ ~o~o _______________ ____ ___ ___ 



Howe v e ~, the fluidity of the composite slurry was still 

suffici ent fo r mak ing castings . 

Having established the optim~~ conditions for g r aphite dispersion 

and ret ention , the next sta e was to establi sh the relationshi? 

bet~een the ? r essure diecasting variables in o r der p r oduce so~~d 

cas tings . 



Table 1 B: Relationshi~ between the Compocasting Par amete r s 

and Vi scosity Observa tions . 

Shear Ejection Volwne Obse r vations 

r ate temperature f'ractio" 
(sec- 1 ) ( 0 C) solid Gr aphi t e Viscosity 

640 0 . 0075 totally rejected ve -::, y fluid 

632 0 . 02 t otally rejected ver y fluid 

"' 625 fluid Po 0 . 025 part i ally accepted very 
H 

0 620 0 . 0275 part i ally accepted low vi scOS i ty 
~ 0 

I If"\ 608 0 . 03 partially r ejected low viscosity 
0 ~ 

QJ 
589 0 . 04 totally ac cep ted 1 0'''/ enough for 00 '1::J 

<D 
0 <D making cast i ngs . 
If"\ 0-
If"\ rJl 

573 0 . 075 totally ac cep ted just suffic i ent 
H f or making cas tin ~ ~ 0 
+-' 
0 565 0 . 10 totally accep ted no t sufficient H 

for making castings 

The abo ve experiments were carried out using 7iwt% medium fine 

gr aphit e addition l evel . 
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Pressure Diecasting Parameters 

In consideri ng the pressur e diecasting parameters it was assumed 

that the starting point was a graphitic alloy slurry with 

sufficient fluidity to enable a shaped casting to be produced . 

However , as already indicated , the slurries containing different 

amounts of graphite would in practice have different viscosities . 

Once mor.e the number of experiments necessary to establish the 

optimum diecasting conditions for each graphite grade and addition 

level would be unacceptably large . For this reason the decision 

was again taken to concentrate on the ~ost cifficult case of a 

slurry containing 7~wt% graphite . 

As the injection piston pressure was a machine constant the 

important processing variables were considered to be : 

- die temperature 

- injection speed 

- gate dimensions 

Variation of the injection speed was restricted to the three 

speeds provided by the manufacturer and specified non- numerically 

as: slow , moderate and fast . 

From p r evious work on the squeeze casting of graphitic aluminium

silicon alloys (83) it was known that the die temperature should 

exceed 200 ° C to ensure conformity of the slurry to the die cavity 
o 0 

and this temperature , together with 250 C and 300 C, \,as selected 

f or the investigation . "lhils tit might be anticipated that the 

gate dimensions for a slurry should be larger than those necess a ry 

for a superheated liquid , the gate plays a n important role in 

providing a shearing action to counteracrt the reduction in 

viscosity c aused as a slurry cools in the injection system . 

1,fuiI s t provisions had been made to incorpo rate fi ve different 

gates in the die only three of these, the two extreme sizes and 

the mid- range s i ze, were used i n the experiments . Even "i th thi s 

modest selection of variables it 'Nas necessary to produce 27 

castings to assess the diecasting parameters . Evaluation 

consisted of a subjective assessment of the conformity of the 

cas ting to the die cavity and an objective assessment of porosity 

by radiography, see Figs . 32 and 33 . For comparison the castings 

were considered in three gr oups with the die temperature held 

constant whilst the other two parameter s were varied . The condi 

tions and results of these experiments are shown in Table 1C. 

The cold chamber ENB No . 10 pressure diecasting machine available 

89 



in the department ''''as used for the inves tiga tion . The machine 

consists of a split die , a locking me chanism , plunger and shot 

slee v e assembly and was provided '",i th an a ccumul ato r tank and 

control . The machine also provides the f ollowing features : 

'IIei ht per shot (ir.cluding slug) 0 . 9 4- lb (0 . 426 kg) 

Diameter of injec t ion plunger 

Total force on injection plunge r 

(15 0 psi . air pressur e) 

~!axi;num pr essure on metal 

?ull str oke of plunge r 

Rate of injection 

Die locking force 

Projected casting area 

~inimum dry cycling time 

1~ ins . (38 . 1 mm) 

11. 775 1 bs . (5 , 34-1 k ) 

6650 lb/in2 (468 kg/cm2) 

8 in . (203 . 2 rrun) 

600 in3 /sec (9832 cm3/sec . ) 

75 Tons ( British) 

38 in~ (245 cm2 ) 

4- seconds 

Maximum compressed ai r used per shot 15 cu . ft . free air at 150 ps i . 

Recorrunended die tempera ture for aluminium silicon alloys 200° C 

The pressure values on the die casti ng machine were set to provide 

the maximum possibl e pressure since the comp r essed ai r suplied t o 

the machine has a pressure val u e less than that recommended f or 

the re asons mentioned before . 

In order to inves t i gate the r elationship between the process 

variables , the 

held constant : 

- shear ra te 

f ollowing compocasting process par ameters were 

- cooling r ate 

- 1 550 sec 
° . 1 . 5 C/mJ.n . 

- volume fraction solid 0 . 075 + gr aphi te 

The die temperatures '", ere set on the Newtronic tempe r ature 

controller and mo nitor ed by a chromel - alume l ther mocouple fixed 

in a hole made as close as possible to the die cavity in order 

to obtain accurate measurements of die temperature and the die 

was dressed with l i quid graphite lubricant before each casting . 

The c as tings produc'ed were evaluated acco r ding to the methods 

mentioned abo ve and obser vations were made r~garding the optimum 

combination of pr essure diecasting variables for 7t wt% medium 

fine graphite composite slurry , these were f ound to be : 

- die temperature 300 °C 

gat'e dimens i ons 

inj ection speed 

20x5 mm 

moderate 



This was decided ac cording to Table lC and the radiographic 

examination '"hich '"as carried out only for castings which 

exhihited very good conformity to the die cavity . Castings 

produced for the above para~eters e~~ibited much reduced internal 

porosir.y in .;om"parison with castings produced for "he same 

pa::s .. :neters exce;:>t the in "ection speed was fast. Four more 

casti:1gs '.ere pr oc.ucec. (t;.lO for each i:1jection speed) to assess 

sl".l_~::ie s '..Jith c.i:' :'erent graphite addition levels, three castin s 

~'e:'e made ~"i th :ledit:..:. fi:1e g:" ap:-.i te ;.c.":.. tions ef 3~ , 4i~ and 6 ~~ 

by wei ht . Castings were evaluated in a si~il ar manne:: and a 

conclusion ',;as made about the optimum pressure diecastin parame 

ters which were suitable for shaping the graphitic aluminium 

silicon alloy . 

As ment ioned befo r e the injection speeds were specified non

numerically by the manufacturer of the pressur e die c sting 

machine . However , experimental work was carried out to establish 

the a ctual values of the injection speeds used in the investiga

tion and they we r e found to be : 

slow injection speed = 46 ft/sec . ( 14 ) m/sec . 

moderate injection speed = 12 1 ft/sec. ( 37 ) m/sec . 

fast injection speed = 161 ft/sec. ( 49) m/sec . 
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Table 1C : Relationship between pressure diec ast ing parameters 

and casting integrity 

Di e Injection Gate Observations on conformi ty 

tempe r ature speed size to die cavity 
( 0 C) (mm ) 

slow 20x 1 bad die filling obtained 
slow 20x) bad die filling obtained 
slow 20x5 bad die :'i ll i ng obtained 

moder ate 20x1 bad die filling obtained 
200 modera t e 20x) bad die filling obtai ned 

mocerate 20x5 poor conformity to die cavity 
f as t 20x1 poor conformity to die c avity 
fast 20x3 poor conformity to die cavity 
f as t 20x5 poor conformity to die cavity 

slow 20x 1 poo r confo rmi ty to die cavity 
slow 20x3 poor conformi ty to die cavity 
slow 20x5 poor conformity to die cavity 

moderate 20x1 poor conformity to die cavity 

250 moderate 20x3 poor canformi ty to die cavity 
moderate 20x5 poor conformity to die cavity 

f ast 20x1 poor conformity to die cavity 
fast 20x3 poor conformity to die cavity 
f as t 20x5 good conformity to die cavity 

slow 20x1 poo r conformity t o die c avity 
slow 20x3 poo r conformity to die cavity 
slow 20x5 good conformity to di e cavity 

modera t e 20x1 poor confo r mity to die cavity 

300 mode r a t e 20x3 good conformity to di e c a vi ty 
moder ate 20x5 very good conformity to die cavi ty 

fast 20x1 good conformity to die cavity 
fast 20x3 very goo·d conformity to die cavity 
fast 20x5 very good confo r mity to die cavity 
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Fi6 . 32 - Dec e rillin~c~on of ?i~s So~~cness Acc orcin6 

( 0 c ~e Qual it y I~age rn~ ~ca (o r. ~ - ! a y 

Se nsi tiv~ty = O. CL 

Fig . 33 - Determination of Sprues Soundness Accor d ing 
t o t he Qua lity I mage Indicator . X- r ay 

Se nsitivity = 0 . 011 
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variables to assess repeatability. 

4 . 3.4 . The Production of Pressure Die Castings 

4.3.5 

Castings were produced with different graphite contents and 
different graphite particle sizes from which samples could be 

taken for the investigation of the mechanical and tribological 

properties. 

The following parameters were held constant durinb the 

production of these castings: 

- shear rate 550sec l 

- volume fraction solid 0 . 075 + graphite 
o 

- cooling rate 1.5 C/ min . 
o 

- die temperature 300 C 

- gate dimension 20 x 4mm 

- injection speed Moderate 
o 

- launder temperature 400 C 

The castings (36 in total) were produced by the method 

previously outlined. The macrostructure of selected castings 

was examined to check graphite distribution . Specimens for 

pin on disc wear tests, tensile and hardness tests were 

prepared from each casting. 

The Production of Control Castings 

Control castings were produced to obtain data which could be 

used as a basis for comparison with 

alloys . Control castings were 

but without graphite additions 

different routes: 

made 

the compocast graphitic 
from the same alloy (LM30) 

and were produced by four 

control castings produced by gravity die casting. 

control castings produced by conventional pressure die 

casting. 
- control castings produced by rheocasting and pressure die 

casting. 
- control castings produced by sand casting. 

o 

For gravity die casting, the alloy was superheated to 750 C 
o 

and poured into the copper die preheated to 130 C. 
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4 . 3.6 

For conventional pressure die casting, the alloy was 

superheated to the same t emperature, poured into the shot 

chamber of the pressure die casting machine and injected 

immediately . The die was lubricated using liquid graphite 

and the process variables were similar to those used with t he 

composite slurry and described in (4 .3.4). For rheocasting, 

the alloy was processed following the procedures outlined for 

compocasting, but without the graphite addition. 

o 

For sand casting , the alloy was supe r neatec to 750 C and poured 

into a green sand mould produced from sand having a mo isture 

content of 5% . Two control castings were produced by each 

of t he four routes. Specimens were prepared from each contr ol 

casting for the previously specified tests. 

Introduction of Graphite Under Protective Gas Shielding 

During the production of the graphitic aluminium-silicon alloy 

by the compocasting route a problem arose whereby hard spots 
were observed in the castings. Kay and Street(89) have 

classified the . - inclusions that appear in pressure die 
castings in three groups , these are: 

(1) aluminium oxide, either as a skin of oxide formed on the 

molten metal during transport, or oxide particles 

produced during melting and holding . 

(2) Intermetallic compounds formed firstly by the metal 

composition creating the right conditions and secondly 

by allowing them to segregate through inefficient 

temperature control or by neglecting to stir the metal in 

the crucible. 

(3) Non- metallic particles accumulated i n the metal from 

ladles, crucibles or tools. 

(4) Small particles which have formed during the injection of 

the die-cast metal and have solidified separately. 

The authors also stated that the molten metal forms oxide at 

a rate which increases with temperature and this is the major 

cause of hard spots. 

The compocasting unit, shown in Fig .20, was designed to avoid 

any disturbance of the top layer of the molten metal, however, 
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in practice, the vortex formation was inevitable. The 

disruption of the oxide film on the surface of the molten 

aluminium from the turbulence creat ed by the stirring rotor 

will lead to a continuous build up of further oxide formation. 

Therefore it was decided that an inert gas s hield should be 

used to prevent oxygen being in contact with the molten 

aluminium. 

Dry nitrogen (white spot - oxygen free) with a flow rate of 

Bl / min . was used to protect the mel t surface during the 

preparation of the alloy in the compoc as ting unit. The use of 

a nitrogen shroud resulted in total g ra phite rejection from 

the melt , although the process parameters were exactly the 

same as when the graphite was totally accepted (wi thout inert 

gas shielding). Different g raphite grades were tried together 

with different flow rates of nitrogen, but t otal rejection of 

graphite still occurred . The replacement of nitrogen with 

argon and the use of a higher volume fraction solid (up to 0 . 15 ) 

resulted in similar findings. However , the use of nickel 

coated g ra phite particles resulted in total dispersion of 

graphite in the melt. Therefore it was assumed that the 

presence of oxygen has an effect on the dispersion of graphite 

in the al l oy . During the course of t he investigation , 

analysis has been carried out on specimens from the castings 

which rejected graphite (the use of inert gas shielding) and 

specimens which accepted graphite (without inert gas shielding). 

The analysis method a"nd the results are considered in the 

discussion chapter under the heading "investigation of 

graphite rejection". 

4.4 METHODS AND EQUIPMENT USED FOR THE EVALUATION OF THE COHPOSITE 
ALLOY 

The evaluation was carried out on the castings produced by 

compocasting and the control castings. The evaluation 

consisted of the following: 

( 1 ) macrostructure and microsturcture observation 

(2) tensile properties determination 

( 3 ) Brinell hardness measurement 

(4) pin on disc wear test evaluation 
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I 4.4.1 Macrostructure and Microstructure Observation 

(I) The macrostructure was examined with the naked eye or 

photographed and enlarged using the standard photographic 

equipment available . The samples were first ground and 

polished using the following equipment: 

(a) Buehler hand grinder with four grades of silicon carbide 

paper ; P240 , P360, P480 and P600. 

(b ) Metaserv polisher with nylon cloth and 6~m diamond paste 

for roug h polishing and Metron cloth with l~m diamond 

paste for finishing. 

Hacrostructures were produced by cutting vertical and 

horizontal sections from castings, from which dispersion and 

distribution of graphite particles could be observed. 

Microstructures were prepared by grinding with successive 

paper from P360 down t o P600 . grades of wet silicon 

The samples were then 

6~m diamond paste and 

and a Metron cloth . 

carbide 

rough polished with nylon cloth and 

fine polished with l~m diamond paste 

Some difficulties were experienced during polishing of the 

graphitic alloy specimens du e to the graphite becoming smeared 

on the surface of the matrix. However, the problem was solved 

by reducing the load on the specimen to the minimum during 

the last minute of the final polish. The LM30 alloy exhibited 

a very clear structure with the polishing procedures and 

etching was found to be unnecessary. 

(11) Primary silicon particle counts. 

To compare the effect of the cooling rate on the number of 

silicon particles present in the microstructure, a primary 

silicon particle count was carried out for specimens taken 

from g raphitic and graphite free castings. The specimens were 

first prepared as in ( I ) and then subjected to visual 

examination using an optical microscope with T.V. screen. 

Ten counts were made on independent areas along a length of 

the specimen. A magnification of xlOO was used and the 

particle counts relate to square areas of 0.5mm side leng th. 

Table 2 presents a direct comparison of the averag e silicon 

particl e c ounts. 
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Table 2: Primary Silicon Particle Counts. 

Primary Silicon 

Casting Pr ocess Particle Counts Average 

11 2 1 3 
SLCount 

4 5 6 7 8 9 ' 10 

Gravity Ii i e east 50 t 57 70 95 75 90 89 70 50 70 72 

eonventional Pressure 62 55 56 80 66 40 48 75 60 40 59 

Ii ie east 

Rheocast 38 31 135 130 27 26 24 34 27 36 31 

Sand Cast 27 34 34 44 361 31 36 341 32 24 33 

Compocast 3wt% Gr. 11 9 6 11 81 6 4 3 7 5 7 

Compocast 4~wt% Gr . 6 8 11 9 8 9 12 9 4 8 8 

Compocast 6wt % Gr . 6 9 4 7 3 7 4 5 3 8 
, 
0 

Compocast 7 ~wt% Gr. 12 9 7 6 2 10 6 7 5 7 7 

Particle Counts Relate to Square Are a of 0 . 5mm Side Length . 
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4.4.2 

4.4.3 

----------------------------------------------------------------

Tensile Testing 

The tensile t es t was c arried out to generate fundamental data 

on the samples tested and for compa rison purposes between 

different specimens. Therefore a h i ghe r degree of accuracy 

and r eliability of results was requ ir ed . For that r eason it 

was necessary to control t he strain rate in the tens ile tests. 

This was achieved by using a Nayes ESH250 tensile testing 

machine and a strain rate of 0 . 6ffim/min. was main tained for 

all cests . A load v& ex tension gra ph was obtained from which 

the maximum load could be determined . A l oad range of 0- 5kN. 

was employed and the magnification on the extension axis was 

25 . 4 times ( l Oin. on the chart paper = 10mm re a l extension ) . 

Va lues obtained for ultimate tensile stress, % reduction in 

area and % elongation we r e the average of the values ob t ained 

from five specimens . The ultimate tensile stress (U .T.S. ) was 

calculated from the following: 

U T 5 Ultima te Load (VM/ 2) 
..• = Cross Section Area ll • • m 

Hounsfiel d NoJ3 tensi l e specimens were used. 

Ultima te tensile stress calculations are shown in Appendix 4 . 

Har dness Testing 

Hardness t es ting was c arr i ed out on a Brinell hardness t es ting 

machine with 10min ba ll diameter and 750kg load . The Brinell 

hardness test was considered appropriate for the compos ite 

alloy because the ball would cover a larger area than a point 

indentor. As this area would include all the c onsitituent s of 

the composite, t he test was like ly t o prov i de a more accurate 

hardness value . In the Brinell hardness test t he ball is 

pressed into the s pecimen for a 30 sec. period at the specified 

load. The diame t~r of the impression f ormed is proportional 

to the Brinell hardness number and t he load applied is a 
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4.4.4 

function of the ball diameter ie.: 

P 
~2 

constant 

where: P = t he l oad applied (kg) 

D = the ball diameter (mm) 

For aluminium alloys, t he constant is between 5 and l a . 

The Brinell ha r dness nUwber was calculated from the formula: 

H = 
ii D 

- 2-

p 

where: H = the Brinel l hardness number 

P = load applied (kg) 

D = ball diameter (mm) 

d = diameter of impression (mm) f 

The Brinell hardness calculations are shown in Appendix 4. 

Hear Testing 

Pin on Disc Wear Testing 

cr) Programme One: Dry Friction 

The pin on disc wear test fulfills the requirement for 

accelerated combinations of adhesive wear, fati gue , fretting, 

delamination and abrasion. A hardened steel disc was used, 

so the requirement for data to be established which related to 

tribological properties of the c omposi tes when mated with 

ferrous components could be satisfied. This was important 

because the applications suggested in the literature for 

graphitic aluminium-silicon alloys usually involved mating 

with ferrous c omponents, such as the piston ring in the 

automobile engine. 

The wear test machine shown in Fig .34 and 35 provided the 
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following features: 

(a) a counting device to count r evo lutions of t h e disc. The 

device could be set to the r equi red number of revolutions 

for a particular test, which when r eached, trigge red an 

electrical signal to cut the power from the moto r. 

(b ) An inductive position transducer which measured t he 

deflection of the pin under test in a direction tange n tial 

to t he disc . This enabled data suitable fo r t he _ 

dete r mination of tangential fo r ce t o be obtained for 

calculation of the coefficient of friction. Th e transduc e r 

was p lacec in the pin holde r. 

( c ) An i nductive position transducer placed in t he l o ad plate 

t o measure the c hange in pin length dur i ng the test . 

(d ) A chromel-alumel thermocouple was attached t o t he wear pin 

at a d ista nce of 3mm f r om the pin-disc interface, to allow 

changes in pin temperature t o be rec o r ded . 

(e) A ch r omel - alumel thermocouple was placed in t he wea r 

testing environment to allow t he ambient t est temperature 

to be monitored. 

The out puts ' from items b - e were fe d into a four c hannel 

Linseis mi llivo lt chart rec o rder which allowed coefficient of 

friction, change in leng t h of wear pin, pin ~emperature and 

ambient temperature to be r e corded c ontinuously. 

Tne general arrangement f or the we a r test machine is shown 

in Fig .35 and the parts list in Fig.35A. The machine also 

has a facility for conducting t he reCiprocating diamond 

scratch test. 

In addition t o the above requireme nt ; a c hemica l balance 

a ccur a te to O.OOOlgrn. was used to weigh test pins before and 

af ter the test . The t es t pin and its arrangements are shown 

in Fig . 36 and the test pin in Fig .37 . Surface texture 

measurements were carried out on a Ra nk Taylor Hobson 

Ta l ysurf 4 with datum attachment and Talydata computer for 

computing r oughness average (Ra) and bearing ratio ( t p) . 
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The following parameters were used: 

- averag e wear interface linear volocity: 1 m/sec. 

- Axial load: l2.6kg. 

- Pin diameter at wear interface: 6 . 35mm 

- Disc material : plain carbon steel with carbon content of 

1% hardened to Rc 57. Five discs were made. 

- Test duration: 3 0 minutes 

- Pin and d isc surface finis h : 2 ~mR a and O .2~mR a respectivel y . 

- Envir onment: 

Pr ogramme one: unlubricaced s y stem, e nclosed environment 

with temperature a nd humidity monitored. 

Prog ramme two: lubricated system, enclosed environment 

with temperature and humidity monitored . 

The results obtained from the wear test were: 

(I) Pin weight loss. 

( 11) Change in pin leng th. 

(lIT) Pin temperature rise. 

(IV) Coefficient of f r iction. 

(V) Surface texture of pin and disc after test . 

The tribological properties calculations are shown in Appendix 5. 

Pin Weight Loss 

The pins were cleaned and weighed before and after each test 

so that weight loss could be determined. Monitoring of weight 

loss was necessary in addition to monitoring change in pin 

length because it was possible for a situation to arise where 

the pin deformed plastically without loss of debris. This 

condition could be detected only by the change in length 

measurements. Ambient temperature and relative humidity were 

monitored to ensure that there were no significant changes in 

the ambient conditions during the period of test. 

Change in Pin Length 

This was measured by the position transducer in the load 

plate [ a] see FiG. 35. The system was calibrated by placing a 

feeler gauge of known thickness between the transducer probe 

and the disc and noting the millivolt reading on the chart 
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recorder . The change in length of pin during a wear test was 

recorded from a mi l l i vol t output from the transducer and 

converted to a linear distance (in "-m) usi~g the calibration 

data on completion of the test . 

(Ill) Pin Tempe r a ture Kise 

A ch r omel - alumel thermocouple was wired to che pi at a 

dis tance or 3u.Cl fr om t he 'N'ear i ncerface , ' ...... hich w'as proved by 

~azavizadeh anc Davies (62) co be ver:, close to Cue actual 

temperature at the wear interface . The millivolt output was 

recorded by the Linseis recorder which provided a continuous 

record . A mercur y thermometer was used for calibration and 

the millivolt r eadings were converted to absolute temperature 
• 

in C. 

(IV) Coefficient of Friction 

The position tranducer [23 J see Fig . 36 was installed to 

measure the def l ec tion of t he pin res u lting f r om r otation of 

the disc . The output from the transducer was fed into the 

millivolt r ecorder whe r e the r eading indicated was proportional 

to the pin deflection . To calibrate the system for coefficient 

of friction , the axial load was applied to the pi~ in contact 

with the stationa r y disc . The force requi r ed to cause a 

similar deflection to that caused by .the rotating disc was t hen 

determined by at t aching a spring balance t o the base of the 

pin and applying a load to deflect the pin . A graph was then 

drawn for deflect i on force vs . the millivolt reading , whic h 

enabled the system to be calibrated . 

Hile n the disc was rot a ting with t he l oaded pin in contact , 

th e millivolt re ading could therefore be equated directly to 

the force required to cause a certain deflection of the pin . 

In a friction system , when two surfaces come into contact 

with each other , t he ha r der material sinks in to t he softer 

mate r ia l un ti l t he r eal area of contact is suff i cie n t to 

suppo r t t he l oad unde r s ta t ionary conditions , t his entails 

"co l d we l d i ng" o f the mating aspe ri t i es . Bowde n a nd Tabor( 90 ) 

main t a ined t hat t he f orce r equ i red to shea r these we l ded 

junction~ is directly related to the static frictional 



force F t-t 
S " . 

together when 
They also claimed that the junctions still weld 

t he surfaces slide over one another under the 

normal con~itions of siding contact between specimens . The 

force required to maintain a constant sliding speed whilst 

na~ing and break i ng the welded asperity con tDct is the kinetic 

frictional fo rce "kin .' and the resultant coefficient of 1 
frictio n called t he kinetic coefficient of friction ~'.' ~ 

,,,~n . 

Fk · 
~kin = ~n . - !.;-

the load applied . 

The millivol recorder allowed F.. _ to be ~ ecorded continuously 
.cln 

throughout the pi n on disc wear tests enabling a record to be 

obtained for any changes during the test . 

(V) Surface Te xtures of Pin and eisc 

Defore all tests , surface texture was prepa r ed on both pins 

and discs to be better than : 2~mRa for pins and O . 2~mRa for 

discs. 

Measuremen ts were taken perpendicular to the direction of lay 

in all cases . The disc surfaces were prepared by grinding 

while pins ' .. ere finished by face turning. 

The main parame t e r s used were "roughness average" Ra , and 

"bearing ratio " tp . Ra alone gives little information about 

the actual shape of a bearing surface because it is simply 

a measure of areas above and below a centre line , while tp . 

gives an indication of the actual proportion of the surface 

which would be in direct contact with the flat disc surface . 

a and tp . together g ive useful information about the worn 

surface . 

(11) Programme Two : Lubricated Friction 

During t he pin on d isc wear test (d r y f ric tion ) , it was 

observed that the gr aphite in t he test specimens was prevented 

f r om building up a continuous la yer at the wear inter face due 

t he the co ni inuous ru bb ing aceio n between the t wo mated 

surfaces . It was considered thnt the prese nc e of a wet media , 
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such as oil , could act as a graphite binder and allow a 

gra phi te rich layer to build and prevent direct contact 

between t~e two ~ated surfaces. On t he othe r hand it was 

considered that t he presence of oil in a large quantity, such 

as immersing the system in an oil bath , might cause the 

graphite to be washed out from the wear interface . It was 

decided therefore to run the system under very poor lubrication 

conditions . The pr ocedures and the data obtained were exactly 

the same as in ( 1 ) , except that the system was run under 

poor lubrication conditions . See (5.2 . 4) 
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Fi~ . 3 - The Wea r Test ~achine 
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Detail No . 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 
16 

17 

Desc ription 

rramewor k 

Bearing housing and shaft assemb l y 

Resilient mounting 

Base plate 

Disc 

Perspex cover 

Loac plate 

Position transducer ( co record change in 

pin length) 
\";e i ghts (load) 

?in holder 

Specimen 

Timing be 1 t 

Pull ey 

Variable speed drive 

t~o tor 

Counte r and automatic test-stop device 

Ball bushes and g round pillars 
Items not s hown 

18 

19 
20 

21 

Pos ition transducer ( to record deflection 

force) 

Thermocouples 

Recorder (millivolt) 

Transducer power supply 

rig . 35A Parts List 
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CHAPTER FIVE 

RESULTS AND OBSERVATIONS 

5 . 1 Results of Comoosite Alloy Production 

5.2 

5.2 . 1 

rlic rostructures 

Fig.33 Sand cast control specirr.en LM30 alloy. 

Fig . 39 - Gravity die cast control specimen LM30 alloy . 

Fig . 40 Conventional pressure die cast control specimen 

LM30 alloy . 

Fig . 4l - Pressure diecast, rheocast LM30 alloy , no graphite, 

shear rate 550sec- l , 0 . 075 volume fraction solid, 
o 

1 . 5 C/ min. cooling rate . 

Fig.42 - Shear rate 550sec- l , 0 . 075 volume fraction solid, 
o 

1.5 C/min . cooling rate, 11':30 alloy + 3wt% coarse 

graphi te . 

Fig . 43 - Shear rate 550sec- l , C. 07S volume fraction solid , 
o 

1 . 5 C/m in. cooling rate, LM30 alloy + 4twt% medium 

fine graphite . 

Fig.44 - Shear rate 550sec- l , O. Q7s volume fraction solid, 
o 

1.5 C/min. cooling rate, LM30 alloy + 7iwt% fine 

graphi te. 
Fig.45 - Fractured silicon particle . 

The number of primary silicon polyhedra counted for graphitic 
and graphite free (control casting) specimens are listed in 

Table 2. 

Mac rostructure 
-1 Fig . 46 - Shear rate s50sec ,0.~75 volume fraction s01iu, 

o 

1.5 C/min cooling rate, LM30 alloy + 7iwtl coarse 

graphi te . 

RESULTS OF COMPOSITE ALLOY EVALUATION 

Tensile Testing 

Tests were conducted to assess the effect of graphite addition 

l evel on the U.T.S., % elongation and % reduction in area . 

11 0 



5 . 2 . 2 

Specimens : Hounsfield No.13 
Testing machine : Ma yes ESH 250 

Str ain r a te 0 .6mm /min 

Load r ange 0-5 kN 

The % elongation and % reduction in area were determined 
using Ho unsfield gauges. 

The tensile testing r e sults for control castings and graphitic 
castings are S~O~TI i n Tables 3 and 4 res pectivel y . 

A graph showing the variation in U.T.S. with differe nt gra phite 

additions is showTI in Fig.47 . The tensile testing calcul ations 

are shown in Appendix 4. 

Hardness Testing 

The Brinell hardness test was conducted to assess the effect 

of graphite additions on the hardness number of the alloys . 

Load Used = 750kg 

Ball diameter 10mm 

The Brinell har dne ss testing results for control castings and 

graphitic castings are shown in Tables 5 and 6 respectively. 

The Brinell hardness calculations are shown in Appendix 4. 

A graph showing the variation in Brinell hardness number with 
various graphite contents is shown in Fig.48, and in Fig.49 

there is a graph showing the correlation between hardness 

number and tensile strength for graphitic and graphite free 

specimens. The relations hip between silicon particle counts, 

Brinell hardness number and tensile strength for control 

casting specimens is shown in Fig.50. 
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?ig . 33 - L~ 3 G - Sac~ C2S~ Scrcc tu re 
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. 39 - LM30 - Gr avity Diecas t Structure 
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~i; . LO - L~30 - Conventional Prassure J ~ ecas: 

Fi::, . 41 - L~:30 - Pr e s sur e Diecas c. Rheocas c No Graphite I.c!d icion 
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5.2 . 3 

* 

Wear Testing (Pin On Disc) 

(I) Programme One : Dry Friction. 

Parameters used : 

Interface velocity : lm/sec 

Pin diamater: 6 . 35mm 

Discs: Plain carbon steel with 1% c arbon hardened to 

RC 57 and ground on both sides . Each side was 
used for one test only 

Test duration : 30 minutes 

Load : 12 . 6kg (28lb) 

Environment: unlubricated system, enclosed in perspex 

cover . 

Data obtained for control castings and graphitic castings are 

shown in Tables 7 and 8 respectively . 

Graphical representation : 

Fig .5l shows variation in l ength of pin lost vs. sliding 

distance . 

Fig . 52 - shows the correlation between hardness No . and 

volume loss of pin . 

Fig . 53 - shows t he weight of pin loss vs . gr aphite content. 

Fig . 54 - shows pin temperature rise vs. graphite content . 

Fig . 55 - shows the relation between length of pin lost and 

weigh t of pin lost . 

Fig . 56 shows pin temperature rise vs . sliding distance . 

Fig . 57 - shows the coefficient of friction vs . graphite content. 

Fig . 58 - shows the wear r ate vs. graphi te content. 

The wear charts produced for specimens containing 3wt% graphite, 

7lw t % graphite and specimens processed by a combination of 

rheocasting and pressure die casting are shown in Figs.6l - 63 . 

The disc surface after a wear test is shown in Fig.64 . 

Surface textures of pins and discs before and after the test 

are shown in Figs.65-76. 

Figs 66 - 76 are shown in Appendix 7 . 
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* 

(1 1 ) Pro gramme Two: Lub ricated Friction 

Lubricated wear testing has been car r ied out to investiga te 

t he behaviour of graphi tic and non g raphitic specimens unde r 

very poo r lubrication conditions . 

The parameters used were exactl y the same as in prog ramme one 

except: 

Environmen t: Lub ricate d system , enclosed in pers pe x c ove r . 

Oil used: Cas trol SAE 20W/ 50 rnultigr ade oil . 

Lubrication range: One drop of size 0 . 5 x 10- 2mL . 

Pr ovided at the beginning of t he t est . 

Data obtained a re shown in Table s 9 and 10 . Graphical 

representation of the r esults are shown in Figs.49 , 52, 53 , 

55 - 57. 

~ear c harts f o r control specimens and g r aph itic specimens with 

g r aphite c ontent of 3wt%, 6w t % a nd 7~wt% are shown in 

Figs.77 - 80. 

Surface t exture for pins and discs after the test are shown 

in Fig.8I - 90 . 

The tribologica l property c alculations are shown in Appendix 5 . 

Figs.Sl - 90 a re shown in Appendix 7. 
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5.3 QUANTITATIVE ANALYSIS OF GRAPHITE CONTENT 

Gr aphite distribution was visually determined on c ut sections 

after wet grinding using number 80 

type 

grit silicon 

8 00 was used 

carbide 

with an optica l paper. A Cambr i d g e quantimet 

microscope and T.V. faci l ity . The equipcent is able to 

differentiate between se parate phases from the colour of 

lig ht reflected from them. The result was given i n terms of 

t he percentag e of area whic h the graphite particles occupy 

i n a g i v en cross section. This enables qu a ntitative 

metallog r a phic tec hniques to be us e d to determine t he 

quantities in vo l ume or we i gh t. The results are shown in 

Table 11. 

The weight % graphite was calculated by mUltiplying the area% 

by t he density r atio o f graphite to L1130 a l uminium - silicon 

alloy. The calculation procedures are shown in Appendix 6 . 

Gra phs were plo tted for tensile streng th and wear ra~e versus 

the analysed values of graphite in the specimens and they are 

shown in Figs.59 and 60 r e s pectively . 
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5 . 4 OBSERVATIONS ON COMPOSITE ALLOY PRODUCTION 

Fig.38 shows the microstructure obtained by the slow cooling 

of LM30 alloy in a sand mould . Fig.39 shows the structure 

obtained when the same alloy was cast in a copper die pre -
• heated to 130 C. The microstructure of the alloy produced 

by conventional pressure die casting (in a steel die preheated 
• 

to 300 C) is show"n in Fig.40. The structures of both g ravity 

die cast and conventional pressure die castings exhibited 

refinement of the primary silicon polyhedra and modification 

of the eutectic structure due t o the faster cooling r ate 

employed during solidification . The structure of the alloy 

which had been processed by a combination of rheocasting and 

pressure die casting revealed primary silicon polyhedra of 

coarser nature and fewer in number ( due to the slower cooling 

rate which applied during the processing of the al loy in the 

compocasting unit ) see Fig . 41 . The effect of cooling rate on 

the size of primary silicon polyhedra is demonstraZed in 

Table 2. Figs . 42-44 and Fig.46 show a uniform graphite 

distribution with no evidence of areas of high or low graphite 

concentration and they also show good contact between graphite 

particles and the alloy matrices. During production of t he 

composites, viscosity was observed to vary according to 

g raphite content ie. increasing the g raphite addition level 

incre ased the viscosity at a g iven shear r ate and volume 

fraction solid. It was found that in order to maintain a 

viscosity low enough for casting with a graphite content up to 

a nominal content of 7~wt%, a shear rate of 550sec l must be 

employed. 

Graphite rejection was observed when a shroud of inert gas was 

used. Graphite rejection 

contents of up to 0 .. 15 and 

occurred at volume fraction solid 
-1 

with shear rates up to 550sec . 

Two forms of graphite particle rejection were observed: 

(I) Flotation on the surface of the melt. 

( 11) Segregation and agglomerat i on in the bottom of the 

crucible. 

The former usually occurred with fine graphite particle size 
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5.5 

5.5.1 

-------------------------------------------------

and the rejection t ook place immediately after the gr aphite 

was injected into the melt, whilst the latter could not be 

observed before the slurry was allowed to run down from the 

cruc ible . At this time the g r aphite separated and agg lomerated 
on the launder. 

Fracture of the silicon polyhedra was observed, see Fig.43, but 

on a very minor scale. This fracture may have resulted from 

the shear action £pplied by the stirring rotor during the alloy 

preparation . 

OBSaVATIONS O~ R?SGLTS - CmJPOSITE .<\LLOY EVALUATIO N 

Observations on the Mec hanical Properties 

The tensile test results shown in Table 3 showed variations 

in the tensile strength of the alloy processed by different 
casting methods . Processing the LM30, hypereutectic aluminium

silicon alloy by gravity die casting resulted in the highest 

tensile strength achieved by any of the casting processes . 

Compari&on between the results for the four casting processes, 

see Table 3,showed that the coarsest structures were associated 
with che lower tensile properties (as in sand casting) and fine 

structures with the better tensile properties (as 

die casting). Table 3 shows that t he U130 alloy 

low ductility. This ha s been demonstrated by the 

elongation values obtained by the tensile testing . 

in gravity 

has a very 

very low 
The re sults 

shown in Table 4, and graphically in Fig . 47, show a reduction 

in tensile strength and ductility resulting from the addition 

of graphite. The addition of 3% graphite to the LM3 0 

hypereutectic aluminium-silicon alloy resulted in a 30% 

reduction in ultimate tensile strength. This was accompanied 

by lower elongation and reduction in area values which indicate 

a further reduction in ductility as a result of the graphi t e 

addition. Table 4 also shows that graphite particle size has 

an apparent influence on . th~ tensile strength. Coarse graphite 
particles resulted in lower tensile strength values than those 

for the medium and fine graphite particle sizes. The 'use of 

coarse graphite, of J55~m particle size, resulted in a 12-14% 

reduction in the tensile streng th over that of fine graphite 

of 50~m particle size, for the same graphite addition level. 
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5.5 . 2 

The hardness results in Tables 5 and 6 showed similar trends 

to the tensile properties in Tables 3 and 4. Coarse 

structures resulted in poor hardness properties and the 

addition of graphite particles to t he aluminium- silicon 

alloy reduced its hardness. The reduction in hardness is 

almost proportional to the quantity of graphite added, see 

Fig . 48 . Graphitic and graphite free specimens showed a 

correlation between hardness and tensile strength , see Fig . 49. 

For contr ol specimens , t he highe r har dness was associated with 
significantly higher tensile properties, whilst for graphitic 

specimens correlation, whilst it existed, was less pronounced . 

Fig .50 s hows t he effect of primary silicon particle size on 

the mechanical pr operties of LM30 alloy . The presence of 

primary silicon polyhedra in great number resulted in higher 

tensile strength, whilst the effect on the hardness number 
was not Significant. 

Observations On The Tribological Properties 

In the pin on disc wear test (dry friction) the castings 

containing 3wt% exhibited a mild steady wear , whilst castings 

containing graphite in excess of 3wt% and control castings 

showed a steady wear of a more severe nature, see Figs . 51 

and 59 - 60 . 

In the lubricated wear test, the control specimens s howed a 
very mild wear during t he first ten minutes of the test, 

after that a transition to more severe wear occured. The 

graphitic alloy specimens maintained a mild steady wear which 

did not change during the course of the test . In both 

lubricated and unlubricated tests the specimens containing 

3wti. graphite showed the lowest wear rates observed in this 

investiga tion, see Table 10 and Figs.53 and 58. From Fig.52 

it can be seen that graphitic and graphite free specimens show 

some correlation between Brinell hardness number and volume 

loss of the test pins. At lower hardness values there was a 

higher volume loss of the tested pins. Both the weight of pin 

lost and wear ra t e showed minimum values with a 3wt% graphite 

addition, an increase in graphite addition beyond that value 

resulted in a sharp increase in wear rate and weight of pin 

lost . For the lubricated wear test, at 7~wt% graphite addition , 

126 



the wear rate was about 60% of the wear rate of g raphite-free 

specimens, wh ilst in d ry friction t he wea r ra te is almost 

simila r to that of t he control casting specimens or even 

higher see Figs. 53 and 58 . 

The results in Table 8 and Fig.57 s how t hat the coefficient 

of d ry friction between the p i n and the disc is l ower for 

alloys which contain graph i te pa r ticles and that t he 

coefficient of friction decreases with a~ increase in gr aphite 

content . In the lubricated wear tests, spec iQens containing 

graphite below 7~wt% maintained a ve r y low value fo r 

coefficient of friction during the test pe riod , see Figs.IS 

and 79 . The control specimens, see Fig . 77 , main tained a l ow 

value fo r coefficient of friction until the middle of the test, 

afte r t ha t t he coefficient of friction increased dramatically 

t o a va l ue wh ich is c omparable with those for control c astings 

obta ined with d r y friction. Specimens c ontaining 7~wt% 

graphite, see Fig.SO, s howed different trends . The coe fficient 

of friction increased g radu a ll y during the test. However, the 

maximum value rec or ded was well below the value obtained with 

control specimens. 

In t he unlubricated wear t es t the p in t emperature rise showed 

trends comparable wi th t he coefficient of friction results. 

The presenc e of g r aph ite particl es r esul ted in red u ced steady 

state t emperatures . In the lubric ated t ests , specimens 

conta ining le ss than 7~wt% graphite showed very l ow and steady 

tempe r a tures, Figs.7S a nd 79 , whilst specimens c ontaining 7iwt% 

graphite s howe d an increase in t empe r ature during t he test 

period which corresponds with the c hanges in coefficient of 

fricti on for t he same specime ns. However, the maximum 

t empe r a tur e rise ob t ained with such g raphite addi tions is still 

well below that exh ibited by the contro l casting specimens . 

The surface texture of t he pins and discs after wea r te s ts 

are shown in Tables 7 and 8 for d ry wear tests and 9 and 10 

for the lubricated ones. 

For dry fricti o n, t he surface roughness (Ra value) of the pins 

and discs was lower for specimens which contained gra phite 

particles t han for similar pins and discs of t he mat rix alloy. 
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The surface profile graphs of the specimens, Figs.65-76, 

show smoother surfaces on the pins containing graph ite which 

was reflected in smoother surfaces on the mated discs. 

Gra phitic alloy specimens exhibited more peaks and valleys 

for a given length of surface of both pins and discs t ha n d i d 

the graphite free specimens. This was accompanied with a 

slight deterioration in bearing ratio, in comparison with 

specimens of the control castings. For lubricated friction, 

the higher graphite contents resulted in higher surface 

r oughness values for both pins and discs. However , with t he 

exception of the 7~wt% graphite specimens, the values obtained 

for (~a ) were far below those obtained from c ont r ol casting 

specimens, see Figs.81-90. The number of peaks and valleys 

for tested pins and disc were found to decrease with the 

increase in graphite content. This was accompanied by a slight 

deterioration in bearing ratio. The effect of graphite particle 

size on the wear behaviour of L~30 alloy is demonstrated in 

Table 8 and Figs.51-58. The presence of coarse graph~te 

particles resulted in a lower pin temperature rise and a lower 

coefficient of friction in comp a rison with those values 

obtained with medium fine and fine graphite particle sizes at 

the same graphite addition level. However, the specimens 

containing coarse graphi te particles exhibited some 

dete rioration in the surface roughness values (Ra) and bearing 

ratios when c ompa red with t he specimens containing medium 

fine and fine graphite particle size. 

The results, in Table 8, for pin weight loss were plotted 

against the change in pin leng th values, see Fig .55. Although 

there was some scatter, within a narrow band, the straight-line 

relationship indicates that significant plastic deformation 

without loss of debris did not occur. The quantitative 

analysis of graphite in the castings, see Table 11, shows some 

variations in graphite content within the castings. However, 

the analysis showed that the average graphite content within 

the casting is very close to the assumed quantity for both 

coarse and medium size graphite particles. For the fine 

graphite particle size the amount of graphite recovere d was 

between 87-99% of the assumed quantity. The graphs plotted 

for the analysed quantities, Fig s.59 and 60, did not show a 
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significant difference in comparison with graphs plotted for 

the assumed quan t ities Figs . 47 and 53 . 
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Fig .52 - Correlation Between Brinell Ha r dness 
(,umber and Wear Pin Volume Loss . 
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Table 3 : Tensile Test Results For Control Castings 

Casting Process Max . Load U. T.S. % '7. Reduction 
kN (·iN / rr. 2 Elongation In Area 

Qr avity Di e Casting 3.63 225 2 1 

Conventional 

Pressure Die Casting 3 .1 192 1.5 1 
I 

I Rheoccst Follo\o/ed 

By Pressure Die 2.96 133 1.5 1 

Casting 

Sand Caseing 2 . 21 137 1 0 .5 

(Values were t he ave rage of four specimens) 
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Tab le 4: Tensile Test Results For The Composite All oy Castings 

~~ Max. Load U. T.S . % % Reduction 

Gr aphite kN l'lN /m 2 :elongat ion In Area 

Coarse 1.94 120 1 0 . 75 

.... ~ed. Fine 2.06 128 1 0 . 75 
C"'l Fine 2.21 137 1 0 . 75 

Coarse 1. 63 101 0 . 75 0 . 75 

~ 
~led . Fine 1. 78 11 0 0 . 75 0 . 75 

-I:'J 
~ . 1.90 11 8 0 . 75 0 . 75 ~ r ~ne 

Coarse 1. 53 95 0.75 0 .5 

.... .tIed . Fine 1. 63 101 0 .75 0 . 5 
-c 

Fine 1. 78 11 0 0 . 75 0 . 5 

Coarse 1. 48 92 - -
.... Med . Fine 1. 56 97 - -
....... 
r- Fine 1.71 106 - -

(Values were the average of four s pecimens ) 

149 



- - - -------------------

Table 5 Ha rdness Test Results For Control Casting s 

- - -

~ 
Diameter Or Average Brinell 

Casting Impression Diamater Hardness 

Process (nUl ) ( mm ) ,-nO . 

2.8 2 . 75 2 . 9 2 . 85 

Gravity Die 2 . 85 2.7 5 2 . 9 2 . 8 2 . 82 11 8 

Casc ing 2 . 0 2. 8 2 . 85 2 . 8 

Conve ntional 2.85 2 . 95 2.9G 2 . 95 

Pressure Die 2 . 95 2 . 90 2 . 85 2 . 85 2 . 9 111 

Casting 2.95 2.90 2.85 2 . 90 

Rheocast f o llowed 2 . 85 2 . 9 2. 85 
n Pressure Die 2.85 2 . 9 2 . 85 2 . 91 11 0 Py 

Casting 2 . 95 3 . 0 2 . 9 

2.9 5 3.0 2.9 2 . 95 

Sand Cast i ng 2 . 95 2.95 2 . 95 2.95 2 . 95 107 

2 . 9 3. 0 3 . 0 2.9 
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Tab l e 6: Hardness Test Res u l ts For Composite Alloy Specimens 

Properties Diameter Of ft.verage 

Graphite I mpression Diameter 3rinell Hardness 

(mm) (mm) No . 

Coarse 3 . 2 3 . 2 3 . 2 3 . 2 91 
..,. 
C") 

~!ed . Fine 2 . 18 3.15 3 . 15 3 . 2 93 
Fine 3 . 05 3.12 3 . 14 3 .1 97 

Coarse 3.42 3 . 43 3.42 3.42 79 
~ 

-'''' -:r i-1ed . Fine 3.3 8 3 . 36 3.40 3.38 82 
Fine 3.28 3 . 26 3 . 28 3 . 27 86 

Coarse 3 . 6 3.58 3 .55 3 . 56 73 
;....z ~led . Fine 3 . 57 3 . 56 3 . 59 3 . 57 73 
..0 

Fine 3 . 44 3.4 3 . 44 3 . 43 79 

Coarse 3.65 3 . 66 3 . 64 3.65 69 
~ 
-;N ~led . Fine 3.65 3 . 61 3 . 6 3 . 62 70 ,..... 

Fine 3 . 5 3 . 5 3 . 5 3.5 76 -

1 51 
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Table 7 : Pin On Disc Wear Test Results For Control Castings (dry f r iction) 

Pins 
Criteria !Oin Length Of Coefficient Pin Surface Bearing 

Casting Weight Ein Lost Of Temperatu re Finish Hatio 
• Process Loss(gr) (mm) Eriction Rise C "Ill Ra tp X 

Gravity Die 0 . 027 0 . 34 0.39 68 4 .51, 51. H 

Casting 

Conventional 

Pressure 0.028 0 . 35 0 . 41 66 3 . 69 55 .'! 
Die Casting 

Rheocast 

Foll owed By 0.029 0.36 0.35 67 I, .6 2 5 (i • I, 

Pressure Die 

Casting 

Sand Casting 0.031 0 . 38 0 . 40 70 5 . 39 /,9. (, 

Iliscs 

Sur face Bearing 

Finish Hatio 
pm Ra tr '10 

1.1 51. 2 

0 . 87 49 . I, 

0 . 89 50 . 3 

0 . 80 47 . 3 
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Tahle 8 : Pin On Disc Wear Test Res u lts For Composites (dry friction) 

Criteria Pin Le ng th Of Coefficient Pin Pin s 

Weight Pin Lost Of Temperature Surface lie a r in[" 
• Graphite Loss( gr ) (mm) Friction Rise C Finis h Ratio 

I'lll Ra tp I. 

Coarse 0.017 0 . 26 0.3 1 62 L, • 2 () 52./, 
s-" Med.Fine O. U23 0.29 0.34 66 1, • B 53 . 6 C") 

Fine 0 . 020 0.27 0.32 64 3.55 5(, . 7 

Coarse 0.021 0.29 0 . 30 57 3.5] 54 .5 
s-" t·led. Fine 0 . 026 0.31 0.32 65 3 . 91 51.1 ."" 
~ 

Fi ne 0.023 0.30 0 . 30 61 2.2 51, . 8 

Coarse 0.025 0 . 33 0 . 28 56 3 . 2 56 . 0 
~ Ned . Fine 0 . 028 0.34 0 . 31 63 3.3 51. 3 '" Fine 0 . 026 0.35 0 . 29 60 3 . ] 52.7 

:;-2 
Coarse 0 . 029 0 . 35 0 . 25 52 3 . 37 52 .'1 

.... '" Med . Fine 0 . 032 0 . 38 0 . 26 60 2.65 52 .6 "-

Fine 0 . 03 1 0 . 36 0 . 23 58 2 . 29 53.5 

Discs 

Surface Rearinf, 

Finish Ratio 

Jlm Ra t\? "/. 

0 . 56 4L, • 5 

0 . 71 49 . 8 

0 . 65 (,k • 3 

0.59 48.7 

0.64 1,9.4 

0.63 47.7 

0 . 53 46 . 8 

0.62 1,6 . 9 

0.66 46.5 

0.54 48 . 0 

0.57 1,7 . 5 

0.62 1,5 . 8 



Table 9: Pin On Disc Wear Test Results For Contro l Castings (LubricaLed ~riction) 

Criteria Pin .ength of Coefficient Pin PLns Discs 

l~e igh t Pin Lost Of Temperature 

Loss (mm) Friction Rise Surface BeH Ling Surface Bearil!g 
• 

Casting (gr! C Fin lsh Rati.o 1'1.nisll I ~ atio 

Process Pili Ra tr> % pili Ra tp % 

Rheocast Followed 

By Pressure Die 0 . 0196 0.21 0 . 35 61, 3 . 31, 56 . 0 0.74 53.2 

Casting 0.05 

lf1 
~ ResulLH were the average of two values. 

T bl 10 p . 0 a e : in n Di sc Wear Test Results for Graphitic Casti",;>s (Lubr Lcated Fricri.onl 

LN30 - 3wtf. Gr. 0 . 0005 0.005 0 . 05 32 U. 44 i, 5 • B 0 . 28 i,4 . 8 

uno - qwtr. Gr. 0 . 0021 0.010 0.05 30 o . i,9 52 .9 0 . 59 i,8 . 9 

uno - 6wt% Gr . 0.0050 0 . 019 0 . 05 32 0.72 L,8 . 5 0 . 72 50 . 2 
-------

U130 7 !wtto Gr. 0.0102 0 . 047 0.1 Si, 1. 60 56 . 1 0.82 50.8 -
0 . 05 

Results were the average of two values. 



Table 11: Quan titative Analysis of Graphi te Content 

Sample Assumed Quanti ty Analysed Quantity Ave . EqUiv.!1 

of Graphite /, Area of Gr aphite %"'tGr ' ,1 
, 

3 /, Coarse Gr. 4 . 14 3 . 24 6.46 4 . 26 4 . 53 3.17 I 
I 

11130+37,Gr. 3%i1ed . Fine Gr . 3.94 4 . 92 5.96 2 . 92 4 .45 3.11 
I 

3'7. Fine Gr. 1. 86 3 . 24 4. 90 3 . 72 " , " 2 . G j . O O 
I 

4~ /~ Coarse Gr. 8 . 44 4.35 3 . 62 9 . 26 6 . 42 4 . 49 

Ui3 0 +4~ 1,G r . Q %i1ed.Fine Gr . 3. 9 8.74 6.2 6 8 . 96 6 . 97 4. 87 

4H Fine Gr. 3 . 9 3.56 11.54 6 . 40 6 . 35 4 . 45 
i 

6/0 Coarse Gr . 13.16 7 . 98 7 . 22 5 . 9 8 . 57 6. 0 

Lt'130+6%Gr . 61,Ned . Fine Cr . g . 14 6 . 32 4 . 68 9 . 02 7. 0 4 . 93 
I 6% Fine Gr . 10 . 24 9 . 26 3 . 94 6 . 46 7 . 48 5 . 23 
I 

7 ~ 7o Coarse Gr. 16.0 6 . 90 8 . 90 12.2 11 ~ 0 7 . 7 

11130+ 7 ~%Gr. 7~%Med . Fine Gr. 10.58 11. 54 10 . 82 8 .9 0 10 . 46 7 .3 2 

7 ~io Fine Cr . 9 . 02 13.33 8.14 10 . 95 10 . 36 7.25 
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CAPTSR SIX 

DISCUSSION 

6 . 1 Comoos it e Alloy Production 

The microstructur es in Figs . 38- 40 '"ere produced by casting 

f u lly liQuid LM30 alloy to p rovide control microstructures 

wh ich could be comoared with micro structures produced from the 

pa ~ti ally sol i d alloy . ?i g . 39 presents an alloy produced by 

gr a'li ty d ie casting , ?i g . 40 pres ents the sarr.e alloy solidifiec! 

by conventional pressure die cas tin and ?i g . 38 p r esents the 

same alloy when s and cast . The c!iffe r e nce in structure between 

these t h r ee fi gures refl ec ts the effect of cooling r a t e on the 

microstr ucture o f the cast ing alloy . Sand casting p r oduces a 

very slow cool i ng rate in comparison with die casti ng . This 

r esulted in coarse primary silicon po lyhe dra ( da rk g rey 

cuboidsl , coarse ne edles of _ - (Fe Si Al l, li ght g r ey f ace ted 

eu H 2 , and dar k g rey eutect i c silicon . Tr.e si l i con polyhed r a 

a r e l a r e in size and f e we r in qu an tity , see Figs . 38- dC a nd 

Ta ble 2 , becaus e slow solidifi ca tion encouraged fe'" nucl ee ti o n 

si tes . In comparison ,. the more r apid cooling inhere nt in 

gr a vity a nd p re ssure die c a sting encouraged many more nuclea tion 

sites resulting in finer structures so that the s ilicon 

polyhedra a re smaller i n siz e a nd greater in number . The 

mic ros t ructure in Fig . 41 r ep r esents the same a lloy processed by 

the rheocasting r oute followe d by pressure d i e c as ting . The 

rheoc a st structure exhibited coarse primary sili con polyhedra 

wh i ch a re compar abl e in siz e a nd quant ity to tho s e in the sand 

cas t structur e , see Table 2 . This is due to the very slow 

coolinv, r ate employed in the rheocas t process . Although a h:'.. , h 

shear r ate was employed ( 550 sec - 1 l in t he o rep a r at i o n of the 

r heocas t slurry it appears that the shear r ate has no influence 

on the size of primary silicon polyhedra in the hypereutectic 

alumi nium- silicon alloys . The a lloy processed by rheocasting 

a nd followed by pressure die casting exhibited a fine eutectic 

ma trix which is comparable to that produced by conventiona l 

pressure die casting . The modification of the eutectic matrix 

and the absence o f 0< complex is most likely due to the f as t 

cooling r a te which resulted from the rapid rate of heat 

extr action in the die during the process i ng of the alloy by th e 

pressure d ie c as ting r out e . This is because the eutectic matrix 



is similar to that produced by conventional pressure die casting, 

and the rheocast alloy was discharged from the rheocas ting unit 
• at about the eutectic temperature which is 574 C. So the forma -

tion of the eutectic phase occurred during the processing of the 

alloy by pressure die casting . 

In the aluminium- silicon binary system, the influence of 

rheocasting on structure is most readily demonstrated in the 

hypoeutectic alloys . In sand casting , the primary C>( phase 

solidifies dendri tically , as shown in Fig . 30 . However, '"hen the 

alloy is processed through the rheocaster the dendrites a r e 

broken by the shearing action of the rotor , as shown in Fig . 29 

and 31 . Consequently the r heocast structure contains round 

particles of primary phase and the size of these par ticles is a 

function of the shearing and cooling r ate s employed . 

In the hypereutectic alloys the 8 phase nucleates first and 

consists of silicon- rich polyhedra . Unde r the shearing action 

these polyhedra , unlike the K phase dendrites, do not break 

down (there is evidence that bre ak down occurred with some of 

these particles, as shown in Fig . 45, but on a very minor scale) . 

As a result the structure of LM30 alloy p r ocessed in the 

rheocaster and pressure die cast is that shown in Fig . 4 1. 

Hhen compared with the structure in Fig . 40 it can be seen 

that the polyhedr a are appreciably l a r ger in size and fewer 

in number. However, the eute ctic matrix is equally fine in 

bath cases . Compari so n between sand cast and rheocast 

structures shows that the size and the number of silicon 

polyhedra are similar in both structures . This is because 

of the slow cooling associated with sand casting Bnd the slow 

cooling r ate whilst the alloy is resident in the rheocasting 

unit . Chemical treatments to modify the eutectic or refine 

the p rimary- sil i con polyhedra, have not been used . The co arse 

sil i con polyhedr a obtained from process ing the alloy by the 

rheocasting rou te could be refined by the addit i on of phosphor 

copper . This practic e is used commercially to i mp r ove the 

me chanical properties of hypereutectic aluminium- s ili con a l loys . 

The microstructures of LM30 a lloy processed by the compocasting 

rout e , with diffe r ent graphite addi tion l e vel s, exhi bited 

1<;7 . / , 



coarser silicon po l yhedra in cOlnpa r ison wi th t he microstructure 

of the sawe al l oy pr oce s sed by the r heocas ting route . This 

coulc! be e xpla ined by the fact that the acdicion of i10t 3r aJlhi te 
to the semi - solid alloy slurry delayed the dischar~e of t,e 

alloy fror.. the c rucible i.e. givin8 the sil ic on polyhedra r.:ore 
t ime t o gr ow i n size , see Fi gs . 41- 4b and Tabl e 2 . The 

nicros t ructur es of gr aph i tic specimens s how an int i mate 

conta c t between t he gr aph i te pa r ticle and t he mat r ix , see ri ~ . SI , 

where the gr aph ite part ic l e is su r rounded by the nacrix a.loy . 

Even at a highe : ma3~ification , Fig . 92 , voids do not appear to 

be pr esent be t ween t he graphite particle and the matrix . The 

viscosity of t he ag i ta t ed slur r y has been observed to be at a 

mi:1imum when t he r e i s ttle greatest pr opor t i on of 1 iquid phase 

in the semi - sol i d a l loy ie . when less vo l ume f r action solid is 

present . The r efo r e lower viscosities we r e obta i ned in alloys 

which discha r ged 'r o~ the coepocasting unit a t higher 

temperatures . The reduction i n the te::rpe r atur e of the alloy 

slur r y res u lted i n an i ncrease in the slur ry ' s viscosity clue 

to t he i ncreas e in v o lume f r act ion so lid . It has a l so been 

obse rved t ha t a ny s lilht r edu c t ion i n sl urry t empe r ature 
belo~ 570 · C r esulted in a s ha r p i nc r ease in t he viscosity of 

the semi - solid slurry of the LMJO alloy . Th i s could be the 

result of the aluminium- silicon- copper pbase beginning co form 
at this tempe r atu r e(88) causing an increase in the volume 

fraction solid . Po r osity and shrinkage holes have been 

obse r ved in che t e st castings pr ocessed 

route followed by pres s ur e die casting . 
by t he compocasting 

The po r osity and 

sh r inkaHe ho l es appea r t o be concentrated i n t he disc , 
espec i a ll y at t he j unc t io n between the pins and disc . This 

can be seen in the X- ray photouraph l' i g . 31 . This mi.:;ht be 

attributed to t'.vo reasons ; 1) the lack of pressure provided 

to the casting fo r the r easons outlined befo r e a nd 2) the 

design of t he test casting itse l f . The long fr eezing r an6e 
in the hype r eute ctic a ll oy ac ce nuates the problem of 

shr inkage po r os ity in c as t i ngs. Double thick s ec tions take 

abou t twice as l ong t o solidify , so i t is ex t r emely important 

tha t consistent section thickness be ma int a ined . The disc 

in the t e st casting see Fig . 18 i s r e l a tive ly thick a nd provides 

th e largest volume in the t est casting so , f or th e r ea s o n 

men tioned ab ove , this part will sol i d ify l as t a nd act as ~ 

feeder Eor the r est of t he cest cascing which consists of 
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6 . 1. 1 

the four pins . The problem might be overcome by r~ducing 

the th i ckness of the disc . Specimens for mechanical and 

tri bolog ical tests wer e chosen from th e sound pa rts of t he 

casting ( this was decided by radiographic examination ) wh ich 

are the sp r ue and the section of the pin reu.ute f r om t he 

disc see Figs . 32 and 33 . The mic r ostructure investigation 

and the mechanical and tribo l og ical properties evaluation 

showed no difference between pin and sprue specimens f o r t he 

same c ascing . 

Investigation of Gra phite Rejection With Inert Ga s Shie l d i n~ 

It has been considered that one of the advantages of 

cospocasting by utilizing semi - solid slur ry , is the possibility 

of dispersing uncoated and untreated graphite pa r ticles in 

aluminium - silicon alloys without reject i on or agg lomeration . 

The literature describes the following different mechanisms 

f o r g r a phite d is persion and ret e ntion in t hese a l lo ys : 

( I) (17 ,92 ) d h .. 1 some sources reporte t at non - wettea part1c es 

are mechan i cal l y entrapped and prevented from 

agglomeration by the h i gh effective vi scosity of the 

semi - solid slurry due to the presence of primary solid 

particles , although none of these sources stated the 

minimum viscosity or V01U.,le fraction solid required t o 

cause such entrapment . 

(11) " d ' (37) . K . h (32) . h h' . ba 1a ana r1S nan reportee t at grap 1t1C 

aluminium - silicon alloys can be r emelted twice without 

significant loss of graphite particles . 
( Ill ) Some researchers (43 , 46 ,93 ) r e port ed t he inclusion of 

unc oated , but pretreated gr ap il ice i n fu l ly li quid 

aluminium- silicon all oys . The aim of the cre a t ment was 

t o rel ea se che adsorbed ga ses and c ont amin a tion fr om the 

graphite surface . Kr ishnan(43) added that the presence 

of a ll oying elements such as magnesium , si l icon , copper .. 

etc . i s essential for successful graphite d i spersion . 

(IV) Kahan(9 4 ) repor t ed chemica l reaction between graphite and 

a l um i nium at the graphite aluminium interface . This 
• r eaction begins at 500 C and i s time and tempe r a t ure 

depe nda n t , and the r eac t ion product is a l uminium 

ca r bide (A 14C3 ) . 
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(V) In this researc h progr amme the introduction or graphite 

under ine rt gas shielding r esulted in total r ejection 

of graphite particles from the melt even thoug h the 

volume f r actio n of primary soli~ pa rt icles was hig~er 

than when pr ocessing in ai r. The incorporation of 

graph ite with ai r contact r esulted in t o tal acce?tance . 

~!o lten aluminium alloys ox idise when in contact , .. itn air 

and the oxide layer build - u? on the melt surface is ti~e 

and tempe r atu r e dependent . The problem increases Kh en 

the alloy is subjeccec co a scirring act~O G . T~is 

inc r eases the amount o f aluminiun oxide in the melt (a s 

inclusions) which r esu lt s in inferior mechanical and 

tribological pr ope rt ies of the alloy . ~or this reason 

it might be expected that an inert gas cover would be 

benef icia l. Howeve r, none of t he r esea r che r s repartee 

the use of a gas cover and , in thi s r esearch , ine r t 

gas covers were shown not to be conducive t o g r aphite 

retention . It is interesting t o no te t ha t i n t he contr ol 

casting results, the r heocast/pressure diecast moterial 

was 5% l ower in str eng th than t hat pr oduced by 

conventio nal pre ssure d i ecast ing . 

( VI) 
(°5 ) Guo and Liang' r epor t ed the inclusion of u p to 20wt% 

of spectrally 'pur e graphite in an alumin ium- 8% si licon 

alloy in the sem i - solid state ,;ith vo l ume fraction solid 

of 0 . 4 - 0 , 6 The gra phite introduction was carried out 

under vacuum . 

Metcalfe~6 ) reported six possibl e type s of b ond in~ between 

graphite and aluminium matrix, these are : 

\ ) "iechonic a I bond . 

( 2 ) Dissolution anc! '.';12 t t i n8 bond . 
( 3 ) ,{e ac tion bone! 

(4 ) Exchan8e r eac tion bond . 

( 5 ) Oxide bo nd . 

(6 ) Mixed bond. 

In t he a luminium- silicon- gr aph ite system, a bond based upon 

pure mechanica l bonding i s unlikely to occur un l ess the volume 

fraction of primary so lid particles i s hig h enough (as in VI) 

to f orm a mesh which t r aps the graph ite pa rticles and prevents 
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them from flotation . 

A dissolution and we tting bond is unlikely to occur because 

che contact angle between aluoiniuo and 3rapl1ite is 

significan tl y ~ a rger t ban 90 · (36 , 97) . However , some 

researche r s , as in (III) , found chat molten aluUliniurr. - silicon 

alloys coul d wet g r aphite ya r n or graphite parcicles if 

precr eatme nt was used ~hich t hey conside red re~ove~ c O ~C 2minants 

froo the graph i te s~~face . 

A reaction an~ exchange r eaction bond may be present: on a s;aall 

scale resultins f r oe t he transfer of ato~s f r om one or both 
. I • • G' (46) .. cOnstltuents to tue re actlon slte . ·orbunov statea cnat 

this is the type of bond pr esent between a l um in ium - silicon 

alloys and graph i te , bu t offered no evidence to support his 

statement . Kahan (IV) r eported the format i on of aluminium 

carbide a t the graphite - aluminium interface during the 

prepa ration of Al - graphite fib re by a sol id - state diffusion 

I d I ! 1 f . . . I' . , (98 ) h P me t 10 . 'etc a e mentlonea ln 11S bOO" , t at epper et 

r eported a simila r finding . 

a1. 

Oxide bonds may be gene rated by we tting but could also include 

bonds where i ntermediate compouncs form at the int~rface . 

Traces of oxygen may fo r m an 

between matrix and part icle . 

intermediatA zone within a bond 
, (99 ) 
~etcalfe Ilas shown that 

bonding can be assumed to be between natural aluminiu~ oxide 

films and oxide films on the other constituents of the 

coeposite by solu t ion or react i on . 

(~uiglcy et al . t 7 ) stated that , in r\l - ~!e - fibre composit2s alloy ) 

interactions bec~een the Al 203 fibres anJ the matrix r esu l ted 

in ehe fo r ma cion of a "tg-rich re~io n a r ound t he fib r es . lle 

added chat e l ect ron diffraction a nd X-r ay diff r actometry 

indica t ed t hat che interaction zone consisted of MgA l 204 , MgO 

and fine polycrystalline ~- AI203' The formation of MgA l 204 
spine l was t he result of t he r eac tion between Mg whi ch was in 

solution , and both A1 20 3 fi br e and fine ~- A1203 ' whicll 

r es ulted from oxidation of the melt . However , th e oxide bonds 

mainly occ ur in composites containing oxide as a 

r el' nforceIIJent(lOO l. Th X . b I' . l e , - r ay m1.crop r o e ana YS1S C£lrr1.el 
oue for specimens of the cast ings which accepted g ra phiee (no 

1I'i 1 



ga s shie l ding ~as used ) sho~ed a concentra tion of magne sium 

and oxygen at t he boundary of the 6 raphice particle , see Fig . 93 . 

Thi s has been obse rved with every graph ite pa rticle ana l ysed . 

The a na ly sis also showed t hat the peak in the magnesiu~ 

concentration was always 2ccocpanie~ by a peak of ox ygen 

concentration , ~hich might indicate the presenc e of magnesium 

oxide or othe r compouncs c on t aining magne siuQ anc oxyge n 

simil a r t o t hose des cribed by Qu i gley et al . 

Fo r specimens which rejected ~ ra?hite (when i ne r t ~2S 5hie~c~~; 

was used) , tile heigh t of t he c oncentration peaks was 2UC~1 lass 

and t he r e did not appea r to be an association , as shc~n in 

Fig . 94 . However , g r aph ite dispersion obtained without gas 

sllielding could r esult from the form a tion of aluminium oxide 

films whic h wrap around the graphite partic l es . The interaction 

between th e AI Z03 and the ma trix could re sul t in the formation 

of a mag nes ium ric h r e~ ion a r oun d t he g ra ph ite pe rt i c le(9 7) 

which could act as a wetting agent between the g r aphite and 

its ma trix . This is mo r e likely and could be supported bv the 

X- ra y micropro be analysis results which showed mag nesium 

concentration on the boundary of the graphite pa rticles and 

by the findings of Krishnan and 8ad i a( Il ) who stated t hat t he 

gr aphitic aluminium- silicon alloys c ou l d be r emelted tw ice 

before significant l oss in graphit e occurred . This suggests 

that the bo nd is no t only based on me chanical ent r apme nt and / 

or mechanical interaction . 

The exchange r ea c t i on r eported by Ka han (9 4) is unlikely t o 

occur hecause the time for g r aphite to be in cont act with 

alum inium in the cOlnpocastin~ rnetho~ is no t suffic i ent to allow 

suc h a r eact ' on t o occur . 

Fractured surfaces examined using scanning Electron 

Microscopy (SEM) showed that fracture occurred in the 

gr aphite particles , see Fig . 95 , with no evidence of graphit e 

particl es having vacated the fr ac tured surface . Thi s mig ht 

indicate t he presence of bond i ng between the gra ph ite particles 

a nd the matrix which could be rel ated t o a mechanical bond 

based on en trapment of t he graphite particles in the ma trix 

and interact i on be tween the graphite particles and th e mat rix 

due to t ile irregularity in the graphite oartic l e shape , see 
Fig . 91 . 
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Fig . Q2 - Graphite Particle At HiE~ XagniEioation 
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6 . 2 

6 . 2 .1 

HO\;eve r, mec hanical bo nds based only on t~e ent r apment of the 

particles in t le matrix (not interaction) a r e considererl to 

be less desir a~le t han Dones involving interaction or a 

sil,nificant che2ical cont ribution because [~e 'r stren; t. is 
inferior (96 ) . 

Gra phite r ejection in Table 1B could be ex?la ined by the fact 

that at h i gh slurry carnpera cures (he amou nt of p rima ~ y soli~ 

particles is not sufficient to cause gra?hit2 e~tra?~~~c . I~ 

addition the time given to the alloy i~ the co=pocast'~J t:nit 

to be i!l contact '.,ith ai r \;as not enough to fo r m a su:ricien[ 

amount of oxide t o ~r ap around the gra?il ite particles anJ 

prevent their rejection from the melt . 

Although the compocasting unit was des i gned and roduced 

carefully to keep t he top layer of the mo lten Qetal undisturbed , 

to ~ini~ise t he ox i dation pr ocess , it ~as found in practicc 

th.t vortex fo r mation was inevitable due t o the ag itation 

pr ovided by the stirring r oto r . The stirring action was 

necessary to ensu re uniformity in t he gr aph ite dist r ibution . 

The castings produced exhibited a very uniform graphite 

dist ribut i on th r oubho~t t he casting, see Fig . 46 . The inclusion 

of graphite particl es r esults in an increase i~ tha viscosity 

ot the alloy slurry . This is due to the effective increase 

in the volume fraction solid in the alloy slurry . To 

maintain a Viscosity suitabl e for casting the volume fraction 

solid must be reduc ed , or al t e rnatively , t he shear rate must 

be inc r eased . 

CO ~ ; P OSITE ALLOY ~V~LCATICN 

~echanica l Pr operties 

In t he plane of t he microsection eu t ec tic silicon particles 

appear as elonga ted plates or lamel l ae appa rently disconnected 

f r om one another . Deep etching and scanning photomicrography 

revea ls that these silicon particles a r e interconnected into 

a sing le , coral - like silicon mesh, the sections of whic h 
appear in the plane of the photomicrog raph(25). There f or e 

the state of sil i con in th e micr os tructure is depend ant upon 

the number of silicon "corals " and t he degree of branchin ;·, of 
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5 ch co r als . Fi~e br anching resul~.· in ~e[[er ~echdnical 

propertie5 . Th is expl ains th~ sUjlerio ri ty in [Jec:1i.mical am: 

:r~ L lo~~c al ~ro?e ~ (ies of r~eocast s~eci~cns co~pare(! ~iL~ 

t !lose [or sani c~s: speci~~~s . 

1\1 ~hou~~ c:,e st:'-UCi:U:- t:S [? r eSSu : e (: i ec 2.sc s:)e:.:i:::e:-o.s e::::i:':'c.~~ 

very ~ine silicon Dolyhe~:3 and ii~e eu tectic silicon, 

coo~ar ~le ~itil ~ ~ose in c~c ~ravity ~ie case st =~ct~ r ~s, 

:e~uc~io~ ~n ~e~s~12 ? = ope r Li~s '~as obv~cus , S0e :~~!e ~ . 

inL~rlldl porosity 

~hen fu lly liG ui~ alloys are used . 

:he silicon polyhe~ ra are coarser in size and ajout 5u% less 

in numbe r (see Table 2) than in the convencionally l'ressu r e 

~ic CilSt struct~ r cs hilt t~~ ~lecha nical pr o~erties Rye alnlosc 

the sane . T:!(~~ stirr::"n3, action [:1C1Y hCi ve introdL1c~d oxide 

inclusi(!ns ~hic:, ~o IJ he ~ :~?ec:0~ to al!~ersaly af~ect the 

CO an eX[12nC DV tne red uced tur bu lence [1:1(: Si)lcIShin''',' t·/hen , . , 

semi - solid alloy slurry is illject~d into t~e di~ cavity , which 

results in less inter nal porosity am: hence better mechan ical 

and tribol 05 ical properties . The l owest IJechanical properties 

'He r e ODLai:led f .... ·::en the alloy r,..·us Sand cast . T:.is is cue LO t;~e 

[or~ation of a very coarse structur e . T!le SE~ ~ic roBraphs for 

f ractu red su r face s of ~r~phit ic ~~n (! ~ r aphite f r ea speci;nens , 

fi ,s . 96 -11 5 , showed a br ittle cle D va~e fracture . The effect of 

che slze , nunber and (Iistri bu ti on of primary silicon polyhedra 

on the fr<lctur.:> behaviour uf 1.~13(' is d(!!710nst rat ed in the d ' ecil"L 

control specimens , Figs . S6 - 99 . The l;loe numb"r of fine 11n(: '.·i'= 11 
"' 

l:i:;Lri Hl t~t~ pri::~<-! r) s: t Lean j)ol::i1l!l:r;1 (0;;l : IC..l~: 1.;1 rinl! cL· ".':) 

cr')c!,s , ' ... 'hi}st [:11..: co;:r!ip. !'cruccurps Fi ,s . l )2 - 115 indjcd .(")d 

~r 1 Lclc:'H!ss . .\It:10U:~:1 t>h.! r~e ocI1s~ strt..t:turl...: ~:·~!libj tl2l' 

primary silicon particles which are comparable in size and in 

number to those obtained with sand casting (see Fig s . 38 , 41 and 

Table 2) , the fractured surface for t he alloy produced by lIe 

rheocastinB route exhibited fine cl eava ge fracture compa r able 

co that obtained in pr essure die cast specimens . This is 

prolJably due to the refinement of the eutect i c matrix as i.I 

resulL of the r apid [<lte of heat extraction in the di e . 

Castings ",hich had the highes tensile properties (t; ravi.ty die! 

Fi.,;:; . 9G - 115 a r slrown in App'n.!lx 7 . 



Fig . 97 - S E\: 

Die 

Microg r aph for Gr aviey 

Case Fr ac eu r ed Surface 
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cast s pecimens) demons trated fine cl eavage fr actures. This 

ap pe a rs t o suggest t ha t t he presence of a l a r ge number of 

fine silicon polyhed r a arrests cr ack propagation. Casting s 

containing graphite particles s howed a deterioration in t ensile 

pr opertie s i n c omparis on with c as tings made unde r t he same 

condi tions without gra ph ite addi tion. Th is is due to the 

fact t ha t graph ite i s softe r and lower i n streng t h CIO l ) tha n 

t he mat rix and so its inclusion ha s the effect of introducing 

ca sting defec ts o r voids , whic h reduce t he e ffec t ive load 

~earing cross - sectional area. An increase i n graphite conte nt 

effectively i~cre2ses t he nUQbe r of voies and creates 

disc on tinu ities in (~e c as t struct~=e wt ic~ will i~evitably 

result in a deterioration in the tensile pr ope rties. I n 

addition g r aph ite part icles c r eate cavi ties of irregula r shape 

wit h smal l corner r adii which become h ~ghly stressed and act 
. (1 02) h" . ~ . T'-as stress ralsers w lcn encourage cr ac~ r o r~a tlon. ile 

coarse g r aph ite particles produce l arge voids which facilitate 

and accele rate crac k propaga tion and s o t he t ensile pr operties 

obta ined with coarse graphi te pa rticles were l owe r than thos e 

for med ium fine and fine gra phite particle sizes , s ee Table 4 

and Fig . 47. \'hilst it is true that gra phi te additions caused 

a deterio r a tion in t he tensile pr opert ies of t he ma trix all oy, a 

cl ose l ook at Tables 2-4 and Fig .5 0 will reveal that t he r e are 

other f actors c ontributing t o the de terioration in the t ensile 

prope rties . 

addit i on of 

streng th by 

the strength 

be concluded 

It is inte re sting t o no t e t ha t while a 3wt k 

g raphite to t he base alloy reduced the t ensi l e 

30%, dou bling the g raphite c ontent onl y r educ ed 

by a further 14%. From these fi gures it coul d 

t hat the addition of 3wt% graphite reduced the 

tensile streng th by 14% only . A c ontri buting fact or may be 

t he size of the silicon polyhedra. From Table 3 t he r heocast , 

pressure d i ec ast specimens showed a reduction in tensile 

strengt h by 19% in comparison with t he gravit y d i ecas t 

specimens; This is most like l y due t o t he increase in t he 

primary silicon particle size. So t he reduction in tens i le 

stre ng th f ound in the a ll oys c ont a ining g r aphite may be due 

to t he c omb ined effects of gra phite and lar ge silicon polyhedr a . 

The 5E~ stud ies of fracture surfaces of specimens which 

c ont a ined g r aph ite particles showed coarse cleavage crac ks 

Fi gs.1 04 -11 5 . The fract ur ed surface for t hese speci~ens showed 
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close similarity with sand cast fracture surfaces, Figs.1 02 -1 03, 

which exhibited brittle cleavage fractures . Fractured 

surfaces for graphi tic specimen~ appear to show that cleavae e 

cracks have been i ni ti a ted from t he g ra phi te particles. For 

cleavag e fractures it is known that crack growth alon8 certain 

crystallographic planes leads to a brittle cleavage fracture. 

This is indicated by smooth areas separa ted by cle avage steps 

and f ea thers, rive r mar kings and cleavage tongues which are 

a res u lt of crack pat~ disturbances by pha se boundaries and 

inclusions ( 103 ) . Observations ind icate ev i dence o f this type 

of fracture, see Fiss . 96 - l15. The bounda r y o f a prima r y 

silicon po lyhedra presents a stro ng barrie r against the 
( 104) 

p ropagation of cleavage cracks Hence, the g reater the 

number of silicon polyhedra the greater t he number of barriers 

against cr ack propagation and fracture. This results in the 

higher tensile prope rties found in gravity diecast s pecime ns. 

Conversely , the lower the number of silicon polyhedra the less 

are the barriers aga inst crack propagation and fracture which 

resu lts in the lower me chanica l properties for the rhe ocast 

specimens . For graphitic specimens when the strain is applied 

the voids containing graphite particles a re unable to deform 

without fracturing the matrix , and so cracks tend to be 

initiated from small (highly stressed ) radii within the v o ids. 

The crack grows in the eutectic phase and is unlikely to be 

terminated unless a primary particle or inclusion is 

encountered. The different g r aph ite particle sizes d i d no t 

show any significant effect on the fracture behaviour of ' I 
specimens, see Figs.lIO-lIS . In genera l, the SEH examination 

showed large ly brittle (cleavage) fracture for LH30 alloy 

(graph ite and non 5~aphitic ) which mi ght be due to the presence 

of a larg e quantity of silicon in the alloy. 

The difference in hardness values observed in control specimens 

could be attributed to the same factors which caused the 

difference in tensile strength values. 

The reduction in hardness with different g raphite additi o n 

levels and different graphite g rades showed trends similar to 

those for tens ile strength , see Fig . 48. This is due to t he 
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6 . 2.2 

- - - - - ---------------------

inclusion of soft material (graphite) in the aluminium- silicon 

matrix . The coarse graphite particle size produces large soft 

spots in the ma trix which results in a grea t er indented area 

in the Brinell hardness test and hence l ower hardness number. 

The reduction in ~echanical properties with increasing graphite 
. . b 1 . d' (43 , 36 ,1 05 ) content ~ s repartee y severa ~n epeneent sources . 

The loss i~ hardness is usually accompanied by a loss in tensile 

strengch and can be e::plained by t he ir being proportions of a 

comparatively safe, low strength material (graphite ) in the 

alloy see Fig . 49 . 

Tribological Properties 

6 . 2 . 2 . 1 Progr amme One : Pin On Disc Cr y ~ear Test 

The hypereutectic aluniniur::- silicon alloy uno exhibited [',; 0 

forms of wear under dry sliding conditions, these are oxic:ative 

and metallic wear . Oxidative wear , which occur r ed in the 

gr aphi tic specimens, can be recogn ised from the appearance of 

t he worn surface which exhibited a dark, smooth and non - metallic 

appearance and also from the shape and the size of the debris 

generated from . the rubbing action between the pin and t he steel 

disc . ~hilst metallic wear c:emonstrated by the control 

specimens, can be reco gnised by the deformation of the surface 

wh ich occurred on a fairly massive scale , because the yield 

streng th has been exceede d , and also from the size, shape and 

appearance of t he debris generated during the te st . 

Shivanath et al . (106) stated that the two wear r egimes can be 

recogn ised by their distinctive wear rates: 

Oxidat ive wear rate: 3 cm I cm 

Metallic wear rate: 3 cm / cm 

In the pin on disc dry wear test used in this research, ' the 

gr aphit ic and graphite free specimens exhibited the followin e 

wear features: 

Specimens ' with 3wt% graphite addition: oxidative wear 

r a te : 4. 3 x 10 7 cm 3/ cm 

Specimens with 4~wt% graphite 

r ate: 5.3 xli;? 
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Specimens W1th 6wt % gr aph ite addit i o n: oxidative wear 

r ate : 6 x 10
7 

c m3 / c m 

Specimens with 7twt % g r aphite addi tio n: oxidative wear 

rate: 6 . 3 x 10
7 

c m3 / c rn 

Contr o l specimens ( no g r aphite adde d ) : me t al lic wear 

rate: 6 . 3 x 10
7 

cm3 / cm 

From t he figures mentioned above it can b e seen that s pe cimen s 

containing 3wt% gr aphite exhibited an oxidacive wear of mild 

na ture, whilst non - gr apni tic specip.lens and specimens contain ing 

graph ite ad~itions in excess of 4~wt1 exhib ited wear rate of 

a mor e seve re natur e . 

The SE~ exan ina tion of t he wo r n surfaces of g ra ph ite - fr ee 

specime n s ( cont r o l c astings ) , Fi g s . 116 - 123 , showed t ha t large 

pa t ches of plastic f l ow a ccompan i e d by crack ing and s palling 

of t he surface of t he wear pin had occur ed t o fo r m metallic 

debris . The wear debris generated from thes e specime ns was 

large in size and had a me t a llic appearance , see Fi&s.1 24 and 

125 . Wh ilst the debris ge ner a ted from gr aph itic specimens was 

s mal l e r in size and darker in colour ( non-met a llic appea r a nce ) 

which ind icated an oxida tive wear reg i me , see Figs .1 26 a nd 12 7 . 

SEM mi~rographs for graphitic specimens , Fig s . 12 G- 13 9 , showed 

worn surfaces of a d iffe r e nt nature . The worn s u r face which 

appears in the mic r ogr aph has been covered with dark, smooth 

areas. Cracks and plastic f l ow patche s we re muc h r educed in 

comparison with contro l specimens . Specimens c ont a ining 3w t % 

g ra phi te ex·hibi ted less scoring ma r ks and fine grooves in 

compa rison with specimens containing g r aphite in exce ss of 

3wt%. This might indicate that 3wti. graphite provides the 

re quired amount o f lub r ication with a minimum i mpai r ment of 

alloy strength . Specimens with g ra phi te addition in excess 

of 3wt 7. s howed scoring ma r k s and g rooves of a more severe 

nature , s ee Fig s.1 30 - 13 9 . Thi s could occur because the 

incre ased g r aph ite conte nt r educes t he effective cross sectional 

a rea and hence t here is an increase in the bearing pressure 

applied resulting in a faster break down and replenishment of 

the oxide l ayer formed o n the wear pin aspersities , f o llowed 

by fr a cture a nd compaction into v al leys on t he wear pi n t es t 

Fi gs . 11 8 - 1 23 and 1 28 - 139 a r e shown in Appe nd ix 7 . 
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~i~ . 117 - SEM Micro~ r apll for Gra vity Die Cast 

~o r n Su r face (D ry Friction) 
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Fig . 124 - ~e b ris of the Case Alloy (~o Gr aphite Addition ) 

is Shown to be Main ly Laminates 

(D r y ?riccion ) x50 

Fi~ . 125 - Same Debris at Highe r Kagnifica tion 
(Dr y Friction) x500 
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pig . 127 - Same Deb ris at HiJ he r :;a.::;_ ification 

(8[y Friction) x5GG 
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surface . In contrast wi t h t he 3wt% g r aphi te specimens, t he 

oxide l ayer inc r eases in t hickness a nd becomes smoother so 

t h at the wear rate remains ral a tively 10w ( 106) . This situa tio n 

may exist wit~ t he 3wt% g raph ite add i ti o n whic h r esulted in a 

substant i al r eduction in t he pin weight l oss , see Table 8 

a~d Fig.53 . It is like ly that t here is an extension of 

o:,ida tive wear , aide d by lub r ication from simultane ous 

c ompaction and s mearing o f g raphite particles ove r t he we a r 

surfaces . 

There is evidence of graphite particles being pulled out fro~ 

the ffiat ~ ix by the rUDb i~g action . This was observe d in 

s pecimens containing high g ra phite addit i on levels (6wt 7. a nd 

7 ~ wt%) , see Figs.13Z and 134. This migh t suggest that with 

high levels of g ra phite add ition , the matrix is no l o nge r 

capable of ho l ding t he g raphite pa rticles a nd / o r no long er 

capable of supporting the load . 

From t he quantitative a nalysis of graphite content 

(procedure 5 . 3), t he eff ect of g raph ite addition l evel on 

t he reduction in matrix area of t he wear pin surface i n the 

pin on dis c wear t est is demonstrated in Ta ble 1 2 . 

Table ~2 shows that t he graphite ad d ition effectively re duced 

t he cross sectional a r ea of the matrix r esulting in a signi f ic a nt 

i nc r ease in the l oad applied and hence the bearing 

pr essure . Al t hou gh the addition of 3w t % g ra phite r esul t ed 

in a 5/, increase in the l oad app lied , specimens c on t aini ng such 

a g r aph ite addition l evel maintained a low wear rate . This 

appears to suggest th a t the 3wt% g r aphite provided the 

nec essa r y lubricatio n without impairing t he al loy s tr e ng t h. 

Whil st the highe r g r aph ite add ition l eve ls r educed the l oad 

carrying capacity by r educing t he effec tive cross sectional 

area which r esu lted in a sig ni f ic a nt increase (7 - 1 2%) in the 

load applied . 

It has been obse rved t ha t t he h ype reute ctic aluminium - silicon 

alloy (L~30) behaved in a r ela tively ductile manner during t he 

pin on disc wear test , unlike its behaviour under tensi l e 

cond ition . Th is can be demonstra t ed by the plastic f l ow pa t ches 
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and ploughed tracks wh ich we re observed in g r aphitic a nd 

graphite free specimens . 

The mild, ste ad y and uniforc wear r a tes obtaine d with 

gra ph itic a nd c ontro l castings specimens suggests that the 

loa d of 12 . 6kg ( 12 6N) , which produced a bearing pressure of 

O. 4 kg/ mm 2 ( 4 t-< / mm 2 ) , and even c he higher load s resul cing fr om 

t he reduct ion in t he e ffe ctive cross s e c tion a r ea ( c ue t o 

t he g r aph ite a dc ition ) , are bel ow t he tr ansition l oad f o r t he 

L~3 0 all oy which c on t a ins 16 - 1 8% s i licon . Sh i va nat h e t al. ( 23 . 

stated t ha t t he t r ansi tion loae ( the load a t wh ic h t he a ll oy 

s hows a transicion fr om a mil d we ar re g i me t o a s eve r e one ) 

f o r all o ys c ontain i ng 16-1 8% s i l ic on is 1 8kg ( 180~ ) . Ox i da t ive 

h ' d · b ... h . Id ( 1 06 - 1 08) wear as Dee n reporte to e assoc1atea W1C m1 wear . 

These observa tions suggest t hat t h ere is an optimum graphit e 

add ition t o maximise l o a d carry ing capacity whi lst mainta ining 

a mil d we ar cha racte ri s tic. Howe ve r, t he pr e s e nce o f g ra ph ite 

particles of d ifferent a dd itio n l e vels allows the material t o 

exhibit a re duced coefficient of friction when mated with a 

hardened carbon-steel diSC, see Fig . 57. This is due to the 

lubrication effect provided by the solid g r a phite particles at 

the wear interface . However, with graphite contents in exces s 

of 3wt%, althoug h the coefficie nt o f friction remained low, 

t he c ompo sites exh i b ited a tr a nsition to a severe rate o f 

wear. SE~ microphot orgaphs, Fig s . 11 6 - 13 9 , o f wo rn pin 

surfaces show that the mil d wear rate is characterized by wear 

taking place on fla t te ned asperit i es, which adds further 

evidence t o the oxidative wear hypothesis . There are no 

indications of larg e fra gments of ma terial having been t o rn 

off by abrasive or adhesive wear mechanisms . At higher 

mag nifications, there is no evidence of crack formations on 

t he worn surfa ces of graphitic specimens . This is attribut e d 

to a reduction in adhesive wear caused by the lubricatio n 

action of gr a ph ite paricles in the wear interfa ce . Also t he 

presence of g raphite particles has r e sulted in a consider a ble 

reduction in the size of t he plastic flow patches . This is 

probably because graphite is inhibiting direct contact, and 

hence adhesion, between the pin and the disc . 

SEM microphotog raphs indicate t hat there is little difference 

be t we en t he worn surfa c es o f all oy s wh ich c ont a in g r aph i te and 
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those that do not for the wear test conditions ( procedure 5 . 2 . 3 ) . 

This indicates t hat there is also little difference between 

wear ~echanisms and that wear essentially takes place by a 

process of comparatively larg e scale fracture, although the 

shape and the size of debris are significantly diffe re n t, 

see Fig s . l24 and 126 . This is probably because , with g raphit ic 

speci~ens , material can be fractured easily cUG cracks can be 

developed from the voids in c he material whic h accommo dated 

graph ite and so t he debris generated is smaller . The 

rel atively h i gher ductility of the ma terial without g ra ph ite 

t 2nos to inhi Di t fractu~e and so a hig her stress is re ~u ire d 

t o f=acture plateS o~ material which have be~ome adherec t o the 

disc . The refore t he f=iction f o rce will tend to be I .• 11 1.gne r. 

This might explain t he h i gher values of coefficient of friction 

obta~ned from control s pecimens. In gene r al , in pin on disc 

wear testing, the r educed coefficient of friction exhib ite d by 

the specimens with graph ite is usually accompa n ied by a 

reduced steady state running temperature. This is a direct 

result of a reduced energy in pu t being require d to overcome 

f r iction force and so less ener gy is dissipated in the form of 

heat. 

Surface t exture measurements indicate that graphite inclusions 

r esult in r educed surface damage to both pins and discs . This 

could be a useful property in reducing scuffing problems on 

mating components run with aluminium- silicon bearing material . 

Under mild wear conditions , specimens containing g raphite 

particles, this is probably due to an increase in the flattening 

of asperities resulting from smearing of graphite particles . 

Under severe wear conditions, non - g r aphitic specimens, this 

is due to more favourable shear and fracture conditions which 

results in a reduced depth of fract ur e . This has been 

confirmed by other researchers(1 08 ,109,11 0l , who reported that 

the improved tr ibo l ogical properties of aluminium - silicon alloys 

containing g raphite are partly due to reduced sub - surface 

damage. The presence of g raphite in a hypereutectic aluminium

silicon alloy (Ui30l resulted in significan t i l:1p rovement in t he 

tribolog ical proper ties under dry wear conditions , at certain 

graphite addition l evels, see Table 13. 
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Howeve r, it is also believed that t he benefits of graphite as 

a solid lubricant in t he hype reutec tic aluminium-silicon 

al l oy LS30 are not fully exp l o ited for the following r easons : 

(1) It was observed t hat during the tests graphite was r emoved 

continuously from t he we a r interface by t he rubbin~ action 

be tween t he pin and the disc . This prevented the 

formation of a continuous g r aphi te l ayer which would have 

prevented direct contact bet.ee~ the tNo ma ted surfaces 

and resulted i n better t=ibological p r operties . 

( 2 ) The lowest coeff icient of friction value 10 . 23 ) obtained , 

see Table 3 is r elatively oi3h in c ompa rison wit h the 

coefficient of dry 

r eported to be 0 . 1 

friccion for oure gr aohite which is . _. (112) 
under heavy loading con~itions 

Barwell ( 113 ) reported that the adsorp tion of water or other 

mo lecu les on to the surface of g raphite is responsible for its 

lubrication action . Another source Cl14 ) re ported that 

graphi te's self - lubricating properties are influenced by water 

vapour and added that if the water vapour is not present , heavy 

wear results . 

Indeed, the results obtained from the lubricated test 

(p rocedure 5.2.4 ) showed that the one drop o f oil of size 
-2 

0.5 x 10 ml. provided to the pin-disc wear inte rface at the 

be ginning of t he test resulted in a massive c hange in the 

tribological properties of the g ra phitic specimens , see Table I D, 

and the i mprovements in tribological properties over those 

obtained with dry friction for the same g raphite addition 

levels are listed in Table 14. This suggests that the presence 

of a -wet media such as water va pour or oi l acts as a graphite 

binder and allows . the formation of a cont i nuous g raphite layer 

which prevented a direct contact between the mated surfaces 

and resulted in better tribolog ical properties, even under very 

poor lubrication conditions . This will be a very useful 

property especially in the automobile engine when lub rication 

conditions are scarce or intermitent and at cold start . Under 

poor lubrication conditions , specimens containing 3wt% gra ph ite 

showed superiority over t hose of higher graphite addition 

levels . This confirms that the 3wt% graphite addition provides 

the necessary lubrication and produces better tr ibological 

p r ope rties in both dry and poorly lubricated friction. Higher 
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graphite addition levels i mpa ired t he alloy screneth and 

resulted in lower tribo logical prope r ties . 
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Tab l e 12 : The Effect of Gr aph ite Add it i on Leve l on t he 

Increase i n Loac App lied 

Gr aph ite 

Conten t % 

c 

(, 

7~ 

Gr aph ite 

Ar ea If;! 

C 

4 . 3 
, , 
0 . ..,. 

8 . 6 

10 . 7 

Effective Cr os s 

Sect ion Ar ea 

lC!J;; 

95 . 71.0 

93 . 5 ~·; 

91 . [,. ,; 

e 9 . 3i; 

182 

Load 

Applied 

( l'i ) 

13 2 

De 
141 

Ee ar i ng 
Pressu r e 

AppliedCl/ mrn 2 ) 

4 .C 
!. . 2 

4 . 5 



Table 13 : The Effect of Gra phite Addition on the Tri bol ogic a l 

Pr operties of LM30 Alloy 

~ % Improvement 

Gr aphite Pin Coefficient Pin Pin Disc 

Adc i t i on ~v'Je i gr. t of Te !'i1p e~ a tu :-e Surf ac e Sur:acc 

Le v e l Loss rrict i o n Ris e ro • • , 
r ln ~ Su. Fi:--!ish 

3\o.l t ~~ 31 /~ S ·!~ 5% 101 ?Q;'1 - - /~ 

4~wt lQ 2 1 ., 
- " 11 % 9% 3U 3 C i~ 

r C"' 
O\·;t io 1 O'i~ 1 7 ~~ ll% 31% 33 '1= 

7 ~i..Jt 7~ No 291. 15% 4 o 'i. 3 5 /~ 

I mprove ment 
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Tab l e 14 : The Ef fec t of Poo r Lubri ca tion Cond itions on 

Tr i bo l ogical Pr opert ies 

~ia 7. I Glp r ove me n t 

Gr aphi t e Pin Coe ff ic i en t Pin Pin Disc 
Aecii t ion hie i gnt of Te:npe !: atur e Sur face Sur face 

Level Loss Fr i ction Rise Fi:l.is h Finis h 

.3wt: 7: 98% 8 4/~ 50% 90% 56 1" 

L.~w t: % 91% 84% 51 /. 85% 5% 

no 
6-"t% 81% 83 % 47% 78% im 'me n t 

no 
7~wt% 67% 60% 5% 42% impr ovement 
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C~APTE:l SEVEN 

"'he follo wing conclusio:1s can be dr a ',m from t~e preser.: 

i::"'2 s tiga tion : 

1 Processir.g variables . 

- ~~eocasti~g variables : 

(i) ?C ~ t~e leve_s of shea ~ rate investiga~ed~ che s~earing 

ac ion of the r otor had no influence on the structure of either 

the primary sil i con polyhec.ra or the eutect i c mat r ix . :iO',.Je ve r , 

increasing the shea r rate reduced the slurry viscosity . 

(ii) Viscosity can be altered either by changi ng the shear rate 

or the ini tial vo _ ume frac tion solid. ~owever , to obtain a 

slur ry '..Tith a vi scosity suitable fo r casting a t the maximum 

a tta ina ble shea r rate of 550 sec- 1, a volume fraction solid 

of 0 . 15 could no t be exceeded . 

- Compocasting vari abl es : 

(i) To ensur e good raphite dist r ibution thr oughout the casting = 
6 - 1 shear rate in excess of 39 sec must be employ~d and the 

co~posite slurry should be agitated for at l east five minutes . 

(ii) For a constan t initial vol~~e f r action solid of 0 . 075 , 
_ - 1 

and a shear rate of 5)0 sec it wa s poss i ble to pr oduce a 

castable slurry containing up to a maximum of 7~',.Jt% (14tvo . %) 
of raphite part i cles . 

- Pressure diec s ti ng v.riables . 

In orde r to p r~duce n acceptable castin using an allay 

con tainin up to 7! wt% ;r nphite it was necess3ry to use a die 
• 

pr eheat temperatur e of 300 C, injection speed of 121 ft/s ec 

37 ) m/se c and minimum a te dimensions 0:' 20 x5 mm . These 

parameter s , establ i shed by experimentation, produced ca stings 

whi ch exhibit ed very goo d confo r mi ty to the di e cavity i n 

addition t o r educed shrinkage porosi t y . 

- Shr inka e . 

Shri nkage wa s obs erved to be p r esen t i n castings pr oduced by : 

convent i onal pressure di ecas ting ; rheo casting f ollowed by 

pressure diecas ting ; and compo cas t i ng f ol lowed by pr essure 

diec8stin . Whe r eas cl aims are made in the literature that 



processing by rheocasting reduces shrinkage significant 

reduction could not be expected in this research because the 

initial vol~~e fraction solid did not exceed 0 . 075 . 

2 . The LH30 alloy should be degassed for at 1 eas t 10 minutes to 

release dissolved hydrogen . Degassing the melt before graphite 

injection did not influence g raphite acceptance . However , 

g raphite rejection was found to occur if a nitrogen gas shield 

was employed during agitation and injection of the g r appite . 

It would appear from observation and electron probe mic r oanalysis 

results that the presence of oxide inclusions , for~ed by 

agitation of the melt in air , is necessary for successful 

retention of the graphite particles . 

3 • Cooling rate has a s i gnificant effect on the structure and 

p r operties of the graphit e - free LH30 alloy . Fast cooling rates, 

provided by gravity and pressure diecasting , refined the primary 

sil ic on and modified the eutectic thus providi ng improved 

mechanical properties in comparison with those obtained by 

sand casting . 

Processing the g r aphite - free 11130 alloy by rheoca sting followed 

by pressure diecasting p r oduced a structure in which the 

silicon polyhedra were similar in size and number to those 

obtained by sand casting the alloy . However , the eutectic was 

modified to the same extent as the pressure diecast control 

spec i mens . The mechanical properties , hardness and tens il e 

strength , of the rheocast material were not found to be 

significantly different to those obtained by conventional 

pressure diecasting . 

4 . The addi tion of g raphi te to t h e 11130 <' lloy impa ired the 

mechanical p rope rtie s of the alloy as measured by hardness and 

tensile testing . It was observed that there was a significant 

reduction in the number of silicon polyhedra present in the 

specimens containing graphite , at all the graphi te addition 

levels. However, it is the effect of increasing the gr aphite 

addition level which has the more significant effect on 

mechanical property impairment. 

The addit ion of graphite at the 3wt% addition level was found, 

on average , to reduce the tensile strength of the alloy by 

approximately 30% compared with the rheocast and pressure diecast 
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control specimens. An addi tion of 7~wt% graphi te '.-Ias found , 

on a verage , to reduce the tensile strength of the alloy by 

approximately 47 % compared with the control specimens . 

The results also show. that addition of the coarse g r ade of 

graphite particles have the g reatest effect on the reduction 

in tensile strength. On ave r age. the tensile strength was 

approximately 13% lower with co arse particle adcitions than for 

fine particle additions . 

i.-;bilst the hardness of the alloy decreased significantly wi th 

the increaee in graphite addition level, the effect of particls 

g r adi ng was not found to be significant . 

5 . At low addi tion level s (3wt %) g raphi te improved the 'dear 

resistance of t h e alloy, compared with the gr aphite - free contro l 

specimens produced by rheocasting followed by pressure die 

casting . However , a t hi gher addition levels (6wt% and 7~wt% ) 

the wear r es i stance is no bette r than the g r aphite-free control 

specimens . Al t hough the wear test results appea r to show that 

the Hear r esistance is better with the coarse gr aphite grades 

the improvement in wea r r a te could not be cl a imed to be signifi- ' 

cant. As a lready noted the coarse graphite g rade causes the 

g re atest reduction in tensile strength . 

Although the hi ghe r g r aphite additi6n levels mi ght be expec ted 

to reduce friction and improve wear resistance these adva ntages 

a re outHeighed by their effect on the actual , a s opposed to 

apparent , be a ring pressure . 

the cross sectional a rea of 

The presence of graphite reduce s 

the matrix be a ring the lo ad . For 

a 7 ~l-It% additi on of g r aphit e the load beari ng c ro ss sectional 

area of the matrix is reduced by approximately 11 %. The 

bearing pressure \;as effectively increased from 4 . 0 to 4 . 5 N/ mm
2 

l-lith a consequent increase i n t he Hear r ate . 

6 . Although comprehensive experiments were not conducted using 

lubricated wear tests ,. the small number of experiments conducted 

using marg inal lubrication indicated that a significant 

improvement in tribolog ical char acteri stics may be obta ined by 

using lubrication with the specimens containing g raphite. 
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CHAPTER EIGHT 

SUGG~STI ON S FOR FU~THER WOR~ 

- The combination of compocasting t o dispers~ untreated graphite 

particles and pressure die c asting to produc e component s made 

fr om semi - solid slurries offers a number of a r eas for furthe r 

development . 

- A c o~pocas ti~g unit c ou l d be devel oped to provide a c o~tinuous 

s upp l y of partially solie , conpos~te alloy. A desi6n siu.ilar 

t o t he continuous rhe oc asting unit (82) would provide a 

concinuQus su?ply of se~i - solid slurry and minimize the 

possi~ility of Qxice f ormation because the mixing action occurs 

in a closed tube, it ,,:auld also eli:ninate t he poss i bility of 

particle ( eg . g raphite) se8 regation assoc i ated with high speeo 

s t irring r o t o rs due to the difie re~ce in density between the 

part icles and the molte n alloy . In addi~ion , a high volume 

fract i on solid , up t o O.80,can be obtained . Th i s is a c hieved 

by r eplacing t he s t irring mechanism by a system of stationary 

baffles through which the semi - sol i d a ll oy is forced to pass 

by mechanical pr essure . However, some modifications a r e 

necess a r y t o enable suc h a device to be sui t able for industria l 

production. The device could be developed to allow composite 

ma terials to be produced . This coul d be achieved by forcing 

non - metal partic les into the alloy slurry thr ough a hole in t he 

body of t he dev ice. The output from this de vice cuuld be used 

to form a continuous bar fo r thixocasting o r a valve could be 

inc orpo r a t ed t o allow the out put to be controlled in a manner 

whicll woul d e n ab le d iscontinuous material t o be produced for 

i mmediate pressur e die casting o r o t he r casting pr ocesses . The 

c ompocasting proces s variables such as shea r r a t e , volume 

fracti on solid and cooling r ate could be contro ll ed au t o 

matically with t he use of a microprocessor . Automation of 

slur r y handling afte r exit from the production unit c oul d be 

achieved with a mechanical hand ling devic e t o t r ansfer composite 

slurry t o the shot chamber of t he pr essur e die casting machine. 

- El ec trodes f o r spark erosion machining a r e usually made of 

copper or g raphite. Gra phite e lectr odes are cheape r and u sed 

fo r fast cutting , whil st copper electrodes are expensive so 
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h d " f' f"" ( 115 ) t ey a r e use ~or ~ne ~n~s n ~ng . Electrodes wh ich c oul d 

offer the advantages of both copper and gr aphite simultaneously 

are not available commercia lly . Graphi tic aluminium- silicon 

a ll oy (L~3 0) containin~ 7~wt% gra phite has been tried as an 

electrode material in spar~ e~osion cutting tests and it was 

found that such a combination has very good potentia l. not,;eve l: , 

further investigation is r eqci red to ensure the possibility 

of lisin: g r aph i:ic L~ 3 0 electrodes fo r s park errosion mac h ini~s 

COiT.merc ia lly . 

- During tne proc.uction of gra phitic L~·:3 C alloy , t::e r heoc ast 

str ucture exhib ited very coarse pr~~ary 

whic h resulted in l ower mechanical .ro pe rties in co~paris o n 

with gravity die casting which pr ociuc2d very fine silicon 

polyhed r a (the eutectic matr ix was fine in bot~ cases) . 

However , to obta in bette r mechanical properties , better surface 

finish and longer t ool life, t he primary silicon polyhed r a 

must be r efined . The r efinecent can be achieved in two ways: 

(1) By controll ing t he cooling rate during solidification which 

can be achieved by incorporating a water cooling system in 

the compocasting unit. 

(2) The use of refining agent such as phosphor - copper which 

is used commercially to treat t he mel ts of hypereutectic 

alumin i um - silicon a ll oys . 

However , investigation is required t o establish the relation 

between primary silicon particle size and mechanical pr oper ties 

fo r the compocast material. 

- LM30 alloy is heat-treatable due to the pr esence of be twe en 4 

and 5% copper in the alloy . The tensile properties of the 

alloy may be increased significantly by solution and 

precipitation heat treatment , in which the dete rio ration in 

mechanical properties due to the presence of graphite in t he 

alloy may be offset . However, it is interesting t o note that 

BS1490:1970 specified the alloy only in the as - cast and stress 

relieved conditions . 
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- The incorporation of Jvl t b g r aphite into UIJ O showed i mproveme nt 

in t he tri bo l og ical properties an~ Qinimum de terioration in t he 

mechanical properties howeve r, at this stage it wou l d bec ome 

necessary to conduct an i~ve sti3a tion i n to t he economies of 

t he production of c omponents by t his production r oute . A nee~ 

may arise fer c ompr ooise be tween t he advantages an~ di s 

advantages of cost versus performan ce . Alternativel y , there 

~a7 be a9~ lic2tions where t he prope=ries o f "c omposites o£~~~ 

a unique soluc io~ co ?r ohle~s s uc h as the sei zure in a l uninium 

silicon alloy eng ines a t poo r lubrica tion c ondit i ons an~ in t~e 

i oe d ind~s~ry ~he r e liquid lubricants ar e no t ~e sir a b le . 

If suitable, c onmercial a?plic a cions can be i cen ti:iec , 

pr oto ty pes of co~ponents mad e fr om t he c ooposite alloy coul ~ 

be pr oduced and t he ir perfo r ~ance evaluated i n t heir ~o r ~ in g 

environrr:ents . 

- In this r e search , gra phite ad d ition levels of 3 , 4! , 6 and 7~wt% 

were inc orporated in the LH30 a ll oy . Their mechanical a nd 

tribo log ic a l pro pe rties were evaluated and it was found t hat 

t he addi t ion of 3wt% offered the best tribo log ieal properties 

with minimum deterioration in mechanical properties . However , 

t he re is still a gap between 0 and 3wt% which has not been 

investigated . For example , t he add ition of 2wt% graphite 

migh t offer i mpr oved tribo lo3ieal properties with better 

mec ltanical properties . However, gra?h ite addition levels 

below 3wt% r equ i re investi3a tions to optimise the me chanic a l 

and tribo l ogica l properties of g raphitic hypereuteetie 

aluminium- si licon al l oy L~30 . 
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A?PE,WIX ONE 

DESI GN AND MANUFACTURE OF EQUIP~ENT USED I ~ COMPOCASTI NG 

( I ) The Compoc a stin~ Un it (See Parts List Fig . 20A) 

(1) er ame \~ork: 

This was made as a welded structure, ma i nly from 

30nm x 30mm x 3mm angle iron. h'hile t he crucible holder 

rraule was iliEde of 20rniii x 20n:n x 3mm ang l e iron. The base 

of t he compocastins u~ it was covered with cild steel 

shee t 0 " 2r:1IT! t h ickness with a ho l e of 100mrn d i ar.1ete r h 

t he centr e t o all ow the slurry t o fl ow down co t ~e lau~cier . 

The structure d i me nsions are: 

445 x ~l C x 362mrn . 

(2) Vari ab le Speed Drive : 

Different r o t or speeds were re quired t o obtain d ifferen t 

shear rates . A hydraul ic va ri ab l e speed dr ive coupled to 

an induction r.1oto r a ll owed speed variation fr om 0 to 

l sOO r pm . in both clockwise and ant i-clockwise directions. 

The hydraulic s peed drive used was a Stone Platt Va r- Spe 

t ype 11 - 12 /000 . 

( 3) El ectric Mor or: 

The induction mo tor used with t he hydr aulic speed drive 

was a GEC , 3 phase , 4lsv , 0 .7s kw unit. 

(4) Bearing Housing Assembly : 

The bearing housing was ma nufac tured from cast iron and 

was mounted on a dovetail slide to a ll ow r otor he i gh t 

adjustment. The dove tail slide was made of mild s t ee l. 

The bearing housing was de signed to incorporate a holl ow 

drive shaft [ 5 1 , which allowed the push rod [ 8 ] t o pass 

through , to force the g r a phi te inj ec tor p is t on [ 7 I dmvn. 

Bearings were of t he angular contact t ype installed in a 

bac k-to- back mode . The cavity around t he drive shaft ..-as 

filled wi t h gr e ase and se aled from both sides. The bearing 

housin8 assem~ly is shown in Fig . 2s. 
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(5) The Rotor Drive Shaft : 

The rotor drive shaft was manufac t u r ed from mil d s t eel . 

(6) The Roto r : 

The r otor ~as manufac t ured from a ho ll ow mi l d ste~l bar 

fo r gra ph ite stor age and t o accommoda t e t he gr aphi te 

injector screw , eetail [ 9 ] 

( 7 ) Gra phite Inj ector Piston: 

This was ma~ufactur2d of mild steel and was de sig ned t o 

force gra phite fr om ~ithin t he r oto r into the melt . 

(S) Push - Rod : 

This ~as manufact~red of mild steel an~ ~as designed t o 

make the gr aphite injection screw as short as poss i ble . 

( 9 ) Graphite Inj ection Screw : 

This was operated t o apply force to t he push - r od and 

gr aphi te injector piston. A phosphor - bronze thrust 

bearing was incorpo r a te d where contact t ook pl ace with 

t he push- rod to allow smoot h movement. 

( 10 ) Cr ucib l e : 

This was ;nanufactur ed by Refractory Houlding a nd 

Casting Ltd. , Kegworth , Derby . The ma teria l fr om whic h 

t he crucible was ma de was J / A Mullite . The cruci ble 

consisted of two zones wit h a n overa ll max i mum capacity 

of 2 kg. of aluminium. 

(11) The Fork Arrangement : 

(12 ) 

The f ork was manufactured of mild steel. The o ther e nd 

of the fork was pr ov i ded with a 21 b I l kg) counterba l anc e 

t o sup port t he plug during the preparation of t he 

compos ite slurry, see Fig. 24. The swivel j oint shown 
• on t he same figure was desiGned t o all ow 360 fork r o t ation. 

The Plug: 
• The plug was ma nufactured of cast iron with 3 t ape r 

(Fig . 23) t o provide good 10c king . Cast iron has much less 

t herma l expansion t han steel so t hat when it expands it 
will not cr ac k the crucibl e a t t he c on t act points . 
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(13) Semi - Solid Zone Heater : 

Eeating was by electrical resistance wire windings wound 

on a sillimanite tube . The resistance ~ire was Kanthal 

~i~rothal of d ia~eter O. 70rnm givin~ a r esistance of 

3 . 51 ohms /metre . The wire leng th re quired was calculated 

from Ohms Law : 
I = V . R 

whe r e : V = [ ~ e voltage used . 

I : he current availeble f r om the main sup?ly. 

~ = t~e resistanc e . 

A 24C a .c. si~gle ~h2se Uia ins sup p y ~2S t o be usec 

a maxi~um steady cu~rent of 10 amps to sive a 

appr oxima tely 2 . 0Ki,· wh ich was estioacec 

to me lt the alloy from t he solid state . 

V 240 
1<. = I = """ID = 24 ohms 

The wire is 3 . 51 ohms / m 

to be 

crOrii 

For 

Therefore the leng th of wire r equired = 

semi- solid zone heater [ 13 1 

Tube d iameter = l25mm 

Tube length = 13 0mm 

pot-;e r of 

su:ficient 

Ohr:;s Lai<' : 

24 
3.51 = 6 . 9Cm 

Tube circumfere nce = 'Tt D = TT x 125 = 393m;;1 

Therefore the number 
p. 1 f 130 _~tc1 0 turns = 10 

f f · 6.9 13 o turns 0 w~re = 0 . 393 = 

7rnm 

(14 ) For Liquid Zone Heater [ 14 1 , Calculations Were Similar 

Except: 

Tube diameter = 172mm 

Tube length = 16Smm 

Wire diameter = 1 . 0mm 

Wire resistance = 1 . 72 ohms / m 

Therefore the number of turns required is 26 and the pitch 

of turns is 6 .Amm . 

(15 ) Insulation : 

1<801.'00 1 needle blanket manufactured by ~10rgan Ceramic 

Fibres Ltd . • was specified . The thickness requireu was 

de te rmincd from the lite ra ture publ i shed by t he company . 
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A thickness of Slmm of 127 ks / m3 density ma terial from a 
• hot face tempe r a ture of ll oe C allOwed a c o ld face 

• tempe rature of 65 C. 

( 16) Timing Belt and Pu lleys: 

The timi ng bel t and the pulleys were manufactured by 

J. H. Fenner & Co . Lt d . A 365L timing be lt with 31Smm 

ce~t ~ e d istance and 92 t eeth was c hosen . The d riving 

pulley has 18 t eeth and t he d r ive n pull e y has 32 teeth . 

The pulleys pr ovided a speed ratio of 1.7 3 and t~ey were 

?rovided wit~ ta?e~ - loc ~ bushes . 

( 17 ) Fo r k Arr an ge3cnt Swivel J O ±~t: 

The swivel joi~t was ~esi~~e~ co allow c~e for~ ( 0 be 
o 

r o tated t hr ough 360 The 

steel and was fi xed t o the 

unit, see Fig .24 . 

jcint was manufa ctured of mild 

bottom of the compocasting 

( IS ) Liquid Zone Te mpe r a ture Controller : 

A Newtron ic analogue t hyristo r ope r a t ed c on trolle r, with 
• tempe rature r ange of 0- 800 C was used . Thi s temperature 

o 

c on troller is accu r ate t o = 3 C with automa tic cold 

junction compens at i on. 

( 19 ) Semi - So lid Zone Temperatur e Cont r o ller: 

A Newtr onic dig ital t hyristor operated controlle r , with 
• temperature r ange of 0- 999 C was used . This temperature 

• controller is accurate to = 1 C ,,;ith automa tic co ld 

junction compensation. 

(20) Thermocouples: 

Tempe r atures we r e i n the r ange s uitable for nickel /ch r omel 

nic ke l /a lumel t he r mocouples, whic ll were manufactu r ed from 

30 s .w. g . wire . One thermocouple was required for each 

t empe rature controller and one was fixed to t he crucibl e 

within the semi - so lid zone in or der t o monitor t he 

tempe r a ture i n t hat r eg i on . 

(2 1) Temperature Readout: 

A digi tal voltme t e r accur a t e t o 0 . 01 mv was use d to 

208 



measur e vol t a8e f r om the crucible t hermocou p l e . The 
• v o ltage wa s t hen converted to t empe r atur e in C 

using 3 . 5 . 182 7. 

(22) Tachomete r : 

A dig i ta l t achometer , manu fa ctur ed by Gr aham a nd ~hite 

Instruments , which func t ioned using a photoelect r i c 

counter to c oun t reflected ligh t pulses from a refl ec tor 

at tac hed co che r o t or drive shaft, was us ed t o adjust 

the s?eec of r o cation of t he r otor . 

( 11 ) Th e Launcer 

The launder [ 23 J was made of cast iron p r oduced in a sa nd 

~ould , u sing the r efractory launder as a ?at t ern . Heating t he 

launde r was essential t o prevent t he slurr y losing too muc h 

heat on its way to t he shot chamber . Two thercostatically

controlled cartridge heaters , of 75 0 watt each were used t o 
• 

bri ng t he launder temperature up t o 400 C. 

• 
A Eu r othe r m tempe r a t u r e contro l le r wi th a r ange of 0 - 1300 C, 

and Pl a ti num - ( 13% Pl a t inum - Rhodium ) t he r mo c oup l e were used t o 

control t he l aunde r t emperature . The l aunder, c oated with 

liquid g r aph ite to preven t t he a l loy slur r y sticki ng on it , 

was fixed to t he bottom of the compo c a sting unit, s ee 

Figs . 20 and 21 . 
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APPSr;DIX n;a 

(I) Desi~n and Manufacture of the Pressure Die Casting Die 

The die design involved a simple die cavity shape which 

consisted of four pins and a disc to provide t he necessary 

specimens required for mechanical and tribolog ical tests . The 

die was mainly manufactured of Hl3, hot wor~ing die tool stee l 

suppliec by " Udd eholm Limi ced" in Birmin,)lali1 , and the die 

dimensions were des i gned i n accorclance with t he die cas t i~g 

machine specifications. The die wa s p rovid2~ with an aut oDatic 

ejector, so t ~1a t whe~ the die i.·las openec , the ejector 

autoD8tically acts t o eject t he casti~g from t he die cavity . 

The ciie \·tas manufactured and assemoled as shown i n 

Figs . 22 and 23 , anG it vias tried with a low me lting te~?2ra[Ure 
• 

alloy "ciro cast" , r,;hich has a melting point of 2eO C, and 

found to perform .ie 11 . The r.ie consisted of the following : 

see Parts List in Fig . 28A . 

( 1 ) ~'iov ing Die Her,lbe r: 

The moving die member which contains mos t of the cavity, 

the gate, the runner and part of the sprue, was 

manufactured from Hl3 die tool steel . It was manufactured , 

hardened anJ ground in accordance with the manufac turer's 

instructions . T~o holes were also made in t his part of 

the die, to accommodate the die guide pins [ a ] . 

(2) Bolster: 

The bolster was designed to support the moving uie member 

and also to accommodate part of the cavity and t he ejector 

pins. The bolster was manufactured from HI I carbon steel 

which is r ela t ively cheaper than H13 . The bolster and t he 

moving die member [ 1) v,ere joined together with four 3 /S in . 

AlIen screws to form the moving d ie half . Four holes were 

made in the moving die half , to enable that part of the 

die to be mounted on the moving platen of the pressure 

die casting machine. 

(3) Ejector Pins Guide Bushes: 

Five bushes were designed t o prevent the direct contact 

between the ejector pins and t il e mov ing die half in order 
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to pr otect the moving die mecbe r. The bushes were 

manufactur ed from H13 steel, hardened and g round . A 

tolerance of O. OSrnr.l (0 . 002in . ) on t he diameter , \vas given 

to these bushes to provide t he re quired venting to t~e die 

cavi ty , i . e . to allow the air entrapped in t he cavity t o 

escape thr ough t hese vents . The bushes were also provided 
• with 1 . 4 t aper to provide easy ejection of the castin3 . 

(4) Cat i ng Syste~ : 

The d ie was designed t o per~it diffe r ent ga te di~ensions 

to be used . The gates [ 4 ] ·.-e r e mam:factu r ed of ,,13 , 

~a= dep..ec., g r ound anc fixe': co t:, e movi:1g die me::be:.- ~ ... ic:: 

t wo 1/ 4in. AlIen screws. Two threa~ed holes were made 

in t he gate body to pe r ni t ga te ejection . The ga tes were 
• pr ovide d with 3 tape r for easy ext r action . The 

runner [ 5 J and part of t~e s?rue [ 6 1 were formed in the 
movi ng d ie member's body . The runner has a rectangula r 

• cr os s section of 20 x 10mm and is pr ovided with 3 taper 

toward the fi xed die member. The pa r t of the s prue which 

,,'as made i n the body of t he noving die member has 44 . 45mm 
• 

diameter and I Dmm thickness and is also pr ovide d wit h 3 

t aper. 

( 7) Fixed Die Me mber : 

Thi s was designed t o incorporate t he die guide pins [ 10 1 , 

the shot sleeve 8uied bush [ 9 ] and the cooling system [ Il l. 

The fixed die member was manufactured of Hl3 , hardened 

and ground in accordance with the manufacturer ' s 

specifica t ions . The cooling s ystem consis t ed of a ho l e 
dri ll ed through the f i xed membe r and was n.ade as close 
as possiole t o the sprue, t o pr ov i de efficient coolint 

(8) The Ba 1 s te r : 
This was designed to accoffimodate part of the shot sleeve 

guide bush and the shot sleev.e . The bolster was made of 

HIl carbon s t eel and attached to t he fixed die member wich 

fou r 3/8 in . diameter AlIen screws to form che fixed die 

ha l f . 
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(9) Shot Sleeve Gui e Bush : 

Th is wa s designed t o pr ev e nt any damage t o ahe fixe d ~ie 

hal f c ause d by t he movemen t of t he plunger in s i~e t he die . 

The s ho t s leeve gu i de bush wa s manufactu r ed of EI3 , 

11a rd e ~2d and gr ound a~ inse r ted i n t o t he f i xe d d i~ ha l f . 

(l 0) Guide Pins : 

Two g~ ide ? i ns we r e designe ' t o pr ov i de the required 

a l i gnment fo r t he t~ o ~ ie ~ a l ves . Tile t~ o eui ~ c pi ns 

;..'e r e me e fr o:., iiI3 uie tool stee l , harde r.ec , gr ound anc: 

fastene d i~ t o t~e f ixed ha f o f t ~e d ie . 

\11 ) The Ejector . s ee Fa r ts L i s ~ 2 3~ 

The e j e ctor consisted of t he f ollowing : 

( 12 ) Ej ector Pins : 

Five ejector pins we r e de signed t o prov~ ae simul t aneous 

ej e ction of t he casting . Four of t hese e jecto r pins 

were ma de identica l , while t he fift h one, wh ich d i re cted 

to the r unner, wa s made l onge r . The ejector pins were 

manufac t ured fro m H13 die tool steel hardened, gr ound and 

fixe d to the ejector pla t e by five l ock screws. 

( 13 ) Ej ector Guide Pi ns: 

Four ejector guides we r e de s i gned to pr ovide t he necessa r y 
-

alignment t o the ejecto r pins. The eject or guides wer e 

ma nufactur ed from HI 3 die t ool s teel , hardened and g r ound 

anu provided with four die springs to push bac k the 

ejector pins , after ejection had occur red. 

( 14) Ejector Pl ate: 

Th is was designe d to distribute the ejection fo r ce e qu a lfy 

on the ejection pins . The ejector plate was manufa ctur ed 

of 1113 d ie tool steel and it wa s harde ne d and g r ound i n 

acco r da nce wi t h t he manufa cture r's specifications . 

(I S) Stops : 

Two s t ops were designed to protect the ejector plate [ 4 ) 
by r eceiv i ng the ejection force f r om the ejection pl a te 

fixe d to . the d i e c asting mac hine and transmit it t o t he 

e j ector p l a t e ~n t he die . The sto ps were manufactu r ed 
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of mild steel and fixed to the ejector plate with 

four 3/8 in . d iamete r AlIen screws . 
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APPE SD IX THREE 

SE~ I - SGLI D ALLOY PR OCESSI ~G VA1 I A3LES A~D THEIR CALCULATIO~S 

The varia bles affecting t~e structur e of an a l loy processed 

oy t~1e rheocastine/ compocast i ne pr ocess ar e : 

- Ave r ag e Shear Rate : 

The aVe rage shear ra t e is a fu nction of t he st irring r oto r 

geo~etry , t he clea r ance betwee n 
, . . . . 

tne r o t o r a~c t ~e ~lxlng 

chanber an~ t he r o t ation sp e ed . T~le ave r a~e s hea r r atE was 

calcu late c using t he de finition : 

. r 

whe r e 9 was t je an gula r veloc i ty at 

cen tr e of the r o t o r ca l cula t ec f r om 

a distance r f r om the 

f 
. ( 11 6 ) 

t he equat i ons 0 Inotlon 

and equal to , in tIle case of a Newton i an fluid , 

'l1 ave K 

",;he r e : v = t he averaoue shear r ate o ave 
11. 0 = t he angu l a r ve l ocity of t Ile r oto r 

K i s def i ned as : 

K 
Pe r im iter of t he Ro t or 
PeriTlete r of the Hixing Chamber 

- Ave r age Coo ling Kate : 

The ave r age coo ling ra te is a fu nct i on of t he t ~e rma l pr of il e 

with in t ile mi x i ng c hambe r i nc l ud i ng t he tempe r a ture a nd 

vo lume f r ac t i on of so lid o f t he d i scha r ged sl ur r y . The 

aver age c oo l i ng r a t e in t he mixing chambe r i s def i ne ~ by 

t he f o ll owi ng e qua tion : 

t ilve = 

whe r e : ~ Ts (g s ) = t he d i ffe r ence be t ween t ~e liqu i dus 

t empe r a tur e and t he t empe r a ture of t he e x i s ti ~g s l ur ry a t a 

6 i ve n volume frac t ion sol i d . • 
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t f = the r esidence time of t he al l oy in t he mixing c hamber 

whi le in the solidification ra nge . 

- Voluoe Fr action Soli~ : 

The volume fraction of pr i ma r y soli~ par t icles in the 

existing slurry is dependen t on t he r ate of heat wi t hd rawa l 

i n t~e Dix in~ chacher , the r ate of mate ri al flow through 

t he c~amDer, and (he phy sical proper tie s of t he alloy 

produce~ . For a bina r y alloy t he vo l u~e fraction solid was 

calculace~ as a function of temperature f~ o~ t~e 

"S' . 1 - ." ( 11 7) . ., 1 T' -c rl e~ ~qua tlOn ana t~e lever ru e . _ ~e rorrner 

aSSUDes no s oli~ d i~fus~on , equilib r iu~ at t he li~uid - soli d 

interface , comnlete d i~fusion in ( ~e liGuid and constant 
. . . f - . . K ( 11 Z ) . ~, 1 partltlon constant coe I 1CLent . ~~e atter ass~mes 

c omplete diffusio~ in t he solid . ro r t he reasons outlined 

above , the Scheil e quation is likely to be mos t aC Ctlr ate . 

However , bo t h equations wer e deduced Erom a mass balance and 

give fraction solid in weight . Differences betwee n calculated 

weigh t fractions and volume Eractions a r e claimed ' to be very 

small due t o the small diffe r enc e s in density of t he s olid 

and 1 iqu i d phases ( 53 ) . In published work , t !-le Scheil 

equa tion has been use d a l most universally and fractions 

solid have been refe rred to as " volume " . The equation use tl 

f o r calcula t ing the volume fract i on solid was : 

9 s 1 _ [ Tm -
T -m 

where: 9 s = volume fract i on solid, 

" - " 

( 2) 

T 
m 

= me lt ing temperature of the pure solvent , 

Tt = l i qu idus t eoperature of the alloy , 

T = actual te mpe rature in t he liquid s6lid r anze . 
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, 11-) 
K is defined as "the equilibrium part i t ion constant'" I , 

and was obta i ned fro~ the equation : 

* where : C s coclpa sition of the solid 

* Cl composition of t!-le 1 iquid 

* * Cs and Cl are ob(aine~ f ~ om t~e e~uilih r iurn diag ram of t~e 

~i:1ary alloy . 

For a mor e coupl:x alloy (ternary alloy ) system , the 

relationshi? between volume fraction solid and temperature 

can be es t ab lished either by consiuering the te r na r y alloy 

as t wo bina r y alloys and calculating the volume fraction 
1 , ' d ' h ' , (11 2 , '11 so 10 accor 1ng t o t.~s assumptLon or experLmenta y . 

- Calcu l at i on of the Ave r age Shear Ra te 

The averate shear rate can be calcula t ed from the followin g 
equation : 

Perimeter of the rotor 
K = Pe r imeter of the Crucible 

The pe rime t e r of t he r o t or i s t he one ind i cated with a 
do t ted line . 

E 
E 

('1"\ 

" .s-

Lz:3m m 
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Perin ce r of t he r oco r = 2 TI x r 1 + :; " [ 1 

?eri~et~ r of stea r in3 cha~be r = 2 ~ :z Y2 

K' = 13L. 
1 73 

?o r ~o = 15 CC r . ~ . ~ . 

= 

2 T\ :< 27 . 5 

0 . 77 

2 x 15C(' x 2 IT 

)( ave = QV x 0 . 77 - 1 5S0 s ec . 

- Calculation o f the average cooling r a te 

The molten a lloy was poured into the compocasting unit a t a 
o 

temperature of 725 C. wn en the alloy temp er a ture reached the 
o 

equi l ibrium value (675 C) the residency time for the alloy in 

the compocast i ng unit wa s considered and the time required 

for the alloy to cool down to the prede t ermi ned temperature 

was measured . A di ital multimeter wa s used to monitor the 

a l l oy temperature and t he a vers e cooling r a te was ' calculated 

u s in the followin f ormul a : 

A Ts ( s) 

tf 

o 
For slurry dischar ed a t 573 C (volume fraction solid 0 . 075), 

the time r equir ed f or the ~lloy t o cool do wn f rOM the 
o 

equ ilibrium t emper a ture t o 573 C '''a s found to be 67 minutes . 

ATs (gs) = 675 

102 
t: a ve = 

67 

- 573 = 

= 

"' . .., c. , I 

1.5 

102 °c 

0 

C/min . 



;"PPEi-lDE FOUR 

~:Ecr.AN IeAL PRO?ETIES eALe 'LATIm~S 

(I) Ulc iIiate Tensile Stress (C .T . S . ) 

The ult ima t e tensile stress can be ob tained as follows: 

C. T. S . = 
tJltil1ate load (l) 

Cross sectional ar ea 

For example : 

T~e ulticate loa~ for three specimens : l . 9L k~ 

2 . 06 k:, 

2 . 21 k;-.J 

Average == 
1 . 9"- ... 2.06 + 2. 21 

3 

= 2 . 07 k[\ 
o 

= 2 . 07 x 10.J r:N 

diamete r of specimen r = 4.53mm 

Therefore t :le cross-sectional area A = n r2 

A = 

A = 

= 

Fr om equation ( 1 ) 

U. T.S . = 

,, ( · . 53)2 

l6.l2mm 2 

16.12 x 106 

- 3 2 . 07 x 10 
- tJ 16 . 12 x 10 

218 

2 
m 

128 ""j 2 = l " I'j rn 



( Il l Brinell Ha r dness Number Calculations 

The Brine ll · hardness number can be ca lcul a ted f r om t he 
f o llowing formula : 

3 . H.t-.:. 
p ( 2) 

~he r2: ? = l oa~ applie~ = 75Gkg . 
D ball diacete~ ; l Qu~ . 

~ ; ciia~ecer of i~pr e ssion mea surad . 

Consider t he first twelve s pecime!1 s i n Table 4 . 

The diame ter s of impression were : 2 . 8 , 2 .75, 2 . 9 , 2 . 85 , 

2 . 85 , 2.75 , 2.9 , 2.8 , 2 . 8 , 2 . 3 , 2. 35 and 2 . 8mm . 

The average = 
5 x 2 . 8 + 2 x 2.75 + 2 x 2 . 9 + 3 x 2 . 35 

12 

B. H.N.= 

== 2 . 82 

75 0 

2 x 10 (l 0 _ J (1 0) 2 _ (2 . 82) 2 ) 
2 

. [j . l l. N. 118 
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B I 30LOG ICAL PRC?E:~Tn:S CALCl:LATI C::S 

(1 ) '" e a r Vo lurr.e : 

The we ar vo l ume is t ~e amoun t of ma ter i al l ost f r om t he 

p in during t~e wea r t est and can be ob t ai ne d by 

~ul ti ~ lvin£ t he c r oss - s e c t i ona l a r ea ( A ) of t ~e t es t ~in ~ ., ...... 1" 

b:r C"'le C','l''',,''._e in ' ) ' ~ l a n ' t 'l , l ;' : ..... _ _ . • t J... I .... 6 · . 

' .. :e a r Vo lu;;;e Cr oss - sectional 2~ea v c ~a~3e i n ?in l ~ 3 t~ 

The ~iamete r of t he wea r t es t ?in ~ - 6 . 3 5~~ . 

Fo r 

The cross - s ect i onal a r ea 

spe c i men \4h ic h l os t 0 . 3mm . 

the wear vo lume - , 
K L r. 

- 0 . 317 K 

, 
r. 

A 

(0 . 03c::1 . ) 

0 . 03 - 9 . 51 

of 

K 

i t s l e n8 t h 

l(l 3 
COl' • 

( Il l The we ar r a t e c an be obta ined by d i vid ing t he we ar volume 

by t he t o t a l r unning d is t anc e ( L ) of t he pi n ove r the d i s c . 

The r unning d i s t ance can bc c a l cul a ted fr om t he speed of 

r o t a tion of t he d i sc and t he tr ac k circumfe r e nc e . 

The pin wa s r unning a t a d i s t ance of 30mrn . f r om t he d i s c 

ce ntre , s o t he t r a ck circumf e r e nc e 2 n x 30 

- 188 . 5 mm . 

13 . 85 cm. 

The dis c r o t aces at 318 rpm . ( l m. / se c. line a r velocity ). 
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The test dur ation = 30 r..inutQ5 anc so the total runnine, 

distance = tr ack circumference x r . p . m. x test duration 

= IS . 3S x 318 x 30 

17 9329 Cz:1. 

= 1798 . 29 m. 

\~ea r r a t e = 
\·;ear Volume 

Kunning distance 

·.':ea.:r r a t e == 
9 . 51 x 10 3 

179829 

- 8 
= 5 . 29 x 10 3 

CI:l . / C'J • • 

(I ll) The coef=ici2~t of fric:ior. can be cD t ainec fro~ the 

formula : 

where : F,. = the friction fo r ce ( t he deflec t ion forcel , 
l ... ~n 

W = t he ,ax ia l load app lied on t he pin = l2 . 6kg . (281b . ) 

Fo r deflec tion fo r ce = 3 . 78 kg f . (8 . 41h . ) 

:: 0 . 3 
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APPC:.iDIX SIX 

G:'.APHITE CALCULATIOll 

The graphite area (ll was calculated for each specimen fro~ 

t he following for mul a : 

where : 

A 
x l OC ~ x 

y .n 

A ~ area of graph ite ( "='/ , .. , 
x = area of gra ph ite me asured 

y ~ fielc area ~ 1 . 27 6 x C: o 

( 1) 

n = nue.ber of fiel ds me asur ed ( l Ofiel d s ) 

T~e ~eiaht ( t) was obtained by nultipl yin8 t he area (11 by 

t he density ratio of gra?hite to alum i nium alloy . 

density of granhite density r atio - . - ~ensi ty or aluminium alloy 

The density of gra phi t e = 1 . 9 gm/cm3 

The dens ity of L~JO ~ 2. 73 gm/ cmJ 

dens ity ratio 1.9 
~ 2 . 7J= 0 . 7 

Exampl e : 

The area of graphite me asured for spec imen no . S20 was 5 . 65E 5 . 
tram equation ( 1 ) . 

The % A 
5 . 65£5 

area ~ 

1. 276E6 x l a 
x l CO 

A = 4 . 4 3% 

Graphite wt.% ~ A x density r atio 

Graphite wt . % = 4 . 43 x 0 . 7 = 3.10% 
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APPENDI X SEVEN 

Fi g . 66 

fi gs. 67 - 70 

Fig . 72 

fi ;:; s . 73 - 76 

Fib . 81 

Figs. 82 - 8 5 

Fi g . 86 

Figs. 87 - 90 

Pr c se n ~ t he sur fa ce texture for a gra ph ite 

f r e e specimen af t e r the wear test (d ry fricti on ) . 

Present the surface texture f or gr aph it i c 

specimens af ter the wear test (d ry f riction ) . 

Presents t he sur f ace t e xtu r e of a d i sc mated 

wit h gr aphi t e f ree s pe c i~e n ar : e r t~e we ar 

test (d r y f riction ) . 

?r e s e nt t he s u rr a c ~ tex~~re O ~ disc s ma t e d 

wit h g ra phitic s pecime ns afte~ t he we ar 

t e s t (dr y fric t i on ) . 

Pr ese nts t he s ur fa c e t e xtur e of a g r apJlite 

free specimen a fter t he wear t e st ( lubrica t ed 

fricti on ) . 

Prese nt the surface texture of gra ph itic 

specimens af ter t he wear test ( lubric a t ed 

fricti on ) . 

Presents t he s ur fa ce t ex ture of a d i s c ma t ed 

with gra phite f r ee s pecime n af t e r t he we a r 

test ( lubricated friction ) . 

Present the surface texture of discs ma ted 

with eraphitic specimens aft e r the wea r 

test (lubricated friction ) . 
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l-ttECREASE 
DEPTH 

O-INCREASE 
DEPTH 

AMPLITUDE 
DISTRIBUTION 

( .;. ) 

(b) 

Ra 4.62~m 

ROUGHNESS ASSESSMENT 
ISO FILTER C/O 0.8 «~ 
4 CUT-OFFS ASSESSED 

Ru . .., # 11 

I HSC I BEARING RATIO 

31 

3 .4.84 HeM 
r:::r;-:l IR.:.!:!! 

--_._----- --

Fi g . 66 - Pin Sur fa ce Textur e Af t e r Test . LMJO - Rheocasting 
(a) Surface Profile. (b) Bearing Area Analysis . 
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. . 

I , 

i-DECREASE 
DEPTH 

O-INCREASE 
DEPTH 

AMPLITUDE 
DISTRIBUTION 

(a) 

(b) 

I 

Ra = 4 . 211ID 

ROUGHNESS ASSESSMENT 
ISO FILTER C/O 0 .8 MM 

4 CUT-OFFS ASSESSED 
Run # 15 

BEARING RflTIO 

4 . 1 . 84 HeM 

Fig . 67 - Pin Sur face Texture After Test. LM30 - 3wt% Gra phi te 

(a) Surface Profile. (b) Bearing Ar ea Ana lys is. 
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1-DECREASE 
DEPTH 

O-IHCREHSE 
DEPTH 

AMPLITUDE 
DISTRIBUTION 

( a ) 

(b) 

Ra = 3 . 911m 

ROUGHNESS ASSESS~1ENT 
ISO FILTER C/O 0 . 8 ~M 

4 CUT - OFFS ASSESSED 
Run # 6 

I HSC I 25 

BEARING RATIO 

8 . 1.SS HeM 

Fig . 68 - Pin Surface Texture After Test. LM30 - 4~wc% Graphite 

(a ) Surface Profile. (b ) Bearing Area Analysis. 
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1-DECRE~SE 
DEPTH 

O-IHCRE~SE 
DEPTH 

AMPLITUDE 

".-. ..... -. ;- ..... -

( a ) 

(b) 

-. 

Ra = 3.211m 

ROUGHNESS ASSESSMENT 
ISO FILTER C/O 0.8 0'\ • ..,. 

3 CUT-OFFS ASSESSED 
Run # 2 

I HSC I 
30 

SEARING RATIO 

8.1.85 H C ~1 

, -

Fig.69 - Pin Surface Texture After Test. LM30 - 6w t % Gr aphite 

(a) Surface Profile. (b) Bearing Area Analysis. 
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I , 

1-DECREASE 
DEPTH 

O-INCREASE 
DEPTH 

AMPLITUDE 
DISTRIBUTION 

( a ) 

( b ) 

, 

I I 

, , 

I 
I I 

2. 6 5)lm 

ROUGHNE.SS ASSESS!1EHT 
ISO FILTER C/O 0 . 8 mM 

4 CUT-OFFS ASSESSED 
Run. 22 

I HSC I 25 

BEARING RAnO 

9.1 . 85 ,H ,C M IRTij 

-~ 

Fig .7 0 - Pin Surface Texture After Test. LM30 - 7 ~wt% Gr aphite 

(a) Surface Profile . (b) Bearing Ar e a Anal ysis. 
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. , , 

, . , , ., 

1-0ECREASE 
DEPTH 

Q-INCREASE 
DEPTH 

( a) 

AMPLITUDE 
DISTRIBUTION 

( b) 

, , , 
'" , , 

, . 

., 

, . , 

, ,-
-, , , 

.,. RANK TA1 OR .HOSSO LEICESTER 
~ -'.. , 

Ra = O. 8911111 

ROUGHNESS ASSESSMENT 
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Fig .72 - Disc Surface Texture After Test. LM30 - Rheocasting 

(a) Surface Profile. (b) Bearing Ar ea Ana l ysis . 
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Fig . ?3 - Disc Sur fa c e Textur e After Test . LM30 - 3wt% Graphite 

(a) Sur face Profi l e . ( b ) Bearing Ar ea Analysis . 
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Fig . 74 - Di sc Surface Te x t u r e Af t e r Test. L~30 - 4~wt% Graphite 

Ca) Sur fa c e Pr of il e . Cb) Bea r ing Ar ea Analysis . 
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Fig . 76 - Disc Sur face Texture Afte r Test. LM30 - 7! wt% Graphite 

(a) Surface Profi l e . (b) Bearing Area Analysis. 
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(a) Bearing Area Analysis. (b) Sur face Profi l e 
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la ) Bearing Area Analysis. (b ) Surface Profile . 
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. Fig . 83 - Pin Surface Texture Af t e r Test (Lubrica ted Fric tion ) 

LM30 - 4 ~wt% Gr a ph i t e. 
(a) Be arine Ar ea Ana l ysis . (b) Sur face Profi l e . 
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Fig . 8S - Pin Surface Te x ture Aft e r Te s t (Lu bricated Fric tion ) 

LM30 - 7~~t% Gr aphite . 
(a) Bear ing Ar ea Analys i s . (b) Sur face Pr ofile . 
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Fig . 86 - Disc Surface Textu r e Af ter Test (Lubr i c a t ed Friction ) 
L~ 1 30 - Rheoc as t, Pre s su r e Di e Cast. 

(a) Bearing Ar ea An a l ysis . (b) Surfa c e Profi l e. 

239 



l-DECREASE 
DEPTH 

O-IHCREASE 
DEPTH 

AMPLITUDE 

Ca) 

(b) 

ROUGHNESS ASSESSJ'1ENT 
ISO FILTER C/O 0.8 mm 
5 CUT-OFFS ASSESSED 

Run # :s: 

I HSC I 
31 

BEARING RATIO 

21. 12 .84 H C 11 !R T Hi 

Ra ~ O.28~m 

Fig.8? - Disc Sur face Textur e Afte r Test (Lubr i c ated Fr i c tion ) 

LM30 - 3wt% Graphite . 

Ca) Bearing Area Analysis. (b) Surface Profile . 
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Fig .88 - Disc Surface Texture After Test ( Lubricated Friction) 

LM30 - 4~wt% Graphite . 
( a ) Bearing Area Analysis. (b ) Su r face Profile . 
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Fig . 89 - Disc Sur face Textu r e Afte r Test (Lubricated friction ) 

LM30 - 6wt% Gr aphite . 
(a) Be aring Are a Ana l ys i s . (b) Sur fa ce Prof il e . 
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Fig . 90 - Disc Sur face Textur e Afte r Tes t ( Lu br icated Fr i c tion) 

LH30 - 71wt% Gr aphite. 

(a) Bearing Area Analysis . (b) Sur face Profile. 
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