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Abstract 

Digital Particle Image Velocimetry (DPIV) is a flow diagnostic technique that is able 

to provide velocity measurements within a fluid whilst also offering flow 

visualisation during analysis.  Whole field velocity measurements are calculated by 

using cross-correlation algorithms to process sequential images of flow tracer 

particles recorded using a laser-camera system.  This technique is capable of 

calculating velocity fields in both two and three dimensions and is the most widely 

used whole field measurement technique in flow diagnostics.  With the advent of 

time-resolved DPIV it is now possible to resolve the 3D spatio-temporal dynamics of 

turbulent and transient flows as they develop over time.  Minimising the systematic 

and random errors associated with the cross-correlation of flow images is essential in 

providing accurate quantitative results for DPIV. 

 

This research has explored a variety of cross-correlation algorithms and techniques 

developed to increase the accuracy of DPIV measurements.  It is shown that these 

methods are unable to suppress either the inherent errors associated with the random 

distribution of particle images within each interrogation region or the background 

noise of an image.  This has been achieved through a combination of both theoretical 

modelling and experimental verification for a uniform particle image displacement. 

 

The study demonstrates that normalising the correlation field by the signal strength 

that contributes to each point of the correlation field suppresses both the mean bias 

and RMS error.  A further enhancement to this routine has lead to the development 

of a robust cross-correlation algorithm that is able to suppress the systematic errors 

associated to the random distribution of particle images and background noise. 
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Nomenclature 

2D  Two-dimensional 

3D  Three-dimensional 

Al2O3  Aluminium Oxide 

CCD  Charge-coupled device 

CFD  Computational fluid dynamics 

CMOS  Complementary metal oxide semiconductor 

DPIV  Digital Particle Image Velocimetry 

DWS  Discrete window shifting 

FFT  Fast Fourier Transform 

FFTOA  Fast Fourier Transform normalised by overlapped area 

FFTSS  Fast Fourier Transform normalised by signal strength 

FFTw/oZP Fast Fourier Transform without zero padding 

Nd:YAG Neodynium doped Yttrium Aluminium Garnet 

NSS  Normalisation by Signal Strength 

NSSWS  Normalisation by Signal Strength with window shifting 

PIE  Partial image error 

PIPM  Particle image pattern matching 

PIV  Particle Image Velocimetry  

PPR  Particle images per region 

PSF  Point Spread Function 

RMS  Root mean square 

SCC  Standard cross-correlation 

SCCOA  Standard cross-correlation normalised by overlapped area 

SCCSS  Standard cross-correlation normalised by signal strength 

SCCWS  Standard cross-correlation with discrete window shifting 

SNR  Signal to noise ratio 

TRDPIV Time-resolved Digital Particle Image Velocimetry 

VVD  Valid Vector Detection  

 

 

 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

v 

 

β  Total error 

µ1, µ2  Mean intensity of I1(i,j) and I2(i,j) respectively 

A(m,n)  Overlapped area weighting function 

da  Actual particle image displacement 

db  Mean bias error 

dd  Particle image diameter 

dg  Geometric particle diameter 

di  Measured displacement 
−

id   Mean measured displacement 

dp  Physical particle diameter 

dx  Known distance shift 

D  Aperture of camera 

f  focal length of lens 

f #  f-number of lens 

I(x,y)  Two-dimensional Gaussian intensity profile 

I(xp,yp)  Two-dimensional digitised particle image 

Icap  Threshold value 

Imax  Maximum attainable intensity value 

Imedian  Median intensity value 

Inew  New intensity value 

Ihr(i,j)  High resolution interrogation region 

I0  Peak image intensity 

I1(i,j), I2(i,j) Digitised interrogation regions 

1I , 2I   Spatial mean image intensity of interrogation region 

( )ηξ ,ˆ
1I   Fourier transform of I1(i,j) 

( )ηξ ,ˆ
2

∗I  Complex conjugate of the Fourier transform of ( )jiI ,2  

J1(x)  First order Bessel function 

M  Magnification 

max(Ikernel) maximum intensity within a kernel 

min(Ikernel) minimum intensity within a kernel 

R(m,n)  Direct digital cross-correlation routine 

R(x,y)  Correlation field 
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RI(m,n)  Normalisation of the R(m,n) correlation field by intensity 

ROA(m,n) Normalisation of the R(m,n) correlation field by overlapped area 

RMS(m,n) Mean subtraction prior to R(m,n) cross-correlation 

RMSSS(m,n) Mean subtraction prior to R(m,n) cross-correlation normalised by signal 

strength 

RMSSS(m,n)WS RMSSS(m,n) with window shifting 

RV(m,n) Normalisation of the R(m,n) correlation field by variance 

( )cc yx ,  Pixel location of correlation peak      

( )ii y,x   Centre co-ordinates of particle images 

( )pkpk y,x  True centre of the correlation peak  

w  Pixel width 

zi  distance between image plane and lens 

zo  distance between object plane and lens 

σ  RMS error 

λ  wavelength of light source 
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Chapter 1                              

Overview 

Digital Particle Image Velocimetry (DPIV) is a non-invasive flow diagnostic 

technique that quantifies flow dynamics whilst also providing whole field flow 

visualisations.  Velocity vectors are calculated by capturing the motion of micron-

sized tracer particles that follow the flow dynamics, using a high-speed camera 

focussed on a sheet of light produced by a multiple-pulsed laser.  Following image 

capture, analysis requires a velocity map to be calculated by dividing the image into 

a grid of smaller interrogation regions.  In order to quantify local velocities, each 

region is processed using a cross-correlation algorithm to estimate the average 

displacement of particle images between sequential pairs of regions.   

 

Developments in digital image processing, image capture, data storage and pulsed 

laser technology has lead to the advent of time-resolved DPIV (TRDPIV) capable of 

resolving the spatio-temporal dynamics of transient and turbulent flows.  The 

development of this technique is seen as the foremost advance in DPIV.  Although 

research has been conducted into minimising the experimental errors in TRDPIV, 

systematic errors associated with the cross-correlation algorithm remains.  It is 

essential therefore to minimise the systematic errors in order to accurately resolve 

flow field measurements. 

 

The accuracy of measurements is defined by two metrics: the closeness a measured 

value is to the actual value (mean bias error) and the degree to which further 

measurements show the same or similar results (RMS error).  As will be shown in 

section 2.5 (p.15), the standard cross-correlation algorithm, which is readily available 

in DPIV analysis, results in a negative mean bias and an RMS error of approximately 

4% for an actual uniform displacement of one pixel.  Therefore there is considerable 

scope to improve the accuracy of measurements with respect to current processing.   
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Since cross-correlation was first used for quantitative measurements (Willert and 

Gharib, 1991) there have been many techniques developed to refine the accuracy of 

results.  One of these techniques includes that of discrete window shifting 

(Westerweel, 1997) and several other techniques were derived from this, including: 

continuous window shifting (Gui and Wereley, 2002) and iterative window 

deformations (Scarano, 2002).  Another iterative approach developed includes that of 

particle image pattern matching (Huang et al., 1993a).  The first region from a 

sequential pair is reduced in size and is then cross-correlated with a larger second 

region which accommodates the initial particle image pattern.  Further to this, 

techniques have included single pixel correlation (Westerweel et al., 2004), 

correlation spatial averaging (Hart, 1998) and ensemble correlation (Meinhart et al., 

2000). 

 

Although significant focus has been made into developing these evaluation 

algorithms, each routine still requires standard cross-correlation (direct cross-

correlation in the spatial domain, R(m,n), or fast Fourier transform, FFT, cross-

correlation in the Fourier domain) to provide a displacement evaluation.  Therefore 

the systematic errors caused by the standard cross-correlation of interrogation 

regions still remains a limiting factor in the accuracy of DPIV measurements. 

 

Cross-correlation normalisation functions were also introduced as a means of 

improving the accuracy of measurements (see section 2.8, p.24). However, this thesis 

discusses how various functions are only able to affect mean bias and not RMS 

errors.  This work extends the use of the normalisation by signal strength function 

(NSS) originally outlined by Huang et al., (1997) for FFT cross-correlation and 

Anandarajah (2005) who investigated its effects in the spatial domain.  It was shown 

that underestimations in measurements, originally solely attributed to the shape of 

the correlation weighting function, are in fact contributed to by clipped particle 

images (Partial Image Error, PIE) at the edge of each interrogation region.  These are 

generated by the random distribution of particle images within each DPIV image.  

Each image is subsequently divided into smaller regions to obtain local velocity 

measurements and thereby particle images at the edge of each region are clipped.  It 
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is also shown that variations between measurements are caused by the cross-

correlation of unrelated particle images.  

 

This thesis demonstrates that although NSS is able to provide improvements to both 

accuracy metrics, when using a sub-pixel estimator, it provides the most accurate 

measurements from the cross-correlation of ‘ideal’ regions where there is no 

background noise.  The addition of background noise, inherent in experimental 

images, will increase the amplitude of the mean bias error oscillation, whilst also 

introducing a ‘beating’ effect into RMS error results.  A robust cross-correlation 

algorithm is subsequently introduced that is able to compensate for background noise 

as well as the random distribution of particle images.  It is shown that this algorithm 

is able to maintain measurement accuracy as the background noise intensity 

increases, minimising the systematic errors within DPIV processing. 

 

Data-sets of artificial DPIV interrogation regions have to be simulated in order to 

assess the effects systematic errors have on accuracy when using various processing 

algorithms.  Chapter 3 describes a model developed using Visual C++ where the 

particle image size, seeding density, distribution, known displacement and 

background noise intensity etc. can be controlled.  Data-sets of interrogation region 

pairs (realisations) describing the same uniform particle image displacement of 

randomly distributed particle images were generated for a series of known 

displacements in the x-direction so that the performance of the processing algorithms 

could be evaluated.  This also meant that each artificial region was not subject to any 

form of experimental error.  Assessment of the performance of processing algorithms 

using artificial regions is a useful method for distinguishing the effects systematic 

errors have on accuracy. Providing a known displacement between interrogation 

regions also means that a mean bias error can be quantified.  This thesis reports error 

quantification using both simulated and experimental data. 

 

Although assessment is to be made on the performance of processing algorithms, the 

accuracy of results is dependent upon the quality of the data recorded in each 

interrogation region.  Huang et al. (1997) and Anandarajah (2005) both stipulated 

that each interrogation region should be populated with 22 particle images, each with 
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a diameter of 2.8 pixels.  It was stated that this was to avoid errors associated with 

poor signal-to-noise ratio (SNR) and poor particle image resolution.  However, 

section 3.9 (p.51) addresses the accuracy dependence on image quality by optimising 

the particle image size and seeding density for regions processed using the standard 

cross-correlation algorithm.  The optimised interrogation regions without background 

noise were then used to assess the accuracy of various processing algorithms studied 

in Chapter 4.  This shows that NSS is a normalisation function that is able to satisfy 

reductions in both accuracy metrics, when compared to standard cross-correlation 

results, by compensating for the random distribution of particle images. 

 

Section 4.5 highlights that with the addition of background noise NSS is not able to 

maintain the level of accuracy that is quantified with ‘ideal’ images.  From this, 

Chapter 5 assesses the techniques that can be used to compensate for the presence of 

background noise in each interrogation region.  This leads to the development of a 

new robust processing algorithm that compensates for the random distribution of 

particle images as well as the additional background noise.  Results show that 

processing artificial regions, with additional background noise, using the new robust 

processing algorithm produces accuracy metrics comparable to those generated by 

the NSS algorithm using ‘ideal’ images.  Comparable results are generated for equal-

sized region cross-correlation as well as with iterative techniques for moderate 

background noise intensities. 

 

Chapter 6 assesses the accuracy of two iterative techniques developed to refine 

measurements using standard cross-correlation; these techniques are discrete window 

shifting and particle image pattern matching.  The standard cross-correlation results 

are compared to those generated using NSS as well as the new robust processing 

algorithm using these iterative techniques.  It is shown that these techniques with 

standard cross-correlation do not compensate for the systematic errors associated to 

the random distribution of particle images although both techniques provide an 

improvement in mean bias error regardless of the cross-correlation algorithm used. 

 

Errors predicted by the analysis of artificial images are verified in a controlled 

experiment described in Chapter 7.  The original images were captured by 
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Anandarajah (2005) and processing with NSS.  However, the issues associated with 

background noise were not addressed.  Experimental verifications of the new robust 

processing algorithm are also in good agreement with their artificial image 

predictions.  This algorithm minimises both accuracy metrics on analysis of equal-

sized interrogation regions and the iterative techniques over that of standard cross-

correlation results. 
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Chapter 2                                   

Digital Particle Image Velocimetry 

Analysis 

2.1 Introduction 

Over the past 25 years Digital Particle Image Velocimetry (DPIV) has evolved and 

matured into a versatile and well used fluid flow measurement technique (Adrian, 

2005).  It is able to provide velocity vector measurements whilst also offering flow 

visualisation during analysis.  Although the technique is the most widely used whole 

field measurement method in flow diagnostics some fundamental limitations 

associated with the technique are still apparent.  With the development of time-

resolved DPIV it is possible to quantify velocities within a turbulent or transient flow 

field as it develops over time.  Although being able to provide high spatio-temporal 

flow statistics is of high importance in flow diagnostics, it is necessary to quantify 

and reduce the systematic errors which ultimately arise from image processing. 

 

This chapter firstly outlines the errors quantified using the fast Fourier transform 

(FFT) and the direct digital cross-correlation (R(m,n)) algorithms, collectively 

referred to as the standard cross-correlation algorithms (SCC), on data-sets of 

realisations describing a uniform particle image displacement.  These algorithms, 

together with the Gaussian sub-pixel estimator, are widely used to evaluate sub-pixel 

displacements and as such form a benchmark for error analysis.  This highlights the 

systematic issues associated with SCC analysis. 

 

The next section introduces some of the iterative techniques that have been 

developed to improve the accuracy of measurements when analysing with SCC.  

Quantifying the error statistics using discrete window shifting shows that both the 

mean bias and RMS errors are described over sub-pixel displacements but the 
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systematic errors causing inaccuracies in measurements remain, thus neither metric is 

truly reduced using this method.  On the application of the particle image pattern 

matching technique with SCC it is shown that the mean bias error is suppressed but 

this in turn leads to an increase in RMS error.  Implementing these techniques further 

highlights the inadequacies of the SCC algorithms with regards to suppressing the 

systematic errors within DPIV. 

 

Thirdly, this chapter reviews some of the image enhancement techniques that can be 

used if the initial analysis of interrogation regions does not result in a recognisable 

correlation peak.  The next section provides a comprehensive assessment of five 

normalisation functions that were originally intended to improve the accuracy of 

measurements.  This section extends previous analysis to investigate the effects each 

normalisation function has on the correlation noise floor before their accuracy 

metrics are quantified in Chapter 4. 

 

The final section discusses some of the averaging techniques that have been 

developed with the intention of improving the accuracy of measurements using the 

standard cross-correlation algorithms. 
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2.2 Standard processing algorithms 

2.2.1 Fast Fourier transform cross-correlation, FFT 

The Fast Fourier Transform (FFT) algorithm allows for quick cross-correlation of 

interrogation region pairs.  The computational efficiency of the FFT algorithm makes 

it the cross-correlation technique favoured by most commercial systems (Fore, 2010) 

as it requires M2log2M
2
 calculations to complete (where M is the size of the square 

interrogation region) (El-Bakry and Hamada, 2008).  To cross-correlate two regions 

using FFT, the Fourier transformed region ( )jiI ,1  and the complex conjugate of the 

Fourier transformed region ( )jiI ,2  are multiplied together; the resultant FFT array is 

inverted to compute a correlation field such that: 

( ) ( ) ( ) ( )







×⇔⊗ − ηξηξ ,,,,

*

2

^

1

^
1

21 IIFFTjiIjiI  2.1 

where ( )ηξ ,1

^

I  denotes the Fourier transform of ( )jiI ,1  and ( )ηξ ,
*

2

^

I  represents the 

complex conjugate of the Fourier transform of ( )jiI ,2 .  The pixel position during 

correlation is denoted by ( )ji, .   

 

While the FFT algorithm is computationally efficient, analysis requires square 

interrogation regions that are a power-of-two in dimension (i.e. 16 x 16, 32 x 32…2n
 

x 2n
 pixels etc).  However, non-square regions may also be processed if regions are 

zero-padded before FFT cross-correlation (McKenna and McGillis, 2002).  For 

example, a region that is n x m pixels is padded with zeros so that it is located at the 

centre of a region that is 2n
 x 2n

 pixels without the loss of any particle image data; 

after which the correlation field can be computed using equation 2.1.  When 

processing regions that are already 2n
 x 2n

 pixels in size (prior to zero-padding) with 

the FFT algorithm, aliasing will introduce errors into analysis.  Thus, aliasing is 

present because the sampling frequency is not high enough to sample the signal.  

This causes the correlation signal to overlap forming a ‘wrap-around' due to the 

assumed periodicity of the signal when the FFT algorithm is used (Gonzales and 

Wintz, 1987).  Issues associated with ‘wrap-around’ can be avoided if interrogation 

regions are again zero-padded before FFT cross-correlation.   
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Interrogation region 1 

Interrogation region 2 

m 

n I2 

Overlap area 

between I1 and I2 

I1 

2.2.2 Spatial domain cross-correlation, R(m,n) 

Alternatively, cross-correlation can be evaluated directly in the spatial domain using 

the digital direct cross-correlation algorithm, R(m,n) which is described by equation 

2.2: 

( ) ( ) ( )njmiIjiInmR
M

i

N

j

−−=∑∑
= =

,,, 2

0 0

1  2.2 

For an interrogation region size of length, M and width, N and m and n is the shift in 

the x and y-directions as the first region ( )jiI ,1  shifts over the second ( )jiI ,2  to 

calculate each point in the correlation field (Figure 2.1). 

 

Although this cross-correlation method is simple to implement it is computationally 

intensive.  Each correlation field requires (M×N)4
 calculations to complete and this is 

the main (and only reason) why FFT was introduced as a cross-correlation algorithm 

(Pust, 2000).  However, unlike FFT cross-correlation, regions processed this way are 

not required to have 2n
 x 2n

 dimensions and as a result do not have to be zero-

padded. 

 

For equal size interrogation regions, the R(m,n) routine works by passing the first 

interrogation region ( )jiI ,1  of size M×N across the second region ( )jiI ,2  as is 

illustrated in Figure 2.1.  Correlation produces a ( ) ( )[ ]1212 −×− NM  field so 

therefore for the correlation of two equal 32 x 32 pixel regions will generate a 63 × 

63 pixel correlation field. 

 

Figure 2.1 R(m,n) cross-correlation 

During cross-correlation, the point at which there is a maximum particle image 

correlation corresponds to the location of the correlation or signal peak as is 
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illustrated in Figure 2.2.  The position of the peak relative to the centre of the 

correlation field corresponds to the average displacement within the realisation and, 

after digitisation, is twice the width of the particle images being analysed.  Its 

position within the correlation field can be described to within a fraction of a pixel 

using a sub-pixel estimator (section 2.3).  As the displacement between two regions 

increases, the correlation peak will decrease in height and broaden.  This is caused by 

a decreasing number of particle images that can contribute to the correlation peak.  

This is known as the out-of-pattern (or in-plane loss-of-pairs) effect (Adrian, 1991 

and Huang et al., 1993b). 

 

It is also noted that when calculating velocity vectors, interrogation regions that are 

zero-padded before FFT cross-correlation will produce identical results to regions 

processed using R(m,n) cross-correlation (Eckstein, 2007).  Since both algorithms 

provide identical results they are referred to as the standard cross-correlation 

algorithms, SCC. 
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Figure 2.2 A standard cross-correlation field 

 

Correlation peak (direction of motion) 
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2.3 Sub-pixel estimators 

The development of interpolation algorithms to obtain the sub-pixel location of the 

correlation peak was the crucial step in the advance of DPIV.  The measurement 

resolution of displacement estimations changed from ±½ pixel to ±1/100
th
 of a pixel 

upon the implementation of a sub-pixel estimator.  In commercial codes, the sub-

pixel location of the correlation peak in both the x- and y-directions is determined 

using the five central points of the correlation peak (Fore, 2010); the four adjacent 

points in the x- and y-directions and the central correlation peak value.  Although 

many sub-pixel estimators are available the three most commonly used are the 

centroid estimator, the parabolic estimator and the Gaussian estimator (Willert and 

Gharib, 1991).  For a two-dimensional correlation field, ( )yxR ,  the location of the 

correlation peak found to within ±½ pixel is given as ( )cc yx ,  and the sub-pixel peak 

centre ( )pkpk yx ,  is defined using the three estimators as: 

Centroid estimator: 

( ) ( ) ( )
( ) ( ) ( )cccccc

ccccccccc
pk yxRyxRyxR

yxRxyxRxyxRx
x

,1,,1

,1)1(,,1)1(

+++−

++++−−
=  

( ) ( ) ( )
( ) ( ) ( )1,,1,

1,)1(,1,)1(

+++−

++++−−
=

cccccc

ccccccccc
pk yxRyxRyxR

yxRyyxRxyxRy
y  

2.3 

Parabolic estimator:  

( ) ( )
( ) ( ) ( )cccccc

cccc
cpk yxRyxRyxR

yxRyxR
xx

,12,4,12

,1,1

++−−

+−−
+=  

( ) ( )
( ) ( ) ( )1,2,41,2

1,1,

++−−

+−−
+=

cccccc

cccc
cpk yxRyxRyxR

yxRyxR
yy  

2.4 

Gaussian estimator: 

( ) ( )
( ) ( ) ( )( )cccccc

cccc
cpk yxRyxRyxR

yxRyxR
xx

,1ln,ln2,1ln2

,1ln,1ln

++−−

+−−
+=  

( ) ( )
( ) ( ) ( )( )1,ln,ln21,ln2

1,ln1,ln

++−−

+−−
+=

cccccc

cccc
cpk yxRyxRyxR

yxRyxR
yy  

2.5 
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Quantifying both accuracy metrics requires particle images to be displaced in only 

one direction.  Since a displacement in the x-direction is to be modelled then only the 

three points defining sub-pixel displacement of the correlation peak in the x-direction 

have to be considered for this analysis.  With this is mind, the central point is 

common to both the x- and y-direction and so in two dimensions the interpolation 

functions can be referred to as being five point estimators. 

 

Westerweel (1993a) stated that the Gaussian estimator is superior to both the 

centroid and parabolic estimators as it produces the lowest measurement errors of the 

three sub-pixel estimators examined.  The Gaussian estimator is generally accepted 

as being the standard estimator when processing with the standard cross-correlation 

algorithms.  This is due to digitised particle images approximating two-dimensional 

Gaussian distributions; when two Gaussian distributions are cross-correlated the 

resulting signal also has a Gaussian distribution.  For this reason, the Gaussian sub-

pixel estimator is used as the benchmark estimator when quantifying the accuracy of 

measurements. 
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2.4 Error quantification 

Once the sub-pixel displacement has been calculated the performance of the 

processing algorithm can then be assessed.  Quantifying the accuracy of a DPIV 

processing algorithm is achieved using two metrics, these are: the mean bias and 

RMS (random) errors.  The mean bias error, db is a measure of the difference 

between the mean measured displacement, id
−

 over N realisations and the actual 

displacement, da.  This is defined as: 

aib

N

i
ii

ddd

d
N

d

−=

=

−

=

−

∑
1

1

 2.6 

Where di is the measured displacement from a single measurement where i = 1, 2, 

3…N and N is the total number of realisations. 

 

The random error is used to determine the deviation of measured displacements for 

each realisation from the mean measured displacement.  This is termed the root mean 

square (RMS) error or σ, and is defined as: 

∑
=

−









−=

N

i

ii dd
N 1

2
1

σ  2.7 

By being able to calculate the average measured displacement and the variation in 

individual measurements from the mean for each data-set means that the systematic 

errors within DPIV can be analysed and quantified.  A mean bias and RMS error 

point is calculated for each data-set where the actual displacement is known.   

 

A reduction in both accuracy metrics is required to show that a cross-correlation 

algorithm provides an improvement in accuracy.  Therefore both metrics can be 

given an equal weighting and if it is assumed that they are independent variables, a 

reasonable definition of total error, β can be defined as: 

22 σβ += bd  2.8 

where db is the mean bias error and σ the RMS error. 

 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

DIGITAL PARTICLE IMAGE VELOCIMETRY ANALYSIS 14 

 

Valid vector detection (VVD) can also be used to measure the validity and 

subsequently the accuracy of measurements because it quantifies the number of valid 

vectors that have been processed (Wernet, 2005).  The validity of a vector is user 

defined (i.e. a measurement should be within a defined range) and should give a 

detection probability of between 90-100% to provide a reasonable representation of 

the flow (Westerweel et al., 2005).  For example, the average displacement is 

calculated across an image and if an individual vector is outside ±½ pixel of the 

average then these are referred to as invalid or erroneous vectors and are removed 

from analysis during validation.  Once all vectors have been validated a new average 

is calculated and the process is repeated until there is no change in the average 

displacement value between two successive validation processes.  A second approach 

to remove invalid vectors is to identify the condition of the correlation peak and the 

magnitude of the correlation noise floor. Therefore, the signal-to-noise ratio (SNR) 

can be used as a measure to validate measurements further.  This is defined as: 

peak noisehighest  ofHeight 

peak signal ofHeight 
=SNR  2.9 

For a measurement to be valid, the signal peak must be greater than the highest noise 

peak (i.e. SNR > 1).  Values below 1 are achieved if the processed images are 

dominated by noise or when the signal is too low for a correlation peak to be 

detected.  It is therefore essential to maintain a high VVD rate when conducting an 

experimental analysis or theoretical quantifications of images using robust 

processing algorithms that can withstand the rigours of changing image quality. 

 

The next section reviews the accuracy metrics quantified with the standard cross-

correlation algorithms using artificially generated particle images experiencing a 

uniform particle image displacement in the x-direction. 
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2.5 Standard cross-correlation error quantification 

Figure 2.3 shows the typical error plots that are generated when the standard cross-

correlation routines (SCC: either R(m,n) or FFT with zero padding, and FFT without 

zero padding) are used calculate a correlation peak and the Gaussian sub-pixel 

estimator used to evaluate each displacement.  These error plots are generated from a 

series of artificially generated interrogation regions (32 x 32 pixels) each of which 

contain 22 particle images with a diameter of 2.8 pixels that describe a known 

uniform particle image displacement in the x-direction.  

 (a) mean bias error 

 

(b) RMS error 

 

Figure 2.3 Error plots for SCC and FFT without zero padding (Anandarajah, 

2005) 

SCC 

SCC 
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Figure 2.3(a) clearly highlights that both SCC and FFT without zero padding 

generates a negative mean bias error for each displacement that also contains a 

characteristic oscillation; this is often referred to as the peak-locking effect (Raffel et 

al., 1998).  When examining the RMS error plot (Figure 2.3(b)) is it clear that both 

routines generate a sharp increase in RMS error at sub-pixel displacements, after 

which this rate of increase diminishes. 

 

Previous studies of error quantifications using SCC (R(m,n) or FFT with zero 

padding) associated the negative mean bias to the non-uniform weighting of the 

correlation function.  This weighting is inherent to the SCC functions and is caused 

by the cross-correlation of unrelated particle images (or more generally, pixel 

intensities) contributing to the correlation field.  As the displacement increases 

between interrogation regions, the correlation peak shifts away from the centre of the 

correlation field.  It was stated (Raffel, 1998) that since the correlation peak is 

located on a pyramid shaped correlation field then it is this that biases the peak away 

from the actual displacement value.  As such the correlation field has to be corrected 

to account for the bias in peak position.  These underestimations, assumed to be 

associated to the non-uniform weighting of the correlation function, have been well 

documented and methods for its removal include using appriopriate weighting 

functions (e.g. Raffel et al., 1998) or subtraction of the mean intensity from within 

each interrogation region before cross-correlation (Westerweel, 1997). 
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Anandarajah (2005) extended this investigation by studying the average correlation 

noise floor for both the SCC and FFT (without zero padding) routines as are shown 

in Figure 2.4.   
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(a) SCC correlation noise floor (b) FFT correlation noise floor 

Figure 2.4 Typical correlation noise floors for SCC and FFT cross-correlation 

On evaluation of the FFT routine, a flat correlation field is produced; caused by the 

circular convolution effect.  Following the original assumption that the shape of the 

correlation field biases the peak away from the actual value then it is intuitive to 

assume that results from FFT correlation will not be biased as the correlation field is 

flat.  However, as Figure 2.3(a) shows, FFT cross-correlation still results in 

negatively biased displacements. It was therefore stated by Andandarajah (2005) that 

the correlation field characteristics are not the sole cause of biases in measurements. 
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2.6 Iterative correlation methods 

As the displacement between regions increases, the number of particle images that 

contribute to the correlation peak decreases and is referred to as the out-of-pattern 

effect.  Concerns were raised that the loss of signal would increase measurement 

errors and therefore investigations proceeded to minimise this effect.  

 

The proposed solution for increasing the measurement accuracy for standard cross-

correlation was the iterative correlation method.  This process was developed to 

maintain a high and constant SNR whist also taking advantage of low sub-pixel 

displacement errors (Raffel et al., 1998).  One of the simplest iterative methods is 

discrete window shifting (DWS) (Westerweel et al., 1997).  This method estimates 

the shift required by the first region by estimating the displacement from an initial 

cross-correlation.  After the shift, a second cross-correlation provides a sub-pixel 

displacement where the out-of-pattern effect has less of an influence on 

measurements. 

 

Figure 2.5 shows the typical error plots generated when applying window shifting 

with SCC and using the Gaussian sub-pixel estimator to evaluate displacements of 

regions experiencing a uniform displacement in the x-direction.  The use of window 

shifting as a means of error reduction is further discussed in Chapter 6. 

(a) mean bias error (b) RMS error 

0 1 2 3 4 5 6 7 8
-0.10

-0.05

0.00

0.05

0.10

M
e

a
n

 B
ia

s
 E

rr
o

r 
(p

x
)

Displacement (px)

 SCC

 SCC
WS

 
0 1 2 3 4 5 6 7 8

0.00

0.01

0.02

0.03

0.04

R
M

S
 E

rr
o

r 
(p

x
)

Displacement (px)  

Figure 2.5 Error plots for SCCWS compared with SCC 

The figure illustrates that for sub-pixel displacements the errors generated for SCC 

and SCCWS are identical.  Once the first window shift is implemented, as is described 
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in section 6.2 (p.150), the errors generated for each displacement are described over 

a single pixel and therefore each error is composed solely of the sub-pixel 

displacement error.  This generates the distinctive oscillation in the accuracy metric 

plots shown in Figure 2.5. 

 

An extension to the DWS is continuous window shifting.  After an initial 

displacement estimation this process uses bi-linear image interpolation before a 

second cross-correlation provides the sub-pixel displacement.  Advances in this 

technique have lead to the development of higher order interpolation functions being 

developed including the sinc function (Lourenco and Krothapalli, 1995 and Roesgen, 

2003) and a Gaussian function (Nobach et al., 2004) and also the Particle Image 

Distortion (PID) technique (Huang et al., 1993a).  This process manipulates the 

interrogation region shape before a final displacement estimate is determined.   

 

The window deformation techniques were subsequently enhanced by Nogueira et al. 

(1999) and Scarano and Riethmuller (2000).  These techniques are best when 

analysing flows experiencing strong velocity gradients (Keane and Adrian, 1992) 

since loss of image pairs will cause the correlation peak to reduce in height and 

adverse gradients will cause the peak to eventually splinter, resulting in the 

generation of spurious velocity vectors.  Scarano (2002) stated that the cause of the 

demise of measurement accuracy from flows experiencing gradients could also be 

minimised if the size of the interrogation regions under investigation were reduced; 

this will also inherently increase the velocity vector resolution.  As will be shown in 

section 5.4 (p.144), processing smaller interrogation regions can preclude meaningful 

and accurate velocity vectors from being extracted compared to larger region 

analysis.  Huang et al. (1997) also introduced a technique that would allow a smaller 

first region to be cross-correlated with a larger second increasing the likelihood of 

particle image pair correlation.  This is known as particle image pattern matching 

(PIPM). 
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Figure 2.6 provides typical error plots for when the second region is decreased in size 

and is cross-correlated with a first region that is 32 x 32 pixels in size.  Each 

displacement is evaluated using the Gaussian sub-pixel estimator on data-sets of 

regions that are experiencing a known uniform particle image displacement in the x-

direction.  The use of PIPM with SCC as a means of reducing the accuracy metrics is 

discussed further in Chapter 6. 

(a) mean bias error (b) RMS error 
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Figure 2.6 Error plots for PIPM of 16 x 16, 24 x 24 and 32 x 32 pixel regions 

with 32 x 32 pixel regions using SCC 

The figure clearly shows that as the second region size is decreased there is an 

improvement to the mean bias error.  However, this is coupled with an increase in 

RMS error.  The reasons for this decrease in mean bias error with subsequent 

increase in RMS error as the second region size decreases is explained in section 6.3 

(p.156). 

 

Adaptive iterative schemes have also been developed as a means of increasing 

accuracy (e.g. Jambunathan et al., 1995; Takumara and Dimotakis, 1995 and 

Scarano, 2002) but each of these algorithms are numerically and computationally 

intensive and result in heavy image manipulation in order to generate a second region 

identical to that of the first.  Image manipulation may unintentionally cause vital 

information in the second frame to be lost and therefore detract from the validity of 

the velocity vector generated.  Although these algorithms are useful in their own 

right their development has continued despite neglecting the systematic errors that 

occurs within DPIV analysis.  All these iterative correlation techniques typically use 

SCC to calculate displacements.  Although these methods have been shown to 
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improve the mean bias error over the classic SCC approach, Chapter 6 shows that 

neither DWS nor PIPM improves the RMS error when processing with SCC. 

 

Another factor affecting the accuracy of measurements is caused by variations in 

image intensities across and between interrogation regions.  This can result from the 

heterogeneous illumination of particle image intensities due to light sheet non-

uniformities including pulse-to-pulse variations.  The cross-correlation of 

background noise intensities, including out-of-plane motion, irregular shaped particle 

images and unrelated particle images will also affect measurements.  Two 

approaches are often implemented to restore the accuracy lost through intensity 

variations, these are: image enhancements prior to cross-correlation and the 

development of normalisation functions designed to improve measurement accuracy.  

These two methods are reviewed in section 2.7 and section 2.8 respectively. 
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2.7 Image enhancement 

Image enhancement techniques are designed to reduce the variation in particle image 

intensity across and between interrogation region pairs.  Fore et al. (2005) proposed 

subtracting an average background noise image, obtained by averaging a series of 

images that do not contain particle image intensities, from each interrogation region.  

As intensity subtraction reduces the pixel intensity range from cross-correlation the 

technique also requires the grey-scale intensities to be linearly stretched.  Dellenback 

et al. (2000) evaluated measurements by applying a threshold, contrast enhancement 

and histogram hyperbolisation to their low quality images before cross-correlation to 

improve accuracy.  These techniques were enhanced by Roth and Katz (2001) who 

developed a modified histogram equalization technique that combines thresholding 

with histogram stretching. 

 

Image enhancement through intensity capping was developed by Shavit et al. (2006) 

and was reported to be effective and easy to implement.  The technique relies upon 

setting intensities that exceed a certain threshold value to the threshold value and 

those below maintain their original value.  The threshold value Icap defined in 

equation 2.10 is calculated by determining the median grey-scale intensity across a 

region Imedian and the standard deviation σ.   Raffel et al. (2007) noted that although 

optimal threshold values vary with the image content, it may be calculated for the 

entire image from the grey-scale median intensity value Imedian. 

σnII mediancap +=  2.10 

 The scaling factor n is user defined and is in the range 0.5<n<2.  Once the intensity 

distribution has been capped displacements are determined using standard cross-

correlation.   

 

Additionally, Westerweel (1993b) suggested a min/max filter intended to adjust 

intensity values across an image.  Rather than adjusting intensities using global 

statistics, as was proposed with the other methods, this technique requires local 

statistics obtained from within a given region (or kernel) centred on each point within 

the image.  A new pixel intensity value is then calculated using equation 2.11: 
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where Imax is the maximum intensity value attainable in the image (i.e. 8-bit image = 

2
8
 = 256 or 12-bit image = 2

12
 = 4096 etc.), I(x,y) is the original pixel value and the 

min/max values are obtained from within a local region around each pixel value.   

Raffel et al. (2007) stated that each local region should be larger than the particle 

image diameter yet small enough to eliminate spatial variations in the background 

and therefore sizes of 7 x 7 to 15 x 15 pixels are generally used.  Using the same 

principles as Westerweel’s min/max filter, image enhancements can also be made by 

subtracting a mean intensity calculated over a local region centred on each point 

within the image to remove background noise before analysis. 

 

In brief, this section has introduced some image enhancement techniques used prior 

to cross-correlation; these limit the variation in pixel intensity across and between 

each interrogation region pair to maintain the accuracy of DPIV results.  Each 

technique calculates a new pixel value for each point within an interrogation region 

using the original intensities and as such care must be taken to avoid manipulations 

that will overtly affect accuracy.   
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2.8 Normalisation of the correlation field 

When processing interrogation regions using standard cross-correlation, the height 

and shape of the correlation peak will vary from one realisation to the next and 

therefore will affect the accuracy metrics.  This is caused by variations in 

illumination across and between two interrogation regions (Gonzales and Wintz, 

1987), variations in particle seeding density (Anandarajah, 2005) and also electronic 

image noise (Raffel et al., 1998).  These uncertainties were a major concern for 

researchers who regarded limiting changes in the variation of the correlation peak 

height as a critical enhancement of DPIV processing.  It can be concluded (e.g. 

Gonzales and Wintz, 1987 and Raffel, 1998) that the accuracy metrics were affected 

by correlation peak height, and to account for these variations each correlation field 

should be normalised to improve accuracy.  Once normalised, a comparison between 

two independent correlation fields can be made.  This section introduces five 

normalisation functions that are commonly used in DPIV processing and their effect 

on measurement accuracy is discussed further in Chapter 4. 

 

2.8.1 Normalisation by overlapped area 

It has previously been assumed (Raffel et al., 1998) that when cross-correlating 

equal-sized regions, the non-uniform weighting of the correlation function results in 

underestimated measurements.  This bias was assumed to be caused by the cross-

correlation of unrelated particle images contributing to a pyramid shaped correlation 

noise floor (Figure 2.4(a)).  It was therefore concluded that the bias could be reduced 

if each correlation field were normalised by the unit area used to calculate each point 

of the field.  Normalisation of the SCC field with overlapped area, SCCOA, is 

expressed as: 

( )m,nA

SCC
SCCOA =  2.12 

( )nmA ,  can be calculated by generating two interrogation regions; each pixel within 

both regions assume a value of one.  These two regions can then be cross-correlated 

using equation 2.2 to generate the overlapped area weighting function illustrated in 

Figure 2.7. 
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Figure 2.7 Overlapped area weighting function (32 x 32 pixel regions) 

When normalising by area, each point of the correlation field is normalised by a local 

constant value.  This normalisation function remains the same regardless of changes 

in the condition of individual interrogation regions.  When the SCC correlation noise 

floor (Figure 2.4(a)) is normalised by area (Figure 2.7) the resulting normalised 

correlation noise floor is flat, as is shown in Figure 2.8(a).  However, when the FFT 

(without zero-padding) correlation noise floor (Figure 2.4(b)) is normalised by area, 

a ‘valley’ shaped correlation noise floor is generated as is shown in Figure 2.8(b).  
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(a) SCCOA correlation noise floor (b) FFTOA correlation noise floor 

Figure 2.8 SCC and FFT correlation noise floors normalised by area 

As section 4.3.1 (p.73) explains, when both correlation functions are normalised by 

area there is an improvement to the mean bias error metric, albeit measurements are 

overestimated for FFTOA.  However, when normalising by area neither function will 

account for the uncertainties in measurements.   Therefore, the RMS error results are 

equivalent to the results produced from their respective SCC routines. 
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2.8.2 Normalisation by signal strength 

One of the main issues of normalising the correlation field before determining the 

measured displacement is that some weighting functions are able to reduce mean bias 

error, but fail to affect the RMS error.  Huang et al. (1997) originally proposed 

normalising the FFT correlation field by the pixel intensities within the overlapped 

area, referred to as the signal strength.  It was known that the intensity distribution 

across each interrogation region affects the asymmetry of each correlation peak; 

therefore normalising by the pixel intensities that contribute to each point of the 

correlation field will inherently reduce the uncertainties in measurements to improve 

both accuracy metrics. 

 

Normalisation by signal strength (NSS) is defined as: 

( ) ( )
2

1

, ,

2

2

2

1 ,, 







×

=

∑ ∑
∈ ∈Aji Aji

jiIjiI

SCC
NSS  

2.13 

where A denotes the overlapping area between regions ( )jiI ,1  and ( )jiI ,2 .  The 

signal strength is defined as the product of the summed squared intensities within the 

overlapped area and is calculated in the spatial domain.   

 

A typical signal strength weighting function is illustrated in Figure 2.9.  Its shape is 

dictated by the variations in intensity content within each realisation 
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Figure 2.9 A typical signal strength weighting function 
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In the original investigation by Huang (1997) each interrogation region was not zero-

padded prior to FFT cross-correlation.  Therefore normalisation of the FFT 

correlation field (Figure 2.4(b)) by a typical signal strength function will generate a 

‘valley’ shaped normalised correlation field similar to that generated for the 

normalisation of the FFT correlation field by area (Figure 2.8(b)).  As Figure 4.5 

(p.75) verifies, FFTSS will also overestimate measurements.  As section 4.3.1 (p.73) 

describes, this overestimation results from the ‘valley’ shape of the normalised 

correlation field.  

 

The study of the signal strength function was further enhanced by Anandarajah 

(2005) who stated that this normalisation function could compensate for the random 

distribution of particle images within each interrogation region and thereby reduce 

both accuracy metrics.  This would be achieved if zero-padding prior to FFT cross-

correlation or applying R(m,n) cross-correlation before normalising the correlation 

field by the signal strength.  On the normalisation of the SCC correlation field 

(Figure 2.4(a)) by a typical signal strength weighting function the resulting 

normalised correlation field will be flat.  As is identified in both section 4.3.1 (p.73) 

and section 4.3.2 (p.75), generating a flat correlation noise floor through 

normalisation suppresses the mean bias error.  Anandarajah (2005) also stated that 

accounting for the variations in intensity distribution across each region through 

normalisation by signal strength will inherently provide an improvement to both 

accuracy metrics; this is verified by the error plots generated in Figure 4.5 (p.75). 
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2.8.3 Normalisation by intensity 

Willert and Ghirib (1991) introduced normalising the correlation field by intensity as 

a means of accounting for variations in correlation peak height per realisation.  This 

is defined as: 

( ) ( )∑∑ ∑∑
= = = =

×

=
M

i

N

j

M

i

N

j

I

jiIjiI

SCC
SCC

0 0 0 0

21 ,,

 
2.14 

where the normalisation function is defined as the product of total intensities across 

both interrogation regions, ( )jiI ,1  and ( )jiI ,2 that have dimensions M × N. This 

therefore normalises each correlation field by a global constant.  This normalisation 

function will vary between each realisation within a flow field image to account for 

variations in intensity content across each region.  However, if each correlation field 

is normalised by a global constant there is no effect on the shape of the correlation 

functions thus there will be no changes in either the mean bias or RMS error results. 
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2.8.4 Mean image intensity subtraction prior to cross-correlation 

Another method proposed to reduce measurement error is that of subtracting the 

mean image intensity from the first and second interrogation region prior to R(m,n) 

cross-correlation.  The RMS(m,n) method was originally presented by Westerweel 

(1997) and is defined as: 

( ) ( ) ( ) 


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
−−−
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
−=

−

= =

−

∑∑ 22

0 0

11 ,,, InjmiIIjiInmR
M

i

N

j
MS  2.15 

where 
−

1I and 
−

2I are defined as the mean image intensity across the entire first and 

second interrogation regions respectively.   

 

Pust (2000) discussed the calculations for this technique further by stating that the 

average global intensities for each interrogation region 
−

1I and 
−

2I are computed and 

subtracted from each individual intensity values.  If the individual intensity values 

are smaller than the average intensity they are set equal to zero.   

 

In the original investigations by Westerweel (1997) it was stated that this technique 

would provide improvements to the accuracy of measurements.  It was reported that 

this method reduced the mean bias error by suppressing the ‘pyramid’ noise floor.  

Anandarajah (2005) did identify that RMS(m,n) generates a flat correlation noise floor 

by removing the non-uniform weighting of the R(m,n) correlation function, as is 

shown in Figure 2.10. 
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Figure 2.10 RMS(m,n) correlation noise floor 
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However, as section 4.3.3 (p.77) identifies, there are only negligible improvements to 

the accuracy metrics when analysing ‘ideal’ artificial interrogation regions and are 

comparable to SCC results.  This procedure does however improve accuracy over 

that of SCC when quantifying measurements from regions that contain background 

noise.  This is because this method effectively thresholds (at zero) to remove a 

substantial part of the background noise intensities from each individual realisation.  

This method is addressed further in section 5.2.5 (p.120). 
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2.8.5 Normalisation by variance 

One of the first normalisation functions that could compensate for changes in 

brightness across a flow field due to changes in lighting and exposure conditions was 

proposed by Burt et al. (1982).  This was termed the variance normalised cross-

correlation routine, RV(m,n) and is defined as: 
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where 
−

1I and 
−

2I represent the mean intensities across the first and second 

interrogation region respectively.  As the flow field image is divided into 

interrogation regions a mean intensity is calculated across each region.  On cross-

correlation the mean intensity value is subtracted from the pixel values from their 

respective interrogation regions.  This is then normalised by the variance of both 

interrogation regions.  This is intended to account for variations in flow field 

illuminations as a velocity map is calculated.  This point was further highlighted by 

Willert (1996) who stated that the mean image intensity was subtracted to avoid 

changes in the maximum correlation peak height produced from variations in 

illumination across each interrogation regions.   

 

As the function describes a global variance across the interrogation region a global 

constant is provided for normalisation.  As with the normalisation by intensity 

function, described in section 2.8.3, the global variance within each realisation 

(which is directly related to the intensity content) will vary between interrogation 

region pairs, as such this global constant value will change accordingly.  However, 

this consequently provides error plots that are comparable to those generated by 

normalisation by intensity and as such this normalisation function does not provide 

an improvement to either accuracy metric. 

 

The essence of the variance normalised cross-correlation routine proposed by Burt et 

al. (1982) was further enhanced by Fincham and Spedding (1997) and Raffel et al. 

(1998).  Both proposed normalising the correlation field in a similar way but instead 
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of calculating a mean intensity over each region this routine provides a varying 

average for the second region.  This varying mean intensity value is calculated from 

the intensity values that contribute to the correlation and therefore will change for 

each correlation field value.  The mean intensity value for the first region is 

calculated in the same way as the Burt et al. (1982) method.  Raffel et al. (1998) 

reasoned that this normalisation routine should be used because “regions that contain 

more particle images will produce much higher correlation values than regions that 

contain fewer particles.  This makes a comparison of the degree of correlation 

between individual interrogation regions impossible”.  The mathematical definition 

of the variance normalised cross-correlation routine proposed by Fincham and 

Spedding (1997) and Raffel et al. (1998) is defined as: 
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where 1µ  is the mean intensity of the first interrogation region and is calculated only 

once for each realisation analysis and ( )nm,2µ  is the mean intensity of ( )jiI ,2  that 

is coincident with ( )jiI ,1  at position ( )nm,  (i.e. the mean intensity of the second 

region’s contribution to the correlation field.) and is calculated each time the 

coincident area changes.  Mathematically, ( )nm,2µ  is defined as:  
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where A(m,n) is defined in section 2.8.1.  Raffel et al. (1998) further stated that this 

normalisation routine is considerably more difficult to implement using an FFT-

based approach and therefore is subsequently computed directly in the spatial 

domain.   
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Lewis (1995) also proposed a similar normalisation routine to the Fincham and 

Spedding (1997) and Raffel et al. (1998) approach described in equation 2.17.  This 

routine was formulated to track features within an image.  The normalisation routine 

is defined as: 
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where each term has the same meaning as defined by equation 2.17 with the 

exception of the average intensities calculated for the first and second interrogation 

region.  For this routine ( )nm,1µ  is the mean intensity of ( )jiI ,1  that contributes to 

the correlation field and is calculated for each point during cross-correlation and 2µ  

is the mean intensity of ( )jiI ,2  and is calculated once per realisation analysis.  

Figure 2.11 illustrates typical weighting functions for the normalisation procedures 

described in equations 2.17 (Figure 2.11(a)) and equation 2.19 (Figure 2.11(b)). 

(a) (b) 

0
8

16

24

32

8.0x10
5

1.0x10
6

1.2x10
6

1.4x10
6

1.6x10
6

1.8x10
6

0

8

16

24

32

W
e

ig
h

ti
n

g
 F

u
n

c
ti

o
n

 I
n

te
n

s
it

y

y-
pi

xe
ls

x-pixels

 

0
8

16

24

32

8.0x10
4

1.0x10
5

1.2x10
5

1.4x10
5

1.6x10
5

0

8

16

24

32

W
e

ig
h

ti
n

g
 F

u
n

c
ti

o
n

 I
n

te
n

s
it

y

y-
pi

xe
ls

x-pixels
 

Figure 2.11 A typical RV(m,n) weighting function for (a) eq. 2.17 and (b) eq. 

2.19 

The shape of these two normalisation functions is dictated by the intensity 

distribution across each realisation.  Since each realisation contains a random 

distribution of particle images then this distribution is unique to each realisation.  

This variation in the shape of the weighting function per realisation however only 
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provides a small improvement to both accuracy metrics over that of SCC as is 

demonstrated in section 4.3.4 (p.78). 

2.9 Averaging techniques 

Another proposed solution for improving the accuracy of measurements using SCC 

was the development of the averaging techniques.  These improve the SNR and 

thereby can provide high VVD rates but will cause the loss of either the spatial or 

temporal resolution of a flow.  The Hart correlation was one such averaging 

technique (Hart, 1998) whereby at least two correlation fields, generated by the 

cross-correlation of realisations separated by an offset typically of between a quarter 

to half a region width, are multiplied together.   Provided that the location of the 

correlation peak in both fields is the same then multiplication will enhance the signal 

peak over the surrounding noise peaks.  A similar method generates an average 

correlation field from several realisations; this averaging technique is more robust 

than Hart correlation as it is more robust when more realisations are used.  

 

While the Hart correlation improves the SNR within an image the technique was 

extended to generate an average between sequential images; this is known as 

ensemble (temporal) averaging.  This method was designed to reduce the effect of 

background noise from a single PIV image and thereby improve the SNR.  Ensemble 

averaging calculates an average correlation field from the SCC of coincident 

interrogation regions from a series of sequential images.  Although this averaging 

technique provides a mean displacement for a series of sequential interrogation 

regions it is at the detriment of the temporal resolution.  A simple extension to 

ensemble averaging is the single pixel averaging technique (Westerweel et al., 2004).  

Since the SNR for ensemble averaging can be increased by increasing the number of 

images acquired (e.g. increasing the frame rate of acquisition) then it was stated that 

the size of each interrogation region can be subsequently reduced maintaining the 

SNR whilst also retaining the accuracy and improving the spatial resolution.  In some 

instances the size of each region can be reduced to a single pixel yet as is shown in 

section 5.4 (p.144) decreasing the size of an interrogation region has an adverse 

affect on the accuracy of SCC measurements. 
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Although the averaging techniques are commonly used in DPIV results generated 

this way assume a similarity between interrogation regions.  The averaging of 

particle image motion including displacement gradients across and between 

interrogation regions can preclude a meaningful displacement from being obtained 

since noise peaks can unintentionally influence measurements.  Therefore, to 

quantify the systematic errors within DPIV, accuracy metrics are provided from the 

cross-correlation of individual realisations. 

2.10 Summary 

In summary, this chapter has identified that when processing with SCC and 

evaluating displacements with the Gaussian sub-pixel estimator, which are typical in 

DPIV analysis, there is an underestimation in measurements (Figure 2.3(a)) and large 

uncertainties in measurements that results in large RMS errors (Figure 2.3(b)).  

These errors were originally attributed to the non-uniform weighting of the 

correlation noise floor that is generated during cross-correlation.  However, as 

section 2.5 identifies, the shape of the noise floor is not the sole contributor to errors 

within measurements.  When applying iterative correlation methods, also originally 

designed to improve accuracy with SCC, it is shown that these do not improve 

accuracy.  Errors associated to these techniques whilst processing with various cross-

correlation algorithms are reviewed in Chapter 6. 

 

This chapter has introduced several image enhancement techniques and weighting 

functions originally proposed to improve the accuracy of measurements over that of 

SCC by accounting for the shape of the noise floor.  Assessment of the errors 

quantified with these functions is made in Chapter 4.   
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Chapter 3                               

Artificial Image Generation 

3.1 Introduction 

Digital Particle Image Velocimetry (DPIV) is an optical diagnostic tool that can 

provide quantitative velocity statistics over an entire flow field.  Being able to 

generate measurement statistics helps in a wide variety of applications as it allows 

researchers to quantify flow field phenomena, validate and refine Computational 

Fluid Dynamics (CFD) flow models whilst also providing direct engineering design 

solutions.  However, as with all experimental processes, the flow statistics will be 

subjected to the effects of systematic errors that have to be analysed, quantified and 

minimised before any comparison with CFD predictions are made.  Processing 

artificial interrogation regions, or Monte Carlo simulations, provides these 

measurement statistics on a theoretical basis and are used to evaluate the systematic 

errors within DPIV. 

 

Within a simulation all aspects of the artificial regions are controlled.  Each pair of 

artificial regions contains randomly distributed particle images of a known size at a 

specified seeding density.  In order to quantify the systematic errors within DPIV 

evaluation these particle images are subjected to a prescribed uniform displacement 

in the x-direction; this is so that no form of experimental error is present during 

analysis.  The background noise level within each image can also be controlled.  

From this, when realisations are processed, the systematic errors associated with 

cross-correlation can be quantified.  Ultimately, the performance of any processing 

algorithm must be evaluated against actual DPIV data.  However, a theoretical 

understanding provides a good basis for the quantification of the systematic errors 

within DPIV. 

 

This chapter provides details of the model developed to generate data-sets of 

artificial interrogation regions.  This describes the geometry of each artificial particle 
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image, how they are randomly distributed across the first region, the prescribed 

uniform displacement to generate the second region, and then the digitisation of both 

regions.  This chapter also identifies the optimum interrogation region parameters 

with respect to the intensity contain to provide the the most accurate measurement 

statistics from SCC. 
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3.2 Principles of digital particle image velocimetry 

Since its inception, Digital Particle Image Velocimetry (DPIV) has matured into a 

well-established and widely used flow diagnostic technique that is able to provide 

velocity measurements within a two-dimensional flow field.  In a typical DPIV 

experiment, a flow is seeded with a large number of micron-sized tracer particles that 

are assumed to follow the flow dynamics.  The area of flow under examination is 

illuminated with a sheet of light produced by a high-frequency laser. The light sheet 

is formed using a combination of spherical and cylindrical lenses.  A series of 

exposures are then captured over a known time period using a high-speed camera 

focused on the laser plane.  The flow dynamics are calculated using these particle 

image exposures.  The average local velocity within the flow is determined by 

dividing the series of images into a grid of smaller interrogation regions.  Each pair 

of regions from sequential images are processed using cross-correlation to estimate 

the average particle image displacement and hence a local velocity.  Velocity vectors 

are extracted from each pair of regions to build up a flow field velocity map.  

 

Figure 3.1 A typical DPIV experimental setup 

Careful consideration should be given to experimental design and practice.  Although 

considerable effort should be taken to minimise experimental errors, results from the 

utmost designed experiment performed by experienced PIV users will still contain 

systematic errors associated with the standard cross-correlation algorithm. As such a 

robust processing algorithm is required to compensate for their effects. 
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3.3 Seeding particles 

The most critical aspect in the design of a DPIV experiment is the selection of the 

particles used to seed the flow.  Since the flow dynamics are indirectly measured by 

cross-correlating regions of particle images, it is critical to select the correct tracer 

particles.  From a physical perspective a tracer particle should be chosen that is small 

enough to follow the flow dynamics yet not interfere with flow characteristics (Durst 

et al., 1976) but also be large enough to scatter sufficient light for detection (Drain, 

1980).  Specifically, a particle should be chosen where there is a minimum response 

time between particle motion and velocity fluctuations in the flow; these properties 

are governed by the Stokes drag law.  Typically, tracer particles have diameters of 

between 1 and 50µm depending on the fluid properties.  Their size also dictates the 

type of laser that can be used to scatter sufficient light for detection.  Pulsed 

Nd:YAG lasers with a wavelength of 532nm are generally used as these lasers are 

able to deliver high light energy within a short time interval. 

 

From an imaging perspective the particle image size is ultimately determined by the 

magnification of the optical system and this therefore dictates the resolution detail 

within the flow field.  Therefore when exposures of particles within the flow are 

captured, typically using a high-speed CCD camera, the size of each particle image is 

a critical factor in determining accurate measurements.  If the particle image is too 

small digitisation will no longer preserve the true particle image shape.  Cross-

correlation will then bias measurements towards integer pixel displacements.  This is 

referred to as peak-locking (Westerweel, 1997 and Raffel et al., 1998).  Increasing 

the particle image size will increase the intensity content of each particle image yet 

image truncation will generate significant partial image errors (Nogueira et al., 2001 

and Anandarajah, 2005) with standard cross-correlation which subsequently causes 

larger measurement errors.  As a consequence of this, the optimum diameter is 

between 2 to 3 pixels (Raffel et al., 1998) when evaluating with standard cross-

correlation and using a Gaussian sub-pixel estimator to access displacements.  

However, when selecting a tracer particle a balance must be struck between the 

physical and imaging requirement. Usually the physical criteria are maintained to the 

detriment of the imaging requirements which subsequently affects accuracy. 
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The resolution detail of a flow field is also dictated by the size of the interrogation 

region and by the seeding density of the particle images.  To maximise correlation, 

each region should contain sufficient numbers of well defined particle images.  If 

there are insufficient numbers particle images errors will be incurred from an 

inadequate signal-to-noise ratio.  Conversely, if there are too many particle images 

within a region the magnitude of the correlation noise floor will increase; this also 

affects measurements and is discussed in section 3.9.2. 
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3.4 Image processing techniques 

In the early development of PIV, photographic film was used as a means of recording 

flow images.  This was generally regarded as being the best approach due to its high 

spatial resolution capabilities which are typically between 70 to 100 lines/mm.  

Although film is able to yield a high spatial resolution it suffered from two 

significant drawbacks: firstly a time constraint needed to develop the film for 

velocity extraction.  This can be especially time consuming if large amounts of flow 

data has to be collected and analysed.  Secondly, without the use of high-

specification cameras and equipment (Williams et al., 2000) a low frame rate is 

typical, limiting high speed flows to multi-pulsed PIV systems which rely upon 

autocorrelation of single images. 

 

A significant advance in the development of the PIV technique was the shift away 

from photographic film towards digital image capture.  The development of full-

frame charged-couple device (CCD) sensors, complementary metal oxide 

semiconductor (CMOS) arrays and intensified CMOS cameras has transformed the 

accessibility of PIV.  These sensors provide the added advantage of being able to 

process digital images directly in a computer removing developing issues caused by 

film.  A comparison between these three sensory arrays is reviewed by Hain et al. 

(2007).  This gave rise to the term Digital Particle Image Velocimetry (DPIV) that is 

capable of instantaneously quantifying velocity vectors within a flow field.   

 

Although some researchers had been using digital imaging in preference to film for 

years before it gained popularity, many had their reservations over the accuracy of 

using lower resolution exposures produced this way.  Willert and Gharib (1991) and 

Westerweel (1993a) produced results to show that low resolution digital images were 

still capable of producing accurate velocity estimates using digital processing 

algorithms.   

 

As an initial basis, the model was developed to simulate digitised interrogation 

regions that would be typically generated by a CCD or CMOS camera.  The first 

stage is to model a high resolution particle image (section 3.5) and then randomly 
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distribute these high-resolution particle images within each interrogation region to 

simulate particle images within a flow (section 3.6); these are then displaced by a 

known amount to generate the second region before each high-resolution image is 

digitised to simulate typical DPIV images (section 3.7).   

 

Preliminary analysis was conducted using interrogation regions that were 32 x 32 

pixels in size.  This size of region is commonly used in DPIV analysis.  These 

dimensions result from a legacy of FFT processing that constrain interrogations 

regions to have equal dimensions of 2n
 pixels (i.e. 16 x 16, 32 x 32… etc.). In papers 

by Huang et al. (1997) and Anandarajah (2005) it was stated that each region should 

be seeded with 22 particle images each with a diameter of 2.8 pixels.  It was stated 

that using these values avoids errors associated with poor signal-to-noise ratio with 

standard cross-correlation and an inadequate image resolution.  Therefore, for 

preliminary analysis, each interrogation region is seeded with 22 particle images 

each with diameters of 2.8 pixels.  Although assessment is to be made on the 

accuracy performance of processing algorithms each result is dependent on the 

quality of the data used to calculate each displacement.  Therefore section 3.9 

evaluates the particle image size and seeding density to provide optimum imaging 

parameters and thereby minimise the accuracy metrics using the standard cross-

correlation algorithms. 
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3.5 Particle image geometry 

The most critical aspect of artificial image generation is the simulation of each 

particle image.  In an actual DPIV experiment tracer particles that seed the flow are 

typically in the order of microns in size.  These particles are resolved using imaging 

optics and thus each particle image is diffraction limited.  The shape of the 

diffraction limited particle image is commonly referred to as a point spread function 

(PSF) (Goodman, 1968).  As an imaging camera has a circular aperture the PSF is 

observed to have a bright central spot surrounded by much fainter concentric rings 

that spread out indefinitely.  The bright central spot of referred to has the Poisson’s 

ring with the pattern referred to as the Airy distribution. 

 

In order to model each particle image, Airy distribution (in the absence of lens 

aberrations) acquired from a point source has to be considered.  This can be 

mathematically represented by the square of the first order Bessel function: 

 

( ) ( ) 2

1
0

2








=

x

xJ
IxI

 

3.1 

 

Where 0I  is the peak light intensity and ( )xJ1  is the first order Bessel function.  The 

first minima of this function corresponds to the diffraction limited particle image 

diameter (Meinhart et al., 2003) which, for a simple lens system is defined as: 

 

( ) λ#144.2 fMddiff +=
 

3.2 

 

This gives the minimum resolvable size of an image for a given magnification, M, f-

number, f#
, and wavelength, λ. 

 

For an aberration free lens with a focal length f, the image of a small particle at a 

distance iz  between the image plane and the lens and a distance oz  between the lens 

and the object plane has a magnification factor that is given by: 
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Figure 3.2 An optical arrangement 

Where the focal length f, is defined as: 

oi zz
f

11
+=  3.4 

 

For clarity, the f-number, is defined as the ratio of the focal length f, to the aperture 

diameter of the camera D. 

D

f
f =#  3.5 

 

When imaging a spherical particle, the diameter can be approximated using the 

geometric particle diameter (Adrian, 1995). 

 

( ) ( )( )2#2
144.2 λfMMdd pi ++=  3.6 

 

where dp is the physical size of the tracer particle. 

 

When generating artificial particle images the Fraunhofer diffraction pattern that 

governs the particle image intensity distribution can be approximated as a high 

resolution two-dimensional Gaussian intensity profile ( )yxI ,  (Hart, 1998, Huang et 

al., 1997 and Prasad et al., 1992).  This is mathematically expressed by equation 3.7. 
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where the centre of the pixel is located at point ( )00 , yxI and has a maximum 

intensity of 0I  and the particles are randomly distributed over the interrogation 

region (Huang et al., 1997).   iσ  is related to the particle image diameter id  where 

2/ii d=σ .  The diameter id  being defined at e
-½

 of the peak intensity value of the 

Gaussian function applied.  This means that, by definition, the diameter of the 

particle image contains 61% of the total intensity of the Gaussian intensity profile 

within the defined envelope (Willert and Gharib, 1991). 

 

Figure 3.3 shows that the two-dimensional Gaussian intensity profile gives a good 

approximation of the Airy distribution: represented by the square of the first order 

Bessel function.  As such, an artificial particle image which describes a two-

dimensional Gaussian profile can be assumed to be a reasonable approximation with 

regards to the actual case. 

 

Figure 3.3 Approximating the Airy disc with a Gaussian function 
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3.6 Artificial interrogation regions 

Now that the geometry of the particle images has been established (equation 3.7) the 

next stage of artificial interrogation region generation is to randomly distribute high 

resolution particle images throughout an initial 3200 x 3200 pixel region.  For a 

random distribution, the coordinates of each particle image was acquired using a 

random number generator and a high resolution particle image was mapped onto 

each location.  Each particle image location was documented and used to generate 

the second region. 

 

When generating realistic artificial interrogation regions particle image overlap also 

has to be taken into account.  Goodman (1996) and Marxen et al. (2000) stated that 

when this occurs it is a good approximation to assume that the interaction of 

overlapping particle images is additive and therefore the particle image intensities 

can be added together.  Figure 3.4 shows the overlap interaction of two Gaussian 

profiles. 
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Figure 3.4 Intensity levels of overlapping particle images 
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3.6.1 Uniform particle image displacement 

Having created an initial high resolution interrogation region, where each particle 

image position is known, then a second region is required where the particle image 

locations have been shifted by a prescribed displacement.  This generates the second 

interrogation region of the pair, or realisation.  This was achieved by taking the 

coordinate locations of each high resolution particle image from the first region and 

uniformly shifting them in the x-direction by a prescribed amount to generate a 

second set of coordinate locations.  The particle images from the first region were 

displaced by a known distance nd x 10=  where n = 0, 1, 2, 3…80 to provide the 

particle image coordinates for the second region.  This was to simulate a uniform 

particle image displacement across each realisation and data-sets containing a series 

of realisations were modelled for each displacement.  Using the new coordinate 

positions the high resolution particle images were mapped onto a new 3200 x 3200 

pixel interrogation region.  Therefore, when each region is digitised, as detailed in 

section 3.7, displacements describing a resolution of one-tenth of a pixel are 

achieved.  A displacement of one pixel in the high resolution region equates to a 

displacement of one-hundredth of a pixel after digitisation; this is the minimum 

permissible displacement attainable with this model. 

  

(a) Initial 3200 x 3200 pixel region (b) Final 3200 x 3200 pixel region 

Figure 3.5 High resolution interrogation regions experiencing a prescribed 

displacement 

 

 

x-displacement 
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3.7 Digitisation 

When experimental DPIV images are captured, particle images are recorded onto a 

CCD or a CMOS sensor generating a digitised version of the image.  Therefore to 

fully simulate artificial regions the model must be able to replicate images captured 

by a digital imaging sensor. 

 

To achieve this, each high resolution interrogation region ( )yxI hr , , described in 

section 3.6, has to be digitised by integrating the light intensity over one pixel width 

w, to produce a digitised interrogation region ( )jiI n , .  The digitisation of a high 

resolution interrogation region is mathematically defined as: 

( ) ( ) dxdyyxIjiI
w

i

w
i

w
j

wj hrn ,, 2

2

2

2

∫ ∫
+

−

+

−

=  3.8 

The first interrogation region of the pair is referred to as ( )jiI ,1  and the second 

as ( )jiI ,2 . (n refers to the sequential digitised interrogation region and hr refers to 

the high resolution interrogation region)  Therefore each high resolution 3200 x 3200 

pixel interrogation region was digitised to produce a 32 x 32 pixel region.  For initial 

investigations the digitisation was generated using an 8-bit (256 grey-scale) output 

because this format is commonly used in CCD cameras for DPIV experiments.   

  

(a) Initial 32 x 32 pixel region (b) Final 32 x 32 pixel region 

Figure 3.6 Digitised interrogation region pair displaced by a known amount 
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3.8 Background noise 

In ideal conditions the light scattered from tracer particles are captured on a perfectly 

black background.  However, as with any electronic device, imaging sensors are 

subject to electronic noise which will result in random errors during analysis.  A 

major source of this noise considered in this analysis is due to thermal effects and is 

referred to as thermal noise, or dark current noise (Raffel et al., 1998).  Thermal 

noise is caused by the random motion of electrons within the energy wells of the 

imaging device which cannot be separated from those generated by the photoelectric 

effect.  In some instances this can result in weak particle images being 

indistinguishable from noise.  Thermal noise is highly dependent upon the 

temperature of the imaging device to the extent where the rate of generation will 

double for every 6-7
o
C increase in temperature.  This has lead to the development of 

intercooled cameras that minimise the thermal noise output (Raffel et al., 1998).  

However, typical imaging devices remain without intercooling and this noise remains 

as a significant source of random error within DPIV images. 

 

Therefore in order to generate more realistic artificial regions, background noise has 

to be considered and added into each artificial interrogation region.  To provide a 

realistic approach to background noise levels the electronic noise from a high-

resolution CCD camera (PIVCAM 10-30) was measured and then used to compute 

noise statistics.  The electronic background noise measured from the experimental 

image had a mean pixel intensity of 39 and followed the distribution shown in Figure 

3.7.  This noise distribution was then artificially generated and added to each 

artificial interrogation region as Gaussian white noise (GWN) using MATLAB.  

Both the experimental and artificial noise distributions have been normalised by their 

respective maximum values.  This is to ensure that a direct comparison can be made 

between the two distributions. 

 

The mean pixel intensity of 39 equates to a background noise level of approximately 

15% of the total 8-bit output (i.e. 256 grey-scale).  Further to this, other mean 

background noise intensities are calculated for 2%, 5% and 10% of the total 8-bit 
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output while maintaining the variance described in Figure 3.7 and are distributed 

within each data-set. 
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Figure 3.7 Distribution of experimental and artificially generated background 

noise 

The noise distribution generated by the experimental images provides a foundation 

for the background noise intensity for experimental verifications discussed in 

Chapter 71.  

                                                

1 Accuracy metrics generated for various noise distributions whilst maintaining the mean intensity at 

39 pixels (i.e. 15% of the 8-bit output) is given in Appendix I. 
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3.9 Artificial image optimisation 

Huang et al. (1997) and Anandarajah (2005) both stated that each 32 x 32 pixel 

interrogation region should be populated with 22 particle images each with diameters 

of 2.8 pixels.  It was stated that this was to avoid error associated with an insufficient 

signal-to-noise ratio (SNR) and inadequate particle image resolutions resulting in 

peak-locking but gave no basis for these findings.  These values can be used as an 

initial basis for error quantification, but in order to produce the most accurate 

measurement statistics generated by the cross-correlation algorithms with the 

Gaussian sub-pixel estimator, the size and number of particle images in each 

interrogation region must be optimised.   

 

This section evaluates the optimum number of realisations that are required for each 

displacement data-set to provide meaningful error quantifications.  It also details the 

performance of SCC measurement statistics which are used to evaluate the optimum 

particle image size and seeding density for Monte Carlo simulations. 
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3.9.1 Optimum number of realisations 

Using the preliminary size and seeding density values, displacement data-sets 

containing 500 realisations were generated for each uniform displacement ranging 

from zero to 8 pixels at a resolution of one-tenth of a pixel.  Each displacement data-

set was processed using a standard cross-correlation algorithm (FFT with zero 

padding or R(m,n) shown in equation 2.1 and 2.2, p.8-9) and the measured 

displacement determined to sub-pixel accuracy using a three point Gaussian 

estimator (equation 2.3, p.11). To determine the optimum number of realisations 

required for meaningful error quantification different sized data-sets (e.g. 10, 25, 50, 

100 etc. realisations) were randomly taken from the cohort of each displacement 

data-set containing 500 realisations and the mean bias and RMS error were 

calculated for each sample.  Both quantification metrics were then averaged over the 

8 pixel displacement range from which a total error was calculated for each sample 

size and is presented in Figure 3.8.   
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Figure 3.8 Optimising the number of realisations 

Figure 3.8 shows that the total error settles when the sample size is 300 realisations 

or greater.  For smaller sample sizes there are fluctuations in the total error.  This 

indicates that each displacement data-set requires at least 300 realisations to provide 

adequate error statistics. 
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3.9.2 Optimum particle image size 

Now that the number of realisations per displacement data-set is known for 

meaningful error quantification the next stage is to optimise the particle image size.  

This was achieved by altering the model so that each artificial interrogation region 

contained a different sized particle image from the preliminary 2.8 pixel diameter 

example.  As before, displacement data-sets containing 300 realisations were 

generated for each uniform displacement ranging from zero to 8 pixels at a resolution 

of one-tenth of a pixel for each particle image size examined.  These realisations 

were processed using SCC and the measured displacement determined using a three 

point Gaussian sub-pixel estimator.   The total errors for each data-set containing 

different particle image sizes were calculated, as described in section 3.9.1, and the 

results presented in Figure 3.9. 
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Figure 3.9 The optimum particle image diameter 

It is clear that Figure 3.9 indicates that when each realisation contains particle images 

that are between 1.4 and 2 pixels in diameter then the total error is at a minimum.  

This corresponds to the results provided by Raffel et al. (1998).  However, if the 

particle images become too small the measured displacement tends towards integer 

values.  This effect is known as peak-locking and it increases when the particle 

image size decreases; this is highlighted in Figure 3.10(b) which shows the RMS 

error generated when the particle image size is varied.  When the particle image size 

increases this error reduces but consequently measurements are negatively biased 
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away from their actual value (Figure 3.10(a)).  This is covered in more detail in the 

next chapter. 

(a) mean bias error 
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(b) RMS error 
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Figure 3.10 Error plots for various particle image diameters 

Figure 3.10 clearly indicates that calculating the measured displacement using the 

Gaussian sub-pixel estimator is unsuitable for small particle image diameters but is 

more appropriate as the size increases.  Figure 3.10(a) shows that as the particle 

image diameter increases measurements are negatively biased away from their actual 

values.  For smaller particle images the RMS error plot (Figure 3.10(b)) shows a 

distinctive bias towards integer values with smaller particle images which diminishes 

as the particle image size increases.  This is obvious when the particle image 

diameter is less than 2.0 pixels but RMS values still tend towards integer values at a 

particle image diameter of 2.4 pixels.  This bias towards integer values does not arise 
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when the particle image diameter is 2.8 pixels as the Gaussian sub-pixel estimator is 

able to resolve each displacement.  Since there has to be a compromise between the 

two error metrics to provide accurate measurements then small particle images cause 

a peak-locking error and increasing the particle image size increases the 

underestimation in measurements.  From this it is concluded that each artificial 

interrogation region should contain particle images that have a diameter of 2.8 pixels 

as peak-locking errors are not an issue and the resulting mean bias error can be 

tolerated using SCC. 

 

Figure 3.10(a) also identifies a cyclic pattern in the mean bias error that increases in 

amplitude as the particle image size increases.  This cyclic pattern will be discussed 

further in section 4.4 (p.80). 
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3.9.3 Optimum seeding density 

Having established the optimum number of realisation and particle image size the 

final stage is to obtain the optimum particle image seeding density per realisation.  

To achieve this, the model was altered to randomly distribute 2.8 pixel diameter 

particle images at different seeding densities for each data-set.  As with the previous 

sections, displacement data-sets containing 300 realisations were generated for each 

uniform displacement ranging from zero to 8 pixels at a resolution of one-tenth of a 

pixel and the seeding density was varied between data-sets as shown in Figure 3.11.  

Realisations within each data-set were processed using standard cross-correlation and 

the measured displacement determined using a Gaussian sub-pixel estimator.   The 

total errors for each data-set with varying seeding density were calculated, as 

described in section 3.9.1, and the results presented in Figure 3.11. 
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Figure 3.11 Optimising the particle image seeding density 

The figure shows that at low seeding densities the total error is higher than when the 

seeding density is increased.  When the seeding density is between 22 and 30 

particles per region the total error calculated is at a minimum.  This starts to increase 

again when the density reaches 34 particles per region.  Decomposing the total error 

into its constituent metrics (Figure 3.12) reveals the foundations for the increased 

total error at low seeding densities that declines as the density is increased. 
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(a) mean bias error 

0 1 2 3 4 5 6 7 8
-0.06

-0.04

-0.02

0.00

0.02

M
e
a

n
 B

ia
s
 E

rr
o

r 
(p

x
)

Displacement (px)  

(b) RMS error 
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Figure 3.12 Error plots for SCC for various particle image seeding densities  

The figure clearly shows that the mean bias error generated for each seeding density 

level follows the same trend yet fluctuations are more prevalent when the seeding 

density is low.  However, when the RMS error plot is investigated the variations 

between measurements declines with increasing densities. 

 

In previous studies (Huang et al. 1997 and Anandarajah, 2005) it was stated that each 

region should be populated with 22 particle images to avoid errors from a poor 

signal-to-noise ratio (SNR).  When the SNR (equation 2.9, p.14) is calculated for 

each data-set over the 8 pixel displacement range (Figure 3.13) a seeding density of 4 
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particles per region provides the lowest SNR of the seeding densities examined.  This 

is to be expected using the previous assumptions.  However, the highest SNR over 

the 8 pixel range is provided by regions containing 6 particle images.  This then 

declines with increasing seeding density.  
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Figure 3.13 SNR for SCC for various particle image seeding densities 

This is explained by separately considering the average signal and noise levels 

generated during cross-correlation as shown in Figure 3.14.  When regions with low 

seeding densities are cross-correlated few particle images contribute to the 

correlation peak, therefore the peak remains low.  Since the seeding density is low, 

cross-correlation of unrelated particle image pairs will generate a low correlation 

noise floor.  As the seeding density increases the number of particle images 

contributing to the correlation peak increases resulting in a higher correlation peak.  

However, since there are a greater number of particle images in each region the 

correlation noise floor will also increase.  As the seeding density increases the noise 

floor increases at a faster rate than the height of the correlation peak; this causes the 

SNR to decrease at higher densities. 
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(a) average signal values 
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(b) average noise values 
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Figure 3.14 (a) average SCC signal value and (b) average SCC noise value for 

various particle image seeding densities 

This is further highlighted by Figure 3.15 which shows the number of particle images 

that contribute to the correlation peak averaged over the 300 realisation of each 

displacement data-set.  This follows the relationship: 

dispx
width

N
N ×−  3.9 

where N is the seeding density, width is the width of the interrogation region and xdisp 

is the displacement in the x-direction.  Each point in Figure 3.15 is calculated using 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

ARTIFICIAL IMAGE GENERATION 60 

 

the locations of each particle image within the artificial regions.  Assessment can be 

made as to the number of particle images present in either region; this is then 

averaged over each displacement data-set.  
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Figure 3.15 Average number of complete particle image pairs  

The figure shows that, with increasing displacement, the number of particle images 

that contribute to the correlation peak decreases at a higher rate when the seeding 

density is high.  Therefore, in order to provide a constant number of particle images 

per region the number of unrelated particle images has to increase proportionally.  

This will inherently increase the correlation noise floor and hence generate the 

results shown in Figure 3.13. 

 

At low seeding densities, the cross-correlation of randomly distributed particle 

images will cause significant variations in the shape of the correlation peak 

compared to high density regions.  This is illustrated in Figure 3.16 which shows the 

cross-sectional view of the correlation field through the correlation peak to show the 

displacement in the x-direction for regions containing (a) 6 and (b) 22 particles per 

region experiencing an actual uniform displacement of 4.3 pixels.  Each correlation 

field is averaged over results from 300 realisations.  
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(a) 6 particle images per region 
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(b) 22 particle images per region 
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Figure 3.16 Average correlation fields for (a) 6 and (b) 22 particle images per 

region 

The average correlation field is calculated over 300 realisations and then normalised 

against the maximum correlation peak value.  This is so that a direct comparison 

between 6 and 22 particle images per region can be made.  The error bars are 

calculated by normalising each individual correlation peak by the average correlation 

peak value and then determining the standard deviation of the correlation fields.  

 

The figure highlights there is significantly more variation between individual 

correlation fields when the seeding density is low compared to when 22 particle 
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images seed each region.  This is further emphasised in Figure 3.17 which shows the 

distribution of the measured displacements determined using a Gaussian sub-pixel 

estimator for an actual displacement of 4.3 pixels.  

(a) 6 particle images per region 
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(b) 22 particle images per region 
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Figure 3.17 SCC measured displacement distribution for SCC from regions 

with (a) 6 and (b) 22 particle images per region for an actual displacement of 

4.3 pixels 

The figure highlights that at the low seeding density (Figure 3.16(a)) the measured 

displacement distribution is high therefore the RMS error is high (Figure 3.12(b)).  In 

comparison, as the seeding density increases (Figure 3.16(b)) the measured 

displacement distribution decreases generating a lower RMS error. 
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Therefore ideally each region should be populated with 22 particle images as stated 

by Huang et al. 1997 and Anandarajah (2005). Rather than assuming this is to avoid 

errors associated with a poor SNR, it is to avoid variations to the correlation peak 

shape caused by a low seeding density. 
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3.10 Summary 

This chapter has described the model developed to generate data-sets of artificial 

interrogation regions that are used to quantify the systematic errors within DPIV 

analysis.  The same displacement is maintained across each realisation of a data-set 

but the intensity content is varied between each realisation whilst maintaining the 

optimum imaging content criteria.  The model randomly distributes high resolution 

particle images across the first interrogation region; these are then displaced by a 

prescribed amount to generate the second region.  To simulate particle images 

captured on a digital imaging sensor (CCD or CMOS), the high resolution regions 

are digitised to generate artificial region pairs (realisations) whose particle image 

locations can be defined to within one-hundredth of a pixel.  These regions can then 

be used to verify and quantify the systematic errors in DPIV processing. 

 

This chapter has also outlined the optimum parameters needed in order to minimise 

the measurement errors generated by the random distribution of particle images using 

standard cross-correlation.  This has included optimising the number of realisations 

necessary to provide reliable measurement error statistics, the size of particle image 

that should be used and the seeding density.  The following parameters will therefore 

be used when calculating measurement errors. 

• Number of realisations per displacement data-set = 300 

On average, equal numbers of particle images enter into and exit each region 

within a displacement data-set. 

• Particle image diameter = 2.8 pixels 

Avoids errors associated with particle image resolution. 

• Particle seeding density = 22 

Avoids errors caused by low seeding densities causing variations to the 

correlation peak. 

Each of these parameters were calculated using 32 x 32 pixel interrogation regions 

which is a typical size of region used in DPIV analysis.  However, to increase vector 

resolution and avoid errors associated with strong velocity gradients the size of each 

region is reduced.  Therefore in the following chapters, measurement errors are 

calculated using regions that are 32 x 32 pixels in size and smaller. 
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Chapter 4                                

Inherent Error Quantification 

4.1 Introduction 

This chapter assesses the systematic errors associated to DPIV processing using the 

typical processing approach of SCC with a Gaussian sub-pixel estimator to quantify 

measurements.  This extends the original findings of Anandarajah (2005) to show 

that when processing ‘ideal’ artificial interrogation regions (i.e. no background 

noise) the cross-correlation of partial images affects the mean bias error whilst the 

cross-correlation of unrelated particle images affects the RMS error.  Following this, 

the next section provides a comprehensive review of the error quantified using four 

weighting functions that were originally developed to suppress errors and were 

initially introduced in section 2.8 (p.24). The section identifies that the signal 

strength function is the only weighting function that is able to suppressing both 

accuracy metrics when processing ‘ideal’ artificial regions. 

 

Having established which normalisation function provides the most accurate 

measurements, the third section discusses the accuracy of the Gaussian sub-pixel 

estimator to highlight the effect image quality has on measurement statistics.  Here it 

is it is identified that the cross-correlation of regions affects the magnitude of the 

correlation noise floor; this is turn affects the accuracy of measurements.   

 

The final section assesses the accuracy of measurements when background noise 

intensities are added into each interrogation region to generate more realistic 

artificial interrogation regions.  It is shown that the addition of these intensities 

affects both accuracy metrics when processing with SCC yet just the mean bias when 

processing with NSS.  This highlights that background noise leads to a systematic 

error and its presence affects measurements with the current processing algorithms.  
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4.2 Inherent error quantification 

Having established the optimum particle image size and seeding density, data-sets of 

300 realisations containing particle images at the optimum parameters summarised in 

section 3.10 were generated for each actual uniform displacement extending from 

zero to 8 pixels as explained in section 3.6 (p.46).   

 

As a benchmark for error quantification, the mean bias and RMS error were 

evaluated for each uniform displacement using the standard cross-correlation 

routines.  Figure 4.1 shows the mean bias and RMS error plots for FFT without zero 

padding and for the standard cross-correlation routines, SCC (FFT with zero padding 

(eq. 2.1, p.8) or digital direct cross-correlation, R(m,n) (eq. 2.2, p.9) provides 

identical results).  

(a) mean bias error 
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Figure 4.1 Error plots for SCC and FFT without zero padding 
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As section 2.5 (p.15) showed, previous studies into displacement underestimations 

had concluded that the correlation noise floor had contributed to the biases in 

measurements (Raffel et al., 1998).  However, Figure 2.4 revealed that SCC and FFT 

without zero padding resulted in different shaped correlation noise floors yet both 

resulted in negatively biased displacements.  It was therefore stated by Anandarajah 

(2005) that the correlation field characteristics are not the sole contributor to 

measurement biases. 

 

Anandarajah (2005) went on to show that the cross-correlation of partial images 

present at the edge of interrogation regions are a major source of error and it is their 

presence that cause underestimations.  In the original investigation  that shows this 

(Anandarajah, 2005), only the mean bias error plot was calculated for R(m,n) cross-

correlation, overlooking the RMS errors and the error plots from cross-correlation 

via FFT without zero-padding.  Therefore in order to quantify these results the 

original investigation was repeated and extended to include these findings. 

 

As with the original investigation, the model was configured so that only complete 

particle images appear in the first region.  After a displacement, these complete 

images also appear in the second region.  On cross-correlation, a symmetric 

correlation peak will be generated since the two regions will be identical albeit for 

the second region being a shifted version of the first. 

 

To show that the non-uniform weighting of the correlation function has little effect 

on bias the next stage of the investigation introduced a noise floor to the correlation 

field.  This was achieved by distributing an extra 6 unrelated particle images into the 

first and second regions.  This number of additional unrelated particle images was 

chosen because when particle images in the first region are shifted by a quarter of a 

32 x 32 pixel region there are approximately 6 unrelated particle images contained in 

the second region.  It is equivalent to a turbulent flow which introduces a third 

velocity component of unrelated particle images into analysis. 

 

As with the original analysis, displacement data-sets of 300 realisations containing 

complete particle images and also with the additional 6 particle images were 
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generated for a series of uniform displacements as shown in Figure 4.2.  These 

realisations were then processed using SCC and FFT without zero-padding and the 

measured displacement determined using the Gaussian sub-pixel estimator, to 

evaluate the mean bias and RMS errors.  These results are compared to the ‘real’ 

case where artificial regions contain both partial and unrelated particle images, 

(Figure 4.1) and are shown in Figure 4.2. 

(a) mean bias error 
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(b) RMS error 

0 1 2 3 4 5 6 7 8
0.00

0.01

0.02

0.03

0.04

0.05

R
M

S
 e

rr
o

r 
(p

x
)

Displacement (px)  

0 1 2 3 4 5 6 7 8
-0.06

Displacement (px)

  SCC - Complete particle images

  SCC - Complete images with additional uncorrelated particle images

  SCC - 'Real' case including partial and complete particle images

  FFT
w/oZP

 - Complete particle images

  FFT
w/oZP

 - Complete images with additional uncorrelated particle images

  FFT
w/oZP

 - 'Real' case including partial and complete particle images
 

Figure 4.2 Error plots for SCC and FFT without zero-padding for complete 

and partial images 
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The mean bias and RMS error results for the cross-correlation of complete particle 

images and with the addition of 6 extra particle images are identical when processed 

with either SCC or FFT without zero-padding.  This occurs because in these cases 

there are no partial images, therefore when processing using FFT, without zero-

padding, there will be no wrap-around error due to aliasing.  Figure 4.2(a) highlights 

that when only complete particle images are cross-correlated there is a cyclic pattern 

in the mean bias.  This is caused by the cross-correlation of digitised particle images 

and is investigated further in section 4.4.  Figure 4.2(b) shows there is no variation in 

measurements at integer pixel displacements since the particle images in both 

interrogation regions for each realisation are identical and therefore will generate a 

symmetric correlation peak.  Anandarajah (2005) stated that FFT cross-correlation 

fails beyond a displacement of 7 pixels due to the loss of the correlation peak in the 

correlation field.  This is caused by the large particle image displacement within a 

field that is only N x N pixels in size, where N is the size of the interrogation region.  

For FFT cross-correlation: correlation peak detection is limited to displacements of 

less than N/4 pixels (Raffel et al., 1998) and hence a loss of signal starts to occur as 

this displacement limit is approached.  The loss of signal consequently introduces 

erroneous vectors into measurements and therefore causes a significant increase in 

error measurements. When using R(m,n) cross-correlation this effect is negated 

because the correlation field is (2N-1) x (2N-1) pixels in size. Thereby, a correlation 

peak can be located and therefore a displacement estimation can be determined. 

 

It is clear that when complete and unrelated particle images are added into each 

realisation there is little effect on mean bias error.  However the cross-correlation of 

unrelated particle images results in a significant increase in RMS error.  On the 

inclusion of partial images both SCC and FFT without zero-padding produce an 

underestimation in measurements.  This shows that partial imaging rather than the 

weighting of the correlation field affects mean bias error.  The sharp increase in RMS 

error from 0 to ½ pixel displacement for the ‘real’ case is caused by the cross-

correlation of partial images at the edge of each region.  This is followed by a gentle 

increase in RMS error as the number of unrelated particle images within each 

realisation increases but the number of partial images remains constant.  This is 

further illustrated in Figure 4.3 which shows that with increasing displacement the 
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number of particle image pairs, averaged over each displacement data-set, declines 

yet the average number of particle images clipped at the edge of each interrogation 

region remains constant at approximately 2.8 clipped particle images per realisation 

when populated with 22 particle images.  
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Figure 4.3 Average number of complete particle images and clipped particle 

images per realisation with increasing displacement 

The number of particle images that are present in both regions is calculated using the 

randomly generated coordinate locations used to map the position of each particle 

image onto the first interrogation region (see section 3.6.1, p.47). Since the actual 

displacement is known then the addition of this to each coordinate location 

determines whether a particle image will be present in both regions.  The number of 

partial images is determined in the same way but only coordinates located around the 

parameter, at a distance of less than a particle image diameter from the edge of each 

interrogation region are considered.  The average number of particle and partial 

images is calculated over 300 realisations for each displacement data-set. 

 

As has been shown, the random distribution of particle images within an 

interrogation region will result in partial images at the edge of each region.  On the 

cross-correlation of equal-sized regions these partial images will cause an 

underestimation in measurements.  Furthermore, the cross-correlation of unrelated 

particle images will cause an asymmetry in each correlation peak.  As particle 

images are randomly distributed throughout each region then variations in the 
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correlation peak asymmetry within a displacement data-set will result in RMS errors.  

It is therefore necessary to correct for the random distribution of particle images 

which cause underestimations and variations in measurements. 
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4.3 Normalisation of the correlation field 

Each correlation field that is calculated will yield a correlation peak that varies in 

height and shape even when the actual displacement of particle images per 

realisation are equal.  These variations are caused by uneven illuminations across and 

between a pair of interrogation regions (Gonzales and Wintz, 1987), the random 

distribution of particle images per realisation (Anandarajah, 2005) and the addition 

of electronic noise (Raffel et al., 1998) all of which are systematic to flow field 

images.  These uncertainties were a major concern for researchers who regarded 

limiting the variations as an essential part in improving the accuracy of DPIV 

measurements.  It was previously assumed that variations in correlation peak height 

was critical in providing accurate measurements (Raffel et al., 1998), this is incorrect 

as Figure 4.2 identifies, the cross-correlation of interrogation regions that include 

partial images affects the accuracy of results.  However, in order to limit height 

variations using the previous assumptions several normalisation functions were 

devised; the typical shape of each weighting function was examined in section 2.8 

(p.24). This section evaluates the measurement errors obtained by processing ‘ideal’ 

and optimised interrogation regions (see section 3.9, p.51) experiencing a known, 

uniform particle image displacement, in the x-direction at a resolution of one-tenth of 

a pixel, using these normalisation functions.  This is to establish whether a function 

is able to compensate for the systematic variations caused by the random distribution 

of particle images which is an inherent source of error in DPIV analysis. 
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4.3.1 Normalisation by overlapped area 

The error plots provided in Figure 4.4 are calculated using the SCCOA and FFTOA 

algorithms (equation 2.12, p.24) on artificial interrogation regions that contain the 

optimum particle image content.  The displacement from each normalised correlation 

field is evaluated using a Gaussian sub-pixel estimator.  These results are compared 

to those computed by SCC and FFT (without zero-padding) of the same data-sets 

experiencing a uniform particle image displacement in the x-direction. 

(a) mean bias error 
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(b) RMS error 
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Figure 4.4 Error plots for SCCOA and FFTOA compared with SCC and FFT 

As was discussed in section 2.8.1 (p.24) the overlapped area function is identical for 

every realisation analysed.  Figure 4.4(a) shows that when normalising by overlapped 

area there is a reduction in mean bias error in comparison to SCC results.  

Anandarajah (2005) reasoned that this reduction was caused by the weighting of the 

normalisation function.  The SCC fields are pyramid shaped functions, therefore 
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when normalised by overlapped area, that is also a pyramid shape, the resultant 

normalised correlation field will be flat, as was shown in Figure 2.8(a) (p.25). The 

correlation peak is therefore skewed towards the actual displacement to reduce mean 

bias.  The normalisation of the FFT correlation field without prior zero padding 

performs similarly to SCC.  However, results are biased towards larger values.  As 

Figure 2.8(b) (p.25) showed, since the FFT correlation field is flat then normalising 

by overlapped area will generate a ‘valley’ shaped normalised correlation field.  As 

the displacement increases the shape of this correlation noise floor will skew the 

correlation peak towards larger values and hence produce a positive mean bias error. 

 

Although normalising by overlapped area provides an improvement to mean bias it 

offers no reduction in RMS error as Figure 4.4(b) shows.  Anandarajah (2005) stated 

that normalising by overlapped area effectively normalises each point of the 

correlation field by a local constant, hence reduces the mean bias error by 

compensating for the shape of the correlation noise floor.  This assumes a uniform 

distribution of particle images across an interrogation region, which in reality there is 

not.  Normalising by area also does not account for the asymmetry of the correlation 

peak caused by the random distribution of particle images hence the normalised 

results are identical to those produced from their respective SCC routines. 
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4.3.2 Normalisation by signal strength 

This comparative study provided by Figure 4.5 shows error plots for NSS and FFTSS 

(equation 2.13, p.26), using the optimum artificial interrogation regions that describe 

a uniform particle image displacement.  These results are compared with their 

respective standard cross-correlation routines.  

(a) mean bias error 
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Figure 4.5 Error plots for NSS compared with SCC 

The mean bias plot of Figure 4.5(a) shows that normalising the correlation field by 

the signal strength is able to compensate for the presence of partial images and hence 

reduce mean bias error.  The normalisation of the FFT correlation field without prior 

zero padding performs similarly to the other two routines but as with normalisation 

by overlapped area results are biased towards larger values.  An explanation for this 

is given in section 2.8.1 (p.24) concerning the shape of the FFT correlation field 
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(Figure 2.4(b), p.17) and the shape of the signal strength weighting function (Figure 

2.9, p.26).   

 

As well as providing an improvement to mean bias, this normalisation function also 

provides a reduction in RMS error.  In effect, this function is able to correct for the 

random distribution of particle images within each interrogation region that causes 

measurement variations and hence suppress RMS errors.  The signal strength 

function is unique to a realisation because it is calculated as the sum of the pixel 

intensities in the overlapped area which is different for each realisation.   This means 

that NSS is able to compensate for the presence of partial images to reduce mean 

bias.  It is also able to account for the asymmetry of the correlation peak caused by 

the cross-correlation of unrelated, randomly distributed particle images to reduce 

RMS error. 
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4.3.3 Mean image intensity subtraction prior to cross-correlation 

Figure 4.6 compares the error plots generated through RMS(m,n) (section 2.8.4, p.29) 

with that of SCC using the optimised artificial interrogation regions detailed in 

section 3.9 (p.51) where each displacement data-set describes a uniform particle 

image displacement.  
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Figure 4.6 Error plots for RMS(m,n) compared with R(m,n)  

Although RMS(m,n) generates a flat correlation noise floor (Figure 2.10, p.29) it is 

clear from Figure 4.6 that RMS(m,n) is unable to significantly reduce either the mean 

bias or RMS error results when compared to results generated through SCC.  

Subtracting the mean intensity of the interrogation regions prior to cross-correlation 

is therefore unable to account for the random distribution of particle images and 

hence does not reduce measurement errors when analysing ‘ideal’ artificial 

interrogation regions. 
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4.3.4 Normalisation by variance 

The mean bias and RMS error plots shown in Figure 4.7 have been calculated using 

the normalisation by variance functions described in section 4.3.4 (p.78).  These are 

compared to SCC and RMS(m,n) results generated in section 4.3.3.  
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Figure 4.7 Error plots for normalisation by variance 

Figure 4.7 highlights that each of the normalisation by variance functions outlined in 

section 4.3.4 (p.78) outperforms the standard R(m,n) cross-correlation algorithm to 

produce improved mean bias and RMS errors.  The normalisation algorithms 

suggested by Fincham and Spedding (1997) and Raffel et al. (1998) as well as the 

one devised by Lewis (1995) do go some way to improving both the mean bias and 

RMS error but not to the same extent as NSS (Figure 4.5).  If the variance functions 
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expressed in equations 2.17 and 2.19 are compared to the signal strength function of 

equation 2.13 it can be seen that both functions make use of the intensities within 

each interrogation region.  The variance functions calculate a global variance for one 

of the regions with the other one being used to calculate a local variance for the area 

that contributes to each point of the correlation field.  Signal strength is calculated as 

a local summation of intensities from within the area that contributes to each point of 

the correlation field from both regions.  This means that the signal strength function 

is able to compensate for the random distribution of particle images across an 

interrogation region as they are the only source of intensities within ‘ideal’ regions 

and hence improves both accuracy metrics.  As functions described by equations 

2.17 and 2.19 calculate a global variance from one of the region they are only able to 

partially compensate for the random distribution of particle images, thereby are 

unable to provide the same level of accuracy as shown by the NSS function in Figure 

4.5. 

 

In summary, it is clear that NSS provides the greatest improvement to accuracy for 

all of the normalisation functions that have been reviewed in this section.  This 

function is able to compensate for the presence of partial images as well as the cross-

correlation of unrelated particle images to reduce both the mean bias and RMS error 

metrics to a greater extent than the other routines. 
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4.4 Digitisation and the accuracy of the Gaussian sub-pixel 

estimator 

Figure 4.1(a) shows a cyclic pattern in the mean bias error with increasing particle 

image displacement.  This cyclic pattern is produced by the cross-correlation of 

digitised particle images.  To identify this, Figure 4.8 shows the average correlation 

magnitudes for the correlation peak (maximum value) and the magnitudes of the 

values to the left and to the right of the peak; these values are used by the sub-pixel 

estimators to calculate the position of the correlation peak as the uniform particle 

image displacement increases in the x-direction.  The values are calculated by 

averaging the magnitudes from each correlation field within each displacement data-

set generated from the SCC of regions containing only complete particle images, 

thereby negating errors associated with partial images.  When regions containing 

only complete particle images are cross-correlated a symmetric Gaussian correlation 

peak will be generated; each interrogation region pair are identical albeit for the 

second region being a shifted version of the first.  
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Figure 4.8 Average correlation values for the three central correlation peak 

points from the cross-correlation of complete particle images (seeding density: 

22) 

Error bars are included in Figure 4.8 to quantify the variations in individual 

correlation peaks used to calculate the average correlation peak values.  The variation 

in individual correlation peaks in this instance is caused by the random distribution 

of particle images within each interrogation region.  At integer pixel displacements 
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both regions within each pair are identical therefore SCC of these ‘ideal’ artificial 

regions will produce a symmetric correlation peak.  Figure 4.8 shows this as the 

values to the right and left of the correlation peak are of equal magnitude; this 

corresponds to points of zero mean bias error at integer pixel displacements as shown 

in Figure 4.2(a).  Over a pixel displacement there is a second point where zero mean 

bias error occurs; this is at half-pixel displacements.   Figure 4.8 shows that at half-

pixel displacements, on average, the two values either side of the correlation peak 

have equal magnitude; this results in a symmetric correlation peak and hence a point 

of zero mean bias error.  However, when considering an individual correlation field 

for half-pixel displacements the peak is generated over two points.  For this to occur 

the magnitude of one of the neighbouring values (either the right or left point) will be 

equal to or slightly less than the correlation peak value.  This variation is dependent 

on the cross-correlation of randomly located particle images and results in individual 

correlation peaks being either positively or negatively skewed at half-pixel 

displacements.  This corresponds to the point of maximum RMS error in Figure 

4.2(b) (complete particle images) but, on average, will result in zero mean bias error 

when all measurements within the displacement data-set are considered. 

 

Although Figure 4.2(a) shows that measurements are underestimated for sub-half 

pixel displacements and overestimated thereafter (until integer pixel displacements), 

Figure 4.8 indicates that the cyclic mean bias error pattern should be inverted.  The 

results for Figure 4.8 are independent of the Gaussian sub-pixel estimator yet the 

figure clearly shows that as the displacement increases towards the half-pixel 

displacement the value to the right of the correlation peak is greater than the value to 

the left.  Therefore there should be a positive skew in displacements yet when using 

the Gaussian estimator a negative skew is shown.  After the half-pixel displacement 

point the value to the left of the correlation peak is greater than the value to the right 

and therefore the correlation peak is negatively skewed.  Again, when using the 

Gaussian estimator a positive skew is shown.  This shows that the cross-correlation 

of unrelated particle images not only affects RMS errors but also the direction of the 

mean bias error oscillation when measurements are calculated using the Gaussian 

sub-pixel estimator. 
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To demonstrate that the cross-correlation of unrelated particle images affects the 

mean bias oscillation a new data-set of artificial realisations were generated; each 

containing just one complete particle image with a diameter of 2.8 pixels.  The 

position of the particle image was randomly varied between realisations and particle 

image clipping was avoided from each region.  Displacement data-sets containing 

300 realisations were generated for each displacement from zero to 1 pixel at a 

resolution of one-tenth of a pixel.  The measured displacement was then evaluated 

with SCC and a Gaussian sub-pixel estimator used to calculate the sub-pixel location 

of each correlation peak.  Figure 4.9(a) shows the mean bias error plot generated 

from the cross-correlation of a single particle image and Figure 4.9(b) shows the 

corresponding average peak intensity value plot over the one pixel displacement 

range.  

(a) mean bias error 
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Figure 4.9 (a) mean bias error and (b) average correlation values for the three 

central correlation peak points from the cross-correlation of single particle 

images 
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The error bars are included in these plots to quantify the variations between 

individual correlation peaks; this dictates the variation in individual displacement 

values used to calculate the mean bias error.  It is evident that on the cross-

correlation of realisations that contain single particle images the direction of the 

mean bias error oscillation (Figure 4.9(a)) corresponds to the correlation peak 

intensity plot (Figure 4.9(b)).  As has previously been stated, the cross-correlation of 

unrelated particle images introduces a correlation noise floor into each correlation 

field.  This is attributed to an increase in the pixel intensities contributing to each 

point of the correlation field, thereby increasing the correlation peak height but also 

the surrounding correlation noise floor. 

 

To show that the correlation noise floor affects the mean bias error oscillation Figure 

4.10 presents the error plots generated from the SCC of data-sets containing varying 

particle image densities per realisation.  The particle image densities used in this 

analysis are 1, 6, 14, 22 and 30 particle images per 32 x 32 pixel interrogation region 

and each region is modelled so that it only contains complete particle images.  

Displacement data-sets containing 300 realisations were generated for each 

displacement from zero to 1 pixel at a resolution of one-tenth of a pixel for each of 

the particle image densities.  
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(a) mean bias error 
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Figure 4.10 Error plots for SCC of complete particle images with varying 

particle image density (Interrogation region: 32 x 32 pixels)  

Figure 4.10(a) clearly shows that as the particle image density increases between 

data-sets there is an inversion of the mean bias error oscillation.  A particle image 

density of 6 particle images per interrogation region provides a negligible mean bias 

error across the one pixel displacement range.  As the particle image density 

increases passed 6 particle images per realisation then there is an increase in the 

amplitude of the mean bias error oscillation.  Figure 4.10(b) shows there is zero RMS 

error at integer pixel displacements.  In both instances the intensity content of both 

regions are identical although at 1 pixel displacement the second region is a shifted 

version of the first.  As the particle image density increases there is little discernable 

difference in RMS error with increasing displacement.  However, as is expected the 

maximum RMS error occurs at the half-pixel displacement point.  As has been 
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previously stated, the point of maximum RMS error at this displacement is caused by 

the sensitivity of the Gaussian sub-pixel estimator resulting from minor variations in 

the correlation peak shape at this displacement. 

 

Figure 4.11 provides (a) an average SCC signal plot and (b) average SCC noise plot 

for each displacement data-set over a one pixel displacement range for each of the 

particle image densities.  

(a) average signal 
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Figure 4.11 (a) average signal value and (b) average noise value for various 

complete particle image seeding densities 

The figure shows that as the particle image density increases between data-sets the 

average signal value per data-set increases and this is coupled with an increase in the 

average correlation noise value.  This is to be expected since increasing the particle 
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image density increases the number of particle image intensities that can contribute 

to the correlation field.  This increases both the correlation peak magnitude and the 

correlation noise floor generated by the cross-correlation of unrelated particle 

images.  Although previous assumptions have stated that maximising the SNR will 

improve accuracy (Raffel et al., 1998) Figure 4.10 and Figure 4.12 clearly show that 

this is not the case.  
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Figure 4.12 Average SNR for various complete particle image seeding densities 

As the particle image density is increased there is a decline in the average SNR; this 

coincides with an inversion and an increase in the amplitude of the mean bias error 

oscillation. 

 

The inversion and increase in the amplitude of the mean bias error oscillation is 

credited to a decrease in the ratio between the three central values of the correlation 

peak.  This is caused by an increase in the magnitude of the correlation noise floor 

generated by the cross-correlation of unrelated particle images as the seeding density 

increases.  Figure 4.13 demonstrates that as the magnitude of the correlation noise 

floor increases, the ratios between the three central correlation peak values declines 

thereby affecting accuracy.  The figure shows a cross-sectional view through the 

correlation peak as it displaces in the x-direction.  These fields are averaged over 300 

realisations for a displacement of 0.3 pixels in the x-direction as the number of 

complete particle images per region is increased. 
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(a) Cross-section of the correlation field (b) Normalised correlation field 

Figure 4.13 Cross-sectional correlation fields describing an x-direction 

displacement of 0.3 pixels using SCC for various particle image seeding 

densities 

Figure 4.13(a) shows that the magnitude of the correlation field increases as more 

pixel intensities contribute in cross-correlation.  So that each correlation peak can be 

compared, Figure 4.13(b) shows the normalised correlation values calculated from 

the correlation values provided in Figure 4.13(a).  The normalised correlation values 

are calculated by normalising each point from each average correlation field by its 

maximum value.  

 

From Figure 4.13(b) it is clear that as the magnitude of the correlation noise floor 

increases the ratios between the three central correlation peak values decreases; when 

evaluating displacements with the Gaussian sub-pixel estimation this causes the 

mean bias error oscillation to invert and then increase in amplitude.  In reality the 

number of particle images within each region changes and therefore the magnitude of 

the noise floor will vary; consequently the oscillation in mean bias error will increase 

or decrease accordingly. 

 

The same principle applies when evaluating the accuracy of measurements using 

interrogation regions populated with particle images of various sizes.  To show this, 

data-sets of realisations containing 22 complete particle images were generated for 

each displacement between zero and one pixel at a resolution of one-tenth of a pixel.  

The particle image diameter for each data-set is varied so that particle images with 
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diameters of 2.4, 2.8, 3.2, 4.2 and 5.6 pixels are used per data-set.  Figure 4.14 shows 

the error plots generated from the SCC of these data-sets.  

(a) mean bias error 
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Figure 4.14 Error plots for SCC of complete particle images for various 

particle image sizes (32 x 32 pixels)  

Figure 4.14(a) highlights that as the particle image size increases the mean bias error 

oscillation also increases in amplitude.  This corresponds to the results shown in 

Figure 4.10(a) where the oscillation increases as the cross-correlation of unrelated 

particle images increases, adding to the correlation noise floor.  The increase in the 

oscillation amplitude in this instance is due to increasing the intensity content of each 

particle image.  Therefore, cross-correlation of unrelated particle images will provide 

an additional contribution to the correlation noise floor.  As the particle image size 

increases the correlation peak will subsequently broaden.  This will result in the 

correlation peak being described over more points on the correlation field and 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

INHERENT ERROR QUANTIFICATION 89 

 

consequently the ratios between the three correlation peak values used to evaluate the 

sub-pixel displacement will decline and thereby affect accuracy.   

 

As with the previous example of Figure 4.13, Figure 4.15 also shows that as the 

magnitude of the correlation noise floor increases, the ratios between the three 

central correlation peak values used to evaluate the sub-pixel displacement in the x-

direction declines, this subsequently effects accuracy using the Gaussian estimator.  

The figure describes the cross-sectional view through the correlation peak to show 

the x-direction displacement; each field is averaged over 300 realisations for a 

displacement of 0.3 pixels in the x-direction as the particle image size per region is 

increased, whilst maintaining the seeding density at 22 particles per region 
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(a) Cross-section of the correlation field (b) Normalised correlation field 

Figure 4.15 Cross-sectional correlation fields describing an x-direction 

displacement of 0.3 pixels using SCC for various particle image sizes 

It is clear from Figure 4.15, when increasing the particle image size more pixel 

intensities will contribute to the correlation peak and hence as was previously 

discussed this decreases the ratios between the three central correlation peak values 

used to evaluate displacements and subsequently effects the amplitude of the mean 

bias error oscillation as is shown in Figure 4.14(a). 

 

As Figure 4.10 and Figure 4.14 show, increasing the intensity content of each 

interrogation region increases the amplitude of the mean bias error oscillation.  If the 

background noise distribution discussed in section 3.8 (p.49) is approximated as a 

uniform distribution (e.g. a 15% background noise equates to a global addition of 39  
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to each pixel value provided the total intensity does not exceed 255) then the same 

effect on the mean bias error oscillation occurs, as is shown in Figure 4.16. 

 

Figure 4.16 provides the mean bias and RMS error plots generated from the SCC of 

data-sets containing 22 complete particle images per realisation whilst increasing the 

background noise intensity between data-sets.  The uniform background noise 

intensity added to each data-set is 0%, 2%, 5%, 10% and 15% of the maximum 8-bit 

output.  Displacement data-sets containing 300 realisations were generated for each 

displacement from zero to 1 pixel at a resolution of one-tenth of a pixel for each 

background noise intensity.  

(a) mean bias error 
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Figure 4.16 Error plots for SCC of complete particle images for various 

background noise intensities (32 x 32 pixels)  

Figure 4.16(a) identifies that although the amplitude of the mean bias error 

oscillation increases as the background noise intensity increases, it also introduces a 
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negative bias into measurements.  This addition of underestimations to measurements 

can be explained through comparing the correlation peaks generated in Figure 4.13 

and Figure 4.15 with those generated as the background noise intensity increases as 

shown in Figure 4.17. 

 

Figure 4.17(a) shows the cross-sectional view through the correlation peak to show 

the x-direction displacement.  Each field is averaged over 300 realisations for a 

displacement of 0.3 pixels in the x-direction and the background noise intensity is 

increased up to 15% of the total 8-bit output.  So that a comparison can be made 

between these correlation fields, Figure 4.17(b) provides the normalised correlation 

field values. 
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(a) Cross-section of the correlation field (b) Normalised correlation field 

Figure 4.17 Cross-sectional correlation fields describing an x-direction 

displacement of 0.3 pixels using SCC for various background noise intensities 

Comparing the normalised correlation fields generated in Figure 4.13(b), Figure 

4.15(b) and Figure 4.17(b) with their respective mean bias error plots, it is evident 

that the addition of background noise increases the magnitude of the correlation 

noise floor to a greater extent than increasing the seeding density (Figure 4.13(b)) or 

increasing the particle image diameter (Figure 4.15(b)).  Although increasing the 

seeding density and the particle image diameter generates a pyramid shaped 

correlation noise floor its presence in these cases does not cause measurements to be 

underestimated.  The addition of background noise generates a significant pyramid 

correlation noise floor therefore when a correlation peak is added it will be biased 

away from the actual measurement as is shown in Figure 4.17(a). 
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In summary, this section has shown that the Gaussian sub-pixel estimator is capable 

of providing accurate measurements when applying the estimator to symmetric 

Gaussian correlation peaks from regions that contain 6 complete 2.8 pixel diameter 

particle images.  However, since each interrogation region contains randomly 

distributed particle images, this means that the cross-correlation of partial images 

results in measurement underestimations (Figure 4.2(a)) and the cross-correlation of 

unrelated particle images results in measurement variations (Figure 4.2(b)).  The 

cross-correlation of unrelated particle images also introduces a correlation noise floor 

into each correlation field; it is this that affects the ratios between the three 

correlation peak values used to define the sub-pixel location of the correlation peak.   

 

As the intensity content per realisation increases the magnitude of the correlation 

noise floor will increase (Figure 4.11(b)), this decreases the ratio between the three 

central correlation peak values (Figure 4.13 and Figure 4.15).  As the ratios decrease, 

firstly there is an inversion of the mean bias error oscillation, this subsequently 

increases in amplitude as the correlation noise floor increases (Figure 4.10) which 

therefore affects accuracy.  The presence of a correlation noise floor generated by the 

cross-correlation of unrelated particle images is inherent to each correlation field.  

Therefore its effect on accuracy cannot be removed without affecting other aspects 

such as impeding the particle image size or resolution. The same effect also occurs 

when regions containing larger particle images are cross-correlated.  This will cause 

the correlation peak to broaden decreasing the ratio between the three central points 

of the correlation peak and therefore increasing the amplitude of the mean bias error 

oscillation.  When partial images are included in analysis, larger particle images will 

generate greater PIE caused by the cross-correlation of partial images that have a 

more significant contribution to the total intensity values, as is shown in Figure 3.12 

(p.57). This will increase measurement underestimations and a decrease in the ratio 

between the three central values will increase the amplitude of the mean bias error 

oscillation.  Each region should therefore contain particle images of optimum size.   

 

Underestimations will also arise when background noise intensities are added into 

each region.  As Figure 4.16(a) shows, when analysing regions that contain only 

complete particle images the addition of background noise will also negatively bias 
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measurements because the cross-correlation of background noise intensities 

contribute to the pyramid-shaped correlation noise floor.  Therefore when analysing 

realistic artificial interrogation regions, the cross-correlation of partial images will 

cause underestimations which will subsequently be compounded by background 

noise. 

4.5 Evaluation of artificial regions containing background noise 

As was shown in section 4.2, partial images at the edge of an interrogation region 

will negatively skew the correlation peak to underestimate measured displacements.  

The cross-correlation of unrelated particle images will also cause variations in the 

shape of each correlation peak resulting in RMS errors.  The cross-correlation of 

background noise in each interrogation region was also shown to affect 

measurements resulting in underestimations (Figure 4.16(a)). 

  

Huang et al. (1997) and Anandarajah (2005) proposed normalising each correlation 

field by the signal strength that contributes to each point of the correlation field to 

account for the random distribution of particle images within each realisation.  Figure 

4.5 showed that this approach provided an improvement to both the mean bias and 

RMS errors over other normalisation techniques.  However, these results were 

generated by analysing ‘ideal’ artificial regions that do not contain background noise 

which is inherent to real DPIV images.  This section identifies that the addition of 

background noise affects the accuracy of measurements when processing with either 

SCC or NSS.  

 

To highlight the effect of background noise on the performance of SCC and NSS, 

artificially generated Gaussian white noise (GWN), as described in section 3.8 

(p.49), was added into each artificial interrogation region using MATLAB.  Data-sets 

of realisations containing background noise with mean intensities of 2%, 5%, 10% 

and 15% of the total 8-bit output were generated for a series of prescribed uniform 

particle image displacements using the optimum realisation parameters outlined in 

section 3.9 (p.51) whilst maintaining the distribution described in Figure 3.7 (p.50)2. 

                                                

2 Appendix I shows that it is the mean and not the variance that affects results. 
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Figure 4.18 shows the error plots generated for SCC and NSS from the data-sets 

containing background noise at different intensities.  

(a) mean bias error 
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Figure 4.18 Error plots for SCC and NSS with increasing background noise 

intensities (32 x 32 pixels) 

It is clear from Figure 4.18(a) that as the mean background noise intensity increases 

the amplitude of the mean bias error oscillation increases for both SCC and NSS.  

However, Figure 4.18(b) shows that although SCC generates larger RMS errors with 

increasing background noise, variations remain relatively constant when the same 
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data-sets are analysed with the NSS algorithm.  The next section provides an 

explanation as to why there is an increase in the mean bias error amplitude for the 

two processing algorithms but only SCC provides a significant increase in RMS 

errors with increasing background noise intensity. 

4.5.1 SCC and NSS with background noise 

Figure 4.19 shows the cross-sectional view through the correlation peak to show the 

x-direction.  Each correlation field is averaged over 300 realisations using (a) SCC 

and (b) NSS for each of the mean background noise intensities.  The displacement 

data-set is experiencing a uniform particle image displacement of 4.3 pixels in the x-

direction.  The figure clearly shows that increasing the background noise intensity 

increases the height of the correlation field noise floor for both SCC and NSS.    

(a) SCC 

(i) cross-sectional correlation field (ii) Normalised correlation field 
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(b) NSS 
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Figure 4.19 Average correlation fields with varying background noise 

describing an x-direction displacement of 4.3 pixels for SCC and NSS 
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Figure 4.19(ai) also shows there is an increase in correlation peak height with 

increasing background noise intensity.  This is attributed to an increase in pixel 

intensity values contributing to each point of the correlation field; this thereby 

increases the correlation peak height and the surrounding noise floor values.  The 

increase in the mean bias error amplitude (Figure 4.18(a)) can be credited to a 

decrease in the ratios between the three central values of the correlation peak; this is 

clearly shown in Figure 4.19(aii) which shows the normalised cross-section of the 

correlation field through the correlation peak.  An increase in the correlation noise 

floor will also negatively bias measurements away from their actual values; this 

further contributes to the underestimations also caused by partial images.  On the 

application of NSS the random distribution of particle image intensities across each 

interrogation region are compensated for thereby removing the effects of partial 

images that cause underestimations.  However, background noise intensities remain 

within analysis which affects the ratios between the three central points of the 

correlation peak Figure 4.19(bi); this results in an increase to the mean bias error 

oscillation amplitude.    

 

On examining Figure 4.19(a) and Figure 4.19(b) with Figure 4.18(a) decreasing the 

ratios between the three correlation peak values causes the mean bias error 

oscillation amplitude to increase.  As was stated in section 4.4 this is ultimately 

caused by an increase in the magnitude of the correlation noise floor initially 

generated by the cross-correlation of unrelated particle images but this is added to by 

increasing the background noise intensity. 

 

The decrease in the ratio between correlation peak values with increasing 

background noise intensity will also increase measurement uncertainties (RMS 

errors) for SCC as is highlighted in Figure 4.18(b).  This is further illustrated in 

Figure 4.20 which shows the cross-sectional view through the correlation peak in the 

x-direction and is averaged over 300 realisations for regions containing (a) no 

background noise and (b) a mean background noise intensity at 15% of the total 8-bit 

output whilst experiencing an actual uniform displacement of 4.3 pixels in the x-

direction and processed using SCC.  The variations between individual correlation 
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peaks over the 300 realisation data-set are also shown in Figure 4.20 as deviation 

error bars. 
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Figure 4.20 Average SCC correlation fields for a 4.3 pixels displacement with 

error bars 

The error bars indicate there is significant deviation in the shape of individual 

correlation peaks; the decrease in the ratio between adjacent correlation peak values 

with increasing background noise intensity amplifies this variation.  Therefore any 

sub-pixel estimator used to measure displacement will generate significant RMS 

errors.  This is typical of all displacements processed using SCC.  As the background 

noise intensity increases Figure 4.18(b) shows that SCC provides greater RMS 

errors; this is coupled with a cyclic ‘beating’ pattern that provides errors that are 

smaller at integer pixel displacements and higher at half-pixel values.  This cyclic 

pattern was identified by Huang et al. (1997) and Anandarajah (2005) where it was 

reasoned that this occurs because at half-pixel displacements the correlation peak is 

centred between two points on the correlation field.  The cross-correlation of the 

additional background noise will skew the correlation peak either positively or 

negatively from the mean displacement, thereby generating the cyclic ‘beating’ 

pattern.  This is evident in Figure 4.21 which compares the measured displacement 

distribution generated using SCC for an actual displacement of 1 pixel with the 

distribution generated for an actual displacement of 1.5 pixels when the mean 

background noise intensity is (a) zero and (b) at 15% of the total 8-bit output.  
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(a) ‘ideal’ regions (b) 15% background noise 
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Figure 4.21 SCC measured displacement distribution for actual displacements 

of 1.0 pixel and 1.5 pixels (bin size: 0.05 pixels) 

The figure identifies that as the displacement increases from 1 to 1.5 pixels the RMS 

error increases regardless of background noise intensity; this is to be expected since 

there is an increase in the number of unrelated particle images per realisation with 

increasing displacement.  With the addition of background noise the RMS error 

increases.  When each region is cross-correlated the background noise skews each 

correlation peak generating large variations in measurements.  This coincides with 

the measured displacement distribution shown in Figure 4.21 and the RMS error plot 
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of Figure 4.18(b).  At a displacement of 1.5 pixels (and for each half-pixel 

displacement thereafter) the RMS error is at a cyclic peak which corresponds to 

results from Figure 4.18(b).  Since the correlation peak is situated between two 

points on the correlation field then the additional background noise has an added 

influence on the magnitude of variations.  Correlation fields experiencing half-pixel 

displacements will have peaks that are subjected to the greatest deviations generating 

the measurement variations; this is highlighted in Figure 5.7 which results from the 

additional background noise intensities.  At half-pixel displacements the correlation 

peak is defined over two points; this inherently skews the correlation peak either 

positively or negatively and results are exacerbated by the cross-correlation of the 

additional background noise. 

 

As was stated previously, normalising the SCC field by the signal strength 

compensates for the random distribution of particle images across each interrogation 

region to reduce underestimations and variations between measurements.  As Figure 

4.18(b) shows, NSS also compensates for the addition of background noise to 

maintain a consistent RMS error with increasing noise intensity. This is because the 

technique normalises by the pixel intensities that contribute to each point of the 

correlation field thereby compensating for both particle image distribution and the 

additional background noise.  Although increasing the magnitude of the correlation 

noise floor subsequently increases the mean bias error oscillation, the variations 

between measurements remains small when compared to the SCC results. 

 

This is illustrated in Figure 4.22 which shows the cross-sectional slice through the 

correlation peak in the x-direction that is averaged over 300 realisations and contains 

(a) no background noise and (b) a mean background noise intensity of 15% of the 

total 8-bit output whilst experiencing an actual uniform displacement of 4.3 pixels in 

the x-direction and processed using NSS.  The variations between individual 

correlation peaks over the 300 realisation displacement data-set are also shown in 

Figure 4.22 as deviation error bars. 
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Figure 4.22 Average NSS correlation fields for a 4.3 pixels displacement with 

error bars 

The figure highlights that when processing with NSS, variations between 

measurements will remain small thereby suppressing RMS error.  This confirms the 

findings of Figure 4.18(b).  The cyclic RMS error pattern shown with SCC 

processing is also evident for NSS when the mean background noise intensity 

reaches 15% of the total 8-bit output.  As with SCC at half-pixel displacements the 

NSS correlation peak is centred between two points on the correlation field therefore 

measurements are skewed either positively or negatively generating greater RMS 

errors at these points.  However, since NSS accounts for changes in pixel intensity 

across each interrogation region to suppress RMS error then the cyclic pattern is less 

prevalent. 

 

In summary, processing regions that contain background noise will increase the 

amplitude of the mean bias error oscillation.  This is caused by an increase in the 

magnitude of the correlation noise floor that decreases the ratios between correlation 

peak values.  The decrease in the ratio between the three correlation peak points will 

also increase measurement variations when processing with SCC.  NSS provides an 

improvement in RMS error because this normalisation function accounts for 

variations in the pixel intensities across an interrogation region that contributes to the 

correlation field.  Processing this way is therefore able to compensate for the random 

distribution of particle images as well as background noise to reduce measurement 

variations.  However, at higher mean background noise intensities (i.e. 15% of the 
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total 8-bit output) the cyclic RMS error pattern shown with SCC is also apparent 

with NSS processing but to a much lesser extent.  Although NSS is able to account 

for measurement variations the amplitude of the mean bias error oscillation increases 

as the background noise intensity increases.  A robust processing algorithm that 

compensates for this is discussed in the next chapter. 
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4.6 Summary  

This chapter has outlined that the cross-correlation of partial images causes 

measurement underestimations and the cross-correlation of unrelated particle images 

cause measurement variations.  It has also been demonstrated that the mean bias 

error oscillation is caused by a decline in the ratio of the three central points of the 

correlation peak used by the Gaussian sub-pixel estimator to define the location of 

the correlation peak.  This decline is caused by an increase in the intensity average of 

each interrogation region which increases the magnitude of the correlation noise 

floor. 

 

The performance of several processing algorithms designed to improve measurement 

error statistics have also been reviewed and assessed.  The accuracy metrics for each 

algorithm is provided by processing data-sets of ‘ideal’ artificial regions 

experiencing a known uniform particle image displacement.  With the previous 

assumption that the non-uniform weighting of the correlation function causes 

measurement uncertainties (Raffel et al., 1998) it was shown that normalisation by 

overlapped area reduces mean bias error by skewing the correlation peak back 

towards the actual displacement yet was unable to suppress RMS errors.  

Normalising by a global constant (i.e. by intensity), to account for variations in 

correlation peak height provides no improvement to either accuracy metric over SCC 

results.  Mean subtraction prior to R(m,n) cross-correlation (RMS(m,n)) is also shown 

not to be able to suppress measurement error statistics.  It was also established that 

normalisation by variance was able to only partially compensate for the systematic 

errors resulting in improvement to both metrics over SCC results yet 

underestimations in measurements remain.  It was identified that NSS is the preferred 

normalisation function when quantifying errors using ‘ideal’ artificial regions.  This 

normalisation function compensates for changes the in seeding density across an 

interrogation region to account for the partial images that cause measurement 

underestimation and the cross-correlation of unrelated particle image that cause RMS 

errors. 
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Section 4.4 identified that increasing the particle image seeding density and particle 

image size affects the magnitude of the mean bias error oscillation and therefore the 

optimum interrogation region properties (summarised in section 3.10) must remain.  

The addition of background noise intensities (Figure 4.16) increases the mean bias 

error oscillation but also contributes to the underestimations in measurements. 

 

When processing ‘realistic’ interrogation regions (i.e. those that contain partial 

images and background noise) SCC provided worse accuracy metrics (Figure 4.18) 

yet NSS processing only affected the mean bias error oscillation.  It is proposed that 

the increase in mean bias error oscillation is caused by a decrease in the ratios 

between the three central points of the correlation peak used to determine 

measurements in the x-direction.  An increase in measurement uncertainties are 

contributed to the ratio decline in conjunction with the variations in the asymmetry of 

the correlation peak when processing with SCC.  Since NSS accounts for the 

asymmetry of the correlation peak to suppress RMS error then only an increase in the 

magnitude of the mean bias error will remain. 

 

The next chapter examines image enhancement techniques that can be used to 

remove background intensities prior to cross-correlation.  From this, a new robust 

processing algorithm is proposed that accounts for the systematic errors that cause 

measurement uncertainties with other algorithms without prior knowledge of the 

region’s quality or mean intensity. 
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Chapter 5                                            

A New Robust Processing Algorithm 

5.1 Introduction 

The detailed review of each processing algorithm provided in the previous chapter 

identified that NSS is able to suppress both accuracy metrics to the greatest extent of 

the normalisation functions over SCC when processing ‘ideal’ regions.  This algorithm 

compensates for the random distribution of particle images across each region to skew 

the correlation peak back towards the actual displacement whilst also reducing the 

variation in the asymmetry of each peak caused by the cross-correlation of unrelated 

particle images.  On the addition of background noise intensities, to model more 

realistic regions, it was shown that this unfavourably affects the accuracy metrics when 

processing with either SCC or NSS. 

 

This chapter assesses the accuracy metrics generated through SCC and NSS processing 

whilst using image enhancement techniques, which are proposed to suppress the 

presence of background noise intensities. It is shown that these methods do suppress 

background noise yet prior knowledge of the quality of each region is required before 

accuracy metrics can be quantified.  Following this, a new robust processing algorithm 

has been developed that accounts for the systematic errors that cause measurement 

uncertainties with other cross-correlation algorithms, and does not require prior 

knowledge of each region to provide accurate measurements.  This novel approach is 

called: mean intensity subtraction prior to R(m,n) cross-correlation normalised by 

signal strength, RMSSS(m,n) and is calculated in the spatial domain.  This algorithm takes 

advantage of the signal strength function to account for the random distribution of 

particle images and also the subtraction of mean intensities within the overlapped area 

which accounts for the background image noise. 

 

The error statistics for the processing algorithms are presented for a series of uniform 

particle image displacements.  Data-sets of realisations are generated using the 
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optimum region criteria outline in section 3.9 (p.51) whilst varying the background 

noise intensity.  In addition, error plots are also generated from processing 16 x 16 

pixels interrogation regions maintaining the same seeding density, particle image size 

and background noise intensity levels as used for the larger region analysis.  

 

5.2 Compensating for the correlation noise floor 

In the previous chapter it was revealed that the addition of background noise increased 

the amplitude of the mean bias error oscillation whilst also affecting the RMS error 

when processing with SCC.  Although NSS also generated mean bias error results with 

an increased amplitude compared to the ‘ideal’ case, RMS error results are suppressed 

since the weighting function suppresses the variations in the asymmetry of the 

correlation peak.  It was shown that increasing the background noise increased the 

correlation noise floor and subsequently reduced the ratio between correlation peak 

values which are used to evaluate displacements.  Section 2.7 (p.22) identified some 

image enhancement techniques that can be applied to regions prior to cross-correlation.  

This section evaluates the accuracy of SCC and NSS by subtracting the average 

background noise across each region, applying a pixel threshold value to regions and 

subtracting a local average intensity from within a kernel of varying size. 

Measurements are evaluated using regions that contain a mean background noise 

intensity of 15% of the total 8-bit output.  These enhancement techniques were 

developed to reduce variations between measurements yet it is also apparent that these 

three processes reduce background noise through subtraction.  A robust processing 

algorithm is subsequently introduced that is able to compensate for mean background 

noise intensities of up to 15% of the total 8-bit output as well as the random distribution 

of particle images to provide accurate results without prior knowledge of the 

background noise intensity. 

5.2.1 Average background noise subtraction 

Fore et al. (2005) proposed subtracting an average background noise image to account 

for background noise intensities that affect measurements.  This is obtained by 

averaging the background noise intensities over series of images that do not contain 

particle images.  Although the background noise intensities from an individual image 
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can be used for subtraction an average background noise intensity function is usually 

calculated.  This is because although the background noise distribution across each 

region may be the same, individual pixel values within each region will be different.  

The average background noise intensity function can be calculated spatially from each 

interrogation region across an image or temporally between sequential interrogation 

regions.  Spatial average background subtraction can be used in image enhancement if 

there is uniform background noise across an image.  When background noise intensities 

are spatially averaged, provided that the average is calculated over a sufficient number 

of regions, each pixel value of each interrogation region is subtracted by a global 

constant.  Fore et al. (2005) stated that at least 50 interrogation regions should be used 

for averaging.  If there is a large differential in the background noise intensity across an 

image then temporal averaging of the background noise should take precedence.  This 

means that an average background noise intensity function is calculated over sequential 

regions.  If there is a differential in the background noise intensity across an 

interrogation region then temporal averaging will also compensate for this by 

subtracting local average background intensity values from each point as is highlighted 

in section 5.2.4. 

 

Figure 5.1 provides the mean bias error and RMS error plots for SCC and NSS when 

the average background noise is subtracted from each region within prior to analysis.  

The average background noise is calculated over 50 interrogation regions; each of 

which contain a mean background noise intensity of 15% of the total 8-bit output and 

describe the distribution illustrated in Figure 3.7 (p.50). This provides an average 

background noise field which can be simply subtracted from each region prior to cross-

correlation.  Average background noise subtraction results are compared to the 

accuracy metrics generated by processing ‘ideal’ regions and regions that contain a 

mean background noise intensity at 15% of the 8-bit output. 
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Figure 5.1 Error plots comparing ‘ideal’ region and 15% background noise 

results with mean background image subtraction for SCC and NSS (32 x 32 

pixels) 

The results from Figure 5.1 show that for artificially generated realisations, average 

background noise subtraction prior to cross-correlation suppresses the background 

noise intensities to generate accuracy metrics that are comparable to the ‘ideal’ results.   
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5.2.2 Image thresholding 

One of the simplest ways to remove background noise is to apply a global threshold 

across an interrogation region (Dellenback et al., 2000).  To apply a relevant threshold, 

region pre-processing is required to obtain a background noise intensity value for both 

the first and second region.  This can be achieved by calculating the distribution of the 

pixel intensities within each respective region.  As with average background noise 

subtraction, a threshold value can be calculated either individually, per interrogation 

region, or averaged spatially across an image or temporally, between sequential 

interrogation regions. 

 

Since background noise follows a Gaussian distribution, an initial threshold should 

approximate the maximum value of the noise distribution of the region.  Figure 5.2 

presents the average error plots as the global threshold value is increased from an initial 

pixel intensity of 40 to an intensity of 70 when each region has a mean background 

noise intensity of 15% of the total 8-bit output.  The resulting interrogation regions are 

processed with SCC and NSS. 
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(a) average mean bias error 
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(b) average RMS error 
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Figure 5.2 Average error plots for thresholded images comparing SCC and NSS 

results 

The average error plots are calculated by averaging the respective accuracy metrics 

over the 8 pixel displacement range.  The error bars provided with each averaged 

metric represents the variation in measurements (standard deviation) over the 8 pixel 
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range.  The dashed lines represent the extent the average errors deviate by for when 

‘ideal’ regions and regions containing a mean background noise at 15% of the 8-bit 

output are processed with SCC and NSS. 

 

The average error plots shown in Figure 5.2 shows that by applying a threshold to 

regions containing background noise does not return the accuracy metrics to levels 

quantified when processing ‘ideal’ regions.  When providing analysis with a threshold 

for regions that contain mean background noise intensities at 15% of the total 8-bit 

output it is reasonable to assume that a pixel value of 50 will be adequate to remove all 

background noise prior to analysis.  The distribution of the background noise is shown 

in Figure 3.7 (p.50); this figure identifies that over 300 realisations the background 

noise distribution does not exceed a pixel value of 50.  Although applying a threshold 

to regions prior to analysis does improve the accuracy over regions where no threshold 

is applied, a definitive threshold level that suppresses errors cannot be achieved in a 

single-pass (i.e. in one cross-correlation process).  At least two or more passes are 

required to identify the threshold level that will provide the best accuracy.  If the 

threshold level is too low significant levels of background noise will remain to detract 

from the accuracy of measurements.  If the level is too high the threshold will start to 

impinge on the intensity content of particle images and thereby introduce peak-locking 

from inadequate particle image resolution. 

 

In brief, the accuracy of measurements can be improved if a threshold is applied to each 

region to account for the presence of background noise.  However, the optimum 

threshold level has to be iterated towards to obtain the most accurate measurements. 

For experimental analysis this is not possible without calibration.  
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5.2.3 Kernel subtraction 

Rather than adjusting pixel intensities within each interrogation region using global 

statistics, as was proposed with other enhancement methods, kernel subtraction prior to 

cross-correlation obtains local statistics from within a given region (kernel) centred 

around each point of each interrogation region.  The average intensity value, calculated 

within each kernel, is subtracted from the region pixel value around which the kernel is 

centred.  Therefore this method does not require spatial or temporal averaging statistics, 

rather local intensity statistics across each region are calculated.  Raffel et al. (2007) 

stated that each local region should be larger than the particle image diameter yet small 

enough to eliminate spatial variations in background noise.  Therefore Figure 5.3 

presents the average error plots when the average intensities are subtracted using 

kernels that are 5 x 5, 9 x 9, 13 x 13, 17 x 17 and 25 x 25 pixels in size when each 

region has a mean background noise intensity of 15% of the total 8-bit output.  The 

resulting interrogation regions are processed with SCC and NSS.  Each value is 

calculated in accordance with the average error plot of Figure 5.2.  
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Figure 5.3 Average error plots for kernel subtraction comparing SCC and NSS 

results 

The average error plots of Figure 5.3 identifies that as the kernel size increases the 

average mean bias error plot improves and provides mean bias errors that are 

comparable to those achieved through ‘ideal’ region processing when 25 x 25 pixel 
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kernels are used.  However this is at the detriment of RMS error that deteriorates with 

increasing kernel size regardless of which processing algorithm is used.  

 

The next section examines the effect a background noise differential across each 

interrogation region has on errors quantified using these image enhancement techniques 

whilst processing with SCC and NSS. 

5.2.4 Image enhancements with background noise variations 

The previous section provided errors quantified through image enhancement of regions 

that were processed with SCC and NSS to measure displacement.  Each region 

contained a mean background noise distribution described by Figure 3.7 (p.50) that 

equates to 15% of the total 8-bit output.  It was shown that each technique goes some 

way towards improving accuracy of results by removing background noise intensities.  

It was also identified that NSS provided better measurement statistics than SCC when 

background noise is suppressed because the algorithm compensates for the random 

distribution of particle images across each region including the presence of partial 

images that have an adverse effect on measurements.  Errors quantified in this section 

are generated from artificial regions that have a step increase in the mean background 

noise intensity from 2% to 15% of the total 8-bit output as is illustrated in Figure 5.4.  

Displacement data-sets of artificial regions experiencing a uniform particle image 

displacement of up to 8 pixels are populated with the optimum imaging parameters are 

generated to contain this background noise intensity.  Half of each region contains a 

mean background noise intensity of 2% with the other half containing a mean 

background noise at 15% of the total 8-bit output and describing the distribution 

provided in Figure 3.7 (p.50). This models a background noise differential across each 

interrogation region and therefore temporal average is required. 

 

Figure 5.4 An interrogation region containing a step change in background noise 

from 2% to 15% 

2% 15% 
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Figure 5.5 provides the mean bias error and RMS error plots generated by processing 

with SCC and NSS over a series of uniform particle image displacements for when an 

average background noise region is subtracted from each region within each 

displacement data-set.  The average background noise region is calculated over 50 

interrogation regions, which represents a temporal average across each region and 

between sequential regions.  Average background noise subtraction results are 

compared to the SCC and NSS accuracy metrics generated by processing ‘ideal’ 

regions and regions that mean background noise intensities at 15% of the total 8-bit 

output.  
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Figure 5.5 Error plots comparing ‘ideal’ region results and variations in 

background noise intensity across each region (2% and 15%) with mean 

background image subtraction for SCC and NSS (32 x 32 pixels) 
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The error plots generated in Figure 5.5 show that for artificially generated images, 

average background noise subtraction prior to cross-correlation suppresses the 

background noise intensities even when there is a background noise step increase 

across each interrogation region.  Therefore the image enhanced error plots generate 

accuracy metrics that are comparable to their respective ‘ideal’ results for both 

processing algorithms.  When there is a background noise differential across regions 

the average background noise intensity function compensates for this by subtracting 

local average background intensity values from each point across the region thereby 

suppressing background noise. 

 

Although these error plots show a significant improvement from the background noise 

accuracy metrics toward the ‘ideal’ results it is noted that this image enhancement 

technique is dependent upon the background noise intensity being identical between 

and across images containing only background noise and those including particle 

images.  The distributions can be controlled during artificial region generation and 

analysis but experimentally this is a lot harder to achieve.  Variations in light intensity 

from each laser pulse, as well as misalignment, will affect the average background 

intensity function.  This subsequently results in some background noise intensities 

being present in each region and consequently detracts from the accuracy of 

measurements.  

 

Figure 5.6 presents the average error plots as the global threshold value is increased 

from an initial pixel intensity of 40 to an intensity of 70 when each region has a mean 

background noise step increase from 2% to 15% of the total 8-bit output.  The resulting 

interrogation regions are processed with SCC and NSS. 
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(b) RMS error 

40 50 60 70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
v
e

ra
g

e
 R

M
S

 e
rr

o
r 

(p
x
)

Threshold Level (px)  

-0.15

-0.10

 SCC  NSS

   Average error

                    Average error variation

                    'ideal' average error

                    'ideal' average error variation

                    15% background noise average error

                    15% background noise average error variation  

Figure 5.6 Average error plots for thresholded images with varying the 

background noise across each region (2% and 15%) comparing SCC and NSS 

results 

The average error plots provided by Figure 5.6 shows that by applying a threshold to 

regions containing background noise does not return the accuracy metrics to levels 
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quantified with ‘ideal’ regions.  Since thresholding in its simplest form is a global 

image enhancement technique then this, as with the average error plots generated from 

thresholding regions that contain a mean background noise intensity of 15% of the total 

8-bit output (Figure 5.2), will require an initial threshold value of 50 to remove all 

background noise prior to analysis.  As was stated when uniform background noise 

distributions were analysis, applying a threshold to regions prior to analysis does 

improve the accuracy over regions where no threshold is applied.  However, applying a 

threshold of 50 to the area of the region experiencing a mean background noise 

intensity of 2% will introduce peak-locking into analysis. The threshold level will start 

to impinge on the intensity content of each particle image.  This will therefore generate 

a significantly larger RMS error than when a mean background noise intensity of 15% 

of the total 8-bit output is distributed across each region as is shown by comparing 

Figure 5.2(b) with Figure 5.6(b). 

 

Figure 5.7 presents the average error plots when the average intensities are subtracted 

using kernels that are 5 x 5, 9 x 9, 13 x 13, 17 x 17 and 25 x 25 pixels in size when each 

region has a mean background noise intensity increase from 2% to 15% of the total 8-

bit output.  The resulting interrogation regions are processed with SCC and NSS.  
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Figure 5.7 Average error plots for kernel subtraction with varying the mean 

background noise across each region (2% and 15%) comparing SCC and NSS 

results 

Figure 5.7(a) identifies that as the kernel size is increased from 5 x 5 pixels towards 25 

x 25 pixels there is an underlying underestimation in measurements.  This shows that 

kernel subtraction prior to cross-correlation is not the preferred technique when there is 
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a background noise step increase across each interrogation region.  This is also evident 

in Figure 5.7(b) which shows a deviation away from ‘ideal’ RMS error results and a 

deterioration in results presented in Figure 5.3 when each region contains a mean 

background noise intensity of 15% of the 8-bit output. 

 

In summary, this section has examined the effect three image enhancement techniques 

have on the quantification of error statistics when processing with SCC and NSS.  It has 

been shown that average background noise subtraction and global thresholding provide 

accuracy metrics that are comparable to ‘ideal’ results.  However, background noise 

image subtraction is dependent on the background noise regions having an identical 

background noise as the regions that contain particle images.  When applying an image 

threshold, a definitive threshold level that minimises errors cannot be achieved in a 

single-pass.  Although kernel subtraction is not dependent on these relationships the 

enhancement technique is able to suppress uniformly distributed background noise 

across each interrogation region.  However, there is an underlying underestimation in 

measurements when a step increase in the background noise intensity is present across 

an interrogation region; therefore this is not a preferred image enhancement technique 

for DPIV prior to processing each interrogation region. 

 

The next section will identify and examine a new, robust processing algorithm that is 

able to compensate for background noise intensities, including noise differentials (step 

increases), to provide error plots that are comparable to those generated through NSS 

processing of ‘ideal’ artificial regions without requiring prior knowledge of the image 

quality. 
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5.2.5 Mean intensity subtraction prior to cross-correlation, RMS(m,n) 

Westerweel (1997) initially introduced the processing algorithm ‘mean intensity 

subtraction prior to cross-correlation’ (expressed in equation 5.1) as a method of 

providing accurate measurements over that of SCC.  Section 2.8.4 (p.29) identified that 

this processing algorithm did not significantly improve either accuracy metric when 

analysing ‘ideal’ artificial interrogation regions.   
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This processing algorithm subtracts a global mean intensity value from each point 

within an interrogation region; if an individual intensity value within an interrogation 

region is smaller than the average intensity the point is set to zero (Pust, 2000).  

Provided that the background noise intensity is less than the average value the 

background noise can be regarded as being zero and therefore does not contribute to the 

correlation field.  Figure 5.8 shows the error plots generated when processing 

interrogation regions with varying levels of background noise per data-set for a series 

of uniform particle image displacements using RMS(m,n). These results are compared to 

those generated using SCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

A ROBUST PROCESSING APPROACH 121 

 

(a)  mean bias error 

0 1 2 3 4 5 6 7 8
-0.20

-0.15

-0.10

-0.05

0.00

0.05

M
e

a
n

 B
ia

s
 E

rr
o

r 
(p

x
)

Displacement (px)  

(b) RMS error 

0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

R
M

S
 E

rr
o

r 
(p

x
)

Displacement (px)  

0 1 2 3 4
-0.20

-0.15

-0.10 Noise     SCC     R
MS

(m,n)

  0%               

  2%               

  5%               

  10%             

  15%             

 

Figure 5.8 Error plots comparing SCC with RMS(m,n) with increasing 

background noise intensities (32 x 32 pixels) 

The figure clearly shows an improvement to both accuracy metrics on the application 

of RMS(m,n) when analysing artificial regions that contain background noise.  The 

algorithm successfully compensates for background noise to provide an accuracy that is 
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consistent with the results generated through SCC of ‘ideal’ regions.  Therefore 

subtracting the mean intensity prior to cross-correlation is a more robust approach to 

DPIV processing over the standard procedures as it is able to compensate for the 

inclusion of background noise intensities in interrogation regions. 

 

RMS(m,n) calculated by subtracting a global mean intensity from each point of across an 

interrogation region assumes that the background noise is uniformly distributed over 

each region.  In reality there are variations in the distribution of background noise 

across each region that affects the quality of the image being analysed.  Therefore, 

rather than subtracting a global mean intensity from each region an alternative solution 

is proposed.  This involves calculating a local mean intensity from within the 

overlapped area as each point of the RMS(m,n) correlation field is computed.  This 

means that any local variations in intensity are accounted for and then subtracted from 

each pixel that contributes to each point of the correlation field.  The approach of 

calculating a local mean intensity within the overlapped area is also consistent with the 

computation of the signal strength function; this calculates the signal intensity within 

the overlapped area to account for variations in pixel intensities across an interrogation 

region and has been shown to improve both accuracy metrics.  The method of 

normalising the RMS(m,n) correlation field with signal strength is studied further in 

section 5.2.6.  Figure 5.9 shows the error plots generated from regions containing a 

mean background noise intensity at 15% of the total 8-bit output processed with 

RMS(m,n)global (global mean intensity subtraction) and RMS(m,n)local (subtraction of the 

mean intensity within the overlapped area) and are compared to SCC results from 

‘ideal’ artificial regions. 
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Figure 5.9 Error plots comparing SCC (0% background noise) with RMS(m,n)global 

and RMS(m,n)local (15% background noise) (32 x 32 pixels)  

The figure clearly shows that a mean background noise intensity of 15% of the total 8-

bit output is suppressed using both RMS(m,n) methods to provide error plots that are 

consistent with the SCC results from ‘ideal’ artificial regions.  Figure 5.9(b) also 

highlights that RMS error is marginally improved if the local mean subtraction 

approach is used.  For this reason and because calculating a local mean intensity within 

the overlapped area is justified by the computation of the signal strength function (also 

calculated within the overlapped area) then this method is used here on in.  

Nevertheless, although RMS(m,n) is able to suppress background noise to provide error 
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plots consistent with the SCC of ‘ideal’ regions this algorithm is not able to compensate 

for the random distribution of particle images.  This is shown in Figure 5.9(a); all 

displacements are underestimated indicating that partial images are not accounted for 

when using RMS(m,n).  Figure 5.9(b) provides a higher RMS error than that of Figure 

4.5 (p.75) where the variations caused by the cross-correlation of unrelated particle 

images are accounted for by the signal strength function.  The next section introduces 

an improved and robust processing algorithm able to suppress both the background 

noise and the random distribution of particle images across each interrogation region.  

It is shown that this new technique is able to provide accuracy metrics that are 

comparable to NSS results computed using ‘ideal’ interrogation regions (Figure 4.5) for 

regions that contain various background noise intensities. 
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5.2.6 Normalising the RMS(m,n) correlation field by signal strength 

The previous section proposed that mean intensity subtraction prior to cross-correlation 

could compensate for background noise within each interrogation region.  This routine 

however could not compensate for the random distribution of particle images that also 

affects the accuracy metrics.  However, their presence is compensated for if the 

correlation field is normalised by the signal strength that contributes to each point of 

the correlation field.  Therefore this section introduces an improved and robust 

processing algorithm that is able to compensate for both background noise and the 

random distribution of particle images.  This routine is termed mean intensity 

subtraction prior to R(m,n) cross-correlation normalised by signal strength, RMSSS(m,n) 

and is defined as: 
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where A denotes the overlapped area between I1 and I2 as the correlation field is 

generated.  The mean intensity values ( )nmI ,1

−

and ( )nmI ,2

−

 are defined as the mean 

intensities from regions ( )jiI ,1  and ( )jiI ,2 .  These mean intensity values are calculated 

for each point that contributes to the correlation field (i.e. within the overlapped area).  

If, on subtraction of the mean intensity from each individual value results in an 

intensity that is less than zero then the intensity for that point is set to zero (Pust, 2000).  

As with section 4.3.2 (p.75), the signal strength function is defined as the sum of the 

particle image intensities within the overlapped area between regions ( )jiI ,1  and 

( )jiI ,2  as cross-correlation commences in the spatial domain.   
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Figure 5.10 compares the error plots generated when ‘ideal’ artificial interrogation 

regions (no background noise) are processed using SCC, NSS and RMSSS(m,n) for a 

series of uniform particle image displacements. 
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Figure 5.10 Error plots comparing SCC, NSS and RMSSS(m,n) (32 x 32 pixels) 

The error plots show that NSS and RMSSS(m,n) have comparable mean bias error results.  

This occurs because the signal strength function, in both instances, compensates for the 

presence of partial images that cause the underestimation in measurements.  When 

investigating the RMS error plots for each routine it is clear that NSS fractionally 

outperforms RMSSS(m,n) to generate lower RMS errors.  However both techniques 

correct for the random distribution of particle images that causes measurement 
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variations.  The slight increase in RMS error when processing with RMSSS(m,n) is 

caused by the subtraction of the local mean intensity value from within the overlapped 

area.  This affects the Gaussian intensity distribution of each particle image which 

subsequently causes a slight increase in RMS error. 

 

The advantage of analysing with RMSSS(m,n) becomes apparent when processing 

artificial regions that contain various intensities of background noise as described in 

section 3.8 (p.49).  The mean bias and RMS error plots for this analysis are presented in 

Figure 5.11.  As was discussed in section 4.5 (p.93), the addition of background noise 

causes large deviations in the mean bias cyclic pattern for both SCC and NSS, yet 

RMSSS(m,n) does not provoke such a response.  
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(a) mean bias error 

0 1 2 3 4 5 6 7 8
-0.20

-0.15

-0.10

-0.05

0.00

0.05

M
e
a
n

 B
ia

s
 E

rr
o

r 
(p

x
)

Displacement (px)  

(b) RMS error 

0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

R
M

S
 E

rr
o

r 
(p

x
)

Displacement (px)  

0 1 2 3 4 5

-0.06

-0.04

M
e
a
n

 B
ia

s
 E

rr
o

r 
(p

x
)

Displacement (px)

Noise     SCC         NSS       R
MSSS

(m,n)

  0%                       

  2%                       

  5%                       

  10%                     

  15%                      

Figure 5.11 Error plots comparing SCC, NSS and RMSSS(m,n) with increasing 

background noise intensities (32 x 32 pixels) 

The next section identifies why RMSSS(m,n) is a robust processing algorithm able to 

provide accuracy metrics that are comparable to those generated through NSS 

processing of ‘ideal’ regions when background noise intensities are introduced. 
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5.2.7 RMSSS(m,n) with background noise 

Figure 5.12 shows the cross-sectional view through the RMSSS(m,n) correlation peak in 

the x-direction and is averaged over 300 realisations for when the mean background 

noise intensity is increased.  The displacement data-set is experiencing a uniform 

particle image displacement of 4.3 pixels in the x-direction.  Unlike the average 

correlation peaks processed using SCC and NSS (Figure 4.19, p.95) which showed an 

increase in the magnitude of the correlation noise floor with increasing background 

noise intensity, this processing algorithm suppresses the correlation noise floor as the 

background noise intensity increases. 
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Figure 5.12 Average RMSSS(m,n) correlation field with varying background noise 

When using RMSSS(m,n), the average correlation energy has the same magnitude 

regardless of the background noise.  This is shown in Figure 5.12 as both the noise 

floor and the correlation peak magnitude are maintained at approximately the same 

level as the background noise intensity increases.  This is typical for all x-direction 

displacements since the error plot in Figure 5.11 shows negligible mean bias 

oscillation.   

 

As was stated previously, normalising the SCC field by the signal strength compensates 

for the random distribution of particle images across each interrogation region to reduce 

variations between measurements.  As Figure 5.11(b) shows, NSS also compensates for 

the addition of background noise with respect to the RMS error results. This is because 

the technique normalises the correlation field by the pixel intensities that contribute to 
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the field, therefore compensating for both particle image distribution and the additional 

background noise.  Although the addition of a correlation noise floor subsequently 

increases the mean bias error oscillation, the variations between measurements remains 

small when compared to SCC results. 

 

This is illustrated in Figure 5.13; this shows the cross-sectional view through the 

correlation peak to show the x-direction displacement and is averaged over 300 

realisations for (a) no background noise and (b) a mean background noise intensity at 

15% of the total 8-bit output whilst experiencing an actual uniform displacement of 4.3 

pixels in the x-direction and processed using RMSSS(m,n).  The variations between 

individual correlation peaks over the 300 realisation data-set are also shown in Figure 

5.13 as deviation error bars. 
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Figure 5.13 Average RMSSS(m,n) correlation fields for a 4.3 pixels displacement 

with error bars 

The figure highlights that with increasing noise intensity the magnitudes of the 

correlation peak and the noise floor are maintained.  This thereby maintains the ratios 

between the three correlation peak values used to calculate the sub-pixel location of the 

correlation peak.  The figure also illustrates that the variation in correlation peak shape 

remains similar with increasing displacement.  This is demonstrated by the similar 

magnitudes of the error bars used to describe the deviation in correlation field values 

over the 300 realisations.  The consistent variation between data-sets with increasing 

background noise intensity is shown across all displacements in Figure 5.11(b) as an 
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RMS error comparable to that generated by the NSS algorithm.  Also, since the 

RMSSS(m,n) algorithm compensates for background noise, the cyclic RMS error 

‘beating’ pattern identified with SCC and NSS with increasing background noise 

intensity is now negligible. 

 

In summary, this section has shown that RMSSS(m,n) is a robust algorithm able to 

provide accuracy metrics for a series of mean background noise intensities of up to 

15% of the total 8-bit output, that are comparable to processing ‘ideal’ artificial regions 

using NSS.  The algorithm suppresses the increase in the correlation noise floor that, in 

this instance, is caused by the addition of the background noise within each region.  

This thereby maintains the ratios between the three correlation peak values used to 

define the sub-pixel location of the correlation peak.  Following mean intensity 

subtraction, normalising by signal strength suppresses both accuracy metrics by 

accounting for the random distribution of particle images across each interrogation 

region that causes RMS errors and partial images that cause measurement 

underestimations. 

 

Having shown that RMSSS(m,n) provides robust accuracy metrics up to a mean 

background noise intensity at 15% of the total 8-bit output, Figure 5.14 shows the error 

plots generated when each region within the data-set is saturated with mean background 

noise intensities of up to 30% of the total 8-bit output. 
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(a) mean bias error 
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Figure 5.14 RMSSS(m,n) error plots for background intensities up to 30% (32 x 32 

pixels)  

From the figure it is evident that as the mean background noise increases further to 

30% of the 8-bit output there is an increase in both the mean bias error oscillation and 

the cyclic pattern is present in the RMS error results.  At this high level of background 

noise the particle images become fully saturated (i.e. each point of a particle image has 

a grey-scale value approaching 256).  Therefore as the image quality deteriorates 

subtraction of the mean intensity within the overlapped area cannot properly 

reconstruct the Gaussian intensity distribution of each particle image resulting in an 

increase of both accuracy metrics.  Also with a high background noise intensity the 
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RMSSS(m,n) algorithm is not able to fully suppress the background noise to leave just the 

particle images for processing; therefore the correlation noise floor will increase in 

magnitude.  This subsequently affects the ratios between the three central correlation 

peak values used to evaluate the x-displacement and thereby increases the magnitude of 

the mean bias error oscillation.   

 

Quantifying the systematic errors within DPIV processing requires data-sets of artificial 

interrogation regions experiencing a series of known uniform displacements.  This 

ignores particle images moving through the laser sheet and out-of-focus particle images 

that will still contribute to the correlation field.  Figure 5.15 quantifies the accuracy 

metrics provided by data-sets of interrogation regions describing a known uniform 

displacement that includes 6 extra in-focus, but unrelated, particle images.  Each data-

set is processed using SCC, NSS and RMSSS(m,n).  The addition of these unrelated 

particle images is equivalent to a turbulent flow which introduces a third velocity 

component into analysis.  Furthermore, each data-set contains increasing mean 

background noise intensities.  Since the background noise introduces unrelated pixel 

intensities into each correlation field this can be assumed to be the contribution from 

out-of-focus particle images in addition to electronic noise to describe the overall 

background noise.  
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(a) mean bias error 
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Figure 5.15 Error plots comparing SCC, NSS and RMSSS(m,n) with 6 additional 

unrelated particle images and increasing background noise intensities (32 x 32 

pixels) 

When comparing this figure with Figure 5.11 it is clear that the addition of 6 extra, but 

unrelated, particle images into each realisation affects both accuracy metrics.  When 

describing the influences on mean bias error the underestimation of measurements 

shown with SCC processing results from the cross-correlation of partial images.  This is 
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subsequently suppressed when the processing function is normalised by signal strength.  

Figure 5.15(a) shows that on processing with SCC and NSS the mean bias error 

oscillation increases in amplitude as the background noise intensity increases between 

data-sets.  This is to be expected since the cross-correlation of unrelated particle images 

introduces a correlation noise floor; the cross-correlation of background noise will 

subsequently increase its magnitude.  As there is an additional 6 unrelated particle 

images per region then this will inherently increase the magnitude of the correlation 

noise floor and thereby affect the ratio between the three central correlation peak values 

used to define its sub-pixel location.  When processing with RMSSS(m,n) the effects of 

background noise are suppressed.  This therefore provides a mean bias error 

comparable to that generated through NSS processing of ‘ideal’ regions for each data-

set that contains regions with increasing background noise intensity. 

 

The cross-correlation of unrelated particle images causes an asymmetry in the 

correlation peak.  As each region contains an extra 6 unrelated particle images then this 

will increase the RMS error for each of the processing algorithms.  As the background 

noise intensity increases SCC generates RMS error plots that contain the background 

noise cyclic ‘beating’ pattern.  Peak values occur at half-pixel displacements because 

each correlation peak is located between two points on the correlation peak.  The 

addition of background noise causes large variations at these points skewing the 

correlation peak either positively or negatively.  As the correlation noise floor 

magnitude increases the ratios between the three central correlation peak values 

decreases; this amplifies measurement variations resulting in large RMS errors.  As 

both the NSS and RMSSS(m,n) algorithm use the signal strength function to compensate 

for the random distribution of pixel intensities across each interrogation region (i.e. 

particle images and background noise) then the variation in correlation peak shape is 

reduced thereby providing measurements with less variations for each displacement 

data-set to suppress RMS error. 

 

This section has demonstrated the performance of RMSSS(m,n) in comparison with SCC 

and NSS for commonly used interrogation regions of 32 x 32 pixels in size.  It 

illustrates that this is a robust algorithm that is able to account for mean background 

noise intensities of up to 15% of the total 8-bit output.  It has been highlighted that 
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RMSSS(m,n) is able to provide mean bias and RMS errors that are comparable to 

processing ‘ideal’ artificial region using NSS, without prior knowledge of the image 

and background noise quality.  The next section will investigates the effect of 

introducing a step increase in background noise intensity across each interrogation 

region on the accuracy of measurements when processing with RMSSS(m,n). 
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5.2.8 Background noise variations with RMSSS(m,n) 

Section 5.2.1 to 5.2.4 investigated the effect three image enhancement techniques had 

on the accuracy metrics for artificial interrogation regions containing a mean 

background noise intensity of 15% and regions with a step increase in background 

noise from 2% to 15% of the 8-bit output.  It was identified that average background 

image subtraction and global thresholding provided accuracy metrics that were 

comparable to ‘ideal’ NSS results when the mean background noise is uniformly 

distributed throughout each interrogation region.  However, it was highlighted that the 

average background noise subtraction method was dependent upon identical 

background noise distributions between regions used to calculate the average 

background function and regions used to extract velocity statistics.  It was also noted 

that the optimal threshold value used to minimise errors requires two or more passes 

before the best solution can be obtained.   

 

The error plots provided in Figure 5.16 is generated through RMSSS(m,n) analysis of 

data-sets of regions that contain step increases in the mean background noise intensity 

(half the area of a region containing one distribution) whilst particle images within each 

displacement data-set are experiencing a series of uniform displacements up to 8 pixels 

at a resolution of one-tenth of a pixel.  The step increases in the mean background noise 

intensity include: 2% with 15%, 5% with 15% and 10% with 15% of the maximum 

value intensity.  These results are compared to the RMSSS(m,n) processing of ‘ideal’ 

regions and regions that contain a mean background noise intensity at 15% of the total 

8-bit output across each interrogation region. 
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(a) mean bias error 
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Figure 5.16 RMSSS(m,n) error plots for varying background intensities across each 

interrogation region (2% and 15%) (32 x 32 pixels) 

The figure highlights that the RMSSS(m,n) algorithm is able to account for the step 

increase in background noise intensity to provide accuracy metrics that are comparable 

to those generated through ‘ideal’ region processing using NSS.  Therefore RMSSS(m,n) 

should be the preferred algorithm used for DPIV processing since subtracting the 

background noise within the overlapped area during cross-correlation accounts for 

variations in background noise across each interrogation region and the signal strength 

function compensates for the random distribution of particle images across each region, 

including partial images to thereby suppress both mean bias and RMS error. 
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5.3 Alternative sub-pixel estimators 

Although the previous sections have identified that the accuracy of measurements are 

dependent on the cross-correlation algorithm used for analysis, the sub-pixel estimator 

also plays a pivotal role in error quantifications.  Westerweel (1993a) stated that the 

Gaussian estimator is superior to both the centroid (equation 2.3) and parabolic 

estimators (equation 2.4) as it produces the lowest measurement errors of the three sub-

pixel estimators examined.  This section presents the error plots from SCC, NSS and 

RMSSS(m,n) processing of artificial realisations experiencing a uniform displacement 

while approximating measurements using the centroid (Figure 5.17) and parabolic 

estimators (Figure 5.18).  Results are also provided for when each displacement data-

set experiences mean background noise intensities of up to 15% of the 8-bit output. 
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 (a) mean bias error 
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Figure 5.17 Error plots for SCC, NSS and RMSSS(m,n) using the centroid 

estimator 
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(a) mean bias error 
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(b) RMS error 
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Figure 5.18 Error plots for SCC, NSS and RMSSS(m,n) using the parabolic 

estimator 

Comparing the accuracy metrics from the centroid and parabolic peak estimators 

(Figure 5.17 and Figure 5.18) with that of the Gaussian sub-pixel estimator (Figure 

5.11) it is obvious that the Gaussian sub-pixel provides superior measurements over the 

other two methods.  When investigating the mean bias errors generated through 

applying the centroid and parabolic peak estimators it is apparent that their results are 

not as sensitive to the effects of increasing the background noise intensity as the 

Gaussian estimator.  However, overall the two alternative estimators provide worse 
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estimations as the background noise intensity increases than the Gaussian estimator.  

On a RMS error basis, the parabolic estimator generates similar results for SCC cross-

correlation using the Gaussian sub-pixel estimator, but once the correlation field has 

been normalised the Gaussian sub-pixel estimator provides superior precision.  The 

RMS errors using the centroid estimator shows a significant increase in magnitude for 

each n+0.4 to n+0.6 pixel displacement (where n is the integer pixel displacement).  

Although the scale of the RMS error plots does not contain these maximum values (the 

scale is the same for all error plots to maintain continuity and ease of comparison) the 

maximum RMS values are approximately 0.8 pixels at half-pixel displacements.  This 

identifies that when approaching half-pixel displacements the centroid estimator is 

unable to correctly resolve these sub-pixel displacements and hence cause 

measurements to be either greatly overestimated or underestimated.  Further evidence 

of this is shown in the mean bias error plot.  Here, at half-pixel displacements the mean 

bias error is zero, meaning that on average the displacements are not biased.  But 

coupled with a significantly large RMS error identifies that the estimator is unable to 

resolve these displacements.  This is a peak estimator error and its effects are also 

apparent in parabolic results but to a much lesser extent.  Therefore, in order to 

minimise this effect the Gaussian sub-pixel estimator should be used as an initial 

estimator.  This method generates superior mean bias and RMS error results than the 

centroid and parabolic estimators over the same displacement data-sets. 
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5.4 Smaller region measurement errors 

When performing DPIV analysis it has become common practice to reduce the 

interrogation region size in order to increase the velocity vector resolution.  Smaller 

region sizes also allow for flows experiencing strong velocity gradients to be examined 

(Bolinder, 2000).  This avoids the peak splintering effect caused by large displacement 

gradients across the interrogation region (Keane and Adrian, 1992).  This analysis 

examines the measurement errors generated for a series of uniform displacements using 

the RMSSS(m,n) algorithm and results are compared to SCC and NSS when each region 

is reduced to 16 x 16 pixels.  This study also continues to examine the effect of 

increasing the mean background noise intensity on accuracy as the interrogation region 

size is reduced. 

 

For this study, displacement data-sets containing 300 realisations of 16 x 16 pixel 

interrogation regions were generated for each uniform displacement.  This ranges from 

zero to 4 pixels at a displacement resolution of one-tenth of a pixel.   In order to 

maintain a constant seeding density ratio per unit area that is consistent with 32 x 32 

pixel regions, each 16 x 16 pixel region is randomly populated with 6 particle images 

each with a diameter of 2.8 pixels.  As with the 32 x 32 pixel region study an artificial 

background noise intensity is added to each data-set using MATLAB.  As before, the 

mean background noise intensities added into each data-set are 2%, 5%, 10% and 15% 

of the 256 grey-scale value and describe the distribution given in section 3.8 (p.49).  

 

The error plots comparing SCC, NSS and RMSSS(m,n) for a series of uniform 

displacements and background noise intensities is shown in Figure 5.19.  Comparing 

this with the error plots generated for Figure 5.11 using 32 x 32 pixel interrogation 

regions, it is evident that SCC results in an increase in the magnitude of the negative 

mean bias whilst also providing a greater RMS error with increasing displacement.  

Anandarajah (2005) reasoned that this was because the magnitude of each correlation 

field value is dependent upon the number of correlated particle images present between 

the first and second interrogation region.  As each region in this study is one-quarter the 

size of 32 x 32 pixel regions then proportionally fewer intensities contribute to the 

correlation field.  As a consequence of this, the correlation peak height is reduced and 
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there are large variations in local correlation peak shape resulting in higher RMS errors.  

Since there are fewer particle images contained within an interrogation region then the 

increase in partial image error results from a decrease in the number of complete 

particle images relative to the number of partial images at the edge of a region and 

hence results in larger mean bias errors.  
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Figure 5.19 Error plots comparing SCC, NSS and RMSSS(m,n) with increasing 

background noise intensities (16 x 16 pixels) 

If the correlation field is normalised by signal strength then both accuracy metrics are 

improved over the SCC results.  This is clear when quantifying the accuracy metrics 
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from NSS and RMSSS(m,n). The signal strength weighting function compensates for the 

random distribution of particle images including the effects of partial images.  This 

skews the correlation peak towards the actual displacement to suppress mean bias error 

and also reduces the local variation in correlation peak shape caused by the cross-

correlation of unrelated particle images to suppress RMS error.  

 

When the background noise intensity is increased, Figure 5.19(a) shows that processing 

with SCC and NSS results in an increase in the magnitude of the mean bias error.  This 

effect was also shown in Figure 4.18(a) for 32 x 32 pixel region processing.  The reason 

for this increase results from a decrease in the ratio between the correlation peak and 

the two neighbouring values which are used to calculate sub-pixel displacements.  The 

decrease in ratios is caused by an increase in the magnitude of the correlation noise 

floor as the background noise intensity increases.  This occurs because each pixel 

within a region has a greater intensity value with increasing noise intensity that 

contributes to each point of the correlation field. 

 

As with 32 x 32 pixel region processing, Figure 5.19(b) shows that there is an increase 

in RMS error with increasing background noise intensity when processing with SCC.  

Section 4.5 showed that this is caused by the decrease in the ratios between the three 

correlation peak values exacerbating the local correlation peak shape and subsequently 

having a detrimental effect on RMS error. 

 

If the correlation field is normalised by signal strength then the pixel intensities that 

contribute to each point of the correlation field, including the random distribution of 

particle images, are compensated for to thereby suppress the local variations between 

correlation peaks and hence reduce RMS error with increasing background noise 

intensity. 

 

As with the analysis of 32 x 32 pixel interrogation regions, the RMSSS(m,n) algorithm is 

again shown to reduce both the mean bias and RMS error. The function is able to 

suppress background noise intensities to generate accuracy metrics comparable to those 

generated through NSS processing of ‘ideal’ regions as the mean background noise 

intensity increases.  This is achieved by suppressing the magnitude of correlation noise 
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floor that should increases in magnitude as the background noise intensity increases.  In 

doing so, RMSSS(m,n) maintains the ratios between the thee correlation peak values to 

those provided by ‘ideal’ region processing.  Normalising by the signal strength 

function subsequently suppresses the other systematic errors prevalent during cross-

correlation by compensating for the random distribution of particle images that cause 

RMS errors and partial images that cause the underestimation of measurements.   
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5.5 Summary 

In summary, this chapter has identified that background noise intensities are systematic 

to DPIV processing and this affects the accuracy metrics associated to the processing 

algorithms.  Using image enhancement techniques prior to cross-correlation to remove 

background noise will improve the accuracy metrics but their use is flawed.  RMSSS(m,n) 

is a new, robust processing algorithm that takes advantage of the signal strength 

function to compensate for the random distribution of particle images across an 

interrogation region that cause RMS errors, partial images that cause underestimations 

in measurements and also accounts for background noise intensities including step 

increases in intensities that also affect measurements.  This algorithm thereby 

suppresses both the mean bias and RMS errors for 32 x 32 pixel regions and smaller 

and provides accuracy metrics comparable to those generated through ‘ideal’ artificial 

region processing using NSS up to a mean background noise intensity of 15% of the 8-

bit output.  This is achieved by maintaining the ratios between the three central 

correlation peak values to evaluate the displacement to those provided by NSS 

processing of ‘ideal’ regions.  The next chapter examines the performance of SCC, 

NSS and RMSSS(m,n) using iterative correlation techniques. 
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Chapter 6                                

Iterative Correlation Methods 

6.1 Introduction 

This chapter assesses the accuracy metrics generated by two commonly used iterative 

techniques that were developed to refine measurements using SCC.  These 

techniques are discrete window shifting (DWS) and particle image pattern matching 

(PIPM).  These iterative correlation methods were designed to maintain a constant 

SNR because concerns were raised that the loss of signal with increasing 

displacement would affect accuracy. 

 

The objective of this chapter is to review and quantify the measurement errors 

generated by SCC, NSS and RMSSS(m,n) using DWS and PIPM.  This is then 

extended to study the effect background noise has on the accuracy metrics defined in 

section 2.4 (p.13). 

 

The error statistics from each algorithm using the iterative methods are presented for 

a series of uniform particle image displacements.  The error plots were calculated 

using displacement data-sets containing 300 realisations of artificially generated 

interrogation regions defined using the optimum parameters outlined in section 3.10 

(p.64). 
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6.2 Window shifting 

Integer pixel or discrete window shifting (DWS) was proposed by Westerweel et al. 

(1997) as a way of maintaining a constant SNR with increasing displacement and 

thereby reducing measurement errors using SCC.  As displacement increases the 

number of related particle image pairs present between sequential regions decreases 

(Huang et al. 1993a).  This is referred to as the out-of-pattern effect and this 

relationship with displacement is shown in Figure 3.15 (p.60). Previous assumptions 

have stated that the weighting of the correlation function is responsible for 

underestimating measurements (Raffel et al. 1998) and hence introduced 

normalisation by area.  It was assumed therefore the out-of-pattern effect causes the 

signal peak to depreciate and hence cause measurement uncertainties.  With these 

original assumptions it is intuitive to assume that maintaining a constant SNR for all 

displacements will increase measurement accuracy.  However, as was shown in 

Chapter 4, the cross-correlation of partial images causes the negative bias in 

measurements, and the cross-correlation of unrelated particle images causes RMS 

errors and the SCC algorithm does not account for their presence. 

 

The window shifting process occurs in two stages.  The first stage estimates the 

required shift by determining an integer pixel displacement through an initial cross-

correlation.  Once this displacement is known the second region is remapped within 

the image in accordance with the integer result.  After remapping, the new second 

region is cross-correlated with the initial region to provide a displacement of less 

than one pixel determined using a sub-pixel estimator.  Therefore the total 

displacement is composed of the integer pixel shift and the sub-pixel displacement 

and thereby takes advantage of low sub-pixel displacement errors (Raffel et al., 

1998).   

 

To evaluate the measurement error performance of window shifting, error plots are 

computed for SCC, NSS and RMSSS(m,n) with window shifting and are compared to 

the results generated when window shifting is not used.  The measurement error plots 

are produced from data-sets of artificial regions modelled using the criteria outlined 

in section 3.10 (p.64) that do not contain background noise is shown in Figure 6.1. 
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(a) mean bias error 
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(b) RMS error 
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Figure 6.1 Error plots comparing SCCWS, NSSWS and RMSSS(m,n)WS with SCC, 

NSS and RMSSS(m,n) with no background noise 

As with the standard analysis of equal-sized regions, the errors produced by SCC 

with window shifting (SCCWS) are significantly larger than the NSSWS and 

RMSSS(m,n)WS results.  However, the error plots highlight that DWS with a processing 

algorithm reduces error analysis to a single pixel displacement cycle.  SCCWS 

however does not account for the random distribution of particle images that affects 

the underestimation and variations of measurements.  This is because partial images 

will still be present in both regions after DWS and will therefore generate the error 

plots of Figure 6.1(a).  Figure 6.2 shows that although DWS is able to preserve a 
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constant SNR for SCC over the uniform displacement range, systematic errors 

caused by the random distribution of particle images still remains in analysis (Figure 

6.1). 
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Figure 6.2 SNR for SCC, NSS and RMSSS(m,n) compared with DWS 

Comparing the error plots generated for SCC shows that the results for DWS are 

identical to the non-shifted case for both accuracy metrics up to a ½ pixel 

displacement.  As SCCWS does not account for the random distribution of particle 

images these results are to be expected.   The first and subsequent shifts will initially 

produce a positive bias as the shift is greater than the particle image displacement, 

causing an overestimation in measurements.  The decline in positive mean bias with 

increasing displacement is due to a progressive return to a state where both artificial 

regions have an identical intensity contents.  This will only occur at integer pixel 

displacements.  At this point, a symmetric correlation peak is generated; maximising 

SNR and reducing both accuracy metrics to zero.  After an integer pixel 

displacement the cycle repeats again. 

 

Figure 6.1(a) shows that when normalising the correlation field by signal strength the 

mean bias error is identical for both the DWS and non-shifted case.  As has been 

established, DWS preserves a constant SNR by maintaining a high number of 

particle image pairs when processing with a cross-correlation algorithm.  However, 

the number of partial images remains constant with increasing displacement (Figure 

4.3, p.70), therefore as has been expressed with the SCC results this will affect the 

accuracy of measurements.  Normalising by signal strength however produces a 
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mean bias error oscillation which cycles over a pixel displacement when producing 

error plots from non-shifted regions.  The overestimation in measurements shown 

with SCC after each DWS is subsequently accounted for since the function is able to 

compensate for the random distribution of particle images. 

 

The processing algorithm also generates a constant SNR both with and without DWS 

as is shown in Figure 6.2.  This occurs because the signal strength function 

normalises each point of the correlation field by the pixel intensities used to calculate 

each point.  This consequently recovers any signal loss that occurs through the out-

of-pattern effect to preserve SNR. 

 

A one pixel displacement cycle pattern identified in the mean bias error plot is also 

present in Figure 6.1(b) which shows the RMS error plot for SCCWS, NSSWS and 

RMSSS(m,n)WS with their non-shifted counterparts.  For each of the processing 

algorithms with DWS, the RMS error plot generates measurements with increasing 

variation up to a ½ pixel displacement and thereby generates error plots typical of 

sub-pixel displacements.  When displacement data-sets exhibiting displacements of 

½ pixel or greater are examined a DWS is implemented.  For subsequent 

displacements there is a progressive return to a state where both regions are identical.  

This occurs at integer pixel displacements.  As has been discussed in section 4.3.2 

(p.75) the signal strength function accounts for the random distribution of particle 

images to reduce measurement variations.  It is therefore intuitive that normalising 

the correlation field by signal strength will provide lower RMS errors per pixel 

displacement over that of SCCWS. 

6.2.1 DWS with background noise 

When processing ‘ideal’ artificial regions the NSS and RMSSS(m,n) algorithms both 

return accuracy metrics with similar results as described in section 5.2.6 (p.125).  

This occurs during standard processing as well as DWS (Figure 6.1).  However, 

Chapter 5 detailed that the background noise intensity also influences the accuracy of 

results.  Although DWS only provides sub-pixel displacement errors, results 

processed with SCC or NSS will be affected by background noise.  If DWS is used 

with RMSSS(m,n) background noise intensities and the random distribution of particle 
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images are accounted for providing robust results that are comparable to the ‘ideal’ 

NSS case.  This is highlighted in Figure 6.3 which provides the error plots for DWS 

using SCC, NSS and RMSSS(m,n) as the background intensity increases.  
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Figure 6.3 Error plots for SCCWS, NSSWS and RMSSS(m,n)WS for increasing 

background noise intensities (32 x 32 pixels)  

As section 4.5 (p.93) explains, the increase in the amplitude mean bias error 

oscillation for SCC and NSS is caused by a decrease in the ratios between the three 
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correlation peak values used to calculate the sub-pixel location of the correlation 

peak.  This is caused by an increase to the correlation noise floor as the background 

noise intensity increases.  The RMSSS(m,n) algorithm compensates for background 

noise intensities thereby suppressing the mean bias error oscillation.  The increase in 

RMS error for SCC with increasing background noise intensity is caused by the 

decrease in ratio between the correlation peak values coupled with the variations in 

measurements caused by the cross-correlation of unrelated particle images.  As the 

signal strength function compensates for the random distribution of particle images 

including partial images across an interrogation region then this subsequently 

suppresses both mean bias and RMS error. 

 

In summary, DWS was developed to be used in conjunction with SCC to suppress 

measurement errors.  It was assumed that by maintaining a constant SNR with 

increasing displacement would improve accuracy by taking advantage of low sub-

pixel displacement errors.  To this extent DWS with SCC does achieve this; 

improving the accuracy of measurement over the standard case.  Nevertheless, the 

SCC algorithm does not account for the random distribution of particle images and 

therefore this systematic error remains in measurements.  Since the signal strength 

function compensates for this then there is a reduction in both accuracy metrics when 

processing ‘ideal’ artificial regions with either NSS or RMSSS(m,n).  In practice 

background noise intensities will also affect the accuracy of measurements.  As was 

developed and identified in Chapter 5, RMSSS(m,n) is a robust algorithm able to 

compensate for both background noise intensities and the random distribution of 

particle images.  Therefore this robust algorithm used in conjunction with DWS takes 

advantage of sub-pixel displacement errors whilst also compensating for the two 

systematic errors thereby suppressing both accuracy metrics with increasing 

displacement and background noise intensity. 
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6.3 Particle image pattern matching 

The resolution of the velocity vector field can be enhanced if the size of the regions 

within the flow image is reduced.  However, there is an increase in both mean bias 

and RMS errors if regions are made smaller.  Therefore there is a trade-off between 

the accuracy of results and the resolution of the vector field.  Section 5.4 (p.144) 

illustrated that decreasing the size of each region results in an increase in both 

accuracy metrics as a function of displacements.  It was demonstrated that reducing 

the region size decreases the signal available that contributes to the correlation peak.  

SCC of smaller regions therefore increases sensitivity to partial images resulting in 

the underestimation of measurements.  It also results in large measurement variations 

compared to SCC of 32 x 32 pixel regions (Figure 5.19, p.145). 

 

Another technique introduced to reduce the mean bias error is to increase the size of 

the second interrogation region before SCC.  Huang et al. (1993a) proposed that the 

SCC of a smaller first region with a larger second would recover the ‘loss-of-signal’ 

with increasing displacement thereby maintaining a constant SNR.  This is termed 

particle image pattern matching (PIPM).  The PIPM error plots for SCC, NSS and 

RMSSS(m,n) using ‘ideal’ initial regions of 16 x 16 pixels, 24 x 24 pixels and 32x32 

pixels cross-correlated with ‘ideal’ 32 x 32 pixel regions as a function of 

displacement, is presented in Figure 6.4.   
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(a) mean bias error 
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(b) RMS error 
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Figure 6.4 Error plots for PIPM of 16 x 16, 24 x 24 and 32 x 32 pixel regions 

with 32 x 32 pixel regions using SCC, NSS and RMSSS(m,n) 

On studying Figure 6.4(a) it is clear that when processing with SCC, PIPM results in 

measurement underestimations when the initial interrogation region is 32 x 32, 24 x 

24 or 16 x 16 pixels in size.  Yet the displacement at which the underestimation 

begins is dependent on the size of the initial interrogation region.  This 

underestimation occurs because as the particle image displacement increases the 
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particle images within the initial region are not present in the second larger region.  

Therefore PIE is subsequently reintroduced into analysis. Anandarajah (2005) stated 

that provided the particle images within the first region are present in the second then 

cross-correlation will result in a correlation peak being either positively or negatively 

skewed.  The skew of the correlation peak is dependent on the random distribution of 

the particle images within the interrogation regions.  It was shown that the cross-

correlation of a partial image on the left-hand boundary of the initial region which is 

subsequently complete in the larger second region will negatively skew the 

correlation peak.  Conversely, the cross-correlation of a partial image on the right-

hand boundary of the smaller region with the complete particle image will positively 

skew the correlation peak.  Therefore over a displacement data-set, on average, the 

skew will be negligible and hence results in the suppression of the mean bias error 

(Figure 6.4(a)). 

 

Therefore, once the particle images encapsulated in the initial region are not present 

in the second, measurements begin to be underestimated.  In addition to this, the out-

of-pattern effect will cause a decline in the magnitude of the signal peak and hence a 

drop in SNR.  This is illustrated in Figure 6.5 which shows the SNR for PIPM using 

SCC, NSS and RMSSS(m,n).  
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Figure 6.5 SNR plots for PIPM of 16 x 16, 24 x 24 and 32 x 32 pixel regions 

with 32 x 32 pixel regions using SCC, NSS and RMSSS(m,n) 
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Therefore provided the particle image displacement does not exceed half the 

difference between the size of the larger second and smaller first region (e.g. if the 

first region is 24 x 24 pixels and the second region is 32 x 32 pixels then the 

maximum displacement using SCC before underestimations is 4 pixels) then the 

measures suggested by Huang et al. (1993a) for suppressing the mean bias error 

whilst maintaining a constant SNR when processing with SCC holds true.  However 

as Figure 6.4(b) identifies, reducing the size of the first region will affect the 

variations between measurements.  As the size of the first interrogation region 

decreases fewer pixel intensities are available to contribute to the correlation field; 

this subsequently reduces magnitude of the correlation peak.  The reduced intensity 

content means that the correlation peak is more sensitive to variations in pixel 

intensities across the interrogation region than if the first region was larger.  This 

subsequently causes large variations in the shape of the correlation peak and hence 

results in larger RMS errors.  As cross-correlation is a measure of the similarity 

between the contents of the two regions then reducing the size of the first region in 

relation to that of the second will inherently result in the cross-correlation of 

unrelated particle images that contributes to the correlation noise floor.  Also, if 

during cross-correlation a similar pattern of particle images to those contributing to 

the correlation peak are found else where in the second region then this too will 

generate a significant noise peak.  This, coupled with the decline of the correlation 

peak height, will subsequently decrease the SNR as is shown in Figure 6.5. 

 

When PIPM is processed with NSS and RMSSS(m,n) the mean bias error remains 

negligible across the 8 pixel displacement range.  This occurs since the signal 

strength function compensates for the random distribution of particle images across 

each interrogation region as each intensity contributes to the correlation field.  This 

therefore compensates for the presence of partial images that causes measurement 

underestimations with SCC.  The function also accounts for the asymmetry of the 

correlation peak caused by the random distribution of particle images to thereby 

reduce RMS errors when compared with SCC.   Furthermore, the signal strength 

function recovers the signal lost by the out-of-pattern effect to maintain a constant 

SNR across the 8 pixel displacement range.  The magnitude of the SNR however 

decreases as the first interrogation region reduces in size as less pixel intensities are 
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available to contribute to the correlation peak and the correlation noise floor 

increases accordingly. 

 

In summary, PIPM was developed to be used in conjunction with SCC to suppress 

measurement errors as it was assumed that maintaining a constant SNR with 

increasing displacement would improve accuracy.  To a limited extent PIPM with 

SCC achieves this, but only for mean bias error; PIPM provides larger RMS errors 

than the processing of equal sized 32 x 32 pixel interrogation regions.  PIPM with 

SCC generates a negligible mean bias error which is dependent on the particle image 

displacement and the size of the first interrogation region.  If the displacement results 

in particle images from the first region not being present in the second region then 

the SCC of partial images causes measurements to be underestimated and hence 

generates negatively biased mean bias errors.  The reduction in the size of the first 

region also results in large RMS errors.  This occurs because fewer intensities are 

available to contribute to the correlation peak which subsequently means that it is 

more sensitive to changes in pixel intensities across each interrogation region.  A 

consequence of this is that large variations in the correlation peak shape generates 

larger RMS errors.  When PIPM is used with NSS or RMSSS(m,n) the signal strength 

function accounts for the random distribution of particle images across each 

interrogation region therefore accounting for partial images to reduce mean bias and 

the cross-correlation of unrelated particle images that cause RMS errors.  The next 

section investigates the effect of the addition background noise has on the accuracy 

of PIPM results.   
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6.3.1 PIPM with background noise 

As Figure 6.4 shows, when processing ‘ideal’ regions, both the NSS and RMSSS(m,n) 

algorithm return accuracy metrics with similar results.  However, Chapter 5 outlined 

that the addition of background noise also affected the accuracy of results.  If PIPM 

is used with RMSSS(m,n) Figure 6.6 shows that the background noise intensities and 

the random distribution of particle images that affect accuracy are account for, 

thereby providing results for increasing background noise intensities that are 

comparable to those generated by ‘ideal’ regions processed using NSS.  
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Figure 6.6 Error plots for PIPM of 16 x 16 pixel regions with 32 x 32 pixel 

regions using SCC, NSS and RMSSS(m,n) for various background noise 

intensities 
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Figure 6.6 highlights that as the mean background noise intensity increases the 

amplitude of the mean bias error oscillation for SCC and NSS increases yet only 

SCC provides a significant increase in RMS error.  The reasons for the changes to 

the accuracy metrics with increasing background noise intensity is outlined in section 

4.5 (p.93). 
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6.4 Summary 

This chapter has reviewed and quantified the measurement errors associated with two 

iterative techniques intended to improve the accuracy of measurements when 

processing regions with SCC.   Both techniques with SCC provide an improvement 

in mean bias error over that of the standard procedure whilst also maintaining a 

constant SNR with increasing displacement.  However, the systematic error 

associated with SCC remains but the random distribution of particle images are 

accounted for with the signal strength function and background noise intensities are 

suppressed with RMSSS(m,n). 

 

Section 6.2 highlights that DWS with a cross-correlation algorithm defines the 

accuracy metrics over sub-pixel displacements.  However, it is shown that SCC 

exhibits significant errors prior to each DWS (Figure 6.1) in comparison to NSS and 

RMSSS(m,n).  The errors incurred before each shift result from a decline in signal 

contributing to the correlation field coupled with the cross-correlation of partial 

images which underestimates measurements and unrelated particle images that cause 

RMS errors.  After each shift the particle image displacement is overestimated but 

the number of particle images contributing the correlation peak increases, re-

establishing the relationship where the two interrogation regions are identical; hence 

no errors are generated at integer pixel displacements.   

 

When unequal sized regions are processed the suppression of the mean bias error 

with SCC is dependent on the relative sizes of the two interrogation regions (Figure 

6.4).  The random distribution of particle images within each region will cause a 

correlation peak to be either positively or negatively skewed and therefore, on 

average, generate a negligible mean bias error.  If the particle images in the first 

region are not encapsulated in the second after a displacement then underestimations 

will ensue caused by the cross-correlation of partial images with unrelated particle 

images.  Although PIPM with SCC can provide a negligible mean bias error, the 

positive or negative skew of the correlation peak leads to significant RMS errors 

which are also dependent on the relative sizes of the two interrogation regions.    
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It is demonstrated that when the two iterative techniques are processed with NSS 

there is an improvement to both mean bias and RMS error.  This results because NSS 

compensates for the cross-correlation of partial images that cause measurement 

underestimations and the cross-correlation of unrelated particle images that cause 

asymmetry in correlation peaks which results in RMS errors.  It is also clearly shown 

that NSS generates a negligible mean bias error that is independent of the relative 

sizes of the two interrogation regions (Figure 6.4(a)). 

 

On processing ‘realistic’ artificial interrogation regions that contain background 

noise intensities using the iterative correlation techniques, it is shown that RMSSS(m,n) 

provides robust accuracy metrics as the background noise intensity increases.  The 

processing algorithm implements the signal strength function to compensate for the 

random distribution of particle images, thereby reducing mean bias and RMS errors, 

and also accounts for background noise intensities that also has a noticeable effect on 

the accuracy of measurements using other processing algorithms (Figure 6.3 and 

Figure 6.6). 
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Chapter 7                       

Experimental Verification 

7.1 Introduction 

This chapter presents the accuracy metrics generated by SCC, NSS and RMSSS(m,n) 

processing of interrogation regions recorded during a DPIV experiment, in which the 

seeding particles of known size are displaced by a controlled distance.  The 

processing of these images provides experimental verifications for the theoretical 

predictions presented throughout this research.  The images used for this verification 

are provided by the uniform particle image displacement experimental outlined by 

Anandarajah (2005).  The first section briefly describes the experimental set-up and 

parameter used to generate the DPIV images.  The second section details a 

comparison of the ratio between the three central points of the correlation peak used 

to define the sub-pixel location of the signal peak for both experimental and 

theoretical results.  This extends to compare the experimental and theoretical signal 

and noise levels that have been shown to affect accuracy.  Following this, the section 

evaluates the experimental measurement errors produced by the processing routines 

for a series of uniform particle image displacements using 32 x 32 pixel regions and 

smaller (i.e. 16 x 16 pixels), discrete window shifting and particle image pattern 

matching.  The error plots generated from each of these processes are compared to 

their theoretical predictions. 
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7.2 Experimental set-up and procedure 

Experimental images describing a uniform particle image displacement captured by 

Anandarajah (2005) are used to verify the theoretical predictions that quantify the 

systematic errors associated with the cross-correlation algorithms.  A method of 

generating a uniform particle image displacement was devised by seeding a glass 

slide, 60mm x 25mm, with aluminium oxide (Al2O3) particles with a mean particle 

diameter of 0.7µm to 1.2µm.  These were passed through a seeded air stream until 

the slide was covered in randomly distributed particles at the desired density.  The 

slide was then fixed to a 200µm piezo travel traverse with a resolution of 110nm to 

displace the glass slide over a series of uniform displacements.   

 

A Nd:YAG laser with a wavelength of 532nm and a combination of spherical and 

cylindrical lenses was used to produce the light sheet used to illuminate the glass 

slide.  A PIVCAM 10-30, with a Nikon Micro-Nikkor 50mm lens was used to 

capture each image.  This is a CCD camera with a resolution of 1000 x 1016 pixels 

and each pixel is 9µm
2

 with an 8-bit pixel output.  Each of these were controlled by a 

TSI commercial system. 

 

The parameters determined for this experiment were a magnification factor, M of 

0.75 and f-number, f#
 of 11.  This was so that each particle image described using 

equation 3.6 (p.44) has a diameter of between 2.777 and 2.778 pixels and thereby 

avoiding errors associated to poor particle image resolution.  Anandarajah (2005) 

adjusted the seeding density until, on average, 22 particle images were present in 

each 32 x 32 pixel interrogation region.  This closely replicates the modelling criteria 

for the artificial interrogation regions discussed in section 3.9 (p.51). 

 

Twin images of the glass slide containing the randomly distributed particle were 

captured for a series of uniform displacements as the traverse moved through its 

200µm range.  The displacement was increased between each image pair to provide 

image pairs experiencing displacements of between zero and 8 pixels at a resolution 

of one-tenth of a pixel.  Once the image pairs for each displacement had been 

captured each image could then be analysed.  This is achieved by dividing each 
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image into smaller interrogation regions to provide displacements data-sets of 300 

realisations for each displacement. 

 

So that experimental and theoretical predictions can be compared both have to 

contain background noise intensities provided by a similar distribution.  The 

distribution of the experimental images was discussed in section 3.8 (p.49) where it 

was stated that the background noise measured from these experimental images had a 

mean pixel intensity of 39 and followed the distribution shown in Figure 3.7 (p.50). 

This equates to a background noise intensity of 15% of an 8-bit output.  Therefore 

experimental results can be compared to theoretical predictions provided by the data-

set containing a mean background noise intensity of 15%.  
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7.3 Experimental verification of correlation routines 

This section presents the accuracy metrics for uniform particle image displacements 

generated by processing experimental images with SCC, NSS and RMSSS(m,n) 

algorithms.  These are compared to the results achieved by processing artificial 

regions with a mean background noise intensities of 15%.  The correlation field 

characteristics generated by experimental images and theoretical predictions are 

presented in section 7.3.1 to show it is reasonable to compare the accuracy statistics.  

A comparison of the errors generated from processing 32 x 32 pixel regions is 

presented in section 7.3.2 and smaller region comparisons presented in section 7.3.3.  

The evaluation of experimental results using the iterative correlation methods of 

discrete window shifting and particle image pattern matching with the processing 

algorithms is presented in section 7.3.4 and 7.3.5 respectively. 

7.3.1 Correlation field characteristics 

Section 4.5.1 (p.95) discussed that maintaining the ratios between the three central 

points of the correlation peak to those achieved through ‘ideal’ region processing 

was critical in suppressing errors associated with the cross-correlation algorithm.  It 

was identified that increasing the magnitude of the correlation noise floor caused the 

ratios to decline, increasing the error statistics.  Figure 7.1 compares the absolute 

ratio between the adjacent values either side of the SCC, NSS and RMSSS(m,n) 

correlation peaks as viewed through the x-direction for each displacement data-set 

between zero and 8 pixels and averaged over 300 realisations for (a) experimental 

and (b) artificial regions containing a mean background noise intensity of 15%. The 

absolute ratios for each processing algorithm are computed by calculating the 

absolute difference between the adjacent values either side of the correlation peak 

which is then normalised by the central correlation peak value.  An average ratio is 

then computed over the 300 realisations within each data-set for each displacement.  



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

EXPERIMENTAL VERIFICATION 169 
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(b) theoretical 
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Figure 7.1 Theoretical and experimental comparison of the absolute ratios 

between adjacent correlation values for SCC, NSS and RMSSS(m,n) (32 x 32 

pixels)  

When comparing the absolute ratios between adjacent correlation peak points it is 

evident that experimental results provides lower ratios than the theoretical 

predictions with the RMSSS(m,n) correlation peaks being affected to the greatest 

extent.  It is also noted that the absolute ratios with the greatest value per 

displacement provides the most accurate measurements.  For example, the small ratio 

values provided by SCC and NSS shown in Figure 7.1 corresponds to the large mean 

bias oscillation shown in Figure 5.11 (p.128).  Maintaining large values within each 

ratio per displacement suppresses the mean bias error oscillation as is provided with 
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RMSSS(m,n) results since this suppresses the background noise intensities that affect 

measurements as was shown in Figure 5.12 (p. 129).  Figure 7.2 shows the average 

shape of the correlation peak for selected displacements between zero and one pixel.  

These shapes correspond to the absolute ratios between adjacent correlation values in 

the x-direction provided in Figure 7.1.  A value of zero is provided at integer pixel 

displacements as each correlation peak is symmetric.  The ratio values increase up to 

half-pixel displacements since the difference between the two adjacent values either 

side of the correlation peak increases.  At half-pixel displacements the difference 

between the two adjacent points are at a maximum hence a peak is generated in 

Figure 7.1 at these displacements.  After the half-pixel displacement point the 

difference between the two adjacent points declines as the correlation peak 

approaches symmetry at integer pixel displacements. 
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Figure 7.2 The shape of the correlation peak with increasing displacement 

When processing with SCC or NSS the shape of the correlation peak remains the 

same but the cross-correlation of background noise decreases these ratios (Figure 

4.19, p.95) which consequently affects the accuracy of measurements (Figure 4.18, 

p.94). It is also noted that the maximum correlation peak value at integer pixel 

displacements is greater than that of a correlation peak describing a half-pixel 

displacement.  The decline in peak value occurs at half-pixel displacements because 

there is a temporary broadening of the correlation peak.  This results from the 

correlation peak being described across two points of the correlation field at these 

displacements.   

 

To show why there are discrepancies between the ratios provided by theoretical 

predictions and experimental results, Figure 7.3 presents the average signal and noise 

magnitude plots for SCC, NSS and RMSSS(m,n) generated from both experimental and 
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artificially generated correlation fields.  The average signal and noise metrics are 

calculated over 300 realisations for each displacement data-set.  The signal 

magnitude is calculated by computing the height of each correlation peak and the 

noise magnitude by computing the height of the maximum noise peak.  
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(c) RMSSS(m,n) 
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Figure 7.3 Comparison of experimental and theoretical signal and noise plots 

for SCC, NSS and RMSSS(m,n) (32 x 32 pixels) 

Figure 7.3 shows that for each of the processing algorithms the experimental signal 

magnitude is comparable with theoretical predictions up to a displacement of 4 

pixels.  Anandarajah (2005) stated that it was difficult to ensure that each 32 x 32 

pixel region contains 22 particle images.  The decline in signal magnitude beyond 4 

pixels displacement corresponds with this statement since it indicates that as the 

displacement increases fewer particle image pairs are present and able contribute to 

the correlation peak.  The figure also highlights that the addition of background noise 
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to artificial regions represents most of the noise within the experimental regions.  As 

such, the correlation noise floors generated by each of the processing algorithms 

using experimental regions are comparable to those produced by the artificial 

regions.  The residual difference between the correlation noise floors generated by 

theoretical predictions and experimental results can be attributed to variations in 

pixel intensities within each interrogation region.  The cross-correlation of high 

intensity pixels that are greater than the background noise intensities (see Figure 3.7, 

p.50) will increase the magnitude of the correlation noise floor.  This is evident with 

Figure 7.3(c); theoretical predictions show that RMSSS(m,n) is able to suppress 

background noise intensity by subtracting the mean intensity value that contributes to 

each point of the correlation field to generate robust accuracy metrics comparable to 

processing ‘ideal’ regions with NSS (Figure 5.11, p.128). If high intensity pixels are 

present the background noise intensities will not be fully suppressed thereby 

increasing the magnitude of the correlation noise floor.  Consequently, this will 

decrease the ratios between the three central points of the correlation peak (Figure 

7.1) and will subsequently affect the experimental accuracy metrics. 
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7.3.2 32 x 32 pixel interrogation region analysis and comparison 

The mean bias error plot illustrated in Figure 7.4 provides a comparison between (a) 

experimental results and (b) theoretical predictions for when the mean background 

noise intensity is 15% of the maximum pixel 8-bit value.  In comparison, the figure 

demonstrates that the mean bias error generated for SCC of both experimental and 

artificial regions provides negatively biased results.  The magnitude of the mean bias 

error oscillation is caused by the decrease in the ratios between the three central 

correlation peak values due to an increase in the magnitude of the correlation noise 

floor (section 4.5.1, p.95). When normalising the correlation function by signal 

strength (NSS and RMSSS(m,n)) the mean bias error is reduced.  This verifies that the 

signal strength function is able to compensate for the random variations in pixel 

intensities across an interrogation region which includes the effect of partial images 

that causes the negative bias in measurements (section 4.2, p.66). 
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Figure 7.4 Experimental and theoretical mean bias error plot comparison (32 x 

32 pixels) 

The figure also identifies that on processing with RMSSS(m,n) there is a reduction in 

the amplitude of the mean bias error oscillation as the algorithm compensates for the 

background noise intensities which was identified in section 5.2.7 (p.129).  

 

When comparing the RMS error plots in Figure 7.5 for (a) experimental results with 

(b) theoretical predictions, it is clear that the signal strength function is able to reduce 

the RMS errors generated by the SCC function.  The signal strength function is able 

to account for local changes in pixel intensities across an interrogation region 

including those caused by the random distribution of particle images to thereby 

reduce variations in correlation peak shape and hence suppress RMS error. 
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(a) experimental 
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Figure 7.5 Experimental and theoretical RMS error plot comparison (32 x 32 

pixel regions) 

Both the (a) experimental results and (b) theoretical predictions show that RMSSS(m,n) 

provides a slightly increased RMS error over that of NSS.  This occurs because the 

mean intensities within the overlapped area prior to cross-correlation are subtracted 

from each point of the interrogation region.  This will affect the Gaussian distribution 

of each particle image, which, when processing with RMSSS(m,n) will result in a slight 

increase in RMS error. 

 

As was acknowledged by Figure 4.18 (p.94) and Figure 4.21 (p.98) previous studies 

by Huang et al. (1997) and Anandarajah (2005) identified a cyclic pattern in the 

RMS error results produced by the SCC and NSS (Anandarajah, 2005) routines.  The 
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pattern provides errors that are smaller at integer pixel values and higher at half-pixel 

displacements.  It was reasoned that this occurs because at half-pixel displacements 

the correlation peak is centred directly between two points.  The cross-correlation of 

noise in the image will skew the correlation peak either positively or negatively and 

thereby generating RMS error peaks at these displacements.  As has previously been 

identified (section 4.5, p. 93) as the correlation noise floor increases with increasing 

mean background noise intensities the RMS error pattern also increases in 

magnitude.  Therefore, on average, this provides a small mean bias error (i.e. the 

central point of the mean bias oscillation; this is negatively biased with SCC due to 

PIE and NSS compensates for the underestimations) but variations between 

measurements will generate large RMS errors.  At integer pixel displacements the 

correlation peak is centred on one point of the correlation field providing minimum 

variations.  This thereby generates a cyclic pattern in the RMS error.   

 

Since RMSSS(m,n) compensates for the presence of background noise then as Figure 

7.5 identifies this algorithm is able to remove the cyclic pattern from the RMS error 

plot. 

 

Although the experimental verifications for the processing of 32 x 32 pixel 

interrogation regions are in good agreement with their artificially generated 

counterparts there are still variations between experimental results and theoretical 

predictions.  These uncertainties can be attributed to changes in particle image 

seeding density, the accuracy of the actual displacement and changes in pixel 

intensities between interrogation regions; including particle images and background 

noise.  Anandarajah (2005) stated that variations in particle image size would remain 

small as the experimental parameters mean that each particle image would have 

diameters of between 2.777 and 2.778 pixels as each physical particle is between 

0.7µm and 1.2µm. 

 

This section has quantified the accuracy metrics generated using the SCC, NSS and 

RMSSS(m,n) processing algorithms on a series of 32 x 32 pixel experimental regions; 

these results are compared to those produced by processing artificial interrogation 

region with background noise.  It has been identified that RMSSS(m,n) is the preferred 
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algorithm when processing 32 x 32 pixel experimental regions since the signal 

strength function suppresses underestimations caused by partial images; reduces 

RMS errors that are caused by the cross-correlation of unrelated particle images and 

suppresses the effects of background noise that also affects measurements.  The next 

section compares the accuracy metrics generated from processing smaller 

experimental regions (i.e. 16 x 16 pixels) with theoretical predictions.   
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7.3.3 16 x 16 pixel interrogation region analysis and comparison 

This section provides the accuracy metrics generated by the SCC, NSS and 

RMSSS(m,n) algorithms when processing 16 x 16 pixel regions.  The experimental 

images provided by Anandarajah (2005) from the uniform displacement experiment 

were divided into 16 x 16 pixel regions.  The accuracy metric plots from the 

processing of the 16 x 16 pixel experimental regions are illustrated in Figure 7.6 and 

Figure 7.7 respectively and are compared to theoretical predictions. 
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Figure 7.6 Experimental and theoretical mean bias error plot comparison (16 x 

16 pixels) 

Figure 7.6 illustrates that the mean bias error produced by SCC processing of 16 x 16 

pixel interrogation regions is significantly higher than the results generated by 
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processing 32 x 32 pixel regions (Figure 7.4).  This is caused by an increase in PIE 

whilst processing smaller regions (section 5.4, p.144). When the correlation field is 

normalised by signal strength, measurement underestimations caused by the cross-

correlation of partial images is suppressed.  As with the 32 x 32 pixel regions, 

RMSSS(m,n) also suppresses the effects of background noise to further reduce mean 

bias error.  This is achieved by maintaining the ratio between the three central 

correlation peak points that are used to define the sub-pixel location of the 

correlation peak to those achieved with ‘ideal’ region processing using NSS.  The 

benefits of using the RMSSS(m,n) algorithm over SCC are further demonstrated by 

Figure 7.7.  The figure shows that the experimental RMS error results are 

comparable to the theoretical predictions.  This demonstrates that signal strength 

function suppresses the asymmetry of the correlation peak caused by the cross-

correlation of unrelated particle images that generates variations in measurements 

thereby suppressing RMS errors.   
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(a) experimental 
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(b) theoretical 
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Figure 7.7 Experimental and theoretical RMS error plot comparison (16 x 16 

pixel regions) 

This section has demonstrated that when processing smaller interrogation regions 

(e.g. 16 x 16 pixel regions) the RMSSS(m,n) algorithm is preferred.  This is because the 

routine is able to suppress the partial images that cause underestimations in 

measurements; accounts for the asymmetry of the correlation peak caused by the 

cross-correlation of unrelated particle images that result in RMS errors and 

compensates for background noise that also affects measurements. 
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7.3.4 Window shifting analysis and comparison 

In this section, the experimental accuracy metrics generated by SCC, NSS and 

RMSSS(m,n) with discrete window shifting of 32 x 32 pixel regions are examined and 

compared to theoretical predictions.  The experimental images captured by 

Anandarajah (2005) were processed using the cross-correlation algorithms and 

discrete window shifting described in section 6.2 (p.150).  The error plots generated 

by these routines with DWS and the theoretical comparisons are show in Figure 7.8 

and Figure 7.9 respectively.  
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(b) theoretical 
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Figure 7.8 Experimental and theoretical mean bias error plot comparison for 

window shifting (32 x 32 pixels) 
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(a) experimental 
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Figure 7.9 Experimental and theoretical RMS error plot comparison for 

window shifting (32 x 32 pixels) 

The figures highlight that the DWS experimental results are in good agreement with 

theoretical predictions, and shows that DWS reduces measurement errors to sub-

pixel displacements as discussed in section 6.2 (p.150). 
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7.3.5 PIPM analysis and comparison 

This section provides the experimental error plots for SCC, NSS and RMSSS(m,n) with 

PIPM.  The first region in each realisation is 16 x 16 pixels and is processed with 

larger regions of 32 x 32 pixels. Results generated by experimental images are 

compared to theoretical predictions.  
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(b) theoretical 
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Figure 7.10 Experimental and theoretical mean bias error plot comparison for 

PIPM (16 x 16 pixel regions with 32 x 32 pixels regions) 
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(a) experimental 
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Figure 7.11 Experimental and theoretical RMS error plot for PIPM (16 x 16 

pixel regions with 32 x 32 pixels regions)  

PIPM results generated through experimental means are also shown to be in good 

agreement with their theoretical predictions.  Figure 7.10 shows that the mean bias 

error is suppressed for the series of uniform displacements regardless of which 

processing algorithm is used; an explanation for this is given in section 6.3 (p.156). 

The RMS error plot generated in Figure 7.11(a) is also comparable to theoretical 

analysis with SCC generating the highest RMS errors, caused by the cross-

correlation of unrelated particle images.  The cyclic pattern is identified as being 

caused by the cross-correlation of background noise.  Its effect is utmost at half-pixel 

displacements as was acknowledged by Figure 4.21 (p.98). With the application of 
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smaller regions the background noise effect on RMS error becomes more prominent 

resulting in the cyclic pattern for all processing algorithms. 

7.4 Summary 

This chapter has compared the accuracy metrics generated from experimental images 

with theoretical results from interrogation regions that contain mean background 

noise intensities of up to 15% of the 8-bit output.  It has been shown that 

experimental results are in close agreement with theoretical predictions.  When 

normalising the correlation field by signal strength there was a reduction in both 

mean bias and RMS error for commonly used interrogation regions of 32 x 32 pixels 

and smaller as well as for DWS and PIPM.  The RMSSS(m,n) algorithm is shown to 

further suppress measurement errors by accounting for background noise intensities.   
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Chapter 8                          

Conclusions 

Advances in image capture and laser-based technologies have lead to the 

development of time-resolved DPIV systems that have the potential to resolve the 

spatio-temporal dynamics of transient and turbulent flows.  Being able to acquire 2D 

velocity vectors across a global domain that have both high spatial and temporal 

resolutions has provided fluid dynamic researchers with a technique has the prospect 

of being used to verify predictive computational models in the real world.  However, 

before drawing any conclusions with regards to the validity and accuracy of DPIV 

velocity statistics, the systematic errors associated to the cross-correlation techniques 

have to be quantified.  It is therefore essential to minimise these systematic errors in 

order to accurately resolve flow field measurements. 

 

For this study, the accuracy of measurements is defined using two metrics, which 

are: mean bias error: describing the closeness an average measured value is to the 

actual result, and RMS error: which shows the variations in measurements across a 

data-set of measurements.  Both metrics have to be minimised in order to provide 

accurate measurements. 

 

A measurement evaluation in DPIV processing is typically provided by cross-

correlation: using the fast Fourier transform algorithm in the Fourier domain, or 

digital direct cross-correlation in the spatial domain.  Through processing data-sets of 

artificially generated realisations (Chapter 3, p.36) experiencing a series of known 

uniform displacements across each region it has been shown that the random 

distribution of particle images affects measurements when processing with these 

standard cross-correlation routines (Figure 4.2, p.68). Cross-correlation of clipped 

particle images (partial images) at the edge of each interrogation region which results 

from the random distribution across each region will cause measurement 

underestimations.  The cross-correlation of unrelated particle images between 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

CONCLUSIONS 187 

 

regions will cause variations in the shape of the correlation peak resulting in RMS 

errors.  This clarifies the original findings of Anandarajah (2005) which goes against 

the previous assumption that the weighting of the correlation function is the 

contributory factor in providing measurement uncertainties. 

 

Since cross-correlation was first used to quantify measurements (Willert and Gharib, 

1991) several techniques developed to refine the accuracy of results.  This study 

identified that discrete window shifting (Westerweel, 1997) with SCC processing 

takes advantage of sub-pixel displacement accuracy but does not account for the 

cross-correlation of randomly distributed particle images that cause measurement 

uncertainties (Figure 6.1, p.151).  Likewise, particle image pattern matching (Huang 

et al., 1993a) that was originally developed to account for the out-of-pattern effect 

compensates for mean bias errors but cannot suppress RMS error (Figure 6.4, p.157).  

Suppression of these metrics with PIPM and SCC is dependent on the size of 

interrogation regions that are processed.  This provides further evidence that the 

cross-correlation of unrelated and randomly distributed particle images affects the 

accuracy of measurements. 

 

Cross-correlation normalisation functions were also introduced as a means of 

improving the accuracy of measurements.  However, as section 2.8 (p.24) in 

conjunction with section 4.2 (p.66) identified, normalisation by area (section 4.3.1, 

p.73) and by variance (section 4.3.4, p.78) only affect the closeness of measurements 

to the actual value and not variations between individual results.  Normalisation by 

intensity (section 2.8.3, p.28) and mean subtraction prior to cross-correlation (section 

4.3.3, p.77) provided no improvement in measurement statistics over standard cross-

correlation of ‘ideal’ interrogation regions.  Although these weighting functions are 

unable to minimise both metrics each function accounts for the condition that was 

assumed to affect accuracy.  Normalisation by area accounts for the non-uniform 

weighting of the correlation field (Figure 2.7, p.25), normalisation by intensity 

accounts for variations in correlation peak height. Normalisation by variance 

accounts for the image quality across and between realisations, and mean intensity 

subtraction prior to cross-correlation accounts for background noise intensities that 

will also affect measurements (section 5.2.5, p.120).  Section 4.3.2 (p.75) showed 
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that the signal strength weighting function (NSS) compensated for the 

underestimations in measurements, caused by cross-correlation of partial images, and 

variations in the shape of the correlation peak, caused by the cross-correlation of 

related particle images.  This function compensates for these systematic errors by 

normalising each point of the SCC field by the pixel intensities that are used to 

calculate each point.  This thereby suppresses both the mean bias and RMS error 

metrics when processing ‘ideal’ artificial interrogation regions. 

 

This study has demonstrated that although NSS is able to suppress both accuracy 

metrics when using a Gaussian sub-pixel estimator, the most accurate results are 

from the evaluation of ‘ideal’ interrogation regions where no background noise is 

present.  Noise in DPIV analysis manifests as several quantities including: increasing 

the particle image seeding density per realisation, increasing the effective particle 

image size and also the addition of background noise that is inherent in experimental 

images.  Each of which will increase the intensity content of an interrogation region.  

Qualitatively, these are expressed as intensities that contribute to the correlation field 

and therefore can affect the shape of the correlation peak.  Section 3.9 (p.51) 

addressed the accuracy dependence on image quality by optimising the particle 

image size and seeding density using the standard cross-correlation algorithm.  It has 

been demonstrated that each region should be populated with 22 particle images each 

with a diameter of 2.8 pixels, to provide the lowest accuracy metrics whilst using the 

standard cross-correlation algorithms.  This concurs with the parameters stipulated 

by Huang et al. (1997) and Anandarajah (2005). 

 

The addition of background noise into each displacement data-set provoked an 

increase in the amplitude of the mean bias error oscillation whilst also introducing a 

‘beating’ effect into RMS error results when processing with both SCC and NSS 

(Figure 4.18, p.94).   This increase in mean bias error amplitude was shown to be 

caused by a decrease in the ratios between the three points of the correlation peak 

used to evaluate the sub-pixel displacement during analysis which results from 

increasing the magnitude of the correlation noise floor.  The ‘beating’ effect for SCC 

evaluation is caused by the decline in the ratios between the three correlation peak 

values coupled with variations in the shape of the correlation peak (Figure 4.20, p. 
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97).  This not only contributes to an increase in RMS error as the mean intensity of 

the background noise increases, but at half-pixel displacements will cause an RMS 

error peak (Figure 4.18, p.94). This peak occurs because at half-pixel displacements 

the correlation peak is defined across two points on the correlation field; the addition 

of background noise will thereby skew the correlation peak and its effects are 

greatest at half-pixel displacements and hence causes significant variations for these 

displacements. 

 

Several image enhancement algorithms have been developed to suppress background 

noise prior to cross-correlation.  These are: average image subtraction, image 

thresholding and mean intensity kernel subtraction prior to cross-correlation (sections 

5.2.1 to 5.2.3).  However, although this systematic error can be suppressed with these 

enhancement algorithms SCC does not account for partial images that cause 

underestimations and the cross-correlation of unrelated particle images that cause 

measurement variations.  Image enhancements with NSS provided a significant 

improvement over SCC results by accounting for the systematic errors caused by 

particle images but were unable to supply metrics typical of ‘ideal’ region analysis. 

 

A robust processing algorithm called mean intensity subtraction prior to R(m,n) 

cross-correlation normalised by signal strength, RMSSS(m,n) was subsequently 

introduced.  This algorithm was shown to be able to compensate for the systematic 

errors caused random distribution of particle images across each realisation as well 

as the addition of background noise (Figure 5.11, p.128).  RMSSS(m,n) is able to 

suppress both metrics as the mean background noise intensity increases because 

firstly the mean intensity from within the area that contributes to each point of the 

correlation field is subtracted from each pixel value to suppress background noise 

(section 5.2.5, p.120).  This suppresses an increase in magnitude of the correlation 

noise floor with increasing background noise intensity and hence maintains the ratios 

between the three central points of the correlation field (Figure 5.12, p.129) to ratios 

gathered through ‘ideal’ region processing.  It secondly takes advantage of the signal 

strength weighting function to compensate for random distribution of particle images 

across each realisation that includes partial images, by normalising by the pixel 

intensities that are used to calculate each point on the correlation field.  This thereby 
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suppresses measurement underestimations and measurement variations that are 

prevalent with SCC.  Therefore RMSSS(m,n) provides robust accuracy metrics as the 

mean intensity of background noise increases. 

 

Results show that processing artificial regions, with additional background noise, 

using RMSSS(m,n) produces accuracy metrics typical of those generated by the NSS 

algorithm using ‘ideal’ images.  Comparable results are also generated for equal-

sized region cross-correlation (i.e. 32 x 32 pixels and smaller, Figure 5.19, p.145) as 

well as for the iterative techniques with moderate background noise intensities 

(Figure 6.3, p.154 for DWS and Figure 6.6, p.161 for PIPM).  It has also been 

demonstrated that RMSSS(m,n) is able to compensate for changes in background 

intensity across an interrogation region (section 5.2.8, p.138) to provide metrics 

comparable to ‘ideal’ NSS analysis.  Since RMSSS(m,n) has proven to be a robust 

algorithm with regards to suppressing background noise intensities it is also able to 

account for variations in background noise intensity between regions as well.  

Additionally, prior knowledge of a region’s quality before evaluation with 

RMSSS(m,n) is not required.  Typically, an image enhancement algorithm will assess 

this prior to cross-correlation.   

 

The accuracy metrics predicted by analysis of artificially generated interrogation 

regions were verified using the controlled experiment described in Chapter 7.  The 

original images were captured by Anandarajah (2005) and processed with NSS.  

However, the increase in metrics associated with background noise was not 

addressed.  Experimental verifications of RMSSS(m,n) were shown to be in good 

agreement between theoretical predictions and experimental data.  It is shown that 

RMSSS(m,n) minimises both accuracy metrics on the analysis of equal-sized 

interrogation regions and the iterative techniques over that of standard cross-

correlation results by compensating for the presence of background noise and the 

random distribution of particle images, both of which are systematic errors in DPIV 

analysis. 

 

This study has achieved its overall goal of defining the major systematic errors 

within DPIV processing that are apparent during cross-correlation and has provided a 
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solution in a robust processing algorithm that is able to suppress their affects.  In 

addition, it has been identified that the three point Gaussian sub-pixel estimator, 

generally used to define the sub-pixel displacement, is suited to accurately defining 

measurements provided that there is no background noise, each particle image is the 

right size and that the systematic errors associated with cross-correlation are 

suppressed.   
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Appendix I - Noise distributions 

Although the background noise generated and analysed throughout this thesis has 

been modelled from experimental images the background noise distribution will vary 

as different data-sets are analysed.  This section provides the SCC error plots when 

each data-set contains various distributions of Gaussian background noise whilst 

maintaining the mean intensity at 15% of the total 8-bit output. 
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Figure A1.1 Various noise distributions whilst maintaining a mean background 

noise intensity of 15% 

The background noise distributions for this analysis are shown in Figure A1.1 and 

vary from when there is a uniform magnitude of background noise (A) across each 

interrogation region (i.e. each pixel has a value of 39 grey-scale). For the other four 

data-sets provided in Figure A1.1, the standard deviation of the distribution is 

increases accordingly and includes the distribution used throughout this research (C). 

 

 

 

 

 

 

 

 

 



DIGITAL PARTICLE IMAGE VELOCIMETRY - SYSTEMATIC ERROR ANALYSIS 

 

APPENDIX I 199 

 

 

(a) mean bias error 

0 1 2 3 4 5 6 7 8
-0.20

-0.15

-0.10

-0.05

0.00

0.05

M
e

a
n

 B
ia

s
 E

rr
o

r 
(p

x
)

Displacement (px)  

(b) RMS error 

0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

R
M

S
 E

rr
o

r 
(p

x
)

Displacement (px)  

0 1

-0.06

-0.04

M
e
a
n

 B
ia

s
 E

rr
o

r 
(p

x
)

Noise     SCC         NSS       

  A                  

  B                  

  C                  

  D                  

  E                   

Figure A1.2 Error plots for a mean background noise intensity of 15% for 

various distributions of noise 

Figure A1.2 clearly highlights that the distribution of Gaussian white noise across 

each interrogation region does not affect the accuracy metrics since the error plots 

generated from SCC of the five data-sets are identical.  These error plots do however 

demonstrate that it is the mean intensity of the background distribution that affects 

measurement as was identified in Figure 4.18 (p.94). 
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Partial Image Error (PIE) in Digital Particle Image Velocimetry (DPIV), E. Putman, 

G. K. Hargrave and N. A. Halliwell, Proceedings in the 26th AIAA Aerodynamic 

Measurement Technology and Ground Testing Conference, Seattle, WA, United 

States of America, 2008 
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Partial Image Error (PIE) in Digital Particle Image 

Velocimetry (DPIV) 

 
E.R.J. Putman1, G.K. Hargrave2 and N.A. Halliwell3

 

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, 
Leicestershire, LE11 3TU, United Kingdom. 

 
This paper examines and quantifies Partial Imaging Error (PIE) that is 

caused when an image is divided up into smaller interrogation regions, 

cutting particle images at the edge of a region in two. Original 

investigations have assumed that this source of error is negligible, yet this 

paper will prove that PIE is in fact a major contributor to measurement 

error and is more significant that the non-uniform weighting of the 

correlation function usually associated with measurement discrepancies. 

Results show that this error is significant for typical seeding densities and 

commonly used interrogation region sizes. If the correlation of regions that 

are 16 x 16 pixels or less is attempted PIE can prohibit a meaningful result 

from being obtained despite there being a valid correlation peak. It will 

also be highlighted that processes usually associated with improving the 

accuracy of measurements are unable to account for the effects of PIE and 

hence this inherent error remains. In order to reduce the effects of PIE and 

to increase measurement accuracy, it is necessary to normalise the 

correlation field before using a curve fit estimator on the correlation peak. 

However, it is shown that normalising by overlapped area, which is 

typically used as a normalisation function, is able to reduce mean bias 

error by correcting for the non-uniform weighting of the correlation 

function yet has no effect on RMS error. To correct for PIE, normalisation 

of the correlation field by signal strength (NSS) is presented here as an 

effective means of reducing both the mean bias and RMS error. 
 

Nomenclature 
da    = Actual particle image displacement 

db    = Mean bias error 

dm    = Mean measured displacement 
DPIV   = Digital Particle Image Velocimetry 

FFT   = Fast Fourier Transform 

I(x,y)    = Two-dimensional Gaussian intensity profile 

I0    = Peak image intensity 

I1(i,j)    = First Interrogation region 

I2(i,j)    = Second interrogation region 

Î1(ξ,η)   = Fourier transform of I1(i,j) 
Î2

*(ξ,η)   = Complex conjugate of the Fourier transform of I2(i,j) 

NSS   = Normalisation by Signal Strength 

PIE   = Partial Image Error 

R(m,n)    = Direct digital cross-correlation 

ROA(m,n)  = Normalisation of the R(m,n) correlation field by overlapped area 
RMS   = Root mean square 

(xc,yc)   = Pixel location of the correlation peak 

(xpk,ypk)   = True centre of correlation peak 

 

                                                

1 Ph.D. Student, Student Member, AIAA. 
2 Professor of Optical Diagnostics, Member, AIAA 
3 Professor of Optical Engineering 
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I. Introduction 
Digital Particle Image Velocimetry (DPIV) is an important, whole field measurement 

technique capable of quantifying two-dimensional velocity fields within a flow. In a typical 

DPIV experiment, two images of a flow seeded with tracer particles and illuminated by a 
light sheet are both captured within a short time period. These images are then divided into 

smaller interrogation regions and corresponding regions from each image are then cross-

correlated, typically with a fast Fourier Transform (FFT) algorithm. This generates a 
correlation field where the position of the highest peak corresponds to the average particle 

image displacement between the two interrogation regions. The displacement is then 

enhanced to sub-pixel accuracy by fitting a curve estimator (typically a three point Gaussian) 

across the signal peak. This process is repeated over the entire image and allows for velocity 
vectors to be extracted from each region to form a two-dimensional velocity map of the flow 

under examination. 

This work quantifies the inherent errors that occur in a DPIV experiment due to the 
random distribution of particle images between each region. This random positioning means 

that a number of complete particle images will sit entirely within a region whilst some will 

intersect the boundary causing PIE. For an actual displacement of da
 
we define a mean 

displacement dm and a mean bias error db over N measurements by: 
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where di is the displacement from a single measurement. 
 

In addition, the root mean square (RMS) error which measures the deviation of 

individual measurements from the mean is defined as: 

∑
=

−









−=

N

i

ii dd
N 1

2
1

σ  (2) 

By calculation the average displacement and the variation from the average means that 
the inherent measurement errors within a DPIV experiment can be quantified. 
 

II. Processing Methods 
 

The average particle image displacement between two regions is computed using a 
cross-correlation algorithm. For equal sized interrogation regions (typically 32 x 32 pixels) 

the favoured cross-correlation routine, used in commercial systems, is the fast Fourier 

Transform (FFT) preformed in the frequency domain. For a pair of regions I1(i,j)and 
I2(i,j)their cross-correlation is written as: 
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where Î1(ξ,η) denotes the Fourier transform of I1(i,j) and Î2
*(ξ,η) represents the complex 

conjugate of the Fourier transform of I2(i,j). The pixel position during correlation is denoted 

by (i,j). However, if regions are cross-correlated in the spatial domain both equal and non-
equal sized regions can be used to determine their respective displacements between regions, 

this is defined as: 
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Computation of the correlation field in the frequency domain defined in Eq. (3) is 

subjected to an effect referred to as ‘wrap around’ caused by the assumed periodicity of the 

signal when FFT is used. This can be avoided if regions are zero-padded
1
 before computing 

with FFT making results equate to those of R(m,n) correlation. 

 
 

A. Location of the correlation peak 
Following the computation of the correlation field, the position of the highest peak (the 

signal peak), is used to determine the average particle image displacement between the two 

regions. The position of this peak can be located to within ±0.5 pixels yet the accuracy of its 
location can be enhanced to a sub-pixel position if a curve estimator is fitted across the 

correlation peak. The most commonly used curve estimator is a three point Gaussian fit and 

if the pixel location of the signal peak is given as (xc,yc) then the sub-pixel peak centre is 
(xpk,ypk) where the three point Gaussian fit

2
 is defined as: 
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(5) 

From Eq. (5) it is clear that the central point (xc,yc) and the values of the four 

neighbouring points are of high importance when calculating the sub-pixel position of the 

correlation peak. For the same velocity measurements, discrepancies in the relative values 
between subsequent measurements caused by the random distribution of particle images 

must be normalised before a peak estimator is fitted across the correlation peak in order to 

reduce the RMS error defined in Eq. (2). 
 

III. Modelling of the Experiment 
 

In order to quantify the inherent errors that occur due to the random positioning of 
particle images between subsequent measurements a theoretical model of a DPIV experiment 

was developed, which would not be subject to any form of experimental error. 

To a good approximation it can be assumed that an individual particle image can be 
modelled as a two-dimensional Gaussian intensity profile

3
, I(x,y) which is given as: 

( )
( ) ( )


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




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

 −−−
=

2

2

0

2

0

0 exp,
i

yyxx
IyxI

σ
 (6) 

Where the centre of the particle image is located at I(x0,y0) with the maximum intensity 
of I0. The particle image diameter di is defined as the e

-½
 intensity value of the Gaussian 

function. 

To evaluate the inherent error caused by the random distribution of particle images a 
simple uniform flow, moving purely in the x-direction, was modelled where the actual 

displacement between regions could be controlled and ranged between zero and eight pixels 

whilst also including sub-pixel displacements. To generate the sub-pixel displacements, a 

3200 x 3200 pixel interrogation region was populated with 22 randomly distributed high 
resolution particle images as shown in Fig. 1a). A second high resolution region was then 

generated by taking the location of each particle image in the first region and displacing each 

of them by a prescribed amount in the x-direction. These high resolution regions were then 
digitised, based on an 8-bit imaging device (256 grey-scale) to produce two 32 x 32 pixel 
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regions, one of which is shown in Fig. 1b). The size of region and the 8-bit imaging device is 

commonly used in commercial DPIV systems. Digitisation also means that the location of 

each particle image can be determined to within one-hundredth of a pixel. 

  
(a) high resolution region (3200 x 3200 pixels) (b) digitised region (32 x 32 pixels) 

Figure 1. Particle images distributed within an interrogation region 
 

Each region was populated with 22 particle images each with a digitised diameter of 2.8 

pixels as this avoids errors associated with a poor signal-to-noise ratio (SNR) and an 

inadequate pixel resoltion
3
. A data-set containing 300 realisation were calculated for each 

displacement. When the measured displacement was calculated for each realisation and then 
averaged over the number of realisations there are equal numbers of particle images entering 

into and out of each interrogation region pair, therefore the measurement error relating to the 

random distribution of particle images can be determined. 
 

IV. Model Predictions 
 

In order to quantify the effect of the correlation noise floor on measured displacement, 
an average noise floor was calculated for the same displacement data-set for 300 realisations. 

This was accomplished by computing 300 correlation fields from correlating 300 statistically 

independent interrogation region pairs where the position of the particle images in the second 
region are not related to the position of the particle images in the first. Each pair of 

independent regions were correlated using R(m,n) and FFT defined by Eqs. (3) and (4) 

respectively. The correlation field formed were summed and averaged to generate a mean 

correlation noise floor for both R(m,n) and FFT correlation which can be seen in Figs. 2 and 
3 respectively.  
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Figure 2. R(m,n) correlation noise floor Figure 3. FFT correlation noise floor 
 

The pyramid shaped noise floor developed from R(m,n) correlation is due to the change 

in overlapped area that occurs when each correlation value is calculated. This shape has been 
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used to explain why the correlation peak is bias toward a smaller displacement value for the 

correlation of each realisation
4
. This negative bias has been well reported in literature and 

methods for its avoidance have included using an appropriate weighting function or by the 
subtraction of the mean intensity value of the interrogation region before correlation 

commences
5
. FFT correlation, on the other hand, generates a flat noise floor caused by the 

periodic wrap around effect inherent with the FFT process. 
The mean bias error plot shown in Fig 4a) is based on a range of displacements from 

one to eight pixels and extending through sub-pixel values whilst analysing 32 x 32 pixel 

interrogation regions using R(m,n) and FFT. The negative mean bias results for R(m,n) are 

anticipated due to the assumption that the pyramid noise floor will skew the correlation peak 
towards smaller displacements. However, the mean bias calculated from FFT correlation 

follows the same trends as those for R(m,n) yet as was shown in Fig. 3, FFT correlation 

generates a flat noise floor and therefore should not show a bias. This suggests that the 
correlation noise floor only plays a minor role in error propagation. Fig. 4 also includes the 

RMS error plot extending over the same displacement range for the correlation of 32 x 32 

pixel interrogation regions. The results show there are large variations in measurements 

between individual realisations that extend over the entire examined range. 
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(a) mean bias error – 32 x 32 pixels (b) RMS error – 32 x 32 pixels 

Figure 4. Measurement error plots - R(m,n) and FFT analysis 
 

It is interesting to consider the equivalent error associated with the correlation of 16 x 16 

pixel interrogation regions that are increasingly being used in DPIV analysis. The mean bias 

and RMS error results are shown in Fig. 5. The latter Fig. 5b) raises serious concerns about 

experimental accuracy with FFT correlation, which is used in most commercially available 
PIV systems, to compute the correlation field using the smaller sizes interrogation regions.  
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(a) mean bias error – 16 x 16 pixels (b) RMS error – 16 x 16 pixels 

Figure 5. Measurement error plots – R(m,n) and FFT analysis 
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In the following section we will show that the negative mean bias which has previously 

been assumed to be due to the non-uniform weighting of the correlation function is in fact 

dominated by the effects of partial images found at the boundary of an interrogation region. 
Initial investigations recognised that partial images were a source of measurement error

6
 but 

their effect were assumed to be negligible. Partial imaging was also recognised by Nogueira 

et al.
7
 as being a major contributor to measurement error and proposed a solution for their 

removal. This paper will further quantify this error and will highlight that processes assumed 

to increase the accuracy of measurements as in fact unable to do so due to PIE. An 

alternative and improved solution is proposed to correct for the inclusion of partial images 

and therefore reduce both the mean bias and RMS error over a range of displacements. 
 

V. Partial Images 
 

When equal-sized regions are correlated, the signal peak is inherently skewed towards 
smaller displacement values due to the presence of partial images at the edge of a region. 

The importance of partial imaging as a source of measurement error can be best explained 

using a simplified example shown in Fig, 6. Here, two particle images in region I1(i,j) are 
displaced by two pixels in the x-direction so that one particle image in the second exposure 

I2(i,j) is clipped at the boundary. The corresponding (one-dimensional) correlation signal 

peak for R(m,n) and FFT is shown in Fig. 7. The value to the left of the correlation peak is 

larger than that on the right, hence the correlation peak is skewed towards a smaller value. 

  
First interrogation region Second interrogation region 

Figure 6. Partial image in the second interrogation region 

 

  
(a) R(m,n) routine (b) FFT routine 

Figure 7. Correlation peak for a partial image in the second interrogation region 
 

In contrast, Fig. 8 shows a partial and complete particle image in the first exposure. One 

again these are subjected to a two pixel shift, forming two complete particle images in the 
second exposure. Correlation of these two regions still cause a negative skew in results, as is 

seen in Fig. 9. This inherent bias explains why that even in the presence of a flat noise floor 

(as with FFT correlation) the negative mean bias results shown in Fig. 4 are produced. 
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First interrogation region Second interrogation region 

Figure 8. Partial image in the first interrogation region 
 

  
(a) R(m,n) routine (b) FFT routine 

Figure 9. Correlation peak for a partial image in the first interrogation region 
 

In this simplified example it is fair to assume that window shifting
5
 the second region 

I2(i,j) by two pixels in order to maintain a high SNR will remove the presence of the partial 

images and hence restore the symmetry to the correlation peak. However, it should be noted 
that when the two regions are fully populated with randomly dispersed particle images, the 

first exposure will always be exposed to the effects of PIE and will also introduce partial 

images at the boundary of the second region, hence discrete window shifting is unable to 
account for the effects of PIE on measurements. 

A further illustration of the effect of partial imaging is shown in Fig. 10 below. This 

error plot shows that the mean bias produced when only complete particle images were 

randomly distributed within each interrogation region, maintaining the seeding density and 
the particle image diameter as before. These regions were correlated using R(m,n) to produce 

a mean bias error plot that is not influenced by partial imaging. Furthermore, to show that the 

noise floor has little effect on the overall measurement error, a noise floor was generated in 
each correlation field by adding six complete but uncorrelated particle images into each 

interrogation region. For comparison the mean bias plots for the real case consisting of 

complete and partial images is also shown in the figure. 
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  R(m,n) - 'Real' case including partial and complete particle images  
 

Figure 10. Mean bias error plot for complete and partial images 
 

In the absence of a noise floor, when each interrogation region contains only complete 

particle images then the two regions of the pair are identical albeit for a uniform shift, 

therefore cross-correlation will produce a mean bias plot influenced by the digitisation effect 

which is shown as the oscillation in results. The addition of a noise floor to the correlation 
field by adding six complete, but uncorrelated particle images to each region has a negligible 

effect on the overall mean bias error. The inclusion of partial images in the real case however 

has the greatest effect on the mean bias as at small displacements there is a significant 
increase in negative mean bias which is maintained as the displacement is increased. It is 

clear from this example that partial images and not the non-uniform weighting of the 

correlation function has a major influence of measurement error. 
 

VI. PIE Reduction 
 

When an image of a flow is divided into interrogation regions, the random distribution 

of particle images within each region will result in come particle images being clipped at the 
boundary forming partial images. Correlation of these partial images causes an asymmetry in 

the correlation peak, skewing it towards smaller displacement values. As has been shown, 

partial images have a major influence on measurement error and it is therefore necessary to 
correct for partial images during DPIV analysis. Processes usually associated with improving 

the accuracy of measurements such as window shifting and particle image pattern matching
3
 

do not account for the effects of PIE and hence this inherent error remains. 
As has been stated previously, discretely window shifting the second region is able to 

preserve a high SNR and also maintain the signal peak around the centre of the correlation 

field. With previous measurement error assumptions, holding the signal peak high on the 

pyramid noise floor during R(m,n) correlation would have meant that the signal peak would 
not be skewed towards smaller measured displacement values. However, as has been shown, 

partial imaging has a greater influence of measurement error so when interrogation regions 

are fully populated with particle images the first region will always be subjected to the 
influences of PIE, so shifting the second region will introduce partial images into the second 

region hence window shifting is unable to account for the effects of PIE on measurement 

error. Nevertheless, when particle images are subjected to a integer pixel displacement 

coupled with a discrete window shift the particle images in the second region I2(i,j) are 
identical in their position and intensity to those in the first and when identical regions are 

correlated a symmetric correlation peak results and hence zero measurement errors are 

produced at these displacements.  
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To increase the resolution of velocity vectors the size of interrogation regions under 

examination are decreased. Smaller interrogation regions will however be greatly effected by 

factors that contribute to measurement error. As the particle image displacement between the 
two exposures is increased there is a decrease in the number of correlating particle images 

between the two regions. Decreasing the interrogation region size will also increase 

correlation sensitivity to partial imaging which is a significant contributor to measurement 
error. 

Reaffirming the SNR lost through the lack of particle image correlation can be improved 

by properly choosing the size of the interrogation region to suit the displacement. It was 

proposed that correlation of a smaller first region with that of a larger second would result in 
all the correlation particle images remaining in the larger second region. This process is 

known as particle image pattern matching (PIPM). 

When correlating a smaller first region I1(i,j) with a larger second I2(i,j) which are fully 
populated with randomly distributed particle images means that the distribution of particle 

images and the location of the partial images will influence whether the correlation peak is 

skewed positively or negatively, therefore, on average, will produce a negligible means bias 

error over the entire displacement range. Smaller region sensitivity to partial imaging and 
particle image distribution does however lead to variations in the correlation peak shape and 

therefore the RMS error remains in measurements.  

In fact, all processes that involve cross-correlation of interrogation regions including 
iterative methods are subjected to the effects of PIE, thereby causing a negative bias in 

measurements. 
 

B. Normalising by Overlapped Area 
 

The asymmetry of the correlation peak has to be corrected before a curve peak estimator 

is applied to the signal peak to determine the displacement. Previous investigations have 
centred on normalising the correlation field by overlapped area. This normalisation function 

is able to compensate for the non-uniform weighting of the correlation function by skewing 

the correlation peak back towards the actual displacement and can therefore reduce mean 

bias error. However, this method is unable to compensate for the random distribution of 
particle images across an interrogation region that cause partial images and therefore shows 

no signs of correcting for the asymmetry caused by PIE, hence the RMS error remains. 

Fig. 11(a) and 11(b) compares the mean bias and RMS errors computed for R(m,n) and 
ROA(m,n) correlation for 32 x 32 pixel interrogation regions over a range of displacements 

from zero to eight pixels and extending to sub-pixel displacements. In this figure, ROA(m,n) 
denotes the errors from the correlation routine due to normalising by overlapped area. Fig 

11(a) shows there is a significant reduction in mean bias error with ROA(m,n) when compared 
to R(m,n) correlation. However, normalising by overlapped area is unable to compensate for 

changes in the seeding distribution across an interrogation region which cause partial images 

and results in large variations in the shape of the correlation peak generating RMS errors 
equivalent to that of standard R(m,n) correlation.  
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(a) mean bias error – 32 x 32 pixels (b) RMS error – 32 x 32 pixels 

Figure 11. Measurement error plots – R(m,n) and ROA(m,n) analysis 

C. Normalisation by Signal Strength 
 

As has been shown, particle images that intersect the boundary of an interrogation region 

cause an asymmetry in the correlation peak skewing the measured displacement towards 
smaller values. Furthermore, for the same actual displacement there can be large variations 

between measurement values caused by the asymmetry in individual correlation peaks which 

is defined as the RMS error. It is necessary therefore to correct for this asymmetry by 
normalising the correlation peak. PIE can be significantly reduced if the R(m,n) correlation 

field is normalised by signal strength in the overlapped area (NSS)
6
, which is defined as: 
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(7) 

If the correlation field for the simplified particle image examples in Fig. 6 and 8 are 
computed using NSS the asymmetry in the correlation peak is corrected for. This result is 

shown in Fig. 12. 

  
(a) R(m,n) routine (b) FFT routine 

Figure 12. NSS correlation peak for a partial image in a) the second region and b) the first 

region 
 

Normalising by signal strength is able to compensate for changes in particle image 

seeding density across the interrogation region since the correlation field is normalised by 

the signal used to compute each point in the correlation field and can thereby correct for the 
random positioning of particle images and significantly reduce both the mean bias and RMS 

errors over a broad range of displacements. Measurement error plots produced when each 
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correlation field is normalised by signal strength is shown in Fig. 13 andfor comparison, 

results for R(m,n) and FFT correlation are also included in the figure 
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(a) R(m,n) routine (b) FFT routine 

Figure 13. Measurement error plots – R(m,n), FFT and NSS analysis 

As has been shown, partial imaging has a significant influence on measurement error 

causing the correlation peak to be skewed towards smaller displacement values. It is 
therefore necessary to correct for their presence and thereby restore the symmetry to the 

correlation peak. Normalisation by signal strength here is highlighted as being an effective 

method of correcting for partial imaging to reduce both the mean bias and RMS error as 
shown in Fig. 13. 
 

Conclusions 
 

This paper has identified partial images found at the boundary of an interrogation region 

as being a major source of error in DPIV analysis regardless of the size of interrogation 

region used in analysis. 
It has become common practice to reduce the interrogation region size to increase the 

spatial resolution, yet it is partial image error that can preclude a meaningful result from 

being obtained. The correlation of interrogation regions that are 32 x 32 pixels or smaller 

increases the sensitivity to PIE. An example of this is the correlation of 16 x 16 pixel regions 
that are analysed using FFT, which is common is commercially available DPIV systems. PIE 

has a significant contribution on the overall measurement error producing a mean bias and 

RMS error that are both 7% respectively for a mean displacement of only one pixel. This 
paper has shown that the negative mean bias previously associated with the non-uniform 

weighting of the correlation function is in fact due to the presence of partial images and so 

their influence will always be present in DPIV analysis. 

PIE can be significantly reduced if the correlation field is normalised by signal strength 
before the sub-pixel position of the correlation peak is determined with a curve estimator. If 

the correlation field is normalised by area the non-uniform weighting of the correlation 

function is corrected for and therefore mean bias error is reduced. However, this approach 
has no effect on reducing the variation in correlation peak shape between measurements and 

therefore RMS error remains. Normalisation by signal strength (NSS) is able to correct for 

the random positioning of particle images within and at the boundary of an interrogation 
region and so is able to correct for the skew in the correlation peak as well as reducing the 

variation in the correlation peak shape between subsequent realisations thereby resulting in a 

significant reduction in both mean bias and RMS error when interrogation regions that are 32 

x 32 pixel or less are correlated. 
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