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Abstract 

The vibration of a turbocharger blade and dynamic characteristics of bladed 

packets connected by a lacing wire have been studied. The study was carried out 

using three analytical and experimental methods. They are: Modal Testing, Electronic 

Speckle Pattern Interferometry (ESPD and Finite Element Analysis (FEA). 

Vibration modes of a turbocharger blade with aerodynamic profile, with and 

without a lacing wire, were identified using model blades with simplified geometry. 

The separation of coupled modes was achieved using ESPI tests. 

The modes of vibrations of bladed packets were identified. The effect of 

inter-blade coupling through a lacing wire is that a cluster of sub-modes are 

generated in bladed packets corresponding to each fundamental mode of the free

standing blade, the number of the sub-modes being equal to the number of blades in 

the packet. Apart from the fundamental sub-mode, the vibration of all other sub

modes are out of phase with different phase relations. 

The stiffness of the lacing wire and its location with respect to the blade make 

great contributions towards certain mode clusters in terms of mode shapes and natural 

frequencies. 

The nonlinearity of the stiffness of the deformed lacing wire caused by 

centrifugal force was established. The coupling of this non linearity with different 

vibration amplitudes, due to different phase relation, results in the dynamic mistuning 

in lacing wire stiffness. This mistuning is considered to be a major attribute in 

reducing the responses at resonance. 
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Introduction 

Vibration in a mechanical structure arises if a periodic or non-periodic change 

in applied forces takes place, the severity of the vibration depending on the 

magnitude of this change in forces and their frequencies. Turbomachinery is 

particularly subject to this change which is a direct threat to its reliability. 

1.1 Importance of the Reliability of Turbomachinery 

The availability and safety of large modern power generating and industrial 

condensing turbines are dependent on the performance of their last stage. As these 

turbines form the basis of power and industrial processing plants their reliability and 

high efficiency are most important. 

Long down-times due to damage will lead to high operating losses. The cost 

of these outage times is normally much greater than the repair cost of the 

turbomachine. 

It is obvious that not only high operating efficiency is required, but also the 

reliability of turbomachine components is a major consideration. These two factors 

influence the economics of a turbomachine. If the availability could be increased by 

one percent the plant-efficiency also increases from 0.2 to nearly 2 percent depending 

on the utilization factor and the type of fuel used in the power plant [198]. 

Commercial reasons have encouraged the production of larger output turbines 

with little or no increase in weight or size. In these high power turbines the 

mechanical and thermalloadings increase and the resulting stresses get near the upper 

safety limit of the turbine materials. This causes a decrease in the stress life and 

may lead to a fatigue failure. These additional loadings and the unsteady modes of 

operation must be taken into consideration when designing a turbine without risk of 

2 



Introduction 

failure. 

In marine operations, the generations of two-stroke and four-stroke engines 

introduced or refined in 1980s have aimed to achieve the following improved 

qualities over their low speed and medium speed precursors: 

• the ability to burn residual fuels of continually declining quality; 

• improved engine reliability under various operating conditions; and 

• flexibility of operation at different loads or ratings with increased emphasis 

on pan-load conditions. 

A significant contribution in achieving those aims has come from 

developments in turbochargers and turbocharging systems. Medium-speed four-stroke 

engines generally operate at rather higher boost pressure ratios than the two-stroke. 

High turbocharger efficiency is necessary in order to maintain low valve temperatures 

and of course to assist in the attainment of low fuel consumption. High rotational 

speeds and turbine temperatures must be adequately countered by improvements in 

the design of the turbocharger rotating assembly and bearings. As part of the power 

generating system, the reliability of the turbocharging system forms the basis of a 

durable and reliable operation. 

Turbine blade failures have been a significant cause of unit unavailability and 

expense to the power generating industry. In a survey conducted by The Electric 

Power Research Institute (EPRI) in United States [172], it was found that, for the 

years 1970-1981, there were 216,380 hours of reported downtime for the 192 units 

included in the sample. The total cost of replacement pans, as estimated by the 69 

reporting utilities, was $87,456,000 and the break-down costs are nortnally much 

more than the cost of repair. 
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Damage-statistics show that with 40% the runner-blades demand the greatest 

portion of the overhaul-costs caused by individual steam turbine parts. Blade 

vibrations are the most frequent causing factors. A particular damage factor can be 

seen at the low pressure (LP) stage of condensing turbines. Besides the high static 

loads by centrifugal and aerodynamic forces, the LP-blades are exposed to additional 

dynamic loads whose intensity and appearance could not have been predicted 

satisfactorily. Over 79% of all blade related outages occurred in the low Pressure 

turbines and 75% of those occurred in the L-O and L-I rows in fossil units [45]. 

Fleeting and Coats [63] reported their experiences on the blade failures that 

occurred in the HP turbines of RMS "Queen Elizabeth IT" in 1968. This ship left the 

manufacturers on 19 November 1968 and failures occurred quite early on 24 

December 1968 during the ship's maiden voyage from Tail 0' the Bank, resulting 

in a complete damage to the 9th and 10th stage starboard HP turbine rotors. This 

failure is attributed by them to resonances of the blade packet in the respective stages 

with nozzle excitation. 

Frank [64] reported considerable damage that occurred when a 600 MW 

turbo-set was restarted after a general inspection. The major overhaul was carried 

out after 25000 hours of service. Before pressing the machine into service, the 

electrical overspeed protection device was checked to respond at the preset 108% of 

the nominal speed. Then the speed was reduced to check the mechanical overspeed 

protection device set to switch the turbo-set off at about 110% of the rated speed. 

Just before attaining this mark, the machine exploded. The generator shaft at the 

turbine end ruptured over half its length and broke in the middle. Two fractures had 

occurred at the exciter end of the shaft. The shafts of three low pressure sections 

were fractured both at the turbine and the generator ends. The medium pressure 

section was also broken at the generator end. The high pressure section of the turbine 

was not affected. The incident has been attributed to a sudden instability in the train 
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of shafts. which may have been caused by a blade fracture in the last low-pressure 

stage or the breakage of a bearing. The turbo-set damage alone is estimated to be 

$40 million. A study conducted by Dewey and Rieger [44] reveals that high cycle 

fatigue alone is responsible for at least 40% failures in high pressure stages of steam 

turbines. 

A critical review of the various problems with present day jet aircraft reveals 

that those associated with blades emerge high in order of importance. Gas turbine 

blades can fail if they are subjected to alternating forces having frequencies near their 

important resonant frequencies. The danger of resonances of blades or blade packets 

in working machines. and the consequential failure due to fatigue. is too well known 

to require amplification. 

1.2 Importance of Turbine Blades 

The most critical component of any turbomachine is the blading. Blades are 

the instruments by which a compressor or turbine fulfils its function and they are 

usually exposed to the most hostile environment in the whole machine. In turn. one 

of the most difficult to control is the dynamic loading to which the blades are 

subjected. These two facts combine to present us with a major problem to be 

overcome in the design and operation of turbomachinery: that of preventing excessive 

blade vibration levels under operational conditions. The essential problem is simply 

stated: the structural integrity of blading is of primary importance as the loss of a 

single blade will generally cause extensive secondary damage. Modem 

turbomachinery must run at high speeds of prolonged periods of time and so blades 

vibrating at frequencies typically between 100 and 20.000 Hz will undergo a large 

number of cycles in a relatively short time (500 Hz for 6 hours exceeds 107 cycles). 

The possibility of fatigue failure is thus of primary concern and design techniques 
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must ensure that the vibration levels experienced during operation will not induce 

fatigue failure of any blade during the life of the machine. 

Therefore, an intimate knowledge and understanding of the vibration 

characteristics of the blades in their operating environment is essential for eliminating 

vibration problem conditions. 

1.3 Sources of Excitation in Service 

In service, blade vibrations are most likely to be excited by the unavoidable 

non-uniformities of steam flow and pressure around the annulus either upstream or 

downstream of the moving blades, but may also sometimes be excited by rotor 

movements. The possible causes for turbine blade excitation are: 

a) Non-uniform pressure distributions in the inlet and exhaust piping. 

b) steam extraction points 

c) unequal spacing between guide blades at the parting plane 

d) pitch errors 

e) change in radial clearance due to warping of the housing 

f) jet excitation 

g) non-uniform wake shed behind a row of blades due to the loss distribution 

and the change of the angle of attack of the rotating blade row 

6 



Introduction 

h) flow disturbance due to probes 

i) partial admission 

j) self excited vibration such as flutter 

All these discontinuities have a periodic nature. Regardless of the pattern of 

the exciting forces, they will be repeated periodically, one or more times for each 

revolution of the turbine. These discontinuities can be analyzed into different 

harmonic components, which cause a periodicall y varying force acting on the moving 

blades. 

The predominant dynamic load is the source of the operation principles on 

which the machine is designed. When a rotor blade passes across the nozzles of the 

stator, it experiences fluctuating lift and moment forces repeatedly at a frequency 

given by the number of nozzles multiplied by the speed of the machine. The blades 

are very flexible structural members, in the sense that a significant number of their 

natural frequencies can be in the region of possible nozzle excitation frequencies. 

1.4 Blade Safety against Vibrations 

1.4.1 Freedom from Resonance in the Operating Range 

Every turbine stage, without exception, is designed such that the natural 

frequencies of practical importance are clear of resonance with significant excitation 

frequencies. For long blades, the wheel mode frequencies are designed to be clear 

of the relevant low multiples of running speed. This signifies that the narural 

frequencies of no runner blade of the turbine to be allowed to correspond to whole 
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multiples of the rotational frequency and needs a precise knowledge of the natural 

frequencies of all the turbine stages. 

Though a machine can be normally designed to avoid resonance at its steady 

operating speed, it experiences resonances several times during the starting and 

shutting down of the machine, i.e. whenever the instantaneous speed of the machine 

gives rise to a nozzle excitation coinciding with the blade frequencies. Thus it is not 

infrequent to find major shut-downs of these machines arising because of blade 

failures. 

1.4.2 Reduction of Vibration Stress Using Damping Elements 

It may be possible to design a machine with constant rotational speed as for 

example a turbine driving a generator, so that no lower blade mode in the turbine at 

the operating point is in resonance with a rotational harmonic. But it is not possible 

with a machine which has a range of rotational speed of 60 to 110 percent of the 

rated speed as for example a turbine driving a compressor. 

Vibrations of turbocharger blades is a problem for turbocharger manufacturers 

since it is very difficult to avoid all dangerous resonances. Operating experience 

with large turbochargers driven by the pulsed pressure system of energy transmission 

from engine to turbocharger identifies pressure forces with a wide range of 

frequency components [38]. Coupled with these gas-borne excitation frequencies are 

further excitation frequencies generated as a consequence of blade pass frequencies 

(e.g. the frequency at which rotor blading passes the stationary nozzle blading). It 

follows therefore that components within the turbocharger can easily be excited at 

any of one of the many natural frequencies associated with its constituent parts. 

All these excitation sources increase the difficulties associated with the design 
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of bladed disk assemblies and have caused designers to consider the inclusion of 

damping devices in the blading assemblies with the objective of reducing possible 

damage to operating systems. 

In particular, with the considerable increase in the power weight ratio of the 

machines, one uses the damping or binding elements in such machines and also in 

constant speed machines. Continuous blade-to-blade connection round the whole 

circumference is provided, either by shrouding, or for the longest blades by inter

connecting rods, to avoid the complexities associated with packets. Mostly these are 

provided in the top third of the blade height, and in recent times in gas turbines 

damping elements are provided at the foot region of the blade. 

1.5 Use of Lacing Wires 

The forms of damping elements include riveted shrouds, binding/tie/lacing 

wires; lashing pins and snubbers. The effectiveness of such elements in practice is 

confirmed from many operating machines. 

One method for minimising blade vibration is to employ lacing wires threaded 

between a group of blades on the disk. Irrespective of detailed design, as indicated 

by Chubb [36], there are two main categories of mechanical blade vibration dampers 

-- those designed as part of the initial concept of the unit and those introduced as a 

necessary emergency measure to control unacceptable vibration that was not expected 

initially. It is perhaps in this latter application that the true value of lacing in the 

design of turbomachine buckets is to be found. It gives a relatively simple 

modification that at least gives a moderately long-life blade, although at the expense 

of performance penalties and an increase in the number of failure sensitive parts. 

The location of the lacing wire hole in the blade must be carefully considered to 
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ensure safe stress levels when full load conditions are met. Also the position must 

be such that maximum advantage is gained from the damping characteristics at the 

wirelblade interface without weakening the blade by introducing high stress 

concentrations in highly stressed areas. 

The basic design of lacing wires is that there is a continuous wire that runs 

through some portion of the blade above the retaining disk as illustrated in Figure 

1.1. 

The large amount of literature (see Chapter 2) on the vibrations of turbine 

blades, relating both to theoretical and experimental research, bears witness to the 

enormous amount of work done in this field. In spite of this, the need to modify 

existing bladed disks, in order to forestall breakdown or, at any rate, to improve 

vibratory performance, provides the demand in establishing better understanding of 

the vibrations of blade packets. Theoretical research has to overcome the obstacle 

represented by the dimensions involved to .ensure sufficient accuracy in calculating 

the frequencies. This applies particularly when packets of blades have to be 

examined, whose frequency range becomes denser and narrower as the number of 

blades forming the packet increases. 

In addition, the modifications that can be made in a bladed disk that is 

already installed in order to prevent damaging vibrations can, in practice, only be 

concentrated within the limitations imposed by the blades themselves and, especially, 

imposed by the way in which they are grouped together in packets. Theoretical 

research on bladed disks therefore involves the need to look thoroughly into the part 

played by these limitations, particularly by the shroud in influencing the natural 

frequencies and on the corresponding configurations taken on by the system and the 

stress states connected with those configurations. 
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1.6 The Objective of This Study 

The intention of this study was to establish: 

• the nature of the modes of vibration for an assembly of blades coupled by a 

lacing wire 

• typical vibration response characteristics of such an assembly 

• the effects of a lacing wire on the modes of vibration of free standing blades 

• the primary interest here lies in studying how the blades interact with each 

other, to see how the natural frequencies of a completed assembly of blades 

are related to those of a single blade. 

1.7 Overall Project Solution Strategy 

The primary aim was to understand the vibration characteristics of turbine 

blading with lacing wires. It was noticed that the modes of vibration of bladed 

assembly were very complicated. The complexity arises from the complicated shape 

of turbine blades due to aerodynamic design and stress requirement, minor 

differences among blades in the same assembly and in particular, the inter-blade 

coupling elements. 

In order to understand the complex· modes of vibration of bladed assembly, 

it was considered necessary to understand the nature of vibration modes of a free 

standing blade with complex geometric shape. In addition to the purpose mention 

above, the aim of this step was also to justify the analytical techniques proposed and 
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to verify the interpretation of results obtained from using these techniques. The work 

is reported in Chapters 4 and 5. 

Then the investigation would be expanded to study the effects of a lacing wire 

on a single blade. The understanding of modes of vibration of a single blade under 

the influence of a lacing wire could be established and the modification on the modes 

of vibration of free standing blades due to the lacing wire could be identified. This 

work is reponed in Chapter 6. 

Finally, the study into the understanding of vibration characteristics of a blade 

packet assembly connected by a lacing wire was carried out and reponed in Chapter 

7. The final conclusion is given in Chapter 8. 

12 



Introduction 

Figure 1.1 A typical bladed disk assembly with lacing wires 
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2.1 Introduction 

Turbine blades are major components in turbomachinery. The numbers of 

blades in any turbomachine can be up to thousands. Their sizes and shapes vary 

significantly in order to meet the very demanding criteria imposed by industries. 

They operate in very hostile environment which is subjected to vibration excitations. 

The failure of a single blade may cause considerable secondary damage to the 

turbomachine and consequently, results in high costs for repair and more importantly 

for long period of break-down. 

It is also relevant to consider the extent of the problem of blade vibration: the 

majority of large turbomachines are either gas turbines (all forms of transport, power 

generation) or steam turbine (power generation). In round numbers there will be 

about 20 stages of rotating blades in an aircraft gas turbine, representing a total of 

some 2,000 blades, and there will be in the order of 5000 blades in the 60 stages of 

a typical 660 MW steam turbine. A major airline with a fleet of 150 jet aircraft will 

have some 500 engines in use, and a further 150 in reserve, representing between 

10,000 - 15,000 stages and a total of 1,000,000 to 1,500,000 rotating blades. The 

extrapolation of these basic figures clearly indicates a very large number of blades 

currently in use, and helps to explain why there has been (and continues to be) much 

attention given to the treatment of blade vibration problems. 

2.1.1 Technical Description of the Problem 

Figure 2.1 represents a typical fan blade. The blade has considerable twist 

along its length. It has curvature (camber) in the direction transverse (chordwise) to 

its length, but negligible curvature in its longitudinal (span wise ) direction. Typical 

cross-sections are aerofoil shapes, varying in thickness along the chord. The 
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thickness and curvature both vary along the length of the blade, decreasing from the 

fixed root towards the free end. The width of the blade also varies along the length. 

The particular blade shown in Figure 2.1 is relatively long compared with its width 

(i.e., large aspect ratio), although much shorter ones are also utilized. 

The blade is attached at its root to a circular disk by means of a dovetail 

joint. Typically, 30-40 blades will be attached circumferentially about the periphery 

of the disk, forming one stage of the turbomachine. The disk and its attached blades 

rotate at large angular velocity (n) about an axis perpendicular to the plane of the 

disk. As a result of centrifugal forces arising from the rotation, there is a small, but 

significant, amount of blade untwisting. This causes the attached shroud to lock with 

those of adjacent blades and adds stiffness to the individual blades. In some 

applications, such as steam turbines, lacing wires may be used in place of shrouds. 

An aircraft gas turbine engine will have many stages. The fan blades 

described above will be followed by numerous compressor stages, with blades having 

aspect ratios varying between 5 and I. Subsequently, the combusted gas encounters 

turbine blades (or buckets) having thick, highly c~mbered cross-sections and 

operating at high temperatures. Figure 2.2 shows a highly-twisted, actual turbine 

blade, with cross-sections taken at the root, the free end, and midway along the 

blade. 

2.2 Single Blade Vibrations 

If a blade is relatively long, it may be modelled as a beam. If there is no 

contact between adjacent shrouds. and if the disk is relatively stiff, the beam may be 

considered as cantilevered. Though a turbine blade is loosely mounted on the disk, 

the root gets encastered due to the centrifugal force, thus almost satisfying the 
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cantilever fixed end conditions. Therefore, a single free-standing blade can be 

considered as a pre-twisted cantilever beam with an asymmetric aerofoil cross-section 

mounted at a stagger angle on a rotating disk and considerable useful information for 

frequencies and mode shapes are obtainable from a relatively simple beam model. 

Coupled bending-torsion vibrations occur when the centre of flexure does not 

coincide with the centroid as in the aerofoil blade cross-section and the vibrations are 

coupled between the two bending modes because of pretwisl. The problem becomes 

further complicated because of second order effects such as shear deflections, rotary 

inertia, warping of the cross section, root fixing and Coriolis accelerations. In 

general the equations of motion will be six coupled-partial-differential equations 

[154] coupled between the two bending deflections, the two shearing deflections, the 

torsional deflection and the longitudinal deflection. The warping function will be 

obtained by a modified Poisson equation, taking into account the dynamic conditions 

of the blade. Thus, theoretically it is a difficult task to determine the natural 

frequencies of an actual turbine with all the effects mentioned. 

Most of the early work was carried out on free standing single blades with 

the aim to identify their natural frequencies and mode shapes 

2.2.1 Analytical Solutions 

The exact analytical solutions, which are only available for a few simple 

cases, provide an invaluable basis for comparison when assessing the validity of 

numerical methods. The starting solution for a simple stationary blade is obtained 

from the classical Euler-Bernoulli beam [190] with cantilever boundary conditions 

for bending vibration and SI. Venant's non-circular rod for torsional vibrations [190], 

[191]. 
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Typical examples using a classical approach of solving the differential 

equations of motion of a cantilever blade under very simplified conditions are Ward 

[204], Wrinch [211], Meyer [116] on tapered beams and Sutherland and Goodman 

[176] on the effects of shear and rotary inertia. Energy methods of continuous 

systems are very powerful in the solution of turbine blade problems. Different 

versions of energy methods are Rayleigh [26] Rayleigh-Ritz [42], Galerkin [141], 

Lagrange [83], Reissner [153], and Nemat-nassar [92] based on the basic Harniltons's 

principle. Other methods used for solving differential equations of motion of 

cantilever blades are Integral equation approach [94], Penurbation [109] and 

Collocation [141] procedures. The literature in this area is reviewed by Rao [142, 

144, 145 and 146]. 

Discrete model approaches were widely used to obtain solutions of turbine 

blade vibration problems. Methods employed, such as Holzer and Myklestad, use a 

trial and error procedure to determine the frequencies. The applications of these 

methods can be found in [178, 158, 90, 152] on Holzer-Myklestad, [113, 114] on 

Station Function method, [187, 132, 179] on Matrix method, [30, 31] on Finite 

Difference and [47, 183] on Finite element method. 

2.2.1.1 Timoshenko Theory 

A large amount of the published literature on vibration of beams is limited 

to Bernoulli-Euler theory which does not account for the effects of shear deformation 

and rotary inertia. The concept of rotary inertia was introduced by Rayleigh and 

later extended by Timoshenko who, using conventional Newtonian approach, 

obtained an equation allowing for both shear deflection and rotary inertia. 

Boley and Chao [20] obtained some solutions of the Timoshenko beam 

equations under four types of loadings using Laplace transformation, taking into 
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account of the effects of shear deformations and rotary inertia. A comparison with 

the corresponding results of the Bemoulli-Euler theory were briefly presented. 

Studies using very similar methods were reponed by other authors [43, 1l7, 194]. 

After demonstrating the application of Rayleigh-Ritz and Galerkin methods 

in the solutions for a hinged-hinged beam [74], Huang [75] obtained the solutions for 

free flexural vibrations of finite beams including the effects of shear and rotary 

inenia for various cases of simple beams. Similar work were reponed by other 

authors [35, 12, 77, 41, 7, 48, 74]. 

Lee [93] applied an extended minimum principle and the Schwanz integration 

method to flexural vibration of a wedge with rotary inertia and shear. The upper and 

lower bounds of the first two eigenvalues were established. The effects of rotary 

inenia and shear were clearly demonstrated against the classical Kirchhoff solution. 

Hutchinson and Zillmer [78] developed an exact solution for the vibrations 

of rectangular parallelepiped. They [79] also used this solution as a basis of 

comparison for the Timoshenko beam theory and a plane stress approximation 

developed in their work. 

2.2.2 Effects of Taper 

The feature of taper in turbine blade vibration has been studied by many 

researchers. Lateral vibrations of cantilever beams with variable cross-sections were 

studied as early as 1888 by Meyer [116]. The solutions of this problem were sought 

in the following years by many others such as Ward (1913) [204], Wrinch (1922) 

[211], Conway (1946) [39] Nobuo (1957) [124], Wang (1966) [201], Downs (1977) 

[49], Arvind and Gupta (1985) [11]. 

19 



Review of Previous Work 

Exact solutions are given by Cranch and Adler [32] for beams ranging 

linearly in both depth and width. Taylor [180] gave power series solutions of blade 

natural frequencies for the case of a uniform beam and a completely tapered beam. 

Mabie and Rogers [104] solved the differential equation of vibration of tapered 

beams with different boundary conditions using Bessel functions and tabulated the 

results of the fIrst fIve vibrational frequencies for different breadth and depth taper 

ratios. 

Rao [140] used the Galerkin method to calculate the fundamental natural 

frequencies of beams tapered in depth. A computing process employing Ritz

Galerkin meth.od was used by Rao and Camegie [149] to determine the fIrst three 

lateral frequencies of tapered cantilever beams. 

Collocation method was applied by Rao [141] to obtain fIrst three natural 

frequencies of tapered cantilever beams with rectangular cross-section and showed 

close agreement with the results produced by the Ritz-Galerkin process. Banks and 

Kurowski [14] solved eigenvalue problem of the transverse vibration of double 

tapered beam with different boundary conditions following McKenna' s [111] 

approach. 

A variety of numerical methods have been used. Myklestad [120] presents 

an approximate method for calculating the frequencies and mode shapes of cantilever 

beams. The beam is modelled as a series of lumped masses and results are obtained 

by an iterative calculation procedure. Myklestad notes that for accuracy in the higher 

modes, at least eight signifIcant fIgures are required in the calculation. Thomson 

[187] uses a similar method to Myklestad but models the tapered beam as a series 

of uniform stepped segments. Housner and Keightley [73] applied the Myklestad 

procedure to determine the fIrst three modes of a tapered beam. 
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Finite element solutions, using Euler theory, for various assumed deformation 

shapes are given by Lindberg [99], Klein [87], Krishna [88] and Krishna and 

Prabhakara [89]. None of the solutions given are particularly accurate and those of 

Krishna and Krishna and Prabhakara, who assume a linear displacement function, are 

at best poor. 

Downs [49] uses dynamic discretization to calculate the frequencies, mode 

shapes and stress distribution patterns for cantilever beams possessing both linear 

width and/or depth taper. Results are presented for both Euler and Timoshenko 

theory and comparisons with exact solutions wherever available show the method to 

provide results of extremely high accuracy. 

Most published analytical results for tapered beam elements have been limited 

to a few cross-sectional shapes and simplest sets of end conditions. Arvind and 

Gupta [11] derived the stiffness and consistent mass matrices for tapered beam 

elements of any cross-sectional shape. The utilization of these stiffness and mass 

matrices of good accuracy would enable designers to minimise the effons involved 

in computing the dynamic response of tapered beams to arbitrary forcing functions. 

Bernoulli-Euler theory and Bessel functions were used by Banerjee and 

Williams [13] to obtain explicit expressions for the exact dynamic stiffnesses for 

axial torsional and flexural vibrations of a range of tapered beams. These exact 

dynamic stiffnesses enable members with taper to be included in exact frequency 

calculations. However, shear deflections and rotary inertia were neglected and the 

effect of any axial force on the flexural behaviour had also been neglected. 

Torsional vibration of cantilever tapered beams with various cross-sections 

were investigated by Walker (1938) [199], Vet (1962) [195], Rao (1965) [139], Rao, 

Belganrnkar and Carnegie (1970, 1972) [147, 151]. 
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2.2.3 Vibrations of Rotating Blades 

The simplest representation of a rotating blade is a uniform, straight, 

cantilever beam having vibrational displacements which are perpendicular to the 

plane of rotation. The radially directed body force adds to the elastic restoring 

forces, causing the square of the natural frequencies to increase approximately 

proportional to the square of the rotation speed. This eigenvalue problem is widely 

formulated and can be found in several vibrations textbooks. The differential 

equation is linear, but has variable coefficients. No exact, closed form solution is 

known. 

In a relatively early paper Boyce [22] showed how the problem could be 

generalized to accommodate a finite disk radius, and how upper and lower bounds 

for the frequencies can be determined. Another early, related paper is the one by 

Plunkett [132]. Sutherland [175] demonstrated in an early paper the effects of a 

destabilizing (i.e. frequency reducing) body force arising due to the local component 

of circumferential displacement, on natural frequencies when the beam vibrates in the 

plane of rotation. The approach was later generalized by others to account for 

motions having components in both directions [102, 19, 161, 101]. 

A lot of work has been carried out by Carnegie [30, 27, 28, 29, 148, 150, 

152] to treat the vibrating blade as a beam in a thorough and rational manner, 

especially for the general types of blades having both camber and pretwist and 

therefore, coupling among all modes. His early analytical works [27, 28, 29] were 

principally devoted to deriving consistent and complete sets of equations of motion. 

Subsequently Rao [148, 150, 152], BaneIjee [13] and others [100,115,118, 119, 134, 

138, 192, 197, 203, 205, 207] have done much to establish the effects of pretwist, 

camber, taper, and hub radius, together with rotational velocity, upon the free 

vibration frequencies and mode shapes of rotating, beam-like blades. 
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Coriolis effects have been included by a number of analysts [28,29, 148, 150, 

197, 9, 8, 82], yielding differential equations of motion which are nonlinear. 

However, there appears to be considerable disagreement concerning the importance 

of these effects in blade vibration problems. 

The most simple two-dimensional model is the rotating rectangular plate 

which is particularly well suited to represent the chordwise bending modes of a 

blade, which beam models cannot predict. However, other modes will be poorly 

estimated due to the lack of both camber and twist. This problem received excellent 

treatment by Dokainish and Rawtani [46] who showed the effects of rotation velocity, 

disk radius, aspect ratio, and "setting angle" (angle between the normal to the plate 

and the axis of rotation). Results for this problem were also obtained by Henry and 

Lalanne [70] and by Nagarnatsu and Michimura [122], and equations of motion were 

derived by Wang [202]. 

The problem of a rotating, cantilevered, shallow, circular cylindrical shell of 

rectangular planform was analyzed by Leissa, Lee, and Wang [97], thereby showing 

the effects of the various parameters on a cambered blade. 

Almost all of the two dimensional analyses described above used the finite 

element method. This approach is, of course, widely used in all areas of modem 

structural analysis, and is particularly well suited to cope with blades of general 

configuration, including arbitrary curvatures and pretwist, variable thickness and 

irregular shapes. 

All three dimensional analyses of rotating turbomachine blade vibrations to 

date have been by means of finite element models. This typically entails utilizing 

"solid" or "brick" elements containing nodal points through the thickness, as well as 

along the middle surface coordinates of the blade. These elements are well suited 
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for thick blades, but lack accuracy for thin blades. 

The fIrst known application of three dimensional finite elements to the present 

problem was by Bossak and Zienkiewicz [21] who applied their isoparametric 

element to the rotating flat plate problem. Almost simultaneously Thomas and Mota 

Soares [185] demonstrated the "super-parametric" element on the rotating twisted 

plate, and presented further results for this problem, as well as for the cambered shell 

having taper across its width, in subsequent papers [186, 184]. 

Although the use of three dimensional finite elements typically results in a 

large number of degrees of freedom, with correspondingly large eigenvalue 

determinants, there are techniques available for reducing the size of the problem. 

One procedure is to eliminate tangential inertia, from consideration. This technique 

is effective for shells having shallow curvature [95]. However, it also results in the 

loss of blade modes which are predominantly chordwise displacements. Another very 

useful procedure reduces the numbers of degrees of freedom by eliminating some 

(and even most) of the nodal displacements in favour of certain "master" 

displacements [21]. 

2.2.4 Effects of Pretwist 

If the blade has pretwist, uncoupled bending modes in flapwise and chord wise 

directions are not possible. Both the lateral deflections are always coupled and 

coupled bending-bending vibrations occur. In addition there is a modifIcation of 

beam bending and torsional stiffness properties due to pretwist. The modifIcation of 

beam stiffness properties is considered by Chen Chu [34], Goodier and Griffin [66] 

and Downs [80] and the coupling of modes clearly demonstrated. 

There are a large number of publications dealing with the free vibrations of 
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pretwisted beams having rectangular cross-sections [96]. In many cases the beam 

theories used are capable of handling cross-sections of arbitrary shape, such as the 

aerofoil proftles of turbomachinery blades. In a few cases shear deformation and 

rotary inertia, which decrease the frequencies, are accounted for and become 

important for the flap wise bending modes of thick beams and for the edgewise 

bending modes of thin or thick beams. 

The application of beam theory for purposes of vibration analysis is limited 

to relatively long and thick blades. For short and thin blades two dimensional 

mathematical representation is required. 

Twisted plates which gIve close presentation of thin turbine blades have 

received considerable attention by researchers. In an early paper Reissner and 

Washizu [157) applied shallow shell theory to the torsional vibrations of thin plate 

having small pretwist angles. They showed that a relatively small amount of pretwist 

may have a considerable effect on the torsional frequencies of thin, twisted plates. 

Leissa, Lee and Wang [98) developed a shallow shell theory for blades of 

arbitrary curvature, and used the Ritz method with algebraic polynomial 

displacements for the case of a twisted plate. One advantage of the Ritz method is 

that the chosen displacement functions need not satisfy the free edge boundary 

conditions. 

Deep shell theory was applied to the vibrations of twisted plates by Petricone 

and Sisto [129,130], using right helicoidal shell co-ordinates. Numerical solutions 

were obtained by the Ritz method with orthogonal, algebraic polynomials for the 

displacements. 

Large amount of studies on twisted plates were carried out using two or three 
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dimensional fmite element methods. In some early work by Rawtani and Dokainish 

[155, 156,47] partially conforming, triangular plate elements were used. Nagamatsu 

and Michimura [122] also used triangular elements. MacBain [105] used 

quadrilateral plate elements. Shell elements have also been used [199, 167, 193]. 

Three dimensional finite element analyses of vibrating twisted plates were reported 

in [185, 128, 6]. 

2.2.5 Root Flexibility 

Though a turbine blade is loosely mounted on the disk, the root gets 

encastered due to the centrifugal force, thus almost satisfying the cantilever fixed end 

conditions. A few researchers have considered the effects of elastic, rather than 

fixed, constraints at the root [23, 119, 165]. Still others have treated the blade 

having one end pinned (i.e., simply supported) and the other free [18, 65, 159]. 

Several have modelled attached shrouds by suitable lumped masses [118. 138, 197, 

65]. Quite a few have included the effects of shear deformation and rotary inertia 

in their analyses [28, 118, 138, 192,203,65,9], thereby making them applicable for 

relatively shorter blades. 

Effect of hub radius on the vibrations of a uniform bar was studied by Boyce 

and Providence (1956) [23] using the Rayleigh-Ritz method and the Southwell 

technique. The study showed that the frequencies depended almost linearly on the 

hub radius for various rotational speeds. 

In calculating coupled bending and torsional vibrations in a twisted, rotating 

blade, Montoya (1966) [119] assumed the fixing plane of a fir-tree root mounting 

at the narrowest point directly above the first scallop. This treatment considered the 

flexibility of a large part of the root in the calculation and proved to be a close 

representation. This technique was adopted in this study. 
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2.3 Coupled Blade Vibrations 

It is now widely recognized that the vibration of turbornachinery blading 

cannot be adequately described by the analysis of a single blade. In order to be able 

to predict the vibration of blades under operating conditions, and to interpret 

measurements of vibration actually experienced, it is necessary to consider the 

behaviour of the complete bladed disk assembly. 

2.3.1 Bladed Disk Assemblies 

Considerable research has developed methods for the vibration analysis of the 

complex shaped blading of modem turbomachinery. However, the analysis on the 

complete bladed disk assembly in order to study turbine blade vibrations is not well 

established, the main reason being that inter-blade coupling through the disk and 

shroud contributes significantly to the nature of the basic vibration properties. 

Early attempts were made by Stodola (1927) [173] and Smith (1949) [164] 

to study these vibration characteristics, but full solutions of the equations were not 

obtained. While the vibrations of a rotating disk are well known from classical 

studies, the geometry and method of attachment to the shaft, and of the blades are 

all influencing factors on the behaviour. The coupling between the turbine disk and 

blades causes the blade packet to exhibit more complex vibration than previously 

considered. Although it is the intention of this project to study the inter-blade 

coupling through disk, it is important to introduce the work done on this subject, 

because this coupling will inevitably exist in the experimental model of blade packet 

assemblies. 

2.3.1.1 Mistuning 
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No survey of this important subject can be complete without a discussion of 

the phenomenon of mistuning. Under certain excitation conditions, the nominally 

identical blades on a rotor stage do not experience equivalent response amplitudes 

[3]. This is contrary to theoretical predictions made on the assumption that all the 

blades on a stage, having been designed to the same specifications, are practically 

identical. But in reality, the inevitable small differences among such blades can 

greatly affect their vibration characteristics when they are coupled together. 

The recognition of blade-to-blade differences in modal characteristics dates 

back at least 20 years when Whitehead [208] considered its influence on torsional 

flutter of a system of blades represented as single degree-of-freedom oscillators. An 

upper limit to the effect of mistuning was found, which shows that the amplitude on 

one blade may increase by a factor of roughly \.2(1 +EN), where N is the number of 

blades in the row. Under normal circumstances, the amplitude will not increase by 

more than about 20 percent. 

The effects of mistuning of the blades around the disk have been considered 

by a number of researchers [8, 209, 51, 168, 54, 62, 85, 1,56]. While it is known 

that mistuning can lead to stress increases, there is no consensus on the magnitude 

of such escalation. Various figures have been presented from 1.55 increase over the 

tuned state in [61]; 2.21 in reference [67] and 2.82 in [50]. 

A series of papers have discussed this at various conferences to determine 

how closely tuned a set of blades should be to minimise forced response levels, but 

to avoid flutter. Several authors in the volumes edited by Ewins and Srinivasan [53] 

(1983), and Kielb and Rieger [86] (1985) made useful contributions to this field. 

Included in the first volume is a useful paper by Afolabi [3] who resolved 

some of the contradictions in the forced response characteristics of mistuned 
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assemblies reported by previous research [61, 67, 50, 209]. This was based on 

dividing the response spectrum of the blades on the disk into three classes, and 

making a critical study of the vibration characteristics of each. It agreed that the 

blades with maximum mistuning are most likely to experience maximum amplitudes, 

except in the cross-over zones between classes IT and III. 

2.3.1.2 Mode Splitting 

Dual mode or mode splitting phenomenon is one of the effects of mistuning. 

Ewins [55] found this phenomenon in an effort to study the effects of mistuning and 

damping on vibration characteristics of bladed disk assemblies. It was found that the 

mistuning of a bladed disk resulted in a natural frequency splitting in certain of its 

modes of vibration and, further, that deliberate detuning might be employed to induce 

such behaviour or, equally, to suppress it. 

Experimental study carried out by Stange and MacBain [171] on a simplified 

bladed-disk model confirmed the phenomena. It was found that, apart from many 

of the same vibratory characteristics as a perfectly tuned disk, a disk with some 

circumferential variation in mass (or stiffness or damping) will exhibit dual resonant 

modes each of which will have slightly different frequencies and a preferred 

orientation with respect to the disk. 

2.3.1.3 Rogue Failure of Turbine Blades 

Another effect of mistuning combined with excitation is rogue failure of 

turbomachine blades. The localization of vibrations due to the influence of small 

structural irregularity was studied by many researchers [56, 2, 71,72, 15]. It has 

been shown that, for weakly coupled systems, structural irregularity leads to the 

confinement of vibration to the vicinity of the source, for all modes of vibration. 
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The vibration confinement is closely related to the problem of rogue blade failure in 

turbomachinery . 

Isolated failure of one or two blades has been known to occur at a service life 

that is well within the predicted safety limit. Subsequent examinations of the failed 

blades have revealed in such cases that they suffered vibration at excessively high 

stress levels while all other blades on the same stage were still stressworthy. The 

blades exhibiting such a markedly different behaviour are referred to as "rogue 

blades" [174], while the failure itself may be termed a "rogue failure", to differentiate 

it from other types of failure such as the conventional "fatigue failure". or failure due 

to "foreign object damage". 

The two main characteristics which distinguish a rogue failure from other 

modes of failure are (a) the severe localization of vibration around only one or two 

blades, so that while the failed blades are vibrating at dangerously high levels, all 

other blades on the same disk are virtually at rest and (b) the amplitudes of the failed 

blades are several times larger than expected. 

Using receptance analysis on a lumped mass parameter system, Afolabi [5] 

reported that vibration localization phenomenon had been shown to exist in bladed 

disk assemblies with stronger inter-blade coupling. Under certain unfavourable 

conditions, the forced response amplitudes of nominally identical blades become 

extremely unequal. At such times, severe vibration is localized around one or two 

blades. When the localization is compounded with a substantial amplitude increase, 

an unexpected failure of some rogue blade could result. 

2.3.2 Vibrations of Blade Packet Assemblies 

Another aspect of the vibrations of turbomachine blading is the effects of 
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grouping blades into packets by inter-blade connecting elements at mid-span or the 

tip of the blades. The blades are in general connected by shroud rings or lacing 

wires, so as to form packets. The failures of these blade packets have given rise to 

the theoretical consideration of blade packet vibrations. A packet of blades vibrates 

in such a way that the independent modes of the blades and shroud are coupled and 

therefore exhibits more complex dynamic behaviour than a free-standing blade. 

The first determination of the group frequencies and mode shapes of a six and 

a twenty-blade group was reported by Smith [164] in 1948. He made a two 

dimensional free vibrational analysis in the tangential direction using the dynamic 

stiffness matrix method. The blade was treated as a beam and was separated from 

covers at their joints. The equilibrium equations were written in terms of the blade 

tip deflections and slopes. It was significant in that he established the approach and 

identified the group frequencies for the first time, but the analysis was limited as it 

was a two dimensional beam model. In addition, the exact solutions were not sought 

owing to the algebraic complexity of the resulting form of equations. Ellington and 

McCallion [52] simplified Smith's analysis by using finite difference calculus to the 

special case of a blade group with a tie wire which joins the blade tips together. 

The first well-known blade group design paper was by Prohl [136]. He 

presented a method of calculating natural frequencies, mode shapes and bending 

stresses for three dimensional free and forced vibrations in the tangential and axial 

directions. The blade group was modelled by lumped masses and concentrated 

inertias and the blade was broken into n stations and the mass of one cover section 

was added to the tip blade section. A modified Holzer technique was used to 

calculate the natural frequencies and mode shapes. This analysis followed the 

approach of Smith and is extended to consider axial and torsional vibrations, but 

higher order effects and more importantly the coupling between bending and torsion 

motions of the blade was disregarded. Other studies into blade group were reported 
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in [206, 162, 143]. 

The method of analysis by Prohl was developed by Deak and Baird [42] for 

calculating a laced group of rotating exhaust blades. It included three dimensional 

coupled tangential and axial free vibrations with root stiffness. This method gives 

all of the natural frequencies and mode shapes including both flexural and torsional 

motions. The importance of the effects of disk and centrifugal stiffening in long 

exhaust blades was clearly demonstrated. Blade to blade coupling does occur 

through the lacing wires. The frequencies calculated by this method were compared 

with experimental results with good correlation. Some judgement was required to 

define the effective point of fixity in the disk rim and the effective lacing wire 

constraints. The complicated root of the blade was replaced by an equivalent beam 

encasement 

Same as Prohl's approach, the blade was represented by a senes of 

concentrated masses connected by rnassless elastic elements. For blades with 

complex profile this approach is not able to provide detailed analysis on complicated 

mode shapes of coupled modes. In addition great efforts are required to obtain the 

solutions of eigenvalue equations, which presents the difficulty in its applications. 

Huang [76] developed a computational procedure for calculating the free 

vibration of rotationally periodic structures with various types of connecting elements 

using transfer matrix method. The equations of motion for coupled bending and 

torsional vibration of a twisted blade proposed by Montoya [119] were adapted to 

calculate the dynamic stiffness matrix. Circumferentially closed packets of turbine 

blades coupled by lacing wires in different connections were calculated. The forced 

vibration and condition of resonance of a closed structure of blades on a disk under 

time-periodic excitation were discussed. 
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The vibration characteristics of blade group due to inter-blade coupling were 

not discussed and the effects of damping by lacing wires were not included. As the 

structure was considered as periodically closed, a lot of group frequencies could not 

be reflected in the study. Other work on rotationally periodic structure were reported 

by Cmolnickov [37], Pfeiffer [131] and Namura [123]. 

Butkovic [24] obtained an expression of the stiffness coefficient between 

blade and damping wire. The first natural frequency of tangential vibrations of ten 

blades grouped and tied by a damping wire with assumed contact stiffness between 

blades and damping wire were calculated by using finite element technique combined 

with transfer matrix method. Then the contact stiffness were verified by comparing 

the calculated natural frequencies with the ones obtained in tests. The use of the 

stiffness coefficient in other modes of vibration is in doubt as its justification was 

only based on the first tangential mode where the displacements of all blades in the 

group are in phase. Blade to blade coupling due to damping wire was not considered 

in this work. 

The finite element method was used by Thomas and Belek [182] to study the 

vibration characteristics of a packet of shrouded blades of rectangular cross-section. 

The beam elements were given flexural and extensional degrees of freedom. A 

method of predicting the frequencies of vibration of a blade packet was introduced. 

The effects of various blade-shroud weight, flexural rigidity, and length ratios 

between the blades and shrouds on the blade packet frequencies of vibration were 

investigated. The results presented show close agreement with experimental results 

and good comparison was made with other research results. It concluded that the 

general behaviour of a packet of blades could be predicted from a frequency 

inference diagram plotted for a two-bladed packet 

Same as the work reported by Smith [164] and Prohl [136], the shroud was 
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attached to the tip of the blade. Therefore, the conclusions made may not represent 

the dynamic characteristics of tie wire laced at pan-span of the blade. Comparing 

the methods introduced above with each other, the finite element method is seen to 

be ideal for the dynamic analysis of blade packets. 

Nagarajan and Alwar [121] used three dimensional isoparametric quadratic 

elements to analyze the vibration of blade packets. As the packets were considered 

to be three dimensional structures, all the natural modes were determined, including 

the packet modes due to the presence of the shroud. These were found to occur both 

in bending and in torsion. The vibration characteristics of two different blade 

packets were considered in the paper. The first was the same as modelled by 

Thomas and Belek. In addition to the modes previously identified, torsional batch 

modes were obtained. The second packet considered consisted of two thick curved 

steam turbine blade connected by a shroud. The mode shapes and natural frequencies 

were obtained, and could be clearly classified. It showed that high precision element 

can represent effectively the true aerofoil surfaces of blades and give torsional batch 

modes in addition to the batch modes in bending, it could be of considerable use in 

further detailed studies of blade packets. 

Mayer [ll 0] investigated the vibration behaviour of an axial blading 

connected by lashing pins, cover bands or shroud segments using numerical 

calculations and by experiments. Natural frequencies and natural modes taking into 

account centrifugal effect are calculated using the finite element method combined 

with the wave propagation technique [112, 181], which largely reduces the number 

of degrees of freedom. The experiments were carried out using semi-conductive 

strain gauges and a special process technique. Good agreement were found between 

computed frequencies and measured resonant frequencies for the different 

configurations. 
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The study above was confined to fixed configurations of blade packets with 

periodically closed connections. It showed that finite element analysis is a very 

powerful tool in studying vibrations of blading. However, the study did not fully 

reveal the effects of connecting elements in packets and their dynamic characteristics 

due to limited configurations. 

A number of studies based on previous work was reported by Ewins [58, 60] 

of the effects on bladed disk vibration properties of grouping blades into packets by 

inter-blade elements. A simple mass-spring model [50] was used to establish the 

relation of dynamic characteristics between simplified models of packeted bladed 

disk assemblies and a continuously shrouded bladed disk. It showed that most of the 

packeted assembly modes did not have the simple nodal diameter shape as in the 

case for a continuously-shrouded assembly. Instead, each mode contains several 

diametral components. Certain modes were split into pairs with different natural 

frequencies due to packeting and the mode to split was related to the number of 

blades in each packet in the assembly. This work demonstrated that judicious 

manipulation of blade numbers, or packet numbers, may well minimise the forced 

vibration levels of a given assembly at known and unavoidable engine order 

excitations. 

2.4 Conclusion 

It can be seen that a great amount of work has been carried out to study the 

dynamic characteristics of turbomachine blading. Some representative work reported 

are reviewed here in order to set the background for this research. 

Blade vibration analyses have traditionally focused on the properties of a 

single blade cantilevered at its root. Although we are not really concerned here with 
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the vibration properties of isolated blades, they are of important relevance to those 

of blade packets, because the latter are conveniently grouped into families of modes, 

each of which is associated with a parent blade mode. Thus, while the natural 

frequencies of a single blade do not necessarily provide good estimates of those for 

an assembly, it is appropriate to know them and their associated mode shapes. 

Traditionally identified as flap, edgewise or torsion cantilever modes, the modes of 

many modem blades are less easily categorised because current designs are so 

complex in shape that motion in all three directions becomes highly coupled and 

many modes can only be classified as 'bending-bending-torsion'. 

In their working environment, blades form part of an assembly - in the 

simplest case consisting of a packet of blades connected by a shroud band, but more 

generally as complete stage or bladed disk with several packets. For many such 

assemblies, the useful vibration data are those which relate to the whole assembly. 

The vibration of blade packets are very different from that of a free standing 

blade due to the coupling through the blade disk and the inter-blade connections. 

While the former has received a lot of attention in recent years, the understanding 

of the latter was found to be inadequate, especially in the cases with part-span lacing 

wires, as shroud bands or lashing pins have received some good investigations. 
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Shroud 

Blade 

Figure 2.1 Typical shrouded fan blade 

Figure 2.2 Typical blade cross-sections 
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3.1 Introduction 

The study of dynamic characteristics of turbine blading with lacing wires was 

carried out using three powerful vibration analysis techniques. They are Modal 

Testing, Electronic Speckle Pattern Interferometry (ESPO and Finite Element 

Analysis. Modal testing and ESPI were used to establish dynamic characteristics of 

turbocharger blades. Finite element modelling was carried out to build up 

mathematical presentation of the blades. The dynamic characteristics of the FE 

models were justified by experimental results. In order to study and establish the 

vibration feature of the blades, it was considered necessary to employ all three 

methods because each method has its own limitation and disadvantages. 

The first two methods are experimental techniques which are able to identify 

dynamic characteristics of a mechanical system. Modal testing technique requires 

attachment of transducers to the mechanical structures under test hence introducing 

mass modification into the system. This modification may result in large errors in 

detected dynamic characteristics if, for instance, the effective mass of the system 

under testing is relatively small. Moreover, the sensitivity of accelerometers varies 

with the direction of their movements. In the cases where displacements are not 

completely in line with the principal axis of accelerometers some displacement 

components are not seen by the accelerometers and great care is required in 

interpreting modal testing results. 

ESP! technique detects displacement of a structure by processing 

interferometry pattern of laser speckle reflected from the surface of the structure 

under testing. It does not suffer from mass modification owing to the attachment of 

transducers but for the type of ESPI used in this study, its sensitivity only lies in the 

axis of the camera lens. 
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Mathematical modelling of vibration of turbine blades with a lacing wire was 

carried out using the fmite element method. Close presentation of turbine blade 

geometry in F.E. modelling was made difficult by aerodynamic profile of the blades. 

Assumptions had to be made in modelling at blade-disk and blade-lacing wire 

interfaces. 

The discussion above clearly reveals that an in-depth understanding of all 

techniques used plays an important role in correct interpretation of experimental and 

theoretical results. This chapter will introduce some basic concepts and principles 

of the three techniques used in this study. 

3.2 Modal testing 

Modal analysis is the process of determining the inherent dynamic 

characteristics of a mechanical system (natural frequencies, damping factors, and 

mode shapes) and using them to formulate a mathematical model of the system's 

behaviour. The analysis is based on the fact that the vibratory response of a linear 

system can be expressed as the sum of a set of simpler constituent motions, called 

the natural modes of vibration. The degree of participation of each mode in the 

overall motion is determined by the properties of the excitation source. This 

principle of modal superposition was first used by the eighteenth-century 

mathematician Daniel Bemoulli in the analysis of distributed parameter systems. 

Modal analysis embraces both analytical and experimental techniques. The 

rapid development of data acquisition and processing capabilities has led to major 

advances in the experimental aspect of the field, which has become to be known as 

modal testing. 
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Structural frequency response testing, also known as 'modal analysis', has 

become an integral part of the development and testing of a wide range of industrial 

and consumer products [69]. It is an essential tool for the definition and solution of 

many types of structured dynamics problems, such as fatigue, vibration and noise. 

Ewins has given a complete discussion on modal testing in his book [59]. 

Most structures vibrate. In operation all machines, vehicles and buildings are 

subjected to dynamic forces which cause vibrations. Very often the vibrations have 

to be investigated, either because they cause an immediate problem or the structure 

has to be 'cleared' to a 'standard' or test specification. For instance, the blading in 

large turbocharger is subjected to vibration excitation origination from pulsations in 

the exhaust gas stream coupled with the blade pass frequencies. This raises a 

problem to be overcome in the design and operation of turbomachinery: the 

prevention of excessive blade vibration levels under operation conditions. Therefore 

the investigation into blading vibration is required. 

Two of the analysis methods in structural frequency response are signal 

analysis and system analysis. The signal analysis is the process of determining the 

response of a system, due to some generally unknown excitation, and of presenting 

it in a manner which is easy to interpret. The frequency spectrum description of how 

the vibration level varies with frequency can then be checked against specifications. 

This type of testing will give results which are only relevant to the measured 

conditions. The result will be a product of the structural response and the spectrum 

of an unknown excitation force, it will give little or no information about the 

characteristics of the structure itself. 

An alternative approach is the system-analysis technique in which a 

dual-channel FFT analyser can be used to measure the ratio of the response to a 

measured input force. The frequency response function (FRF) measurement removes 
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the force spectrum from the data and describes the inherent structural response 

between the measurement points. A set of FRF measurements made at defined points 

on a structure can build up a picture of response. The technique used to do this is 

modal analysis. Simply stated, modal analysis is the process of characterising the 

dynamic properties of an elastic structure by identifying its modes of vibration. Once 

the dynamic properties of an elastic structure have been characterised, the behaviour 

of the structure in its operating environment can be predicted and, therefore, 

controlled and optimized. 

Modal analysis has been widely used for three reasons: 

1) Modal analysis provides experimental suppon for the verification and 

adjusting of the mathematical models of the structure. The mathematical models, 

which are equations of motions based on an idealized analytical model of the 

structure, are used to simulate and represent the dynamic performance of the 

structure. Their accuracy can be physically checked by experimental measurements 

on the actual structure. Although the mathematical model allows the designer to 

check the effects of changes in mass, stiffness and damping, the correct prediction 

of dynamic performance of the structure has to be given by the mathematical model 

which predicts the same behaviour that is actually measured. It is reasonable to 

extend the use of the model for simulation, thus reducing the expense of building 

hardware and testing each different configuration. This type of modelling plays an 

important role in the design process. 

2) Modal analysis is a powerful tool to locate structural weak points. It can be 

used to test the most effective product design for avoiding failure. This often 

eliminates the tedious trial and error procedures that arise from trying to apply 

inappropriate static analysis techniques to dynamic problems. 
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3) Modal analysis provides infonnation which is essential in eliminating 

unwanted noise or vibration. With the knowledge of the dynamic characteristics of 

the structure such as where are the natural frequencies and what are the mode shapes, 

further study can be carried out to remove the natural frequencies from the range of 

the excitation or to limit the maximum amplitude within the safety requirement. 

3.2.1 Modal Properties 

Most vibration problems are related to resonance phenomena, where the 

operational forces excite one or more resonances. Resonances, or the modes of 

vibration, in the range of excitation are the potential problems. 

An important property of modes is that any forced or free dynamic response 

of a linear system can be reduced to a discrete set of modes. An FRF measurement 

made on any structure will show its response to be a series of peaks. The individual 

peaks, with identifiable centre-frequencies, indicating that they are modes. Each 

mode can be regarded as the response of a single-degree-of-freedom (SDOP) 

structure. It is known that each SDOF model is associated with a frequency, a 

damping coefficient and a mode shape. These are the Modal Parameters: 

• modal frequency 

• modal damping 

• mode shape 

The modal parameters of all the modes, within the frequency range of interest, 

constitute a complete dynamic description of the structure. The modes of vibration 

represent the inherent dynamic properties of a free structure. (a structure on which 

there is no forces acting). 
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3.2.2 The Frequency Response Function 

One very efficient model of a linear system is a frequency domain model, 

where the output spectrum X(oo) is expressed as the input spectrum F(oo) modified 

by a system descriptor H(oo) 

X(oo) = H(oo)F(oo) 

This system descriptor H(oo) is called the Frequency Response Function (FRF), and 

is defined as: 

H(Ct.» = X(Ct.» 
F(Ct.» 

H(oo) is the complex ratio between output and input, as a function of 

frequency 00. The FRF can be considered as a complex weight. It operates on the 

amplitude and the phase of the sum of sinusoidal input signals and produces an 

output which is the sum of the modified sine waves with the same frequency, as 

illustrated in Figure 3.1. With linear systems, any input/output spectrum can be 

considered to be the sum of sinusoid functions. The FRF describes the dynamic 

properties of a system independent of the signal type used for the measurement. The 

FRF is therefore equally applicable to harmonic, transient and random excitation. 

3.2.3 The Fast Fourier Transform (FFT) Analyser 

Digital Fourier analysers are essential tools for modal testing. The ability of 

these systems to quickly and accurately measure a set of structural frequency 

response functions and then operate on them to extract modal parameters offers a 

powerful way to set up a modal model of the structure. A summary of the processes 

45 



Analysis Techniques and Theoretical Background 

in FFT analyser is shown in Figure 3.2 and is described as follows. 

The measured force input signal f(t) and displacement output signal x(t) as 

the function of the time, are both fed into the dual channels of the FFT analyser. 

These signals are digitized, filtered and sampled. The length of the time of recording 

and sampling rate determine the frequency range and the resolution of the analysis. 

Then signals are windowed (box A) to overcome the leakage problem which is a 

direct consequence of the need to take only a finite length of time history coupled 

with the assumption of periodicity. The window functions taper the data at both the 

beginning and end of each record to make the data more suitable for block analysis. 

The weighted sequence is transformed to the frequency domain as spectra, F(oo) and 

X(oo) in box B, by the used of a Discrete Fourier Transformation. They are complex 

which can be expressed as amplitudes and phases. Some averaging technique has to 

be used to remove some noise. Autospectra Off and On are obtained, as shown in 

box Cl and C3, by multiplying a spectrum by its complex conjugate and by 

averaging a number of independent products. A Cross Spectrum is calculated by 

multiplying the complex conjugate of one spectrum by a different spectrum (box C2). 

The Cross Spectrum is complex, showing the phase shift between the output and 

input, and a magnitude representing the coherent product of power in the input and 

output. The noise in either input (force) or output (response) can be removed during 

the averaging process of the Cross Spectrum. 

Cross Spectrum between the force and response, together with the Autospectra 

of the force and response provide the elements needed for FRF and Coherence 

estimates. 

To minimising the effect of noise at the output (response X(oo», the best FRF 

estimator is (box D 1) 
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in which averaging process of the Cross Spectrum reduces the noise at X(co). As the 

number of averages is increased, HI converges to the true H. 

Similarly, to minimising the effect of noise at the input (force F(co», the best 

FRF estimator is, as shown in box D3 

The input noise is removed from the Cross Spectrum during the averaging process. 

As the number of averages is increased, H2 converges to the true H. 

Since Gxr<co) can average out the noise components in either X(co) or F(co), 

the following inequality must be true if there are noise contributions in measured 

signals 

This relationship gives rise to the definition of the Coherence Function 

1 Gf.r(w) 12 

GJa(w)GJW) 

where 0 ~ ,,«CO)2 ~ 1 

At a frequency co, y is 1.0 if there is no noise in either F(co) or X(co); and is 
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zero if there is only noise in either measured signals. This is actually a parameter 

describing the degree of linear relationship between measured input and output 

signals. This property of the Coherence Function can be used to detect a number of 

possible errors in mobility measurements. 

3.2.4 Determination of Modal Parameters 

The modal frequencies are determined simply by observing the FRF. The 

spectrum exhibits high and sometimes sharp peaks at resonance frequencies, as 

shown in Figure 3.3(b). 

The determination of the modal damping is not so simple. Finding the 3dB 

bandwidth is one of those methods. But on a lightly damped structure, this method 

does not work accurately since the resonances are sharp and the peaks are too narrow 

for accurate measurements of the bandwidth on the structure. However, this problem 

can often be overcome by using the zoom facility to obtain sufficient frequency 

resolution for the measurements. 

The determination of mode shapes needs additional measurements on selected 

points over the structure. The imaginary part of the FRF spectrum indicates two 

facts: a) the height of the peaks represents the amplitude of vibration modes at the 

measuring point; b) the positive and negative signs of the peaks indicate that the 

amplitude of vibration modes is in or out of phase with the excitation at the 

measuring point. Therefore, the peaks in the spectrum describe the behaviour of the 

structure at the measuring point for different modes within the frequency range of 

investigation. Then measurements from selected points over the structure can define 

the mode shapes of the structure. 

This procedure is schematic ally demonstrated in Figure 3.3. A cantilever is 
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shown in Figure 3.3(a) where an accelerometer is mounted at positions A to C in turn 

and hammer impact is applied at position A. The imaginary part of FRF spectra of 

the cantilever including the first three natural frequencies with respect to three impact 

positions are given in Figure 3.3(b). The imaginary peaks of the spectra, 

representing the amplitude and the direction at the position of measurement are re

plotted in Figure 3.3(c) for each natural mode of vibration. The curves obtained by 

linking the peaks together give the mode shapes of fIrst three natural modes of 

vibration. This procedure was used in this study in determining the natural 

frequencies and mode shapes of turbine blades. 

3.2.5 Excitation of the Structure 

To obtain an FRF, the ratio of the input excitation transfonn to the output 

response transform, it is necessary to excite the structure with vibrational energy. 

The three most common ways of exciting a structure are transient, random and swept 

sine excitation. 

Transient excitation is most often achieved by using an instrumented hammer. 

A sharp blow given by the hammer will excite a range of frequencies. The sharper 

the impact, the larger the frequency range produced. The frequency range may be 

varied by adjusting the hammer tip material and the effective hammer mass. The 

maximum frequency limit that may be achieved using a hammer is about 5 kHz. 

The input force is measured by a piezoelectric force transducer situated just behind 

the tip of the hammer. The hammer impact test is quick, as the hammer impact point 

can be moved to determine the mode shape, inexpensive and can give excellent 

results. 

Large structures may become damaged if large peak forces are necessary to 

excite them. It should also be noted that a flexible structure can rebound when 
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struck causing a double hit on the hammer. Such a result is extremely undesirable 

and should be discounted. 

Another method of exciting transiently is to apply strain to the structure and 

then release it, thus exciting with a step function, which is theoretically continuous 

in the frequency domain, although in practice a perfect step function is not achieved. 

Random and swept sine excitation require the use of an electromagnetic 

excitor. The excitor is driven by a signal generator, usually incorporated within the 

FFf analyser. The excitor attachment is slightly more complicated in this case; a 

rigid attachment of the excitor to the structure will introduce a large extra mass. For 

this reason excitors are usually mounted so that force is transmitted through a needle 

or "stinger" which is flexible in the transverse direction. In this way the structure is 

free to move at this point in the five degrees of freedom other than the excitation 

direction. It should be noted that it is very important that the force transducer is 

located on the structure's side of the needle for a good reading. 

Random excitation, or pseudo random excitation when the signal is periodic, 

are good tests, as all the resonances over the frequency range should be covered. 

Zoom analysis is easy to perform, maximising the amount of energy going into the 

structure. The mounting of the piezoelectric excitor is the main problem as the 

connection to the structure needs to be rigid to minimise the input noise. For this 

test it is usual to move the response transducer around on the structure to determine 

the mode shape. 

Sine sweep testing is slower than random excitation as the sinusoidal signal 

has to be swept across the frequency range but the technique does get the maximum 

possible energy in to the structure hence producing a high signal to noise ratio. The 

rate of sweep may be controlled manually or automatically to get the best results. 

50 



Analysis Techniques and Theoretical Background 

3.2.6 Measurement of the Response 

The most common method of measuring the output transfonn, the response, 

is by measuring the structural acceleration at a point using an accelerometer and then 

electrically integrating the signal to find the displacement. A low mass accelerometer 

may be easily attached to the structure with wax and should not alter the modal mass 

greatly. An important point is to place the accelerometer in the correct orientation 

to measure the correct component of the acceleration. A typical modal testing set-up 

is illustrated in Figure 3.4. 

3.2.7 Instrumentation 

A Nicolet 660A dual channel Fast Fourier Transform (FFT) Analyser was 

used in this study, its control panel is shown in Figure 3.5. It has no storage 

capability and therefore, all experimental results were plotted using a Tek Tronic 

4662 plotter. The analyser was used to identity the FRF of turbine blades under 

impulse, sine wave and white noise excitations. 

The force transducer used was a Brnel and Kjaer type 8200. It is a 

unidirectional piezoelectric device with a nominal upper frequency limit of 20 kHz. 

It is shown in Figure 3.6 and its frequency response characteristics are shown in 

Figure 3.7. 

The accelerometer used was a Brnel and Kjear type 4374 as shown in Figure 

3.6. This is a unidirectional piezoelectric device which has a nominal upper 

frequency limit of 20 kHz. Its frequency response characteristics are shown in 

Figure 3.8. 
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B & K 2635 type charge amplifiers shown in Figure 3.6, were used to 

amplify the signal from accelerometers and force transducers. 

A Hewlett Packard 3330A frequency signal generator was used to generate 

sinusoidal signal between 0 Hz to 20 kHz. PAlOO power amplifiers were used to 

amplify the signal in order to drive exciters. They are shown in Figure 3.9. 

An instrumented hammer was used for the impulse excitation technique, as 

shown in Figure 3.6. Note that the force transducer is behind the hammer tip, in 

order to obtain the force reference as closely to the test piece as possible. The tip 

material used for the blade excitation is mild steel, whilst there are three tips shown. 

The mass behind the hammer may be altered depending on the amount of energy 

required to stimulate the structure. 

An electromagnetic excitor CLing Dynamic Systems model V201) was used 

for alternative excitation. The excitor has to be clamped to a rigid surface or 

suspended freely with a rigid attachment to the structure. Very low frequencies (of 

the order of 10 Hz) can not be produced by the excitor. The needle or stinger should 

be as thin as possible to minimise the input noise and extra mass, but thick enough 

to transmit sufficient energy. It was found that a needle diameter of 1.0 mm was 

suitable, whilst a diameter of 0.6 mm was too thin. 

Excitations were applied to test pieces using hammer testing, white noise and 

sine-wave sweeping excitations in the modal testing experiment. The test pieces 

were firmly clamped down on the surface of a vibration isolated test bench while 

they were excited. This was the case in both modal testing and ESPI experiments. 

In the ESPI testing, manually controlled sine-wave excitation was preferred in order 

to identify modal parameters. 

52 



Analysis Techniques and Theoretical Background 

3.3 Laser Interferometry Techniques 

Laser interferometry techniques which have been developed in the past 20 

years have offered additional powerful measurement tools for stress and vibration 

analysis. Holographic Interferometry (HI) and Electronic Speckle Pattern 

Interferometry (ESPI) are well known means for static and vibration analysis. They 

are different from accelerometers and strain gauges, as they are non-contact 

techniques, which gives the advantage that the structure under test is not modified 

by the addition of mass. 

The early vibration analysis by the wave reconstruction technique dates back 

to 1965 by Powell and Stetson [135] (1965) and a recent report was given by 

Lacitignola et al [91] (1986). Basic techniques of vibration measurement on disks 

and turbine blades using holography were described. To detect rotating objects such 

as the bladed turbine disk, a pulsed laser was used and derotating techniques were 

developed. A holographic vibration study of a rotating propeller blade using a 

spinning-hologram technique was reported by Sikora and Mendenhall [163] (1974). 

MacBain et al [107] (1979) presented another approach using pulsed laser 

holograph in conjunction with an image derotator. These methods are proved to be 

effective and they produce high resolution fringe pattern pictures. However, one 

significant restriction of HI is the need for the chemical processing of the data 

recording medium. Whilst the use of a high resolution medium gives better results 

than conventional ESPI, for many applications in engineering it is of more 

importance to be able to perform interactive analysis. This is different when it takes 

up to 15 minutes to process a holographic plate after exposing it. During 

experimental work interactive analysis can reveal more information than the analysis 

of a single frozen interferogram. What may take hours with holographic 

53 



Analysis Techniques and Theoretical Background 

interferometry takes minutes with ESP!. 

Early development of ESPI was reported by Butters and Leendertz [25] 

(1971). The method reported was based on Speckle Pattern Interferometry with 

optical to electronic interfacing by means of a modified closed-circuit television 

arrangement, which was the initial stage of ESP!. lones and Wykes [84] (1980) 

discussed general basis for the systematic design and optimization of ESPI, and 

Soares [166] (1986) gave a review on the improvements on ESPI techniques to 

further its technical capabilities and resolve some of the inconveniences of HI in 

industrial applications. A very good introduction to ESPI was given by Lokberg 

[103] (1980) who discussed the basic principles, modes of operation and applications 

of ESP!. 

3.3.1 Basic Principle of ESPI 

ESPI can be defined as image holography with an in-line reference beam 

where the TV system has replaced the film as the recording medium, while the 

reconstruction is done by electronic processing. 

Since optical layout of ESPI is similar to image holography and the later is 

a well know technique, a summary of the principle of ESPI is given below step by 

step as illustrated in Figure 3.10, where the two processes are compared. 

In Image Holography (IH) a coherent beam is split into two beams, an object 

beam and a reference beam. The object beam reflected from the object is focused 

onto or very close to the film. To get interferometric sensitivity (or to make the 

recording holographic) the reference beam also impinges on the film. The image and 

the reference wave interfere, creating very complicated patterns of closely spaced 

lines in the image of the object. The pattern is photographically recorded on the 
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film. The line spacing d in this interference pattern is given roughly by d = ')Je, 

where A is the laser wavelength and e is the angle between the two waves. In m 
this angle can be large as the resolution of the film can be down to 0.2 pm. If the 

object is vibrating during the exposure as shown in Figure 3.10, the averaged 

intensity of the interferogram is as shown in Figure 3. lOa. The fine variations 

represent the interference spacing, while the slowly varying envelope in the fringe 

contrast is caused by the optical path length variations due to object vibration. The 

film recording this interferogram is then converted by chemical development into 

corresponding variations in transmittance, refractive index or thickness. 

Comparing with the IH, the recording step in ESPI is identical. However, the 

poor resolution of the TV system, which is approximately a factor of one hundred 

lower, requires that the details in the interferometric pattern are within the resolution 

limit of the TV system. With a fixed wavelength, this can only be achieved by 

reducing the angle e between the object and reference waves. This is obtained by 

closing down the aperture of the imaging lens (to f:16 or smaller) and placing the 

reference wave in-line with the object wave (Figure 3.lOb). The last feature can be 

accomplished by using a beam splitter as shown in Figure 3.11. If the object vibrates 

in a similar way to Figure 3. lOa, the light intensity recorded by the TV system will 

also be similar except the fringe spacing (or the speckle) will be much coarser. The 

TV exposure results in a charge distribution across the target which is subsequently 

transformed into a proportional current variation by the TV scanning. This process 

takes the place of the exposure and development of the film in IH. 

3.3.2 Image Reconstruction 

In m the image reconstruction is achieved by placing the developed film, the 

hologram in the reference wave and covering the object wave. The reference wave 

going through the hologram, which is a fine complex grating, refract and reconstruct 
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the wave front of the object wave. Therefore, a reconstructed image of the object 

can be seen at the plate. Now considering the vibrating bar again, due to the 

vibratory movement the envelope of the fringe pattern at cenain position is very 

narrow (Figure 3.10a), which means that the pattern at certain amplitude values had 

very low or zero contrast. This results in a fringe pattern with light and dark regions 

covering the reconstructed object as the light intensity of the reconstructed object is 

roughly proportional to the fringe contrast in the hologram. The vibration amplitude 

across the object can be deduced from these patterns. 

In ESPI, the optical wave front reconstruction is replaced by electronic 

processing of the video signal (Figure 3.lOb, lower half). First, the DC component 

(and some low frequency noise) is removed by high-pass filtering with a lower 

frequency. Then the filtered signal is full-wave rectified. The effect of the electronic 

processing is to change the depth of modulation in the original video signal into 

corresponding high and low signals on a varying carrier. (The whole process is 

roughly equivalent to AM demodulation in radio receivers.) The processed video 

signal is fed into the TV monitor where the object covered with exactly the same 

bright and dark fringes as in holography except that the image is less well defined. 

Figure 3.11 b shows an ESPI recording of the vibration of a turbocharger 

blade. The blade vibrates in its fundamental flapping mode - a movement which is 

quite similar to the vibrating bar used as an example in Figure 3.10. The node at the 

base is the brightest or zero-order fringe; each bright fringe thereafter represents 

about a quarter wavelength increased amplitude. Thus we can interpret the fringe 

patterns just as we read the height contours on an ordinary map. The maximum 

amplitude at the tip of the blade to be 10/4 wavelengths which corresponds to 1.3 pm 

with f.. = 0.5146 pm. 

It is evident from Figure 3.11 b that ESPI gives a lower image quality than 
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holography, which limits the details and number of fringes which can be resolved 

across the image of the test object. However, this is outweighed by the advantages 

of TV registration, namely: real-time presentation, short exposure (normally 1/25 s 

t) and high repetition rate (25 Hzt). (t = European TV standard) 

As a result we observe the interferogram (almost) immediately after it has 

been recorded, with an exposure which is short compared to ordinary holography, a 

new hologram being created each 1/25 s. These properties, combined with the high

sensitivity, non-contact and nondestructive properties of the holographic method, 

make ESPI a unique measuring tool in its different modes of operation. 

3.3.3 ESP! and Vibration Measurement 

The main elements of a standard ESPI layout is shown in Figure 3.l1a. The 

beam from the laser is split into two by a beam splitter BS,. The reflected beam is 

expanded and used to illuminate the object. The object is imaged by a chopped

down lens system L through a wedge-shaped beam splitter BS2 on to the TV target. 

The transmitted beam through BS, is reflected by mirrors M, and M2, expanded and 

finally reflected by BS2 on the TV target in-line with the object-image wave (8S2 is 

wedge shaped to avoid back reflection hitting the object). The image-interferogram 

is then converted to a video signal, processed and fed to the TV monitor as explained 

earlier. 

Vibration measurement represents the most straightforward and common use 

of ESPI. The instrumentation is simple as only the basic elements in the set-up of 

Figure 3.l1a are necessary to obtain fringe patterns as shown in Figure 3.l1b. Real

time presentation is very useful for vibration measurements as the effects of varying 

parameters such as frequency, phase and excitation level can be observed 

instantaneously. The combination of short exposure and high framing rate makes the 
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system very insensitive to external disturbances and object instability. 

3.3.4 Instrumentation 

The ESPI device VIDISPEC used in this study was developed at 

Loughborough University and manufactured by Ealing Electro-Optics. Its optical 

path and basic components are very similar to that shown in Figure 3.l1a using a 10 

mW HeNe laser. In addition, it has a powerful digital store and an electronic 

processor to enhance image quality. 

Figure 3.12 shows the Optical Unit of the VIDISPEC System mounted at the 

end of a vibration isolated testing bench, with its top cover removed to reveal its 

components. It is capable of illuminating objects up to 300 mm diameter. 

VIDISPEC measures the deformation of displacement of an object in a direction 

defined by the illumination and viewing geometry. In its standard configuration, the 

instrument is sensitive only to out of plane displacement. Any movement from 0.3 

to 12 micrometres (pm) can be accurately measured. However, by re-referencing the 

system at 12 pm intervals, deformations over a very much wider range (up to the 

point of destruction if necessary) can be monitored. VIDISPEC was used to identify 

modes of vibration of turbine blades in this study. A time averaged fringe pattern 

was obtained showing contours of constant vibration amplitude. The interval 

between contours is 1/4 of the wavelength of the laser light (0.3 micrometres with 

a HeNe laser). The performance of an object over a wide frequency range was 

explored very quickly using this technique. 

The Electronics Unit (known as the memory store) of the VIDISPEC System 

controls the mode of operations. It has 64K RAM individual chip memory and 256K 

RAM total memory with sampling rate of 9 MHz. Two modes of operation are 

available for different applications. The time averaged mode is achieved by freezing 
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only the reference beam in the memory store with the speckle pattern from the 

surface of the object moving relative to the frozen reference. Because the fringe 

pattern represents instantaneous vibration amplitudes, a wide frequency range can 

be swept through in this mode and resonant modes can be identified. The subtraction 

mode is used to enhance fringe patterns by recording a reference state of the object 

before the excitation is applied. The subtraction mode can provide fringe patterns 

with much better quality. The video monitor, shown with the memory store in 

Figure 3.9, has the resolution of 800 TV lines with a bandwidth of 10 MHz. Shown 

in Figure 3.13 is a SONY high resolution reel to reel tape recorder. It was used to 

record the real-time measurement, mainly vibration measurement, for post-processing. 

The frequency generator and signal amplifier are also shown in Figure 3.9. 

3.4 Finite Element Method for Natural Frequency 

Prediction 

In order to predict the system natural frequency it was necessary to generate 

a mathematical model for the blading. As presented in Chapter 2, a lot of different 

mathematical approaches were used to predict the natural frequencies of single blade 

or multi-blade structures. Early works were mostly carried out using Euler equations 

and energy methods treating single blades as beams. 

For blades with complex profIle, two dimensional or even three dimensional 

mathematical modelling are required and finite element analysis was proven to be 

very useful. It was decided that the FE method be used to carry out the 

mathematical study. 

3.4.1 The Finite Element Method 
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The finite element method is the most powerful numerical technique available 

today for the analysis of complex structural and mechanical systems. It is used to 

obtain numerical solutions to a wide range of problems. The finite element method 

is used for both static and dynamic analysis. 

The classical method of analysis in elasticity involves the study of an 

infinitesimal element of an elastic body. Relationships among stress, strain and 

displacement for the infmitesimal element are developed that are usually in the form 

of differential equations that apply to each point in the body. These equations must 

be solved subject to appropriate boundary conditions. In other words, the approach 

is to define and solve a classical boundary value problem in mathematics. Problems 

in engineering usually involve very complex shapes and boundary conditions. 

Consequently, for such cases, the equations cannot be solved exactly, but must finally 

be solved by approximate methods; for example, by truncated series, finite 

differences, numerical integration, etc. All these approximate methods require some 

form of discretization of the solution. 

The formulation of finite element solutions recognizes at the outset that 

discretization is likely to be required. The first step in application of the method is 

to discretize the domain into an assemblage of a finite number of finite size elements 

(or subregions) that are connected at specified node points. The quantities of interest 

(usually nodal displacements) are assumed to vary in a particular fashion over the 

element. This assumed element behaviour leads to relatively simple integral 

equations for the individual elements. The integral equations for an element are 

evaluated to produce algebraic equations in terms of the displacements of the node 

points. The algebraic equations for all elements are assembled to achieve a system 

of equations for the structure as a whole. Appropriate numerical methods are then 

used to solve this system of equations. 
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In a dynamic analysis the effects of inertia forces are considered in the 

calculation. These are proportional to acceleration and their inclusion leads to an 

equation that has time-varying terms, giving a dynamic response. In order to define 

such a problem the minimum information that the user has to specify is the stiffness 

of the system and the inertia of the system. In addition any real system will contain 

damping that dissipates the vibrational energy and, probably, a time-varying set of 

loads known as the forcing function. 

3.4.2 The Eigenvalue Equation 

The mathematical base of finite element method uses frequency solution 

algorithm. A brief summary of the theory is given below [125]. 

The equations of motion may be expressed in matrix form: 

[M]wl + [C]\UI + [Sltul = IF(t)1 (3.1) 

where [M], [Cl and [S] refer to the mass, damping and stiffness matrices 

respectively. u is the system displacement and is the function of time t. F(t) is the 

external excitation. To find the undamped natural frequencies we get 

A principal mode occurs if the entire system executes synchronous harmonic 

motion at a natural frequency 00. 
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Let u ~ Asinwt 

then 

also 

u ~ wAcoswt 

U = -w2Asinwt 

We may substitute 

and rearranging (3.2) 

This is the eigenvalue problem and the equation has a solution when the 

determinant is zero. For each eigenvalue found there is an accompanying 

eigenvector, corresponding to the mode shape at that frequency. The eigenvalues are 

important physically because they define those frequencies at which the structure 

wants to vibrate, that is those frequencies that should be avoided in the forcing 

function. 

There are several ways of finding the solution of the determinant It is 

important to find the method which is least computer intensive. It would be possible 

to produce a graph of I{[s] - w[M]} I versus co to fmd where the zero values 

are and hence the natural frequencies. This would be extremely time consuming. 

A better technique is to transform equation (3.2). We proceed by factorising [M] to 

obtain 

[M] = [L][Lf 

where [L] is a lower triangular matrix, and [L]T is its upper triangular transpose. We 
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then transfonn the degrees of freedom (u) using 

{u I} ; [Lt {u} (3.3) 

Equation 3.3 is substituted into equation 3.2 and (u) is eliminated. On 

premultiplying by [LJI we obtain 

( [s'] - w2 [I]) {ul} ; {la} (3.4) 

where [8 '] is the symmetric matrix 

[I] is a unit matrix. 

Equation 3.4 can be much more efficiently solved. 

and 

Whilst this is considerable faster it is still too time consuming when 

considering structures with more than 100 degrees of freedom. 

3.4.3 Master Degrees of Freedom --- Eigenvalue Economization 

The method that is typically used to overcome this problem is eigenvalue 

economisation. Almost all the degrees of freedom in a very large eigenvalue 

problem have little effect on the mass matrix. Thus the equation may be reduced if 

the inertia effects of certain degrees of freedom are ignored, so long as the stiffness 

tenns are retained. (see for example [81]). To do this displacements are divided into 

master degrees of freedom u", which will be retained, and slave degrees of freedom 

U, which are to be reduced out. Equation 3.2 becomes: 
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Smr 
S ] 
" 

Ignoring the slave inertia we have 

To eliminate (u,.), the static energy 

Where, dropping the matrix bracket nomenclature, 

producing the master system equation 

(3.5) 

The elimination of the (u,.) terms is not carried out during the matrix 

inversions due to the time involved, but beforehand in the frontal solution. The 

master degrees of freedom may be chosen automatically by calculating the ratio 

S./Mii, where Sii refers to the leading diagonal term for freedom i. If the ratio is 

large then the node is well supported and unlikely to vibrate much. 

Once the matrix has been inverted and the eigenvalues solved, the original 
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equation (eq. 3.1) may be substituted into and solved for. 

Master degrees of freedom were used in the FE analysis in this study in order 

to reduce the computing time. Because the main interests were with the fIrst few 

fundamental modes in both single and multi-blade analysis, the reduction in the 

degree of freedom will not have unacceptable effects. 

3.5 The Mode Shape Classification 

The modes of vibration of a structure are defined by three modal parameters, 

they are the natural frequency, the mode shape and the damping coefficient. The 

mode shapes describe the amplitude of the degree of freedom relative to each other 

at a resonance. It represents the relative motion of different pans of the structure 

when it is excited into one of its natural modes of vibration. The traditional 

classification of the mode shapes in turbine blade vibrations is used in this study and 

briefly introduced in this section. 

In the study of the vibrations of turbine blades, mode shapes were often 

found having similar features due to the similarity in the geometry of the blades. it 

is convenient to categorise mode shapes according to their different features. They 

are usually defined as the flap modes, the torsional modes, the edgewise modes and 

the span wise mode. They are discussed and illustrated below using a straight cross

section blade. 

The Flap Mode 

Two typical flap modes are illustrated in Figure 3.14. The main feature of 

the flap mode is that the blade flaps out of its own plane (plane YZ in Figure 3. 14a). 
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One end of the blade is fixed and the other is free. The displacements are in XZ 

plane. The order of the flap mode is defined by the number of nodal lines across the 

blade. The first flap (IF) mode has one nodal line located at the root of the blade 

and the second flap (2F) mode shown in Figure 3.l4f has two nodal lines. The first 

one is at the root of the blade and the second appears near the tip of the blade. 

Generally, the NF mode has N number of nodal lines. 

The Torsional Mode 

In torsional modes, the blade twists about its longitudinal axis, generating a 

vertical nodal line from the tip of the blade to its root, as shown in Figure 3.15a. A 

horizontal nodal line at the root also appears as the root is fixed. The order of the 

torsional mode is related to the number of horizontal nodal lines. The Nth torsional 

mode has N horizontal nodal lines including the first one at the root. The first and 

the second torsional modes (IT and 2n are shown in Figure 3.15 (a) and (b) 

respectively. The torsional mode is an out-of-plane mode. 

The Edge Mode 

When vibrating in the edge mode as illustrated in Figure 3.16, the motion of 

the blade remains in its own plane (YZ plane). One end of the blade is fixed and the 

other is free. The natural frequency of the fundamental edge mode (lE) is usually 

higher than that of the IF mode, because the bending stiffness of the blade in YZ 

plane is much larger than that in the XZ plane. The definition for the higher order 

of the edge modes is similar to that of the flap modes. It is noticed that the higher 

order edge modes are usually above other major modes and are very often not 

included in the frequency range of the interest. 

The Spanwise Mode 
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Another in-plane vibration is that the blade stretches itself along its 

longitudinal axis, as demonstrated in Figure 3.17. The blade remains in its plane 

(YZ plane). The natural frequency of the spanwise mode is normally much higher 

than those of other fundamental modes, i.e., the IF, 2F, IT and 2T. 

The mode classification introduced above is demonstrated on a simplified 

blade with straight cross-section. The real turbine blades have aerodynamic profiles 

with taper, camber and pretwist in geometry. Therefore the mode shapes are 

expected to be distoned. 

3.6 Conclusion 

The theories of the experimental and analytical methods used in this study 

were briefly discussed in this Chapter. The experimental set-up and the identification 

of natural frequencies of turbine blades by ESPI and modal testing were presented. 

It was very imponant to understand the principles of the methods used in order to 

obtain and interpret data correctly. As the main techniques have been discussed here, 

the following Chapters will mainly repon on the study into the vibrations of single 

turbocharger blade and multi-blade packets. 
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Figure 3.3 Identification of mode shapes using imaginary part of FRF. 

Locations of accelerometer on the beam 
Natural frequencies of the beam 

a Locations of accelerometer and hammer impact 
b Imaginary part of FRF detected at each location 
c Mode shape at first three natural frequencies 
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Figure 3.4 Illustration of modal testing set-up 
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. Figure 3.5 

Figure 3.6 

The control panel of Nicolet 660A dual channel FFf Analyzer 
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Figure 3.9 Instruments used in ESPI tests 
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Figure 3.12 Optical Unit of the VIDISPEC system 

Figure 3.13 SONY high resolution reel to reel tape recorder 
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Figure 3.14 The flap modes in turbine blade vibrations 
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Figure 3.15 The torsional modes in turbine blade vibrations 
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Figure 3.17 The first span wise mode (IS) in turbine blade vibrations 
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The Initial Study ... 

The initial study was carried out on a turbocharger blade, noted as blade K. 

The aim of the initial investigation was to identify modal parameters of blade K 

using modal testing, ESPI and [mite element analysis. It was considered necessary 

to use three techniques in order to obtain a good understanding of their theories and 

applications. 

4.1 The Blade K 

A turbocharger blade, blade K as shown in Figure 4.1 , was selected to be the 

model of this study. It was removed from its disk and mounted via its fir-tree root 

on to a holding block. The lacing wire was also removed leaving a hole of 3.2 mm 

diameter in the blade at 13 mm from the blade tip on the central line along its length. 

The blade is 91 mm long and 32 mm wide. It is twisted and tapered along its length, 

tapered and cambered across its width. A force was applied to the base of the root 

of the blade via two bolts to ensure that the fixing of the blade was as near as 

possible representative of the real operating condition for rotating blades. In this 

initial study, blade centrifugal loading was not considered for simplicity. Its finite 

element model was called BLDK. 

4.2 Investigation by Modal Testing 

The initial investigation was started with modal testing. Natural frequencies 

and mode shapes were firstly identified by using hammer impulse excitation. The 

response was detected by a miniature accelerometer attached to the blade at various 

positions. Both excitation and response were fed into Nicolet 660A FFT analyser via 

their amplifiers. The experimental set-up is schematically illustrated in Figure 4.2. 

The holding block was clamped on a vibration isolated testing bench. 
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A mesh was drawn on the surface of blade K in order to identify the natural 

frequencies and mode shapes. The hammer impulses were applied at different nodes 

on the mesh while the accelerometer was attached at the top corner of the trailing 

edge. This is effectively same as hitting the blade at one position while the 

accelerometer is attached at different nodes on the mesh. However, the former 

application could avoid potential poor attachment of the accelerometer due to 

frequent change of positions. It also provided more control on identifying anti-node 

positions when hitting at or near an anti-node. Consideration of the real and 

imaginary components of the transfer function of the processed transient data located 

some natural frequencies and gave some indication of mode shapes associated. A 

typical set of results detected was shown in Figure 4.3(a). 

Modal testing was also carried out using white noise (random) and sinusoidal 

sweeping excitations. An electro-magnetic exciter driven by either a white noise 

signal or a sinusoidal signal was used to excite the blade via a fine push rod as 

shown in Figure 4.4. For white noise excitation, the output from the accelerometer, 

attached at different nodes of the mesh, together with the input signal from the force 

transducer connected between the exciter and driving probe were sent into and 

processed by the FFT analyser. This experimental set-up is shown in Figure 3.4 and 

the instrumentation used was discussed in Section 3.2.7. The results are shown in 

Figure 4.3(b). 

For sinusoidal excitation a sweeping sinusoidal signal was fed into the exciter 

which drove blade K via the push rod at a node while the accelerometer was attached 

either at the top corner of either the leading edge, or the trailing edge of the blade. 

Frequencies causing resonant responses were recorded and are illustrated in Figure 

4.3(c). 

The distance between adjacent nodes was constrained, with the limiting factor 
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being the hammer impact diameter. Also impulses to the blade could not be repeated 

exactly for each sample in each averaging procedure. Thus errors associated with 

hammer testing for small components were highlighted. For example, nodal lines 

identified by hammer testing had to be made up by discrete nodal points. 

It was noted that quality of input signals could be very poor, especially when 

excitation was applied at near anti-node positions. The averaging facility in Nicolet 

was fully utilised to ensure good quality input signals when white noise excitation 

was applied. 16 to 100 samples were used in averaging process in order to generate 

one response curve before it was processed. 

Such tests were considered to be extremely useful guides to identify natural 

frequency values and mode shapes but large discrepancies on results were found. For 

instance, there appeared to be 7 resonances in between 1451 Hz and 2831 Hz 

identified by modal analysis in Figure 4.3. Three of them looked like the second flap 

mode but further study was apparently required to reveal the true nature of the modes 

of vibration of blade K. 

4.3 Investigation by the E.S.P.I. 

A second series of tests were conducted using the comparatively modern 

technique of ESP!. This has the advantage that instantaneous real-time speckle 

pattern images can be viewed on a television screen. The patterns are representative 

of the deformed modal patterns. 

Blade K was mounted in front of an ESPI rig and was excited by an 

electro-magnetic exciter via a fine push rod driving at either of the top corners of the 

blade. A continuously swept sine wave signal generated by a digital signal generator 
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was fed into the exciter and laser speckle interference fringe patterns representing 

local amplitudes of responses were displayed on the monitor screen. These fringe 

patterns clearly showed the nodal lines at resonances. Two sets of results are given 

in Figure 4.3(d). 

It was found that some modes at the higher frequency ranges were easy to 

identify. For example natural frequencies of the modes at about 7300Hz and 

9860Hz shown in Fig. 4.3(d) did not vary with different excitation location. But in 

the middle and lower frequency range the results were rather confusing. Double 

natural frequencies and mode shapes for the torsional mode were found as shown in 

Fig. 4.3(d) from 4500Hz to 5300Hz. The variation of this mode was found to be 

related to the excitation position. The same phenomena was found for the mode at 

about 2600Hz. Natural frequencies and mode shapes are inherent characteristics of 

a component. They are not related to the excitation. If the detected responses change 

with the location of excitations, then they are not the true natural frequencies. 

Therefore further studies about the effects of excitation position on dynamic 

characteristics of turbocharger blade were carried out. 

4.4 Investigation by the Finite Element Analysis 

4.4.1 Computing Hardware 

The major limitations on the accuracy of finite element models in general is 

the mesh size and the number of elements used. These factors themselves depend 

on the maximum cpu time that can be used on a particular computer and the memory 

file space available. Another factor of the overall speed of job completion is the job 

turnaround time which depends on the ease of use of the operating system and the 

available editors. 
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The computers used for the finite element calculations of the project were the 

Prime 75 and the Apollo 3000 Domain. On each of the computers, the finite element 

package P AFEC had been installed, with the more recent computers having a newer 

version. 

The computer that was used at the start of the project was the Prime 750. 

The Prime used Primos 19.4 as its operating system and its main editor was qedx. 

The operating system was user friendly, but as qedx was a line editor, most file 

editing was performed by transferring files to the Honeywell Multics and using a 

screen editor, emacs. The Prime disc space available varied between 25000 Units 

and 70000 Units corresponding to 51.2 Mbytes and 143 Mbytes respectively, 

depending on the student requirements. This was sufficient for all single job runs 

but insufficient to allow the use of the P AFEC option "restart" where the solution of 

an eigenvalue problem is performed in stages. The Prime ran 4 batch queues for 

finite element jobs, having maximum cpu times of 5 mins, 17 mins, 50 mins and 9 

hrs 6 mins. This last maximum was dependent on the hardware, therefore, could not 

be changed. The Prime was initially the only mainframe available for finite element 

calculations at Loughborough University, so the maximum size of the finite element 

model was governed by this maximum cpu time, and the computer's processing 

speed. 

The Prime 750 was discontinued after two years of the project. Before the 

Hewlett-Packard computer was installed, the Apollo 3000 Domain was used as an 

alternative. This consists of 20 to 30 work stations, each with its own processor and 

memory. Each workstation, or node, is connected to each other, so that one node 

may draw the entire processing power of the other nodes if they are not being used. 

The operating system is Aegis level 9.7, and the editor used an Apollo design, both 

of which were exceptionally easy and flexible to use. The maximum disc space was 

sufficient for successful job completion. The speed of the Apollo was significantly 
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better than the Prime, cutting the cpu time from 9 hours to about 5 hours. 

4.4.2 Computing Software. 

The standard solution technique for vibration problems is by using finite 

elements in the eigenvalue equation. A brief review of the theory is given in section 

3.4. 

Several finite element packages are available commercially, each with its own 

advantages and disadvantages. The requirement for the project was the ability to 

solve for the eigenvalues and eigenvectors. The package which was available in· 

house, PAFEC, has the above ability and so was chosen for the model software. 

4.4.2.1 The Structure of PAFEC 

P AFEC uses different phases at different times within the overall solution 

algorithm. Different phases are relevant to different applications. For eigenvalue 

problems, the following phases listed in Table 4.1 would be required [126]. 

The data is read in from a series of modules, each module defining some 

parameter of the system. A brief explanation of some of the modules is given in 

Table 4.1. 

The two main analysis types available are static analysis, (stress analysis and 

thermal analysis), and dynamic analysis, (natural frequency and mode shape 

identification, Sinusoidal response and transient response). Additional specialist 

analyses include non-linear analysis, (plasticity, creep, large displacement and 

prestressed eigenvalue prediction), cyclical symmetric analyses, axisymmetric 

analysis, multi-level substructure analysis, lubrication analysis and boundary integral 
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solution technique. Documentation of the analyses types may be found in reference 

[126]. 

Phase I Read Data modules are read in and stored on the backing store. 

Phase 2 Paf- Auto mesh generating facility 
blocks -

Phase 4 House The constraints on the system are considered and the 
Keeping degrees of freedom are numbered. 

Phase 6 elements The elemental stiffness and mass matrices are stored. 

Phase 7 Solution The equations are decoupled and solved. 

Phase 8 Out Draw The displacements are drawn. 

Table 4.1 Phases required by eigenvalue problem and post processing. 

Solution with different damping forces and the same system matrix is possible 

using the restart facility, which solves for the new forces whilst using the previously 

inverted matrix. This typically reduces the computational time by an order of 

magnitude. 

4.4.2.2 Module Explanation 

Control This module is different from all the rest as it does not define any 

parameter of the structure, but acts as a guide to the solution. The restart option is 

defined in this module. 

Nodes The nodes are defined within a particular axis set. They may be generated 

automatically by using the PIGS [127] option, (see below). 

Elements Various types of elements are available, corresponding to the geometry 
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and application involved. The element may be distorted away from its basic shape 

to a degree, but there are limitations, which if exceeded will result in an error 

message in the output files and failure of execution. 

Modes.And.Frequencies This defmes how many frequencies are solved for, and how 

many masters are used for the solution. 

Restraints Other constraint modules include ENCASTRE and NO.CONSTRAINTS. 

Material PAFEC has standard materials, but others may be defined to improve 

accuracy, or to change element stiffness. 

Dynamics.Graph This defines which nodes and directions are drawn. 

Masters The master degrees of freedom are automatically generated, but should be 

supplemented with those defmed in FORCE and DYNAMICS.GRAPH, above. 

The major limitation with P AFEC, as with other packages, is its accuracy 

with respect to elemental size. Finite element packages are inherently an upper 

bound solution, so the predicted frequencies will tend to be over-estimates. 

4.4.3 Prime Interactive Graphics System (pIGS) 

PIGS is a pre and post-processor applicable to PAFEC. As a preprocessor 

pigs may generate the finite element structure and input data files. As a post

processor, finite element output may be analyzed. Documentation of the pigs facility 

is detailed in PIGS manual [127]. 
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4.4.4 Initial FE Analysis of the Blade K 

Great effort was made to build up the initial F.E. model of blade K. The 

drawing of cross sections of blade K was used to generate the mesh. Top, middle 

and bottom cross sections were selected to form the F.E. mesh. Key nodes were 

located on the boundaries of cross sections and their coordinates were given by 

measuring the drawing. Based on these key nodes, the mesh was automatically 

generated, as shown in Fig. 4.5, by using PAFBLOCK module in PAFEC data 

preparation jJrogram. The F.E. model of blade K is called BLDK. 

This F.E. model was built up with the idea that the geometry of blade K 

should closely model the dynamic characteristics in 3 dimensions to allow for the 

complex geometry of blade K, resulting in coupled vibration. Thus 3-dimensional 

brick elements (element type 37110) with 20 nodes per element were used to build 

up the initial 120 element model as shown in Fig. 4.5, which had 2115 degrees of 

freedom. 

The number of elements used was kept to the minimum in order to reduce the 

computing time, whilst the accuracy of the modelling had to be maintained at a 

reasonable level. Large error would occur if elements used were largely distorted. 

Therefore, the longest side to the shortest side ratio of the elements was no bigger 

than 5 as recommended by PAFEC. This dictated the maximum size of elements at 

the trailing edge hence the total number of elements used. 

The three dimensional brick element was also selected for the following 

reasons: 

• when the bladed packet is analyzed as a solid structure, the analysis leads to 

results that are closer to the experimental results; the natural mode shapes of 
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structures can be established in space co-ordinates; 

• as the three dimensional analysis covers not only bending modes but also 

torsional and longitudinal modes, the analysis will be more extensive, so that 

all the blade natural frequencies and coupled packet frequencies can be 

estimated for a blade packet Similar to packet modes in bending, packet 

modes in torsion and edgewise can also be established. 

• as this high precision element can represent effectively the true aerofoil 

surfaces of blades and hence model the coupling of bending and torsional 

modes. 

The root of BLDK was fully constrained and the centrifugal force was not 

considered; though in reality a more representative suppon condition is that the blade 

is constrained by the interface between the top surface of the fir-tree root element. 

It was thought possible to compensate for this effect by either extending the root of 

the mathematical model below the base of the blade or by applying more flexible 

constraints to the base of the model. 

The third set of results illustrated in Figure 4.3(e) was produced by F.E. 

analysis which proved to be the key link in the interpretation of the three sets of 

results. This was because it enabled the author to identify mode shapes in the 

conventional method of bending or flap modes (F), edge modes (E), torsional 

modes (T) and span-wise modes (S). 

4.5 Initial Attempt at Classification of Modes for the 

Blade K 
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Indeed, whilst the initial study did not give satisfactory results it proved to 

demonstrate problems concerning the measurement of dynamic characteristics of a 

single turbocharger blade. It showed limitations for each technique in detecting or 

analysing a component and also indicated difficulties with the interpretation of 

experimental data. 

The table of results shown in Figure 4.6 displays all the natural frequencies 

identified by the three methods of analysis. The conventional methods for classifying 

nodal patterns [68] was utilized here. Only results which were clearly identifiable 

are illustrated. By cross-referencing between the results presented in Figure 4.3, it 

can be seen that only the first flap (IF), second torsional (2T) and possibly IT 

modes were positively identified. 

Both Modal Analysis and ESPI analysis indicated several resonant responses 

in the frequency ranges 1100 to 2800 Hz, 4400 to 5600 Hz and 7150 to 7380 Hz. 

However it was not possible with the data available to classify the mode shapes 

within these frequency ranges. For instance the natural frequency identified by 

both experimental methods between 1700 and 2800Hz implied a second flap mode 

(2F) but this conflicted with the finite element analysis prediction of 5610 Hz for 

the 2F mode. Also there were three resonances found in between 1000 and 1450 Hz 

by ESPI whilst there was only one IF mode predicted by FE analysis. 

Moreover, it was noted that each of the experimental techniques failed to 

detect several modes that were suggested by the finite element analysis. For 

example, the 2F mode at 5610 Hz suggested by FE analysis was not positively 

detected by modal analysis and ESPI. Review of the experimental procedure 

confirmed that this was not a consequence of too fast a scan rate which was a 

particular problem associated with the method of excitation used in the ESPI tests. 
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4.6 Discussion on the Initial Investigation 

It was considered at this point in time that some small discrepancies among 

identified frequencies were due to improper excitation, mass modification and poor 

modelling of boundary condition in FE analysis. 

Several natural frequencies, clearly predicted by finite element analysis were 

not detected by experimental techniques because both measurement techniques had 

an element of polarisation in the method by which they sensed vibration. The 

accelerometer associated with the modal analysis measurements was only capable of 

detecting vibration in a plane perpendicular to the surface to which it was attached, 

whilst the ESP! detection capability was polarised to view only out-of-plane motion. 

Clearly, therefore, the modal analysis results would lack information on vibration 

mode shapes which caused the contact point of the accelerometer to move at right 

angles to its direction of sensitivity (i.e. approximately in the blade edge mode) 

whilst the ESP! results would suggest out of plane motion (i.e. blade flap motion) for 

an inclined plane moving in-plane (i.e. blade edge mode). 

For instance, because of the twist of blade K, the edgewise movement at 

lower part of the blade may cause components of motion normal to the surface of the 

upper part of the blade. These components are measured as bending motion by the 

accelerometer giving a confusing indication. For the same reason, a nodal line may 

be presented by ESP! measurement and the edgewise mode may look like a flap 

mode. 

Minor differences in determined frequencies can be attributed to the method 

of excitation, mass of the accelerometer and even to a poor choice of equivalent 

blade height in the finite element analysis. However the larger discrepancies and 
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interpretation of the mode shapes identified with some of the results required far 

more consideration. Funhermore there was variation of mode shapes and natural 

frequencies for some modes (e.g. at 4400 Hz up to 5600 Hz), caused by the changing 

of excitation positions. Thus a thorough understanding of excitation technique and 

justified interpretation of experimental data were required by funher study. 

4.7 Conclusion 

The study of a free standing turbocharger blade was staned using modal 

testing, ESPI testing and finite element analysis. It was seen from the initial results 

that the vibration of a turbine blade with a complex profile was very complicated. 

The large discrepancies in some of the results obtained using different techniques 

suggested the limitation of each technique. Hence a better understanding of the 

experimental techniques used was required, in order to correctly carry out the 

experiments and interpret their results. 

Assisted by FE analysis, the IF, 2T and IT modes were identified. Several 

resonant responses were detected by both modal testing and ESPI analysis in between 

1100 to 2800Hz, 4400 to 5600Hz and 7150 to 7380Hz, depending on the location of 

excitations. The detected mode shapes were complex and they vary with the location 

of excitations. It was concluded from the above study that a more fundamental study 

was required to establish the understanding of the effects of complex profile, location 

of excitations and the coupled mode vibrations. This study is presented in Chapter 

5. 
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Figure 4.1 Single turbocharger blade 
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Figure 4.2 Experimental set-up of modal testing using hammer impulse excitation 
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Figure 4.4 Excitation to a blade by a fIne pushing rod 
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Figure 4.5 Finite element model of blade K 
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Analysis Detected Mode Frequency (Hz) 
Method IF lE IT 2F 3F 2T 

Modal 1050 4250 6850 9600 

E.S.P.I. 1070 9840 

EE. 1290 2960 4710 5610 9030 10800 

Figure 4.6 Initial attempt at classification of modes for a turbocharger blade 
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Further Investigation into Simplified Blades and Blade K 

5.1 Key Factors in the Vibration Mode Identification 

Further consideration of problems with identifying vibration modes revealed 

that the complex geometric shape of blade K and the uni-directional sensitivity built 

in experimental and theoretical analysis methods were the key factors resulting in 

difficulties of mode identification. 

The complexity of the blade shape greatly distorted the mode shapes from 

normal classical mode classifications such as flap modes, torsional modes etc. 

Furthermore the complex shape, especially twisting factor increased the difficulty of 

data interpretation for both experimental and theoretical approaches since all 

techniques are uni-directional. An accelerometer can only detect the motion in its 

sensitivity direction and it was attached with its axis of sensitivity normal to the 

surface of blade K. ESPI technique is only able to monitor out-of-plane motion and 

mode shapes of F.E. models can be seen on a screen which is only two dimensional. 

Hence the difficulty of mode identification is greatly increased. In addition, there 

were modes which were so close to each other in frequency that they were coupled 

and gave coupled mode shapes which could not be identified without the knowledge 

of standard mode shape understanding for the blade K. To overcome these 

difficulties, the further study started with simplified blade models. 

5.1.1 Design of Simplified Model Blades 

Instead of studying the blade K the further investigation was carried out on 

a set of simplified blade models as shown in Figure 5.1. The aim was to simplify 

the complex shape of the blade K and to find out the influence of complex geometric 

shape factors on standard mode shapes before the further study was extended to the 
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blade K. Each of the seven simplified blade models possesses one feature in the 

complexities of the blade K. As shown in Figure 5.1 they are: 

APLl uniform rectangular cantilever blade with 5mm thickness, 

APL2 cantilever blade tapered across the cross-section with 6mm and 2mm 

thickness at leading and trailing edge respectively, 

APL3 cantilever blade tapered along the length with 8mm and 2mm thickness at the 

bottom and the top cross-section respectively, 

APL4 uniform cantilever blade with added twist along its length with 5mm 

thickness, 

ASHl uniform cantilever blade cambered across the cross-section with 5mm 

thickness, 

ASH2 cantilever blade cambered and tapered across the cross-section with 6mm and 

2mm thickness at leading and trailing edge respectively, 

ASH3 cantilever blade cambered across the cross-section and tapered along the 

length with 8mm and 2mm thickness at the bottom and top cross-section 

respectively. 

They are 91mm long with a block-like root machined from one piece of mild 

steel and 31mm wide. 

A blade holding block as shown in Figure 5.2 was made to hold the blade 

root. Two bolts in the main block can push the movable jam-blocks and lock the 
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root of the blades into the mechanism. The blade can be easily replaced when the 

holding block is clamped on a testing bench. 

5.2 Investigation by ESPI and the Separation of 

Coupled Modes 

All the simplified blades and blade K were tested using ESP!. The blade 

under test was mounted tightly in the holding block which was itself fixed on the 

vibration isolated testing bench. An electro-magnetic exciter connected to a sine 

wave generator and amplifying system was used to stimulate the blade via a fine 

. push rod touching on the blade in specific positions. Results obtained are illustrated 

in Figure 5.3. 

5.2.1 Consideration of Excitation Positions 

The ESPI experiment was firstly carried out on model blade APLl. It was 

found that modes of vibration detected by ESPI were sometimes related to the 

positions of excitation .. In order to obtain correct modal parameters, relation between 

position of excitation and resulted mode shapes was studied. 

The relation of symmetry between the load, the structure and the displacement 

generated was used to justify the selected positions of excitation for different modes 

of vibration. The relation is explained in Figure 5.4. A simply supported beam is 

shown in Figure 5.4 (a). The beam is symmetric about axis X-X. The beam deforms 

symmetrically if it is under symmetrical load as shown in Figure 5.4 (b), whilst 

skew-symmetric displacement takes place under skew-symmetric load as shown in 

Figure 5.4 (c). 

105 



Further Investigation into Simplified Blades and Blade K 

As shown in Figure 5.5 (a), APLl is symmetric about plane X-Y and so 

symmetric load was needed to excite symmetric mode shapes such as flap modes. 

Therefore, the chosen positions of excitation for flap modes were considered in plane 

XOY (Figure 5.5 (c». For skew-symmetric modes such as torsional modes and edge 

modes, non-symmetric stimulation was required. The positions were chosen off the 

central OY line (Figure 5.5 (b». 

Using the excitation discussed above, the IF, 3F and 4F modes were easily. 

identified at 471Hz, 8354Hz and 15984Hz respectively, with the excitation applied 

along the central axis. These results are presented in the ftrSt row of Figure 5.3. 

The 2T and 3T mode were located at 8925Hz and 15794Hz by placing the push rod 

at either of the top corners of the model blade. 

5.2.2 Separation of Coupled Modes 

Difficulty was encountered in the frequency range from 2500Hz to 3500Hz 

where many mode shapes were found when excitation was applied at various 

locations. One example of a distorted mode shape at 5032 Hz is illustrated in Figure 

5.6. 

Mode shapes and natural frequencies are modal parameters determined by 

physical properties of the structure in question. They do not vary with excitation 

position. But in the case of two modes be~g very close to each other, both modes 

are activated by stimulation near their natural frequencies. The mode shape is the 

combination of the two modes. The contribution from each mode to the coupled 

mode shape depends on the frequency and also the position of the excitation. The 

contribution of the mode nearer to the excitation frequency is more than the other 

mode whose natural frequency is relatively far away. For the same excitation 

amplitude, response is much larger if the excitation is applied at an anti-node 
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position. Theoretically a mode can not be excited if stimulation is placed at nodal 

positions. 

The above understanding suggested that the modes found between 2500Hz 

and 3500Hz could be the result of the coupling of two modes with closely spaced 

natural frequencies. It was thought that natural frequencies of the two modes were 

so close to each other that they both were excited easily at the same time when the 

excitation frequency was in their range. The distorted mode shapes consisted of the 

components of the fIrst torsional mode and the second flap mode. The mode shape 

of the 1 T mode, according to the analysis of symmetry, should be a nodal line along 

the central axis from the tip to the bottom of the blade and the 2F mode shape which 

is symmetric to the central axis should be two horizontal nodal lines, with one line 

at the bottom and the other located at about two third of the blade height. The 

predicted mode shapes of IT and 2F mode are presented in Figure 5.7 (a) and (b) 

respectively. Finite element prediction, which will be discussed in the next section, 

confIrmed the above analysis. 

Considerable care was exercised to separate coupled modes. It was found that 

the blade had to be excited at several locations for each natural frequency under 

investigation. Obviously attempting to excite a mode by stimulating at its node would 

prove to be pointless but for the situation when two frequencies overlapped, it was 

possible to stimulate the other frequency by this method. A method of separating the 

modes was developed in the tests by choosing an excitation point on the nodal line 

of the mode not required, whilst measuring the vibration amplitude of the other 

natural frequency. 

The fIrst torsional mode was found to be a very strong mode which could not 

be avoided even when the push rod was placed on the nodal line. However, the 2F 

mode was identifIed at 3132Hz by placing the push rod at a location where ntinimum 
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amplitude of vibration for I T mode was achieved and where maximum amplitude for 

2F mode took place. These are shown at location L, and 1-, in Figure 5.7(b). The 

I T mode was recorded at 2865Hz when the excitation was applied on the top nodal 

line for the 2F mode and at a point off the central axis, shown as Le, in Figure 5.7 

(a). Identified mode shapes are presented in the first two rows in Figure 5.3. The 

application of this method was necessary for mode identification with APL2 and 

APL3. The method proved extremely effective for the turbocharger blade illustrated 

as BLDK in Figure 5.8 and helped to clarify the confusing problems in initial 

investigation. 

In the tests on simplified blades it was found that coupled modes, particularly 

where natural frequencies were close to each other, were very easily excited. Nodal 

lines were shifted at frequencies both below and above the two very close modes. 

This explained why the results in Figure 4.3(d) indicated a range of frequencies 

around 4400 to 5600Hz for the initial tests on the blade K. The detected frequencies 

were in fact the frequencies of coupled modes which occurred with one frequency 

just below the IT mode of 4510Hz and the other frequency just above the 2F mode 

of 4594Hz (Figure 5.3, BLDK by ESPI). This is a classic phenomenon illustrated 

effectively in the paper by Grinsted [68]. 

S.2.3 Theoretical Consideration of Coupled Mode Vibrations 

As coupled mode vibrations are very often found in this study, further 

consideration on the vibration of coupled modes was given in order to establish better 

understanding. Coupling is the term used in mechanical vibration to indicate a 

connection between equations of motion. Coupled mode shapes may occur when 

selected coordinates are coupled due to dynamic and/or static coupling. 

Coupling is related to the coodinates used in the equations of motion. If 
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principal coordinates are used, at the natural frequencies, the equations of motion are 

completely separate. Each principal mode corresponds to one natural frequency or 

eigenvalue of the frequency equation. There are the same number of principal 

coordinates as there are equations of motion and principal modes, so each equation 

of motion is separate from every other. Only one coordinate, or any of its 

derivatives, with respect to time appear in each equation of motion. 

It is necessary to remember that a set of principal coordinates exist for every 

linear vibration system, but they may defy our geometric interpretation. It is possible 

to decouple any set of equations of motion by using principal coordinates. However, 

it is often preferable to use a coupled system with coordinates that can be visualized 

than a decoupled system with principal coordinates that cannot. The uni-directional 

sensitivity of the ESPI technique and the classification of mode shapes of blades in 

Section 3.5 determine that the mode shapes presented are in the Cartesian coordinate 

system. As this system may not be the decoupled system for all modes of the blade 

vibration, some modes may be coupled. The selection of coordinates has no effect 

on eigenvalues or mode shapes. 

The 'compounded' mode shapes also occur in the system with two or more 

equal natural frequencies. Because they are not generated by dynamic/static 

coupling, the word 'coupled' is not the most appropriate. However, in terms of the 

mode shapes, they are still the combination of two (or more) normal mode shapes. 

For simplicity, the term 'coupled mode' is still used in this thesis. 

One example is provided by a particle which is constrained to move in a 

plane and is controlled by two light springs which lie in the plane and are mutually 

perpendicular, as shown in Fig. 5.1O(a). If the excitation force F = FosinQt is applied 

to the particle at an angle e as shown, the equations of motion of the particle are 
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roX+k,x=FacOsesinD t 

my+k2y=FasinesinD t 
(5.1) 

If the spring stiffness kl and k2 are different, then the system has two natural 

frequencies. 001 = V(k/m) and 00z = V(k,/m). the corresponding principal modes being 

motions along the axes of the two springs. The particular solutions to equation (5.1) 

are a steady-state oscillation of the same frequency Q as that of the excitation. They 

can be assumed to be of the form 

x=A,sin (0 t+cjI,) , 
(5.2) 

where Al and A2 are the amplitude of oscillation of the particle in ox and oy 

direction respectively and ell I and eIl2 are the phase of the displacements with respect 

to the exciting force. 

The amplitude and phase in equation (5.2) are found by substituting the 

equation into the differential equation (5.1). The amplitudes in ox and oy directions 

are 

F.asin6 
A = ..".=----:::-:: 

2 k -mD2 
2 

These equations can be further expressed as 

A, cos6/k, -- , 
Fa 1-(D/6),)2 

A, = sin6/ k2 
Fa 1-(D/6)2)2 

(5.3) 

(5.4) 

The phase angles are not given as they are not the major concern of this discussion. 
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The equations (5.4) reveal that the response amplitudes in x and y directions 

are functions of the angle 9. If the excitation F(t) is applied only in x direction as 

shown in Figure 5.1O(b), 9 = 0, thus sin9 = 0, therefore A.JFo is always zero. The 

response will only be in x direction. Similarly, if F(t) is applied in y direction, the 

response in x direction will be zero. The response amplitudes are also functions of 

the frequency ratio Q/oo" i = 1, 2. When cos9 and sin9 are not zero, the resonant 

responses can be found at n = 001 or n =~. However, the resonant response in x 

or y direction will not occur if the excitation is not applied in that direction. This 

relation provides the possibility of identifying the mode shapes of the modes with 

closely spaced natural frequencies. 

If kl = k2, equal roots are found in the characteristic equation, the 

corresponding eigenvectors are not unique and a linear combination of such 

eigenvectors may also satisfy the equations of motion. This means that any straight 

line motion of the particle in the xoy plane becomes possible and may be regarded 

as a principal mode. As any motion not in line with ox and oy axes is the 

combination of the simultaneous motions in ox and oy directions, their mode shapes 

appear as coupled modes. 

If the natural frequencies of the two modes are closely spaced, i.e. kl = k2, 

the excitation shown in Figure 5.1O(a) will result in two coupled modes at n = 001 

and n = ~ due to the resonant response of both modes. The contribution from each 

mode to coupled mode shapes depends on the frequency ratio Q/ro, (i = 1,2) and the 

direction of excitation 9. If the direction of the excitation is changed, the resonant 

responses of the two coupled modes will change. 

This explains some confusing results obtained in ESPI tests given in Section 

4.3. When the natural frequencies of two modes are close to each other, the resonant 

responses found are two coupled modes. In addition, more than two resonances of 
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coupled modes were often detected if the position of excitation was moved around. 

(see Fig. 4.3(d) between 4500 Hz and 5300 Hz}. This is because the contribution to 

the resonant response of the coupled modes from each constituent mode is related to 

the position of excitation. 

5.3 Finite Element Models of Simplified Model Blades 

and the Blade K 

A full finite element analysis was conducted on all the blades. All the 

simplified blades were constrained as cantilevers. They all were modelled by 

three-dimensional 20 node brick elements, using different meshes. A lx6xl5 mesh 

was used for APLl and APL2. A lx6xlO mesh was used for APL3, APL4, ASH1, 

ASH2 and ASH3. The number of elements used in BLDK was reduced from 120 

to 90. Different coordinate systems were used in mesh forming. ASHl and ASH3 

were built with cylindrical coordinate while the others were formed with cartesian 

coordinate. The results of the analysis (associated with ESPI results.) are shown in 

Figure 5.3. 

5.3.1 F.E. Mode Shape Identification Using PIGS. 

Viewing the mode shapes and interpreting the modes was enhanced by use 

of an interactive graphics package (PIGS). PIGS is designed to work with PAFEC 

F.E. package for both pre-processing and post-processing. In mode identification 

of F.E. models of simplified blades, the backing store file created by computing was 

firstly retrieved by PIGS and then was processed for further analysis. The mesh of 

the F.E. model of a blade and deformed structure of the blade for any mode specified 

can be displayed on the screen. The viewing angle can be selected in any direction. 
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Mode shapes of simplified blades were easily identified and they are illustrated in 

Figure 5.3. 

The IF, IT and 2F modes of BLDK were identified at 1290Hz, 4710Hz and 

5810Hz respectively. But it was difficult to identify specific mode shapes for BLDK 

particularly the 2T and 3F modes as bending, edgewise and torsional displacements 

were coupled such that there was no single viewing angle available from which the 

real mode shape could be identified. An example of the possible display is shown 

in Figure 5.11(a). A better understanding of the fully deformed shape was obtained 

by taking sections at several height locations of the blade. Viewing them from the 

top, superimposing the deformation of the section for the frequency under 

investigation, rotating the sections into appropriate viewing angles so that nodal 

points on sections could be identified and then drawing nodal lines along nodal 

points. This time consuming technique is illustrated in Figure 5.11 (b) and (c), 

which proved extremely useful in interpreting mode shapes of turbocharger blades 

from F.E. analysis. The 2T and 3F modes were then identified at 10800Hz and 

9030Hz respectively. 

5.4 Summary of Results 

A summary of ~esults of mode shapes and natural frequencies of simple 

blades and blade K is shown in Figures 5.3 and 5.12. Results for different blades for 

APLl to ASH3 are shown in different rows in Figure 5.3 and results for blade K are 

illustrated in the bottom row. Different modes can be found in different columns and 

the value of natural frequencies are located just below the diagrams of associated 

mode shapes. Results for the same blades by different analysis methods are grouped 

together. The uniform cantilever was used to set up the reference standard for modal 

patterns using the conventional flap mode(F), edge mode(E), Torsional mode(T) and 
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spanwise mode(S) designations. 

5.4.1 Effects of the Complex Profile 

Good agreement of mode shapes and natural frequencies of simplified blades 

between results of ESPI and F.E. analysis was found. The influence of the change 

of geometry on mode shapes has been identified. The presence of taper across the 

cross-sectional area is clearly seen to skew the nodal lines in mode shapes of APL2. 

For the 1 T mode, the skewed nodal line starts from the middle of the tip and 

ends at the right hand bottom corner of the blade since the leading edge (right hand) 

is thicker than the trailing edge. The higher location of the top nodal line of the 2F 

mode on the leading edge confirms the larger stiffness on this side of the blade. 

The distortion of the 2T and the 3F mode shapes of APL2 proves to be the· 

key references for identifying the same modes of blade K. The taper from root to 

tip in the APL3 blade forces the nodal line towards the tip in flap modes. The 

twisted uniform cantilever APL4 demonstrates the ability of the twist to raise the 

natural frequency without substantially affecting the shape of the modal pattern. 

However it is possible that different degrees of twist could alter adjacent natural 

frequencies so that combination frequencies occur. This phenomenon was originally 

reported by MacBain [105] (1975) and has recently been quantified by MacBain J. 

et al [108] (1985). Similar conclusions can be obtained from the results for the 

tapered shell elements which also highlight the distortion of the modal patterns with 

geometry change of the blade. 

Of particular interest are the results associated with the 2T and 3F modes as 

these have close natural frequencies in most of the models and the frequencies do not 

necessarily occur in the same sequence for all blades. For example, the natural 
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frequencies of the 2T mode of APLl and APlA are higher than those for the 3F 

mode, whilst in the rest of the cases they are lower. 

The natural frequencies and mode shapes of blade K were identified. Eight 

mode shapes obtained using ESPI are illustrated in the row under BLDK in Figure 

5.8. This is essential in order that the correct location of blade lacing wire can be 

specified. For the convenience of reference, identified modes of free standing blade 

K is also drawn in Figure 5.12. One frequency detected for blade K at 2394 Hz and 

predicted by finite element analysis at 2960 Hz caused considerable difficulty in 

interpretation as the ESPI investigations identified a clear nodal line (shown as lE 

mode at 2394 Hz in Figure 5.12) of a similar form that could be expected for the 2F 

mode whilst the fmite element analysis failed to identify this nodal line. 

Initial attempts to view this mode by considering the finite element analysis 

predicted deformed shapes in which discrete points in the section appeared to have 

zero deflection and therefore suggested the possibility of a node. However by 

increasing the amplitude allowable for deflections in the finite element investigation 

it was shown that the nodal point appeared to shift. In reality no node existed as the 

intersection of the deformed and un-deformed components of the vibration analysis 

was not comparing the absolute motion of identical points. The detection of this 

false mode was a function of the angle chosen to view the section. 

This error also occurs with the use of ESPI investigations. As explained in 

section 3.3.1, ESPI technique used in this study was only able to monitor 

out-of-plane motion. For a curved surface of blade K, ESPI could give false 

presentation of motion as illustrated in Figure 5.13. If the blade is vibrating in 

edgewise mode in plane x-x, ESPI will detect displacement ab due to the curvature 

of the surface. In truth the displacement ab suggested by the ESPI investigation is 

non-existent as the laser with its uni-directional view cannot distinguish between 
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different points of the viewed object. 

5.5 Further Consideration into the Interpretation of 

Modal Analysis Results 

In modal analysis, an accelerometer can only detect motion in its sensitivity 

direction and it was attached with its axis of sensitivity X-X perpendicular to the 

surface of blade K, as shown in Figure 5.14. The normal vector of the surface varies 

at different locations on the blade due to the complexity of its shape. As a 

consequence, the sensitivity of the sensor to the same mode shape is also location 

dependent. Figure 5.14 shows the top cross-section of blade K which is moving 

edgewise. The accelerometer at location Ca) can detect component oa of acceleration 

ob, whilst at location Cb), it can sense no acceleration as its axis of sensitivity in x-x 

direction is normal to ob. Therefore, this edgewise mode of vibration could be mis

interpreted as flapwise mode. 

Based on the work reported above, a paper was presented at the 1987 ASME 

International Vibrations Conference in Boston, USA. It was also published in the 

Journal of Vibrations, Acoustics, Stress and Reliability in Design. Jan, 1988 [33]. 

5.6 The Improvement of the F.E. Model of the Blade K 

Though good agreement on mode identification for simplified blade models 

from both experimental and theoretical approaches was found and the vibration 

modes of the blade K were identified, discrepancies between the natural frequencies 

for the blade K obtained by ESPI tests and F.E. analysis were still considerable. For 

instance, the F.E. calculated natural frequency is 24% higher than that obtained by 

ESPI test for the lE mode, 26% higher for the 2F mode, 10% higher for the 2T 
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mode and 25% higher for the 3F mode. This large disagreement suggested that 

further study should be carried out to improve the finite element model of the blade 

K. Also the computing time for BLDK was 100 minutes in CPU time which was 

equivalent to 9 hours computer run time in practice for one calculation. This long 

computing time had to be shortened in order that a multi-blade model could be 

calculated in a reasonable time. 

5.6.1 Number of Elements 

There are 90 Elements used in BLDK model as shown in Figure 5.11 Ca). 

Using a large number of elements ensured the accuracy of the initial modelling. But 

to reduce the computing time it was considered necessary to establish the minimum 

number of elements with a reasonable accuracy. 

It was found that for the three dimensional elements available in the P AFEC 

package, the biggest ratio of the longest side to the shortest side should be kept 

within 15:1. This limitation conditions the minimum number of elements required 

to faithfully model the blade K. The thickness of the trailing edge of the blade is 

very thin hence the shortest side of the element is about 1 mm long. This gives 

15mm as the length of the longest side. The height of the blade is 91mm. Therefore 

the blade at least has to be divided into about 7 portions. In the width direction the 

cross-sections are divided into 3 parts to ensure a reasonable geometric representation 

for the modelled blade. Thus overall 21 elements were used to model the blade K. 

The new models are named under ASP as a prefix followed by a number. The mesh 

of ASP4 is illustrated in Figure 5.15 and the results for the natural frequencies are 

given in Table 5.1. Considerable time saving was achieved with ASP4, reducing the 

CPU time to 17 minutes. 
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5.6.2 Type of Elements 

The complex geometry of the blade K creates considerable difficulty in 

finding a proper type of element which is able to describe the motion of the blade. 

Two segments from the tip and the bottom of the blade K are plotted in Figure 5.16 

which reveal that though it could be treated as a two dimensional problem at the 

upper part of the blade, the thickness at the lower part of the blade should not be 

neglected. The 3D element (37110 type) used in previous models is able to process 

both 3D and 2D analysis but is very time consuming and expensive. Therefore other 

types of elements were considered and tested to improve the model of the blade K. 

Shell elements were considered as the best alternative. Curved eight node 

thick shell element (46210 and 46110 types) and three node flat facet shell element 

(41320 type) were tried. 41320 elements are basically designed for thin shell 

applications. They were used in conjunction with other shell elements to model the 

upper part of the blade. It was found that it was difficult to model cambered 

cross-sections by flat elements unless a large number of elements was used, which 

was in conflict with the idea of reducing the computing time. 46210 elements can 

be used in generally curved shell problems for the intermediate range between full 

three dimensional and thin shell behaviour. They are generally curved thick shell 

elements with four corner nodes and four midside nodes defining the middle surface 

of the shell. 46110 elements are similar but with a triangular shape. It was found 

that the mesh generating module in PAFEC was not compatible with the 46210 type 

of elements, which meant that the mesh had to be generated manUally. The results 

of modelling using 46210 elements were far less satisfactory. Considering the great 

amount of work to be done manually for each improvement on the shell model of 

blade K and the poor accuracy of the modelling, the following study was carried out 

using 3D elements. 
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Currently the 3D element (37110) used is a generally shaped brick type with 

six curvilinear faces and twelve edges. There are eight corner nodes and one midside 

node on each of the edges, giving twenty nodes in all. The element is easy to use 

as it can be built into the mesh generating module in the P AFEC data preparation 

program. Once the mesh for the blade K was constructed, other 3D elements could 

also be used since coordinates of all nodes had been generated by PAFEC. 

One of the elements considered was an eight node 37100 type with six faces 

and twelve straight sides, which belonged to the same family of 37110 elements. A 

model called A8NK2 was created using 40 elements. The natural frequency results 

calculated are listed in Table 5.1. Comparing A8NK2 results with those obtained 

MODE 
(Hz) 

ESPI 

BLDK 

ASP4 

A8NK2 

ASPRT12 

Table 5.1 

IF lE IT 2F CPU(min) 

1255 2392 4510 4994 

1290 2960 4710 5610 138 

1360 3080 4780 5920 17 

1771 3429 4891 8051 7 

1226 2482 4643 4984 11.5 

Natural frequencies calculated by different FE models and the 

CPU times used 

from the model ASP4, it can be seen that though the CPU time of A8NK2 was only 

about 7 minutes, which is about 10 minutes shoner, natural frequencies were much 

higher. This implied that using more elements with few nodes in each element gave 

a poorer model than using less elements with more nodes in each element. 

Another approach employed the use of 16 node 37130 elements which have 
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two opposite faces with a midside node on all four edges but there are no midside 

nodes in the third direction. This element is useful when the stresses vary less in one 

of the directions than the other two, which is the case with the blade K as it is thin 

in depth and consequently there is less stress variation in this direction. Great effon 

was made to work out coordinates of nodes from the output file of ASP4 model in 

order to generate the mesh composed of 37130 elements manually, as the 

PAFBLOCK module would not work with this type of element The application of 

37130 elements was proved to be successful in a new F.E. model which will be 

discussed in the next section. 

5.6.3 Modelling of the Root of Blade K 

Along with the investigation into the number and types of elements which 

could be used to build up the F.E. model of the blade K, the study was also extended 

to fmd out the imponance of modelling the fir-tree root. 

Blade K and simplified blade models have been modelled as cantilever blades 

vibrating in flexure and torsion. Afolabi pointed out, in his study [4] in 1986, that 

in such treatments, the influence of root flexibility on natural frequencies and mode 

shapes of vibration is ignored. In practice, however, the flexibility at the root of a 

blade is not always negligible, especially in bladed disk assemblies with complex 

fixtures like fir-tree or pin-joint roots. 

Effects of root flexibility on the vibration of isolated cantilevered systems 

have been investigated in several studies. MacBain and Genin [106] has shown in 

their studies that natural frequencies are lowered with the inclusion of root flexibility. 

In practice, unless exceptionally good clamping is enforced, the measured resonant 

frequencies are lower than the actual cantilever frequencies to an extent which 

depends on the prevailing flexibility at the clamped root. 
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The blade K is mounted into the holding block at its fir-tree root and vertical 

forces are applied upwards by two bolts acting beneath the root creating a tight 

interface, similar to the conditions experienced during operation. However, the 

measured resonant frequencies by ESPI on the testing bench were the experimentally 

determined frequencies for the system under the test, whilst previous F.E. models 

predicted only cantilevered natural frequencies with no allowance for blade root 

mounting. Simple analysis indicated that the interface between the slot of the block 

holding the blade and the root of the blade takes place within the root teeth and the 

resultant of the restraint may well occur below the platform between the blade and 

the root as shown in Figure 5.17. This suggested that the previous models might 

have missed out a very important factor in the modelling. 

Several approaches were exercised using different type of elements and 

different numbers of elements to model the root. The names of the new models with 

fir-tree root began with ASPRT followed by a number. Three 8-node 37100 

elements were firstly used to build up the root of ASPRT9 which was composed of 

21 16-node 37130 elements. Then the number of elements for the root increased to 

five in ASPRT8. Finally using one 24-node 37140 element, which is a further 

extension of 37130 having two midside nodes instead of one, for the root was tested 

in ASPRTI2. The best results, in terms of natural frequencies being close to 

experimental values and shon CPU time, were achieved by model ASPRTl2. The 

identified mode shapes and natural frequencies are given in Table 5.1. The mesh of 

ASPRTl2 is illustrated in Figure 5.18. 

5.6.4 Material Properties of Elements 

P AFEC F.E package automatically provides a number of material properties 

in SI units. Funher materials can be added for local usage. If a material provided 

is required then the material number should be given in the appropriate module. 
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Some of the standard material properties are listed in Table 5.2. The material 

properties used in modelling simplified blades and blade K was taken from material 

number 1 for mild steel. 

Common Mat. Young's Poisson's Mass Coefficient Hysteretic 
Name of Num. Modulus Ratio Density of Thermal Damping 
Material Expansion 

E NU RO ALPHA MU 
Nm·2 - kg m·3 DCI -

Mild I 209E9 0.3 7800 IIE-6 .005 
Steel 

Strunless 2 195E9 0.3 7700 12E-6 .005 
Steel 

Cast Iron 3 125E9 0.25 7100 12E-6 .005 

Aluminium 4 68.5E9 0.33 2695 24E-6 .01 

Aluminium 5 70E9 0.33 2800 22E-6 .01 
Alloy 

Aluminium 6 75E9 0.33 3000 20E-6 .01 
Alloy 

Titanium 7 1l0E9 0.3 4533 8.5E-6 .005 

Table 5.2 Standard material properties included in the pafec scheme. 

5.7 Conclusion 

The understanding of vibration characteristics of blade K has been established 

in this chapter. The fundamental modes of vibration have been identified as IF, lE, 

IT, 2F, 2T and 3F. 

The effects of taper and pretwist on mode shapes have been shown by 

studying the mode shapes of simplified model blades, which model the geometric 
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features of blade K. This study has provided the fundamental understanding in the 

vibration of free standing turbine blades. 

One effect of changing the geometry of a blade is that different modes of 

vibration can be placed very close in frequency domain. The study has revealed that 

two coupled modes occur outside of the frequency band between the two closely 

spaced natural frequencies alone, while the latter disappear. An experimental 

technique of mode separation has been developed and successfully applied to 

simplified blades and blade K. 

The study has shown that both modal testing and ESPI techniques are 

polarized in detecting displacements. They may see vibration motion in one direction 

while the blade is moving in the other due to the pretwist of the blade. Thus 

thorough understanding of the techniques used is required for correct interpretations. 

Finite Element model of blade K was justified and simplified. With the better 

understanding of experimental techniques and justified F.E. models of simplified 

blades and blade K, the investigation began to study vibration characteristics of 

blade K with a lacing wire. 
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Figure 5.1 Simplified blades with different geometry features 

Figure 5.2 The holding block and wedges 
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Figure 5.4 Displacement of symmetric structure under symmetric 
and skew-symmetric loading 
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Figure 5.5 Model blade APLl and its symmetric and skew-symmetric 
displacement about X-Y plane under different loading. 
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Figure 5.6 Unidentified mode shape 

a b 

Figure 5.7 Predicted mode shapes of (a) IT mode at 2865 Hz and 
(b) 2F mode at 3132 Hz and excitation locations Ll, L2 and L3 
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Figure 5.12 Natural frequencies (Hz) and mode shapes of free-standing 

blade K 
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Figure 5.16 Top and bottom cross-sections of blade K 

135 



Further Investigation into Simplified Blades and Blade K 

Figure 5.17 The fir-tree root of blade K 
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6.1 Introduction 

Having considered the vibration characteristics of a free standing single 

turbocharger blade, the next step was to investigate the effects of lacing wires on the 

blade. The study was carried out by using ESPI and FE modelling. With the 

experiences of studying a single turbocharger blade, the investigation started again 

from simplified blades, then moved onto the blade K. 

6.2 Design of Simplified Blades with a Lacing Wire 

Hole 

The design criteria of simplified blades were similar to those of blade APLl 

model. The blade was straight cross-section, 92mm high, 31mm wide and 5mm 

thick. The root block was 30mm high and 34mm wide. The thickness was 20mm 

at the top platform of the root block and 24mm at the bottom section. The taper in 

depth was considered to give better clamping at the root block. The blade and the 

root block were machined out of one piece of mild steel. A hole of 3.3mm in 

diameter was designed on the central line of the blade at different heights as 

illustrated in Figure 6.1. The dimension of the lacing wire was 3.1 mm. To allow 

sliding between the wire and the hole, the dimension of the hole was a little bigger 

than that of the wire. The distance of the holes from blade root platform and names 

of simplified blades are indicated in Figure 6.2. The lacing wire was located at 

31.4% (APLl6), 35.6% (APLl5), 50% (APLl4), 68.9% (APL13), 83.7% (APLll) 

and at 94.6% (APLl2) of blade height from its bottom. 

A setting angle of 12 degrees was designed to simulate the setting angle at 

the root of blade K. Blade K is pretwisted with a 12 degree setting angle at the root 

and 55 degrees at the top section. At the section where the lacing wire goes through, 
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it is approximately 50 degrees. 

The investigation into simplified blades with a lacing wire was to establish 

basic understanding of the effects of lacing wires on vibration mode shapes and 

frequencies on fairly simple models so that the knowledge could be used to analyse 

turbocharger blades of complex geometric shape. It was not necessary at this stage 

to introduce a large setting angle into the system. On the contrary, a large setting 

angle would cause experimental difficulties since a viewing angle had to be available 

for ESPI tests, which will be explained in detail in Section 6.3. 

6.3 Design of the Lacing Wire Loading Rig 

To carry out experimental investigations into the vibration of blades with a 

lacing wire, the following basic conditions have to be satisfied: a) the wire going 

through the blade under test has to be fixed at two ends relative to the testing bench 

so that no displacements occur when the blade is in vibration, b) simulated 

centrifugal force has to be applied to the blade via the wire. 

A wire loading rig, as illustrated in Figure 6.3, was designed to meet the 

above requirements. The rig is composed of two frames, top and bottom frames. 

The top frame , where the wire is locked in, can slide vertically with its freedom in 

the horizontal plane being restrained by the bottom frame. Consequently, the wire 

can not move as a rigid beam in the horizontal plane but is free to move vertically. 

When a blade in the holding block is loaded in the rig as shown in Figure 6.4, 

vertical displacement of the top frame is restricted by the wire which passes through 

the blade being firmly clamped on the testing bench. A pulling force of 700 Newton 

was applied via a pulley system illustrated in Figure 6.5 to the top frame, and its 

upwards displacement transferred the force to the blade via the lacing wire with 
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tension and shear forces to simulate the centrifugal force occurred in the rotating 

lacing wire. 

The interested running speed of a bladed disk where the blades and the lacing 

wires are employed is 18000 rpm. The centrifugal force resulting from this speed 

is 1400 Newtons. As the capacity of the pulley system was limited and also it was 

proved that it was not necessary to apply a full load to lock the wire into the blading, 

i.e. no slippage between the wire and the hole in the blade, 700N was chosen to be 

used in this study. 

6.4 The Initial ESPI Tests 

The experimental rig with simplified blades was set up in front of the 

VIDISPEC on the bench. An electro-magnetic exciter was employed to excite the 

blade as in previous ESPI tests as shown in Figure 6.6. Blades were excited at 

different locations on the rear face by a fine push rod connected to the exciter. Tests 

were carried out on each simplified blade from APL11 to APL16. 

In the test for each specific blade, the blade held in the holding block was put 

between top and bottom frame and clamped down fmnly onto the bench, then a 

lacing wire was threaded through the hole on the blade and was locked into the top 

frame by screws as shown in Figure 6.7(a). 700N weights were gradually loaded 

into the pulley system pulling the wire upwards. To insure that the force applied was 

fully loaded to the blade via the wire, not to the resistant force of friction in the joint 

mechanism between top and bottom frames, shaking impact was applied to the rig. 

When the rig was fully loaded and extended, top and bottom frames were locked 

with each other by the locking mechanism. As the distance of the lacing wire to the 

blade top varies from 5mm to 70mm which was more than 3 quarters of the blade 
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length, joint mechanisms with different lengths were made as shown in Figure 6.8. 

The initial ESPI results are shown in Table 6.1. The ESPI results of APLl 

blade model, a simplified blade without lacing wires, are also listed in the table as 

a reference. We shall discuss the results together with results of FE modelling in the 

following sections. 

MODES IF IT lE 2F 2T 3F 

APLl 471 2865 3132 8925 8354 

APLl6 578 2809 3743 8886 9193 

APLl5 678 2818 4546 8778 8600 

APLl4 2925 5260 8868 8250 

APL13 2175 2933 4235 8706 9388 

APLll 5094 2957 2957 8785 8236 

APLl2 2435 2996 6026 8787 10374 

Table 6.1 Natural frequencies (Hz) of Simplified blades with A Lacing Wire 

Obtained by Initial ESPI Tests 

6.5 F.E. Modelling of Simplified Blades with a Lacing 

Wire 

6.5.1 Fundamental Assumptions 

Considering the way that the lacing wire works, there were two possibilities 

as indicated by Wachter [198]: 

a) friction damping, 
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b) a lacing wire is locked in the blade and hence alters significantly the vibration 

characteristics of the system. 

Friction damping was not investigated in this study for the following reasons: 

a) when there is friction damping, the blade's natural frequencies may not vary 

significantly from the frequencies of the free-standing blade. 

b) the FE package P AFEC used in this study is not able to carry out natural 

frequency analysis with the friction of variable friction coefficient. 

c) the interesting operational speed of the turbocharger in which the blade under 

study is employed is around 18000 rpm. Consequently the centrifugal force 

exerted on each blade by the lacing wire is 1400N. The ESPI test which will 

be discussed later proved that no slippage occurs above 700N's loading. 

Whether the slippage between the lacing wire and the blade occurs depends 

on the following factors as noticed by Provenzale [137]: 

a) friction between the lacing wire and the blade, resulting from the lacing wire 

being held outward by centrifugal force, 

b) Displacement of the blade in vibration at the lacing wire location, and 

c) blade-to-blade phase angle. If the friction is bigger than the force required 

to stretch and compress the lacing wire over the displacement equal to the 

amplitude of blade vibration at the lacing wire location as illustrated in Figure 

6.9, then the wire is locked in the blade. 
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Friction is produced by the lacing wire being held outward by centrifugal 

force which is proportional to the square of the rotating speed of the rotor. 

Amplitude of vibration is the displacement response of the blade to the excitation and 

depends on the relationship between natural frequencies and excitation frequencies. 

It is not directly proportional to the running speed. Therefore, when rotating speed 

is higher than a certain critical value, the friction is large enough to restrain the 

displacement at the lacing wire location. Then the wire is locked. 

In this study it was assumed that the wire was locked into the blade and it 

was intended to find out how the wire altered the vibration characteristics of a single 

blade. 

6.5.2 Calculation of Spring Stiffness 

Huang [76] calculated the free vibration of rotationally periodic structures 

with various types of connection elements by a transfer matrix method. He 

considered the lacing wire as segments of wires with hinged ends as shown in Figure 

6.10. In the work done by Wildheim [210] a lacing wire was treated as a massless 

beam in between blades and only static stiffness of the wire was considered. In this 

study, the lacing wire was modelled as massless springs hinged in between blades. 

6.5.2.1 Longitudinal Stiffness 

A lacing wire is a continuous beam when it loosely rests in holes in the 

blades. When the disk rotates, the centrifugal force acting on the lacing wire pushes 

it outwards. The friction produced by centrifugal force stops relative sliding between 

blades and the lacing wire. If the lacing wire hole is slightly bigger in dimension 

than that of the wire, which is true in most cases because of the wear between them 

during operation, then there is no bending moment applied to the blade by the lacing 
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wire at the points of interface. Thus the connection between blades and the lacing 

wire could be considered as hinged. 

Now the calculation for the longitudinal stiffness of the wire is 

straightforward. As shown in Figure 6.11, assuming there are no displacements for 

blade i-I and blade i, the displacement in x direction for blade i+ 1 is /) which is the 

elongation of the wire L i . If P represents the tensile force, E is the Young's modulus 

of the lacing wire and A is the cross-sectional area of the wire, then the relation 

between elongation and tensile force, according to Hooke's law, is 

(6.1) 

which is 

(6.2) 

For a linear spring, the relation between external force and deformation is 

p=K,a 
(6.3) 

where K is the spring stiffness. 

Comparing equations 6.2 and 6.3, the longitudinal stiffness of the lacing wire 

IS 
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EA 
K=

I L 
I (6.4) 

In the fIrst attempt at modelling the lacing wire, the length of the wire was 

considered 25mm long as illustrated in Figure 6.7. The material of the wire used in 

the ESPI test is steel hence the value of E is 209x 1O~/m2. The dimension of the 

wire is 3.1 mm, thus the value of K, is obtained by the following calculation: 

For circular cross-section, (6.5) 

Substitute eq. 6.5 and values of E and L, into eq. 6.4, the longitudinal stiffness 

of the lacing wire is given by: 

E1ID2 
K =--=6.31xl01N/m 

I 4L. , 

6.5.2.2 Lateral Stiffness 

(6.6) 

For lateral stiffness calculation, different phase relations among blades have 

to be considered. There are two possibilities of phase relations among blades, which 

are illustrated in Figure 6.12 (a) and (b). Taking coordinate axes x and y as shown, 

the angle 9, in diagram (a) between the lacing wire and axis x at the connecting 

point of blade (i+ 1) is not zero and neither is 92, while in diagram (b), both of them 

are zero. These two different phase relations can be simplified as illustrated in 

Figure 6.12 (c) and (d). 
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1(,.,. Now we shall calculate the lateral stiffness of the lacing wire 1(,., in the case 

shown in Figure 6.12c. Timoshenko [189] studied the deflection of laterally loaded 

symmetrical beams and gave the differential equation of the deflection curve denoted 

by: 

(6.7) 

with regard to the coordinate system in diagram (c) of Figure 6.12. The bending 

moment M at any point x is: 

1 
M=-Px 

2 
for o :!: x:!: L 

2 

Substitution of M in eq. 6.7 gives 

EldZy 
= 

dx2 

1 --Px 
2 

By integrating this equation we obtain 

dy 1 2 EI-= --Px +C 
dx 4 J 

and 

147 

(a) 



Investigation into a Single Blade with a Lacing Wire 

(b) 

Now we need to detennine two constants Cl and ~, for their detennination 

we have two conditions, namely that the deflection at each of the two ends is zero 

and the slope at the middle of the beam is zero as the beam is symmetric to the point 

of loading. Substituting x = 0 and y = 0 in the expression (b), we fmd 

~=O (c) 

Substituting dy/dx = 0 and x = L/2 in the expression (a), we obtain 

(d) 

Substituting the values (c) and (d) of the constants into eqs. (a) and (b) for 

the deflection curve, we obtain 

Eldy -~Px2+~PL2 L = O~x~-
dx 4 16 2 (6.8) 

Ely = 1 3 1 P 2 o ~ X ~ 
L --Px +- 1.. X 

12 16 2 (6.9) 

The deflection at the position of loading is obtained by substitute x = L/2 in 

eq.6.9 
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PL 3 
- --

48 

Rearranging this expression, we obtain 

(a) 

Comparing with P = K,.c /) gives 

(6.10) 

where E is the Young's modulus, I is the second moment of area and L is the length 

of the beam. 

K,d The case in diagram (d) of Figure 6.12 is actually to obtain the deflection /) 

at the loading location. It is a statically undetermined problem with six reactive 

elements, which means the problem has three static ally indeterminate elements. 

However, for ordinary beams, the horizontal components of the reactions can be 

neglected, which reduces the number of statically indeterminate quantities to two. 

If we use the method of superposition, then the case can be considered in simpler 

ways as shown in diagrams (e) and (f) of Figure 6.12. The solution can be obtained 

by combining the two statically determinate problems shown in diagram (e) and (f). 

It is evident that the conditions at the built-in ends of the beam AB will be satisfied 

if the couples M. and M" are adjusted so as to make 
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(6.11) 

Considering the structure and the load are symmetric to the loading point, we 

know that the deflection should be symmetric too. Hence we obtain 

(a) 

Therefore M. rhust be equal to Mb • The numbers of statically indeterminate 

couples are reduced to one, Ma' which can be determined by 

(b) 

Substitution of x = 0 in eq. 6.8 gives 

Eldy = ...!..PL 2 

dx 16 at x = 0 

we obtain 6\ by rearranging the expression above 

(c) 

To obtain the angle 6\' in diagram (f), the equation for the deflection curve 

can be written as below: 
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Eldly 
= M 

dx1 a 
OsxsL 

(6.12) 

The first integration gives 

(a) 

and the second integration gives 

(b) 

The constants Cl and C2 are found from the condition that the deflection 

vanishes at supported ends. Thus, by substituting x = 0, y = 0 and x = L, Y = 0 in 

eq. (b), we obtain 

1 
Cl = --MJ-

2 

Substituting these values in eqs. (a) and (b), we find 

dy Ma L 
- = -(x--) 
dx El 2 
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Thus we obtain 9,' by substituting x = 0 in eq. 6.13 

e' = 1 
Mt!-
2El 

(6.14) 

(6.15) 

The static undetennined couple M" is found by substituting equations 6.15 and 

6. 11 (c) in eq. 6.11(b) 

M = PL 
" 8 (b) 

Substituting (b) and x = L/2 in eq. 6.14 we obtain the deflection at the middle 

of the beam in diagram (f) 

a =_PL
3

(T) 
2 64E] (c) 

0, in diagram (e) is given by eq. 6.9(a) 

a = PL
3 

(I) 
1 48E] (d) 
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Finally, the summation of equations (c) and (d) gives the deflection at the 

middle of the beam in diagram (d) 

PL 3 

192El 

Rearranging expression (6.26), we obtain 

P = 192Elll 
L3 

Hence we find 

K' = 192El 
y 

(6.26) 

(626a) 

(6.27) 

which is the lateral stiffness of the lacing wire subject to the phase relation shown 

in diagram (b) of Figure 6.12. 

Comparing equations 6.10 and 6.27, we find 

K' = 4 48E1 = 4K 
y L3 y 

For the lacing wire used in the test, the diameter D = 3.1 mm, length L = 50 

mm, E = 209xl(f N/m2.Substituting these values in eq. 6.10, we obtain 
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Ky, = 3.638x105 N/m. (6.16) 

Hence 

Ky. = 4Ky, = 1.455xl0· N/m. (6.19) 

6.5.2.3 Torsional Stiffness 

Torsional stiffness of the lacing wire is also related to phase relations of the 

blades as shown in Figure 6.13. Apparently the stiffness at location i in case (b) is 

larger then that in case (a). From diagram (d) we shall calculate the stiffness in case 

(b). 

The beam loaded at the middle by Mo with two built in ends in Figure 6.13(d) 

can be simplified as a beam, which is half of the original length, with one end 

built-in and loaded by Mj2 and Po at the free end as shown in Figure 6.13(e). There 

are standard solutions for cantilevers loaded at the free end as shown in Figure 6.14, 

where e and l) denote deflective angle and deflection at the free end respectively. 

This is a statically undetermined problem with one statically undetermined 

element Po, which can be determined by the deflection l) = 0 at the free end. 

Referencing equations in Figure 6.14, the deflection caused by Mj2 at the 

free end is 

16EI (6.17) 
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Deflection resulting from Po at the free end is 

a = 2 

P,p 
---

24EI (6.18) 

Summation of li1 and li2 should be equal to zero, thus li1 = -~ Substituting 

equations 6.17 and 6.18 we find 

3Mo P =-
o 2L (6.20) 

In the same way of referencing equations in Figure 6.14 the deflective angle 

Ell caused by Mj2 at the free end is 

M~ 
81 ---

4El 

and El2 caused by Po at the free end is 

8 = 2 

P L2 
o ---

SEl 

Substituting eq. 6.20 in eq. 6.21, we obtain 

3ML 
8 = 2 16EI 
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Therefore, the summation of equations 6.20 (a) and 6.22 gives the deflective 

angle e at the free end in Figure 6.13( e), which is at the middle of the beam in 

Figure 6.13(d). 

o = MoL _ 3MoL = 
4EI 16EI 

Rearranging eq. 6.23, we obtain 

M = 16EIO 
o L 

Hence the torsional stiffness is 

K = 16EI 
t L 

(6.23) 

(6.24) 

Substituting E = 209x109 N/m, L = 50x1()"3m and I = 4.533x10·12 m' in eq. 

6.24, we find 

K, = 303 Nm/~ (6.25) 

So far, we have obtained longitudinal stiffness, lateral stiffness and torsional 

stiffness which are listed below for further reference 

Longimdinal stiffness K, = 6.31x107 N/m (6.6) 
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Lateral stiffness K,c = 3.638xlOS N/m (6.16) 

Lateral stiffness K,d = 1.455xl06 N/m (6.19) 

Torsional stiffness K. = 303 Nmlrad (6.25) 

6.5.3 F.E. Modelling Criteria 

6.5.3.1 Number of Elements 

The number of elements used to model each simplified blade was different 

according to the location of springs. 

For initial models named APLl to APL16, 12 elements were used apart from 

APLI3, of which the number was 14. In addition, two spring elements were used 

on each blade. The root of the blades was not modelled on the initial models. 

The type of elements used for blades was 37110 in PAFEC, which were 20 

noded brick elements for three dimensional analysis. The lacing wire" was modelled 

by massless spring elements which had three translational stiffnesses and three 

torsional stiffnesses. 

6.5.3.2 Spring Location 

For instance, to model the blade APL16 which is shown in Figure 6.15, the 

height of the key cross-section relative to the top and bottom sections, was 

determined first according to the location of the lacing wire. Then the mesh 

distribution was decided proportionally to the size of two blocks between three cross

sections. The mesh then was generated by PAFBLOCK module in PAFEC [126]. 
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Springs were connected to node 12 and 15 in the key section and their outer ends 

were fixed to earth. Consequently, the springs would change their height when the 

key section moved up and down. The blade model consisted of two columns of 

elements joining at the central axis where node 12 and 15 were located. Therefore 

the springs were ensured to be on the central axis. As another example, APL14 

shown in Figure 6.15 was constructed in the same way. The key section this time 

was at the middle of the full length, hence springs were moved up with node 12 and 

15 too. 

6.5.3.3 Spring Stiffness Used in the Initial Models 

In section 6.5.2, we calculated tI1ree stiffnesses of the lacing wire, which were 

longitudinal, lateral and torsional. But in practice, at the time of this initial 

modelling, only longitudinal stiffness was considered which was 

K, = 6.31xl01 N/m (6.6) 

6.5.4 Initial Results and the F.E. Model Improvement 

6.5.4.1 Initial Results 

Six initial models were generated using the criteria described in the previous 

section. They were named as APL model, numbered from 11 to 16. Natural 

frequencies and mode shapes were calculated and frequency results are listed in 

Table 6.2. 

6.5.4.2 Discussion of Initial Results of ESPI Test and FE Modelling 

Results of initial ESPI and FE modelling were presented in Table 6.1 and 
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Table 6.2 respectively. Great discrepancies were found between the two groups of 

results. 

Table 6.2 

MODE IF IT lE 2F 2T 3F 

APLl 504 2820 2930 3120 8900 8740 

APLl6 698 2875 2946 4186 9045 11010 

APLl5 908 2888 2956 5312 9093 11669 

APLl4 1404 2887 2957 7404 9079 9098 

APLl3 5360 9311 10438 

APLll 7097 2888 2953 3050 9109 9446 

APLl2 2484 2892 2959 7691 9109 12929 

Natural frequencies (Hz) of simplified blades with a lacing wire 

calculated by Initial FE analysis 

The first edge (lE) mode was not identified by the ESPI test since only 

deflections in the viewing directions of ESPI rig could be detected. Good agreement 

was found in torsional modes (1 T and 2T). This confirmed the assumption that very 

little torsional constraint was applied to the blades by the lacing wire. Because the 

clearance between the lacing wire and the hole was fairly large, hence the wire 

under loading was not largely bent while blades were undergoing torsional motion. 

Therefore in FE modelling, torsional stiffness was not considered. Consequently, 

changes of frequency for torsional modes were not expected in FE results. 

The main concern here was about flap modes. As can be seen in Tables 6.2 

and 6.1, corresponding natural frequencies of the IF mode in FE modelling were 

higher than those obtained from ESP!. In cases with models APL11 and APLl6, 

they were 40% and 20% higher respectively. Same large discrepancies were also 
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found with 3F modes. 

The disagreement in the initial results indicated that FE models needed to be 

modified and corrected and if, after the modification, there are still large 

discrepancies, then the ESPI results will be questioned. 

6.5.4.3 Improvement of FE Models 

Considering the initial models one thing obviously different from testing 

models was the direction of the spring stiffness Kt. The initial model was 

constructed in the coordinate system shown in Figure 6.17(a), which gives the top 

view of the FE model. Obviously, K,. was in x direction, but the test model was 

designed having a setting angle which resulted in an angle 9 between the axis x' of 

the local coordinate and axis x of the global coordinate as shown in Figure 6.17(b). 

Since there was no pretwist the angle 9 was equal to the setting angle which was 12" 

with APL models. 

Spring elements had to be connected at nodes which were chosen to be node 

12 and node 15 in APL models. With the setting angle 9, node 12 and node 15 were 

no longer in line with axis x. Therefore, different ways of connecting spring 

elements to the nodes were considered as illustrated in Figure 6.17(c) and (d). 

Finally, taking the experience of modelling the ASPRT model, which was the FE 

model of the blade K with the root, the connection was modelled as shown in Figure 

6. 17(e). Nodes 12 and 15 were moved to be on x axis. In this case no torsional 

moment was pre~loaded to the blades. Two coordinate systems were used in the 

improved models. x'y' was the local coordinate and xy system was the global one 

as shown in Figure 6.17 (f). 

In the FE program of improved models, coordinates of nodes were given in 

160 



Investigation into a Single Blade with a Lacing Wire 

the x'y' system and a setting angle was achieved by giving an angle 9 to define the 

position of the x'y' system in the xy system. New locations of nodes 12 and 15 

were decided by using PIGS4. The cross section containing nodes 12 and 15 was 

displayed on a computer screen. A new location of the nodes was then graphically 

input from the screen, the new coordinates of the nodes were obtained from PIGS4 

information facility. 

The coordinates of new nodes 12 and 15 given by PIGS4 were in the xy 

system. The coordinates in the input file for the construction of models should be 

in the x'y' system. So these new coordinates needed to be transferred to the x'y' 

system. The coordinate transferring matrix could be obtained easily from Figure 

6. 17(f). For a known point p(x,y) in the xy system, its coordinate in the x'y' system 

was given by 

X, 

[)= 
y 

cose 
[ . e -SIn (6.26) 

Inputting the new local coordinates of nodes 12 and 15 in the input file we 

constructed improved FE models of simplified blades. 

The second difference between FE models and testing models was that there 

was no root modelled in the FE models. APL models were treated as cantilevers 

with one end fully restrained. But as can be seen in Figure 6.1, a root was designed 

for the blade to be clamped. The root and the blade were made out of one piece of 

metal and the blade was only clamped at the root as shown in Figure 6.4. The real 

interface between the root block and the blade holding block was unknown. Since 

the blade root block was locked in by screws, there must be some clearance, hence 

the restraint must be lower than the plane where the blade and the root block meet. 
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The blade root block are modelled using four 20-noded, 3D brick elements 

(37110 type as shown in Fig. 6.16). The bottom plane of the root was fully 

restrained. Results of the FE models with improved spring connections and the root 

block, which were named as APL#NB models, where # represents serial numbers, 

were shown in Table 6.3. 

Table 6.3 

MODES IF IT lE 2F 2T 3F 

APL16NB 688 2864 2366 4122 8934 10330 

APL15NB 892 2872 2369 5289 8979 10462 

APL14NB 1370 2873 2378 7105 8488 8984 

APL13NB 2189 2874 2555 5217 8978 10414 

APL11NB 2215 2864 2478 7219 8966 10538 

APL12NB 2307 2869 2914 7132 8713 8978 

Natural frequencies (Hz) of simplified blades with a lacing wire 

calculated by Second FE analysis 

6.5.4.4 Improvement of the Lacing Wire Locking Mechanism 

Results in Table 6.3 were little lower than those in Table 6.2 but they were 

still much higher than ESPI results in Table 6.1. This implied that there could be 

something incorrect about the basic assumptions. Further investigation was carried 

out to look into the basic parameters of the testing rig and ESPI tests. The lacing 

wire holding frame was examined again and the attention was drawn to the lacing 

wire locking mechanism, which is shown in Figure 6.7a. The wire was considered 

to be locked by top screws and the effective length of the wire was assumed from 

the surface of the blade to the inner edge of the wire holding frame. Therefore, it 
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was 25 mm long. Actually, some sliding wear on the wire at edge of the wire 

holding frame was found which indicated that the wire might not be fully locked 

during the vibration. This possibility led to the improvement of the mechanism for 

wire locking. 

The secured way of locking the wire into the wire holding frame was shown 

in Figure. 6.7b, the wire was locked by double nuts at the outer edges of the wire 

holding frame. This method was more reliable than the one used before so it was 

known that the wire would not slide. The effective length for longitudinal deflection 

then was 50mm from the middle of the wire holding frame, where the blade was, to 

the outer edge of the wire holding frame. Hence the stiffness K, given by eq. 6.6 

became 

K, = 3.155 X 10+1 N/m (6.27) 

The value of K, in all APL#NB models were replaced by eq. 6.27 and new 

results were listed in Table 6.4. (# = serial numbers) 

6.6 Further Results and Discussion 

The ESPI tests were carried out again after the wire locking mechanism was 

improved. Natural frequency results were listed in Table 6.5. Comparing Tables 6.4 

and 6.5, it could be seen that the natural frequencies of the FE models were very 

close to those obtained from the experiment. Natural frequencies of FE modelling 

were less than 6% higher than those from the ESPI tests except for a few individual 

cases. This agreement meant that FE models and ESPI tests were both correct and 

the study into the vibration characteristics of a single blade with a lacing wire could 

be carried out on the data obtained. 
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Table 6.4 

Table 6.5 

MODES IF lE IT 2F 2T 3F 

APLlNB 493 2391 2820 3028 8828 8247 

APLl6NB 653 2361 2864 3819 8935 9544 

APLl5NB 847 2378 2873 4708 8981 9583 

APLl4NB 1308 2401 2876 5710 8983 8444 

APLl3NB 2155 2537 2877 4498 8979 9488 

APL 11 NB 5517 2382 2868 2897 8976 8505 

APLl2NB 2243 2528 2869 6662 8967 10103 

Natural frequencies (Hz) of simplified blades with a lacing wire 

calculated by correct FE analysis 

MODES IF lE IT 2F 2T 3F 

APLl6 577 2809 3743 8886 9193 

APLl5 728 2812 4582 8733 9502 

APLl4 1382 2388 2903 5260 8868 8250 

APLl3 2152 2514 2933 4235 9070 9680 

APLll 5122 2316 2957 2941 9269 8225 

APLl2 2200 2528 2984 6172 8886 9193 

Improved Natural frequencies (Hz) of simplified blades with a lacing 

wire obtained by ESPI tests 

So far, experimental data have been presented in tenns of natural frequencies 

only as listed in Tables 6.1 to 6.5 under the classification of flap modes, an edge 

mode and torsional modes. To carry out a full analysis, mode shapes had to be 

considered along with natural frequencies. A full data presentation was given in 

Figure 6.18. 
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Names of the simple blade models were given in the top row of Figure 6.18 

and they were the headings of columns where mode shapes, relevant natural 

frequencies and the location of the lacing wire were given. Classical classifications 

of mode shapes were used and the data of model APLl which was a simplified blade 

without lacing wires, was also given to be the reference. 

6.6.1 Coupled Modes Introduced by the Lacing Wire 

Great care was exercised during the tests and some difficult modes were 

identified. It was found that with most models apart from APLll, the edge mode 

was affected by other modes such as 1 T and 2F mode. This coupling from other 

modes gave the edge mode out-plane deflection which was then detected in ESPI 

tests. As presented in the lE mode row in Figure 6.18, a nodal line appeared above 

half of the height of the blade. It looked like the second nodal line of the 2F mode 

but it was not horizontal. Actually it was the registration of an out of plane 

component of edge mode deflection coupled by the 2F and the 1 T modes because of 

the contribution of the lacing wire and the setting angle as shown in Figure 6.19(a). 

The further study revealed that a force in x' direction is applied by the lacing 

wire to the. blade due to its edgewise displacement. The development of the relation 

between the force and the displacement are given below. 

As shown in Fig. 6.19(b), the deflection of the edge mode at the cross-section 

of the lacing wire is Oy.. Considering the relationship illustrated in Fig. 6.19( c), we 

obtain the deflection of the lacing wire in x direction as 

Ox = sine Oy. (6.28) 

Since Ox is very small, Oy is considered to be normal to Ox' The acting force 
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of the lacing wire on the blade is given by Hooke's Jaw (eq. 6.3) 

(6.29) 

Where KL is the longitudinal stiffness of the lacing wire. From Fig.6.l9(d) 

showing relationship among Fx, Fx' and Fy., we can obtain the acting force of the 

lacing wire in x' direction 

Fx' = Fxcos8 (6.30) 

Substituting equations 6.28 and 6.29 in eq. 6.30 gives 

Fx' = (1/2)sin28 K, Oy. (6.31) 

This is the force acting on the blade in x' direction by half of the lacing wire. 

Taking the other half into account, the resultant force from the lacing wire is 

(6.32) 

Eq. 6.32 indicates that R,.. varies with the setting angle e, following a sine 

relationship. A curve is drawn in Fig. 6.20. It takes the maximum when 8 equals 

to TC/4 and the minima occur when 8 is equal to zero and 1[/2. 

In our case, 8 is 12°, therefore 

(6.33) 

Eq. 6.33 shows that R,.. is in the same quantity level as KLoy" which explains 

the existence of bending moment in x' direction associated with the edge mode. A 
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front and a side view of the lE mode of FE model APLl4NB in Fig. 6.21 revealed 

this infl uence. 

6.6.2 Excitation from the Side of the Blade 

In the initial ESPI test it was very difficult to identify the edge mode and 

some other modes were coupled with the edge mode. The reason was that 

excitations were applied only in the direction of excitation I as shown in Fig. 6.19a. 

As the direction of excitation was normal to the direction of major displacement, the 

edge mode on most models was not stimulated such as in the cases of APLI6 and 

APLI5. Moreover, natural frequencies of those stimulated edge modes varied with 

different locations of excitation. Hence they were not true natural frequencies. Since 

the major displacement of the edge mode was in y' direction, excitation from the side 

of the blade shown as excitation 2 in Fig. 6.19a was exercised. 

It was proved that side excitation had provided the key technique to identify 

the edge mode. Mode shapes of ESPI results were the same as those obtained from 

FE modelling and the maximum difference of natural frequencies of the lE mode 

between two sets of results was within 3%. 

The edge mode of APLl was identified by viewing the blade on one side and 

exciting it at the other side. Some other. modes coupled by the edge mode were also 

identified by side excitation such as the IF mode of APLI3. Natural frequencies of 

these modes were close to the natura! frequencies of the edge mode of the same 

models. In the case of APLl3 the natural frequency of the IF mode was 2152Hz 

(ESPI) which was only 362Hz away from 2514Hz (ESPI) for the edge mode (Figure 

6.18). Also in the case of APLl2, the natural frequency at 2528Hz (ESPI) for the 

edge mode was only 328Hz higher than 2200Hz for the lPF mode. Since both 

modes were strongly coupled by the edge mode, side excitation was necessary to 
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stimulate the true mode shapes though they were not edge modes. 

The study of the vibration of coupled modes are given in Section 5.2.3. 

When two independent modes are coupled, they switch into two coupled modes with 

similar mode shapes composed of the two independent modes. One of the natural 

frequencies of the coupled modes is higher and the other one is lower than both 

constituent natural frequencies. 

It can be seen from Fig. 6.18 that natural frequencies of the edge mode of all 

models were not very far away from those of the 1 T mode. The average natural 

frequency of the lE mode was 2432Hz (FE) and the average natural frequency of the 

1 T mode was 2897Hz (FE). The difference in between was only 465Hz. Therefore, 

vibrating at about 2432Hz (FE) all edge modes were affected by torsional vibration 

which made the second nodal line at the middle of the blade tilted as shown in Fig. 

6.18. This influence can be seen in Figures 6.21, 6.22, 6.23 and 6.24. 

6.6.3 Identification of Mode Shapes 

Most mode shapes were easy to identify such as torsional modes on all 

models and the IF modes on the models where the lacing wire was in lower 

locations. However, difficulties were met in identifying some of the flap modes. 

Further study into the classification of the flap modes revealed the limitation of the 

traditional classification and a better understanding of the identification of the flap 

mode shapes were obtained. 

6.6.3.1 Definition of the Flap Mode Shapes 

Traditional definition on the flap mode shapes is based on the number of 

nodal lines across the blade concerned, as illustrated in Figure 6.25. The first mode 
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with only one nodal line at the bonom of the blade root block at 493 Hz is defined 

as the IF mode, the second mode with 2 nodal lines is the 2F mode and three nodal 

lines indicate the third mode at 8089 Hz as the 3F mode. This way of classification 

is widely used for its simplicity but it is not always representative. For instance, it 

can not describe the flap mode shapes of the systems such as the modes of 

APL12NB shown in Figure 6.24, in which two modes both with two nodal lines were 

found at 2243 Hz and 6662 Hz and one mode with three nodal lines was found at 

10103 Hz, while the mode with only one base nodal line was missing. This 

confusing identification of the flap mode shape signified that the number of nodal 

lines could not represent all the features of the flap mode shapes and a bener 

definition of the flap mode shapes was needed. 

Further study into a better presentation was carried out. The basic theory of 

vibration [118] indicates that a linear system can be represented by its characteristic 

equation, which is derived from differential equations of motion of the system, and 

the roots of the equation are the characteristic values for the system. The amplitude 

ratios of the mode of vibration can be found by substituting characteristic values ·into 

the displacement equations obtained from putting assumed harmonic solutions' into 

the equations of the motion. The amplitude ratios denote the mode shapes and the 

square roots of the characteristic values are the natural frequencies corresponding to 

their mode shapes. Because of the nature of free vibration, only the amplitude ratios, 

not the amplitude'itself, can be determined. The ratios imply two relative features: 

a) the values of the ratios represent the amplitude of vibration at different 

positions of the system relative to the amplitude of vibration at the reference 

position for a particular mode' of vibration, 

b) the signs of the ratios indicate the phase relations of them, i.e. amplitudes are 

in the same direction or in the opposite direction. It is these two features 
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which define the mode shapes. 

The traditional definition on the flap mode shape takes the undefonned shape 

of the system as the reference and considers the number of zero amplitudes to define 

the mode shape. The relative feature of eigenvectors may not be included in case of 

complex mode shapes. Moreover, the springs in the system introducing extra 

restraint make the identification of the flap modes more complicated. The restraint 

modifies the mode shape of flap modes and their natural frequencies according to its 

location relative to the mode shapes. 

A typical example is that a free-fixed end condition of a unifonn beam could 

be altered into a pinned-fixed condition by applying a hinge at the free end, as 

illustrated in Figure 6.26. The first pinned-fixed mode, IPF, has two nodal points 

at two ends because they are both restrained. The slope of its deflection curve 

changes its sign once, which is very similar to the 2F mode of the free-fixed beam. 

For the same reason, the deflection curve of the 2PF mode is similar to that of the 

3F mode of a cantilever. 

The above study has revealed the importance of the relative feature and they 

can be described by the variation of the sign of the slope of the mode shape curve. 

For the nF mode, the sign changes n-I times. It is also noticed that the pinned-fixed 

end condition may be introduced by a lacing wire. The special feature of the pinned

fixed (PF) mode shapes is that they are very similar to the flap modes of a cantilever. 

The slope of the deflection curve changes n times for the nPF mode and the 

amplitude at the free end is small relative to that at other part of the blade. 

For example, the sign of the slope of the curve of the IF mode (with one 

nodal line) of APLINB in Figure 6.25 is equal to or greater than zero. The sign of 

the slope of the 2F mode (with 2 nodal lines) changes once only and changes twice 
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for the 3F mode. Furthermore, the unique character of the IF mode is the bigger 

amplitude at the free end of the blade and the smaller amplitude near the fixed end 

of the blade as the result of no sign variation of the slope. 

For further reference, the natural frequencies of a uniform beam under free

fixed and pinned-fixed conditions were obtained by solving the Euler equation for 

the beam [188], without considering the effect of rotary inertia and shear 

deformation. They are governed by co" = ~2(gEllwy2, where wIg is the mass per unit 

length of the beam. Number ~ depends on the boundary conditions of the problem 

and are given in Figure 6.26. 

Using E = 21Ox109 N/m2, material density p = 7800 kg/m3
, natural 

frequencies of simplified blade with different boundary conditions are given by co" 

= 140.8(~I)2 Hz. The first three modes with cantilever and pinned-fixed conditions 

are listed in Table 6.7. Natural frequencies for free-fixed condition calculated using 

finite element method are also given in the table for comparison. 

Mode/Freq.(Hz) First Second Third 

Free-Fixed 496 3154 8689 
(Euler) 

Free-Fixed 495 3060 8420 
(FE) . 

Pinned-Fixed 2196 7041 14646 

Table 6.7 Natural frequencies of simplified blades by Euler solution 

It is interesting to notice that the difference between two sets of results for 

free-standing blade is within 3%. The error is considered due to the exclusion of the 

root block of the blade in Euler solution, hence frequencies are higher. The table 
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also reveals that the frequency of the IPF mode is lower than that of the 2F mode 

and the same relation is true between the 2PF and the 3F modes. This suggests that 

the 2F mode of a free standing cantilever is softened by adding restraint between the 

second nodal point (the first being at the fixed end) and the free end. 

6.6.3.2 Identification of Mode Shapes 

In order to help for the flap mode identification, Figure 6.27 was constructed, 

in which the three flap modes of all APL#NB models were illustrated. With the 

reference to the APLINB model, it was not difficult to identify the flap mode shapes 

of such models as ALI6NB, ALI5NB and ALI4NB. 

The difficulty started with the model APL13NB. The 2F mode was identified 

at 4235Hz (ESPI in Figure 6.18), but a second nodal line vaguely appeared at the 

middle of the blade at 2152Hz (ESPI, Figure 6.18). The traditional classification 

based on the number of nodal lines could not explain which was the 2F mode and 

where was the IF mode. The F.E. mode shapes of these two modes of APL13NB 

can be found in Figure 6.27 at 2155Hz and 4498Hz. It can be seen that the side 

view of the mode shape at 2155Hz was basically the IF mode. Because of the 

restriction from springs, part of the blade below the nodal line exhibited a small 

amount of flap bending opposite to the displacement at the part of the blade above 

the nodal line. This made the slope of the mode shape curve change its sign but the 

dominant amplitude was still at the upper part of the blade. The existence of the 

nodal line at the middle of the blade did not change the basic feature of the mode 

shape of the IF mode. 

The side view of the mode shape at 4498Hz showed that the sign of the slope 

genuinely changed once at the position below the springs. Hence, this mode was 

·considered as the 2F mode although the sign intended to vary again at the position 
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of the springs which signified the influence of the springs. Therefore, the IF mode 

was located at 2155Hz, the 2F mode was at 4498Hz and the 3F mode was at 9488Hz 

(F.E.) with APL13NB. 

Similarly, the IF mode and the 2F mode of APLllNB were identified at 

5517Hz (F.E.) and 2897Hz (F.E.) respectively. The influence of torsional mode on 

the 2F mode was very strong since the frequency was very close to the frequency of 

the torsional mode at 2868Hz (F.E.) as shown in Figure 6.23. 

The identification of modes for APL12NB model was also difficult. Mode 

shapes of the first at 2243Hz, the second (2528Hz), the fourth (6662Hz) and the sixth 

(10103Hz) modes were plotted in Figure. 6.24. The third mode at 2869Hz (F.E.) was 

identified as torsional mode. Here again we found the mode switching phenomenon 

which will be discussed in Section 7.2.4. The frequencies of bending mode and edge 

mode were very close hence they were fully coupled. Their mode shapes were very 

similar. It was hard to distinguish between the flap mode and the edge mode. 

Actually, for coupled modes, mode shapes can not be really distinguished and it is 

not necessary to identify each of them. In our case these two modes had to be put 

into a classified position in Figure 6.18. Therefore, the one with more edge mode 

element under the same maximum displacement was chosen to be the lE mode 

which was at 2528Hz. The one at 2243Hz (F.E.) then was considered as a flap 

mode. 

Now the first mode at 2243Hz (F.E.), the fourth mode (6662Hz, F.E.) and the 

sixth mode (10103Hz, F.E.) had to be identified. Two nodal lines were found both 

with the first and the fourth mode and three nodal lines were found with the sixth 

mode. The mode with only one nodal line was missing. This was an indication that 

the free-fixed boundary condition was transformed to pinned-fixed condition due to 

the location of the spring being very near the free end. Comparing the first (2243 
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Hz, FE) and the fourth mode (6662Hz, F.E.) in Figure 6.27 with the PF mode shapes 

in Figure 6.26, it was clearly seen that they were the 1PF (2243 Hz) and the 2PF 

(6662 Hz). The sixth mode was identified as the 3F mode because the sign of the 

slope of the mode shape curve changed twice and the amplitude at free end was still 

dominant relative to other part. 

So far all modes of vibration of simplified blades with a lacing wire were 

identified and are summarised in Figure 6.18. 

6.6.4 Effects of the Lacing Wire on Single Blade Vibrations. 

Different modes of vibration are affected differently. For instance the effect 

of the loaded lacing wire location on torsional modes (1 T and 2n is insignificant as 

the lacing wire stiffness in the rotational mode is almost non-existent because of the 

clearance between the lacing wire and the hole in the blade. The effects of the 

lacing wire on the flap modes of the blade vibration are related to the height of the 

lacing wire relative to that of the blade. 

It was found that the experimental and theoretical analysis carried out on six 

rectangular cantilevers as illustrated in Figure 6.18 could not fully reveal the true 

feature of the vibration behaviour of the laced blade. Then more APL#NB FE 

models were built up with smaller variation of the relative lacing wire height to find 

out the tendency of the variation of the natural frequencies of the flap modes and 

mode shapes. The FE results of natural frequencies are listed in Table 6.6. 

The good agreement between ESPI and F.E. results in Figure 6.18 suggested 

that APL#NB F.E. model was reliable. Therefore it was not necessary to do 

experimental analysis on every F.E. model. Natural frequencies of three flap modes 

against the relative lacing wire height are plotted into Figure 6.28, in which natural 
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Relative Freq. Grp 1 Freq. Grp 2 Freq. Grp 3 
Spring Height Mode Mode Mode 

0.00 495/1F 3060/2F 8420/3F 

0.24 653/1F 3819/2F 9544/3F 

0.35 847/1F 4708/2F 9583/3F 

0.51 1308/1F 571O/2F 8444/3F 

0.67 2155/1F 4489/2F 9488/3F 

0.73 2840/1F 421O/® 941O/3F 

0.75 3OOO/2F 421O/® 9160/3F 

0.78 3054/2F 4474/lF 8899/3F 

0.82 2980/2F 5030/lF 8640/3F 

0.84 2897/2F 551O/lF 8500/3F 

0.87 2750/2F 6290/lF 8460/3F 

0.90 2629/2F 6751/2PF' 8913/3F 

0.92 2571/1PF 6770/2PF 9570/3F 

0.95 2243/lPF 6660/2PF 10 1 00/3F 

® = Unidentified mode shapes between the 2F and the IF modes 

Table 6.6 Variation of the natural frequencies of simplified cantilever blade with 

the height of the lacing wire 

frequencies divided into three groups form three curves. The first curve starts at 

about 500Hz, the second at 3000Hz and the third at 8400Hz. The vertical coordinate 

denotes the range of frequency from 0 to 10,OOOHz whilst the horizontal coordinate, 

from 0 to I, represents the relative value of the height of the lacing wire against that 

of the blade. To simplify the following discussion the relative height of the lacing 

wire is defined as letter H. The location of the nodal lines of the 2F and the 3F 
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mode of the blade without lacing wires are also illustrated as dotted lines in Figure 

6.28. The frequency line of the IF, IPF, 2F, 2PF and 3F modes of free-standing 

blade APLINB are also drawn for reference. 

Using the definition for the flap mode and pinned-fixed mode discussed in 

Section 6.6.3.1, most mode shapes were identified and expressed by circular, square 

and triangle marks on the curves respectively for the IF, the 2F and the 3F mode. 

The PF modes are represented by patterned rings. The mode shapes at 4210 Hz in 

the second frequency group were not identified (Table 6.6). 

6.6.4.1 Effects of the Lacing Wire Location on Flap Modes 

The three curves in the Figure 6.28 reveals the variation of natural frequencies 

and mode shapes of three flap modes with the height of the lacing wire. 

The first effect of the lacing wire is the mode shape "switching" phenomenon. 

The first frequency curve starts at 495Hz as the IF mode from a free cantilever with 

no lacing wires. Following the first curve, the fundamental first flap (IF) mode 

switches into the 2F mode when the lacing wire relative height exceeds 73% (H > 

73%). Funhermore, the first pinned-fixed mode is exhibited (IPF at H = 95%, 

Figure 6.29) as the lacing wire location exceeds 90% of the blade height. Simple 

Euler theory suggests a difference of 4.38 to 1 for frequency ratio between a propped 

cantilever mode and a pure cantilever mode (Figure 6.26). The detected ratio 

between APLl2NB and APLlNB (Figure 6.18) is 2220 Hz to 474 Hz which is 4.64 

to 1. This confirms that the 2F mode is transformed into the lPF mode due to the 

restraint by the lacing wire at the end of the blade. Similarly, the second frequency 

curve starts as the 2F mode then switches into the IF mode at H = 0.78 and into the 

2PF mode when H exceeds 0.90. The third curve starting at 8420 Hz as the 3F 

mode remains its identity whilst the frequency varies between 8400 Hz and 10100 
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Hz. 

The second effect of the lacing wire is to stiffen up or to soften the blade and 

consequently the natural frequencies for the modes concerned tend to increase or to 

decrease. As the lacing wire height increases, the natural frequency of the IF mode 

increases as the result of the stiffening up on the first curve. At lower attachment 

points the blade is stiffened but the first flap mode is still detected at higher 

frequency values. As the attachment point moves up along the blade and the 

effective free end is shonened, the fundamental mode frequency increases to 5122Hz 

(ESPI, APL11, Figure 6.18) at H = 0.837 and to 6290 Hz at H = 0.87 (Table 6.6). 

This effect can be seen in Figure 6.28 by looking at circular marks against the H 

axis. It shows that the stiffness of the IF mode can only be increased when a 

. restraint is applied to the free standing blade. 

The variation of the natural frequencies of the 2F and the 3F mode can also 

be found by following the square and the triangular marks respectively against the 

H axis in Figure 6.28. It is noticed that the frequency of the 2F mode is increased 

if the lacing wire is connected between the two nodal lines (at H = 0 and H = 0.78), 

whilst it is decreased when the lacing wire is above the second nodal line (H > 0.78). 

They can even be lower than that of the 2F mode of a free standing blade. This 

suggests that the attachment of a lacing wire to a blade can stiffen the blade and 

soften it as well. This is because the IPF mode is less stiff than the 2F mode for the 

same beam (Table 6.7), and applying restraint at the free end of the blade is to 

transform free-fixed condition into pinned-fixed condition. The variation of the 

frequency of the 3F mode shows no effect of the lacing wire if it is attached at nodal 

lines (H = 0.51 and H = 0.87), and higher frequencies are found if it is at other 

locations. 

The variation of the IF mode shape resulted from the stiffening up by the 
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lacing wire is clearly illustrated by F.E. mode shape plots in Figure 6.29. Moreover, 

The degree of stiffening up is decided by the distance between the location of the 

lacing wire and the location of the nodal lines of flap modes. For the I F mode, the 

stiffening effect gets stronger when the lacing wire moves away from the nodal line. 

For the 2F mode, the maximum stiffening effect is achieved when H is 

between 0.45 and 0.55 which is the area of the maximum amplitude between the two 

nodal lines of the 2F mode. If the lacing wire is located close to the second nodal 

line (H = 0.78), the modes of vibration of the laced blade is almost identical to that 

of the unlaced blade, which is almost the case for the model APLlONB in Figure 

6.29. 

In general, small vibration amplitudes result in small load effects from the 

lacing wire, thus light overall effects. Loading from the lacing wire increases as the 

connection friction increases. When the position of the lacing wire coincides with 

the nodal lines, the lacing wire has no effect on that particular mode. Beyond this 

position, when wire approaches the tip of the blade, the fixed-pinned modes is 

becoming dominant, Hence, blade vibration can switch from the IF, 2F modes into 

2PF or IPF. 

In some cases however the lacing wire has the effect of raising one mode of 

vibration to be near to another less affected mode, with the consequence that the two 

modes interact and produce a vibration mode shape which is a combination of two 

modes. This was particularly noticeable with the overlapping of the first flap (IF) 

mode and the first edge (lE) mode for blade APLl3. To observe this effect 

experimentally it was necessary to excite the blade in the edgewise direction in order 

to stimulate the equivalent flap mode. The finite element analysis also identified this 

trait as can be seen in Figure 6.22, which clearly shows the mode shape deflecting 

in both planes simultaneously. 
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6.6.4.2 Effects of the Lacing Wire Stiffness on Flap Modes 

The study into the effects of the lacing wire stiffness on the three flap modes 

was also carried out using F .E. analysis. The results confirm that flap modes switch 

into associated PF modes, i.e., IF --> 2PF and 2F --> IPF. The results are shown 

in Figure 6.30. For instance, the IF mode of APL12NB blade (H = 0.95) at 813Hz 

when the lacing wire stiffness K, is 2.9xHf switches into the 2F mode at 2243Hz 

when Kx increases to 2.9x107 as shown in diagram (a). The diag. (b) shows that the 

2F switches into the 2PF. It can be seen that the increase of the stiffness pulls the 

free end of the IF and the 2F mode shape back towards the static position. The 

distance between nodal lines is reduced and the natural frequencies hence increased. 

The 3F mode remains in the same mode shape (Figure 6.3Oc). This is 

because the stiffness of the restraint provided by the spring is inadequate to transform 

the blade into a pinned-fixed condition. This is reflected by the much lower 

frequency achieved at 10100 Hz comparing with 14646 Hz (Table 6.7) for the 3PF 

mode. The 3PF mode shaped can be obtained by further increase of spring stiffness. 

However, vibration amplitude can be seen largely reduced by the increase of the 

spring stiffness. 

It is considered that the understanding of the features discussed above is very 

important. This understanding may be used as a base on which the control of 

resonant amplitudes could be exercised by optimising the position and the stiffness 

of a lacing wire. 

6.7 Investigation into the Blade K with the Lacing Wire 

In previous chapters , we have discussed the vibration of simplified blades 
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and established the basic understanding of characteristics of blade K without the 

lacing wire. In this chapter, we have investigated simplified blades with a lacing 

wire. In the light of the knowledge acquired, we are going to study the vibration 

characteristics of blade K with a lacing wire. 

6.7.1 First ESPI Test on the Blade K with the Lacing Wire. 

In previous sections we have discussed experimental investigation into 

simplified blades by using ESPI techniques. The blade K was tested in exactly the 

same way as shown in Figure 6.6. 700N load was applied to the blade via the wire. 

The blade was excited at various locations. When the blade K was first tested, the 

lacing wire was locked by a screw on the top surface of the wire holding frame. 

Natural frequencies and mode shapes were illustrated in Figure 6.31. Where there 

were two natural frequencies given under the same mode shapes meant that exciting 

at different locations, more than one "natural frequency" could be found for the same 

mode shape. One could be stronger than the other. Which was the one closer to the 

true natural frequency had to be decided later. 

6.7.2 F.E. Model of the Blade K with the Lacing Wire 

In Section 5.6, the F.E. model of blade K was developed as shown in Figure 

6.32. The F.E. model of the K blade with a lacing wire could simply be set up by 

connecting springs to the blade. 

The distance of the lacing wire hole from the top of the blade is 13mm. This 

gives the z coordinates of the nodes to which spring elements were connected. At 

the beginning springs were connected to one node, node 401 as shown in Figure 

6.33(a), which is a top view of one cross-segment of ASPRT20 F.E. model. The 
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cross-segment consisted of brick elements 11, 18, 28 and spring elements 27 and 28 

which were connected to the segment at node 401. Outer ends of the springs were 

fixed to earth. Figure 6.33(b) gives the full view of ASPRT20 model. In this stage 

of the investigation, the ESPI test on blade K was carried out when the lacing wire 

was locked by screws from the top surface of the wire holding frame as shown in 

Figure 6.7(a). So corresponding spring stiffnesses were K. = 6.3x107N/m 

(longitudinal) Ky = 1.46x106N/m (lateral) and K. = 303Nm/rad (torsional). Mode 

shapes and natural frequencies were shown in Figure 6.31. 

Large differences of both mode shapes and natural frequencies between F.E. 

results of ASPRT20 model and ESPI results of the first test on blade K were found 

with the first three modes. For instance the mode shapes of the first mode did not 

appear like each other. Natural frequencies of the second mode were 20% apart. 

This large error indicated that further study of modelling was necessary. 

Model ASPRT21 as shown in Figure 6.34 (a) and (b) was set up to find out 

the effect of connections between springs and the blades. Springs were connected 

at both faces of the blade at node 401 and node 403. F.E. results of ASPRT21 

model were illustrated in Figure 6.31. Comparing results of ASPRT21 with those 

of ASPRT20 we found differences in mode shapes (second and third mode). This 

implied that the connection of springs to the blade played an important part in F.E. 

modelling. 

The lacing wire can be considered to be locked at two outer edges of the 

lacing wire hole on the blade when the centrifugal load is large enough. Therefore, 

the springs in F.E. model should be connected to the blade at both faces and both 

springs should be in line. The study of Figure 6.34(b) clearly showed that the above 

requirements could not be met without amending the blade model. 
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To create the connecting nodes for springs in correct locations, two triangle 

12 noded 3D elements (element type 37230) were added to the FE model in 

conjunction with 16 noded 37130 elements. The location of element 27 and element 

28 are shown in Figure 6.35(a) and the top view of a cross-segment including 

element 18 and 27 showing the spring connection with the blade was illustrated in 

Figure 6.35(b). Spring element 30 was connected at node 403 on the rear face of the 

blade and spring element 29 was connected at node 493 on the front face of the 

blade. Nodes 493 and 494 were created by using 37230 triangle elements., 

This F.E. model was called ASPRT32 and its results were shown in Figure 

6.36. Comparing Figure 6.36 with Figure 6.31, we found out that all mode shapes 

apart from the fIrst one were very similar to those obtained from the ESP! test and 

natural frequencies were within 10% in difference. But why the mode shapes of the 

fIrst mode were different and the second mode shapes were not quite alike remained 

unclear. 

The answer came from Section 6.5.4.4. It was found in the investigation into 

simplifIed blades with the lacing wire at different locations that the wire locking 

mechanism was not reliable. Therefore this was improved by locking the wire by 

screw nuts at two ends of the wire on the outer edges of the wire holding frame as 

shown in Figure 6.7(b). As discussed in Section 6.5.4.4, the longitudinal stiffness, 

associated with the improved wire locking, was K. = 3. 155xlO7 N/m. Replacing new 

Kx into ASPRT32 F.E. model data fIle, we obtained ASPRT34 ----- the F.E. model 

of the blade K with a lacing wire. 

6.7.3 Second ESP! Test on the Blade K and the Summary of Results 

After the improvement of the wire locking mechanism, the ESP! test on K 

blade was carried out again under the guidance of the computer results of ASPRT34. 
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Both experimental and theoretical results were presented in Figure 6.37. 

Comparing Figure 6.37 with previous F.E. and ESPI results (Figures 6.31 and 

6.36), we found one major difference. Mode 4 and mode 5 exhibit very similar 

mode shapes and their natural frequencies were very close in the ESPI test. In 

previous F.E. studies only one mode was found at about 7800Hz. But the ASPRT34 

model with new spring stiffness gave two modes with similar mode shapes at 

7189Hz and 8782Hz. Great difficulties were met in the ESPI test to identify them 

since they were only 110Hz apart in frequency. 

Classification for modes was rather difficult since mode shapes were largely 

altered by the lacing wire. The influence of the lacing wire on torsional modes was 

not very significant if we compare Figure 6.37 with results of unlaced blade K in 

Figure 5.12. The differences in frequency with laced blade against the unlaced for 

the IT mode was 7.4% higher for ESPI results and 1.9% lower for F.E. results, in 

which centrifugal force was not considered. For the 2T mode at about 10418 Hz, the 

maximum difference was 3.6%, the rising of natural frequencies of the IT and the 

2T modes was dl!e to the simulated centrifugal f~rce which stiffened up the blade 

and consequently brought frequencies up, and was because of experimental errors 

which came from different clamping and excitation at different times of testing. 

The first flap mode at 1290Hz (FE, Figure 5.12) of the free standing blade 

K disappeared in laced case where the first mode at 2539Hz (F.E.) was more like the 

lE mode of the unlaced blade. Mode shapes of torsional modes basically remained 

the same as the lacing wire goes through the area of the blade K where the amplitude 

of vibration was zero or very small for torsional modes. The second mode at 

4170Hz (ESPI) in the laced case appeared like the 2F mode at 4708Hz (ESPI, Fig. 

5.12) in the unlaced case but in fact, it was the development of the lE mode of free 

standing blade K affected by the lacing wire. To suppon this argument, different 
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spring stiffnesses were used in the ASPRT34 model and their mode shapes and 

natural frequencies of the fIrst two modes were illustrated in Figure 6.38. 

Figure 6.38 revealed the variation of the IF and the lE mode shapes upon the 

spring stiffness. AS 12 was the model without springs and AS45 was the one with 

calculated stiffness of the lacing wire. Then the spring stiffness of the models in 

between were increased from zero to 3.Ox 107 N/m. The development of the IF mode 

when stiffness increased was that the stationary area (nodal line) at the fIxed end of 

the blade expanded, as the nodal line became wider (AS41 and AS42). Then a nodal 

line grew out from the stationary area and the mode shape ended up like the one at 

2416Hz which was very similar to the lE mode of ASI2. The mode shape of the 

lE mode of free standing blade K was the one at 2480Hz. Since the blade was 

largely twisted, the edgewise displacement at the lower part of the blade caused 

displacement component in the direction of the flap mode at the upper part of the 

blade. Hence a tilted nodal line appeared across the width. When the blade was 

stiffened up, this tilted nodal line moved upwards and was broken from the stationary 

area at the root of the blade (lE at 2814Hz). The fInishing mode shape was the one 

at 4304Hz. 

This variation of mode shapes upon the stiffness of the spring confIrmed that 

mode shapes were closely linked with natural frequencies. The existence of a lacing 

wire stiffened up the blade hence relevant natural frequencies were raised. At the 

same time mode shapes developed into the ones associated with those frequencies. 

The basic format of the mode shape was decided by frequency range (and vice 

versa). Then the mode shapes were also modifIed by extra constraints. 

Therefore, the fIrst mode at 2539Hz (FE) of the blade K with a lacing wire 

in Figure 6.37 exhibited a mode, shape similar to the lE mode of the unlaced blade 

K, as 2539Hz was in the frequency range for the lE mode of the blade K. It was 
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classified as the lE mode. The second mode at 4170 Hz (FE) showed the 2F mode 

shape at 4708 Hz of free-standing blade K in Figure 5.12 and was identified as the 

2F mode. It was noticed that the natural frequency of the 2F mode of laced blade 

K was lower than that of the free-standing one. This was true in this specific case 

where the lacing wire was connected to the blade 13mm below the tip and was on 

the central axis. The discussion in Section 6.6.4.1 concluded that the lacing wire 

might lower the natural frequencies of free-standing blades depending on its location. 

6.8 Conclusion 

The study into the effects of a lacing wire on a single blade and the vibration 

characteristics of single laced blade were carried out in this chapter. The FE model 

of the blade K with a loaded lacing wire was established and justified by experiments 

using ESPI technique. Modes of vibration of blade K with a loaded lacing wire were 

identified. 

It was found that the relative height of a lacing wire had great effects o.n the 

flap modes in their mode shapes and natural frequencies. Employment of a loaded 

lacing wire to a free standing blade may increase the natural frequency of flap modes 

or may decrease those of the second and the third flap modes. It may also transform 

flap modes of a free-standing beam into pinned-fixed modes. When the lacing wire 

changes its location from the bottom of the blade to the top of the blade, the IF 

mode switches into the 2PF mode while the 2F mode switches into the IPF mode. 

The frequencies of the two modes change across with each other when the lacing 

wire is located near the nodal line of the 2F mode. 

Coupled modes ·due to the introduction of a lacing wire with a setting angle 

were found. When the natural frequency of the IF mode was raised near that of the 
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lE mode because of the restraint applied by the lacing wire, the two modes were 

found to be coupled with each other and both exhibited very similar mode shapes 

with the IF and lE features. 

In order to understand mode shapes modified by the loaded lacing wire, the 

classification of the flap modes were studied and an alternative way of classifying 

flap modes were suggested. This new definition helped in identifying the flap mode 

shapes modified by the lacing wire and the trend of variation of mode shapes. 

Together with Chapters 4 and 5, the study into single blade vibration has been 

completed. The investigation is then extended to multi-blade vibration in Chapter 

7. 
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Figure 6.1 Simplified blades with lacing wire holes 
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figure 6.2 Simplified blades with the lacing wire hole and their dimensions 
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Figure 6.3 Lacing wire loading rig 
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Figure 6.4 A simplified blade with lacing wire 
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Figure 6.5 The pulley system to apply force to the lacing wire 

Figure 6.6 Excitation to a simplified blade with a lacing wire 
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Figure 6.7 Top frame of the lacing wife locking mechanism 
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Figure 6.8 Sliding guides used in the lacing wire loading rig 
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Figure 6.9 Vibration amplitude A and lacing wire deformation B 

Figure 6.10 Lacing wire considered as hinged segments 
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Figure 6.11 Calculation of longitudinal stiffness of the lacing wire 
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Figure 6.13 Phase relations in torsional mode and the calculation of the 
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Figure 6.15 Finite element models of simplified blades with a lacing wire 
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Figure 6.16 Finite element model APL14NB 
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Figure 6.17 The improvement on the FE modelling of lacing wires 
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Figure 6.19 Longitudinal force generated by the lacing wire due to edgewise 
displacement of the blade 
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Figure 6.20 Variation of the lacing wire stiffness force Rx' with 
edgewise displacement 3 y' 
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APLlNB APLl4NB APLl3NB APLlONB APL8NB APLl2NB 

0% 51% 67% 78% 90% 95% 

r ~I f'j 
f": 

, 
i l " l! ., 

1 ! ! : 

"'" 0 1 ' 

E 
0-

! ! 
, 
1 

! ! 

i 
f ! ! 

~ p.. 

495 IF 6750/2PF 

: i 1. 
i: I! ii i i ., 

I 
[ 

"'" -! I 0 i 

; I 
, , , 

E t! ' ; L r i 
0-
~ p.. 

: : : 1 • ! ! 
: ! 

f: 
; , , , , , 

., ! ! I, t: ! ! 

"'" 
' , 

0 1I i : : j 

E r i 
., 

: ! 0-
L i 
: i 1 ! i! :'! ., : : ... 

m 
p.. 

8890/3F 

Figure 6.29 The effects of the location of the lacing wire on the flap mode shapes 

210 



Investigation into Single Blades with Lacing Wires 

Stiffness / Natural freauenGY 1Hz) 

N/m 2.9x10 5 2.9x10 6 1.5xlO 7 2.9x107 

Hz 813 / IF 1750 2157 2243/1PF 

.- . " ~ ~ 

~ 
Z 

, 
N , - i 

, 
...J i , 

l 
c.. 
< r r: 

". 
~ 

i , 
C!) 

g. : f j f ! ...:: 
Cl) , , 

C!) 
"0 
0 

::E 
_.-

a) The IF mode changes into the IPF mode 

Stiffness / Natural freauencv (Hz) 

N/m 2.9x10 5 7.0xlO 6 1.5xlO 7 2.9x107 

Hz 3118/2F 4530 5710 6660/2PF 

--r> for> rT! 
~ 

~ 

Y1 W i -i 
z : ! 
N - l' f ...J ' , 
c.. ' , 

< -, , , 
~ , , 
C!) 

, , 
" -, 

j \ j j 
0.. ' , 

1 0:1 , , 
...:: 
Cl) 

, , : : ! f i 
C!) 

"0 
0 

;;E 
.. -

, 

b) The 2F mode changes into the 2PF mode 

Figure 6.30 Variation of flap modes due to the change of lacing wire stiffnesss 
I 

211 



I . 

Investigation into Single Blades with Lacing Wires 

Stiffness / Natural frequency (Hz) 

N/m 2.95xI05 1.5xIO 7 2.9xI0 7 

Hz 8540 1 3F 9260 101oo/3F 

~ ID If! .; f ., 
~ {( Z : 
N 
~ 

j 1 
...l . , 
t>.. : : : : 
<: , , . 
~ 

Q) 
, 

~ 
~ , 

! 
: r , , 

-= : i , : 
rn 

, : i 
Q) j! i: 

"'0 
0 

:::E 

c) The 3F mode remains as the 3F mode 

Figure 6.30 Variation of flap modes due to the change of lacing wire stiffnesss 

212 



Investigation into Single Blades with Lacing Wires 

MODE 1 2 3 4 5 

...... 
Il.. 
Cl) 

~ 

2369 4022 4910 
7763 9954 2542 3934 5017 

0 
C'-l 
E-< 
~ 
Il.. 
Cl) 

< 
2530 4320 4820 7900 10900 

2591 4364 4730 7893 10315 

Figure 6.31 Modes of vibration of blade K with loaded lacing wire by initial study 

213 



Investigation into Single Blades with Lacing Wires 

IIImS-FREIl 

nIXlE 0 

O.DIXI EO 

1HZ) 

~ 

~ 
(--

" <: ROTATJOO . 

) x· 235 
y • 210 
z· 1q 

~ A TITLE'S'''''''' 
. 

Figure 6.32 FE model ASPRT12 of blade K with Toot 

214 



Investigation into Single Blades with Lacing Wires 

i--
~ 

-

-

Figure 6.33 Initial FE modelling of lacing wire 

215 



Investigation into Single Blades with Lacing Wires 

~I--

--V 

"-

"- ) 

~ ~ 

a b 

Figure 6.34 FE modelling of lacing wire in model ASPRT21 

216 



Investigation into Single Blades with Lacing Wires 

,- ~r 

R; 
, 

" /' " 

"-

"-

~ ~ 

a b 

Figure 6.35 ASPRT32, the FE model of blade K with root and lacing wire 
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Figure 6.37 Modal patterns for blade K with a loaded lacing wire 
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Figure 6.38 The effect of lacing wire stiffness on the IF and lE modes of blade K 
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Study into Laced Bladed Packets 

7.1 Introduction 

In previous Chapters the vibration characteristics of a single turbocharger 

blade with and without lacing wire were studied. Its natural frequencies and mode 

shapes have been identified. Finite Element Models of blade K and other supporting 

simplified models have been set up. Considerable knowledge of experimental and 

theoretical techniques used in investigations has been achieved. 

However, as indicated by Ewins [57] in 1976, the vibration characteristics of 

turbomachine blades as measured under operating conditions are usually found to be 

extremely complex and often quite different from theoretical predictions. The reason 

for this, firstly, is that the intricate geometry of a blade, which is demanded for 

aerodynamic performance, makes it a very difficult component to analyse as 

discussed in previous Chapters. Consequently, predictions for the modes and 

frequencies of a single cantilevered blade may not always be very accurate. 

Secondly, it is the existence of multiple interactions between each blade and all the 

other blades in the same stage, due to coupling through the disk and, often, shrouds 

or lacing wires linking adjacent blades. Admission of these interactions expands the 

natural frequencies of the vibration of the assembly into a frequency range, where for 

a single blade there are only two or three. Since the blades will spend their working 

lives as components of a complete bladed disk assembly, and not as isolated 

components, it is clearly necessary to have an understanding of all these assembly 

modes, and to know what their natural frequencies are. 

Finally, it is known that these already complex vibration characteristics (of 

blades in an assembly) can themselves be markedly affected if all the blades in one 

stage are not exactly identical to each other but differ very slightly, as they inevitably 

will in practice. 
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The ann of this chapter is to establish the understanding of vibration 

characteristics of turbine blade packets linked by lacing wire. Since it is proposed 

here to consider a complete assembly incorporating many blades, it is clear that some 

compromise must be made if finite element modelling is to be undertaken. This 

leads to the concept of a simplified but representative model of a bladed packet, and 

it is upon this that the present studies are based. 

Our primary interest here lies in studying how the blades interact with each 

other. Hence, we are not specifically interested in the precise details of their 

aerodynamic profiles since we are not trying to predict their exact mode shapes and 

frequencies but rather to see how the natural frequencies of a bladed packet relate to 

those of a single blade. It would seem reasonable to base our studies on blades 

which have a somewhat simpler profile than the real components (for ease of 

computation), always provided that they remain dynamically representative of the real 

thing. 

In seeking a suitable simplified model of a bladed packet, it was decided that 

the following features should be retained by the model: 

• a 3 dimensional blade possessing flap, edgewise and torsional modes; 

• principal axes of the blades staggered with respect to those of the disk; 

• the possibility of coupling between flap and edgewise motion, and between 

torsion and bending; 

• lacing wire connecting the blades. 

Similarly, a number of other features were considered to be of secondary 

interest to the primary aim of this study, and thus not demanding retention in this 

model, such as: 
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• complex blade proflles, serving only aero-dynamic functions; 

• the effects of centrifugal stiffening and high temperatures, both of which 

influence the exact values of the natural frequencies (as do the complex 

proflles). 

From these considerations, a group of rectangular blades (APLl type) 

connected by lacing wire with a setting angle (stagger angle) of 35 degree was 

provided. Lacing wire threaded through blades and was attached to them in three 

ways: 

a) lacing wire resting in the holes, 

b) lacing wire was super-glued in the holes and 

c) lacing wire was brazed into the holes. 

Both finite element analysis and experiments were carried out. The effects of lacing 

wire and the vibration behaviour of the bladed packet were studied. 

7.2 Finite Element Model of Laced a Bladed Assemblies 

7.2.1 Setting Up of AGP F.E. Models 

The investigation into bladed assemblies started with F.E. modelling. Again 

straight rectangular cross section blades (F.E. model APLI) were used to form the 

multi-blade structure in order to understand the basic characteristics of the packeting 

without being confused by the complex proflle of the blades. The F.E. models of 

laced bladed assemblies were named as AGP#N, where # represented a serial 

number. One of the models, AGPI4N was plotted in Figure 7.1. 
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The setting angle IX. as shown in Fig.7.1 was chosen to be 35 degrees in view 

of the requirement of the experimental model. The springs were located on the 

central axis of the blades and were 15mm away from the tip of the blades. The 

results of the latest improvement in spring-blade connection discussed in Section 

6.5.4.3 were used here and it can be seen that springs in different arches are in line. 

Eight 16-noded brick elements (37130 type) were used for each blade and three 

spring elements (371 00 type) were employed to link these blades together. There 

was no mass associated with this type of element. The stiffness of the springs, from 

eq.(6.6), eq(6.16) and eq.(6.19) in Chapter 6, were K,. = 6.31x107 N/m (longitudinal), 

K,. = 3.638xlOS N/m (lateral) and K, = 303 Nm/rad (torsional). There were two 

values for lateral stiffness depending on phase relations of the blades. It was found 

that they did not make significant differences on mode shapes and natural 

frequencies, hence eq. (6.16) was used. 

The root block was not modelled in this model as this did not affect the 

blade-wire interaction. However, it was found later that the inclusion of the root 

block in the FE model was essential because the experimental results revealed that 

there was much less constraint on the root blocks and they were also more flexible 

than expected. Therefore they were modelled using three 16-noded brick element in 

FE models named as AGPB#N, where # denoted a serial number. 

7.2.2 Vibration Behaviour of Laced Bladed Packets 

The theoretical analysis was carried out on bladed packets with the number 

of blades ranging from two to ten. The lacing wire was considered as massless 

spring. When blades were linked up by springs, it was found that many more modes 

were generated. Further study indicated that assemblies of packaged blades vibrate 

with all the mode shapes identified for individual blades but produce clusters of 

natural frequencies for each fundamental mode. Each sub-mode is unique by having 
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a different phase relation to others in the same cluster. In fact for an N bladed 

packet, there are N natural frequencies for each fundamental blade frequency. This 

was also reported in both Bernante et al [16] and Salama and Petyt [160]. The 

increase in the number of natural frequencies arises as each assembly can exhibit 

nodal points along its axis resulting in different blades being in phase or out of phase 

with each other. Among N natural frequencies, the lowest one is associated with in 

phase vibration, where displacements of all blades are in the same direction, whilst 

the rest are out of phase. 

Figure 7.2 shows a top view of a seven bladed assembly in a typical vibration 

mode. The blades in the packet exhibited the lE, IT and the combination of the two 

modes. The phase relation is reflected by the S shape of the lacing wire and the 

variation of the torsional mode shape of the blades. It suggests that the mode shape 

of the blades in the same packets may be different from each other due to the 

coupling through lacing wire. 

Figure 7.3 illustrates the significance of the nodal points along a nine bladed 

assembly for all the natural frequencies associated with the fundamental first flap 

frequency for a single blade. 

It can be clearly seen that for this mode the lowest natural frequency is 

approximately same as the single blade unlaced frequency as all the blades vibrate 

in unison with no interaction of the lacing wire. However the second natural 

frequency associated with this mode has a much increased value with half the blades' 

vibration out of phase with the other half, about a nodal point mid-way along the 

axis. 

To classify these modes a sub-mode classification is developed based on the 

number of nodal points along the blade assembly. Nodal points represent phase 

227 



Study into Laced Bladed Packets 

relationships among the blades, therefore the number of nodal points is unique to 

each mode in the same cluster. For the nine bladed assembly illustrated in Figure 

7.3 the second mode associated with the first flap natural frequency was classified 

as the IF-I mode, as there was only one nodal point along the axis. With 8 nodal 

points the ninth mode was called IF-8 while the fIrst mode was named IF-O as there 

was no nodal point associated with this mode. This system of classifIcation works 

well for all modes so long as no coupling occurs between mode clusters. The 

example illustrated in Figure 7.2 was therefore the IT-2 mode for the seven blades 

system. 

7.2.3 Effects of Blade Multiples on Natural Frequencies 

Whilst the number of modes was increased for each fundamental mode cluster 

by the increase of the number of the blades in the assembly, the range of natural 

frequencies could also be altered in a large scale. This was found especially 

significant with the fIrst fundamental flap mode. To investigate this phenomenon the 

chart illustrated in Figure 7.4 was developed for all the natural frequencies for the 

fIrst flap modes of the assemblies comprising of from two to ten laced blades with 

the lacing wire located at 84% of the blade height. 

In this chart it can be seen that the IF mode is at 543Hz for the single blade 

but the second mode (IF-I) of the IF cluster for the two bladed assembly was found 

at 7750Hz. In general as the number of blades increases the frequency range covered 

by each cluster is increased. A similar observation was reported by Salama and Petyt 

[160]. 

It was also found from this chart that as the number of blades in the assembly 

increases the IF-O mode remains the same but other modes show a trend of 

decreasing in their natural frequency for each sub-mode in the cluster. For instance 
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the second natural frequency for a two bladed assembly, when the two blades are 

vibrating out phase is at 7750Hz whereas the equivalent mode for the nine bladed 

assembly has a natural frequency of 2081Hz. This is because the effective mass is 

increased due to the increase of the number of blades but the stiffness of lacing wire 

is not. Consequently the natural frequency of the same sub-modes decreases whilst 

the number of blades increases, as natural frequency is inversely proportional to the 

square root of the effective mass. 

In addition, the gaps between natural frequencies in the cluster become 

narrower as the number of blades increases. In consequence, it was found very 

difficult to separate the specific modal clusters i.e. IF, lE, IT etc., as their 

frequencies overlap with each other. 

The above fmdings are also applicable to the 2F and 3F mode clusters and 

repeat discussions are not necessary. 

The effect of blade multiples on natural frequencies is very significant on the 

IF mode cluster as discussed above but not that much on other mode clusters such 

as the T modes and the E mode. Table 7.1 gives all natural frequencies, classified 

under mode clusters, of AGPB15N which is the F.E. model of the experimental 

model ASSEl. 

Natural Frequencies (Hz) of AGPB15N 

IF lE IT 2F 3F 2T 

478 1751(1F) 2763 2870 7656 8874 
4638 1871(1F) 2765 2891 7665 8852 
7465 1943 2770 2900 7682 8882 
8838 2199 2774 2939 7757 8918 
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Table 7.1 Natural frequencies of bladed packet ASSEI by FE analysis 

It shows that the maximum width of the natural frequency bands of mode 

clusters is 448 Hz except for the IF cluster. This actually indicates the degree of 

involvement of the lacing wire in blade vibration. The more the lacing wire is 

involved in the vibration of a fundamental mode, the bigger the alteration of the 

natural frequencies of the mode cluster will take place. Out of phase modes of the 

IF cluster, i.e. IF-n, n > 0, directly have lacing wire stretched and compressed, hence 

the stiffness of lacing wire is actively involved in the assembly. Therefore the 

natural frequencies are altered according to the number of nodal points along the 

lacing wire, which is the axis of the assembly. The more the number of nodal points 

is, and the more stiffness of lacing wire is involved, the higher the natural frequency 

of the mode in the IF cluster will be. On the other hand, the natural frequency 

ranges of other clusters like the lE and the T modes are not as wide as the IF cluster 

since lacing wire is not involved in a great deal in the vibration. 

Contrary to the wide frequency band of the IF cluster, the 2F and 3F clusters 

show quite narrow band in Table 7.1. The reason is that the lacing wire in 

AGPBI5N model is located at 84% of the blade height. Figure 6.28 reveals that this 

location is very close to the second nodal line of the 3F mode, hence the involvement 

of lacing wire in this mode is very limited. It can also be seen that the interfacing 

of the 2F mode with lacing wire in this region is very little as the result of the wire 

being close to the 2F nodal line at H = 0.78. This is also the region where the IPF 

mode is likely to occur. The lacing wire acts like a hinge in the PF modes with 

small deformation, hence very weak involvement. 

The understanding of the effect of blade multiples offers some basic 

parameters which give the possibility of controlling the distribution of natural 

frequencies to design engineers. The variation of the number of blades will change 
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the width of gaps and the location of natural frequencies in the IF mode cluster. The 

thickness of the lacing wire decides its stiffness and the latter also has a strong effect 

on the natural frequencies of some clusters. 

7.2.4 Effects of Different Lacing Wire Height on Flap Modes 

The effect of lacing wire height on the modes of vibration of a 4 bladed 

packet was studied using finite element method. The lacing wire was located along 

the central line at 24%, 35%, 51%, 67%, 78%, 84%, 89% and 95% of the blade 

height. Following the same definition used for single laced blade and the sub-mode 

classification for multi-blade modes, modes of vibration were identified and listed 

together with their natural frequencies in Table 7.3. 

In order to assist the discussion about the large amount of data presented in 

Table 7.3, the natural frequencies of the IF, 2F and 3F mode clusters are plotted 

against the height of lacing wire in Figure 7.5 Ca), Cb) and Cc) respectively. 

The variation of the frequencies of the 3F cluster in Figure 7.5c is very 

similar to that of the 3F mode of a single blade shown in Figure 6.28. The 

frequencies are largely increased if lacing wire is placed away from nodal lines, i.e., 

near H = 0.2, H = 0.7, especially at the free end, whilst they are very close to the 

ones of a free-standing blade when lacing wire is located at nodal line positions. It 

is very interesting that all higher sub-modes converge to the 3F-0 mode at H = 0.84, 

which is about the position of the second nodal line of the 3F mode of free-standing 

blade. This confirms that more restraint is introduced into the system if lacing wire 

is located at positions with large vibration amplitude. 

The distribution of sub-modes within each flap mode clusters is clearly 

demonstrated. The frequency of fundamental sub-modes, i.e., nF-O, n = 1,2,3, vary 
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a little with the height of the lacing wire, because their vibration is in phase hence 

the involvement of the lacing wire is very weak. The frequencies of higher sub

modes, i.e., nF-m, m > 0 and n = 1,2,3, are generally higher than that of the 

RELATIVE LACING WIRE HEIGHT 

Mode 0.24 0.35 0.51 0.67 0.78 0.84 0.89 0.95 

IF-O 471 480 476 475 477 478 478 479 

IF-l 628 802 1120 3806 4030 4638 5292® 5558 
2PF-l 

IF-2 700 910 1250 5240 6090 7466 7192 6616 
2PF-2 2PF-2 

IF-3 721 937 1280 5690 6690 8840 7361 6762 
2PF-3 2PF-3 

2F-0 2950 3050 2906 2993 2926 2939 2963 2977 

2F-l 3616 4114 4390 2628 2929 2870 2873 2666 

2F-2 4331 5229 6080 2704 2931 2891 2820 2722 

2F-3 4607 5647 6630 2722 2927 2990 2843 2759 

3F-0 7742 7547 7558 7654 7693 7672 7716 7761 

3F-l 8123 7706 7645 8027 7819 7682 7890 8600 

3F-2 8711 8009 7954 9000 8289 7758 9160 9800 

3F-3 9005 8201 8312 9728 8882 7657 9790 10040 

® = a mode shape between the IF and the 2PF-I modes 

Table 7.3 F.E. prediction of natural frequencies (Hz) of a four-bladed packet 

with the lacing wire located at different height 

fundamental sub-mode (nF-O). Figure 7.5 shows that the increase of the frequencies 

of higher sub-modes from that of the fundamental one is proportional (may not be 
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linearly) to the number of nodal point along the lacing wire. The more nodal points 

in the sub-mode, the larger the increase of the frequency. This is because the 

stiffness is higher in higher sub-mode vibration. 

The variation of frequencies of the IF and the 2F clusters are also sintilar to 

that of a single blade. The frequencies of higher sub-modes in the 2F cluster are 

significantly increased at about H = 0.5 where large amplitude occurs for the 2F 

mode. Then they drop sharply and stay very close to the 2F-0 mode in the region 

H > 0.6. This is the same response as in the case of a single blade where the 2F 

mode, at H > 0.78, remains in low frequencies and finally transfonns into the IPF 

mode at H > 0.92, of which the frequency is lower than that of the 2F mode (Figure 

6.28). In addition, the springs attached to the blade are fixed to the ground in single 

blade case and the stiffness of the restraint provided to the free end of the blade is 

big enough for the IPF and the 2PF modes to take place. But in multi-bladed 

system, the lacing wire is attached to blades only and the flexibility of the end blades 

reduces the stiffness of the restraint provided to the blades by the lacing wire. 

Therefore, the mode switching does not really take place in the 2F cluster. In the IF 

cluster, the frequencies of the two higher sub-modes rise from about 1200 Hz at H 

= 0.5 to as high as 8900 Hz (IF-3) at H = 0.84 before they transfonn into the 2PF-2 

and 2PF-3 sub-modes and drop back to about 6700 Hz when H > 0.84. The IF-I 

mode rises to 5558 Hz and switches into the 2PF-I mode at H = 0.95. Unlike the 

other two higher sub-modes, its frequency does not follow the pattern of rising up 

and then falling down to the 2PF modes against the increase of the lacing wire 

height. This is because the stiffness of the lacing wire in the IF-I mode is not big 

enough to raise its frequency higher than that of the 2PF-I mode when H is smaller 

than 0.84, but it is enough for the 2PF-I mode to take place when His 0.95. 

Generally, the effects of the lacing wire height on packeted blades are same 

as those on a single laced blade. The natural frequencies of the flap mode clusters 
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can be significantly altered by the position of the lacing wire. Due to different 

stiffnesses associated with sub-modes in each cluster, the degrees of alteration are 

also different. The IF and the 2F clusters transform into the 2PF and the IPF 

clusters respectively, when the lacing wire is placed at the free end of the blades. 

7.3 Experimental Investigations 

Experimental investigations into multi-bladed assembly were carried out to 

study the interaction between the lacing wire and the blades. The study started from 

straight cross-section, rectangular blades in order to avoid unnecessary complicated 

results because of the intricate geometry of turbocharger blades. The experimental 

model is named ASSEI which meant the first model of a bladed assembly. 

7.3.1 Design Criteria of ASSEl 

There were five rectangular blades, at a distance of 25mrn from each other, 

mounted in a holding block with a lacing wire passing through four of the blades 

leaving one blade standing-by as a reference as shown in Figure 7.6. Every blade 

was bolted down by two bolts beneath the blade in the blade holding block. Small 

steel blocks were wedged into gaps between the roots of blades. Then both the roots 

and wedges were compressed by bolts at two ends of the blade holding block. A 

setting angle of 35° was introduced to the blades in order that ASSEl could be 

properly viewed by ESP!. 

The rectangular blade and its root block were machined from one piece of 

metal. The dimensions of the blade were 91mmx31mmx5mrn which were same as 

those of APLl model. The lacing wire hole, 3.2mrn in diameter, was 15mrn away 

from the top of the blade on the central axis, which was similar to that of the blade 
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K of which the hole was 13mm away from the top. The design of the root block, 

with the thickness of 15.9mm, was different from that of the APLl model as the 

limited distance between blades and wedging blocks in between blades did not allow 

thick root blocks. The blade holding block was 210mm long, giving two long 

shoulders for clamping, 95mm high, giving the blades right height so that they could 

be viewed by ESPI properly, and 29mm wide. Both blades and blade holding block 

were made of mild steel. 

7.3.2 ESPI Testing on A Group of Cantilevers Linked by the Lacing 

Wire 

The Loading Frame 

A loading frame was made in order to apply load to every segment of the 

lacing wire. Strain gauges were wired to the frame to measure the load applied. The 

four bladed packet ASSEI loaded using the loading frame with strain gauge 

instrumentation is shown in Figure 7.7. 

The block holding the blades under the frame is fixed to the testing bench. 

A piano string loop is hooked on each segment of the lacing wire and fixed on a bolt 

screwed in the top beam of the frame. The beam is supported by two columns at the 

two ends. By adjusting the depth of the bolt, tension can be applied to the string and 

the load can be applied to each lacing wire segment. 

Four strain gauges were attached to the top and the bottom of the top beam 

of the frame, forming a full bridge. The bridge was calibrated against the load and 

then was used to apply 21 ()() N force on three segments of the lacing wire. The load 

was gradually applied into each segment in turn to achieve approximately equal load 
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on each segment. 

Testing 

ASSEl was mounted in front of VIDISPEC with an angle so that a maximum 

area of the rectangular blades could be viewed. The frequency signal generated by 

a 3330A automatic synthesizer was amplified and then fed into an electro-magnetic 

exciter with the capacity of 22 lb excitation force. The excitation was introduced 

into the assembly via a fine push rod which was pressed onto one of the blades in 

the assembly. During tests, the excitation frequency was changed manually sweeping 

through the whole frequency range whilst the modal pattern of the response of the 

assembly was observed and when necessary, recorded by a reel to reel video recorder 

for further analysis. 

Vibration coupling via the lacing wire was affected by the interaction between 

the wire and the holes. In this study four ways of connection between the lacing 

wire and blades were employed to find out their influence on the interaction. They 

are: 

a) loose lacing wire rested in the holes on rectangular blades without being 

loaded; 

b) loose lacing wire rested the holes unloaded after being loaded, 

c) the lacing wire was loaded up and 

d) the lacing wire was soldered in the holes without being loaded. 

Experiments were carried out on ASSEl with different connections and monitored 

236 



Study into Laced Bladed Packets 

natural frequencies were listed under cases B, C, D and E in Table 7.2 (on page 

273). 

7.4 F.E. Model of ASSEt --- A Group of Rectangular 

Cantilevers Linked by the Lacing Wire 

To compare the results from ESPI tests on ASSEl with the finite element 

prediction, the F.E. model of ASSEl, AGPB15N, was constructed and is shown in 

Figure 7.8. Same as AGP14N model the blades in AGPB15N were composed of 10 

l6-noded (37130 type) brick elements. 

As discussed in Chapter 6, it was assumed that the friction, between the 

lacing wire and the holes in blades, resulted from the centrifugal load on the lacing 

wire when rotating at 18,000 rpm, was considered so big that no slippage took place 

between the lacing wire and the holes. This assumption was applied to multi- bladed 

assembly too. Therefore, spring elements of 37100 type were employed to simulate 

the lacing wire. The stiffness for different degrees of freedom were same as those 

used in AGP#N models, which were Kx = 6.3lx107N/m (longitudinal), Ky = 
3.638x105N/m (lateral) and ~ = 303 Nrn/rad (torsional). Springs were located l5mm 

below the top of and on the central axis of the blades. 

In ESPI test, the centrifugal force in the blade due to its rotation was not 

simulated, but a force was applied to the lacing wire in the assembly in order to 

achieve the friction between the lacing wire and the blade. Therefore, the centrifugal 

force in blades was not modelled in AGP#N models and the interaction between the 

lacing wire and the blades was reflected by the modelling of the spring. 

7.4.1 Root Modelling 
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It was found very difficult to model the restraint around the root blocks of the 

blades in ASSEI as the blocks were separated by wedges in between them and also 

bolted down onto the holding block. 

The initial approach considered that the root blocks were rigidly integrated 

into the holding block forming a fixed end condition for each blade in the assembly. 

So blades in AGP#N models were treated as cantilevers with the bottom 

cross-sections of blades fixed on earth. The natural frequencies of AGPI4N, model 

of a four-bladed assembly, were found higher then those from ESPI tests on ASSEI, 

which proved that the real system was much more flexible then expected. 

The further approach took the root blocks into consideration. The root block 

of the blades was modelled by 3 brick elements as it was found in the study into the 

single blade vibration that the root was a very important factor of the structure. The 

restraint was applied to the bottom plane of the root blocks and the effects of the 

wedges in between root blocks in the ASSEI assembly were not considered. The 

mesh of the model was shown in Figure 7.8. 

7.5 Summary of the Analysis on ASSEt 

Results obtained from F.E. analysis on ASSEI together with results obtained 

from four different ESPI tests are listed in Table 7.2. Analysis are classified under 

the headings A, B, C, D and E, which are described as follows: 

A F.E. results on AGPBI5N. No simulated centrifugal force. 

B ESPI results on ASSEl. Loose wire resting in the holes without being 

loaded. 
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C ESPI results on ASSEl. Loose wire resting in the holes unloaded after being 

loaded. 

D ESPI results on ASSEl. Loose wire being loaded up. 

E ESPI results on ASSEl. Wire being soldered into the holes without loading. 

As it was a 4 bladed assembly, there were generally four sub-modes of 

vibration found in each mode cluster. Mode clusters were presented in the table by 

the natural frequencies of their lower and upper boundaries identified by mode 

classification and number of natural frequencies in the cluster. For instance the 2T 

mode cluster in case B was found between 8227 Hz and 8473 Hz with four sub

modes in the frequency band. In case of two modes coupled together, identification 

of coupled modes was given and the number of sub-modes could be more than four 

in the cluster. 

7.5.1 Effects of the Interface between the Lacing Wire and the 

Blades 

Several significant effects of the lacing wire being loaded up and the interface 

between the lacing wire and the blades were found from the analysis on ASSEl. 

Firstly, the broadening of the natural frequency band (NFB) of mode clusters of ESPI 

tests against the F.E. modelling as shown in the Table 7.2 gave the indication of the 

interface. The NFB of the lE cluster in case A is narrower than any other relevant 

NFB in cases from B to E, and the narrowest NFB of 608Hz for the IT+2F cluster 

in case D among all ESPI tests is still much wider than the NFB of 176Hz in case 

A. On the other hand, when the interface was weak, such as at the 2T mode when 

the lacing wire passed through the relatively stationary area on the blades, the 
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difference of the width of the NFBs among cases B to E was not significant. The 

NFB of the 2T mode was found in between 244 Hz (case B) and 178 Hz (case D). 

Secondly, intensive mode coupling took place because of the interface. It was 

found in Table 7.2 that there was no coupling occurring in case A but different 

degree of coupling was observed in the rest of the cases at the IT + 2F mode clusters. 

For example, 8 IT +2F sub-modes were found in case C in the NFB between 2753 

Hz and 3374 Hz. The IT and the 2F clusters were well separated in F.E. results 

though both the lE and the 2F modes were influenced by the IT mode. 

Apart from broadening the NFB and increasing the coupling of mode clusters, 

another effect of the interface is the mode splitting phenomenon. Several split modes 

were presented in Table 7.2. The IF-I mode in case C split into two similar modes 

at 5080Hz and 5742Hz and more than eight natural frequencies were found in the 

IT+2F family clusters in cases D and E. As discussed in Section 7.5.5 the mode 

splitting is resulted from the mistuning and coupling. As an experimental model the 

blades in ASSEl was neither designed with great accuracy nor manufactured with 

great care. Minor differences among blades were expected. Furthermore, the way 

that the blades were mounted in the assembly, i.e. using wedges in between blades 

which were bolted down individually, also created differences in boundary conditions 

to the blades. These mistuning factors meet the condition of mode splitting under 

excitation and the splitting signifies the coupling between the blades and the lacing 

wire. 

In addition, natural frequencies of some modes went higher as a result of the 

interface. The typical indication can be found on the IF-l mode which is at 5080Hz 

(5742Hz) in case C, at 6018Hz in case D and at 5033Hz in case E. They are higher 

than the relevant natural frequency of 4385Hz in case B and 4638Hz in case A. 
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7.5.2 Effects of the Lacing Wire Being Loaded Up. by Simulated 

Centrifugal Force 

The effects of loading were found to be 

a) stiffening up the system and 

b) locking the wire into the blades. 

The natural frequencies of the IF-O mode at 856Hz, the IF-l mode at 6018Hz 

and the central natural frequency (CNF) of the lE cluster at 1923Hz, when the· 

system was under loading as shown in Table 7.2 D, were higher than corresponding 

frequencies of other cases. This revealed that the loading stiffened the system and 

pushed some natural frequencies higher. 

Loading also increased the degree of locking between the wire and the blades. 

Hence, the degree of the interface was increased. Therefore, the conclusions made 

on the features resulting from the interface were also true on the loading. 

The third important effect of the loading was that the locking resulting from 

loading remained after the load was removed, if the load was big enough. The 

photograph in Figure 7.9 recorded the remaining deformation of a lacing wire 

resulting from the loading of 700 N force upwards on each of the three arches. 

The existence of the plastic deformation of the lacing wire makes the interface 

between the lacing wire and the blades in case C different from that in case B. It 

can be seen in Table 7.2 B and C that the degree of coupling between the 1 T and the 

2F clusters increased, the split of the IF-l mode took place and the NFB of the 3F 

cluster was wider in case C compared with case B. 
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Helping to find out the reason of the increased degree of locking, two 

diagrams are drawn in Figure 7.10 Band C associated with case B and case C 

respectively. The interface, or the locking in case B comes from the clearance 

between the lacing wire and the holes on the blades. In addition, misalignment of 

the holes also contributes to the interface. In case C, plastic deformation took place 

under the loading and the wire remained bent as shown in Figure 7.10 C. The 

attachment of the lacing wire to the blades was strengthened by the locking effect 

arising from the deformation of the lacing wire. Therefore, the degree of locking 

was increased. 

The effect of plastic bending of the lacing wire on the degree of locking 

suggested that once the bladed disk had gone through the full speed running, the 

deformation of the lacing wire would not be restored and the vibration characteristics 

of the assembly should be presented by case C instead of case B plus the effects of 

loading. 

7.5.3 The Effect of the Lacing Wire Being Fully Locked 

In comparison of case C, D and E in Table 7.2, it was found that the width 

of the NFBs in cases C and D were similar. For example, the NFB of the lE cluster 

covered 632Hz in case C and covered 711Hz in case D whilst the 1T+2F cluster 

covered 621Hz in case C and 608Hz in case D. It was aiso found that the NFB of 

mode clusters in case E were wider than the relevant ones in cases C and D. For 

instance the width of the lE cluster in case E was 1163Hz which was much wider 

than 771Hz in case D. The same evidence can be found at the 3F cluster. 

The above analysis showed that the degree of locking in case E was larger 

than that in cases C and D when the lacing wire was brazed into the blades. This 

proved that soldering the wire into blades offered the maximum degree of locking. 
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The connection between the lacing wire and the blades was fully constrained at all 

degrees of freedom. The analysis also revealed that the degree of locking in case C 

and case D was very similar to each other. This feature suggested that the locking 

effect resulting from plastic deformation when the loads were removed was almost 

same as the one when the lacing wire was loaded up. Therefore, the effect of 

loading was mainly the increase of certain natural frequencies in case D, instead of 

changing the width of NFBs in case C. 

7.5.4 Nonlinear Stiffness of the Deformed Lacing Wire 

The transformation of a straight lacing wire into arched segments between 

blades has altered its stiffness. There is considerable centrifugal force acting on the 

lacing wire in rotating bladed packets. The curvature of a deformed lacing wire 

segment between two blades is affected by their vibration amplitude. It was thought 

necessary to investigate these factors and their effects on the stiffness of the lacing 

wire. 

The loading condition on one segment of a deformed lacing wire is illustrated 

in Figure 7.11. The angle between the slope at the ends of the segment and the 

horizontal reference axis is assumed to remain constant because the centrifugal force 

acting on the neighbouring segments is the same. The interface between the lacing 

wire and the blades is considered hinged because the clearance between them allows 

small rotational motion. This angle should be zero as shown in Figure 7.11 a. It can 

be seen in Figure 7.9 that the deformed lacing wire is very similar to a cosine curve. 

However, an arch shape segment with non-zero angle at two ends was used in this 

study, as shown in Figure 7.11 b, in order to simplify the analysis. 

The aim of this study is to investigate the linearity of the stiffness of the 

deformed lacing wire, thus it is not necessary to obtain the accurate value of the 
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stiffness. Although the deflection curves in diagram a and b are different, it was 

considered that this difference would not change the nature of stiffness, i.e., being 

linear or nonlinear. 

It is considered that the force-displacement relation of the arch shown in 

Figure 7.11c is nonlinear. The load applied will change the geometry of the arch. 

The internal bending moment is the function of the geometry. This means that the 

stress in the beam is the function of the geometry. Therefore, if the change of 

geometry during loading is taken into account, much more accurate force

displacement relation can be obtained. 

Large deformation Finite Element Analysis was chosen to carry out this study. 

The 10 kN load is applied in 10 steps with 10 iterations in each step. The stiffness 

matrix is updated in every iteration to account for the geometry change. 

One end of the segment is fixed and the other is only free to move in x 

direction. The segment is 25 mm long and the height of the arch is 5 mm. The 

lacing wire has a circular cross-section of 3.1 mm diameter. In order to simplify the 

analysis, a rectangular cross-section as shown in Figure 7.11c was used. Its 

dimension was chosen to provide the same second moment of area as the circular 

cross-section. The calculation of equivalent cross-section is given below. 

If I" and I, are the second moments of area of the circular and the rectangular 

cross-sections shown in Figure 7.11 respectively, then 

le = [7td4j/64 and I, = [bh3j/12 

where d is the diameter of the lacing wire, b and h are the width and the height of 

the rectangular cross-section. Let them be equal, the dimensions of the rectangular 
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cross-section have the following relation: 

bh' = [31td4]/16 

Given d = 3.1 mm, the equation above becomes 

bh' = 54.40 (mm4) 

If his 3 mm, the value of b obtained is 2.015 mm. Therefore, h = 3 mm and b = 
2 mm are used. 

Linear quadrilateral elements in high mesh density are used in order to 

accommodate large deformation. 20 and 4 elements are used in longitudinal direction 

and through the depth of the beam respectively to ensure that the elements are not 

ill-deformed. It was treated as a plane stress problem. 

The result of the analysis is given in Table 7.4 and is also plotted in Figure 

7.12. The force-displacement relation can be clearly seen to be nonlinear. The 

change of the stiffness with the load is very significant. Comparing the stiffness at 

0.18 mm and -0.2 mm displacement, the deviation found is 13.5%. 

This analysis confirms that the longitudinal stiffness of a lacing wire under 

centrifugal loading is larger in tension than that in compression. Therefore, the 

lacing wire possesses nonlinear stiffness due to its deformation caused by the 

centrifugal loading. The effect of the nonlinear stiffness of the lacing wire on the 

vibration of the bladed packet is discussed in section 7.6.3. 
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Load Displacement Stiffness 
kN mm kN/mm 

-5 -1.56 3.205 

-4 -1.11 3.604 

-3 -0.747 4.016 

-2 -0.442 4.525 

-1 -0.208 4.808 

0 0 

1 0.180 5.556 

2 0.335 5.970 

3 0.473 6.343 

4 0.594 6.734 

5 0.704 7.102 

6 0.803 7.472 

7 0.894 7.830 

8 0.978 8.180 

9 1.056 8.523 

10 1.129 8.857 

Table 7.4 Nonlinear force-displacement relation of the deformed lacing wire 

7.5.5 Mistuning 

In practice, any group of nominally identical blades will in fact possess small 

differences. These will be evident as small variations in the various dimensions of 

the blades and in their fixing and so they may not be readily expressed by a single 

quantity. The theoretical analysis carried out in this study does not take into account 
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the factor of mistuning but experimental results have indicated its effects. 

The blades and their mounting into the holding block in the bladed packets 

used in this study inevitably possess mistuning because of the way they were 

manufactured and built. Therefore the effects of mistuning is discussed in this 

section, largely based on the published information. 

It is well-known that the vibration characteristics of a bladed disk assembly 

may be significantly altered by mistuning. The nature and extent of such alterations 

from the tuned state are not easy to predict in advance for all categories of mistuned 

assemblies. As the F.E. analysis in this work was carried out by using the 

commercial package PAFEC, in which the modelling of mistuning is not available, 

the effects of mistuning has not been studied theoretically. In this section, the 

concept of mistuning and its possible effects on the bladed disk assembly is discussed 

by referencing previous repons by other workers. 

For many years now, a lot of research workers in the area of the vibration of 

bladed disks and designers of advanced turbomachines have given serious thought 

to the problem termed mistuning or sometimes detuning. The problem is that under 

cenain excitation conditions, the nominally identical blades on a rotor stage do not 

experience equivalent response amplitudes. Another aspect of the problem is the 

natural frequency "splitting" phenomenon in which a pair of modes with close natural 

frequencies and similar characteristics are formed in place of an apparently single 

mode of vibration in the perfect, or tuned, system. This is contrary to theoretical 

predictions made on the assumption that all the blades on a stage, having been 

designed to the -same specifications, are practically identical. But in reality, the 

inevitable small differences among such blades can greatly affect their vibration 

characteristics when they are coupled together. Thus, although the deviations of 

blade properties from their nominal values may be small and within tolerance limits, 
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they cannot always be ignored altogether. 

Many studies into mistuning problems were reported and the one by Ewins 

[56] discussed the mode splitting by using receptance coupling at the junction 

between two connected components, such as the junction between blades and the disk 

of the bladed disk assembly, which are referenced for the following conclusions. 

It has been shown that when the system is detuned by admitting small 

dimensional variations between one blade and the next, some of the modes split into 

distinct but similar pairs. In general, a random detuning of the blades will cause all 

the so-called double modes to split in this way. An interesting feature found in the 

study into the frequency determinant of a tuned system is a number of "double" or 

coincident pairs of roots to the frequency equation. This in turn signifies that the 

system has two modes of vibration at such a frequency. When the blades lose their 

identity, it is found that the coincident pairs of roots of the tuned case are replaced 

in this case by pairs of close roots, which explains the mode splitting phenomena. 

Exceptions to the regular splitting behaviour were also encountered when two 

double modes themselves have close natural frequencies. Detuning does not produce 

the uniform splitting effect for these modes. Only those modes which are separated 

by a gap which is greater than the frequency split will exhibit an orderly splitting 

effect. 

The effect of some blades suffering excessive amplitude from others under 

certain excitation because of mistuning is not discussed in this thesis since the 

research was not focused on the system with excitations. 

7.5.6 The Limitation of the F.E. Modelling 
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Reasonable agreements between results obtained from F.E. modelling and 

from ESPI testing were found in Table 7.2 A and B, which confirmed that the F.E. 

model AGPB15N was a close representation of the experimental model ASSEl. The 

central natural frequency (CNF) of the lE mode cluster is at 1975Hz in case A whilst 

it is at 1820Hz, 1852Hz, 1932Hz and 1841Hz in cases B, C, D and E respectively. 

The difference of the CNF is 6.6% between case A and C which represents the 

unloaded assembly. The same conclusion could be verified by other clusters such 

as the 1 T +2F and the 3F clusters for which the differences are 6.9% and 1 % 

respectively. 

It was also found that the F.E. model AGPBl5N was more rigid than the 

experimental model ASSEl at some modes. The CNF of the lE cluster in case A 

is the highest in all of the cases. This difference reflected the errors in the boundary 

conditions applied to the F.E. model. In reality, each blade was bolted down at the 

bottom of the root by two bolts. The distance between the two bolts is smaller than 

that of the width of the root block. In FE modelling, all degrees of freedom on the 

bottom plane of the root block were restrained, thus the restraint applied to the 

edgewise mode was across the whole width of the block. This is certainly a more 

rigid condition than that in ASSEM I. In addition, at higher frequency range the 

NFB of the 2T cluster in case A was higher than the 2T NFB in any other cases, 

which suggested that more elements were required for better modelling of the high 

frequency modes. 

The above discussion revealed that the F.E. model AGPBl5N was able to 

represent the experimental assembly ASSEI. It could provide the mode shapes and 

the natural frequencies, some of which needed to be modified, of the modes of 

vibration of its physical model. Furthermore, the techniques used in developing the 

F.E. model were proved by the good agreement between results obtained from both 

theoretical and experimental analysis. The same techniques then can be used to build 
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up the F.E. models of the real system. 

As centrifugal force was not considered in the programme, some values of 

calculated natural frequencies were lower, such as those of the IF mode cluster. The 

capability of modelling the interface between the lacing wire and the blades within 

the F.E. package PAFEC was very limited in dynamic analysis. Only linear spring 

coefficients were employed in the programme as stated in Section 7.2. This 

limitation greatly constrained the study into the interface by F.E. analysis. 

Consequently, AGPB I5N could not provide information on the effects of locking, 

such as mode splitting and the broadening of the NFB of some modes. 

7.6 Response of Packeted Blades to Excitations 

7.6.1 Engine Order Excitation 

Probably the most common type of steady excitation of blade vibration is that 

which is generated by circumferential non-uniformities in the flow of the working 

fluid [10] and [40]. These non-uniformities, or maldistributions, are the inevitable 

consequences of necessary obstructions in the flow - bearing support struts, inlet 

nozzles, combustion chambers etc. - and although the variations which they introduce 

are static, blades on a rotating disk experience their effects as time-varying dynamic 

loads at frequencies which are multiples of the rotation speed. For example, a single 

blocked nozzle passage generates a single pulse which becomes a periodic force with 

many harmonic components - once per revolution being the fundamental - exerted 

on the blading. 

The total excitation which such non-uniformities exert on a bladed assembly 

is quite complex, since all the blades are subjected to the some pattern of excitation 
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forces but at various phase differences owing to their different locations around the 

disk. Any flow distribution can be considered as the superposition of several 

sinusoidal components. It may be shown that each such sinusoidal component of 

excitation will be seen by the blades at a different frequency - a cos(n6) variation 

being felt as fluctuations at n times the rotation speed - and this we refer to as an nth 

engine order excitation (or nEO). Since the different components of an actual non

uniformity excite at different frequencies, we may conveniently consider just one at 

a time. 

7.6.2 Bladed Packet Vibration Responses 

Possible resonance responses of blades to engine order (EO) excitations can 

be predicted using Campbell Diagrams, in which the natural frequencies of the blades 

concerned are plotted against the rotating speed of the bladed disk with EO 

excitations. The same technique may be used to study the response of a bladed 

packet to engine order excitations as the packet may be considered as part of a 

bladed disk assembly. To investigate the response of bladed packets, the Campbell 

diagram of a four bladed packet with the lacing wire at 89% of blade height was 

plotted in Figure 7.!3 using the FE results listed in Table 7.3. 

Natural frequencies of the flap modes (including the pinned-fixed modes), 

edge mode and torsional modes are plotted in the diagram. Possible resonances are 

indicated when engine order excitations coincide with the natural frequencies of the 

packet. 

However, the study on the mode shapes of mode clusters of bladed packets 

reveals that nodal points are exhibited along the lacing wire. This means that, in 

order for a particular sub-mode to be excited into resonance, not only the frequency 

of the excitation has to be close to the natural frequency of the sub-mode, but also 

251 



Study into Laced Bladed Packets 

the spatial pattern of the excitation contains a component of the mode shape of the 

sub-mode. For instance, the resonance of the IF-2 mode of a four bladed packet will 

occur if the engine order excitation varies twice in the span of the packet width. 

Therefore, not all of the modes will be excited. 

The above conclusion can be extended to bladed disk assemblies, in which 

the blades may be linked into several packets by shrouds or lacing wires. In this 

case, the nodal points along the lacing wire are reflected by the number of nodal 

diameters of the disk modes. An nEO excitation will excite a mode of bladed 

assembly into resonance only if that mode has a component of n-nodal diameters in 

its mode shape. Resonance will then occur at a speed n." which is given by n., = 

fr/n, where fo is the natural frequency (cycle per minute) of the mode in question. 

The implications of this rule for a tuned system are that each mode of the assembly 

can only be excited into resonance by one particular engine order. For example, the 

4-diameter mode can only be excited if there is a cos49 component in the 'shape' of 

the excitation source. Similarly, a given engine order excitation will produce no 

response in a non-compatible mode, even when the frequency of its excitation (nn.,) 

corresponds exactly with the natural frequency of that mode. 

Engine order excitations are proportional to the number of nozzles in turbo

machines and it is not uncommon to find more than 10 nozzles in turbochargers. 

This suggests that the number of EO excitations can be very high. On the other 

hand, the number of the modes of vibration will increase with the number of the 

blades in each packet, which in most cases is more than ten. Therefore, even having 

considered the rule discussed above, it must be said that a resonance free speed zone 

in the case of rotating blades bound into packets, by shrouds or lacing wires, cannot 

be achieved [198]. Hence, the bladed packets must be able to operate under resonant 

conditions. The reduction of vibration stress using damping elements such as lacing 

wires is confirmed from many operating machines. 
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7.6.3 Control of Blade Vibration Responses by Lacing Wires in 

Rotating Bladed Packets 

Having established the vibration characteristics of bladed packets, the effects 

of lacing wires and resonant responses of bladed packets to major excitations, the 

control of blade vibration responses by lacing wires is better understood. 

The control of dynamic stress at resonance is not the subject of this study but 

relative reports could be found. Wachter et al [198] measured the vibration 

amplitudes at resonances of low pressure runner blades on an industrial turbine with 

and without lacing wires in position. The maximum dynamic stress with lacing wires 

in position was found 55% less compared to that of the free standing blades despite 

that they were measured under different running speed. The achieved reduction in 

dynamic stress was as high as 80% compared to that of resonances at about the same 

speed. For three blades from a rrrst stage turbine of a 6000 to 7000 hp unity, Chubb 

[36] found that the stresses are consistently reduced by a ratio of about 5: 1 by the 

introduction of lacing wires. These findings confirmed the advantages of blade 

packeting using tip or mid-span shrouding/lacing wires, especially when blades are 

operating under resonance conditions. However, the reasons for the reduction of 

resonance stresses were not explained. 

It is considered in this study that the control of forced vibration responses by 

lacing wires is achieved by 

• friction damping at low rotating speed; 

• increase of blade stiffness, thus reduction of amplitude; 

• nonlinear stiffness of deformed lacing wires; and possibly, 

• micro-friction damping 
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At low running speed, the coupling between the lacing wire and the blades 

is weak as slippage occurs between them. The weak coupling will not strongly 

modify natural modes of vibration of blades in the packet, but the slippage can 

dissipate energy due to friction. In this case, the natural frequencies of cantilever 

blades will not be altered too much but blade vibration amplitude at resonance, hence 

the dynamic stresses, will be reduced. 

Bielawa [17] studied the general slippage characteristics of shroud segment 

interfaces using Coulomb friction. He found that the energy dissipation due to inter

shroud segment rubbing tended to an amplitude squared dependency and was thus 

similar to classic structural damping. 

A t high running speed, the lacing wire is locked with blades due to large 

centrifugal force. The coupling between the lacing wire and blades generates far 

more modes of vibration than those in case of free standing blades, depending on the 

number of blades in the packet. Generally, for a packet with N number of blades, 

there will be (N-I) number of out-of-phase sub-modes and 1 in-phase sub-mode in 

each mode cluster corresponding to the fundamental mode of the free standing blade. 

The natural frequencies of flap modes are largely altered and their distribution 

is related to the position and the stiffness of the lacing wire. Some may transform 

into or coupled with other modes. This alteration and transformation of natural 

modes of vibration may be used to control the region of resonance of some modes. 

As discussed in Chapter 6, the IF and the 2F modes may transform into the 2PF and 

IPF modes respectively if the location of the lacing wire is relatively high. This 

transformation actually alters the critical position where largest dynamic stress 

occurs. Hence, it is possible to move the critical position away from the hole for a 

lacing wire. This will certainly reduce the .chance of fatigue failure of blades with 

lacing wires. 
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The understanding of the alteration of natural frequencies of blade modes 

using a lacing wire also provides the opportunities for designing some modes to be 

separated from or coupled with others. The mode coupling/de-coupling could be 

considered as a means of transferring dynamic stress from one critical area on the 

blade to some other areas, or to reduce undesired resonance stress due to certain 

modes. For instance, the coupling between the IF and the I T mode could reduce the 

amplitude of the IF mode, hence transferring some of the bending stress into shear 

stress. 

The nonlinearity of the stiffness of the deformed lacing wire is identified in 

this study. At high running speed, the segments of the lacing wire between blades 

are deformed into segments of arches by centrifugal force. The stiffness of these 

segments varies with the relative displacement of the blades, i.e. they are functions 

of relative blade amplitudes. The larger the relative amplitudes are, the larger the 

difference in stiffness is. Because the relative amplitudes are different for the lacing 

wire segments in the same packet, due to the phase relations in out-of-phase sub

modes in each flap mode cluster, the nonlinearity introduces 'dynamic mistuning' 

into the stiffness of the packet. 

It is also understood that natural frequencies of blades in packets vary with 

the stiffness of the lacing wire. As a result, the effect of .the dynamic mistuning is 

that the natural frequenci~s also undergo small periodic oscillation with vibration 

amplitudes of the blades; even when excitation~ remain at constant frequencies. This 

fluctuation of natural frequency will reduce the energy transmitted into blades from 

the excitation source. Therefore the response of blades at resonances, hence the 

stress at resonances will be reduced. 

Apart from the features discussed above, the possibility of microslip between 

the lacing wire and the blades should not be ruled out. There are some reports 

255 



Study into Laced Bladed Packets 

discussing relative vibration motions at the interfaces between shroud segments [169, 

170], the excessive wear at the shroud interfaces and its consequences, though the 

direct discussion on the microslip of lacing wires is not found. These studies 

confirmed that the nature of vibratory motion at the interfaces could be a microslip 

type and their rubbing action provides important damping assuring the structural 

integrity of fans. 

It is almost certain that microslip takes place when the bladed assembly runs 

beyond such a speed under which the full slippage can not take place any more. Its 

existence when the lacing wire is fully locked in blades is not completely impossible. 

The relative displacements at the interfaces may vary from blade to blade and this 

variation is attributed to different mode shapes and vibration amplitudes of each 

blade in the packet. The difference in amplitudes results in varying normal loads and 

therefore the friction forces at the interfaces will vary. This variation will assist in 

the reduction of resonance responses and hence, together with friction damping, will 

contribute to the reduction of dynamic stresses. Further study should be carried out 

to fully establish the nature of the microslip of lacing wires and its effects in turbine 

blade vibrations. 

7.7 Conclusion 

The vibration behaviour of bladed packets bound by a lacing wire was studied 

in this Chapter using finite element modelling, which was verified by experimental 

results obtained by ESPI tests. Their dynamic characteristics were identified. The 

effects of the lacing wire on multi-blade vibration were investigated. Responses of 

blades with a lacing wire to excitation were analysed. 

The study revealed that the application of a lacing wire could largely increase 
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the stiffness of some modes, for example, flap modes. The blade amplitudes become 

smaller in a stiffer packet. 

Because the natural frequencies of the flap modes can be altered largely by 

the application of a lacing wire, more flexibility is provided to design engineers to 

make different modes coupled or de-coupled. As a result, the dynamic stress at 

certain area on blades could be reduced. 

The nonlinearity of the deformed lacing wire was identified in this Chapter. 

The stiffness of the lacing wire varies with vibration amplitudes of blades. This 

means that the natural frequencies undergo oscillations because they are the functions 

of the lacing wire stiffness. The oscillation is considered to have large contributions 

in the reduction of dynamic stress at resonances. 

The friction and rnicroslip of the lacing wire were also discussed although 

detailed analysis was beyond the scope of this study. It is considered that rnicroslip 

exists even when centrifugal force is fairly high. Further study should be carried out 

to investigate the nature of rnicroslip and its effects on the reduction of dynamic 

stress. 
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TITLE M:P11tf'1 
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Figure 7.1 The finite element model of a 4 bladed packet 
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Figure 7.2 One sub-mode in the lE+ 1 T cluster of a seven bladed packet 

259 



I I I I I I I I I I , , , I , I' , " , , 
543 Hz 5941 Hz 8387 Hz 

IF-O ~ ~ IF-3 --.. ~ /'""'>.. IF-6 

'--" '= • ............. -- '" 
I I ' 1 1 1 I I , I , 

" 
2081 Hz 7139 Hz 8907 Hz - .......-:--. IF-I ::> "="" 

.c:==-. .... IF-4 , ........,. ,-.. C/ 0: 
~ 

C) 

" 
IF-7 -

/' , , , ' / " 
, , , ." , 

" " " 

4454 Hz 8053 Hz 9038 Hz 

=:->.. c-: IF-2 "- ,.-...,. ~ IF-5 , <"' C) C'> < IF-8 
.............. -- '-./ ~ " c;:;;o ....... <:> C;; 

Figure 7.3 Classification of a nine bladed packet vibrating at the IF cluster frequencies 



Study into Laced Bladed Packets 

• 
2K ~-~ IF-I 

IF-O 

I 2 3 4 5 6 7 8 9 10 
No. of blades 

Figure 7.4 Effect of blade number on IF mode frequencies 
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Figure 7.6 Experimental model of a four bladed packet ASSEMl 
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Figure 7.7 The loading frame applying simulated centrifugal force to the lacing 
wire in ASSEMl 
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Figure 7.9 Plastic defonnation of a lacing wire due to loading 
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Figure 7.10 Deformed and un-deformed lacing wire in a blade packet 
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A B C D E 

FE ESP! ESP! ESP! ESP! 

NO NO UNLOADED 
AFfER LOADED SOLDERED 

LOADING LOADING LOADING 

Freq.(Hz) Mode Freq.(Hz) Mode Freq.(Hz) Mode Freq.(Hz) Mode Freq.(Hz) Mode 

478 --IF 471--1F 475--1F 479 --IF 
856 IF 

1260~ 
1536~ 1536~ 1568~ 2423 lE x 4 1751~ lEx4 lEx4 lE x 4 

lE x4 2105 2168 2279 
2199 

2763~ 2725 --IT 2713 2723 
ITx4 2726--1T 2753 (IT + 2F) 

2774 2852 
(IT + 2F) I x11 (IT + 2F) 

2870 (IT+ 2F) I x9 . 
2Fx4 I 3339 x 6 x8 

2939 3321 
3374 3411 

4638 -- IF 
4385 --IF 

5080 -- IF 
5033 -- IF 

5742 __ IF 
6018 IF 

7054--1F 
7242--1F 

7455-- IF 7384 IF 7584:] 7580 
7656 . 7758 
7757 3F x4 I 3Fx4 

7926~ 7980 3Fx4 3Fx4 
3Fx4 

8021 
8187 8144 

8227~ 8304~ 2Tx4 2Tx4 8471~ 8435~ 8473 8524 2Tx4 2Tx4 
8649 8679 

8838 --IF 
8874 . 
8918 2T x 4 I 

9180 --IF 
9366 -IF 

Table 7.2 Modes of vibration of ASSE 1 by FE analysis and ESP! tests 
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Chapter 8 

Conclusion 

8.1 Conclusions 

The work of this thesis has sought to provide a better understanding of the 

dynamic characteristics of turbine blades, which are free-standing or in packets and 

has identified the effects of coupling through lacing wire. 

1. The fundamental vibration modes of blade K have been identified. The 

effects of taper and pretwist on mode shapes have been shown by studying 7 

simplified model blades, each of which represents a fundamental geometric feature 

of blade K. 

2. One effect of changing the geometry of a blade is that coupled modes of 

vibration· can be generated. The study has revealed that two coupled modes occur 

outside of the frequency band. between the two uncoupled natural frequencies alone, 

while the latter disappear. 

3. An experimental technique of mode separation has been developed and 

successfully applied to identify coupled modes of simplified blades and blade K. 

4. The study has shown the contribution of the setting angle of lacing wire to 

the coupling between the flap and edgewise modes. The displacement of the blade 

in one direction will result in a pulling force from lacing wire to generate 
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displacement in the other direction. This contribution assists the coupling when the 

natural frequency of the IF mode rises close to that of the lE mode, due to the 

stiffening by lacing wire. 

5. The study has shown that both modal testing and ESPI techniques are 

polarized in detecting displacements. They may see vibration motion in one direction 

while the blade is moving in the other due to the pretwist of the blade, hence giving 

false information. Thus thorough understanding of the techniques used is required 

for correct interpretations. 

6. The finite element analysis has proved to be a very useful tool in the 

modelling of blading. 

7. F.E. model of a single blade K with loaded lacing wire has been developed 

and justified by experiments using ESPI technique. Its modes of vibration have been 

identified and their mode shapes are presented. This has provided a useful tool for 

further study into the high dynamic stress areas on turbine blades with aero-dynamic 

profile, in relation to the lacing wire hole which creates stress concentration. 

8. Connecting blades into packets generates far more modes than those of free 

standing blades. It has been shown that for a N blade packet, there will be N sub

modes in each of mode clusters which correspond to the fundamental modes of the 

free standing blade. These sub-modes differentiate themselves by having different 

phase relations to each other, the fundamental one being every blade in phase .. 

9. The blade motion will be out of phase in the remaining (N-I) sub-modes in 

every cluster. The degree of out of phase can be measured by the number of nodal 

points along lacing wire. The more nodal points there are, the larger the degree of 

out of phase, and the higher the natural frequency of the sub-mode. This reflects the 
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contribution of lacing wire stiffness to packet modes. 

10. The stiffness and the location of lacing wire have been seen to have strong 

effects on flap modes. The employment of lacing wire has been shown to largely 

increase the natural frequencies of flap modes by increasing the stiffness of the blade 

packets. Locating the lacing wire between the blade root and approximately 60% of 

blade height stiffens the second flap mode with consequent frequency increase. In 

general the third flap mode increases natural frequency for all height of locations of 

the lacing wire other than at the normal flap mode nodal locations. 

11. The alteration of the natural frequencies of flap modes could be used to avoid 

resonant responses to known major excitations. 

12. Mode switching and natural frequency crossing due to the lacing wire have 

been found. The study has revealed the transformation of flap modes of a free

standing blade into pinned-fixed modes. When the lacing wire location is changed 

from the bottom of the blade to the top of the blade, the IF mode switches into the 

2PF mode while the 2F mode switches into the IPF mode. Frequency switching of 

the two modes occurs when the lacing wire is located near the nodal line of the 2F 

mode. 

13. It has been found that the stiffness of a deformed lacing wire exhibits 

nonlinearity. The value of stiffness varies with the relative vibration amplitudes of 

blades. For vibration modes other than the in-phase sub-modes within a single 

packet of blades, there are different relative amplitudes creating a system with 

several different relative stiffnesses. It is considered that this dynamic variation of 

stiffness at different part of the packet will create 'dynamic mistuning'. 

14. One possible feature of 'dynamic mistuning' is that the value of stiffness of 
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defonned segments of a lacing wire undergoes fluctuations. Variation in stiffness 

amplitude is proportional to the relative amplitude of the blades and this causes 

instantaneous fluctuation in natural frequency. It is believed that this mode of 

oscillation contributes to the reduction of vibration amplitude and offers a method for 

reducing dynamic stress levels. 

8.2 Outline of Future Work 

The areas where future research work should be concentrated are given in the 

following sections. 

Dynamic Mistuning 

The dynamic mistuning in stiffness caused by the nonlinearity of defonned 

lacing wire combined with the variation of relative amplitude in out-of-phase 

vibrations of blade packets is a new concept. Its full dynamic characteristics have 

yet to be established. Its effect on the vibration response of blade packets to major 

excitations needs to be exploited. Further study should be carried out to gain insight 

into this feature. 

The End Blades in Packets 

The effects of grouping blades into packets has been studied in this thesis. 

However, experiences have shown that it is the blades at the ends of the blade 

packets that are more prone to failure. The vibration characteristics of end-blades 

should be further investigated. 

Optimization in Blade Packet Design 
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In the body of this thesis, the study has been focused on establishing the 

understanding of the vibration of blade packets. It has not been possible to study the 

packet as part of a bladed disk assembly. In order to provide a base for optimization 

in the design of blade packets on bladed disks, further work is required to investigate 

the following subjects: 

• The effect of the number of blades and the number of packets on a bladed 

disk. 

• The effect of using different lacing wire configurations. 

• The effect of different stiffness and mass ratios between lacing wire and the 

blade. 

• The location of lacing wire relative to the critical areas on blades 

• The methods of blade location within the disk 

8.3 Other Related Areas of Interest 

Microslip 

Other important areas in the application of lacing wire are the friction and 

microslip. The dynamic characteristics of friction and microslip interfaces berween 

lacing wire and the blade are to be established. Their effect on the reduction of 

dynamic stress should be studied. 

Other Inter-Blade Coupling Elements 

Lacing wire is only one of the inter-blade coupling elements used in 

turbomachinery. The understanding of its function and the expertise gained in this 

work can be used to study other types of coupling elements, such as snappers and 
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lashing pins. The vibration response of blade packets with other coupling elements 

requires a thorough investigation. 
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