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ABSTRACT

This thesis concerns blind source separation techniques using second or-

der statistics and higher order statistics for reverberant environments.

A focus of the thesis is algorithmic simplicity with a view to the algo-

rithms being implemented in their online forms. The main challenge of

blind source separation applications is to handle reverberant acoustic

environments; a further complication is changes in the acoustic envi-

ronment such as when human speakers physically move.

A novel time-domain method which utilises a pair of finite impulse

response filters is proposed. The method of principle angles is defined

which exploits a singular value decomposition for their design. The

pair of filters are implemented within a generalised sidelobe canceller

structure, thus the method can be considered as a beamforming method

which cancels one source. An adaptive filtering stage is then employed

to recover the remaining source, by exploiting the output of the beam-

forming stage as a noise reference.

A common approach to blind source separation is to use methods

that use higher order statistics such as independent component analy-

sis. When dealing with realistic convolutive audio and speech mixtures,

processing in the frequency domain at each frequency bin is required.

As a result this introduces the permutation problem, inherent in inde-

pendent component analysis, across the frequency bins. Independent
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vector analysis directly addresses this issue by modeling the depen-

dencies between frequency bins, namely making use of a source vector

prior. An alternative source prior for real-time (online) natural gradi-

ent independent vector analysis is proposed. A Student’s t probability

density function is known to be more suited for speech sources, due to

its heavier tails, and is incorporated into a real-time version of natural

gradient independent vector analysis. The final algorithm is realised as

a real-time embedded application on a floating point Texas Instruments

digital signal processor platform.

Moving sources, along with reverberant environments, cause signif-

icant problems in realistic source separation systems as mixing filters

become time variant. A method which employs the pair of cancellation

filters, is proposed to cancel one source coupled with an online natural

gradient independent vector analysis technique to improve average sep-

aration performance in the context of step-wise moving sources. This

addresses ‘dips’ in performance when sources move. Results show the

average convergence time of the performance parameters is improved.

Online methods introduced in thesis are tested using impulse re-

sponses measured in reverberant environments, demonstrating their ro-

bustness and are shown to perform better than established methods in

a variety of situations.



RÉSUMÉ

Cette thèse porte sur les techniques de séparation de sources en aveu-

gle en utilisant des statistiques de second ordre et statistiques d’ordre

supérieur pour les environnements réverbérants. Un objectif de la

thèse est la simplicité algorithmique en vue de l’implantation en ligne

des algorithmes. Le principal défi des applications de séparation de

sources aveugles est de s’occuper des environnements acoustiques de

réverbération; une complication supplémentaire concerne les change-

ments dans l’environnement acoustique lorsque les sources humaines se

déplacent physiquement.

Une nouvelle méthode dans le domaine temporel qui utilise une paire

de filtres à réponse impulsionnelle finie est proposée. Cette méthode,

dite des angles principaux, sur une décomposition en valeurs singulières.

Une paire de filtres, jouant le rôle de formation de voie, est estimée de

facon à annuler une des sources. Une étape de filtrage adaptatif est

ensuite utilisée pour récupérer la source restante, en exploitant la sortie

de l’étage de beamforming en tant que référence de bruit.

Une approche commune de la séparation de sources aveugle est

d’utiliser des méthodes fondées sur les statistiques d’ordre supérieur

comme l’analyse en composantes indépendantes. Cependant, pour des

mélanges convolutifs audio et vocaux de parole réalistes, la transfor-
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mation dans le domaine fréquentiel pour chaque fréquence de calcul

est nécessaire. Ceci introduit le problème de permutations, inhérentes

à l’analyse en composantes indépendantes, pour toutes les fréquences.

L’analyse en vecteurs indépendants résout directement cette question

par la modélisation des dépendances entre les fréquences de calcul, à

partir d’a priori sur les sources. Un algorithme de gradient naturel en

temps réel est également proposé avec un autre a priori sur les sources.

Cette méthode exploite la fonction de densité de probabilité de Student,

connue pour être bien adaptée pour les sources de parole, en raison de

queues de distribution plus lourdes. L’algorithme final est implanté en

temps réel sur un processeur numérique de signal à virgule flottante de

Texas Instruments.

Les sources mobiles, avec des environnements réverbérants,

causent des problèmes significatifs dans les systèmes de séparation de

sources réalistes car les filtres de mélange deviennent variants dans

le temps. Dans ce cadre, une méthode qui utilise conjointement le

principe de la paire de filtres d’annulation et le principe de l’analyse

en vecteurs indépendants est proposée. Cette approche permet de lim-

iter les baisses de performances lorsque les sources sont mobiles. Les

résultats montrent également que les temps moyens de convergence des

divers paramètres sont diminués.

Les méthodes en ligne qui sont introduites dans la thèse, sont testées

en utilisant des réponses impulsionnelles mesurées dans des environ-

nements réverbérants. Les résultats montrent leur robustesse et

d’excellentes performances par rapport à d’autres méthodes classiques,

dans plusieurs situations expérimentales.
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Chapter 1

INTRODUCTION

“One of our most important

faculties is our ability to listen

to, and follow, one speaker in

the presence of others. This is

such a common experience

that we may call it ‘the

cocktail party problem.’ No

machine has been constructed

to do just this, to filter out

one conversation from a

number jumbled together?”

Colin Cherry - 1954

1.1 Cocktail party problem

The cocktail party problem (CPP) was first proposed by Colin Cherry

[1], [2] and describes a problem where there are multiple human speak-

ers talking simultaneously within an enclosed environment where it is

required that each speaker’s voice is isolated (separated) from the other

present voices, similar to the manner in which the human sensory sys-

tem can identify, and listen to, individual speakers in a situation such

31



Section 1.2. Blind source separation 32

as a crowded party, Figure 1.1; hence the name of the problem. An

overview of the concept and review of methods addressing the problem

can be found in [3], [4].

Despite many years of research, a full solution to the problem is

lacking, and there are many facets of the problem still to be investigated

and addressed, such as the situation where there are more speakers than

sensors (‘ears’) and also how a human exploits a priori knowledge of

a speaker and/or environment to aid the separation. This thesis will

address some of these issues.

Engineers look to tackle this signal processing problem by using a

machine, or an algorithm implemented on an embedded system (such

as a digital signal processor system) to mimic the ability of the human

sensory system to separate speech sources. One aspect that a human

uses is eyesight, which provides useful information to the human brain

such as the location of the speaker, amongst other pieces of informa-

tion that could be considered a priori knowledge in a source separation

algorithm. Indeed, as the McGurk effect demonstrates [5], there is in

an inherent link between human eyesight and hearing. An interesting

perspective of an engineering challenge such as this is how this link can

be replicated in an automated digital system to enhance the solution.

The neurobiological perspective of how the human brain approaches

the cocktail party problem with multiple speakers is beyond the scope

of this engineering-based problem [6].

1.2 Blind source separation

The cocktail party problem is a typical blind source separation (BSS)

problem. BSS problems are characterised by an unknown mixing pro-
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Figure 1.1. The cocktail party problem (Image from Telegraph.co.uk).

cess and unknown signal sources, where only sensor (e.g. microphone)

observations are available. Such problems are commonly addressed with

independent component analysis (ICA) [7], [8].

The concept of blind source separation was first examined in 1982

by the authors of [9] and Jean-Pierre Rolls within the context of decod-

ing muscle motion (motion decoding) at the end of muscle fibers in the

field of neuroscience, as described in Section 1.1.1 of [8]. It was later in

1994 that Comon went on to formalise the concept of independent com-

ponent analysis [10]. ICA has many applications in biomedical signal

processing including: electroencephalography (EEG), electrocardiogra-

phy (ECG) signals, electromyography (EMG) and magnetoencephlaog-

raphy (MEG) signals [11], [12].

In addition, blind source separation and independent component

analysis has applications in many fields including communications in

the form of multiple-input multiple-output (MIMO) equalisers, RADAR

systems, SONAR systems and image processing applications, including

remote sensing. BSS also has interesting applications within finance,

potentially revealing underlying trends in markets.
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Given the growing tendency for voice-automated technology such

as Apple’s ‘Siri’ [13] and Google’s ‘Google Now’ [14] services on smart-

phones (and now even ‘smart watches’), blind source separation is an

important component in the field of natural language processing which

improves the intelligibility of speech signals, and can be considered as

a preprocessing stage before a speech recognition algorithm. Smart-

phones are also often equipped with video cameras, offering potential

for audio-video processing applications exploiting the speaker location.

Teleconferencing is also a significant area where blind source separation

for speech mixtures can be used, as well as surveillance and security

applications.

Over the years, different methods to address blind source separa-

tion problems have emerged. Computational auditory scene analysis

(CASA) [15], non-negative matrix factorisation (NMF) [16] and deep

learning for neural networks (DNN) [17] have all been applied to BSS.

None of these methods are considered in this thesis, due to the compu-

tational power necessary to perform these methods, causing algorithms

to be unsuitable for online or in real-time implementation. Further-

more, deep learning for neural networks would require a training phase

to initially train the neural network.

The methods described in this thesis come under either methods

exploiting the geometry between two microphones and use only sec-

ond order statistics (SOS) or methods which use higher order statistics

(HOS) such as independent vector analysis, or in the last full chapter

a combination of the two.
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1.2.1 Audio-visual source separation

The major problem for using blind source separation are the multiple

paths a speech signal can travel within a real environment such as a

room. Illustrated in Figure 1.2 is an example of how an acoustic signal

such as speech can propagate in a room environment. Several paths

are depicted over which the speech signal could travel. As each of these

paths in an enclosed acoustic environment may be modelled as a filter

this is described as a convolutive model. The reverberant nature of the

room environment is the main challenge to overcome in blind source

separation algorithms, especially for physically moving speech sources,

as the mixing filters would be time variant. Known speaker locations

from video cues can help overcome some of the difficulty encountered.

This convolutive model could be thought of as multichannel blind de-

convolution, however within the context of this thesis this term is not

used as filtered versions of the original sources would be accepted as

outputs to a BSS algorithm, thus this is not strictly deconvolution.

Throughout the thesis the terms ‘blind source separation’ and ‘source

separation’ are used inter-changeably.

Colin Cherry outlined in his original paper how visual informa-

tion could be used to aid the source separation process [1]. Moreover,

many emerging technologies are likely to be equipped with cameras

(e.g. smartphones, wearable technology and robotic human machine

interfaces). The content of this thesis looks to exploit video informa-

tion, by employing a priori knowledge of the speaker location, in a

similar manner in which a human speaker uses eyesight and hearing to

focus attention on one speaker; as such audio-visual source separation

increasingly becoming an important aspect of the CPP. A recent review
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Figure 1.2. A schematic of a selection of paths a sound pressure wave
could take between two sources and two microphones.

of the main techniques [18] highlights several areas of the field.

1.2.2 Batch, online and real-time

The term ‘online’ is generally used within the field of signal process-

ing to mean a process that contains a sequence of instructions that is

performed iteratively as signal data are provided, unlike a batch algo-

rithm that would wait until all signal data (or a time block of sufficient

size) are received before processing the signal data with the sequence

of instructions.

A real-time method is one that can process signal data at a constant

rate with a constant time delay between input and output signal data,

however no such constraint is placed on an online method.

Typically, an online algorithm is derived with real-time implementa-
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tion in mind, and therefore often the two terms are muddled. For clar-

ity, in this thesis the distinction is made that online methods have the

potential to be implemented in real-time due to their algorithmic for-

mulation, however, an online method may not have been implemented

in real-time and results may not have been gathered from the real-time

version.

1.3 Local scientific context and support

Work in the thesis is the culmination of several though highly related

research areas. Previous research has investigated the source separation

of moving sources by exploiting video cues. Along the same lines, the

work in this thesis has benefited from additional funding opportunities

related to audio-visual source separation, primarily a joint UK-France

PhD scholarship funding by Direction Generale de l’Armement (DGA)

and the Defence Science and Technology Laboratory (Dstl). Dstl also

provided extra funding in the fourth year of PhD study. The PhD

research project came under a larger European research project Chal-

lenges for Extraction and Separation of Sources (CHESS). Support from

this project primarily came in the form of addressing multimodality and

source extraction issues.

1.4 Aims and objectives of the thesis

The main aim of the thesis is to develop effective, low complexity online

methods for source separation, avoiding higher order statistics if pos-

sible in an attempt to reduce computational complexity. The contents

of the thesis address the following objectives:
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• Objective 1: To develop methods which avoid the need for higher

order statistics, by exploiting video cues in the form of known

speaker locations to aid the process. By doing so, it is hoped

that algorithm complexity can be reduced to an extent where the

developed methods can be considered online.

• Objective 2: Investigate potential time domain methods using

only SOS which attempt to solve the circularity problem.

Chapter 3 deals with Objectives 1 and 2, detailing a time domain so-

lution which employs the singular value decomposition to find a pair

of finite impulse response filters. An adaptive filtering stage follows to

recover all remaining sources.

• Objective 3: Provide evidence in the form of an embedded system

that blind source separation can be performed in real-time by

developing a demonstration of an online algorithm.

• Objective 4: Improve existing online techniques so that they are

suitable for speech separation in real-time.

Chapter 4 addresses Objectives 3 and 4 by utilising the online inde-

pendent vector analysis algorithm. A real-time demonstration on a

digital signal processor was implemented, and a new source prior for

independent vector analysis is suggested to better suit speech signals.

• Objective 5: Address convergence and separation performance of

online independent vector analysis in the moving source case with

the aid of known speaker locations.

Chapter 5 examines independent vector analysis in the context of phys-

ically moving source signals to address Objective 5. Previous methods
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from the thesis are employed to improve the convergence and perfor-

mance of online independent vector analysis for moving sources.

1.5 Outline of the thesis

The thesis is organised as follows:

• Chapter 2, introduction of blind source separation within the in-

dependent component analysis framework. An overview of inde-

pendent component analysis is included and how this leads to

the permutation problem in the frequency domain blind source

separation. The independent vector analysis algorithm is intro-

duced to address the permutation problem. Frequency domain

ICA and IVA are compared for convolutive mixtures. Also intro-

duced are datasets, relevant details on acoustics and performance

parameters used throughout the thesis.

• Chapter 3, the design of a pair of time-domain filters is consid-

ered to achieve target signal cancellation in a multi-source en-

vironment. The problem is formulated as a minimisation of a

sum squared error cost function with respect to the pair of finite

impulse response cancelation filters. Two methods are compared;

direct minimisation, which is achieved through an alternating gra-

dient descent based method and a novel method based on the

method of principal angles is proposed, which exploits the singu-

lar value decomposition which is the main focus of the chapter.

Simulation studies show that the gradient descent method suffers

from slow convergence, but this is overcome by the method based

on principal angles which also achieves a lower cost than the gradi-
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ent descent approach. The cancellation filters are combined with

an adaptive filtering scheme to address a video-informed audio

source separation problem.

• Chapter 4, independent vector analysis is employed to directly

address the permutation problem by modeling the dependencies

between frequency bins, namely making use of a source prior. An

alternative source prior for online natural gradient independent

vector analysis is proposed. A Student’s t probability density

function is known to be more suited for speech sources, due to

its heavier tails, and is incorporated into a real-time version of

online natural gradient independent vector analysis. The impor-

tance of the degrees of freedom parameter within the Student’s

t distribution is highlighted. The final algorithm is realised as

a real-time embedded application on a Texas Instruments digital

signal processor platform.

• Chapter 5, describes a combined technique based on work from

the previous two chapters which separates one source from a mix-

ture using the pair of cancellation filters used in Chapter 3. On-

line independent vector analysis is then employed to recover the

original sources. It is shown that this approach improves conver-

gence times of online independent vector analysis in the case of

physically moving source signals.

• Chapter 6 concludes the thesis and suggests future work.

In addition, an appendix is also included describing a potential on-

line method which exploits a technique for creating artificial impulse

responses in a room.



Chapter 2

CONVOLUTIVE SOURCE

SEPARATION TECHNIQUES

AND RELEVANT

LITERATURE REVIEW

2.1 Independent component analysis

The cocktail party problem is a typical blind source separation applica-

tion. Such problems are characterised by an unknown mixing process

and unknown original signal sources, where only sensor (e.g. micro-

phone) observations are available. They are typically addressed with

independent component analysis (ICA) [7], [8], [19].

Early interest in blind source separation originated from France,

Hérault and Jutten being pioneers in the field [9], [20] who proposed a

method with foundations in neural network theory to recover unknown

source signals. The concept of independent component analysis was

formalised by Comon in [10]. In the subsequent years several flavours

of the ICA algorithm emerged, including: the introduction of the Info-

max algorithm [21], [22] and the popular FastICA algorithm described

41
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in [23]. A tensoral method can also be applied to ICA, for example

in [24] the joint approximate diagonalisation of eigenmatrices (JADE)

algorithm is introduced which is a member of the family of methods

known as fourth-order blind identification (FOBI) algorithms. A recent

review of ICA techniques can be found in [25].

Realistic audio signals measured at microphones are generally gen-

erated by a convolutive model due to the reverberant nature of real

world environments; thus ICA algorithms which address the audio BSS

problem are commonly implemented in the frequency domain [26]–[29].

A drawback of frequency domain ICA and other frequency domain blind

source separation techniques is that the calculated unmixing filters may

permute the sources at each frequency bin (known as the permutation

problem), due to the permutation ambiguity inherent in ICA. The other

ambiguity present in ICA, the scaling ambiguity, is easily overcome,

normally by appropriately scaling the outputs.

Various methods have been suggested to mitigate the effect of the

permutation problem, in [30] smoothing over adjacent frequency bins

is suggested as a way of addressing the issue. In addition, [31] suggests

limiting the length of the filter in the time domain. Also, in [32] video

tracking of sources is suggested as an approach to address the permu-

tation problem. Other methods to address convolutive mixtures can be

found in [30], [33], and methods focusing on speech separation can be

found in [34].
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2.1.1 Linear mixing and unmixing model

2.1.1.1 The instantaneous model

In the context of acoustic sources such as speech, the instantaneous

mixing model describes only the direct path between speakers and mi-

crophones. This is given in the two-microphone and two-source case

(2×2)) as:

x1(t) = h11s1(t) + h12s2(t) (2.1.1)

x2(t) = h21s1(t) + h22s2(t), (2.1.2)

this model is at a given instant in time, where t denotes the discrete

time index, and assumes no time delays are present. The hji terms (for

the j-th microphone and the i-th source) are scaling parameters which

describe a simplistic acoustic path between a source and a microphone,

a diagram of the simple instantaneous two-microphone two-speaker sit-

uation is depicted in Figure 2.1.

h11

h22

h21

h12

s1

s2

x1

x2

Figure 2.1. A schematic of the instantaneous 2×2 mixing model.

Equations (2.1.1) and (2.1.2) can be written generally for any number

of sources, with additive noise, at each microphone as:
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xj(t) =
N∑
i=1

hjisi(t) + ζj(t), (2.1.3)

where xj(t) is the measured signal at the j-th microphone, si(t) is the

speech signal generated by the i-th source, hji is the scaling parameter

that models the effect of the environment between the i-th source and

the j-th microphone, ζj(t) is additive zero mean noise uncorrelated with

the speech signals and N is the number of sources. The noise, ζj(t),

can be considered as noise from extra spatially separated sources, how-

ever, the situation where additive noise is caused by non-spatial factors

(such as quantisation noise within an analogue to digital converter) is

considered beyond the scope of this thesis. Nevertheless, as in many

works in the field [35], [36], the noise term ζj(t) is dropped for brevity

for the remainder of the thesis. More generally the instantaneous model

in Equation (2.1.3), without noise, can be written in vector form as:

x = Hs, (2.1.4)

where H ∈ RM×N , x ∈ RM and s ∈ RN . The parameters h11, h21, h12,

and h22, for the 2×2 case, can be grouped together in the matrix H,

therefore1: x1

x2

 =

h11 h12

h21 h22


s1

s2

 (2.1.5)

where x is decomposed as x = [x1, x2]T , where (·)T denotes a matrix

transpose, and s is decomposed as s = [s1, s2]T . In fact, Equation

(2.1.4) could represent any number of sources (N) and microphones

(M). Methods to address the over-determined case (M > N) and

1For notational simplicity the discrete time index t is dropped.
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the under-determined case (M < N) have been developed, such as

via dimensionality reduction using principal component analysis (PCA)

for the over-determined case [37]. However, for brevity in this thesis

these situations are not considered. An assumption throughout the

thesis is that the number of original sources is equal to the number of

microphone observations (M = N). Therefore the matrix H is assumed

to be square, and agrees with the standard noise free ICA model.

The unmixing model for the instantaneous case is then given by:

ŝ = Gx, (2.1.6)

where G ∈ RN×M and ŝ ∈ RN . As H is constrained to be square,

theoretically, if the mixing matrix H is known it would be possible to

find a matrix that perfectly reconstructs the original sources by taking

the inverse of H, i.e. H−1 = G. The goal of ICA is to find an unmixing

matrix G given only the observed signals, hence the term blind source

separation. A schematic of the full mixing and unmixing model, when

M = N = 2, is illustrated in Figure 2.2.

h11

h22

h21

h12

g11

g22

g21

g12

s1

s2

x1

x2

ŝ1

ŝ2

Figure 2.2. A schematic of the instantaneous mixing and unmixing
model when M = N = 2.
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2.1.2 Statistical independence

Within the ICA model the original sources are modelled as random

variables; within this model it is assumed that a variable (source) s1

gives no information about s2, i.e. the mutual information is zero. This

is a major assumption of the ICA model, which is encapsulated by the

concept of statistical independence, which can be formally defined in

the real signal case as:

p(s) =
N∏
i=1

p(si), (2.1.7)

In other words variables are independent when the joint probability

density function (pdf ) can be factorised into the product of its marginal

probability density functions. For the two component (source) case the

probability density functions can be factorised as:

p(s1, s2) = p(s1)p(s2). (2.1.8)

Statistical independence is not the same as uncorrelatedness, which

can be considered to be a weaker form of independence. Independence

implies uncorrelatedness, however uncorrelatedness does not imply in-

dependence, except for Gaussian sources.

2.1.3 Ambiguities of independent component analysis

ICA is able to recover independent components (estimates of the orig-

inal sources), however two inherent ambiguities arise as a result.

1. Scaling ambiguity - the signal power of the estimated source sig-

nals do not generally match those of the source signals. This is not

normally a problem because it is easy to set the variances of the
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estimated zero mean sources to unit variance (i.e. E[|ŝi|2] = 1),

assuming that the signal in question has zero mean. This would

still have a sign ambiguity though for many types of signal, in-

cluding speech signals, this is usually trivial.

2. Permutation ambiguity - ICA cannot determine the order of the

estimated sources. To be precise, the unmixing model could be

written as ŝ = PGx, where P is a permutation matrix to be deter-

mined. With an instantaneous model this problem is not of great

impact in a variety of situations (so long as the sources have been

recovered adequately). However, when dealing with convolutive

mixtures, which necessitates operating in the frequency domain,

this becomes a major problem, as discussed later in the chapter.

The permutation problem has been an active area of research for

several years, one of the most promising frequency domain methods to

address the problem is introduced later in this chapter.

2.1.4 Derivation of natural gradient ICA

By using the concept of mutual information [7] which gives a measure

of the independence of two random variables, I =
∑

iH(si) − H(s),
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where H(·) denotes the differential entropy, it is possible to write:

JICA = KL
(
p(ŝ)||

N∏
i=1

q(ŝi)
)

(2.1.9a)

=

∫
p(ŝ) log

p(ŝ)∏N
i=1 q(ŝi)

dŝ (2.1.9b)

=

∫
p(x) log p(x)dx− log | detG| −

N∑
i=1

∫
p(ŝi) log q(ŝi)dŝi

(2.1.9c)

= const.− log|detG|−
N∑
i=1

E[ log q(ŝi)], (2.1.9d)

where E[·] denotes the mathematical expectation, KL(·) denotes the

Kullback-Liebler divergence and q(·) is an approximated pdf of the

original sources. Between equations (2.1.9b) and (2.1.9c) the Jacobian

expression:

p(ŝ) = p(G−1ŝ)|detG|−1= p(x)|detG|−1, (2.1.10)

is used to derive the differential entropy of the observations in first term

of Equation (2.1.9c), which becomes constant in Equation (2.1.9d),

where (·)−1 denotes the inverse of a matrix. This is exactly the same

as for ICA derived by mutual information and can be shown to be the

same as the Kullback-Liebler divergence between the joint pdf and the

product of the marginal pdfs:

KL
(
p(ŝ)||

N∏
i=1

q(ŝi)
)

=
N∑
i=1

H(ŝi)−H(ŝ). (2.1.11)

By taking the partial derivatives of Equation (2.1.9d), the gradient of
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the cost function can be calculated and is given as:

∆G = −∂JICA
∂G

= G−T − E[ϕICA(ŝ)]xT , (2.1.12)

where (·)−T denotes the inverse of a matrix combined with a matrix

transpose and −∂ log q(·)
∂si

= ϕICA(·) is the nonlinear score function for

ICA in its general form.

The natural gradient [38] is then calculated by right multiplying

through by GTG:

∆G ∝ (I − E[ϕICA(ŝ)ŝT ])G, (2.1.13)

thus the update rule for natural gradient ICA (NG-ICA):

G(`+ 1) = G(`) + η(I − E[ϕICA(ŝ)ŝT ])G(`), (2.1.14)

where η is a learning rate, and an iteration index (`) has been added.

The non-linear score function is based on a pdf which is chosen to model

the statistics of the original sources. Often for speech, a Laplacian pdf

is chosen, for example:

q(si) ∝ exp

(
− |si − µi|

σi

)
, (2.1.15)

where σi is the standard deviation of each source. The non-linear score

function becomes:

ϕICA(ŝ) =
ŝi
|ŝi|

. (2.1.16)

Various source priors can be chosen, each yielding a different result.
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Here the above Laplacian source prior is chosen for the example later

in the chapter.

2.1.4.1 The convolutive model

In the previous model Equation (2.1.4) time delays were not considered.

Realistically, this model would not be applicable in a real reverberant

environment such as a room. So that the model is more realistic, time

delays are introduced in the acoustic path between a speaker and mi-

crophone, modelling possible acoustic reflections in an environment.

This is described as the ‘convolutive model’. The observation at each

sensor of a microphone array can be modelled in the general case in the

frequency domain as a multiplicative mixture from each source of the

form:

x
(k)
j [n] =

N∑
i=1

h
(k)
ji s

(k)
i [n], (2.1.17)

where the variables are now complex valued and the superscript (·)(k)

has been added to denote an operation at frequency bin k and omits the

noise term (ζ
(k)
j ) as discussed previously. The short-time Fourier trans-

form (STFT) time block index (n) is also added, however for brevity is

dropped for this derivation.

The time-domain convolutive form can thereby be written in a

frequency-domain matrix form in a similar manner to Equation (2.1.4):

x(k) = H(k)s(k), (2.1.18)

where the variables are redefined for the complex case as: H(k) ∈ CM×N ,

x(k) ∈ CM and s(k) ∈ CN . Note that in this thesis it is assumed that
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there is an equal number of microphones and speakers, therefore H is

assumed to be square at each frequency bin, k. By writing the mixing

model in this manner it can be seen that this can be thought of an

instantaneous mixture at each frequency bin. For the remainder of this

chapter (and thesis) it is assumed that all mixtures are convolutive in

the time domain and that calculations are carried out in the frequency

domain except where explicitly mentioned, hence the addition of the

frequency bin index, k, in superscript.

The goal of a frequency domain BSS (FD-BSS) algorithm is to find

an unmixing matrix G(k) at each frequency bin, k, so that:

ŝ(k) = G(k)x(k), (2.1.19)

where the unmixing variables are redefined for the complex case as:

G(k) ∈ CN×M , ŝ(k) ∈ CN and x(k) ∈ CM . Similar to each mixing matrix

H(k), G(k) is assumed to be square at each frequency bin.

This can be written in its decomposed form as:

ŝ
(k)
i =

M∑
j=1

g
(k)
ij x

(k)
j , (2.1.20)

where ŝi is the estimated signal for the i-th source and gij is the fre-

quency domain unmixing filter to find the estimation of the i-th source

from the j-th observation.

If the mixing system was known the inverse of H(k) could be found,

so that H(k)−1 = G(k), which would recover the original sources exactly,

however it is assumed the mixing system is unknown in ICA and IVA.

As the mixing matrices are unknown the goal now becomes to find

an estimate of the unmixing matrices G(1,...,K), only using the observed
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signals x(1,...,K); the full frequency domain mixing and unmixing system

at frequency bin k, is illustrated in Figure 2.3 when M = N = 2.

Separation can be potentially achieved by assuming that the original

sources are statistically independent from each other at each frequency

bin.
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Figure 2.3. A schematic of the convolutive mixing and unmixing
model when M = N = 2.

2.1.5 The permutation problem in frequency domain independent

component analysis

An approach to solving the case of convolutive mixtures is to operate in

the frequency domain. A näıve approach would be to estimate the un-

mixing matrix at each frequency bin by treating each frequency bin as a

separate instantaneous problem. This seems an attractive proposition

at first, however it soon becomes apparent that one of the ambiguities

of ICA, the permutation ambiguity, has a major effect on processing.

As the instantaneous problem is effectively solved at each frequency bin

it is highly improbable that the estimated mixtures at each frequency

bin are in a consistent order across frequency bins. Figure 2.4 illus-

trates this problem, in this example of the problem for one frequency

bin, source s2 is in the position of source s1, source sN is in the position
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Figure 2.4. An illustration of the permutation problem of FD-BSS.

of s2 and s1 is in the position of sN . The order of the estimated sources

order would generally differ in each frequency bin. This is a problem

inherent to ICA and the permutation is not known at each frequency

bin (illustrated by the orange ‘slices’ in Figure 2.4). The instantaneous

model is not suited to realistic mixing environments due to time de-

lays in the convolutive mixing model. An early attempt to address

this in time domain is described in [39], which cancels 4-th order cross

cumulants to find estimates. However convolutive mixtures often mo-

tivate operating in the frequency domain, see Equation (2.1.17) for the

associated mixing model. Various early attempts to address convolu-

tive mixtures include [40] and [41] which introduces a feedback network

based on [21].

As previously mentioned, a method which was introduced in 2000

is Parra and Spence’s method [31]. By restricting the length of a filter

in the time domain the effect of this forces ‘smoothness’ across fre-

quency bins. In 2004 another robust approach was presented based on

a combination of direction of arrival and an interfrequency correlation
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[42].

Previous attempts to model multidimensional ICA includes [43].

This method models the dependencies between frequency bins and in-

cludes a technique called independent subspace analysis (ISA) [44],

which does not require independence between sources, though does

require independence on the projections on a set of subspaces which

allows the method to model dependencies (such as those found in a

frequency domain speech signal).

However, [35] introduces the idea of independent vector analysis

(IVA), which explicitly models the dependencies between frequency bins

in the algorithmic formulation, by modelling dependencies within the

vector sources and independence between vector sources by using a

multivariate pdf. This is the most promising method to date within

the ICA-style framework which addresses the permutation problem in

FD-BSS and is described in the following section.

2.2 Independent vector analysis

Independent vector analysis, first proposed by Kim in [35], whilst mod-

elling the statistical independence between sources, also models the

statistical relationships across frequency bins; thus within a source, de-

pendency between frequency bins is maintained. This approach directly

addresses the permutation problem inherent in FD-ICA.

This intra-frequency bin dependency is built into the algorithmic

formulation of the algorithm and does not attempt to solve the instan-

taneous problem at each frequency bin, and no kind of ‘post’ or ‘pre’

processing is required. The way in which the joint statistics across fre-

quency bins are captured is by using a multi-variate source prior in the
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Figure 2.5. Independent vector analysis model, showing independence
between sources and dependence within individual sources.

derivation.

Originally proposed for acoustic mixtures, IVA also has the potential

for being used with other types of data and was reviewed and given

a more general context in [36]. An online version with a mixture of

Gaussian source priors is described in [45]. Potential use of IVA includes

smartphone applications [46] in the form of auxiliary function IVA [47].

Similar to ICA a ‘fast’ version of the algorithm can be found in [48].

As well as assuming independence between individual sources (com-

ponents), dependencies are assumed within the sources in the mathe-

matical model, for a schematic representation of this see Figure 2.5.

In an audio source separation context these dependencies are used

to model the higher-order dependencies between frequency bins in an
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audio or speech signal, whilst maintaining inter-source independence.

The way in which these intra-source dependencies are modelled is by

introducing a multi-variate probability density function. The original

article on IVA [35] proposes the use of a super-Gaussian multivariate

probability density function, a bivariate version is shown in Figure 2.6.

As for ICA, independence between sources is modelled by the Kullback-
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Leibler divergence, thus a cost function (JIV A) is derived as:

JIV A = KL(p(ŝ1 . . . ŝN)||
N∏
i=1

q(ŝi)) (2.2.1a)

=

∫
p(ŝ1 . . . ŝN) log

p(ŝ1 . . . ŝN)∏N
i=1 q(ŝi)

dŝ1 . . . ŝN (2.2.1b)

=

∫
p(x1 . . .xM) log p(x1 . . .xM)dx1 . . .xM (2.2.1c)

−
K∑
k=1

log | detG(k)| −
N∑
i=1

∫
p(ŝi) log q(ŝi)dŝi

= const.−
K∑
k=1

log|detG(k)|−
N∑
i=1

E[ log q(ŝi)], (2.2.1d)

where the block diagonal diagonal structure of the global unmixing

matrix (G(1,...,K)) introduces a summation in the second term.

The partial derivative of the cost function is employed to find the

gradient;

∆g
(k)
ij = −∂JIV A

∂g
(k)
ij

= g
(k)−H
ij − E[ϕ(k)(ŝ

(1)
i , . . . , ŝ

(K)
i )x

(k)∗]
j , (2.2.2)

where
[
(G(k)−1)H

]
ij
≡ g

(k)−H
ij . The natural gradient [38] is then applied

by multiplying through by GHG:

∆g
(k)
ij =

N∑
l=1

(δil − E[ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i )ŝ

(k)∗
i ])g

(k)
lj , (2.2.3)

where δil is the Kronecker delta, i.e. when i = l, δil = 1, and zero other-

wise. Therefore Equation (2.2.3) is the update rule for the batch version

of natural gradient IVA (NG-IVA). The term ϕ(k)(·) is a multivariate

score function which can be based on a multivariate super-Gaussian
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source prior, and is written in the general case as:

ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i ) = −∂ log q(ŝ

(1)
i . . . ŝ

(K)
i )

∂ŝ
(k)
i

. (2.2.4)

Based on a source prior, representing the content of frequency domain

information of the original signals, the original source prior is written

as:

q(si) ∝ exp
(
− ((si − µi)HΣ−1

i (si − µi))
1
2

)
, (2.2.5)

as proposed in the original formulation [35] (Figure 2.6), where si =

(s
(1)
i . . . s

(K)
i ). Note that the ‘hat’ symbol (̂·) is omitted as it is an as-

sumption being about the original sources. A more thorough discussion

on the selection of the multivariate score function ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i ) can

be found in Chapter 4. By setting the mean values to zero and setting

the covariance matrix (Σ) to the identity matrix, the non-linear score

function is derived as:

ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i ) =

ŝ
(k)
i√∑K

k=1|ŝ
(k)
i |2

, (2.2.6)

and is the main component on maintaining dependencies across fre-

quency bins.

2.3 Small room acoustics and speech

Reverberant, noisy and multi-source environments, such as a room,

pose a significant challenge in signal processing systems particularly

in online applications. Generally speaking, multi-sensor array systems

are required to enhance or cancel a target signal source by means of

spatial filtering so that the target, or other measured signals, can be



Section 2.3. Small room acoustics and speech 59

processed more efficiently. Source separation methods and algorithms

are no exception. In the following chapter an outline of the datasets

and techniques employed for source separation for convolutive mixtures

systems are detailed.

2.3.1 Room Impulse Responses

Realistic audio mixtures are convolutive, meaning that an observation

at discrete time, t, would have contributions of previous time samples

of an original signal, s. This effect is due to reverberant environments

where sound pressure waves can take several paths of different phys-

ical lengths and attenuations, hence the delays in time and scaling

quantities. Reverberant environments can be modelled by impulse re-

sponses (IRs), and the term real room impulse response (RIR) is used

to describe non-artificial or simulated impulse responses. RIRs can be

considered as FIR filters which describe the acoustic path of a sound

pressure wave within an enclosed environment [49], therefore:

x(t) =
L∑
τ=0

h(τ)s(t− τ), (2.3.1)

where x(t) is the observation at discrete time t, h(t) is the causal filter

impulse response modelling the acoustics of a room, and s(t) is the

original source.

2.3.1.1 Reverberation time

Reverberation time (RT) is the time period that it takes for the energy

of an impulse response to decay below a certain threshold, usually set
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Figure 2.7. Example BRIRs for a two-source two-microphone sce-
nario, where s1 is 0◦ at 1m and s2 is 45◦ at 1m from the centre of the
microphone array.
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in decibels, a common threshold is 60dB and is written as RT60.

Throughout the thesis the reverberation time is calculated using the

Schroeder integral method [50], where a decay curve (E) is defined in

its continuous form as:

EC(tc) =

∫ ∞
tc

h2(tc)dtc, (2.3.2)

where tc denotes the continuous time index. A normalised discrete

decay curve can be found by:

EC(t) =

∑∞
τ=t h(τ)2∑∞
τ=0 h(τ)2

. (2.3.3)

Linear regression would then be used to find an estimate of a line which

would cross the horizontal axis at −60dB, a MATLAB implementation

of this can be found in [51]. Further details on measuring reverberation

time and decay curves can be found in [52].

2.3.2 Critical distance

The critical distance is the point in an enclosed environment where the

energy of the direct path (component) is equal to the energy of the

reverberant paths [49]. Critical distance can be approximated using

the following equation:

rc ≈ 0.1

√
vol

πRT60

, (2.3.4)

where vol is the volume of the room in m3.
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2.3.3 Image method

The image method (IM) is a well-known method in acoustics for esti-

mating an impulse response within a simulated small room [53]. When

compared to the random uncertain nature of real RIRs, the image

method is of distinctly artificial nature. Whilst providing suitable IRs

for ‘proof of concept’ methods, for robust testing this method is not

considered to be suitable. In later chapters RIRs, particularly from

[54] are employed. A study into the uncertainties of IRs can be found

in [55] and a method which attempts to exploit the image method for

source separation can be found in Appendix A.

2.3.4 Binaural real impulse responses

Real binaural room impulse responses (BRIRs) are used throughout the

thesis [54]. BRIRs are recording using a KEMAR (Knowles Electronics

Manikin for Acoustic Research) dummy head to simulate the effect of a

human head within a real acoustic environment. The dataset consists of

source azimuth angle locations of (0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦)

at distances of 0.15m, 0.40m and 1.00m from the equidistant point

between the two ears on the KEMAR dummy head which is placed at

various positions in a room. The only position that is considered in

this thesis is the ‘centre’ position at [2.5, 4.5, 1.5]m in a room with

dimensions of [5, 9, 3.5]m, where the KEMAR dummy head was placed

in the centre of the room approximately 1.5m from the ground facing

lengthwise in the room. The room impulse response RT60 time is 565ms

based on the method described in Section 2.3.1.1 and the BRIRs are

sampled at 44.1kHz but are downsampled to 8kHz for the purpose of

the experiments in this thesis. An example of BRIRs used in the 2×2
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case is shown in Figure 2.7.

2.3.5 TIMIT Acoustic-Phonetic Continuous Speech Corpus

The TIMIT dataset, which is a speech database of phonetically rich

speech signals, is widely used throughout this document [56]. The

corpus consists of eight different native American English accents with

a number of male and female speakers for each accent. Recordings of

utterances are provided at 16kHz, but were downsampled to 8kHz for

experiments detailed in this thesis. This provides a standard speech

library so that results are comparable to other studies.

2.4 Performance parameters

The signal-to-distortion ratio (SDR) and signal-to-interference ratio

(SIR) ratio are defined in [57], and are used throughout the thesis as a

measure of separation performance of the estimated sources.

The decomposition of an estimated source signal is based on the

following model:

ŝj = starget + einterf + enoise + eartif , (2.4.1)

furthermore SDR is defined as:

SDR = 10 log10

||starget||2
||einterf + enoise + eartif ||2

, (2.4.2)

and SIR is defined as:

SIR = 10 log10

||starget||2
||einterf ||2

, (2.4.3)
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where ||·||2 denotes the energy of a signal, starget is a measure of the part

of the estimated source which can be attributed to a filtered version of

the original source, einterf is the interference contribution from other

present sources and eartif is anything else that cannot be attributed to

the contributions from other sources such as distortion introduced by a

BSS algorithm. Effectively, SIR only takes into account the interfering

sources affecting an estimated source, however, the SDR also considers

interfering sources and in addition takes into account any additive noise

within an estimated source and any artifacts (e.g. filtering effects).

Throughout the thesis it is assumed of the scaling ambiguity that the

sources have the same variance at the microphones so that SDR and

SIR is 0dB at the microphone observations.

In addition, it is assumed that there is an allowed FIR filter length

of 1024 samples. Separation methods vary throughout the thesis (e.g.

in the time and frequency domains) and it was felt that such an al-

lowed filter length gave all methods a fair chance of reaching maximum

potential performance whilst allowing a reasonable time delay in the

context of the methods presented. By increasing the length of the al-

lowed filter, the length of the subspace projected onto it is increased

and thus allows for longer potential time delays. See Section III B of

[57], for further details.

The parameters of the decomposition in Equation (2.4.1) are found
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by:

starget = Psj ŝj (2.4.4)

einterf = Psŝj − Psj ŝj (2.4.5)

enoise = Ps,ζ ŝj − Psŝj (2.4.6)

eartif = ŝj − Ps,ζ ŝj, (2.4.7)

where P is a matrix projection on to a subspace, for example Psj is

the projection onto the subspace sj. The projections allowing for time

invariant filters are defined as:

Psj = proj((sτj )0≤τ≤L−1) (2.4.8)

Ps = proj((sτj′)1≤j′≤N,0≤τ≤L−1) (2.4.9)

Ps,ı = proj((sj′)1≤j′≤N , (ζ
τ
i )1≤i≤M)0≤τ≤L−1), (2.4.10)

where τ is a delay and L, in this case, is the maximum allowed delay,

set at 1024 in this thesis unless stated which effectively allows for the

length of a projection to be longer, thus allowing for longer delays in

the unmixing filters.

2.5 Independent component & vector analyses for convolutive

mixtures

2.5.1 Addressing the permutation problem

To address the permutation problem within FD-BSS a straightforward

method which measures the distance between unmixing matrices for



Section 2.5. Independent component & vector analyses for convolutive mixtures 66

two adjacent frequency bins is proposed in [58]. The two possible dis-

tances between two unmixing matrices for the 2×2 case are measured

as:

D1 =
∑
i,j

|g(k)
i,j − g(k−1)

i,j | (2.5.1)

D2 =
∑
i,j

|g(k)(fliped)
i,j − g(k−1)

i,j |, (2.5.2)

where G(k)(fliped) is found by multiplying by a permutation matrix:

G(k)(fliped) = G(k)

0 1

1 0

 . (2.5.3)

If D2 < D1, then G(k) ← G(k)(fliped), where ← indicates an assignment,

in this case this implies that a permutation between adjacent frequency

bins is likely to have occurred. This method of correcting for the per-

mutation problem is written here for the case of two sources N = 2.

Whilst possible to implement a similar method for N > 2, this would

add to the complexity as there would be N ! possible permutations at

each frequency bin thereby increasing the code complexity at each fre-

quency bin; as the target is to potentially implement an online version

of this method only N = 2 is considered. Previous studies such as [31]

discuss restricting the length of the time domain filters to correct for

the permutation problem. This method is not considered for FD-ICA

in this thesis as a simplistic approach is required.

With IVA it is not necessary to correct for the permutation problem

as it directly addresses the permutation problem in its formulation by

modelling sources with multivariate probability distributions, thus cap-
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turing higher-order inter-frequency dependencies. The batch versions

of NG-ICA and NG-IVA are both used as described in Sections 2.1.4

and 2.2.

2.5.2 Choice of window

Consider a system which splits a time domain signal into overlapping

blocks, applies a window to the blocks, transforms to the time-frequency

domain, performs some processing and transforms it back to the time

domain by means of an inverse discrete Fourier transform (DFT) and

overlap-add technique. Such a system needs to ensure that the recon-

structed time domain signal has constant energy, i.e. perfect recon-

struction. The condition for perfect reconstruction for a window with

50% overlap is window(t)2 + window(t + (K/2))2 = 1, where K/2 is

half the window length, where K is normally the number of frequency

bins, however for the purposes of applying a window it also happens to

be the length of the window. The window proposed in [35] is a Hann

window, described as:

windoworig(t) =

(
1

2

(
1− cos

( 2πt

K − 1

)))
. (2.5.4)

However, [59] proposes the following window:

windownew(t) = sin

(
π

2
sin2

( π
K

(
t+

1

2

)))
, (2.5.5)

by setting the time index and FFT size to example values, e.g. t = 256

and K = 2048, it is evident that windownew(t) satisfies the condition

for prefect reconstruction unlike the Hann window, i.e. window(t)2 +

window(t+ (K/2))2 = 0.0524 + 0.9476 = 1.
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2.5.3 Whitening

It is common in ICA style algorithms to decorrelate mixtures at the

microphones (or sensors). The mixtures are whitened so that the ob-

servations are uncorrelated with one another and that the variance is

set to unit variance, known as whitening or sphering the data. Con-

sequently, the covariance of some data x becomes the identity matrix

Cx = I, due to whitening. A whitening matrix can be found using PCA

[60], which can be implemented using various techniques including sin-

gular value decomposition and eigen analysis. The whitening matrix,

Qw, is defined as:

Qw = Λ
− 1

2
eigE

H
eig, (2.5.6)

where Λeig is a diagonal matrix of eigenvalues and Eeig is a matrix whose

columns are eigenvectors of a cross-correlation matrix Cx = E[xxH ],

which is the covariance matrix of the observations, assuming that the

observation signals have zero mean.

Typically, for the experiments within this thesis the observation

data remains unwhitened, as it is not a strict requirement of IVA and

methods in this thesis are derived with online and real-time operation

in mind. In such a scenario whitening matrices may not be available at

every instance in time. However, a “whitening light” is implemented in

some cases where input signal observations are divided by their stan-

dard deviation, causing the input signals to have unit variance.

2.5.4 Experimental results

To demonstrate a blind source separation system the techniques dis-

cussed so far are employed. Averaged results are given by taking the
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mean results of 22 mixtures2 created from a mixture of male-female

speakers taken from the TIMIT database. Mixing impulse responses

are taken from the BRIR dataset described in [54], where s1 is placed

at 0◦ and s2 is placed at 45◦ at 1.0m away from the centre of a two-

microphone array. A distance of 1.0m was chosen as it exceeds the

critical distance given by Equation (2.3.4). Both the batch versions of

NG-ICA and NG-IVA with two different windows are compared with

a preprocessing stage of whitening the observation data. Results are

given for a two-microphone two-source scenario in SDR and SIR with

an allowed filter tap length of 1024 in Table 2.1. Due to its poorer

results for convolutive mixtures ICA style methods are not considered

for the remainder of the thesis.

windoworig windownew

SDR (dB) SIR (dB) SDR (dB) SIR (dB)
NG-ICA 5.25 6.30 6.44 7.65
NG-IVA 12.77 14.81 13.16 15.02

Table 2.1. Results for the batch versions of NG-ICA and NG-IVA for
convolutive mixtures at 1.0m, where; K=1024, η = 0.001.

Results in Table 2.1 show improved performance for NG-IVA when com-

pared to NG-ICA, as expected. IVA is much better suited to ensuring

that there are fewer permutations within the frequency bins. To show

that perfect reconstruction is desirable in a source separation scenario

the two different windows proposed in Section 2.5.2 are compared, and

significantly improve results. It is interesting to note that when the

window proposed in [59] (windownew) is used, the values for NG-ICA

increase by approximately 1.2dB for SDR and 1.3dB for SIR. There is

222 mixtures were chosen so that they were consistent with the same mixtures in
Chapter 4 of this thesis due to practical constraints in obtaining results in Chapter
4.
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also an improvement in performance for NG-IVA however it is less pro-

nounced. For the remainder of the thesis when working with frequency

domain data which is transformed into the time domain, the proposed

window: windownew, is employed. A 2D schematic of the simulated

room layout is shown in Figure 2.8.

x1

x2
0.4m

s1, Angle= 0◦

s2, Angle = 45◦
Not to scale.

Room dimensions (approx.): 9m × 5m × 3.5m

Distance between microphones: 15cm.

Figure 2.8. 2D plan of room setup and locations of sources (blue) and micro-
phones (red). s1 is placed at 0.4m from x1 and also x2.

2.6 Audio-visual blind source separation

Colin Cherry outlined in his original paper how visual information could

be used to aid the source separation process [1]. Audio-visual source

separation has become an important aspect of the CPP with increasing

interest, a recent review of the main techniques [18], highlights several

areas of the field. As more and more emerging technologies are likely

to be equipped with cameras (e.g. smartphones, wearable technology

and robotic human machine interfaces), interest in audio-visual BSS

will increase.

Generally, previous audio-visual BSS methods aid the source sepa-

ration process by exploiting video cues to localise a source. By knowing
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the location of a source this can improve the convergence speed of al-

gorithms and potentially address the permutation problem when used

in conjunction with ICA-style methods.

Previous work into audio-visual source separation for moving and

non-stationary sources can be found in [32], [61], where a 3D position

tracker is used to identify the location of a source. Then based on this

information, an appropriate BSS algorithm is selected depending on

the movement of the source; a similar framework to this is proposed

in Chapter 5 of this thesis. In [62] a time-frequency masking approach

is described that exploits direction of signal arrival. A more complex

environment is described in [63] where the number of speakers is not

fixed and move in and out of the environment.

Knowledge of the location of the speakers can be estimated using

audio techniques rather than video cues [64], [65]. However, audio

localisation for simultaneously active speakers in a reverberant room

environment is difficult [62], [63].

Other works use the video information differently such as [66], which

exploit pauses in speech to identify silent periods so that one source is

silenced. Video localisation is also not always effective, especially if a

human face is not visible to at least two cameras [32]. Therefore audio-

visual modalities with multiple camera integration is the most suitable

choice for source localisation, however it is beyond the scope of this

thesis.

A video-informed noise source suppression technique using a ‘voxel’

model (a 3D grid with a simulated room) that attempts to exploit the

IM can be found in Appendix A.

Potential drawbacks, such as time required to provide an accurate
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estimate, typically associated with some BSS algorithms, prompts the

need for more efficient audio-visual methods, that possibly avoid higher-

order statistics, such as will be presented in Chapter 3. In this context,

[67] uses assumed video information to enhance a source by adaptive

filtering. It is important to reiterate at this point that although this

thesis does not directly deal with the identification and tracking of

sources it is assumed that this information is available (eg. by imple-

menting one of the video tracking methods found in [32], [61], [62]). An

explanation how a video tracking system may work whilst exploiting

known speaker locations is given in the following sections and chapter.

2.6.1 Channel Estimation as a Pure Delay

A straightforward way of exploiting speaker location is to use the known

location of a speaker and model the acoustic path between the speaker

and a microphone as a pure delay (as the full impulse response repre-

senting this acoustic path is unknown and is complicated to estimate).

Furthermore, it is possible to exploit this pure delay by assuming a

mixing matrix, or more likely mixing matrices if operating in the fre-

quency domain, then finding the inverse of these matrices to find a first

estimate of the unmixing matrices.

ĥ
(k)
ml = e−jd cos(θl)k/c, (2.6.1)

where c is the speed of sound in air, ĥ is the estimated pure delay

impulse response, θl is the angle of arrival and d is the physical distance

between a speaker and a microphone. The unmixing matrix at each
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frequency bin can be initialised by:

G
(k)
init =


ĥ

(k)
11 · · · ĥ

(k)
1l

...
. . .

...

ĥ
(k)
m1 · · · ĥ

(k)
ml


−1

, (2.6.2)

for ICA style methods the initial unmixing matrix is then whitened by

a whitening matrix Q
(k)
w , so that G

(k)
init = Q

(k)
w G(k), this method guides

an ICA style method to a solution by exploiting direction of arrival in-

formation of the speakers. In FastICA there is noticeable improvement

in convergence [32], in addition this also addresses the permutation

problem. In [32] the inverse is not explicitly calculated, however this

initial ‘guess’ is whitened, decorrelating the rows of G(k). In the online

version of ICA, and indeed in IVA, the full observation matrix Xi for

the i-th source, needed to calculate the whitening matrix, is not avail-

able, therefore other methods of increasing the speed of convergence

must be found. In initial experiments with NG-IVA and “intelligent”

initialisation, whilst improving speed initially the uninitialised version

soon overtook the intelligently initialised version.

2.6.2 Target cancellation by subtraction

The target cancellation method exploits video cues to identify the loca-

tion of a target source and uses this as a priori information to orientate

a microphone array, so that the target source is at an equidistant posi-

tion from two microphones which work as a pair, as described in [67].

A subtraction of the observations, to find an estimate of ŝ1, can be

written as:
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x′1(t) = x1(t)− x2(t) = ŝ1(t) (2.6.3)

x′2(t) = x1(t) + x2(t). (2.6.4)

By exploiting the equidistance property as well as some additional pro-

cessing of the detected microphone signals, the noise reference (from a

second source which is not at a equidistant position between the pair

of microphones) is isolated and can be used as a noise reference in an

adaptive filtering scheme. The noise reference could be multiple speak-

ers or background noise and the position of the second source is not

critical to the functionality of the method. In practice, however, the

room environment is likely to be highly reverberant, hence a simple

subtraction will not work. Later work in this thesis will address the

issue by describing a pair of FIR filters.

2.7 Summary

This chapter presented various previous relevant methods and tech-

niques for convolutive blind source separation, together with some tech-

niques which exploit the video modality to improve and enhance the

source separation process. Datasets such as TIMIT, the BRIR database

and SDR and SIR performance parameters used throughout this thesis

were inroduced.

A summary of the basic techniques involved with source separa-

tion systems have been outlined in this chapter. Also, included was

a preliminary study of convolutive blind source separation for speech

mixtures, comparing NG-ICA and NG-IVA. A highlighted issue was
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the permutation problem in some FD-BSS methods and how this was

addressed in IVA.

The next chapter details novel work in the time domain to find a

pair of cancellation filters which remove a source at the observation for

a 2×2 case.



Chapter 3

TIME-DOMAIN FILTER

DESIGN FOR TARGET

SOURCE CANCELLATION

3.1 Introduction

This chapter introduces a time domain null-steering beamforming tech-

nique which is shown to cancel a source of interest (target source) from

an array of two microphones. Following this, an adaptive filtering pro-

cess is employed to then use the remaining sources as a noise reference,

effectively separating the sources. The motivation for the methods pre-

sented in this chapter is to devise an online method which avoids higher

order statistics (as opposed to classical BSS methods such as ICA).

By coupling a proposed audio method with a video system provid-

ing location of speakers along with formulating the method in the time

domain, it is expected that such a system will reduce method compu-

tational complexity and overcome the circularity problem [68].

A beamformer, which spatially filters measurements from an ar-

ray of microphones (or another type of sensor), is often employed to

achieve such selectivity [69]–[71]. With broadband signal sources, such

76
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as speech, such beamformers are commonly implemented in the fre-

quency domain. In some applications, however, the size of the array

can be limited, so only two microphones can be employed. In this con-

text, in [69], a frequency domain generalised sidelobe canceller (GSC)

has been proposed. The processing at each discrete frequency, k, in a

GSC is represented in Figure 3.1. On the left-hand side of the diagram

is a lattice structure, which at the output of the adder enhances the tar-

get signal, whereas at the bottom, due to the subtraction, it blocks the

target signal so that the input to the adaptive filter nominally contains

only other speech signals.

Within the framework of a GSC [69], the signal u(k), in which the

target signal has been blocked, is defined as u(k)(n) = b(k)Hx(k)(n),

where n is the time block index of a STFT, b = 1/2[ej∆k/2,−e−j∆k/2]H

is the blocking vector, x(k)(n) is a vector of the short-time Fourier trans-

forms of the time-domain quantities x{1,2} and ∆k is the ‘uncertainty in

angle arrival’ which, in this study, is the time shift to correct for delay

in signal arrival. Further details can be found in [69].

In this chapter two methods are presented to estimate a pair of

time-domain finite impulse response filters which, when included in the

GSC framework, suppress any undesired signal components which may

pass through the blocking channel due to steering error. This pair of

filters helps ensure that energy of the cancelled signal is as small as

possible. The combined output of the blocking vector and the pair of

cancellation filters is written:

u(k)(n) = (w
(k)
{1,2} ◦ b(k))Hx(k)(n) (3.1.1)

where ◦ in this instance denotes the Hadamard product. This pair of
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Figure 3.1. Two channel generalised sidelobe canceller in the fre-
quency domain with the addition of the pair of cancellation filters
ŵ{1,2}.

filters (w{1,2}) is referred to as ‘cancellation filters’ in this chapter and

the remainder of the thesis, which are also illustrated in Figure 3.1.

Figure 3.1 includes also the adaptive filtering stage, where c(k)(n) is a

complex frequency domain parameter.

3.2 Why operate in the time domain?

Frequency domain BSS approaches assume that the length of the dis-

crete Fourier transform (DFT) used to convert the time-domain micro-

phone measurements into the frequency domain is significantly longer

than the impulse responses of the filters used to model the propagation

between the sources and the array microphones.

Due to a DFT a frequency domain mixture, when expressed in the

time domain, is only an approximation of linear convolution of the mix-

ing IR and the source signal. In fact, the frequency domain mixture is

equivalent to circular convolution in the time domain, this is described

mathematically as:

x(t) = H ∗ s(t)⇐⇒ x(k)(n) ≈ H(k)s(k)(n) (3.2.1)
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x(t) = H ~ s(t)⇐⇒ x(k)(n) = H(k)s(k)(n), (3.2.2)

where ∗ denotes convolution, ~ denotes circular convolution and ⇐⇒

denotes the conversion between the time and frequency domains with

a DFT and its inverse.

Many frequency domain source separation algorithms which address

convolutive mixtures assume Equation (3.2.1). Consequently, these are

subject to errors at frame boundaries thereby potentially degrading

the separation performance, which is known as the circularity problem.

Some studies [72] suggest that the length of the FFT should be at least

twice the length of the time domain mixing filters. To avoid any issues

of the length of an FFT, the formulation of this method is in the time

domain and the circularity problem is avoided.

Suppose that the adaptive filter in Figure 3.1 is operating in the

frequency domain. So that it can converge there must be a sufficient

number of frequency domain blocks, this requires the impulse responses

modelling the propagation environment to be static throughout this

period. This assumption is likely to be violated in many applications

where the time domain mixing RIR is sufficiently long, and supports

operating in the time domain.

In addition, as well as avoiding complex valued signal operations,

being formulated in the time domain allows for increased flexibility for

being implemented as an online source separation method, thus the

proposed overall system is suited to real-time operation.



Section 3.3. Method 80

3.3 Method

3.3.1 Problem Formulation

The observation at each microphone of a two-microphone array can

be modeled in the general case in the time-domain as a convolutive

mixture from each source of the form:

xj(t) =
N∑
i=1

hji(t) ∗ si(t), j = 1, 2, (3.3.1)

where si is the speech signal generated by the i-th source, hji is the

filter that models the effect of a reverberant environment between the

i-th source and the j-th microphone, t is the discrete time index, xj is

the detected signal at the j-th microphone. Throughout the chapter,

source number i = 1 is the target source that is to be cancelled.

In the training phase the microphones are pre-steered (included

in Figure 3.1 as the blocking vector b) so that h11 ≈ h21, where

h11 = [h11(1), . . . , h11(L)]T , h21 = [h21(1), . . . , h21(L)]T , and L is the

length of a time domain filter, as this gives the system the best chance

of cancelling the target by using the initially observed signals from the

microphones. This would be implemented by exploiting the geometry

of the acoustic environment by ensuring the position the target signal

source is equidistant between the microphones, so that in terms of early

reverberation the IRs would essentially be equivalent and the time dif-

ference of arrival would small (ideally δk = 0). A pair of cancelling

filters would then correct for the fact that h11 ≈ h21. The operation

of the blocking vector, b is carried out by pre-steering the microphone

array towards a target source, and for brevity is dropped in the rest

of the thesis is assumed to be automatically acting on the observation
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vector x.

The core problem formulation is to find a pair of FIR cancelling

filters (ŵ1 and ŵ2), where w1 = [w1(1), . . . , w1(L)]T and

w2 = [w2(1), . . . , w2(L)]T , so that:

u(t) =
L−1∑
τ=0

x1(t− τ)w1(τ)−
L−1∑
τ=0

x2(t− τ)w2(τ) ≈ 0. (3.3.2)

A model of the longitudinal wave propagation of a sound pressure

wave with respect to the two microphone array is illustrated in Fig-

ure 3.2. The sources are assumed to be far field, hence the field front

lines have been drawn at a tangent to the direction of sound propa-

gation. The source s1 is at its training position equidistant to both

microphones. Source s2 is placed at an arbitrary position and the can-

cellation pair of filters, ŵ{1,2}, are shown in Figure 3.2.

To find the pair of cancellation filters, an error vector, ε1, is therefore

formulated as:

ε1 = ε1(w1, w2) = (X1w1 −X2w2), (3.3.3)

where ε1(w1, w2) is an error function and X1 and X2 are the convolution

matrices, so that when the matrix is multiplied by a vector the resultant

vector is the convolution of xj(t) and wj(t), (i.e. xj(t)∗wj(t)) which are

formed from x1(t) and x2(t) observation signals (which themselves are

convolutions of the target source with h11 and h21 respectively assum-

ing the other sources are silent during training), thus the convolution

matrices are formed as a Toeplitz-style matrix structure:
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τ

Presteered microphone array

Figure 3.2. 2D plan of microphone and source positions. Blue lines
indicate longitudinal wave fronts of speech signals.
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Xj =



xj(1) 0 · · · 0 0

... xj(1)
. . . 0

...

xj(T )
...

. . . xj(1) 0

0 xj(T )
. . .

... xj(1)

... 0
. . . xj(T )

...

0 0 · · · 0 xj(T )


j ∈ {1, 2}, (3.3.4)

where the width of the matrices is the length of the cancellation filter

pair to be found, L, and T is the length of the time-domain training

data.

3.3.2 Alternating Gradient Descent Method

This method assumes that ŵ{1,2} is estimated during a training phase

where source s2 is silent. A cost function for the alternating gradient

descent method (GD method) is derived from the error vector from

Equation (3.3.3), which yields:

J1 = ||ε1||22, {ŵ1, ŵ2} = arg min
w1,w2

J1, s.t.||ŵ||2= 1. (3.3.5)

The assumption is made that X1 6= X2 (i.e. they differ sufficiently so

that Equation (3.3.3) cannot be factorised as X1(w1−w2) or X2(w1−

w2)). Taking the partial derivatives of the cost function, J1, with re-

spect to the filters to be estimated, w1 and w2, yields:

∂J1

∂w1

= 2XT
1 X1w1 − 2XT

1 X2w2 (3.3.6a)

∂J1

∂w2

= 2XT
2 X2w2 − 2XT

2 X1w1. (3.3.6b)
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To minimise the cost function, J1, the two expressions for the gradient,

∂J1
∂w1

and ∂J1
∂w2

are included in a gradient descent scheme, which updates

filter weights according to a change proportional to the gradient of the

cost function. Thus, this yields the update equations for the estimated

filters:

ŵ`+1
1 = ŵ`

1 + η(XT
1 X2ŵ

`
2 −XT

1 X1ŵ
`
1) (3.3.7a)

ŵ`+1
2 = ŵ`

2 + η(XT
2 X1ŵ

`+1
1 −XT

2 X2ŵ
`
2), (3.3.7b)

where (·)` denotes the iteration number and η denotes the learning rate.

Notice that in Equation (3.3.7a) ŵ2 is fixed and the update is performed

with respect to ŵ1, whereas the reverse applies in Equation (3.3.7b),

hence this is an alternating descent. Likewise, the order of Equation

(3.3.7a) and Equation (3.3.7b) could be reversed (so that ŵ`+1
2 is found

before ŵ`+1
1 at each iteration). The scale factor of 2 has been factored

out and absorbed by η. The condition ||ŵ2||2= 1 is applied so that

the trivial zero solution is avoided, equally ||ŵ1||2= 1 could also be

applied, though only one condition is used so the remaining filter has

more freedom to reach its optimised value. This is especially important

if the amplitudes of observations x1 and x2 are different. The constraint

is applied by adding the update equation:

ŵ`+1
2 = ŵ`+1

2 /||ŵ`+1
2 ||, (3.3.8)

after Equation (3.3.7b). This constrained optimisation corresponds to

modifying the cost J1 = J1 + λLag(||w2||−1), where λLag is a Lagrange

multiplier. Such an approach to canceller design has been adopted in

stereophonic echo cancellation [73], and has been known to exhibit poor
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convergence due to the correlation between the two signal channels.

An overview of the GD method is in Algorithm 1. The next section

introduces a method which exploits the singular value decomposition

(SVD) to find the filter pair ŵ{1,2} without using an iterative process.

Algorithm 1 Alternating gradient descent method to find the pair of
cancellation filters ŵ{1,2}.

Input: Convolution matrices of the microphone observations.
Output: Pair of cancellation filters
ŵ{1,2}.

1: for ` = 1 to maximum number of iterations do
2: ŵ`+1

1 ← ŵ`
1 + η(XT

1 X2ŵ
`
2 −XT

1 X1ŵ
`
1)

3: ŵ`+1
2 ← ŵ`

2 + η(XT
2 X1ŵ

`+1
1 −XT

2 X2ŵ
`
2)

4: ŵ`+1
1 ← ŵ`+1

1

||ŵ`+1
1 || or ŵ`+1

2 ← ŵ`+1
2

||ŵ`+1
2 ||

5: end for
6: return ŵ{1,2}

3.3.3 Principal Angles Method

In a similar fashion to the previous method, the pair of filters, ŵ{1,2}, is

estimated during a training phase. During the training phase only the

target signal speech source (s1) is active whilst the other source (s2) is

assumed to be silent.

The novelty in this approach is that the method of principal angles

(PA method) is exploited to find the filter estimates (ŵ1 and ŵ2), as

described in [74] and originally proposed in [75], which should overcome

the slow convergence in the gradient descent method. An orthonormal

basis for the convolution matrices is needed to implement the method

of principal angles; taking the QR decomposition of X1 and X2, yields

X1 = Q1R1 and X2 = Q2R2. The QR decomposition decomposes

a matrix into an orthonormal matrix (Q, so that QTQ = I) and an
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upper triangular matrix (R). The error vector is rewritten as;

ε2 = ε1(w1, w2) = ε2(w̃1, w̃2) = (Q1w̃1 −Q2w̃2), (3.3.9)

where ε1(w1, w2) and ε2(w̃1, w̃2) are error functions. Also, w̃1 = R1w1

and w̃2 = R2w2. The minimisers of a new cost function are then found

as:

J2 = ||ε2||22, {ŵ1, ŵ2} = arg min
w̃1.w̃2

J2, (3.3.10)

subject to ||w̃1||2= ||w̃2||2= 1. Unlike the gradient descent method dis-

cussed previously, the two constraints can be applied simultaneously as

there is no longer a problem with the amplitudes due to the orthonormal

basis. To find the principal angles and principal vectors of the orthonor-

mal subspaces Q1 and Q2, the singular value decomposition is taken of

QT
1Q2, so that [U,Λ, V T ] = SV D(QT

1Q2). The constraints ||w̃1||2= 1

and ||w̃2||2= 1 are inherently introduced to the method by exploiting

the properties of the SVD avoiding the trivial solution ŵ1 = ŵ2 = 0.

The cost function J2 is rewritten as:

J2 = ||Q1w̃1 −Q2w̃2||22 (3.3.11)

= w̃T
1 w̃1 + w̃T

2 w̃2 − 2w̃T
1 Q

T
1Q2w̃2, (3.3.12)

therefore reducing J2 is equivalent to maximising w̃T
1 Q

T
1Q2w̃

T
2 as w̃T

1 w̃1 =

1 and w̃T
2 w̃2 = 1, thus:

arg min
w̃1.w̃2

J2 ≡ arg max
w̃1.w̃2

w̃T
1 Q

T
1Q2w̃2. (3.3.13)
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By exploiting the SVD:

(w̃T
1 Q

T
1Q2w̃2) = w̃T

1 (UΛV T )w̃2 = w̃T
1 (
∑
m

λmumvm)w̃2, (3.3.14)

by selecting w̃1 = u1 and w̃2 = v1 in Equation (3.3.14), where u1

and v1 are the vectors from the rows of U and V which correspond

to the largest largest singular value, denoted λ1, where the subscript

(·)1 denotes the largest singular value. In turn, λ1 corresponds to the

smallest angle between the orthonormal bases Q1 and Q2 [74].

The equalising filters are the columns of U and V which correspond

to λ1 (as they maximise Equation (3.3.14)), multiplied by the inverse

of R1 and R2 to allow for the basis change introduced by the QR de-

composition, thus:

ŵ1 = R−1
1 v1 (3.3.15a)

ŵ2 = R−1
2 u1, (3.3.15b)

therefore the filter pair ŵ{1,2} has been estimated. The full PA method

is described in Algorithm 2.

3.3.4 Normalised Least Mean Square

An NLMS algorithm is employed to recover the target source s1 after

it has been cancelled from one of the microphone observations. First

proposed in [76], the least mean square (LMS) adaptive filter is con-

sidered to be a ‘classic’ adaptive filter and is well-known in the field of

signal processing [77].

A brief derivation of the normalised least mean square (NLMS)
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Algorithm 2 Principle angles method to find the pair of cancellation
filters ŵ{1,2}. Note that V1 and U1 denote the columns of V and U
which correspond to the largest singular value, λ1.

Input: Convolution matrices of the microphone observations.
Output: Pair of cancellation filters
ŵ{1,2}.

1: [Q1, R1]← QR(X1)
2: [Q2, R2]← QR(X2)
3: [V,Λ, U ]← SV D(QT

1Q2)
4: v← V1

5: u← U1

6: ŵ1 ← R−1
1 v

7: ŵ2 ← R−1
2 u

8: return ŵ{1,2}

algorithm is provided for completeness, for details see [77], [78]. A new

error, ε3, is formed as:

ε3(t) = d(t)− x′T (t)c(t), (3.3.16)

where (·)′ notates an altered version of the original microphone observa-

tions (outputs of the lattice structure in Figure 3.1) and ε3(t) is different

from the error vectors ε1 and ε2, as it is not a vector and represents the

error at the adaptive filtering stage rather than the target cancellation

stage. c(t) is written here as a time domain quantity and is defined

by c(t) = [c(1), . . . , c(L)]T (t), i.e. the vector of filter co-efficients at

discrete time t, which for clarity is reintroduced for this section.

The weights of the filter are updated as follows:

c(t+ 1) = c(t) + ηLMS∇̂(t), (3.3.17)

where ∇̂ is the instantaneous gradient estimate of the error function

at time t. To find ∇̂, the mean square error (||ε3||22) is minimised by



Section 3.4. Experimental Setup 89

taking the partial derivatives;

∇̂(t) =

[
∂ε3(t)2

∂c1

, . . . ,
∂ε3(t)2

∂cL

]T
= −2ε3(t)x′(t), (3.3.18)

combining Equation (3.3.17) and Equation (3.3.18), the update rule for

the LMS algorithm becomes:

c(t+ 1) = c(t) + ηLMSε3(t)x′(t), (3.3.19)

where the factor of 2 is absorbed by η. To form the NLMS algorithm,

the update term is divided by the energy of the input signal, therefore

Equation (3.3.19) is altered:

c(t+ 1) = (β)c(t) +
ηNLMS(1− β)

||x′(t)||2 ε3(t)x′(t), (3.3.20)

where β is a positive constant (usually 0.9 < β < 1.0). Equation

(3.3.20) describes the normalised least mean square update rule, with

a constant β which has the effect of updating c with a weighted version

of instantaneous gradient, causing the algorithm to have a ‘memory’ of

previous values between time indices.

The performance of the two cancellation filter design approaches is

compared in the next section.

3.4 Experimental Setup

Firstly, the pair of cancellation filters employed as a null-steering beam-

former are evaluated in the general case, and in the second half of the

section results are presented to show how these filters along with as-

sumed speaker locations can be used in speech source separation.
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Sampling rate (fs) 8kHz
Reverberation time (RT60) 565ms
Learning rate (ηNLMS) 0.275
Memory factor (β) 0.9
Length of w{1,2} 810 samples
Length of c 1024 samples
Angles tested {15◦, 45◦, 75◦}
TIMIT speakers used {faks0, mbjk0, fjre0, mdab0}

Table 3.1. Experimental conditions for PA method for source separa-
tion results.

Twelve mixtures created from four different speakers (two male, two

female) taken from the TIMIT dataset were used, with all available ut-

terances for each speaker concatenated to form longer speech signals of

246 seconds. Binaural room impulse responses (BRIRs) from a class-

room were measured with a dummy head between two microphones

[54] and then resampled to 8kHz. See Table 3.1 for full experimental

conditions. A two-dimensional room plan is shown in Figure 3.3, where

s1 is at 0.4m from the centre of the microphone array.

3.5 Experimental Results

3.5.1 Cancellation Filter Performance

The cancellation filter methods were compared by calculating the value

of the respective cost functions with the estimated filter vectors for the

PA method and the GD method, i.e. ||X1ŵ1−X2ŵ2||2 for both meth-

ods. BRIRs and speech signal inputs are used to train the cancellation

filters, where the target signal source was positioned at 0◦, and at a

distance 40cm from the centre of the microphone array as marked in

Table 3.2.
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x1

x2

s1, Angle= 0◦
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1

Figure 3.3. 2D room plan of microphone and source positions.
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Figure 3.4. Convergence performance of the GD method, where
η = 1 × 10−6. The strong correlation between both microphone sig-
nals x1 and x2, as they share a common source convolved with similar
IRs, cause slow convergence. Also included is the cost function value
achieved by the PA method which is much nearer zero.
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Strong correlation between the microphone signals x1 and x2 causes

slow convergence for the GD method as shown in Figure 3.4. Nor-

malised values of the cost function, J1, are given after 8100 iterations

of the update equations where the cancellation filters’ lengths are 810

taps. To train the cancellation filters for Figure 3.4, speech signals of

10000 samples were used which was chosen to limit the size of X1 and

X2 to save on computational load. The plots corresponding to s1 at

0.4m and 1.0m in Figure 3.4 overlap at approximately iteration 4000, it

is suggested this is due to the random nature, inherent in audio source

separation, of the mixing impulse responses used for this particular

experiment.

Table 3.2 shows values for J1 (GD method) and J2 (PA method).

From Table 3.2 it can be seen that the principal angles method of-

fers better performance than the GD method. Values are shown for

normalised cost, that is to say the initial value from the cost function

divided by the length of the estimated filter. The slow convergence

of the alternating GD method also reduces performance. Lower nor-

malised cost function values could be achieved if the GD method was

run for more iterations, but this would introduce a potential delay in

real-time systems. This is an advantage of the PA method as it finds

the optimal filters without the need of update iterations. For a training

length of 8000 samples and filter length of 810, the PA method has an

execution time of 5.44 seconds, which increases to 467.67 with train-

ing length of 24000 samples and filter length of 810 on a desktop PC

running MATLAB.

Cancellation filters of different lengths were calculated for the PA

method, then λ1 was found from the SVD of QT
1Q2. This corresponds to
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Distance (m) PA (normalised cost) GD (normalised cost)

0.15 4.04×10−8 1.42×10−2

0.40 4.04×10−8 1.38×10−2

1.00 4.04×10−8 1.38×10−2

Table 3.2. Values of the cost function with estimated filters, for various
distances from the centre of the microphone array. Filters of length 810
were estimated for both methods.

the smallest angle between the two orthonormal subspaces (the inverse

cosine is taken as this represents the dot product) and thereby leads

to the best cancellation performance. As expected, the performance

improves as the length of the cancellation filters increases, see Figure

3.5. Note that speech signals are used to estimate the cancellation

filters.

3.5.2 Principal Angles as a Beamformer

Figures 3.6 and 3.7 show the beampattern of the outputs of the lattice

structure (adders in Figure 3.1) with the filter pair ŵ{1,2}. Figure 3.7

gives the output for the fixed beamformer channel (top output of lattice

structure in Figure 3.1). Figure 3.6 gives the response of the blocking

channel (top output of lattice structure (subtract) in Figure 3.1), as

described in [71]. As the filter lengths of ŵ{1,2} are relatively long

and because there are only two microphones in the array, this causes

several sidelobes which can be seen in Figures 3.7 and 3.6. Figure 3.6

shows a null at 0◦, therefore the filter structure acts as a null-steering

beamformer. The beampatterns are defined in the frequency domain
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largest singular value expressed in radians. The cancellation filter pair
ŵ{1,2} is trained with 16000 samples of speech.
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as:

r
(k)
1 (θ) = (ŵ1 − ŵ2)Hψ(k)(θ) (3.5.1a)

r
(k)
2 (θ) = (ŵ1 + ŵ2)Hψ(k)(θ), (3.5.1b)

where ψ is defined as:

ψ = [1, ej2πkτ2(θ), ej2πkτ3(θ), . . . , ej2πkτN (θ)]T , (3.5.2)

where τi(θ) and i = {2 . . . K}, are time delays due to propagation and

any tap delays from the zero phase reference to the point at which the

i-th weight is applied.

3.5.3 Video-Informed Source Separation Application

In this section the results for the PA method with an adaptive fil-

tering scheme are presented as an alternative to classical higher-order

statistics source separation methods. An array of two microphones is

pre-steered towards the target so that IRs between a speaker and the

two microphones, which are positioned close together (0.15m), are ap-

proximately equal, h11 ≈ h21, as the microphones are the same distance

from the target source.

The microphones are assumed to be pre-steered by video informa-

tion which provides the location of the target speech source. In practice,

a microphone array would be orientated towards the target source us-

ing a mechanical device. The use of video information is much more

robust to background noise than an audio based method for source

localisation. The extraction of localisation information from video in-

formation for pre-steering the array is outside the scope of this method,
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audio-video system including the video formed alignment.

but further details can be found in [32], [61], [62].

In the training phase, the same BRIRs and speech signal inputs as

before are used to create mixtures at each microphone, where only the

target source is present. The estimated cancellation filters, ŵ{1,2}, are

found for an angle of 0◦ and a distance of 0.40m from the centre of the

microphone array. After the training phase, the second source (s2) is

then added at 15◦, 45◦ and 75◦ and 0.40m from the array.

At a particular distance, the target source (ŝ1) is cancelled from

the mixture leaving the other source (ŝ2) which is employed as a noise

reference. The cancelled target source s1 is then recovered by using ŝ2

as a noise reference in a NLMS adaptive filtering scheme. A diagram

of the full system, including GSC lattice structure and NLMS adaptive

filtering scheme, is given in Figure 3.8, including the mixing process.

The method is evaluated in the two-microphone two-source scenario,

see Tables 3.3 to 3.5. Average performance values for and SDR and SIR

are given for mean values of ŝ1 and ŝ2.

Table 3.3 shows the mean SDR and SIR results for sources at 0◦
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and 75◦. Mean values are given for the geometric mean of the original

performance ratios (i.e. not in a log scale). The SIR values are par-

ticularly good, mostly due to the successful separation of the source ŝ2

(18.52dB - 25.09dB).

Unusually, the average SIR values are rather high. These values

have been calculated by averaging across two sources where one es-

timated source (in this case ŝ2) is especially (>20dB) good and esti-

mated source ŝ1 is lower some cases (<5dB). The adaptive filtering

stage does not recover the source ŝ1 adequately due to the statistically

non-stationary nature of speech, an issue which is addressed in later

chapters. Also, despite moving the source s2, there seems to be little

change in performance values in Table 3.4 and Table 3.5, indicating

that the position of s2 has little effect on the proposed method.

The filters ŵ{1,2} and the room impulse responses cause the outputs

of the algorithm ŝ1 and ŝ2 to be filtered versions of the original sources.

However, significant SIR is achieved with a peak value of 27.18dB. The

additional filtering on both estimated sources ŝ1 and ŝ2 causes lower

average SDR values, however the effect can be reduced by additional

post-processing, as in [66]. The improved SIR ratios also suggest that

signal leakage is not a major problem in the operation of the adaptive

filter.

3.6 Summary

Two methods have been proposed for designing time-domain cancella-

tion filters. The more conventional alternating gradient descent based

method was shown to converge slowly and to perform badly in terms

of the cost function value, even after a significant number of update
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SDR (dB) SIR (dB)

Mixture 1 8.532 18.52
Mixture 2 9.598 19.73
Mixture 3 9.777 20.01
Mixture 4 11.19 21.56
Mixture 5 8.869 19.56
Mixture 6 7.636 20.49
Mixture 7 13.81 25.09
Mixture 8 11.53 22.06
Mixture 9 12.33 22.04
Mixture 10 11.85 22.38
Mixture 11 11.09 22.07
Mixture 12 11.90 22.69

Table 3.3. Averaged batch results when s1 is at 0◦ and s2 is at 75◦

and 0.4m away from the centre of the microphone array.

SDR (dB) SIR (dB)

Mixture 1 8.046 18.97
Mixture 2 8.819 18.87
Mixture 3 9.298 19.26
Mixture 4 10.79 20.91
Mixture 5 8.788 19.19
Mixture 6 7.124 20.05
Mixture 7 11.73 23.57
Mixture 8 10.98 20.86
Mixture 9 10.67 20.54
Mixture 10 11.39 21.68
Mixture 11 8.739 21.43
Mixture 12 10.94 21.91

Table 3.4. Averaged batch results when s1 is at 0◦ and s2 is at 45◦

and 0.4m away from the centre of the microphone array.
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SDR (dB) SIR (dB)

Mixture 1 10.58 22.35
Mixture 2 10.65 20.64
Mixture 3 10.84 20.7
Mixture 4 12.65 23.62
Mixture 5 10.94 21.84
Mixture 6 11.35 23.00
Mixture 7 14.93 27.18
Mixture 8 14.10 24.57
Mixture 9 13.09 23.99
Mixture 10 12.24 24.75
Mixture 11 13.40 24.20
Mixture 12 13.44 24.47

Table 3.5. Averaged batch results when s1 is at 0◦ and s2 is at 15◦

and 0.4m away from the centre of the microphone array.
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iterations. An alternative novel method of principal angles was intro-

duced, which minimises the cost function without the need of iterative

updates and gives a much lower cost function value.

Both methods are formulated in the time-domain to ensure that any

IR of a particular environment can be adequately covered by the cancel-

lation filters. Once the pair of cancellation filters have been estimated,

they become a part of a GSC style structure.

The behavior of the resulting system is applied to a source sep-

aration context. The method may be used as a stand-alone source

separation method, for a two-source two-microphone scenario, or can

be used as a pre-processing stage for a more conventional blind source

separation algorithm in the under-determined case (M < N).

It can be argued that the time domain method proposed is advan-

tageous as the permutation problem, typically associated with FD-BSS

methods, is inherently avoided by not operating in the frequency do-

main.

The method is provided as a ‘proof of concept’ method, as results

shown are given for averaged (mean) SDR and SIR, while results for

the target signal, s1, are not always consistent due to the adaptive

filtering stage of the method. A drawback of the proposed method

is that the PA method exploits the SVD, which has a computational

complexity of L3 (where L is the length of the cancellation filters).

Whilst being acceptable for a training phase within a method, such

computational complexity may not be acceptable in online and real-

time systems (particularly if there is a need to implement such a system

on a low performance embedded system). In the following chapter an

online method which does not require a training phase is presented.



Chapter 4

INDEPENDENT VECTOR

ANALYSIS IN REAL-TIME

WITH STUDENT’S T

SOURCE PRIOR

4.1 Introduction

A major problem for FD-ICA is the permutation ambiguity across all

frequencies inherent to FD-BSS. In [35], therefore, FD-IVA was intro-

duced which directly addresses the permutation problem by maintain-

ing the dependencies between the frequency bins in the algorithmic

formulation. By using a multivariate super-Gaussian distribution as

the source prior the resulting score function maintains dependencies

between frequency bins, unlike one based upon a univariate distribu-

tion as used in ICA style methods.

Previously, an online (thus real-time) version of NG-IVA was formu-

lated in [79] which exploits the multivariate super-Gaussian distribu-

tion. This algorithm is discussed further in [80] where an expectation-

maximisation approach is used to estimate the source prior. The aux-

104
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iliary version of IVA implemented in real-time in [81]. In addition,

various implementations of online/real-time ICA based techniques are

presented in [58], [82]–[86] (but these all have to address the permu-

tation problem by means of various post-processing techniques, poten-

tially adding a significant computational complexity when implemented

on an embedded system, such as a digital signal processor).

In this chapter a Student’s t source prior is introduced for the first

time in online IVA and therefore incorporated into the online NG-IVA

algorithm. Distributions with heavier tails are more suited to speech

[87], [88], particularly voiced utterances, as they better model the de-

pendency between higher amplitude data points in a frequency domain

speech signal [89]. This differs from the multivariate super-Gaussian

distribution as originally proposed in the original formulation [35]1. If a

special condition of the multivariate super-Gaussian, the bivariate ver-

sion, is considered, this has a Laplacian shaped marginal distribution

when one given value is set to zero, and is Gaussian-like otherwise. This

dependency in shape makes the multivariate super-Gaussian distribu-

tion suitable for modelling the interrelationships in frequency domain

speech signals.

However, the heavier tails of the Student’s t source prior means

that it is better suited to frequency domain speech signals, particularly

voiced utterances. The proposed source prior was implemented within

online NG-IVA as an embedded application on a Texas Instruments

digital signal processing platform and will be shown to perform well in

terms of separation performance when compared to the original online

1The author is aware that the term ‘super-Gaussian’ could be considered vague
in this context as it represents a family of probability density functions, however the
original literature [35] uses this for a specific probability density function, which is
defined later in this chapter. For consistency this terminology is used in this thesis.
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NG-IVA algorithm. The importance of choosing a suitable value for

the degrees of freedom for the Student’s t distribution is also discussed.

4.2 Method

4.2.1 Online Natural Gradient Independent Vector Analysis

The derivation of online NG-IVA is similar to that of the batch version

of NG-IVA introduced in Chapter 2. The block index (n) is introduced

to the unmixing model to emphasise the iterative nature over time of

the online version.

ŝ
(k)
i [n] =

M∑
j=1

g
(k)
ij [n]x

(k)
j [n] (4.2.1)

where g
(k)
ij [n] is the unmixing coefficient at time block n, frequency bin

k between source i and microphone j, ŝi is the i-th estimated source of

N estimated sources, and x
(k)
j [n] is the observation value at time block

n and frequency bin k.

The cost function (JIV A) of the IVA algorithm uses the Kullback-

Lieber divergence (denoted by KL(·)) between the joint probability

distribution of the estimated sources and the product of their marginal

probabilities as a measure of independence:

JIV A = KL(p(ŝ1, . . . , ŝN)||
N∏
i=1

q(ŝi)) (4.2.2a)

= const.−
K∑
k=1

log|detG(k)|−
N∑
i=1

E[ log q(ŝi)] (4.2.2b)

where q(·) is an approximated pdf of the original sources, see chapter

2 for a full derivation of NG-IVA.
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To minimise the cost function (JIV A) a natural gradient approach

is employed by taking the partial derivatives with respect to the indi-

vidual separating filter coefficients (g
(k)
ij ), the increments for the filter

co-efficients are given by:

∆g
(k)
ij = −∂JIV A

∂g
(k)
ij

= g
(k)−H
ij − E[ϕ(k)(ŝ

(1)
i , . . . , ŝ

(K)
i )x

(k)∗
j ], (4.2.3)

where [(G(k)−1)H ]ij = g
(k)−H
ij , (·)∗ denotes the complex conjugate and

(·)H denotes a Hermitian transpose. Then by multiplying by the scaling

matrices to find the natural gradient, it follows that:

∆g
(k)
ij =

N∑
l=1

(δil − E[ϕ(k)(ŝ
(1)
i , . . . , ŝ

(K)
i )ŝ

(k)∗
i ])g

(k)
lj , (4.2.4)

where δil is the Kronecker delta, i.e. when i = l, δil = 1, and zero

otherwise. The expectation in equation (4.2.4) is dropped to form the

online block wise algorithm and thus yields:

∆g
(k)
ij =

N∑
l=1

(δil − ϕ(k)(ŝ
(1)
i , . . . , ŝ

(K)
i )ŝ

(k)∗
l )g

(k)
lj , (4.2.5)

which gives the instantaneous estimate of the gradient and is the major

difference between the original (batch) NG-IVA and the online version

in this chapter.

The non-linear score function (ϕ(·)), which maintains the depen-

dencies between frequency bins, is given in the general case by

ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i ) = −∂ log q(ŝ

(1)
i . . . ŝ

(K)
i )

∂ŝi(k)
. (4.2.6)

A nonholomonic constraint is also implemented as in [79], meaning
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that the direction of the update equation is restricted, therefore (4.2.5),

becomes:

∆g
(k)
ij =

N∑
l=1

(Λ
(k)
il − ϕ(k)(ŝ

(1)
i , . . . , ŝ

(K)
i )ŝ

(k)∗
l )g

(k)
lj , (4.2.7)

where Λ
(k)
ii = ϕ(k)(ŝ

(1)
i . . . ŝ

(K)
i )ŝ

(k)∗
i and zero otherwise (i.e. Λ

(k)
il = 0).

Λ(k) is a diagonal matrix based on the non-linear score function. Faster

convergence performance of online NG-IVA is thereby generally ob-

served as the diagonal elements of Λ
(k)
il − ϕ(k)(ŝ

(1)
i , . . . , ŝ

(K)
i )ŝ

(k)∗
l (i.e.

when i = l) are always zero and are therefore more robust to fast

changes in input energy level. The introduction of the nonholomonic

constraint has a practical advantage as it reduces the complex multipli-

cations at each frequency bin by N . The block-wise update equation,

which includes a gradient normalisation, for the separating filter co-

efficients is given by:

g
(k)
ij [n+ 1] = g

(k)
ij [n] + η

√
(ξ(k)[n])−1∆g

(k)
ij [n], (4.2.8)

where η is the learning rate. The normalisation factor (ξ(k)[n]) is defined

as:

ξ(k)[n] = βξ(k)[n− 1] + (1− β)
M∑
i=0

|x(k)
i [n]|2/M, (4.2.9)

where β is the smoothing factor (β < 1). The normalisation factor

also improves the robustness of the algorithm as it is more tolerant to

sudden changes in input signal energy by dividing by the sample root

mean square (RMS) of the input signal. Practically, a small constant

γ is added to the term (ξ(k)[n])−1 in Equation 4.2.8, where γ << 1, to

avoid the case (ξ(k)[n])−1 = ∞. The following section introduces the
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alternative Student’s t source prior.

4.2.2 Alternative Student’s t Source Prior

A Student’s t multivariate pdf is proposed as an alternative to the

original super-Gaussian source prior. This alternative source prior im-

proves the modelling of the dependency between the high amplitude

data points in a frequency domain speech signal, that is characteris-

tic of the signals around the formant frequencies of vowel sounds in

human speech. Thus the heavier tails of the new source prior match

such frequency domain speech signals more accurately than the original

super-Gaussian source prior.

The heavier tails can be seen in the univariate version of the Stu-

dent’s t distribution; various values of the degrees of freedom parame-

ter (υ) were plotted with the original super-Gaussian distribution as a

comparison (Figure 4.1).

The original score function is derived on the basis of a multivariate

super-Gaussian distribution, given by:

q(si) ∝ exp

(
−
(

(si − µi)HΣ−1
i (si − µi)

) 1
2

)
, (4.2.10)

and by setting the mean to zero and the covariance matrix to the iden-

tity matrix (as the frequency bins are uncorrelated due to the orthogo-

nality of Fourier bases). The original non-linear score function is given

as:

ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i ) =

ŝ
(k)
i√∑K

k=1|ŝ
(k)
i |2

. (4.2.11)

As in [90], a multivariate Student’s t distribution takes the form:
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different degrees of freedom parameter (υ), with a univariate super-
Gaussian distribution.
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Figure 4.2. Bivariate example of the Student’s t distribution with the
degrees of freedom parameter υ set to two. This could represent the
real or imaginary part of complex frequency domain data.

q(si) ∝
(

1 +
(si − µi)HΣ−1

i (si − µi)
υ

)((υ+K)/2)

. (4.2.12)

An example of the multivariate version of the Student’s t distribu-

tion is plotted in Figure 4.2. The degrees of freedom parameter (υ) con-

trols the leptokurtic nature of the pdf. As υ decreases the tails become

heavier whereas as it increases the pdf becomes more Gaussian-like.

Similar to the original super-Gaussian multivariate source prior, the

multivariate Student’s t can be shown to model the higher-order depen-

dencies between frequency bins in IVA as p(ŝ1, . . . , ŝN) 6= ∏N
i=1 q(ŝi),

i.e. the product of the marginal distributions is not equal to the joint

distribution when the covariance matrix is diagonal, therefore the joint

distribution is dependent.

By assuming zero mean (µi = 0) and setting the covariance matrix

(Σi) to the identity matrix (due to the orthogonality of the Fourier
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bases), a new non-linear score function is derived which replaces equa-

tion (4.2.11):

ϕ(k)
new(ŝ

(1)
i . . . ŝ

(K)
i ) =

ŝ
(k)
i

1 + (1/v)
∑K

k=1|ŝ
(k)
i |2

. (4.2.13)

The choice of the degrees of freedom (v) becomes important in the

online version of NG-IVA as will be shown in the results section.

4.3 Experimental Setup

4.3.1 Floating point TI TMS320C6713 platform

The online version of IVA was implemented on a Texas Instruments

TMS320C6713 floating point digital signal processing platform (TI

DSP) (Figure 4.3). Features of the board include a TI C6713 floating

point digital signal processor (Harvard architecture), an AIC23 codec

(analogue to digital converter (ADC)), 16 MB of external memory,

line-in/out socket and headphone in/out socket. This TI DSP proces-

sor differs from other microcontroller systems as it has been optimised

for digital signal processing, through hardware multiply accumulate

(MAC) provision, together with hardware circular and bit-reversed ad-

dressing capabilities [91].

The NG-IVA algorithm was implemented in C [92], [93] using the

fast Fourier transform (FFT) code provided by TI [94]. Not including

the FFT code, the approximate time to execute the update equations

(4.2.1), (4.2.7) - (4.2.9) and (4.2.13) for one time block for 2048 fre-

quency bins was 43ms (approx 9.8 million instruction cycles).



Section 4.3. Experimental Setup 113

Figure 4.3. Texas Instruments TMS320C6713 floating point digital
signal processing development board.
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4.3.1.1 Two-Channel FFT Implementation

As the TI DSP performs the update operations of online IVA in the

frequency domain, forward FFTs and reverse FFTs need to be executed

in real-time (i.e. transforming the input time domain data into the

frequency domain, operating the update equations and transforming

the output frequency domain data back into the time domain, all need

to be finished before the arrival of the following time frame). To achieve

this a procedure to process two FFTs with one pass of an FFT with a

small computational overhead is implemented. The description for this

“buy one get one free trick” is as follows; consider two real time domain

signals (such as two channel inputs to a digital signal processor), which

are defined as a(t) and b(t) (note that t is the discrete time index

rather than the time block index), and are denoted, A(k) and B(k) in

the frequency domain. A complex valued signal z(t) is defined as:

z(t)re = a(t) (4.3.1a)

z(t)im = b(t), (4.3.1b)

where the real valued signals a(t) and b(t) have been interleaved to

form a complex valued signal z(t), which at first sight makes no sense,

however it will be shown how this can been used to exploit periodicity

in the frequency domain. The signals a(t) and b(t) can be expressed in

terms of z(t):

a(t) =
z(t) + z∗(t)

2
(4.3.2a)

b(t) =
−j(z(t)− z∗(t))

2
. (4.3.2b)
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Taking the DFT (implemented by an FFT algorithm), yields:

A(k) =
FFT [z(t)] + FFT [z∗(t)]

2
(4.3.3a)

B(k) =
−j(FFT [z(t)]− FFT [z∗(t)])

2
. (4.3.3b)

The DFT of z∗(t) is considered:

(4.3.4)

FFT [z∗(t)] =
T−1∑
t=0

z∗(t)e−j2πkt/T

=

{
T−1∑
t=0

z(t)e+j2πkt/T

}∗

=

{
T−1∑
t=0

z(t)e−j2π(T−k)t/T

}∗
,

where T is the length of the discrete time signal, therefore FFT [z∗(t)] =

{Z(T−k)}∗. A(k) and B(k) can now be found with only one pass of an

FFT, with a small computational overhead to reverse the sequence of

the frequency domain signal and T complex multiplications.

A(k) =
Z(k) + {Z(T−k)}∗

2
(4.3.5a)

B(k) =
−j(Z(k) − {Z(T−k)}∗)

2
. (4.3.5b)

The Fourier transform of the composite signal is defined by :

Z(k) = A(k) + jB(k). (4.3.6)

Taking the inverse FFT, yields:

z(t) = a(t) + jb(t), (4.3.7)
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thus, in a similar fashion to the forward FFT, the inverse only requires

one pass of the inverse FFT with a small computational overhead. The

main motivation for using this two-channel procedure is to increase code

speed to ensure all necessary processing is finished before the arrival

of the next time frame. See Algorithm 3 for a description of the full

update equations and the method for one time frame including FFTs.

Algorithm 3 Online IVA update function and forward/reverse FFTs,
update iva(·)
Input: Time domain data from input buffer of length T (i.e. two con-
catenated buffers of length T/2).
Output: Time domain data to be moved into the output buffer of length
T .

1: Calculate the two-channel forward FFT; x
{1,...,K}
{1,2} [n] ←

FFT (x{1,2}(t))
2: for each frequency bin (k), do

3: ŝ
(k)
i [n]←∑N

j=1 gij[n](k)x
(k)
j [n]

4: Implement the source prior: ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i )← ŝ

(k)
i√∑K

k=1|ŝ
(k)
i |2

, or

ϕ
(k)
new(ŝ

(1)
i . . . ŝ

(K)
i )← ŝ

(k)
i

1+(1/v)
∑K

k=1|ŝ
(k)
i |2

5: ∆g
(k)
ij ←

∑N
l=1 (Λil − ϕ(k)(ŝ

(1)
i . . . ŝ

(K)
i )ŝ

(k)
l )g

(k)
lj

6: ξ(k)[n]← βξ(k)[n− 1] + (1− β)
∑M

i=0|x
(k)
i [n]|2/M

7: g
(k)
ij [n+ 1]← g

(k)
ij [n] + η

√
(ξ(k)[n] + γ)−1∆g

(k)
ij , where ε << 1.

8: end for
9: Increment time block index (n).

10: Calculate two-channel reverse FFT; ŝ{1,2}(t)← FFT−1(ŝ
{1,...,K}
{1,2} [n])

When implementing step 4 in Algorithm 3 there is a choice between

using the original source prior (a multivariate super-Gaussian) and the

proposed (multivariate Student’s t), the proposed form will be shown

to yield better performance, however the original is worth considering

as it is possible to use the fast inverse square root [95] which has the

potential to increase code speed and is optimised on several embedded
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platforms, including TI C67x series assembly language where it is avail-

able as a single assembly instruction [93]. Ease of implementation and

power consumption are worth considering when implementing on power

sensitive systems which require batteries such as hearing aids [96].

4.3.2 Methodology and Room Layout

Online NG-IVA was tested on a two-speaker, two-sensor scenario. To

recreate a realistic room environment, BRIRs of 565ms as used in [54]

were employed, and speakers were placed in two configurations, con-

figuration ‘A’ where s1 is at 0◦ and s2 is at 45◦ and configuration ‘B’

where s1 is at 0◦ and s2 is at 30◦, see Figure 4.4 for a 2D room plan and

the locations of sources and microphones employed; the BRIRs were

convolved with speech files from randomly selected individual speakers

across three accents from the training part of the TIMIT dataset. Table

5.1 details the full experimental conditions for the TI DSP, including

x1

x2
0.4m

s1, Angle= 0◦

s2, A, 45◦

s2, B, 30◦

Not to scale.

Room dimensions (approx.): 9m × 5m × 3.5m

Distance between microphones: 15cm.

Figure 4.4. 2D plan of room setup and locations of sources (blue) and micro-
phones (red).
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Sampling rate (fs) 8kHz
FFT length (K) 2048
Reverberation time (RT60) 565ms

Window function win = sin

(
π
2

sin2
[
π

2K

(
k + 1

2

)])
Overlap ratio 50%
Student’s t learning rate (η) 1.0 (with a scaling factor of 200)
Super-Gaussian learning rate (η) 0.4
Degrees of freedom considered (υ) [ 0.5, 1.0, 2.0, 2.652 ]
s1 position 0◦ at 0.4m
s2 position ‘A’ 45◦ at 0.4m
s2 position ‘B’ 30◦ at 0.4m

Table 4.1. Experimental conditions for TI DSP results.

values for the learning rate (η) and degrees of freedom parameter (υ)

which are discussed in the experimental results section.

Male and female speakers were swapped between two positions which

were both 0.4m away from the microphone array at 0◦ and 45◦ (for

s2 position ‘A’) relative to the centre of the array. Utterances from

each speaker across different accents were selected to form the anechoic

recordings of the speech sources, the utterances were then concatenated

to form longer speech signals, up to 300s (i.e. each speaker was repeat-

ing what they were saying with the full range of utterances available

for that speaker). These speech mixtures were then played via a PC

sound card into the line in of the TI DSP for processing, the separated

sources were audible via headphones attached to the headphone out

jack of the TI DSP.

Performance of the separated mixtures are based on two measure-

ments, namely the SIR and SDR, as the original speech sources are

available. SIR takes into account the interfering sources affecting an

estimated source, whereas the SDR also considers interfering sources

and in addition takes into account any artefacts (e.g. filtering effects)
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and any noise (e.g. due to quantisation error from the ADC) within an

estimated source.

Unmixing matrices (G) were saved at every five seconds in the ex-

ternal memory of the TI DSP. The results given are based on the

unmixing matrices obtained and simulated with (unrepeated) speech

mixtures, this was to ensure that there were no problems with aligning

the estimated sources with the original speech signals in time (which

is necessary for accurate results with the BSS Evaluation Toolbox [57])

induced by any latency delay between the PC sound card and the TI

DSP. In the following chapter SDR and SIR values are calculated with

a moving window over the estimated signal in the time domain, that

yields a slight difference in steady state performance.

4.4 Experimental Results

A comparison of averaged SIR and SDR convergence plots for different

values of υ with a 50% window overlap are shown in Figures 4.5 and

4.6 respectively, where η was chosen for fast convergence for a range

of mixtures and values of υ without the algorithm becoming unstable.

The value for η was kept constant for all Student’s t plots (η = 1.0, with

a scaling factor of 200). For comparison a typical performance curve

for the super-Gaussian source prior, and a learning rate was chosen so

that initial convergence is similar to that of the case of υ = 1.0 for

the Student’s t distribution. In this case a learning rate of η = 0.4 was

chosen for the super-Gaussian source prior, so that it had similar initial

convergence to the Student’s t source prior. Larger values of υ make

online NG-IVA converge faster but seem more erratic in the steady

state, and in some cases there is a notable deterioration in SDR/SIR
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performance. This is a typical example of a trade-off between fluctu-

ation in the steady state with larger learning rate values and longer

convergence time with smaller learning rate values. It is assumed in

a realistic scenario that speakers would remain essentially physically

stationary for at most 300 seconds, hence is the reason why results are

shown up to 300 seconds.

The convergence plots in Figure 4.5 and 4.6 show that the Student’s

t distribution performs better after convergence. Plots have been cal-

culated by taking the arithmetic mean of the SDR and SIR ratios of the

results over 22 mixtures. Results were limited to 22 mixtures in this

case as processing results from the TI DSP was time consuming as the

TI DSP needed to be supervised as results were being obtained in real-

time. There was a degradation in performance when compared to the

results calculated with MATLAB, this could be for a variety of factors

including SDR and SIR results being based on unmixing matrices saved

every five seconds meaning that time domain signals are not exactly re-

constructed as they are from the headphone out jack of the TI DSP

(rather than basing the results on a sliding time window over the ‘raw’

reconstructed time signal). It is also noted in other studies that there

is a slight degradation in performance when such algorithms are imple-

mented [97]. In addition there was scaling within the TI DSP possibly

introduced by the AIC23 codec (analogue to digital converter), conse-

quently a scaling factor of 200 was introduced into the update equation

(Equation 4.2.8) to ensure an acceptable convergence rate.

Convergence of the algorithm with the online NG-IVA algorithm

with Student’s t source prior is confirmed (in MATLAB) in Figure

4.7, and for the original source prior in Figure 4.8 by calculating the
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Figure 4.5. SIR convergence for different values of v. η=1.0, except
for the super-Gaussian plot where it is 0.4. Plots have been averaged
over 22 mixtures which include male and female speakers.
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Figure 4.6. SDR convergence for different values of v. η=1.0, except
for the super-Gaussian plot where it is 0.4. Plots have been averaged
over 22 mixtures which include male and female speakers.
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mean-squared sum (MSS) of the instantaneous gradient of the unmixing

matrices, given by:

MSS =
1

KMN

∑
i,j,k

|∆g(k)
i,j [n]|2. (4.4.1)

Figures 4.7 and 4.8 confirm the convergence of the algorithm with

both source priors when considering the mean-squared sum, however

the instantaneous gradient with the original source prior seems more

erratic especially in the early stages of convergence, whereas the instan-

taneous gradient of the proposed source prior settles quickly.

For details of the two speakers positions, see Figure 4.4, and Table

5.1. Results for online NG-IVA with 50% overlap with s2 in position

‘A’ are given in SDR (Figure 4.9) and SIR (Figure 4.10) and show

improved performance of approximately 1dB in SDR and 0.75dB in

SIR, for the proposed source prior over a period of approximately 300

seconds. The error bars in Figures 4.9 and Figure 4.10 correspond

to the standard deviation. The standard deviation improvement is

approximately 0.2dB in SDR and 0.3dB in SIR.

However convergence time is not as good as that in [35] (where a

steady performance state is reached in within 20 seconds), there are two

reasons for this; realistic reverberant binaural room impulse responses

are used in this experimental setup, rather than room impulse responses

generated by the image method [53] which are highly artificial in nature.

Secondly, in an attempt to ensure that the FFT has a sufficient length

to cover the length of the time-domain room impulse response, more

frequency bins are used for the unmixing filters (2048, compared to

256), thus it takes longer for all the unmixing filters to converge for all
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Figure 4.7. Mean-squared sum of the instantaneous gradient of online
IVA with score function based on the Student’s t source prior, averaged
over 22 mixtures. (N.B. no scaling factor was necessary as the variances
of x1 and x2 were set to one.)
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Figure 4.8. Mean-squared sum of the instantaneous gradient of online
IVA with score function based on the original source prior, averaged
over 22 mixtures.
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frequency bins. Convergence time, particularly for moving sources, is

addressed in the following chapter.

SDR and SIR results are also given for s2 at 30◦ with respect to

the centre of the microphone array (position ‘B’) in Figures 4.11 and

4.12. As s1 and s2 are spatially closer together there is an observable

drop in performance when compared to position A, for example steady

state SDR performance in position A is approximately 12dB, compared

to a steady state performance of 9.5dB in position B. Likewise, the

error bars in Figures 4.11 and Figure 4.12 correspond to the standard

deviation. In terms of SDR and SIR (Figures 4.11 and 4.12) there was

a noticeable reduction in standard deviation using a Student’s t source

prior, approximately 0.3dB and 1.0dB, respectively.

A point of interest in Figures 4.9, 4.10, 4.11 and 4.12 is that the

super-Gaussian source prior initially overshoots, the explanation offered

for this is as frequency domain unmixing matrices are subsampled from

the TI DSP every five seconds. Therefore, when the unrepeated time

domain signal estimates are reconstructed, there is a bias towards one

of the sources due to the varying length of the unrepeated time domain

sources depending on the way sources are either cropped or padded

with zeros to ensure that the full range of speech utterances for one

speaker is the same length as full range of speech utterances for the

other speaker.

In addition, the potential combined effect of latency delay (between

the PC sound card) and delay between the input and output to the TI

DSP, means that it is challenging to align the time domain output of

the TI DSP with the mixtures played via a PC sound card, and was

not considered feasible in this study. Simulations within MATLAB do
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Figure 4.9. Convergence of NG-IVA as averaged SDR over 22 male-
female speech mixtures with a 50% overlap between time frames,, where
s2 is at position A. The bars indicate the maximum and minimum
standard deviation of the SDR.
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Figure 4.10. Convergence of NG-IVA as averaged SIR over 22 male-
female speech mixtures with a 50% overlap between time frames, where
s2 is at position A. The bars indicate the maximum and minimum
standard deviation of the SIR.
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Figure 4.11. Convergence of NG-IVA as averaged SDR over 22 male-
female speech mixtures with a 50% overlap between time frames, where
s2 is at position B.
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Figure 4.12. Convergence of NG-IVA as averaged SIR over 22 male-
female speech mixtures with a 50% overlap between time frames, where
s2 is at position B.
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not have the same overshoot characteristic as all necessary time domain

signals are available. Figures 4.13 and 4.14 show results obtained from

MATLAB, and do not exhibit this overshoot.

To verify that the proposed method worked in a more controlled en-

vironment, i.e. one where all necessary signals were available and there

was no need to reconstruct the estimated signals with the unmixing

matrices, NG-IVA with the original and Student’s t were implemented

in MATLAB, Figures 4.13 and 4.14. There is an improvement in perfor-

mance as expected as there is no need to subsample unmixing matrices

every 300 seconds. Based on the second half of the experimentation

time (150s-300s) the average improvement of the converged algorithm

was 0.96dB for SDR and 0.61dB for SIR. The intermediate matrices

that otherwise would have been discarded cause improvement in per-

formance as these provide more recent unmixing matrices as they are

based on more recent input values. As noted previously, other stud-

ies [97] have also noted a degradation in performance in real-time. In

addition, the performance graphs in [35] were based on MATLAB sim-

ulations rather than outputs from the DSP used in the same paper.

In Figures 4.13 and 4.14 the learning rate was η = 1.2 for the super-

Gaussian and η = 1.4 for the Student’s t source priors. The degrees of

freedom parameter was set to υ = 1.0.

4.5 Summary

An online (real-time) algorithm for NG-IVA has been presented with

an alternative source prior, based on a multivariate Student’s t dis-

tribution, this gives an improved model for dependency amongst high

amplitude data points in a frequency domain speech signal due to the
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Figure 4.13. Convergence of NG-IVA as averaged SDR over 22 male-
female speech mixtures with a 50% overlap between time frames, where
s2 is at position B.
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Figure 4.14. Convergence of NG-IVA as averaged SIR over 22 male-
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s2 is at position B.
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heavier tails of the Student’s t distribution. The reverberant mixtures

used are more realistic, therefore more of a challenge to separate, than

those used in some previous studies. In addition, the importance of the

degrees of freedom within the Student’s t distribution was highlighted.

Results have shown improved performance in terms of SDR and

SIR when compared to the original NG-IVA, which has a source prior

based on a multivariate super-Gaussian distribution. Real-time NG-

IVA was able to be implemented as an embedded application on a TI

TMS320C6713 DSP platform, a common floating-point DSP platform,

due to its lower complexity when compared to the batch version. Bin-

aural real room impulse responses were used to validate the derived

method, thus in the future such a method could be applied to hearing

aid technology [98], [99].

In the next chapter directional information and video cues are in-

corporated into online NG-IVA to address the problem of moving signal

sources.



Chapter 5

A COMBINED

AUDIO-VISUAL

BEAMFORMING-IVA

METHOD FOR SOURCE

SEPARATION OF MOVING

SOURCES

5.1 Introduction

Having addressed the separation performance of online NG-IVA in the

previous chapter, this chapter introduces a novel way of exploiting video

cues to improve the convergence speed of online NG-IVA and improve

separation performance in the context of moving speech sources.

The time-varying nature of the mixing system within source sepa-

ration for moving sources is the main problem to be addressed in this

chapter. The proposed method is an audio-visual approach [61] which

attempts to separate speech sources by employing a microphone array

134
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which is pre-steered by utilising video cues towards a target source as

the sources move. An online source separation algorithm, online NG-

IVA, is used as it is able to adapt to changes to the mixing environment,

which is assumed to be enclosed such as a small room. As discussed pre-

viously in Chapter 4, online NG-IVA is suited to convolutive mixtures

as it accounts for the permutation problem in FD-BSS.

As well as improving initial convergence of online NG-IVA, the

method also addresses temporary lapses, ‘dips’, in separation perfor-

mance due to the physical movement of sources, a known problem in

real-time source separation for moving sources [97]. A related geomet-

ric source separation approach is taken in [100]. The method proposed

in this chapter could be considered as an extension of geometric source

separation, as it uses a combination of online NG-IVA and a pair of FIR

filters which acts as a null-steering beamformer so that one source is

cancelled from one of the inputs to online NG-IVA, thus giving online

NG-IVA a ‘head-start’ when separating the mixtures. This could be

thought of as a preprocessing step which in part removes the crosstalk

from one of the mixtures.

Colin Cherry, who originally proposed the machine cocktail party

problem, had outlined that video information could be exploited, in

a similar manner to which a human speaker might use eyesight, to

aid the source separation process [1], [2]. Along with [61], another

method which takes an audio-visual approach to source separation is

[63]. An overview of audio-visual source separation can be found in [18].

Also, previously researchers have used a null-steering beamformer to ad-

dress the permutation problem in FD-BSS [101], however the proposed

method takes an entirely different approach as IVA already addresses
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the permutation problem in FD-BSS.

The proposed method is compared to online NG-IVA, which is

shown in previous studies [79] to recover from step-wise position changes

of the sources. However, it will be shown that convergence performance

is improved after such step-wise changes in source position and per-

formance in terms of SDR and SIR are improved with the proposed

method.

5.2 Method Overview

5.2.1 System Model

The model can be considered in two stages, firstly, a video-tracking

and speaker identification stage, which is not the focus of this chapter,

more details of video tracking method can be found in [32], [61], [62].

Secondly, an audio source separation stage which exploits video cues

which is the main focus of this chapter. Originally proposed in [32], the

schematic diagram of the overall system’s framework is shown in Figure

5.1, which clearly highlights the video tracking, source separation and

decision making stages.

The video localisation of speakers could be achieved with an array

of more than one camera so that the location of the sources can be

found by a combination of the codebook method for background sub-

traction [102], which would provide a 2-D outline of the speakers and

the Tsai calibration (non-coplanar) technique [103], which would use

the intersections of the extracted 2-D outlines to provide a 3-D location

of the sources. The locations of the sources are then used in the visual-

tracking step of the video tracking stage. The video tracking is achieved
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by a state of the art tracking algorithm such as [104]. From this, the

velocity information can be used to decide which method to use, ei-

ther online NG-IVA or online NG-IVA with the FIR lattice-structure

(see Algorithm 4). Although the video tracking and identification is

beyond the scope of this thesis the brief description above is included

for completeness.

Algorithm 4 Decision making for combined beamforming/NG-IVA
method for moving speech sources. See Figure 5.1.

Input: Location data of target source and microphone observations.
Output: Binary decision on which method to be imple-
mented.

1: if All sources are physically stationary for a given number of time
blocks (D), i.e.

∑n
d=n−D+1|vd,i|= 0 then

2: Operate online NG-IVA and bypass the FIR lattice structure
(normal NG-IVA algorithm).

3: else
4: Combined beamforming NG-IVA method with lattice structure

(online NG-IVA with a null-steered beamformer).
5: end if

The decision stage in Algorithm 4 decides between two cases, the

physically stationary sources case and the moving sources case. A

source is considered physically stationary if a source has an instan-

taneous velocity of 0 across D previous time blocks,
∑n

d=n−D+1|vd,i|= 0

where vd,i is the instantaneous velocity information at time block d for

the i-th source. Practically, there is a tolerance of small movement in

the sources, to ensure that the method is more robust to subtle changes

in, for example, human movement.

The key contribution of the proposed method, the FIR filter-lattice

structure, is outlined in the following section.
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Separated speech 
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Y

Figure 5.1. Overall system diagram including video tracking stage
(which is beyond the scope of this thesis), the decision making stage
and the audio source separation stage (the focus of this chapter).
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5.2.2 FIR filter-lattice structure

The same FIR filter-lattice structure as used in Chapter 3 is used to

cancel a second moving source, which acts as a null-steered beamformer.

The main assumption with this method is that the source being can-

celled (assumed to be s1) is always at essentially a perpendicular loca-

tion between two microphones, this is achieved by pre-steering a two-

microphone array (possibly by employing a mechanical device) towards

s1 with information obtained from video cues. As mentioned previ-

ously, the tracking and identification is considered beyond the scope of

this thesis.

The other main assumption is that M = N = 2 (i.e. both the

number of sources and observations are equal to two), however extra

sources (possibly noise sources) can be grouped together as a second

source.

Maintaining the perpendicular position condition between the tar-

get speaker and the two-microphone array is achieved by orientating

this two-microphone array towards a target speaker so that the two

mixing filters corresponding to the target source (in this case s1) and

the two microphones are approximately equivalent. However, possible

error due to misalignment or late reverberation needs to be considered,

this motivates the need for two filters to correct this so that the sub-

traction of the two observations (thus cancelling the target source) can

be performed.

A major advantage of this method is that as the IVA step is be-

ing provided with a reasonable estimate of one of the sources (in this

case s2), regardless of source position, therefore the average SDR and

SIR values across both sources remain ‘stable’ for the case of physi-
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+

ŝ1

ŝ2

W1(z)

W2(z)

−

Online
NG-IVA

x′
1

x′
2

Lattice structure

1

Figure 5.2. System diagram for combined online NG-IVA null-steering
beamforming method, the pair of FIR filters are shown here in z domain
notation; discrete time t is dropped on all signals for convenience. The
lattice structure can be bypassed to give the online NG-IVA algorithm,
when the sources are stationary.

cally moving sources, i.e. the effects of performance lapses, due to the

movement of sources, are reduced. Another advantage is that conver-

gence using the proposed method is expected to be faster than normal

NG-IVA after a source has moved in a step-wise fashion.

Assuming that the acoustic environment does not change during

experimentation, w{1,2} will also not change. To allow for movement of

s1 the microphone array will orientate itself accordingly using informa-

tion from the video system, as mentioned previously. In addition, the

lattice structure is not subject to the position of source (s2), which has

freedom to move within the acoustical environment as online NG-IVA

will allow for any changes in the related impulse responses.

The two inputs to the online NG-IVA algorithm are the filtered

version of one observation, minus the other filtered observation and the

addition of the two filtered observations, thus:
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x′1(t) =
L−1∑
τ=0

x1(t− τ)w1(τ) +
L−1∑
τ=0

x2(t− τ)w2(τ) (5.2.1a)

x′2(t) =
L−1∑
τ=0

x2(t− τ)w2(τ)−
L−1∑
τ=0

x1(t− τ)w1(τ), (5.2.1b)

where (·)′ denotes the altered version of x{1,2}, t is the discrete time

index, τ is a discrete time delay and L is the length of the time domain

FIR filter. These are written in the time domain here so that they

are consistent with the notation in Chapter 3, however the pair of FIR

filters could be implemented in the frequency domain if desired, Figure

5.2 shows these equations in diagrammatic form.

5.2.3 Method of Principal Angles

The training process to find the pair of time domain FIR filters ŵ{1,2},

as described in full in Chapter 3 and included here for completeness, is

as follows; a pair of convolution matrices are formed, denoted X1 and

X2, performing a QR decomposition yields;

X1 = Q1R1 (5.2.2a)

X2 = Q2R2. (5.2.2b)

An error vector is written, as in Chapter 3, as;

ε1(w1, w2) = ε2(w̃1, w̃2) = ε2 = (Q1w̃1 −Q2w̃2), (5.2.3)
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where ε1(w1, w2) and ε2(w̃1, w̃2) are error functions. Also, w̃1 = R1w1

and w̃2 = R2w2. The minimisers of a new cost function are then found

as:

J2 = ||ε2||22, {ŵ1, ŵ2} = arg min
w̃1.w̃2

J2, (5.2.4)

subject to ||w̃1||2= ||w̃2||2= 1. The two constraints are applied simul-

taneously due to the orthonormal basis. To find the principal angles

and principal vectors of the orthonormal subspaces Q1 and Q2, the

singular value decomposition is taken of QT
1Q2, so that [U,Λ, V T ] =

SV D(QT
1Q2). The constraints ||w̃1||2= 1 and ||w̃2||2= 1 are inherently

introduced to the method by exploiting the properties of the SVD avoid-

ing the trivial solution ŵ1 = ŵ2 = 0. The cost function J2 is rewritten

as:

J2 = ||Q1w̃1 −Q2w̃2||22 (5.2.5)

= w̃T
1 w̃1 + w̃T

2 w̃2 − 2w̃T
1 Q

T
1Q2w̃2, (5.2.6)

therefore reducing J2 is equivalent to maximising w̃T
1 Q

T
1Q2w̃2 as w̃T

1 w̃1 =

1 and w̃T
2 w̃2 = 1, thus:

arg min
w̃1.w̃2

J2 ≡ arg max
w̃1.w̃2

w̃T
1 Q

T
1Q2w̃2. (5.2.7)

By exploiting the SVD:

(w̃T
1 Q

T
1Q2w̃2) = w̃T

1 (UΛV T )w̃2 = w̃T
1 (
∑
m

λmumvm)w̃2, (5.2.8)

by selecting w̃1 = u1 and w̃2 = v1 in Equation (5.2.8), where u1

and v1 are the vectors from the rows of U and V which correspond
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to the largest largest singular value, denoted λ1, where the subscript

(·)1 denotes the largest singular value. In turn, λ1 corresponds to the

smallest angle between the orthonormal bases Q1 and Q2 [74].

The equalising filters are the columns of U and V which correspond

to λ1 (as they maximise Equation (5.2.8)), multiplied by the inverse

of R1 and R2 to allow for the basis change by the QR decomposition,

hence:

ŵ1 = R−1
1 v1 (5.2.9a)

ŵ2 = R−1
2 u1, (5.2.9b)

thus the pair of equalisation filters (ŵ{1,2}) is found; Equations (5.2.1a)

and (5.2.1b) use this pair of equalising FIR filters to implement the

lattice structure. It is assumed the training stage is done ‘offline’ and

any time taken to train w{1,2} is not included in the experimental results

below.

5.2.4 Online Natural Gradient Independent Vector Analysis

Online NG-IVA is used as in the previous chapter with a score function

derived from a super-Gaussian source prior (defined as: q(si) ∝ exp
(
−

((si − µi)HΣ−1
i (si − µi))

1
2

)
, in Chapter 4), included for completeness,
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thus the update equations are:

ŝ
(k)
i [n] =

N∑
j=1

gij[n](k)x
(k)
j [n] (5.2.10a)

ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i ) =

ŝ
(k)
i√∑K

k=1|ŝ
(k)
i |2

(5.2.10b)

∆g
(k)
ij =

N∑
l=1

(Λil − ϕ(k)(ŝ
(1)
i . . . ŝ

(K)
i )ŝ

(k)∗
l )g

(k)
lj (5.2.10c)

ξ(k)[n] = βξ(k)[n− 1] + (1− β)
M∑
i=0

|x(k)
i [n]|2/M (5.2.10d)

g
(k)
ij [n+ 1] = g

(k)
ij [n] + η

√
(ξ(k)[n] + γ)−1∆g

(k)
ij , (5.2.10e)

as derived in Chapter 4.

5.3 Methodology

Speech signals of approximately 250 seconds long were used to test the

proposed method, where the second interference source is moved in a

step-wise fashion at a third of the overall experimental time (approxi-

mately 84 seconds) to simulate a moving source. Table 5.1 details the

experimental conditions in full for the experiments.

The pair of FIR cancelation filters was found in a training stage

where s2 was silent. Three seconds of training data from the TIMIT

database were used to form the convolution matrices X{1,2} and thus

train the pair of FIR filters ŵ{1,2}.

A 2D room plan is illustrated in Figure 5.3. Source s1 was kept at

the same position perpendicular to both microphones throughout ex-

perimentation (as a straightforward method to simulate the pre-steering

of the microphone array due to video cues), source s2 begins at 75◦ for
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Sampling rate 8kHz
FFT length (K) 2048

Window function win = sin

(
π
2

sin2
[
π

2K

(
k + 1

2

)])
Overlap ratio 50%
Length of FIR equalisation filters (L) 900 taps
RT60 565ms
Overall mixture length 251s
Source movement time 84s

Table 5.1. Experimental conditions for combined NG-IVA-
Beamforming results, where k ∈ {1, . . . , K}.

all experiments then moves in a step-wise fashion to either 45◦, 30◦, or

15◦, except for the first experiment where its position remains constant

at 75◦.

Results were averaged for 56 different male-female mixtures from a

range of accents (where the speakers were swapped between positions),

the clean speech signals were taken from the TIMIT dataset and the

mixing filters were taken from a binaural IR database [54]. All available

speech sources for each speaker were concatenated to form longer speech

sources. Full experimental parameters can be found in Table 5.1. SDR

and SIR values were calculated using the BSS Evaluation Toolbox [57]

over a window period of three seconds.

Steady state values in the Experimental results section are calcu-

lated by either taking the mean SDR and SIR values across the last

120 seconds of experimental time for the stationary experiment or 60

seconds of experimental time for the moving experiments. This allows

sufficient time for experiments to converge.
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x1

x2

s1, Angle= 0◦

s2, 75◦
s2, 45◦
s2, 30◦
s2, 15◦

Not to scale.

Room dimensions (approx.): 9m × 5m × 3.5m

Distance between microphones: 15cm.

1

Figure 5.3. 2D room plan of microphone and source positions.
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5.4 Experimental Results

In Figures 5.4 and 5.5 the second source (s2) remained physically sta-

tionary throughout experimentation. The improvement in initial con-

vergence time for proposed beamforming-IVA method compared to the

original method is outlined in Table 5.2. The convergence time to

reach 50% of the steady state is more than halved with the proposed

beamforming-IVA method. To attain 75% of the steady state, the con-

vergence time is reduced by 12.07 seconds for SDR and 7.45 seconds for

SIR. In Table 5.2 the steady state time average was based on the mean

value of the SDR and SIR for the final 120 seconds, the convergence

times were based on the amount of time both methods took to reach

50% and 75% of their respective final steady states. This improvement

in initial convergence time is observed across all experiments includ-

ing those where source s2 moves to a new location, furthermore initial

convergence times are considered acceptable for the room impulse re-

sponses (RT60 = 565ms) used.

Steady state performance (based on the final 120 seconds of exper-

iment time) is 16.31dB and 20.33dB for the original online NG-IVA

method (SDR and SIR respectively). For the proposed combined on-

line NG-IVA and null-steering beamforming method the results were

13.92dB and 21.31dB for the SDR and SIR respectively. In this case

there has been a degradation in SDR performance. This emphasises

a need to have intelligent selection of the source separation method

(i.e. with or without the proposed beamforming method), so that the

performance parameters of the original method can be attained.

Although initial convergence of the proposed method is improved,

Figures 5.4 and 5.5 demonstrate little support for the proposed method
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Figure 5.4. An SDR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where the second source is physically
stationary.
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Figure 5.5. An SIR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where the second source is physically
stationary.
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as the original NG-IVA gives better performance in the steady state in

terms of SDR, only the SIR is slightly improved (Table 5.2). The ad-

vantage of the proposed method is more pronounced when the position

of s2 is changed in a step-wise fashion, Figures 5.6 - 5.11. In a realis-

tic scenario where the proposed combined method is implemented it is

suggested that the lattice structure in Figure 5.2 is bypassed when the

stationary scenario is detected by the video system, thus the method

is able to achieve better steady state performance shown in Figure 5.4

and Figure 5.5.

Figures 5.6 and 5.7 show results of the step-wise movement of s2

from an angle of 75◦ to an angle of 45◦. The performance is slightly

worse in terms of SDR when compared to the original method, see Fig-

ure 5.6. Though there is an obvious improvement in convergence time

and final value after the step-wise movement of s2, in terms of SIR in

Figure 5.7. The details of gain in steady state performance in the final

60 seconds of experiment time for all the moving source and stationary

cases is summarised in Table 5.3. Steady state time is based on 60

seconds for the moving cases (rather than 120 seconds for the station-

ary case) because it is harder to ensure that the methods would have

recovered and be in steady state over the last 120 seconds of experi-

ment time. This shows that in terms of SDR there is an improvement

for source s2 moving to 30◦ and 15◦ and in terms of SIR there is a

movement for all moving cases. The stationary case is also provided

as a comparison and shows no improvement in the performance for the

proposed method. The best performance is observed when s2 moves

from 75◦ to 15◦, which shows the potential of the algorithm to handle

fast moving sources.
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s2 (start position → end position) Gain SDR (dB) Gain SIR (dB)
75◦ → 75◦ -4.33 -2.74
75◦ → 45◦ -0.71 2.12
75◦ → 30◦ 0.94 3.20
75◦ → 15◦ 7.16 10.75

Table 5.3. Average improvement in performance for the proposed
(compared to original NG-IVA) over the last 60 seconds of overall ex-
periment time.

Convergence time after the lapses in performance due to the step-

wise movement of s2 are summarised in Table 5.4. Convergence times

in this table are based on the time it takes to reach 80% of the respec-

tive final steady state performance (based on a mean calculated over

the final 60 seconds of overall experiment time.) Table 5.4 shows that

convergence time is improved for all the configurations tested and in

some cases convergence time is halved. Final steady state values are

also improved or kept constant between the proposed and original algo-

rithms. SIR performance values are consistent for all final positions of

s2 in the proposed method, however the steady state SIR value declines

as the angle between s2 and s1 is reduced in the original method (online

NG-IVA), which supports the proposed method.

Figures 5.8 and 5.9 are the first experiment (75◦ to 30◦) to suggest

strong performance advantage of the proposed research for both per-

formance parameters. Convergence is quicker in both SDR and SIR

after the step-wise movement and in the steady state performance of

the proposed method performs better for both parameters (0.94dB for

SDR and 3.20dB for SIR).

Figures 5.10 and 5.11 show the method in the most difficult case

tested (75◦ to 15◦), where s2 is closest to s1 in its second position, this

case demonstrates the advantages of the method and there is a clear
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Figure 5.6. An SDR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where s2 is moving from an angle
of 75◦ to 45◦.
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Figure 5.7. An SIR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where s2 is moving from an angle
of 75◦ to 45◦.
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Figure 5.8. An SDR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where s2 is moving from an angle
of 75◦ to 30◦.
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Figure 5.9. An SIR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where s2 is moving from an angle
of 75◦ to 30◦.
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improvement of SDR (7.16dB) and SIR (10.75dB) in the steady state

(Table 5.3).

A potential disadvantage of the proposed method is that SDR and

SIR performance in the steady state is slightly more erratic than the

original method, however any disadvantage there is, would be mitigated

by improved convergence and improved mean steady state SDR and SIR

performance in the last 120 and 60 seconds (Table 5.2 and Table 5.3),

and using the proposed framework in Algorithm 4.
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Figure 5.10. An SDR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where the s2 is moving from an
angle of 75◦ to 15◦.
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Figure 5.11. An SIR comparison of the combined IVA-beamforming
and original online IVA (η = 0.55), where the s2 is moving from an
angle of 75◦ to 15◦.
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5.5 Summary

A method which behaves as a preprocessing step to remove a target

source by acting as a null-steering beamformer, along with an online

NG-IVA algorithm, has been presented within an established audio-

visual source separation framework then applied to the case of step-wise

moving sources. Results have been shown for a physically stationary

case then several cases of step-wise movement of the second source (s2)

with increasing difficultly (i.e. when the source is in its second position

it is nearer s1 than in the previous test). Results confirm that there

is faster convergence time after a second source has moved in a step-

wise fashion and initial convergence time has also been improved. The

major contribution of this chapter is improving SDR and SIR perfor-

mance of the proposed method which exceeds the original online NG-

IVA algorithm in cases involving fast-moving (simulated by a step-wise

movement) non-stationary sources.

Furthermore, the algorithm has the potential to also deal with the

over determined case, as one source would be removed from at least

two of the observations in advance and has the potential in future to

eliminate spatially separated noise sources.

In the next chapter, the contributions of the thesis are summarised,

avenues for future research are discussed and closing remarks are pro-

vided.



Chapter 6

CONCLUSION

6.1 Overall conclusions

The work presented in this thesis has shown that potential solutions

for the cocktail party problem can be implemented in an online manner

for application within reverberant environments. In the spirit of the

suggestion in Colin Cherry’s original paper, video cues, in this case

known speaker location, can also be used as a priori knowledge and are

able to be exploited to improve the source separation process.

The main issue facing blind source separation systems is reverber-

ation, which is confounded by moving speech sources, such as human

speakers moving in a room. Consequently, mixing filters are time vary-

ing and therefore adaptive algorithms with an online structure are an

obvious choice, as such algorithms are likely to have an in-built ability

to adapt to changes in the acoustic environment.

Realistic reverberant environments require that processing is con-

ducted in the frequency domain, which leads to the permutation prob-

lem that is inherent in frequency domain ICA. Chapter 2 highlights

previous work within the subject of convolutive blind source separation

and focuses on the permutation problem. In addition, Chapter 2 pro-

vides a comparison between the batch versions of ICA and IVA, and
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as expected IVA performs betters than ICA as it directly addresses the

permutation problem. Also included is information on the measure-

ment parameters and datasets used within the thesis.

The contributions of this thesis satisfy the five research objectives

outlined in the introduction. The objectives were addressed by in-

troducing methods which exploit known speaker location or are more

suited to speech signals. In this regard, Chapter 3 introduced a novel

method to calculate a pair of FIR filters that cancelled a target speaker

within a room exploiting known speaker location and the principle an-

gles method (which in turn exploits the SVD). This was formulated in

the time domain thereby mitigating any potential approximation effects

in circular convolution. An adaptive filtering stage was then applied to

recover the remaining speakers. This proof of concept method demon-

strates that it is possible to recover sources using only second order

statistics, yielding good results above 20dB in experiments. However,

in the method described this comes at the cost of a training stage where

the estimates of the pair of cancellation filters are found by means of

an SVD.

Chapter 4 introduced online natural gradient IVA and a new source

prior, namely a multivariate Student’s t which was the main contribu-

tion of this chapter. The proposed multivariate source prior pdf is more

suited to certain speech signals due to its heavier tails and therefore it

better represents the content of a frequency domain speech signal. The

online NG-IVA algorithm was implemented in real-time on a Texas

Instruments digital signal processor platform. Due to problems with

subsampling the unmixing matrices and reconstructing the various sig-

nals remotely, behaviour of the real-time implementation is unusual.
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Despite this, the Student’s t pdf was shown to perform better than the

originally proposed source prior and performance was confirmed in a

MATLAB simulation.

Following the introduction of online NG-IVA, a method which im-

proves the convergence of online NG-IVA was described in Chapter 5,

in the case of moving sources. The pair of cancellation filters and online

NG-IVA were combined to produce a solution which relied on known

speaker locations. Significant improvement to the convergence of on-

line NG-IVA was achieved. In some cases, such as the case where s2

moves from 75◦ to 30◦, convergence time improves by almost 18 seconds

for SDR, demonstrating a clear contribution in the case of audio-visual

blind source separation for moving sources. However, improved conver-

gence time was traded for reduced steady state performance in some

situations. In such cases it is proposed that the lattice structure that

the filters are arranged in is turned off, depending whether speakers are

stationary or moving, reducing the method to online NG-IVA.

All methods considered in the main body of the thesis deal with

reverberant environments. In this respect the impact of this thesis is

a stepping stone for future researchers to expand on the ideas and find

an all encompassing solution to the cocktail party problem suggested

by Colin Cherry.

6.2 Future work

For the PA method for target speaker cancellation proposed in Chapter

3, possible changes include removing the training phase and replacing

it with a voice activity detector (VAD) [66], which detects silent peri-

ods in speech sources. Such a solution would then retrain the pair of
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cancellation filters during silent periods. This would lead to implement-

ing the pair of cancellation filters estimated from the principal angles

method in real-time.

Within the context of Chapter 4, investigating other appropriate

multivariate source prior distributions that would improve the sepa-

ration of speech for moving source further would be interesting. The

formulation for IVA assumes that there are evenly weighted depen-

dencies between the frequency bins, even for frequency bins which are

far apart. In the future, frequency bins could be split into frequency

bands. By grouping the frequency bins this would give less weighting

to frequency bins further apart and more weighting to frequency bins

closer together. The band arrangement scheme could be determined

to suit speech signals, as well as using different source priors within

the bands, such as those discussed in [105]. Another area of future

work is to implement online NG-IVA on a field programmable gate ar-

ray (FPGA) in real-time, potentially using the architecture to execute

parts of the online algorithm in parallel, thus increasing the speed of

computation time and saving on computational load. Any future work

would extract time domain signals from the TI DSP in real-time, so

that practical limitations of the current set up can be avoided.

Future work for the combined method in Chapter 5 would include

using the IVA-beamforming technique proposed in the Chapter with

the Student’s source prior. Also, a more robust study into the effect of

the learning rate within NG-IVA with the combined method could be

carried out. A possible avenue of future study is combining the method

with the time-varying learning rate as introduced in [106]. Additionally,

the method could be expanded to work on more than one acoustic plane.
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In this thesis, the number of frequency bins is assumed to be sim-

ilar to that of the length of the room impulse response (2048), unless

otherwise stated. This figure is chosen so that the IVA algorithm can

maintain good SDR and SIR performance values at the outputs, whilst

being a realistic number of frequency bins to cover the length of time

domain impulse responses. It is possible in future work to investigate

reducing the number of frequency bins that IVA operates over (to re-

duce computational complexity) and still provide acceptable SDR and

SIR separation performance values. In addition, experiments in Chap-

ter 5 improved convergence time, however, there was a trade-off for

reduced steady state performance, but this could also be the subject of

future work.

One goal within the community of researchers investigating the

cocktail party problem is to find a more ‘elegant’ solution, potentially

mimicking deep rooted biological and sensory mechanisms that a hu-

man may use. For example, finding a solution to the underdetermined

case is one of these areas, separating mixture in the underdetermined

case using videos cues, in a similar way to which a human being only

has two ears, yet has the ability to separate more than two speakers.

This research takes a step towards providing potential solutions for the

moving source case. Humans also use other pieces of a priori knowl-

edge about the target speaker, such as familiarity with the speaker’s

voice, such as expected timbre or accent, to assist in understanding the

speaker. Within this context, smart initialisation in form of initialising

unmixing matrices could also be considered in future research.

A possible weakness in the study is that video information is not

explicitly utilised and information such as location of the speakers and
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velocity of moving sources are assumed. Therefore, unforeseen problems

which may arise by using video information have not been investigated.

Although there have been studies where the video tracking has been

investigated, the author is unaware of a full system (audio and video)

being implemented in real-time. This can also be considered for future

study.

6.3 Final remarks

With advances in computing power and embedded technology becoming

increasingly ubiquitous, the demand for voice automated technology

and a solution to the cocktail party problem will undoubtedly grow.

The prevalence of a variety of sensors on such embedded technology,

not just video cameras, has the potential for exciting new developments

in signal processing for natural language processing. A large part of this

is blind source separation techniques which will play an important role

in the years ahead.



Appendix A

APPENDIX

In some applications, particularly with non-stationary sources in real

time, it is desirable to use a more efficient method as higher order

methods can consume large amounts of system resources and require

too much time to produce accurate estimates.

In this section a different approach is described to audio-visual

source separation. It relies on a given set of previously calculated

frequency responses (FR) and an unwanted noise source’s 3D loca-

tion from video information provided by an array of video cameras.

The proposed method can be viewed as a pre-processing stage before a

more conventional BSS algorithm that suppresses a noise source with a

known location; in addition it can be used by itself in the 2-microphone

2-source scenario to extract a filtered version of one of the sources.

Throughout this section the method is considered by itself in the

general case and there is an equal number of microphones and sources

(M = N), in line with the basic ICA model. When N = 2, the method

can be used by itself, although further processing could be used if it

was desired to extract the cancelled noise from the mixture. However,

if the number of microphones and sources was increased, for example

when M = N = 3, after noise source suppression two sources would be

left in the mixture and a further BSS algorithm could be used such as
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ICA or IVA. It is assumed that any movement of the sources is slow, so

that a quasi-static assumption can be made, and that the method uses

block-wise processing, as a result changes in the room impulse response

due to movements of the sources, or other persons or objects, that affect

the acoustic environment are considered to be negligible between time

blocks. This is a proof of concept method and would not work well in

a real environment, due to the artificial nature of image method IRs.

The time-frequency convolutive mixture model in Equation (2.1.18)

is used in this model.

The method is divided into two principal stages. The first stage

consists of estimation of FRs between the noise source and multiple

microphones (Section A.0.1). In a second stage these FRs are used to

find a suppression filter to remove the effect of the noise source on the

mixture at each microphone (Section A.0.2).

The transforms of known IRs which have been measured over a spa-

tial grid are calculated. From these FRs a weighted linear combination

is calculated to estimate an FR at the point where the noise source is

measured. It is only necessary to know the FRs around the noise source

to remove it from the mixture. Note that the number of microphones

always needs to be equal to the number of sources including the noise

source, as the related transfer functions are used to create a suppression

filter.

A.0.1 Frequency response estimation

The room is divided into cubes known as voxels which are arranged into

a non-overlapping 3D spatial grid pattern. Based on work in [107] and

[108], part of the motivation for calculating FRs in such a manner is to
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correct inaccuracies in measured IRs. An FR is estimated by calculating

a weighted average of previously known FRs at each corner of the voxel

that contains the noise source, calculated by the Fourier transform of

an IR [53]. The weighted average depends on the noise source position

(pn), which is provided by video information, as represented in Figure

A.1. The purpose of taking averages of FRs is to avoid storing an IR

and a transfer function (TF) for every possible point within the room

which would be impractical. Weights are assigned to each FR at each

corner (a = 1, . . . , 8) and are calculated by:

ωa =
(

1− x
(voxel)
a

ΩL

)(
1− y

(voxel)
a

ΩL

)(
1− z

(voxel)
a

ΩL

)
(A.0.1)

where ωa denotes the weight at corner a, ΩL is the edge length of the

voxel and xa, ya and za are the distances in each dimension between

each corner and pn. The linear combination is then:

ĥ
(k)
ji =

8∑
a=1

ωah
(k)a
ji (A.0.2)

where h
(k)a
ji is the previously calculated FR at each corner and ĥ

(k)
ji is

the estimated FR between pn and each microphone (j).

A.0.2 Noise source suppression

This method principally exploits the property of two orthogonal vectors

(Figure A.2), so that when the dot product between two vectors is

calculated the result is 0.

A new filter Ĝ
(k)
i ∈ C(N−1)×N is calculated from the estimated FR

vector that removes the source i from the mixture, thus G(k)(i)x(k)(i) =

ŝ
(k)
{1,...,i−1,i+1,...,N}. Dropping the frequency bin index, k, for convenience,
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Figure A.1. An example of a voxel within a room, distances are given
for corner a = 1. pn is the noise source position within the voxel.

this implies: Ĝiĥi = 0 and Ĝihi ≈ 0, where hi represents the vector of

actual frequency responses which are unknown.

In a general setup, including the estimated suppression filter Ĝi,

yields:

Ĝ
(k)
i x(k)(i) =

N∑
j=1

Ĝ
(k)
i h

(k)
j s

(k)
j (i) (A.0.3)

The result of Equation (A.0.3) would be a distorted version of the

unsuppressed sources, possibly with a small contribution from the sup-

pressed noise source due to a mismatch between the estimated filter

(Ĝi) and its ideal value (Gi).

To find the filter (Ĝi) one constructs an orthogonal projection [74]

by:

Ĝi,proj(k) = (I − ĥ
(k)
i (ĥ

(k)H
i ĥ

(k)−1
i )ĥ

(k)H
i ) (A.0.4)

where ĥi is the steering vector of the interference source and Ĝi,proj

is the projection matrix. Singular value decomposition (SVD) is then

performed on Ĝi,proj, so that; Ĝi,proj = UiΣV
H
i , where (·)H denotes

the Hermitian transpose. To find the filter, all non-zero values of the
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diagonal matrix (denoted Σ) are used to identify the corresponding

columns in the unitary matrix (denoted U), these columns in the uni-

tary matrix correspond to the non-zero values of Ĝi,proj. Ĝi is the

concatenation of singular vectors associated with the non-null singular

values, so Ĝi = [U1, . . . , UN−1]H . Given a mixture, the output of the

suppression stage is x(k)′(i) = Ĝ
(k)
i x(k)(i).

A.0.3 Experimental setup & results

Simulated IRs generated by the image method (IM) [53] in an almost

anechoic simulation (T60 = 37ms) (Test 1) and a reverberant simulation

(T60 = 100ms) (Test 2) were used when N = 2 to create mixtures

using two 15 second speech utterances in a variety of source positions

(to simulate the 3D location of a source provided by video camera

information). The number of sources is N = 2. The FR at each corner

of a voxel is calculated by the DFT of IRs generated by the IM for

all tests. The voxel size used in all tests was 0.03m. Utterances from

the TIMIT database from a male and female speaker were used. One

utterance is a ‘desired’ source and the other acts as a noise source.

Sources were positioned in an arc around a two-microphone array at

0.6m, the source is at 0◦ when it is equidistant to both microphones,

yaxis

xaxis

h
(k)
iG

(k)
i

ĥ
(k)
i

Ĝ
(k)
i

Figure A.2. Orthogonality property, when N = 2, where G
(k)
i is

the suppression filter vector at a particular frequency and h
(k)
i the FR

vector at a particular frequency for the noise source i. Ĝ
(k)
i and ĥ

(k)
i

are the estimated equivalents.
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negative angles are to the left and positive ones to the right of the array

(Figure A.3).

A.0.4 Simulated Mixtures

Table A.1 (Test 1) confirms that the concept of the method works well in

a simulated environment. The estimated version of the second source is

clearly audible, with a small amount of noise and in some cases there is

a very small contribution from the suppressed source. The method also

performed well when the reverberation was increased to T60 = 100ms

(Table A.2), this shows reduced performance in a slightly reverberant

environment.

Source 2 (SDR - dB)

NS

Position 1 - 19 21 22 23
Position 2 25 - 22 25 26
Position 3 22 17 - 16 20
Position 4 19 16 11 - 9.6
Position 5 22 19 17 12 -

Table A.1. Performance of the method with IM mixtures, where T60 =
37ms (Test 1). NS is the noise source that is to be suppressed from the
mixture leaving Source 2. The optional post-processing stage has not
been used in these results. Results are shown as SDR in dB.

2m

2m
L

R

1

2
3

4
5

-40◦

20◦

40◦

60◦

Figure A.3. 2D plan view of the simulated/physical room. Source
positions are numbered 1 to 5 (0.6m), the left and right microphones
are marked ‘L’ and ‘R’ respectively.
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Source 2 (SDR - dB)

NS

Position 1 - 6.8 9.1 11 11
Position 2 7.7 - 7.5 8.7 9.6
Position 3 11 7.3 - 6.2 6.8
Position 4 10 6.6 4.7 - 5.1
Position 5 11 8.2 5.8 6.5 -

Table A.2. Performance of the method with IM mixtures, where T60 =
100ms (Test 2). NS is the noise source that is to be suppressed from
the mixture leaving Source 2. Results are shown as SDR in dB.

A.1 Summary

Further research and study will include improving the estimate of the

IRs for a more realistic room environment, development of a method

to correct suppression filter mismatch, expansion of the method to sup-

press more than one source, change of the number of sources and dif-

ferent types of background noise.
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[44] A. Hyvärinen and U. Köster, “FastISA: A fast fixed-point al-

gorithm for independent subspace analysis.,” in 14th European

Symposium on Artificial Neural Networks, 2006, pp. 371–376.

[45] I. Lee, T. Kim, and T.-W. Lee, “Independent vector analysis for

convolutive blind speech separation,” in Blind speech separation,

Springer, 2007, pp. 169–192.

[46] N. Ono, “Blind Source Separation On iPhone In Real Enviro-

ment,” in 2013 European Signal Processing Conference, (EU-

SIPCO), 2013.

[47] ——, “Stable and fast update rules for independent vector anal-

ysis based on auxiliary function technique,” pp. 189–192, 2011.

[48] I. Lee, T. Kim, and T.-W. Lee, “Fast fixed-point independent

vector analysis algorithms for convolutive blind source separa-

tion,” Signal Processing, vol. 87, no. 8, pp. 1859–1871, 2007.

[49] H. Kuttruff, Room acoustics. CRC Press, 2009.

[50] M. R. Schroeder, “New method of measuring reverberation time,”

The Journal of the Acoustical Society of America, vol. 37, no. 3,

pp. 409–412, 1965.

[51] C. Brown, Matlab central, t60.m, http://de.mathworks.com/

matlabcentral/fileexchange/1212-t60-m, Accessed: 10-06-

2015, 2002.

[52] E. ISO, “3382-2: 2008,” Acoustics. Measurements of room acous-

tics parameters. Part, vol. 2, pp. 3382–2,

[53] J. Allen and D. Berkley, “Image method for efficiently simu-

lating small-room acoustics,” Journal of the Acoustic Society of

America, vol. 65, no. 4, pp. 943–950, 1979.



REFERENCES 182

[54] B. G. Shinn-Cunningham, N. Kopco, and T. J Martin, “Localiz-

ing nearby sound sources in a classroom: Binaural room impulse

responses,” Journal of the Acoustic Society of America, vol. 117,

p. 3100, 2005.

[55] A. Lundeby, T. E. Vigran, H. Bietz, and M. Vorländer, “Un-

certainties of measurements in room acoustics,” Acta Acustica

united with Acustica, vol. 81, no. 4, pp. 344–355, 1995.

[56] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, and N.

Dahlgren, DARPA TIMIT Acoustic Phonetic Continuous Speech

Corpus CDROM, 1993.

[57] C. Févotte, R. Gribonval, and E. Vincent, “BSS EVAL tool-

box user guide,” IRISA Technical Report 1706, Rennes, France,

Tech. Rep. 1706, 2005.

[58] W. Baumann, B.-U. Kohler, D. Kolossa, and R. Orglmeister,

“Real time separation of convolutive mixtures,” in Proceedings

of ICA 2001, 2001, pp. 65–69.

[59] B. Gunel, H. Hacihabiboglu, and A. M. Kondoz, “Acoustic source

separation of convolutive mixtures based on intensity vector

statistics,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 16, no. 4, pp. 748–756, 2008.

[60] I. Jolliffe, Principal component analysis. Wiley Online Library,

2002.

[61] S. Naqvi, Y. Zhang, and J. Chambers, “Multimodal Blind Source

Separation for Moving Sources,” in 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing, (ICASSP),

IEEE, 2009, pp. 125–128.



REFERENCES 183

[62] S. Naqvi, W. Wang, M. Khan, M. Barnard, and J. Chambers,

“Multimodal (Audiovisual) Source Separation Exploiting Multi-

Speaker Tracking, Robust Beamforming and Time-Frequency

Masking,” IET Signal Processing, vol. 6, no. 5, pp. 466–477,

2012.

[63] D. Gatica-Perez, G. Lathoud, J. Odobez, and I. McCowan, “Au-

diovisual probabilistic tracking of multiple speakers in meet-

ings,” IEEE Transactions on Audio, Speech, and Language Pro-

cessing, vol. 15, no. 2, pp. 601–616, 2007.

[64] D. B. Ward, E. A. Lehmann, and R. C. Williamson, “Particle fil-

tering algorithms for acoustic source localization,” IEEE Trans-

actions on Speech Audio Processing, vol. 11, no. 6, pp. 826–836,

2003.

[65] I. Potamitis, H. Chen, and G. Tremoulis, “Tracking of Multi-

ple Moving Speakers with Multiple Microphone Arrays,” IEEE

Transactions on Speech and Audio Processing, vol. 12, no. 5,

pp. 520–529, 2004.

[66] B. Rivet, L. Girin, and C. Jutten, “Visual voice activity de-

tection as a help for speech source separation from convolutive

mixtures,” Speech Communication, vol. 49, no. 7-8, pp. 667–677,

2006.

[67] J. Harris, S. Naqvi, B. Rivet, J. Chambers, and C. Jutten, “Vi-

sual based reference for enhanced audio-visual source extrac-

tion,” in 9th IMA International Conference on Mathematics in

Signal Processing, 2012.



REFERENCES 184

[68] M. Pedersen, J. Larsen, U. Kjems, and L. C. Parra, “A survey

of convolutive blind source separation methods,” Multichannel

Speech Processing Handbook, pp. 1065–1084, 2007.

[69] I. Cohen, “Analysis of two-channel generalized sidelobe canceller

(GSC) with post-filtering,” IEEE Transactions on Speech and

Audio Processing, vol. 11, no. 6, pp. 684–699, 2003, issn: 1063-

6676. doi: 10.1109/TSA.2003.818105.

[70] L. J. Griffiths and C. W. Jim, “An alternative approach to lin-

early constrained adaptive beamforming,” IEEE Transactions

on Antennas and Propagation, vol. 30, no. 1, pp. 27–34, 1982.

[71] B. Van Veen and K. Buckley, “Beamforming: A versatile ap-

proach to spatial filtering,” ASSP Magazine, IEEE, vol. 5, no.

2, pp. 4–24, 1988, issn: 0740-7467. doi: 10.1109/53.665.

[72] S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari,

“The fundamental limitation of frequency domain blind source

separation for convolutive mixtures of speech,” IEEE Transac-

tions on Speech and Audio Processing, vol. 11, no. 2, pp. 109–

116, 2003.

[73] N. Forsyth, J. Chambers, and P. Naylor, “Alternating fixed-

point algorithm for stereophonic acoustic echo cancellation,”

IEE Proceedings on Vision, Image and Signal Processing, vol.

149, no. 1, pp. 1–9, 2002.

[74] G. Golub and C. Van Loan, Matrix Computations. Johns Hop-

kins University Press, 2012, vol. 4.



REFERENCES 185

[75] A. Björck and G. H. Golub, “Numerical methods for computing

angles between linear subspaces,” Mathematics of computation,

vol. 27, no. 123, pp. 579–594, 1973.

[76] B. Widrow, J. R. Glover Jr, J. M. McCool, J. Kaunitz, C.

S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong Jr, and R.

C. Goodlin, “Adaptive noise cancelling: Principles and applica-

tions,” Proceedings of the IEEE, vol. 63, no. 12, pp. 1692–1716,

1975.

[77] B. Widrow and S. D. Stearns, Adaptive signal processing. Pren-

tice Hall, 1985.

[78] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.

[79] T. Kim, “Real-time independent vector analysis for convolutive

blind source separation,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 57, no. 7, pp. 1431–1438, 2010.

[80] J. Hao, I. Lee, T. Lee, and T. Sejnowski, “Independent vec-

tor analysis for source separation using a mixture of Gaussians

prior,” Neural computation, vol. 22, no. 6, pp. 1646–1673, 2010.

[81] T. Taniguchi, N. Ono, A. Kawamura, and S. Sagayama, “An

auxiliary-function approach to online independent vector anal-

ysis for real-time blind source separation,” in 2014 4th Joint

Workshop on Hands-free Speech Communication and Microphone

Arrays (HSCMA), IEEE, 2014, pp. 107–111.

[82] S. Ding, J. Huang, D. Wei, and A. Cichocki, “A near real-time

approach for convolutive blind source separation,” IEEE Trans-

actions on Circuits and Systems I: Regular Papers, vol. 53, no.

1, pp. 114–128, 2006.



REFERENCES 186

[83] L. Oliva-Moreno, J. Moreno-Cadenas, L. Flores-Nava, and F.

Gomez-Castaneda, “DSP implementation of extended infomax

ICA algorithm for blind source separation,” in 3rd International

Conference on Electrical and Electronics Engineering, IEEE, 2006,

pp. 1–4.

[84] R. Mukai, H. Sawada, S. Araki, and S. Makino, “Real-time blind

source separation for moving speakers using blockwise ICA and

residual crosstalk subtraction,” in Proceedings of ICA, 2003,

pp. 975–980.

[85] L. Parra and C. Spence, “On-line convolutive blind source sep-

aration of non-stationary signals,” Journal of VLSI signal pro-

cessing systems for signal, image and video technology, vol. 26,

no. 1-2, pp. 39–46, 2000.

[86] J. Anemüller and T. Gramss, “On-line blind separation of mov-

ing sound sources,” in Proceedings of ICA, 1998.

[87] S. Gazor and Z. Wei, “Speech probability distribution,” IEEE

Signal Processing Letters, vol. 10, no. 7, pp. 204–207, 2003, issn:

1070-9908. doi: 10.1109/LSP.2003.813679.

[88] R. Martin and C. Breithaupt, “Speech enhancement in the DFT

domain using Laplacian speech priors,” in 2003 International

Workshop on Acoustic Signal Enhancement (IWAENC), 2003.

[89] I. Cohen, “Speech enhancement using super-gaussian speech mod-

els and noncausal a priori SNR estimation,” Speech communica-

tion, vol. 47, no. 3, pp. 336–350, 2005.

[90] Y. Liang, G. Chen, S. Naqvi, and J. Chambers, “Independent

vector analysis with multivariate Student’s t-distribution source



REFERENCES 187

prior for speech separation,” Electronics Letters, vol. 49, no. 16,

2013.

[91] R. Chassaing and D. Reay, Digital Signal Processing and Appli-

cations with the TMS320C6713 and TMS320C6416 DSK, 2nd.

John Wiley & Sons, 2008.

[92] D. M. Ritchie and B. W. Kernighan, The C programming lan-

guage. Bell Laboratories, 1975.

[93] Texas Instruments, TMS320C6000 programmer’s guide, SPRU187K,

Dallas, TX, 2002.

[94] ——, TMS320C67x DSP library programmer’s reference guide,

SPRU657C, Dallas, TX, 2010.

[95] J. F. Blinn, “Floating-point tricks,” IEEE Computer Graphics

and Applications, vol. 17, no. 4, pp. 80–84, 1997, issn: 0272-1716.

doi: 10.1109/38.595279.

[96] V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel,

H. Puder, and U. Rass, “Signal processing in high-end hearing

aids: State of the art, challenges, and future trends,” EURASIP

Journal on Applied Signal Processing, vol. 2005, pp. 2915–2929,

2005.

[97] R. Mukai, H. Sawada, S. Araki, and S. Makino, “Blind source

separation for moving speech signals using blockwise ICA and

residual crosstalk subtraction,” IEICE Transactions on Fun-

damentals of Electronics, Communications and Computer Sci-

ences, vol. 87, no. 8, pp. 1941–1948, 2004.



REFERENCES 188

[98] K. Reindl, Y. Zheng, and W. Kellermann, “Speech enhancement

for binaural hearing aids based on blind source separation,” in

2010 4th International Symposium on Communications, Control

and Signal Processing (ISCCSP), IEEE, 2010, pp. 1–6.

[99] H. Sheikhzadeh, R. Brennan, and H. Sameti, “Real-time imple-

mentation of HMM-based MMSE algorithm for speech enhance-

ment in hearing aid applications,” in 1995 International Con-

ference on Acoustics, Speech, and Signal Processing ,(ICASSP),

vol. 1, 1995, 808–811 vol.1. doi: 10.1109/ICASSP.1995.479817.

[100] L. C. Parra and C. V. Alvino, “Geometric source separation:

Merging convolutive source separation with geometric beam-

forming,” IEEE Transactions on Speech and Audio Processing,

vol. 10, no. 6, pp. 352–362, 2002.

[101] M. Z. Ikram and D. R Morgan, “A beamforming approach to

permutation alignment for multichannel frequency-domain blind

speech separation,” in 2002 IEEE International Conference on

Acoustics, Speech, and Signal Processing, (ICASSP), IEEE, vol. 1,

2002, pp. I–881.

[102] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis,

“Real-time foreground–background segmentation using codebook

model,” Real-time imaging, vol. 11, no. 3, pp. 172–185, 2005.

[103] R. Y. Tsai, “A versatile camera calibration technique for high-

accuracy 3d machine vision metrology using off-the-shelf tv cam-

eras and lenses,” IEEE Journal of Robotics and Automation, vol.

3, no. 4, pp. 323–344, 1987.



REFERENCES 189

[104] P. Viola and M. Jones, “Rapid object detection using a boosted

cascade of simple features,” in 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, IEEE,

vol. 1, 2001, pp. I–511.

[105] Y. Liang, J. Harris, G. Chen, S. Naqvi, C. Jutten, and J. Cham-

bers, “Auxiliary function based Independent Vector Analysis us-

ing a source prior exploiting fourth order relationships,” in 2013

European Signal Processing Conference, (EUSIPCO), 2013.

[106] Y. Liang, S. M. Naqvi, and J. A. Chambers, “Adaptive step

size independent vector analysis for blind source separation,”

in 17th International Conference on Digital Signal Processing

(DSP), IEEE, 2011, pp. 1–6.

[107] S. Cecchi, A. Primavera, F. Piazza, and A. Carini, “An adaptive

multiple position room response equalizer,” 2011.

[108] S. Elliott and P. Nelson, “Multiple-point equalization in a room

using adaptive digital filters,” Journal of the Audio Engineering

Society, vol. 37, no. 11, pp. 899–907, 1989.


