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I 

 

Abstract  
 

Wearable technology has attracted global attention in the last decade and the market is 

experiencing an unprecedented growth. Wearable devices are designed to be low-

profile, light-weight and integrated seamlessly into daily life. Comfort is one of the 

most important requirements for wearable devices. Fabric based antennas are soft, 

flexible and can be integrated into clothing. State of the art textile manufacturing 

techniques such as embroidery, combined with advanced conductive textile materials 

can be used to fabricate flexible fabric based on-body antennas. 

 

In this thesis, the feasibility of using computerised embroidery in the fabrication of 

wearable, flexible yet functional fabric based antennas have been examined. The 

fabric based antennas are embroidered using conductive threads. The most suitable 

materials for fabricating embroidered antennas have been identified. The embroidered 

fabric based antenna systems including transmission lines and low-profile detachable 

connectors have been fabricated and their RF performances have been tested. The 

optimal manufacturing parameters related to embroidery such as stitch direction, 

spacing and length have been examined. The repeatability of embroidered antennas, 

cost estimation, and complexity of manufacturing process have been clearly presented. 

The results can be used to inform and provide guidelines for the development of 

representative products that can be mass manufactured.  

 

A new simulation approach has been introduced to analyse the anisotropic properties 

of embroidered conductive threads. Simulations and measurements indicate that the 

performances of embroidered antennas are affected by the anisotropic surface current 

due to the embroidered stitches. Exploiting the current direction, a novel non-uniform 

meshed patch antenna has been designed. Representative results show that the non-

uniform meshed structure can significantly reduce more than 75% of the usage of 

conductive materials for the microstrip antennas with negligible effect on the antenna 

performance.  
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Chapter 1  

Introduction 
 

1.1 Overview of Wearable Communications 

The development of wearable antennas over the last decade contributes to the boom of 

the wide area of wearable personal communications. With the demand for mobility, 

multi-functionality and also reliability of the mobile computing, the devices are now 

expected to be lighter, smaller, and more importantly, to be wirelessly networked. 

Wearable communication is the solution that meets the requirements of convenient, 

light-weight and “always on”. Wearable devices are portable and can be functioned 

without the user manipulation. They are capable to be used in a large number of 

applications including aerospace, health and medical, fitness and wellness, location 

tracking, harsh environment, military, disabilities, entertainment and fashion [1]–[7]. 

 

The growth of the wearable communication market is remarkable. According to the 

prediction from IHS Electronic and Media, the global wearable technology market 

will be worth $30 billion in 2018 [8]. With the development of on-body sensors, 

sports and health are expected to become two of the largest markets for wearable 

technology, associated with the personal fitness and wellness which also play a 

growing role in the wearable health sensor sector. ABI Research forecasts that the 

total number of wearable devices in sports and health will grow to 169.5 million by 

2017, up from 20.77 million in 2011, with 41% compound annual growth rate [9]. 

 

Without the physical cables and connectors, the wearable system is lighter and more 

flexible than the conventional wired system for the user. This is more convenient and 
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effective for people accessing information on demand. The IEEE standards of 

wireless communication such as Bluetooth, Zigbee and Local Area Network (LAN) 

support networked wireless wearable systems. Well-designed and optimized antennas 

are important for such system in order to provide highly efficient links [10]. High data 

rates and robust channels are also required for the capability of dealing with 

increasingly big data [1]. Cellular devices can play the role of a hub or terminal which 

collect the data from wearable devices, display the information to the users and 

synchronise with the Internet.   

 

The earliest wearable computer was designed to be hidden behind clothes for the 

purpose of cheating at the game of roulette [11]. After that, in 1980 Mann built the 

first wearable device with a wearable antenna on a helmet that provided wireless 

connecting [12], see Figure 1-1 (a). Then further developments were made to improve 

the portability of the wearable system. Figure 1-1 (b) to (e) show the route of 

improvement. As it is shown in the picture, the size of the wearable system including 

the antenna were minimised due to the demand of mobility and light-weight. The 

other components such as the processor and the battery were placed on different parts 

of body separately. Since there is large available area on clothing, the components of 

the wearable system can be individually placed on different locations of the cloth. 

 

 

Figure 1-1 Steve Mann’s wearable computers [13] 
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The development of the field programmable gate array (FPGA) and microelectronics 

have also boosted wearable technology. The electronic components have become 

significantly smaller. Researchers start integrating the wireless devices including 

antennas into the accessories such as belts, watches, necklaces and glasses [14]–[18]. 

These miniature electronics are designed for aiding the cloud computing. Figure 1-2 

shows a smart watch [19] as an example of wireless wearable computing. The watch 

has the functions of music playing, sports monitoring, and can access user accounts on 

the Internet such as email and social networks. Users can download applications to the 

watch to personalise their experience.  

 

 
Figure 1-2 Smart watch (made by SONY [19]) 

 

On the other hand, comfort is one of the most important requirements for the wearable 

devices. For this reason, wearable electronics can be made by flexible fabric materials 

and integrated into clothing. This smart textile made by the advanced electro-textile 

materials are flexible, light-weight and can be placed closer to the skin which is ideal 

for building the on-body network systems. Users will not be aware of the antenna due 

to fabric nature of the wearable antennas. This type of smart textile is ideal for long-

term, real-time monitoring such as health care sensors, navigation and fitness 

monitoring [2], [20]–[23]. Furthermore, since some antennas at MHz spectrum, for 
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instance VHF (very high frequency) and UHF (ultra high frequency) band, require 

certain physical sizes, fabric antennas can utilise the available space in the cloth 

without increasing the volume of the device [24]. There will also be aesthetic 

advantages of the smart textiles as the design of wearable electronics will add to the 

cosmetic appeal and can be considered as fashion accessories rather than being hidden. 

Figure 1-3 shows a programmable LED dress at a fashion show. 

 

 

Figure 1-3 Programmed LED dress at catwalk (by Hussein Chalayan [25])  

 

In this thesis, embroidery will be used to make fabric based wearable antennas. The 

embroidered antennas are flexible and can be directly embroidered onto the clothes at 
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the manufacturing stage. Computerised embroidery machines enable the embroidered 

antennas to be mass manufactured which will reduce the cost of manufacturing 

wearable antennas.  

 

 

1.2 Challenges of Fabric Based Wearable Antennas 

The first challenge comes from the material. As mentioned in Section 1.1, the 

conventional rigid materials are discomfortable and not suitable for wearable antennas. 

To overcome this problem, conductive textile materials can be used to make the 

conducting elements in wearable antennas to realise the textile features [26]–[29]. 

Sourcing the most suitable material for fabricating the flexible fabric based wearable 

antennas is one of the primary targets. However, due to the anisotropic and non-PEC 

properties of the conductive textiles, the conduction characteristics of electro-textile 

are different from conventional conductors. Compared with the current in solid 

conductors, the current in the electro-textile is non-uniform and directional due to the 

fabric fibres, particular for embroidered conductors. The antenna performance highly 

depends on the current distribution in the fabric. This anisotropic nature of fabric 

should be considered at the design stage to optimise the fabric antenna performance. 

 

Another challenge comes from the human body because by definition wearable 

antennas are placed close to the skin. The performance of these antennas is influenced 

by the human tissues. Antennas that are near to the body are detuned and their 

resonant frequencies are different from in free space. The dielectric properties of 

tissues has been examined by Gabriel et al. in [30]–[32]. The results show tissues 

have high relative permittivity and the values depend on the tissue type. For example 

at 2.4 GHz, the muscle has a relative permittivity of 52.8 and loss tangent of 0.24; the 

relative permittivity of fat is 5.3 and loss tangent is 0.15. With increasing frequency, 

the relative permittivity decreases. Moreover, antennas on different locations on the 

body perform differently. The relative positions of the transmitting and receiving 



Chapter 1                                                                                                      Introduction 

1-6 

 

antennas have a significant impact on the channels of body centric networks [14], 

[33]–[35]. Furthermore, the movements of the user and postures will result in bending 

and twisting of flexible wearable antennas. Previous research indicates that compared 

with bending on magnetic plane, geometry changing on the electric plane of linearly 

polarized patch antenna has larger effects on the antennas performance [36], [37]. 

Generally, antennas with ground planes will be reasonably isolated from the human 

body and will have less detuning effect.  

 

In addition, some of the radiated energy may be absorbed by the human body. The 

absorbed energy is most clearly seen as decreased antenna efficiency and distorted 

radiation patterns. However it is important to evaluate the electromagnetic field 

absorbed by the body to control the absorption of power below the safety limits [38], 

[39]. The specific absorption rate (SAR) is the international standard dosimetry 

parameter used to specify the power absorbed per the unit mass of tissue. In America, 

the Federal Communications Commission (FCC) requires the SAR level to be below 

1.6 W/kg average over 1 g for mobile devices [40], whilst in the Europe Union sets 

the cap at 2 W/kg averaged over 10 g [41]. Placing an isolating layer between the 

human body and antennas will reduce the power absorbed by tissues. A larger ground 

plane for the antenna will further reduce the SAR level [42] at the expense of  

increasing the antenna size.  

 

 

1.3 Novel Contributions of this Thesis 

The novelties of this thesis are  

(1) Evaluation of the effect of the embroidery parameters on the direct current 

(DC) and radio frequency (RF) performance of embroidered microstrip 

antennas and transmission lines [43]–[45] 
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(2) Simulation methodologies for modelling embroidered stitches of microstrip 

antennas have been introduced, the anisotropic properties and the current 

distribution on embroidered stitches have been analysed [45], [46] 

(3) A non-uniform meshed microstrip antenna with less than 25% metal coverage 

but without influencing antenna performance has been designed and 

embroidered [47], [48] 

(4) A detachable and flexible RF connectors made by hook and loop fasten has 

been presented [49] 

 

 

1.4 An Overview of this Thesis 

Chapter 2 will give a brief summary and comparison of electro-textiles manufacturing 

techniques and state the reason for choosing embroidery to fabricate wearable 

antennas. The properties of multifilament conductive threads will be presented. 

Scanning electron microscope images will illustrate the microstructure of these 

threads. This chapter will also show the schematic of embroidered stitches and 

estimate the actual length of embroidered threads. The measured dielectric properties 

of denim and felt will also be presented. 

 

Chapter 3 will demonstrate the effects of embroidered transmission lines on 

fabrication factors including stitch direction and stitch spacing with different 

conductive threads. DC resistances and RF scattering parameters are measured to 

evaluate their performance. A measurement rig and a connection mechanism are 

designed for repeatable and stable results. Different conductive threads will be 

compared in this chapter. Amberstrand Silver thread will be selected as the most 

suitable for embroidered fabric based antennas. Chapter 3 will present a novel 

detachable, reusable and flexible RF connector which is made from conductive hook 

and loop.  
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After comparing the different threads and the stitch parameters in Chapter 2 and 

Chapter 3, measurements of a set of the embroidered patch antennas will be analysed 

in Chapter 4. The effects of stitch direction and stitch spacing on microstrip antennas 

performance including resonant frequency, antenna gain and efficiency will be 

discussed. The guidelines for choosing the correct fabrication parameters are given. A 

repeatability test of embroidered patch antennas will be included to show the 

applicability of embroidery in mass producing wearable antennas. Chapter 4 will 

introduce a simulation model to represent the behaviour of embroidered stitches. The 

distorted current which is impacted by the stitch direction and spacing will be 

illustrated.  

Chapter 5 will introduce a novel non-uniform meshed structure of microstrip antennas 

which can reduce the total length of conductive threads for antenna fabrication. The 

uniform meshed microstrip antenna will also be represented for a comparison. The 

meshed patch antennas have comparable gain with the solid patch but with significant 

reduced area of metal coverage. This will reduce the cost of embroidered patch 

antennas. The first part of Chapter 5 will cover the simulations, including the surface 

current distribution, antenna mode analysis, antenna gain and efficiencies of the 

meshed patch antennas. Then meshed patch antennas etched on conventional rigid 

laminated will be measured to proof the theory. At the end of Chapter 5, embroidered 

meshed patch antennas with flexible fabric dielectric substrates will be presented.  

 

Chapter 6 will draw some conclusions and summarise the potential implications for 

industry. Recommendations for future work will be suggested at the end. 
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Chapter 2  

Materials and Manufacturing 
Techniques for Fabric RF Systems  
 

Abstract 

This chapter will describe the composition of fabric based antennas including the 

electro-textile materials with numerous fabrication techniques, flexible fabric 

dielectric substrates and flexible RF connectors. Techniques for fabricating electro-

textiles will be outlined in Section 2.1. Characteristics of the electro-textiles include 

the DC resistance and RF transmission will be measured. The conductive thread used 

for the embroidery in this thesis, Amberstrand, will be analysed in Section 2.2.  The 

scanning electron microscope (SEM) images of Amberstrand will also be presented in 

Section 2.2, which will show the detailed structure of this multifilament conductive 

thread. Details of embroidered stitches will be shown in Section 2.3. An estimation of 

thread usage and the materials costs will be introduced. Section 2.4 will present the 

measured dielectric properties of different fabric dielectric substrates using the split 

post dielectric resonator. Finally low profile RF connectors for fabric based antennas 

will be discussed in Section 2.5.   

 

2.1 Electro-textiles 

2.1.1 Fabricating of Electro-textiles 

Electro-textile is the conductive fabric which can realise the integration of wearable 

electronic and RF components into normal cloth but keep the features of light-weight 
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and flexibility. There are several methods of fabricating the conductive textile 

materials. General reviews can be found in [1]–[3]. Generally, the conductive textiles 

can be made by the following four approaches: 

I. Conductive layer coating. The conventional non-conductive natural or 

synthetic polymer fabrics can be deposited with a conductive layer by 

chemical approaches such as electroplating. After this processing, the entire 

surface area of the fabric is conductive on both sides. 

 

II. Weaving or knitting the fabric by conductive yarn. The fabric is woven or 

knitted entirely using the conductive yarns but also can be blended with 

normal nonconductive yarns. Fabric with specific conductive patterns can be 

realised by using both conductive and nonconductive yarns. The conductive 

yarns are applied at the step of manufacturing and the post processing is not 

required.  

 

III. Printing a conductive layer onto fabric. The conductive layer is printed onto 

the normal fabric by specialized printing techniques such as inkjet printing and 

screen printing. In this case, there is an additional conductive layer which is 

printed by the conductive ink on the fabric.  

 

IV. Embroidering a conductive layer onto fabric. Similar to the printing approach, 

there is an additional conductive layer on a base fabric. This conductive layer 

is created using conductive threads.  

 

For the approach (I), high conductivity metal materials such as copper and silver are 

eligible for plating onto the normal fabrics [4]. There are several commercially 

available metallized woven conductive fabrics with the sheet resistance less than   

0.05 Ω/sq such as Pure Copper Taffeta from Less EMF Inc. [5]; conductive 

metallized nylon fabric Nora Dell from Shieldex [6]; and Shieldex ripstop/plain 

weave fabrics [7]. Figure 2-1 shows the Shieldex rolled flexible conductive woven 
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fabrics. These fabrics have the advantages of a low sheet resistance; flexibility; they 

are easy to cut and can be sewed like ordinary fabric, which make them good for 

electromagnetic shielding applications. Several authors have used Nora Dell material 

and cut them into desired shapes for the conductive layer of wearable antennas [8]–

[12]. Figure 2-2 shows a wearable fabric digital television antenna made of Nora Dell 

in [12]. The flexibility of material enable the antenna be curved and placed on 

different positions of body. 

 

 

Figure 2-1 Conductive woven fabric from Shieldex (picture from [7]) 

 
Figure 2-2 A wearable fabric digital television antenna (picture from [12]) 
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Non-metal conducting materials also can be deposited onto the fabrics. For instance, 

the single-walled carbon nanotubes (SWNTs) can be coated onto cotton or polyester 

[13], [14]. After absorbing the aqueous SWNT ink, the textile becomes conductive 

but without losing flexibility.  This is very similar to the dying process in the textile 

industry. The conductivity of the textile can be increased by repeating the dying 

process. Hu et al. showed the conductive textile with conductivity of 123 S/cm and 

sheet resistance less than 1 Ω/sq by this approach [14]. The SWNT dyed microstrip 

fabric antenna with a polymer composite substrate was reported in [15]. 

 

For approach (II), the conductive fabric can be fabricated by the combination of 

conductive fibres with or without ordinary fibres using weaving or knitting methods 

[16]–[22]. Cottet et al. reported an woven fabric entirely using the conductive yarns 

but without revealing the material name [18]. If the fabric is woven with both 

conductive and nonconductive yarns, the distribution and directions of conductive 

yarns in the fabric will result in anisotropic conducting properties of fabric because 

the current only travels on the paths along the conductive strands. The conductive 

paths may exist in all directions throughout the fabric or only one direction depending 

on the fabrication method. Figure 2-3 illustrates a fabric woven by weft yarns 

(longitudinal) and warp yarns (lateral). Only the warp yarns with dark colour are 

conductive and the yarns with light colour are nonconductive. Clearly the current will 

only follow the path of warp yarns in the vertical direction. Weaving conductive yarns 

with nonconductive yarns can create the partly conductive fabric without additional 

layers, which makes this approach unique compared with others. This feature makes 

this type of fabric suitable for applications such as electroluminescent [21] that 

requires a particular conductive path in the fabric without adding thickness. The 

electro-textile can be woven with plastic optical fibres and normal yarns to guide the 

optical signal and worked for on-body optical antennas [23]. 
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Figure 2-3 A woven fabric with a vertical conductive path using both conductive 

and noncondcutive yarns 

 

Copper-yarn based knitted fabric antennas were reported in 2003 [22]. However, 

knitted fabrics may present higher anisotropy than woven fabric due to its structure 

(shown in Figure 2-4) and this anisotropy will be increased with the stretch of the 

knitted fabric. The knitted fabric is soft with high flexibility and stretchability which 

result in easy deformation and then change the surface resistance of the fabric sheet. 

Locher et al. reported that the sheet resistance was increased by approximately           

4 times due to elongation in one direction of the knitted conductive fabric [17].  

 

Warp 
(nonconductive) Weft (nonconductive) 

Warp (conductive)  
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Figure 2-4 Structure of yarns in knitted fabric (picture from [24]) 

 

However, for wearable antennas, there are some drawbacks for the fabrics made by 

methods (I) and (II):  i) in high frequency applications, the antenna size is usually 

small. Although the conductive woven fabric can be cut into desired shapes, it is still 

hard to cut small-scale accurately, particularly for the complex patterns;  ii) since the  

patterns are cut from the fabric, there is a wastage after the fabric has been cut, which 

increases the cost of materials;  iii) the conductive fabrics need to be sewed onto the 

cloth, which requires additional fabrication procedures;  iv) due to the characteristic 

of woven and knitted fabric, the fibres are easy to separate and unravel at the edges of 

the fabric. Hem is required to prevent this issue. But it is difficult to hem small fabrics 

and it also increases the production procedures. 

  

The concepts of approaches (III) and (IV) are very similar, i.e. using conductive 

materials to create a conductive layer on the fabric to form a pre-designed, functional 

conductive pattern. Both (III) and (IV) can use the state of the art techniques to 

improve the accuracy of the conductive patterns. Screen printed high frequency 

systems on cotton have been reported in [25]. Kim et al. presented screen printed 

circuits on various types of fabric [26]. Compared with screen printing, inkjet printing 
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has the advantages of high speed; no need for a mask; accuracy; reduced material 

consumption; flexibility of changing design and being environmentally friendly [27]. 

Inkjet printed antennas on flexible substrate for wearable application can be seen in 

[27]–[31] and showed good antenna performance. Other applications such as realising 

parallel plate flexible capacitors on textiles by inkjet printing is described in [32]. 

However, the printed conductive layer is generally thin (usually micron scale), and 

hence it is difficult to generate an even thickness printed layer onto the rough and 

non-continuous textile surface [33]. Multilayer printing can overcome this drawback 

but the costs will be increased by the number of conductive layers.  

 

Embroidering conductive patterns onto textiles using conductive threads has attracted 

researchers’ attentions in recent years [34]–[50]. The advantages of embroidering 

conductive threads are promising. Antennas and electronics design can be 

incorporated into clothing using the state of the art embroidery machines which have 

already become standard in the textile industry. This will potentially save 

considerable costs at the mass-manufacturing stage. In addition, there are several 

commercialised conductive threads such as X-Static [51], Shieldex yarn [52] and 

Amberstrand [53]. Furthermore, there will be aesthetic advantages as the design will 

add to the cosmetic apparel rather than being an added shape that needs to be hidden. 

The embroidery stitch density is mentioned in [34]–[36] and the stitch direction which 

affects the RFID performance at 900 MHz is mentioned in [38] but without extensive 

analysis on antenna performance. Ukkonen et al. pointed out that the antenna 

impedance is impacted by the stitching technique [34]. The same paper also reported 

the RFID antenna read range for different stitch densities but with low realised gain. 

The feasibility of double-layer embroidery for high conductivity radiators and 

transmission lines was reported in [35]. Moradi et al. compared different sewing 

patterns on the read range of dipole RFID tag antennas [46].  

 

Table 2-1 summarises the comparison of fabricating electro textiles with different 

approaches. Embroidery, with the balance between cost and performance, shows its 

potential in mass-manufacturing fabric wearable antennas. 



Chapter 2                  Materials and Manufacturing Techniques for Fabric RF Systems 

2-8 

 

Table 2-1 Summary of approaches for fabricating electro-textiles 

 
Coating or 

dying 
Weaving or 

knitting Printing Embroidery 

Commercial 
materials 
available 

Yes 
Customised 

by 
requirement  

Yes, but 
fewer  Yes 

Additional 
processes 

(cutting, sewing 
and hemming) 

Yes  Yes No No 

Waste due to 
cutting Yes Yes No No 

Accuracy of 
fabricating small 

patterns 
Low  Medium Highest  High  

Initial investment Lowest High Highest Medium 

Partly conductive 
fabric without 

additional layers 
No Yes No No 

Easy to attach to 
fabric Easy Easy  Difficult Easy  

Stylish Unattractive Aesthetic Aesthetic Aesthetic 

Optimum 
applications 

For large, 
coarse 

patterns, and 
shielding 

For 
customised 
“in textile” 

patterns 

For small, 
complex 
patterns 

require very 
high 

resolution 

For small, 
complex 
patterns 

require high 
resolution 

Reference [4]–[15] [16]–[24] [25]–[33] [32]–[53] 
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2.1.2 DC and RF Characteristics of Electro-textiles 

Electro-textiles are normally constructed with fibres in aligned directions. And 

therefore, the directions and distribution of conductive yarns in the electro-textile will 

result in the anisotropic electrical properties as mentioned in Section 2.1.1. It is 

important to understand the way that the conductive yarns distort the current flow in 

the electro textiles. For instance, the sheet resistance of the woven conductive fabric is 

affected by the different weaving angle of the fibres [54], [55]. Banaszczyk et al.  

showed that the current direction and distribution will follow the conductive fibres 

direction in the electroconductive woven fabric [56], [57].  

 

In the embroidery process, the conductive threads are usually aligned with a preferred 

direction and spacing which are defined by the embroidery parameter settings. These 

threads create the paths for the current but the contact points between the adjacent 

threads also provide alternative paths. More details about the DC performance of 

embroidered conductive threads will be discussed in Chapter 3 and Chapter 4. 

Approaches such as two metal electrodes and four points Van der Pauw method can 

be carried out to measure the sheet resistance of the conductive fabric [58], [59]. 

Since the measured resistance results will be different when measured from different 

directions, the sheet resistance measurement will give an indication of the optimum 

current direction. 

 

Because of the non-continuous and non-uniform structure of the conductive fabric, the 

RF properties of electro-textiles will be different from a continuous metal sheet. The 

fibres in the textiles create a huge number of microscopic holes. These holes are 

distributed in the fabric and introduce air in the fabric which results in a tiny grid 

structure of the fabric. The undulations of the small scale conductive fibres increase 

the difficulty of precise modelling of the conductive fabric. Capacitance and 

inductance will be introduced by the gaps between conductors and the current 

distribution will be different from the continuous metals. The current paths are 

distorted by these gaps and the electrical length will be increased. The RF 
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performance of the fabric transmission lines and antennas are influenced by the 

spacing between the conductive fibres. The RF properties such as resonant frequency, 

antenna gain and efficiency of the embroidered transmission lines and antennas will 

be analysed in Chapter 3, 4 and 5. Furthermore, the coated conductive layer on the 

conductive fabric is usually on the micron scale and has smaller conductivity than 

copper. As a result, the conduction loss due to the skin effect is more significant than 

normal etched conductive metals, particularly at high frequency applications. The skin 

depth of the conductive thread will be calculated in Section 2.2.3 and the influence of 

the skin effect on embroidered antenna performance will be analysed in Chapter 5.  

 

 

2.2 Conductive Threads for Embroidery 

2.2.1 Fabrication of Conductive Threads 

There are three common methods to make conductive threads: 

I. Monofilament thread 

The monofilament conductive thread is usually very similar to a thin metal wire 

which is solid, and is made by the metal with good ductility and malleability such as 

copper, silver and nickel. This type of thread has a low resistance due to the solid 

homogeneous metal structure compared with other same diameter multifilament 

threads [20]. Figure 2-5 shows a sewed thin nickel wire on a plain woven cotton 

fabric made at Nottingham Trent University. However, because of the stiffness of the 

metal wire, they are difficult to embroider by machine and easily break.  
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Figure 2-5 A monofilament nickel wire sewed onto a cotton fabric made at 

Nottingham Trent University 

 

II. Dual-filament (hybrid) thread 

The hybrid thread is a nonconductive thread which has the conductive wires twisted 

around it. The core thread provides mechanical strength, flexibility and elasticity [60]. 

The choice of core nonconductive thread depends on the application. The structures of 

the hybrid conductive thread are shown in Figure 2-6. However, when high frequency 

current follows the spun coil structure of the conductive wires, the inductance and 

capacitance between the spun wires will be generated. 
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Figure 2-6 Zoomed in pictures of two nonconductive threads with 40 μm 

diameter metal wires twisted around them (pictures are from [20]) 

  

III. Multifilament thread 

The multifilament thread is a strand which is twisted with a large number of “identical” 

thin conductive filaments. In general the filaments are made by polymer and 

chemically coated with a micron scale conductive layer. The diameter of the 

individual filament includes the conductive layer is usual approximately 10 to 20 μm. 

The conductive layer can be either carbon nanotubes [61] or metal. Due to the 

difficulty of carbon nanotube process, there is little choice of commercial carbon 

nanotube coated conductive fibres. However, the options of metal plated conductive 

threads are wide. The plated material can be chosen from different metals to balance 

the performance and the cost. An expensive choice such as gold can be applied to 

achieve good electrical conductivity and bio-compatibility [62]. Normally, silver, 
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copper and nickel are the options for commercialised products such as X-Static, 

Shieldex, Amberstrand. This type of conductive thread provides balance between 

electrical conductivity, mechanical strength and flexibility. However, the coarser 

conductive threads and threads containing abundant filaments are problematic in 

embroidery as they have a tendency to become wrapped around the tension devices 

and may not fit through the eye of the needle. Generally, polymer based conductive 

threads are easy to embroider due to the physical similarity shared with traditional 

embroidery threads. 

 

The metal plated conductive threads will be used in fabricating embroidered antennas 

in this thesis. The coated material and the number of filaments influence both the DC 

and RF properties of the multifilament conductive threads. The performance of the 

metal plated threads and the embroidered RF components using these threads 

including transmission lines and patch antennas will be presented in Chapter 3, 4, and 

5.  

 

2.2.2 Amberstrand 

In this thesis, conductive thread Amberstrand® Silver was used for embroidering the 

transmission lines and antennas. One single thread of Amberstrand Silver 66 is 

composed of 66 identical filaments, whilst there are 166 filaments in Amberstrand 

Silver 166 thread. Every single filament is mainly silver coated Zylon® fibre (a 

synthetic polymer material). The cross section of Amberstrand fabric is shown in 

Figure 2-7. The inner metal layer varies on products.  
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Figure 2-7 Sketch of cross section of the single thread of Amberstrand (picture 

from [63]) 

 

Scanning electron microscope (SEM) images of Amberstrand Silver thread with 

different scales were taken at Loughborough University, shown in Figure 2-8 to 

Figure 2-11.  

 

Figure 2-8 shows the SEM image of unbraided Amberstrand Silver filaments. As it 

can be seen the diameters of the each filament are consistent. Although the coating 

layer is not perfect smooth, the effect of unsmooth surface will be minimized when 

the filaments are spun together.  

Silver 

Zylon® fibre 

Inner metal layer 
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Figure 2-8 SEM image of unbraided Amberstrand Silver filaments 

 

Figure 2-9 shows the single filament of Amberstrand Silver. The diameter of the 

filament is approximate 17 μm. The imperfections of surface are more clearly shown 

in Figure 2-9. 



Chapter 2                  Materials and Manufacturing Techniques for Fabric RF Systems 

2-16 

 

 

Figure 2-9 SEM image of single filament of Amberstrand Silver 

 

It was noticed that the metallization is not perfect and at some parts the coated layer 

are broken. Figure 2-10 and Figure 2-11 show the broken sections of metallization 

and the exposed polymer core underneath (shiny part). The metal cladding included 

both the inner and outer metal layer is approximate 1 μm thickness according to these 

images. It can be concluded that the coated layer component is approximately 22% of 

the whole filament by volume. 
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Figure 2-10 SEM image of broken section of coated layer  

 

Figure 2-11 SEM image of cross section of coated layer  
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2.2.3 Conductivity of Amberstrand Threads  

Section 2.3.1 showed that the metallization of the cladding on the filament is only      

1 μm thick. A sketch of the cross section of the thread is shown by Figure 2-12.  

Polymer Polymer

Polymer Polymer Polymer

Polymer Polymer

Conductive cladding

 

Figure 2-12 Cross sections of filaments in Amberstrand thread 

 

The area of metal in a single filament is approximately 50 μm2. Then the total 

cladding cross section in the entire thread is 66 × 50 μm2 = 3300 μm2. A DC 

resistance measurement was taken and showed that the resistance of one Amberstrand 

Silver 66 entire thread is 2 Ω per imperial foot. This agrees with the datasheet. The 

equivalent resistivity ρ of the conducting layer can be obtained from 

𝜌 = 𝑅  𝐴 
𝐿

                                            (2.1) 

Where L is the length of the thread sample, R is the DC resistance value of the given 

length of thread sample, and A is the cross sectional area of the conducting layer.  
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From (2.1), the calculated resistivity of cladding layer is 2.2 × 10-8 Ω∙m, The 

conductivity σ equals to 1/ ρ and it is 4.5 × 107 S/m. Note this value is smaller than 

pure silver (6.1 × 107 S/m) because it is the equivalent conductivity of whole 

metallization. 

 

At high frequencies, it is necessary to consider the skin effect. The current distribution 

is non-uniform in the conductor due to skin effect and the resistance of the conductor 

will be increased. The skin depth δ in meters can be obtained from (2.2) 

𝛿 = �
𝜌

𝜋𝑓𝜇𝑟𝜇0
                                            (2.2) 

where ρ is resistivity in Ω∙m, f is the frequency in Hz, μr is relative permeability of 

material, and the μ0 is the permeability of free space which equal to 4π × 10−7 H/m. 

 

The skin depth at 2.4 GHz for copper is 1.332 μm, and for silver is 1.295 μm. The 

skin depth of the conducting layer on Amberstrand Silver 66 (4.5 × 107 S/m) is      

1.52 μm. As a result the metallization (1 μm) is smaller than one skin depth. The skin 

effect will increase the ohmic loss in microstrip antennas and transmission lines and 

result in reduced efficiency. 

 

However, since the filaments are shorted to each other, they behave like large single 

conductor. Experimental results showed that the skin effect of the non-spiralled multi-

stranded conductor is similar to the single conductor with equal cross sectional area 

[64]. The skin effect results in the highest current density constraining on the thread 

surface rather than distributing evenly on each filament. In addition, because the 

thickness of the cladding layer (1 μm) is smaller than the skin depth (1.52 μm at      

2.4 GHz), the metallization thickness is the limit of the resistance of the thread for AC. 

Consequently the Amberstrand Silver 66 thread in AC can be treated as a 1 μm thick 

hollow conductor. The cross sectional area of the hollow cylinder is approximately 
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454 μm2, and therefore the resistance of 1 meter thread at 2.4 GHz is approximately 

43.5 Ohms (see Figure 2-13 a). When the thread is embroidered onto the fabric, it is 

flattened due to the tension from stitches. Therefore the cylinder thread will be 

flattened with increased width (see Figure 2-13 b). For instance, the flattened width of 

Amberstrand Silver 66 is measured approximately 0.2 mm when embroidered on    

0.5 mm thick cotton fabric with 2 mm stich length. The cross section area of the      

0.2 mm wide hollow rectangular bar is approximate 540 μm2 and therefore the 

resistance of 1 m embroidered Amberstrand Silver 66 is approximately 36.6 Ohms at 

2.4 GHz. Note the surface roughness is neglected in these calculations.  

 

It can be seen that the resistance for AC is greater than five times of the DC resistance. 

The metallization thickness is smaller than the equivalent skin depth up to 5 GHz. 

When the frequency is higher than 5 GHz, the skin depth is reduced to less than the 1 

μm metallization thickness which results in greater resistance for AC. Higher 

resistance will result in more conduction loss which reduces efficiencies for antennas 

and transmission lines. 

Equivalent metallization 
thickness of thread

Equivalent 
skin depth 
of thread

 

Figure 2-13 Equivalent metallization thickness of (a) cylinder and (b) flattened 

models of multifilament conductive thread in AC 

 

(a) (b) 
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2.3 Embroidering Conductive Threads 

2.3.1 Computerised Embroidery Machine and Stitch Patterns 

It can be foreseen that the automatic production of fabric antennas via computerised 

embroidery machine will boost the development of textile-based wearable electronics 

and reduce the cost significantly. Figure 2-14 shows the digital controlled embroidery 

machine at Nottingham Trent University. The embroidered samples in Chapter 2, 3 

and 4 were fabricated at Nottingham Trent University by this machine. The antennas 

in Chapter 5 were embroidered using the embroidery machine at Loughborough 

University (shown in Figure 2-15). The specifications of antenna geometries can be 

designed using computer-aided design / computer aided manufacturing (CAD/CAM) 

software either on a computer or embedded on the embroidery machine. The defining 

characteristics including dimensions, arrangement, stitch type, stitch direction and 

stitch spacing of each embroidered objects can be controlled with software for the 

embroidery machine. This system provides fast and accurate productivity for complex 

antenna shapes, which reduces the error in manufacturing and improves product 

quality. The embedded camera with micro-lens above the stitches can assist in 

inspecting the stitch patterns and the structure of the fabrics.  

 

Figure 2-16 shows different patterns of embroidered stitches. Considering the current 

flowing path, Satin stitch and Running stitch are used in this thesis. Satin stitch is the 

zigzag pattern that perpendicular to the designed direction. Usually it creates a bold 

line. Running stitch is a single line of stitch that follows the designed direction. 

Clearly the running stitch creates the thinnest line compared with other stitches and 

uses the least length of thread for the same distance. Comparison between these two 

stitches will be presented in Chapter 3. 
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Figure 2-14 Computerised embroidery machine at Nottingham Trent University 

(model: Barudan BEVT-Z1501CB) 

 
Figure 2-15 Computerised embroidery machine at Loughborough University 

(model: Brother Entrepreneur® Pro PR1000e) 
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Figure 2-16 Different patterns of embroidered stitches (from top lelf: Satin, 

Tatimin, double layer Tatamin, Running stitch, tripple Running stitch, Hotfill, 

Back Stitch, and Stem), embroidered at Nottingham Trent University 

 

 

2.3.2 Model of Embroidered Stitches 

The stitch pattern describes the direction and route of the embroidered thread for 

creating a shape. The thread needs to be fixed onto the base fabric either by itself or 

by another thread. There are a variety of different techniques for fixture, but the stitch 

formation predominantly utilised in this thesis is the ‘lock stitch’ which is the most 

commonly used in embroidery. The lock stitch is created with a top thread and a 

looper thread. The top thread runs through a tension system, take-up lever and the eye 

of the needle. The looper thread is wound onto a bobbin which is inserted into a 

casing and used in the lower half on the machine. Due to the use of two individual 

threads which are interlocked during the embroidery process, lock stitching is durable 
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and secure – see Figure 2-17. The conductive layer is embroidered by the conductive 

thread on the top of a base fabric. A nonconductive thread (usually cotton or polyester 

yarn) is used to lock the conductive thread via the holes in the fabric. The depths of 

the holes are equal to the thickness of the fabric. 

 

 

Figure 2-17 Sketch of the lock stitches [49] 

 

As shown in Figure 2-17, the actual usage of the conductive thread is longer than its 

horizontal length due to the two dimensional structure of the stitches. The depth of the 

stitch holes in Figure 2-17 are exaggerated as the depth is equal to the thickness of the 

base fabric which is usually less than 1 mm. The stitch length is the distance between 

each punch in the direction of stitch running.  

 

In this work, a model was built to estimate the total length of the used thread, see 

Figure 2-18. Taking running stitch as an example, the diagram illustrates the 

conductive embroidery thread only. 

Embroidery thread 
(conductive) 

Looper thread 
(nonconductive) 
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Figure 2-18 Model of embroidered conductive thread length using lock stitches 

 

In Figure 2-18 Ls indicates the stitch length. T indicates the depth of the inserted 

embroidery thread. T depends on the type of thread and base fabric. When 

Amberstrand is used as embroidery thread and polyester thread is used as looper, the 

Amberstrand is pulled through the base fabric by the looper threads. Therefore T 

equals the base fabric thickness. W is the width of the lock and is slightly smaller than 

the width of the hole. The angle θ is generated by the lock between top and bottom 

threads and it can indicate the size of the hole in the base fabric. Generally, the holes 

are the gaps between the woven yarns and they are insignificant. Therefore W can 

approximately represent the width of the hole and the angle θ is approximately equal 

to 90˚. Since the diameter of the looper thread is usually much smaller than the 

conductive thread, and the diameters of the threads will be smaller under the tension, 

W is assumed to be approximately equal to twice the diameter of the conductive 

thread. The curvatures of the thread at the corners are ignored. The length of the used 

thread in one stitch section L0 can be calculated by (2.3) 

଴ܮ ൌ ௦ܮ ൅ 2ܶ                                  (2.3) 

It is worth noting that there is always one stitch at the end of sewing procedure for the 

fixture knot. The number of stitches before the finishing stitch can be obtained by (2.4) 

ܰ ൌ ቔ
௅

௅ೞ
ቕ                                         (2.4) 

Where L is the designed length of the line. If the designed length is not the integral 

multiple of the stitch length, the length of the last stitch and the lock stitch in the last 
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punch must be add. For a line embroidered with running stitch, the total length of 

required thread is equal to the sum of total stitch length, the last stitch and the last 

lock stitch: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑁 ∙ 𝐿0 + (𝐿 − 𝑁 ∙ 𝐿𝑠 + 2𝑇) + 2𝑇 + 𝑊           (2.5) 

By merging equation (2.3), (2.4) and (2.5), the total length of thread can be presented: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 2(𝑁 + 2)𝑇 + 𝑊                            (2.6) 

Since the value of W is very small compared with total length thus (2.6) can be 

written as 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 2 �� 𝐿
𝐿𝑠
� + 2�𝑇                         (2.7) 

This can be used for determining the physical and electrical length of the embroidered 

patterns such as transmission lines or antennas. The extra length that compared to the 

designed length is determined by  

𝐿𝑒𝑥𝑡𝑟𝑎 = 𝐿𝑡𝑜𝑡𝑎𝑙 − 𝐿 

= 2 �� 𝐿
𝐿𝑠
� + 2�𝑇                           (2.8) 

For instance, if a 100 mm long running stitch straight line is embroidered on a 0.5 mm 

thick cotton fabric with 2 mm stitch length. The total length of the thread is 152 mm. 

Compared with the designed length of 100 mm, the extra length of thread is 52 mm 

which is 52% of the designed length. 

 

Equation (2.8) indicates that the extra length depends on the number of stitches and 

the thickness of base fabric. A thin base fabric will reduce the extra length but may 

have less mechanical strength. Longer stitch lengths can also reduce the total thread 

usage but the threads are loosed and wrinkled easily. The optimum base material and 
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stitch length can provide the balance between the quality of embroidered pattern and 

the total required length of the conductive thread. 

 

Stitch spacing is another important fabrication parameter when embroidering an area 

that filled with stitches. The ‘stitch spacing’ indicates the distance between adjacent 

stitches. As the threads are flattened during embroidery and the filaments may be 

separated, the adjacent stitches are contacted each other via the loosed filaments. 

Smaller stitch spacing results in better connection at the cost of longer thread. A       

46 mm × 35 mm embroidered rectangular patch antenna on white cotton base fabric 

with 0.8 mm stitch spacing is shown in Figure 2-19. The running stitch is used for 

embroidering this pattern and the stitch direction is vertical in the picture. It is 

estimated that this rectangular patch pattern uses about 3.1 m of thread. 

 

Figure 2-19 Embroidered rectangular patch with 0.8 mm stitch spacing 
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2.3.3 Potential Issues Related to the Embroidery Process 

The breakage of the filaments happens during embroidering, particularly for the 

conductive threads which are stiffer compared with ordinary embroidery threads. This 

may increase embroidery process difficulty and production costs. The hair-like finer 

threads can be embroidered at slower speeds in order to minimise the breakages of the 

conductive threads. In general, polymer based multifilament conductive threads are 

easy to process compared with metal-filament threads. In addition, the stretching of 

the base material after embroidery may change the geometrical dimensions. For 

instance, it has to be carefully designed when embroidering on to the fabric that is 

more elastic in one direction (for instance, twill). Sourcing the right materials that 

minimise the stretch is important in embroidered antennas.  

 

To prevent the breakage of the thread, the embroidery stitch patterns and stitch 

densities had to be processed at lower tensions compared with using normal 

nonconductive threads. But this resulted in the top thread looping on the fabric surface 

or the looper thread being pulled through to the fabric front creating a ‘whip stitch’. 

This may be acceptable for creative aesthetic value; however it is not acceptable when 

striving to meet the stringent rules for, consistency of an RF transmission line or 

antenna. High stitch densities would lead to a higher degree of thread breakage.  

 

There are also other factors which could influence the embroidery process. A key 

factor is the metal surface of the conductive threads which will increase their 

frictional between the thread and the thread guides on the machine. This also 

increases the breakage of the filaments. The friction can be reduced by oiling the 

contact points between the thread and the thread guides on the machine. Higher thread 

friction could also generate excessive heat at each of the contact points at high 

machine speeds. Nottingham Trent University also indicated the needles became 

damaged and pointed out it was mainly due to the coarse nature of the conductive 

threads utilised, see Figure 2-20.  
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Figure 2-20 Zoomed in veiw of needle before and after embroidering of 

conductive yarns [49] 

 

 

2.4 Dielectric Properties of Fabrics 

As the electro-textiles are integrated with the normal fabrics, it is crucial to 

understand the dielectric properties of normal fabrics. These nonconductive fabrics 

play the role of dielectric substrate or superstrate in the textile based antenna systems. 

As the textile contains many small air cavities, this microscopic structure makes the 

dielectric soft and flexible which is suitable for wearable applications. Furthermore, 

these cavities distributed in the fabric reduce both the dielectric loss and the 

permittivity. However, the low permittivity of textiles will result in longer effective 

wavelengths, which usually results in larger antennas. 

 

Several authors measured the permittivity and loss tangent of nonconductive fabrics. 

However, due to the manufacturing techniques and specifications such as weight, 

density and dying process, some fabrics share the same name but have different 

dielectric properties (for instance, there are numerous “felt” fabrics with different 

thicknesses and weights), whilst some fabrics are made from the same raw material 

but also have different properties (for instance, cotton made denim and canvas). Table 

2-2 shows some of the measured results of common fabrics from published papers. 
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Table 2-2 Summary of dielectric properties of nonconductive fabrics 

Material Permittivity Loss Tangent Reference 

Denim 1.40 to 2.00 0.0140 to 0.0700 [65]–[70] 

Cotton 1.54, 1.60 0.0580, 0.0040 [71], [20] 

Cordura/Lycra® 1.50 0.0093 [20] 

Felt 1.36, 1.38 0.0160, 0.0230 [71], [72] 

Fleece 1.17, 1.20 0.0035, 0.0040 [72], [71] 

Polyester  1.90 0.0045 [20] 

Leather 1.80 to 2.95 0.0490 to 0.1600 [66], [71]  

Moleskin 1.45 0.0500 [72] 

Panama 2.12 0.0018 [72] 

Silk 1.20, 1.75 0.0540, 0.0120 [72], [71] 

Tween 1.69 0.0084 [72] 

Velcro 1.34 0.0060 [68], [73] 

Neoprene 5.20 0.0250 [71] 

 

In this work, two common textile materials were measured: denim and felt. There are 

several of methods available to determine the dielectric properties. For instance, by 

measuring the dielectric loaded resonant cavities, the Nicholson-Ross-Weir (NRW) 

conversion [74]–[77] can be used to convert the measured scattering parameters to the 

permittivity and permeability. However, the normal waveguide cavity method 

requires the materials under test to be flat and precisely fill the waveguide without 

wrinkling and air gap. This is difficult for fabric materials. And therefore the split post 

dielectric resonator method was used in this work.  
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The measurement setup is shown by Figure 2-21. The microwave Q meter in Figure 

2-21 is a device that can measure the S21 results of split post dielectric resonator 

without a vector network analyser (VNA). By measuring the quality factors (Q) of the 

empty resonator and with the dielectric material in the resonator, the permittivity and 

loss tangent can be calculated [78], [79]. Details of the method are shown in 

Appendix A.  

 

Figure 2-21 Measurement setup for permittivity and loss tangent values of fabric 

samples 

 

The Q factor is obtained by measuring the -3 dB bandwidth of the S21 using the Q 

meter.  

𝑄 = 𝑓𝑟
∆𝑓

                                                (2.13) 

Where fr is the resonant frequency and the Δf is the -3 dB bandwidth. 

Microwave   

Q meter 

Split post dielectric resonator 
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Table 2-3 contains the dielectric measurement results of denim (see Figure 2-22) and 

felt (Figure 2-23). The thermal melt adhesive web is used in this work for attaching 

multiple layers of fabric. A zoomed in view of the hemming web strip is shown in 

Figure 2-24. This thermal melt adhesive is made from 100% copolyamide and is 

widely used for textile adhesive such as hemming. The melting temperature is 105 – 

120 °C. This thin and low density adhesive material introduces additional air holes in 

the cloth fabric. The impact of melted copolyamide web on its permittivity and loss 

tangent was also measured. The results are shown in Table 2-3. The melted web 

between two layers of denim is 0.05 mm thick. The hemming web reduces both the 

permittivity and loss tangent of the two layers of denim. On the other hand, the 

permittivity and loss tangent of the black felt is the smallest. Particularly the loss 

tangent of felt is smaller than the low-loss rigid dielectric substrate RF-45. This 

indicates that thick fabric material such as felt with a large number of air voids has 

low loss tangent and can be used for dielectric substrate for microstrip antennas.   

 

Table 2-3 Dielectric measurements of fabric substrates using split post dielectric 
resonantor 

 Thickness (mm) ɛr tanδ 

Single layer denim 0.53 1.97 0.0737 

2 layers of denim (no adhesive) 1.10 1.92 0.0751 

2 layers of denim with copolyamide web 1.15 1.85 0.0526 

4 layers of denim with copolyamide web 2.24 1.90 0.0661 

Black felt 4.30 1.22 0.0022 

Taconic RF-45 rigid substrate 1.57 4.50 0.0037 
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Figure 2-22 Zoomed in view of 0.53 mm thick denim fabric 

 

 

Figure 2-23 Zoomed in view of 4.30 mm thick felt fabric 

 

4.3 mm 
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Figure 2-24 Zoomed in view of thermal melt copolyamide web strip 

 

The black felt will be used for dielectric substrate of embroidered patch antenna in 

Chapter 5 because of its lowest loss tangent. However due to the low relative 

permittivity and thickness, the antenna size has to be increased compared with high 

permittivity substrates.  
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2.5 Low-profile RF Connectors for Fabric Antennas  

A miniature connector with a standard interface is desirable to maintain the flexibility 

and comfort of wearable devices. The basic requirements for the wearable antenna 

connectors are being low-profile and having a small mounting area. They can be 

either permanent or detachable depending on the application. Wearable electronics 

such as microchips can be permanently ironed onto the high temperature resistant 

metallised fabric circuit substrates [80], [81]. The chips can also be sewed onto the 

fabric using conductive threads [82]–[84]. A note of caution must be sounded that the 

fabric based antennas and electronics may touch and be shorted each other due to the 

fold of textile fabrics and results in unwanted short circuit. Generally, it will be 

beneficial for the wearable electronics to have shorter connectors or cables to reduce 

the effects of bending and folding. Placing the fabric antenna on the positions with 

less fabric fold and additional protection layer on conductive textile will also prevent 

the fabric based wearable antennas and electronics from being shorted.  

 

The U.FL connector is an ultra-small, low profile coaxial connector [85] (shown in 

Figure 2-25). After the 90° plug is fitted in the receptacle, the height of the plug is 2 

mm including receptacle base, and the mounting area is 7-8 mm2. With a diameter of 

0.81 mm flexible cable connected, this U.FL connector is ideal for realising low 

profile connections for fabric-based antennas. Figure 2-26 shows the back-side of an 

embroidered dipole antenna with the U.FL connector and a thin flexible cable. The 

plug is covered by the fabric and therefore will not attract user’s attention. The 

SubMiniature version A (SMA) connector at the other end of the cable can be 

replaced by another U.FL connector depends on the device at the other end. The 

disadvantage of this connector comes from the cable loss which is dependent on the 

cable diameter. At 3 GHz the smallest cable loss is 0.28 dB per centimetre for the 

thickest cable of 1.37 mm diameter whilst the largest loss is 0.65 dB per centimetre 

for the thinnest diameter of 0.81 mm. Minimising the lengths of the cables in 

wearable applications will reduce the losses and also improve the compactness of the 

devices. Embroidered dipole antennas connected to the U.FL connectors and flexible 

lightweight cables can be sin in [86]. 
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Figure 2-25 U.FL low profile connectors (picture from [85]) 

 

Figure 2-26 Covered low profile U.FL connector with flexible cable 
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Detachable conductive fasteners that provide both mechanical and electrical 

connections will be beneficial to the fabric based wearable antennas and electronics. It 

allows antennas and electronics to be replaced or removed from the wearable systems 

on demand. A novel conductive hook and loop connectors for RF application will be 

developed and measured in Chapter 3. The hook and loop is detachable and flexible 

connections which links two pieces of electronics. Moreover due to the flat structure 

of the hook and loop strip, it can be fabricated as transmission lines. 

 

 

2.6 Conclusions 

This chapter has summarised and compared the current techniques of fabricating 

electro-textiles i.e. coating, weaving, printing and embroidery. These techniques have 

their own advantages in different wearable applications. Conductive layer coated 

fabric sheet is suitable for large continuous conductive shapes or EMC shielding. It is 

also the most widely available type of conductive fabric due to the low technical 

challenge compared with other three techniques. Woven conductive fabrics can be 

customised for special requirements and weaving conductive yarns with normal 

nonconductive yarns can create “in textile” conductive paths which are suitable for 

particular applications such as electroluminescence. Printing is the most accurate 

approach with the highest resolution of conducting patterns. However, the cost of the 

specialised conductive ink and the difficulty of applying it onto the fabric limit its 

applicability. Embroidery on the other hand, has reasonable resolution and also 

benefits from the large number of commercially available conductive threads. These 

features make embroidery become the choice of fabricating textile based antennas in 

this thesis with bespoke designs and a balance between performance and cost.  

 

Three types of conductive threads based on the composition of the filaments are 

compared. The multifilament conductive thread is chosen in this thesis for embroidery 

as it is easier to be embroidered than the monofilament and dual-filament threads by 
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using the computerised embroidery machine. The SEM images of the Amberstrand 

indicated the thickness of the metal cladding to be 1 μm and its diameter of a single 

filament to be 17 μm. The conductivity of the Amberstrand Silver thread was 

estimated from the SEM images. The skin effect should be accounted for high 

frequency applications as the metallization on the filament is thin.  

 

The key factors of embroidery including stitch patterns and stitches types have been 

presented in this chapter. Lock stitch is applied for fixing the conductive thread onto 

the base fabric. The accurate length of conductive thread was estimated based on the 

schematic of the lock stitch. The model indicates that the total usage of the thread is 

longer than designed length and the extra length can be determined by the thickness of 

the base fabric and the selected stitch length. 

 

Nonconductive fabric materials can be used as flexible dielectric substrates. These 

dielectric characteristics of the nonconductive normal fabric were measured using the 

split post dielectric resonator method. The thermal melt copolyamide can be used as 

adhesive for creating substrates with multiple layers. The measured low loss tangent 

of the nonwoven fabric black felt indicate that it can be used for the substrate for the 

microstrip antenna to reduce the dielectric loss. 

 

Ultra-small, low profile coaxial U.FL connectors were considered. The tiny semi 

detachable connector can be hidden under the fabric layers unobtrusively. With the 

thin coaxial cable of diameter less than 1 mm, the U.FL connector can be used for 

connection between fabric antennas and wearable electronic devices for maintaining 

flexibility. The cable loss will be reduced with thicker cables and the cable length 

should be minimised. 
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Recent literature shows the feasibility of embroidering wearable antennas using 

conductive threads. However, fabrication specifications such as embroidery 

parameters, conductive threads choosing, connections and cost of production which 

link to the mass-manufacturing have not been completely analysed and evaluated. 

This thesis tackles and emphasises on investigating the optimal manufacturing 

parameters with the balance between performance and cost of production. The effects 

of embroidery parameters on both DC and RF performances of embroidered 

transmission lines and antennas will be critical compared in Chapter 3 and 4. The 

guideline of embroidering conductive patterns and choosing the suitable thread is 

given in this thesis. In addition, the connection between RF source and embroidered 

components is needed to be further developed based on previous researches. 

Detachable and reusable connectors are desirable for fabric based wearable antennas. 

Chapter 3 will present a connector providing repeatable RF measurements. Novel 

detachable conductive hook and loop RF connectors will also be showed in Chapter 3. 

Furthermore, although previous researches have showed the anisotropic characteristic 

of conductive textiles, detailed surface current distribution on textile that linked to RF 

performance has not been analysed. This thesis investigates the effect of embroidered 

stitches on the surface current that influenced the RF performance of embroidered 

transmission lines and microstrip antennas. The anisotropic characteristic of 

embroidered stitches will be illustrated in Chapter 3, 4 and 5.  
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Chapter 3 

Embroidered Transmission Lines  
and Flexible Connectors 
 

Abstract 

This chapter will discuss the effects of embroidery factors (i.e. stitch directions, stitch 

spacings and number of filaments) on embroidered transmission lines. Section 3.1.2 

will represent the details of embroidered stitch directions and spacings. Measured DC 

resistance results of embroidered transmission lines with different embroidery factors 

will be shown in Section 3.1.3. A measurement system for repeatability and 

stabilisation will be shown in Section 3.1.4.  Section 3.1.5 will represent the measured 

RF S-parameters results of the embroidered transmission lines. The optimal choice of 

conductive thread for RF electronics will be outlined in this chapter. Meanwhile, the 

feasibility of RF connectors made from hook and loop transmission lines will also be 

presented in Section 3.2.  The conductive hook and loop connectors are detachable 

and reusable which is advantageous for wearable electronics applications. Improving 

both the DC and RF performance of hook and loop using electroplating will be shown 

in Section 3.2.4. 

 

3.1 Embroidered Microstrip Transmission lines 

3.1.1  Introduction 

In wearable applications, conductive textile can provide the functions of signal 

transmission but do not affect the users’ comfort. Several authors have discussed 
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fabricating transmission lines by using conductive fabric materials [1]–[4]. The textile 

transmission lines can be made from conductive threads using embroidery, knitting, or 

twisting with normal yarns. Figure 3-1 shows the textile transmission lines in [1]. The 

transmission lines are made out of conductive ripstop fabrics and sewed onto a 

nonconductive textile substrate. This chapter mainly focus on embroidered 

transmission lines. State of the art embroidery technique reduces the manufacturing 

process such as cutting and sewing. Multifilament conductive threads are used for 

embroidering the textile transmission lines. The appropriate thread should have both 

good conductivity and mechanical strength. 

 

 

Figure 3-1 Textile transmission lines made out of conductive woven fabric 

(picture from [1]) 

 

For high frequency applications the evaluation of conductive yarns are based on the 

transmission and reflection coefficients. The conduction loss and dielectric loss also 

have to be considered  [5], [6]. The conduction loss depends on the conductivity of the 

Conductive 

textile 

Nonconductive 

textile 
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conductor and the frequency. The skin effect has to be considered at high frequency 

applications [7]. However the conductivity of commercial conductive fabrics are 

much lower than copper. Ouyang et al. reported some of the multifilament thread 

have effective conductivities approximately from 1 × 104 S/m to 5 × 104 S/m [8], [9]. 

Although the conductive textile has high resistivity and complex surface compared 

with metal, a good conductive fabric still can provide reliable RF performance [3]. 

The dielectric loss is influenced by the substrate height, dielectric constant, and 

dissipation factor. High conductive fabrics based on low loss soft materials with 

reasonable return loss have been reported by [10]–[13]. In addition, the multiple 

layered dielectrics are very common in wearable applications and the effective 

dielectric properties have to be taken into account in the design [14], [15]. 

Additionally, the environment such as humidity may also affect the characteristic of 

the fabric substrate materials [16]. It is important to consider the effect of humidity on 

fabric based RF system performance. The textile transmission lines and antennas will 

benefit from a waterproof protective layer. 

 

Previous research showed that the weaving angles of woven conductive fabric 

influence the current distributions in the electro-textile [17], and the measured sheet 

resistances were varied with different directions on the anisotropic conductive fabrics 

[18]. Furthermore, Cottet et al. showed that the RF performance of fabric transmission 

lines made by woven fabric were affected by the fibre structure and line length [19].  

 

In this chapter, the textile transmission lines were made using standard industrial 

computerised embroidery machines at Nottingham Trent University. To minimise the 

number of variables, the rigid substrate FR4 (ɛr = 4.5, loss tangent = 0.019, 1.6 mm 

high) along with a solid copper ground plane were used for dielectric substrate. The 

characteristic impedance of the microstrip lines can be obtained from the width of the 

microstrip line W, the height of the substrate h and the effective dielectric constant εe, 

see equations in [20] 
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For a given characteristic impedance which is 50 Ω in this case, the width of the 

transmission line W can be calculated as in equation (3.3), 
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From (3.3), the width of the microstrip lines is calculated as 3 mm with the 1.6 mm 

FR4 substrate.  

 

3.1.2 Embroidered Stitches of Fabric Transmission Lines 

As was mentioned in Chapter 2, there are several types of stitch that can be chosen for 

embroidering fabric based electrical patterns. Satin stitch and running stitch were used 

to embroider the transmission lines in this chapter. The stitch direction can be either 

perpendicular or parallel to the line direction. Figure 3-2 shows the two stitch 

directions. The transmission line with perpendicular stitch direction is embroidered by 

the Satin stitch, whilst the line with parallel stitch direction is embroidered by running 

stitch. A comparison will be analysed to evaluate the performance of different stitch 

directions for embroidering transmission lines.  
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(a)                                             (b) 

Figure 3-2 Stitch directions of embroidered transmission lines: (a) perpendicular 

and (b) parallel  

 

The stitch spacing indicates the distance between two parallel stitches, usually in 

millimetres. The stitch spacings s and stitch length Ls of perpendicular and parallel 

stiches are shown in Figure 3-3. The adjacent stitches may connect with each other via 

the loose fibres if the stitches are close enough. Larger stitch spacings require less 

thread but the connection between neighbouring stitches will be poorer. The 

embroidered transmission lines in this chapter are made by using stitch spacings of 

0.4 mm and 0.8 mm.  
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(b) 

Figure 3-3 Stitch spacings of (a) parallel stitch and (b) perpendicular stitch  

 

The total length of used thread depends on the stitch length LS and the stitch spacing s. 

For very close stitch spacing, α is approximately 0° thus cos  As the stitch length .1= ߙ

equals to the width of the transmission line (see Figure 3-2), the number of the 

stitches N can be obtained by 

Parallel stitch                              ௣ܰ௔௥௔௟௟௘௟ ൌ ቒ ௅
௅ೞ
ቓ ∙ ቀቔ

௅ೞ
௦
ቕ ൅ 1ቁ               (3.4) 

Perpendicular stitch                    ௣ܰ௘௥௣௘௡ௗ௜௖௨௟௔௥ ൌ 2 ቒ		௅		
௦
ቓ ൅ 1              (3.5) 

Where L is the length of the transmission line. A 3 mm wide 100 mm long 

transmission line with 0.4 mm stitch spacing requires 272 parallel embroidered 

stitches or 501 perpendicular embroidered stitches. If the stitch spacing equals to     

0.8 mm, this transmission line needs 136 parallel stitches or 251 perpendicular 

stitches. Therefore, perpendicular stitch directions require more stitches and have 

longer thread, which means higher material costs. 

(a) 



Chapter 3                            Embroidered Transmission Lines and Flexible Connectors 

3-7 

 

The zoomed in details of the transmission lines are shown in Figure 3-4 and Figure 3-

5. As is shown by Figure 3-4, some visible gaps in between the adjacent stitches can 

be observed on the 0.8 mm spacing perpendicular stitched transmission line has. 

These gaps are related to the stich spacing but it is difficult to quantify the gaps when 

the stitch spacing is small. It can be seen in Figure 3-5 that the 0.4 mm stitch spacing 

parallel transmission line has 8 parallel stitches whist 0.8 mm stitch spacing parallel 

transmission line has 4 parallel stitches.  

 

 

Figure 3-4 Zoomed in view of 3 mm wide perpendicular transmission lines with 

different stitch spacings 

0.4 mm stitch spacing 0.8 mm stitch spacing 

Visible gaps 
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Figure 3-5 Zoomed in view of 3 mm wide parallel transmission lines with 

different stitch spacings 

 

3.1.3 DC Resistance of Embroidered Transmission Lines 

Three materials were used to make the fabric transmission lines: i) Amberstrand® 

Copper 66; ii) Amberstrand® Nickel 166; and iii) Liberator® Silver 40. These 

materials are manufactured by Syscom Advanced Materials [21]. The figures in the 

names indicate the number of filaments that each thread contains. Their names 

indicate the main consist of conductive material (i.e. copper, nickel or silver) in the 

coated layer on the filaments. Parallel and perpendicular stitch directions were applied 

with different stitch spacings. The DC resistances of the 10 mm long and 3 mm wide 

transmission lines were measured and the results are shown in Table 3-1.  

 

 

0.4 mm stitch spacing 

8 parallel stitches 

0.8 mm stitch spacing 

4 parallel stitches 
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Table 3-1 DC resistance of single thread and embroidered transmission lines 

Thread 

Resistivity 
for the 
coated 

material  
 (Ω·m) 

DC 
resistance 
of 100 mm 

single 
thread (Ω) 

 

DC resistance of 
transmission line 

(Ω) 

            Stitch 
     spacing 

Stitch  
direction 

0.4 mm 0.8 mm 

Liberator 
Silver 40 

Silver, 
1.59×10−8 4.3 

Perpendicular 8.8 23.8 

Parallel 0.6 1.1 

Amberstrand 
Copper 66 

Copper, 
1.68×10−8 0.8 

Perpendicular 5.5 6.6 

Parallel 0.2 0.3 

Amberstrand 
Nickel 166 

Nickel, 
6.99×10−8 0.3 

Perpendicular 0.3 1.0 

Parallel 0.1 0.2 

 

I. Stitch direction 

First of all, it is clear that in all cases the parallel embroidered transmission lines have 

lower DC resistance than the same stitch spacing perpendicular lines. This shows that 

lower surface resistance can be obtained when the stitch direction is parallel with the 

direction of the line. The stitch direction is a more important parameter than the stitch 

spacing. 

 

II. Number of filaments 

Table 3-1 indicates that a thread that contains more filaments has a lower resistance. 

The Amberstrand Nickel 166 thread is composed of 166 fibres and has the lowest DC 

resistance. The resistance of Liberator Silver 40 is the highest and it has the least 

filaments (40), even though ‘nickel’ is the worst conductor of the three and ‘silver’ is 

the best conductor. The same conclusion was also true with transmission lines, i.e. 
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lines made by using threads with larger numbers of filaments with the same stitch 

direction or stitch spacing have lower DC resistances.  

 

It is to be noticed that the resistance of the 0.4 mm spacing perpendicular 

Amberstrand Nickel 166 transmission line is approximately equal to the resistance of 

single thread of the same material. Therefore, large numbers of filaments with small 

stitch spacing can reduce the total series contact resistance to equal to the resistance of 

single thread. 

 

III. Stitch spacing 

Secondly, resistances of parallel stitches are smaller than the single thread regardless 

of stitch spacings. Moreover the DC resistances of the 0.8 mm spacing parallel lines 

are approximately twice of the 0.4 mm parallel lines. For instance, the resistance of 

Liberator Silver with 0.4 mm stitch spacing in the parallel direction is 0.6 Ω and the 

resistance of the same material and stitch direction but 0.8 mm spacing is 1.1 Ω. 

Consequently the equivalent circuit of the parallel stitched line is a parallel circuit and 

the resistance of the circuit is approximately doubled when the number of current 

paths are halved (i.e. stitch spacing is doubled).  

 

The electrical equivalent model of transmission line with parallel stitches is shown in 

Figure 3-6, where Rs indicates the resistance of each single stitch and it is determined 

by each single stitch length. Rc represents the contact resistance between two adjacent 

stitches and it is determined by the stitch spacing. It is worth noting that the Rs values 

are not all identical due to the stitch tension and embroidery accuracy. This is also 

true with Rc. However, the difference between Rs is very small and can be neglected. 

Therefore it can be assumed that the value of Rs is constant. Moreover, the influence 

of Rc is negligible for this parallel circuit as the major current follows the direction of 

the stitches. The total resistance of the transmission line Rtotal can be approximately 

determined by (3.6).  
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𝑅𝑡𝑜𝑡𝑎𝑙 = 1
𝑛
� 𝐿
𝐿𝑠
� 𝑅𝑠                                    (3.6) 

and n means the number of parallel stitches. n can be obtained by (3.7) 

𝑛 = 𝑊
𝑠

                                       (3.7) 

where W is the width of the transmission line and s is the stitch spacing. 

 

Rs Rs Rs Rs
……

Rs Rs Rs Rs
……

Rs Rs Rs Rs
……

…
…

Major current direction

Rc Rc Rc Rc

Rc Rc Rc Rc

 

Figure 3-6 Equivalent electrical model of parallel stitched transmission line and 

zoomed in view 

 

On the other hand, all the perpendicular stitches (apart from 0.4 mm spacing 

Amberstrand Nickel 166) have higher resistance than the single thread. This indicates 

that i) either the current mainly travels along the stitches in a zigzag route which is 

much longer than the length of the transmission line and therefore has a larger 

resistance; ii) or the major current crosses over the gap between the adjacent stitches 

via the connected fibres and Rc is larger than Rs. If the major current component 
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travels via the zigzag path, the resistance of larger stitch spacing lines should be less 

than the closer stitch spacing lines because the wider stitch spacing lines has a shorter 

total length of thread (see Figure 3-7, Zigzag line B has a shorter total length and is 

supposed to have smaller total resistance than A). However, Table 3-1 shows that 

lines with greater stitch spacings have higher DC resistances, particularly for 

Liberator Silver 40 and Amberstrand Nickel 166. The resistances of the transmission 

lines of these two materials with perpendicular stitch are increased by three times 

when stitch spacings are doubled. This indicates that the main current does not follow 

along the zigzag trace but crosses over neighbouring stitches.  

 

A

B
 

Figure 3-7 Sketches of perpendicular stitch direction transmission lines with 

different stitch spacing  

 

The equivalent electrical model of the transmission line with perpendicular stitches is 

shown in Figure 3-8. The resistance of perpendicularly stitched transmission line is 

determined by the contact resistance Rc, as embroidered transmission lines with 

smaller stitch spacings have lower resistances. Large stitch spacings lead to poor 

connection between stitches and increase Rc, also high chance result in disconnection 

between adjacent stitches (see Figure 3-4 and Figure 3-8).  
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Rs

Rs

Rc

……
Rs

Rs

Rc

Rs

Rs

Rc

Rs

Rs

Rc

Major current direction
Rc Rc Rc

Rs

Rc

  

Figure 3-8 Equivalent electrical model of perpendicular stitched transmission 

line and zoomed in view 

 

Assuming all the stitches contact each other by consistent Rc, and every Rs is equal, 

the Rtotal can be determined by (3.8) 

𝑅𝑡𝑜𝑡𝑎𝑙 = (𝑁−1)(𝑁−2)𝑅𝑐𝑅𝑠
(𝑁−1)𝑅𝑐+4(𝑁−2)𝑅𝑠

                         (3.8) 

Where N is the total number of stitches and it varies inversely with the stitch spacing.  
 

In conclusion, the desired embroidery parameters for fabric transmission lines, listed 

in order of importance for minimising the DC resistance, are i) parallel stitch direction; 

ii) higher number of fibres within a single thread; and iii) smaller stitch spacings. 
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3.1.4 RF Measurement Setup for Embroidered Transmission 

Lines 

The embroidered transmission lines were placed on the 1.6 mm rigid FR4 substrate  

(ɛr = 4.5, loss tangent = 0.019) with a solid copper ground plane to minimise the 

variations. Two SubMiniature version A (SMA) connectors were contacted to the 

ends of the fabric transmission line by applying pressure to achieve a good connection. 

Soldering was not used to avoid the damage the fabric samples. This test jig 

eliminates the wrinkles of the fabric and flattens the surface which provides stability 

for the measurement. The SMAs were connected to the vector network analyser for S-

parameter measurements. The measurement setup and test jig are shown in Figure 3-9. 

 

 

Figure 3-9 Test jig used for embroidered transmission line measurements 
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Repeatability is important to evaluate the performance of the fabric transmission lines. 

To test that, five repeated measurements were made with the Amberstrand Copper 66. 

Initially, the probes of the SMA connectors were directly contacted to the thread, see 

Figure 3-10 (a). The measured S11 results are shown in Figure 3-10 (b). It can be seen 

that the repeatability was poor. The connection between probes and the fabric 

transmission lines was easily changed due to the softness of fabric fibres. It was 

hypothesised that flattened probes with an enlarged contacting area would improve 

the repeatability. A small piece of 3 mm wide copper patch was soldered onto the 

probe of the SMA connectors, see Figure 3-11 (a). This small patch increases 

contacting area between the probe and the fabric transmission line. Figure 3-11 (b) 

shows five repeated S11 measurements using the enlarged contact area connectors. 

The results indicate the improvement in the repeatability of the measurement jig. 
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(a) 

 
(b) 

Figure 3-10 (a) Zoomed in view of SMA probe pressed down onto the 

embroidered transmission line 

(b) Five repeated S11 measurements of the same line 
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(a)

 
(b) 

Figure 3-11 (a) Zoomed in view of enlarged contacting area probe pressed down 

onto the embroidered transmission line 

(b) Five repeated S11 measurements of the same line 
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3.1.5 RF	Performance	of	Embroidered	Transmission	Lines		

Embroidered transmission lines made from different conductive threads with different 

stitch spacings and directions were tested using the measurement jig in Section 3.1.4. 

Insertion losses were measured to evaluate the RF performance of these fabric 

transmission lines. A copper foil made microstrip line with the same dimensions was 

placed on the same FR4 substrate with the same base fabric (cotton) in between as a 

comparison. Figure 3-12 to Figure 3-14 show the measured S21 results of the 

embroidered transmission lines.  

 

 

Figure 3-12 S21 of Amberstrand Nickel 166 transmission lines with different 

stitch directions and spacings 
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Figure 3-13 S21 of Amberstrand Copper 66 transmission lines with different 

stitch directions and spacings 

 

 

Figure 3-14 S21 of Liberator Silver 40 transmission lines with different stitch 

directions and spacings 
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I. Stitch direction 

All the parallel stitched lines have better S21 values than the perpendicular stitch lines 

regardless of stitch spacing, this can be seen from Figure 3-12 to Figure 3-14. The 

difference of S21 between parallel embroidered lines and copper line is less than 1 dB 

up to 5 GHz (or up to 4.5 GHz with Liberator). Thus parallel stitches are preferable 

due to the low insertion loss. More precisely, approximately 2 dB insertion loss are 

observed by all the parallel stitched lines up to 2.5 GHz, and around 5-6 dB of 

insertion loss are obtained at 6 GHz. It is worth noting that the insertion losses of 

different stitch spacings for the parallel lines are very similar, i.e. less than 1 dB 

difference for all the threads below 4.7 GHz.  

 

II. Stitch spacing 

The variation of S21 of the perpendicular stitched lines with different stitch spacings 

is more significant than the parallel stitched lines. For the same thread, perpendicular 

stitched transmission lines with 0.4 mm stitch spacings have lower insertion loss 

(apart from Amberstrand Nickel 166, lower insertion loss is true up to 2.8 GHz). This 

is expected as the closer stitch spacing lines have lower DC resistances which results 

in lower conduction loss. 

 

III. Number of filaments 

The difference between the Amberstrand Nickel 166 perpendicular 0.4 mm stitch 

spacing and 0.8 mm stitch spacing is shown in Figure 3-12. Compared with other two 

threads with perpendicular stitch direction, the difference between Amberstrand 

Nickel 166 perpendicular 0.4 mm spacing and 0.8 mm spacing is smaller. It is less 

than 1 dB up to 5 GHz. Meanwhile when the frequency is lower than 2.8 GHz, the 

difference of S21 between Amberstrand Nickel 166 perpendicular 0.4 mm spacing 

and parallel 0.4mm spacing is less than 1 dB. The insertion losses of the same stitch 

spacing perpendicular Amberstrand Copper 66 (shown in Figure 3-13) and Liberator-

Silver-40 (shown in Figure 3-14) are very similar, but they are larger than the 
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insertion losses of Amberstrand Nickel 166 perpendicular lines. Therefore, threads 

with larger number of filaments can improve the insertion loss of perpendicular 

stitched transmission lines. 

 

Measured S11 results of parallel and perpendicular direction transmission lines are 

shown in Figure 3-15 and Figure 3-16 respectively. Both stitch directions give 

reasonable S11 results and this indicates that the reduced S21 is due to the losses 

along the line. 

 

 

Figure 3-15 S11 of embroidered transmission lines with parallel stitch direction 
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Figure 3-16 S11 of embroidered transmission lines with perpendicular stitch 

direction 

 

The DC and RF results of embroidered transmission lines indicate that higher DC 

resistance of the transmission line results in higher insertion losses. The impacts on 

the DC resistance and insertion loss of the fabric transmission lines, in order of 

importance for RF performance are: i) stitch direction; ii) number of filaments; and iii) 

stitch spacing. 

 

 

3.2 Hook and Loop Connectors 

3.2.1 Introduction 

A major issue of most wearable applications is connecting the standard electronic 

circuit to the fabric antenna. A rigid socket in the cloth will affect users’ activities and 
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comfort. Using a flexible connector and the transmission lines will be the optimal 

solution for certain applications. Hook and loop is largely used in clothing industry as 

the fastener instead of laces, zips, or buttons. The zoomed in views of the loop and the 

hook strip are shown in Figure 3-17 and Figure 3-18 respectively. Usually the loop 

has a large number of flexible and randomly orientated fibres whilst the hook has 

uniform rigid upside down ‘fishhooks’ in alignment. After being pressed together, the 

hook catches the fibres on the loop. The hook and loop can be made from conductive 

materials and form a flexible electric connector [22]. Patents have been filed to use 

conductive hook and loop for providing flexible electrical connections [23]–[25]. 

Some authors have addressed the problem of commercial reusable connections for 

low frequency control signals [26], [27]. In this work, conductive hook and loop will 

be examined as a connection mechanism for high frequency applications [28]. This 

hook and loop connector is detachable which allows the antennas or electronics to be 

reused, washed or replaced.  

 

Figure 3-17 Zoomed in view of loop strip 
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Figure 3-18 Zoomed in view of hook strip 

 

3.2.2 DC Resistance of Hook and Loop 

The DC resistances of 5 cm long and 1.6 cm wide hook and loop strips were measured. 

The results are shown in Table 3-2. The resistance of the back side of hook is the 

lowest and the hook side is slightly higher. The resistances of hook strips are lower 

than the loop. After been pressing the loop and hook together, the resistance of the 

‘middle’ is measured by inserting the probe of the meter into the middle of the 

connected hook and loop, the resistance is similar as the reverse side of hook.  
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Table 3-2 DC resistance of 5 cm long and 1.6 cm wide hook and loop strip 

 

Individual strip When pressed together 

Loop Hook Back of 
loop 

Back of 
hook 

Back of 
loop 

Back of 
hook Middle 

DC resistance 
in Ω 1.13  0.52 1.78 0.50  1.76 0.50  0.54  

 

3.2.3 RF Performance of Hook and Loop Connectors 

Five 3 mm × 50 mm printed transmission lines were made on the 1.57 mm high low 

loss substrate Taconic RF-45 (εr = 4.5 and tanδ = 0.0037). All the lines are designed 

to be approximately 50 Ω. One of transmission lines was a continuous copper line and 

the rest had a gap divided every transmission line into two parts.  The cross section of 

each gapped transmission line is shown in Figure 3-19. The test jig is shown in Figure 

3-20. On top of the gapped microstrip lines there are two 10 mm long and 3 mm wide 

hook strips (see the zoomed in view in Figure 3-20) affixed to the microstrip using a 

conductive epoxy. The loop component was used to bridge the gap. A continuous 

copper line without gap was used as a comparison. The measurements demonstrated 

the insertion loss in the loop section and the interconnection between the two 

component parts that made the assessment of the ‘switch’ with two contacts. The 

envisaged connectors can be sewed onto transmission lines using conductive yarn in 

the production process.  

Taconic RF-45 substrate

Copper transmission line Copper transmission line

Loop

Copper ground plane

Hook HookGap in copper 
transmission line

10 mm 10 mm

 

Figure 3-19 Sketch of the cross section of hook and loop connector on gapped 

transmission line 
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(a) 

 
(b) 

Figure 3-20 (a) Zoomed in view of gapped transmission line with hook attached 

(b) After loop strips are placed across the gap, figures indicate sizes of the gaps in 

transmission lines 

 

The measured S11 and S21 results are shown in Figure 3-21 and Figure 3-22 

respectively. The results show that below 2 GHz, the S11 results of with the hook and 

loop transmission lines are almost identical. The S11 values are approximately 10 dB 

worse than the continuous copper line. The S21 values of the hook and loop 

transmission lines are approximately -2dB when the frequency is below 2 GHz. The 

insertion loss is increased with larger gap sizes. It is to be noted that the number of 

copper              1mm              2mm              4mm             8mm 

hook        loop 
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transitions between the hook and the loop is twice that envisaged in the final 

application as a connector between traditional electronics and a fabric system. 

 
Figure 3-21 S11 of hook and loop ‘switches’ 

 
Figure 3-22 S21 of hook and loop ‘switches’ 
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3.2.4 Electroplated Hook and Loop Connectors 

Electroplating using a copper solution has been carried to increase the conductivity of 

the hook and loop, see Figure 3-23 and Figure 3-24. The improvements in the DC 

resistance can be seen in Table 3-3. The electroplating improves the conductivity of 

hook and loop significantly. The resistances of hook and loop after electroplating are 

reduced to less than 10% of the original value. However, the electroplating process 

used here stiffened the loop component. In future, increasing the conductivity at the 

manufacturing stage could remove the need for electroplating. 

 

 

 

Figure 3-23 Zoomed in view of electroplated loop strip 
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Figure 3-24 Zoomed in view of electroplated hook strip 

 

Table 3-3 DC resistances of 5 cm long and 1.6 cm wide hook and loop before and 

after electroplating  

  

DC resistance in Ω 

Front side Back side 

Untreated 
Loop 1.13 1.78 

Hook 0.53 0.50 

60 minutes electroplating 
Loop 0.12 0.11 

Hook 0.03 0.03 
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Figure 3-25 shows the S11 results of all the eight hook and loop transmission lines 

compared with the continuous copper line. It can be seen that up to 2.7 GHz all the 

hook and loop ‘switches’ (apart from electroplated 8 mm gap) have the S11 values 

less than -10 dB which provides a reasonable impedance match. Figure 3-26 shows 

the comparison of S21 results of hook and loop ‘switches’. The insertion losses are 

better with smaller gaps. Furthermore the electroplating reduced the hook and loop 

insertion loss up the 5 GHz (expect for the 8 mm gap line). The S21 of the 

electroplated hook and loop on 8 mm gap line is worse than the untreated hook and 

loop when frequency is higher than 2 GHz, but it is better than the untreated one when 

frequency below 2 GHz. Overall the added conductivity given by the electroplating 

has improved the insertion loss.  

 

 

Figure 3-25 S11 data for all eight hook and loop ‘switches’ 
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Figure 3-26 S21 data for all eight hook and loop ‘switches’ 

  

 

3.3 Conclusions	

In this chapter the DC and RF performance of embroidered microstrip transmission 

lines made from conductive threads were measured. The presented results show that 

conductive threads can be used to embroider transmission lines for RF applications. 

The insertion loss of the embroidered transmission lines are less than 2 dB below    

2.5 GHz and are less than 5 dB up to 6 GHz when using parallel stitches. 

 

Generally, parallel stitch direction (i.e. same direction as signal transmission) is 

highly recommend for fabricating transmission lines and it is the most effective way 

to obtain low DC resistance and low RF loss. When the parallel stitch direction is 

applied, the impact from other factors (i.e. stitch spacing, number of filaments, and 
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coating materials) can be minimised. Threads that contain more filaments also have 

the advantage in terms of reducing resistance and insertion loss. Closer stitch spacing 

improves the connection between adjacent threads, which lowers the contact 

resistance. The coating material has less effect on DC and RF performance compared 

with stitch spacing, stitch direction and number of filaments. However, it worth noting 

that nickel may cause allergic dermatitis when prolonged contact with the skin. Fabric 

antennas made by nickel thread need to be isolated from skin for wearable 

applications. 

 

The results of the hook and loop demonstrate the feasibility of using them as 

detachable connectors. The hook and loop ‘switch’ have the advantages of low-profile 

and easily applied on textile compared with conventional RF connectors. The ‘switch’ 

format used here will give a higher insertion loss than one would expect to find in a 

connector using hook and loop. The use of electroplating has indicated that higher 

conductivities will extend the frequency range of the connectors. Electroplating the 

hook and loop with copper has produced a significantly lower insertion loss of around 

1 dB below 2 GHz. If a 2 dB insertion loss is deemed acceptable then a frequency 

range up to 4 GHz may be considered.  

 

A reusable connector allows electronics to be removed from a fabric system for 

security or other reasons such as washing. This concept is useful and important 

addition to textile RF systems. A wider transmission line would practically works 

better with the hook and loop connectors proposed. This fits well with textiles where 

relative permittivities are generally relatively low and this leads to wider 50 Ω 

transmission lines. 
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Chapter 4  

Effect of Fabrication Parameters on 
Embroidered Microstrip Antennas 
 

Abstract 

This chapter discusses the simulated and measured rectangular microstrip patch 

antennas produced using embroidery techniques. Section 4.2 will show the effects of 

stitch direction and stitch spacing on the surface resistance of the patch. The effects 

on the resonant frequency, gain and efficiency of the embroidered antennas will be 

described in Section 4.3. The repeatability measurements of embroidered patch 

antennas will be included in Section 4.4. The analysis of the currents flow in the 

microstrip antennas and how it be influenced by the stitch direction and spacing will 

be illustrated in Section 4.5. Two different simulation approaches for these antennas 

will be discussed and linked to measurement results, pointing to a simplified model 

for simulating embroidered patch antennas. Section 4.6 will give the guidelines for 

choosing the correct fabrication parameters such as stitch spacing and direction. In 

this chapter, the antennas have a standard rigid microwave substrate to reduce the 

number of variables. 

 

4.1 Introduction 

Smart cloths that have integrated fabric based wearable antennas meets the 

requirements of being compact, mobile, discreet and always-on [1]–[4]. Multiple on 

body wearable antennas can be connected and build the body-centric wireless network 

to provide both mobility and functionality [5]. Flexible conductive materials can be 



Chapter 4 Effect of the Fabrication Parameters on the Embroidered Microstrip Antennas 

4-2 

 

used for fabricating fabric based wearable antennas which are suitable for various 

applications. Well-designed fabric based wearable antennas are low-profile and 

hands-free which is qualified in harsh environments [6]. Hertleer et al. reported a 

wearable antenna integrated into protective clothing for fire fighters [7]. Flexible GPS 

antenna that can be integrated into cloth is presented in [8]. Manzari et al. have 

investigated passive textile RFID antenna for body-centric systems [9]. Fabric 

antenna that used for on-body sensor application can be seen in [10]. Textile antenna 

can be taken out of device and integrated into cloth to reduce the size and weight of 

the receiver unit. This feature is particularly beneficial for the applications with large 

antenna such as personal satellite communication [11]. 

 

However, the cost of the specialised antennas is concerned by the manufactures and 

slows down the market growth. Labours, materials, equipment and production times 

are the major issues in fabric based antennas production and added to the costs. 

Modern computerised embroidery machines are accurate and efficient in sewing 

complicated patterns and can be used for high frequency components fabrication. This 

will facilitate the integration of fabric antennas into clothing and lower the cost of 

manufacturing. In order to investigate the feasibility of manufacturing fabric based 

antenna systems, this chapter analyses the effect of the embroidery parameters 

including stitch spacing and stitch direction on the embroidered patch antennas 

performance. 

 

The accuracy, adaptability, and flexibility of the computerised embroidery make it 

eligible to fabricate flexible electronics with complicated patterns [12]–[25]. Due to 

the features of the embroidered stitches, the embroidered antennas are different from 

the antennas made from conventional conductive materials. In Chapter 3, the 

embroidered microstrip transmission lines were examined. The stitch direction is the 

dominant embroidery parameter that influences the RF performance. Choi et al. 

examined the stitch directions of embroidered RFID tags [12]. The effects of the 

density of embroidered stitches on the read range of two arms RFID antennas were 

reported in [13]. Wang et al. reported the feasibility of increasing conductivity of 
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embroidered radiators by using double layers of embroidery [14]. Moradi et al. 

compared different  sewing patterns on the read range of dipole RFID tag antennas 

[22]. However, more detailed study on embroidered factors is needed to investigate 

the principle of embroidered radiation elements. In this chapter, the effects of stitch 

direction and spacing on embroidered patch antenna are compared together. The 

optimum parameters in embroidered antennas manufacturing are determined. 

 

The major difference between conventional copper based and fabric based antennas is 

the conductive surface of the conventional copper antenna is continuous, which easily 

achieves high conductivity and uniform electromagnetic fields, yielding high 

efficiency antennas. Creating a highly efficient fabric based antenna is a challenge due 

to the discontinuous and anisotropic surface. Some authors have reported fabric based 

antenna efficiency, for example, Locher et al. reported an efficiency of 45% for a 

knitted fabric antenna [26] and a 78% efficiency for a fabric antenna is achieved by 

involving conductive metal wire woven into the fabric [27]. However, the including 

of metal wires increases the manufacturing process and reduces the flexibility of the 

fabric. Embroidery using conductive thread can achieve both high conductivity and 

flexibility. In this chapter, silver coated Amberstrand thread will be used for 

embroidering microstrip antennas. The scanning electron microscope (SEM) image of 

unbraided Amberstrand Silver yarn shows the diameter of individual fibres is 

approximately 17 μm. Details can be seen in Chapter 2. 

 

In the embroidery process, the conductive yarns are usually aligned in a preferred 

direction and spacing which are defined by the embroidery parameter settings. It is 

vital to understand the way that the conductive yarns distort the current flow in the 

antenna at its operation frequency. The angle between fibres direction and test 

electrodes affects surface resistance of the conductive fabric [28]. Charging from 

different directions on conductive fabric will results in different sheet resistance 

values. Banaszczyk et al reported the current distribution in DC condition on the 

conductive woven fabric and pointed out that the sheet resistance of fabric is impacted 
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by the fibre direction, current direction and the contact resistance [29]. Approaches 

such as two metal electrodes and Van der Pauw method can be carried out to measure 

the sheet resistance of conductive fabric [30], [31]. The two electrode bars approach 

will be used to measure the surface resistance of the embroidered patches in the 

Section 4.2. 

 

In addition, the adjacent threads will not touch each other along their full lengths, the 

structure may have a significant percentage of air voids which also depends on the 

diameter of the yarns and the stitch spacing. Some of the loose filaments might cross 

the air gap and connect the adjacent stitches. However, the contact resistance depends 

on the number of contacted filaments and is generally larger than the resistance of 

thread as seen from DC measurements in Chapter 2. The analysis of the gaps is vital 

to embroidered antenna performance and the effects of these gaps between conductive 

threads will be present in Section 4.5. Due to these limitations, it is not easy to define 

an electromagnetic model that accurately describes the properties of the embroidered 

fabric antennas. Two approaches will be discussed in this chapter to emulate the 

structure of the fabricated antenna.  

 

 

4.2 Sheet Resistance of Embroidered Microstrip 

Antennas 

In this section, rectangular patches were embroidered with three different stitch 

directions (vertical, horizontal and diagonal); and four stitch spacings (0.4mm, 0.6mm, 

0.8mm and 1mm). The dimensions of embroidered patches were 37 mm by 28 mm. 

Silver coated Amberstrand yarn with the lock stitch was used. The three stitch 

directions are shown in Figure 4-1. It should be noted, in this context, that the 

diagonal stitching aligns with the corner to corner diagonal. Two brass bars were 

connected to the ends of the measurement cables of a digital multimeter in its 
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resistance mode, and the bars gave an even pressure and good contact over the 

length/width of the patches. Note connecting the bars together gave zero ohm 

resistance.  Figure 4-2 illustrates the DC resistance measured by two brass bars in x 

and y directions.  

Vertical stitching Horizontal stitching Diagonal stitching

Figure 4-1 Sketch of patches with different stitch directions 

 

Embroidered patch
Embroidered patch

x

y

Multimeter

Multimeter

Brass bars

Figure 4-2 Sketch of DC resistance measurement in x and y directions 

 

The measured DC resistance values are shown in Table 4-1. It is clear that the current 

prefers to follow the stitch direction rather than jump between threads, particularly 

with larger stitch spacings. This agrees with the conclusion of the transmission line 

measurements in Chapter 3. However, the effect of different stitch spacing on the 

sheet resistances is not very clear in this DC measurement due to the small values of 

the resistance and the potential parasitic contact resistance between the bars and fabric 

samples. The antenna gain measurements in Section 4.3 will analyse the influence of 

different stitch spacings on RF performance. 
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Table 4-1 Measured DC resistances of Amberstrand Silver patches with different 

stitch spacings and directions 

Stitch spacing 
(mm) 

Stitch 
direction 

DC resistance of embroidered patch (Ω) 

Measured in x 
direction 

Measured in y 
direction 

0.4 

Diagonal 0.02 0.22 

Horizontal 0.01 0.13 

Vertical 0.19 0.03 

0.6 

Diagonal 0.01 0.15 

Horizontal 0.00* 0.11 

Vertical 0.44 0.00* 

0.8 

Diagonal 0.01 0.23 

Horizontal 0.01 0.16 

Vertical 0.18 0.00* 

1.0 

Diagonal 0.02 0.44 

Horizontal 0.01 0.21 

Vertical 0.26 0.01 

*the resistances were smaller than 0.005 Ω. 
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4.3 RF performance of Embroidered Microstrip 

Antennas 

4.3.1 Fabrication and Feeding 

Reducing the unknown changes in variables gives efficient analysis of determining 

the effects of embroidery parameters on the antenna RF performance. Therefore, rigid 

substrate with solid ground planes and semi rigid coaxial cable was used to minimise 

the number of variations. Compared with microstrip line feed [32], the probe feed 

offers a more flexible way to obtain the optimum impedance match. As the input 

impedance is determined by the feed location, moving the embroidered patch along 

the symmetric line can modify the impedance matching. This will reduce the return 

loss due to the miss match. The geometry and the feed position of the patch antenna 

are shown in Figure 4-3.  

W

L
y

x

zEmbroidered or etched 
patch

Probe feedGround

90 mm

70
 m

m

h

d

 

Figure 4-3 Geometry and feed position of the embroidered and etched patch 

antenna 
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The design equations for a rectangular patch antenna are given by [33], [34]: 

For high antenna efficiency, the width of the patch W is 

𝑊 = 𝑐
𝑓𝑟
� 2
𝜀𝑟+1

                                            (4.1) 

where c is the free-space velocity of light, fr is the resonant frequency of the patch 

antenna in Hz. 

 

The resonant frequency of the rectangular patch antenna at the dominant TM01 mode 

is determined by its effective length Leff  which can be obtained by (4.2) 

𝐿𝑒𝑓𝑓 = 𝐿 + 2∆𝐿                                      (4.2) 

where L is the physic length of the patch and ΔL is the extended length due to the 

fringing field. The extension of the length ΔL is given by (4.3) 

∆𝐿 = 0.412ℎ
(𝜀𝑒+0.3)�𝑊ℎ+0.264�

(𝜀𝑒−0.258)�𝑊ℎ+0.8�
                      (4.3) 

where the effective dielectric constant ɛe can be obtained by equation (3.2). 

 

For the dominant TM01 mode, the resonant frequency of the rectangular patch antenna 

is given by (4.4) 

(𝑓𝑟𝑐)01 =
1

2𝐿𝑒𝑓𝑓�𝜀𝑒�𝜇0𝜀0
 

= 1
2(𝐿+2∆𝐿)�𝜀𝑒�𝜇0𝜀0

                         (4.4) 
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The feed point determines the input impedance. A feed point that is situated along the 

W/2, the higher order mode will be suppressed and only TM01 mode is excited. The 

distance from the edge to the point d is approximately given by (4.5) 

𝑑 = 𝐿
2√𝜀𝑟

                                                      (4.5) 

 

The patch antennas in this chapter were designed to work at 2.4 GHz. They were 

placed on the 90 mm × 70 mm, h =1.57 mm low loss Taconic RF - 45 substrate (εr = 

4.5 and tanδ = 0.0037) with a copper ground plane. Therefore embroidered patch 

antenna dimensions were determined as W =37 mm and L = 28 mm. The theoretical 

feed point d is 9.5 mm away from the edge. An etched copper patch with the same 

dimensions was made for comparison.  

 

 
Since the conductive threads were embroidered only on one side of the base fabric, 

the embroidered patches were placed upside down (see Figure 4-4) to eliminate of 

additional layer between embroidered radiation element and a substrate. The thermal 

melt adhesive web was used for fixing the base fabric on the substrate. A hole is cut at 

the centre of the thermal melt adhesive to avoid isolating the embroidered patch from 

the feed pad. Simulations indicated that the very thin base fabric layer of cotton (εr = 

1.6, tanδ = 0.04 and 0.5 mm height) as superstrate has negligible effect on resonate 

frequency and antenna efficiency. 
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Figure 4-4 Sketch of upside down embroidered patch antenna on rigid dielectric 

substrate, with thermal melt adhesive between base fabric and substrate 

 

A 50 Ω coaxial was used to feed the antenna. The feed position of the copper patch 

was chosen from the theoretical best impedance match point. A small copper pad      

(3 mm × 3 mm) was connected to the coaxial probe where the feed via emerged from 

the substrate. The embroidered patches were placed against the pad which gives good 

contact between probe and embroidered patch. However, the theoretical feed position 

did not give good impedance for the embroidered patch antennas. The feed point need 

to be adjusted manually to obtain the optimum impedance match. In practice, it is 

found that the feed point should be placed closer to the top W edge for better matching.  

 

Embroidered patch 

Thermal melt adhesive 

Base fabric  

Dielectric substrate 

Ground plane 

Small copper pad 
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4.3.2 RF performance of Embroidered Microstrip Antennas 

The antennas were measured in the anechoic chamber measuring approximately         

7 × 7 × 3 m3 at Loughborough University. Two-Antenna Method [33] is employed for 

measuring the gain and radiation pattern of the antenna under test (AUT). The AUT is 

mounted on the positioner and rotated in azimuth (theta) and elevation (phi) plane. A 

linearly polarised standard horn antenna with known gain is placed approximately 3.7 

m away from the centre of the positioner rotation platform with the same height of the 

AUT. A VNA was connected to both the AUT and horn antenna. The measurement 

frequency range of this chamber is from 30 kHz to 6 GHz. Visual Basic software was 

adopted as measurement control program that enable the AUT 360° fully rotate in 

both theta and phi planes. The total efficiencies and gain quoted were obtained with a 

full three dimensional (3D) scan of the radiation fields, and included the return loss.  

 

The measured results are summarised in Table 4-2. The gain and efficiency results 

indicates that the vertical thread orientation is the preferred direction for the first 

radiation mode and the results show that higher gain and efficiency values are 

obtained with smaller stitch spacing antennas. The diagonal stitch direction antennas 

tend to perform better than the horizontal ones. It is likely that this is because there is 

a component of the current flowing in the vertical direction. The resonant frequencies 

for the horizontal and diagonal patches are lower than those for the vertical stitch 

direction. This indicates that the increased current path lengths of the embroidered 

patches and the anisotropic nature of the textile surface may increase the inductance 

and capacitance which also could lower the resonant frequency.   

 

In all but three cases in Table 4-2, the S11 values for Amberstrand show a better 

match than for the etched copper patch. This is most likely because the feed positions 

of the embroidered antennas were adjusted to give optimum match as far as possible. 

This was not the case with the etched copper patch. 



Chapter 4 Effect of the Fabrication Parameters on the Embroidered Microstrip Antennas 

4-12 

 

Table 4-2 Measured results for embroidered patch antennas on RF-45 substrate 

Antenna 
Resonant 

Frequency 
(GHz) 

S11 
(dB) 

Gain 
(dBi) 

Directivity 
(dBi) 

Total 
efficiency 

(%) 

Etched Copper 2.40 -24.5 6.5 7.4 80.4 

0.4 mm 
spacing 

Vertical 2.47 -27.9 4.9 7.7 52.5 

Horizontal 2.21 -16.0 -1.0 7.1 15.4 

Diagonal 2.40 -15.8 2.4 7.5 30.4 

 

0.6 mm 
spacing 

 

Vertical 2.50 -17.6 4.2 7.2 48.9 

Horizontal 2.11 -12.3 -2.0 6.9 12.3 

Diagonal 2.18 -15.9 -1.2 7.3 13.8 

0.8 mm 
spacing 

Vertical 2.51 -24.6 3.6 7.4 42.1 

Horizontal 1.91 -11.0 -6.2 7.1   4.3 

Diagonal 2.06 -15.6 -1.3 6.1 17.7 

1.0 mm 
spacing 

Vertical 2.57 -14.4 -1.6 7.1 13.2 

Horizontal 1.77 -16.5 -7.8 7.5   2.9 

Diagonal 2.00 -12.4 -1.3 6.2 16.8 

 

Figure 4-5 shows the S11 values of the four antennas described in the previous 

paragraph. The etched copper patch antenna has the highest Q from this figure. The 

vertical stitch direction follows this. Both of these two antennas show a very good 

impedance match (Copper: S11 = -24.5 dB at 2.38 GHz and Vertical stitch direction: 

S11 = -27.6 dB at 2.47 GHz respectively). The resonant frequency of horizontal stitch 

direction patch reduces to 2.2 GHz but it still has S11 of -16 dB acceptable impedance 

match. However the impedance match of the diagonal stitch direction patch is poor, at 

2.16 GHz resonant frequency the S11 equals to -5 dB. 
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Figure 4-5 Measured S11 of four 0.4 mm stitch spacing embroidered patch 

antenna with different stitch direction and etched copper patch antenna  

 

Figure 4-6 (a) to (c) shows the electric field on phi = 0 ° plane for three 0.4 mm stitch 

spacing embroidered patch antennas with different stitch directions. Figure 4-6 (d) 

shows radiation patterns on the same plane of the etched copper antenna. For the 

dominated mode, which is accepted as the normal radiation mode of a patch antenna, 

the vertically directional stitches are parallel with the major current flow direction. 

The polarisation purity for the vertical stitched patch antenna is in excess of 27 dB on 

boresight. This is significantly worse than the 35 dB of etched copper antenna. The 

polarisation purity for the horizontal stitch direction is decreased to approximately    

23 dB. The embroidered patch with diagonal stitch direction has approximately 8 dB 

polarisation purity. This is caused by current flowing along the diagonal threads and 

also crossing the adjacent stitches, which causes the two polarisations to come close 

together in terms of magnitude. It can be summarised that the stitch direction which 

distorts the major current flowing direction of a patch antenna could reduce the 

polarisation purity level.  
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(a)                                                                  (b) 

  
(c)                                                                   (d) 

Figure 4-6 Measured electric field gain radiation patterns (in dBi) on phi=0° plane 

(a) Vertical 0.4mm stitch spacing embroidered patch antenna at 2.47 GHz 

(b) Horizontal 0.4mm stitch spacing embroidered patch antenna at 2.21 GHz 

(c) Diagonal 0.4mm stitch spacing embroidered patch antenna at 2.40 GHz 

(d) Etched copper patch antenna at 2.40 GHz 
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There is a back lobe that is larger than would be desirable.  It is believed that this is 

partly caused by the small ground plane (90 mm × 70 mm) and partly by the 

measurement tower in the chamber. The tower is made out a range of dielectric 

materials but mainly of polyvinyl chloride (PVC). Simulations including a model of 

the measurement tower were carried out to test this hypothesis. IMST Empire XCcel 

software which uses the Finite Difference Time Domain method (FDTD) was used to 

simulate the measurement environment. Figure 4-7 shows the copper microstrip 

antenna placed in front of the positioner with dielectric constant equals to 2.91 and 

loss tangent = 0.025. Figure 4-8 illustrates the simulated radiation pattern of the solid 

copper patch antenna with the enlarged back lobe due to the positioner. The measured 

antenna efficiency in this anechoic chamber with this positioner is approximately 3% 

less than the simulation [35]. However, for the embroidered fabric antennas, the stitch 

direction also influences the size of the back lobe. The vertical stitch direction has the 

smallest back lobe of the three embroidered antennas and the diagonal stitch direction 

is the worst of the three. A note of caution must be sounded here as the ground plane 

will appear to have a slightly different size for each measurement as the frequencies 

are different. 

 

Figure 4-7 Simulation of measurement tower in anechoic chamber 
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Figure 4-8 Simulated gain pattern of etched copper patch antenna with 

measurement tower showing enlarged back lobe (in dBi) 

: E-theta on phi=0°;           :E-phi on phi=0° 

           : E-theta on phi=90°; E-phi on phi=90° < -40 dBi 

 

 

4.4 Repeatability of Embroidered Microstrip Antennas 

Since embroidered pattern can be mass manufactured, it also worthwhile to investigate 

the consistency of the embroidery process parameters in textile antenna fabrication. 

Therefore, a repeatability measurement analysis was made in order to find out the 

variation of numerous identical antennas. Two groups of embroidered antennas with 

diagonal stitch direction were made by Nottingham Trent University: one group had 

0.4 mm stitch spacing and the other group had 0.8 mm spacing. Each group had eight 

antennas which were designed and embroidered identically by the same machine and 
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setup. The diagonally embroidered patch has the most complex current distribution, i.e. 

components in the vertical, horizontal, diagonal directions. Therefore this stitch 

direction is informative for this repeatability study. This study is principally focused on 

the consistency of the embroidered process, as a result the rigid substrate with copper 

ground plane was used to reduce the unwanted variations. In real fully fabric antennas, 

the variation will be larger. 

 

These antennas were embroidered using the same Amberstrand Silver thread in this 

chapter and the low loss rigid Taconic RF-45 substrate was used. The feeding point in 

this repeatability test is chosen as the best impedance match position for the first 

embroidered sample. Then the same feed position was applied for the rest of the 

samples. The feed positions of the 0.4 mm spacing patches and the 0.8 mm spacing 

patches were chosen separately. An etched copper patch antenna with the same 

dimensions was made as a comparison. Figure 4-9 shows the 16 embroidered patch 

antennas. 

 

 

Figure 4-9 Two groups of identical embroidered patch antennas with different 

stitch spacings 

0.4 mm stitch spacing  0.8 mm stitch spacing  
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All the 16 fabric antennas were well matched at the resonant frequencies. Figure 4-10 

and Figure 4-11 show the measured S11 results of the 0.4 mm and 0.8 mm stitch 

spacing antennas respectively. It can be seen that the resonant frequencies changed 

with different samples. The intersection of the S11 curves (i.e. the frequency that was 

covered by all the bandwidths) reveals the repeatability of the operation frequency. 

More precisely, the 0.4 mm stitch spacing group has a repeatable -5 dB bandwidth of 

96 MHz whilst the 0.8 mm stitch spacing group has 101 MHz repeatable -5 dB 

bandwidth. Therefore the repeatability of the 0.4 mm and 0.8 mm spacing stitches at 

the -5 dB level are similar. However, the 0.4 mm spacing group does not have 

repeatable -10 dB bandwidth results whilst the repeatable -10 dB bandwidth of 0.8 mm 

spacing is 26 MHz. This indicates the 0.8 mm stitch spacing group has better 

repeatability than 0.4 mm stitch spacing group at -10 dB level.  

 

The measured antenna parameters are shown in Table 4-3 and Table 4-4. The standard 

deviation of 0.4 mm stitch spacing resonant frequencies is 0.04 GHz and the standard 

deviation of 0.8 mm is 0.01 GHz. The deviation of the resonant frequencies is 

influenced by the slightly changed dimensions of the patches due to the embroidery 

precision and the different tensions of the stitches affect the intend geometry. The     

0.4 mm spacing strains tighter than the 0.8 mm, this affects the size of the antenna 

more significantly. The etched copper patch with the same dimension operates at 2.38 

GHz which is close to the 0.4 mm spacing patches.  
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Figure 4-10 Measured S11 of eight identical embroidered patch antennas with 

diagonal 0.4 mm stitch spacing 

 
Figure 4-11 Measured S11 of eight identical embroidered patch antennas with 

diagonal 0.8 mm stitch spacing 
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Table 4-3 Measured results of 0.4 mm stitch spacing embroidered antennas 

Antenna  
Resonant 
frequency 

(GHz) 

10dB 
bandwidth 

(MHz) 

Peak gain 
(dBi) 

Total 
efficiency 

(%) 
1 2.38 73 2.3 30.2 

2 2.42 86 2.0 27.9 

3 2.46 116 2.2 27.4 

4 2.38 86 2.8 34.1 

5 2.40 110 2.4 30.4 

6 2.35 90 2.5 31.4 

7 2.46 111 2.1 28.0 

8 2.35 72 2.1 28.1 

Average 2.40 93 2.3 29.7 

Standard deviation 0.04 16 N/A 2.2 

Etched copper 2.40 22 6.5 80.7 
 

Table 4-4 Measured results of 0.8 mm stitch spacing embroidered antennas 

Antenna number 
Resonant 
frequency 

(GHz) 

10dB  
bandwidth 

(MHz) 

Peak gain 
(dBi) 

Total 
efficiency 

(%) 

1 2.06 73 0.1 20.8 

2 2.08 53 0.2 22.1 

3 2.04 62 -0.5 18.7 

4 2.08 74 -1.7 16.1 

5 2.09 87 -0.7 17.6 

6 2.06 75 -1.8 15.4 

7 2.07 65 -1.1 16.3 

8 2.07 34 -1.4 14.6 

Average 2.07 70 -0.8 17.7 

Standard deviation 0.01 15 N/A 2.5 

Etched copper 2.40 22 6.5 80.7 
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Patches with 0.8 mm stitch spacing have narrower bandwidths than the patches with 

0.4 mm stitch spacing. The average 10 dB bandwidths are 70 MHz for 0.8 mm spacing 

and 93 MHz for 0.4 mm spacing. The bandwidth of etched copper patch is 22 MHz 

which is smaller than all the diagonally embroidered patches. However, as shown in 

Figure 4-5, vertically embroidered patches have similar bandwidth as solid copper 

patch and horizontal stitch has the largest bandwidth. Generally lossy patch antennas 

have large bandwidth. 

 

The antenna gain is reduced when the distance between stitches is increased. All the 

antenna gains of the 0.4 mm stitch spacing samples are larger than the 0.8 mm 

spacing samples. The total efficiency has a similar trend as the gain: the average total 

efficiencies of 0.4 mm and 0.8mm stitch spacing are 29.7 % and 17.7 % respectively. 

The standard deviations of their efficiencies are 2.2 % and 2.5 % respectively. 

 

Figure 4-12 and Figure 4-13 show the dual polarization gain patterns on the phi = 0° 

and phi = 90° planes of all the 0.4mm and 0.8mm spacing embroidered antennas at 

their resonant frequencies, which clearly illustrate the high repeatability of the 

embroidered patches. Figure 4-14 and Figure 4-15 represent the electric field plot of 

one antenna in each stitch spacing group. It is noticed that the cross-polarization level 

is increased with stitch spacing, i.e. the 0.8 mm stitch spacing antennas have higher 

cross-polarization level than the 0.4 mm spacing antennas.  
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(a)                                                                (b) 

Figure 4-12 Measured dual polarization gain patterns (in dBi) of eight identical 

diagonal stitch antennas with 0.4mm spacing on (a) phi = 0° and (b) phi = 90°  

 

 
(a)                                                           (b) 

Figure 4-13 Measured dual polarization gain patterns (in dBi) of eight identical 

diagonal stitch antennas with 0.8mm spacing on (a) phi = 0° and (b) phi = 90°  
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(a)                                                              (b) 

Figure 4-14 Measured electric field gain pattern (in dBi) of one diagonal stitched 

antenna with 0.4 mm spacing on  (a) phi = 0°  and (b) phi = 90° 

 

  
(a)                                                                (b) 

Figure 4-15 Measured electric field gain pattern (in dBi) of one diagonal stitched 

antenna with 0.8 mm spacing on phi = 0° (a) and (b) phi = 90°  
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4.5 Simulation Models of Embroidered Microstrip 

Antennas 

In this thesis IMST Empire XCcel (FDTD), was used to model the problems. Two 

different approaches were taken to modelling the embroidered fabric antennas. The 

first approach represents in Section 4.5.1 considered the embroidered patch as a solid 

patch antenna with homogeneous equivalent conductivity values. The second method 

simulated the anisotropic characteristic of the embroidered threads and will be shown 

in Section 4.5.2. 

 

4.5.1 Solid Microstrip Antennas with Equivalent 

Conductivity Values  

The losses of patch antennas can be represented by the quality factor. It is composed 

of radiation loss, conduction loss, dielectric loss and surface wave loss [33]. The total 

quality factor Q is influenced by all of these losses 

 1 
𝑄

= 1
𝑄𝑟𝑎𝑑

+ 1
𝑄𝑐

+ 1
𝑄𝑑

+ 1
𝑄𝑠𝑤

                        (4.6) 

Where Qrad is the quality factor due to radiation losses 

Where Qc is the quality factor due to conduction losses 

Where Qd is the quality factor due to dielectric 

Where Qsw is the quality factor due to surface wave losses 

 

For the very thin substrates (substrate height h << wavelength), the surface wave loss 

can be neglected. And the Qrad is inversely proportional to the height of the substrate. 

𝑄𝑟𝑎𝑑 =
 2𝜔𝜀𝑟 

ℎ𝐺𝑡/𝑙
𝐾                                       (4.7) 

Where Gt/l is the total conductance per unit length of the radiation aperture and for a 

rectangular aperture operation in the dominant mode  
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𝐾 =   𝐿  
4

                                                     (4.8) 

𝐺𝑡 =
 𝐺𝑟𝑎𝑑 

𝑊
                                                  (4.9) 

The Q factor of conduction loss and dielectric loss can be presented 

𝑄𝑐 = ℎ�𝜋𝑓𝜇𝜎                                      (4.10) 

𝑄𝑑 = 1
tan𝛿

                                                (4.11) 

Where σ is the conductivity of the conductors and the tanδ is the loss tangent of the 

substrate. From (4.10) it can be seen that low conductivity of the conductors will 

increase the conduction loss and (4.11) indicates the dielectric loss is determined by 

the tan δ value of substrate.  

 

In this chapter, since the embroidered patches and etched patch were placed on the 

same substrate, the major factor that resulted in low efficiency of embroidered 

antennas is the conduction loss. In Chapter 2, the metallization of conductive thread 

was observed approximately 1 μm, and the conductivity of the Amberstrand Silver 

cladding layer is 4.5 × 107 S/m. The reduced conductivity and thin metallization have 

significant effects on the antenna efficiencies. Figure 4-16 shows simulated total 

efficiencies of 1 μm metallization continuous surface solid patch with different 

conductivity values. 

 

The simulated results indicate that the patch antenna with an equivalent conductivity 

of 2 × 106 S/m obtains 50% radiation efficiency which is the efficiency of 0.4 mm 

vertical embroidered patch antenna. The reduction of efficiency is more significant as 

the conductivity decreases. The equivalent conductivity value is lower than the 

calculated conductivity of silver cladding in Chapter 2 (4.5 × 107 S/m). Since the 

embroidered patch is a discontinuous surface and the adjacent stitches are not fully 

connected, the equivalent conductivity of the embroidered patch is lower than the 

silver cladding layer due to the non-uniform surface. 
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Figure 4-16 Simulated solid patch total efficiency with different conductivity 

values 

 

However, the equivalent conductivity approach is not capable to illustrate the surface 

current flow on different stitch directions as the conductor surface in this method is 

continuous. The measured results in Section 4.3.2 showed that different stitch 

directions impact the resonant frequency and antenna efficiency of embroidered patch 

antennas. More details are needed to link the antenna performance with the surface 

current which is guided by the stitch direction. 

 

4.5.2 Anisotropic Microstrip Antennas with Zigzag Patterns 

The complicated anisotropic fibres in the fabric can cause unwanted higher modes and 

switch the fabric antenna to different frequencies. The polarisation purity is also 

influenced by the surface current distribution. It is essential to model and understand 

the interconnection between adjacent conductive threads of embroidered patches. 

Figure 4-17 shows the zoomed in picture of the air voids of a 0.4 mm spacing 
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Amberstrand Silver 166 embroidered patch. It clearly illustrates the conductive 

threads are aligned in the vertical direction with gaps between adjacent threads. DC 

resistance measurement in Section 4.2 indicated that the resistance in the vertical 

direction is much smaller than in the horizontal direction. It is believed that the 

current is guided by the stitch direction and it affects the antenna radiation 

performance. Consequently, the second approach of modelling embroidered patch 

antennas using a zigzag conductive line was introduced. 

 

 
Figure 4-17 Microscope image of 0.4 mm spacing vertically embroidered stitches 

(shinning parts are conductive threads) 

 

The second approach was to model a zigzag pattern which simulated the conductive 

thread across the patch area. This zigzag patch had the same dimension as the solid 

patch (38mm × 27 mm) and it was placed on the dielectric substrate with the same 

specifications. Then the lower conductivity strips were placed between the adjacent 
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threads to model the gap that was partly filled by contacted filaments. Figure 4-18 and 

Figure 4-19 show the zigzag structures of horizontal and vertical threads. It worth 

noting that without the lower conductivity material, the structure behaved like a 

meandered wire rather than a patch. A range of lower conductivity values have been 

considered to find out the contact resistances between the threads. The high and low 

conductivity threads filled the rectangular area of the patch. This is a simplified model 

as in reality the interconnection between the adjacent conductive threads is non-

uniform or will vary due to the embroidery process. The metallization thicknesses of 

both high and low conductivity area are 1 μm which equals to the thickness of the 

metal cladding layer in Amberstrand Silver thread. The widths of the high 

conductivity threads and the low conductivity area were 0.4 mm and they were 

estimated from microscope images (see Figure 4-17). The sheet resistances of vertical 

zigzag patch and horizontal zigzag patch should be equal due to same widths of high 

and low conductivity areas. This approach represents the surface current on different 

zigzag directions which simulates the current on embroidered patch antennas. 

 

The simulated S11 results for the zigzag modelling approach are shown in Figure 4-

20 and Figure 4-21. In this simulation, the conductivity of the good conductor is used 

4.5 × 107 S/m which equals to estimated conductivity of the metal cladding on 

Amberstrand Silver (details can be seen in Chapter 2). The conductivity of the low 

conductivity “gaps” varies from 1 × 102 S/m to 4.5 × 107 S/m. Figure 4-20 indicates 

that with the horizontal zigzag good conductor, the conductivity of the low 

conductivity area “gaps” must be at least 1 × 106 S/m to maintain the antenna resonant 

frequency at 2.4 GHz. On the other hand, Figure 4-21 shows that the low conductivity 

“gaps” in the vertical direction zigzag patch has to be larger than 1 × 103 S/m. The 

S11 results show the losses are increased with the reduced conductivity of the “gaps”. 

It is worth noting that the skin depth with conductivity = 1 × 106 S/m at 2.4 GHz is 

approximately 10 μm which is greater than the metallization. 
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Figure 4-18 Horizontal zigzag metal conductor (black) separated by low 

conductivity “gaps” (grey), the ‘P1E’ indicates the feed position 

 

Figure 4-19 Vertical zigzag metal conductor (black) separated by low 

conductivity “gaps” (grey), the ‘P1E’ indicates the feed position 
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Figure 4-20 Simulated S11 for the patch with horizontal metal conductors 

separated by different conductivity values  

 

Figure 4-21 Simulated S11 for the patch with vertical metal conductors 

separated by different conductivity values 
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As shown in Figure 4-20 the conductivity value of the lower conductivity area must 

be at least 1 × 106 S/m to make the horizontal zigzag patches function as antenna. The 

simulation of current distribution of conductivity lower than 1 × 106 S/m will 

illustrate the effect of the low conductivity “gaps”. The different current patterns and 

current directions of the patches separated by 1 × 105 S/m low conductivity area are 

shown in Figure 4-22 and Figure 4-23. It can be seen that the current on the horizontal 

conductors are more horizontally orientational than on the vertical conductors. The 

current distribution and directions on the patch with vertical conductors are very 

similar to the dominant mode of the solid rectangular patch antenna. The current 

distribution simulation results show that the low conductivity area “detours” the 

current. The current goes along the direction of good conductors and “bypass” the low 

conductivity area. This changes the impedance of the patch and increases the effective 

sheet resistance of the patch. The impact on the current is more significant for the 

patch with horizontal conductors which is orthogonal to the dominant current 

direction, which increases the conduction loss and results in increased losses. 

However, compared with the solid patch antenna, the S11 results indicate that the 

resonant frequency is not changed by the zigzag threads. Furthermore, the resonant 

frequencies of zigzag patches are not changed by different conductivity values of the 

“gaps”. This is different from the measurement results in Section 4.3 and 4.4 which 

show that the larger stitch spacing results in lower resonant frequency. Therefore, the 

lower conductivity area which simulates the connected adjacent threads by loose 

filaments is not the case in real embroidered antennas. The nonconductive air voids 

between adjacent threads will reduce the resonant frequency. Further analysis will be 

discussed in Chapter 5. 
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Figure 4-22 Simulated surface currents for zigzag patch with horizontal 

conductors separated by a conductivity of 1 × 105 S/m 

  
Figure 4-23 Simulated surface currents for zigzag patch with vertical conductors 

separated by a conductivity of 1 × 105 S/m 
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The simulated total efficiencies of the solid, horizontally zigzag and vertically zigzag 

patch antennas with different conductivity values are shown in Figure 4-24. For the 

zigzag patches, only the conductivity values of the ‘gaps are changed, the 

conductivity of the zigzag metal threads is constant (4.5 × 107 S/m) and higher than 

the “gaps”. Figure 4-24 indicates that lower conductivity reduces the antenna 

efficiency. As shown with the solid patch, the equivalent conductivity has a direct 

effect on the antenna efficiency. The results show that the zigzag patches have higher 

efficiencies than the homogeneous solid patch with the conductivity equals to the 

“gaps” of zigzag patches. The higher conductivity “fibres” yield a lower equivalent 

surface resistance than the solid patch and reduce the conduction loss of the zigzag 

patches. For the same high and low conductivity area ratio, the vertical zigzag out 

performs the horizontal zigzag antennas. This agrees with the measured results in 

Section 4.3. The measured efficiencies of 0.4 mm vertical and horizontal embroidered 

patches are 52.5% and 15.4% respectively. According to the simulated results, the 

conductivity of 0.4 mm spacing gap is approximately from 3 × 104 S/m to 2 × 105 S/m. 

 

 
Figure 4-24 Simulated patch total efficiency for the zigzag patches with low 

conductivity area compared with homogeneous solid patch antenna with 

equivalent conductivity 
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Consequently, this simplified model indicates that the embroidered patch antenna 

performance is majorly determined by the direction of the stitches. The low 

conductivity area can represent the connection between adjacent stitches and closer 

stitches have better connection between each other. The conclusions from simulated 

results lead to a requirement for a calculation of effective conductivities that takes the 

stitch direction and the stitch spacing into account.  

 

 

4.6 Conclusions 

This chapter has focused on the issues arising from the fabrication of fabric based 

antennas using embroidery technology. Microstrip patch antennas were considered 

here although many other antennas will also play roles in fabric and flexible systems. 

The results presented in this chapter point to the feasibility and practicality of 

manufacturing the fabric based antennas by embroidery. The Amberstrand Silver 

embroidered patch antennas on the conventional dielectric substrate with copper 

ground plane have been measured to show an efficiency of 52.5%, compared to 80% 

for an equally dimensioned copper patch antenna. 

 

The surface resistances of embroidered patches with different stitch directions and 

spacings were examined by the two-electrode method measurement, and it indicated 

that the surface resistances are significantly influenced by the stitch direction. This 

approach can be used as a quick indicator for the sheet resistance of embroidered 

stitches. Embroidered patch antennas with low sheet resistance in the direction of 

major current of dominant mode will have higher antenna efficiency. 

 

The antenna measurements reinforce the conclusions being drawn from of the DC 

results with respect to stitch spacing and direction. Stitch spacing has an effect on 
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antenna efficiency and the challenge is to balance the required performance with the 

cost of fabricating the antennas. Currently, Amberstrand Silver 66 costs 

approximately £1 per metre. High quantity production and development in the 

manufacture techniques may reduce these costs. A patch antenna in this chapter with 

0.4 mm stitch spacing and vertical stitch direction contains approximately 4 m of 

conductive thread.  

 

In this chapter, efficiencies of embroidered patch antennas with different stitch 

spacing and direction were measured. The embroidered patch with 0.4 mm stitch 

spacing and stitch direction parallel to current direction at dominant mode has the 

highest antenna efficiency of 52.5% which is 27.9% lower than the same dimension 

etched copper patch antenna at the corresponding dominant mode frequency. The 

efficiency of the 0.4 mm stitch spacing with stitch perpendicular to dominant mode 

current direction patch is 15% lower than the parallel stitched patch with the same 

stitch spacing. Both of the parallel and perpendicular embroidered patches can obtain 

better than 20 dB polarisation purity. The diagonal stitch direction antenna with      

0.4 mm stitch spacing shows a 30% efficiency with polarisation purity of 

approximately 9 dB. The diagonal stitches results in vertical and horizontal directed 

current component which produced the high cross polar content. It is preferred that 

the stitch direction is parallel to the major current flow direction at the frequency of 

the desired radiation mode. Therefore, the current direction and stitch direction should 

be taken into account when embroidering antennas. 

 

The repeatability study was carried out to investigate the variation of the fabrication 

parameters. The results show that deviation of the antenna resonant frequency is larger 

with smaller stitch spacing. The enlarged stitch spacing lowers the antenna resonant 

frequency. The bandwidths of the embroidered antennas are wider than the etched 

copper patch, and closer stitches offers higher antenna gain. Patches with smaller stitch 

spacings have better repeatability of gain and efficiency. The repeatability results also 
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confirmed that embroidered patch antennas with smaller stitch spacing have better 

polarization purity and denser stitches have less effect on the surface current path. 

 

Simulations using simple simplified models of the embroidered threads have been 

presented. The patch antenna was modelled as a continuous zigzag good conductor 

separated by lower conductivity sections. The low conductivity area represents the 

interconnection between adjacent threads. The simulation of surface current 

distribution on horizontal zigzag tracks indicates that the current preferentially 

follows the actual fibres directions rather than jumps across the low conductivity 

“gaps”. This simulation model confirmed the measured results which indicate that the 

thread should be aligned with the dominant current flow for the optimal results. 
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Chapter 5  

Meshed Microstrip Antennas 
 

Abstract 

In this chapter, the meshed microstrip antennas which can potentially save a large 

amount of conductive materials for antenna fabrication is presented. The metal 

coverage can be further reduced by using non-uniform meshes which will be shown in 

Section 5.2. The simulations including surface current distribution, antenna mode 

analysis, antenna gain and efficiency of the meshed patches will be represented in 

Section 5.3. The meshed patch antenna has comparable gain to the solid patch but 

with much lower metal coverage. The factors affecting the loss of the meshed patch 

antennas will be discussed in Section 5.5 and the solutions for improving antenna 

efficiencies of the meshed patch antennas will be presented. Representative 

measurements have been carried out for verifying the simulations, the results will be 

shown in Section 5.6. The skin effect on the embroidered patch antennas due to the 

thin metallization of conductive thread will be analysed in Section 5.7. Embroidered 

meshed patch antennas on the flexible fabric substrate with improved antenna 

efficiency will be presented in Section 5.8.  

 

5.1 Introduction 

The conductive layers of patch antennas can be created on the fabric surface by 

flexible conductive materials and there are several methods to attach the conductive 

materials on normal fabric clothes permanently such as embroidery [1]–[3] and inkjet 

printing [4]–[6]. However the cost of these specialist materials is expensive. For 
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instance the cost of conductive thread Amberstrand Silver 66 is approximately £1 per 

meter. Depending on the stitch spacing, a 2.4 GHz 37 mm × 28 mm rectangular patch 

antenna may require 6.6 meters of conductive thread for 100% coverage, and therefore 

it will be over £6.6 per antenna for the material cost alone. Reducing the price of 

manufacturing textile antennas will boost the development of wearable technology. 

Meshing the patch antennas reduces the material requirements and therefore lowers the 

costs. Furthermore, the meshed patch is more flexible than a solid patch where the 

surface is completely covered. 

 

Meshed patch antennas originally attracted the researchers’ attentions due to its 

optically transparency [7]–[11]. They are composed of numerous crossed orthogonal 

parallel lines, and the apertures are distributed on the surface uniformly. The metal 

structure is shown in Figure 5-1 (the mesh space and line width vary by design). When 

the transparent substrate is used, the whole microstrip patch antenna is see-through. 

Clasen et al. analysed the surface current distribution of uniform meshed patch 

antennas [12]. The current flows in both vertical and horizontal directions and it has 

similar performance as the conventional rectangular patch antenna. It was observed 

that the current path is longer on the meshed structures than on the solid patches and 

therefore the resonant frequency of the meshed patch antenna is lower than the same 

size solid patch antenna [12], [13].  
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Figure 5-1 Sketch of uniform meshed patch structure 

 

The effect of the meshes on resonant frequency of meshed patch antenna is similar to 

slots in slotted microstrip antennas. The slotted patch antennas generally have another 

lower resonant frequency which widens the antenna bandwidth or create dual-band 

patch antennas [14]–[17]. Hoefer indicated that a narrow transverse slot in the 

transmission line can be treated as adding a series inductor [18]. This method can also 

be used for analysing the effect of the slots in microstrip antennas [19]. The currents 

travel around the slots or the mesh holes and have longer electrical length. As the 

microstrip patch antenna can be modelled as LC resonant circuit [20], the extended 

electrical length due to the slots or the meshes increases the inductance and results in 

lower resonant frequency.  

 

However, compared with the slot patch antenna, the frequency shift of meshed patch 

antenna is less significant. This is because there are no cut slots in the edges of the 

patch. Patch antennas has strong electric fields on the radiation edges and highest 

current density on non-radiating edges. The complete structure of these edges 
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maintains the radiation behaviours such as resonant frequency and antenna modes. 

Furthermore, the uniform meshed patch is divided into a number of small square 

segments by the mesh lines. Each segment is framed by the four mesh lines. These 

segments are distributed evenly on the patch surface. As a result the surface current 

direction on uniform meshed patch is similar to the solid patch.  

 

 

5.2 Non-Uniform Meshed Microstrip Antennas 

It is known that at TM01 mode the current distribution on the rectangular patch antenna 

is mainly dominated by the vertical direction current with the feed indicated in Figure 

5-1. As shown in Chapter 4, with the same ratio of high and low conductivity area, the 

vertical zigzag patch has higher antenna efficiency than the horizontal zigzag patch. 

Therefore the vertical conductor paths are more important than the horizontal paths for 

the TM01 mode. A non-uniform meshed patch was designed based on this concept. The 

structure is shown in Figure 5-2. The number of vertical lines is the same as for the 

meshed patch in Figure 5-1. However there are only three horizontal lines: two along 

the top and bottom, and the third line crosses the feed point and creates a path that 

allows current flow from feed point into the vertical lines. Due to the reduction of the 

horizontal lines, this non-uniform meshed patch minimises the usage of the conductive 

materials, and it is more flexible than the uniform meshed patch. In Chapter 4, the low 

conductivity “gaps” reduces the antenna efficiency but does not change the antenna 

resonant frequency [21]. However for the uniform and non-uniform meshed patches, 

the conductive lines are separated by nonconductive gaps, i.e. air. As a result, the 

resonant frequency of the meshed patch antenna is affected by the mesh space between 

mesh lines. In this chapter the mesh space includes the width of the mesh line, shown 

in Figure 5-2.  
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Figure 5-2 Sketch of non-uniform meshed patch structure 

 

The metal coverage of a solid 2.4 GHz, 37 mm × 28 mm rectangular patch antenna is 

1036 mm2. Figure 5-3 shows the trend of reducing the surface metal coverage by 

increasing the mesh space. The uniform meshed patch has the same spacing between 

the horizontal and vertical lines. 0.2 mm width lines were applied on both the vertical 

and horizontal mesh lines. It is clear that the metal coverage is reduced significantly 

with enlarged mesh size. For instance, the solid patch surface area is 1036 mm2 and the 

coverage can be reduced to 82 mm2 if the 4 mm spacing non-uniform mesh is 

employed. Furthermore, the non-uniform meshed patch requires less metal coverage 

than the same sized uniform meshed patches due to fewer horizontal lines. This figure 

demonstrates the area reduction and lower cost by using the non-uniform mesh with 

three horizontal lines.  
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Figure 5-3 Metal coverage of meshed patch with different mesh sizes 

 

 

5.3 Antenna Modes and Surface Current Distribution 

5.3.1. Resonant Frequency of Meshed Microstrip Antennas 

Previous research only showed that the resonate frequency of meshed patch antenna 

was reduced by increasing the horizontal and vertical mesh space with fixed ratio [12], 

[13]. In other words, only the uniform meshed patch antennas were discussed. In fact, 

the influences of vertical lines and horizontal lines on the resonant frequency of 

meshed patch antennas are different. More precisely, larger space between vertical 

lines reduces the resonant frequency of the meshed patch antenna, larger space 

between horizontal lines, per contra, increases the resonant frequency. Figure 5-4 

shows the simulated results of the resonant frequencies with different mesh sizes of 

uniform meshed patches. The exterior dimensions of all the patches are equal (W =    
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37 mm and L = 28 mm). The x axis in Figure 5-4 represents the distance between 

adjacent horizontal lines, from 1 mm to 4 mm. The four curves represent the increased 

resonant frequency with larger distances between vertical lines. In this simulation, as 

the exterior dimensions of the patches are fixed, the greater distance between adjacent 

lines means fewer mesh lines.  

 

Figure 5-4 indicates that with the same space between horizontal lines, larger spaces 

between vertical lines lead to lower resonant frequency. By contrast, with the same 

space between vertical lines, larger space between horizontal lines increases the 

resonant frequency. Therefore, it can be concluded that the non-uniform meshed patch 

antennas have higher resonant frequency than the uniform meshed patch antennas with 

the same horizontal mesh spaces.  

 

 

Figure 5-4 Simulation of changes in resonant frequency with different mesh sizes 

of uniform meshed patch antennas 
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To analyse the effect of the mesh spaces on the resonant frequency of the meshed 

patch antennas, the uniform meshed and non-uniform meshed patch antennas with 

different horizontal mesh spaces were simulated. The mesh cells in the uniform 

meshed patch are square. The same exterior dimension solid patch antenna was 

simulated for a comparison. All the patches were placed on solid dielectric substrates 

with solid copper ground planes. The dielectric constant of the substrate is 4.5, loss 

tangent equals to 0.0037, and the thickness is 1.57 mm. The outline dimensions of all 

the patches are 37 mm × 28 mm. The ground plane is 90 mm × 70 mm solid copper. 

Metallization thicknesses of all the patches are 0.01 mm. The solid copper patch with 

this dimension works at 2.43 GHz. For the meshed patches, the mesh line width was 

set to 0.2 mm which approximately equalled to the width of the flattened embroidered 

Amberstrand Silver 66 threads.  

 

The simulation results demonstrate that the resonant frequency of the uniform meshed 

patch antenna is determined by the mesh size. The reduced resonant frequencies with 

larger mesh sizes are shown in Figure 5-5. The black curve in Figure 5-5 is the S11 of 

the solid patch which has the highest resonant frequency.  

 

Figure 5-6 shows the S11 results of non-uniform meshed patch antennas. It proves that 

the resonant frequency of non-uniform meshed patch is also decreased by larger mesh 

space. It also shows that the non-uniform meshed patch has higher resonant frequency 

than the uniform meshed patch with the same mesh space. In addition, it can be seen 

that when the mesh space is smaller than 3 mm, the resonant frequencies of non-

uniform meshed patches are very close to the solid patch. The variation is less than    

20 MHz. When the mesh space increases to 4 mm, the variation is approximately      

60 MHz. Therefore, the resonant frequencies of non-uniform meshed patches are 

closer to the same sized solid patch than the uniform meshed patch with the same 

horizontal mesh space. 
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Figure 5-5 S11 of uniform meshed patch antennas with different mesh spaces 

 

Figure 5-6 S11 of non-uniform meshed patch antennas with different mesh spaces 

-30

-25

-20

-15

-10

-5

0

1.5 2 2.5 3 3.5 4

S1
1 

(d
B)

 

Frequency (GHz) 

Solid surface
1 mm x 1 mm uniform mesh
2 mm x 2 mm uniform mesh
3 mm x 3 mm uniform mesh
4 mm x 4 mm uniform mesh
8 mm x 8 mm uniform mesh
10 mm x 10 mm uniform mesh

-30

-25

-20

-15

-10

-5

0

1.5 2 2.5 3 3.5 4

S1
1 

(d
B)

 

Frequency (GHz) 

Solid surface
1 mm non-uniform mesh
2 mm non-uniform mesh
3 mm non-uniform mesh
4 mm non-uniform mesh
8 mm non-uniform mesh
10 mm non-uniform mesh



Chapter 5                                                                           Meshed Microstrip Antennas 

5-10 

 

5.3.2. TM01 Mode of Meshed Microstrip Antennas 

Simulated results have shown that the resonant frequencies of meshed patches are 

lower than the equally dimensioned solid copper patch. It is also essential to 

understand the antenna modes of meshed patches. The TM mode of microstrip antenna 

can be defined in the cavity mode [20]. The field configuration modes for rectangular 

patches are shown in Figure 5-7. The resonant frequency of the solid patch at TM01 

mode is determined by the antenna length L. Figure 5-8 shows the electric field of the 

solid patch antenna at the TM01 mode at 2.43 GHz when looking on the above. The red 

colour indicates the highest electric field value whilst blue is lowest. It can be seen that 

at the TM01 mode, the highest electric field magnitude value is observed at the top and 

bottom edges of the patch antenna which are the radiating slots. At the two non-

radiating slots, the electric field strength at the centre is a minimum.  

 

(a)                                                                  (b) 

Figure 5-7 Electric field distribution for the (a) TM01and (b) TM10 mode in the 

microstrip cavity (picture from [20]) 
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Figure 5-8 Electric fields of solid patch antenna at TM01 mode 

 

The 3 mm uniform and non-uniform meshed patches are taken as examples. The 

electric fields of the uniform and non-uniform meshed antenna at the resonant 

frequencies are shown in Figure 5-9 to Figure 5-10 respectively. The electric field 

plots of the meshed patches antennas are similar to the solid patch at the TM01 mode 

apart from the weak electric field in the apertures of the meshed holes. High electric 

fields are observed underneath the conductors. 

 

P1E 
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Figure 5-9 Electric fields of 3 mm uniform meshed patch at TM01 mode 

 

Figure 5-10 Electric fields of 3 mm non-uniform meshed patch at TM01 mode 

P1E 

P1E 
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5.3.3. Surface Current Distribution of Meshed Microstrip 

Antennas at TM01 Mode 

Figure 5-11 to Figure 5-13 show the surface current in the x, y and x&y directions on 

the solid copper patch at the TM01 mode. The arrows indicate the direction of the 

currents. It can be seen that the current in y direction is significantly stronger than in x 

direction which results in the major current flows in the y direction. The highest 

current density (red colour) is observed at the left and right edges which are the non-

radiating slots in Figure 5-13.  

 

 

 

Figure 5-11 x direction component of surface current distribution in a solid 

patch at TM01 mode 
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Figure 5-12 y direction component of surface current distribution in solid patch 

at TM01 mode 

 

Figure 5-13 Surface current distribution on solid patch in x & y directions at 

TM01 mode 
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Figure 5-14 to Figure 5-16 show the surface current distribution on 3 mm × 3 mm 

uniform meshed patch. The current direction and highest density position are very 

similar to the solid copper at the TM01 mode: the major current is dominated by the 

current in y direction. But the current is distorted in both x and y directions by the mesh 

holes. It bypasses the mesh holes and results in longer electrical length. The larger 

mesh size results in longer current paths. Consequently, the resonant frequency of the 

meshed patch antenna will be lower than the same size solid patch due to the extended 

current paths. 

 

 

Figure 5-14 x direction component of surface current distribution in 3 mm × 3 

mm uniform meshed patch at TM01 mode 
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Figure 5-15 y direction component of surface current distribution in 3 mm × 3 

mm uniform meshed patch at TM01 mode 

 

Figure 5-16 Current distribution on 3 mm × 3 mm uniform meshed patch in       

x & y directions at TM01 mode 
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Although current in the y direction is more important than in the x direction for the 

TM01 mode, the number of paths in the x direction also affects the antenna resonant 

frequency. With smaller number of horizontal lines, there are fewer current paths 

available in x direction. This raises the resonant frequency. The concept of the non-

uniform meshed patch is to remove all the horizontal current paths except the top and 

the bottom strip which providing the completed radiation edges. The horizontal 

conductor in the middle connects the feed point and all the vertical lines.  

 

Figure 5-17 to Figure 5-19 show the surface current on the non-uniform meshed patch. 

It can be observed that the middle horizontal line directs the current from the feed 

point to both left and right sides of the patch antenna, and the current flows into the 

vertical lines at the junctions with the horizontal lines. The largest current still flows in 

the y direction. The current distribution of non-uniform patch antenna is similar to the 

vertical directional zigzag patch which was shown in Chapter 4. However, since there 

is no low conductivity material filled in the gaps between mesh lines, the three 

horizontal lines lead the current flow into all the vertical lines at their junctions. 

Therefore, as seen in Figure 5-17 to Figure 5-19, higher current values appear not only 

on the two side edges of the non-uniform patch, but also on the three horizontal lines. 

This indicates that all the three horizontal lines are important for guiding the current.  
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Figure 5-17  x direction component of surface current distribution in 3 mm space 

non-uniform meshed patch at TM01 mode 

 

Figure 5-18 y direction component of surface current distribution in 3 mm space 

non-uniform meshed patch at TM01 mode 
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Figure 5-19 Current distribution on 3 mm space non-uniform meshed patch       

in x & y directions at TM01 mode 

 

5.3.4. Cross Polarization of Non-Uniform Meshed Microstrip 

Antennas 

Since the current is always in the same direction on two parallel mesh lines, the 

vertical lines can be treated as even mode coplanar microstrip lines. For the even 

mode, the electric field has even symmetry between adjacent lines, and the gap 

between the two strip conductors is effectively open-circuit [22], the current flows 

between the two strip conductors across the gap can be neglected. As a result, the 

cross-polarization level of non-uniform meshed patch antennas will be smaller 

compared with the solid and uniform meshed patch antennas.  Figure 5-20 (a) and 

Figure 5-20 (b) show the simulated radiation pattern of the solid copper and 1 mm 

non-uniform meshed patch respectively. Comparing with the solid copper patch, the  

1 mm non-uniform meshed patch has lower cross polarization level, the difference is 

approximately 22 dB. However, with larger mesh space, the ratio of y directional to x 

directional current paths will be smaller. This results in higher cross polarization level. 
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When the mesh spacing is larger than 4 mm, the cross polarization of non-uniform 

meshed patch is larger than the solid copper patch. The simulated radiation pattern of 

4 mm non-uniform meshed patch is shown in Figure 5-20 (c). This indicates that the 

larger mesh spacing reduces polarization purity of the non-uniform meshed patch 

antenna. Wearable devices may benefit from a dual polarised antenna due to the 

dynamic position and orientation. 

 

  
          (b)                                                                         (c) 

Figure 5-20 Simulated electric field gain patterns (in dBi) of  

(a) Solid copper patch antenna  

(b) 1 mm non-uniform meshed patch antenna  

(c) 4 mm non-uniform meshed patch antenna  

E‐phi on Phi=0˚ 
E‐theta on Phi=0˚ 
E‐phi on Phi=90˚ 
E‐theta on Phi=90˚

(a) 
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5.4 Effect of Metal Coverage of Meshed Microstrip  

Antennas 

A range of simulations were compared with different mesh sizes with uniform and 

non-uniform meshed patch antennas. The material of the patches is copper 

(conductivity 5.8 ×107 S/m) with 0.01 mm thickness. A 90 mm × 70 mm and 1.57 mm 

thick Taconic RF-45 substrate with ɛr = 4.5, loss tangent = 0.0037 was used. The 

ground planes are solid copper. The width of the mesh lines is chosen as 0.2 mm 

which is equal to the flattened width of the Amberstrand Silver 66 thread. All the 

meshed patches have fixed size of 37 mm × 28 mm. The mesh spacing indicates the 

space between two parallel lines. The mesh spacing between the two lines at the edges 

may be smaller than the claimed mesh spacing in order to maintain the exterior 

dimension. The uniform meshed patches have the same mesh spacing between 

horizontal and vertical lines. All the patches were fed 9.5 mm away from the long edge. 

 

The simulated results for the uniform and non-uniform meshed patch antennas are 

shown in Table 5-1 and Table 5-2 respectively. The metal coverage percentage is the 

ratio of the area that is covered by conductive material compared to 37 mm × 28 mm 

area. The thread length is the estimation of the total length of conductive thread if the 

patch was to be embroidered but excludes the extra length due to lock stitch. The gain 

and total antenna efficiency values include the loss due to the mismatch.  

 



 

 

Table 5-1 Simulation results of uniform meshed patch antenna 

Mesh spacing (mm) 
Metal area 

(mm2) 

Metal 
coverage 

(%) 

Thread 
length 
(mm) 

Resonant 
frequency 

(GHz) 

S11 
(dB) 

10dB 
BW 

(MHz)

Gain 
(dBi) 

Directivity 
(dBi) 

Radiation 
efficiency 

(%) 

Total 
efficiency 

(%) 

Solid Patch 1036.00 100.00 5180 2.43 -16.4 31.2 6.3 7.3 80.7 78.7 

1mm   

387.76 37.43 2165 2.41 -17.3 31.7 5.6 7.3 68.1 66.8 

2mm  

216.00 20.85 1143 2.35 -23.3 35.3 4.4 7.3 51.8 51.6 

3mm  

158.80 15.33 827 2.28 -24.8 36.8 3.6 7.3 42.8 42.7 

4mm  

117.28 11.32 604 2.27 -21.5 36.0 3.1 7.3 38.8 38.6 

8mm  

74.80 7.22 381 2.13 -8.7 n/a 1.4 7.1 31.0 26.8 

10mm  

56.80 5.48 288 2.05 -8.3 n/a 0.1 7.0 23.9 20.3 

18.5mm  

38.64 3.73 195 1.73 -13.3 18.6 -3.6 6.6 10.0 9.6 
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Table 5-2 Simulation results of non-uniform meshed patch antennas 

Mesh spacing in vertical 
direction(mm) 

Metal area 
(mm2) 

Metal 
coverage 

(%)

Thread 
length 
(mm)

Resonant 
frequency 

(GHz) 

S11 
(dB) 

10dB 
BW 

(MHz)

Gain 
(dBi) 

Directivity
(dBi) 

Radiation 
efficiency 

(%)

Total 
efficiency 

(%)

Solid Patch 1036.00 100.00 5180 2.43 -16.4 31.2 6.3 7.3 80.7 78.7 

1mm  

235.92 22.77 1203 2.43 -20.4 39.7 5.7 7.4 68.8 68.1 

2mm  

137.28 13.25 699 2.47 -27.6 45.6 5.2 7.4 60.2 60.1 

3mm  

104.40 10.08 531 2.46 -15.6 46.1 4.6 7.4 53.6 52.1 

4mm  

82.48 7.96 518 2.39 -18.9 40.9 2.8 7.3 36.5 36.0 

8mm  

60.56 5.85 307 2.25 -15.0 27.4 2.2 7.2 32.1 31.1 

10mm  

49.60 4.79 251 2.10 -14.6 26.8 0.9 7.1 25.0 24.0 

18.5mm  

38.64 3.73 195 1.73 -13.3 18.6 -3.6 6.6 10.0 9.6 

5
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3
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For the same mesh spacing, the non-uniform mesh structure requires less metal than 

the uniform meshes due to the reduced number of horizontal lines. Comparing the data 

in Table 5-1 with Table 5-2, it is noticed that the antenna efficiencies of uniform 

meshed patches and the same spacing non-uniform meshed patches are very similar at 

their resonant frequencies. But the efficiencies of non-uniform meshed patches are 

slightly higher (apart from the 4 mm mesh spacing). According to the surface current 

analysis in Section 5.3.3, the reason that is these non-uniform meshed patches have 

higher efficiencies is because they have less horizontal currents paths. Nevertheless, 

the meshed patch structure can save more than 3/4 of the materials at the cost of 

dropping the total efficiency by 10%. For instance, the 1 mm space non-uniform 

meshed patch only has 22.77% metal coverage of the patch surface but has 68.1% total 

efficiency (a solid copper patch has 78.7% efficiency). Overall, comparing with the 

uniform meshed patches with the same mesh space, the non-uniform meshed patch has 

higher antenna efficiency but with less metal coverage. Figure 5-21 shows the total 

antenna efficiencies of both non-uniform meshed patches and uniform meshed patches 

at their resonant frequencies as a function of the metal coverage. It also noticed that the 

non-uniform meshed patch antenna has wider bandwidth than the uniform meshed 

patch antenna with the same mesh space.  

 

Figure 5-21 Simulated total efficiency as a function of metal surface coverage 
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5.5 Factors of Losses in Meshed Microstrip Antennas 

A further set of simulations was carried out to analyse the factors of losses in meshed 

patch antennas. The conduction loss and the dielectric loss were considered as the two 

major factors of loss in this analysis. To eliminate these two factors, perfect electric 

conductor (PEC, conductivity = ∞) and lossless dielectric substrate (loss tangent = 0) 

were also simulated. Therefore there were four combinations: i) copper (conductivity = 

5.8 × 107 S/m) on the lossy dielectric substrate (loss tangent = 0.0037); ii) copper on 

lossless substrate; iii) PEC on lossy substrate; and iv) PEC on lossless substrate. The 

fully covered solid patch, 1 mm non-uniform meshed patch, 1 mm uniform meshed 

patch, 4 mm non-uniform meshed patch and 4 mm uniform meshed patch have been 

analysed. 10 μm metallization thickness was used for the conductors in these 

simulations. The simulated results are shown in Table 5-3. It can be seen that the 

changes of conductivity and loss tangent have little effect on resonant frequency. 

Furthermore the directivities of all the antennas are very similar. However, the gain 

values varied with the different mesh sizes and mesh structures.  



 

 

Table 5-3 Effects of conduct loss and dielectric loss to meshed patch antennas 

 Solid patch 

1mm uniform 

 

4mm uniform 

 

1mm non-uniform 

 

4mm non-uniform 

 

 

Copper

& 
Lossy 

Copper 

&      
No loss  

PEC 

&  
Lossy 

PEC

&   
No 
loss 

Copper

& 
Lossy

Copper

&     
No loss

PEC

&  
Lossy

PEC

&   
No 
loss 

Copper

&  
Lossy

Copper

&     
No loss

PEC 

&  
Lossy 

PEC

&   
No 
loss 

Copper

&  
Lossy

Copper

&     
No loss

PEC

&  
Lossy

PEC

&   
No 
loss 

Copper

& 
Lossy

Copper

&      
No loss

PEC

& 
Lossy

PEC 

&   
No 
loss 

Metal area
(mm2) 

1036.00 387.76 117.28 235.92 82.48 

Resonant 
frequency 

(GHz) 
2.43 2.43 2.43 2.43 2.41 2.39 2.41 2.39 2.27 2.27 2.28 2.27 2.43 2.43 2.44 2.43 2.39 2.39 2.41 2.41 

S11 (dB) -16.4 -21.8 -16.5 -21.8 -17.3 -24.3 -23.9 -21.7 -21.5 -14.3 -9.3 -7.2 -20.4 -25.1 -20.0 -16.0 -18.9 -21.2 -17.3 -11.0 

Gain (dBi) 6.3 7.3 6.4 7.3 5.6 6.4 6.4 7.3 3.1 4.3 5.2 6.3 5.7 6.5 6.4 7.2 2.8 4.3 5.8 6.9 

Directivity 
(dBi) 

7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.2 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 

Total 
efficiency 

(%) 
78.7 98.2 79.7 98.0 66.8 80.8 80.0 98.6 38.6 50.8 62.2 80.2 68.1 81.4 80.2 96.2 36.0 50.5 68.7 91.2 

Radiation 
efficiency 

(%) 
80.7 98.8 81.5 98.7 68.1 81.1 80.3 99.3 38.8 52.7 71.3 99.2 68.8 81.6 81.1 98.7 36.5 50.9 70.0 99.1 5

‐2
6
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As shown in Table 5-3, using perfect conductor and lossless substrate can increase the 

antenna gain and efficiencies. Comparing radiation efficiencies can eliminate the 

impacts due to the return loss. Figure 5-22 shows the variation of radiation efficiencies 

with different patch surface structures and loss factors. For the solid patch, the 

difference of copper and PEC materials is very small, and the efficiency variation is 

less than 1%. Comparing the efficiencies results of PEC with copper for the meshed 

patches, the conduction loss is more significant with larger mesh spacing. More 

precisely, on the lossy substrate, when PEC replaces copper as the conductor material, 

the increases of antenna efficiency for both the 4 mm uniform and non-uniform 

meshed patches (32.5% and 33.5% respectively) are larger than the 1 mm uniform and 

non-uniform meshed patches (12.2% and 12.3% respectively). Similarly on the 

lossless substrate, the increased efficiency of using PEC on both the 4 mm uniform and 

non-uniform meshed patches are greater than the 1 mm uniform and non-uniform 

meshed patches. Larger mesh space means lower metal coverage area which results in 

higher surface resistance and more conduction loss. If the antenna is made from PEC 

and lossless substrate, all the patch antennas efficiency are close to 99% regardless the 

mesh sizes. 

 

The dielectric loss reduces the efficiency of both the meshed and the solid patch 

antennas. When copper is used as the conductive material, the efficiency of the 1 mm 

uniform meshed patch antenna on a lossless substrate is 81.1% and it is reduced to 68.1% 

if a lossy substrate is used for the same meshed patch antenna. The reduction due to the 

lossy material is 13%. Similarly, the efficiency reductions due to the lossy substrate of 

the 1 mm non-uniform meshed patch, 4 mm uniform meshed patch and 4 mm non-

uniform meshed patch antennas can be obtained as 12.8%, 13.9% and 14.4% 

respectively. It can be seen the dielectric losses of the meshed patch antennas are 

similar when copper is used as conductor. However, the difference of dielectric loss is 

greater when PEC is used. The impact of the dielectric loss is more significant on 

patches with larger mesh spaces.   
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Therefore, the meshes increase both conduction and dielectric losses. Larger mesh 

space results in more conduction loss. The dielectric loss is more significant on larger 

mesh space when non-PEC material is used. This simulation shows the ratio of 

performance to cost for the meshed microstrip antenna design.  

 

 

Figure 5-22 Effects of conduction loss and dielectric loss on meshed patch 

antennas 
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5.6 Etched Meshed Microstrip Antennas 

Four etched copper meshed microstrip antennas were fabricated. They are 1 mm and 4 

mm space uniform/non-uniform meshed patch antennas. Their specifications are the 

same as the simulation. The line width is 0.2 mm. Figure 5-23 and Figure 5-24 show 

the 1 mm space uniform and non-uniform meshed patches respectively. A solid 

copper patch with the same dimensions (37 mm × 28 mm) was made as a reference. 

The measured S11 of the five antennas are shown in Figure 5-25. The S11 results 

agree with simulation results of the frequency shift in Figure 5-5 and Figure 5-6, i.e. 

the resonant frequencies were lowered by the increased the mesh spacings. 

Furthermore, the resonant frequencies of the non-uniform meshed patches are closer 

to the solid copper patch than the uniform meshed patches. Particularly the 1 mm non-

uniform meshed patch has the same resonant frequency as the solid one. Therefore, by 

reducing the number of the horizontal lines reduces the shift of the resonant frequency 

of the meshed patch antennas, this agrees with the simulated results. 

 

 

Figure 5-23 Etched 1 mm spacing uniform meshed patch antenna 
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Figure 5-24 Etched 1 mm spacing non-uniform meshed patch antenna 

 

Figure 5-25 Measured S11 of etched copper meshed patch antennas 
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The measured results including the antenna gains and efficiencies are shown in Table 

5-4. All the meshed patches have similar directivity values compared with the solid 

patch. The gain values are smaller with larger mesh spacing. However the gain of the 

1 mm uniform meshed patch is only 0.4 dB less than the solid copper but the metal 

coverage is almost 1/3 of the solid copper. The coverage can be reduced to 23% when 

applying the 1 mm non-uniform meshed structure with the total efficiency only 5.3% 

lower than the solid copper patch antenna. The 4 mm uniform and non-uniform 

meshed patches have approximately 4 dBi antenna gain but the metal coverage are 

only 11% and 8 % of respectively. The measured radiation patterns of etched meshed 

patch antennas are shown in Figure 5-26. 

 

Table 5-4 Measured results of meshed patch antennas 

 

Metal 
coverage 

(%) 

Resonant 
frequency 

(GHz) 

S11 
(dB) 

10 dB 
BW 

(MHz) 

Gain 
(dBi) 

Directivity 
(dBi) 

Total 
efficiency 

(%) 

Radiation 
efficiency 

(%) 

Solid copper 100.00 2.40 -24.5 30.0 6.5 7.4 80.4 80.7 

1mm uniform

 

37.43 2.35 -18.8 27.5 6.1 7.5 72.9 73.8 

1mm non-
uniform

 

22.77 2.40 -38.4 35.0 6.2 7.4 75.1 75.2 

4mm uniform

 

11.32 2.15 -10.2 n/a 4.2 7.5 42.5 47.0 

4mm non-
uniform

 

7.96 2.26 -19.1 27.5 4.0 7.3 45.6 46.2 
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(a)                                                                      (b) 

 
(c)                                                                      (d) 

Figure 5-26 Measured electric field gain patterns (in dBi) on phi=0° plane of etched 

(a) 1 mm uniform meshed patch antenna at 2.35 GHz 

(b) 1 mm non-uniform meshed patch antenna at 2.40 GHz 

(c) 4 mm uniform meshed patch antenna at 2.15 GHz 

(d) 4mm non-uniform meshed patch antenna at 2.26 GHz 
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5.7 Embroidered Non-Uniform Meshed Microstrip 

Antennas 

5.7.1 Skin Effects of Conductive thread on Antenna Efficiency 

Chapter 4 has revealed that the thin metallization of Amberstrand Silver thread 

reduced the embroidered patch antenna efficiency. Likewise, the performance of the 

non-uniform meshed patch antennas are affected by the skin effect of the conductive 

thread. In Chapter 2, the equivalent conductivity of the Amberstrand Silver thread is 

obtained approximately 4.5 × 107 S/m. The value is lower than annealed copper     

(5.8 × 107 S/m). Simulations were made to analyse the effects of the lowered 

conductivity and the thin coating layer on the non-uniform meshed patch antennas. 

Four different conductors were used for simulating the non-uniform meshed patch 

antennas: i) PEC with 0.01 mm thickness, ii) 0.2 mm copper (5.8 × 107 S/m),            

iii) 0.2 mm low conductivity material (3.8 × 106 S/m) and iv) 0.001 mm Amberstrand 

Silver (4.5 × 107 S/m). To eliminate the influence of the dielectric loss, all the meshed 

patches were placed on the same substrate with ɛr = 4.5, loss tangent = 0.0037 and 

solid copper ground planes. The radiation efficiencies of different conductive 

materials are shown in Figure 5-27. The mesh spacing is converted into metal 

coverage area compared with a solid patch. Clearly, the PEC yields the highest 

efficiency. The efficiency of the non-uniform meshed patch decreases with lowered 

conductivities. The thin metallization of Amberstrand Silver results in further 

reduction of the efficiency. Although the conductivity of Amberstrand Silver is higher 

than the low conductivity material, the efficiency of Amberstrand Silver meshed 

patches are lower than the low conductivity material meshed patches with the same 

metal coverage due to the thinner metallization. It is worth noting that the efficiency 

of the 1 μm Amberstrand Silver solid patch (100% metal coverage) is very close to 

the PEC conductor. This indicates the 1 μm metallization has little effects on the solid 

patch antenna as the conductor surface is continuous. This simulation shows that the 

thickness of cladding layer is the major limitation on the efficiency of embroidered 

meshed patch antennas.  
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Figure 5-27 Simulation non-uniform meshed patch antennas with different 

conductive materials and metallization thickness 

 

Figure 5-27 presents the trade-off between antenna efficiency, conductivity of the 

thread and metal area coverage. The total thread length usage for embroidering the 

meshed patch antennas can be easily calculated from the metal coverage. Assuming 

that the patch surface is entirely covered by the Amberstrand Silver 66 threads i.e.      

0 mm mesh spacing, then the thread usage is approximately 7.9 meters if it is 

embroidered on a 0.5 mm thickness base fabric using 2 mms lock stitches. The thread 

usage can be reduced by more than 75% if the non-uniform meshing is applied. The 

cost can be simply estimated by the total thread usage multiplied by the price per unit 

length. It can provide a guideline for embroidered antenna design. It is should be 

pointed out that this guideline is based on a specific material with rigid substrate and 

solid copper ground plane. The results will vary with different conductors or dielectric 

materials.  
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5.7.2 Measured	Results	of	Embroidered	Non‐uniform	

Meshed	Microstrip	Antennas	

The embroidery machine at Loughborough University (see Figure 2-15) was used for 

fabricating the embroidered meshed patch antennas. A 1 mm spacing non-uniform 

meshed patch antenna (37 mm × 28 mm) was embroidered onto denim fabric using 

Amberstrand Silver 66 with 2 mm lock stitches. The embroidered 1 mm spacing non-

uniform meshed patch is shown in Figure 5-28. This embroidered patch was placed on 

the 1.57 mm thick Taconic RF-45 substrate (ɛr = 4.5, loss tangent = 0.0037) with the 

same feeding method in Chapter 4. The thermal melt hemming web made from 

copolyamide was used for the adhesive. The measured antenna performance is shown 

in Table 5-5. The etched non-uniform meshed copper patch antenna with the same 

specification (i.e. dimension, mesh spacing) is added as a comparison. As shown in 

Table 5-5, the resonant frequency of embroidered patch antenna is 60 MHz lower than 

the equivalent etched copper patch. In addition, the total efficiency of the embroidered 

meshed patch antenna is 35.8% lower than meshed copper patch. This is partly due to 

the Amberstrand Silver conductivity and cladding layer thickness. The broken 

filaments due to the friction during the embroidery are observed (see Figure 5-28). 

The breakages of the filaments result in higher resistance of the thread which increase 

the conduction loss. Nevertheless, the denim and hemming web may also introduce 

losses and changed the dielectric constant value of the substrate. The measured 

radiation patterns of the embroidered 1 mm non-uniform meshed patch are shown in 

Figure 5-30. 
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Figure 5-28 Embroidered 1 mm spaced non-uniform meshed patch on denim 

fabric 

 

Figure 5-29 Measured S11 results of embroidered and etched 1 mm non-uniform 

meshed patch antennas 
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Table 5-5 Measured results of etched and embroidered 1 mm non-uniform 

meshed patch antennas 

 

Resonant 
frequency 

(GHz) 

S11 
(dB) 

10 dB 
BW 

(MHz)

Gain 
(dBi) 

Directivity 
(dBi) 

Radiation 
efficiency 

(%) 

Total 
efficiency 

(%) 

Embroidered 
1mm

 

2.34 -18.0 55.0 3.5 7.6 40.0 38.9 

Etched copper 
1mm

 

2.40 -38.4 35.0 6.2 7.4 75.1 75.2 

 

 
(a)                                                                        (b)     

Figure 5-30 Measured electric field gain patterns (in dBi) of embroidered 1 mm 

non-uniform meshed patch antenna on (a) phi=0° and (b) phi=90° planes 
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5.8 Low Loss Flexible Dielectric Substrate Materials  

Section 5.5 showed that there were two way to improve efficiencies of meshed patch 

antennas: higher conductivity metal and lower loss dielectric substrate. Section 5.7.1 

indicated the thin metallization of the conductive thread reduces the embroidered 

antenna efficiency. Sourcing a dielectric material with low loss factor can overcome 

the loss that was introduced by the low conductivity and thin cladding layers of the 

conductive thread.  

 

In Chapter 2 the dielectric properties of several flexible nonconductive fabrics were 

examined. The structure of the hair-like fibres in textiles creates millions of 

microscopic holes which are distributed in the fabric. The air gaps are introduced by 

those holes and the dielectric loss is reduced. Moreover this structure makes the whole 

fabric soft and flexible, which is suitable for wearable applications. However the 

disadvantage of the introduced air holes is the reduction of the relative permittivity, 

which means the geometry sizes of microstrip antennas on these materials will be 

larger than on the high permittivity substrates. 

 

The felt was chosen as dielectric substrate because of its low loss tangent. However 

due to its low relative permittivity value and thickness, the antenna size had to be 

increased to work at 2.4 GHz. Due to the limitation of materials, the antennas were re-

designed with reduced size to work at 5 GHz band for WLAN application. One 1 mm 

spacing non-uniform meshed patch was embroidered on denim fabric using 

Amberstrand Silver 66, and placed on 4.6 mm thick felt substrate using copolyamide 

hemming web. The exterior dimension of the patch antenna is 28 mm × 24 mm. The 

ground plane was made by the copper tape. The embroidered patch is shown in Figure 

5-31.  
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Figure 5-31 Embroidered 1 mm non-uniform meshed patch antenna on flexible 

felt substrate 

 

An equally sized solid copper tape patch on the same felt substrate with copper tape 

ground plane was made for a comparison. The measured S11 results are shown in 

Figure 5-32 and antenna efficiencies are shown in Table 5-6. Compared with the solid 

copper patch on the same felt substrate, the embroidered non-uniform meshed patch 

has lower resonant frequency. The difference of resonant frequency is 360 MHz, 

which is larger than the variation of embroidered 1 mm non-uniform meshed 2.4 GHz 

patch (60 MHz). However, the antenna efficiency of this embroidered non-uniform 

meshed patch on felt is 60% which is the highest efficiency embroidered patch 

antenna in this thesis. The 1 mm non-uniform meshed patch has approximately 21.38% 

metal coverage compared with the solid copper surface area. The total thread usage 

for embroidering this patch is approximately 1.1 meters includes the extra length due 

to the lock stitches. 
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Figure 5-32 Measured S11 of embroidered non-uniform meshed and solid copper 

tape patch antennas on felt substrate 

 

Table 5-6 Measured copper and embroidered patch antennas on felt substrate 

 

Metal 
coverage 

(%) 

Resonant 
frequency 

(GHz) 

S11 
(dB) 

10 dB 
BW 

(MHz) 

Gain 
(dBi) 

Directivity 
(dBi) 

Radiation 
efficiency 

(%) 

Total 
efficiency 

(%) 

Embroidered 
1 mm 

spacing non-
uniform 

mesh on felt 

21.38 4.72 -32.9 467.5 6.8 9.0 60 59.8 

Solid copper 
tape on felt 100.00 5.08 -26.4 447.5 8.8 9.1 93 92.8 
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(a)                                                                      (b) 

Figure 5-33 Measured electric field gain patterns (in dBi) of copper tape patch 

antenna with felt substrate at 5.08 GHz on (a) phi=0° and (b) phi=90° planes 

 

 
(a)                                                                      (b) 

Figure 5-34 Measured electric field gain patterns (in dBi) of embroidered 1 mm 

non-uniform meshed patch antenna with felt substrate at 4.72 GHz on (a) phi=0° 

and (b) phi=90° planes 

 
The radiation patterns of the two patch antennas are very similar (see Figure 5-33 and 

Figure 5-34). The copper tape patch has slightly larger cross polarization levels at 
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boresight than the meshed patch. The measured results verified the simulation results 

in Section 5.3.4. From previous simulation, it is assumed that this decreased 

polarization level is due to the reduced current paths in the direction perpendicular to 

the dominant current on the embroidered non-uniform meshed patch. 

 

 

5.9 Conclusions 

This chapter presents two meshed structures for patch antenna design: the uniform 

mesh and the non-uniform mesh. Compared with the same exterior dimension solid 

patch antenna, the resonant frequencies of the meshed patch antennas are lower due to 

the meshes. The apertures created by the mesh holes on the patch surface lengthen the 

electrical length which results in lower resonant frequency. Compared with the 

uniform meshed patches with the same mesh space, the non-uniform meshed patches 

have higher resonant frequencies and closer to the resonant frequency of the same 

sized solid patch antenna. This frequency shift must be considered for meshed patch 

antenna design.  

 

The non-uniform meshed patch has similar RF performances with the same uniform 

mesh spacing patch. The current distribution analysis reveals the major current 

direction for meshed patches is in y direction at the TM01 mode. The antenna gain and 

efficiencies between the uniform and non-uniform meshed patches with the same mesh 

space are very similar. However, the non-uniform meshed patches have slightly higher 

gain than the uniform meshed patches with the same mesh space. This indicates that 

the reduction of the current paths which are orthogonal with major current direction 

does not affect the non-uniform meshed patch antenna performance.  

 

The conductor material usage of meshed patch antennas can be reduced at the cost of 

decreasing antenna efficiencies. The non-uniform meshed patch gives the advantage in 
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reducing material cost due to fewer horizontal lines. The etched 1 mm spacing non-

uniform meshed patch with the metal coverage less than 1/4 of the solid patch still has 

75.2% efficiency which is 5.3% lower than the etched solid patch antenna with 100% 

metal coverage. This will benefit potential wearable antenna applications since the cost 

of manufacturing and materials can be reduced. 

 

The embroidered patch antenna has lower antenna efficiency than the etched copper 

patch due to the low equivalent conductivity value of the conductive thread and the 

metal thickness. Using high conductivity material which reduces the ohmic loss and 

low loss substrate which improves the dielectric loss can enhance the antenna 

efficiency of meshed patches. Flexible fabric substrate materials such as denim and felt 

were used as the dielectric substrate for the embroidered microstrip antennas. The 

lower relative permittivity and loss tangent of the felt fabric are capable to improve the 

loss and achieve high efficiency fabric antennas. A 60% efficiency embroidered 

flexible fabric patch antenna has been achieved with 21% of the material costs when 

applying the non-uniform meshes. This is the highly satisfaction outcome in terms of 

costs, flexibly and antenna performance. 
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Chapter 6  

Conclusions and Future Work 
 

6.1 Summary of Research Novelty  

This thesis has theoretically, numerically and experimentally investigated the effect of 

the embroidery parameters on the DC and RF performance of embroidered microstrip 

transmission lines and antennas using conductive threads. Different embroidery 

parameters including stitch direction, stitch spacing and the number of filaments in 

conductive threads has been critically analysed and evaluated. Embroidered low-

profile, light-weight and discrete wearable antennas can be integrated into ordinary 

clothing. State of the art embroidery machines have been used which demonstrates 

applicability of mass manufacturing wearable textile antennas. This will reduce the 

cost of manufacturing and boost the acceptance of wearable technologies. The 

repeatability of embroidered patch antennas has been measured and the effects of 

stitch spacing on the performance have been analysed.  

 

This thesis has introduced a simulation methodology for realising the anisotropic 

nature of the embroidered stitches on microstrip antennas. Previously, researchers had 

only considered the conductive textile as continuous and uniform sheets with low 

equivalent conductivities. In this thesis, the direction of embroidered stitches and 

spacing between them were modelled. The embroidered stitches resulted in an 

anisotropic conductor surface on the microstrip antennas. The simulated results 

illustrated the distortion of surface currents due to the anisotropic embroidered 

conductors. 
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Based on the anisotropic conductor model, a novel non-uniform meshed microstrip 

antenna has been designed. Patch antennas with the non-uniform mesh structure have 

a significant reduction of metal coverage but has comparable efficiency to the same 

exterior sized solid patch antenna. Embroidered non-uniform meshed patch antenna 

on flexible low loss fabric substrate with improved gain and efficiency has also been 

fabricated.  

 

A detachable and flexible RF connector made by hook and loop has been designed 

and measured. This hook and loop connector can be used as ‘switch’ or ‘plug’ for 

wearable electronics. Electroplating has been applied on the hook and loop connectors 

to lower the DC resistance and improve the RF performance.  

 

 

6.2 Summary of Results 

In Chapter 2, the current techniques of fabricating electro-textiles have been 

summarised and compared. Embroidery has been chosen to fabricate wearable textile 

antennas in this thesis due to its high resolution and fabrication advantages applicable 

to bespoke or mass manufactureable designs. The availability of commercial 

conductive threads and state of the art embroidery machines can reduce the cost of 

manufacture. Multifilament conductive thread Amberstrand was chosen as the 

embroidery thread. The SEM image indicates that the metal coating layer on a single 

filament is approximately 1 μm. The conductivity of the metal coating layer is 

estimated as approximately 4.5 x 107 S/m. The skin effect should be considered for 

RF applications. The schematics of embroidered stitches are shown in Chapter 2. The 

total length of the embroidered thread is determined by the thickness of the base 

fabric and the stitch length. Optimum fabric thickness and stitch length provides high 

quality and cost ratio. In addition, the dielectric properties of fabric materials have 

been examined by using the split post dielectric resonator. The flexible fabric 

dielectric substrates with low loss tangent were chosen to reduce the dielectric loss of 

fabric patch antennas.  
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The DC and RF performances of embroidered transmission lines have been examined 

in Chapter 3. Conductive threads with more filaments along with close stitch spacing 

are desirable for low DC resistance and good RF performance. However, stitch 

direction is the most important fabrication parameter in embroidered transmission 

lines. Stitch direction that is parallel with the transmission line is recommended to 

achieve optimal RF performance of the embroidered transmission lines. The 

detachable and flexible hook and loop connector has also been presented in this 

Chapter. The reusable connector allows electronics to be removed from the fabric RF 

system. The improvement of electroplated hook and loop connectors has been 

presented. Measured results showed that the insertion loss of electroplated hook and 

loop connectors can be reduced to 1 dB up to 2 GHz. 

 

In Chapter 4 the effects of embroidered stitch direction and spacing on patch antenna 

performance have been analysed. Close stitch spacing and stitch direction parallel to 

the dominant current direction results in the highest antenna efficiency. The 

embroidered patch antenna with 0.4 mm stitch spacing and parallel direction has a 

52.5% total efficiency. The same stitch spacing with the stitch direction perpendicular 

to the current reduces the efficiency by 15%. The 0.4 mm spacing diagonal stitch 

direction antenna produces 30% efficiency. The diagonal stitches allow vertical and 

horizontal directed current components which produced a high cross polar component. 

The zigzag embroidered stitches have been simulated and the results were presented 

in this chapter. The patch antenna was composed of zigzag conductor and low 

conductivity “gaps”. The zigzag conductor represented the embroidered thread and 

the low conductivity “gaps” simulated the contacted filaments between adjacent 

stitches. The simulated surface current flow indicated that the current followed the 

direction of the stitches. Various conductivities of the contacting filaments have been 

simulated and shown the correlation between measurements and simulations. The 

repeatability of embroidered patch antennas has been examined and the results 

showed that with the advanced embroidery manufacture technique the embroidered 

antennas have the potential to be mass manufactured.  
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Chapter 5 presented the uniform and non-uniform meshed patch antennas. The meshed 

conductor reduced the metal coverage of the patch antennas and therefore the usage of 

thread for embroidering could be saved. The non-continuous conductor surface of the 

meshed patches lowers the resonant frequency. Compared with the uniform meshed 

patch with the same mesh spacing, the non-uniform meshed patch antenna had a higher 

resonant frequency. The current distribution analysis revealed that the major current 

direction on the meshed patches followed the TM01 mode. Although the non-uniform 

meshed patch has lower metal coverage, the antenna efficiencies of the same mesh 

spacing uniform and non-uniform meshed patches are very similar. This indicated that 

the conductor paths in the direction perpendicular to the current can be removed 

without affecting antenna performance. The measured results indicated that the 

conductor material usage of meshed patch antennas can be reduced to less than 1/4 at 

the cost of 5.3% reduction of antenna efficiency. 

 

The non-PEC conductors of the conductive thread lowered the antenna efficiency of 

embroidered antennas. This conduction loss can be reduced by using high conductivity 

thread material. On the other hand, fabric materials with large number of air voids 

have low loss tangent and they can be used as dielectric substrate to reduce the 

dielectric loss of patch antennas. The embroidered non-uniform patch antennas with 21% 

metal coverage area on the low loss flexible felt substrate were fabricated. The antenna 

efficiency was achieved as 60% at 4.7 GHz. 

 

 

6.3 Implications for Industry 

This thesis has shown the feasibility of fabricating wearable fabric antennas using state 

of the art embroidery technology. The flexible embroidered antennas will not only 

meet the requirements of the end users but also be capable of meeting industrial 

manufacture requirements. The capability of the embroidered fabric based antennas 

including transmission lines and low profile detachable connectors has been presented. 
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The effects of embroidery parameters on the antenna performance and the optimum 

embroidery design have been stated. This allows industry to evaluate the cost and 

performance ratio. These results have implications for many different industrial areas, 

particular for the manufactures of fabric based wearable antennas. The detailed process 

will feed into manufacturing and the results will be used to inform the development of 

representative products that can be potentially mass manufactured.  

 

Many sources estimate that there will be more than 160 million wearable devices in the 

world in the next three years. Smart textile with mass-manufactureable embroidered 

wearable antennas will reduce the manufacturing cost and promote the wearable 

technology market. The fabric antennas will be no longer be limited to specialised 

applications such as aerospace or military, an affordable price will make them suitable 

for personal use. For instance, the market of health and fitness monitoring will be 

benefitted from the fabric based on-body antennas.  

 

The cost of the embroidered antennas will be lowered by applying the non-uniform 

meshed antennas. Embroidered meshed antenna could produce cost savings compared 

with using conventional flexible conductors such as Nora Dell. The usage of 

specialised conductive threads can be further reduced by applying this non-uniform 

meshed structure, which may reduce the cost of embroidered patch antennas by 75%. 

This will boost the development of textile wearable technology. The application of the 

non-uniform meshed structure is not just limited to the embroidered antennas but also 

can be applied to the inkjet printing for saving the expensive conductive ink.  

 

 

6.4 Future Work 

This thesis has mainly focused on the microstrip antennas. However, other types of 

antennas such as monopole or dipole can also be considered as embroidered wearable 
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antennas. The monopole and dipole antenna may suffer from the effects of human 

body proximity. The body will detune the on-body antennas and result in a resonant 

frequency shift. Human tissue may absorb a part of the radiated energy and therefore 

the antenna efficiency will be lower than in free space. Embroidery may be 

particularly suited to the planar antenna geometry. Further investigation is required to 

consider other structures of antennas. 

  

In this research a coaxial probe feed was generally used for feeding the microstrip 

antennas due to the mismatch of embroidered microstrip fed lines. However, the 

probe feed increases the complexity of manufacture and is inconvenient for low-

profile on-body antennas. Alternative feed methods should be investigated in future 

research to produce thinner antennas and reduce the manufacture processes. The hook 

and loop connectors can be used combined with planar feed structures to function as 

switches or transmission line feedings. 

 

The meshed patch antenna showed that the current will be guided by the direction of 

conductive threads. This feature might be useful in circular polarized antennas such as 

GPS antennas. The GPS antenna integrated into clothing will be suitable for outdoor 

activities. Further research could exploit the anisotropic current flow on the 

orthogonal fibres in the fabric to generate circular polarization.  

 

Embroidery is not only limited to fabricating radiating elements of antennas. It can 

also be used for directive elements or reflection planes in reflector antennas. The 

foldable and portable corner reflector or parabolic antennas can be realised by the 

embroidered fabric reflectors which can be folded like an umbrella when not in use. 

This light-weight and portable reflector antennas will be appropriate for applications 

which require both mobility and functionality. In addition, embroidery is also 

potentially capable of creating RF printed circuit boards. Making fully fabric and 

flexible electronic system using embroidery will realise the fully flexible fabric 
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wearable electronics. Investigation of electromagnetic properties of embroidered 

coplanar circuit board is required for this development. 
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Appendix A 

Split Post Dielectric Resonator 
 

This appendix summarise the method for using dielectric properties in the Section 2.4. 

The microwave Q meter can be used to measure the S21 results of split post dielectric 

resonator without vector network analyser (VNA). By measuring the quality factors 

(Q) of the empty resonator and with the dielectric material in the resonator, the 

permittivity and loss tangent can be calculated [1], [2]. 

 
Dielectric 
resonators

Sample under test

Metal 
enclosure

Figure A-1 Schematic diagram of a split post dielectric resonator (redrawnn 

from [2]) 

 
The real part of the permittivity of the fabric material under test can be obtained by  

𝜀𝑟
, = 1 + 𝑓0−𝑓𝑠

ℎ𝑓0𝐾𝜀(𝜀𝑟
, ,ℎ𝑠)

                                       (A.1) 

Where f0 is the resonant frequency of empty resonator, fs is the resonant frequency 

with fabric sample, hs is the thickness of the fabric sample and Kɛ is the function of 𝜀𝑟
,  

and hs. By definition Kɛ function values were found for a given resonator and fixed 𝜀𝑟
,  

and hs as 

𝐾𝜀(𝜀𝑟
, ,ℎ𝑠) = 𝑓0−𝑓𝑠

�𝜀𝑟
, −1�ℎ𝑠𝑓0

                                      (A.2) 
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Exact resonant frequencies and the values of Kɛ are computed for a number of 𝜀𝑟
,   and 

hs for a given resonator and in tabulation. Interpolation will be used to compute Kɛ for 

other values of 𝜀𝑟
,   and h. The initial value of Kɛ in permittivity evaluation (using (1)) 

is taken to be the value for 𝜀𝑟
,  =1 and and a given thickness of sample. Subsequent 

values of Kɛ can be found for the subsequent dielectric constant values obtained in the 

iterative procedure. Because Kɛ is a slowly varying function of  𝜀𝑟
,   and hs so the 

iterations using equation (1) converge rapidly.  

 

The loss tangent of the fabric sample can be determined by (A.3) 

𝑡𝑎𝑛𝛿 = 𝑄−1−𝑄𝐷𝑅
−1−𝑄𝑐−1

𝑃𝑒𝑠
                                      (A.3) 

where the Q is the unloaded Q factor of the resonator containing the fabric sample 

under test, Qc is the Q factor depending on metal losses for the resonator containing 

the fabric sample.  

𝑄𝑐 = 𝑄𝑐0𝐾2(𝜀𝑟
, ,ℎ𝑠)                                     (A.4) 

where Qc0 is the Q factor depending on metal losses for empty resonator.  

 

Pes is the electric energy filling factor of the fabric sample defined as 

𝑃𝑒𝑠 = ℎ𝜀𝑟
, 𝐾1(𝜀𝑟

, ,ℎ𝑠)                                    (A.5) 

 

QDR is the Q factor depending on dielectric losses in the resonator 

𝑄𝐷𝑅 = 𝑄𝐷𝑅0
𝑓0
𝑓𝑠

𝑃𝑒𝐷𝑅0
𝑃𝑒𝐷𝑅

                                  (A.6) 

PeDR and PeDR0 is the electric energy filling factors for the resonator that contained the 

fabric sample and empty respectively. QDR0 is the Q factor depending on dielectric 

losses in empty resonator. Similar to the function Kɛ, K1 and K2 are the functions of 𝜀𝑟
,  
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and hs and are also in tabulation. Interpolation is used to compute the values of these 

functions for specific values of 𝜀𝑟
,  and h. 

 

The Q factor is obtained by measuring the -3 dB bandwidth of the S21 using either 

network analyser or the Q meter.  

𝑄 = 𝑓𝑟
∆𝑓

                                                (A.7) 

Where fr is the resonant frequency and the Δf is the -3 dB bandwidth. 

 

The specifications of the empty split post dielectric resonator are included in the file 

of the resonator and the functions above have been integrated into the software. After 

measuring the thickness of the sample and the Q factors for the loaded and empty 

resonator, the permittivity and loss tangent can be obtained using the microwave Q 

meter software. 
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