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Abstract 

The main focus of this study is to improve the profitability, availability and condition 

monitoring of Liquefied Natural Gas (LNG) Floating Production Storage and Offloading 

platforms (FPSOs). Propane pre-cooled, mixed refrigerant (C3MR) liquefaction is the 

key process in the production of LNG on FPSOs. LNG liquefaction system equipment 

has the highest failure rates among the other FPSO equipment, and thus the highest 

maintenance cost. Improvements in the profitability, availability and condition 

monitoring were made in two ways: firstly, by making recommendations for the use of 

redundancy in order to improve system reliability (and hence availability); and secondly, 

by developing an effective condition-monitoring algorithm that can be used as part of a 

condition-based maintenance system.  

C3MR liquefaction system reliability modelling was undertaken using the time-

dependent Markov approach. Four different system options were studied, with varying 

degrees of redundancy. The results of the reliability analysis indicated that the 

introduction of a standby liquefaction system could be the best option for liquefaction 

plants in terms of reliability, availability and profitability; this is because the annual 

profits of medium-sized FPSOs (3MTPA) were estimated to increase by approximately 

US$296 million, rising from about US$1,190 million to US$1,485.98 million, if 

redundancy were implemented. The cost-benefit analysis results were based on the 

average LNG prices (US$500/ton) in 2013 and 2014. 

Typically, centrifugal turbines, compressors and blowers are the main items of equipment 

in LNG liquefaction plants. Because centrifugal equipment tops the FPSO equipment 

failure list, a Condition Monitoring (CM) system for such equipment was proposed and 
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tested to reduce maintenance and shutdown costs, and also to reduce flaring. The 

proposed CM system was based on a novel FFT-based segmentation, feature selection 

and fault identification algorithm.  

A 20 HP industrial air compressor system with a rotational speed of 15,650 RPM was 

utilised to experimentally emulate five different typical centrifugal equipment machine 

conditions in the laboratory; this involved training and testing the proposed algorithm 

with a total of 105 datasets. The fault diagnosis performance of the algorithm was 

compared with other methods, namely standard FFT classifiers and Neural Network. A 

sensitivity analysis was performed in order to determine the effect of the time length and 

position of the signals on the diagnostic performance of the proposed fault identification 

algorithm. The algorithm was also checked for its ability to identify machine degradation 

using datasets for which the algorithm was not trained. Moreover, a characterisation table 

that prioritises the different fault detection techniques and signal features for the 

diagnosis of centrifugal equipment faults, was introduced to determine the best fault 

identification technique and signal feature.  

The results suggested that the proposed automated feature selection and fault 

identification algorithm is effective and competitive as it yielded a fault identification 

performance of 100% in 3.5 seconds only in comparison to 57.2 seconds for NN. The 

sensitivity analysis showed that the algorithm is robust as its fault identification 

performance was affected by neither the time length nor the position of signals. The 

characterisation study demonstrated the effectiveness of the AE spectral feature technique 

over the fault identification techniques and signal features tested in the course of 

diagnosing centrifugal equipment faults. Moreover, the algorithm performed well in the 

identification of machine degradation.  
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In summary, the results of this study indicate that the proposed two-pronged approach has 

the potential to yield a highly reliable LNG liquefaction system with significantly 

improved availability and profitability profiles.  
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Chapter 1. Introduction 

1. CHAPTER 1. INTRODUCTION 

1.1 INTRODUCTION 

In 2014, the International Energy Agency (IEA) predicted that, by 2040, international 

demand for energy would increase by 37%, and that demand for natural gas (NG) would 

be more than 50% higher than the 2014 levels [1]. Global gas demand was 3284 billion 

cubic meters (bcm) in 2010, and has increased by 2.7% per year over the last decade. Gas 

has a 21% share of the global primary energy mix, behind oil and coal. The United States 

was categorised by the IEA as the first consumer and second producer of NG [2]. The 

U.S. Energy Information Administration (EIA) has estimated that there are 2587 trillion 

cubic feet (Tcf) of technically recoverable NG in the U.S. This includes undiscovered, 

unproved, and unconventional natural gas that could significantly change the energy 

supply and use markets in the U.S. [3]. NG and nuclear power are expected to be the two 

most promising energy resources in the coming decade. However, the catastrophic 

earthquake and tsunami that happened in Japan in March, 2011 undoubtedly shook 

confidence in atomic energy utilisation, thus giving NG utilisation a bigger share of 

future energy demand. NG is the cleanest fossil fuel and possesses many advantages such 

as the emission of a high calorific value, and emitting lower levels of potentially harmful 

by-products. 

In 2013, the EIA forecast that worldwide demand for natural gas would dramatically 

increase over the following 28 years. During this period, NG would overtake coal and 

become the world’s second most widely used fuel after oil. Demand for NG is expected 
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to grow faster than for both coal and oil. It is predicted that natural gas in its liquid form 

(LNG) will play a greater role in the overall gas supply. With natural gas production 

being more than 50% cheaper than diesel on an energy-equivalent basis, the economic 

logic of converting trucks, buses, locomotives, ships and stationary engines to using 

cleaner- burning, lower-emission LNG is compelling. Moreover, with growing electricity 

demand and the retirement of 103 Gigawatts of existing capacity, 340 Gigawatts of new 

generating capacity is to be added in the AEO2013 Reference case between 2012 and 

2040, as shown in Figure 1. Natural gas-fired plants are due to account for 63% of 

capacity additions from 2012 to 2040 in the Reference case, compared with 31% for 

renewables, 3% for coal and 3% for nuclear [4]. 

 

Figure 1: Addition of electricity generation capacity by fuel type [4]. 

LNG is used for transporting natural gas to markets, where it is regasified and distributed 

as pipeline natural gas. It can be used in natural gas vehicles, although it is more common 

to design vehicles so that they can use compressed natural gas. Its relatively high 

production cost, and the need to store it in expensive cryogenic tanks, have prevented its 

use in commercial applications from becoming widespread. LNG is produced by taking 
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natural gas from production fields, removing impurities, and liquefying it.  Before 

liquefaction, the following preliminary processes take place: acid gas removal, 

dehydration, mercury removal, heavy hydrocarbon removal, and optional feed 

recompression.  The liquefaction process properly starts with the treatment of dry lean 

natural gas. It is then followed by the three recognised basic steps of precooling the 

treated gas to about -30 to -40 °C, liquefaction to about -120 to -135 °C, and subcooling 

the LNG to about -140 to -165 °C, as shown in Figure 2 [5].  

At stove burner tips, this condensed liquid form of NG takes up about 1/600th of its 

initial volume. The LNG is loaded onto double-hulled ships, which are selected for their 

safety and insulating purposes. Once the ship arrives at the receiving port, the LNG is 

typically off-loaded into well-insulated storage tanks. Regasification takes place in order 

to convert the LNG back into its gaseous form; it then enters domestic pipeline 

distribution systems, and is ultimately delivered to the end-user [6].  
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Figure 2: Air Products AP-C3MR™ LNG Process [5]. 

Due to the increasing demand for LNG and the need to reduce plant costs, the demand for 

LNG Floating Production, Storage and Offloading (FPSO) platforms has increased. 

FPSOs are floating plant which can produce and store LNG in the sea, and transfer it to 

carriers, and then onto the world market. The FPSO has the following benefits over 

onshore plants: significant cost savings of up to 40% due to the need for more limited 

investment in related infrastructure; potential further cost savings due to higher 

construction flexibility when an LNG FPSO is built in a shipyard and towed to site; 

shorter time-to-market; better flexibility in utilisation; favourable safety features; 

reasonably-sized less complex projects; early production; and the ability to operate robust 

cost-effective liquefaction processes [7].  



5 
 

Liquefaction is the key process which takes place on floating LNG platforms, and costs 

between 30% and 40% of their overall cost. Failures in LNG liquefaction systems may 

pose serious risks both to LNG ships and to the environment. To ensure optimal  

operational availability of offshore LNG liquefaction systems at the lowest possible 

overall cost (which includes capital, running costs, shutdown and maintenance costs), the 

following factors must be considered: (i) the configuration of the liquefaction system in 

order to obtain optimal redundancy; (ii) an effective Preventive Maintenance (PM) 

programme, and (iii) a repair strategy when the ship is at sea, which ensures that spare 

parts are available onboard [8].  

There are three major liquefaction processes used on FPSOs, namely the Mixed 

Refrigerant Cycle (MRC), the N2 expander cycle, and the Propane Precooled Mixed 

Refrigerant C3MR process. The majority of FPSO manufacturers select the C3MR 

process for its high economic performance [9], and hence this process is the focus of this 

work. 

Breakdowns in oil and gas production systems have a significant impact on the 

profitability of the business as expensive production equipment is left idle, and labour is 

no longer optimised. The ratio of fixed costs to product output is negatively affected. 

Quick repair of failed equipment is critical to business success.  

However, when equipment breakdowns occur, costs can continue to be incurred well 

beyond the period of repair. Often, process lines require significant run time after start-up 

before producing a quality product. The goods being manufactured at the time of 

breakdown and for some time afterwards may either be unusable or lower in value. Due 

to negative impacts during and beyond the immediate downtime, businesses have sought 
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to prevent equipment breakdown by a process known as Condition-Based Maintenance 

(CBM). With CBM, equipment is continuously monitored in an effort to decrease repair 

times and prevent breakdown [10]. Unlike preventive maintenance, which is based on 

servicing machines at scheduled intervals, CBM is based on equipment conditions such 

as the operating environment and application [11]. 

It is vital to maintain equipment at the right time, and so in order to do this, CBM uses 

real-time data to prioritise and optimise maintenance resources. Observing the state of a 

system is known as “condition monitoring”, which determines the equipment's health, 

and acts only when maintenance is necessary. The instrumentation of equipment has 

developed and become more extensive in recent years, and with the aid of better tools for 

analysing condition data, maintenance personnel are able to select the right time to 

perform maintenance on certain parts of equipment. Condition-based maintenance should 

minimise the cost of spare parts, system downtime, and maintenance tasks. 

The specific advantage of condition monitoring is that potential degradation or failure can 

be detected; it enables operators to take maximum advantage of the useful life of 

components, such as bearings, as equipment can remain in service as long as its 

operational performance meets the desired performance standards. In general, the cost-

effectiveness of condition monitoring, either by means of human surveillance or other 

condition monitoring techniques, should be evaluated against the following criteria [12]: 

- The potential Health, Safety and Environment (HSE) consequences if the 

component/equipment is allowed to run to failure. 

- The additional repair costs resulting from potential secondary damage if the 

component/equipment is allowed to run to failure. 
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- The expected longer useful life of the component/equipment relative to its 

scheduled replacement time. 

- Efficiency gains in the execution of switching from main to standby systems, 

planned corrective tasks relative to unplanned ones, and possible additional 

economic consequences such as production loss. 

1.2 PROBLEM IDENTIFICATION AND RESEARCH METHODOLOGY 

Profitability is increased both by maximising income and minimising expenses. The 

profitability of FPSOs can be increased, firstly by improving the availability of plants in 

order to process as much LNG as possible, and secondly, by reducing operating and 

maintenance costs.   

Hence, this study focuses on improving availability and reducing maintenance costs 

through the introduction of redundancy, alongside the development of an effective 

fault/condition monitoring system. 

A further aim of this study is to help minimise the environmental pollution attributable to 

natural gas flaring during shutdowns. Production shutdowns may require the temporary 

flaring of all the gas stored or arriving at a facility, in order to reduce excessive pressure 

and avoid catastrophic incidents [13].  

The profitability of LNG production plants is directly affected by the maintenance 

strategy applied and by the availability of the LNG liquefaction plant. LNG production 

plant availability is strongly related to system redundancy and also to the maintenance 

strategy applied. Hence, the introduction of redundancy and the choice of maintenance 

strategy are the two main factors that increase the reliability and operational availability 

of the C3MR liquefaction process [14] [8].   
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Figure 3 provides a simple top-level illustration of the general effect of changes to 

maintenance strategy on the total maintenance cost of the plant. Naturally, in real 

applications, the total maintenance cost is not as straight forward as this, depending on 

additional factors such as hazard rate, logistics, machine age, reliability, safety and 

integrity requirements etc.  

In the figure, the total maintenance cost is equal to the sum of shutdown cost, Preventive 

Maintenance (P_M) cost, and Corrective Maintenance (C_M) cost. The shutdown cost is 

the cost associated with production stoppages due to maintenance or failure, and the 

switchover cost is the cost associated with production stoppages when production is 

switched from a main to a standby system. For large production plants, if the cost-

benefits of introducing redundancy are justified, a standby redundancy strategy should be 

applied together with an effective CBM system. This to ensure that the total maintenance 

cost is kept to a minimum as the costs of shutdown, switchover and P_M will be reduced. 

Hence, this study sets out how the profitability of LNG plants can be improved by using 

the research methodology shown in Figure 4. 
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Figure 3: Effect on total maintenance cost of maintenance strategy applied. 

Figure 4 presents the research methodology employed in this study. The research is 

divided into two substantive sections: (a) system reliability and (b) system maintenance. 

In the first section, the redundancy option is introduced, and its cost-effectiveness is 

investigated by using a newly-developed reliability model.  

The second section sets out the development of a fast, automated, robust and easy-to-

implement condition monitoring system for the implementation of a CBM strategy in 
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LNG liquefaction plants. It also characterises the major fault detection techniques and 

signal features for liquefaction plant rotating equipment with a view to combining fault 

diagnosis techniques and signal features. Such combinations will help to avoid 

misdiagnoses which can result in false alarms.   
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Figure 4: Research methodology. 
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1.3 NOVEL CONTRIBUTIONS AND PUBLICATIONS 

The main aim of this study is to increase the profitability of LNG production plants. The 

study seeks to achieve this aims through a combination of reliability analysis and the 

development of new algorithms for fault/condition monitoring. Taken together, these 

approaches could result in improved availability with lower cost of maintenance. This 

study’s main contributions are as follows: 

1. A Markov model for the analysis of the reliability and operational availability of a 

typical FPSO LNG liquefaction system was developed. This model was also 

extended to consider redundancy options. 

2. The estimation of the cost-benefit for partial and full redundancy of a typical FPSO 

liquefaction system. 

3. An experimental compressor test-rig was built to simulate faults and generate data 

for condition monitoring studies. 

4. An automated FFT-based segmentation, feature selection and fault identification 

algorithm for FFT-based CBM systems for typical high speed centrifugal 

equipment was proposed and demonstrated on experimental data. This algorithm 

proved to be robust, easy-to-implement, systematic, and highly responsive. 

5. The algorithm was investigated for robustness using various signal time lengths 

and data window positions. The ability of the algorithm to identify machine 

degradation outside the datasets for which it had been trained was also 

investigated. A comparative study was performed to compare the performance of 

the proposed algorithm with other methods. 

6. A “characterisation table” was developed to combine information from several 

fault detection techniques, namely AE, vibration, air pressure, Crest Factor, Energy 
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Factor, RMS, Amplitude, and spectral features. This approach was found to have 

great potential for the development of CBM systems for typical centrifugal 

equipment, and for the improvement of fault identification accuracy (when 

compared with a single technique).  

Five indexed journal papers and one reviewed conference paper have arisen from this 

work. The list of publications is as follows: 

Journal publications (5 papers) 

S. Gowid, R. Dixon and S. Ghani, “Optimization of reliability and maintenance of 

liquefaction system on FLNG terminals using Markov modelling,” International Journal 

of Quality & Reliability Management, Emerald, vol. 31, no. 3, pp. 293-310, 2014. 

S. Gowid, R. Dixon and S. Ghani, “A Novel Robust Automated FFT-Based 

Segmentation and Feature selection Algorithm for Acoustic Condition monitoring 

Systems,” Journal of Applied Acoustics, Elsevier , vol. 88, no. 1, pp. 66-74, 2015 

S. Gowid, R. Dixon and S. Ghani, “Profitability, reliability and condition monitoring of 

LNG floating platforms: A review” Journal of Natural Gas Science & Engineering, 

Elsevier, vol 27, no. 3, pp. 1495-1511,  2015 

S. Gowid, R. Dixon and S. Ghani, “Characterization of major fault detection features and 

techniques for the condition monitoring of high speed centrifugal equipment,” Journal of 

Acoustics and Vibration, vol 27, no. 2, pp. 184-191, 2016. 

S. Gowid, R. Dixon and S. Ghani, “Performance Comparison between FFT Based 

Segmentation Algorithm and Neural Network for the Condition monitoring of 
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Centrifugal Equipment” Journal of Dynamic Systems, Measurement and Control, ASME, 

vol139, no. 6, doi: 10.1115/1.4035458, 2017. 

Conference publications (1 paper) 

S. Gowid, R. Dixon and S. Ghani, “Assessment of liquefaction systems’ process 

performance on LNG Floating export Terminals,” International conference on 

Mechanical, Automotive and Aerospace Engineering (ICMAAE 2013), Paper # 30111, 2-

4 July 2013, Kula Lumpur, Malaysia. 

1.4 THESIS STRUCTURE 

This thesis has eight chapters. Chapter 1 sets out the background, problem statement, 

objectives and contribution of the study, and presents the thesis structure. Chapter 2 is 

divided into six sections; the first five sections summarise the relevant existing research 

work, and the last section concludes with the outcomes of this literature review. Chapter 

3 investigates the reliability of a typical C3MR LNG liquefaction system when several 

redundancy options are introduced; it then compares the new system with the standard 

system with a view to improving system availability and profitability. Chapter 4 explains 

the experimental setup which has been developed as part of this research project in order 

to evaluate the usefulness of the proposed maintenance methods. The acoustic emission 

transmission loss from the measurement system is quantified, and the calibration results 

and frequency responses are also presented. Chapter 5 proposes a novel, automated, fast, 

easy-to-implement and robust FFT Segmentation, Feature Selection and Fault 

Identification (FS2FI) algorithm which has its aim the improvement of the fault 

identification performance of CM systems. It also investigates and assesses the utilisation 

of AE spectral features for the diagnosis of faults in typical high speed centrifugal 

equipment. Chapter 6 studies the sensitivity of the proposed algorithm to changes in 
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signal time length and data window position. It also compares the performance of the 

proposed method with different fault identification methods. Chapter 7 presents the 

results of the experiments conducted in order to characterise the major fault detection 

techniques and signal features for the diagnosis of faults in typical high speed centrifugal 

equipment. Finally, Chapter 8 summarises the results of this research, identifies its 

limitations, and proposes possible future work. 
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Chapter 2. Literature review  

2. CHAPTER 2. LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter addresses the advantages of FPSOs, reviews the previous research related to 

LNG liquefaction processes, reliability and condition-based maintenance on FPSOs, and 

identifies a number of research directions with a view to improving the reliability and 

profitability of floating LNG terminals. The main purposes of this chapter are to ascertain 

the current state of the research, critically appraise the strengths and weaknesses of 

existing fault detection techniques, and identify research gaps and future work. 

This chapter is divided into six sections. First, the objective and content of the chapter is 

introduced. Then in the second section, the economic performance of FPSO and LNG 

liquefaction processes are investigated and compared. Section three reviews the previous 

reliability studies of similar equipment. The most suitable reliability calculation 

approaches for LNG liquefaction systems are also investigated and prioritised according 

to their performance when solving reliability problems. Section four compares the 

benefits and cost-effectiveness of periodic preventive maintenance with CBM. In section 

five, the literature relating to the condition monitoring of rotating equipment is reviewed 

to identify the advantages and disadvantages of each fault identification and feature 

selection technique. Finally, the last section consists of a conclusion to the literature 

review, a presentation of the shortcomings of current research relating to reliability and 

maintenance system on FPSOs, and the research gaps that should be bridged to improve 

further the reliability and profitability of FPSOs.  
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2.2 FLOATING PRODUCTION, STORAGE AND OFFLOADING PLATFORM (FPSO) 

The FPSO is a modern floating LNG production unit that can effectively and realistically 

exploit marginal and offshore gas fields in the event that (a) a pipeline network is not 

available, (b) there is a small number of wells, and/or (c) recoverable reserves are limited. 

FPSOs can produce and store LNG in the sea, and they have offloading facilities that 

enable the transfer of LNG product to LNG carriers and then on to world markets. The 

LNG-FPSO is not only compact and mobile, but can also be reused in other offshore 

fields [15]. Figure 5 shows a typical LNG-FPSO terminal.  

The main disadvantages of current FPSOs are: (a) their low LNG production capacity 

(3.5 MTPA), (b) the poor reliability of their onboard centrifugal equipment, and (c) the 

inherent logistical difficulties of their operation and maintenance due to the remoteness of 

their offshore locations [16]. 

 

Figure 5: Sanha – World’s first LNG FPSO Terminal  [15]. 

2.2.1 BENEFITS OF LNG FPSOS 

Yan and Yonglin, [15] and Haid [17] investigated and reported on the potential benefits 

of LNG FPSOs, and compared them to onshore LNG plants. They concluded that FPSOs 

are cost-effective and suitable for LNG production.  Researchers have highlighted the 

extra benefits to the current LNG industry of using FPSO terminals in comparison with 

onshore LNG plants. In particular, cost savings and the operational effectiveness of 
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offshore terminals have been demonstrated. The following is a summary of the benefits 

of FPSOs  [7] [17]:  

- Cost savings of up to 40% compared with onshore LNG plants 

- Shorter time to market  

- High utilisation flexibility  

- Compact in size  

- Can be re-used in other offshore fields 

- Early production 

2.2.2 MAJOR LNG LIQUEFACTION SYSTEM PROCESSES 

Liquefaction is a key process carried out on floating LNG platforms. The profitability of 

FPSOs is directly related to the availability of the liquefaction process. There are three 

major LNG liquefaction processes, namely the Propane Pre-Cooled Mixed Refrigerant 

cycle (C3MR), the Mixed Refrigerant cycle, (MR) and the Nitrogen Expander cycle (N2 

expander). Despite the numerous advantages of the N2 expander system, the C3MR 

process remains the most utilised to date due to its highly economical process 

performance. However, further research should be undertaken to develop an LNG 

liquefaction process that combines the advantages of both C3MR and N2 liquefaction 

processes. 

In a research study undertaken by Li and Ju [9], three major LNG liquefaction processes 

were described, analysed and systematically assessed. The study investigated the C3MR, 

MR and N2 expander processes used for the special gases associated with offshore 

production found in the South China Sea. These processes were analysed and compared 

by considering factors like performance parameters, economic performance, layout, 
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sensitivity to motion, suitability for different gas resources, safety, and operability. The 

study also considered the features of floating production, and the storage and offloading 

units for liquefied natural gas (LNG-FPSO) in the marine environment.  

A typical pre-cooled mixed refrigerant process is shown in Figure 6. The process starts 

by lowering the raw natural gas pressure and temperature using a turboexpander (E). The 

low-pressure mixed refrigerants are compressed by a centrifugal compressor (P-1), and 

then precooled using a simple propane cooling system (P-2). The natural gas is then 

cooled by four huge series LNG heat exchangers (H-E1, H-E2, H-E3 and H-E4) to a very 

low temperature of approximately -165 degree Celsius. The liquefied form of natural gas 

is achieved when the output of the heat exchangers is throttled to the storage pressure. A 

booster/turboexpander set is employed in this system, and the work recovered from the 

turboexpander (E) is utilised to drive the booster (B). The pipelines are numbered 

according to the normal sequence of processes.  

 

Figure 6: C3MR LNG liquefaction process  [9]. 
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The results indicate that the C3MR process has the highest economic performance, and 

that the Nitrogen expander process (N2 expander) has the highest energy consumption 

and poorest economic performance. Despite these two disadvantages of the N2 expander 

process, it remains more advantageous with respect to the C3MR and MR offshore 

application processes as it is easy to implement and more compact. The N2 expander 

requires less deck area, is less sensitive to LNG FPSO motion, is more suitable for other 

gas resources, is safer, and is easier to operate.  

Figure 7 illustrates that, despite the various benefits of the N2 expander process, the 

C3MR and C3MR/split MR (precooled MR) were the most popular liquefaction process 

in 2013, accounting for 66% of the total capacity of in-service LNG trains [18].  

 

Figure 7: Liquefaction capacity by LNG process type  [18]. 

According to the World LNG report, precooled MR processes such as C3MR and Dual 

Mixed Refrigerants (DMR) have the highest process efficiency, while the N2 process has 

the lowest. In terms of production capacity, the precooled MR process has the largest 

capacity, which normally ranges from about 1 to 5+ million tons per annum (MTPA). At 

the same time, the capacities of other liquefaction processes are limited to about 1 to 2 

MTPA per train. The advantages of the N2 process is that it uses entirely non-flammable 
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refrigerant, and is insensitive to vessel motion; these features make it the safest LNG 

liquefaction process [19].  

It can be concluded from the above research that various LNG liquefaction processes 

such as C3MR, MR, DMR, N2 expander and Cascade are currently utilised [9] [19]. The 

C3MR and DMR LNG liquefaction processes have the best economic performance, and 

most land-based LNG facilities use these processes in their LNG production lines.  

2.2.3 SUMMARY 

The research work reviewed in this section can be summarised as follows: 

- The cost and operational effectiveness of FPSOs make them preferable to onshore 

plants; however, the poor reliability of their onboard centrifugal equipment 

represents their main disadvantage. 

- The features that affect the selection of FPSO LNG liquefaction processes are: (a) 

process efficiency, (b) production capacity, (c) safety, and (d) impact of vessel 

motion. 

- The N2 liquefaction process is the safest LNG liquefaction process as the N2 

refrigerant is non-flammable, and the whole process is not sensitive to vessel 

motion. 

- The C3MR liquefaction process has the greatest process efficiency, and most LNG 

onshore plants utilise this process in their LNG production lines. 

2.3 RELIABILITY OF FPSO LIQUEFACTION SYSTEM 

The reliability of LNG liquefaction plants is of paramount importance to the operation of 

FPSOs as it directly affects the profitability, availability and safety of FPSOs. Reliability 

can be defined as the probability of a component\system to perform their required 
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functions for a specific period of time without failure. On the other hand, availability can 

be defined as the probability that a system will not fail or undergo a repair action when it 

will be requested for use. Therefore, effective reliability models are utilized to calculate 

system availability which is a function of both system reliability and system 

maintainability [20] [21]. The failure rates for liquefaction systems on LNG floating 

platforms are high [22], and the repair times for failures are longer than for onshore 

repairs. All liquefaction system components are exposed to wear which results in 

increased failure rates over time if no maintenance is carried out [23]. The research 

papers summarised below (in Section 2.3.1) introduced reliability analysis as used in the 

oil and gas industry for a number of different types of terminals, and they discussed the 

different reliability analysis methods utilised to calculate the reliability of systems. This 

sets the context for the reliability work which is discussed later in this thesis, and also for 

the comparison of Markov-versus-Fault Tree methods undertaken in Section 2.3.2. 

2.3.1 RELIABILITY IN OIL AND GAS INDUSTRY – STATE OF THE ART 

Many authors have considered applying reliability analysis to the oil and gas industry 

[24] [25]. Researchers from academia and industry have also shown an interest in the 

area with papers addressing both the system level issues [26]  [27] [28] [8] and the issues 

with particular components such as gas turbines [29], compressors [30], induction motors 

[31], pipelines [32], and bearings [33]. However, many of these studies are not directly 

relevant to this study.  

Although there is a large amount of research which investigates reliability in different 

areas, a research gap can be observed when it comes to studying reliability and 

introducing redundancy to LNG liquefaction systems. Pil et al. [8] assessed the reliability 



23 
 

of Boil-off Gas (BoG) Systems on LNG carriers with a focus on maintenance strategies 

and redundancy optimisation. The objectives of their work were to: (i) consider and 

assess the feasibility, reliability and operational availability of the usual LNG re-

liquefaction plant options for installation on a large LNG carrier; (ii) evaluate the 

financial benefits of both total and partial redundancies of the re-liquefaction plant, and 

suggest the preferred option for large LNG carriers; and (iii) offer a basic strategy for 

establishing a maintenance policy for LNG re-liquefaction plants.  

Figure 8 is a diagram of a typical liquefaction and re-liquefaction plant. It shows the BoG 

(solid line) exiting the cargo tank, and entering the preparation system, where mist 

droplets are eliminated before compression. If necessary, the BoG is cooled, then 

compressed, and sent to the BoG liquefaction section, which in this case is a cold box 

(cryogenic heat exchanger) where the BoG is liquefied after indirect contact with cooled 

nitrogen gas. To minimise the investment cost, efforts were made to combine the LNG 

re-liquefaction plant with a Gas Combustion Unit (GCU) rather than introducing various 

redundancies into the LNG re-liquefaction plant. The results showed that, assuming no 

repair on board, the redundant system was more economical and efficient than the GCU.  

This argument for choosing the redundant system was reinforced by the fact that the 

implementation of full onboard corrective maintenance is very likely to be impossible. 

Regarding the maintenance strategies, the results showed that both Preventive 

Maintenance (PM) and Corrective Maintenance (CM) costs were significantly higher than 

the cost of flaring. The reason for this was that the system availability was relatively high, 

even without introducing the redundancy into the N2 compressor system.  This approach 

could be extended to study the reliability of existing LNG liquefaction systems. 
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Figure 8: Diagram of a typical liquefaction and re-liquefaction plant [8]. 

Figure 9 shows a typical LNG FPSO. The length and weight of the FPSO shown in the 

figure are 310 m and 90,718 tones, respectively. A LM5000 LNG gas turbine driver has a 

length of 6.2 m and a weight of 12.5 tones [34]. While the length and weight of a typical 

70M frame axial compressor are 5.8 m and 64.5 tones [35], respectively. Based on the 

dimensions of typical LNG drivers and compressors, the space required for a LNG 

liquefaction system will be about 25 m in length, 8 m in width and 3 m in height, 

excluding coldboxes. In comparison with the size and weight of FPSOs, the liquefaction 

system is considered to be small and the addition of a standby system will not present a 

problem in terms of space.  

It can be observed from Figure 9 that there is a space on the ship deck for the installation 

of a new standby liquefaction system. However, in case of space constraint, the standby 

liquefaction system could be installed above the main system using a well-designed 

multi-story steel structure. 
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Figure 9: SENDJE-BERGE FPSO (348.75 m length, 51.87 m width and 274,333 tones 

deadweight) [36] 

It can be concluded that the reliability and cost-effectiveness of the introduction of 

redundancy to LNG liquefaction systems have not yet been investigated and that there 

appears to be sufficient space to offer the potential of installing standby liquefaction 

systems/subsystems. Hence, a study should be carried out to identify the financial 

benefits of introducing redundancy to C3MR liquefaction systems on FPSOs. 

2.3.2 RELIABILITY CALCULATION METHODS 

Markov Analysis (MA) and Fault Tree Analysis (FTA) are two well-proven analytical 

techniques that are utilised in systems reliability calculation. Complexity of design and 

accuracy of results are the major parameters that should be taken into account before 

deciding on the most suitable analysis technique for the system [6]. 
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MA is a technique developed by Andrei Markov to calculate the availability and 

reliability of systems with dependent components. The analysis is based on a state 

transition diagram that identifies all discrete system states as well as all possible 

transitions between these states. The MA model is time-dependent, and considers the 

transition rates which make this method a favoured option when calculating the reliability 

of time-dependent systems [37]. 

FTA is an analytical logic technique developed in Bell Telephone Laboratories to 

calculate the availability and reliability of systems. This analysis is based on a fault tree 

diagram which is built from the top down, and which takes discrete system state as the 

top event, and component states as the basic events. Logic gates (AND and OR) are then 

utilised to interconnect the events and conditions [38]. Although this technique does not 

consider the transition time from one state to another, its simplicity when modelling and 

calculating the reliability of a complex system makes it preferable to MA.  

Andrews and Ericson [39] compared the accuracy of reliability calculation techniques. 

Table 1 shows that FTA and MA yielded the same results for series, parallel, and hot 

standby systems. The MA and FTA reliability equations for full monitoring, sequence 

parallel and cold/warm standby systems were different, making the results from FTA 

approximations. Although it was believed that MA produces more accurate results than 

FTA, this work asserted that FTA is accurate and that, for many design complexities, 

FTA produces a similar accuracy of results as MA. In addition, the authors observed that 

FTA is much easier for the modelling of large systems, for which it yielded acceptable 

results. Table 1 sets out a summary which compares the two approaches. 
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Table 1: Comparison between the accuracy of FTA and MA results.  

Consideration FTA MA 

Models Undesired Events √ partially 

Models Probability √ √ 

Models Unavailability √ √ 

Series System √ √ 

Parallel system √ √ 

Sequence Parallel System Approx. √ 

Full Monitor System Approx. √ 

Partial Monitor System Approx. √ 

Standby Redundancy System Approx. Difficult 

Repair √ √ 

Latency √ √ 

Large models Approx. √ 

Dependencies √ No 

Coverage √ √ 

Easy to follow model √ No 

Easy to document process √ No 

 

Norm [40] observed that fault trees and reliability block diagrams are widely utilised for 

predicting the safety of complex systems, and their maintainability and reliability; but 

they cannot accurately model the behaviour of dynamic systems. The author found that 

the MA technique is best for the analysis of dynamic systems, and attributed this to the 

ability of the MA technique to analyse complex, fault-tolerant, highly distributed and 

dynamic systems. The conclusions of Andrews and Ericson [39] and Norm [40] are 

consistent with each other, and showed that the effectiveness of both techniques depends 

on the size and type of system. The studies concluded that FTA is easier to use when 

modelling large systems, and that Markov gives a better accuracy when calculating the 

reliability of dynamic systems, such as sequential and cold/warm standby systems. 

Ridley and Andrews [41] presented an improved model for the reliability calculation of 

standby dependencies and sequential systems using FTA and MA. In the case of MA, this 

achieved by introducing two new gates into the fault tree diagram. Both FTA and MA 
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were utilised to develop the new model. The authors extended FTA to produce accurate 

reliability calculations for both standby and sequential systems. The main disadvantage of 

FTA is that it only gives an approximation when used to calculate the reliability of 

dependent systems; while the main disadvantage of MA is the complexity of the 

construction of the Markov state transition diagram. The new model overcame the 

drawbacks of both FTA and MA by improving the accuracy of FTA, and by significantly 

reducing the complexity of MA. Pil et al. [8] modelled the BoG and N2 compressor 

systems using the Markov Approach. For each of these two systems, a redundant standby 

system of the same type was added. Because of the unique ability of MA to handle 

dynamic cases, it was used to calculate the reliability of the system. Cheng et al. [27] 

selected the FTA technique to calculate the reliability of the Emergency Shutdown 

System (ESD). The authors found that FTA is widely utilised for providing logical 

functional relationships between system components and subsystems, and for identifying 

the root causes of undesired system failures.  Pil et al. and Cheng et al. utilised the MA 

and FTA approaches in modelling the BoG and ESD systems. Kwang et al. used MA 

when modelling the BoG system, taking into account the time-dependent transition rates 

(dynamic systems), while Cheng et al. utilised the FTA approach because of its proven 

effectiveness in modelling complex and big systems.   

2.3.3 SUMMARY 

The summary of the work reviewed in this section is as follows:- 

- The introduction of a 100% standby system to the BoG liquefaction process 

significantly improved system reliability. 

- The Markov Chain Approach is preferred over Fault Tree Analysis in calculating 

the reliability of time-dependent (dynamic) systems such as sequential and standby 
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redundancy systems; but the complexity of the construction of the Markov state 

transition diagram makes it difficult to implement on large systems. System 

availability is a function of system reliability and system maintainability. 

- There are very few research papers addressing improvements in reliability of the 

LNG liquefaction systems, particularly for C3MR. Hence, the investigation of the 

system reliability of C3MR LNG liquefaction systems on FPSOs was identified as 

a research gap. 

- The large size and weight of typical FPSOs mean that there is the potential to use 

redundant components in the liquefaction system. 

2.4 PREVENTIVE MAINTENANCE VERSUS CONDITION-BASED MAINTENANCE  

Maintenance cost is an important element in the overall cost of LNG production. 

Currently, four main maintenance strategies are being implemented in the oil and gas 

industry [42] [43], namely Corrective Maintenance (CM), Preventive Maintenance (PM), 

Risk-Based Maintenance (RBM) and Condition-Based Maintenance (CBM) or Predictive 

Maintenance. These maintenance strategies are described in [43] as follows: 

Corrective Maintenance: “Maintenance is carried out following detection of an 

anomaly and aimed at restoring normal operating conditions. This approach is based on 

the firm belief that the costs sustained for downtime and repair in case of fault are lower 

than the investment required for a maintenance program” [43]. This strategy may be cost-

effective except when frequent or catastrophic faults occur. The frequency and type of 

faults may significantly increase the shutdown cost of the plant and the repair cost for 

equipment. 
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Preventive Maintenance: “Maintenance carried out at predetermined intervals or 

according to prescribed criteria, aimed at reducing the failure risk or performance 

degradation of the equipment. The maintenance cycles are planned according to the need 

to take the device out of service and hence the incidence of operating faults is reduced” 

[43]. The implementation of this strategy has the potential for reducing the frequency of 

failures, and hence the overall shutdown cost. A cost optimisation should be carried out 

to minimise the total maintenance cost. Maintenance costs could significantly increase 

due to shutdown costs, the remaining life of spare parts, and labour charges in connection 

with preventive maintenance tasks undertaken during production stoppages. 

Risk-Based Maintenance: “Maintenance carried out by integrating analysis, 

measurement and periodic test activities into standard preventive maintenance. The 

gathered information is viewed in the context of the environmental, operation and process 

condition of the equipment in the system. The aim is to perform the asset condition and 

risk assessment and define the appropriate maintenance program. All equipment 

displaying abnormal values is refurbished or replaced”
 
[43]. This kind of maintenance 

programme has the potential to reduce risks and the number of catastrophic failures. On 

the other hand, it could increase the total cost of maintenance by requiring equipment to 

be overhauled or replaced on the basis of a risk assessment which does not explicitly 

consider the profitability of the plant. 

Condition-Based Maintenance (CBM): “Maintenance based on the 

equipment performance monitoring and the control of the corrective actions taken as a 

result. The actual equipment condition is continuously assessed by the on-line detection 

of significant working device parameters and their automatic comparison with average 

values and performance. Maintenance is carried out when certain indicators give the 

http://new.abb.com/medium-voltage/service/advanced-services/asset-condition-and-risk-assessment
http://new.abb.com/medium-voltage/service/advanced-services/asset-condition-and-risk-assessment
http://new.abb.com/medium-voltage/service/maintenance/refurbishment-reconditioning
http://new.abb.com/medium-voltage/service/replacements
http://new.abb.com/medium-voltage/service/maintenance/feature-articles/predict-availability-of-your-power-distribution-equipment-and-prevent-failures
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signals that the equipment is deteriorating and the failure probability is increasing. This 

strategy, in the long term, allows reducing drastically the costs associated with 

maintenance, thereby minimizing the occurrence of serious faults and optimizing the 

available economic resources management”
 
[43]. Hence, effective CBM can offer the 

best maintenance strategies in terms of cost and risk management. 

In summary, Preventive (also known as scheduled) Maintenance is a strategy that aims to 

reduce failures and equipment degradation through a number of planned maintenance 

tasks over the lifetime of the equipment at fixed time intervals. In contrast, Condition-

Based Maintenance is a strategy that aims to predict and avoid failures through a system 

that monitors the current dynamic condition of the equipment as it changes over time, and 

then decides what maintenance action is required. Maintenance should only be performed 

when performance degradation is detected or a future failure is predicted.   

Reduction in failure rates and their associated maintenance costs is the main objective of 

any maintenance strategy. Therefore, several models which optimise preventive 

maintenance frequency have been developed. These optimisation models are based on 

probabilistic techniques which develop solutions based on static probabilistic 

information. Probabilistic systems cannot provide an optimised maintenance schedule 

which performs better than stochastic and dynamic maintenance systems such as CBM. 

This can be attributed to the fact that CBM systems simultaneously optimise maintenance 

in accordance with dynamic changes in the status of equipment [44] [45] [46]. Hence, 

CBM has the potential to dramatically reduce maintenance costs in comparison with a 

normal preventive maintenance strategy [46]. In recent years, a sustained effort to shift 

from preventive maintenance to CBM maintenance has been observed [44] [45] [46]. 

Hence, the latter approach will be examined further in the next section. 
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2.4.1 TYPICAL CBM SYSTEMS, VALUE POTENTIAL AND CHALLENGES 

As identified above, and as distinct from the preventive maintenance strategy, condition-

based maintenance helps to reduce or eliminate unnecessary repairs, and increase profit 

by reducing maintenance costs and prevent disastrous machine failures  [47] [48]. CBM 

relies on the regular monitoring of the mechanical condition of different trains of actual 

equipment. With CBM, maintenance is carried out when failure is imminent (ideally 

before it occurs), and significant reductions in unexpected machine failures, maintenance 

costs, and repair downtime are possible.  The overall effects of CBM are to reduce 

maintenance costs, and improve the operational availability of systems. Thus, efforts to 

shift from PM to CBM are continuing [49]. 

Effective fault detection and condition monitoring systems are key enablers of successful 

and effective condition-based maintenance. Their effectiveness depends on their accuracy 

when identifying the correlation between fault situations and signal features using 

different fault detection techniques and machine process information such as vibration, 

sound and acoustic emission. Many fault detection techniques have been proposed in this 

field.  Each technique has its own merits and demerits. Fault diagnosis is still a 

challenging problem as numerous fault situations can possibly affect the accuracy of 

detection due to the improper selection of signal feature sets, or due to the existence of 

fault interference and noise. 

Figure 10 shows part of a typical CBM system which utilises a condition monitoring 

system that continuously monitors the status of system components in order to identify 

faulty components and their locations, and acts only when a component is about to fail. 

The process starts by reading the signals coming from sensors through a data acquisition 

system. The signals received are then passed onto a feature extraction algorithm which 
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extracts the best features of the signals, and then passes them onto a fault 

diagnostic/decision-making algorithm. The decision-making algorithm is trained using a 

set of machine fault signatures which are collected through either signal-based or model-

based techniques. After the decision-making algorithm has been trained, the algorithm 

compares the signal features of the current machine condition with the signal features of 

the fault signature. Then, a real-time decision (faulty or healthy) is made, based on the 

prevailing condition of system components. Effective fault diagnostic algorithms will 

also identify the faulty components and the fault type.  

 

 

 

 

 

 

 

 

Figure 10: A typical CM and fault identification system. 

Figure 11 illustrates the feature selection process using the signal-based diagnostic 

technique. The experimental determination of the best feature sets of different machine 

fault signatures consists of three major processes. The first process determines the most 
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machine faults; in the second process, the feature type that gives the greatest differences 

between fault patterns (time domain, frequency domain or time frequency domain) is 

selected; and the last phase is the processing and analysis of the signal in order to select 

the best set of features for the automated detection of machine condition. 

 

 

 

 

 

 

 

Figure 11: Selection process of best features set of a machine fault signal using the signal-

based diagnostic technique. 

2.4.2 SUMMARY 

From the discussion above, it can be seen that condition-based maintenance offers a 

number of benefits over other approaches. Condition monitoring is crucial to the success 

of CBM. Hence the effectiveness of CBM systems depends on the proper selection of 

condition monitoring fault diagnosis and feature selection techniques. This will be 

considered next. 

2.5 CONDITION MONITORING 

According to [50], condition monitoring is a process that utilises the most appropriate 

fault detection technology and sensors to record a number of characteristics or equipment 

parameters. These characteristics and equipment parameters are then analysed to identify 
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Maintenance (CBM), as identified above, is a maintenance strategy that utilises the 
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should be carried out. The decision is usually based on an analysis of various measurable 

data in relation to operating machines. CBM detects early changes in characteristics, 

parameters and trends, in order to identify the state of the deteriorating component prior 

to failure. This helps to enable rectification without experiencing the disadvantages which 

may result from loss of production due to unplanned shutdowns. In contrast, fault 

diagnosis processes identify faulty components along with the cause of the fault after the 

occurrence [50]. Of course, both elements are important. 

Many authors have considered developing condition monitoring systems for rotating 

machinery. A number of research papers have assessed the suitability of implementing 

various condition-based maintenance techniques for fault detection in rotating equipment; 

the techniques in question are sound, vibration, process information and AE. The 

advantages of utilising multi-fault detection techniques have been investigated and 

discussed in other research articles, which are summarised in section 2.5.3. However, a 

lack of research has been observed in respect of the development of a “characterisation 

table” that prioritises the best fault detection and feature selection techniques for fault 

detection in rotating equipment. Automated feature selection process has a key role in 

CM systems, and comes next in sequence and importance to the selection of the most 

appropriate fault detection technique. Therefore, as summarised in section 2.5.4, many 

researchers have developed different approaches to the selection of the best sets of signal 

features in order to improve the detection of faults, and to decrease development costs 

and the duration of the feature selection process. However, the existing feature selection 

approaches are still in need of development in terms of accuracy and development time.  

This section contains a survey of the recent techniques and results of CM systems. The 

section is organised into typical fault diagnosis techniques (section 2.5.1), the model-



36 
 

based diagnostic techniques (section 2.5.2), the signal-based diagnostic techniques 

(section 2.5.3), and the feature selection techniques (section 2.5.4). 

2.5.1 FAULT DIAGNOSIS TECHNIQUES 

The diagnosis of faults is divided into three stages: detection, diagnosis, and prognosis. 

Faults are detected when a change in condition parameters is observed. Fault diagnosis 

consists of two main processes: fault identification and fault isolation. These processes 

determine the location of faulty components [50] [51] [52].  A fault can be diagnosed 

through a quantitative comparison between different machine condition patterns. The 

fault identification process provides information about the size of the fault and the time of 

onset; while the prognosis provides a long-term prediction for industrial applications. As 

the probability of a future failure event occurring is arguably stochastic in nature, the 

formulation of a prognosis is more complex than for diagnosis [53].  

Diagnostic technique can be effectively assessed by considering the following factors: (a) 

detectability of fault, (b) the effect of noise on fault detection, and (c) the ability to easily 

distinguish a specific fault from other known and unknown faults. The major CM fault 

diagnosis techniques are divided into model-based and signal-based techniques. Section 

2.5.2 reviews the previous research related to model-based fault detection techniques, 

while section 2.5.3 reviews the signal-based techniques. 

2.5.2 MODEL BASED FAULT DIAGNOSIS TECHNIQUES 

Models utilised for fault diagnosis can be categorised into physics-based models and 

statistical models. 

2.5.2.1 PHYSICS-BASED MODELS 

Physics-based models usually utilise mathematical models that are directly related to 

physics parameters that have direct or indirect effects on the health of system 
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components. The diagnostic process is based on the values of residuals which are 

commonly generated using Kalman Filters, Interacting Multiple Models, and Parity 

Relations  [54].  

Figure 12 shows a typical physics-based model for CM systems. The physics-based 

model approach aids the understanding of the physics of the system, and hence helps to 

develop an advanced model that considers system deterioration. However, the difficulties 

associated with this technique are that the model developed must be validated using an 

adequate number of actual datasets, and the model development process requires special 

knowledge of mathematics and theories relevant to the system monitored. 

 

 

 

 

 

Figure 12: Flowchart of a typical physics-based model for CM systems [54]. 

Ginzinger et al [55] presented a model-based condition monitoring system for an 

auxiliary bearing. A multi-body simulation environment was utilised in the modelling of 

the rotor system, as shown in Figure 13. A number of fault simulation parameters were 

optimised in order to align the simulation results with the measurements. Two different 

faults were successfully identified as a result of the model developed.  
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Figure 13: Modelling of auxiliary bearing dynamic response  [55]. 

Charles et al. [56] developed two models to simulate wheel-rail profile and low adhesion 

contact. The results of the simulation were fed into a CM system which monitored the 

condition of the wheel-rail interface. Ugechi et al [57] proposed a model-based condition 

monitoring system for the diagnosis of faults in centrifugal pumps. The model was 

validated using vibration data from a centrifugal pump. Guo and Parker [58] developed a 

model-based condition monitoring system for planetary gear tooth wedging in a wind 

turbine system. The model shown in Figure 14 was utilised to predict vibration signals 

resulting from non-linear tooth wedging behaviour. The model also considered back-side 

contact, tooth separation, and bearing clearance. It can be observed that Guo and Parker 

verified the analytical model using a non-verified finite element solution. Further 

investigations should be carried out in order to apply the results of this study to an actual 

wind turbine system.  
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Figure 14: 2D dynamic model of planetary gear lumped parameter  [58]. 

In practice, for all model-based approaches, modelling inaccuracies can and do occur due 

to simplifications and assumptions that are made when defining the models, and due to 

model parameter drift over time. Whilst there are some non-linear approaches, the 

majority of the models developed for monitoring are linear, and cannot handle non-linear 

systems. Linearisation of non-linear systems results in a significant reduction in 

effectiveness of the technique. Furthermore, the modelling of a full-scale process (such as 

in the case of FPSO compressors) can be difficult as it includes a number of non-linear 

relationships, which in turn increase the computational complexity and hence the 

likelihood of model error [59]. 

2.5.2.2 STATISTICAL MODELS 

Statistical models are based on statistical time series measurements. In faulty conditions, 

statistical parameters, such as mean and standard deviation values, deviate from their 

benchmark values. Multivariate statistical techniques, such as Principal Component 

Analysis (PCA) and Partial Least Square (PLS), have proved their effectiveness in 

compressing data, and in handling correlation and noise in order to effectively extract 
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true information. The main function of these techniques is the transformation of a large 

number of process-related variables into a smaller set of uncorrelated variables [59].  

Hundle et al  [47] and Lampis et al  [48] developed two CM approaches based on the 

available historical data.  The first approach was based on FTA, while the second 

approach was based on Bayesian Belief Networks (BBNs). Both approaches utilised 

historical training data, and then performed the detection by comparing the current 

system performance to the historical data from sensors. The BBN approach proved more 

advantageous than FTA as it ranked all possible faulty components according to their 

failure probabilities, while FTA identified a single component only.  

Although Hundle et al. and Lampis et al. demonstrated the effectiveness of FTA and 

BBNs, the fault diagnosis performance was not properly determined. Shang et al.  [60] 

investigated the difficulties in implementing intelligent diagnostics in reciprocating 

compressors due to a lack of actual fault samples. Thus, the authors proposed the Support 

Vector Machine (SVM) technique, which relies on statistical learning theory in order to 

overcome the deficiency identified, and to provide a new approach to diagnostic 

technology. This approach was implemented in an intelligent diagnostic process which 

could accurately and rapidly recognise faults.  

The main disadvantage of the work of Shang et al. is that the model was not verified due 

to a lack of actual fault signatures. The percentage difference between the features of 

machine condition signals in question was not determined. The quantification of these 

differences can be utilised when measuring the certainty/confidence level of CM 

approaches. Galka and Tabaswewski [53] utilised lifetime historical data from machine 

diagnostics. Symptom value fluctuations were utilised for machine learning. An energy 
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processor model was developed to verify the results of this study. It can be observed that 

Galka and Tabaswewski did not verify the model developed. The main advantage of 

having a model of the system is that it can allow numerous faults to be simulated, and this 

can contribute to the investigation of the issue of fault interference. 

In general, statistical models are easier to use than explicit system models. Although 

statistical models are powerful in that they reveal the presence of abnormalities, the fact 

that they do not provide a fault signature for each fault makes the fault isolation process 

difficult. However, enhanced PCA showed some improvement to the differentiation of 

process conditions [61]. 

2.5.3 SIGNAL-BASED FAULT DIAGNOSIS TECHNIQUES 

Sensory fault diagnosis systems provide real-time or continuous condition monitoring of 

rotating plant equipment for CM systems. Sensory inspections are considered the 

cornerstone of any dynamic maintenance system. These fault diagnosis systems utilise 

either statistical or experimental datasets for training and learning. They vary from simple 

devices such as vibration switches that can produce alarm signals and machine shutdown 

information, to highly sophisticated multi-channel monitoring devices that include time-

to-frequency domain conversion, expert data analysis, and feature extraction algorithms. 

In order to detect various machine faults, and also to evaluate the severity of each fault, 

diagnostic systems detect and isolate faults, and this in turn ensures smooth and safe 

machine operation. The different signal-based fault detection techniques are investigated 

in section 2.5.3.1 and section 2.5.3.2. 

2.5.3.1 SOUND, VIBRATION AND PROCESS INFORMATION-BASED TECHNIQUES 

The previous research on CM using sound levels, mechanical vibration and process 

information is reviewed in this section. Toprak and Iftar [62] utilised sound pressure level 
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to diagnose machine faults. The authors studied five of the most common faults of 

compressors by means of a Multi-Layer Perceptron Network (MLPN). The MLPN was 

trained using the backpropagation algorithm. Training and testing data were obtained 

from the Sound Pressure Level (SPL) measurements of ten selected compressors. 

Recordings and measurements were carried out in a semi-anechoic sound test room with 

12 microphones. Two different techniques were utilised for data analysis. In the first 

approach, the weighted average of the measurements of all 12 microphones was used. 

The second technique was based on the separation of data produced by the individual 

microphones; the results showed that the MLPN training required larger data files and 

more computational time when compared to the first approach. As shown in Table 2, each 

fault was precisely identified using the second approach, when sufficient training was 

performed.  

Table 2: Summary of the experiments results  [62]. 

 

Toprak and Iftar’s research stated that using the data of each microphone was more 

accurate than using the weighted average SPL of the data of the 12 microphones as long 
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as sufficient training was performed.  The authors managed to demonstrate their proposed 

approach, but the high ratio between the training and testing datasets, the long computing 

time, and the high computing cost were the main disadvantages of their research. 

Condition monitoring using vibration signatures is one of the major fault detection 

techniques. The main vibration signal analysis methods extract spectral and time domain 

features. Vibrations from machines usually result from the dynamic forces present in 

moving structures and parts. Different machine conditions can be detected by identifying 

their corresponding fault symptoms, for example mechanical vibration, and changes in 

process parameters such as temperature, efficiency and airborne noise [63].  

Detections using vibration analysis show repetitive motion in the surfaces of rotating or 

oscillating machines. This repetitive motion may be caused by imbalances, 

misalignments, resonances, electrical effects, rolling element bearing faults, or any 

number of other causes.  

To determine the current and future operating condition of the machine, it is vitally 

important to know its previous degradation pattern and history. The major vibration 

characteristics of rotating equipment are displacement, velocity acceleration, frequency, 

and phase angle [49].  In vibration spectra, “low” and “high” frequency ranges can be 

observed. The various types of vibration frequencies in a rotating machine are directly 

related to its geometry and operating speed. By knowing the relationship between the 

frequencies and the type of defect, vibration analysts can define the cause and severity of 

faults or problem conditions. The low vibration range contains component frequencies 

produced by rotational motion (harmonics), while the high vibration range contains 

component frequencies resulting from the interaction between the fluid-flow system and 
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the flow medium. In a power steam turbine, blade frequency range typically ranges from 

a few hundred hertz to about 10 to 20 kHz, depending on the turbine design [64] [65]. 

The amplitude of FFT spectra is the most common FFT feature used. A large number of 

recent papers have demonstrated the effectiveness of this feature in the detection of 

rotating equipment faults [66] [67] [68]. 

Shang et al. [60] introduced a SVM-based intelligent diagnostic system for reciprocating 

compressors. This approach was utilised due to the lack of actual fault signatures of the 

different fault situations for compressors.  The main disadvantage of this approach is that 

the differences in values between the features of the machine condition signals addressed 

were unknown. The quantification of the said differences can be utilised when 

determining the certainty/confidence level of CM approaches.  

Wang and Hu  [69] utilised the vibration technique to investigate the ambiguities and 

uncertainties that exist among pump failures and fault symptoms. A new approach for 

solving the existing problems of pump fault diagnosis was presented. Fuzzy logic was 

used to model the ambiguity and uncertainty relationship between different pump faults, 

analyse the fuzzy at different phases of fault diagnosis, and determine the frequency 

spectrum relevant to the pump faults in question. Analysis of the vibration signals of each 

pump was undertaken in order to extract the diagnostic features from the spectra. A fuzzy 

membership function, which was necessary for the pump fault diagnosis, was then 

created using condition variables based on dynamic signal processing.  

Figure 15 shows two vibration spectra for the faulty device. The authors concluded that 

the faults in question were detected according to de-fuzzy diagnostic criteria and through 

a fuzzy comprehensive discrimination.  
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It can be concluded that it is difficult to adopt the traditional spectral vibration signature 

technique for the effective diagnosis of pump faults. The difficulty comes from the fact 

that the differences between various fault symptoms and events are uncertain. Thus, the 

authors established a new fuzzy membership function in order to address the interference 

problem. However, the accuracy of the proposed technique was not quantified, and it is 

not clear whether the proposed approach completely addressed the problem. Furthermore, 

the work did not investigate the problem of fault interference that strongly affects 

vibration signals. 

 

Figure 15: Two frequency spectra represent (a) sample fault, (b) second fault with the 

same sample fault on the second inlet valve  [69]. 

Liao and Huang [70] observed that windowing the signals in Fourier Transform causes 

misrepresentation of vibration signals, and that frequency distribution spectra were not 

clear enough for shock vibration. Furthermore, it was difficult to extract good spectral 
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features because of the distribution of frequency sidebands in frequency modulation. 

Auto-Regressive analysis (AR) was utilised to analyse the signals in time domain. The 

changes in the AR coefficients were calculated by deducting the AR coefficients of faulty 

centrifugal compressor signals from those of healthy ones. A neural network was trained 

to model the relationship between the faults and the differences between the AR 

coefficients. The diagnosis results obtained from this neural network together with the 

differences between AR coefficients were better than the results of the neural network in 

conjunction with AR coefficients and distance approaches.  

It can be concluded from this paper that time series analysis has some advantages over 

frequency domain analysis, and that the accuracy of a neural network, in conjunction 

with the differences between AR coefficients, is better than that of a neural network in 

conjunction with AR coefficients. The detection accuracy was not reported numerically, 

and no concurrent faults were emulated to investigate the issue of fault interference. 

Condition maintenance using process information has demonstrated its effectiveness in 

diagnosing a number of machine faults.  Fault detection performance is directly affected 

by the selection of proper information, as well as by the utilisation of an effective 

decision-making algorithm such as a decision table and fuzzy logic-based algorithms [71] 

[72].  Zanoli et al. [73] proposed a fault detection method for a compression process that 

was built into the Integrated Gasification and Combined Cycle (IGCC) part of a 

refinement plant. Single and multiple faults, which may have been capable of causing 

sensor reading errors in the process actuators, were considered.  Principal Component 

Analysis (PCA) was used in a multivariable data-driven approach to monitor chemical 

process performance. The Analysis of Variance (ANOVA) procedure was proposed in 
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order to determine the number of principal components. Fault detection and isolation 

systems were tested and validated on the plant.   

Elhaj et al.  [72] studied the practical usage of two different CM techniques, namely, 

Dynamic Cylinder Pressure (DCP) and crankshaft Instantaneous Angular Speed (IAS).  

Conventional transducers for machine monitoring were utilised in their experiments. The 

authors proposed a monitoring technique for valve fault detection in reciprocating 

compressors. DCP and IAS were used to build two truth tables that showed the cases in 

which each method could be applied. The two truth tables were merged into one decision 

table. This combination provided a unique and reliable method for the detection and 

diagnosis of each individual fault in the compressor.  

Zanoli et al.  [73], Hafaifa et al.  [71] and Elhaj et al.  [72] utilised the process 

information technique to detect faults in machines. The authors addressed the selection of 

signal features and decision-making algorithm through different approaches, namely 

PCA, fuzzy logic and a decision table approach based on two truth tables.  

The disadvantages of the research of Hafaifa et al. and Elhaj et al. are that the authors did 

not consider multiple faults, and hence they did not investigate the issue of fault 

interference. Elhaj et al. [72] did not determine the fault diagnosis performance of the 

proposed diagnostic approach. In addition, this approach was validated for use with 

compressor valves, but it is not known whether it will accurately diagnose main 

compressor faults such as bearing faults. 

Condition maintenance using two or more combined techniques demonstrated a better 

performance in detecting machine faults [74] [75]. Schultheis et al. [75] studied different 

techniques used in machine health condition monitoring. The authors also compared 
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online against periodic monitoring, and proven against effective techniques. The 

following techniques were judged to be effective: ultrasound vibration, mechanical 

vibration, temperature, rod runout, and pressure velocity measurements. The 

measurements in respect of the crankshaft case and the crosshead piece of each cylinder 

were proven to be effective. For gas leaks, ultrasonic vibration measurement was 

preferred over mechanical vibration. Online monitoring was effective in decreasing the 

chances of catastrophic failures and consequential maintenance and shutdown costs.  

It can be concluded that the combination of two or more monitoring techniques 

maximises the efficiency and accuracy of fault diagnosis in reciprocating compressors. 

Moreover, the appropriate fault detection technique must be selected according to the 

type of fault. Despite the promising results of combining fault detection techniques and 

signal features, only few researchers considered the characterisation of the major 

techniques and signal features for the CM of centrifugal equipment.  

To summarise the work reviewed in this section: 

- Utilisation of sound pressure, ultrasound vibration, mechanical vibration, and 

process information techniques such as temperature, rod runout, and pressure 

velocity techniques are effective in detecting rotating machinery faults. 

- Vibration spectral (frequency domain) features are well proven for detecting faults 

in rotating equipment. FFT Amplitude is the most common spectral feature. 

- The characterisation and combination of fault detection techniques and signal 

features have the potential to improve the accuracy of CM systems. 
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2.5.3.2 ACOUSTIC EMISSION-BASED TECHNIQUES 

The majority of current CM systems utilise the vibration technique to detect faulty 

components, although most fault vibration signatures change with load and speed, and are 

affected by strong harmonics and interference. Thus, CM systems usually result in false 

indications of faults or inaccurate severity assessments for existing faults.  The main 

concerns of most CM studies are the accuracy of the evaluation of machine condition, the 

identification of fault severity, and the prediction of the remaining life of machines under 

a broad range of operating states. The relationships that exist between machine conditions 

and machine process information, vibration and Acoustic Emission (AE) can be 

integrated into machine fault models during fault identification to assess fault severity. 

AE is defined as the science that deals with the generation, transmission, reception, and 

effects of sound. It deals with demonstrable physical or airborne sounds that can manifest 

themselves as: signals relating to mechanical objects, pressure waves associated with 

leaking vapour or gases, or the humming of electrical equipment. Acoustic technology 

includes frequencies that can be as low as 2 Hz, or as high as the mega-Hertz range. 

Acoustic testing, which includes sensor selection, signal filtration and amplification, and 

low and high pass filters can be used to diagnose machine condition [49].  

AE provides indicative data on levels of friction, rubbing, random impacting, and energy 

produced by the machine at the location of sensor. Ultrasonic monitoring is useful as a 

first line defence instrument because it collects information relatively fast and 

inexpensively. Ultrasonic monitoring can be used to detect the early onset of faults [76] 

[77]. Hence, ultrasound is utilised to perform preliminary diagnoses, and to alert 

operators to changes in machine condition.  It should be noted that surface defects such as 
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cracks and scratches attenuate Rayleigh waves. Moreover, the surface finish of metals 

can also influence attenuation [78].  

AE sensors cover a wide frequency range from 40 kHz to 1MHz. The time domain 

waveforms associated with AE are of two types: burst and continuous. A continuous AE 

signal refers to a waveform whose transient bursts are not differentiable. Both waveform 

types are associated with rotating machinery. For instance, a continuous emission may be 

the result of turbulent fluid flow within a pipe, while a burst emission could be associated 

with the transient rolling action of meshing gears  [79].  

With rotating machinery, the typical background operational noise is of the continuous 

type. The most commonly measured time domain AE parameters for diagnostics are 

amplitude, Root Mean Square (RMS), energy, kurtosis, Crest Factor (CF), counts and 

events. The FFT features provide useful information for rotating components since well-

defined frequency components are associated with machine conditions [80]. The FFT-

based feature selection process is key in CM systems as it directly affects the efficiency 

of the diagnostic process. Unlike the mechanical vibration technique, the AE technique is 

less affected by noise, and detects faults such as friction in bearings in their early stages.  

High frequency AE signals are produced by rotating machinery due to frictional forces, 

and are often masked by low frequency vibrations and ambient plant noise [81]. AE 

RMS, maximum amplitude, and kurtosis values increase in line with defect size. 

However, observations of corresponding parameters from vibration measurements were 

disappointing [82].  

Tandon and Nakra [83] investigated the suitability of AE peak amplitudes and the count 

method for the detection of outer race defects in bearings using a resonant type 
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transducer. The AE counts increased with rotational speed and load. However, although 

AE peak amplitudes provided an indication of defects irrespective of the defect size, AE 

counts did not provide any such indication when the defect was less than 250µm in 

diameter. The authors disagreed with Al-Ghamd and Mba [82] regarding the effect of 

defect size on the AE maximum amplitude.  

The research of Al-Ghamd and Mba was more detailed: the authors emulated different 

crack sizes, and observed increases in AE amplitudes. Rogers [84] utilised the AE 

technique for monitoring the condition of slow rotating anti-friction slew bearings in 

cranes. The AE CM technique was found to give better results than the vibration 

technique. Grinding of the metal fragments in the bearing, rubbing of crack faces, and 

impacts between the damaged parts and the rolling elements in the loaded zone were all 

identified as sources of detectable AE signatures.  

Schoess  [85] presented the results of an assessment of six different relevant technologies 

for the onboard monitoring of railcar bearings. It was concluded that the AE technique 

offered the greatest potential advantage. Rogers and Schoess demonstrated the potential 

advantage of the AE-based condition-based maintenance technique for the detection of 

faults in bearings. However, Rogers focused only on the kurtosis parameter, and did not 

investigate the other time domain and frequency domain signal analysis methods.  

Neil et al. [86] described how AE techniques could be implemented as a condition-based 

maintenance strategy to monitor the inlet and outlet valves of reciprocating compressors.  

AE sensors required very little space and were non-intrusive, which was a major benefit 

in hostile conditions. The results indicated that AE sensors could be practically deployed 

for condition monitoring applications.  



52 
 

Alfayez and Mba  [87] presented a case study on the application of high-frequency 

acoustic emissions as a means of detecting the early stages of loss of mechanical integrity 

in low-speed Rotating Biological Contactors (RBCs). An RBC was used for sewage 

treatment in small communities, and rotated at approximately 1rpm. The stub shaft of the 

RBC was fractured. The potential of AE to diagnose serious mechanical defects was 

demonstrated, however the vibration technique was found to be ineffective.  

Gill et al, Alfayez and Mba highlighted the effectiveness of AE-based fault detection 

techniques for the detection of both reciprocating compressor and mechanical integrity 

faults. The AE technique was found to be more informative than the vibration technique. 

The study did not investigate nor compare other time domain parameters.  

Dane [88] discovered that ultrasonic flow measurement offered significant advantages 

over widely utilised turbine instruments. These instruments were known to be positively 

biased by at least 5% due to their inherently non-linear aerodynamics. The response of 

the AE signal to velocity fluctuations was not affected by the rotor inertia of turbine due 

to the fact that non-linear aerodynamics do not affect AE signals.  

Puttmer [89] proved that AE sensors could play an important role in the condition 

monitoring of machinery. The author developed a CM system for reciprocating positive 

displacement pumps, and stated that the AE technique was found to have been better than 

the vibration technique, in particular in noisy environments.  

Schulthesis et al. [75] showed that the preferred approach in valve condition analysis is 

ultrasonic. Ultrasonic energy is often associated with gas leaks, and so a leaking valve is 

a strong generator of ultrasonic energy. Ultrasonic measurements are usually taken in 

conjunction with compressor pressure-volume analysis.  
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Goodman [90] attributed the effectiveness of ultrasonic to the fact that most leakage 

problems and all operating equipment produce a broad range of sound. The high-

frequency ultrasonic components of these sounds are are waves of an extremely short 

nature. These short wave signals are directional, and it is relatively easy to determine 

their exact location. This can be achieved by separating these signals from operating 

equipment and background plant noises. Moreover, the directional nature of ultrasound 

allows these potential warning signals to be detected at the onset of faults, and before 

they are detected by infrared or vibration techniques. Dane, Puttmer, Schulthesis et al. 

and Goodman demonstrated that AE-based CM systems are effective in detecting a 

number of machine faults. The authors demonstrated that the AE technique responds well 

to flow velocity fluctuations and gas leaks. 

In practice, the generalisation capacity outside the training fault signature is considered to 

be a limitation of the signal-based technique [59].  Fault interference is one of the major 

disadvantages of the signal-based technique. When faults interfere, their signatures 

change, and sometimes faults are masked due to the interactions of different fault signals. 

This issue can be solved by avoiding taking decisions if there are no similar fault patterns 

in that region, or by increasing the number of samples/fault patterns in order to specify all 

possible faults.  This process should explicitly include the combination and degradation 

of all fault conditions, though this is considered to be very difficult. However, in the 

event of dissimilar fault patterns and multiple faults, this technique will effectively detect 

abnormalities in operation, though with a limited ability to classify the fault.  

It can be observed that there is a lack of research into the combination and 

characterisation of the major fault detection techniques and signal features for high speed 

centrifugal equipment.  
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To summarise the work reviewed in this section: 

- Fault interference and noise represent the main obstacles when implementing CM 

systems. 

- AE is more effective than the mechanical vibration technique in detecting faults 

such as friction in bearings at their early stages. Also, it is less affected by noise 

and by the non-linear aerodynamics of rotors. 

- AE proved its effectiveness over the mechanical vibration technique in detecting 

the size of cracks. 

- The most commonly measured AE diagnostic parameters are amplitude, RMS, 

Energy, kurtosis, crest factor, counts and events. 

- The collective utilisation of several fault detection techniques and signal features 

has the potential to improve the accuracy of fault diagnosis [91] [92] [93].  

However, there is a research gap when it comes to combining and characterising 

the major fault detection techniques for high speed centrifugal equipment. 

2.5.4 FEATURE ANALYSIS AND FAULT CLASSIFICATION TECHNIQUES 

Currently, the majority of fault diagnosis systems are based on two feature analysis and 

fault/pattern classification techniques. The first technique analyses time and frequency 

domains using traditional methods, while the second technique analyses the time and 

frequency domains using Artificial Intelligence (AI), which takes the neural network 

method as representative. The traditional methods have a reasonable performance when 

detecting faults, but prior knowledge and numerous fault samples are needed.  
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AI techniques also have a reasonable performance but need a long computational time 

and are costly [50]. The accuracy of the results is always dependent on various design 

parameters which should be set based on the training, validation and testing sets.   

The global structure of the monitoring system which is generally used can be divided into 

the following three main sequential processes: data collection, data acquisition (which 

includes the calculation of statistical functions and values in both time and frequency 

domains), and finally, automated fault diagnosis. Automated fault diagnosis is the most 

difficult phase, and is still under development.  

Fault diagnosis approaches should undergo continuous development to adapt to the 

necessities of industrial applications, and to avoid dependency on operators [94]. The 

frequency domain signal analysis technique is essential when using vibration or AE-

based monitoring.  For vibration-based monitoring, the magnitude of the vibration signal 

is utilised essentially for establishing the severity of the vibration, while the frequency 

content is utilised for identifying the cause or origin. The AE-based method is widely 

used for monitoring the condition of rotating machinery. Compared to traditional 

vibration-based methods, the high frequency approach of AE has the advantage of 

significantly improving the signal-to-noise ratio [95]. 

Since the Artificial Neural Network (ANN) architecture and connection weights (initial 

conditions) significantly affect the performance of the ANN network, it is desirable to 

identify the best possible set of ANN design parameters. As shown in Figure 16, the 

performance of the ANN technique is directly affected by the following major design 

parameters: (a) the type of training algorithm, in addition to the initial values of 

connection weights, (b) the number of training cycles (Epochs), and (c) the number of 
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hidden NN layers, as well as the number of neurons in each layer. Although one hidden 

layer is always sufficient to approximate any continuous function, the use of two hidden 

layers can improve the generalisation in complex problems  [96].  

 

 

 

 

 

 

Figure 16: ANN optimisation design parameters. 

Chan and Gu [97] investigated the accuracy of the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and ANN AI approaches, and observed that accuracy increased when 

the design parameters were optimised in terms of number of training epochs, number of 

Membership Functions (MF) of ANFIS per input, number of ANN neurons, and type of 

transfer function for ANN. The values of these design parameters were obtained from 

over 50 runs and with final fuzzy if-then rules of 81 for the ANFIS based turbine cycle 

model.  

Saxena and Saad [80] proposed the utilisation of Genetic Algorithm (GA) with ANN for 

identifying a near-optimal feature set for ANN fault diagnostic systems. Health 

conditions were simulated using nine bearings, eight of which had different crack sizes 

and one of which was healthy. The cracks were constructed using an Electric Discharge 
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Machine (EDM). Three accelerometers and one AE sensor were utilised. Five feature 

options were set as inputs for the GA, namely statistical features, statistical parameter for 

the sum, the differences between signals, spectral features, and all the features together.  

The FFT analysis was based on 32 values for each signal. The results showed that the 

technique of using GAs for selecting an optimal feature set for a classification application 

of ANNs was powerful, and that the collective use of all features was the best. The GA 

optimised the best combination based on the performance obtained directly from the 

success of the classifier; the mean classification success was 99.94%.   

Chan and Gu’s investigation and the Fuzzy Interference System (FIS) structure and 

parameter adjustment theory demonstrate that the ANFIS is complex as the number of 

membership functions, number of training cycles (epochs), and number of rules must be 

set. The accuracy of prediction mainly depends on the design parameters, which in turn 

usually depend on the training and testing datasets. Hence, every time the training 

datasets change, the design parameters should be adjusted to ensure the maximum 

accuracy. This consequently increases the complexity, computational time, and cost of 

AI-based approaches. The algorithm developed by Saxena and Saad included the FFT in 

the analysis, but it did not change the number of segments to better identify the fault. The 

number of segments should be automatically changed according to both the number of 

faults and the difference between the values, in order to optimise the detection of 

different faults. Moreover, the FIS algorithm was not tested for the diagnosis of 

simultaneous faults. The authors did not investigate the effectiveness of the proposed 

algorithm when selecting the best feature set for multiple-fault classifiers, and when 

investigating the issue of fault interference.  
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The Support Vector Machine (SVM) is an artificial intelligence method based on the 

principle of statistical learning theory. The SVM method was utilised for both feature 

selection and classification [98]. Meng and Feng [99] presented a new condition 

monitoring and analysis method for small sample studies on a reactor coolant pump using 

SVM. The data were passed through a multi-band FIR filter to eliminate noise and 

useless frequencies.  Kernel principal component analysis was utilised to decrease the 

dimension of the vector, processing time and accuracy. This method was used as a 

multiple classifier, and was able to separate the different machine conditions 

successfully.  

Gryllias et al. [91] developed an SVM-based feature selector for the selection of optimal 

features in the absence of actual experimental data. The input features were divided into 

two groups: (a) time domain statistical features such as RMS, SK, VAR and kurtosis, and 

(b) spectral features such as energy values calculated at the specific frequency bands of 

the demodulated and measured signals. The main contribution of this work resulted from 

basing the SVM training on a model that considered the dynamic behaviour of defective 

rolling element bearings. This enabled the SVM to select a set of good features without 

the need for experimental data in relation to defective bearings.  

The approach developed by Meng and Feng was not validated for the detection of 

simultaneous faults (unbalance and friction faults). Neither did these authors investigate 

the effectiveness of the proposed technique in distinguishing multiple machine faults. 

Furthermore, Gryllias et al. did not consider the fault interference problem, and only 

studied the occurrence of a single fault. Finding the dynamic equation of each component 

was difficult and time-consuming. The performance of the proposed CM approach was 
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not verified experimentally. Moreover, this approach will not help to minimise the 

development cost and time needed for CM systems.  

Samhouri et al. [92] proposed a new approach based on a combination of the axial 

vibration time signal features of the carnallite surge tank pump, namely RMS, variance, 

skewness, kurtosis, and normalised sixth central moment. These features were utilised as 

inputs for both Adaptive ANFIS and ANN. Three different faults with three different fault 

codes were simulated. A total of 92 runs were conducted, of which 73 were for training 

and 19 for testing. The comparison showed that the adoption of the time root mean square 

and variance features achieved the minimum fault prediction errors for both ANFIS and 

ANN. The trapezoidal membership function in ANFIS achieved a fault prediction 

accuracy of 95%, while the cascade forward back-propagation ANN achieved a better 

fault prediction accuracy of 99%.  

Gupta and Wadhwani [93] proposed a robust Genetic Programming-based (GP) feature 

selector for the selection of the best features from a large feature dataset for bearing fault 

classification. The ANN classifier was utilised for the recognition of fault patterns. 

Vibration time domain features were extracted from the statistical measures of Median, 

RMS, crest factor, histogram Lower Bound (LB), histogram Upper Bound (UB), Entropy 

(ENT), Skewness (SK), Kurtosis (KT), Variance (VAR), Shape Factor (SHF), Impulse 

Factor (IMF), and Clearance Factor (CLF). Experimental data were collected for four 

bearing conditions namely health, defective outer race, defective inner race, and defective 

ball fault condition. The algorithm was utilised to effectively select a smaller subset of 

features. All eight features were selected by the GP and yielded a detection accuracy of 

99.99%.   

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCgQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdaptive_neuro_fuzzy_inference_system&ei=pTZkUsr6H4qWrAeh34DQBg&usg=AFQjCNGsvrfNNpzBprCEAHvi-iD37olHkA&bvm=bv.54934254,d.bmk
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Zhao et al. [100] addressed the limitations of existing spectral feature selection 

algorithms when handling redundant features. Since redundant features can have 

significant adverse effects on learning performance, the authors proposed a novel spectral 

feature selection algorithm for an embedded model. The proposed algorithm evaluated 

the utility of a set of features after the efficient removal of redundant features. The 

algorithm was based on sparse multi-output regression. The algorithm yielded an average 

feature selection redundancy rate of 0.24. This rate is much lower than the redundancy 

rates of the existing spectral features algorithms.  

Samhouri et al. observed the effectiveness of the ANN technique against the ANFIS 

technique. The authors neither addressed the fault types nor utilised the spectral analysis 

technique as one of the major vibration analysis techniques. As no multiple-fault 

simulations were carried out, the effectiveness of the proposed approach in distinguishing 

simultaneous faults was not demonstrated.  

Zaho et al. demonstrated that the existing spectral feature selection algorithms such as 

Laplacian Score, Fisher score and trace ratio failed to handle the problem of redundant 

feature identification. It can be observed that the existing algorithms evaluate features 

individually, and cannot identify redundant features.  

In recent years, several studies of bearing fault diagnosis using wavelet analysis have 

been conducted. Lin and Qu [101] used wavelet analysis, and varied the shape factor of 

the Morlet wavelet to achieve minimum wavelet entropy for bearing fault feature 

selection. Qiu et al. [102] used the Shannon entropy and singular value decomposition to 

optimise the wavelet entropy and kurtosis parameters. Bozchalooi and Liang [103] 



61 
 

introduced a smoothness index to guide the parameter selection of the complex Morlet 

wavelet for de-noising bearing fault signals.  

Wang et al. [104] proposed a novel Adaptive Wavelet Stripping Algorithm (AWSA) to 

extract simulated transients from bearing fault signals. A comparison between the 

periodic multi-transient model and the AWSA was carried out to show that the proposed 

approach was better in selecting the random characteristics of real transients. An 

enhanced AWSA was also developed to reduce the computing time.  

Shen et al. [105] proposed an automated sensory feature selection method to reduce the 

development time and cost of condition monitoring systems for machining operations. 

Force, acceleration, sound and acoustic emission sensors were utilised for the detection of 

high-speed milling operations. Time domain, frequency domain and wavelet analysis 

techniques were employed to analyse the signals measured. Gradual tool wear was used 

for evaluating the proposed self-learning automated sensory feature selection method. 

The results showed that the proposed method could be utilized in automated and self-

learning monitoring system for the selection of the most suitable sensors. Lin, Qu, Wang 

et al. and Shen et al. proved the effectiveness of wavelet analysis technique for fault 

detection in bearings. It can be concluded that the majority of research has focused on the 

improvement of feature selection algorithms as well as on the minimisation of computing 

time and cost. 

The complexity of the ANN technique comes from the fact that its performance is 

significantly affected by a large number of design parameters [96]. The development time 

and cost of the ANN-based CM techniques are significant due to the need for the 

optimisation of all design parameters, which in turn should be customised according to 
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the training datasets; in any event, 100% accuracy cannot be guaranteed. Many 

approaches such as SVM, AWSA and GA have been utilised to improve the accuracy of 

the ANN-based feature selection algorithm and to reduce its computing and development 

times. 

2.5.5 SUMMARY 

To summarise the work reviewed in this section: 

- FFT analysis is a key approach in vibration and acoustic-based monitoring. It is 

judged to offer more potential for correct fault diagnosis than the model-based 

monitoring approaches summarised above. 

- AE demonstrated a superior efficiency in detecting faults at their early stages, and 

in identifying crack sizes when compared with the mechanical vibration technique. 

Moreover, it was less affected by rotors, non-linear aerodynamics, and noise. 

- Neural Networks or AI approaches are judged to have some potential for 

monitoring and feature selection. However, they are complex and can be 

computationally demanding.  

- The majority of the existing automated feature selection and fault classification 

techniques utilise artificial intelligence methods such as ANN, ANFIS, GA and 

SVM, while other tools utilise standard fault classification algorithms. 

- Combination of different types of signal features has some potential to improve the 

fault identification accuracy of CM systems.  

- A research gap was identified in respect of the development of effective, 

automated, non-artificial intelligence, fast and non-complex FFT-based fault 

identification algorithms for CM systems. 
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2.6 CONCLUSION AND RESEARCH DIRECTIONS 

Having reviewed a broad range of relevant literature, a number of conclusions can be 

drawn: It is clear that the importance of FPSOs has stimulated a number of researchers to 

research them, and to recognise the advantages of floating production over on-shore. It 

was also found that the C3MR is the most popular liquefaction system currently available 

(mainly due to economics). However, the relatively poor reliability of the rotating 

equipment on FPSOs is one of its weaknesses. 

This weakness was highlighted in sSectionection 2.3 where it was found that there was a 

research gap in the area of introducing redundant systems or components to the C3MR 

liquefaction system in order to achieve full operational reliability of FPSOs.  This section 

also suggested that Markov modelling should be the preferred approach for analysing the 

reliability and availability of the liquefaction system. 

Section 2.4 identified dynamic maintenance, namely condition-based maintenance 

(CBM), as a useful approach for improving the operational reliability (and hence the 

availability) and reducing the maintenance costs of FPSOs. CBM is therefore preferred 

over preventive maintenance-based systems. The section went on to discuss the 

importance of effective condition monitoring methods which do not generate too many 

false alarms (thereby allowing CBM to take place).  

Finally, Section 2.5 discussed in more detail some methods and algorithms for machine 

condition monitoring which included model-based, time signal-based, and frequency 

domain approaches. Approaches for the feature selection of particular faults were also 

considered.  The major conclusions were that, for rotating equipment, sound, vibration 
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and process information such as pressure, temperature and other operating information 

are judged to be the most appropriate fault detection techniques.  

Whilst the acoustic emission technique seems to have a better performance in respect of 

detecting faults in machines, it was concluded that a combination of two or more fault 

detection techniques should improve diagnostic accuracy, and reduce the potential for 

false alarms (Section 2.5.5).   

With regard to fault diagnosis, artificial intelligence-based feature selection approaches 

were most common. However, these were considered complex, time-consuming and 

sensitive to a number of design parameters. Hence, it was felt there was some scope for 

further research in this area. 

Overall, the outcomes of this literature review have set the context for this research. 

Therefore, with the top level aim of improving the profitability of FPSOs through 

reducing unavailability resulting from failures and preventive maintenance shutdowns, 

this study will investigate the introduction of redundancy to the C3MR liquefaction 

system.  It will also propose and demonstrate a new CM system that (if it can be applied 

in practice) has the potential to reduce the maintenance costs of FPSOs. The required 

robustness and effectiveness of the proposed system can be achieved by developing a 

spectral feature selection and fault identification algorithm which is automated, fast and 

effective, and by characterising and suggesting combinations of the major fault detection 

techniques for the condition-based maintenance of high speed centrifugal equipment.  

The effectiveness of the proposed algorithm will be analysed by means of identifying 

changes in data, firstly, in terms of robustness and secondly, by comparison with a 

standard FFT-based scheme and a Neural Network-based scheme.  
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Chapter 3. Reliability of C3MR  

liquefaction system 

3. CHAPTER 3. RELIABILITY OF C3MR LIQUEFACTION SYSTEM 

3.1 INTRODUCTION 

The liquefaction of gas on LNG-FPSOs is an essential process, yet one which 

experiences a high failure rate [22]. The profitability of an entire LNG production plant is 

strongly affected by the availability of the liquefaction system; the factors which are 

relevant to its availability are redundancy and maintenance strategy. The majority of 

FPSO manufacturers tend to utilise the C3MR cycle on account of its strong economic 

performance. As the liquefaction system has the highest system failure rate on FPSOs, 

the latter’s availability is severely affected by the former’s performance. Hence, this 

chapter will investigate the introduction of redundancy to C3MR liquefaction systems on 

FPSOs with a view to making potential improvements to the availability of FPSO units.   

The C3MR liquefaction process and three other proposed options for introducing 

redundancy to its key operational components are described herein. A set of Markov 

models have been developed to facilitate the calculation of the reliability of the four 

options. This chapter seeks to contribute to the overall research by investigating the 

introduction of redundancy as a possible means of improving both reliability and 

profitability of LNG liquefaction plants.  
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3.2  DESCRIPTION OF THE C3MR LIQUEFACTION PROCESS 

Figure 17 depicts a typical propane precooled mixed refrigerant cycle (C3MR). This 

cycle is currently the most common in the LNG industry, and it is used in over 80% of 

the world’s completed production trains. The C3MR system utilises a multi-component 

refrigerant, usually nitrogen, propane, butane, methane, ethane, or pentane in order to 

evaporate and condense natural gas in a cycle over a wide range of temperatures. The 

propane refrigerant is first utilised to precool dry and treated gas to around -30
o
C. The 

precooling step condenses any remaining heavy hydrocarbons and some LNG in a scrub 

column (separators). These liquids are separated into their components in a fractionation 

train, then used as refrigerant makeup, and are finally re-injected into the liquefaction 

feed gas (up to the gas specification limit), or sold as separate Natural Gas Liquid (NGL). 

The precooled feed gas is then sent to the Main Cryogenic Heat Exchanger (MCHE), 

where it is condensed and then subcooled at elevated pressures using mixed refrigerants. 

The subcooled Liquid Natural Gas (LNG) leaving the MCHE is then flashed to near 

storage tank pressure, cooling the LNG to -163 
o
C, and causing the ejection of nitrogen-

rich steam [106]. 
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Figure 17: Propane precooled mixed refrigerant process [106]. 

3.3 MODEL DEVELOPMENT 

Figure 18 shows a typical Air Products C3MR liquefaction process (APCI-C3MR). Air 

Products is a world-leading industrial gases company that provides gas-related equipment 

to manufacturing markets. The high-pressure natural gas (pipeline 1) is first expanded, 

thereby reaching a lower pressure, with concomitant temperature drop, via a turbo-

expander (optional), and then cooled to -163oC by a series of LNG heat exchangers (H-

E1, H-E2, H-E3 and H-E4). These heat exchangers cool down the natural gas to a 

sufficiently low temperature, and then liquefy it when throttled to the storage pressure.  

The low-pressure Mixed Refrigerants (MR) are first compressed and then pre-cooled by a 

simple propane cycle. The mixed refrigerants provide cooling for the natural gas in the 

LNG heat exchangers. The booster/turboexpander is employed in this process, and the 
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work recovered from the turboexpander is employed to drive the MR booster. The 

pipeline numbers describe the sequence of process steps. The booster/turbo-expander is 

not widely used in FPSOs [9].  

 

Figure 18: C3MR liquefaction process [9]. 

The low-pressure Mixed Refrigerants (MR) are compressed through a three-stage 

compression system (Low Pressure MR, Medium Pressure MR and High Pressure MR), 

while the propane is compressed through a single compressor. The liquefaction process 

consists of two liquefaction trains, and has two Gas Turbine (GT) drivers, and four heat 

exchangers (coldboxes) and separating units, as shown in Figure 18 and  

Figure 19 [107] [9] [108]. The first GT drives the propane and high pressure MR 

compressors, while the other drives the low and medium pressure MR compressors. This 

configuration allows the power split between propane and MR refrigeration to be 

optimised while fully utilising the power available from the two drivers [108]. 

The reliability model introduced in this chapter is based on the widely used APCI-C3MR 

liquefaction process, and is illustrated in Figure 20. 
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Figure 19:  5 MTPA APCI-C3MR process schema  [108]. 

 

 

 

 

 

 

Figure 20: LNG Liquefaction system. Two gas turbines, three MR Split refrigerant 

compressors, one propane compressor and four coldbox and separator units (CB & SEP). 

3.4 SYSTEM RELIABILITY MODELLING 

As identified in Section 2.3.2 of the literature review, Markov analysis offers better utility 

when analysing failure rates in systems where redundant units are introduced sequentially 
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following failure of the primary unit. Although the complexity of MA makes it a very 

difficult option when evaluating large systems, it gives a better accuracy than FTA in 

predicting fault rates in standby and sequential systems, as shown in Table 1 [39].  

This section is divided into three subsections. The first subsection presents reliability and 

cost data, and gives an estimate of the cost of a standby liquefaction system. The second 

subsection shows the proposed system redundancy schemes which will be analysed later 

in this chapter. Finally, the last subsection explains the Markov state transition diagrams 

developed and utilised in the calculation of system reliability, and presents the results of 

the reliability and cost analysis. 

3.4.1 RELIABILITY AND COST DATA 

The basic input data needed for analysis of cost is presented in Table 3 [109] [8] [110]. 

Based on this information, it is possible to calculate the approximate total cost of a 

standby liquefaction system, including installation and commissioning. The approximate 

cost of a full standby system is US$66 million, while the cost of a standby system for MR 

and Propane compressors only is approximately US$5.5 million. The most expensive 

component in any liquefaction plant is the gas turbine, at approximately US$40 million; 

while the component with the lowest price is the coldbox which costs approximately 

US$120,000.
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Table 3: Basic input data.  

Item Estimated cost (US$) 

MR/C3 LNG centrifugal compressor 850,000  

LNG gas turbine driver (Frame 6/7 – 40 

MW) 
40,000,000  

Coldbox (Heat exchanger) 120, 000  

LNG separator 150,000  

Piping of a 100% redundant system 600,000  

Standby system for compressors 5,500,000  

Standby system for compressors & gas 

turbines 
94,000,000  

100% standby system 98,580,000  

One LNG Ton 
500  

(average LNG prices in 2013 and 2014) 

 

Table 4 gives the failure and repair rates of the liquefaction subsystems considered in this 

study. The reliability data presented in Table 4 are taken from OREDA Handbook [22]. 

OREDA is a project organisation sponsored by eight oil and gas companies with 

worldwide operations. The main task of OREDA is to collect and exchange reliability 

data among its participating companies, and to act as the forum for the co-ordination and 

management of reliability data collection within the oil and gas industry. The failure rates 

presented in Table 4 are given per train and not per unit. A train consists of one of more 

compressors installed in series. 
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Table 4: Transition rates  [22]. 

Transition rate (per 

hour) 

Description 

Ct = 9.15 x 10
-4 Failure rate of centrifugal compressors train (MR, C3). 

C =0.5Ct , where C is the Failure rate of a single 

compressor. 

D = 2.68x 10
-3

 Failure rate of Driver (Gas turbine ) 

H = 0.2 x 10
-4

 Failure rate of Coldbox (Heat exchanger) 

S = 0.51 x 10
-4

 Failure rate of LNG separator 

E= 0.55 x 10
-4

 Failure rate of LNG expander 

µC = 5.3 x 10
-2

 Repair rate of centrifugal compressor (MR/C3) 

µCA = 1.3 x 10
-2

 Repair rate of all centrifugal compressors in the system  

µD = 4.5 x 10
-2

 Repair rate of GT Driver 

µDA = 1.1 x 10
-2

 Repair rate of all GT Drivers in system  

µH = 2.5 x 10
-1

 Repair rate of Coldbox ( Heat exchanger) 

µS = 1.8 x 10
-1

 Repair rate of LNG separator 

µE = 3 x 10
-2

 Repair rate of LNG expander 

G=4
 Estimated rate of starting up standby compressors and 

drivers (from 15 to 20 minutes)  [109] 

 

3.4.2 PROPOSED REDUNDANCY SCHEMES 

As shown in Figure 21, a typical C3MR liquefaction system consists of two gas turbine 

drivers, four centrifugal compressors, four coldboxes (heat exchangers), and four 

separators (see  

Figure 20). Of all the system components, the centrifugal drivers and compressors are 

mostly likely to fail, as shown in Table 4. Several redundancy options have been 

introduced (see Figures 12-15) including a complete cold standby system with a 

configuration similar to the primary liquefaction unit, as outlined in  

Figure 24. In this study, the reliability performance of the following four system options 

is investigated. 
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The proposed system options are as follows: 

1. A basic configuration with a 1 x 100% C3MR liquefaction system. This system 

may be considered as a series configuration with no redundancy, as presented in 

Figure 21. 

2. A basic system with the addition of 100% cold standby MR and Propane 

compressors, as presented in  

Figure 22. A cold standby system is a method of redundancy in which the 

secondary system is only called upon when the primary system fails. 

3. A basic system with the addition of 100% cold standby MR and Propane 

compressors, and a cold standby GT driver, as presented in Figure 23. The standby 

units will switch on when the primary units fail.  

4. A basic system with the addition of 100% cold standby MR and Propane 

compressors, a cold standby GT drive, and 100% cold standby LNG coldboxes 

(heat exchangers) and separators, as presented in  

Figure 24. Since the prices of coldboxes and separators are low in comparison to 

drivers and compressors, option 4 introduces a standby redundancy system for 

both coldboxes and separators in addition to compressors and drivers. This system 

will activate whenever any primary unit fails. Therefore, Option 4 may be 

considered as a combination of options 1, 2 and 3, as shown in  

Figure 24.         

 

 

http://www.webopedia.com/TERM/R/redundant.html
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Figure 21: Fault tree of a liquefaction system without redundancy (Option 1). 

 

 

 

 

 

 

 

 

 

 

Figure 22: Fault tree of a liquefaction system with 100% cold standby compressors 

(Option 2). 
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Figure 23: Fault tree of a liquefaction system with 100% cold standby compressors and 

drivers (Option 3).  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Fault tree of a liquefaction system with full redundancy (Option 4). 
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3.4.3  SYSTEM RELIABILITY MODEL AND RESULTS 

During the development of Markov state transition diagrams, the following assumptions 

were made: 

- The model considers the useful working life of the machine. According to the 

Bathtub curve, failure and repair rates are constant over time and statistically 

independent of each other. 

- At any given time, the system is either in the operating state or in the failed state. 

- Sufficient repair facilities are available. 

- Standby units are of the same nature and capacity as that of active systems. 

- Service schedule includes repair and/or replacement. 

- The performance of the repaired unit is as good as that of a new unit.  

- The standby system is perfectly reliable (cold standby) and the production will 

immediately be switched to the cold standby system if any of the main system 

components have failed. 

-  System failure/repair follows the exponential distribution [111] as it describes the 

time between events in a Poisson process. An example of such a process is when 

events occur continuously and independently at a constant average rate, and the 

Mean Time To Repair (MTTR) is equal to the inverse of the mean downtime after 

failure.  

Markov Analysis and system reliability calculations are carried out using Isograph 

reliability software. This software has an integrated environment for performing 

Reliability Prediction, Maintainability Prediction, Failure Mode Effect and Criticality 

Analysis (FMECA), Reliability Block Diagram (RBD) analysis, Fault Tree Analysis, 

Event Tree Analysis, and Markov Analysis [112].  

http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Memorylessness
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Table 5 shows all possible states of the system proposed. The system has 21 states and 

includes two gas turbines (GT and Gt2), four LNG compressors (C1 to C4) and four 

coldboxes and separators (CB1 to CB4).  

Table 5: Markov State transitions of a main and a standby C3MR LNG liquefaction 

system. GT, C and CB stand for Gas Turbine, Compressor and ColdBox, respectively. 

State Description GT1 GT2 C1 C2 C3 C4 CB1 CB2 CB3 CB4 

0 

The main 

system is 

working and 

the Standby 

system is 

functioning 

W/S W/S W/S W/S W/S W/S W/S W/S W/S W/S 

1 

The main 

system has 

failed (GT1 

failed) and the 

standby system 

is functioning 

F/S S/S S/S S/S S/S S/S S/S S/S S/S S/S 

2 

The main 

system has 

failed (GT2 

failed) and the 

standby system 

is functioning 

S/S F/S S/S S/S S/S S/S S/S S/S S/S S/S 

3 

The main 

system has 

failed (C1 

failed) and the 

standby system 

is functioning 

S/S S/S F/S S/S S/S S/S S/S S/S S/S S/S 

4 

The main 

system has 

failed (C2 

failed) and the 

standby system 

is functioning 

S/S S/S S/S F/S S/S S/S S/S S/S S/S S/S 

5 

The main 

system has 

failed (C3 

failed) and the 

standby system 

is functioning 

S/S S/S S/S S/S F/S S/S S/S S/S S/S S/S 
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Table 5 (Continued) 

State Description GT1 GT2 C1 C2 C3 C4 CB1 CB2 CB3 CB4 

6 

The main 

system has 

failed (C4 

failed) and the 

standby system 

is functioning 

S/S S/S S/S S/S S/S F/S S/S S/S S/S S/S 

7 

The main 

system has 

failed due to a 

failure in CB1 

and the standby 

system is 

functioning 

S/S S/S S/S S/S S/S S/S F/S S/S S/S S/S 

8 

The main 

system has 

failed due to a 

failure in CB2 

and the standby 

system is 

functioning 

S/S S/S S/S S/S S/S S/S S/S F/S S/S S/S 

9 

The main 

system has 

failed due to a 

failure in CB3 

and the standby 

system is 

functioning 

S/S S/S S/S S/S S/S S/S S/S S/S F/S S/S 

10 

The main 

system has 

failed due to a 

failure in CB4 

and the standby 

system is 

functioning 

S/S S/S S/S S/S S/S S/S S/S S/S S/S F/S 

11 

The main 

system has 

failed due to a 

failure in GT1 

and the standby 

system is 

working 

F/W S/W S/W S/W S/W S/W S/W S/W S/W S/W 

12 

The main 

system has 

failed due to a 

failure in GT2 

and the standby 

system is 

working 

S/W F/W S/W S/W S/W S/W S/W S/W S/W S/W 
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Table 5 (Continued) 

State Description GT1 GT2 C1 C2 C3 C4 CB1 CB2 CB3 CB4 

13 

The main 

system has 

failed due to a 

failure in C1 

and the standby 

system is 

working 

S/W S/W F/W S/W S/W S/W S/W S/W S/W S/W 

14 

The main 

system has 

failed due to a 

failure in C2 

and the standby 

system is 

working 

S/W S/W S/W F/W S/W S/W S/W S/W S/W S/W 

15 

The main 

system has 

failed due to a 

failure in C3 

and the standby 

system is 

working 

S/W S/W S/W S/W F/W S/W S/W S/W S/W S/W 

16 

The main 

system has 

failed due to a 

failure in C4 

and the standby 

system is 

working 

S/W S/W S/W S/W S/W F/W S/W S/W S/W S/W 

17 

The main 

system has 

failed due to a 

failure in CB1 

and the standby 

system is 

working 

S/W S/W S/W S/W S/W S/W F/W S/W S/W S/W 

18 

The main 

system has 

failed due to a 

failure in CB2 

and the standby 

system is 

working 

S/W S/W S/W S/W S/W S/W S/W F/W S/W S/W 

19 

The main 

system has 

failed due to a 

failure in CB3 

and the standby 

system is 

working 

S/W S/W S/W S/W S/W S/W S/W S/W F/W S/W 
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Table 5 (Continued) 

State Description GT1 GT2 C1 C2 C3 C4 CB1 CB2 CB3 CB4 

20 

The main 

system has 

failed due to a 

failure in CB4 

and the standby 

system is 

working 

S/W S/W S/W S/W S/W S/W S/W S/W S/W F/W 

W: Working / S: Standby/ F: Failed/ -/-:  Main system/standby system (for example, S/W means 

that the main system is in “standby mode” and the standby system is working) 

Figure 25 presents the main Markov state transition diagram developed to investigate the 

introduction of partial and full redundancy options to the main C3MR LNG liquefaction 

system. Cold standby systems are considered in all partial and full redundancy system 

options. The rates of failure () and repair (µ) for all system components are indicated in 

Table 4. The standby system will not be considered if G = 0.  States (1) to (10) present the 

unavailability of the system. System unavailability percentages were calculated using 

Isograph software at four different system configurations.  
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Figure 25: Markov state transition diagram for the C3MR LNG liquefaction system. 
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  Figure 26 presents the availability percentage of a basic liquefaction system with no 

standby redundancy (option 1). The system unavailability percentage at this system 

configuration is 15.9%. 

  Figure 26: Availability results of a basic C3MR liquefaction system with no standby 

redundancy using Isograph software. 
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  Figure 27 shows the availability percentage of a basic liquefaction system with 100% 

standby gas turbine drives (option 2). The system unavailability percentage at this system 

configuration is 6.04%. 

 

  Figure 27: Availability results of a basic C3MR liquefaction system with the addition of 

100% cold standby GT drivers using Isograph software. 
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  Figure 28 depicts the availability percentage of a basic liquefaction system with 100% 

gas turbine drivers and compressors (option 3). The system unavailability percentage at 

this system configuration is 0.3%. 

 

  Figure 28: Availability results of a basic C3MR liquefaction system with the addition of 

100% cold standby GT drivers and 100% MR and Propane compressors using Isograph 

software. 
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While Figure 29 presents the availability percentage of a basic liquefaction system with 

100% standby system (option 4). The unavailability percentage at this system 

configuration is 0.19%. The failure and repair rates for coldboxes and separators were 

calculated using equations (1) and (2). 

  CB =  coldbox +separator                                                                                   (1) 

       

  CB=  coldbox + separator                                                                                                                            (2) 
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Figure 29: Availability results of a basic C3MR liquefaction system with the addition of 

100% cold standby GT drivers, 100% cold standby MR and Propane compressors and 

100% standby coldboxes and separators using Isograph software. 
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percentage. Typical production capacity of LNG FPSOs ranges from 3 to 3.5 MTPA. For 

the smallest capacity (3 MTPA), the annual FPSO income will be around US$1500 

million, if no failures occur. The annual instalment calculations are based on a 15-year 

loan period with a 3% interest rate.  

Three factors were to be considered in the evaluation of the cost-effectiveness of different 

system redundancy options: the system shutdown cost, which can be calculated on the 

basis of the unavailability profile of the system; the annual investment cost, which 

indicates the annual instalments that have to be paid for the installation and 

commissioning of the corresponding redundant systems; and the annual maintenance cost 

for the different options. It was assumed that there will be one scheduled shutdown per 

year for preventive maintenance costing a total of US$70 million. The estimated cost was 

based on the minimum shutdown time length (ranging from two weeks to two months 

[113]), and on the time required to restore full production capacity after the scheduled 

shutdown. A minimum of 15 emergency/unscheduled shutdowns a year for corrective 

maintenance was also assumed, at a total cost of US$1.5 million. The cost of emergency 

shutdowns included labour and spare parts only, as the shutdown cost was already 

included in the reliability calculation for the system.  

When redundancy is partially or fully applied, the corrective maintenance for the failed 

redundant component will be carried out while the liquefaction plant is fully in service. 

Although the frequency of failure is subject to increase due to the exclusion of PM, the 

cost of major corrective maintenance is not expected to increase, as the cost of repair 

depends on the urgency of the maintenance request. All of the previously mentioned 

factors affect the profitability of LNG production plants, and hence the best liquefaction 

system is the one that has the lowest total shutdown, annual investment and maintenance 

costs.     
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Figure 29 and Table 9 show that the introduction of a standby setup dramatically reduced 

the unavailability time from 15.9 %, with no standby units, to 0.19 %, with 100% standby 

units. This study has not considered the detailed practical considerations of applying 

partial redundancy. It is possible that the standby system may need to be installed as a 

separate production line that includes all system components; to avoid complexity in 

installation and operation of a standby unit parallel to each of the main system 

components. However, this needs further investigation. 

Table 6: Summary of the reliability study results. 

Measure Option 1 Option 2 Option 3 Option 4 
System 

Unavailability 
15.9% 6.04% 0.3% 0.19% 

Shutdown cost 

(USD) 
238,500,000 90,600,000 4,500,000 2,850,000 

Annual cost 

estimate of major 

preventive 

maintenance tasks 

(USD) including 

shutdown cost– 

Once a year.  

70,000,000 42,000,000 7,000,000 0 

Annual cost 

estimate of major 

corrective 

maintenance tasks 

(USD) 

1,500,000 2,100,000 2,,850,000 3,000,000 

Total shutdown 

and maintenance 

cost (USD) 
310,000,000 134,700,000 14,350,000 5,850,000 

Annual investment 

(USD) [to be paid 

over 15 years with 

a 3% annual 

interest rate] 

0 455,784 7,789,761 8,169,305 

Annual profit 

(USD) 
1,190,000,000 1,364,844,216 1,477,860,239 1,485,980,695 

 

Table 9 shows that option four is the best in terms of cost-effectiveness as it dramatically 

reduces the unavailability time from 15.9 % to 0.19 %. This option introduces a 100% 

redundant LNG liquefaction system, which is estimated to increase profitability by 
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approximately US$296 million per year (from US$1,190 million to US$1,485.98 million 

per year).  

Option 2 introduces a 100% redundant system for gas compressors only and this 

redundancy option would increase annual profitability by approximately US$174.8 

million. Option 3 introduces a 100% redundant system for gas compressors and GT 

drivers only, and this option would increase profitability by approximately US$287.9 

million per year. Finally, the last option would increase profitability by around US$296 

million per year. The cost analysis results are based on the average LNG prices (US$500/ 

ton) in 2013 and 2104.  

3.5 SUMMARY 

The redundancy optimisation of the C3MR liquefaction system on FPSO terminals was 

investigated. Maintenance intervals were also optimised in order to reduce the total 

associated maintenance cost. The main reliability results were obtained using the Markov 

approach. Isograph software and MATLAB were utilised to perform the reliability and 

maintenance optimisation calculations.  

The implementation of a 100% standby system drastically reduced unavailability from 

14.3% to 2.6% of the total operational hours. Based on the proposed reliability model, the 

annual system profit would increase by approximately US$236 million if redundancy 

option 4 were implemented on FPSOs. Hence, the cost-effectiveness of introducing a 

100% standby system for the primary liquefaction system on FPSOs (option 4) has been 

demonstrated.     

If redundancy option 4 is applied, the cost of maintenance will significantly reduce due to 

the introduction of a 100% standby system and the elimination of PM costs; in turn, the 

overall cost of shutdown and PM maintenance will decrease by US$236 million. The PM 
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cost will be almost zero since only a corrective maintenance strategy will be applied [8]  

[49].    

In order to swiftly switch between main and standby systems, a dynamic CM system will 

be developed and presented in the following chapters with a view to providing a more 

cost-effective solution for maintenance problems and eliminating production stoppage 

during switching over between main and standby systems.  

The study was only applied to the C3MR LNG liquefaction plant. Hence, the proposed 

reliability model shall be utilised only to investigate the reliability of similar plants. The 

estimates of the costs of different LNG liquefaction components, and of CM and PM 

maintenance are approximations.  

To ensure that the results were as realistic as possible, the reliability calculations were 

based on the only available source of information, which was the OREDA Handbook 5
th

 

edition. The results of this study have the potential to improve the commercial impact of 

FPSOs by reducing both shutdown and maintenance costs, and so increase overall 

profitability. 
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Chapter 4. Experimental setup for fault 

detection 

4. CHAPTER 4 . EXPERIMENTAL SETUP FOR FAULT DETECTION 

4.1 INTRODUCTION 

Centrifugal equipment has the highest failure rate of all LNG production line equipment 

[22]. Bearing problems account for 40% of the failures which occur in all machines, 

including centrifugal equipment  [114]. Hence, the experimental work in this thesis is 

focused on bearing faults in centrifugal equipment.  

The main contribution of this chapter is to describe the experimental hardware which was 

commissioned as part of the research project in order to facilitate experiments relating to 

the development and testing of monitoring algorithms for centrifugal equipment.  

In order to monitor acoustic signals that can be indicative of faults, two different types of 

AE sensors were installed and evaluated and, based on experiments using these sensors, 

the most suitable of the two was selected.  This decision was informed by a combination 

of experience and experiments that quantify the AE transmission loss. The preferred 

locations of the vibration and pressure sensors were also determined. 

Pressure and triaxial vibration sensors were installed to monitor pressure and vibration 

information that could also be indicative of faults; they were then utilised in combination 

with the AE technique to characterise the major fault detection techniques for the CM of 

high-speed centrifugal compressors (see Chapter 7). The measurement system including 

the antialiasing filter is also described in this chapter. 
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4.2 EXPERIMENTAL SETUP 

This study aims to develop and test an efficient CM system for LNG centrifugal 

equipment, in particular LNG refrigerant compressors. Ideally, the experiments presented 

in this thesis should have been carried out using a full-scale industrial compressor. Due to 

lack of access to such a compressor, a functionally similar lab-scale unit was utilised. 

The experimental setup consisted of a 20 HP Paxton industrial compressor, four AE 

sensors with different measurement ranges, a triaxial accelerometer, a pressure sensor, 

preamplifiers with programmable filters, a high-speed NI data acquisition system, and an 

AC inverter for motor speed control. The models of bearings (A) and (B) are DKT-

7203BMP and FAG-2203TV, respectively. The data was collected using an MSeries- 

PCI 6250 National Instruments data acquisition board with 16 channels, a 16-bit 

resolution and a 1.25 MS/s sampling rate. A schema of the overall system and the bearing 

casing with sensor locations can be seen in Figure 30 and  

Figure 31.  

The AE sensors were positioned as close as possible to the bearings, and attached to 

signal conditioners and programmable low-pass filters with isolated grounds, in order to 

combat the problem of aliasing in sampling signals. A cut-off frequency of 200 kHz was 

set to attenuate high-frequency AE signals. The vibration sensor was positioned midway 

between the bearings, and the pressure sensor was installed inside the air hose 50 cm 

away from the compressor outlet.  
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Figure 30: Schema of the experimental setup 

 

 

Figure 31: Locations of the sensors on the bearing casing. 

4.2.1 COMPRESSOR 

A Paxton AT1200 industrial single-stage centrifugal air compressor system was selected 

as the subject for the experimental parts of this project. The blower has a maximum flow 

rate of 1954 m
3
/hr (1150 CFM) and a maximum pressure of 1.254 BarA (100 inch water) 

as shown in appendix B. Figure 32 shows the disassembled compressor. 
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Figure 32: The single stage centrifugal compressor. 

The similarities between the lab scale compressor and the full scale LNG compressor are 

based on the fact that the vibration component frequencies of bearing faults (bearing 

fundamental frequencies) in rotating equipment are a function of rotational speed and 

bearing geometry [115] [116]. A quantitative example is given in Table 10 in order to 

explain the change in bearing fundamental vibration frequency due to bearing geometry 

and machine operational speed changes. The comparison results were calculated using 

equation (3). The results showed that the bearing utilized in the prototype has an outer 

ring ball pass frequency of 1072.5 Hz in comparison to 343.6 Hz for the NSKHPS 

7956A5 high precision industrial bearing. 

𝐁𝐏𝐅 =
𝐍𝐛

𝟐
𝐒 (𝟏 −

𝐁𝐝

𝐏𝐝
𝐜𝐨𝐬∅)                                                                                                                                         (3)

         

where 

BFP: Ball Pass Frequency  

Nb: Number of ballsS: Rotational speed in RPS 

Bd: Ball diameter 

Pd: Pitch circle diameter 

Impeller 

Blower 

Condition 
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∅: Contact angle 

Table 7: Ball pass vibration frequency of different types of bearings based on bearing 

geometry and rotational speed. 

Parameter Prototype bearing 
Industrial compressor 

bearing 

Bearing model and max. 

static load capacity 
DKT 7203BMP, 6.6 KN 

NSKHPS 7956A5, 390 

KN 

Ball diameter (Bd) 7 mm 60 mm 

Number of balls (Nb) 11 14 

Pitch circle diameter (Pd) 28 mm 330 mm 

Rotational speed (S) 260 RPS 60 RPS 

Contact angle (∅) 0 0 

Ball Pass Frequency of 

outer ring (BPF) 
1072.5 Hz 343.6 Hz 

 

With ultrasonic acoustic signals, the situation is similar as the component frequencies 

depend on the high-frequency natural resonances of bearings. High natural frequencies 

are generated by impacts betweenthe internal parts of bearings. These impacts are the 

results of bearing imperfection, degradation or variation in load [117].  

It is common for a technique called High-Frequency Natural Bearing Resonance 

Indicator (HFNBI) to be utilised to monitor the friction between bearing rollers and race 

[116] [118] [119]. When the motion of the bearing rollers degrades, the rollers slide 

momentarily, and this usually results in a friction force change between the rollers and 

the race.  Again, the amplitude of the AE signal is mainly a function of rotational speed, 

geometry and of course the level of degradation. HFNBI normally ranges from 3 to 50 

kHz, and can be expressed as a percentage rise in the spike energy when compared to its 

normal good condition.  

The Shock-Pulse technique is one of the most commonly utilised methods for monitoring 

the condition of bearings. This technique is based on the fact that any bearing 
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imperfection generates a white noise which contains all frequencies. As the natural 

frequency of the AE sensor is one of these frequencies, the sensor will have a resonance 

in the 30-90 kHz range depending on its natural frequency [120]. 

In summary, imperfection and sudden shock makes the AE sensor vibrate at its resonant 

frequency. Friction, wear and shock normally excite the resonant frequency of the AE 

sensor [116] [118] [119]. Thus, the acoustic signal component frequencies are a function 

of the natural frequency of bearings and AE sensors, and normally range from 3 to 90 

kHz. 

4.2.2 SENSOR SELECTION 

Four factory calibrated AE sensors from Physical Acoustics were initially selected to 

measure a broad range of acoustic signals; they consisted of two R6a low frequency 

range sensors with an operating range of 35 to 100 kHz and with peak sensitivity of -65 

dB, and two UT1000 high frequency range sensors with an operating range of 100 to 

1000 kHz and a peak sensitivity of -70 dB. However, AE sensors can measure signals at 

frequencies outside their operating bandwidth albeit with less sensitivity and a growing 

phase lag (Note: the phase-lag is not an issue in this application where only amplitude is 

considered). 

The final selection of the most useful sensor was based on the normal range used in 

HFNBR (normally from 3 to 50 kHz), backed up by experimental results, as presented in 

Figure 33. The detail of these experiments will be discussed more fully below. However, 

the graphs of frequency response from the two types of sensor confirm that the most 

significant frequencies (peak amplitudes) are in the 2-122 kHz range. This favours the 

use of the lower frequency R6a device. It should be noted that the device does still pick 
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up some peaks outside of this range. This is normal as AE sensors can measure outside 

their normal working bandwidth, though with reduced sensitivity. 

Having selected the sensor type to be used, the final decision related to the placement of 

the sensor. Since there are two R6a sensors, one near bearing (A) and another near 

bearing (B), an AE transmission loss analysis was carried out to select the sensor with the 

highest output signal (section 4.3).  
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Figure 33: AE frequency spectra using R6a and UT1000 sensors with a frequency range 

of 2 to 499 kHz. 
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A +/-70 g triaxial vibration sensor, model SUMMIT 34207A with a sensitivity of 31.55 

mV/g, was positioned midway between the shaft bearings. The selection of the 

accelerometer range was based on a number of experiments that were conducted in the 

lab. The RMS values of vibration signals related to different machine conditions 

presented in Table 40 were considered during the selection process of accelerometer 

range.  

Modal analysis was carried out using SOLIDWORKS software to determine the natural 

frequencies of the bearing casing.  SOLIDWORKS is a solid modelling Computer-Aided 

Design (CAD) and Computer Aided-Engineering (CAE) piece of software which 

includes finite element analysis and a multi-body dynamics program. A model for the 

bearings case was drawn to reflect the actual shape, dimensions and material. The modal 

problem was solved using the FEA modal superposition method with a fixed left-end-

flange constraint.  

The modal analysis results presented in Table 11 show that the first natural frequency 

value was 1,668.9 Hz, which was much higher than the 260.8 Hz operating frequency of 

the compressor. Therefore, due to the high stiffness level of the bearing casing, the 

accelerometer could be positioned at any location on the surface. Figure 34 illustrates 

that, with the second mode shape, the maximum dynamic magnification factor took place 

at the end of the casing at a natural frequency of 1669.2 Hz. However, the sensor can still 

be installed at any location even if the operating frequency is close to the first natural 

frequency of the system; this is due to the fact that pattern recognition algorithms are 

based on machine condition signatures, which are captured by placing the same sensor at 

the same location. On the other hand, all vibration signals will be magnified by the same 

factor and hence, the frequency spectrum shape (or pattern) will remain unchanged. 

https://en.wikipedia.org/wiki/Solid_modeling
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A pressure sensor was first selected on the basis of the maximum outlet pressure of the 

blower, installed in the outlet pipe, and then positioned 50 cm away from the blower 

outlet. The data sheets for the components utilised are provided in appendix D.  

Table 8: Modal frequencies of the bearing casing. 

Mode No. Frequency (Hertz) 

1 1668.9 
 2 1669.2 
 3 3028.8 
 4 5488.7 
 5 5489.1 
 6 6100.9 
 7 9100.5 
  

 

Figure 34: Simulation of the bearing casing second mode shape using SOLIDWORKS 

software. 
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4.3 QUANTIFICATION OF AE TRANSMISSION LOSS 

AE transmission loss is the power lost when transmitting a signal from one point to 

another through a medium. Hence, the transmission loss percentage has to be quantified 

in order to calculate the actual power of the AE signals generated, and to select the single 

sensor with the highest level of fault readings in both bearings (A) and (B). 

A test was carried out using a hollow aluminium tube, pin and steel ball as shown in 

Figure 35. The ball was set at a height of 25 mm from the bottom of the aluminium tube. 

Then, the pin was pulled out to allow the ball to hit the surface. The AE signal generated 

was measured by the R6a AE sensor, which was connected to the NI DAQ system. 

 

 

 

 

 

 

Figure 35: AE transmission loss test using a ball setup. 

Steel ball 

AL 

tube 

Pin 

AE 

sensor 
Steel 

plate 

Pin 

  Steel 

H= 25 

mm 

    AE 

    Steel 



102 
 

Five different tests were carried out and compared in order to calculate the AE 

transmission loss percentages, as shown in Table 12. The ball setup was placed in three 

different positions: the first was above the steel plate shown in Figure 35 (Benchmark), 

the second was above bearing (A), and the third was above bearing (B). 

Figure 36 shows the results of tests numbered four and two where the loss percentages in 

AE signals were 10.68% and 4.48%, respectively. The transmission loss factors of test 3 

and 4 were high for the following reasons: 

Since bearing (B) had an upper flange and bearing (A) located very close to the impeller, 

AE sensors were not positioned exactly above the bearing locations. 

The AE sensors were positioned above a grooved bearing case. Although these grooves 

were filled with silicon, air gaps may have been present. These air gaps strongly 

attenuated the strength of AE signals. 

AE signal at Bearing (A) when the ball 

setup was placed at bearing (B) 

AE signal at Bearing (A) when the ball setup 

was placed at bearing (A) 

  

 

Figure 36: The AE signals acquired during the impact test. 
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Table 12 illustrates the results of the transmission loss experiment and shows the 

difference in AE amplitude values when the ball impacted the surface first at bearing (B), 

and then at bearing (A). The signal at bearing (A) was attenuated by 10.68% when the 

ball impacted the surface at bearing (B). Hence, as 10.68% is the lowest peak percentage 

loss, the AE R6a sensor which was positioned above bearing (A) was selected for its 

accuracy and sensitivity. 

Table 9: Summary of the AE transmission loss results. 

Test No.: R6a Sensor/Signal location 
Max. amplitude 

(V) 

Difference 

(V) 

Loss 

(%) 

1 
AE sensor/ Steel plate 

(Benchmark) 

20.5 -- 0% 

2 Bearing (A)/ Bearing (A) 19.58 0.92 4.48% 

3 Bearing (B)/ Bearing (A) 16.55 3.95 19.26% 

4 Bearing (A)/ Bearing (B) 18.31 2.19 10.68% 

5 Bearing (B)/ Bearing (B) 20.02 0.48 2.34% 

 

It was also observed that the amplifier has a zero error value ranging from -0.04 to 0.04 

V. The zero error value and transmission loss percentage must be considered if the 

original AE signal strength is required.  

4.4 FREQUENCY RESPONSE AND CALIBRATION OF THE MEASUREMENT SYSTEM 

All the components of the system employed were factory calibrated. In addition, a 

frequency response test was carried out to ensure that the antialiasing filter works 

properly as well as to quantify the attenuation values at different frequencies. A function 

generator was utilised to generate sinusoidal signals with fixed amplitude of 5 V and a 

frequency ranging from 10 kHz to 600 kHz. These signals were utilised as inputs to the 

measurement system (low pass filters and DAQ system). The difference between the raw 

FFT of the input and output signals were compared and the attenuation was calculated.  
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As the frequency range of the AE signals was determined as between 2 and 122 kHz, the 

cut-off frequency of the low pass filter was set to 200 kHz. Although the amplitudes at 

frequencies higher than 200 kHz were small, low-pass filters were integrated into the 

system to attenuate any possible or sudden increase in the amplitudes at any frequencies 

beyond 200 kHz during experimentation. 

Figure 37 shows the frequency response of the measurement system, and illustrates the 

effect of the low-pass filter which was utilised to combat the problem of aliasing by 

attenuating frequencies above 200 kHz. As a result of the value of the cutoff frequency, 

the attenuation percentage went up from approximately 50% to 98% in the frequency 

range of 150 kHz to 400 kHz, and consequently the proper functionality of the 

measurement system was proved. The results shown in Figure 37 confirms that the filter 

does significantly attenuate the signal at frequencies beyond 200 kHz and hence should 

be no issues of aliasing with the measurement system at sampling rate of 1 MS/s. The 

attenuation percentages shown should be considered by researchers if the original AE 

signal strength is required. 
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Figure 37: Magnitude frequency response curve at a filter cut-off frequency of 200 kHz. 

4.5 SUMMARY 

In this chapter, an experimental setup was designed in order to facilitate experiments 

relating to the development and testing of monitoring algorithms for high-speed 

centrifugal equipment. A number of experiments were conducted to decide where best to 

place the AE (at bearing (A) or bearing (B)), and the vibration and pressure sensors. It 

was found that the AE sensor received a stronger signal if installed at bearing (A), that 

the accelerometer could be positioned at any location, and that the pressure sensor 

worked properly when installed 50 cm away from the compressor outlet. 

Experiments were conducted to calculate the frequency response of both the data 

acquisition system and antialiasing filters. The resulting “loss” and “attenuation” factors 

were determined to allow correction of the measured signal amplitudes, if required. 
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Chapter 5. Development of acoustics-based 

condition monitoring system  

5. CHAPTER 5. DEVELOPMENT OF ACOUSTICS-BASED CONDITION 

MONITORING SYSTEM  

5.1  INTRODUCTION 

LNG production trains availability can be improved by implementing a standby system 

(see chapter 3), or by using an effective CBM system in order to reduce the number of 

planned shutdowns [110] [49]. Effective CBM systems can reduce the overall cost of 

maintenance and allow the early detection of faults which usually lead to catastrophic 

consequences and are extremely expensive to repair. Unlike preventive and corrective 

maintenance strategies, the implementation of CBM sharply lowers the overall 

maintenance cost by preventing major failures, and by delaying scheduled maintenance 

until a more convenient time or until it becomes necessary.  

The performance of CBM systems is affected by the performance of the CM system in 

use. The performance of CM systems is affected by the fault detection technique and 

feature selection algorithm employed. The effectiveness of acoustic emission-based fault 

detection techniques has been demonstrated, especially with respect to the early detection 

of machine faults and the identification of crack size (section 2.5.3.2). Feature selection 

algorithms are based on various feature types such as time domain features and FFT 

features. FFT features provide useful information on rotating components since well-

defined frequency components are associated with machine condition [80].  

In a large number of recent studies, the amplitude feature of FFT spectra was considered 

as the most common and well-proven feature for the identification of faults in rotating 
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equipment [66] [121] [122] [67] [68]. The existing non-AI and AI feature selection 

algorithms have a number of drawbacks which adversely affect the cost of 

implementation and generalisation of these algorithms to all systems (section 2.5.4). 

Existing non-AI feature selection techniques cannot handle redundant feature 

identification, and this has an adverse effect on the learning process and accuracy of 

detection [100]. Existing AI feature selection techniques and classifiers are case-

dependent and complex, particularly when compared with systematic non-AI approaches; 

this can be inferred from the research work related to feature selection. AI approaches 

require significant research to provide near-optimum accurate results [80] as the accuracy 

of AI approaches is highly dependent on the architecture of the network and changes in 

the various design parameters such as number of training cycles, number of neurons, 

initial conditions, number of membership functions, and number of rules. The 

development costs include the cost of computing and of hiring skilled CM system 

developers experienced in AI approaches and rule-based knowledge. The development 

time includes the time needed to develop, train and validate custom FFT feature selection 

and classification systems based on artificial intelligence approaches [80] [99] [91] [92].  

Since it is difficult to visually select the most informative FFT features for a very large 

number of datasets, and in order to overcome some of the disadvantages of existing 

feature selection techniques, a robust, self-learning and automated feature selection and 

classification algorithm is proposed for the development of effective CM systems. An 

FFT feature selection and classification tool which is flexible, systematic, automated, and 

non-AI-based could significantly decrease the cost and time needed for the development 

of efficient CM systems in comparison to the development cost and time of existing FFT-

based feature selection classifiers.  
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LNG production lines use several items of centrifugal equipment such as LNG 

compressors, gas turbines and blowers. Bearings are essential components of all 

centrifugal equipment. Bearing faults occur due to fatigue (even under normal and 

balanced operations), improper lubrication, contamination or installation errors. Major 

bearing fault identification systems are usually based on vibration or acoustic signatures, 

both of which tend to increase in line with bearing deterioration. Major vibration and 

acoustic signal features consist of RMS, crest factor, energy, counts and peaks, 

amplitude, and frequency response via Fast Fourier Transform (FFT) [7]. 

In the light of the literature review (chapter 2), the AE technique was judged to be very 

effective in detecting rotating machine faults. Unlike the vibration technique, the AE 

technique is less affected by noise emanating from other nearby machines or by structural 

vibration. For example, it is difficult to use vibration spectral features of faulty bearings 

for the identification of their faults as the resonance frequencies of the structures between 

the bearings and the transducers will be excited, and consequently might change the 

vibration signatures of the faults. Thus, most informative bearing fault signatures occur at 

high-frequency resonance bands [123]. Hence, AE spectral features will be utilised here 

to verify and validate the proposed algorithm. Other CM techniques and signal features 

will also be utilised in chapter 7 for the assessment, comparison and characterisation of 

different fault identification techniques used in the CM of typical centrifugal equipment. 

In summary, significant research has been undertaken with a view to developing and 

implementing efficient automated machinery fault identification and diagnostic tools. The 

feature selection algorithms of the majority of existing techniques are based on non-

automated scheme or on AI approaches (see section 2.5.4). The existing AI-based feature 

selection and fault identification techniques are complex, computationally intensive and 

require long development times. Therefore, the main purpose of this chapter is to develop 
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an automated, robust, fast, easy-to-implement, and non-AI AE-based fault identification 

algorithm that overcomes some of these disadvantages. 

5.2 DESIGN OF EXPERIMENT 

Bearing problems account for over 40% of machine breakdowns. Thus, this experimental 

work focused on bearing faults in centrifugal equipment. Typical causes of bearing faults 

in all rotating equipment are: excessive load, overheating, false brinelling, true brinelling, 

normal fatigue failure, reverse loading, contamination, lubricant failure, corrosion, 

misalignment, loose fits, and tight fits [124]. Two common bearing failures were selected 

to evaluate the proposed fault detection algorithm; true brinelling and normal fatigue 

failures. Brinelling occurs when loads exceed the elastic limit of the ring material. Brinell 

marks show as indentations in the raceways, and these indentations increase bearing 

vibration and noise. Severe brinell marks can cause premature fatigue failure. Fatigue 

failure, usually referred to as spalling, is a fracture of the running surfaces and subsequent 

removal of small discrete particles of material. Spalling can occur on the inner ring, outer 

ring, or balls [124] [125] . Hence, indentations (small holes) and notches were created in 

bearings in order to emulate the most common bearing failures in rotating equipment. 

Using the test rig detailed in Chapter 4, nine machine conditions were experimentally 

emulated in the laboratory at rotational speeds of 3600, 6960 and 15650 RPM.  

Figure 39 depicts the machine conditions emulated. 81 experimental datasets were 

utilised to train, verify and test the proposed CM system at the three rotational speeds; 

there were three datasets for each machine condition at each rotational speed (3x9x3=81 

datasets). Machine Condition 1 (MC 1) refers to the healthy condition, while others refer 

to the faulty conditions. These three rotational speeds were selected in order to emulate 

normal low, normal high, and high-speed centrifugal equipment. The changes in 
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signatures resulting from to speed changes will help better understand the behaviour of 

faults at these different rotational speeds.  

Figure 38 illustrates the machine faults emulated at bearings (A) and (B). Bearing (A) has 

a 3 mm hole throughout the outer race, while bearing (B) has four notches, two on each 

side with a maximum groove width of 2 mm. This hole was drilled using a 3 mm carbide 

drill bit, and the notches were engraved using a Dremal shank diamond taper point bit. 

The machine condition faults shown in Figure 39 are a combination of partial or full 

bearing lubrication removal and outer race defects.  
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Figure 38: Notches in the outer races of bearings (A) & (B). 

  

 

 

 

 

 

 

 

 

 

 

Figure 39: Emulated machine conditions. 
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The data were collected over a sampling duration of one second using a high speed NI 

DAQ board at a sampling rate of 1 MS/s with a total number of 81 AE datasets. Three 

datasets were collected at a fixed time interval of 5 seconds for each machine condition, 

one set every 5 seconds. The first dataset for each experiment was recorded 30 seconds 

after the blower reached its full rotational speed. For each machine condition, one dataset 

was utilised for training, while the remaining two were used for verification and testing.  

According to the Nyquist Theorem, the sampling rate must be twice as fast as the highest 

frequency of the measured signal. However, sampling at exactly two times the highest 

frequency is often unacceptable, especially in applications where the shape (time-domain 

representation) of the signal is important. Thus, the data were sampled at a rate of 1MHz 

to allow accurate measurement of signals up to 200 kHz AE. This sampling rate is five 

times higher than the target frequency.  Based on the sampling rate and period, the size of 

each dataset is 1x10
6
 samples. 

5.3 DEVELOPMENT OF FFT-BASED SEGMENTATION, FEATURE SELECTION AND 

FAULT IDENTIFICATION (FS2FI) ALGORITHM 

The spectral-feature selection process is a key process for FFT-based AE and vibration 

condition monitoring and maintenance systems. Due to the large number of machine fault 

patterns, and in order to overcome the disadvantages of the existing CM techniques 

summarised in the introduction of this chapter, a segmentation, automated feature-

selection and fault identification FFT based algorithm is proposed. The total number of 

machine conditions (NoC) utilised to test the performance of the algorithm is nine. Based 

on the literature survey (chapter 2), the proposed algorithm utilises the well-proven 

amplitude feature of the FFT spectrum, and AE as a well-proven fault detection 

technique. The main objective of the FS2FI algorithm is to segment the FFT spectra of all 

benchmark signals and to identify the segment size at which all machine fault patterns are 

http://zone.ni.com/devzone/conceptd.nsf/webmain/0A17E22A0530063386256F560071787E#3
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identifiable. The FS2FI algorithm starts by computing the Fast Fourier Transform (FFT) 

of the discrete benchmark machine condition signals using equation (4) [126]. Then, it 

breaks down the frequency spectrum of each signal into smaller groups of frequencies 

(segments). The segment size depends on the number of feature differences required to 

clearly differentiate all spectra of all machine conditions. The FS2FI algorithm shown in  

Figure 41 managed to select the spectral features required to differentiate all the machine 

fault patterns addressed.  

𝑿𝒌 = ∑ 𝑿𝒏𝒆
−𝒊𝟐 𝑲 

𝒏

𝑵𝑵−𝟏
𝒏=𝟎                                              (4) 

 

where 

Xk  = Transform values [Amplitude and phase, a complex number] 

K    = Current frequency [from 0 to (N-1) Hz] 

Xn  = Sample values 

𝑛   = Number of sample 

Figure 40 illustrates a simplified flowchart that describes the main steps for the 

processing and analysis of the data.  The proposed algorithm starts by processing training 

machine fault signatures (benchmark signatures). All time domain signals are converted 

into FFT spectra, and then segmented into a number of equal segments (Nd). The 

maximum amplitude value for each segment of each signal is selected as an FFT feature, 

and compared with the corresponding maximum amplitude values for other signals. If 

there is a minimum difference of 10% between the maximum amplitude values for 

signals at all machine conditions, the algorithm produces Nd as a possible solution. 

Otherwise, the algorithm iteratively increases the number of segments (Nd) using a for-

loop until all fault patterns are successfully differentiated. 
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Figure 40: Illustrative flowchart of the proposed FS2FI algorithm. 

Figure 41 shows the process of the FS2FI algorithm in detail. The algorithm consists of 

four phases: in the first phase, the program loads all the recorded datasets, transforms the 

datasets from time to frequency domain using the MATLAB FFT function, and then 

divides the frequency range into two or more equal segments (Nd). A sample of 
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amplitude matrix (A) is shown in Table 13. The bin size was set to 1 Hz in order to 

maximise the resolution of FFT spectra (considering all component frequencies). This 

was carried out by using the fft() MATLAB function to set the FFT length as equal to the 

length of the signals (each of which contains 1 million samples).  

In the second phase, the program calculates the peak FFT amplitude value at each 

segment, and then calculates what is known as the “difference matrix” of size 

(NoCT*NoCT, Nd). NoCT  is the total number of machine conditions. The terms in this 

matrix are calculated by comparing the peak values of each fault spectrum with all the 

corresponding peak values of the other fault spectra (process A). If there are no 

intersections in a +/- 10% range of the peak values of the amplitudes of a spectrum, and 

the corresponding peak amplitudes of the other spectra, a value of 0 is inserted in the 

difference matrix at the corresponding row and column. This 10% range was selected to 

consider the median change in the measured values if the R6a sensor is removed and 

remounted. This percentage should not be less than the median remounting uncertainty of 

the R6a sensor, which is 5.4% [127]. 

In the third phase, the algorithm analyses the difference matrix to produce a Boolean 

Decision matrix of size (NoCT, NoCT) that can output the recommended segment size for 

successful pattern classification. Then, it sums the elements of each difference matrix 

row, converts the summed values into “zero” or “1”, and then inserts the results at the 

corresponding element into what is a “decision matrix” (process B). A zero value in the 

decision matrix indicates that there is an intersection between peak amplitudes, and that 

the pattern is not recognised. Hence, to recognise all patterns, all decision matrix 

elements have to be equal to 1, except for the diagonal elements which should be equal to 

zero. A sample of a decision matrix is shown in Table 14. 
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In the last phase, the algorithm analyses the decision matrix to check whether or not all 

patterns have been successfully recognised. If not, the Nd variable will be increased by 1, 

and thus the number of features will increase in an effort to differentiate all fault patterns 

across a larger number of segments. The last phase ensures that the CPU’s computational 

time is reduced to a minimum as the algorithm stops the iteration process once all 

patterns have been recognised (process C). 

The set of utilised variables and conditions are as follows: 

- Nd: Total number of frequency divisions (or segments) 

- NoC: Number of machine fault conditions (from 1 to 9) 

Process A: this compares all peak values of the benchmark AE frequency spectra 

together, and stores the results in a matrix called a “difference matrix” (MDifference) 

using the MATLAB equation (5). If two peak values are equal, or the difference between 

them is less than the median uncertainty percentage (+/- 10%), a value of 1 is inserted in 

the difference matrix at the corresponding row and column; this in turn gives an output 

that this segment cannot be utilised to differentiate between both fault patterns. 

Otherwise, if they are different, a value of zero is inserted. 

𝐌𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆(𝐈 + 𝐈𝐈, 𝐊) =   𝟎  𝒊𝒇  𝑨(𝑰𝑰,𝑲)− 𝑨(𝑰𝑰,𝑲) >= (+ −)⁄  𝟎.𝟏∗𝑨(𝑰𝑰,𝑲)    
𝟏  𝒊𝒇 𝑨(𝑰𝑰,𝑲)− 𝑨(𝑰𝑰,𝑲) <  (+ −)⁄ 𝟎.𝟏∗𝑨(𝑰𝑰,𝑲)        

               (5) 

 

where 

NoCT= 9 (total number of machine conditions), I=0:NoCT:NoCT*(NoCT-1), II=1:1:NoCT 

and K=1:1:Nd.  
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Process B: this sums the elements of each row of the difference matrix, converts the 

summed values into “zero” or “1”, and then inserts these values into a matrix called a 

“decision matrix” using the MATLAB equation (6). 

The decision matrix is then rearranged and put into the form shown in Table 14. If the 

summed value is equal to “zero”, this means that the fault pattern is detectable, and a 

value of “1” is then inserted into the decision matrix. Otherwise, a value of “zero” is 

inserted. 

𝑴𝒅𝒆𝒄𝒊𝒔𝒊𝒐𝒏(𝑰 + 𝑰𝑰,𝑵𝒐𝑪) =   
𝟎  𝒊𝒇 ∑ 𝑴𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆(𝑰+𝑰𝑰,𝑲)𝑵𝒅

𝑲=𝟏 >𝟎

𝟏  𝒊𝒇 ∑ 𝑴𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆(𝑰+𝑰𝑰,𝑲)𝑵𝒅
𝑲=𝟏 =𝟎

                                (6)  

 

Process C: this iteratively increases the number of divisions (Nd), and calculates new 

difference and decision matrices if any decision matrix element except diagonal elements 

is equal to “0” , and until all elements are equal to “1”. The maximum value of Nd was 

set to 1000 divisions. 



118 
 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Block diagram of the proposed FS2FI algorithm. 
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Having followed the previous training process to select the number of divisions, and 

having set up the benchmark spectral data for each fault condition, a rule-based 

MATLAB program was developed for online fault detection and identification using the 

proposed algorithm. The program converts the real-time signal to a FFT spectrum, and 

then divides the spectrum into a number of segments equal to Nd. It compares the values 

of peak amplitudes, one peak at each segment, of the online signal with all corresponding 

peak amplitudes of benchmark spectra. Based on the results of the comparison, the 

program then produces a matrix that identifies the benchmark machine condition feature 

which is nearest to the online signal feature at each segment. The machine condition with 

the largest number of matching features is then identified as a possible solution. The 

performance of the FS2FI algorithm is evaluated in Section 5.5.  

5.4 EXPERIMENTAL RESULTS 

Nine datasets were collected to train the proposed algorithm at each of the three different 

rotational speeds (3600 RPM, 6960 RPM and 15650 RPM), one dataset for each machine 

condition. Eighteen different datasets were collected for verification and testing, two 

datasets for each machine condition. The output of the algorithm proposed in the previous 

section is that 6 segments (Nd=6) with 6 different features, one feature at each segment, 

will be sufficient to differentiate between all of the machine conditions addressed, at all 

rotational speeds. 

5.4.1  AE FAULT SIGNATURES AT 3600 RPM. 

Figure 42 shows the AE fault signatures measured at bearing (A) using the R6a AE 

sensor at 3600 RPM. Figure 42 (a) indicates the benchmark AE signature of the healthy 

condition, while Figure 42 (b) to Figure 42 (i) show the other eight AE signatures of the 

fault conditions addressed. The shapes of the AE signatures are different, and faults can 

be easily differentiated. The spectra below were utilised to train the proposed algorithm. 
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Figure 42 (a): MC 1 

 

  

Figure 42 (b): MC 2 
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Figure 42 (c): MC 3  

 

 

Figure 42 (d): MC 4 
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Figure 42 (e): MC 5 

 

Figure 42 (f): MC 6 
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Figure 42 (g): MC #7 

 

Figure 42 (h): MC 8 
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Figure 42 (i): MC 9 

Figure 42: AE frequency spectra of the machine conditions addressed (2 - 140 kHz) at 

3600 RPM. 

5.4.1.1 THE MAIN FEATURES OF THE DIFFERENT FAULT CONDITIONS 

Table 13 summarises the main features of the training FFT spectra shown in Figure 42. 

These features were identified using the algorithm developed. The algorithm split the 

frequency range (2 kHz to 122 kHz) into six equal segments and identified the peak 

amplitude in each segment of each machine condition. 
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Table 10: Peak FFT amplitudes of all machine fault signatures at 3600 RPM. 

Freq. 

(Hz) 

2000-

21999 

22000-

41999 

42000-

61999 

62000-

81999 

82000-

101999 

102000-

121999 

MC 1 413,978 51,359 28,102 21,975 15,805 13,551 

MC 2 236,606 437,280 105,488 95,593 50,017 39,043 

MC 3 330,871 48,741 26,677 17,869 17,718 12,342 

MC 4 1,355,991 169,398 73,699 62,552 34,691 17,713 

MC 5 307,854 225,133 58,208 44,809 39,071 52,557 

MC 6 314,974 115,601 51,088 41,403 25,244 19,937 

MC 7 223,586 269,910 64,691 60,958 39,971 32,279 

MC 8 432,541 57,189 33,496 20,335 16,255 13,810 

MC 9 218,584 411,400 90,726 66,246 51,989 38,669 

 

The algorithm compared all the peak segment amplitudes with their corresponding 

benchmark values, and then placed the outputs into the decision matrix shown in Table 

14. The benchmark signals (MC 1 to MC 9) are shown in rows, and the validation signals 

(MC 1 to MC 9) are shown in columns. If the algorithm was not able to differentiate 

between two fault patterns, it set the corresponding matrix element to “0”. Otherwise it 

set it to “1”. For example, if MC 1 and MC 2 had been differentiable, the values of 

Decision matrix elements (1,2) and (2,1) would have been set to “1”. Otherwise, they 

would have been set to “0”.  As can be seen, all machine conditions were successfully 

identified at this segment number (6 segments). 
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Table 11: Decision matrix (MDecision). The benchmark signals (MC 1 to MC 9) are shown 

in rows, and the validation signals (MC 1 to MC 9) are shown in columns. 

 MC 1 MC 2 MC 3 MC 4 MC 5 MC 6 MC 7 MC 8 MC 9 

MC 1 0 1 1 1 1 1 1 1 1 

MC 2 1 0 1 1 1 1 1 1 1 

MC 3 1 1 0 1 1 1 1 1 1 

MC 4 1 1 1 0 1 1 1 1 1 

MC 5 1 1 1 1 0 1 1 1 1 

MC 6 1 1 1 1 1 0 1 1 1 

MC 7 1 1 1 1 1 1 0 1 1 

MC 8 1 1 1 1 1 1 1 0 1 

MC 9 1 1 1 1 1 1 1 1 0 

 

5.4.2 AE FAULT SIGNATURES AT 6960 RPM 

Figure 43 shows the AE signatures measured at bearing (A) using the R6a AE sensor at 

6960RPM. Figure 43 (a) indicates the benchmark signature of the healthy condition (MC 

1) while Figure 43 (b) to Figure 43 (i) show the signatures of the fault conditions (MC 2 

to MC 9). The shapes of AE signatures are different and faults can be easily identified. 

The spectra below (benchmark fault signatures) were utilised to train the proposed 

algorithm. 
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Figure 43 (a): MC 1 

  

Figure 43 (b): MC 2 
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Figure 43 (c): MC 3 

 

Figure 43 (d): MC 4 
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Figure 43 (e): MC 5 

 

Figure 43 (f): MC 6 
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Figure 43 (h): MC 7 

 

Figure 43 (g): MC 8 

0 2 4 6 8 10 12 14 

x 10 
4 

0 

1 

2 

3 

4 

5 

6 

7 
x 10 

5 

Frequency (Hz) 

A
m

p
lit

u
d

e
 (

V
) 

0 2 4 6 8 10 12 14 

x 10 
4 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
x 10 

5 

Frequency (Hz) 

A
m

p
lit

u
d

e
 (

V
) 
 



131 
 

 

Figure 43 (i): MC 9 

Figure 43: AE frequency spectra of the machine conditions addressed (2 -140 kHz) at  

6960 RPM. 

5.4.2.1 THE MAIN FEATURES OF THE DIFFERENT FAULT CONDITIONS 

Table 15 illustrates the main features of the training FFT spectra shown in Figure 43. 

These features were identified by the feature extraction algorithm which had been 

developed. The program split the frequency range (2 kHz to 122 kHz) into six equal 

segments, and identified the peak amplitude in each segment of each machine condition. 
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Table 12: Peak FFT amplitudes of all machine fault signatures at 6960 RPM. 

Freq. 

(Hz) 

2000-  

21999 

22000-

41999 

42000-

61999 

62000-

81999 

82000-

101999 

102000-

121999 

MC 1 1,167,096 128,868 50,777 35,866 27,004 21,370 

MC 2 228,564 442,717 113,155 107,457 64,208 43,737 

MC 3 615,039 91,521 40,470 25,733 22,720 17,667 

MC 4 1,104,438 315,618 87,224 40,506 44,697 38,060 

MC 5 419,489 399,212 94,537 63,086 59,530 87,375 

MC 6 539,553 106,488 42,832 39,763 23,470 18,269 

MC 7 644,833 285,015 79,516 59,659 40,048 29,725 

MC 8 942,486 123,970 49,047 34,752 25,396 21,895 

MC 9 285,771 456,392 104,739 61,873 57,300 55,109 

 

5.4.3 AE FAULT SIGNATURES AT 15650 RPM 

Figure 44 shows the AE signatures measured at bearing (A) using the R6a AE sensor at 

15650 RPM. Figure 44 (a) indicates the benchmark signature of the healthy condition 

(MC 1) while Figure 44 (b) to Figure 44 (i) show the signatures of the fault conditions 

addressed (MC 2 to MC 9). The shapes of AE signatures are different and faults can be 

easily differentiated. The spectra below (benchmark fault signatures) were utilised to 

train the proposed algorithm. 
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Figure 44 (a): MC 1 

  

Figure 44 (b): MC 2 
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Figure 44 (c): MC 3 

 

Figure 44 (d): MC 4 
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Figure 44 (e): MC 5 

 

Figure 44 (f): MC 6 
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Figure 44 (g): MC 7 

 

Figure 44 (h): MC 8 
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Figure 44 (i): MC 9 

Figure 44: AE frequency spectra of the machine conditions addressed (2 - 140 kHz) at 

15650 RPM. 

5.4.3.1 THE MAIN FEATURES OF THE DIFFERENT FAULT CONDITIONS 

Table 16 summarises the main features of the training FFT spectra shown in Figure 44. 

These features were identified using the proposed features extraction algorithm. The 
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identified the peak amplitude in each segment of each machine condition. 
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Table 13: Peak FFT amplitudes of all machine fault signatures at 15650 RPM. 

Freq. 

(Hz) 

2000-

21999 

22000-

41999 

42000-

61999 

62000-

81999 

82000-

101999 

102000-

121999 

MC 1 1,358,010 116,955 35,523 28,384 22,327 17,772 

MC 2 392,496 342,191 106,436 107,199 59,807 43,562 

MC 3 665,579 191,419 61,130 56,713 32,086 31,233 

MC 4 880,479 133,362 65,893 44,021 57,739 237,854 

MC 5 196,444 554,600 148,681 56,288 77,670 87,238 

MC 6 796,217 70,775 27,424 19,632 15,536 12,681 

MC 7 893,740 198,546 60,773 49,754 34,602 26,031 

MC 8 949,661 112,431 37,095 27,830 20,019 17,606 

MC 9 194,498 300,274 63,290 50,102 75,132 209,323 

 

It can be observed that, at high operational speeds, the pattern shapes obtained 

significantly changed. The fault patterns of MC 3 clearly identify a pattern shape change, 

as a significant difference can be seen between the patterns at 15650 RPM and the 

patterns at 3600 and 6960 RPM.  

5.5 PERFORMANCE EVALUATION 

A sample of nine datasets was utilised to evaluate the detection accuracy of the algorithm 

developed. The spectra were divided into six segments based on the output of the 

proposed FS2FI algorithm. Hence, for each machine condition, six segments with six 

different peak FFT amplitude values were successfully identified by the proposed 

algorithm.  

Table 17 shows the values of the peak amplitude spectral features of the nine machine 

conditions tested, at a rotational speed of 15650 (Dataset #2). These nine datasets were 

utilised for testing, and were different than those used for training (Table 16).  
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Table 14: Peak FFT amplitudes of the nine testing datasets at 15650 RPM. 

Freq. 

(Hz) 

2000-

21999 

22000-

41999 

42000-

61999 

62000-

81999 

82000-

101999 

102000-

121999 

MC 1 

1,430,25

8 116,183 37,852 27,367 23,301 20,272 

MC 2 187,027 420,193 97,205 91,691 77,619 45,597 

MC 3 803,298 229,145 61,524 46,563 36,117 30,080 

MC 4 890,325 155,739 81,476 48,524 61,330 281,009 

MC 5 279,718 515,917 132,680 54,501 81,390 104,639 

MC 6 816,365 73,517 30,237 22,441 17,349 15,172 

MC 7 585,540 200,443 56,368 48,188 39,798 26,220 

MC 8 915,350 103,044 38,767 28,527 23,067 16,007 

MC 9 216,585 382,526 66,894 45,617 73,898 202,596 

 

Table 18 presents the result of the FS2FI algorithm developed, and shows the comparison 

results between the peak FFT values of the testing dataset and all benchmark peak values 

at each corresponding segment. The algorithm selects the nearest benchmark peak value, 

and identifies to which machine condition it belongs. The algorithm only detects a fault if 

the majority of features are found to match one of the benchmark fault pattern features.  

The machine condition detected at each segment is shown in Table 18. With this segment 

size, seven conditions out of nine were successfully detected, yielding a detection 

accuracy of 63%. MC 1, 2, 4, 5, 6, 7 and 8 were successfully detected when the values of 

the FFT peak amplitudes shown in Table 17 were compared to the benchmark values 

shown in Table 16, thereby yielding a detection accuracy of 63%.  
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Table 15: Results of fault identification process using dataset # 2 at 15650 RPM (correct 

diagnoses in bold). 

Freq. 

(Hz) 

2000-

21999 

22000-

41999 

42000-

61999 

62000-

81999 

82000-

101999 

102000-

121999 

Detected 

MC 

MC 1 MC1 MC1 MC8 MC8 MC1 MC1 MC1 

MC 2 MC5 MC2 MC2 MC2 MC9 MC2 MC2 

MC 3 MC6 MC7 MC3 MC4 MC7 MC3 -- 

MC 4 MC4 MC4 MC4 MC7 MC2 MC4 MC4 

MC 5 MC5 MC5 MC5 MC5 MC5 MC5 MC5 

MC 6 MC6 MC6 MC6 MC6 MC6 MC8 MC6 

MC 7 MC3 MC7 MC7 MC7 MC7 MC7 MC7 

MC 8 MC8 MC8 MC8 MC1 MC1 MC8 MC8 

MC 9 MC5 MC2 MC4 MC4 MC9 MC9 -- 

 

The FS2FI algorithm which was developed yielded a 63% detection accuracy rate when 

using a single dataset for training. This low fault identification accuracy could be 

attributed to the methods utilised for pattern differentiation and pattern classification. The 

training is based on a single benchmark fault pattern for each machine condition which 

does not enable the algorithm to consider the variation in fault patterns over time. The 

algorithm only produces the minimum number of segments and features at which all fault 

patterns are identifiable. This adversely affects the fault identification performance as the 

algorithm does not consider the maximisation of differences between the features of fault 

signals, and its ability to accurately identify the fault pattern is limited. Moreover, the 

rule-based MATLAB program identifies faults on the basis of a minimum number of 

matching features, which in turn leads to false fault identifications. 
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5.6 MODIFIED FFT-BASED SEGMENTATION, FEATURE SELECTION AND FAULT 

IDENTIFICATION (MFS2FI) ALGORITHM  

The previously proposed algorithm failed to detect all the machine conditions addressed. 

The main disadvantages of the FS2FI algorithm are that it produces the minimum 

possible number (count) of segments and features to differentiate between fault patterns, 

and also utilises the minimum possible number of matching features to identify the fault. 

Moreover, it does not investigate other possible solutions at different segment sizes, nor 

quantify the similarity between the fault signal patterns of different machine conditions at 

each segment.   

Hence, a modified algorithm will be proposed in this section to improve detection 

accuracy, as well as to provide CM system developers with a measure for the differences 

between all of the machine condition features addressed, at each segment. This measure 

will be called “Confidence Level” (CL). The enhanced algorithm will determine the 

detection confidence level at each segment in order to give the ability to the developer of 

the CM system to weigh up the detection confidence level against the computing time 

and cost. The algorithm will be also utilised to evaluate the suitability of the spectral 

features of the AE technique for fault diagnosis in typical centrifugal equipment. 

The modified algorithm (MFS2FI) automatically breaks down the main frequency 

domain range into smaller groups of frequencies. The computing time required for 

building, analysing, verifying and testing segments will increase with every additional 

segment the algorithm creates. For this application, based on the distribution of the 

majority of FFT peaks, the segment sizes (S) were selected from a range of 1,000 to 

119,000 Hz, though more specifically starting from 2000 Hz with a loop step of 1000 Hz.  
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5.6.1 EMULATED MACHINE CONDITIONS  

The same experiments were carried out in the laboratory except for those which emulated 

bearing lubrication problems. To acquire more data samples, the emulation time was 

increased from 40s to 177s. When attempting to carry out experiments over a longer 

duration to emulate the lack of bearing lubrication faults, a complete failure of a bearing 

occurred due to rapid overheating at this high rotational speed.  For the purposes of risk 

management, as a lack of lubrication causes fusing, the four experiments that emulated 

the lack of lubrication fault over a time period of 177 seconds at this high rotational speed 

were excluded. 

Five machine conditions were emulated at the highest rotational speed (15,650 RPM), as 

shown in Table 19. The R6a sensor which was directly positioned above bearing (A) 

gave the highest reading at 15,650 RPM. Hence, as the experiment was designed to have 

one AE sensor only, the bearing (A) R6a sensor was selected for its proper installation 

and high AE readings. 

Table 16: Machine health conditions. 

 
Bearing (A) Bearing (B) Leakage 

MC 1 Healthy Healthy No 

MC 2 Healthy Healthy Yes 

MC 3 Outer race defect Healthy No 

MC 4 Healthy Outer race defect No 

MC 5 Outer race defect Outer race defect No 

 

Five experiments were conducted at a rotational speed of 15,650 RPM. The first 

experiment emulated the healthy condition while the other four experiments emulated 

four different fault conditions as shown in Table 19. The experiments described in 

Section 5.2 were carried out in the laboratory except for those which emulated bearing 
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lubrication problems. To acquire more data samples and datasets, the emulation time was 

increased from 40s to 177s. When attempting to carry out experiments over a longer 

duration to emulate the lack of bearing lubrication faults, a complete failure of a bearing 

occurred due to rapid overheating at this high rotational speed.  For the purposes of risk 

management, as a lack of lubrication causes fusing, the four experiments that emulated 

the lack of lubrication fault over a time period of 177 seconds at this high rotational speed 

were excluded. 

The data were sampled using the high speed NI DAQ board at a sampling rate of 1 MS/s 

for a time period of 1 s each. For each of the five machine conditions, a Machine Fault 

Signature Set (MFSS) was collected. Each MFSS includes 10 datasets (DS# 1 to DS# 10) 

collected at a fixed time interval of 13s (one set every 13 seconds). Each dataset has a 

size of 1x10
6 

samples at 1MHz. The first datasets for the five machine conditions were 

recorded 60 seconds after the blower reached its full rotational speed. 50% of the 50 

datasets (DS) were used for both training and validation (DS# 1, 3, 8, 10 for training and 

DS# 5 for validation) while the rest were used for testing. 

5.6.2 DETAILED ALGORITHM DESCRIPTION 

The main focus of the MFS2FI algorithm is to improve the feature selection and 

comparison processes to better classify fault patterns. Figure 45 illustrates a simplified 

flowchart that describes the fault identification process using a modified FFT-based 

segmentation and fault identification algorithm. It starts by transforming all training and 

real-time signals from time-domain to frequency-domain (FFT spectrum). Each spectrum 

is segmented into a number of equal segments (Segmentation of spectra). Each segment 

represents a specific range of frequencies, and has its own unique maximum amplitude 

value. The minimum and maximum benchmark amplitude values at each segment are 

calculated on the basis of the training FFT spectra of each machine condition. The 
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maximum FFT amplitude value at each segment of the real-time signal is selected as a 

unique feature of this frequency division (Feature selection). The selected feature is then 

compared to the corresponding minimum and maximum benchmark threshold amplitude 

values for all machine fault conditions. The algorithm selects the machine condition with 

the nearest maximum benchmark amplitude value and inserts the machine condition 

number at the matrix element that corresponds to the segment number. The algorithm 

also selects the machine condition with the nearest minimum benchmark amplitude value 

and inserts the machine condition number at the matrix element that corresponds to the 

segment number. The result of the comparison is inserted into a matrix split into two 

halves: the first half includes the results of a comparison between the real-time signal and 

the maximum benchmark amplitude values of all machine conditions, and the second half 

includes the results of a comparison between the signal and the minimum benchmark 

amplitude values. This matrix was purposely built up to facilitate the counting of 

matching features and hence the classification of machine fault patterns. This step is 

iteratively repeated from the first segment to the last segment in order to build up a 

comparison matrix that considers all segments (feature comparison). The comparison 

matrix is then utilised to count up the total number of features that match each machine 

condition (quantification of matching features).  

The fault identification process is based on the machine condition that mostly appears (or 

counted) in the matrix. For example, if an FFT spectrum with 100 segments and 100 

features is utilised for fault identification, and the results of the quantification of 

matching features show 40 features matching with MC 1, 35 features matching with MC 

2, and 25 features matching with MC 3, then the algorithm will identify MC 1 as a 

possible solution as it has the largest number of features matching this machine fault 

condition. 
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In order to improve the certainty of the detection and avoid false alarms, the algorithm is 

set to not identify the machine condition if the minimum difference between the first and 

second numbers of matching features was smaller than the CL. The CL is a numerical 

parameter whose maximum value increases with the number of segments or frequency 

divisions. The CL gives a real measure of the similarity between two fault spectra and its 

maximum value is equal to double the number of segments. Hence, the larger the number 

of segments, the better the level of fault identification certainty will be.   
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Figure 45: Illustrative flowchart of the MFS2FI algorithm.
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The detailed MFS2FI algorithm shown in Figure 46 starts by reading twenty training 

datasets, four datasets (DS# 1, 3, 8 and 10 from MFFS sets) for each machine condition 

for each of the five machine conditions. Then it converts the signal from time domain to 

frequency domain. Depending on the step value of loop “S”, the algorithm determines the 

maximum number of different segment sizes (SNmax) and the segment size (S). The 

algorithm utilises the value of S to determine the maximum number of segments (Kmax). 

SN and K are both needed for the nested loops as the number of iterations of SN loop 

ranges from 1 to SNmax, while the number ranges from 1 to Kmax for K. The frequency 

spectra and S, SNmax, K and Kmax values are then utilised to produce five FSelection 

matrices through processes A, B and C. The algorithm flowchart shown in Figure 46 

illustrates the main six processes, namely processes A, B, C, D, E and F. The full 

MATLAB (Version12) code is given in Appendix C. 
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Figure 46: Detailed flowchart of the MFS2FI algorithm. 
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The role of each process can be described as follows: 

Process A (first training cycle – XBM matrix): this process takes the following inputs: 

number of machine health conditions (NoC), segment size (S), frequency range value 

(Div). It then calculates the segment number (K). It also calculates the maximum FFT 

segment amplitudes (Xn(NoC,K)) of all training signals of all machine conditions. Xn is 

the number of training signal and ranges from 1 to 4. Then the process outputs the 

maximum and minimum amplitude values of each machine condition, and puts them all in 

Xmax(NoC,K) and Xmin(NoC,K) matrices. These two matrices are combined and 

considered as a benchmark threshold matrix for all the machine conditions addressed. 

Table 20 shows the output of Process A at K=1:2, and NoC=1:5 using the MATLAB 

equations shown below as equations (7), (8) and  (9). 

𝑿𝒎𝒂𝒙(𝑵𝒐𝑪,𝑲) = 𝐦𝐚𝐱 (𝑿𝒏(𝑵𝒐𝑪,𝑲))                                                                     (7) 

 

𝑿𝒎𝒊𝒏(𝑵𝒐𝑪,𝑲) = 𝒎𝒊𝒏 (𝑿𝒏(𝑵𝒐𝑪,𝑲))                                                                     (8) 

 

𝑿𝑩𝑴 = (𝑿𝒎𝒂𝒙
𝑿𝒎𝒊𝒏

)                                                                                                  (9) 
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Table 17: Benchmark matrix (XBM) using the training datasets number DS# 1, 3, 8 and 

10. 

(a)XBM – Xmax section. 

 

Segment 1 (S1) 

(2 :108.99 kHz) 

Segment 2 (S2) 

(109 : 121.99 kHz) 

MC 1 19795 492 

MC 2 14934 457 

MC 3 55989 270 

MC 4 85780 15621 

MC 5 36788 6008 

 

(b)XBM – Xmin section. 

 

Segment 1 (S1) 

(2 : 108.99 kHz) 

Segment 2 (S2) 

(109 to 121.99 kHz) 

MC 1 13312 446 

MC 2 9422 451 

MC 3 45789 163 

MC 4 79350 9871 

MC 5 23106 4749 

 

Process B (Percentage difference – P matrix): This process takes the XBM matrix, in 

addition to a maximum of five new AE datasets (online data), as inputs. Firstly the 

process segments the new signals into K segments and then calculates the percentage 

differences between the amplitudes of the corresponding new segmented datasets 

(maximum of 5 datasets per patch) and the benchmark threshold amplitudes at each 

segment; finally, it yields five percentage matrices (P1 to P5) where the subscript indicates 

the dataset number (or the machine condition number in this example). The percentage 

differences are calculated for all the segments using MATLAB equation (10).  𝑁𝑜𝐷𝑆𝑇 is 

the total number of new datasets i.e. 5. In this example, the NoDST is equal to the total 

number of machine conditions (NoCT). 



151 
 

For example, a new dataset for machine condition 2 (MC 2) is converted into frequency 

domain, and then segmented into (K) segments. The maximum amplitude at each 

segment (X) is calculated, and then compared to all corresponding benchmark threshold 

amplitudes (XBM). The results of this comparison are put into the P2 matrix. 

 𝑷𝑵𝒐𝑪 (𝟏: 𝟐 ∗ 𝑵𝒐𝑪𝑻 (𝒐𝒓 𝑵𝒐𝑫𝑺𝑻),𝑲) =
𝑿𝑵𝒐𝑪(𝟏:𝟐∗𝑵𝒐𝑪𝑻,𝑲)− 𝑿𝑩𝑴(𝟏:𝟐∗𝑵𝒐𝑪𝑻,𝑲)

𝑿𝑩𝑴 (𝟏:𝟐∗𝑵𝒐𝑪𝑻,𝑲)
 %                (10) 

Process C (Feature selection – FSelection matrix): This process builds a matrix 

portioned into two equal sections called FSelection for each machine condition. For the 

first section, the algorithm compares the maximum amplitudes of each of the five new 

AE datasets to all XBM elements at each segment (K) yielding five FSelection matrices. 

Then, if the amplitude of the new dataset does not fit inside the range X (from 

Xmax(NoC, K) to Xmin(NoC, K)), the algorithm sets the corresponding FSelection 

element value to zero. Otherwise, the value is set according to the machine condition 

number which has the amplitude value within its amplitude interval. The machine 

condition numbers are 1, 2, 3, 4 and 5.  

The second section of the FSelection matrix is calculated by selecting the minimum 

absolute percentage of the corresponding P matrix (P1 to P5). The corresponding 

FSelection matrix element is set to 1, 2, 3, 4 or 5 according to the machine condition 

number (NoC) using MATLAB equations (11) and (12), while the other matrix elements 

are set to “zero”. The minimum absolute percentage is selected to limit the selection to 

only one pattern (one machine condition) for each dataset of the five new datasets. 

Hence, the corresponding matrix elements are set to zero when two or more identical P 

matrix elements are observed. A zero value means that this segment cannot be utilised to 

identify this fault.  
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Table 21 shows a FSelection matrix calculated using DS# 5 from MFSS# 5 (MC 5), at a 

segment size of 109 kHz.  The matrix shown in Table 21 includes the results of the 

comparison between the MC 5 verification dataset and XBM. The results show that the 

signal features of the verification dataset match all the four benchmark signal features of 

machine condition 5. It can be seen that ‘5’ appears against MC 5 in both segments and 

matrix sections, and that it appears four times, each time showing a correct identification 

at this segment. 

𝑴𝑭𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝑵𝒐𝑪
( 𝑹𝒐𝒘𝑰𝒏𝒅𝒆𝒙(𝐦𝐢𝐧(𝑷𝑵𝒐𝑪(𝟏:𝑵𝒐𝑪𝑻, 𝑲)),𝑲) =

 𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥(min(𝑃𝑁𝑜𝐶(1:𝑁𝑜𝐶𝑇 , 𝐾))                                                                             (11) 

𝑴𝑭𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝑵𝒐𝑪
(𝑹𝒐𝒘𝑰𝒏𝒅𝒆𝒙(𝐦𝐢𝐧(𝑷𝑵𝒐𝑪(𝑵𝒐𝑪 + 𝟏: 𝟐 ∗ 𝑵𝒐𝑪𝑻, 𝑲)),𝑲) =

 𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥(min(𝑃𝑁𝑜𝐶(𝑁𝑜𝐶 + 1: 2 ∗ 𝑁𝑜𝐶𝑇 , 𝐾))                                                           (12) 
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Table 18: FSelection matrix used for the fault identification of MC 5 using a segment size 

of 109 kHz (dataset number DS#5 from MFSS#5). 

    Segment 1 (S1) Segment 2 (S2) 

Section I 

MC 1 0 0 

MC 2 0 0 

MC 3 0 0 

MC 4 0 0 

MC 5 5 5 

Section II 

MC 1 0 0 

MC 2 0 0 

MC 3 0 0 

MC 4 0 0 

MC 5 5 5 

 

Process D (Fault pre-identification – FPre-Identification matrix): This process 

merges the five FSelection matrices into one matrix, defined as a Pre-decision matrix, by 

counting up the features that match the benchmark threshold of each machine condition 

using MATLAB equation (13). This can be achieved by counting up every occurrence of 

the machine condition number in the matrix. The matrix consists of five columns (one for 

each validation signal), and five rows (one for each benchmark signal).  

Table 22 illustrates the outputs of process D at different segment sizes using DS#5. DS#5 

includes 5 datasets; one dataset for each machine condition (MFSS#1 to MFSS#5), and it 

was randomly selected to verify the algorithm. 𝑿𝑵𝒐𝑪 indicates the number of the MFSS 

from which the validation kdataset was selected. For a 100% correct diagnosis, the 

maximum number of matching features should exist at the matrix diagonal elements. 

Thus, as presented in Table 22, the MC 1 signal cannot be diagnosed when S = 109 Hz, 

while it can be correctly diagnosed when S = 1 kHz. 

𝑴𝑭𝑷𝒓𝒆−𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏(NoC, 𝑿𝑵𝒐𝑪)= 𝑐𝑜𝑢𝑛𝑡(𝑁𝑜𝐶, 𝑅𝑎𝑛𝑔𝑒:𝑀𝐹𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝐶
(: , : ))            (13) 
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Table 19: FPre-Identification matrix using five DS#5 from MFSS#1 to MFSS#5; one 

dataset for each machine condition (largest  number of matching features in bold).  

(a) FPre-Identification matrix using a segment size of 109 kHz. 

 

 
MC 1 MC 2 MC 3 MC 4 MC 5 

MC 1 2 1 0 0 0 

MC 2 2 3 0 0 0 

MC 3 0 0 2 0 0 

MC 4 0 0 0 4 0 

MC 5 0 0 1 0 4 

 

(b) FPre-Identification matrix using a segment size of 1 kHz. 

 

 
MC 1 MC 2 MC 3 MC 4 MC 5 

MC 1 180 62 16 4 41 

MC 2 63 153 17 2 20 

MC 3 20 23 169 2 20 

MC 4 3 2 2 198 2 

MC 5 35 31 28 0 163 

 

Process E (Fault identification – F-Identification matrix): This part of the modified 

algorithm checks whether the patterns of the different machine conditions are recognised.  

The calculation is based on the Pre-Identification matrix, where the algorithm selects the 

machine condition with the largest number of features (mostly appeared in each of the 

matrix column). If the selection is correct and the machine condition is successfully 

detected at this set of segments, the algorithm sets the value of the corresponding zero F-

Identification matrix element to “1” using MATLAB equation (14); in the meantime, 

other column element values remain as zero. Otherwise, the algorithm does not change 

the value of the corresponding F-Identification matrix element. 

Table 23 shows the output of Process E at the same two segment sizes. The table consists 

of five columns (one for each validation signal), and five rows (one for each benchmark 

Benchmark 

Validation 

Benchmark 

Validation 
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signal).  It can be seen that at a segment size of 109 kHz (Table 23(a)), the identification 

of MC 1 is not possible, whilst at 1kHz (Table 23(b)), all machine conditions are 

successfully identified. 

𝑴𝑭−𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 (𝑵𝒐𝑪,𝑿𝑵𝒐𝑪) =

 1   𝑖𝑓 (𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥(max ((𝑀𝐹𝑃𝑟𝑒−𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(1:𝑁𝑜𝐶 𝑇 , 𝑋𝑁𝑜𝐶))) = 𝑁𝑜𝐶)                          (14) 

Table 20: F-Identification matrix for DS#5. The identifiabilty of each machine condition 

is shown in bold (“1” for identified machine conditions and “0” for non-idnetified 

conditions). 

(a) F-Identification matrix using a segment size of 109 kHz. 

 

 
MC 1 MC 2 MC 3 MC 4 MC 5 

MC 1 0 0 0 0 0 

MC 2 0 1 0 0 0 

MC 3 0 0 1 0 0 

MC 4 0 0 0 1 0 

MC 5 0 0 0 0 1 

 

(b) F-Identification matrix using a segment size of 1 kHz. 

 

 
MC 1 MC 2 MC 3 MC 4 MC 5 

MC 1 1 0 0 0 0 

MC 2 0 1 0 0 0 

MC 3 0 0 1 0 0 

MC 4 0 0 0 1 0 

MC 5 0 0 0 0 1 

 

Process F (Detectability of faults at all segment sizes - FFT segment matrix): The 

FFT segment matrix is built to show the detectability of different machine conditions at 

all segment sizes (S). These segment sizes are then passed to the fault identification part 

of the algorithm for machine condition identification. This matrix is calculated on the 

Benchmark 

Validation 

Benchmark 

Validation 
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basis of the previously calculated F-Identification matrix by placing the diagonal 

elements in a column matrix with a size of (5 x 1), and then inserting the simplified 

matrix into the FFT Segment matrix. Hence, the final dimensions of the matrix will be (5 

x S). Table 24 illustrates an FFT segment matrix for five machine health conditions (NoC 

= 1:5) at all segment sizes (Sn=119:1 kHz), given a frequency range of 2 kHz to 122 kHz, 

as considered in the analysis.  

The segment sizes with all row elements equal to 1 are to be passed to the fault 

identification algorithm for fast machine condition detection. The fault identification 

algorithm which is part of the fault MFS2FI algorithm will then select the most 

appropriate segment size depending on the overall confidence level (CL) required. The 

confidence level is defined as the difference between the number of matching features of 

the detected machine condition (correct diagnosis), and the second highest number of 

features matching other machine conditions.  

The overall confidence level is calculated on the basis of the Pre-Identification matrix 

shown in Table 22, and is defined as the smallest confidence level number in a five 

confidence level array (one confidence level for each training dataset). The maximum 

confidence level value is equal to twice the number of segments (K), and an overall 

confidence level of zero means that the number of segments is not sufficient for 

differentiating between the frequency spectra. For example, Table 22 (b) shows that the 

values of the differences between the sums of the machine condition features (MC 1, MC 

2,  MC 3, MC 4 and MC 5 ) are calculated as 117 (180-63), 91, 141, 194 and 122, 

respectively. The maximum number of the confidence level at 1 kHz is 238 (2 x 119 

segments). Hence, the smallest number of these CF values is 91, which is considered to 

be the overall confidence level. The larger the overall confidence level number, the 

better. Hence, although the computing cost at a segment size of 1 kHz is relatively high, 
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the accuracy of the solution at this segment size is best. Table 24 indicates that 108 kHz 

is the largest interval at which a correct diagnosis can be made. 

Table 21: Transposed FFT segment matrix for the machine conditions addressed using 

DS#5 from all MFSS The results show the identifiability of each machine condition at 

different segment sizes ranging (in descending order) from 119 to 1 kHz (correct 

diagnosis of the entire machine conditions in bold). 

 

 
MC 1 MC 2 MC 3 MC 4 MC 5 CL 

119 kHz 0 1 0 1 0 0 

118 kHz 0 0 1 1 1 0 

117 kHz 1 1 0 1 1 0 

116 kHz 1 1 0 1 1 0 

115 kHz 0 1 0 1 1 0 

114 kHz 0 1 1 1 1 0 

113 kHz 0 1 1 1 1 0 

112 kHz 0 1 1 1 1 0 

111 kHz 0 1 1 1 1 0 

110 kHz 0 1 1 1 1 0 

109 kHz 0 1 1 1 1 0 

108 kHz 1 1 1 1 1 1 

107kHz- 2 kHz 1 1 1 1 1 2-40 

1 kHz 1 1 1 1 1 91 

 

Figure 47 gives a detailed example of how the algorithm produces the different matrices 

using the main processes at a segment size of 109 kHz. In this figure, only one of the five 

new datasets was processed; the other four datasets should be processed in order to 

complete the Pre-Identification and Identification matrices.  

Segm. size 

Testing DS 
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Process A outputs the benchmark matrix (XBM) that includes the maximum and minimum 

benchmark amplitudes at each segment for all of the machine conditions addressed. XBM 

and X1 matrices are used to calculate the P1 matrix in process B. The process should 

finally output five P matrices for five new datasets (X1, X2, X3, X4 and X5). Process C 

compares X1 matrix to XBM matrix in order to calculate the first section of the FSelection 

matrix. The second section of the FSelection matrix is calculated by selecting the 

minimum percentage at each segment. In section II of the FSelection matrix, number “1” 

in segment S1 means that the first segment identifies MC1, and number “2” in segment S2 

means that the second segment identifies MC2. Process C should finally produce five 

FSelection matrices, one matrix for each dataset (or machine condition) using X1, X2, 

X3, X4 and X5 datasets. Process D calculates five Fault Pre_Identification matrices based 

on the pre-calculated FSelection matrices. In this process, the algorithm sums the 

matching features of each machine condition, for example, two features for MC1, two 

features for MC2, and no features for others. Process E selects the machine condition with 

the largest number of features, and puts it into the corresponding cell of the F-

Identification matrix. Finally, the F-Identification matrix is transformed into a column 

matrix, and is inserted into its corresponding FFT Segment matrix column to give the full 

detection information at this segment size. 
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Figure 47:  Example of how the MFS2FI algorithm processes a new dataset (DS5(X1) 

from MFSS#1, using a segment size of 109 kHz. FFT AE spectra were segmented into 

two segments (K= S1 and S2). 

5.7  PERFORMANCE EVALUATION OF THE MODIFIED ALGORITHM 

The fault identification performance of the MFS2FI algorithm was assessed using 25 

different datasets. Five datasets for each of the five emulated machine conditions were 

collected using the experimental setup presented in chapter 4.  

Figure 48 shows two samples of the twenty five AE FFT frequency spectra: the first 

figure (a) shows a healthy machine condition signature of MC 1, while the second figure 

(b) shows a faulty machine condition signature of MC 4. It can be observed that the 
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𝐷𝑆₁ 𝐷𝑆₂ 𝐷𝑆₃ 𝐷𝑆₄ 𝐷𝑆₅

0 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮  

 
 
 
 
 

 

 F Selection 1 

𝑀𝐶1

𝑀𝐶2

𝑀𝐶3

𝑀𝐶4

𝑀𝐶5

𝑀𝐶1

𝑀𝐶2

𝑀𝐶3

𝑀𝐶4

𝑀𝐶5

  

 
 
 
 
 
 
 
 
 
 
 
 
𝑆₁ 𝑆₂
0 1
2 0
0 0
0 0
0 0
1 0
0 2
0 0
0 0
0 0  

 
 
 
 
 
 
 
 
 
 
 

 

 Section I 
Based on 

benchmark 

thresholds 

Section II 
Based on    

P matrix 

if (Row index( 

max(: ,DS1))==1)  

{ Identification (1, 

DS1)=1;} 

 
Pre-Identification Matrix 

 

𝑀𝐶1

𝑀𝐶2

𝑀𝐶3

𝑀𝐶4

𝑀𝐶5

   

 
 
 
 
 
 
𝐷𝑆₁ 𝐷𝑆₂ 𝐷𝑆₃ 𝐷𝑆₄ 𝐷𝑆₅

2 ⋮ ⋮ ⋮ ⋮
2 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮  

 
 
 
 
 

 

Pre-Identification (NoC, 

DS1)=Count(NoC, Range: 

All FSelection matrix 

elements) 
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maximum amplitude of MC 1 in segment 1 is 14,413, while the maximum amplitude of 

MC 4 in segment 1 is 85,780. Due to the large difference in maximum amplitude values 

between these two machine conditions, a segment size of 119 kHz (from 2 kHz to 121 

kHz) can be utilised for successful machine fault classification. Otherwise, if the 

difference between the maximum ampltidue values is small, the FFT spectra should be 

segmented into a larger number of divisions in order to increase the number of FFT 

features, and in turn, improve fault classification performance. 
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(a) Machine condition 1 (MC1). 

 

(b) Machine condition 4 (MC4). 

Figure 48: AE FFT spectra of machine conditions 1 and 4. 

Table 25 presents the number of features matching each machine condition, and 

summarises the results of the testing process. 50% of the data (five datasets for each 

machine condition) were utilised for testing. The results presented in the table show that 

the MFS2FI algorithm managed to detect all of the machine conditions in issue with a 
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detection accuracy of 100%.  The overall confidence level at 1 kHz is much higher than 

the overall confidence level at 108 kHz as the differences between the minimum number 

of matching features at 1 and 108 kHz are 92 and 1, respectively. However, all machine 

health conditions were successfully detected at both segment sizes with a success rate of 

100%. 
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Table 22: Fault Pre-Identification matrices for 25 datasets at two different segment sizes 

(largest number of matching features in bold). 

Segment size: 1 kHz 108 kHz 

Testing dataset#: 2 4 6 7 9 2 4 6 7 9 

Healthy 

MC 1 177 182 170 182 165 3 3 3 3 2 

MC 2 56 63 65 63 61 1 1 1 1 0 

MC 3 21 18 17 18 23 0 0 0 0 0 

MC 4 2 3 6 3 3 0 0 0 0 0 

MC 5 36 37 35 37 37 0 0 0 0 1 

Leak 

MC 1 68 65 64 65 59 1 0 0 0 0 

MC 2 166 157 165 157 165 2 4 4 4 3 

MC 3 21 21 24 21 24 0 0 0 0 0 

MC 4 3 2 4 2 3 0 0 0 0 0 

MC 5 33 33 37 33 31 0 0 0 0 0 

Impeller 

MC 1 11 13 20 13 18 0 0 0 0 0 

MC 2 20 17 15 17 15 0 0 0 0 0 

MC 3 165 172 187 172 176 2 2 4 2 3 

MC 4 1 2 1 2 2 0 0 0 0 0 

MC 5 31 29 27 29 26 1 1 0 1 0 

Belt 

MC 1 1 4 2 4 3 0 0 0 0 0 

MC 2 4 2 0 2 4 0 0 0 0 0 

MC 3 0 2 2 2 1 0 0 0 0 0 

MC 4 198 203 190 203 189 3 4 4 4 4 

MC 5 2 0 2 0 0 0 0 0 0 0 

Both 

MC 1 29 36 26 36 20 0 0 0 0 0 

MC 2 24 20 21 20 18 0 0 0 0 0 

MC 3 20 22 19 22 11 0 0 0 0 0 

MC 4 7 3 2 3 2 0 0 0 0 0 

MC 5 165 167 177 167 172 3 4 4 4 3 
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5.8 DISCUSSION 

The FS2FI algorithm segments the frequency spectra of benchmark and on-line signals 

into a number of segments which is based on the minimum number of features required 

to differentiate between all machine fault signatures. This is carried out by identifying the 

segment size at which all fault patterns are identifiable. The maximum FFT amplitude 

value at each segment is employed as a unique feature, and is compared with all the 

corresponding maximum FFT amplitude values of other machine conditions.  

During the training and verification processes, all machine fault patterns were 

successfully recognised. This was achieved by segmenting the frequency spectra into six 

equal divisions (section 5.5). Single faults occurring in one component, as well as 

multiple faults occurring in multiple components, were utilised to accurately evaluate the 

performance of the algorithm. 

Early detection of lubrication faults can extend the life of bearings, and hence reduce 

breakdowns. The AE technique was employed to detect the onset of bearing lubrication 

faults as it provides indicative data for friction and impact. On the basis of the 

performance evaluation results presented in section 5.5, the algorithm managed to detect 

all the lubrication faults emulated (MC 2, MC 7 and MC 8). However, the FS2FI 

algorithm failed to detect all the machine conditions in issue as it yielded a relatively low 

detection accuracy of 63%. This detection accuracy is considered low in comparison to 

other existing feature selection techniques such as Fisher score, ANN and SVM. The low 

detection accuracy mainly resulted from the fact that the algorithm was not properly 

trained as it only considers a single training dataset. Moreover, the algorithm does not 

produce multiple solutions with a different number of feature differences that can 

improve fault identification performance, and give full control to developers of CM 

systems. Another drawback is that the certainty of the results is undetermined as the 
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algorithm does not quantify the number of matching features between the on-line signal 

and the patterns of the benchmark signals.  

In order to counteract the relatively low detection accuracy and avoid the drawbacks of 

the MFS2FI algorithm, a modified and enhanced algorithm (MFS2FI) was developed and 

introduced in section 5.6. The number of datasets was increased in order to improve the 

training and testing processes. Table 24 clearly shows that the MFS2FI algorithm yielded 

a detection accuracy of 100%, and that all machine conditions were successfully 

identified at a segment size of 108 kHz, though the overall confidence level was small at 

this large segment size (CL=1 feature).  

Despite successful detection of all machine conditions in question at this large segment 

size, the small confidence level may adversely affect the certainty of fault classification. 

It can be observed that the overall confidence level is best at 1 kHz segment size (CL= 91 

features). Therefore, although the computing time and cost are relatively high at 1 kHz, 

the use of this segment size is recommended with a view to improving the certainty of the 

detection of centrifugal compressor faults. In large scale CM systems, a trade-off between 

the computing time and the confidence level is required in order to find the most suitable 

segment size that provides a good confidence level at the lowest possible computing time 

and cost. However, the development and computing time of the proposed MFS2FI 

algorithm will remain small in comparison to AI-based classifiers (see chapter 6). 

5.9 SUMMARY 

This chapter has described a novel FFT-based segmentation and fault identification 

algorithm (MFS2FI) which is easy to implement, automated, non-AI, fast, and 

systematic.  The algorithm is automated in that it identifies the best number of segments 

at which all fault patterns could be accurately recognized. However, the algorithm still 
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needs to be fed with machine fault signatures which should be obtained experimentally. 

For full scale LNG compressors, damage should be added deliberately to the equipment 

in order to collect signatures of common faults or one could wait for naturally occurring 

faults to occur and record there cause and the data. The more fault signatures collected 

the more accurate results the algorithm will produce. 

This algorithm was developed to overcome the drawbacks of existing fault classifiers. 

The drawbacks of existing classifiers, as reported in the literature, are the relatively low 

accuracy of the non-AI classifiers, the complexity of the NN architecture design, the 

sensitivity to design parameters, and the high computing and development times of AI-

based classifiers, even if some optimisation techniques are applied to ANN [80] (see 

section 2.5).  

The MFS2FI algorithm yielded a fault identification accuracy of 100% and a good 

overall confidence level of 91 differences between the machine condition patterns 

identified (91 features out of 238). A potential benefit of the MFS2FI algorithm is that it 

can be used by non-specialist engineers as it does not require any detailed knowledge or 

experience of AI methods, making it easy to implement. The robustness of the algorithm 

proposed is investigated in Chapter 6. The investigation includes the impact of noise 

disturbance and machine degradation on the accuracy of fault detection and 

identification.  

The scope of this chapter was extended further by investigating the suitability of the AE 

technique for the detection of machine faults of high speed centrifugal equipment. It 

demonstrated its effectiveness in identifying the machine conditions in issue. 
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Chapter 6. Assessment of robustness and 

performance comparison with standard 

FFT and neural network pattern recognition 

classifiers 

6. CHAPTER 6. ASSESSMENT OF ROBUSTNESS AND PERFORMANCE 

COMPARISON WITH OTHER METHOD 

6.1  INTRODUCTION  

The fault classification performance of FFT-based fault identification algorithms varies 

according to data window time length, location and sampling frequency. Although longer 

data windows and higher sampling frequencies provide better information, they may 

cause difficulties in recognising fault patterns on-line due to the high computing time 

needed for training and testing [128]. A performance evaluation of fault identification 

algorithms should be carried out using datasets from new experiments and with different 

operating conditions in order to check their ability to classify faults.  

As there are numerous existing fault detection algorithms, a comparative study should be 

carried out to check the competitiveness of new algorithms. Algorithms can be compared 

by evaluating their detection accuracy, robustness, computing and development time, and 

costs needed for successful online fault identification.   

Therefore, the main contribution of this chapter is to investigate the robustness of the 

algorithm proposed in chapter 5. This will be achieved by evaluating performance 

changes arising from variation of data window time length, location, and rotational speed. 

Moreover, a comparative study will be carried out in this chapter to compare the 
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effectiveness of the proposed MFS2FI algorithm with other methods, namely the basic 

FFT classifier and the neural network-based classifier (see section 6.3).  

6.2 ROBUSTNESS ASSESSMENT 

A sensitivity analysis was performed to properly evaluate the robustness of the proposed 

algorithm. The sensitivity analysis introduced in this section includes the sensitivity of 

the results to data window size, location, and normal changes in rotational speed and 

machine degradation.   

6.2.1 VARIATION OF DATA WINDOW LENGTH 

The performance of the proposed MFS2FI algorithm was tested iteratively over 76 

window lengths (or signal time lengths) using 10 datasets of two randomly selected fault 

conditions (MC 2 and MC 5). The full length of each of the measured signals which was 

utilised in the previous section was considered.   

Figure 49 shows an illustrative figure of a variation in data window length. In order to 

extract the component frequencies at 122 kHz, the minimum sampling rate must be equal 

to or greater than 244 k Samples/s, based on Nyquest theory. Hence 250 K Samples, 10 K 

samples and 1000 K Samples were selected as the minimum window size, size increment, 

and maximum window size, respectively.  

Table 26 presents the feature count in addition to the CL value of the first three window 

sizes, the latter of which are samples. It also shows the numbers of matching FFT 

features between the machine fault signatures (threshold values) and the signals which 

were utilised for testing at different window lengths.  
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Table 23: Fault Pre-Identification matrices and CL factors for 10 datasets using the first 

three window lengths. The segment size is 1 kHz (correct diagnosis in bold). 

Machine condition Leak (MC 2) Both (MC 5) 

Data Set (DS) # 2 4 6 7 9 2 4 6 7 9 

From data 

sample no. 

1 to 250 k 

 

MC 1 65 65 62 58 59 18 19 17 16 12 

MC 2 141 155 144 145 152 19 17 17 11 16 

MC 3 8 4 7 5 7 7 10 3 4 5 

MC 4 25 24 22 25 23 20 33 18 20 23 

MC 5 29 28 24 26 24 173 150 185 181 173 

CL 76 90 82 87 93 153 117 167 161 150 

From data 

sample no. 

1 to 260 k 

 

MC 1 61 62 73 59 65 12 22 21 24 24 

MC 2 135 147 145 145 154 12 24 6 10 11 

MC 3 6 8 5 9 10 2 8 3 3 3 

MC 4 25 29 22 28 21 32 33 14 18 16 

MC 5 32 25 23 24 29 178 155 193 167 178 

CL 74 85 72 86 89 146 122 172 143 154 

From data 

sample no. 

1 to 270 k 

 

MC 1 55 51 65 46 57 21 25 15 19 8 

MC 2 143 156 150 156 142 10 24 9 5 15 

MC 3 6 4 9 8 9 4 8 7 9 8 

MC 4 25 24 22 23 24 23 31 14 11 13 

MC 5 33 25 30 25 24 173 156 186 171 185 

CL 88 105 85 110 85 150 125 171 152 170 

 

On the basis of the results shown in Table 26, the two machine fault conditions were 

successfully detected at all window lengths. Due to the impracticality of presenting the 

results for 76 window lengths, the prediction confidence level will be analysed 

statistically. The statistical mean (𝜇), standard deviation (𝜎), and maximum and 

minimum values of CL were calculated to evaluate and summarise the effect of the 

window length on the detection performance of the proposed fault identification 

algorithm using equations (15) and (16).  
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𝝁 =  
1

𝑁
∑ XiN

i=1                                                                                                                    (15) 

𝝈 =  √
1

𝑁
∑ (𝑋𝑖 − 𝜇)2𝑁

𝑖=1                                                                                                       (16) 

where  

X= CL Value 

N= Number of samples 

The mean, standard deviation, maximum and minimum values of the 76 overall 

Confidence Levels (CL) are 101.17, 12.79, 134 and 59, respectively. According to the 

Empirical rule for normal data [129], approximately 99.7 % of data lies within  𝜇  3 𝜎−
+  . 

Thus the CL value at any window length will fall in the range of 101.17  38.37−
+ . An 

overall CL of 101.17 means that there is a minimum difference between the features of 

any two machine fault patterns of more than 49% (101.17/238). However, the worst value 

of the overall CL (59) is still good for the classification of all of the fault patterns. The 

overall CL value should preferably be greater than 40 feature differences, and greater 

than 20% of the total count of features (being equal to double the segment count).
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Figure 49: Illustrative figure for the variable data window length analysis at L = 250 kHz, 

300 kHz and 375 kHz. 

6.2.2 SLIDING DATA WINDOW ANALYSIS  

As the measured signal changes over time during the data collection process, different 

datasets with different data window lengths and positions can be extracted from the basic 

signals captured. Thus, this section will study the effect of changing the window position 

on the performance of the proposed detection algorithm, on the basis that the signal was 

captured for a period of 1 second, at a sampling rate of 1 MHz, and with a data size of 1 

mega samples.  MC 2 and MC 5 represent the minor and the major fault conditions and 

hence they were selected for this sliding window analysis. MC 2 represents the leak fault 

and has slight variations in comparison to the healthy condition time signal; while MC 5 

represents combined bearing faults.   

Applying a sliding window, a window size of 250 k Samples was moved iteratively over 

the one million data samples. This was carried out by shifting the window by a time step 

(or offset) of 10 k samples.   

Figure 49 depicts a sample of the analysed results of three sliding windows each with a 
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window length of 250 milliseconds and a sample data size of 250 K. All the machine 

conditions addressed were successfully detected at all window positions. Table 27 shows 

the numbers of matching FFT features between the benchmark machine fault signals 

(threshold values) and the signals which were utilised for testing at different data window 

positions.   

Table 24: Fault Pre-Identification matrices for 10 datasets using the first three moving 

window positions. The segment size is 1 kHz (correct diagnosis in bold). 

Machine condition MC 2 MC 5 

Data set # 2 4 6 7 9 2 4 6 7 9 

From data 

sample no. 

1 to 250 k 

 

MC 1 64 69 52 65 68 15 29 24 17 18 

MC 2 131 142 164 145 144 18 23 11 14 13 

MC 3 8 6 7 6 8 5 7 2 3 4 

MC 4 33 31 27 29 19 30 32 20 17 18 

MC 5 25 26 29 24 20 171 139 185 179 178 

CL 67 73 112 80 76 141 107 161 162 160 

From data 

sample no. 

10 k to 260 k 

 

MC 1 61 72 54 71 56 19 24 17 16 17 

MC 2 144 146 152 148 149 17 22 12 15 14 

MC 3 6 5 6 8 8 9 8 3 5 4 

MC 4 32 33 27 27 26 27 36 23 19 21 

MC 5 31 22 29 25 29 173 150 190 182 182 

CL 83 74 98 77 93 146 114 167 163 161 

From data 

sample no. 

20 k to 270 k 

 

MC 1 64 72 65 64 68 17 23 20 12 17 

MC 2 140 150 151 151 144 17 22 10 17 14 

MC 3 7 6 5 7 8 6 7 2 5 4 

MC 4 33 30 26 29 25 21 33 18 17 19 

MC 5 24 25 28 24 25 173 153 189 193 180 

CL 76 78 86 87 76 152 120 169 176 161 

 

The complete set of results is very large and it is impractical to present such a large table. 

Therefore, the results are considered in statistical terms. The statistical mean (𝜎), 

standard deviation (𝜇) and the sample maximum and minimum values of CL were 

calculated to evaluate and summarise the effect of the window location on the 

performance of the proposed fault identification algorithm. 
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The mean, standard deviation, maximum and minimum values of CF are 87.28, 12.93, 

120 and 54, respectively. Again, assuming 99.7% of data lies within  𝜇  3 𝜎−
+ , then the 

overall CL value across the one million data samples will fall in the range of 

87.28  12.93−
+ . The minimum value of CL (54) is good enough for a proper classification 

as it is still greater than both 40 feature differences and 20% of the total count of features 

(being equal to double the segment count). 

 

Figure 50: Illustrative figure for the moving window technique at three different data 

window positions (P= 1, 2 and 3). 

6.2.3 VARIATION OF ROTATIONAL SPEED AND NOISE DISTURBANCE 

A new experiment was carried out to check whether the algorithm has the ability to detect 

faults using datasets from new experiments and under different operating conditions. MC 

1 and MC 3 were selected as case studies to check the effect of speed variation on the 

results of the proposed algorithm. The compressor was disassembled, bearings were 

installed, and the compressor was reassembled. The machine speed was reduced from 
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15,650 RPM to 14,480 RPM (-7.4%) before the data collection, on the basis that the 

normal operating rotational speed would be 15,650 RPM. 

Table 28 shows the Pre-Identification matrix for MC 1 and MC 3 using data window 

lengths of 250 milliseconds and 1000 milliseconds at a reduced rotational speed of 

14,480 RPM. It also compares the count of matching features at the reduced speed and 

the normal speed (see Table 22). It can be observed that the numbers of matching features 

and the overall CL significantly decreased with the reduction in rotational speed. The 

overall CL is the minimum difference between the highest number of matching features 

with the correct signal and the second highest number of matching features with the 

wrong signal. However, faults were successfully detected with a good overall confidence 

level of 60 in comparison to 117 at the normal operating speed. The change in signal time 

length was investigated and the results showed that this change had a very limited effect 

on the certainty of fault identification.  

Table 25: The Pre-Identification matrices for MC1 and MC3 faults using signal lengths 

of 250 milliseconds and 1 second at a reduced rotational speed of 14480 RPM (correct 

diagnosis in bold). The count of the matching features at the normal operating rotational 

speed is in bracket. 

 
Signal length of 

250 milliseconds 

Signal length of 1 

second  

@ 15650 RPM 

Signal length of 250 

milliseconds 

Signal length of 1 

second  

 @ 15650 RPM 

 MC1 MC3 

MC 1 99 87 (180) 7 34 (16) 

MC 2 11 19 (63) 6 16 (17) 

MC 3 21 11 (20) 118 94 (169) 

MC 4 2 6 (3) 1 4 (2) 

MC 5 8 24 (35) 9 28 (28) 

CL  63 (117)  60 (141) 
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The results presented in Table 28 demonstrate the robustness of the MFS2FI algorithm as 

all the selected machine conditions were successfully identified at a reduced operating 

rotational speed of 14480 RPM at different signal lengths. 

As noise affects the performance of fault identification performance, this section 

investigated the impact of noise coming from nearby mechanical equipment on the 

performance of the algorithm proposed. Any disturbance to a system (or noise coming 

from the mechanical equipment) usually creates “sound energy” resulting from an 

increase of friction between bearing components. According to the Shock-Pulse 

technique, these sounds produce a broadband noise (white noise) that contains all 

frequencies. . Therefore, a “broadband noise” was added to the MC#1, MC#3 and MC#4 

time signals (dataset # 4) using “randn” MATLAB function in order to investigate the 

impact of noise on the fault identification performance of the MFS2FI.  The “randn” 

function returns an array of numbers that are randomly drawn from a standard normal 

distribution whose mean is “0” and standard division is “1” (number of elements utilised: 

1 Million, range:  -5.2 to 4.99).  The amplitudes of noise were calculated by multiplying 

the output of “randn” function by 5% of the maximum FFT amplitudes of the fault 

spectrum in issue. Based on the results shown in Table 29, the algorithm managed to 

identify all of the machine conditions in issue, but with smaller CL factor values (lowest 

CL= 29). 
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Table 26: The Pre-Identification matrices for noised MC1, MC3 and MC4 faults signals 

using DS#4 (correct diagnosis in bold). The count of the matching features of the original 

signals is in bracket. 

 MC1 MC3 MC4 

MC1 109(182) 22(13) 3(4) 

MC2 59(63) 30(17) 2(2) 

MC3 25(18) 77(172) 0(2) 

MC4 2(3) 1(2) 192(203) 

MC5 54(37) 48(29) 3(0) 

CL 50(119) 29(143) 189(199) 

 

6.2.4 SUMMARY OF ROBUSTNESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MFS2FI was checked for sensitivity using three different analyses. The analyses 

include the variation in data window length, the moving data window and the variation in 

rotational speed. In addition, the ability of the MFS2FI algorithm to identify degradation 

outside of the datasets for which it was trained was investigated.  

The results showed that the performance of the proposed MFS2FI was not affected by the 

variations in data window length and the position of the data window as it successfully 

managed to identify all fault patterns at 76 different data window lengths and 76 data 

window positions (see Table 26 and Table 27). The algorithm was able to differentiate a 

minimum of 54 differences between the fault patterns of MC 2 and MC 5, which 

represents more than 22% of the total number of features. It also managed to identify 

degradation using new experimental datasets. However, the numbers of the overall CL 

significantly decreased with the reduction in rotational speed, from 117 differences to just 

60 differences (see the full results in Table 28). 

6.3  PERFORMANCE COMPARISON WITH OTHER METHODS 

A MATLAB code was developed to evaluate the performance of the proposed classifier 

by comparing its results with the results obtained from applying two different existing 
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pattern classification methods to the same datasets, namely the non-AI FFT classifier and 

the ANN FFT classifier. Section 6.4 shows the results of the comparison between the 

proposed algorithm and a standard FFT classifier, while the results of the comparison 

between the proposed algorithm and the most utilised ANN-based classifier for pattern 

recognition are presented in section 6.5. 

6.4 COMPARISON WITH A STANDARD FFT CLASSIFIER 

The standard classifier developed in this chapter only considers the maximum peak 

amplitude feature in each FFT spectrum as a unique feature. Then, it compares the 

maximum peak amplitude of the testing signal with the benchmark peak amplitude range 

of each machine condition. The minimum and maximum benchmark threshold values 

were calculated on the basis of training datasets # 1, 3, 8 and 10 (for more information 

about the training datasets, see section 5.6.1). Columns 2 and 3 show the benchmark 

threshold ranges [Xmin, Xmax], while column 4 shows the maximum FFT amplitude 

values of the validation dataset number 5 (DS 5).  

Table 30 compares the detection performance of the proposed algorithm with the 

detection performance of a standard FFT classifier.  The classifier yielded a maximum 

detection accuracy of 60%, while the proposed algorithm yielded 100% detection 

accuracy at a segment size of 108 kHz. Moreover, the confidence level of the results of 

the proposed algorithm is measurable and controllable, while it is non-controllable in 

FFT classifiers.  
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Table 27: Benchmark threshold values of non-segmented frequency spectra (Xmin and 

Xmax matrices). 

Machine 

condition 

Xmin 

FFT amplitude 

Xmax 

FFT amplitude 

FFT amplitude 

DS#5 

FFT classifier Proposed algorithm 

Detectability Detectability 

MC1 1.33E+04 1.98E+04 1.29E+04 0 1 

MC2 9.42E+03 1.49E+04 1.10E+04 1 1 

MC3 4.58E+04 5.60E+04 3.71E+04 0 1 

MC4 7.94E+04 8.58E+04 8.50E+04 1 1 

MC5 2.31E+04 3.68E+04 2.45E+04 1 1 

Performance    60% 100% 

 

6.5 COMPARISON WITH A NN-BASED CLASSIFIER 

This section aims to benchmark the performance of the proposed algorithm against NN- 

based classifiers. The most popular and well proven NN architecture, training algorithm, 

activation function, and error calculation method utilised for pattern recognition, were 

employed to carry out this comparison. Multi-Layer Perceptron (MLP) architecture was 

utilised in combination with the Scaled Conjugate Gradient-based (SCG) supervised 

learning algorithm and the Sigmoid Activation Function (SAF). The performance of the 

network was evaluated using the Mean Squared Error (MSE) quantitative measure at 

different neurons and hidden layer numbers. The following sections present the literature 

survey and the detailed comparison results. 

6.5.1 INTRODUCTION TO NEURAL NETWORK 

An Artificial Neural Network (ANN) is a mathematical or computational paradigm that is 

inspired by the information processing approach of the biological nervous system. It is 

made up of a large number of interconnected nodes (neurons). ANNs are adaptive, 

flexible, and configurable, and through a learning process, can be customised for specific 

applications, such as data classification, trend detection or pattern recognition. A trained 
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neural network performs as an expert system, and can answer a set of "what if" questions. 

The advantages of ANN techniques are (a) adaptive learning based on the data given, (b) 

self-organisation during learning, (c) real-time operation if the ANN computations are 

carried out fast and in parallel, and (d) fault tolerance if information redundancy is 

present [130].  

The basic element of ANNs is the neuron. Artificial neurons have several inputs in 

addition to one output, as shown in Figure 51 , and they have two modes of operation: the 

training mode and the using mode. In the training mode, the neuron can be trained to fire 

an action for particular input patterns. In the using mode, when a taught input pattern is 

recognised at the input stage, its corresponding output becomes the current output of the 

network. If the input pattern is not recognised as one of the taught input patterns, the 

firing rules are utilised to determine whether or not to fire an action. 

 

Figure 51: A simple Neuron [130]. 

A more advanced neuron is the McCulloch and Pitts model (MCP) [130] [131]. The 

difference between simple and advanced neurons is that the inputs of the latter are 

‘weighted’. Weighting is the process of multiplying an input by a factor which varies 

depending on the importance of this input. In decision-making, the effect that each input 

has is dependent on its weight. These weighted inputs are then summed and compared 

with a pre-set threshold value. The neuron fires an action if the sum of the weighted 

inputs exceeds the threshold value. Otherwise, the neuron will not fire. The firing rule is 
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an important concept in neural networks, and it determines whether or not a neuron 

should fire for any given input pattern. The decision is based on all input patterns, not 

only on the patterns on which the neuron was trained [130] [131]. Of course, it is 

important to cover a wide range of inputs during training so that the NN can give valid 

results. 

6.5.2  ARCHITECTURE OF NEURAL NETWORKS 

The major types of NN networks are Feedforward, Self-Organize, Recurrent, Stochastic, 

Modular and others such as Feedback (dynamic), NeuroFuzzy and Instantaneous Trained. 

The Feedforward neural network is the most widely used model, where signals are 

allowed to travel one way only, from input to output. Due to the absence of feedback 

signals, the output of each layer is not affected by the output of other layers. The 

Feedforward technique is the most widely used type in pattern recognition [132] [133] 

[134].  

The major architectures of Feedforward neural networks can be divided into single-layer 

and multi-layer. Single-layer networks are based on the Completely Connected 

Perceptron architecture (CCP), while Multi-layer networks are based on the Multi-Layer 

Perceptron architecture (MLP), as shown in Figure 52. MLP is the most common neural 

network model, and it comprises three layers, namely the “input layer”, the “hidden 

layer”, and the “output layer”. The increase in MLP hidden layers increases the 

complexity of the network as well as the difficulty of training [130] [131]. 
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Figure 52: CCP and MLP Feedforward architecture of neural networks. 

6.5.3 LEARNING PROCESS 

Learning is one of the most important factors that affect the performance of ANNs. The 

behaviour of an NN network depends on the learning paradigm and the applied transfer 

and activation functions that determine the neuron’s output  

There are two major categories of learning methods utilised for adaptive neural networks: 

unsupervised learning and supervised learning. In unsupervised learning, the model is 

not provided with the historical system data during the training, and hence the network 

firstly self-organises the data it is presented with, and then detects their emergent 

properties.  

Usually unsupervised learning is performed on-line and is utilised in data clustering. 

Hebbian and competitive learning rules are the major paradigms of unsupervised 

learning.  In supervised learning, the model is provided with historical input and output 

data. The network utilises this data to calculate and then minimise errors in connection 

weights, which is a multivariate function that depends on the weights of connections in 

the network; the outcome is a minimum error between desired and computed values.  

Paradigms of supervised learning include error-correction learning, stochastic learning 

and reinforcement learning. The most popular and robust NN learning algorithm is 
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“backpropagation”, which is usually utilised in combination with a supervised error-

correction learning rule. With backpropagation, the input data is repeatedly passed to the 

NN. In each cycle, the actual output of the NN is compared with the desired output, and 

an error is computed. In order to minimise this error, the connection weights are adjusted 

on the basis of the value of the returned (Back propagated) error [130] [135] [136]. This 

process is known as "training".  

The following algorithms are the most common backpropagation algorithms and are 

utilised to either recognise patterns (discriminant analysis), or to approximate functions 

(regression): Levenberg-Marquardt, BFGS Quasi-Newton, Resilient Backpropagation, 

Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-

Powell Conjugate Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, and 

Variable Learning Rate Backpropagation.  

Numerous tests were carried out in MATLAB (version 2012) to determine the fastest and 

most accurate algorithms for different applications. Although the Resilient 

Backpropagation (RP) algorithm is the fastest algorithm for pattern recognition problems, 

the Scaled Conjugate Gradient (SCG) algorithm is preferred as its performance does not 

degrade as quickly as that of RP when the error is reduced; in addition,  the computing 

speed of SCG is almost as fast as RP for pattern recognition problems [136].  

The performance of the SCG is affected by training, validation and testing ratios, random 

sets of data division, and the values of random weight initialisation (initial guess values). 

When a different combination of training patterns or initial weight values is used, the NN 

produces different classification results. Recent studies have shown that a proper 

selection of weight initialisation can significantly enhance the training process [137] 

[138].  

http://uk.mathworks.com/help/nnet/ref/trainrp.html
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The principal and most popular NN quantitative performance metric is the Mean Squared 

Error (MSE). The goal of the quantitative performance measure is to compare signals by 

describing the degree of similarity along with the level of error between them [139].  

The three major transfer and activation functions are (a) linear (or ramp), (b) threshold, 

and (c) sigmoid. The linear activation function sets the output activity proportionally to 

the total weighted output. The threshold transfer function sets the output to be greater 

than or less than the threshold value. While the sigmoid transfer function continuously 

varies the output, but not linearly as the input changes. Although all three are considered 

rough approximations, the sigmoid transfer function is judged to have a greater 

resemblance to real neurons than linear or threshold transfer functions [140]. 

On the basis of the survey carried out on the NN architecture, learning methods, 

performance and also the most popular paradigm for pattern recognition, this study will 

employ the MLP model with a view to recognising the different fault patterns of the 

machine conditions addressed. The MLP will be used in combination with the SCG-based 

supervised learning algorithm and the Sigmoid Activation Function. The performance of 

the network will be measured using the MSE quantitative measure. 

6.5.4 NN-BASED FAULT CLASSIFICATION PROCESS 

Based on the literature presented in the previous sections, it can be concluded that the 

detection accuracy of NNs depends on (a) the training algorithm, (b) the architecture of 

the network (number of hidden layers and number of neurons), (c) the type of the 

activation function, (d) the values of the initial random weights, (e) the data division for 

training and validation, and (f) the training, validation and testing ratios. 
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Figure 53 illustrates the process employed to find a near-optimal fault classification result 

for the addressed machine fault conditions within the lowest possible computing time and 

within an acceptable overall development time.  

The algorithm starts by reading all 50 training, verification and testing datasets. The 

selection of the NN architecture is carried out through the selection of the numbers of 

hidden layers and neurons. The NN network is trained by the backpropagation learning 

algorithm. After the random selection of the NN connections weights, the backpropagation 

learning algorithm is utilised to compute new sets of corrected weights in order to 

minimise the MSE error function. The learning process can be broken down into four 

steps: (a) feed-forward computation, (b) backpropagation to the output layer, (c) 

backpropagation to the hidden layer, and (d) weight updates. The learning process stops 

when the value of the mean squared error function has become sufficiently small. The 

error is the difference between input and output values [141].  

The training of the back propagation algorithm is based on the minimisation of the mean 

squared value of the instantaneous error, as shown in equation (17) [142] [143]. 

𝑬(𝑴𝑺𝑬) = 
1

2
∑ (𝑑𝑞 − 𝑦𝑞)

2𝑛
𝑞=1                                           (17)

  

where dq represents the desired network output for the q
th

 input pattern and yq is the 

actual output of the neural network. The NN weight update is carried out according to 

equation (18). 

∆𝑾𝒊𝒋 = −𝐾
𝜕𝐸

𝜕𝑊𝑖𝑗
                                                                                                       (18) 
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where k is a constant of proportionality, E is the MSE error function and Wij represents 

the weights of the connection between neuron j and neuron i. The weight adjustment is 

iteratively repeated until the difference between the NN output and the actual output is 

within an acceptable tolerance. 

The time taken to learn the NN and identify the pattern (computing time) in addition to 

the fault classification performance are calculated to evaluate the overall performance of 

the network. The fault classification performance is the ratio between the number of 

correctly identified fault patterns and the total number of testing patterns (25 patterns). 

The number of training times, neurons, and hidden layers are changed (within specific 

limits) to investigate the performance of a large number of multi-layer perceptron NN 

configurations. A near-optimal fault classification result is then selected on the basis of 

the highest pattern identification performance and lowest computing time.  

In this study, the investigation of the near-optimal solution is carried out in three nested 

loops as shown in Figure 62. The first loop examines the rise of retraining cycles, the 

second loop investigates the increase of neurons number, while the third loop investigates 

the increments in the number of hidden layers. 
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Figure 53: NN-based fault classification process. 
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5.6.1). Combined NN configurations (hidden layer and neuron numbers) were also tested 

to investigate the effect of these combinations on the results, in terms of pattern 

recognition accuracy and computing time. As the NN results are sensitive to the initial 

values of weights, and in order to allow the reproduction of the same classification results 

every time the simulation is run, the weight initialisation (the initial guess values of the 

weights) for each run was controlled using the Random Number Generation (RNG) 

MATLAB function. This function helped to ensure an identical sequence of random 

numbers at the beginning of each simulation, just as if the MATLAB had been restarted. 

The NN performance was measured using the principal and most common quantitative 

measure, MSE.  

6.5.5 PERFORMANCE COMPARISON RESULTS 

The comparison is based on the fault identification performance and the times and costs 

related to both development and computing. The development time is the time taken by 

the CM system developer to investigate different NN architectures in order to optimise 

the fault identification performance and the computing time. The computing time 

includes the time taken by the PC to train (or retrain) the NN network, and to classify 25 

fault patterns.   

Table 31, Table 32, Table 33 and Table 34 show the results of the NN-based fault 

classification at different MLP NN configurations. As shown in Table 31, two NNs, each 

with a single hidden layer of 60 neurons and 70 neurons respectively, produced a 100% 

classification performance when retrained 6 times with total computing times of 784.7 

and 1780.2 seconds, respectively. A 100% classification performance means that all of 

the 25 fault test patterns were successfully classified. A two hidden-layer neural network 

with 70 neurons in each layer produced a classification performance of 100% from the 

first run with a total computing time of 83.1 seconds as shown in Table 32.  
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In Table 33, the simulations showed that three NNs, each with three hidden layers (20 – 

20 – 20 neurons, 60 – 60 – 60 neurons and 70 – 70 – 70 neurons, respectively) produced 

a 100% classification performance in 462.6, 330.6 and 501.7 seconds, respectively.  

Simulations with different configurations of hidden layer numbers and neuron numbers 

were run to investigate the effect of decreasing the number of neurons in the second and 

third layers, as shown in Table 34. These results show that layers with similar numbers of 

neurons are more effective in terms of performance as none of the other configurations 

produced a 100% classification performance.  

From the above results, it can be concluded that an NN with one hidden layers of 60 

neurons is best for the classification of the machine fault patterns in question as the NN 

manged to classify all machine conditions in 57.2 seconds only. This investigation was 

conducted to identify a near-optimal NN configuration. It is apparent that the 

development time of an efficient NN-based CM system is lengthy and that the optimised 

configuration may not work for different patterns as the results may differ from one set of 

fault patterns to another; in turn, this may be due to the trial-and-error correlation 

learning method used in the training of NN.  
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Table 28: Classification results for a single-layer NN with different numbers of neurons 

(100% detection accuracy in bold). 

Training cycle number 1 2 3 4 5 6 7 
Best 

acc. 

Total 

time 

One hidden layer - 10 neurons     

Classification 

performance (%) 
64 20 68 72 40 56 72 72  

Computing time (s) 73.9 8.4 10.5 6.3 11.4 10.9 6.5 
 

127.9 

One hidden layer - 20 neurons           
Classification 

performance (%) 
20 84 36 20 68 20 80 84  

Computing time (s) 121.5 13.6 10.7 3.5 13.2 2.2 16.7 
 

181.4 

One hidden layer - 30 neurons 
 

         
Classification 

performance (%) 
20 44 88 84 64 72 36 88  

Computing time (s) 43.5 17.8 29.2 
22.

5 
12.1 34.7 5.7 

 
165.5 

One hidden layer - 40 neurons 
 

         
Classification 

performance (%) 
92 80 84 96 60 84 88 96  

Computing time (s) 420.6 33.8 42 
36.

6 
27 42.3 44.1 

 
646.4 

One hidden layer - 50 neurons 
 

         
Classification 

performance (%) 
84 76 88 80 84 88 80 88  

Computing time (s) 491.3 41.4 45 
22.

8 
56.9 47.6 26.6 

 
731.6 

One hidden layer - 60 neurons 
 

         
Classification 

performance (%) 
88 80 92 92 96 80 100 100  

Computing time (s) 424.2 37.4 50.8 
64

.5 
106 44.6 57.2 

 
784.7 

One hidden layer - 70 neurons 
 

         
Classification 

performance (%) 
92 92 76 56 80 76 100 100  

Computing time (s) 1416.3 65 27.2 62.5 81.4 43.8 84 
 

1780.2 
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Table 29: Classification results for a two-layer NN with different numbers of neurons 

(100% detection accuracy in bold). 

Training cycle number 1 2 3 4 5 6 7 
Best 

acc. 

Total 

time 

Two hidden layers - 10 neurons each 
 

 Classification 

performance (%) 
36 32 28 28 20 80 20 80  

Computing time (s) 45.2 4.5 8.4 4 8.4 10.9 7.8 
 

89.2 

Two hidden layers - 20 neurons each 
 

         
Classification 

performance (%) 
44 60 60 36 84 28 80 84 

 

Computing time (s) 69.5 25.9 20.2 16 23.4 4.4 53.2 
 

212.6 

Two hidden layers - 30 neurons each 
          

Classification 

performance (%) 
88 84 32 56 68 92 92 92 

 

Computing time (s) 492.2 47.6 5.7 41.9 32.3 32.9 33.1 
 

685.7 

Two hidden layers - 40 neurons each 
          

Classification 

performance (%) 
40 52 48 20 88 80 88 88 

 

Computing time (s) 37 27.1 17.5 8.6 43.2 35.1 74.9 
 

243.4 

Two hidden layers - 50 neurons each 
          

Classification 

performance (%) 
56 84 84 88 80 80 80 88 

 

Computing time (s) 21.8 41.8 34.6 88.8 55.7 79.9 60.6 
 

383.2 

Two hidden layers- 60 neurons each 
          

Classification 

performance (%) 
92 96 84 96 92 80 84 96 

 

Computing time (s) 58.2 60.9 76.4 96.9 53.1 58.7 86.9 
 

491.1 

Two hidden layers - 70 neurons each 
  

      
  

Classification 

performance (%) 
100 80 88 76 96 84 80 100 

 

Computing time (s) 83.1 68.4 69 57.15 68.7 93.7 52.5 
 

492.55 
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Table 30: Classification results for a three-layer NN with different numbers of neurons 

(100% detection accuracy in bold). 

Training cycle number 1 2 3 4 5 6 7 

Bes

t 

acc. 

Total 

time 

Three hidden layers - 10 neurons each     

Classification 

performance (%) 
44 52 40 24 4 20 20 52  

Computing time (s) 61 17.1 7.1 3.5 4.1 8 2.4 
 

103.2 

Three hidden layers – 20 neurons each 
 

         
Classification 

performance (%) 
100 64 48 92 92 48 20 100  

Computing time (s) 462.6 38.6 
15.

7 
39.2 23.7 9.8 18.2 

 
607.8 

Three hidden layers - 30 neurons each 
 

         
Classification 

performance (%) 
56 76 96 36 20 84 32 96  

Computing time (s) 29.5 24.6 
24.

4 
11.5 3.6 

34.

5 
8.3 

 
136.4 

Three hidden layers - 40 neurons each 
 

         
Classification 

performance (%) 
52 84 48 84 84 80 80 84  

Computing time (s) 42 
166.

8 

12.

6 
42 

119.

6 

56.

1 
59.1 

 
498.2 

Two hidden layers - 50 neurons each 
 

         
Classification 

performance (%) 
88 80 80 84 80 76 60 88  

Computing time (s) 47.3 67.9 
60.

3 
48.4 52.7 

97.

4 
17.1 

 
391.1 

Three hidden layers- 60 neurons each 
 

         
Classification 

performance (%) 
88 96 76 100 68 84 92 100  

Computing time (s) 65.4 81 
49.

3 
134.9 70.9 

89.

8 
64.3 

 
555.6 

Three hidden layers - 70 neurons each 
 

         
Classification 

performance (%) 
96 84 84 76 100 20 92 100  

Computing time (s) 
236.

4 
80.7 

69.

8 
66 48.8 

88.

4 

132.

8  
722.9 
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Table 31: Classification results of NNs with combined configurations. 

Training cycle number 1 2 3 4 5 6 7 
Best 

acc. 

Total 

time 

Three hidden layers: 10 - 20 - 10 neurons 
  

Classification 

performance (%) 
40 20 56 64 48 40 60 64  

Computing time (s) 318.2 12.3 49.7 36.1 7.9 11.6 18.5 
 

454.3 

Three hidden layers: 40 - 30 - 20  neurons 
 

         
Classification 

performance (%) 
80 80 80 72 20 92 36 92  

Computing time (s) 85.5 57.7 90.2 48.6 25.6 51.6 51.6 
 

410.8 

Three hidden layers: 70 - 30 - 10  neurons 
 

         
Classification 

performance (%) 
80 76 68 60 96 52 52 96  

Computing time (s) 74.8 171.8 
114.

7 
86 68.2 68.7 14.5 

 
598.7 

Two hidden layers: 70 - 30  neurons 
 

         
Classification 

performance (%) 
28 96 84 92 84 24 56 96  

Computing time (s) 19.2 79.9 75.5 56.6 75.9 7.2 25.3 
 

339.6 

Two hidden layers: 40 - 10  neurons 
 

         
Classification 

performance (%) 
84 84 44 20 32 28 20 84  

Computing time (s) 713.9 47.3 15.5 50.1 8.3 7.1 19.2 
 

861.4 

Two hidden layers- 40 - 20  neurons 
 

         
Classification 

performance (%) 
32 76 92 36 80 92 80 92  

Computing time (s) 104.1 47.6 117.1 10.7 31 54 38 
 

402.5 

Two hidden layers: 60 - 20  neurons 
 

         
Classification 

performance (%) 
84 80 76 80 72 96 80 96  

Computing time (s) 117.4 44.1 34.5  69.2  57.7   101.9 44.2 
 

469 

 

6.5.6 DISCUSSION 

The results presented in Table 31 to Table 34 show that a suitable neural network with 

optimised design parameters can successfully detect all of the machine conditions in 

question. The main drawback of NN is that the results are very sensitive to various design 

parameters; a large number of trials (196) is therefore required, and consequently a long 

development time.  
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These results support the findings of the literature review presented in Chapter 2. In 

respect of the computing time, NN managed to detect all machine conditions with a 

minimum computing time of 57.2 seconds. This was achieved using an NN with one 

hidden layers of 60 neurons. Another set of data may require a network with a different 

NN design configuration, and may produce results showing different computing and 

development times.  

In the context of parallel processing, parallelising neural network training will 

significantly decrease the execution time of each run.  G. Dahl et al. demonstrated that 

the utilisation of 8 parallel computing nodes speeds up the training of NNs by a factor of 

11 [144].  However, if this technique is applied to an NN, it will not only decrease its 

execution time, but will also decrease the execution time of the proposed algorithm, and 

hence the proposed algorithm will still have lower execution and development times. 

6.5.7 SUMMARY OF THE COMPARISON 

The MFS2FI algorithm demonstrated a number of advantages over NN-based and non-AI 

classifiers, such as simplicity of implementation, low development time, and low 

computing time; it was seen to yield a fault identification accuracy of 100% in only 3.5 

seconds in comparison to 57.2 seconds for NN. The non-complexity of the proposed 

algorithm gives it a significant advantage over AI-based technique as it can be 

implemented across all FFT spectra by non-specialised engineers. Unlike NN, the 

MFS2FI algorithm provides good measures of pattern similarity (CL) and results 

certainty (overall CL), and thus gives CM system developers control over the selection of 

segment size, and hence guarantees certainty of results. 
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6.6 OVERALL SUMMARY 

The robustness of the MFS2FI algorithm in classifying faults was investigated in this 

chapter by evaluating the fault identification performance of the algorithm at 76 different 

signal lengths ranging from 250 milliseconds to 1 second, and at 76 different locations by 

gradually sliding a data window of 250 milliseconds in length across the one second data 

sample with iterative increments of 10 milliseconds (see section 6.2). The results 

demonstrate the robustness of the proposed algorithm as they managed to classify all of 

the machine conditions addressed at different data window positions and at different 

signal lengths. The variation in data window length and position has a limited effect on 

the certainty of the fault identification process as the lowest percentage difference 

between fault patterns was still larger than 20% (for full results, see sections 6.2.2 and 

6.2.3). New experiments were conducted to evaluate the performance of the MFS2FI 

algorithm to identify degradation outside of the datasets for which the algorithm was 

trained. The algorithm demonstrated its ability to consider the degradation of machine 

condition as it successfully managed to identify the selected machine conditions at a 

reduced rotational speed using datasets from new experiments.  

The MFS2FI was compared with a detailed study of a standard FFT classifier and an NN-

based classifier (sections 6.3, 6.4 and 6.5). The results demonstrated a number of 

advantages over NN-based fault classification methods as it successfully yielded a 100% 

fault identification accuracy using a set of 25 testing fault patterns in only 3.5 seconds 

(computing time) in comparison to 57.2 for NN. The computing time included the training 

and fault classification times.  

It can be observed that NN is more than sixteen times more computationally intensive than 

the proposed algorithm which in turn, unlike NN, provides a pattern conformity measure 

(CL). The proposed FFT-based fault identification algorithm is easy to implement, 
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systematic, and requires low computing and development times, all of which make it 

favourable for CM of centrifugal equipment. The simplicity of the implementation of this 

algorithm on a new system is a significant advantage as it does not require any detailed 

knowledge or experience. Figure 54 displays and highlights the results of the comparison 

between both fault classification methods.  

  

Figure 54: Performance comparison results between the proposed MFS2FI algorithm and 

a Neural Network-based method. 
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Chapter 7. Characterisation of major fault 

detection features and techniques  

7. CHAPTER 7. CHARACTERIZATION OF MAJOR FAULT DETECTION 

FEATURES AND TECHNIQUES 

7.1 INTRODUCTION 

In chapter 5, a new frequency domain feature selection algorithm (MFS2FI) was 

developed for detecting faults in rotating equipment. The MFS2FI was tested on data 

from a centrifugal compressor (in the laboratory). Then, in chapter 6, the algorithm was 

tested for robustness, and compared with a neural network fault classifier. The results of 

the performance and robustness analyses demonstrated the effectiveness of the developed 

algorithm for fault identification. 

In chapters 5 and 6, the MFS2FI algorithm was applied to acoustic emission (AE) signals 

only; this was because the literature review had suggested that they would be the most 

promising candidate signals.  In this chapter, two further aspects of fault identification in 

centrifugal compressors are investigated in two ways: 1) using two additional signal types 

– vibration (acceleration) and process variable (pressure); and 2) the application of other 

FDI approaches from the literature, namely RMS, Crest Factor, Energy and Maximum 

Amplitude. This will facilitate the comparison of the AE technique with such other 

approaches and, most importantly, will make it possible to combine approaches to 

improve fault identification accuracy.  

As demonstrated in the literature survey in this study, the most widely utilised condition 

monitoring techniques are AE, vibration and process information (such as pressure 

information). RMS, crest factor, energy and maximum amplitude are the major signal 
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features utilised for fault pattern recognition. As mentioned, it was suggested that the  

AE technique was more effective than other techniques for CM of rotating equipment. 

The literature survey also identified that the utilisation of multi-fault detection techniques 

maximises the accuracy of fault diagnosis, and provides an integrated system for the 

detection of rotating equipment faults. 

In this chapter, an algorithm “characterisation table” is developed on the basis of 

experimental results in order to provide an integrated solution to fault detection 

challenges such as fault interference and centrifugal equipment noise. The results are 

presented for the 5 machine conditions discussed. (For more information about the five 

MCs, see section 5.6.1.) They are then compared for the purposes of characterising the 

best fault detection techniques and features. This will involve calculating and comparing 

11 signal features using three different fault detection techniques, namely a) RMS, crest 

factor, energy, maximum amplitude and frequency spectral of vibration signals, b) RMS, 

crest factor, energy, maximum amplitude and frequency spectral of AE signals, and c) the 

average of pressure signals.  

The main contribution of this chapter is to identify the pros and cons of the approaches 

investigated, to improve the CM performance of typical centrifugal equipment, and to 

avoid false alarms due to noise and fault interference; these aims are to be achieved 

through a fully integrated CM tool based on a multi-signal, multi-feature fault 

identification approach.  

7.2 ACOUSTIC EMISSION ANALYSIS 

As in chapter 5, the training datasets numbered DS#1, DS#3, DS#8 and DS# 10 were 

used for the determination of threshold values of different AE signal features. The AE 

signals were measured using a bearing (A) R6a AE sensor. A MATLAB program was 
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developed to calculate the four time domain features: RMS, Max. Amplitude, Crest 

Factor (CF) and Energy (E), as per equations (19), (20), (21) and (22) [145] [146].  The 

time domain signals were also converted to frequency domain signals, and the AE FFT 

features were selected using the MFS2FI algorithm.  This gives a total of 5 “features” for 

fault identification.   

𝑿𝑹𝑴𝑺 = √∑ (𝑋𝑛)^2𝑁
1

𝑁
                                           (19) 

𝑪𝑭 =
|𝑋|𝑚𝑎𝑥

𝑋𝑅𝑀𝑆
                                                             (20) 

𝑴𝒂𝒙 𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 =  |𝑋|𝑚𝑎𝑥                                                           (21) 

𝑬 = ∑ |𝑋𝑛|
2∞

−∞                                                                     (22) 

For the time-domain results below, the maximum and minimum values of each parameter 

(feature) across the four training sets are used to set the threshold levels for fault 

identification. 

RMS 

Table 35 shows the RMS values for the training datasets. Across the top are the datasets 

and the minimum and maximum values, and down the side are the five machine 

conditions. It can be seen that, with the thresholds set to the minimum and maximum 

values, the RMS values can be used to detect MC 1, MC 2 and MC4. However, the RMS 

feature cannot be utilised to detect MC 3 and MC 5 because their threshold levels 

intersect, which in turn means that the faults are unidentifiable. The difference between 

the threshold ranges of MC 1 and MC 2 is small, and this may result in inaccurate fault 

detection. 
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Table 32: AE RMS values (in volt). 

 DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 0.294 0.310 0.310 0.306 0.294 0.310 

MC 2 0.342 0.352 0.325 0.321 0.321 0.352 

MC 3 0.575 0.611 0.607 0.603 0.575 0.611 

MC 4 2.824 2.834 2.552 2.468 2.468 2.834 

MC 5 0.713 0.593 0.470 0.457 0.457 0.713 

 

Maximum Amplitude 

Table 36 shows the maximum signal amplitude threshold values of the training datasets.  

Based on these threshold values, the maximum amplitude feature can be used to separate 

all of the machine fault conditions addressed. However, again the separation of the 

threshold ranges of MC 1 to MC 2 and MC 3 to MC 5 is difficult as the maximum 

amplitude of MC 1 is very close to the minimum amplitude of MC 2, and the maximum 

amplitude of MC 5 is very close to the minimum amplitude of MC 3. These small 

differences (less than 1%) could adversely affect the accuracy of fault identification.   

Table 33: AE maximum amplitude values (in volt). 

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 1.347 1.445 1.389 1.273 1.273 1.445 

MC 2 1.917 2.037 1.564 1.635 1.564 2.037 

MC 3 4.622 4.494 4.520 5.015 4.494 5.015 

MC 4 10.512 10.555 10.207 9.979 9.979 10.555 

MC 5 4.465 3.638 3.521 3.588 3.521 4.465 

 

Crest Factor 

Table 37 shows the training crest factor threshold values for the datasets. The crest factor 

is equal to the RMS value divided by the maximum amplitude of the same signal.  Based 

on the threshold values, the crest factor feature can be utilised to identify MC 1, MC 2, 
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and MC 4. This time series feature cannot be utilised for the detection of all of the 

addressed faults because of the intersection (overlap) between the crest factor intervals of 

MC 3 and MC 5. The difference between the crest factor values of MC 1 and MC 4 is 

small and this could negatively affect the accuracy of fault identification. 

Table 34: AE crest factors. 

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 4.585 4.662 4.486 4.165 4.165 4.662 

MC 2 5.602 5.785 4.816 5.097 4.816 5.785 

MC 3 8.044 7.351 7.449 8.319 7.351 8.319 

MC 4 3.723 3.724 3.999 4.043 3.723 4.043 

MC 5 6.262 6.137 7.493 7.845 6.137 7.845 

Energy 

Table 38 shows AE energy threshold values of the training datasets. On the basis of these 

threshold values, the energy feature can be utilised to differentiate between MC 1, MC 2 

and MC 4. The main drawback is that the energy signal feature cannot be utilised to 

differentiate between MC 3 and MC 5 due to the intersection between their energy value 

intervals. The difference/ difference between the threshold values of MC 1 and MC 2 is 

small (in relative terms), and this could negatively affect the accuracy of fault detection.  

Table 35: AE energy values (in Joule) 

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 86,261 96,088 95,869 93,358 86,261 96,088 

MC 2 117,079 124,004 105,439 102,940 102,940 124,004 

MC 3 330,158 373,780 368,167 363,459 330,158 373,780 

MC 4 7,973,092 8,031,877 6,514,243 6,093,149 6,093,149 8,031,877 

MC 5 508,308 351,403 220,829 209,173 209,173 508,308 
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Figure 55 illustrates the differences between different time domain features. Although the 

energy feature is best by comparison to others, it is very difficult to employ it to 

differentiate between MC 3 and MC 5. 

 

Figure 55: Graphical presentation for the AE RMS, amplitude, crest factor and energy 

values. 

The FFT-based segmentation algorithm proposed in chapter 5 was utilised to investigate 

the suitability of AE spectral features for the detection of machine conditions using 

datasets number 1, 3, 8, 10 in the training cycle, and 5 in the validation cycle (see section 

5.6.1 for full information about the datasets and the machine conditions emulated). 

Moreover, the algorithm investigates the segment sizes that can be used for efficient 

classification. The selection of the most suitable segment size depends on the overall 
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confidence level required for the results [14]. Table 39 shows the detection accuracy at 

different segment sizes where (0) means that the fault cannot be detected at this segment 

size, while (1) means that the fault can be detected. The addressed machine conditions 

were identified at the 108 kHz segment size with an overall confidence level of 1 out of 

4. However, at this small overall confidence level, the accuracy of fault identification 

could be negatively affected as the pattern classification is carried out on the basis of the 

value of a single feature. The value of this feature (FFT amplitude) can vary during the 

operation of the machine due to noise, degradation or fault interference. At a segment 

size of 1 kHz, all of the machine conditions addressed were successfully identified with 

an overall confidence level of 91 out of 238 (for the detailed results, see Table 24). The 

accuracy of pattern classification at this large overall CL number is significantly better 

because at this segment size at least 91 feature differences would exist between any two 

fault patterns. The higher the value of the overall confidence level, the better the fault 

identification accuracy. 
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Table 36: Detectability of machine fault patterns using FFT AE spectra at different 

segment sizes (correct diagnosis in bold). 

S MC 1 MC 2 MC 3 MC 4 MC 5 

121 kHz 0 1 0 1 0 

120 kHz 0 1 0 1 0 

119 kHz 0 1 0 1 0 

118 kHz 0 0 1 1 1 

117 kHz 1 1 0 1 1 

116 kHz 1 1 0 1 1 

115 kHz 0 1 0 1 1 

114 kHz 0 1 1 1 1 

113 kHz 0 1 1 1 1 

112 kHz 0 1 1 1 1 

111 kHz 0 1 1 1 1 

110 kHz 0 1 1 1 1 

109 kHz 0 1 1 1 1 

108 kHz 1 1 1 1 1 

107 2 kHz 1 1 1 1 1 

1 kHz 1 1 1 1 1 

 

7.3 VIBRATION ANALYSIS 

Axial vibration was found to be more informative than radial vibration signals (see 

Appendix (E) for the detailed comparison). Below, axial vibration signals are analysed in 

the same way the AE signals were in section 7.2.  The RMS, Max. Amplitude, Crest 

Factor and Energy are calculated in the time domain, and the frequency domain FFT 

features are extracted.  
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RMS 

The RMS vibration threshold values of the training sets shown in Table 40 can only be 

used for the detection of MC 3. The RMS values of all the other machine conditions are 

in a very tight range, and this prevents the utilisation of this feature for the identification 

of centrifugal compressor machine conditions.  

Table 37: Vibration RMS values (in volt). 

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 1.663 1.655 1.633 1.629 1.629 1.663 

MC 2 1.660 1.660 1.662 1.662 1.660 1.662 

MC 3 1.872 1.853 1.828 1.823 1.823 1.872 

MC 4 1.668 1.653 1.628 1.626 1.626 1.668 

MC 5 1.685 1.668 1.636 1.630 1.630 1.685 

 

Amplitude 

The maximum amplitude threshold values of all vibration signals are almost equal, as 

shown in Table 41. Thus, this signal feature cannot be utilised to differentiate between 

the different machine faults. 

Table 38: Vibration maximum amplitude values (in volt).  

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 4.988 4.996 4.990 4.997 4.988 4.997 

MC 2 4.983 4.978 4.997 4.972 4.972 4.997 

MC 3 4.999 4.995 4.996 4.994 4.994 4.999 

MC 4 4.993 4.997 4.992 4.997 4.992 4.997 

MC 5 4.991 4.998 4.992 4.975 4.975 4.998 

 

Crest Factor 

The vibration crest factor threshold values of the training sets shown in Table 42 can only 

be utilised for the detection of MC 3. All other machine conditions have overlapping 
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tolerances, which prevents the use of this feature for the identification of compressor 

machine conditions.  

Table 39: Vibration crest factors. 

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 2.999 3.018 3.056 3.068 2.999 3.068 

MC 2 3.003 2.999 3.008 2.992 2.992 3.008 

MC 3 2.671 2.696 2.733 2.740 2.671 2.740 

MC 4 2.994 3.023 3.066 3.073 2.994 3.073 

MC 5 2.962 2.997 3.051 3.052 2.962 3.052 

 

Energy 

The calculated energy values of the training sets shown in Table 43 can be only utilised 

for the classification of MC 3. All other machine conditions have overlapping tolerances 

which prevent the use of this feature for the detection of centrifugal compressor machine 

condition.  

Table 40: Vibration energy values 9 (in Joule). 

 

DS#1 DS#3 DS#8 DS#10 Min Max 

MC 1 922,397 913,554 889,123 884,541 884,541 922,397 

MC 2 918,251 918,949 920,443 920,779 918,251 920,779 

MC 3 1,167,622 1,144,503 1,114,004 1,107,512 1,107,512 1,167,622 

MC 4 927,033 911,303 883,697 881,439 881,439 927,033 

MC 5 946,480 927,465 892,592 885,805 885,805 946,480 

 

Figure 56  illustrates the difference between different vibration time domain features. 

From the figure, it can be seen that the vibration time domain features can significantly 

detect MC 3, on the basis of a combination of RMS, CF and Energy. The features of the 

other machine faults interfered, and so could not be utilised for the detection of their 

corresponding faults.  
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Figure 56: Graphical representation of the vibration RMS, amplitude, crest factor and 

energy features. 

The FFT-based segmentation algorithm proposed in Chapter 6 was utilised to investigate 

the suitability of the vibration spectral features for the identification of the machine 

conditions addressed. Table 44 shows the detectability of all of the addressed machine 

conditions at different segment sizes. The training was carried out using dataset numbers 

1, 3, 8, 10 in the training cycle, and dataset number 5 in the validation cycle (for more 

information about the classification of datasets, see section 6.3). The addressed machine 

conditions were successfully identified with 100% detection accuracy at a segment size 

of 10 Hz and an overall confidence level of 72 out of 400.  
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Table 41: Segmented FFT vibration spectra (correct diagnosis in bold). 

S MC1 MC2 MC3 MC4 MC5 

2000 Hz 0 1 1 1 1 

1900 Hz 0 1 1 1 1 

1800 Hz 0 0 1 0 1 

1700 Hz 0 0 1 0 0 

1600 Hz 0 0 1 0 0 

1500 Hz 0 0 1 1 0 

1400 Hz 0 0 1 1 0 

1300 Hz 0 1 1 1 0 

1200 Hz 0 1 1 1 0 

1100 Hz 0 1 1 1 0 

1000 Hz 1 1 1 1 0 

900 Hz 1 1 1 1 1 

800 Hz 0 0 1 0 0 

700 Hz 1 1 1 1 0 

600 Hz 1 0 1 0 1 

500 Hz 1 0 1 1 1 

400 Hz 1 0 1 1 1 

300 Hz 1 1 1 1 1 

200 Hz 1 1 1 1 1 

100 Hz 1 1 1 1 1 

10 Hz 1 1 1 1 1 

 

Taking all of the above into account, the time-domain approaches will not work in 

isolation for vibration signals. The frequency domain methods are needed alongside the 

time-domain ones in order to identify all the MCs addressed. 
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7.4 PROCESS INFORMATION (PRESSURE) ANALYSIS 

The RMS pressure technique was selected for investigation as it is one of the major 

process information techniques used for centrifugal equipment. The pressure information 

was collected using a pressure sensor installed in the air outlet tube. Four pressure 

readings were collected over a time period of four seconds for each machine condition. 

The average pressure was calculated on the basis of these four pressure samples. The 

average air outlet pressures for all MCs are shown in Table 45.  The difference values 

between the average pressures of all MCs are less than 1.5%, except for the value of MC 

2. Therefore, based on the analysis results, the pressure information can be only utilised 

for fault identification of MC 2. 

Table 42: Air outlet RMS pressure (Correct diagnosis in bold).  

 
Average pressure ( BarA ) 

MC 1 1.165 

MC 2 1.067 

MC 3 1.161 

MC 4 1.157 

MC 5 1.150 

 

7.5 TESTING AND DISCUSSION 

In this section, the algorithms developed and “trained” previously are tested on new 

(unseen) data. Fifty AE samples, fifty vibration samples, and fifty pressure samples were 

collected for all of the addressed machine conditions (see section 6.2). 44% of the 

samples were utilised to identify the benchmark thresholds, and 56% were utilised for the 

evaluation of detection accuracy.  

A MATLAB code was developed on the basis of the benchmark thresholds shown in 

sections 7.2, 7.3, and 7.4 to evaluate the detection accuracy of a large number of signal 
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features and techniques using 30 datasets (60% of all datasets). The ability of the RMS 

and energy features of AE signals to detect MC 1, MC 2, MC 4 was proven, with a 

detection accuracy of 100%. The crest factor and amplitude features only detected MC 4, 

with a detection accuracy of 100%.   The main drawback of the AE time-domain features 

is that MC3 and MC5 are always undetectable. The AE spectral feature proved its 

effectiveness over time-domain features as it was successfully utilised to detect all faults 

at any segment size smaller than or equal to 108 kHz, with a detection accuracy of 100%. 

RMS, amplitude, crest factor and energy features of vibration signals proved their 

efficiency in detecting machine MC 3, with a detection accuracy of 100%.  The main 

drawback of the vibration time-domain features is that MC 1, MC 2, MC 4, and MC 5 are 

undetectable. The vibration spectral features failed to detect all of the addressed machine 

conditions at all segment sizes except at 10, 100, 200, 300 and 900 Hz. The maximum 

overall confidence level was found at the smallest segment size (10 Hz). The vibration 

spectral feature technique proved its effectiveness over time-domain features as it 

successfully detected all of the addressed machine conditions at a segment size of 10 Hz, 

with a detection accuracy of 100%.  

The pressure information proved its efficiency in detecting MC 2 with a detection 

accuracy of 100%. The main drawback of this technique is that the pressure information 

did not provide enough information for the detection of the other addressed machine 

conditions.  

7.6  CHARACTERISATION TABLE  

In this section, the combination of all of the above methods is investigated to provide a 

multi-fault detection technique for the CM of the centrifugal compressor. Eleven features 

were extracted for each machine condition. The characterisation table shown in Table 46 
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was built on the basis of the experimental results using both training and validation 

datasets. “Weak” means that the minimum difference between benchmark threshold of 

this machine condition and the benchmark thresholds of other machine conditions (or the 

value confidence level) is less than or equal to 10%; “Good” means that the minimum 

difference is greater than 10% but less than 20%; “Strong” means that the minimum 

difference is greater than 20% but less than 30% ; “Very Strong” means that the 

minimum difference is equal or greater than 30%; while “x” means that the signal feature 

failed to identify the correct machine condition.  

A classification program was developed using MATLAB, based on the illustrated 

characterisation table, and was found to give a detection accuracy of 100%. As suggested 

by the literature, these results show that the use of multi-detection and multi-feature 

techniques has the potential to minimize false detections caused by fault interference and 

noise issues.  
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Table 43: Characterisation table for the classification of centrifugal compressor faults. 

Technique MC1 MC2 MC3 MC4 MC5 

AE      

RMS Weak Weak x Very Strong x 

Amplitude x x x Very Strong x 

CF x x x Weak x 

Energy Weak Weak x Very Strong x 

FFT  

@S <90 kHz 

Very Strong Very Strong Very Strong Very Strong Very Strong 

Axial 

Vibration 

     

RMS x x Good x x 

Amplitude x x x x x 

CF x x Weak x x 

Energy x x Good x x 

FFT@  

S= 10 Hz 

Good Good Good Good Good 

Pressure      

RMS x Very strong x x x 

 

7.7 SUMMARY 

In this chapter, acoustic, vibration and pressure sensor data from the compressor have 

been analysed using five approaches, namely RMS, Crest Factor, Energy, Maximum 

Amplitude and FFT. This will allow comparison of the AE technique with the approaches 

stated and, most importantly, will make it possible to combine the approaches to improve 

the fault identification. 

The lab-based industrial air compressor was employed to emulate five different 

centrifugal equipment machine conditions. The different techniques for fault detection of 

centrifugal equipment were investigated and compared in terms of their fault 
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identification ability, using data from the experiments. The AE time-domain features 

failed to identify the five addressed machine conditions, while the AE frequency-domain 

features managed to identify them all, with an identification accuracy of 100%.  

Moreover, the segment sizes with small overall confidence level values proved their 

effectiveness in detecting the addressed machine conditions. This means that these small 

overall confidence level values were enough for effective classification. However, the 

bigger the overall confidence level value, the better the elimination of false indications. 

The vibration time-domain features failed to identify the five addressed machine 

conditions, while the vibration frequency-domain features managed to identify them all, 

at a segment size of 100 Hz, and with an identification accuracy of 100%. Although the 

overall confidence level values of vibration spectral features was relatively low in 

comparison with the confidence level values of AE spectral features, all of the addressed 

machine fault conditions were successful in their diagnoses, with a fault identification 

accuracy of 100%.  

The pressure information was useful in the detection of air leakage problems (condition 

2). For other machine conditions, the classification program failed to differentiate 

between other machine conditions with the use of the pressure information. 

In conclusion, based on the results of this chapter, the characterisation table (see Table 

46) provides the CM system developer with a full-capacity system for monitoring 

centrifugal equipment for the first time. The AE technique proved its effectiveness over 

vibration and pressure information techniques. In comparison to time-domain features, 

the FFT spectral features were best for the detection of high-speed centrifugal air 

compressor faults. The proposed characterisation table yielded a fault identification 

accuracy of 100%, and will improve the fault identification performance of a full-
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capacity CM system for centrifugal equipment, as well as reducing the potential for false 

fault identification. 
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Chapter 8. Conclusion and future work 

8. CONCLUSION AND FUTURE WORK 

The ultimate, real-world, aim of this study was to suggest modifications to LNG 

production plants and their operations that could improve the profitability and availability 

of those plants, increase safety and reduce air pollution. Progress toward this has been 

achieved by using a combination of reliability and availability analysis and by developing 

(and assessing the performance of) an effective and non-complex CM system which, in 

the future, could form the foundation of a condition-based maintenance system. Taken 

together, these approaches allow improved availability with lower cost of maintenance.  

The literature review on this subject showed that very little research has been reported on 

the use or development of C3MR liquefaction system redundancy schemes. It was also 

suggested in the literature that the accuracy of many available on-line CM methods for 

centrifugal equipment was inadequate, or that some methods could not be easily 

implemented as they required a long setting-up time and high development and 

computing costs.  

Therefore, in chapter 3 of this study, the reliability and availability of the C3MR 

liquefaction system was analysed, and the introduction of redundancy was outlined on the 

basis of a detailed cost analysis. A Condition Monitoring (CM) system was proposed and 

experimentally verified in chapters 5, 6, and 7.  The CM system was based on a novel 

Modified FFT-based Segmentation, Feature Selection and Fault Identification algorithm 

(MFS2FI). A robustness analysis for the proposed MFS2FI algorithm was performed, and 

its performance was compared with the performances of a standard FFT classifier, and an 
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NN-based classifier in chapter 6. The major fault detection techniques and signal features 

were characterised in respect of the fault identification of high speed centrifugal 

equipment in chapter 7. 

To the best of the author’s knowledge, the major contributions and findings of this study 

are novel, current, and offer the developers of offshore and onshore LNG production 

trains algorithms that have been verified in the laboratory environment which ultimately 

could improve the availability and profitability of LNG production plants. 

The main findings of this study can be summarised as follows: 

1. A reliability model was developed in order to analyse the reliability and 

operational availability of a typical FPSO LNG liquefaction system. The model 

was also extended to allow redundancy options to be considered. The results 

showed that the introduction of a 100% standby system could increase the 

reliability of the existing typical medium-sized C3MR LNG liquefaction systems 

(3MTPA) by around 15.7%. 

2. The model was used to estimate the costs and benefits of partial and full 

redundancy of a typical FPSO liquefaction system. The results showed that the 

implementation of a 100% standby system on typical medium-sized FPSOs 

(3MTPA) has the potential to increase annual profit by around US$296 million 

(from US$1,190 million to US$1,485.98 million per year).. 

3. An experimental compressor test-rig was built to emulate a number of compressor 

machine faults, and to generate data for CM studies. The test rig was 

commissioned, tested, calibrated and used in order to test and validate the 

algorithms discussed in this thesis. 
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4. A novel automated, non-AI, systematic, fast and easy-to-implement MFS2FI 

algorithm was proposed to improve the applicability, performance, development 

time and computing time of current CM systems. The algorithm was developed 

and validated on the lab test rig. The MFS2FI properly segmented the frequency 

spectra and yielded a detection accuracy of 100% at various segment sizes ranging 

from 1 kHz to 108 kHz. The best detection performance was achieved at the 

smallest segment size (1 kHz). At this segment size, the MFS2FI yielded the 

highest fault identification accuracy and the highest confidence level value.  

5. The robustness of the MFS2FI was demonstrated using various signal time lengths 

and data window positions. It was found that changing the data window length and 

position did not have a significant effect on the fault identification accuracy of the 

algorithm. A comparative study of the MFS2FI and the standard FFT and NN-

based classifiers showed that the proposed algorithm is more accurate than 

standard FFT classifiers, has a much shorter development time, and is less than 

sixteen times computationally intensive than NN-based classifiers as it yielded a 

100% detection accuracy in only 3.5 seconds (57.2 seconds for NN). 

6. An algorithm “characterisation table” was developed to combine information from 

several fault detection techniques and signal features, namely AE, vibration, air 

pressure, crest factor, energy factor, RMS, amplitude and spectral features (FFT). 

The AE spectral features demonstrated their effectiveness over the other 

techniques and signal features which were addressed, and they yielded a fault 

identification accuracy of 100%. This approach is considered to have good 

potential for the development of CM system for typical centrifugal equipment and 

for the improvement of the fault identification accuracy (compared with a single 

technique). The collective utilisation of a number of techniques and signal features 
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could decrease the potential for false alarms resulting from noise disturbance and 

fault interference. 

Overall, based on the findings of this study, the introduction of a 100% standby system to 

the C3MR liquefaction system on FPSO alongside the implementation of condition 

monitoring as part of a condition based maintenance system could provide LNG 

production trains with significant improvements in system reliability and significantly 

reduced maintenance costs.  

However, the lack of information about FPSO maintenance costs hindered the preventive 

maintenance cost estimations presented in this study. This study also limited itself to 

similar high-speed industrial centrifugal compressors, and was carried out in a controlled 

laboratory environment at a specific ambient temperature and operational times, and 

under specific conditions. An investigation should be carried out to apply the result of 

this study to similar industrial centrifugal compressors at different operating conditions, 

and to different types of centrifugal equipment. However, it is anticipated that the results 

will be applicable to a wide range of high-speed centrifugal equipment. 

8.1 FUTURE WORK 

Future work should build on the promising lab scale results, and begin applying the 

redundancy and the CM technique to real FPSO plants. For example, a key step would be 

to collect real data from compressors on a working FPSO, and evaluate the effectiveness 

of the proposed CM approaches on such real data over an extended period of time (and as 

faults develop). 

Another future academic study which could emerge from the present one is the 

application of the research approach in this study to other rotating equipment. A number 

of outstanding real world implementation issues must be solved to pave the way for the 
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development of a truly general purpose solution for all types of FPSOs. These problems 

indicate a variety of research directions that need to be pursued to make such a system 

feasible. One such direction is the investigation of the reliability of other liquefaction 

systems utilised on FPSOs. Another possibility is the application of the proposed CM 

system to different equipment, and to increase the number of fault patterns.  It would be 

also beneficial to investigate more signal analysis techniques such as wavelets, and to add 

the results of such investigations to the characterisation table developed. 
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MATLAB code for maintenance time interval optimisation  

APPENDIX (A) 
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Lo=9.15e-4; %per hour 

Nj=2; %Number of components in subsystem 

%Lo=2e-4*3*30; % for 3 month of operation 

To=672 %Assuming that the time between preventive maintenances is 4 weeks (should 

be less than the MTTF) 

 

r=0.7; 

M=1/Lo; 

A=2.5; 

Year=5*12*24; 

T=200:1:1000;  %Tmax should be less than MMTF - MTTF =1/Lo 

%T=Year; %maintenance interval= 1 year  

 

Cpm=50000; 

Ccm=100000; %per failure 

Cs=(3.3e6/(12*30*24))*500; %cost of shut down/hr, knowing that, the price of LNG is 

500 USD/Ton LNG = Approx. 190 000 USD/hr  

Pr=3.3e6; %Production rate = 3.3 MTPA (Million Tons Per Annum) 

Total_income=Cs*Pr; % Total income per year 

  

num1=1-((0.1*A*T.^2)/M^2)+ (((0.09*A-0.2)*T)/M); 

denum1=1-((0.1*A*To^2)/M^2)+ (((0.09*A-0.2)*To)/M); 
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Le=r*Lo+(1-r)*Lo*((T./To).^(A-1)).*(num1/denum1);% effective failure rate per hour or 

per Lo 

   

Cst=Cs.*Le; 

max1=max(Cst); 

PM=Cpm./T; 

CM=Ccm*Le; 

  

plot(T,Cst,'-.b'); 

hold on 

plot(T,PM,'--r'); 

hold on 

plot(T,CM,'-.g'); 

  

Ctotal=Cst+CM*Nj+PM*Nj; 

  

min1=min(Ctotal) %@T=1760 hr 

  

hold on 

plot(T,Ctotal,'-black'); 

  

xlabel('Time interval between periodic maintenance [h]') 

ylabel('USD / h') 

legend('Shutdown','PM cost','CM cost','Total cost') 
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Data sheets 
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Industrial air compressor from Paxton (model AT1200) 
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MATLAB code for the proposed MFS2FI algorithm  
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clear 

clc 

   

% loading the training datasets ( 4 sets for each machine condition) 

  

data1=load('Healthy\1\1Impeller_ data matrix.mat'); 

data2=load('Healthy\3\1Impeller_ data matrix.mat'); 

data3=load('Healthy\8\1Impeller_ data matrix.mat'); 

data4=load('Healthy\10\1Impeller_ data matrix.mat'); 

   

data5=load('Leak\1\1Impeller_ data matrix.mat'); 

data6=load('Leak\3\1Impeller_ data matrix.mat'); 

data7=load('Leak\8\1Impeller_ data matrix.mat'); 

data8=load('Leak\10\1Impeller_ data matrix.mat'); 

  

data9=load('Impeller\1\1Impeller_ data matrix.mat'); 

data10=load('Impeller\3\1Impeller_ data matrix.mat'); 

data11=load('Impeller\8\1Impeller_ data matrix.mat'); 

data12=load('Impeller\10\1Impeller_ data matrix.mat'); 

   

data13=load('Belt\1\1Impeller_ data matrix.mat'); 

data14=load('Belt\3\1Impeller_ data matrix.mat'); 

data15=load('Belt\8\1Impeller_ data matrix.mat'); 

data16=load('Belt\10\1Impeller_ data matrix.mat'); 
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data17=load('Both\1\1Impeller_ data matrix.mat'); 

data18=load('Both\3\1Impeller_ data matrix.mat'); 

data19=load('Both\8\1Impeller_ data matrix.mat'); 

data20=load('Both\10\1Impeller_ data matrix.mat'); 

  

X1=abs(fft(data1.data)); 

X2=abs(fft(data2.data)); 

X3=abs(fft(data3.data)); 

X4=abs(fft(data4.data)); 

  

X5=abs(fft(data5.data)); 

X6=abs(fft(data6.data)); 

X7=abs(fft(data7.data)); 

X8=abs(fft(data8.data)); 

  

X9=abs(fft(data9.data)); 

X10=abs(fft(data10.data)); 

X11=abs(fft(data11.data)); 

X12=abs(fft(data12.data)); 

  

X13=abs(fft(data13.data)); 

X14=abs(fft(data14.data)); 

X15=abs(fft(data15.data)); 

X16=abs(fft(data16.data)); 
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X17=abs(fft(data17.data)); 

X18=abs(fft(data18.data)); 

X19=abs(fft(data19.data)); 

X20=abs(fft(data20.data)); 

  

Solution=[1; 1; 1; 1; 1;1]; 

SofSolution=size(Solution); 

   

% loading the second training dataset (a set will be only selected and used for the P 

Matrix calculations) 

  

data1t=load('Healthy\2\1Impeller_ data matrix.mat'); 

data2t=load('Healthy\5\1Impeller_ data matrix.mat'); 

data3t=load('Healthy\9\1Impeller_ data matrix.mat'); 

   

data4t=load('Leak\2\1Impeller_ data matrix.mat'); 

data5t=load('Leak\5\1Impeller_ data matrix.mat'); 

data6t=load('Leak\9\1Impeller_ data matrix.mat'); 

   

data7t=load('Impeller\2\1Impeller_ data matrix.mat'); 

data8t=load('Impeller\5\1Impeller_ data matrix.mat'); 

data9t=load('Impeller\9\1Impeller_ data matrix.mat'); 

  

data10t=load('Belt\2\1Impeller_ data matrix.mat'); 

data11t=load('Belt\5\1Impeller_ data matrix.mat'); 
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data12t=load('Belt\9\1Impeller_ data matrix.mat'); 

  

data13t=load('Both\2\1Impeller_ data matrix.mat'); 

data14t=load('Both\5\1Impeller_ data matrix.mat'); 

data15t=load('Both\9\1Impeller_ data matrix.mat'); 

  

X1t=abs(fft(data1t.data)); 

X2t=abs(fft(data2t.data)); 

X3t=abs(fft(data3t.data)); 

  

X4t=abs(fft(data4t.data)); 

X5t=abs(fft(data5t.data)); 

X6t=abs(fft(data6t.data)); 

  

X7t=abs(fft(data7t.data)); 

X8t=abs(fft(data8t.data)); 

X9t=abs(fft(data9t.data)); 

   

X10t=abs(fft(data10t.data)); 

X11t=abs(fft(data11t.data)); 

X12t=abs(fft(data12t.data)); 

   

X13t=abs(fft(data13t.data)); 

X14t=abs(fft(data14t.data)); 

X15t=abs(fft(data15t.data)); 
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%S=80000; % Frequency division 

kk=1; 

  

  

for SS=121000:-1000:1000 

    

S=SS; 

  

K=1; 

NOC=5;  % Total number of machine conditions (Healthy, air leak, bearing with lack of  

lubrication,...,etc) 

  

for KK=2000:S:121000 

     

    KKn=KK+S-1; 

     

    if KKn>121000 

        KKn=121000 

    end 

     

    X0_Freq(K)=KK; 

     

    X1_max(K)=max(X1(KK:KKn)); 

    X2_max(K)=max(X2(KK:KKn)); 
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    X3_max(K)=max(X3(KK:KKn)); 

    X4_max(K)=max(X4(KK:KKn)); 

         

    X5_max(K)=max(X5(KK:KKn)); 

    X6_max(K)=max(X6(KK:KKn)); 

    X7_max(K)=max(X7(KK:KKn)); 

    X8_max(K)=max(X8(KK:KKn)); 

         

    X9_max(K)=max(X9(KK:KKn)); 

    X10_max(K)=max(X10(KK:KKn)); 

    X11_max(K)=max(X11(KK:KKn)); 

    X12_max(K)=max(X12(KK:KKn)); 

         

    X13_max(K)=max(X13(KK:KKn)); 

    X14_max(K)=max(X14(KK:KKn)); 

    X15_max(K)=max(X15(KK:KKn)); 

    X16_max(K)=max(X16(KK:KKn)); 

         

    X17_max(K)=max(X17(KK:KKn)); 

    X18_max(K)=max(X18(KK:KKn)); 

    X19_max(K)=max(X19(KK:KKn)); 

    X20_max(K)=max(X20(KK:KKn)); 

        

    X1t_max(K)=max(X1t(KK:KKn)); 

    X2t_max(K)=max(X2t(KK:KKn)); 
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    X3t_max(K)=max(X3t(KK:KKn)); 

         

    X4t_max(K)=max(X4t(KK:KKn)); 

    X5t_max(K)=max(X5t(KK:KKn)); 

    X6t_max(K)=max(X6t(KK:KKn)); 

    X7t_max(K)=max(X7t(KK:KKn)); 

     

    X8t_max(K)=max(X8t(KK:KKn)); 

    X9t_max(K)=max(X9t(KK:KKn)); 

    X10t_max(K)=max(X10t(KK:KKn)); 

    X11t_max(K)=max(X11t(KK:KKn)); 

     

    X12t_max(K)=max(X12t(KK:KKn)); 

    X13t_max(K)=max(X13t(KK:KKn)); 

    X14t_max(K)=max(X14t(KK:KKn)); 

    X15t_max(K)=max(X15t(KK:KKn)); 

     

    XXX(K)=0; 

    K=K+1; 

        

end 

  

 % Calculating the max and min values for max peaks (Benchmark Values) 
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 for KK=1:1:K-1 

     

    Xmin(1,KK)=min([X1_max(KK) X2_max(KK) X3_max(KK) X4_max(KK) ]); 

    Xmax(1,KK)=max([X1_max(KK) X2_max(KK) X3_max(KK) X4_max(KK) ]); 

     

    Xmin(2,KK)=min([X5_max(KK) X6_max(KK) X7_max(KK) X8_max(KK) ]); 

    Xmax(2,KK)=max([X5_max(KK) X6_max(KK) X7_max(KK) X8_max(KK) ]); 

     

    Xmin(3,KK)=min([X9_max(KK) X10_max(KK) X11_max(KK) X12_max(KK) ]); 

    Xmax(3,KK)=max([X9_max(KK) X10_max(KK) X11_max(KK) X12_max(KK) ]); 

     

    Xmin(4,KK)=min([X13_max(KK) X14_max(KK) X15_max(KK) X16_max(KK) ]); 

    Xmax(4,KK)=max([X13_max(KK) X14_max(KK) X15_max(KK) X16_max(KK) ]); 

     

    Xmin(5,KK)=min([X17_max(KK) X18_max(KK) X19_max(KK) X20_max(KK) ]); 

    Xmax(5,KK)=max([X17_max(KK) X18_max(KK) X19_max(KK) X20_max(KK) ]); 

         

    Xtmin(1,KK)=min([X1t_max(KK) X2t_max(KK) X3t_max(KK) ]); 

    Xtmax(1,KK)=max([X1t_max(KK) X2t_max(KK) X3t_max(KK) ]); 

     

    Xtmin(2,KK)=min([X4t_max(KK) X5t_max(KK) X6t_max(KK) ]); 

    Xtmax(2,KK)=max([X4t_max(KK) X5t_max(KK) X6t_max(KK) ]); 

     

    Xtmin(3,KK)=min([X7t_max(KK) X8t_max(KK) X9t_max(KK) ]); 

    Xtmax(3,KK)=max([X7t_max(KK) X8t_max(KK) X9t_max(KK) ]); 



245 
 

     

    Xtmin(4,KK)=min([X10t_max(KK) X11t_max(KK) X12t_max(KK) ]); 

    Xtmax(4,KK)=max([X10t_max(KK) X11t_max(KK) X12t_max(KK) ]); 

     

    Xtmin(5,KK)=min([X13t_max(KK) X14t_max(KK) X15t_max(KK) ]); 

    Xtmax(5,KK)=max([X13t_max(KK) X14t_max(KK) X15t_max(KK) ]); 

          

     

end 

  

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  

% Testing 

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  

% First file (healthy - Test) 

  

% first row comparison (j = k-1) 

  

X_test= X2t_max;  % Enter the sample number 

 Selection= zeros(10, K-1); % comparing the measured signal with the benchmark values 

 

AAA=zeros(5,5); 

  

  

for KK= 1:1:K-1 
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    if X_test(1,KK)>= Xmin(1,KK) &&  X_test(1,KK) <= Xmax(1,KK) 

       Selection(1,KK) = 11; 

        

    end 

     

     if X_test(1,KK)>= Xmin(2,KK) &&  X_test(1,KK) <= Xmax(2,KK) 

       Selection(2,KK) = 22; 

        

     end 

     

    if X_test(1,KK)>= Xmin(3,KK) &&  X_test(1,KK) <= Xmax(3,KK) 

       Selection(3,KK) = 33; 

        

    end 

     

    if X_test(1,KK)>= Xmin(4,KK) &&  X_test(1,KK) <= Xmax(4,KK) 

       Selection(4,KK) = 44; 

        

    end 

     

    if X_test(1,KK)>= Xmin(5,KK) &&  X_test(1,KK) <= Xmax(5,KK) 

       Selection(5,KK) = 55; 

        

    end 
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end 

  

   

for Kk=1:1:5, 

         

  for j=1:1:K-1 

      P(Kk, j)=abs(((Xmax(Kk,j)-X_test(1,j))/Xmax(Kk,j))*100); 

  end 

         

  for j=1:1:K-1 

     P(Kk+5, j)=abs(((Xmin(Kk,j)-X_test(1,j))/Xmin(Kk,j))*100); 

  end 

end 

  

     

for j=1:1:K-1, 

    Pn=P(:,j); 

    Pselected(1,j) = min(Pn); 

    Index(j)= find(Pn==Pselected(1,j)); 

end 

     

Index 

P1=P 

 % Creating the Second half of the Selection Matrix 
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for j=1:1:K-1 

     

if (Index(j)==1 || Index(j)==6) 

    Selection(6,j)=1; 

          

end 

         

if (Index(j)==2|| Index(j)==7) 

    Selection(7,j)=2; 

        

end 

      

if (Index(j)==3 || Index(j)==8) 

    Selection(8,j)=3; 

  

end 

      

if (Index(j)==4 || Index(j)==9) 

    Selection(9,j)=4; 

  

 end 

      

 if (Index(j)==5 || Index(j)==10) 

     Selection(10,j)=5; 
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 end 

     

 end 

       

Selection     

K 

S 

  

% The decision making is based on the Selection Matrix 

  

A1=find(Selection == 1); 

A11=find(Selection == 11); 

A2=find(Selection == 2); 

A22=find(Selection == 22); 

A3=find(Selection == 3); 

A33=find(Selection == 33); 

A4=find(Selection == 4); 

A44=find(Selection == 44); 

A5=find(Selection == 5); 

A55=find(Selection == 55); 

  

A1s=size(A1); 

A11s=size(A11); 

A1st=A1s+A11s;  
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A2s=size(A2); 

A22s=size(A22); 

A2st=A2s+A22s; 

  

A3s=size(A3); 

A33s=size(A33); 

A3st=A3s+A33s; 

  

A4s=size(A4); 

A44s=size(A44); 

A4st=A4s+A44s; 

  

A5s=size(A5); 

A55s=size(A55); 

A5st=A5s+A55s; 

  

A(:,1)=[A1st(1,1);A2st(1,1);A3st(1,1);A4st(1,1);A5st(1,1)]; 

AS=A(:,1) 

AA=find(AS==max(AS)); 

SS=size(AA); 

  

if SS(1,1)>1 % There will be no solution if the algorithm detected more than one fault 

     clear AA 

     AA=[0]; 

else 
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T= strcat(' The fault number is: ', num2str(AA) ) 

AAA(AA,1)=1; 

end 

  

  

% Second file (Leak - Test) 

  

% first row comparison (j = k-1) 

  

X_test= X5t_max;  % Testing  

  

Selection= zeros(10, K-1); % comparing the testing datasets values with the benchmark 

values 

 

for KK= 1:1:K-1 

    if X_test(1,KK)>= Xmin(1,KK) &&  X_test(1,KK) <= Xmax(1,KK) 

       Selection(1,KK) = 11; 

        

    end 

     

     if X_test(1,KK)>= Xmin(2,KK) &&  X_test(1,KK) <= Xmax(2,KK) 

       Selection(2,KK) = 22; 

        

     end 
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    if X_test(1,KK)>= Xmin(3,KK) &&  X_test(1,KK) <= Xmax(3,KK) 

       Selection(3,KK) = 33; 

        

    end 

     

    if X_test(1,KK)>= Xmin(4,KK) &&  X_test(1,KK) <= Xmax(4,KK) 

       Selection(4,KK) = 44; 

        

    end 

     

    if X_test(1,KK)>= Xmin(5,KK) &&  X_test(1,KK) <= Xmax(5,KK) 

       Selection(5,KK) = 55; 

        

    end 

     

end 

  

  

    for Kk=1:1:5, 

         

        for j=1:1:K-1 

        P(Kk, j)=abs(((Xmax(Kk,j)-X_test(1,j))/Xmax(Kk,j))*100); 

        end 

         

       for j=1:1:K-1 
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        P(Kk+5, j)=abs(((Xmin(Kk,j)-X_test(1,j))/Xmin(Kk,j))*100); 

       end 

    end 

  

    P2=P 

   

    for j=1:1:K-1, 

    Pn=P(:,j); 

    Pselected(1,j) = min(Pn); 

    Index(j)= find(Pn==Pselected(1,j)); 

    end 

     

    Index 

        

% Creating the Second half of  the Selection Matrix 

     

     for j=1:1:K-1 

      

     if (Index(j)==1 || Index(j)==6) 

         Selection(6,j)=1; 

             

     end 

         

     if (Index(j)==2|| Index(j)==7) 

         Selection(7,j)=2; 
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     end 

      

     if (Index(j)==3 || Index(j)==8) 

         Selection(8,j)=3; 

    

     end 

      

     if (Index(j)==4 || Index(j)==9) 

         Selection(9,j)=4; 

  

     end 

      

     if (Index(j)==5 || Index(j)==10) 

         Selection(10,j)=5; 

     

     end 

      

      

    end 

            

Selection     

K 

S 
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% The decision making is based on the Selection Matrix 

  

A1=find(Selection == 1); 

A11=find(Selection == 11); 

A2=find(Selection == 2); 

A22=find(Selection == 22); 

A3=find(Selection == 3); 

A33=find(Selection == 33); 

A4=find(Selection == 4); 

A44=find(Selection == 44); 

A5=find(Selection == 5); 

A55=find(Selection == 55); 

  

A1s=size(A1); 

A11s=size(A11); 

A1st=A1s+A11s;  

 

A2s=size(A2); 

A22s=size(A22); 

A2st=A2s+A22s; 

  

A3s=size(A3); 

A33s=size(A33); 

A3st=A3s+A33s; 
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A4s=size(A4); 

A44s=size(A44); 

A4st=A4s+A44s; 

  

A5s=size(A5); 

A55s=size(A55); 

A5st=A5s+A55s; 

  

  

A(:,2)=[A1st(1,1);A2st(1,1);A3st(1,1);A4st(1,1);A5st(1,1)]; 

AS=A(:,2) 

AA=find(AS==max(AS)); 

SS=size(AA); 

  

 if SS(1,1)>1 % There is no solution if the algorithm detected more than one fault 

     clear AA 

     AA=[0]; 

 else 

T= strcat(' The fault number is: ', num2str(AA) ) 

AAA(AA,2)=1; 

 end 

   

% Third file (Impeller - Test) 

  

% first row comparison (j = k-1) 
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X_test= X8t_max;  % Testing  

  

Selection= zeros (10, K-1); % comparing the measured signal with benchmark values 

 

for KK= 1:1:K-1 

    if X_test(1,KK)>= Xmin(1,KK) &&  X_test(1,KK) <= Xmax(1,KK) 

       Selection(1,KK) = 11; 

        

    end 

     

     if X_test(1,KK)>= Xmin(2,KK) &&  X_test(1,KK) <= Xmax(2,KK) 

       Selection(2,KK) = 22; 

        

     end 

     

    if X_test(1,KK)>= Xmin(3,KK) &&  X_test(1,KK) <= Xmax(3,KK) 

       Selection(3,KK) = 33; 

        

    end 

     

    if X_test(1,KK)>= Xmin(4,KK) &&  X_test(1,KK) <= Xmax(4,KK) 

       Selection(4,KK) = 44; 

        

    end 
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    if X_test(1,KK)>= Xmin(5,KK) &&  X_test(1,KK) <= Xmax(5,KK) 

       Selection(5,KK) = 55; 

        

    end 

     

end 

   

    for Kk=1:1:5, 

         

        for j=1:1:K-1 

        P(Kk, j)=abs(((Xmax(Kk,j)-X_test(1,j))/Xmax(Kk,j))*100); 

        end 

         

       for j=1:1:K-1 

        P(Kk+5, j)=abs(((Xmin(Kk,j)-X_test(1,j))/Xmin(Kk,j))*100); 

        end 

    end 

  

      

    for j=1:1:K-1, 

    Pn=P(:,j); 

    Pselected(1,j) = min(Pn); 

    Index(j)= find(Pn==Pselected(1,j)); 

    end 
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    Index 

    P3=P 

        

% creating the Second half of the Selection matrix 

     

    for j=1:1:K-1 

     

     if (Index(j)==1 || Index(j)==6) 

         Selection(6,j)=1; 

             

     end 

         

     if (Index(j)==2|| Index(j)==7) 

         Selection(7,j)=2; 

        

     end 

      

     if (Index(j)==3 || Index(j)==8) 

         Selection(8,j)=3; 

    

     end 

      

     if (Index(j)==4 || Index(j)==9) 

         Selection(9,j)=4; 
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     end 

      

     if (Index(j)==5 || Index(j)==10) 

         Selection(10,j)=5; 

     

     end 

 

    end 

     

Selection     

K 

S 

  

% The decision making is based on the Selection matrix 

  

A1=find(Selection == 1); 

A11=find(Selection == 11); 

A2=find(Selection == 2); 

A22=find(Selection == 22); 

A3=find(Selection == 3); 

A33=find(Selection == 33); 

A4=find(Selection == 4); 

A44=find(Selection == 44); 

A5=find(Selection == 5); 
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A55=find(Selection == 55); 

  

A1s=size(A1); 

A11s=size(A11); 

A1st=A1s+A11s;  

  

A2s=size(A2); 

A22s=size(A22); 

A2st=A2s+A22s; 

  

A3s=size(A3); 

A33s=size(A33); 

A3st=A3s+A33s; 

  

A4s=size(A4); 

A44s=size(A44); 

A4st=A4s+A44s; 

  

A5s=size(A5); 

A55s=size(A55); 

A5st=A5s+A55s; 

  

A(:,3)=[A1st(1,1);A2st(1,1);A3st(1,1);A4st(1,1);A5st(1,1)]; 

AS=A(:,3) 

AA=find(AS==max(AS)); 
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SS=size(AA); 

  

 if SS(1,1)>1 % There is no solution if the algorithm detected more than one fault 

     clear AA 

     AA=[0]; 

 else 

T= strcat(' The fault number is: ', num2str(AA) ) 

AAA(AA,3)=1; 

 end 

  

 

% Fourth file (healthy - Test) 

 % first row comparison (j = k-1) 

 X_test= X11t_max; % Testing  

  

Selection= zeros(10, K-1); % comparing the measured signal with the benchmark values 

 

for KK= 1:1:K-1 

    if X_test(1,KK)>= Xmin(1,KK) &&  X_test(1,KK) <= Xmax(1,KK) 

       Selection(1,KK) = 11; 

        

    end 

     

     if X_test(1,KK)>= Xmin(2,KK) &&  X_test(1,KK) <= Xmax(2,KK) 

       Selection(2,KK) = 22; 
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     end 

     

    if X_test(1,KK)>= Xmin(3,KK) &&  X_test(1,KK) <= Xmax(3,KK) 

       Selection(3,KK) = 33; 

        

    end 

     

    if X_test(1,KK)>= Xmin(4,KK) &&  X_test(1,KK) <= Xmax(4,KK) 

       Selection(4,KK) = 44; 

        

    end 

     

    if X_test(1,KK)>= Xmin(5,KK) &&  X_test(1,KK) <= Xmax(5,KK) 

       Selection(5,KK) = 55; 

        

    end 

     

end 

  

    for Kk=1:1:5, 

         

        for j=1:1:K-1 

        P(Kk, j)=abs(((Xmax(Kk,j)-X_test(1,j))/Xmax(Kk,j))*100); 

        end 
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       for j=1:1:K-1 

        P(Kk+5, j)=abs(((Xmin(Kk,j)-X_test(1,j))/Xmin(Kk,j))*100); 

        end 

    end 

  

     

  

    for j=1:1:K-1, 

    Pn=P(:,j); 

    Pselected(1,j) = min(Pn); 

    Index(j)= find(Pn==Pselected(1,j)); 

    end 

     Index 

     P4=P 

     

% Calculating the Second half of the Selection matrix 

     

 for j=1:1:K-1 

      

     if (Index(j)==1 || Index(j)==6) 

         Selection(6,j)=1; 

             

     end 
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     if (Index(j)==2|| Index(j)==7) 

         Selection(7,j)=2; 

        

     end 

      

     if (Index(j)==3 || Index(j)==8) 

         Selection(8,j)=3; 

    

     end 

      

     if (Index(j)==4 || Index(j)==9) 

         Selection(9,j)=4; 

  

     end 

      

     if (Index(j)==5 || Index(j)==10) 

         Selection(10,j)=5; 

     

     end 

      

      

    end 
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Selection     

K 

S 

  

% Decision making is based on the Selection matrix 

  

A1=find(Selection == 1); 

A11=find(Selection == 11); 

A2=find(Selection == 2); 

A22=find(Selection == 22); 

A3=find(Selection == 3); 

A33=find(Selection == 33); 

A4=find(Selection == 4); 

A44=find(Selection == 44); 

A5=find(Selection == 5); 

A55=find(Selection == 55); 

  

A1s=size(A1); 

A11s=size(A11); 

A1st=A1s+A11s;  

A2s=size(A2); 

A22s=size(A22); 

A2st=A2s+A22s; 

  

A3s=size(A3); 
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A33s=size(A33); 

A3st=A3s+A33s; 

  

A4s=size(A4); 

A44s=size(A44); 

A4st=A4s+A44s; 

  

A5s=size(A5); 

A55s=size(A55); 

A5st=A5s+A55s; 

  

A(:,4)=[A1st(1,1);A2st(1,1);A3st(1,1);A4st(1,1);A5st(1,1)]; 

AS=A(:,4) 

AA=find(AS==max(AS)); 

SS=size(AA); 

  

 if SS(1,1)>1 % There is no solution if the algorithm detected more than one fault 

     clear AA 

     AA=[0]; 

 else 

T= strcat(' The fault number is: ', num2str(AA) ) 

AAA(AA,4)=1; 

 end 
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% Fifth file (Belt - Test) 

  

% first row comparison (j = k-1) 

  

X_test= X14t_max;  % Testing  

  

Selection= zeros(10, K-1); % comparing measured signala with the benchmark values 

 

for KK= 1:1:K-1 

    if X_test(1,KK)>= Xmin(1,KK) &&  X_test(1,KK) <= Xmax(1,KK) 

       Selection(1,KK) = 11; 

        

    end 

     

     if X_test(1,KK)>= Xmin(2,KK) &&  X_test(1,KK) <= Xmax(2,KK) 

       Selection(2,KK) = 22; 

        

     end 

     

    if X_test(1,KK)>= Xmin(3,KK) &&  X_test(1,KK) <= Xmax(3,KK) 

       Selection(3,KK) = 33; 

        

    end 

     

    if X_test(1,KK)>= Xmin(4,KK) &&  X_test(1,KK) <= Xmax(4,KK) 
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       Selection(4,KK) = 44; 

        

    end 

     

    if X_test(1,KK)>= Xmin(5,KK) &&  X_test(1,KK) <= Xmax(5,KK) 

       Selection(5,KK) = 55; 

        

    end 

     

end 

  

  

  

    for Kk=1:1:5, 

         

        for j=1:1:K-1 

        P(Kk, j)=abs(((Xmax(Kk,j)-X_test(1,j))/Xmax(Kk,j))*100); 

        end 

         

       for j=1:1:K-1 

        P(Kk+5, j)=abs(((Xmin(Kk,j)-X_test(1,j))/Xmin(Kk,j))*100); 

        end 

    end 
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    for j=1:1:K-1, 

    Pn=P(:,j); 

    Pselected(1,j) = min(Pn); 

    Index(j)= find(Pn==Pselected(1,j)); 

    end 

     

    Index 

     

    P5=P 

     

     

% Calculatin the Second half of Selection matrix 

     

  

    for j=1:1:K-1 

      

     if (Index(j)==1 || Index(j)==6) 

         Selection(6,j)=1; 

             

     end 

         

     if (Index(j)==2|| Index(j)==7) 

         Selection(7,j)=2; 
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     end 

      

     if (Index(j)==3 || Index(j)==8) 

         Selection(8,j)=3; 

    

     end 

      

     if (Index(j)==4 || Index(j)==9) 

         Selection(9,j)=4; 

  

     end 

      

     if (Index(j)==5 || Index(j)==10) 

         Selection(10,j)=5; 

     

     end      

      

    end 

     

     

Selection     

K 

S 

  

 



272 
 

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 % Decision making process (based on the Selection matrix) 

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  

A1=find(Selection == 1); 

A11=find(Selection == 11); 

A2=find(Selection == 2); 

A22=find(Selection == 22); 

A3=find(Selection == 3); 

A33=find(Selection == 33); 

A4=find(Selection == 4); 

A44=find(Selection == 44); 

A5=find(Selection == 5); 

A55=find(Selection == 55); 

  

A1s=size(A1); 

A11s=size(A11); 

A1st=A1s+A11s;  

  

A2s=size(A2); 

A22s=size(A22); 

A2st=A2s+A22s; 

  

A3s=size(A3); 

A33s=size(A33); 
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A3st=A3s+A33s; 

  

A4s=size(A4); 

A44s=size(A44); 

A4st=A4s+A44s; 

  

A5s=size(A5); 

A55s=size(A55); 

A5st=A5s+A55s; 

  

A(:,5)=[A1st(1,1);A2st(1,1);A3st(1,1);A4st(1,1);A5st(1,1)]; 

AS=A(:,5) 

AA=find(AS==max(AS)); 

SS=size(AA); 

  

 if SS(1,1)>1 % if we have more than one maximum - equal potential of faults 

     clear AA 

     AA=[0]; 

 else 

T= strcat(' The fault number is: ', num2str(AA) ) 

AAA(AA,5)=1; 

 end 

A 

AAA 
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%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  

% Determining the fault numbers that were detected based on the output 

% of matrix AAA  

  

% In each raw, one element only should be equal to one equals to 1 and others equal 

should be equal to zero 

% Per example, for fault no. 3, element AAA(3,3) should be equal to 

% 1 while other should be equal to zero to avoid fault interference. 

  

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++ 

 

F= zeros(5,1); 

  

if AAA(1,1)>0 && AAA(1,2)<1 && AAA(1,3)<1 && AAA(1,4)<1 && AAA(1,5)<1 

    F(1,1)=1; 

    T=' Fault no. 1 can be detected ... !' 

end 

   

if AAA(2,1)<1 && AAA(2,2)>0 && AAA(2,3)<1 && AAA(2,4)<1 && AAA(2,5)<1 

    F(2,1)=1; 

    T=' Fault no. 2 can be detected ... !' 

end 

  

if AAA(3,1)<1 && AAA(3,2)<1 && AAA(3,3)>0 && AAA(3,4)<1 && AAA(3,5)<1 
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    F(3,1)=1; 

    T=' Fault no. 3 can be detected ... !' 

end 

  

if AAA(4,1)<1 && AAA(4,2)<1 && AAA(4,3)<1 && AAA(4,4)>0 && AAA(4,5)<1 

    F(4,1)=1; 

    T=' Fault no. 4 can be detected ... !' 

end 

  

  

if AAA(5,1)<1 && AAA(5,2)<1 && AAA(5,3)<1 && AAA(5,4)<1 && AAA(5,5)>0 

    F(5,1)=1; 

    T=' Fault no. 5 can be detected ... !' 

end 

  

FF(:,kk)=F 

kk=kk+1 

end 

  

xlswrite('120FFTSegmentsLoop.xls',FF, 'FF Matrix-S=2-2.9Kto121-121.9K'); 

xlswrite('120FFTSegmentsLoop.xls',X0_Freq, 'Division Values (S)'); 
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MATLAB code for the NN- based fault identification algorithm 
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clear 

clc 

% Neural Network  training. 

  

% loading the data files (4 runs for each condition) 

  

data1=load('Healthy\1\1Impeller_ data matrix.mat'); 

data2=load('Healthy\2\1Impeller_ data matrix.mat'); 

data3=load('Healthy\3\1Impeller_ data matrix.mat'); 

data4=load('Healthy\4\1Impeller_ data matrix.mat'); 

data5=load('Healthy\5\1Impeller_ data matrix.mat'); 

data6=load('Healthy\6\1Impeller_ data matrix.mat'); 

data7=load('Healthy\7\1Impeller_ data matrix.mat'); 

data8=load('Healthy\8\1Impeller_ data matrix.mat'); 

data9=load('Healthy\9\1Impeller_ data matrix.mat'); 

data10=load('Healthy\10\1Impeller_ data matrix.mat'); 

  

data11=load('Leak\1\1Impeller_ data matrix.mat'); 

data12=load('Leak\2\1Impeller_ data matrix.mat'); 

data13=load('Leak\3\1Impeller_ data matrix.mat'); 

data14=load('Leak\4\1Impeller_ data matrix.mat'); 

data15=load('Leak\5\1Impeller_ data matrix.mat'); 

data16=load('Leak\6\1Impeller_ data matrix.mat'); 

data17=load('Leak\7\1Impeller_ data matrix.mat'); 

data18=load('Leak\8\1Impeller_ data matrix.mat'); 
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data19=load('Leak\9\1Impeller_ data matrix.mat'); 

data20=load('Leak\10\1Impeller_ data matrix.mat'); 

  

 data21=load('Impeller\1\1Impeller_ data matrix.mat'); 

data22=load('Impeller\2\1Impeller_ data matrix.mat'); 

data23=load('Impeller\3\1Impeller_ data matrix.mat'); 

data24=load('Impeller\4\1Impeller_ data matrix.mat'); 

data25=load('Impeller\5\1Impeller_ data matrix.mat'); 

data26=load('Impeller\6\1Impeller_ data matrix.mat'); 

data27=load('Impeller\7\1Impeller_ data matrix.mat'); 

data28=load('Impeller\8\1Impeller_ data matrix.mat'); 

data29=load('Impeller\9\1Impeller_ data matrix.mat'); 

data30=load('Impeller\10\1Impeller_ data matrix.mat'); 

  

 data31=load('Belt\1\1Impeller_ data matrix.mat'); 

data32=load('Belt\2\1Impeller_ data matrix.mat'); 

data33=load('Belt\3\1Impeller_ data matrix.mat'); 

data34=load('Belt\4\1Impeller_ data matrix.mat'); 

data35=load('Belt\5\1Impeller_ data matrix.mat'); 

data36=load('Belt\6\1Impeller_ data matrix.mat'); 

data37=load('Belt\7\1Impeller_ data matrix.mat'); 

data38=load('Belt\8\1Impeller_ data matrix.mat'); 

data39=load('Belt\9\1Impeller_ data matrix.mat'); 

data40=load('Belt\10\1Impeller_ data matrix.mat'); 
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 data41=load('Both\1\1Impeller_ data matrix.mat'); 

data42=load('Both\2\1Impeller_ data matrix.mat'); 

data43=load('Both\3\1Impeller_ data matrix.mat'); 

data44=load('Both\4\1Impeller_ data matrix.mat'); 

data45=load('Both\5\1Impeller_ data matrix.mat'); 

data46=load('Both\6\1Impeller_ data matrix.mat'); 

data47=load('Both\7\1Impeller_ data matrix.mat'); 

data48=load('Both\8\1Impeller_ data matrix.mat'); 

data49=load('Both\9\1Impeller_ data matrix.mat'); 

data50=load('Both\10\1Impeller_ data matrix.mat'); 

  

 X1=abs(fft(data1.data(2000:122000))); 

X2=abs(fft(data2.data(2000:122000))); 

X3=abs(fft(data3.data(2000:122000))); 

X4=abs(fft(data4.data(2000:122000))); 

X5=abs(fft(data5.data(2000:122000))); 

X6=abs(fft(data6.data(2000:122000))); 

X7=abs(fft(data7.data(2000:122000))); 

X8=abs(fft(data8.data(2000:122000))); 

X9=abs(fft(data9.data(2000:122000))); 

X10=abs(fft(data10.data(2000:122000))); 

  

X11=abs(fft(data11.data(2000:122000))); 

X12=abs(fft(data12.data(2000:122000))); 

X13=abs(fft(data13.data(2000:122000))); 
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X14=abs(fft(data14.data(2000:122000))); 

X15=abs(fft(data15.data(2000:122000))); 

X16=abs(fft(data16.data(2000:122000))); 

X17=abs(fft(data17.data(2000:122000))); 

X18=abs(fft(data18.data(2000:122000))); 

X19=abs(fft(data19.data(2000:122000))); 

X20=abs(fft(data20.data(2000:122000))); 

  

X21=abs(fft(data21.data(2000:122000))); 

X22=abs(fft(data22.data(2000:122000))); 

X23=abs(fft(data23.data(2000:122000))); 

X24=abs(fft(data24.data(2000:122000))); 

X25=abs(fft(data25.data(2000:122000))); 

X26=abs(fft(data26.data(2000:122000))); 

X27=abs(fft(data27.data(2000:122000))); 

X28=abs(fft(data28.data(2000:122000))); 

X29=abs(fft(data29.data(2000:122000))); 

X30=abs(fft(data30.data(2000:122000))); 

  

X31=abs(fft(data31.data(2000:122000))); 

X32=abs(fft(data32.data(2000:122000))); 

X33=abs(fft(data33.data(2000:122000))); 

X34=abs(fft(data34.data(2000:122000))); 

X35=abs(fft(data35.data(2000:122000))); 

X36=abs(fft(data36.data(2000:122000))); 
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X37=abs(fft(data37.data(2000:122000))); 

X38=abs(fft(data38.data(2000:122000))); 

X39=abs(fft(data39.data(2000:122000))); 

X40=abs(fft(data40.data(2000:122000))); 

  

X41=abs(fft(data41.data(2000:122000))); 

X42=abs(fft(data42.data(2000:122000))); 

X43=abs(fft(data43.data(2000:122000))); 

X44=abs(fft(data44.data(2000:122000))); 

X45=abs(fft(data45.data(2000:122000))); 

X46=abs(fft(data46.data(2000:122000))); 

X47=abs(fft(data47.data(2000:122000))); 

X48=abs(fft(data48.data(2000:122000))); 

X49=abs(fft(data49.data(2000:122000))); 

X50=abs(fft(data50.data(2000:122000))); 

  

inputs=[X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 

X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36 

X37 X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 ]; 

targets=[1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 ; 

         0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0; 

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0; 
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         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0; 

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

1 1 1 1 1]; 

  

      

% Solve the Pattern Recognition Problem with Neural Network 

   

% Create a Pattern Recognition Network 

hiddenLayerSize = 50; 

net = patternnet(hiddenLayerSize); 

   

% Set up Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 40/100; 

net.divideParam.valRatio = 10/100; 

net.divideParam.testRatio = 50/100; 

  

 % Train the Network 

[net,tr] = train(net,inputs,targets); 

  

% Test the Network 

outputs = net(inputs); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs) 
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% View the Network 

view(net) 

  

% Plot 

figure, plotconfusion(targets,outputs) 
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Axial and radial vibration signals comparison 
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In this section, the axial and radial vibration signals are compared. The selection of the 

best signal is based on the results of the comparison. The RMS values of radial and axial 

vibration signals are presented in Table 1. The results show that it is very difficult to 

identify the addressed machine faults based on the RMS values as the vast majority of 

RMS ranges overlap. However, the axial vibration signal could be better than the radial 

one as it can be used to identify MC 3. 

Table 1: RMS values of radial and axial vibration signals of training datasets. 

Radial vibration signals 
 

  

Min. RMS 

(Volt) 

Max. RMS 

(Volt)  
 MC 1 1.628 1.664 
 MC 2 1.668 1.671 
 MC 3 1.627 1.675 
 MC 4 1.628 1.67 
 MC 5 1.641 1.701 
  

Axial vibration signals 
 

  

Min. RMS 

(Volt) 

Max. RMS 

(Volt) 
 MC 1 1.629 1.663 
 MC 2 1.660 1.662 
 MC 3 1.823 1.872 
 MC 4 1.626 1.668 
 MC 5 1.630 1.685 
  

The Confidence Level which informs the minimum number of matching features between 

spectrum peaks of all machine conditions was also calculated to better select the signals 

with large differences. Based on the pre-identification matrices presented in Table 2, the 

difference between the confidence levels of radial and axial vibration spectra is very 

small. Due to the RMS results and the pre-identification matrices calculations, axial 

vibration signals will be employed in this characterisation study. 
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Table 2: Fault pre-identification matrices at a segment size of 10 Hz. 

Radial Vibration signals 

     MC 1 MC 2 MC 3 MC 4 MC 5 

MC 1 191 127 129 145 92 

MC 2 125 199 114 129 93 

MC 3 136 114 196 115 76 

MC 4 138 133 134 186 90 

MC 5 104 98 115 115 200 

Overall confidence Level = 41 

 

   Axial vibration signals 

     MC 1 MC 2 MC 3 MC 4 MC 5 

MC 1 199 116 130 113 79 

MC 2 132 204 123 125 97 

MC 3 125 111 187 134 107 

MC 4 119 115 139 196 117 

MC 5 108 111 102 113 201 

Overall confidence Level = 48 
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