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ABSTRACT 

This thesis investigates various detection processes that operate 

with known time invariant channels. The investigations are divided 

into two main areas, the first of which involves uncoded digital signals. 

Three different detection processes have been studied here and some 

promising systems have been developed from these. The first of the 

detection processes is an iterative detection process whereas the second 

detection process involves the linear filtering of the received signal. 

Binary signals are considered in the investigations here. The third 

detection process achieves the near-maximum likelihood detection of 

a 16-point QAM digital signal transmitted over a telephone circuit 

at 9600 bits/second. The detector here operates on the received sample 

values directly without using any complex prefiltering. The second 

area of investigation covered in this thesis involves coded digital 

signals. Binary and 16-point QCM signals have been considered here. 

Rate2 and 3 non-systematic convolutional codes with optimum free distance 

have been used in conjunction with the appropriate Gray codes for the 

encoding of the signals. At the receiving end, a joint near-maximum 

likelihood detection/decoding process is used. Computer simulation 

tests have shown that the system improves the tolerance to Gaussian 

noise over the corresponding uncoded system at low error rates. 
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GLOSSARY OF SYMBOLS AND TERMS 

j when not used as a subscript letter, it is 

Vectors are treated as row matrices 

IbI magnitude (absolute value) of a scalar b 

II B II length (Euclidean norm) of a vector B 

{b. } components of a vector B J 

{B. } a set of vectors Bl, B2' """ 

BT transpose of a vector or matrix B 

B1 inverse of a nonsingular matrix B 

B(z) z-transform of a set of sample values given by the components 

of a vector B 

Re(b) real part of complex-valued quantity b 

Im(b) imaginary part of a complex-valued quantity b 

{s 
i} 

transmitted data symbols whose values are to be detected 

at the receiver 

{s! } detected values of 
4s. } 

{xi} 
estimates of 

{sil 

S(t) unit impulse function (dirac function) 

A signal element is a unit component of a digitally coded signal 
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E' average transmitted energy per signal element 

y(t) impulse response of the baseband channel 

V (g+l)-component vector whose real or complex components 

are the sample values of y(t) 

V=C y0 Yl ... yg 
I 

{r. } sample values of the received signal 
i 

{w. } noise components in the received sample values {r. } 

T sampling interval 

2Nc Two-sided power spectral density of zero mean stationary 

additive white Gaussian noise added at the input to the 

receiver filter 

Pe probability of bit error in the detection process 

SNR signal to noise ratio 

X n-component vector whose jth component is xj (chapter 3) 

Ynxn matrix whose real or complex components are given 

by the n vectors 
{Yi} 

,i=1,2, "" , n, where 

< 
il g+l n-i-g 

yl _r p0 yo Yl yp.. 0J 

nc number of iterative cycles used in the detection process 

(chapter 3) 

ns number of sequential operations involved in the detection 

process (chapter 3) 

{th} threshold values used in the detection process (chapters 3 and 4) 
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X. n-component vector containing the components xi-n+l' xi-n+2 ' 

" xi (chapters 5 and 7) , or 

4n-component vector containing the components x 4(i-n+l)-3' 
x4(i-n+l)-2' **' ' x4i (chapter 8) 

m number of stored vectors 
IXil 

used in the near-maximum likelihood 

detection process (chapters 5,7, and 8) 

my value of m for the Viterbi-algorithm detection process 

C. cost of the vector X. 

C! modified value of C. 
ii 

f number of components of V temporarily ignored in systems 2-8 

(chapter 5) 

G generator matrix of a convolutional code (chapters 6- 8) 

G(e) eth code generator of a convolutional code (chapters 6- 8) 

me memory of a convolutional code 

constraint length of a convolutional code 

A set of vectors 
{Bi} 

,i=1,2, "" n, are linearly independent 

provided that no set of constants z1, z2, """ , zn exists (at least 

one z. 
i 

must be non-zero) such that 

=0 z1B1+z2B2+ """ +znBn 

The rank of a matrix B is the number of linearly independent rows of B 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Research Project 

Detection processes for distorted digital signals have been 

widely studiedýBl-B37, 
C1-C43) 

The early approach was to use a filter 

(equalizer) to compensate for the signal distortion introduced by 

the channel. These equalizers are usually implemented as transversal 

filters. If the channel introduces a pure phase distortion, then 

the optimum available tolerance to additive white Gaussian noise 

can be achieved by a linear equalizer(. 
A9, B34) 

Most practical channels, 

however, introduce some amplitude distortion and under this condition, 

a better tolerance to noise can always be achieved by a nonlinear 

equalizer. The weakness of the nonlinear equalizer is that, only a 

portion of the signal energy is used in the detection of that signal. 

A better tolerance to additive white Gaussian noise can therefore be 

achieved by the more sophisticated detection processes that use more 

of the available signal energy than that used by the nonlinear equalizer. 

(Cl-C43) 
Many of these detection processes, however, require considerable 

equipment complexity. 

An iterative detection process that involves a sequence of 

similar operations which are performed successively by a fairly simple 

piece of equipment has recently been studiedýC5, 
C28, C29, C30, C32, C36) 

Although this detection process is more complex than the nonlinear 

equalizer, it is able to achieve a tolerance to noise near to the 

optimum available value. 
(C36) 



-2- 

It has been known that the optimum performance can be achieved 

by the maximum likelihood (ML) detection process which uses all 

the available signal energy in the detection of that signal. 
A9, A10) 

However, it is not feasible to implement the ML detection process 

in practice because of its excessive equipment complexity involved. 

It has also been known that with sufficient delay in detection, a 

detection process employing the Viterbi algorithm (VA) can achieve 

(for practical purposes). the same tolerance to noise as that of the 

ML detection process(. 
A9, A10) 

The Viterbi algorithm was originally 

used for decoding a convolutional code. Although the VA detector 

requires far fewer operations and much less storage than the ML 

detection process, its equipment complexity still grows exponentially 

with the length of the channel sampled impulse response and with 

the number of possible signal values. In cases where the duration 

of the channel sampled impulse response is long and when a multi- 

level signal is used, the VA detector can become too complex to 

be used in practice. One approach for overcoming this problem is 

to use a linear prefilter to shorten the length of the channel sampled 

impulse response before applying the VA detector to the resultant 

received signalýC13, 
C16, C20, C33) 

The alternative approach is to 

modify the VA detection process itself so that the number of operations 

per received data symbol and the amount of storage are reduced to 

some managable quantities without degrading the tolerance to noise 

by a significant amount. This has led to the developments of the 

near-maximum likelihood detection processesýC31, 
C32, C35, C37, C38, C41, C42) 

When necessary, the linear prefilter used in the former approach 
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can of course be used here too. Unfortunately, it has not been 

possible to achieve a satisfactory tolerance to noise when the 

near-maximum likehood detection process is applied directly ( 

without the use of a complicated linear prefilter) to the very 

badly distorted 16-point QAM signals mentioned in reference C42. 

The aim of the first part of this thesis is to investigate 

the iterative detection process yet further in an attempt to reduce 

the equipment complexity and the number of operations required 

per data symbol. A slightly different detection process, referred 

to as the systematic search detection process, is also developed 

and studied. Furthermore, the near-maximum likelihood detection 

process is also studied here. The object here is to develop a 

more efficient, and probably therefore more complex system that 

is able to achieve a satisfactory tolerance to noise with a severely 

distorted 16-point QAM signal level, without the use of a complicated 

linear prefilter. 

For a coded system, an error correcting code is used to reduce 

the error rate. Block codes were first used for this purpose until 

the invention of convolutional codes, which are easier to implement 

in practice and are generally more efficientcDl-D49) The conventional 

system carries out the detection and decoding processes separately. 

Recently, convolutional codes have been used with a joint detection/ 

decoding process, which appear to have a better tolerance to noise 

than that of the conventional system(. 
D39'D40) 

The drawback of these 

coded systems is that the information rate is reduced due to the 

added redundant coded digits. Nevertheless, it has also been known 
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that some multi-level coding schemes can be used in systems operating 

over non-dispersive channels, and the coding process now does not 

reduce the information rate. 

The aim of the second part of this thesis is to investigate 

the arrangement where a multi-level convolutional coding scheme 

and a joint detection/decoding process are used in a system operating 

over a dispersive channel. 

1.2 Outline of Topics Studied 

The research project is concerned with the investigation of 

the various detection processes for use in a synchronous serial 

data transmission system. The aim is to obtain a better understanding 

of these detection processes and to develop the most cost effective 

arrangements for the different applications. Since these detection 

processes are highly nonlinear, an exact theoretical quantitative 

analysis of their performances is extremely complicated and difficult, 

if not impossible, with the present state of the art. Furthermore, 

these detection processes all involve the processing of sets of 

numerical values. The performances of these computer-like detection 

processes are therefore best evaluated by using computer simulation. 

This is the approach that is used most often here. Nevertheless, 

some qualitative analysis of the systems studied and developed here 

have also been carried out, where possible, in the investigations. 

The channel sampled impulse response is assumed to be known and 

time-invariant so that some computation using this prior knowledge 

can always be carried out at the receiver before the transmission 
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begins. The research project has been divided into two areas, the 

first of which deals with the uncoded systems and is discussed in 

chapters 2,3,4, and 5, whereas the second area deals with the coded 

systems and is discussed in chapters 6,7, and 8. 

Chapter 2 gives the mathematical model of the synchronous 

serial data transmission system for the uncoded systems to be 

studied and developed in chapters 3,4, and 5. Various designs of 

the conventional linear and nonlinear equalizers, and the maximum 

likelihood detection process are also described in this chapter. 

In chapter 3, various iterative detection processes, to be 

used with binary baseband. signals, are studied and developed. 

In chapter 4, a systematic search detection process, to be 

used with binary baseband signals, is studied and developed. 

In chapter 5, near-maximum likelihood detection processes 

for a 16-point QAM signal transmitted over a telephone circuit 

are further investigated. Systems with a simple linear prefilter 

at the detector input are first studied and tested. Other systems 

which discard entirely the use of any linear prefilter are then 

developed and tested. 

While chapter 2 gives the model of the data transmission 

system for the uncoded systems, chapter 6 gives the model of the 

data transmission system for the coded systems to be studied and 

developed in chapters 7 and 8. The structure of the convolutional 

encoder and the Viterbi decoding technique are also briefly described 

here. 
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Chapter 7 is concerned with the transmission of binary signals 

in the coded systems. Two coding schemes, both involýdngthe use of 

a rate-ý convolutional code and a Gray code, have been used here to 

convert the binary signal into a quaternary signal for transmission. 

In chapter 8, the more promising coding scheme in chapter 7 

is applied to some telephone circuits employing 16-point QAM signals. 

Three coding schemes, which involve the use of a rate -= or rate-2 

convolutional code and the appropriate Gray code, are used here to 

convert the 16-point QAM signal into the 256-point or the 64-point 

QAM signal for transmission. 

Computer simulation tests are used in this thesis to determine 

the tolerances to noise of the various systems studied and developed, 

and the results are plotted as graphs of bit error rate versus signal 

to noise ratio. In order to avoid using excessive computer time, the 

bit error rates evaluated here are limited to be above 10-4. The 

number of data symbols transmitted in any one measurement of the 

bit error rate is 10,000. Thus, for a system employing the 16-point 

QAM signals, the total number of bits transmitted becomes 40,000 in 

any one measurement of the bit error rate since each data symbol here 

contains 4 bits. Nevertheless, when the simulation results are more 

scattered which normally occurs at the lower bit error rates, several 

bit error rate measurements are carried out using the same signal to 

noise ratio. 

For convenience, vectors are also treated as row matrices in 

this thesis. 
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CHAPTER 2 

SYSTEMS WITH UNCODED SIGNALS 

2.1 Model of the Data-Transmission System for Binary Signals 

The data transmission system studied in chapters 3 and 4 is 

the synchronous serial binary baseband data transmission system 

shown in Fig. 2.1. 

The information to be transmitted is carried by the data symbols 

Isi} and is fed to the input of the transmitter filter as a stream 

of regularly spaced impulses {si8(t-iT)}. The {si} 
are assumed to 

be statistically independent and equally likely to have any of their 

2 possible binary values, or 

S. = ±l 
1 

(2.1) 

In practice, a rectangular or rounded waveform would of course be 

used instead of an impulse, with the appropriate change in the 

transmitter filter. 

The transmission path could either be a lowpass channel, 

with a frequency limit no greater than about lOkHz, or a typical 

voice frequency channel with a frequency band no wider than about 

3000 Hz, such as a telephone network or a H. F. radio link. In the 

latter case, the transmission path in Fig. 2.1 is assumed to include 

a linear modulator (at the transmitter) and a linear demodulator 

(at the receiver), so that the whole of the transmitter filter, the 

transmission path, and the receiver filter can be considered as a 

linear baseband channel. 
A8, A9) 
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The impulse response y(t) of the linear baseband channel in 

Fig. 2.1 has, for practical purposes, a finite duration of less 

than (g+l)T seconds, where g is a positive integer and T seconds 

is the time interval between adjacent impulses at the input to the 

transmitter. It is assumed that y(t) is known and time invariant 

during the whole transmission period. 

The transmitter filter shapes the transmitted signal to the 

approximate bandwidth of the transmission path, while the receiver 

filter removes the noise outside the frequency band of the received 

signal. 

Additive noise is the most important type of noise introduced 

by the practical channels such as the telephone circuits or the 

voice frequency channels using H. F. radio linkcA8) It has been 

shown that if a data-transmission system has a better tolerance 

to additive white Gaussian noise than another, it will, in general, 

also have a better tolerance to other types of additive noise. 
A8) 

Furthermore, the effects of additive white Gaussian noise on a 

digital data-transmission system may readily be analysed theoretically 

and atudied by computer simulation. It is for these reasons that 

the noise introduced at the output of the transmission path in 

Fig. 2.1 is assumed to be stationary additive white Gaussian noise. 

This noise has zero mean and a two-sided power spectraldensity of 

2N0. It should be mentioned that, although the use of additive white 

Gaussian noise is very convenient for the mathematical model of the 

data-transmission system studied here, it is not physically realisable 

since a white noise has an infinite bandwidth and hence an infinite 

power level for a non-zero power spectral density. 
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The signal at the output of the receiver filter in Fig. 2.1 

is 

r(t) = Esly(t-iT) + w(t) 
1 

(2.2) 

where w(t) is the zero mean Gaussian noise waveform at the output 

of the receiver filter. The waveform r(t) is sampled once per signal 

element at the time instants {iT}, where i takes on all positive 

integer values. The sampling instants are assumed to be correctly 

synchronised to the received signal. 

The sampled impulse response of the baseband channel in 

Fig. 2.1 is given by the (g+l)-component vector 

V=1 y0 yl "" ygI (203) 

where yi= y(iT). The delay in detection, other than that involved 

in the time dispersion of the transmitted signal, is neglected here, 

so that y0/ 0 and yi= 0 for i< 0 and i> g. 

Thus, the sample value of the received signal at the output 

of the receiver filter, at time t= IT, is 

ri si-kyk + wi 
k=0 

where ri= r(iT) and wi= w(iT). 

(2.4) 

It is assumed that the receiver filter is such that the noise 

components 
{w 

i} are statistically independent Gaussian random variables 

2 
with zero mean and variance 6= 2No(A9) 

The signal processor in Fig. 2.1 operates on the {ril to give 

the detected data symbol values designated as {s! }. It is assumed 

that the signal processor has prior knowledge of both the channel 
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sampled impulse response V and the two possible values of the data 

symbol s1.. 

In all practical data-transmission systems, the transmitted 

signal energy is limited. Consequently, the system must be designed 

to give the maximum tolorance to noise subject to a transmitted 

power constraint. In the data-transmission system studied here, 

the transmitter filter is assumed to be such that the average transmitted 

energy per data symbol is the mean-square value of si and is equal 

to unity, that iss 

E 
Cs j=1 (2.5) 

since the Is 
i} are assumed to be statistically independent and equally 

likely to have any of their two possible values ±lo 

2.2 Signal Distortion Introduced by a Channel Sampled Impulse Response 

The signal distortion introduced by a channel sampled impulse 

response has been described in detail in Ref. A99 and the more 

important results are quoted here so that they can be used to analyse 

some of the system performance in the later chapters of this thesis.. 

Two types of distortion can be introduced by the sampled impulse 

response of a channel and these are the amplitude and phase distortion 

which are defined in terms of the DFT (Discrete Fourier Transform) 

components of the corresponding sampled impulse response. 
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2.3.1 Phase distortion 

The signal distortion introduced by a channel is defined to 

be pure phase distortion (that is, no amplitude distortion or attenuation) 

when all the DFT components of the sampled impulse response of this 

channel have magnitude unity. To see the time domain 

equivalence of this definition, let V(z) be the z-transform of the 

channel sampled impulse response so that 

V( Z) = y0 + y1Z-1 + ... + y9Z-9 (2.6) 

where y0, yl, "" , yg are all real-valued quantities. Furthermore, 

let U(z) be the z-transform of the sequence of values obtained by 

reversing the order of the sequence with z-transform V(z), the reversal 

being pivoted about the component at time t=0. Thus, 

U(z) = yo + y1z+l + ... + ygZ+g (2.7) 

It is shown in Ref. A9 that a channel with z-transform V(z) (eqn. 2.6) 

introduces pure phase distortion when the sequence with z-transform 

U(z) (eqn. 2.7) is the same as the sequence with z-transform V1 (z). 

That is, if the reversed sequence of a channel sampled impulse response 

is also the inverse sequence of it, then the signal distortion introduced 

by this channel is a pure phase distortion. 

Some properties of the aperiodic autocorrelation function of 

the channel sampled impulse response introducing pure phase distortion 

are now described. The z-transform of the aperiodic autocorrelation 

function of the channel sampled impulse response is 
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V(z) Z-9 U(z) = 
äo + älz-1 +""+ 

, 
z-2g (2.8) 

00 
where ai =i Yhý'i-g, 

+h 
(2.9) 

h=-oo 

for i=0,1, "", 2g and yh 0 for h< 0, h- g. V(z) and U(z) 

are, of course, as defined by egns. 2.6 and 2.7v It can be seen 

from eqn. 2.9 that 

ää 
g-i g+i 

(2.10 

for i=1,2, "", g. For a channel introducing pure phase distortion, 

its aperiodic autocorrelation function has been shown to be such that(A9) 

a=0, when ig 
i 

= 1, when i=g (2.11) 

where the {äi} 
are as defined by egns. 2.8 and 2.9. This means that 

the aperiodic autocorrelation function of the channel sampled impulse 

response is unaffected by channel phasedistortion. 

If s. 
i 

is the data symbol carried by the ith transmitted signal 

element, then the components of the corresponding individual received 

signal element at the output of the sample in Fig. 2.1 are siy0' siyl' 

""j siyg which are spread over (g+l) sampling . ntervalsof time. 

Similarly, the components of another individual received signal element 

associated with si+h are si+hY0' si+hIVl' si+hyg where h takes 

on any integer value not equal to zero. Clearly, when h is a positive 

integer, each component of the sequence of values si+hY0' si+hYl' 

.. ' si+hYg is received at a delay of h sampling intervals after the 

receipt of the corresponding component of the sequence of values siy0' 

siyl, "" , siyg, and when h is a negative integer, the situation is 
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reversed. Consequently, it can be seen from egns. 2.9 and 2.11 that 

the received signal elements at the output of the sampler in Fig. 2.1 

are orthogonal when the channel introduces pure phase distortion. 

Moreover, the transmitted signal elements in Fig. 2.1 are also orthogonal. 

All these therefore suggest that a baseband channel that introduces 

pure phase distortion introduces an orthogonal transformation onto 

the transmitted signal. Consequently, as Ref. A9 has shown, there is 

no inevitable loss in tolerance to noise when the received signals 

{ri} in Fig. 2.1 are processed by the appropriate signal processoro 

2.2.2 Amplitude distortion 

The signal distortion introduced by a channel is defined to 

be pure amplitude distortion (that iss no phase distortion or delay) 

when all the DFT components of the sampled impulse response of this 

channel are real-valued quantities. The time domain equivalence of 

this definition is that, the components of the channel sampled impulse 

response y0, yl, "" 7 y9, are symmetrical about its central component 

yg/2 where g is an even value and y0, yl, "" , yg, are all real- 

valued quantities. Thus, 

Yi = Yg-i 

for i=0,1, "" , 
((gý2ý-lý. 

(2.12 

It can be shown that a channel introducing pure amplitude 

distortion does not introduce an orthogonal transformation onto 

the transmitted signal, and it normally reduces the best tolerance 

to additive white Gaussian noise regardless of the type of signal 

processor used at the receivercA9) Consequently, amplitude distortion 
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is a much more important factor (than phase distortion) to be 

considered when assessing the severity of the signal distortion 

introduced by a channel. 

Since the aperiodic autocorrelation function a0, alp "" ' a2g 

depends not on the phase distortion but on the amplitude distortion, 

and since it is readily derived from the channel sampled impulse 

response, it can be used as a measure of the severity of the amplitude 

distortion. Ref. A9 uses the distortion figure defined as 

_ (a )_2 
g-1 

_ ai} 
2 2.13 d( 

9" i=0 

as a measure of the severity of the amplitude distortion. It is 

suggested that when d>0.1, there is significant amplitude distortion 

and when 71 > 0.5, the distortion is severe(. 
A9) 

It should be noticed 

that d=0 when the channel introduces pure phase distortion (eqn. 2.11). 

2.2.3 Effects of the locations of zeros of the z-transform of the 

channel sampled impulse response 

Clearly, the use of the distortion figure d (eqn. 2.13) in 

assessing the severity of the amplitude distortion takes no account 

of the detailed structure or shape of the signal distortion, and two 

different channels having the same value of d can therefore have 

different effects on the tolerance to noise of a data-transmission 

systemcA9'C36) It has been found that the locations of zeros of the 

z-transform V(z) of the channel sampled impulse response in the z-plane 

determine, to some extent, the severity of the distortion introduced 

by the baseband channelcA9, 
C36) 

Generally, the distortion is likely 

to be very severe when the zeros are located on or very near to the 
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unit circle. The distortion is also likely to be less severe when 

the zeros of V(z) are located inside the unit circle. The locations 

of these zeros are related to the distribution of the magnitudes of 

the components in the channel sampled impulse response. As a rule 

of thumb, if the large components (in magnitudes) of the channel 

sampled impulse response are concentrated towards the front, then 

the zeros are normally located on or inside the unit circle in the 

z-plane, whereas if the large components of the channel sampled 

impulse response are concentrated near the end, then the zeros are 

normally located on or outside the unit circle. 

Thus, in assessing the signal distortion introduced by the 

channel, the distortion figure d (eqn. 2.13) may be used when all 

components of the channel sampled impulse response are real-valued 

quantities. The locations of the zeros of the channel sampled impulse 

response, however, may be used to assess the signal distortion 

introduced by this channel whose components may either be real-valued 

or complex-valued quantities. The model of the data-transmission 

system operating over a complex-valued channel sampled impulse response 

is described in section 2.4. 

2.3 Channel Sampled Impulse Responses to be used for the Computer 

Simulation Tests in Chapters 3 and 4 

Three channels are used for the computer simulation tests 

in chapters 3 and 4 where binary signals are considered, The sampled 

impulse responses of these three channels, together with their 

corresponding zeros and distortion figures (eqn. 2.13) are given 

in Table 2.1. In particular, channel A introduces very severe amplitude 
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distortion and no phase distortion while channel B being a mild 

channel, introduces a combination of amplitude and phase distortion. 

Channel C has a sampled impulse response with many components, whose 

magnitudes increase slowly from the start until the peak is reached. 

Furthermore, all zeros of the z-transform of channel C are located 

on the unit circle in the z-plane as can be seen in Table 2.1. This 

implies that the distortion introduced by channel C is likely to be 

very severe. 

The sampled impulse response of all these channels are normalised 

so that, 

( yh)2 =1 (2.14) 
h=O 
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2.4 Model of the Data-Transmission System using 16-point QAM Signals 

This is the model of 

in chapter 5 where various 

operate at 9600 bits over 

The model is basically the 

where a binary signal is u 

shows the block diagram of 

system. 

the data-transmission system studied 

detection processes are developed to 

the public switched telephone network. 

same as that described in section 2.1, 

sed, but with some alterations. Fig. 2.2 

this model of the data-transmission 

It can be seen from Fig. 2.2 that a QAM system involves 

the transmission of two parallel signals each requiring a separate 

amplitude modulator at the transmitter and a separate amplitude 

demodulator at the receiver. The two signal carriers have the same 

frequency but are in phase quadrature (at 90°). 

Thus, at the transmitting end, a binary information sequence 

is fed to the input of the buffer store which holds log2(16) or 

4 successive binary digits for a 16-point GAM signal. These binary 

digits are coded into two multi-level signals, aia(t-iT) and 

bia(t-iT) , which are then shaped to the appropriate bandwidth 

before modulating the 'in-phase' and 'quadrature' carriers represented 

by cos(2TTfct) and -v sin(2TTfct) respectively. fc is here the 

nominal carrier frequency. The resulting QAM signal is then transmitted 

over the transmission path. The additive noise is assumed to 

be white Gaussian noise. At the receiving end, a bandpass filter 

is used to suppress the out-of-band noise. Coherent demodulation 

is used and the demodulator is assumed to know the nominal carrier 

frequency, but has no knowledge of the carrier phase. The phase 

error 95 in the receiver local oscillator may thus have any value 



- 20 - 

CV 

tu 
0 
0 

1ý111 

+ 
U 

CH 

N 

rd 

Co 
rH 
ca 

H 
co 

U) 

F- 
a) 

ca 

0 
Ca 

E 
m 

rd 
cd 

CH 
0 

rd 
0 

N 

N 

4D 
. r{ 
FMI 



- 21 - 

between -TT and +Trradians. The lowpass filters after the demodulator, 

suppress the high frequency components so that only the baseband 

signals are retained. The signal processor then operates on the 

received in-phase and quadrature sample values to give the detected 

data symbol values and hence the corresponding decoded binary 

information sequence. 

The model described in Fig. 2.2 can be reduced to an equivalent 

baseband model with complex signals and complex channel sampled 

impulse response 
. C36ý 

Thus, the linear modulator, the transmission 

path and the linear demodulator are combined to become a baseband 

transmission path carrying signals with complex values. The signals 

transmitted over the in-phase channel (that associated with cos(27yf 
ct)) 

are represented by real-valued quantities, and the signals over 

the quadrature channel (that associated with sin(2nfct)) by imaginary- 

valued quantities, to give a resultant complex-valued baseband 

signal at both the input and output of the baseband transmission 

path. This equivalent baseband model is shown in Fig. 2.3. 

As Fig. 2.3 shows, the information to be transmitted is 

carried by the complex-valued data symbols {Si} where 

S. = a. +jJ. 
i11 

(2.15) 

and j= /1. For a 16-point QAM signal, which is the signal considered 

in chapter 5, the possible values of a. and b. are, 

ai = ±l 
, ±3 

and b1 = ±1 9 
±3 (2.16) 

Fig. 2.4 shows the two-dimensional representation of a 16-point 

QAM signal. 
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Quadrature 
component 

In-phase 
component 

Fig. 
_ 

2. A 16-point QAM signal constellation 
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The {s, } are statistically independent and equally likely 

to have any of their 16 possible values. In the particular application 

considered in this thesis, the transmission path in Fig. 2.3 includes 

a telephone circuit together with a linear QAM modulator at the 

transmitter and a linear QAM demodulator at the receiver. The nominal 

carrier frequency fc is here equal to 1800 Hz. The transmitter filter, 

transmission path and receiver filter in Fig. 2.3, together form a 

linear baseband channel whose impulse response y(t) has for practical 

purposes, a finite duration of less than (g+1)T seconds, where g is 

a positive integer and T seconds is the time interval between adjacent 

impulses at the input to the transmitter. It is assumed in this thesis 

that y(t) is time-invariant over any one transmission. The value of 

y(t), at any given value of t, is normally complex. 

Stationary white Gaussian noise with complex values, zero mean 

and a two-sided power spectral density of No (twice that of the white 

Gaussian noise in Fig. 2.2)(C36) is assumed to be the only noise and 

is added to the data signal at the output of the baseband transmission 

path, to give the complex-valued Gaussian noise waveform w(t) at the 

output of the receiver filter. Although telephone circuits do not 

normally introduce significant levels of Gaussian noise, the relative 

tolerance of different data-transmission systems to white Gaussian 

noise is a good measure of their relative overall tolerance to the 

additive noise actually experienced over telephone circuitsýA8) 

Thus, the signal waveform at the output of the receiver filter 

is 

r(t) = siyr(t-iT) + w(t) 
(2.17 

i 
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and this is sampled once per signal element (at the Nyquist rate) 

at the time instants {iT}, 
where i takes on all positive integer 

values. The sampled impulse response of the baseband channel in 

Fig. 2.3 is given by the (g+l)-component vector 

V_ [01 .. y91 (2.18) 

where Vii= y(iT). The delay in transmission, other than that involved 

in the time dispersion of the transmitted signal, is neglected here, 

so that y0/ 0 and yi= 
,0 

for i< 0 and i> g. 

The sample value of the received signal at the output of the 

receiver filter at time t= iT is therefore 

ri = si-hyh + wi 
h=O 

(2.19) 

where ri= r(iT) and wi= w(iT). The sample values 
{ri1, {si1, 

`yiJ 

and 
{wi} 

are all complex-valued quantities here. 

The signal processor in Fig. 2.3 operates on the {ri} to give 

the detected data-symbol values 
{s! } and hence the corresponding 

decoded binary information sequence. 

The encoder in Fig. 2.3 converts 4 adjacent binary digits of 

the binary input information sequence into two 4-level data symbols 

a. and b.. In chapter 5, this is done by coding the first two digits 

into ai, and the next two digits into bi using Gray code. The relationship 

between ai and its two associated binary digits is the same as that 

between bi and its two associated binary digits, and is shown in 

Table 2.2. These binary input digits are assumed to be statistically 

independent and equally likely to have any of the values of 0 and 1. 
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Since a. and b. are formed from these binary input digits according 

to Table 2.2, the complex-valued data symbols 
{s 

i} 
(eqn. 2.15) must 

also be statistically independent and equally likely to have any of 

their 16 possible values as is assumed before. 

The transmitter filter in Fig. 2.3 is assumed to be such that 

the average transmitted energy per data symbol is the mean-square 

value of si, which is equal to 10 here as can be seen from eqns. 2.15 

and 2.16. The average transmitted energy per bit is therefore 2.5 

because si, being a 16-point QAM data symbol, carries 4 bits of information. 

The receiver filter is also assumed to be such that the real 

and imaginary parts of the noise components 
{wil 

are statistically 

independent Gaussian random variables with zero mean and variance 

62= 2N0 
, where N0 is the two-sided power spectral density of the 

noise added at the output of the transmission path in Fig. 2.3. 

The signal processor here (Fig. 2.3) is assumed to have prior 

knowledge of the channel sampled impulse response, the 16 possible 

values of si, and the Gray code in Table 2.2. 

Input binary digits a or b 
i i 

o0 -3 
01 -1 
11 1 

10 3 

Table 2.2 Gray code for si (eqn. 2.15) 
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2.5 Channel Sampled Impulse Responses to be used for the Computer 

Simulation Tests in Chapter 5 

Six baseband channels are used for the computer simulation 

tests in chapter 5 where 16-point QAM signals are used. The complex- 

valued channel sampled impulse responses are given in Table 2.4 

and Table 2.5. Figs. 2.5 - 2.10 show the locations of the zeros of 

these channels. The attenuation and group-delay characteristics of 

the six telephone circuits are shown in Figs. 2.11 - 2.16, the telephone 

circuits forming a part of the transmission path in Fig. 2.3. Fig. 2.17 

shows the resulting attenuation and group-delay characteristics of 

the equipment filters. The equipment filters are here considered as 

operating on the transmitted bandpass signals, rather than on the 

baseband signals in the transmitter and receiver as shown in Fig. 2.3, 

so as to show more clearly the effects of the equipment filters in 

limiting some of the distortions introduced by the telephone circuits. 

The equipment filters are also taken to include the filtering required 

to convert the sequence of impulses at the transmitter input into 

the corresponding rectangular waveform used in an actual data-transmission 

system. 

Figs. 2.13 and 2.17 show that nearly all the distortion introduced 

by channel C is in fact introduced by the equipment filters and not 

the telephone circuit. It can be seen from Figs. 2.11 - 2.17 that 

channel A introduces very severe group-delay distortion as well as 

severe attenuation distortion, channel B introduces very severe 

attenuation distortion and channels C, D, E, and F all introduce 

typical levels of both attenuation and group-delay distortions. 



- 28 - 

Furthermore, Tables 2.6 and 2.7 give the six resultant sampled 

impulse responses obtained by replacing all the zeros of the corresponding 

z-transform of channels A-F (Tables 2.4 and 2.5) that lie outside 

the unit circle in the z-plane, by the complex conjugates of their 

reciprocals. All zeros of the z-transform of these six resultant 

sampled impulse responses therefore lie inside the unit circle in 

the z-plane. The sampled impulse responses shown in Tables 2.4 - 2.7 

are normalised so that 

2 
= 1 

h=0yhyh 
- 

h_ 
Iyh, (2020 

where yh is the complex conjugate of yh' and 
lyhl is the modulus 

or magnitude of yh. 

The sampled impulse responses given in Tables 2.6 and 2.7 will be 

further discussed and used in the later parts of this thesis. 
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Channel A Channel B Channel C 

Real Imaginary Real Imaginary Real Imaginary 
part part part part part part 

0.0176 -. 0175 -. 0038 -. 0049 0.03.26 -. 0045 
0.1381 -. 1252 0.0077 -. 0044 0.5483 -. 0255 
0.4547 -. 1885 0.0094 0.0207 0.8031 0.0659 
0.5078 0.1622 -. 0884 0.0355 -. 2430 -. 0286 
-. 1966 0.3505 -. 1138 -. 2869 0.0066 -. 0176 
-. 2223 -. 2276 0.5546 -. 2255 0.0307 0.0180 
0.2797 -. 0158 0.1903 0.5813 -. 0170 -. 0115 
-. 1636 0.1352 -. 2861 -. 0892 0.0052 0.0056 
0.0594 -. 1400 0.2332 -. 0384 -. 0041 -. 0028 
-. 0084 0.1111 -. 0652 0.0428 0.0021 0.0017 
-. 0105 -. 0817 0.0335 -. 0519 -. 0001 0.0001 
0.0152 0.0572 -. 0323 0.0170 -. 0017 -. 0004 
-. 0131 -. 0406 0.0044 -. 0023 0.0010 -. 0002 
0.0060 0.0255 0.0054 0.0076 0.0006 0.0001 
0.0003 -. 0190 0.0008 -. 0051 -. 0013 0.0000 
-. 0035 0.0116 -. 0056 0.0001 0.0004 0.0002 
0.0041 -. 0078 0.0018 0.0032 0.0004 0.0000 
-. 0031 0.0038 -. 0009 -. 0015 -. 0002 0.0001 
0.0018 -. 0005 -. 0022 -. 0026 0.0001 -. 0004 
-. 0018 -. 0005 0.0029 0.0019 -. 0005 0.0003 
0.0007 0.0007 -. 0008 0.0009 0.0005 0.0000 
0.0004 0.0001 -. 0014 -. 0003 0.0001 0.0000 
-. 0004 0.0001 0.0019 -. 0002 -. 0003 0.0001 
-. 0001 0.0010 -. 0003 0.0005 0.0001 -. 0001 
0.0000 -. 0007 0.0007 0.0005 0.0003 0.0002 
0.0004 0.0008 -. 0007 -. 0001 -. 0001 -. 0002 
-. 0002 0.0000 0.0002 -. 0008 -. 0003 0.0001 
0.0000 -. 0004 0.0006 0.0000 0.0003 0.0001 
0.0002 -. 0002 0.0002 0.0004 0.0001 -. 0001 
0.0000 -. 0001 -. 0001 -. 0004 -. 0002 0.0001 
-. 0001 -. 0001 0.0000 -. 0001 
-. 0001 -. 0002 0.0002 0.0001 
0.0004 -. 0003 -. 0001 -. 0001 
-. 0002 0.0003 -. 0001 0.0000 
-. 0002 -. 0002 0.0001 0.0001 
0.0000 0.0000 0.0000 -. 0001 
0.0001 0.0000 0.0001 0.0001 
0.0001 0.0002 -. 0001 -. 0001 
-. 0001 0.0003 0.0000 0.0000 
-. 0001 0.0000 0.0002 0.0000 
0.0002 0.0000 -. 0001 0.0000 
-. 0001 0.0002 0.0000 0.0000 
0.0000 -. 0001 0.0001 0.0000 
0.0001 0.0000 -. 0001 0.0000 
0.0000 0.0001 -. 0001 0.0000 

Table 2.4 Sampled impulse responses of channels A, B, and C. 

(chapter 5) 
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Channel D Channel E Channel F 

Real Imaginary Real Imaginary Real Imaginary 

part part part part part part 

0.0145 -. 0006 -. 0086 0.0030 -. 0291 -. 0373 
0.0750 0.0176 0.0004 0.0042 0.2290 -. 2244 
0.3951 0.0033 0.0059 -. 0094 0.7612 0.1817 
0.7491 -. 1718 -. 0409 -. 0090 0.2988 0.3050 
0.1951 0.0972 0.0043 0.0405 -. 0338 -. 2915 

-. 2856 0.1894 0.4725 0.0186 -. 0789 0.0616 
0.0575 -. 2096 0.8081 -. 0218 0.0291 0.0287 
0.0655 0.1139 0.0105 -. 0010 -. 0137 -. 0352 

-. 0825 -. 0424 -. 1972 -. 0450 0.0020 0.0204 
0.0623 0.0085 0.2039 0.0602 0.0004 -. 0108 

-. 0438 0.0034 -. 1028 -. 0803 0.0028 0.0065 
0.0294 -. 0049 0.0287 0.0717 -. 0027 -. 0014 

-. 0181 0.0032 0.0208 -. 0461 0.0000 -. 0013 
0.0091 0.0003 -. 0406 0.0188 0.0003 0.0006 

-. 0038 -. 0023 0.0403 0.0026 -. 0002 0.0001 
0.0019 0.0027 -. 0340 -. 0138 -. 0009 -. 0006 

-. 0018 -. 0014 0.0240 0.0177 0.0005 0.0000 
0.0006 0.0003 -. 0158 -. 0190 0.0003 0.0004 
0.0005 0.0000 0.0114 0.0184 0.0001 -. 0011 

-. 0008 -. 0001 -. 0088 -. 0176 0.0004 0.0001 
0.0000 -. 0002 0.0075 0.0165 -. 0005 -. 0001 
0.0001 0.0006 -. 0052 -. 0148 0.0006 0.0004 
0.0002 -. 0005 0.0044 0.0126 0.0001 0.0002 
0.0000 0.0002 -. 0045 -. 0110 -. 0005 -. 0003 

-. 0002 0.0000 0.0047 0.0097 0.0005 0.0003 
0.0003 -. 0002 -. 0042 -. 0017 -. 0001 0.0002 
0.0002 0.0000 0.0045 0.0062 -. 0001 -. 0003 

-. 0004 0.0001 -. 0051 -. 0040 -. 0002 0.0000 
0.0003 0.0000 0.0056 0.0023 0.0003 0.0002 
0.0002 -. 0001 -. 0051 -. 0008 0.0001 0.0001 

-. 0002 0.0002 0.0040 -. 0007 -. 0002 -. 0004 

0.0000 0.0000 -. 0032 0.0019 0.0003 0.0002 
0.0001 -. 0001 0.0026 -. 0026 0.0000 0.0001 
0.0001 0.0000 -. 0014 0.0025 0.0002 -. 0001 

-. 0003 0.0000 0.0000 -. 0023 -. 0001 0.0002 
0.0002 0.0001 0.0012 0.0014 0.0000 0.0001 
0.0000 -. 0001 -. 0015 -. 0007 0.0003 0.0001 
0.0000 0.0000 0.0013 -. 0002 -. 0002 0.0000 

0.0000 0.0000 -. 0010 0.0008 0.0000 -. 0001 

-. 0001 0.0001 0.0005 -. 0009 0.0000 0.0001 
0.0002 -. 0002 0.0002 0.0007 0.0000 0.0001 

0.0000 0.0001 -. 0005 -. 0002 -. 0001 -. 0001 

-. 0002 0.0000 0.0005 -. 0002 0.0001 -. 0001 

0.0001 -. 0001 -. 0002 0.0005 0.0001 0.0001 
0.0000 0.0000 0.0000 -. 0005 -. 0001 0.0000 

Table 2.5 Sampled impulse responses of channels Dq Eq and F. 

(chapter 5) 
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Channel A Channel B Channel C 

Real Imaginary Real Imaginary Real Imaginary 

part part part part part part 

0.4211 -. 4187 -. 1998 -. 2576 0.9335 -. 1289 
0.6547 0.2704 0.4609 -. 4590 0.3278 0.0183 

-. 2270 0.2622 0.2913 0.4834 -. 1294 -. 0182 

-. 0062 -. 1387 -. 3389 -. 0154 0.0270 -. 0006 
0.0292 0.0441 0.1233 -. 1104 0.0020 0.0011 

-. 0090 -. 0073 -. 0143 0.0587 -. 0026 -. 0013 
0.0026 0.0044 0.0040 -. 0153 -. 0012 0.0008 

-. 0053 -. 0010 -. 0062 0.0117 -. 0011 -. 0003 
0.0057 -. 0011 0.0016 -. 0078 0.0018 0.0007 

-. 0031 0.0001 0.0026 0.0040 -. 0012 0.0002 
0.0006 0.0006 -. 0007 0.0007 -. 0009 -. 0003 

-. 0007 -. 0040 -. 0014 0.0002 0.0015 -. 0003 
0.0007 0.0015 0.0001 0.0000 -. 0005 0.0001 

-. 0002 -. 0021 -. 0014 0.0022 -. 0006 0.0003 

-. 0005 -. 0002 -. 0001 -. 0026 0.0006 -. 0002 
0.0013 0.0002 0.0020 -. 0002 0.0000 0.0004 

-. 0012 0.0001 0.0004 0.0022 0.0002 -. 0004 
0.0002 0.0001 -. 0014 -. 0012 -. 0004 0.0000 
0.0000 0.0001 0.0012 -. 0004 0.0000 0.0002 
0.0002 -. 0001 0.0003 0.0001 0.0004 -. 0002 
0.0001 0.0008 0.0002 0.0003 -. 0001 0.0002 

-. 0005 0.0003 -. 0007 0.0000 -. 0002 -. 0001 
0.0001 -. 0001 -. 0002 -. 0008 0.0002 0.0001 
0.0004 0.0005 0.0006 -. 0003 0.0003 -. 0001 

-. 0002 0.0001 0.0000 0.0004 -. 0004 -. 0001 
0.0001 -. 0001 -. 0002 -. 0001 0.0000 0.0002 
0.0000 -. 0004 0.0001 -. 0001 0.0002 -. 0001 
0.0002 -. 0001 0.0000 0.0000 0.0000 0.0001 

-. 0003 0.0000 0.0000 0.0000 -. 0002 0.0000 
0.0000 -. 0004 0.0000 0.0000 0.0001 0.0000 
0.0003 -. 0001 0.0001 0.0000 

-. 0001 0.0001 -. 0002 -. 0001 

-. 0002 -. 0001 0.0001 0.0001 

-. 0001 0.0000 0.0000 -. 0001 
0.0001 -. 0001 0.0001 0.0000 
0.0002 0.0002 0.0000 0.0000 

-. 0001 0.0003 -. 0002 0.0000 
0.0000 0.0000 0.0002 0.0000 
0.0001 0.0001 0.0001 0.0000 
0.0000 0.0001 -. 0001 0.0000 
0.0000 -. 0001 0.0001 0.0000 
0.0001 0.0000 0.0000 0.0000 
0.0000 0.0001 -. 0001 0.0000 
0.0000 0.0000 -. 0001 0.0000 
0.0000 0.0000 0.0000 0.0000 

Table 2.6 Sampled impulse responses obtained by replacing all zeros 

of the corresponding z-transfrom of channels A-C (Table 2.4) 

that lie outside the unit circle in the z-plane, by the 

complex conjugates of their reciprocals. 
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Channel D Channel E Channel F 

Real Imaginary Real Imaginary Real Imaginary 

part part part part part part 

0.8702 -. 0360 -. 8367 0.2919 -. 5201 -. 6667 
0.4450 0.1566 -. 3848 0.1897 -. 0339 -. 5105 

-. 1262 -. 0020 0.1682 -. 0160 0.1060 0.0972 
0.0257 -. 0095 -. 0410 0.0048 -. 0352 0.0086 
0.0084 0.0064 0.0024 -. 0030 0.0185 -. 0078 

-. 0120 -. 0029 -. 0074 0.0117 -. 0012 0.0166 
0.0089 0.0002 0.0138 -. 0103 -. 0034 -. 0059 

-. 0095 -. 0008 -. 0059 0.0100 0.0023 0.0034 
0.0073 0.0018 0.0058 -. 0104 -. 0034 -. 0041 

-. 0039 -. 0016 -. 0060 0.0081 0.0034 0.0007 
0.0002 0.0021 0.0086 -. 0077 -. 0007 0.0019 
0.0011 -. 0019 -. 0082 0.0079 -. 0008 -. 0006 

-. 0003 0.0017 0.0065 -. 0072 0.0002 0.0002 

-. 0007 -. 0007 -. 0052 0.0072 0.0008 0.0007 
0.0001 -. 0002 0.0042 -. 0069 -. 0008 0.0001 
0.0002 0.0005 -. 0040 0.0066 0.0001 -. 0008 

-. 0001 -. 0004 0.0021 -. 0060 -. 0007 0.0005 

-. 0003 -. 0001 -. 0003 0.0060 -. 0004 0.0000 

-. 0003 0.0003 -. 0006 -. 0058 0.0005 -. 0003 
0.0004 -. 0001 0.0010 0.0049 -. 0004 -. 0002 

0.0001 0.0001 -. 0025 -. 0039 0.0002 -. 0004 

-. 0003 -. 0001 0.0032 0.0022 0.0004 0.0004 
0.0002 0.0000 -. 0034 -. 0012 -. 0003 -. 0003 
0.0003 0.0001 0.0026 0.0000 0.0001 -. 0002 

-. 0003 -. 0002 -. 0019 0.0012 0.0001 0.0004 
0.0000 0.0001 0.0015 -. 0021 0.0002 0.0000 
0.0004 -. 0001 -. 0009 0.0023 -. 0003 -. 0002 

-. 0001 0.0002 -. 0002 -. 0018 0.0001 -. 0002 

-. 0001 -. 0001 0.0012 0.0013 0.0001 0.0030 
0.0001 0.0001 -. 0013 -. 0003 -. 0002 -. 0002 

0.0002 0.0000 0.0009 -. 0002 0.0000 -. 0002 

-. 0002 -. 0001 -. 0004 0.0008 -. 0001 0.0001 
0.0001 0.0001 0.0001 -. 0010 0.0002 -. 0002 
0.0000 0.0000 0.0003 0.0007 0.0001 0.0000 
0.0001 -. 0001 -. 0006 -. 0002 -. 0001 -. 0002 
0.0000 0.0001 0.0004 -. 0002 0.0001 0.0000 

-. 0002 0.0000 -. 0001 0.0003 0.0000 0.0001 
0.0002 0.0000 -. 0002 -. 0003 0.0000 -. 0001 
0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 

-. 0001 0.0000 0.0001 0.0002 0.0001 0.0001 
0.0000 0.0000 0.0000 0.0000 -. 0002 0.0001 
0.0000 0.0000 0.0000 0.0000 -. 0001 -. 0001 

0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 2.7 Sampled impulse responses obtained by replacing all zeros 

of the corresponding z-transform of channels D-F (Table 2.5) 

that lie outside the unit circle in the z-plane, by the 

complex conjugates of their reciprocals. 
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Fig. 2.5 Zeros (or roots) of the z-transform of channel A (Table 2.4). 
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Fig. 2.6 Zeros (or roots) of the z-transform of channel B (Table 2.4). 
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Fig. 2.7 Zeros (or roots) of the z-transform of channel C (Table 2.4). 
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Fig. 2.8 Zeros (or roots) of the z-transform of channel D (Table 2.5). 
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Fig. 2.9 Zeros (or roots) of the z-transform of channel E (Table 2.5). 
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Fig. 2.10 Zeros (or roots) of the z-transform of channel F (Table 2.5). 
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Fig. 2.11 Attenuation and Group-delay charateristics of telephone 

circuit A (Table 2.4). 
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Fig. 2.12 Attenuation and Group-delay charateristics of telephone 

circuit B (Table 2.4). 
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Fig. 2.13 Attenuation and Group-delay charateristics of telephone 

circuit C (Table 2.4). 
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Fig. 2.14 Attenuation and Group-delay charateristics of telephone 

circuit D (Table 2.5). 
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Fig. 2.15 Attenuation and Group-delay charateristics of telephone 

circuit E (Table 2.5). 
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Fig. 2.16 Attenuation and Group-delay charateristics of telephone 

circuit F (Table 2.5). 
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Fig. 2.17 Attenuation and Group-delay charateristics of the combination 

of transmitter and receiver filters (Fig. 2.3). 
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2.6 Channel Equalization 

In the data-transmission system shown in Fig. 2.1 or 2.3, 

the baseband channel is time-dispersive in that the channel impulse 

response has, for practical purposes, a duration of (g+l)T seconds 

where g is a positive integer and T seconds is the sampling interval. 

Thus, if the sampled impulse response of the channel is the sequence 

of values y0, yl, "" ,yg then the components of an individual 

received signal-element at the output of the sampler in Fig. 2.1 

or 2.3 are siy0' siyl' "I siyg which are received, in turn, 

at (g+l) consecutive sampling instants. s. 
1 

is here the data symbol 

carried by the ith transmitted signal element. Consequently, the 

received sample r1 at the output of the sampler contains not only 

the data symbol si , but also the previous data symbols si-1' si-2' 

'" s. 
1-g . This is the effect of intersymbol interference. 

Various equalizers have been designed to eliminate the intersymbol 

interference introduced by the channelýBl-B37ý but only the more 

fundamental and important types of equalizers are described here. 

Furthermore, the equalizers to be described here are for use with 

the QAM signals where the signals are represented by complex-valued 

quantities. The corresponding equalizers for use with the binary 

signals can easily be derived from here by setting to zero all 

imaginary parts of the complex signals. 
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2.6.1 Linear equalizer 

The si,. al processor in Fig. 2.3 is here implemented as a 

linear equalizer followed by a threshold detector shown in Fig. 2.18. 

The most widely studied linear equalizer is the linear feedforward 

transversal equalizer (filter) as shown in Fig. 2.19. 

The signal: , narked in Fig. 2.19 are those present at the time 

instant t= iT. Each block marked with the symbol T is a delay 
fV 

unit introducing a time delay of T seconds which is the sampling 

interval. For an equalizer having p+l taps, there are altogether 

p+l stores holding the received samples ri-p, "" , ri-l, ri which 

are here complex-valued quantities. A multiplier 'cell' is associated 

with each of these p+l stores and it multiplies the complex-valued 

quantity rl-h by a complex-valued quantity fh' so that the resultant 

signal at the output of the equalizer is the complex-valued quantity 

riýri-h fh (2.21 

where f0, fl, -- , fp are the tap gains of this linear equalizer. 

1 ril Linear 
It 

riý Threshold 
I 

isil 

Equalizer Detector 

Fig. 2.18 Signal processor implemented as a combination of a linear 

equalizer and a threshold detector. 
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Let V(z) be the z-transform of the channel (Fig. 2.3) and 

let F(z) be the z-transform of the linear equalizer (Fig. 2.19). 

Thus, 

V(z) = yo +y1z-1++ y9Z- 9 (2.22) 

and F(z) = f0 +f1z-1+ "" + fpz-p (2.23) 

where the {y. } 
and 

{f. } 
are as defined in eqns. 2.18 and 2.21, 

respectively. The z-transform of the channel an4 linear equalizer 

is therefore 

V'(z) = V(z)F(z) (2.24 

and so long as the channel is accurately equalized, then 
(A9) 

V' (z) = (, +j0) z-k = 7, -k (2.25 

where j= and k is a positive integer between 0 and p+g. 

Eqn. 2025 implies that the baseband channel, the sampler, 

and the linear equalizer, together form a network that introduces 

only a delay of kT seconds onto the transmitted data symbols 
{si}" 

The sample value at the output of the equalizer, at time t= (i+k)T, 

is thus 

r! 
! 

ri+k si + wi+k 

where wi+k 
ý 

wi+k-hfh 
h=0 

(2026 

(2027 

and {wi} are the noise components at the output of the sampler in 

Fig. 2.3. Since the real and imaginary parts of the {w 
i} are 

statistically independent Gaussian random variables with zero mean 

and variance 6 2, 
therefore the real and imaginary parts of the noise 
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components 
{w! } (eqn. 2.26) are also Gaussian random variables with 

i 

zero mean and variance(A9) 

2= ö2 
P 
öI fhl 

2 (2028) 

where Ifhl is the modulus of the complex-valued quantity fh. 

The threshold detector (Fig. 2.18) operates on the sample 

value ri+k (eqn. 2.26) to give the detected value of the data symbol 

Si. This is carried out according to Table 2.8 for a 16-point QAM 

signal. The threshold values used in Table 2.8 are such that the 

probability of error in the detection of ai from Re(ri+k)' or bi 

from Im(r! )' is minimized(, 
A9) 

where ai and bi are the real and 
i+k 

imaginary parts of s1. respectively, and Re(. ) and Im(. ) are the real 

and imaginary parts of (. ) respectively. Under the various conditions 

assumed here, it can be shown that 
(A8) 

the average probability of 

error in the detection of a. or b. is given by 

('t0 2 
(2)( 

j1 exp( -u2 ) du =3 @( ) (2029) 

, Jl 2 rý 

where 92 is as given by eqn. 2.28 and Q(. ) is the well-known Q-function. 

ai or bi = -3 if -2 _> Re(ri+k) or Im(r! 
k) 

a. or ä. = -1 11 

a. or b. =1 11 

a. or b. =3 11 

if 0 Re(ri+k 

if 2 Re(r! 
i+k 

if Re(r! 
i+k 

or Im(r! -2 i+k 

or Im(r! 0 
k) > 

or Im(r! )>2 

Table 2.8 Threshold detection of a 16-point QAM signal si (= ai+jbi) 

for the signal processor shown in Fig. 2.18. Re(. ) and 

Im(. ) are the real and imaginary parts of (. ) respectively. 
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A linear equalizer has a serious weakness of not being able 

to equalize a. baseband channel with a finite number of taps when 

one or more zeros cf the z-transform of the channel sampled impulse 

response lie on the unit circuit in the z-planecA9) 

2.6.2 Pure nonlinear equalizer 

A pure nonlinear equalizer implemented as an arrangement of 

decision directed cancellation of intersymbol interference is now 

considered. The signal processor in Fig. 2.3 is now replaced by 

the pure nonlinear equalizer shown in Fig. 2.20. This equalizer 

is nonlinear because a threshold detector (being a nonlinear device) 

is included. here. 

The signals marked in Fig. 2.20 are those present at time 

IT. The sample value r. 
i 

at the input of the nonlinear equalizer 

iss from eqn. 2.19, 

g9 
ri Lsi-hyh + Wi SiýO + Si-hyh + Wi 2.30) 

where 
{si} 

are the transmitted data symbols, y0, ylý "" 9yg are 

the (g+l) components of the channel sampled impulse response, and 

jwi} 
are the noise components at the output of the receiver filter 

shown in Fig. 2.3. 

Assuming the correct detections of the data symbols si-1' si-2, 

". 9 si-gq eon. 2.30 and Fig. 2.20 show that the sample value at 

the input of the threshold detector is 

W. 

ri = Si + (2"31) 
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where the intersTmbol interference introduced by si-1' si-2' ** ' 

s. 
1-g 

have obviously been eliminated. It can be shown that the real 
w. 

and imaginary parts of the noise components 
{ý_1} (E. qn. 2.31) are 

(A9) 
Gaussian random variables with zero mean and variance 

2 62 

(Yo I2 
(2.32) 

where Iy0I is the modulus of the complex-valued quantity y0, and 

6L is the variance of the real and imaginary parts of the noise 

components 
f 

wi} . 

The detected value of the data symbol si is here determined 

according to Table 2.8 but with ri+y being replaced by r! (eqn. 2.31). 

The average probability of error in the detection of ai or bi is 

given by 
(A8) 

2) 
@( 

1ý=(2) 
Q( 

Y60l 
(2.33) 

where a. and b. are the real and imaginary parts of the data symbol 

si respectively, and Q(. ) is the well-known Q-function. 

If, bowever, one or more of the previous data symbols si-l, 

si_29 ". ' si_g in eqn. 2.30 are incorrectly detected, then the 

intersy-mbol interference level is increased instead of being eliminated, 

leading to an increase in the probability of error in the detection of 

ai or bi. Consequently, errors tend to occur in bursts and the system 

suffers from error extension effect. At high signal to noise ratios, 

the error extension effect is likely to be less severe and eqn. 2.33 

may be taken as a fair approximation to the average probability of 

error in the detection of a. or b. 
cA8) 
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When all the zeros of the z-transform of the channel sampled 

impulse response lie inside the unit circle in the z-plane, y0 is 

one of the larger components (in magnitude) of the channel sampled 

impulse responsecA9) In this case and at high signal to noise ratios, 

a pure nonlinear equalizer normally gives a better tolerance to noise 

than that of a linear equalizerPý9) Conversely, when all zeros of 

the z-transform of the channel sampled impulse response lie outside 

the unit circle, then a linear equalizer normally gives a better 

tolerance to noise than-that of the pure nonlinear equalizer, 

2.6.3 Optimum nonlinear equalizer 

Section 2.6.2 has indicated that at high signal to noise ratios, 

the tolerance '; o noise of a pure nonlinear equalizer is likely to 

be improved if the value of IyOI is larger, where y0 is the first 

component of the channel sampled impulse response. It therefore follows 

that the tolerance to noise may be improved by inserting a linear 

filter at the input of the pure nonlinear equalizer so that the sampled 

impulse response of the channel and linear filter has a large first 

component. The signal processor (Fig. 203 now has the arrangement 

shown in Fig. 2.21. 

Linear 
Pure 

Filter 
Nonlinear 

Equalizer 

Fig. 2.21 A nonlinear equalizer implemented as a combination of 

a pure nonlinear equalizer (section 2.6.2) and a linear 

filter 
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For convenience, the arrangement shown in Fig. 2.21 will from 

now on be referred to as the 'nonlinear equalizer' in this thesis. 

Various techniques have been used to design the linear filter of this 

nonlinear equalizerPý9) One of these techniques is to use the linear 

filter to force to zero the components preceeding that of the largest 

magnitude in the channel sampled impulse response. The second approach 

is to consider the z-transform of the channel sampled impulse response 

as consisting of two parts. That is 

V(Z) = vi(z) v(Z) (2.34) 

where all the zeros (roots) of Vi(z) are located on or inside the 

unit circle in the z-plane, and all the zeros of V0(z) are located 

outside the unit circle. The linear filter here is selected as a 

linear equalizer that equalizes V0(z). The third approach is to select 

the linear filter such that the average probability of error in the 

detection of the data symbols 
Isi} is minimized, assuming a high signal 

to noise ratio but neglecting the error extension effects. This is 

the optimum nonlinear equalizer and the more important properties of 

the linear filter used here will now be described. 

Basically, the linear filter used in the optimum nonlinear 

equalizer is an all-pass network that does not change the amplitude 

distortion in the received signal but makes the sampled impulse response 

of the channel and filter 'minimum phase', thus concentrating the 

energy of each received signal element towards the start of that elemento 

It is also shown in Ref. A9 that the noise components at the linear 

filter output have the same statistical properties as those at its 

input. That is, if the real and imaginary parts of the noise components 

{wi} 
at the input of the linear filter are statistically independent 
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Gaussian random variables with zero mean and variance d2, then the 

real and imaginary parts of the noise components {w! } 
at the output 

of the linear filter are also statistically independent Gaussian 

22 
random variables with zero mean and variance 

2 
ý, ý=6 when the 

tap gains of the linear filter, fog fly "" ' fps are such that 

hL0 

I fhl 
2=1 (2.35) 

Furthermore, it can be shown that the z-transform of the linear filter 

having the properties just described is given by 
(A9) 

V'(Z) 
F(z) = yO(z) 

(2036) 

where V0(z) is as defined in eqn. 2.34, and V'(z) is obtained from 

V0(z) by reversing the order of the complex conjugates of the coefficients 

of V0(z) . Thus if the z-transform of V0(z) is given by 

V0 (z) = v0 + vlz- 
1+ 

"" + vkz -k (2037 

then the z-transform of V'(z) is given by 

V'(z) = vk + vk-1z-1 ++ vpz-k (2038) 

where vi is the complex conjugate of vi, and the zeros (or roots) 

of V1(z) are the complex conjugates of the reciprocals of the zeros 

of V0(z)cA9) It now follows that the linear filter here (eqn. 2.36) 

effectively replaces all zeros of the z-transform of the channel that 

lie outside the unit circle in the z-plane, by the complex conjugates 

of their reciprocals, all remaining zeros being unchanged. All zeros 

of the z-transform of the channel and filter now lie inside the unit 

circle in the z-plane and so the first component of the sampled impulse 

response of the channel and filter is now one of the larger components 

in this response. 



- 54 - 

Since the noise components at the linear filter output have 

the same statistical properties as those at its input, the tolerance 

to noise of the optimum nonlinear equalizer can be evaluated by using 

a modified arrangement of Fig. 2.3 that includes the linear filter 

as part of the baseband channel and takes just the pure nonlinear 

equalizer as the signal processor. This arrangement is very convenient 

and is in fact used in the computer simulation tests in this thesis 

to determine the tolerance to noise of the optimum nonlinear equalizer. 

Thus, for the given data-transmission system of Fig. 2.3, instead 

of determining the tolerance to noise of the optimum nonlinear equalizer 

operating over the channel sampled impulse response (Tables 2.4 and 

2.5), the computer simulation tests in chapter 5 now determine the 

tolerance to noise of the pure nonlinear equalizer (section 2.6.2) 

operating over the sampled impulse response of the channel and filter 

(Tables 2.6 and 2.7). The sampled impulse responses shown in Tables 

2.6 and 2.7 are, of course, obtained from those shown in Tables 2.4 

and 2.5 by replacing all zeros of their z-transform that lie outside 

the unit circle in the z-plane by the complex conjugates of their 

reciprocals, leaving the remaining zeros unchanged. Consequently, 

at high signal to noise ratios and neglecting the error extension 

effect, the average probability of error in the detection of the real 

or imaginary parts of the data symbols {sil is here similar to that 

given by eqn. 2.33 and is approximately given by 

Y' 
2 () Q( 3-) (2.39) 

where y' is the first component of the sampled impulse response of 

the channel and linear filter, and d2 is the variance of the real 

and imaginary parts of the noise components in the received sample 

values. 
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It is also shown in Ref. A9 that the linear filter used in the 

optimum nonlinear equalizer here is the same 

transversal filter that forms the first part 

decision feedback nonlinear equalizer, where 

adjusted to minimize the mean-square error ( 

signal to noise ratio) in its output signal, 

of the channel. 

as the linear feedforward 

of the conventional 

the linear filter is 

and hence maximize the 

assuming the exact equalization 

2.7 Maximum Likelihood Detection Process and the Viterbi Algorithm 

Detection Process 

One weakness of the signal processor implemented as the optimum 

nonlinear equalizer previously described is that only a portion of 

the received signal energy (corresponding to the energy carried by 

the first component y0 of the sampled impulse response of the channel 

and linear filter) is used in the detection of that signal. Clearly, 

the truely optimum detection process that minimizes the detection 

error rate should make use of all the available energy of the received 

signal elements. This optimum detection process is now described as 

below. 

It is assumed that transmission starts at time t=T, and s. =0 i 

for is 0, for the data-transmission system shown in Fig. 2.3. The 

ith received sample value at the output of the sampler (Fig. 2.3) 

is, from eqn. 2.19, given by 

ri = qi + wi 

where qi = 
ht 

si-hyh 

and sl-h =0 for i-h < 0. 

(2.40) 

(2.41) 

The components 
{r. }ý {q, }, {w. '1q {s. } 

and 
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{yh} 
are, in general, complex-valued quantities and are as defined 

before. Thus, y0, yl, "" , yg are the (g+l) components of the channel 

sanpled impulse response, 
isif 

are the transmitted data-symbol values, 

and {w 
1. 

} 
are the noise components whose real and imaginary parts are 

statistically independent Gaussian random variables with zero mean 

2 
and variance 8. 

If K is the total number of transmitted data symbols., then all 

the received sample values 
Iri} for the whole transmission period 

(KT seconds) can be represented by a K-component vector RK, where 

RK 
[r1 

r2 ** rKJ (2.42) 

Similarly, the corresponding transmitted data symbols 
{si}, the received 

signal sample values 
Iqi}, 

and the noise components 
Iwi}can be represented 

by the following three K-component vectors respectively. 

SK = Sl s2 `KI (2.43) 

-. 'K 
[ 

ql C12 qKI (2-44) 

WK = 
rWl 

W2 .. WK1 (2.45) 

Eqn. 2.40 now becomes 

RK = QK + WK (2.46) 

It can be seen from eqns. 2.41,2.43, and 2 . 44 that SK is uniquely 

determined by QK. When the 16-point QAM signals are considered, there 

are, in general, 16K different possible vectors of SK or QL. The signal 

processor in Fig. 2.3 is assumed to have prior knowledges of all the 

16K possible vectors of SK and their corresponding a priori probabilities. 
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2.7.1 Maximum likelihood detection process 

Thus, all prior knowledge in the data-transmission system 

IS used in the optimum detection process (that minimizes the probability 

of detection error) to determine the detected data-symbol vector SK9 

of SK (eqn. 2.43). In order to minimize the probability of error in 

the detection process, it is necessary to maximize the probability 

of correct detection P(C), 
(A9)where 

P(C) P(CIRK) f(RK) dBK (2.47) 

P(CIkK) is the conditional probability of correct detection of the 

data-symbol vector SK given the received vector RK (eqn. 2042), and 

f(RK) is the probability density function of R. 
K. 

Since f(RK) is non- 

negative by the nature of a probability density function, therefore 

P(C) is maximized by maximizing the value of P(CIRK) for every 

possible vector of RK. Furthermore, for any given vector RK, the 

value of P(CIRK) is maximized by taking, as the detected vector, 

the possible vector of SK , for which the value of P(SK'RK) is 

the maximum, where P(SKIR. 
K) 

is the conditicnal probability of SK given 

RK and is thus the a posteriori probability of SK. The optimum detection 

process is now reduced to the maximum a posteriori (M. A. P. ) detection 

process. 

Since there is a one to one mapping between SK and QK (eqn. 2.44), 

therefore, 

P(SKIRK) _ P(, KIRK) 
(2.48) 

Moreover, by Bayes' theorem, 

P("KI 
__K) = 

P( ) 
f(-KI QK) (2.49) 

f(RK) 
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where P(QK) is the a priori probability of QK, f(RK) is the probability 

density function of RK, and f(RKIQK) is the conditional probability 

density function of RK given QK. For a given received vector RKW f. (RK) 

is independent of QK. The detected data-symbol vector SK that maximizes 

the quantity P(SKIRK) is therefore also the vector that maximizes the 

quantity P(QK)f(RKIQK). In the particular case where all the 16K 

possible vectors 
(SKI 

are equally likely to be transmitted, 

P(SK) _ P(QK) = 16-K (2-5o) 

and the optimum detection process now reduces to one that selects, 

as the detected vector, the possible vector of SK for which the corresponding 

value of f(RKIQK) is the maximum. f(RKIQK) is often known as the 

likelihood function of Q, 
K and the optimum detection process, under 

the 
, ssumed conditions, is thus the maximum likelihood detection 

process. 

The likelihood function f(RKIQK) is in fact the conditional 

joint probability density function of the random variable with sample 

values rl, r2, "" , rK, (eqn. 2.42) given the values of ql' q2' qK' 

(eqn. 2.44). That is 

f(R 
KlQK) = f( rl, r2, "'rKlgl, q2, ", qK) (2.51) 

Since the sample values 
{ri} and 

{qi} 
are complex-valued quantities, 

where 

ri = ri 1+ ri 2 

ýi ýi 1+j qi 2 

(2.52) 

(2.53) 

for i=1,2, "", K and j=1, therefore eqn. 2.51 now becomes 
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f(RK+QK) = f( rl, l, rl, 2'r2,1'**, rK, l'rK, 2l 

gl, 1'Cl1,2'cl 291''', qK, l'gK92 
) 2.54) 

Since the real and imaginary parts of the data symbols 
{sil 

are 

statistically independent (section 2.4), it follows from egns. 2.40 

and 2.41 that the real and imaginary parts of the sample values 
{q. } 

and 
{r. } 

must also be statistically independent, so that eqn. 2.54 

may now be simplified to 

f(RKIQK) = f'(rl, 
llgl, l) 

f'(rl, 
2lgl, 2) 

f(r2,1 q2, l) 

.. f(rK, ll qK, l) f(rK, 2I kg, 2) 
(2.55) 

Furthermore, since the real and imaginary parts of the noise components 

{wi} in eqn. 2.40 are statistically independent Gaussian random variables 

with zero mean and variance 62 (section 2.4)7 therefore for a given 

value of q. h' ri h 
is a sample value of the Gaussian random variable 

2 
with mean qi h and variance 6" That is 

f(ri YýIgi h) =1 exP( 
-(rl'h ql'h) 

(2.56) 
'' 2IT(6) 2(6) 

for h=1,2 and i=1,2, --, K. Substituting eqn. 2.56 into eqn. 2.55 

and after some rearranging of terms, we arrive at 

ýýýpýý 

1 JJR 
K- 

I12 

f(xK I 
QK) 2K exp (ý (2.57) 

(2TT(6ý 2(62 

K 
and II- 112 

= 
Ir 

iqil2 
i=1 

(ri 
1 qi 1)2+ 

(ri92- qi d2 (2.58) 

i=1 

where IIRK QKI, is the unitary distance between the received vector 

RK and the received signal vector QK. It can be seen from eqn. 2.57 

that the value of the likelihood function f(RKIQK) is maximized when 
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the unitary distance IIRK- QKII is minimized. Consequently, the maximum 

likelihood detection process, under the assumed conditions, selects 

as the detected vector the possible vector of SK for which the corresponding 

signal vector QK is closest (in terms of the unitary distance) to 

the received vector RK. 

Clearly, an error occurs in the detection of the data-symbol 

vector SK when the received signal vector QK is not the possible vector 

of QK that is closest to the received vector R. 
K. 

This necessarily 

involves one or more errors in the detected data-symbol values {s'}" 

It is, however, difficult to evaluate exactly the average probability 

of error in the detection of the real or imaginary parts of the data 

symbols 
{si}, but an approximate upper bound to this average probability 

of error at high signal to noise ratios may be obtained as Q( 
dmin 

' 
(A9) 

where Q(. ) is the well-known Q-function, 62 is the variance of the 

real and imaginary parts of the noise components 
{wi}, 

and dmin is 

the minimum unitary distance between any two possible received signal 

vectors 
{Qý}. The real-valued quantity dmin therefore appears to be 

the determining factor of the tolerance to noise of the maximum likelihood 

detection process at high signal to noise ratios. 

2.7.2 Viterbi algorithm detection process 

The maximum likelihood detection process described in section 

2.7.1 is obviously too complex to be of any practical use. In particular, 

when the 16-point QANI signals are used, all the 16K possible data- 

symbol vectors {SK} must be stored at the receiver and a total of 

16K unitary distance measurements are required at the end of the transmission 

when all the data symbols 
{s. } 

are detected simultaneously. K is here 
i 

the total number of transmitted data symbols and is usually a very 
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large value in practice. 

Fortunately, there are superfluous operations in the maximum 

likelihood detection process, in the sense that not all the 16K 

possible vectors 
{SK} 

are actually required to be considered in the 

detection process. A sequential detection process based on the Viterbi 

algorithm is known to achieve the maximum likelihood detection while 

getting rid of the superfluous operations(. 
A10IC10 ) 

The basic principle 

and operation of the Viterbi algorithm detection process will now 

be outlined and discussed as below. 

The Viterbi algorithm was first introduced to decode the 

convolutionally coded sig-nals: 
AlOgD5qD8qDl6) 

Since the operation of 

the cc-nvolutional encoder is very similar to the operation of convolving 

the transmitted sequence of 
{s, } 

with the channel sampled impulse 

response (eqn. 2.19), the Viterbi algorithm can be used to detect 

messages that are transmitted over a time-dispersive channel. Thus, 

the Viterbi algorithm detector operates as follows. Just before the 

receipt of the sample ri at the detector input (Fig. 2,3)q the Viterbi 

algorithm detector holds in store my (i-l)-component vectors 
{Zi-llý 

Zi-1 
[ 

x1 x2 .* xi-1 
I 

(2.59) 

where xh has one of the 16 possible values of the complex-valued data 

symbol sh. mV is here a suitable value to be discussed shortly. 

Associated with each stored vector Zi_1 is stored the corresponding 

value of cost Ci-l which will shortly be discussed. On receiving 

the sample ri, each of the my stored vectors {Zi-l} is expanded into 

16 vectors 
{Zi}. The first (i-l) components of Z. are as in the 

original vector Zi_l and the last component xi has the 16 different 

possible values of s1. The detector then evaluates the cost C. 
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associated with each expanded vector Z1. The cost C. is here defined 

as 

CI = cl + c2 + "" + ci 

g 
where c. = 

Ir. 
- xJ. I2 

JJ h_p -huh 

(2.60 

(2.61) 

for all positive integer values of jq and x . -h 
=0 for j-h * 0. The 

ý 

complex-valued quantities yo, yll "" , yg are of course the g+l 

components of the channel sampled impulse response. Thus, the cost 

associated with each expanded vector Z. 
1 

is here evaluated as 

C. = Ci_1 + C. (2.63) 

where the value of Ci_1 has already been evaluated previously and 

the value of c. 
i 

can be evaluated by using eqn. 2.61. 

It can be seen from eqns. 2.41,2.58,2.60, and 2.61 that, 

the cost C. is actually the square of the unitary distance between 
1 

the received vector R. (eqn. 2.42) and the possible vector of Qi 

(eqn. 2.44) corresponding to the possible vector of S. (eqn. 2.43) 

that has the same components as those of the expanded vector Z. 
1 

(eqn. 2.59). Thus, in the original maximum likelihood detection 

process, all the expanded vectors 
{Z. } are stored and used for the 

i 

following signal processing until the end of the transmission when 

the vector associated with the minimum cost is taken as the detected 

data-symbol vector. In the Viterbi algorithm detection process, 

however, only mv of the 16m 
v 

expanded vectors {Z 
1. 

} are selected and 

stored, while the rest, being redundant, are discarded from further 

consideration. The value of mv, being the number of stored vectors 

used in the Viterbi algorithm detection process, is now derived as 



- 63 - 

follows. It can be seen from eqn. 2.61 that the values of ci+l' ci+2' 

are independent of the values of xl, x2, """ , xi-g. Furthermore, 

all those vectors of 
{ZK} (K being the total number of transmitted 

data s ;, ibols) that are originated from those vectors of 
{z. } having 

the same set of values for the last g components xi-g+l' xi-g+2' *- ' 

xi, must have the same set of values for ci+l' ci+2' *** 1 cK so 

long as these cZY} have the same set of values for xi+l' xi+2' *** ' 

xK. It now follows from eqa. 2.60 that, an-j of these vectors {ZK) 

(which have the same set of values for ci+l' ci+2' *** ' ci{) that 

has a larger value of CI must also have a larger value of CK, bearing 

in mind that C. is the cost of Z.. However, only the vector ZK 
1 1 

associated with the minimum cost CK will be taken as the detected 

data-symbol vector in the maximum likelihood detection process. It 

therefore follows that for a given set of vectors {Zi} that have 

the same set of last g components xi-g+l' xi-g+2' xi' all 

vectors 
IzK} 

originating from these {Zi}, except the Z. associated 

with the smallest cost C. 
1 

for this set, will never be selected as 

the detected data-symbol vector and can thus be discard from further 

consideration. Consequently, for those vectors of {Zi} that have 

the same set of last g components, it is necessary to store just 

the vector that has the smallest cost Ci. For a 16-point QAM signal, 

there are altogether 16E possible combinations for the g components 

xi-g+l' xi- 
g+2' -' xi of Z. , and the total number of vectors 

{Z 
1. 

} 
required to be stored here is therefore 

m 16g 
v 

(2.63) 

where g+l is the number of components in the channel sampled impulse 

response. 
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Thus, the Viterbi algorithm detection process selects from 

the l6mv expanded vectors {Zi}, the my vectors associated with the 

smallest cots 
{Ci}, subject to the constraint that these , Ti 

v 
selected 

vectors have the mJ possible combinations for the last g components 
11 

of Z The detection process continues in this way, so that each 

time after a sample is received, l6mv costs measurements are carried 

out for the l6mv expanded vectors, and my vectors are then selected 

in the way described above. At the end of the transmission, the 

stored vector ZK associated with the minimum cost CK is taken as 

the detected data-symbol vector which is obviously the same as that 

obtai: ne, '_ in the maximum likelihood detection process. The maximum 

likelihood detection process can therefore be implemented by using 

the Viterbi algorithm detection process just described without any 

loss in tolerance to noise. 

In practice, it is alvays desirable to detect the transmitted 

message with as little delay as possible. To do this, the data symbol 

s. may be detected as the value of x. in the stored vector Z. 
1-n 1-n 1 

(eqn. 2.59) having the minilum cost Ci. In this case, the delay in 

detection is n sampling intervals, and when n> 3g+l, the reduction 

in tolerance to noise in relation to that of the maximum likelihood 

detection process (where n= K) has been known to be negligiblecA9, 
AlO) 

Clearly, after the detection of si-n, the component xi-n is no longer 

required in the detection process and can thus be discarded from 

the m. stored vectors 
{Zi}. Similarly, all the components xl, x2, 

,., 
xi 

-n-1 
are also not required to be stored here. Consequently, 

only the last n components of the my selected vectors are required 

to be stored here. Thus, just before the receipt of ri (Fig. 2.3), 

the detector now holds in store my n-component vectors 
{xi-119 in 
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place of the my (i-l)-component vectors 
{z. 

1} given in eqn. 2.59, 

where 

xi 
-i 

=[xi 
-n 

x 
i.. -n+l 

""xi,. 
-11 

(2.64) 

After the receipt of rig each of the my stored vectors 
Ixi-1} is 

expanded into 16 (n+l)-component vectors having the 16 possible 

values of xi.. 16m 
v 

cost measurements (eqns. 2.60,2.61, and 2.62) 

are then carried out for the 16mv expanded vectors, and the appropriate 

my vectors are then selected as previously described. The detected 

data symbol s! is then taken as the value of x. in the selected 
1-n 1-n 

vector associated with the minimum cost. The component xi-n is then 

discarded from each of the my selected vectors to give the my stored 

vectors 
{Xi} (eqn. 2.64). The detection process then proceeds to 

operate on the next received sample value ri+l in the same way as 

is described before. 
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CHAPTER 3 

ITERATIVE DETECTION PROCESSES FOR BINARY BASEBAND SIGNALS 

3.1 Introduction 

Recently, it has been shown that the tolerance to additive 

white Gaussian noise of a detection process based on some modifications 

of the Gauss-Seidel iterative process 
(El) 

can be made to approach 

that of the optimum detection process. 
(A9, C29, C3o, C36) 

The iterative 

detection process here basically involves a sequence of identical 

or similar operations which are performed successively by a fairly 

simple piece of equipment. This chapter is concerned with the study 

of some further developments of this type of iterative detection 

process. The aim here is to further reduce the equipment complexity 

and the number of operations per data symbol involved in the detection 

process in achieving the best tolerance to additive white Gaussian 

noise. 

3.2 Basic Assumptions 

The basic model of the data-transmission system here is the 

synchronous serial binary baseband data-transmission system described 

in section 2.1. Thus, from section 2.19 the sample value at the 

output of the receiver filter in Fig. 2.1, at time t= iT, is 

g 
ri ýi_hyh 

h=O 

where the {s, } are the data symbols whose values are to be detected 

at the receiver, y0, y1, """ , yg are the g+l components of the 
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sampled impulse response of the baseband channel, and the {wi) are 

the noise components here. It is assumed that the data symbols {s 
i} 

are statistically independent and equally likely to have any of the 

two binary values 1 and -1, and the noise components {w. } are the 
i 

statistically independent Gaussian random variables with zero mean 

and a fixed variance 02 where 62 is the two-sided power spectral 

density of the noise added at the output of the transmission path 

shown in Fig. 2.1. It is also assumed that the channel sampled impulse 

response is known and time-invariant. The signal processor in Fig. 2.1 

is here implemented as a detection process that employs the arrangement 

of detection and intersymbol interference cancellation shown in Fig. 3.1. 

Thus, in the detection of the data symbol si, the buffer store 

in Fig. 3.1 holds the n sample values rl, r2, """ , rn, assuming 

for the moment that n >g where g+l is the number of components of 

the channel sampled impulse response. These n sample values are obtained 

from the n successive received sample values ri' ri+l' **" , ri+n-1 

(eqn. 3.1), by removing from them detected values of all components 

involving data symbols whose final detected values have already been 

determined. That is 

y- S+ y s+ rl - ri Si-1 1 i-2 2 i-gyg 

2 ri+l Si-1y2 Si-2y 3 Si-g+ly g 

1 
rn ri+n-i (3.2) 

where the {sý} are the final detected values of the data symbols {si} 
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The detector (Fig. 3.1) operates on its n input sample values given 

by eqn. 3.2 to give at its output the detected value of Si. The 

detector here is implemented by using some iterative processes to 

be developed and studied in this chapter. Having determined the 

detected value s!, of si, the intersymbol interference cancellation 

unit (Fig. 3.1) then generates the (g+l)-component vector s! V 

s! V _r siy0 s! yl ... sly 1 (3-3) 

L gJ 

where V is the channel sampled impulse response given by eqn. 2.3. 

The components of s! V are then removed from the n sample values 

held in the buffer store (Fig. 3.1), so that the first (g+l) sample 

values held in the buffer store now become rl siy0, r2 siy1, 

""" , rg - sly 
g 

respectively. The first sample value rl siy0 

is then discarded from the buffer store and the remaining (n-l) 

sample values are shifted one place to the front to become the new 

sample values rl, r2, """ , rn_1 respectively. The next received 

sample value r. 
i+n 

is then moved into the buffer store to become 

the new sample value rn . The detected value of the next data symbol 

si+l can now be determined from the new n sample values held in 

the buffer store in exactly the same way as is described before for 

the detection of si, and the detection process continues in this way. 

In the detection of si, the detector here assumes that the 

g previous data symbols si-l' si-2' si-g have been detected 

correctly so that the components involving these data symbols are 

removed from the n received sample values in eqn. 3.2. It can be 

seen from egns. 3.1 and 3.2 that the n sample values held in the 

buffer store now become 
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rl = sly O+ wi 

r2 si+1y0 + siyl + wi+l 

rn Si+n-1-J0 + Si+n-2Yl ++ Si+n- 
g-ly g+ 

wi+n-1 (3.4) 

where {wh} are the noise components defined in eqn. 3.1. If, however, 

one or more of the g previous data symbols si-V si-2' "' ' si- 
g 

have been detected incorrectly, then the cancellation of these data 

symbols doubles instead of removes their intersymbol interference 

in the n sample values r r2, "" , rn (eqn. 3.2), thus increasing 

the probability of error in the detection of si. Consequently, errors 

in the detected data symbols tend to occur in bursts and the detection 

process here (Fig. 3.1) suffers from error-extension effects. 

To start the process of detection and intersymbol interference 

cancellation, a known sequence of more than g data symbols {si} is 

transmitted, and the components associated with these data symbols 

are automatically cancelled in the buffer store, without the detection 

of these data symbols. 

If n< g+l, the buffer store holds g+l sample values instead 

of nq and the detection process operates on only the first n of these. 

The value of n is assumed to be 8 in this chapter. 

Having described the process of detection and intersymbol 

interference cancellation, the remaining part of this chapter is mainly 

concerned with the study of the various iterative processes tobe used 

in the detector of Fig. 3.1. Consequently, only the process of 

detecting the data symbol s. from the n sample values ri, r2, "" ' r' 
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will be described in each of the systems studied and developed in 

the following sections of this chapter. To simplify the nomenclature 

in the descriptions of the operations of the various systems here, 

rename si as sl, si+l as s2, and so on, and let S be the n-component 

vector 

S_ sl s2 Sn J 
(3.5) 

Similarly, rename wi as wl, wi+1 as w29 and so on, and let W be the 

n-component vector 

Wl W2 .. Wn] (3.6) 

Thus, if the n sample values held in the buffer store are given by 

the n-component vector 

gº_ rº rt rt 
1 (307) 

12nJ 

then eqn. 304 now reduces to 

R'= SY +W (3.8) 

where Y is the nxn matrix whose ith row is given by the n-component 

vector 

i-i 

y1= 
rp... 

p yp yl ... yn-i J (3.9) 

and yi= 0 for i< 0, i> g. In egno 3.8, SY is the n-component signal 

vector and W is the n-component noise vector. Since Y is here an upper 

triangular matrix with a non-zero main diagonal (y0y0), it is non- 

singular with rank n. The n vectors Yl, Y2, "" ,, Yn are therefore 

linearly independent and the data. -symbol vector S may be uniquely 

determined from SY. 
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Thus, the detector in Fig. 3.1 now operates on the n-component 

vector R' (eqn. 3.7) to give the detected vector S', of S (eqn. 3.5), 

but only the first component of S' is here taken as the detected value 

si of the data symbol sl (or si in Fig. 3.1). The intersymbol interference 

cancellation unit (Fig. 3.1) then generates the (g+l)-component vector 

s1V =r siy0 sI ... sjYg 
1 (3.10 

instead of s! V given by eqn. 3.3. The components of siV are then 

removed (by subtraction) from the first g+l components of R'. The 

resultant sample values are then moved one place to the left to give 

the new vector R', whose extreme right-hand component is the next 

received sample value r. 
i+n. 

Various arrangements of the detection process for s1 from R' 

have been studied and are referred to as the various systems described 

in the following sections of this chapter. The approach of study here 

is to include deliberately some of the poorer but more fundamental 

systems so as to clarify the operation of the more promising systems 

developed in this chapter. Except where otherwise stated, all results 

are obtained by using computer simulation technique. The sampled 

impulse responses of the channels to be used in this chapter are 

those given in Table 2.1. In order to avoid using excessive computing 

time, only channel A in Table 2.1 is used for the initial computer 

simulation tests to determine the tolerances to noise of the various 

systems studied and developed here. The more promising systems are 

then further tested on channels B and C in Table 2.1. 
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3.3 Optimum System 

The optimum system here is defined as the system that minimizes 

the probability of error in the detection of the data-symbol vector S 

(eqn. 3.5) from the vector R' (eqn. 3.7), assuming that R' is as given 

by eqn. 3.8. It is shown in Ref. A9 that, under the various conditions 

assumed here, this optimum system selects as the detected data-symbol 

vector S', the possible vector of S for which the Euclidean distance 

between the corresponding n-component vector SY and the n-component vector 

R' is the minimum. This Euclidean distance is here defined as 

n 
II R' - SYII = 

(rh 
- h)2 

(3.11 
h=1 1 

n 
where qh = skyh-k (3.12) 

k=1 

for h=1921"", n and yj=0 for j> g. The { 
si} and 

{r! } here are 

as defined in egns. 3.5 and 3.7 respectively, and y0' yl' "" ' yg 

are, of course, the g+l components of the channel sampled impulse response. 

Thus, in the detection process for sl from R', the optimum system 

here evaluates the distance (eqn. 3.11) associated with each possible 

vector of S. The detected data-symbol vector S', of S, is then taken as 

the possible vector of S associated with the minimum distance. The first 

component of S' is then accepted as the detected value of s1. 

It is interesting to note that, when n=1, the arrangement of 

Fig. 3.1 with the optimum system just described becomes the pure nonlinear 

equalizer described in section 2.6.2. 

Unfortunately, this optimum system has the serious weakness that 

it requires 2n distance measurements to determine the detected value of 

sly and this becomes excessive when n> 10. Nevertheless, it is useful 

to evaluate the performance of this optimum system as a comparison with 

the simpler systems to be developed in the later sections of this chapter 
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3.4 Gauss-Seidel Iterative Process 

It has been shown 
(A9) 

that a linear estimate of the data-symbol 

vector S (eqn. 3.5) can be obtained from the vector R° (eqn. 3.8) by 

means of the Gauss-Seidel iterative process, whose method of operation 

can be explained with reference to Fig. 3.2. The n-component vector 

X=r xl x2 "" xn 1 (3.13) 

in Fig. 3.2 is initially set to zero, and the n-component vector XY 

is subtracted from R' to give the vector R' - XY, where Y is the nxn 

matrix defined in eqn. 3.9. The square marked YT is an nxn network 

that performs the linear transformation YT on the input vector R' - XY, 

where YT is the transpose of Y. Thus, the n input terminals of the 

network hold the n components of the vector R' - XY, and the n output 

terminals hold the n components of the vector 

E= 
[e1 

e2 ** en J 

where E_ (R' 
- XY) YT 

(3014) 

(3015) 

R' -- E= (R' 
- XY) YT T 

yI> 

XY 

Fig. 3.2 Linear estimation process for S from R' using the Gauss- 

Seidel iterative process. X is the estimate of S. 
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The iterative process now operates as followso xl is adjusted to set 

e1 to zero. x2 is then adjusted to set e2 to zero, and the process 

continues in this way with the sequential adjustment of x3 to xn. The 

cycle of adjustments in the {xi} is now repeated in the same order many 

times until eventually E=0, when 

( R' - xy) YT '03.16) 

so that 

R? YT(YYT) -1 
= R'Y 

1 (3.17 

which is the maximum likelihood estimate of S. 

The amount of adjustment required in the value of xh to set eh 

to zero for h=1,2, "", n can be derived as follow. It can be seen 

from eqns. 3.9,3013,3.14, and 3.15 that 

eh = (R' - XY)YT (3.18) 

or eh = (R' - x1Y1 - x2Y2 - "" - xhYn - "" - xnYn)YT (3.19) 

for h=1,2, "", n. Thus, if the increment in xh is A xh so that 

the new (updated) value of eh is zero, then from eqn. 3.19, the 

updated value of eh is 

0= (R' 
- x1Y1 - "" - 

(xh+'xh)Yh xnYn)Yh 

_ (R' 
- RY)Yh - OxhYhYh 

2 
eh - Axh II Yh il (3.20) = 

and so 

en 
Axh = 

11 12 
0.21) 

where the {xj}, {Yj}, and eh here are referred to those values before 
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the value of xh is updated. The amount of adjustment required in 

xh to set the value of eh to zero can thus be obtained from the value 

of eh using eqn. 3.21. 

A more detailed diagram of the Gauss-Seidel iterative process 

is shown in Fig. 3.3. Thus, in Fig. 3.3, the control unit selects 

the value of h so that the vector R' - XY is fed to the input of 

the network Yh where Yh is a filter matched to Yh. Having 

evaluated the value of eh at the output of the network Yh, the value 

of xr and hence the vector R' - XY are then updated from this value 

of eh. This completes the adjustment of xh and the control unit 

then selects the next value of h, and the operation continues as 

before. 

Each of the systems to be developed and studied in this chapter 

uses an iterative process that is a further development of the Gauss- 

Seidel iterative process just described. The prior knowledge of the 

two possible values of the data symbol sh is used here so that xh may 

have any of the two possible values of sh or 0 at all times during 

the iterative process. The value of xh is only equal to 0 at the 

beginning of the iterative process when no decision is made for the 

value of xh. 
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3.5 System 1 

In the detection of the data symbol sl from R' (eqns. 3.5 - 3.9), 

system 1 uses an iterative process that is a simple development of 

the Gauss-Seidel iterative process described in section 3.4. The basic 

block diagram of the iterative process here is the same as that shown 

in Fig. 3.2, but now a constraint is placed on the vector X (eqn. 3.13). 

This constraint is such that any of the n components xl, x2, "" xn 

of X is only allowed to have a value of 1, -1, or 0 at all times 

during the iterative process. For convenience, let Ra be the n-component 

vector 

R= R' - RY 
a 

(3.22) 

where R' and Y are as defined by egns. 3.7 and 309 respectively. Ra 

is therefore the vector at the input to the network YT shown in 

Fig. 3.2. The n-component vector E at the output of the network YT 

now becomes 

E_ (R' - xy)YT = RaYT (3.23) 

and from eqn. 3.18, the hth component of E is now 

eh = (R' 
- XY)Yh =RaYh (3.24 

for h=1,2, "", n. A more detailed diagram of the iterative process 

here is shown in Fig. 3.4. Various arrangements of this iterative 

process are investigated in systems 1.1 - 1.4, and are described as 

below. 
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System 1.1 

The n-component vector X (eqn. 3.13) in Fig. 3.4 is initially 

set to zero. Thus, if X0 is the initial vector of X, then 

n 

x0 =[oo.. 0] (3.25) 

The initial vector of Ra (eqn. 3.22) in Fig. 3.4 is then set to 

R' - X0Y. Having set the n components of X and Ra to their respective 

initial values, the iterative process of system 1.1 now operates as 

follows. The value of el is first evaluated at the output of the network 

Yl shown in Fig. 3.4 by using eqn. 3.24. This value of e1 is then 

compared with its associated thresholds ±t1 to give the value of 

Axl, where tl has a positive value and will shortly be discussed. The 

value of pxl is here the increment (adjustment) involved in the value 

of xl so that the new or updated value of xl is now given by 

(x1)new 
- x1 + Axt (3.26 

Thus, if e1 > t1, the value of Axl is set to 1. The value of xl 

is then updated by using eqn. 3.26, and is here equal to 1. The vector 

Ra is then updated by removing from it all components of (Ax1Y1), so 

that the new vector is now given by 

(Ra)new Ra Y1 (3.27) 

If elm -tl7 Ax, and hence the new xl (eqn. 3.26) are both set to -19 

and 

Ra) 
new - Ra + Yl (3.28 

If, however, -tl> e1> tl, then Ax, is set to zero so that xl remains 

unchanged at zero, and 
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(Ra) 
new 

Ra (3.29 

Eqns. 3.26 - 3.29 can be generalized to become 

(Xh)new 
-xh+ ý'Xh 3.30) 

(Ra)new 
= Ra (Axh)Yh (3°31) 

for h=1,2, " ,n for the whole iterative process of system 1.1. 

Having updated x1 and Ra, the value of e2 is next evaluated at the 

output of the network YT shown in Fig. 3.4. The value of px2 

is then determined by comparing e2 with its associated thresholds 

±t2 
in the same way as that when the value of Ax1 is determined 

from e1 and ±t 
1. 

Thus, if e2; -- t2, then px2 is set to 1, and 

if e2<- -t2, then 6x2 is set to -1. If, however, -t2> e2> t2, 

then Ax 
2 

is set to zero. The value of x2 and the vector Ra are then 

updated by using egns. 3.30 and 3.31 respectively. The iterative 

process continues to operate in this way with the sequential adjustment 

(updating) of x3 to xn using the arrangement of Fig. 3.4. This 

completes the first iterative cycle of the iterative process and 

the whole cycle of operations just described is then repeated for 

the second iterative cycle starting with the evaluation of e1 and 

so on. 

The decision rule for determining the value of Axh, for any 

value of h between 1 to n, in the first iterative cycle of the iterative 

process here are summarised in Table 3.1. 

In the second iterative cycle of the iterative process of 

system 1.1, the value of Axh is determined from the values of eh 

and th according to Table 3.2. The operations involved here are 

otherwise the same as those of the first iterative cycle. Thus, 
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Axh =1, if eh 3 th 

=0, if th > eh > -th 

_ -1 , if -th 3 eh 

Table 3.1 Decision rule to determine the value of Axh (Fig. 3.4), for 

h=1,2, "", n, in the first iterative cycle of system 1.1. 

Axh =1 ' if xh =0 and eh >0 

_ -1 if xh =0 and eh 0 

Axh =2 ' if xh = -1 and eh> th 

=0 ' if xh = -1 and eh, th 

Axh = -2 , if xh =1 and eh< -th 

=0 ' if xh =1 and eha -th 

Table 3.2 Decision rule to determine the value of pXh (Fig. 3.4), for 

h=1,2, "', n, in the second and subsequent iterative cycles 

of system 1.1. 
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in the second iterative cycle here, the value of e1 is first evaluated, 

at the output of the network Yi shown in Fig. 3.4, as RaYi where 

Ra is here the vector of R' - XY obtained at the end of the first 

iterative cycle. The value of Axt i, then determined from the values 

of e1 and t1 according to Table 3.2. This is followed by updating 

the value of x1 and the vector Ra using eqns. 3.30 and 3.31 respectively. 

This completes the updating process for x1 in the second iterative cycle, 

and the iterative process continues in this way with the sequential 

updating process for x2 to xn. It can be seen from Table 3.2 and 

eqn. 3.30 that, at the end of the second iterative cycle, all the 

{xh} for h=1,2, "'ßn have been set to any of the two values 1 

and -l which are the two possible values of the data symbols is 
hl' 

Each subsequent iterative cycle operates in exactly the same way as 

for the second iterative cycle. 

In the iterative process of system 1.1 just described, a counter 

is used to count the number of iterative cycles. When the counter exceeds 

a given threshold nc , the iterative process is terminated and the 

value of x1 (being equal to 1 or -1) is then taken as the detected 

value sl of sl. 

The number of multiplication and addition processes involved in 

the updating process of xh (1--h--<n) in the iterative process here and 

those in the Gauss-Seidel iterative process (section 3.4) are shown in 

Table 3.3. It should be noticed that although the value of eh is evaluated 

as the product of the n-component row matrix Ra and the n-component column 

matrix Yh (eqn. 3.24), only n-h+l multiplications and n-h+l additions 

are needed here because there are at most n-h+l non-zero components 

in Yh (eqn. 3.9). It should also be noticed that in the iterative process 

of system 1.1, the vector Ra can only be changed by 0, ±Y 
h' or -+2Yh 
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since the value of 6xh here can only have any of the values 0, ±l, 

and ±2 (Tables 3.1 and 3.2, and eqn. 3.31). Furthermore, multiplying 

a scalar quantity, say yi, by 2 merely involves the moving of the 

binary coded numbers which form the quantity yj, one place to the 

left. 
(C36) 

That is, 

if yý =00110101111 (11 bits) 

then 2y 001101011110 (12 bits) 

starting with the most significant bit. 
(C36) 

Consequently, no multiplication 

process is required in the updating process for Ra here (eqn. 3.31) 

as is shown in Table 3.3. Thus, as Table 3.3 suggests, the iterative 

process of system 1.1 requires fewer multiplication processes in the 

updating process for xh in relation to those required in the Gauss- 

Seidel iterative process. The iterative process of system 1.1 therefore 

appears to be able to carry out the updating process more simply and 

rapidly.. 

Iterative Process of Gauss-Seidel Iterative 

System 1.1 (Fig. 3.4) Process (Fig. 3.3) 

Evaluation of n-h+l multiplications n-h+l multiplications 

eh (eqn. 3.24) n-h+l additions n-h+l additions 

Determination threshold decision 1 multiplication 

of Axh (Table 3.1 or 3.2) (eqn. 3.21) 

Updating of x h 1 addition 1 addition 
(eqn. 3.30) 

Updating of Ra 
n additions 

n multiplications 
(eqn. 3.31) n additions 

Table 3.3 Number of multiplications and additions involved in the 

updating process of xh' for h=l, 2, "", n. 
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System 1.2 

System 1.2 is only slightly different from system 1.1 in that 

the iterative process here (Fig. 3.4) now begins with the updating 

process for xn and works towards xl for each iterative cycle. This 

system is otherwise the same as system 1.1 which operates from xl 

to xn for each iterative cycle. 

System 1.3 

System 1.3 differs from system 1.1 in that the iterative process 

here (Fig. 3.4) operates from xl to xn and then back from xn to xl 

for each iterative cycle. The amount of operations involved in each 

iterative cycle here is therefore twice of that for system 1.1. This 

system is otherwise the same as system 1.1. 

System 1.4 

This system is the same as system 1.3 except that the iterative 

process (Fig. 3.4) now operates from xn to x1 and then back from xl 

to xn for each iterative cycle. 
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The threshold values 
Ith} 

used to determine the corresponding 

values of {Cxh} in Tables 3.1 and 3.2 for any of the systems 1.1 - 1.4, 

can be chosen to prevent the iterative process here from diverging 

and these values are determined in appendix Al. Divergence is here 

defined to have occurred when the Euclidean distance between the vector 

R' and the vector XY increases during the iterative process, bearing 

in mind that the vector X is here taken as the detected vector of S 

at the end of the iterative process and that R' is assumed to be given 

by eqn. 3.8. Thus, from appendix Al, the values of 
{th. that prevent 

the iterative process here from diverging are 

th tVh112 xh = ±l 

and th 2IIYhII 
2 if xh =0 (3.32) 

for h=l, 2, "°, n, where the value of xh shown here is its value 

before the value of Axh is determined from the value of th (Tables 

3.1 and 3.2). 

Four different versions of the values of 
{th} to be used in 

each of the systems 1.1 - 1.4 have been considered and are shown 

in Table 3.4. It can be seen from eqn. 3.32 and Table 3.4 that, in 

the first iterative cycle, the iterative process of any of the systems 

1.1 -1.4 with versions a and b 4-s not prevented from diverging. 

It can also be seen that, in the second iterative cycle, the iterative 

process with any of the versions b, c, and d here is not prevented 

from diverging whenever the value of xh is zero. The iterative process 

of any of the systems 1.1 - 1.4 with the various versions shown in 

Table 3.4 is otherwise prevented from diverging. 
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All 
Versions lst Cycle 2nd Cycle Subsequent 

Cycles 

a 0 Ilhh112 IIYh II2 

b 4 Ilyh 
II 
2 II 

hI2 
if xh_±l I Yh if 2 

0 if xh= 0 

c IIYh 112 IN 112 if xh=±l II Yh 12 

0 if xh= 0 

d IIYhII2 IIYhI12 if xh= l IIYhII2 

0 if xh= 0 

Table 3.4 Four different versions of threshold values {th}, for 

h=1,2, ", n, to be used to determine the values of 
IAxh} (Table 3.1 or 3.2) in the iterative process of 

each of the systems 1.1 - 1.4. 

Although the iterative process of any of the systems 1.1 - 1.4 

with the various vesions shown in Table 3.4 is prevented from diverging 

in the third and subsequent iterative cycles, it does not necessarily 

converge in these iterative cycles since the value of Ax- (1 <h< n) 

can be zero (Table 3.2) so that the vector X and hence the Euclidean 

distance between the vector R' and the vector RY now remain unchanged. 

The meaning of convergence is the reverse of that defined for divergence 

previously. Computer simulation tests are therefore carried out for 

the various versions of systems 1.1 - 1.4 operating over channel A (Table 2.1) 
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to see if error-free detection in the absence of noise is achieved 

by any of these systems. In these computer simulation tests, 100 

data symbols 
Isil 

are transmitted in the absence of noise and the 

number of errors in detection is recorded for each value of nc used. 

The value of nc is the number of iterative cycles used in the iterative 

process here. An error in detection is defined to have occurred when 

the detected value sl of s1 is not the same as the transmitted value 

of sl The results of the computer simulation tests are shown in 

Fig. 3.5" Clearly, as Fi. g. 3.5 shows, none of the various arrangements 

of systems 1.1 - 1.4 is able to achieve error-free detection over 

channel A (Table 2.1) in the absence of noise. These systems have 

therefore failed to operate correctly. Nevertheless, systems 1.1 - 1.4 

are important in the sense that all the following systems of this 

chapter are developed from the arrangements used here. 
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1.1 - 1.4 with versions a-d (Table 3.4) at various number 

of iterative cycles (nc), when 100 data symbols 
Is} are 

transmitted over channel A (Table 2.1) in the absence of noise. 
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3.6 System 2 

System 2 is a modification of system 1, in that it uses two 

separate but similar iterative processes (instead of one in system i) 

in the detection of the data symbol sl from R' (eqns. 3.5 - 3.9). 

Each of these two iterative processes employs the same piece of equipment 

shown in Fig. 3.4. The various arrangements of systems 1.1 - 1.4 

are modified here to give the corresponding systems 2.1 - 2.4. 

System 2.1 

This is a modification of system 1.1. In the first iterative 

process here, the first component x1 of the n-component vector X 

(eqn. 3.13 is set to 1 and held at this value during the whole of 

the iterative process. Thus, the iterative process operates by first 

setting the initial vector of X to 

n-l 

xo -[10 "" 0I (3.33) 

and the initial vector of Ra (eqn. 3.22) to 

R' -X0Y= R' - x1Y1 = R' - Y1 (3.34) 

where the nxn matrix Y and the n-component vector Y1 are as defined 

by eqn. 3.9. The iterative process of system 1.1 is then applied 

here to the n-1 components x2, x3, "" , xn of X, starting from the 

updating process for x2 to that for xn for each iterative cycle. These 

operations are, 'of course, carried out by using the arrangement shown 

in Fig. 3.4. At the end of the iterative process when the number of 

iterative cycles exceeds the preset threshold value nc, the Euclidean 

distance between R' and XY is measured as the quantity 
lIR' 

- XYII" 

The whole process just described is then repeated for the second iterative 
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process but now xl is set and held at -19, so that the initial vector 

of X now becomes 

n-1 

xo = 
1-1 

0 0J ("3.35) 

and the initial vector of R now becomes 
a 

R' -X0Y= R' - x1Y1 = R' + Y1 3.36) 

instead of those given by egns. 3.33 and 3.34 respectively. The second 

iterative process is otherwise the same as the first iterative process 

and at the end of the iterative process here, the quantity 
QR' 

- XYIl 

is evaluated. 

The detected value of sl is now taken to be the value of xl 

associated with the smaller of the two distances 
{IIR' 

- XYII}. 

System 2.2 

System 2.2 is slightly different from system 2.1. The difference 

is that, while the iterative process of system 1.1 is applied in each 

of the two iterative processes of system 2.1 over the n-l components 

x21 x3' "" ' xn' the iterative process of system 1.2 is applied here 

so that each of the two iterative processes of system 2.2 now begins 

with the updating process for xn and works towards x2 for each iterative 

cycle, this being carried out by using the arrangement shown in Fig. 3.4" 

System 2.2 is otherwise the same as system 2.1. 

System 2.3 

System 2.3 differs from system 2.1 in that, the iterative process 

of system 1.3 (instead of system 1.1) is used here so that each of 

the two iterative processes of system 2.3 now operates from x2 to xn 

and then back from xn to x2 for each iterative cycle, using the arrangement 
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shown in Fig. 3.4. This system is otherwise the same as system 2.1. 

System 2.4 

System 2.4 differs from system 2.3 in that, the 

of system 1.4 (instead of system 1.3) is used here so 

the two iterative processes of system 2.4 now operate 

and then back from x2 to xn for each iterative cycle. 

otherwise the same as system 2.3. 

iterative process 

that each of 

s from xn to x2 

This system is 

Computer simulation tests are carried out for each of the systems 

2.1 - 2.4 operating over channels A and C (Table 2.1) to see if error- 

free detection in the absence of noise is achieved by any of these 

systems. In these tests, 100 data symbols 
{si} 

are transmitted in the 

absence of noise and the number of errors in detection is recorded 

for each value of nc used, where nc is the number of iterative cycles 

used in the given system. The results of the computer simulation tests 

are shown in Figs. 3.6 and 307, where the versions ay b7; cq and d 

for each of the systems 2.1 - 2.4 are referred to the various versions 

of the threshold values 
{th} (Table 3.4) to be used in the given system. 

Nevertheless, as Figs. 3.6 and 3.7 show, none of the arrangements 

of systems 2.1 - 2.4 is able to achieve error-free detection on both 

channels A and C even in the absence of noise. Systems 2.1 - 2.4 therefore 

do not operate correctly. 
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3.7 System 3 

Although the various arrangements of systems 1 and 2 do not give 

error-free detection in the absence of noise, the computer simulation 

results shown in Figs. 3.5 - 3.7 indicate that each of these systems 

appears to converge to a fixed error rate after a maximum of 4 iterative 

cycles, when operating over channel A or C (Table 2.1). It therefore 

appears that, with some slight modifications, these simple systems may 

be made to operate correctly with as few as 2 or 3 iterative cycles so 

that the advantage of high speed operation may be achieved here. 

It is recalled that at the end of the second iterative cycle of 

the iterative process used in any of the systems 1 and 2, all the n 

components of X (eqn. 3.13) have been set to any of the two possible 

values of the data symbols ishl so that X is from then on a possible 

vector of S (eqn. 3.5). The iterative process is then prevented from 

diverging (having a larger value of IIR' 
- Xi) in the sequential updating 

process for the n components of X in the subsequent iterative cycles. 

This means that after the second iterative cycle, the iterative process 

here, effectively, proceeds to search for the possible vector of S 

associated with the minimum Euclidean distance IIR' 
- SYII1 subject to 

the constraint that only one component of S can be changed at a time. 

Thus, if X (being now a possible vector of S) has a smaller value of 

IIR' 
- XYII than those of the n possible vectors of S which differ from 

X in just one component, then no further changes can be made to any of 

the n components of this X which is of course not necessarily the possible 

vector of S associated with the minimum II R' - SYII. It therefore follows 

that the ability of the iterative process here to obtain the vector X 

as the possible vector of S associated with the smallest value of JJR' 
- SYII, 

depends to some extent on the vector of X obtained at the end of the 
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second iterative cycle. Clearly, the vector of X obtained at the end 

of the second iterative cycle in the iterative process of any of the 

systems 1 and 2 is often very badly chosen so that the vector of X 

obtained at the end of the iterative process is very often not the 

possible vector of S associated with the smallest (R' 
- SYII even in 

the absence of noise. It is for this reason that error-free detection 

in the absence of noise is not achieved by any of the systems 1 and 2 

as is shown in Figs. 3.5 - 3.7. System 3 overcomes this problem by 

using a different initial vector Xo of X so that a better vector of 

X may be obtained when it first beco: nes a possible vector of S during 

the iterative process. The various arrangements of systems 1.1 - 1.4 

are modified here to give the corresponding systems 3.1 - 3.4 described 

as below. 

System 3.1 

System 3.1 operates by using the n-l components s2, s3, "" , sn 

of the detected data-symbol vector S' obtained at the end of the previous 

detection process, as the initial values of xl, x2, "" , xn_l in 

the detection of the next data symbol. That is, the initial vector 

X of X is now set to 
0 

Xo =r S2 S3 ... Sn (3.37) 

where s2, s3, """ , sn are the detected values of the corresponding 

data symbols s2, s3, """ , sn (these being shifted one place to the 

front to become sly s2, """ , sn_1 respectively in the detection 

process now to be commenced) obtained at the end of the previous detection 

process. The initial vector of Ra (eqn. 3.22) is then set to R' - X0Y. 

Having set the n components of X and Ra to their respective initial 

values, the iterative process of Fig. 3.4 is then applied here to the 

n components xl, x2, ... , xn of X. Thus, the value of e1 is first 
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evaluated, at the output of the network YT show!. in Fig. 3.4, as 

RaYT (ecgn. 3.24). The value of pxl is then determined from this value 

of e1 according to Table 3.2. This is followed by updating the value 

of xl and the vector Ra using egns. 3.30 and 3.31 respectively. This 

completes the updating process for xl in the fi=st iterative cycle, 

and the iterative process continues in this way with the sequential 

updating process for x2 to xn, using the arrangement of Fig. 3.4. 

The whole process just described is then repeated, starting from the 

updating-process for xl to that for xn, for each of the subsequent 

iterative cycles. At the end of the iterative process when the number 

of iterative cycles exceeds the preset threshold value nc, the vector 

X is taken as the detected data-symbol vector S' so that sl = x1, 

s2 x27 """ ' sn = xn. The value of s' is then accepted as the detected 

value of the data symbol sl. The last n-1 components of S' are then 

shifted one place to the front to become the first n-1 components of 

the initial vector X0 of X for the next detection process. 

It should be noticed that, in determining the values of 

Table 3.2 is used here for any of the iterative cycles. This is, of 

course, different from the arrangement of the iterative process used 

in system 1.11 where Table 3.1 is used in the first iterative cycle 

and Table 3.2 is used in each of the subsequent iterative cycles. 

Furthermore, the threshold values 
{th} to be used in Table 3.2 for 

the iterative process of system 3.1 are also different from those 

given in Table 3.3, and are given as 

th = h1 
12' if Xh = ±1 

=0 if xh= 0 (3.38) 

for h=1,2, " ,n where the value of xh shown here is its value 

before the value of Axh is determined from the value of th (Table 3.2). 
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System 3.2 

System 3.2 is slightly different from system 3.1. The difference 

is that the iterative process here now operates from the updating 

process for xn to that for x1 for each iterative cycle, using the 

the arrangement shown in Fig. 3.4. System 3.2 is otherwise the same 

as system 3.1. 

System 3.3 

System 3.3 differs from system 3.1 in that the iterative process 

here now operates from xl to xn and then back from xn to xl for each 

iterative cycle, using the arrangement of Fig. 3.4. The amount of 

operations involved in each iterative cycle here is therefore twice 

of that for system 3.1. This system is otherwise the same as system 3.1. 

System 3.4 

This system is the same as system 3.3 except that the iterative 

process here now operates from xn to xl and then back from xl to xn 

for each iterative cycle, using the arrangement of Fig. 3.4. 

Systems 3.1 - 3.4 are in fact able to achieve error-free detection 

in the absence of noise and this is shown in appendix A2. 
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Computer simulation tests have been carried out to determine 

the tolerances to Gaussian noise of systems 3.1 - 3.4 operating over 

channel A (Table 2.1). The results of these tests are shown in Fig. 3.8, 

where the bit error rate (being the same as the symbol error rate here) 

is defined as 

Total number of errors in the detection of {s 

P=1 (3.39) 
e Total number of data symbols {s. } transmitted 

i 

The signal to noise ratio used in Fig. 3.8 is defined as 

SNR = 10 log 
10 

( 
23N 

) dB (3.40) 

0 

where E' is the average transmitted energy per data symbol si, at the 

input to the transmission 

power spectral density of 

the input to the receiver 

results shown in Fig. 3.8 

here is the system descri 

path (Fig. 2.1), and 2N0 is the two-sided 

the additive white Gaussian noise added at 

filter. The 95% confidence limits of the 

are about ±0.5 dB. The optimum system shown 

bed in section 3.3. 

Clearly, none of the systems 3.1 - 3.4 has a performance anywhere 

near to that of the optimum system, and thus further 

to these systems are needed. As both systems 3.2 and 

better tolerances to noise than those of systems 3.1 

that the unknown component xn of X should perhaps be 

before the iterative process begins. This is carried 

modifications 

3.4 seem to have 

and 3.3, it appears 

determined first 

out in system 3.5" 
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Fig. 3.8 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for systems 3.1 - 3.4 operating over 

channel A (Table 2.1). 
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System 3.5 

Thus, in any of the systems 3.1 - 3.4, the iterative process 

operates on the n-component vector R' (eqns. 3.4 and 3.7) to give 

the detected data-symbol vector S' whose last n-1 components s2, 

s3, "" , sn are then used as the initial values of xl, x2, xn-1 

for the next detection process. It can be seen from eqn. 3.4 that, 

only the first received component of si+n-l' the first two received 

components of si+n-2' the first three received components of si+n-3' 

and so one are included in the n components of R', bearing in mind 

that si7 "7 si+n-2' si+n-1 are here renamed as the n components 

sl, "" 7 sn-17 sn of S (eqn. 3.5) respectively. This implies that 

in the detection of S (as S') from R', errors are probably more likely 

to occur in the last few components of S' than to occur in the first 

few components of S' especially when the first few received components 

of the data symbol (or the first few components of the channel sampled 

impulse response) are of small magnitudes. Furthermore, if a component, 

say sh, of S' is in error (that is, sh L sh), then by using it as 

the initial value of xh+l for the next detection process doubles instead 

of removes the intersymbol interference of the data symbol sh+l in 

the next detection process. It therefore appears, intuitively, that 

the tolerance to noise of the iterative process may sometimes be made 

higher by ignoring the detected values of the last few components of 

S so that only some of the last n-1 components of S' are now used as 

the initial values of the corresponding components of X for the next 

detection process. This is the basis of system 3.5. 
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Thus, in system 3.5, the initial vector X0 of X is set to 

f 

x0 =r s2 s3 ... sn-f+l 0 ... 01 (3.41) 

where s2, s3, """ ' s' f+l are the detected values of the corresponding 

data symbols obtained at the end of the previous detection process, 

and f is an appropriate integer to be discussed shortly. The initial 

vector of Ra (eqn. 3.22) is then set to R' - X0Y. Having set the n 

components of X and Ra to their respective initial values, the iterative 

process of Fig. 3.4 is then applied here to the n components of X. 

However, the first iterative cycle of the iterative process here now 

begins with the updating process for xn-f+l . This is carried out by 

first evaluating the value of en-f+l at the output of the network 

Yn-f+l shown in Fig. 3.4. The value of Axn-f+l is then determined 

from this value of en-f+l according to Table 3.2 where the threshold 

values 
{th} 

are as given in eqn. 3.38. This is then followed by updating 

the value of xn-f+l and the vector Ra using eqns. 3.30 and 3.31 

respectively. The process just described is the updating process for 

xn-f+l and the iterative process continues in this way with the sequential 

updating process for xn-f+2 to xn , using the arrangement of Fig. 3.4. 

The whole process just described is then repeated, starting from the 

updating process for xl to that for xn, for each of the subsequent 

iterative cycles. The iterative process here is terminated when the 

number of iterative cycles exceeds the preset threshold value nc. The 

vector X is then taken as the detected data-symbol vector S' so that 

si = xl, s2 = x2, "" ,1 sn = xn. However, only the first component s11 

of S' is accepted as the detected value of the data symbol s1. The 

components s2, s3, "" ' sn-f+l of S' are then stored and used as the 

initial values of xl' x2' "" ' xn-f respectively for the next detection 

process. 
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It is interesting to note that, when f=1, the initial vector 

Xo1, of X, used in system 3.5 (eqn. 3.41) becomes identical to that 

(eqn. 3.37) used in any of the systems 3.1 - 3.4. Furthermore, when 

f=n, system 3.5 reduces exactly to system 1.1 which does not achieve 

error-free detection even in the absence of noise. The value of f to 

be used here should therefore be selected with care to ensure that 

error-free detection in the absence of noise is achieved by the system. 

It is shown in appendix A3 that, the condition for system 3.5 to achieve 

error-free detection in the absence of noise is that 

dh >0 
(3-42) 

for h= n-f+l, n-f+2, """ , n-1 where 

d 
IIYhII2 7 IYh+ yhl 

(3.43) 
h IIyhII j=1 11 

htI 

and Yh is the n-component vector defined by eqn. 3.9. The value of f 

to be used in system 3.5 should therefore be such that the inequality 

of (3.42) is satisfied. The significance of the quantity dh in eqn. 3.43 

can be seen as follows. It can be seen from eqns. 3.8 and 3.24 that, 

eh = 
CSY 

- XY)YT + WYh 

_ (S1 - X1)Y1Yh + (s2 - x2)Y2Yh + -- + (sh - Xh)uyhJJ2 

+ "" + (sn 
- xn)YnYT 

T+ 
WY 

h 
(3.44) 

where the noise component WYh is a Gaussian random variable with 

zero mean and variance 62 IIYhII2 
. In the first iterative cycle of 
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the iterative process of system 305, the value of eh is 

eh = 
(sl 

- Xl)YlYh + (s2 
- X2)Y2Yh + .. + (sh-1 

- xh-l)Yh-ly h 

+ shllYhQ2 + """ + snYnYh + WYh (3045 

for h= n-f+l, n-f+2, """ ,n where the values of x9 xh+1' ", xn 

have not yet been determined (eqn. 3.41), and the values of x1, x2, 

"" , xh-f are the detected values of the corresponding data symbols 

obtained at the end of the previous detection process (eqn. 3.41). 

Eqn. 3.45 can be normalised by dividing each term by 11 Yhll so that 

the normalised noise component here now has a variance of d2 which 

is independent of the value of h. It can now be seen from eqn. 3.43 

and the normalised form of eqn. 3045 that, dh is the difference between 

the normalised magnitude of the signal component (that associated with 

sh) and the normalised maximum magnitude of the intersymbol interference 

component (that associated with sh+l9 sh+2, ** 9 sn) in the normalised 

value of eh in the first iterative cycle of the iterative process of 

system 3.5, assuming that sl = xl, s2 = x2, *** 1 sh-l = xh-l" It 

therefore appears that, at high signal to noise ratios when the values 

of x1 to xh-1 have been updated to be the same as the corresponding 

values of sl to sh_lq the value of dh now determines to some extent 

the probability of xh being updated to have the same value as that of 

sho In this case, a larger value of dh is likely to give a lower probability 

of error in updating the value of xh as sh. 

In order to achieve the highest tolerance to noise, it seems that 

the initial value of the component xh of X should be set to zero (eqn, 3041 

so long as the detected value of the corresponding data symbol sh obtained 

at the end of the previous detection process is more likely to be in 
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error than that obtained in the first iterative cycle of the next 

iterative process in system 3.5. That is, the detected data-symbol 

value obtained at the end of the previous detection process should 

not be used as the initial value of the corresponding component of 

X so long as the corresponding data symbol can be determined with a 

lower probability of error in the first iterative cycle of the next 

iterative process. Furthermore, as previous results have shown, the 

probability of error of the detected data-symbol value obtained at 

the end of a detection process appears to be dependent to a large 

extent on the initial vector Xo, of X, used in the iterative process 

here (which employs the arrangement of Fig. 3.4). Consequently, it 

appears intuitively that, in order to achieve the highest tolerance 

to noise, the probability of xn-f+1being determined as the correct 

value of the data symbol sn-f+l in the first iterative cycle of the 

iterative process here should be as high as possible, bearing in mind 

that xn-f+l is the first component of X to be determined in the first 

iterative cycle of the iterative process here. Thus, at high signal 

to noise ratios when the initial values of x1 to xn-f (being here 

given by the detected values of the corresponding data symbols obtained 

at the end of the previous detection process) are the same as the 

values of the corresponding data symbols sl to sn_fq the highest 

tolerance to noise of system 3.5 may be achieved if the value of f 

is such that 

do-f+l ' dj 

for j=1,2, "", n and j n-f+l 

(3.46) 

where the quantity dh is as defined 

by eqn. 3.439 bearing in mind that a larger value of do-f+l is now 

likely to give a lower probability of error in the detection of sn-f+l 

in the first iterative cycle of the iterative process here. 
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Thus, it appears that the value of f to be used in the initial 

vector X0 (eqn. 3.41) of X in system 3.5 should be selected not only 

to ensure that the inequality of (3.42) is satisfied (for error-free 

detection in the absence of noise to be achieved), but also to maximize 

the value of do-f+l (eqn. 3.43) so as to hopefully achieve the highest 

tolerance to noise at high signal to noise ratios. It can be seen from 

Table 3.5 that, the inequality of (3.42) is only satisfied when f=1, 

2, or 3 for system 3.5 operating over channel A (Table 2.1). Consequently, 

only these values of f are considered in the computer simulation tests 

to determine the tolerance to noise of system 3.5 operating over channel 

A (Table 2.1). 

The more promising results of the computer simulation tests are 

shown in Fig. 3.9, where the results are plotted as bit error rate 

versus signal to noise ratio. The definitions of the bit error rate 

(Pe) and the signal to noise ratio (SNR) here are as defined by eqns. 

3.39 and 3.40 respectively. The 95% confidence limits of the curves 

shown in Fig. 3.9 are about ±0.5 dB. The optimum system here is the 

system described in section 3.3" 

It can be seen from Table 3.5 and Fig. 3.9 that, system 3.5 with 

f=2 has a larger value of do-f+l and a higher tolerance to noise 

at high signal to noise ratios where the error rates drop below 10-2, 

as compared to those of the given system with f=3. This agrees with 

the analysis described previously that at high signal to noise ratios, 

the highest tolerance to noise of system 3.5 may be achieved if the value 

of f is such that the value of do-f+l is the maximum (inequality (3.46)). 

At low signal to noise ratios, Fig. 3.9 shows that system 3.5 with f=3 

appears to have a better tolerance to noise than that of the system with 

f=2. One possible (but crude) reason to this is that, at low signal 

to noise ratios, the noise components dominate over the intersymbol 
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interference components in {eh} (eqn. 3.44) so that the intersymbol 

interference components now have a smaller effect on the probability 

of error in the detection of the data symbol sn_f+l from en-f+l in 

the first iterative cycle of the iterative process here. It therefore 

appears intuitively that the system that has a larger value of 
IIYn-f+lll 

(which is the magnitude of the signal component in en-f+l associated 

with sn-f+l) instead of do-f+l is now likely to have a higher tolerance 

to noise. It can be seen from Table 3.5 that system 3.5 with f=3 

has a larger value of IIYn-f+l11 than that of the system with f= 2ý 

and thus the tolerance to noise of the system with f=3 may be expected 

to be higher than that of the system with f=2 at low signal to noise 

ratios as is shown in Fig. 3.9. 

It can be from the simulation results shown in Figs. 3.8 and 3.9 

that, system 3.5 has the best tolerance to noise of all the systems 

developed and studied in this section, when operating over channel A 

(Table 2.1). In particular, the tolerance to noise of system 3.5 with 

f=2 and n=c2 is at least 1.5 dB better than that of any of the 

systems 3.1 - 3.49 at an error rate of 10-3. The quantity nc is the 

number of iterative cycles used in the system. If the operations involved 

in the updating process for one component of the vector X is referred 

to as one sequential operation, then it can be seen from the descriptions 

of the operations of the various systems here that the number of sequential 

operations ns involved in the iterative process of system 3.1 or 3.2 is 

ns = 
(n)(nC) (3.47) 

and that involved in the iterative process of system 3.3 or 3.4 is 

ns = 2(n)(nC) (3.48) 

where n is the number of sample values 
{rh} (eqn. 3.2) used in the 
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iterative process here. The number of sequential operations involved 

in system 3.5 iss however, given by 

ns = (n)(nc 
- 1) +f (3.49) 

The value of ns involved in each of the systems 3.1 - 3.5 shown in 

Figs. 3.8 and 3.9 is shown in Table 3.6. As Table 3.6 shows, the number 

of sequential operations involved in system 3.5 here appears to be 

smaller than that involved in any of the systems 3.1 - 3.4. 

System 3.5 is therefore the most promising of the systems developed 

and studied in this section. 
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Y "2 Y Y 
h 

or Yh N ýý h h+ j d h 
(eqn. 3.41) (°n-f+l) 

II IIYll I' Yh (eqn. 3.43) 

1 8 0.167 0.000 +0.167 

2 7 0.500 0.157 +0.343 
3 6 0.866 0.612 +0.254 

4 5 0.986 1.178 -0.192 
5 4 1.000 1.466 -0.466 
6 3 1.000 1.466 -0.466 
7 2 1.000 1.466 -0.466 
8 1 1.000 1.466 -0.466 

Table 3.5 Values of {dh} for channel A (Table 2.1). n=g. 

The sampled impulse response of channel A is 

0.167 0.471 0.707 0.471 0.167 

Systems Number of 

Iterative Cycles 

n 
c 

Number of 

Sequential Operations 

n 
s 

3.1 2 16 

3.2 2 16 

3.3 2 32 

3.4 2 16 

3.5 (f=2) 1 2 

3.5 (f=2) 2 10 

3.5 (f=3) 2 11 

Table 3.6 Number of iterative cycles nc and number of sequential 

operations ns involved in systems 3.1 - 3.5 (Figs. 3.8 and 3.9) 
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Fig. 3.9 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 3.5 operating over channel A 

(Table 2.1). 
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3.8 System 4 

System 4 is a modification of system 3. The modification here 

is the same as the modification involved in converting system 1 to 

system 2. Thus, while system 3 uses only one iterative process, system 4 

uses two separate but similar iterative processes in the detection 

of the data symbol s1. Each of these two iterative processes of system 4 

employs the same piece of equipment shown in Fig. 3.4. The various 

arrangements of systems 3.1 - 3.5 are modified here to give the corresponding 

systems 4.1 - 4.5" 

System 4.1 

This is a modification of system 3.1. In the first iterative 

process here, the first component x1 of the n-component vector X 

(eqn. 3.13) is set to 1 and held at this value during the whole of 

the iterative process. The iterative process here now begins to operate 

by setting the initial vector of X to 

Xo =C1 s3 s4 """ sn 0J (3050) 

where s s4, """ , sn are the last n-2 components of the detected 

data-symbol vector S' (of S) obtained at the end of the previous detection 

process. The initial vector of Ra (eqn. 3.22) is then set to R' - X0Y, 

where R' is the n-component vector defined by eqn. 3.7 and Y is 

the nx n matrix defined by eqn. 3.9. The iterative process of system 3.1 

is then applied here to the n-l components x2, x3, """ , xn of X, 

starting from the updating process (Table 3.3) for x2 to that for xn 

for each iterative cycle, using the arrangement shown in Fig. 3.4. At 

the end of the iterative process when the number of iterative cycles 

exceeds the preset threshold value nc,, the quantity 11 R' - XYII is 
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measured and stored together with the corresponding n components of 

X. The whole process just described is then repeated for the second 

iterative process but now xl is set and held at -1, so that the initial 

vector of X now becomes 

Xo = -1 S3 s4 ... sn 013.51) 

which is the same as that (eqn. 3.50) used in the first iterative 

process except for the first component. The initial vector of Ra for 

the second iterative process is, of course, the vector R' - X0Y 

where X0 is as given by eqn. 3.51. The second iterative process is 

otherwise the same as the first iterative process, and at the end 

of this second iterative process, the quantity 11 R' - XY11 is measured 

and stored together with the corresponding vector X. 

The detected vector S' of S is now taken to be the vector of X 

associated with the smaller of the two distances IHR' 
- XYýj . However, 

only the first component s1 of S' is accepted as the detected value 

of the data symbol s The last n-2 components s3, s4, """ , s' of 

S' are then shifted one place to the front and used as the initial 

values of the corresponding n-2 components x2, x3, """ , xn-l of X 

for the next detection process. 

System 4.2 

System 4.2 differs from system 4.1 in that, the iterative process 

of system 3.2 (instead of system 3.1) is used here so that each of 

the two iterative processes of system 4.2 now operates from the updating 

process for xn and works towards x2 for each iterative cycle, using 

the arrangement shown in Fig. 3.4. This system is otherwise the same 

as system 4.1. 
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System 4.3 differs from system 4.1 in that, the iterative process 

of system 3.3 is now used here so that each of the two iterative processes 

of system 4.3 now operates from x2 to xn and then back from xn to x2 

for each iterative cycle, using the arrangement shown in Fig. 3.4. This 

system is otherwise the same as system 4.1. 

System 4.4 

System 4.4 is the same as system 4.3 except that each of the two 

iterative processes here now operates from xn to x2 and then back from 

x2 to xn for each iterative cycle. 

ývatam /1 _ 

This is a modification of system 3.5. The modification here is 

that two (instead of one in system 3.5) separate but similar iterative 

processes are now used in the detection of the data symbol sl from R'. 

In the first iterative process here, x1 is set to 1 and held at this 

value during the whole of the iterative process. The initial vector X0 

of X is now set to 

f 
Xo =C1 s3 s4 ... Sn_f+l 0 ... 01 (3.52 

where s3, s4, """ , sn-f+l are the detected values of the corresponding 

data symbols obtained at the end of the previous detection process, 

and f is an appropriate integer between 1 to n inclusive. The initial 

vector of Ra (eqn. 3.22) is then set to R' - X0Y , using the vector 

of X0 given by eqn. 3.52. The iterative process of system 3.5 is then 

applied here starting from the updating process for x2 to that for xn 

for each iterative cycle (except_the first iterative cycle where the 

iterative process operates from xn-f+l to xn), using the arrangement 
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shovrn in Fig. 3.4. At the end of the iterative process when the number 

of iterative cycles exceeds the preset threshold value nc, the quantity 

R' - XYII is measured and stored together with the corresponding vector 

of X. The whole process just described is then repeated for the second 

iterative process but now xl is set and held at -1, so that the initial 

vector of X now becomes 

f 
Xo =C -1 S3 S4 ... sn-f+l 0 ... 0 3.53) 

and the initial vector of R becomes R' -XoY with this vector of Xo. 
a 

The second iterative process is otherwise the same as the first iterative 

process, and at the end of this second iterative process, the quantity 

IIR' 
- XYIf is measured and stored together with the corresponding vector X. 

The detected vector S' of S is now taken to be the vector of X 

associated with smaller of the two quantities 
0 R' - RYH} . However, 

only the first component si of S' is accepted as the detected value 

of the data symbol sl. The n-f-l components S3, s4, ... sn-f+l of S' 

are then shifted one place to the front and used as the initial values 

of the corresponding n-f-1 components x21 x3' """ ' xn-f of X for 

the next detection process. 

The conditions for systems 4.1 - 4.5 to achieve error-free detection 

in the absence of noise are now considered. It is recalled that, each 

of the systems 4.1 - 4.4 uses the corresponding iterative process of 

each of 

x3' ... 

xi is 1 

one of 

the systems. 3.1 - 

xn of X in each 

in one of the iter 

these two values of 

3.4 to operate 

of its two ite 

ative processes 

x1 must be the 

over the n-l components x2, 

rative processes. The value of 

and is -1 in the other. Clearly, 

correct value which is the 

value of the data symbol sl. It is shown in appendix A2 that, in the 

absence of noise, all the components of X obtained at the end of the 
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iterative process of any of the systems 3.1 - 3.4 are always equal 

to the corresponding components of the data-symbol vector S. It follows 

that, in the absence of noise, the n-l components x2, x3, """ ,xn 

of X obtained at the end of the iterative process associated with 

the correct value of xl in any of the systems 4.1 - 4.4 must also 

always be equal to the corresponding components of S, so that X=S 

and the associated distance IIR' 
- XYI is always equal to zero here, 

bearing in mind that R' = SY here. Consequently, this vector of X 

(where X= S) is always taken as the detected vector S' of S. and 

thus error-free detection must always be achieved by any of the systems 

4.1 - 4.4 in the absence of noise. 

Similarly, system 4.5 uses the iterative process of system 3.5 

to operate over the n-1 components x2, x3, """ , xn of X in each 

of its two iterative processes having the two possible values of xl. 

It is shown in appendix A3 that, if the inequality of (3.42) is satisfied, 

then in the absence of noise, the components of X obtained at the 

end of the iterative process of system 3.5 are always equal to the 

corresponding components of S. Clearly, if this inequality is satisfied, 

then in the absence of noise, the n-l components x2, x3, """ ,xn 

of X obtained at the end of the iterative process associated with 

the correct value of xl in system 4.5 must also always be equal to 

the corresponding components of S, so that X=S and the associated 

distance II R' - XYII is always equal to zero here. The vector of X for which 

X=S is now always taken as the detected vector S' of S. and hence 

error-free detection is achieved here. Consequently, the condition 

for system 4.5 to achieve error-free detection in the absence of noise 

is the same as that for system 3.5 and is given as the inequality of (3.42). 
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It can be seen from eqns. 3.37,3.41, and 3.50 - 3.53 that one 

of the two iterative processes of each of the systems 4.1 - 4.5 uses 

exactly the same initial vector of X as that of the iterative process 

of each of the respective systems 3.1 - 3.5. Furthermore, each iterative 

process of each of the systems 4.1 - 4.5 operates in the same way as 

the iterative process of each of the respective systems 3.1 - 3.5" 

Consequently, each of the systems 4.1 - 4.5 is likely to have the same 

or higher tolerance to noise in relation to that of each of the respective 

systems 3.1 - 3.5. since. more iterative processes are being used in 

each of the systems 4.1 - 4.5 to search for the possible vector of S 

associated with the smallest value of the Euclidean distance 11 R' SYII. 

Computer simulation tests have been carried out to determine 

the tolerances to Gaussian noise of the systems 4.1 - 4.5 operating 

over channel A (Table 2.1)., and the more promising results of these 

tests are shown in Fig. 3.10 where the results are plotted as bit error 

rate versus signal to noise ratio. The definitions of the bit error 

rate (Pe) and the signal to noise ratio (SNR) here are as given by 

eqns. 3.39 and 3.40 respectively. The 95% confidence limits of the 

results in Fig. 3.10 are about ±0.5 dB. The performance of the optimum 

system described in section 3.3 is also included here so as to show 

the relative performances of the systems 4.1 - 4.5 to this optimum system. 

Table 3.7 also shows the number of sequential operations ns involved 

in each of the systems 4.1 - 4.5 shown in Fig. 3.10, where a sequential 

operation is defined as the operations involved in updating one component 

of X in the iterative process of the given system. It can be seen from 

the descriptions of the operations of the systems 4.1 - 4.5 given previously 

that the number of sequential operations ns involved in the detection 

process is 
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ns = 2(n - 1)(n 
C) 

for each of the systems 4.1 and 4.2, and is 

ns = 4(n - 1)(n 
C) 

for each of the systems 4.3 and 4.4, and is 

(3.54) 

(3.55) 

ns = 2(n - 1)(nc - 1) + 2(f) (3.56 

for system 4.5, where n is the number of sample values {rh} (eqn. 3.2) 

used in the iterative process here, nc is the number of iterative 

cycles, and f is the integer defined in eqn. 3.52 or 3.53. 

Systems Number of Number of 

Iterative Cycles Sequential Operations 

n 
c 

n 
s 

4.1 2 28 

4.2 2 28 

4.3 2 56 

4.4 2 28 

4.5 (f=2) 2 18 

4.5 (f=3) 2 20 

Table 3.7 Number of iterative cycles nc and number of sequential 

operations ns involved in systems 4.1 - 4.5 (Fig. 3.10). 
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Fig. 3.10 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for systems 4.1 - 4.5 operating over 

channel A (Table 2.1). 

Number of iterative cycles nc = 2. 

f: integer defined in eqns. 3.50 and 3.51. 

System 4.1,4.2, or 4.4 
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It can be seen from Fig. 3.10 that, system 4.5 has the best 

tolerance to noise of all the systems studied in this section. Furthermore, 

Table 3.7 shows that, the number of sequential operations involved in 

the detection process of system 4.5 is also fewer than any of those of 

the systems 4.1 - 4.4. System 4.5 is therefore the most promising system 

of all the various arrangements of system 4 studied here. 

It can be seen from Figs. 3.9 and 3.10 that, system 4.5 has a 

better tolerance to noise than that of system 3.5 at low signal to noise 

ratios. As the signal to noise ratio increases, the performance of 

system 3.5 approaches to that of system 4.5 indicating that only one 

of the two iterative processes used in system 4.5 is useful here. 

Modifications are therefore needed to overcome this weakness of system 4.5 

and this leads to the development of system 5. 

Since systems 3.5 and 4.5 have been shown to be the most promising 

systems of all the various arrangements of systems 3 and 4 respectively, 

system 3.5 will from now on be referred to as system 3 and system 4.5 

will from now on be referred to as system 4. Consequently, only the 

arrangement of the iterative process used in system-3.5 or 4.5 will be 

considered in system 5. That is, the iterative process used in system 5 

will start with the sequential operation associated with xn-f+l and end 

with the sequential operation associated with xn in the first iterative 

cycle, and then from xl to xn in each subsequent iterative cycle. 
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3.9 System 5 

It has previously been shown that the iterative process that 

employs the arrangement of Fig. 3.4 is such that, after the n-component 

vector X (eqn. 3.13) has been updated to become a possible vector of 

S, the iterative process then, effectively, proceeds to search for the 

possible vector of S associated with the minimum distance (I R' SYII9 

subject to the constraint that only one component of S can be changed 

at a time. It is this constraint that sometimes prevents the iterative 

process from reaching thb possible vector of S associated with the 

minimum distance. As previous results have shown, the ability of this 

iterative process to obtain the vector X as the possible vector of S 

associated with the minimum distance appears to be dependent critically 

on the initial vector of X used in the iterative process, bearing in 

mind that the tolerance to noise of a system depends to a large extent 

on this ability of the iterative process used in the system at high 

signal to noise ratios. The system that uses an initial vector X0 (of X) 

for which the corresponding n-component vector X0Y is nearer to the 

n-component signal vector SY (eqn. 3.8) is here likely to have a higher 

tolerance to noise at high signal to noise ratios. It therefore appears 

that, the two initial vectors of {XY} used in system 4 may be so far 

apart that at high signal to noise ratios one of them becomes very far 

away from the signal vector SY and is hence very unlikely to be considered 

useful in the detection process. This provides a possible explanation 

to the results shown in Figs. 3.9 and 3.10 where the performance of system 3 

appears to approach that of system 4 at high signal to noise ratios. It 

can be seen from eqns. 3.52 and 3.53 that, the two initial vectors of 

{ fl used in system 4 differ by ±2Y1 and so the distance between them 



- 121 - 

is the Euclidean norm of ±2Y1 and is given by 

21 11±2Y, ll 
-2( Y0 +Y1+ ... +Yn )2 3.57 

where yh =0 for h> g. The n-component vector Y1 here is as defined 

by eqn. 3.9, and y0g yl7 """ 9 yg are the g+l components of the channel 

sampled impulse response. System 5 is a simple development of system 4 

in that the two initial vectors of 
{x} 

are here selected to be separated 

by a distance smaller than that given by eqn. 3.57. The detection process 

of system 5 is otherwise. similar to that of system 4. 

Thus, system 5 uses two separate but similar iterative processes 

in the detection of the data symbol s1. Each of these two iterative 

processes employs the same piece of equipment shown in Fig. 3.4. The 

two initial vectors of 
{X} to be used here are selected to be such that 

o -f+l 
0 .. 0] (3.58) (x )1=[ S2 s3 .. S n-f Sn 
ef Z> 

(Xo)2 S2 s3 sn-f -sn-£+l OF- .. 
1 (3.59) 

f 

and f<g, where s2' s3' sn-f+l are the detected values of the 

corresponding data symbols obtained at the end of the previous detection 

process. Clearly, these two vectors differ only in the value of xn-f' 

and the two corresponding initial vectors 
{X0Y), 

of 
{XY} 

, are here 

separated by a distance of 

1 222 11+2Yn-f 11 
=2( y0 + y1 + ... +yf )2 3.60) 

which is obviously smaller than that given by eqn. 3.57 (for system 4) 

since f<g here. Thus, in the first iterative process of system 5, 

the initial vector of X is set to (X0)1 (eqn. 3.58) and the initial vector 

of Ra (eqn. 3.22) is set to R' - 
(x0)IY 

, where RI is the n-component 

vector defined by eqn. 3.7 and Y is the nxn matrix defined by eqn. 3.9. 
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The iterative process of system 3.5 is then applied here starting from 

the updating process for x1 to that for xn for each iterative cycle 

(except the first iterative cycle where the iterative process operates 

from xn-f+l to xn), using the arrangement shown in Fig. 3.4. The updating 

process for xh (l< h -cn) here includes the evaluation of the quantity 

eh at the output of the network Yh shown in Fig. 3.4, the determination 

of AXh using the threshold device which operates according to Table 3.2 

and eqn. 3.38, and the updating of xh and Ra using eqns. 3.30 and 3.31 

respectively. The iterative process here is terminated when the number 

of iterative cycles exceeds the preset threshold value nc. The distance 

JR' 
- XYII is then measured and stored together with the corresponding 

vector of X. The whole process just described is then repeated for the 

second iterative process but now the initial vector of X is set to (Xo)2 

(eqn. 3.59 and the initial vector of Ra is set to R' - 
(Xo)2Y 

. The 

second iterative process is otherwise the same as the first iterative 

process, and at the end of this second iterative process, the quantity 

IIR' 
- XYII is measured and stored together with the corresponding vector 

X. The vector R' - XY obtained at the end of an iterative process is, 

of course, the vector Ra obtained at the end of the iterative process. 

The detected data-symbol vector S' of S is now taken to be the vector 

of X associated with smaller of the two quantities 
{1R' 

- XYl} . However, 

only the first component s' of S' is accepted as the detected value of 

of S' the data symbol sl. The n-f components s2, s3, "' sn-f+1 

are then shifted one place to the front and used as the initial values 

of the corresponding n-f components xl, x2, """ , xn-f of X for the 

next detection process. 

It can be seen that there are f sequential operations involved 

in the first iterative cycle of any of the two iterative process of system 5' 
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where a sequential operation is here defined to include all the operations 

involved in the updating process for one component of X (Table 3.3). 

Each subsequent cycle then requires I, sequential operations. The total 

number of sequential operations involved in the detection process of 

system 5 is therefore 

ns = 2(n)(nc - l) + 2f (3.61) 

where nc is the number of iterative cycles used in each of the two 

iterative processes of system 59 and f is the integer defined in eqn. 

3.58 or 3.59" 

It can be seen from eqns. 3.41,3.58, and 3.59 that the initial 

vector (X0)l of X used in the first iterative process of system 5 is 

exactly the same as the initial vector of X used in the iterative process 

of system 3.5. Furthermore, system 5 also uses the iterative process 

of system 3.5 to operate over the n components of X in each of its two 

iterative processes. It follows that the vector of X obtained at the 

end of the first iterative process of system 5 is always the same as 

the vector of X obtained at the end of the iterative process of system 3.5, 

for a given vector R' and a given number of iterative cycles nc used 

in the iterative process. The condition (that is, the inequality of (3.42)) 

required to achieve X=S at the end of the iterative process of system 3.5 

in the absence of noise, must therefore also hold for the first iterative 

process of system 5. This means that if the inequality of (3.42 is 

satisfied, then X=S at the end of the first iterative process of 

system 5 so that the corresponding value of 
IIR' 

- XYII is zero here, 

bearing in mind that R' = SY here. Consequently, this vector of X 

(where X= S) is always taken as the detected vector S' of S in system 5 

and error-free detection is hence achieved here. Thus, the condition 



- 124 - 

for system 5 to achieve error-free detection in the absence of noise 

is the same as that for system 3.5 and is as given by the inequality 

of (3.42). 

Computer simulation tests have been carried out to determine 

the tolerance to Gaussian noise of system 5 operating over channel A 

whose sampled impulse response is as given in Table 2.1. The more promising 

results of these tests are shown in Fig. 3.11. The bit error rate (Pe) 

and the signal to noise ratio (SNR) here are as defined by eqns. 3.39 

and 3.40 respectively. The 95% confidence limits of the results here 

are about ±0.5 dB. The optimum system here iss of course, the system 

described in section 3.3. 

It can be seen from Figs. 3.10 and 3.11 that, system 5 performs 

much better than system 4o Furthermore, the tolerance to noise of system 5 

also appears to approach that of the optimum system at high signal 

to noise ratios where the error rates drop below 10-4. The number of 

sequential operations (eqn. 3.61) required in the detection process 

of system 5 with n=2 and f=3 is only 22 which is a small number. 

System 5 therefore appears to be very promising when operating over 

channel A here. 
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Fig. 3.11 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 5 operating over channel A 

(Table 2.1). 

B) 

Number of iterative cycles nc = 2. 

f: integer defined in eqns. 3.58 and 3.59- 

10 14 18 22 
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3.10 System 6 

System 6 is a further development of system 5 in that, it uses 

three separate but similar iterative processes (instead of two) in the 

detection of the data symbol sl. Each of these three iterative processes 

employs the same piece of equipment shown in Fig. 3.4. The first two 

iterative processes here are exactly the same as the two iterative 

processes used in system 5. The third iterative process uses the same 

initial vector of the n-component vector X used in any of the systems 

3.1 - 3.4. 

Thus, in each of the first two iterative processes of system 6, 

the initial vector Xo, of X, is first set to the vector given by eqn. 3.58 

(for the first iterative process) or eqn. 3.59 (for the second iterative 

process). The initial vector of Ra (eqn. 3.22) is then evaluated as 

R' - X0Y. The iterative process of system 3.5 is then applied here, 

starting from the updating process for x1 to that for xn for each iterative 

cycle (except the first iterative cycle where the iterative process 

operates from xn-f+l to xn), using the arrangement shown in Fig. 3.4" 

At the end of the iterative process when the number of iterative cycles 

exceeds the preset threshold value nc, the quantity II R' - XYII is measured 

and stored together with the corresponding vector of X. The whole process 

just described is then repeated for the third iterative process but 

now the initial vector of X is set to that given by eqn. 3.379 and the 

first iterative cycle now involves only the updating process for xn. 

This third iterative process is otherwise the same as any of the first 

two iterative processes, and at the end of the iterative process, the 

quantity 
OR' 

- XYII is measured and stored together with corresponding 

vector of X. The detected vector S' of S is now taken to be the vector 

of X associated with the smallest value of II R' - XYII. However, only the 

first component of S' is accepted as the detected value of the data symbol sl 
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The last n-l components s s3, """ , sn of S' are then shifted one 

place to the front and used as the initial values of the corresponding 

n-1 components x1, x2, """ 9 xn-1 of X for the next detection process. 

It can be seen from the detection process just described that, 

the total number of sequential operations involved here is 

ns =2 
(n)(nc 

- l) +f+ (n)(nc 
- l) +1 (3.62 

where nc is the number of iterative cycles used in each of the three 

iterative processes here, and f is the integer defined in eqn. 3.58 or 3.590 

A sequential operation here is defined to include all the operations 

involved in the updating process for one component of X (Table 3.3). 

Following the same arguments given in appendix A2, it can be shown 

that in the absence of noise, the vector of X obtained at the end of 

the third iterative process here is always equal to the data-symbol vector S, 

bearing in mind that this iterative process uses the same initial vector 

of X as that used in the iterative process of any of the systems 3.1 - 3.40 

Consequently, the quantity (IR' 
- XYII associated with the third iterative 

process of system 6 is always equal to zero here, and the corresponding 

vector of X (where X= S) is hence always taken as the detected vector S' 

of S here. This means that, system 6 is always able to achieve error-free 

detection in the absence of noise. 

Computer simulation tests have been carried out to determine 

the tolerance to Gaussian noise of system 6 operating over channel A 

(Table 2.1)q and the results are shown in Fig. 3.12. The 95% confidence 

limits of these results are about ±0.5 dB. The bit error rate and the 

signal to noise ratio here are as defined by egns. 3.39 and 3.40 respectively 

The optimum system shown in Fig. 3.12 is the system described in section 3.3. 
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It can be seen from Figs. 3.11 and 3.12 that, system 6 has a 

very similar tolerance to noise as that of system 5 when operating 

over channel A (Table 2.1). The inclusion of the third iterative process 

in system 6 therefore does not seem to improve its performance here. 

Nevertheless, system 6 requires more sequential operations than that 

required in system 5, as can be seen from eqns. 3.61 and 3.62. System 6 

therefore appears to be less preferable than system 5 when cperating 

over channel A, since it requires more sequential operations but has 

about the same tolerance to noise as that of system 5. 
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Fig. 3.12 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 6 operating over channel A 

(Table 2.1). 

B) 

nc : number of iterative cycles. 

f: integer defined in eqns. 3.50 and 3.51. 

10 14 18 22 
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3.11 System 7 

System 7 is a. further development of system 6 in that, it uses 

four separate but similar iterative processes (instead of three) in 

the detection of the data symbol 

uses the same piece of equipment 

iterative processes here are the 

processes of system 6. The fourt 

the following initial vector for 

t Xo = -sr 2 -s3 ... 

where s2, s3, """ ' sn are the 

data symbols obtained at the end 

s Each iterative process here again 

shown in Figo 3.4. The first three 

same as the respective three iterative 

a iterative process, however, uses 

X (eqn. 3.13) 

-sn 0I (3.63) 

detected values of the corresponding 

of the previous detection process. 

This initial vector of X will be further discussed shortly. 

Thus, in each of the first two iterative processes of system 7, 

the initial vector of X is first set to the vector given by eqn. 3.58 

(for the first iterative process) or eqn. 3.59 (for the second iterative 

process )9 and the initial vector of Ra (eqn. 3.22) is then set to the 

corresponding vector of R' - XY here. The iterative process of system 3.5 

is then applied here, starting from the updating process for xl to 

that for xn for each iterative cycle (except the first iterative cycle 

where the iterative process operates from xn-f+l to xn), using the 

arrangement shown in Fig. 3.4. At the end of the iterative process 

(when the number of iterative cycles exceeds the preset threshold value ne), 

the quantity 11 R' - XYII is measured and stored together with the corresponding 

vector of X. Each of the third and fourth iterative processes is the 

same as any of the first two iterative processes just described except 

that, the initial vector of X is here set to that given by eqn. 3.37 

(for the third iterative process) or eqn. 3.63 (for the fourth iterative 
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process), and the first iterative cycle here involves only the updating 

process for xn. There are now four vectors of 
l X} obtained at the end 

of the four iterative processes here, and the detected vector S' of S 

is now taken as the vector of X associated with the smallest value of 

IIR' 
- XYII. However, only the first component of S' is accepted as the 

detected value of the data symbol sl. The last n-l components s2, s3' 

"""ý s' of S' are then shifted one place to the front and used as the 

initial values of the corresponding n-i components x1' x27 """ ' xn-1 

of X for the next detection process. 

It can be seen from the descriptions given above that, the total 

number of sequential operations involved in the detection process of 

system 7 is 

ns =2 (n)(nc 
- l) +f+2 (n)(nc 

- 1) +1 (3064) 

where nc is the number of iterative cycles used in each of the three 

iterative processes here, and f is the integer defined in eqn. 3.58 

or 3.59. A seque_tial operation here is defined to include all the 

operations involved in the updating process for one component of X. 

It has been shown before that, in the absence of noise, the vector 

of X obtained at the end of the third iterative process here is always 

equal to the data-symbol vector S and is always taken as the detected 

vector of Sq bearing in mind that this iterative process is exactly the 

same as the third iterative process used in system 6. It therefore follows 

that, system 7 is always able to achieve error-free detection in the 

absence of noise. The fourth iterative process of system 7 is selected 

based on the following reason. In the detection of the data-symbol vector 

S, the iterative process here operates on the n-component vector R' to 
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determine, in turns the values of the n components sly s2' """ ' sn 

of S. When a component of S is incorrectly determined, its intersymbol 

interference in the determination of another component of S is doubled 

instead of being removed. Thus, if the detected value s2, of s2, is 

determined with error, then it is very likely that this error will 

propagate so that some of the components s s4, """ , sn of the 

detected vector S' of S are now different from the corresponding components 

of S. In the special case when all the values of s2, s3, """ , sn 

are detected with errors so that s2 = -s2, s3 = -s3, """ 7 sn = -sn, 

then the first n-1 components of the initial vector of X used in the 

fourth iterative process of system 7 (eqn. 3.63) become exactly the 

same as the corresponding components of S. In this case, it is very 

likely for this iterative process to obtain the vector X as the possible 

vector of S associated with the minimum distance 11R' 
- SYII, since the 

iterative process here is non-divergent. It is, of course, not very 

likely that all the components of S are detected with errors at high 

signal to noise ratios. However, it appears intuitively that so long 

as most of the components of S are detected with errors at the end 

of a detection process, then the fourth iterative process of system 7 

is likely to obtain, in the next detection process, a vector of X that 

has the smallest value of IIR' 
- XYII as compared to those obtained by 

the first three iterative processes of system 7. Consequently, the 

tolerance to noise of the system may be improved by the inclusion of 

this fourth iterative process which uses the n-component vector given 

by eqn. 3.63 as the initial vector of X. 

Computer simulation tests have been carried out to determine 

the tolerance to Gaussian noise of system 7 operating over channel A 
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(Table 2.1), and the results of these tests are shown in Fig. 3.13. 

The bit error rate and the signal to noise ratio here are as defined by 

egns. 3.39 and . 340 respectively. The 95% confidence limits of these 

results are about ±0.5 dB. The performance of the optimum system 

described in section 3.3 is also included here. 

As Figs. 3.11 and 3.13 show, there is no significant difference 

between the tolerance to noise of system 7 and that of system 5. The 

inclusion of the additional third and fourth iterative processes in 

system 7 therefore appears to be ineffective over channel A (Table 2.1). 

Clearly, the use of more than four iterative processes in the 

detection process for sl will further increase the number of sequential 

operations involved here. The maximum possible improvement in the tolerance 

be 
to noise toA gained over systems is, however, very small for channel A 

(Table 2.1) as is shown in Fig. 3.11. As a result of this, no further 

investigations have been carried out to study the effects of using more 

iterative processes in the detection process for s1. 

The following systems in this chapter differ from systems 1-7 

in that the networks 
fYT} 

shown in Fig. 3.4 are now replaced by some 

other networks 
fZTý for the iterative process used in each of these 

systems. Two different sets of 
{z } have been developed and studied, 

and are described in the following sections. The modified block diagram 

of Fig. 3.4 is as shown in Fig. 3.14. The basic operations of these 

systems are otherwise similar to those of the systems 1-7. 
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Fig. 3.13 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 7 operating over channel A 

(Table 2.1). 

B) 

n: 
c 

number of iterative cycles, 

f: integer defined in egns. 3.58 and 3.59" 
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3.12 System 8 

System 8 is a modification of system 1. The modification here 

is such that the iterative process to be used in the system now employs 

the arrangement shown in Fig. 3.14 which is obtained from Fig. 3.4 

by replacing the networks 
{ 

Yh } by some other networks 
{ 

Zh The n 

n-component vectors ZV Z2ý """ Zn corresponding to the n networks 

{Zhj 
of Fig. 3.14 are here derived from the n n-component vectors 

Yl' Y2' """ ' Yn by using the Gram-Schmidt orthogonalisation process, 

where the {Yh} 
are as defined by eqn. 3.9. It is reminded that ZT is 

the transpose of the row matrix Zh and that a row matrix is also 

treated as a vector in this thesis. Thus, a set of n n-component vectors 

is first evaluated in the orthogonalisation process as 

1 
y1 

1 T 
z2 = Y2 

2 
Y2ýZ1) Zl 

1T1T 
Zn Yn 

(I Z' 
2 

Yn(Zn-1) Zn-1 
Z' II 2 

Yn(Z1) Z1 3.65 

n-1 1 

where 
IIZhll is the Euclidean norm or length of the vector Z. The n 

n-component vectors Zl' Z2' """ Zn are then evaluated as 

Z=�h (3.66) 

for h=1,2, """ , n. Clearly, Zl, Z2, """ 7 Zn are all unit vectors 



- 137 - 

so that 

Zh(Zh) 
T° II Zh 112 

=1 (3.67 

for h=1,2, """ , n. Furthermore, the orthogonalisation process 

of eqn. 3.65 necessarily ensures that(E5) 

Zh(Zý)T =0 for hj (3.68) 

so that from eqn. 3.66, 

Zh(Zj) =0 for h/j (3.69 

This means that, the n vectors Z1, Z2, """ , Zn derived here form 

a set of orthonormal vectors. Another interesting property of these 

{z } 
can be derived from eqn. 3.65 (appendix A4) and is 

Yi (7, 
h)T =0 

>0 

if j<h 

if j=h (3.70) 

for h= l1 29 """ I n. This implies that Zh is orthogonal to 

Yl' Y2' -' Yh-1 and that 

Yh(Zh)T = 
IYh(Zh)T >0 (3.71) 

for h=1,2, """ , n. The operation of the detection process of 

system 8 is now described as below. 

In the detection of the data symbol s1 from R' (egns. 3.5 - 3.9), 

system 8 uses an iterative process that has the arrangement shown in 

Fig. 3.14. The n-component vector Ra at the input to the networks 
{Zh} 

is as defined by eqn. 3.22 to be R' - XY, and the n quantities at the 

T 
n outputs of the corresponding networks 

{Zh} 
are here given by 
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eh = 
(R' 

- X')ZT = Rath 
T (3.72) 

for h=1,2, ""- ,n where X is the n-component vector defined by 

eqr_. 3.13, and Y is the nxn matrix defined by eqn. 3.9. The { zh) 

here are of course the n n-component vectors derived by using eqns. 

3.65 and 3.66, bearing in mind that Zh is the transpose of Zh. Two 

different arrangements of this iterative process are investigated in 

systems 8.1 and 8.2, and are described as below. 

System 8.1 

The n components x1' x2, """ ' xn of the vector X shown`in 

Fig. 3.14 are initially set to zero, so that the initial vector of 

Ra (eqn. 3.22) now becomes the n-component vector R' (eqn. 3.7). Having 

set the n components of X and Ra to their respective initial values, 

the iterative process of system 8.1 now operates as follow. The value 

of e1 (eqn. 3.72 is first evaluated at the output of the network ZT 

shown in Fig. 3.14. This value of e1 is then compared with its associated 

thresholds ±t1 to give the value of Axl I where tl is a positive 

quantity to be described shortly, and Axl is the increment involved 

in the value of x1 (eqn. 3.26). The value of Ax 
1 

is here determined 

according to the decision rule given in Table 3.1. The value of x1 is 

then updated (adjusted by using eqn. 3.30, as the sum of its previous 

value and the value of Axt. The vector Ra is then updated by removing 

from it all components of (Ax1Yl) (eqn. 3.31). Having updated xl and 

Ra, the value of e2 is next evaluated at the output of the network Z2 

shown in Fig. 3.14. The value of Axt is then determined according to 

Table 3.1. The value of x2 and the vector Ra are then updated by using 

eqns. 3.30 and 3.31 respectively. The iterative process continues to 

operate in this way with the sequential adjustment (updating) of x3 to xn, 
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using the arrangement of Fig. 3.14. This completes the first iterative 

cycle of the iterative process here. Each subsequent iterative cycle 

operates in the same way as for the first iterative cycle except that 

Table 3.2 (instead of Table 3.1) is now used to determine the value of 

Axh (1 ;h *n) in the updating process for xh. 

In the iterative process of system 8.1 just described, a counter 

is used to count the number of iterative cycles. When the counter 

exceeds a given threshold nc3 the iterative process is terminated and 

the value of x1 is then taken as the detected value of the data symbol sl. 

System 8.2 

System 8.2 is only slightly different from system 8.1 in that, 

the iterative process here now begins with the updating process for xn 

and works towards xl for each iterative cycle. This system is otherwise 

the same as system 8.1 which operates from xl to xn for each iterative 

cycle. 

Four different versions of the values of 
{thl to be used to 

determine the corresponding values of 
{Axt} (Table 3.1 or 3.2) in the 

iterative process of each of the systems 8.1 and 8.2 are considered 

and are as given in Table 3.8. 

It is shown in appendix A5 that, divergence can occur in the 

iterative process of any of the systems 8.1 and 8.2, so long as the 

networks 
{Zh} 

shown in Fig. 3.14 are not the same as the networks 
{Yh} 

used in Fig. 3.4. Divergence is defined to have occurred when the 

Euclidean distance I) R' - XYII increases during the iterative process, 

bearing in mind that, under the various conditions assumed here, the 

vector of X (being here a possible vector of S) that has the minimum 
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value of IIR' 
- XYI is the possible vector of S most likely to be 

correct in the detection process for S. Nevertheless, it can be shown 

(appendix A6) that, so long as the number of iterative cycles nc used 

in the iterative process of any of the systems 8.1 and 8.2 is 

sufficiently large, then error-free detection in the absence of noise 

can always be achieved by any of the systems 8.1 and 8.2. 

All 
Versions Ist Cycle 2nd Cycle Subsequent 

Cycles 

a 0 Yh(Zh I Yh(Zh)I 

b 4IYh(Zh) I 
IYh(Zh)F if xh ±l IYh(Zh) I 

0 if 'h= 0 

c IYh(Zh)) Yh(Zh)I if xh±l IYh(Zh)I 

0 if xh= 0 

d IYh(Zh)I IYh(Zh)l if xh ±l IYh(Zh)I 

0 if xh= 0 

Table 3.8 Four different versions of threshold values 
{th}, for 

h=1,2, "" 9 n, to be used to determine the values of 
{Axh} (Table 3.1 or 3.2) in the iterative process of 

each of the systems 8.1 and 8.2. 
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It can in fact be shown that the tolerance to noise of system 8.1 

is the same as that of system 8.2 when a sufficiently large number of 

iterative cycles is used in each of these systems. This is given as follow. 

It can be seen from egns. 3.8 and 3.72 that, the value of eh used in 

the updating process for xh here may be reduced to 

eh (SY 
- XY) Zh + WZh 

T_ (s1 - xl)Ylzh + (s2 - x2)Y2Zh + ... 

+ (sn - xn)YnZT + Wh (3073) 

for h=1,2, "- ,n where wh , being equal to WZh , is the noise 

component here. Since the components of W (eqn. 3.6) are Gaussian random 

variables with zero mean and variance 62, it can be shown"9)that wh 

is also a Gaussian random variable with zero mean and variance 62 IIZh112 or 

d2, bearing in mind that OZhII 
=1 here (eqn. 3.67). By using the property 

of (3070, eqn. 3.73 can be further reduced to 

eh = 
(sh 

- xh)IYhZ 
Thl 

+ (sh+l xh+l)Yh+lZ 
Th+... 

+ (sn 
- xn)YnZh + Wh (3.74) 

for h= l1 21 "" 9n where 
IYhZhj is the absolute value of the scalar 

quantity YhZh. Clearly, the value of eh here is independent of the 

values of xl' x2' """ ' xh-l. It follows that the set of orthonormal 

vectors 
{Zhj (eqns. 3.65 and 3.66 used here effectively removes from eh 

the intersymbol interference components associated with sly s2' """ ' sh-l' 

bearing in mind that the detected value of sh is here determined as the 

the value of xh from eh. In the following analysis, it is more convenient 

if eqn. 3.74 is rearranged to become 

n 

eh = 
(-xh)lYhZhl + Sh YhZh + (sk 

- xk) Ykzh + wh 
k=h+l 

_ (-xh) YhZh I+ Vh 
( 3.. 75 
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where 

vh = shlYhZhl +n (sk 
- xk)YkZh + wh (3.76) 

k=h+l 

for h=1,2, -- , n. Two cases may now occur in updating the value 

of xh from eh here. In the first case, the values of sh' sh+l' "" ' Sn' 

xh+l' xh+2' ". 7 xnl and wh are such that 

vh 0 (3.77) 

and in the second case, these values are such that 

Vh o (3.78) 

where vh iss of course, as defined in eons. 3.75 and 3.76. Assuming 

that the value of xh is here updated by using Table 3.2 which is used 

in the second and subsequent iterative cycles of the iterative process 

of any of the systems 8.1 and 8.2. Thus, it can be seen from egns. 3.30, 

3.75, and Tables 3.2,3.8 that, the values of xh and eh before and 

after the updating of xh for the two cases considered here (egns. 3.77 

and 3.78) can be summarised in Table 3°9. It can now be seen from 

Table 3.9 that, the updated value of xh is entirely determined by the 

value of dh except for the case when xh =1 and vh = 0. However, the 

case of vh =0 is very unlikely to occur and is thus neglected in 

the analysis here. Thus, if vh > 0, then the updated value of xh is 

always equal to 1, and if vh ; 0, then the updated value of xh is always 

equal to -1. Furthermore, it can be seen from eqn. 3.75 that, given 

the values of sh' sh+l' "" ' sn and wh, the value of vh is entirely 

determined by the values of xh+l' xh+2' "" ' xn. It therefore follows 

that, given the values of sh' sh+l, "" , sn and wh , the updated 
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value of xh (Table 3.9) is also entirely determined by the values of 

xh+l' xh+2' ý. xn. Clearly, given the values of sn and wn , the 

updated value of xn here must always remain to be unchanged in the 

subsequent updating processes for xn because the value of vn, being 

equal to snIYnZnl + wn , is always unchanged during the iterative 

process here. For convenience, the value of xh that remains to be 

unchagned in the subsequent updating processes for xh is here referred 

to as the steady-state value of xh, for h=1,2, "" , n. Thus, having 

set the value of xn to its steady-state value, the next updated value 

of xn-1 (Table 3.9) must now always be equal to the steady-state value 

of xn-l, because the updated value of xn-1 is here determined entirely 

by the value of xn. Similarly, having set the values of xn and xn-l 

to their respective steady-state values, the next updated value of 

xn-2 must now always be equal to the steady-state value of xn-21 since 

the updated value of xn-2 is here determined entirely by the values of 

xn and xn-l. This argument can, of course, be applied to the updated 

values of xn-3, xn-4, "" , xl. Consequently, all the values of 

xl, x2, "" , xn will eventually be set to their respective steady- 

state values regardless of what their initial values (before the iterative 

process begins) are and whether the iterative process here operates 

from xl to xn or from xn to xl for each iterative cycle. This obviously 

means that the various versions of systems 8.1 and 8.2 must always 

have the same tolerance to noise in the detection process for s19 so 

long as a sufficiently large number of iterative cycles is used here. 

Thus, after the number of iterative cycles used in the iterative 

process here has exceeded a certain threshold value, all the values of 

xl, x2, "" , xn will have been set to their respective steady-state 

values and will from then on remain unchanged in the subsequent iterative 
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cycles. The maximum number of iterative cycles required to set all 

the values of xl, x2, "" , xn to their respective steady-state values 

can be derived from the arguments described above for each of the 

various versions of systems 8.1 and 8.2, and is as given in Table 3.10. 

For example, when system 8.1 with version d (Table 3.8) is considered, 

Tables 3.2,3.8, and 3.9 suggest that the value of xn is set to its 

steady-state value by the end of the second iterative cycle. The updated 

value of xn-l in the third iterative cycle is therefore always equal 

to its steady-state value since the value of xn is now the steady-state 

value of xn, bearing in mind that the updated value of xh (l, h; n) 

is here determined entirely by the values of xh+l' xh+2' ** ' xn' 

Similarly, the updated value of xn-2 in the fourth iterative cycle 

must always be equal to its steady-state value since the values of 

x and x are now equal to their respective steady-state values. 
rJ n 

The argument just described can be applied to xn-3, xn_4, "" , xl 

and consequently, all the values of xl, x2, "" , xn must have been 

set to their respective steady-state values at the end of the (n+l)th 

iterative cycle as is shown in Table 3.10. Thus, the tolerance to noise 

of system 8.1 with version d will not be changed by increasing the 

number of iterative cycles used in the iterative process of the given 

system beyond the value of n+l. It is, of course, possible for all the 

values of xl, x2, "" , xn to be set to their respective steady-state 

values before the number of iterative cycles reaches that given in 

Table 3.10. Fig. 3.15 shows the number of errors in the detection of 

100 transmitted data symbols 
¬si} in the absence of noise, for the 

various versions of system 8.1 operating over channel A (Table 2.1). 

As it appears, the minimum number of iterative cycles required to be 

used in the iterative process of any of the various versions of system 8.1 
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to give error-free detection here is 7 which is smaller than the 

corresponding value given in Table 3.10, as can be expected from the 

analysis described above. 

Computer simulation tests have been carried out to determine 

the tolerances to Gaussian noise of the various versions (Table 3.8) 

of systems 8.1 and 8.2 operating over channel A (Table 2.1), assuming 

the data-transmission system shown in Fig. 2.1. The results of the 

simulation tests here are shown in Fig. 3.16. The 95% confidence limits 

of the results shown in Fig. 3.16 are about ±0.5 dB. The bit error 

rate and. the signal to noise ratio here are as defined by egns. 3.39 

and 3.40 respectively. The optimum system here iss of course, the 

system described in section 3.3. 

The results shown in Fig. 3.16 obviously agree with the analysis 

given previously. That iss all the various versions of systems 8.1 and 

8.2 have the same tolerance to noise. The tolerance to noise of the 

system employing the iterative process shown in Fig. 3.14 where the 

{Zh} 
are derived by using egns. 3.65 and 3.66 is therefore independent 

of whether the iterative process operates from xl to xn or from xn to xl. 

However, as Fig- 3.16 shows, the tolerance to noise of any of the systems 

8.1 and 8.2 is very much poorer than that of the optimum system. One 

possible reason to this poor performance of any of the systems 8.1 and 

8.2 is given as follows, It is recalled that the iterative process of 

the system here is such that, for given values of sl' s2' "" , sn, and 

wl, w2, "" , wn 9 the steady-state value of xh is entirely determined 

by the steady-state values of h+l' xh. 
+2' 

"" 9 xn , for h= 19 2, "" , n. 

The value of xh is here determined from the value of eh given by eqn. 

3.74. Clearly, in determining the value of xh from eh here, the probalility 

of xh being set to the correct value (that iss xh = sh) is dependent 
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not only on the magnitude of the signal component shYhZh, but also on 

the probabilities of xh+l' xh+2' "" ' xn being equal to the corresponding 

values of sh+l' sh+2' "" , sn , for a given noise component wh. It 

therefore appears that, for a given set of noise components 
{wh} 

, the 

probability of sl being equal to its detected value or the steady-state 

value of x1 is here likely to be dependent to a large extent on the 

' "" ' magnitudes of the corresponding signal components s1Y1Z1T ' s2Y2Z2T 

snYr_ZT in el, e2, "" , en. That is, the larger the magnitudes of these 

signal components, the lower may be the probability of sl being detected 

with error (where an error here means xh ý sh). Furthermore, it seems 

likely that by eliminating from the eh of eqn. 3o73 the intersymbol 

interference components associated with sl, s2, "" , sh-1 to give the 

eh of eqn. 3.74 used here, the magnitude of the resultant signal component 

srYhZT of eh may become very small for a given noise level of wh , for 

h=1,2, "" , n. Consequently, the magnitudes of the signal components 

s1Y1Z1' s2Y2Z2' "" ' snYnZn here are so small that the probability of 

sl being detected with error is now very high leading to the poor performance 

of any of the systems 8.1 and 8.2 shown in Fig. 3.16. 

Thus, the various versions of systems 8.1 and 8.2 studied here 

do not appear to have a useful tolerance to noise when operating over 

channel A (Table 2.1) despite have the many interesting properties 

described in this section. 
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Previous Values Threshold 
T l 2 

Updated Values 
( ) ab e 3. 

xh eh th xh eh 

-1 + YhZh hl 1 YhZhl I 

v>0 h 0 0 0 1 -IYhZhl 

1 IYhZhl IYhZhI 1 YhZhi 

-1 +IYhZhI 
IYhZhI 

-1 +IYhZhI 

vh ;0 0 0 0 -1 +IYhZhI 

1 -ýYhZhl YhZhl -1 +IYhZhi 

1 -II 
I YhZh l 1 -I YhZh 

Table 3.9 Values of xh and eh before and after the updating of xh 

for h=1,2, ", n in the second and subsequent 

iterative cycles of the iterative process of system 8. 

vh is as defined by egns. 3.75 and 3.76. 

Versions System 8.1 System 8.2 
(Table 3.8) 

a n 1 

b n+1 2 

c n+1 2 

d n+1 2 

Table 3.10 Maximum number of iterative cycles required in the iterative 

process to set all the values of x1, x2, "" I xn to their 

respective steady-state values. n=8 in this thesis. 
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Fig. 3.15 Number of errors (ne) in the detection of 
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are transmitted over 

channel A (Table 2.1) in the absence of noise. 
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Fig. 3.16 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 8 operating over channel A 

(Table 2.1). 

Number of iterative cycles no = 7,8,9, or 10 for system 8.1, 

and no =- 2,3,4, or 5 for system 8.2. 
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3013 Systems 9- 11 

The systems to be developed and studied in this section are 

modifications of system 8. The iterative process used in each of these 

systems employs the arrangement shown in Fig. 3.14 where the networks 

{z } here are not now derived from the Gram-Schmidt orthogonalisation 

process but are derived as follow. 

Before proceeding to derive the networks 
{zh} to be used in any 

of the systems 9- 11, consider first the mechanism that leads to the 

poor performance (Fig. 3.16) of system 8. In the iterative process of 

Fig. 3014, the detected value of the data symbol sh (1 h; n) is determined 

as the value of xh from the value of eh given, in general, by egno 3.73. 

The networks 
{Zh} 

used in system 8 are such th; 

components associated with sl' s2' sh-1 

that eh is now given by eqn. 3074. However, it 

these intersymbol interference components from 

at, the intersymbol interference 

are removed from eh so 

appears that by removing 

eh, the magnitude of the 

signal component shYhZh is reduced to be so small (in relation to the 

magnitude of the noise component wh) that the overall tolerance to noise 

of the system now becomes very poor as is shown in Fig. 3.16. It therefore 

appears that, in order to maximize the tolerance to noise of the system 

here, the networks 
{Zh} (Fig. 3.14) should be selected to be such that 

the magnitudes of the intersymbol interference components in eh are minimized 

and the magnitude of the signal component in eh is maximized, for a given 

noise level in eh. This is the basis of systems 9- llo 

Thus, eqn. 3.73 may be rearranged to become 

eh = 
(sh 

- xh)YhZh + Ih + Wh (3.79) 

n 
where Ih =T 

(sk 
- xk)YkZh (3.80) 

k=l 
k/h 

for h= l1 2y "" 9 n. In eqn. 3.797 (sh 
- xh)YhZh is the signal 
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component, Ih is the intersymbol interference component, and wh is the 

noise component. In determining the detected value of sh, as xh, from 

the value of eh here, it is desirable that the relative magnitude of 

the signal component and the intersymbol interference component in eh 

is maximized, for a given noise level. That is, it is desirable to 

maximize the quantity 

n 

h k_1 h 
(3.81) d_h 

_ 
I(sh Xh)YhZTI -I 

Y- (sk Xk)YkZTI - 

k/h 

with the constraint that IIZhll 
= 1, for h=1,2, "" , n. The constraint 

2 
here is to ensure that the noise components 

{wh} have a fixed variance 6 

regardless of what the networks 
jZh} 

are, bearing in mind that the {wh} 

are Gaussian random variables with zero mean and variance 82 AZh112 

Eqn. 3.81 can be rearranged to become 

T 
dh = mhlYhZhI 

nT E 
mklYkZh 

k=1 
k/h 

(3.82) 

for h=1,2, "" ,n where the value of mj is either equal to (si 
-x 

or -(s. -xJ . 
). It is, however, very difficult to maximize the quantity 

given by eqn. 3.82 because it is a nonlinear function of the vector Zh. 

Furthermore, since the values of 
{(s. 

- x. )} vary from time to time 

during the detection process here, the vector Zh that maximizes the value 

of dh here (eqn. 3.82) must also be different during the detection process 

and this necessarily complicates the operations required in the iterative 

process here. Consequently, an alternative expression for dh is proposed 

in this thesis as dh where 
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dh = (YhZ T 
h) 

2 22 
- m0 

k-1 

(YkZ 
h) 

k/h 

(3.83) 

for h=1,2, "" ,n and the same constant value m2 is now used 

for all the {z 
h) and for the whole of the detection process here. The 

constant m2 will be further discussed shortly. 
0 

Thus, the n-component vector Zh to be used in the iterative 

process (Fig. 3.14) of any of the systems 9- 11 is here selected to 

maximize the value of dh, given by eqn. 3.83 for a given value of m2 

and with the constraint that (IZhIl 
=1 

(or ZhZh = 1). Eqn. 3.83 can 

be rearranged to become 

dh = Zh (YT 
hYh 

2nTT 
- mo E YZk ) Zh 

k=l 
k/h 

= Zh ( Ah ) Zh (3.84) 

T2T 
Ah = YA - mo 

z YkYk 
k 

(3.85) 

kýh 

for h=1,2, -- ,n where Ah is obviously a nx n symmetric square 

matrix. The Lagrange multipliers 
(E5) 

can now be applied to maximize 

the value of dh here with the constraint that ZhZh = 1. This is done 

by defining a function fh to be 

fh= dh + ßh(1 - ZhZT) 

Zh (Ah) Zh +A h(1 - ZhZh) (3.86) 

where xh is a constant value. Differentiating fl 
h with respect to Zh 
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and setting the resulting expression to zero gives 

Zh Ah = ý"h Zh (3087) 

where 'X h and Zh are obviously the eigenvalue and eigenvector of the 

square matrix Ah. The corresponding value of dh now becomes 

dh = Zh (Ah) ZT 
h 

T 
_ Zh Xh Zh 

Xh (3.88) 

which is the eigenvalue of the matrix Ah. Since there are altogether 

n sets of eigenvalues and eigenvectors for the nx n square matrix Ah, 

the vector Zh that maximizes the function dh is the eigenvector of 

Ah associated with the largest eigenvalue. Furthermore, it can be seen 

that eqn. 3.87 that there are two eigenvectors Zh and -Zh associated 

with an eigenvalue of Ah. The vector Zh to be used here is selected to 

be the eigenvector that gives 

YhZh = 
IYhZhI >0 (3.89) 

Thus, the n-component vector Zh to be used in the iterative process 

(Fig. 3.14) of any of the systems 9- 11 is selected as the eigenvector 

of Ah (eqn. 3.85) associated with the largest eigenvalue and with the 

constraints that IlZhll= 1, YhZh = 
IYhZhI, where Yh is the n-component vector 

defined by eqn. 3.9. This is carried out for h=1,2, "" , n, so that 

all the n n-component vectors 
{Zh} to be used here are derived according 

to the method just described. 
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The constant m2 to be used in eqn. 3.83 for the selection of Zh 

is now discussed. Ideally, the value of m2 should be such that when the 

value of dh (eqn. 3.83) is maximized, the value of dh (egno 3.82) is 

also maximized. Although, in general, it does not seem to be possible 

to have such a value of m2, it appears (by inspecting egns. 3.82 and 3.83) 

that the optimum value of m0 should have the same order of magnitude as 

that of the value of mk (l, k-< n). Since the value of mk, being equal 

to ± (sk 
- xk), can be any of the values ±2, ±1,0, the value of m 

0 

considered in this thesis is confined to be between 1 to 3. 

Having described the selections of the n n-component vectors 
1Zhl 

to be used in the iterative process (Fig. 3.14) here, the operation of 

each of the systems 9- 11 is now described as below. 

System 9 

System 9 is a simple modification of system 8.1 and it uses the 

iterative process of Fig. 3.14 where the networks{Zh} here are derived 

by using the Lagrange multipliers described previously. Thus, this 

system operates by first setting the initial values of the n components 

xl, x2, """ , xn of the vector X (eqn. 3.13) to zero. The initial vector 

of Ra (eqn. 3.22) is next set to the corresponding vector of R' - XY, 

where R' is the n-component vector defined by eqn. 3.7 and Y is the 

nx n matrix defined by eqn. 3.9. Having set the n components of X and 

Ra to their respective initial values, the iterative process of system 9 

now operates as follow. The value of e1 (eqn. 3.72) is first evaluated 

at the output of the network Z1 shown in Fig. 3.14. The value of Axl 

is then determined from this value of e1 according to the decision 
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rule given in Tables 3.1 and 3.8. The value of xl and the vector Ra are 

then updated by using eqns. 3.30 and 3.31 respectively. Having updated 

the value of xl and the vector R, the value of e2 is next evaluated at 

the output of the network ZT shown in Fig. 3.14. The value of p` is then 

determined according to Tables 3.1 and 3.8. The value of x2 and the vector 

Ra are then updated by using egnso 3.30 and 3.31 respectively. The 

iterative process continues to operate in this way with the sequential 

adjustment (updating) of x3 to xn, using the arrangement shown in Fig. 30140 

This completes the first iterative cycle of the iterative process here. 

Each subsequent iterative cycle operates in the same way as for the first 

iterative cycle except that Table 3.2 is now used in place of Table 3.1 

to determine the value of Axh (l, h; n) in the updating process for xh. 

In the last iterative cycle' however, only the updating process for xl 

is carried out and the value of xl obtained here is then taken as the 

detected value of the data symbol s1. 

In the iterative process of system 9 just described, a counter is 

used to count the number of iterative cycles and when it exceeds a preset 

threshold value, the iterative process is switched to its last iterative 

cycle before it is terminated. 

If a sequential operation is taken to include all the operations 

involved in the updating process for a component of Xý then it can be seen 

from the descriptions given above that the total number of sequential 

operations involved in the detection process for sl in system 9 is 

ns = (n)(nc - 1) +1 (3.90) 

where n is the number of iterative cycles used in the iterative process 
c 

here. 
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System 10 

System 10 is a modification of system 9, in that it uses two separate 

but similar iterative processes (instead of one in system 9) in the 

detection of the data symbol sl from R' (egns. 3.5 - 3.9). Each of these 

two iterative processes employs the same piece of equipment shown in 

Zhere are derived by using the Lagrange Fig. 3.14 where the networks 
[Ti 

multipliers described previously. Thus, in the first iterative process 

here, the first component x1 of the n-component vector X (eqn. 3.13) is 

set to 1 and held at this value during the whole of the iterative process. 

The initial vectors of X and Ra (eqn. 3.22) here are as given by eqns. 

3.33 and 3.34 respectively. The iterative process of Fig. 3.14 is then 

applied here to the n-1 components x2, x3, ".. , xn of X, starting 

from the updating process for x2 to that for xn for each iterative cycle. 

The updating process for xh (2: E h, n) here includes the evaluation of 

the quantity eh (eqn. 3.72 at the output of the network Zh (Fig. 3.14), 

the determination of the value of Axh by using the appropriate threshold 

device (Tables 3.1 and 3.8 for the first iterative cycle, and Tables 3.2 

and 308 for the subsequent iterative cycles, and the updating of xh and Ra 

by using eqns. 3.30 and 3.31 respectively. At the end of the iterative 

process (when the number of iterative cycles exceeds the preset threshold 

value), the Euclidean distance between the vector R' and the vector XY 

is measured as the quantity IIR' 
- XYJ. The whole process just described 

is then repeated for the second iterative process but now x1 is set and 

held at -1. The initial vectors of X and Ra here are now given by eqns. 

3.35 and 3.36 respectively. The second iterative process is otherwise the 

same as the first iterative process, and at the end of this second iterative 

process, the quantity II R' - XYý is evaluated. The detected value of s1 is 

now taken to be the value of xl associated with the smaller of the two 

distances III R' - XYII}. The total number of sequential operations ns involved 

in the detection of s1 here is obviously the same as that given by eqn. 3.54" 
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System 11 

System 11 is a modification of system 9, in that it uses the values 

of the components of X (eqn. 3.13) obtained at the end of a detection 

process as the initial values of the corresponding components of X for 

the next detection process. Thus, the initial vector of X here is set 

to that given by eqn. 3.37, and the initial vector of Ra (eqn. 3.22) is 

set to the corresponding vector of R' - XY. The iterative process of 

Fig. 3.14 is then applied here to the n components xl' x21 """ ' xn 

of X, starting from the updating process for xl to that for xn for each 

iterative cycle. The updating process for xh (1-< h-< n) here includes 

the evaluation of eh (eqn. 3.72) at the output of the network Zh (Fig. 3.14 , 

the determination of the value of Axh by using the appropriate threshold 

device (Table 3.2), and the updating of xh and Ra by using egns. 3.30 

and 3.31 respectively. The threshold values 
{th} to be used in Table 3.2 

to determine the corresponding values of 
{Axh} 

are here given as 

th = 
IYhZhI if xh = ±l 

=0' if xh (3.91) 

for h= 11 29 "" ' n. At the end of the iterative process (when the 

number of iterative cycles exceeds the preset threshold value), the 

vector X is taken as the detected data-symbol vector S' of Sy so that 

sl = xl1 s2 = x2y -"- 7 sn = xn where sip s2y """ ' sn are the n 

components of S'. However, only the value of si is here accepted as 

the detected value of the data symbol slo The last n-l components of 

S' are then shifted one place to the front to become the first n-1 

components of the initial vector of X for the next detection process. 

It can be seen from the descriptions given above that the total 

number of sequential operations ns involved in the detection of s1 in 

system 11 is the same as that given by eqn. 3.47" 
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It is shown in appendix k5 that the iterative process (Fig. 3.14 

of any of the systems 9- 11 is not prevented from diverging, so long 

as the networks 
{Zh} 

used here are not the same as the networks 
{Yh} 

used in Fig. 3.4. Divergence is here defined to have occurred when the 

Euclidean distance II R' - XYII increases during the iterative process, 

bearing in mind that it is desirable here to select, as the detected 

vector of S, the vector of X that has the minimum value of IR' 
- XYI 

(section 3.3). It is also shown in appendix k7 that the sufficient 

condition for error-free detection to be achieved in the absence of noise 

is 

n 
YJ Zi I>2I YkZl I (3.92) 

k= 2 

for any of the systems 9 and 119 and is 

n 
I YhZh >2EI YkZh (3-93) 

k=h+l 

for h=2,3, "" ,n for system 100 Thus, after evaluating the {zh} 

for the iterative process (Fig. 3.14) of any of the systems 9- 11, the 

corresponding inequality of (3.92) or (3.93) should always be checked 

to ensure that the system is able to operate correctly at least in the 

absence of noise. 

The tolerances to additive white Gaussian noise of systems 9- 11 

operating over channel A (Table 2.1) have been studied by using computer 

simulation tests and the results are shown in Figs. 3.17 - 3.21. The 

95% confidence limits of the results here are about ±0.5 dB. The bit 

error rate and the signal to noise ratio here are as defined by egns. 3.39 

and 3.40 respectively. The optimum system here iss of course, the system 

described in section 3.3" 
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Fig. 3.17 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 9 with versions a-d (Table 3.8) 

operating over channel A (Table 2.1). 

mo =1 (eqn. 3.83). 

nc : number of iterative cycles. 

System 9 version a 
n=1 



- 160 - 

P 
e 

10-1 

10-2 

10-3 

10-4 

=ion b 

g version c 

stem 9 version a 
=1 

SNR (dB) 

10 14 18 22 

Fig. 3.18 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 9 with versions a-d (Table 3.8) 

operati_zg over channel A (Table 2.1). 
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Fig. 3.19 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 9 with version d (Table 3.8) 

operating over channel A (Table 2.1). 

Number of iterative cycles nc = 2. 

m: constant defined in eqn. 3.83. 
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Fig. 3.20 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 10 with versions a-d 

(Table 3.8) operating over channel A (Table 2.1). 

mo =1 (eqn. 3.83). 
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Fig. 3.21 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 11 with version d (Table 3.8) 

operating over Channel A (Table 2.1). 

Number of iterative cycles nc = 2. 

m0: constant defined in eqn. 3.83. 

B) 

10 14 18 22 



- 164 - 

Fig. 3.17 shows the tolerances to noise of the various versions 

(Table 3.8) of system 9 with mo= 1, where m0 is the constant defined 

in eqn. 3.83. As it appears, the performance of system 9 can sometimes 

deteriorate when the number of iterative cycles nc used in the iterative 

process here increases. This suggests that divergence has occurred 

during the iterative process of system 9, and the number of iterative 

cycles must now be chosen carefully to achieve the best tolerance to 

noise. It can be seen from Fig. 3.17 that the best tolerance to noise 

is achieved when nc= 1- for system 9 with version a, or when nc=2 

for system 9 with any of the versions b, c, and d. Furthermore, it can 

be seen from Tables 3.1,3.2, and 3.8 that x1 may not have a possible 

value of sl (where s1=1, or -1) unless nc ý-, 1 for system 9 with 

version a, or nc : -, 2 for system 9 with any of the versions b, c, and d. 

It therefore appears that in order to achieve the best tolerance to 

noise for system 9 with any of the versions a7 b, c, and d, the iterative 

process here should use the minimum number of iterative cycles that 

ensures xl to have a possible value of s1. Among all the various versions 

of system 9 with mo= 1 considered in Fig. 3.17, version d with nc=2 

appears to have the best tolerance to noise here. 

Fig. 3.18 shows the tolerances to noise of the various versions 

(Table 3.8) of system 9 with mo= 2. Again, the best tolerance to noise 

of system 9 appears to be achieved when version d with nc=2 is used in 

the iterative process here. This arrangement of system 9 (that is, version d 

with nc= 2) is now selected to investigate the effect of the value of 

m0 on the system's performance, and the results are shown in Fig. 3.19. 

As Fig. 3.19 shows, system 9 with version d and nc=2 appears 

to perform better as the value of m0 decreases from 10 to 2. It is also 

observed that all the curves of system 9 with m0 = 2,3, """ 9 10 tend 
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to converge to give the same tolerance to noise at high signal to noise 

ratios when the error rates fall below 10 -4. The arrangement of mo= 1, 

however, only appears to perform well at low signal to noise ratios, and 

its performance becomes inferior as compared to the other arrangements 

here at high signal to noise ratios. System 9 with version d and nc=2 

therefore appears to have the best tolerance to noise here when mo= 2. 

It can be seen from Fig. 3.19 that, the tolerance to noise of 

system 9 with version d, nc= 2, and mo= 2 is about 1-5 dB inferior to that 

of the optimum system at an error rate of 10-3. The number of sequential 

operations involved in the detection process for sl in system 9 here is 

9 (eqn. 3.90) which is a very small number. System 9 therefore appears 

to be very promising when operating over channel k (Table 2.1). 

Fig. 3.20 shows the tolerances to noise of the various versions 

(Table 3.8) of system 10 with m0= 1 operating over channel A (Table 2.1 0 

It can be seen from Figs. 3.17 and 3.20 that the tolerance to noise of 

system 10 is inferior to that of system 9 here. This is because the iterative 

process used in any of the systems here is not prevented from diverging, 

so that for a given number of iterative cycles used in the iterative process, 

the distance IR' 
- XYII obtained at the end of the detection process for 

sl is now likely to be smaller in system 9 than in system 10, bearing in 

mind that only the first component of X is updated in the last iterative 

cycle in system 9 whereas all the n components of X are updated in the 

last iterative cycle in system 10. It should perhaps be reminded that the 

optimum performance is achieved when the vector X (being a possible vector 

of S) obtained at the end of the detection process for s1 has the smallest 

value of II R'. - XYI) (section 3.3).. The same reason here can be used to 

explain the inferior performance of system 11 in relation to that of 

system 9 (Figs. 3.17 and 3.21). 
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3.14 Further Computer Simulation Results 

All the systems described in this chapter have so far been tested 

only on channel A (Table 2.1) which introduces severe pure amplitude 

distortion. The tolerances to additive white Gaussian noise of the more 

important systems here are shown again in Fig. 3.22. In order to have 

a better understanding of these more important systems, further computer 

simulation tests are carried out to determine the tolerances to noise of 

these systems operating over channels B and C whose corresponding sampled 

impulse responses are as given in Table 2.1. These two channels are 

selected to have different characteristics. Thus, channel B here introduces 

a combination of both phase and amplitude distortions, whereas channel C 

here introduces very severe amplitude distortion but no phase distortion. 

The number of components in the sampled impulse response of channel C is 

also larger than the number of samples, n, used in the iterative process 

of each of the various systems here (where n= 8). In these tests, 10,000 

data symbols 
{si} are transmitted for each measurement of the bit error 

rate, and the results are shown in Figs. 3.23 and 3.24. The definitions 

of the bit error rate and the signal to noise ratio here are as defined 

by egns. 3.39 and 3.40 respectively. When the simulation results appear 

to be more scattered which normally occur at low error rates (< 10-3), 

more simulation tests are carried out to measure the bit error rates at 

the same signal to noise ratios. The 95% confidence limits of the results 

shown in Figs. 3.22 - 3.24 are about ±005 dB. The optimum system here 

is, of course, the system described in section 3.3. 

All computer simulation tests have been carried out by using the 

Prime 400 computer at the Loughborough University of Technology. The computer 

programs here are written in , FORTRAN. The computer program for system 5 

is also shown in appendix B1. 
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Fig. 3.22 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for the more promising systems operating 

over channel A (Table 2.1). 

Number of iterative cycles nc = 2. 

f: integer defined in eqn. 3.41 or in eqns. 3.58 and 3-59- 

m0: constant defined in eqn. 3.83. 
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Fig. 3.23 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for the more promising systems operating 

over channel B (Table 2.1). 

nc: number of iterative cycles. 

f: integer defined in eqn. 3.41 or in eqns. 3.58 and 3-59- 

M0: constant defined in eqn. 3.83. 
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Fig. 3.24 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for the more promising systems operating 

over channel C (Table 2.1). 
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3.15 Assessment of Systems 

The operations of the more important systems are summarised as 

below. 

System 3: The iterative process here operates from xn-f+l to xn for 

the first iterative cycle, and then from xl to xn for 

each subsequent iterative cycle, using the arrangement of 

Fig. 3.4. The initial vector of X here is 

-- 
fý 

x0S2 s3 S' 
n-f+l 

where s2' s3, sn-f+l are the detected values of the 

corresponding data symbols obtained at the end of the previous 

detection process for sly and f is a small integer. The 

detected value of sl is taken as the value of xl obtained 

at the end of the iterative process. 

System 5: Two separate but similar iterative processes are used here. 

Each of these two iterative processes operates in the same 

way as for the iterative process of system 3. The initial 

vectors of X for the two iterative processes here are 

f 
)l = (g s2 s3 . .s f l .. 

pJ 
s f o n- n- + 

(X )2 [ 
s2 s f s f -s l1 o 3 n- n + 

for O< f< g. The detected value of s1 is taken as the value 

of xl obtained at the end of the iterative process associated 

with the smaller value of 11 R' - XYII. 
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System 7: Four separate but similar iterative processes are used here. 

Each iterative process here operates in the same way as for 

the iterative process of system 3 except that each of the 

last two iterative processes here involves only the updating 

process for xn for the first iterative cycle. The initial 

vectors of X used in the first two iterative processes are 

the same as those used in system 5. The initial vectors of 

X for the last two iterative processes here are 

(Xo )3 = 
r s2 s3 . sn 0 

J 

(X ) [-s2 
-s3 . . -st p1 

o 4 

The detected value of sl is taken as the value of xl obtained 

at the end of the iterative process associated with the smallest 

value of 11 R' XY I) 
. 

System 9: The iterative process here operates from x1 to xn for each 

iterative cycle, except the last iterative cycle where only 

the value of x1 is updated, using the arrangement of Fig. 3.14" 

The networks 
{Zh} 

shown in Fig. 3.14 are here selected to 

maximize the corresponding quantities 
{dh} defined by eqn. 

3.83, so as to hopefully maximize the relative magnitude of 

the signal component and the intersymbol interference component 

in the detection of that signal, for a given noise level. 

The initial vector of X here is 

n 
rj 

Xo =C0... 0J 

The detected value of s1 is taken as the value of xl obtained 

at the end of the iterative process. 
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The number of sequential operations ns involved in the detection 

process of sl for each of the systems shown in Figs. 3.22 - 3.24 is 

summarised in Table 3.11. A sequential operation here is taken to include 

all the operations involved in the updating process for one component 

of the n-component vector X during the iterative process (Table 3.3). 

The number of distance measurements required in each system here is also 

shown in Table 3.11, where the distance is defined as the quantity 

IIR' 
- XYII. In practice, the value of II R' - XY112 will be evaluated instead 

of IR' 
- XYIF. Thus, a distance measurement here involves squaring the n 

components of the vector R' - XY, and adding the resultant values. The 

amount of operations involved here can be seen to be about the same as 

that involved in the updating process for one component of X in the iterative 

process that employs the arrangement of Fig. 3.4 or 3.14 (Table 3.3). 

The amount of operations involved in a distance measurement here may 

therefore be considered as roughly the same as that involved in a sequential 

operation shown in Table 3.11. 

It can be seen from Fig. 3.24 that system 9 has a very poor tolerance 

to noise over channel 

distortion. Figs. 3.; 

to perform as well as 

Nevertheless, systems 

sequential operations 

detection process for 

C which is known to introduce very severe amplitude 

22 - 3.24 also show that systems 3 and 9 do not seem 

systems 5 and 7 over any of the channels A, B, and C. 

3 and 9 are important in the sense that very few 

and no distance measurement are required in the 

sl in these systems, as can be seen from Table 3.11. 

These systems are therefore able to operate with very high speed. 

System 5 is probably the most promising system here in terms of the 

error rate performance and the amount of operations involved in the system. 

For each of the three channels tested here, system 5 requires about 22 

sequential operations to achieve a performance near to that of the optimum 



- 173 - 

Systems Number of Number of Number of 

Iterative Sequential Distance 

Cycles Operations Measurements 

nc ns nd 

3 (f=l) 2 9 - 

3 (f=2) 2 10 - 

3 (f=3) 2 11 - 

5 (f=l) 2 18 2 

5 (f=l) 3 34 2 

5 (f=2) 2 20 2 

5 (f=3) 2 22 2 

7 (f=2) 2 38 4 

7 (f=2) 3 70 4 

7 (f=3) 2 40 4 

7 (f=3) 3 72 4 

9 2 9 - 

Optimum 
- - 256 

system 

Table 3.11 Number of sequential operations and distance measurements 

required in the more important systems of this chapter 
(Figs. 3.22 - 3.24). f is the appropriate integer used in 

the initial vector of X for the iterative process. Distance 

is here referred to 11 R' - XYQ. 
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system. In particular, at an error rate of 10-3, the tolerance to noise 

of system 5 is only about 0.5 dB lower than that of the optimum system 

when operating over channel B. For channels A and C, system 5 is about 

1 dB and 1.5 dB, respectively, inferior to the optimum system at an error 

rate of 10-3. In any case, the difference in tolerance to noise between 

system 5 and the optimum system decreases as the error rate decreases 

below 10-3. 

System 7 has a performance approaching that of the optimum system 

especially when it is operating over channel B or C. However, the number 

of sequential operations and distance measurements involved here is often 

about twice of that involved in system 5. 

The weakness of system 9 is that divergence tends to occur during 

the iterative process here so that the number of iterative cycles used 

must always be kept to the minimum to achieve the best performance. The 

powerful iterative technique of gradually eliminating the intersymbol 

interference components in e1 (eqn. 3.72 in determining the detected 

value of sl is therefore lost in this system. Furthermore, the networks 

{z } 
of Fig. 3.14 used here are not easily evaluated from the channel 

sampled impulse response. This means that system 9 can only be used in 

the data-transmission system operating over a known time-invariant channel, 

where the 
{Zh} 

can always be evaluated before the transmission of data 

begins. 

In any of the systems 3,5, and 77 the iterative process is always 

prevented from diverging after the first iterative cycle, so that the 

quantity 11 R' - XYII does not increase in the subsequent operations. If the 

vector X obtained at the end of the iterative process here is always the 

same as the possible vector of S that gives the minimum value of IR' 
- SY119 

then the performance of the optimum system described in section 3.3 is 
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achieved here. However, as is explained in section 3.7, the iterative 

process here effectively operates by changing one component of S at a 

time (to its other possible value) to search for a smaller value of 

IIR' 
- SYII, and it may therefore cease to proceed further before -the 

minimum value of 
IR' 

- SY1I is reached. It therefore appears to be important 

to begin the iterative process here with an initial vector of X that has 

a value of IR' 
- XYII close to the minimum value of IIR' 

- SYlt. At high 

signal to noise ratios, this can be done by using the detected values of 

some or all components of S obtained at the end of a detection process 

as the initial values of the corresponding components of X for the next 

detection process. This is the basis of the iterative process used in the 

detection process for system 3. By using an additional but similar iterative 

process which assumes that one of the last few components of S has been 

detected with error in the previous detection process, system 5 is able 

to achieve a near-optimum performance with as few as 22 sequential operations 

and 2 distance measurements. The optimum system here, however, requires 

256 distance measurements, bearing in mind that the amount of operations 

involved in a distance measurement is roughly the same as that involved 

in a sequential operation in the iterative process of system 5. The 

tolerance to noise of system 5 can of course be expected to improve yet 

further by using more similar iterative processes in the detection process, 

with a trade off in equipment complexity and amount of operations involved 

in the system, as can be seen from the development of system 7. Apart from 

being able to give very satisfactory tolerance to noise, each of the systems 

3,5, and 7 is probably also well suited for use over a time varying channel. 

This is because all the parameters required in the detection process here, 

such as the 
{Yh} in Fig. 3.4, can be evaluated easily from the channel 

sampled impuse response which in turn can be estimated relatively simply 

and rapidly by using a channel estimator. 
(A9' C39) 
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To conclude, a very promising iterative detection process implemented 

as system 5 has been developed in this chapter. It has the advantage of 

being able to operate with a very small amount of operations and hence a 

very high speed, while having a near-optimum tolerance to noise. The 

equipment involved in this system is also very simple enabling it to be 

used over a time varying channel. Furthermore, a different type of systems 

that uses a different set of networks in place of the 
{Yh} 

used in the 

Gauss-Seidel iterative process has been studied and found to give an inferior 

performance. Finally, the properties and the behaviours of the iterative 

detection processes based on the Gauss-Seidel iterative process have been 

studied and analysed and a much better understanding of this type of 

detection process has been achieved. 
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CHAPTER 4 

SYSTEMATIC SEARCH DETECTION PROCESS FOR BINARY BASEBAND SIGNALS 

4.1 Introduction 

In chapter 3, an iterative process is used to search for the received 

signal vector in the detection process. This chapter presents a different 

approach to the problem. Basically, the new technique here involves 

partitioning systematically the vector space that contains all the possible 

vectors of the received signal vector in searching for the received signal 

vector. The object here is to develop a system that can operate with a 

very small amount of some simple operations in achieving a high tolerance 

to additive white Gaussian noise. 

4.2 Basic Assumptions 

The basic model of the data-transmission system here is the 

synchronous serial binary baseband data-transmission system described in 

section 2.1. The signal processor in Fig. 2.1 is here implemented as a 

detection process that employs the arrangement of detection and intersymbol 

interference cancellation shown in Fig. 4.1. This arrangement of the 

detection process is the same as that used in the systems studied in 

chapter 3 except that a systematic search process is now used in place 

of the iterative process to implement the detector here. Consequently, 

most of the basic assumptions described in section 3.2 are carried over 

to this section. Thus, the sample value at the input to the signal processor 
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shown in Fig. 4.1, at time t= iT, is 

9 
L Si-hyrh 

h-0 

where the {s. } are the data symbols whose values are to be detected here, 

y0, Y19 ". 9 yg are the g+l components of the sampled impulse response 

of the baseband channel shown in Fig. 2.1, and the {w 
i} are the noise 

components here. The {sib here are assumed to be statistically independent 

and equally likely to have any of the two binary values 1 and -1, and 

the {wi} 
are assumed to be statistically independent Gaussian random 

variables with zero mean and a fixed variance 62 where 62 is the two- 

sided power spectral density of the noise added at the output of the 

transmission path shown in Fig. 2.1. It is also assumed that the channel 

sampled impulse response is known and time-invariant, so that some pre- 

computation using the channel sampled impulse response can now be carried 

out for the detection process before the transmission of data begins. 

In Fig. 4.1, the buffer store holds the n sample values of the 

vector R' (egns. 3.2,3.47 3.7). The detector here operates on R' to 

give the detected value s! of si, by using a systematic search process 

to be described in section 4.4. The intersymbol interference cancellation 

unit (Fig. 4.1) then generates the (g+l)-component vector s1V (eqn. 3.3) 

which is then removed (by subtraction) from R'. The resultant components 

of R' are then moved one place to the front to become the new R' whose 

last component is the next received sample value ri+n" The detection 

process continues in this way for the detection of the next data symbol 

sl+J 

Again, to simplify the nomenclature, rename si as sl' si+l as s2ý 

and so one and rename wi as wl' wi+l as w2, and so on. Furthermore, let 

S and W be the n-component vectors whose hth components are given as sh 
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and Wh respectively (egns. 3.5 and 3.6). Assuming the correct detection 

of the g previous data symbols, it can be seen from section 3.2 that 

R' = SY +W 

where Y is the nx n matrix defined 

the received signal vector, and W is 

detector in Fig. 4.1 now operates on 

the detected vector of the received 

of the corresponding detected vector 

value of the data symbol sl. 

(4.2) 

by eqn. 3.9. In eqn. 4.2, SY is 

the noise vector. Consequently, the 

the n-component vector R' to give 

Signal vector. The first component 

of S is then accepted as the detected 

4.3 Optimum System and the Basis of the Systematic Search Process 

The optimum system here is the same as the system described in 

section 3.3 and it operates by evaluating the distance 11 R' - SYII for each 

of the possible vectors of S. The detected value of s1 is then taken as 

the value of the first component of the possible vector of S having the 

minimum distance. 

The weakness of this optimum system is that, in the detection of sl 

from R'ý all the 2n possible vectors 
{S} 

are considered so that a total 

of 2n distance measurements are now required here which can be excessive 

when n> 10. 
(A9) 

It appears that some simple systematic tests may be 

carried out first on R' to select just a few of the 2n possible vectors 

{SY} 
which are more likely to include the received signal vector, so that 

only the distances of these few selected vectors are now required to be 

evaluated. This may result in having a much more efficient system which has 

approximately the same tolerance to noise as that of the optimum system 

while requiring far fewer operations in the detection process. 
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Consider first a technique that is used for the analog to digital 

conversion. A received real-valued quantity r which may have any value 

between -8 to +8 is required to be coded into one of the 8 discrete 

values -7, -5, -3, -1,1,3,5, and 7. A crude and very inefficient 

way of doing this is to measure the absolute value Ir 
- qj of r-q for 

each of the 8 possible q values -7, -5, -3, -1,1,3,5, and 7, and 

to accept that value of q for which 
(r 

- ql is the minimum. A much quicker 

method is as followS. First compare r with a threshold of 0. If r> 0, 

consider only q=1,3,5,79 and if r; 0, consider only q= -1, -3, 

-5, -7. Now if r> 0, compare r with a threshold of 4, and if r >4 consider 

only q=5,7, and if r; 4 consider only q=1,3. Finally, if r> 4, 

compare r with a threshold of 6, and if r>6 then q=7, whereas if r-< 6 

then q=5. Clearly, in the method just described, only 3 measurements 

are required instead of 8 in the previous crude and inefficient method. 

In general, where q has 2n possible values, only n measurements are required 

to code r into a value of q. Furthermore, if q is equally likely to have 

any of its possible values, and any one q, say qi, is statistically 

independent of any other, say qj, then q carries n bits of information 

and n measurements are required to evaluate q from r. This appears to be 

the absolute minimum in the number of operations required to determine q 

from r. 

Similarly, in the maximum likelihood detection of S from R', if 

the n components of S are statistically independent and are equally likely 

to have any of their two possible values, then S carries n bits of 

information, and the absolute minimum number of operations required to 

detect S from R' is now n instead of 2n in the optimum system described 

previously. Consequently, it is now possible to obtain the detected vector 

of S by successive partitioning the n-dimensional Euclidean vector space 
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that contains R'j each time reducing the number of possible vectors 
ISY} 

(and hence {S}) to be considered to half the previous value. n decision 

boundaries are now required here to determine the detected vector of SY 

(and hence S) from RIB the decision boundaries being the appropriate 

hyperplanes in the n-dimensional Euclidean vector space. However, the 

difficulty here is that, in order to eliminate from further consideration 

exactly one half of the number of possible vectors 
[SY) 

at each operation 

such that the rejected vectors never contain that associated with the 

minimum distance R' - SYI, nonlinear (crooked, with many changes in 

direction) decision boundaries must be used, leading to highly complex 

operations. 

In the system now to be studied, a search process which involves 

simple successive partitioning of the n-dimensional Euclidean vector space 

containing R' is used to select a few of the 2n possible vectors 
{SY} 

which are more likely to include that associated with the minimum distance 

11R' 
- SYII. The detected value of s1 is then taken as the first component 

of the vector S corresponding to the selected vector of SY having the 

minimum distance. 

404 Detector employing the Systematic Search Process 

In the detection 

operates on R' to give 

by using the arrangeme 

component vector R' is 

for h=1,2, -7f 

of s1 from R', the detector 

the detected vector S' of S 

at shown in Fig. 4.2. Thus, 

fed to the input of each of 

where the value of f may be 

here (Fig. 4.1) first 

This is carried out 

in Fig. 4.2, the n- 

the f networks 
{Zh} 

selected to be between 

1 to n inclusive. Each network Zh here may be implemented as a 

feedfordward transversal filter. whose tap gains are given by the n 
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components of the n-component vector Zh. The vectors 
fzh} 

are here 

constrained to be unit vectors so that 

ZhZh =I Zh 11 2=1 (4.3 

for h=1,29 "" ,f where 
IIZhI is the Euclidean norm or length of 

the vector Zh, and Zh is the transpose of the row matrix Zh, bearing 

in mind that a vector is also treated as a row matrix in this thesis. 

The quantity eh obtained at the output of the network Zh shown in Fig. 4.2 

is here given by 

eh = R'ZT (4.4) 

for h= l9 2ý "" 9 f. The selections of the networks 
{Zh} 

to be used 

here are studied and described in sections 405 - 4.10. Having evaluated 

the values of 
{eh} from R'j each of these values is fed to a multi-level 

4.2. nv (< 2) possible vectors of S threshold device shown in Fig- n 

are then selected in each of the f threshold devices here. The structures 

and operations of these multi-level threshold devices will shortly be 

described. Thus, at the outputs of the f threshold devices, a total 

of fnv possible vectors 
fS} have now been selected. The distance IIR' 

- SYII 

associated each of these selected vectors is then measured and stored 

together with the corresponding vector S. The detector then proceeds to 

select another two possible vectors of S from the detected vector S' of 

S obtained at the end of the previous detection process. These two selected 

vectors are such that, the first n-1 components sl, s2' "" , sn-l are 

the same as their respective detected values obtained at the end of the 

previous detection process, and the last component sn is set to 1 in one 

vector and -1 in the other. The distance 11 R' - SYII associated with each 
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of these two selected vectors is then evaluated and stored together 

with the corresponding vector S. Thus, there are now altogether (fnv+2) 

possible vectors of S being selected here. The detected vector S' of 

S is then taken as the selected vector of S associated with the smallest 

distance II R' SYII. However, only the first component sl of S' is accepted 

as the detected value of the data symbol sl. The remainning n-l components 

of S' are then stored and used for the next detection process. This 

completes the detection process for sl from R', and the detector continues 

to operate in this way for the next detection process. 

The structures and operations of the multi-level threshold device 

shown in Fig- 4.2 is now described. Assuming the correct detection of 

the g previous data symbols so that the vector R' is as given by eqn. 4.2, 

the value of eh in eqn. 4.4 now becomes 

eh = R'Zh 

SYZh + WZh (4.5) 

for h= 19 29 "" 9f where f is the total number of networks 
{Zh} 

shown in Fig- 4.2, and SY and W are the received signal vector and 

the noise vector respectively. Furthermore, let eh be a possible value 

of eh obtained in the absence of noise. That iss W=0 and 

eh = SYZT (4.6) 

for h= l9 27 -- 9 f. Clearly, for a given value of hj there are altogether 

2n values of {eh} corresponding to the 2n possible vectors of SY or S. 

These 2n values of Ie, '1 are in fact evaluated and listed in order of 

magnitudes in this system before the transmission of data begins. Thus, 

the multi-level threshold device shown in Fig. 4.2 operates by comparing 
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the value of eh (eqn. 4.5) obtained at the output of the network ZY 

(Fig. 4.2) with some threshold values, to select a total of nv neighbouring 

values of 
{eh} (eqn. 4.6). These threshold values are such that, every 

nv neighbouring values of 
{eh} 

are separated by a threshold value which 

is selected to be half way between the adjacent values of 
{eh}. Thus, 

if there are altogether nt threshold values, then 

n 2= (nv) (nt + l) (4.7) 

The process of selecting nv neighbouring values of {eh} from the value 

of eh here is obviously the same as the analog to digital conversion 

process described previously where a value r (corresponding to eh here) 

is required to be coded into a possible value of q (corresponding to the 

nv neighbouring {eh} here). Consequently, it can be seen that, only 

log2(nt+l) operations are required to select the nv neighbouring values 

of {eh} here, and each operation involves just a comparison of the value 

of eh with a threshold value. In practice, the threshold device here 

selects and gives at its output the corresponding nv possible vectors 

of S, instead of the nv neighbouring values of 
{eh} 

mentioned above, 

bearing in mind that the 2n values of 
{eh} here are actually calculated 

from the corresponding 2n possible vectors of S (eqn. 4.6). 

Thus, it can be seen from the descriptions given above that, before 

the transmission of data begins, nt threshold values are required to be 

evaluated and stored together with the corresponding (nt+l) groups of 

possible vectors 
IS}9 for each of the f multi-level threshold devices 

shown in Fig. 4.2. Each of the (nt+l) groups of possible vectors 
{S} here 

consists of nv possible vectors of S having the neighbouring values of 

{e hj . During the detection process, however, each threshold device here 

operates by comparing the value of eh (eqn. 4.5) with the appropriate 

log2(nt+l) threshold values to select and give at its output the 
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appropriate nv possible vectors 
{ S}, which obviously can be carried out 

very simply and rapidly. 

The value of nv to be used in the detection process here is now 

discussed. It can be seen from eqns. 3.5,3.9, and 4.6 that 

eh = SYZT 

sl(y1Zh) + s2(y2Zh) + ... + Sn(Y Zh) (4.8) 

for h=1,2, -- 9f 
where Yj is the jth row of the nxn matrix Y, 

and sl, s2, "-" , sn are the n components of the vector S. Clearly, 

whenever YjZh =0 for any possible value of j, the value of eh becomes 

independent of the value of s Since there are two possible values of 

sj, there are now at least two possible vectors of S having the same value 

of eh. This may, in fact, also happen even if Y. ZT ý 0. Furthermore, 

it can be seen that if there are more than nv possible vectors of S having 

the same value of eh, then there are at least two identical threshold 

values in the threshold device of Fig. 
-4.2, 

bearing in mind that every 

nv neighbouring values of 
{eh} 

are separated by a threshold value here. 

In order to ensure that every threshold has a different value, the value 

of nv to be used in the detection process must now be such that 

n>n 
vm 

(4-9) 

where nm is the maximum number of possible vectors 
{S} having the same 

value of eh, for all possible values of h. 

Having described the operations of the detection process here, it 

will be interesting to see the implications of these operations. This is 

discussed as followS. It can be seen from eqns. 4.5 and 4.6 that, eh is 

the orthogonal projection of the vector R' onto the unit vector Zh, and 
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{eh }are the orthogonal projections of the corresponding possible 

vectors of SY onto the same vector Zh, in the n-demensional Euclidean 

vector space containning R' and SY. Similarly, the threshold values 

used in the threshold device shown in Fig. 4.2 may be regarded as 

the orthogonal projections of the appropriate hyperplanes onto Zh 

in the same vector space, where these hyperplanes are perpendicular 

to the direction of Zh. Thus, if there are nt threshold values, then 

the n-dimensional Euclidean vector space here is effectively partitioned 

into (nt+l) subspaces by the nt hyperplanes which are perpendicular 

to a specific direction given by the vector Zh. Each of these (nt+l) 

subspaces contains nv possible vectors of SY and hence nv values of 

Ieh}, bearing in mind that there are nv values of 
{eh} between any 

adjacent threshold values used in the threshold device here. An example 

of the descriptions given above is shown in Fig. 4.3 where n= 41 

nt = 7, and nv = 2. The operation of the threshold device shown in 

Fig- 4.2 is therefore to determine the subspace in which the vector 

R' lies, and to select the nv possible vectors of S corresponding to 

the nv vectors of SY that lie in the same subspace, by comparing the 

value of eh (orthogonal projection of R' onto Zh) with some threshold 

values (hyperplanes perpendicular to Zh). Consequently, the detection 

process here (Fig. 402) effectively performs a simple partitionning 

of the n-dimensional Euclidean vector space containning R' and SY, 

by using some hyperplanes that are all perpendicular to a specific 

direction given by the vector Zh. A simple search process is then 

carried out to determine the subspace in which R' lies and to select 

the possible vectors of S corresponding to the vectors of SY that lie 

in the same subspace. 
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Having described the operations and some properties of the detection 

process emplying the arrangement of Fig. 4.29 the remainning part of 

this chapter is mainly concerned with the selections of the networks 

or filters {Zh} to be used here. Thus, each of the systems 1-6 to 

be developed and studied in the following sections employs the same 

arrangement of Fig. 4.2 in the detection of S from R'9 but with different 

{Zh}. Computer simulation tests are first carried out to determine the 

tolerance to additive white Gaussian noise of each of these systems 

operating over channel A. (Table 201. The more promising systems are 

then further tested on channels B and C (Table 2.1). 

4.5 System 1 

In system 1, the networks 
{Zh} 

in Fig- 4.2 are selected to be 

the filters that are matched to the vectors 
{Y 

h}, where Yh is the n- 

component vector defined by eqn. 3.9. That is, 

_ 

Yh 
Zh 

II YhII 

(4.10) 

for h= lý 21 "" 9f where f may have any integer value between 1 

to n inclusive, and 
IIYhII is the Euclidean norm or length of the vector 

Yh. The inclusion of IYh in eqn. 4.10 is to ensure that egno 403 is 

satisfied so that Zh is now an unit vector. 

It can be seen from egns. 4.5 and 4.8 that, the value of eh obtained 

at the output of the network Zh shown in Fig. 4.2 is now given by 

h= sl(YlZT) + s2(y zT) + "" + sn(YnZT) + WZT 

TTT 

= sl(Y1Yh> + s2 

(Y2Yh> 

+ "- + sn(YnYh) + WZT (4.11 
II Yh (l (I Yh II 

I] Yh ll 
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for h=1,2, "" ,f where WZh is the noise component of eh, and 

sl, s2, """ , sn are the n components of the vector S to be detected 

here. It can be shown 
(A9) 

that, under the various conditions assumed 

here, the noise components 
{WZh} 

are the Gaussian random variables 

with zero mean and a fixed variance 82 where 62 is the two-sided power 

spectral density of the noise added at the output of the transmission 

path shown in Fig. 2.1. Furthermore, YjZh is the orthogonal projection 

of the vector Yj onto the unit vector Zh, and it has a maximum magnitude 

when Zh is as given by eqn. 4.10. 
(A9) 

It therefore follows that, for 

a given noise variance 62, the network Zh used in system 1 effectively 

maximizes the magnitude of the component of sh in eh, bearing in mind 

that it is required to determine the detected values of sl, s2, """ , s. 

in the detection process here (Fig, 4.2). 

The value of nm for system 1 is now discussed, where nm is the 

maximum number of possible vectors 
JS J having the same value of eh for 

all possible values of h. The value of eh for system 1 iss from ecgns. 

4.67 4.8, and 4.10, 

TTT 

eh = sl(Y1Yh) + s2 

(Y2Yh) 

+ "" + S, 
nYh) (4.12) 

IYh1I 11 
hII 

II 
hll 

for h= 19 29 "'f. Thus, for a given value of h, there are altogether 

2n values of 
{eh} corresponding to the 2n possible vectors {S} having 

the 2n possible combinations of the n components sl, s2, """ 9 sn. 

However, it can be seen from eqn. 3.9 that, 

YJ . Yh =0 whenever I j- hl- g (4.13) 

for any positive integer values of j and hq where g+l is the number 
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of components of the channel sampled impulse response, and Ij 
-h is 

the absolute value of j- ho This implies that, some of the components 

in eh for system 1 (egno 4.12) are now equal to zero whenever n> g+lo 

For example, if n=8 and g= 47 then it can be seen from egns. 4.12 

and 4.13 that the components of s6' s7, and s8 in el (eqn. 4.12) are 

now equal to zero. Consequently, there are now 23 possible vectors 
{S} 

(those with the 23 different combinations of s6' s7, and s8) having 

the same value of e1. It iss of course, possible for some of the possible 

vectors 
{S} to have the same value of eh even if YjYT L 0. The value 

of nm in the example given above is therefore at least as large as 23. 

Table 4.1 shows the values of 
{nm} for system 1 operating over channel 

A (Table 2.1). Each of these values is obtained by inspecting all the 

2n values of 
{eh} for h=1,29 "" ,. f, where f is the number of the 

networks 
{Zh} shown in Fig- 4.2. The values of 

{eh} here ares of course, 

calculated by using egno 4.12. 

f = 1 f = 2 f = 3 f = 4 f = 5 f = 6 f = 7 f =8 

8 8 8 8 8 8 8 8 32 

n= 5 1 2 2 2 4 

n= 3 1 1 1 

Table 4.1 Maximum number (nm) of'possible vectors 
{Sj having the 

same value of eh (1; h; f) (ecgn. 4.12) for system 1 operating 

over channel A (Table 2.1). 
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The tolerance to noise of system 1 operating over channel A 

(Table 2.1) has been studied by using computer simulation tests. Various 

values of n, f, and nv have been used in the tests, where f is the 

number of the networks 
{ZT} 

shown in Fig. 4.2, and nv is the number 

of possible vectors 
{S} 

selected at the output of each threshold device 

shown in Fig. 4.2. For given values of n and fq the value of nv used 

here is also selected to be at least as large as the corresponding value 

of nm shown in Table 4.1, where nm is, of course, the maximum number 

of possible vectors 
{S} having the same value of eh given by eqn. 4.12. 

This is to ensure that all the threshold values in each threshold device 

of Fig. 4.2 are different, as is explained in section 4.4. The results 

of the computer simulation tests are shown in Figs. 4.4 - 4.6 where 

the 95% confidence limits of the curves are about ±0.5 dB. The bit 

error rate Pe and the signal to noise ratio SNR here are as defined 

by egns. 3.39 and 3.40 respectively. The optimum system is the system 

described in section 4.30 

Fig. 4.4 shows the performance of system 1 with n=8. As it appears, 

the tolerance to noise of the system is significantly improved by increasing 

the value of f (number of networks 
{Zh} 

used in Fig. 4.2). When f=5 

and nv = 8, the tolerance to noise of this system is about 1 dB lower 

than that of the optimum system at an error rate of 10-3. The number 

of distance measurements required here, being equal to (fnv+2), is 

42 and is a small number as compared to that (2n or 256) required in 

the optimum system. The distance associated with a vector S, is of course 

the quantity IIR' 
- SY1I. 

Fig. 4.5 shows the performance of system 1 with n= 5- It can 

be seen that, the tolerance to noise of the optimum system with n=5 

is about 1 dB lower than that of the optimum system with n=8 at an 
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error rate of 10-39 and the difference approaches to be insignificant 

at error rates below 10-4. Consider the curve for system 1 with f=1 

and nv = 2. It appears that the improvement in the tolerance to noise 

gained by doubling the value of nv is larger than that gained by tripling 

the value of fq bearing in mind that the total number of the possible 

vectors 
{S} 

selected for distance measurements is here given by (fn 
v 

+2). 

One possible reason to this is that, while the nv possible vectors 
{S} 

selected in one threshold device of Fig. 4.2 are all different, some 

of the possible vectors. 
{S} 

selected in more than one threshold device 

(that is f> 1) may be corresponding to the same vector. Consegventlyg 

at the outputs of all the f threshold devices shown in Fig- 4.2, there 

are now 4 different possible vectors 
{S} in the system with f=1 and 

nv = 4, whereas there are probably less than 4 different possible vectors 

{S} in the system with f=3 and nv = 2. It can also be seen from Fig. 4.5 

that the optimum performance for n=5 can be achieved by system 1 with 

f=3 and nv =4 which involves not more than fnv+2 or 14 distance 

measurements. The performance of this system with f=1 and nV =8 also 

appears to approach that of the optimum system. The number of distance 

measurements required here is 10, as compared 

to that (2n or 32) required in the optimum system. 

The performance of system 1 with n=3 is shown in Fig. 4.6. The 

optimum system here involves 2n or 8 distance measurements, and it 

has a tolerance to noise of about 2.5 dB more inferior in relation to 

that of the optimum system with n=8 at an error rate of 10-3. As it 

appears, the optimum performance here (that iss for n= 3) can be achieved 

by system 1 with f=1 and nv =2 which involves just fnv+2 or 4 distance 

measurements. 
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It can be seen from the results shown in Figs. 4.4 - 4.6 that, 

for given values of f and nv and at high signal to noise ratios where 

the error rates drop below 10-3, system 1 appears to perform better 

when a smaller value of n is used. Thus, by increasing the value of n, 

the total number of possible vectors 
[s} (being given by 2n) also increases 

and more vectors of 
{S} 

are now required to be considered (for distance 

measurements) in the detection process of system 1 to achieve a given 

tolerance to noise. However, the weakness of using a smaller value of 

n is that the optimum performance achievable by the system is also reduced. 

Consequently, a moderate value of n should be used in system 1, so that 

a high tolerance to noise may be achieved here with a managable number 

of distance measurements involved in the system. As it appears, n=5 

is the most promising of all the three values of n tested in Figs. 4.4 - 

4.6, for system 1 operating over channel A (Table 2.1). In particular, 

system 1 with n=5, f=1, and nv =8 appears to be very promising as 

it gives a near optimum performance while requiring just 10 distance 

measurements in its detection process. 
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Fig. 4.4 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 1 operating over channel A 

(Table 2.1). 

Number of samples used in the system (n) = 8. 

f: number of filters shown in Fig. 4.2. 

nv : number of 
(S} 

selected in one threshold device (Fig. 4.2). 
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Fig. 4.5 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 1 operating over channel A 

(Table 2.1). 

Number of samples used in the system (n) 
= 5- 

f: number of filters shown in Fig. 4.2. 

nv : number of 
{ 

S} selected in one threshold device (Fig. 4.2). 
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Fig. 4.6 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 1 operating over channel A 

(Table 2.1). 

Number of samples used in the system (n) 
= 3. 

f: number of filters shown in Fig. 4.2. 

nv : number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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4.6 System 2 

In system 21 the f filters {Zh} 
shown in Fig. 4.2 are selected 

to be given by a set of f orthonormal vectors 
{Z 

h}. That is, 

Z. Zk =0 if jk 

=1 if j=k (4.14) 

for any possible values of j and k. The Gram-Schmidt orthogonalisation 

process used in section-3.12 is used here to derive these n-component 

vectors. Thus, from eqn. 3.65, a set of f n-component vectors is first 

evaluated as 

zj y1 

1 TZ 
Z2 Y2 

IIZ112 
Y2(Zl> 

l 
1 

. 

1T1T 
Zf Yf 

ýýZý Iý2 
Yf(Zf-1) Zf-1 - .. - 11Z1 +i112 

Yf(Z1) Z1 4.15 

f-1 

whereIIZhll is the Euclidean norm or length of the vector Z and (Zh)T 

is the transpose of the row matrix Zh, bearing in mind that a vector 

is also treated as a row matrix in this thesis. The [ 
.} 

here- are the 

n-component vectors defined by eqn. 3.9. The f n-component vectors Izh} 

used in system 2 are then evaluated as 

Z' 
Z-h 

h Il Z, 11 
(4.16) 

for h=1,2, -- , f. 
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This set of orthonormal vectors 
{zh} has the interesting property 

given by eqn. 3.70, and that is 

=0 if j<h Yjzh 
T (4.17) 

for any possible values of j and h. The value of eh (egns. 4.6 and 4.8) 

in system 2 is therefore given by 

eh = sh(YhZh) + sh+l(Yh+1Zh) + "" + sn(YnZT) (4,18) 

for h= lý 2ý "" I f. Clearly, the value of eh here is independent 

of the values of the first h-l components sl' s2' """ I sh-1 of the 

data-symbol vector S. It follows that there are now 2h-1 possible vectors 

{S} (with the 2h-l possible combinations of sl, s2' """ , sh_i) having 

the same value of eh. The maximum number of the possible vectors 
{S} 

having the same value of eh for any possible value of h is now at least 

as large as 2f-l, bearing in mind that f is the largest possible value 

of h here. Furthermore, it is recalled that the number of possible vectors 

{S} 
selected at the output of each threshold device shown in Fig. 4.2 

is nv and is constrained to be at least as large as the value of nm 

(eqn. 4.9), where nm is the maximum number of possible vectors 
{S} having 

the same value of eh for any possible value of h. It therefore follows 

that the value of nv to be used in system 2 must be at least as large 

T 
as 2f-l. Consequently, the value of f (number of networks 

Izhl) 
used 

in system 2 must be kept to a small value so that the number of distance 

measurements, being given by (fnv+2), involved in the system is kept 

to a managable value. The values of 
{nm} for system 2 operating over 

channel A (Table 2.1) are shown in Table 4.2. Each of these values is 

obtained by inspecting all the 2n calculated values of 
{eh} 

corresponding 
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to the 2n possible vectors 
{S}, for h=1,2, "" f. The calculations 

here are carried out by using eqns. 4.8,4.15, and 4.16. 

Computer simulation tests have been carried out to determine the 

tolerance to noise of system 2 operating over channel A (Table 2.1), and 

the results are shown in Figs. 4.7 - 4.9. The 95% confidence limits of 

these results are about ±0.5 dB. The bit error rate and the signal to 

noise ratio here are as defined by egns. 3.39 and 3.40 respectively. The 

optimum system here iss of course, the system described in section 4.3. 

Comparing the results shown in Figs. 4.4 - 4.9, it is observed 

that, given the values of n, f, and nv, system 2 appears to have about 

the same performance over channel A as that of system 1. In particular, 

whenever f=1, exactly the same performance is achieved by both systems 

1 and 2. This is because both systems here use the same vector for Z1 

as can be seen from egns. 4.10,4.15, and 4.16. The most promising 

arrangement of system 2 is the same as that of system 1 and is when 

n=5, f=1, and nv = 8. 

f= 1 f= 2 f= 3 f= 4 f= 5 f= 6 f= 7 f= 8 

n= 8 8 8 8 8 16 32 64 128 

n= 5 1 2 4 8 16 

n= 3 1 2 4 

Table 4.2 Maximum number (nm) of possible vectors 
{S} having the 

same value of eh (1 *h5 f) (eqn. 4.18 for system 2 operating 

over channel A (Table 2.1). 
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Fig. 4.8 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 2 operating over channel A 

(Table 2.1). 

Number of samples used in the system (n) = 5- 
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Fig. 4.9 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 2 operating over channel A 

(Table 2.1). 

Number of samples used in the system (n) = 3" 

f: number of filters shown in Fig. 4.2. 

nv : number of 
[s} 

selected in one threshold device (Fig. 4.2). 
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So far, both systems 1 and 2 have involved the use of one or more 

filters {Zh} (that iss f l) in the detection process for the vector 

S from R' using the arrangement shown in Fig. 4.2. Each filter here, 

say Zhu is implemented as a n-tap transversal filter and so n multiplications 

are involved here in the evaluation of the value of eh at its output. 

Furthermore, some of the possible vectors 
JS} 

obtained at the output 

of one threshold device (Fig. 4.2) may be exactly the same as some of 

those obtained at the output of another threshold device here. It therefore 

follows that, in order to reduce the number of operations and to make 

use of every possible vector of S obtained at the output of the threshold 

device, just one filter Zi should be used in the arrangement of Fig. 4.2. 

This is the arrangement used in each of the following systems. 

4.7 System 3 

In system 37 only one filter Zl 
T 

is used in the detection process 

for S from R' using the arrangement of Fig. 4.2. This filter is derived 

as follows. Let D be the n-component row matrix defined as 

D= Z1YT (4.19) 

where Zl is the n-component row matrix (or vector) for the filter Zl 

shown in Fig. 4.2, and Y is the transpose of the nxn matrix Y defined 
T 

by eqn. 3.9. The value of el in eqn. 4.6 now becomes 

el SDT (4020) 

where DT is the transpose of Dý and S is the n-component row matrix 

(or vector) to be determined in the detection process here (Fig. 4.2). 
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It should perhaps be reminded that, the value of el is a possible value 

of el obtained, in the absence of noise, at the output of the filter Zl 

shown in Fig. 4.2. Furthermore, the detection process here (Fig. 4.2) 

selects, for distance measurements, the nv possible vectors of S corresponding 

to the nv neighbouring values of el (eqn. 4.20) which lie between the 

same adjacent threshold values as those of the value of el (Fig. 4o3). 

In the selection of the filter Zl for system 3ý the n-component row 

matrix D in eqn 4.20 is first selected to be such that, all the 2n 

values of {el} corresponding to the 2n possible vectors 
{S} 

are different 

and are uniformly spaced. That iss 

D_r 2n-1 2n-2 21 20 
1 (4.21) 

where c is a constant to be discussed shortly. The value of el in 

egno 4.20 now becomes 

ei _c(2 
n-lsl 

+ 2n-2 s2 + -- + 2s 
n-1 + sn ) (4.22) 

where the n components sly s21 """ I sn of S can have any of the two 

binary values 1 and -1. It can be seen from eqn. 4.22 that, every adjacent 

values of {el} are now separated by the same amount of 2c. Having set 

the row matrix D to that given by eqn. 4.21, the filter Zl to be used 

in system 3 can now be determined, from eqn. 4.19, as 

D (YT) -l 
1 

(4023) 

where (YT)-l is the inverse of the nx n matrix YT. The value of 

c in eqn. 4.21 is here selected to be such that Z1ZT = 1, so that Zl 

is now an unit vector. Thus, the selection of the value of c and the 

evaluation of Z1 with eqn. 4.23 can be carried out as follow. A row 
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matrix is first evaluated as 

Z, = C-1 (D) (YT)-1 
1 

[2 n-1 2 n-2 � 201 ( yT)-l (4.24) 

The unit vector Z1 is then evaluated as 

Z' 
1 (4.25) 

1 ýý Zl 

where (IZlll is the Euclidean norm or length of the vector Zig bearing 

in mind that a row matrix is also treated as a vector in this thesis. 

Consequently, in selecting the filter ZT to be used in system 3, it 

involves just the use of egnso 4.24 and 4025- It should be noticed that 

it is not necessary to evaluate the value of c in the row matrix D given 

by eqn. 4.21 here. 

Computer simulation tests have been carried out to determine the 

tolerance to noise of system 3 operating over channel A whose sampled impulse 

response is as given in Table 2.1. The results of these tests are shown 

in Fig. 4.10 where the 95% confidence limit of each curve is about ±0.5 dB. 

The bit error rate Pe and the signal to noise ratio SNR here are as 

defined by egns. 3.39 and 3.40 respectively. Fig. 4.10 also shows the 

performance of the optimum system described in section 4.3. 

It can be seen from Fig. 4.10 that, for a given value of nv (number 

of possible vectors 
{S} 

selected at the output of the threshold device 

shown in Fig. 4.2), system 3 with n=8 appears to have the poorest 

performance as compared to that of the given system with n=5 or n=3. 

The best performance of system 3 here is achieved when n=5 and nv = 4. 

However, this performance is far worse than the best performance achieved 
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Fig. 4.10 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 3 operating over channel A 

(Table 2.1). 

Number of of filters used in the system (f) =1 (Fig. 4.2). 
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by any of the systems 1 and 2 with f=1, as can be seen from Figs- 4.4 - 

4.10. The difference here is about 2.5 dB at an error rate of 10-3, 

and it increases as the error rate decreases further. 

Clearly, one weakness of system 3 is that, no prior knowledge 

of the channel sampled impulse response is used in setting the row matrix 

D (eqn. 4.21. In each of the following systems, the filter Zi shown 

in Fig. 4.2 is selected to avoid this weakness of system 3. 

4.8 System 4 

In system 4, the filter Zl (Fig- 4.2) is selected to be the unit 

vector Z1 that makes the same acute angle with each of the n vectors 

Y11 Y21 -7 Yn defined by eqn. 3.9. Thus, if 6 is the acute angle 

just mentioned, then 

z1Yj = 
11 Zl IIIIYi 11 cos e 

= 
IyiII 

cos 6 

= cIlyill (4.26) 

for j=1,2, -, n where c= cos e and ýYjll is the Euclidean norm 

or length of the vector Y.. It is reminded that a vector is also treated 

as a row matrix in this thesis so that Y. may be regarded as a row matrix 

here and Yý is now the transpose of Y. It can be seen from eqn. 3.9 

that ZlYý is the jth component of the row matrix D defined in eqn. 4.19 

and so for system 4, 

D=°C IIylll I y2O ... 
Ilynll 1 (4.27) 
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The filter Zl (Fig. 4.2) to be used in system 4 can now be selected 

by using egns. 4.19 and 4.27, and this is carried out by first evaluating 

a row matrix Zl as 

z1 =c1 
(D) (YT)_l 

=[ 
ýI Y1I 11y211 ... llynll 1 (YT)-1 (4.28) 

and then setting the vector Zl (the filter) to 
Zi 

IJZ . It iss of 

course, not necessary to evaluate the value of c here. 

It can be seen from egns. 4.20 and 4.27 that, the value of el 

obtained, in the absence of noise, at the output of the filter Z1 

shown in Fig. 4.2 is now given by 

el =c( s1 I' Y1 N+s, ýlY2 1+-+ sn H t! ) (4.29 

where the value of c here is as defined in eqn. 4.269 and sl, s2, "" , sn 

are the n components of the vector S. Furthermore, it can be seen from 

eqn. 3.9 that, the vectors 
{Y 

h} 
here are such that whenever n> g+l, 

then 

11 Yj1I = 
Ii 

kII = 
11 V li for j, k<n-g (4.30) 

where V is the (g+l)-component vector whose components are the channel 

sampled impulse response y0g ylq "" 9 yg . It therefore follows that 

whenever n> g+l, then some of the possible vectors 
{S} 

will give the 

same value of el, bearing in mind that el = SDT. Thus, for example, 

if g=4 and n=6, then from eqn. 4.30, I, YJ = 
IIY2 I" In this case, the 

possible vector S with sl = 1, s2 = -1 can be seen (eqn. 4.29) to give 

the same value of el as that of the vector with sl = -1, s2 = 1, all 

other components s3, s4, """ 9 sn being the same for both vectors here. 
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Consequently, the value of nm (being the maximum number of possible 

vectors 
{S} that give the same value of el) in system 4 must now be 

determined so that the value of nv (being the number of possible vectors 

{S} 
selected at the output of the threshold device of Fig. 4.2) here 

can be selected to satisfy the condition of (4.9) where nV , nm. Table 4.3 

shows the values of n at three different values of n for system 4 operating 
m 

over channel A (Table 2.1). Each of these values is obtained by evaluating 

all the 2n values of 
fei} 

using eqn. 4.29 and comparing their values. 

The value of c in eqn. 4.29 can be evaluated by using eqn. 4.26, bearing 

in mind that Z1 has already been determined. As Table 4.3 shows, the 

value of nm is 6 when n=8, and so the value of nv to be used in the 

system with n=8 must now be at least as large as 6. 

Computer simulation tests have been carried out to determine 

the tolerance to noise of system 4 operating over channel A (Table 2.1)ý 

and the results are shown in Fig. 4.11. The 95% confidence limits of 

these results are about ±0.5 dB. The bit error rate and the signal 

to noise ratio here are as defined by egns. 3.39 and 3.40 respectively. 

The optimum system here is the system described in section 4.3. 

n n 
m 

8 6 

5 1 
3 1 

Table 4.3 Maximum number (nm) of possible vectors 
{S} having the 

same value of eh (eqn. 4.29) for system 4 operating over 

channel A (Table 2.1). 
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Fig. 4.11 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 4 operating over channel A 

(Table 2.1). 

Number of filters used in the system (f) =1 (Fig. 4.2). 

n number of samples used in the system. 

nv number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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It can be seen from Fig. 4.11 that system 4 with n=8 and nv =8 

has a poor performance. The number of possible vectors 
{S} 

considered 

for the distance measurements here is equal to nv+2 or 10, and is a 

very small value as compared to the total number (28 or 256) of possible 

vectors 
{S} here. When n=3, the tolerance to noise of system 4 with 

nv=2 or 4 is about 1 dB inferior to that of the optimum system at 

an error rate of 10-3. When n=5, the tolerance to noise of system 4 

with nV =8 approaches that of the optimum system, but as nV is reduced 

to 4, system 4 suffers a loss of about 1.5 dB at an error rate of 10-3. 

System 4 therefore appears to be very promising so long as a 

moderate value of n and a sufficiently large value of nv are used in 

the system. 

4.9 System 5 

In the detection of S from R' in system 1, each filter, say Zh, 

shown in Fig. 4.2 is selected to maximize the magnitude of the component 

shYhZh in eh obtained at the output of the given filter, for a given 

noise level in eh. In system 5, only one filter Zl is used and it is 

selected to be such that, the sum of the squares of all the components 

s1Y1Z1 ' s2Y2Z1, ".. ' snYnZT in e1 is maximized, for a given noise level 

in el, bearing in mind that 
C 

YnZ1 Yn-1Z1 """ Y1Z1 
] 

is effectively 

the resultant sampled impulse response of the baseband channel and filter 

Zl, and that the fsi} here can only have any of the two values 1 and -1. 

This filter of system 5 therefore effectively maximizes the energy of 

the resultant sampled impulse response of the channel and filter, for 

(a 
given noise level at its output. It can be shownA9ý that, the noise 

variance remains unchanged after the linear filtering of the vector R' 

through the filter Zl (Fig. 4.2), so long as Z1Zi = 1. 
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Thus, the filter Zl used in system 5 is selected to maximize the 

quantity 

n 
d=I (Yjzi)2 4.31) 

j=l 

with the constraint that Z1Z1 = 19 where 
{YJ. } 

are, of course, the 

n-component row matrix defined by eqn. 3.9, and Zi is the transpose 

of the n-component row matrix Z1 which is to be determined here. Eqn. 4.31 

can be further reduced to 

d=2n 
1(ZY jY .) 

Zl 
j=1 

= z1 (A) Z1 (4.32) 

n 
where A= (YTY. ) 

= YTY (4.33) 
JJ j=1 

and YT is the transpose of the n xn matrix Y whose jth row is given 

by the n-component row matrix Yj . In 

symmetric matrix. The Lagrange mult 

is now used to maximize the quantity 
T 

that Z1Z1 = 1. This is carried out 

eqn. 4.33, A is obviously a nx n 

ipliers(E5) used in section 3.13 

d of eqn. 4.32 with the constraint 

by defining a function f' to be 

f' =d+ ; k, (1 - Z1Z1) (4.34) 

where x is a constant value, and d is the quantity defined in eqn. 4.32. 

Differentiating f' with respect to Z1 and setting the resulting expressio 

to zero yields 

Zl A= Z1 (4.35) 

where x and Z1 here are obviously the eigenvalue and eigenvector 



- 215 - 

of the matrix A. Substituting eqn. 4.35 back into eqn. 4.32 yields 

d= ýý and so the filter Zi to be used in system 5 is here selected 

to be the eigenvector of A associated with the largest eigenvalue. 

Using the vector Z1 derived above, the values of 
{el} for system 5 

operating over channel A (Table 2.1) have been evaluated (eqn. 4.8) 

and compared, where 
{ei} 

are the possible values of e1 (Fig. 4.2) obtained 

in the absence of noise. It is found here that each of the 2n possible 

vectors 
iS} has a different value of el, and so the value of nm for 

the system here is equal to 1, bearing, in mind that nm is the maximum 

number of possible vectors 
{S} having the same value of e Consequently, 

there is now effectively no constraint on the value of nv to be used 

in the system, bearing in mind that nv is the number of possible vectors 

{S} 
selected at the output of the threshold device shown in Fig. 4.2 

and it is constrained to be such that nv 3 nm (section 4.4)- 

The tolerance to noise of system 5 operating over channel A (Table 2.1) 

has been studied by using computer simulation tests. The results of 

the tests are shown in Fig. 4.12 where the 95% confidence limit of each 

curve is about ±0.5 dB. The bit error rate Pe and the signal to noise 

SNR here are as defined by egns. 3.39 and 3.40 respectively. The optimum 

system here is the system described in section 4.3. 

Fig. 4.12 shows that when n=8, system 5 with the values of nv 

tested here have very poor performances. The values of nv tested here 

are 4 and 8 which are very small in relation to the total number (256 

of possible vectors 
{S}, bearing in mind that nv is the number of possible 

vectors 
{S} 

selected (for distance measurements) at the output of the 

threshold device shown in Fig. 4.2. When n=3, the optimum performance 

is achieved by system 5 with nv = 2. When n=5, the performance of system 5 

with nv =4 appears to approach that of the optimum system. Overall, system 

with n=5 appears to be very promising when operating over channel A here. 
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Fig. 4.12 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 5 operating over channel A 

(Table 2.1). 

Number of filters used in the system (f) =1 (Fig. 4.2). 

n: number of samples used in the system. 

nv : number of 
[S} 

selected in one threshold device (Fig. 4.2). 



- 217 - 

4.10 System 6 

Only one filter in Fig. 4.2 is used in system 6, and it is selected 

to be the unit vector Zl (that iss ZlZ1 1) that maximizes the quantity 

n 
(Y1Z1)2 - 

(Y. Z, )2 

j=2 
(4.36) 

where Y1 
. 

is the n-component vector defined by eqn. 3.9, and Zl is the 

transpose of the row matrix Z1, bearing in mind that a vector is also 

treated as a row matrix in this thesis. It can be seen from eqns. 4.5, 

4.6, and 4.8 that, YlZl' Y2Z1' ... ' YnZl are the components associated 

with sl, s2, """ , sn respectively in el, where el is the quantity 

obtained at the output of the filter Zl shown in Fig. 4.2. Consequently, 

in the detection of sl from R', YlZi may be considered as the signal 

component whereas Y2Z1, Y3Z1, ... , YnZ1 may be considered as the 

intersymbol interference components in el. Eqn. 4.36 therefore suggests 

that, the filter Zl used in system 6 effectively maximizes the relative 

magnitude of the energy of the signal component to the sum of the energy 

of the individual intersymbol interference component in el, for a given 

noise level in el, bearing in mind that the noise variance remains unchanged 

at the output of the filter here since Z1Zi =1 here. 
(A9) 

This is in 

fact the same filter as that used in any of the systems 9- 11 (with 

me = 1) in chapter 3. Thus, eqn. 4.36 may be rearranged to become 

d= Zl (A) Zl (4.37) 

ýý 
n 

and A= YTl 
1-7 

YýYj (4.38) 

J=2 

where A is here a nx n symmetric matrix. The Lagrange multipliers 
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used in system 5 is now used here to derive the vector Z1 that maximizes 

the quantity d given by eqns. 4.37 and 4.38, with the constraint that 

Z1Z1 =1 which ensures Z1 to be an unit vector. The results obtained 

here are similar to those obtained in system 5 and are such that, the 

vector Z1 selected for system 6 is the eigenvector associated with the 

largest eigenvalue of the matrix A given by eqn. 4.38, and the value 

of d defined by eqn. 4.36 is now equal to this eigenvalue. 

It has been found, by using eqn. 4.8 to calculate and compare 

the values of 
{el} 

, that there are altogether 2n different possible 

values of 
{ei} 

corresponding to the 2n possible vectors {S} 
, for system 6 

operating over channel A (Table 2.1). The value of nm (maximum number 

of possible vectors 
{S} having the same value of ei) here is therefore 

equal to 1, and so there is effectively no constraint on the value of 

nv (number of possible vectors{ S} selected at the output of the threshold 

device shown in Fig. 4.2) to be used in system 6 here, bearing in mind 

that the value of n is actually constrained to be such that n>n 
vvm 

(eqn. 4.9). 

Computer simulation tests have been carried out to determine the 

tolerance to noise of system 6 operating over channel A whose sampled 

impulse response is as given in Table 2.1. The results of these tests 

are shown in Fig. 4.13 where the 95% confidence limit for each curve 

is about ±0.5 dB. The bit error rate and the signal to noise ratio 

here are as defined by eqns. 3.39 and 3.40 respectively. Fig. 4.13 also 

shows the performance of the optimum system described in section 4.3. 

It can be seen from Figs. 4.4 - 4.13 that, when n=8, f=1, 

and nv = 8, system 6 appears to have the best tolerance to noise over 

channel A (Table 2.1) of all the systems developed and studied here, 
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where f is the number of filters {ZTj 
used in the detection process 

(Fig. 4.2) of the given system. Nevertheless, the tolerance to noise 

of system 6 with n=8, nv=8 or 4 is still very much poorer than 

that of the optimum system with n=8. The optimum performance for 

n=3 is achieved by system 6 with nv = 2. When n=5, the tolerance 

to noise of system 6 with nv =4 is about 0.5 dB lower than that of 

the corresponding optimum system at an error rate of 10-3. The best 

performance of system 6 here appears to be achieved when the system 

operates with n=5 and nv = 8, and it approaches the optimum performance 

for n=5. System 6 with a moderate value of n (being equal to 5 here 

therefore appears to be very promising when operating over channel A 

here. 
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Fig. 4.13 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 6 operating over channel A 

(Table 2.1). 

Number of filters used in the system (f) =1 
(Fig. 4.2). 

n: number of samples used in the system. 

nv: number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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4.11 Further Computer Simulation Results 

The tolerances to additive white Gaussian noise of the various 

systems developed in this chapter have so far been studied only over 

channel A (Table 2.1) which introduces severe pure amplitude distortion. 

Further computer simulation tests are now carried out to determine the 

tolerances to noise of the more promising systems here operating over 

channels B and C whose sampled impulse responses are as given in Table 2.1. 

The characteristics of these two channels have been described in section 2.4 

and are such that, channel B introduces a combination of both phase 

distortion and amplitude distortion, whereas channel C introduces very 

severe amplitude distortion and no phase distortion. In the computer 

simulation tests here, 10,000 data symbols 
{si} 

are transmitted for 

each measurement of the bit error rate, and the results are plotted 

as bit error rate P versus signal to noise ratio SNR. The definitions 
e 

of Pe and SNR here are as given by eqns. 3.39 and 3.40 respectively. 

When the simulation results appear to be more scattered which normally 

occur at low error rates (< 10-3), more simulation tests are carried 

out to measure the bit error rates at the same signal to noise ratios 

here. The results of these tests are shown in Figs. 4.14 - 4.18 for 

channel B and in Figs. 4.19 - 4.23 for channel C. The 95% confidence 

limits of these results are about ±0.5 dB. The performances of the 

optimum system described in section 4.3 are also included here. 

All computer simulation tests have been carried out by using 

the Prime 400 computer at the Loughborough University of Technology. 

The computer programs here are written in FORTRAN. 
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Fig. 4.14 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 1 operating over channel B 

(Table 2.1). 

n number of samples used in the system. 

f: number of filters shown in Fig. 4.2. 

nv number of ¶S} selected in one threshold device (Fig. 4.2). 
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Fig. 4.15 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 2 operating over channel B 

(Table 2.1). 

n: number of samples used in the system. 

f: number of filters shown in Fig. 4.2. 

nv : number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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Fig. 4.16 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 4 operating over channel B 

(Table 2.1). 

n: number of samples used in the system. 

nv : number of 
{ S} selected in one threshold device (Fig. 4.2). 

System 4 
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Fig. 4.17 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 5 operating over channel B 

(Table 2.1). 

n: number of samples used in the system. 

nv number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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Fig. 4.18 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 6 operating over channel B 

(Table 2.1). 

n: number of samples used in the system. 

nv : number of 
¬S} 

selected in one threshold device (Fig. 4.2). 
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Fig. 4.19 Variation of error rate Pe (ecin. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 1 operating over channel C 

(Table 2.1). 

n: number of samples used in the system. 

f: number of filters shown in Fig. 4.2. 

nv : number of 
f S} selected in one threshold device (Fig. 4.2). 
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Fig. 4.20 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 2 operating over channel C 

(Table 2.1). 

n number of samples used in the system. 

f: number of filters shown in Fig. 4.2. 

nv : number of 
[s} 

selected in one threshold device (Fig. 4.2). 

Optimum system 
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Fig. 4.21 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 4 operating over channel C 

(Table 2.1). 

n: number of samples used in the system. 

nv number of 
{SF 

selected in one threshold device (Fig. 4.2). 
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Fig. 4.22 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 5 operating over channel C 

(Table 2.1). 

n: number of samples used in the system. 

nv : number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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Fig. 4.23 Variation of error rate Pe (eqn. 3.39) with signal to noise 

ratio SNR (eqn. 3.40) for system 6 operating over channel C 

(Table 2.1). 

n: number of samples used in the system. 

nv number of 
{S} 

selected in one threshold device (Fig. 4.2). 
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4.12 Assessment of Systems 

All the systems developed in this chapter employ the same detection 

process shown in Figs. 4.1 and 4.2, and they differ only in having a 

different set of filter(s) {Zh} for the arrangement shown in Fig- 4.2. 

The selections of these filters for the more promising systems here are 

summarised as below. 

System 1: The filters here are selected to be matched to the vectors 

[h} defined by eqn. 3.9, with the constraint that ZhZh = it 

for h=1, 2, - -, f. f filters are used here and 1* f; n. 

System 2: The filters here are given as a set of orthonormal vectors 

which are derived from the fyhi by using the Gram-Schmidt 

orthogonalisation process. f filters are used here and 1--- f-< n. 

System 4: Only one filter is used in this system and is given as the 

unit vector that makes the same acute angle with all the 

vectors Y1' Y2' -'Y. 

System 5: Only one filter is used in this system and is selected to 

maximize the energy of the sampled impulse response of the 

channel and filter, with the constraint that Z1Zi = 1. 

System 6: Only one filter is used in this system and is selected to 

maximize, in its output signal el?, the relative magnitude 

of the energy of the signal component to the sum of the 

energy of the individual intersymbol interference component, 

with the constraint that Z1Zi = 1. 
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In each of the systems 1-6, a total of (fnv+2) distance 

measurements are involved in the detection of S from R'7 using the 

arrangement shown in Fig. 4.2, where nv is the number of possible 

vectors 
{S} 

selected at the output of each of the f threshold devices 

shown here. A distance is here referred to as the quantity IIR' 
- SYI. 

In practice, the quantity IIR' 
- SYII2 will be evaluated instead of 

IIR' 
- SYI, which simplifies the operations involved in the detection 

process without affecting the results. 
(A9) 

It should perhaps also be 

reminded that, in the detection of S from R', the number of distance 

measurements required in the optimum system described in section 4.3 

is 2n which is also the total number of possible vectors 
{S}. It 

is, of course, desirable to involve a small number of distance measurements 

in the detection process so that the corresponding system can operate 

at a high speed. Consequently, systems 1-6 are here compared with 

the optimum system in terms of the performance in tolerance to additive 

white Gaussian noise and the number of distance measurements required 

to achieve this performance. 

Figs. 4.4 - 4.13 show the tolerances to noise of systems 1-6 

operating over channel A. It can be seen from these results and the 

discussions given in the previous sections that, each of the systems 

1-6 appears to have very poor tolerance to noise here when, the given 

system operates with n=8, f=1, and nv =8 or 4 or 2. The number 

of distance measurements involved here with nv =8 is (fnv+2) or 10 

and is a very small number as compared to 256 which is the number of 

distance measurements required in the optimum system with n=8. When 

n=3, the optimum performance here is achieved by any of the systems 

1,2,5, and 6 with f=1 and nv = 2. System 4 with the same values 

of f and nv, however, has a tolerance to noise of about 1 dB lower than 
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that of the optimum system here (that iss when n= 3) at an error rate 

of 10-3. When n=5, the optimum performance here is achieved by any 

of the systems 1 and 2 with f=3 and nv = 8. However, the number of 

distance measurements involved here now becomes 26 and is about the 

same as that (2n or 32) involved in the optimum system with n=5. Each 

of the systems lý 29 49 5, and 6 operating over channel A appears to 

have the best arrangement when the given system operates with n= 59 

f=1, and nv = 8. The tolerance to noise here approaches to that of 

the optimum system with n= 59 and the number of distance measurements 

required to achieve this performance is only 10 which is obviously a 

small number as compared to that required in the optimum system here. 

Figs. 4.14 - 4.18 show the tolerances to noise of systems 1,2, 

4,59 and 6 operating over channel B. As it appears, when n=5 and f=1, 

system 4 with nv =8 appears to have the best tolerance to noise, with 

a loss of only about 0.5 dB in relation to that of the optimum system 

at an error rate of 10-3. However, as nv is reduced to 49 the tolerance 

to noise of system 4 degrades significantly, with a further loss of 

about 2 dB at the same error rate. System 5 therefore appears to be 

the best of all the systems here, as its tolerance to noise is only 

about 0.5 dB inferior to that of system 4 at nV = 8, but is about 1 dB 

better than the latter at nV = 4. Each of the systems 1,27 and 6 has 

about the same tolerance to noise here and is a little inferior to that 

of system 4 or 5. When n=3 and f=1, roughly the same tolerance to 

noise is achieved by any of the systems 4 and 5 with nv =4 or 2, and 

is about 0.5 dB inferior to that of the optimum system (with n= 3) at 

an error rate of 10-3. The performance of any of the systems 19 21 and 6 

is here slightly inferior to that of any of the systems 4 and 5. 
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Figs. 4.19 - 4.23 show the tolerances to noise of systems 1,2ý 

4,5, and 6 operating over channel C. It can be seen from these results 

that, when n=5 and f=1, each of the systems 4 and 5 appears to have 

achieved the optimum performance with nv = 4, and each of the systems 

1 and 2 appears to have achieved it with nv = 8. System 6, however, 

appears to be the poorest of all the systems here, and with nV = 89 it 

gives a tolerance to noise of about 2 dB lower than that of the optimum 

system (with n= 5) at an error rate of 10-3. When n=3 and f= 19 

each of the systems 1,2.9 49 5, and 6 with nv =4 or 2 is seen to achieve 

roughly the same performance which approaches to that of the optimum 

system here at error rates below 10-3. 

It can now be seen from the results just described that, given 

the values of n, f, and nv, systems 1,2,4,5, and 6 appear to have 

about the same tolerance to noise, with a difference of not more than 

2 dB (and very often much less than 2 dB) at an error rate of 10-3, 

when operating over any of the channels A, B. and C. One weakness of 

any of these systems appears to be that, when the given system operates 

with a large value of n, a large number of possible vectors 
{S} 

are 

required to be selected and hence a large number of distance measurements 

are required to be evaluated in the system in order to achieve a given 

tolerance to noise. This is probably because the total number of possible 

vectors 
{S} is given by 2n so that, for a large value of n,.. a large 

number of possible vectors 
{S} 

are associated with small distances and 

so a large number of these vectors are required to be selected in the 

system here so as to include the vector associated with the minimum 

distance, bearing in mind that the optimum system here selects as the 

detected vector the possible vector of S associated with the minimum 

distance. As the results in Figs. 4.4 - 4.13 show, when n=8, each 
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of the systems 1-6 with f=1 and nv = 89 47 or 2 appears to have 

very poor tolerance to noise as compared to that of the optimum system. 

This value of n therefore appears to be too large for the values of 

nv considered here, bearing in mind that each of the systems 3-6 

operates only with f=1 and that (fnv+2) is the number of distance 

measurements involved in the system here. The weakness of using a small 

value of n in the system here is that, the optimum performance achievable 

by the system may be degraded to such a large extent that it is now 

impossible to achieve a. useful tolerance to noise by the system. As 

Figs. 4.4 - 4.23 show, for the three channels A, B, and C (Table 2al) 

tested here, the tolerances to noise of the optimum system with n=8 

are about 0.5 to 1.5 dB better than that of the optimum system with 

n=5 and are about 2 to 2.5 dB better than that of the optimum system 

with n=3, at an error rate of 10-3. Consequently, with n=3, none 

of the systems 1-6 can achieve a tolerance to noise near to that of 

the optimum system with n=8. The best arrangement of. each of the 

systems 11,2,4,5, and 6 therefore appears to be that when a moderate 

value of n is used in the system. As can be seen from the results shown 

in Figs. 4.4 - 4.23, each of the systems 1,27 4,5, and 6 with n=5 

operating over any of the. channels A, B, and C, is able to achieve a 

good performance with a small number of operations. In particular, when 

system 5 operates with n=5, f=1, and nv = 4, the tolerance to noise 

achieved here is about 0.5 dB inferior to that of the optimum system 

with n=5 at an error rate of 10-3, for each of the channels A, B, and C. 

The number of distance measurements required in this arrangement of 

system 5 is only (fn +2) or 6 which is obviously a very small number 
v 

as compared to that (2n or 32) of the optimum system with n=5. 
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Thus, the detection process with any of the arrangements of 

systems 1,2,4ý 5, and 6 developed in this chapter appears to be very 

promising when a moderate value of n (being equal to 5 for the three 

channels tested here) is used in the system. The operation of the more 

promising arrangement of this detection process is very simple and it 

involves only the linear filtering of a set of n sample values, the 

selection of a set of vectors by using a simple multi-level threshold 

device, and the measurement of a distance for each of these selected 

vectors. This detection process is also able to achieve a very satisfactory 

tolerance to additive white Gaussian noise with a small number of distance 

measurements. The channel sampled impulse response of the data-transmission 

system here iss however, restricted to be known and time-invariant so 

that the parameters of the filter and the threshold values used in the 

detection process here can be evaluated before the transmission of data 

begins. 
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CHAPTER 5 

NEAR-MAXIMUM LIKELIHOOD DETECTION PROCESSES FLOR A 16-POINT QAM SIGNAL 

TRANSMITTED OVER A TELEPHONE CIRCUIT 

5.1 Introduction 

In a digital data-transmission system operating over the switched 

telephone network, it is essential to employ an adaptive receiver that 

can be used over any telephone circuit which may have any one of a wide 

range of characteristics. The adaptive receiver here may be implemented 

by using an adaptive nonlinear (decision feedback) equalizer . 
(Bl67B22YB34qB36) 

Such systems have been known to operate satisfactorily at transmission 

rates up to 4800 bits/second, above which satisfactory performance is 

not always achievable over the poorer telephone circuits. 
(C42) 

Alternatively, the adaptive receiver may be implemented by using 

the Viterbi-algorithm detector described in section 2.7.2. It is known 

that, under the various conditions assumed in section 2.7, the Viterbi- 

algorithm detector is able to achieve the same performance as that of 

the maximum-likelihood detector which minimizes the probability of error 

in the detection of the whole transmitted message. 
(A9) 

Unfortunately, 

the amount of storage and the number of operations per data symbol involved 

in the Viterbi-algorithm detector increases exponentially with the number 

of non-zero components of the channel sampled impulse response. In the 

particular application considered in this chapter, where the sampled 

impulse response of the telephone channel contains a large number of 

non-zero components, direct application of the Viterbi-algorithm detector 

becomes too complex and impractical. 
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One approach for overcoming this problem is to insert a linear 

filter at the input to the Viterbi-algorithm detector, so that the 

overall sampled impulse response of the channel and filter now has 

a small number of components. 
(C13, C16, C20, C33) 

However, this linear 

filter may equalize some of the amplitude distortion introduced by 

the telephone circuit, so that the true maximum-likelihood detection 

is no long achieved, leading to inferior performance. 
(A9) 

The linear 

filter here should ideally perform the function of a 'whitened matched- 

filter'(C10, 
C42) 

which does not remove any of the amplitude distortion 

introduced by the telephone circuit. A Viterbi-algorithm detector 

operating at the output of this filter now has the same tolerance to 

Gaussian noise as the appropriate Viterbi-algorithm detector operating 

at its input, although generally involving much less complex equipment(. 
C42) 

However, since this filter does not remove any of the amplitude distortion 

introduced by the telephone circuit, the sampled impulse response of 

the channel and filter does not always, or even in general, have a 

sufficiently small number of components to permit the practical use 

of the Viterbi-algorithm detector. In the particular application considered 

in this chapter, where a 16-point QAM signal is transmitted over a 

telephone circuit at 9600 bits/second, practical implementation of 

the Viterbi-algorithm detector can become unduly complex even if the 

number of components in the sampled impulse response of the channel 

and filter is as few as three. It therefore follows that, the Viterbi- 

algorithm detector must now be replaced by a near-maximum likelihood 

detector that uses very much less storage and requires far fewer operations 

in the detection process. 
(C37, C38, C42) 

The weakness of the arrangement described above (which involves 

the use of a linear prefilter that acts as a 'whitened matched-filter') 
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is that, a fair amount of time is normally required to adjust the tap 

gains of the linear prefilter here (being implemented as a linear 

feedforward transversal filter) to their correct values, so that the 

detection process here now has a long starting up procedure. Furthermore, 

a large number of taps are usually required to be used in this prefilter 

so as to achieve the 'desired' sampled impulse response of the channel 

and prefilter here with an acceptable accuracy. This means that a large 

number of multiplication processes are now required to be carried out 

in this prefilter. 

It appears that two approaches may be used to overcome some 

or all of the weaknesses mentioned above. One approach is to use a 

simpler linear prefilter which has far fewer taps, the tap-gain values 

here being easily evaluated from the channel sampled impulse response. 

The second approach is to discard entirely the use of a prefilter, 

and to use just a more efficient and probably therefore more complex 

near-maximum likelihood detector for the detection process. Various 

arrangements of these two types of detection processes have been developed 

and studied in this chapter. 

5.2 Basic Assumptions 

The data-transmission system here is the synchronous serial 16-point 

QAM data-transmission system described in section 2.4, where the signals 

are transmitted at 9600 bits/second over a telephone circuit. The equivalent 

baseband model of this data-transmission system is shown in Fig. 2.3. 

The signal processor shown in Fig. 2.3 is here implemented as a near- 

maximum likelihood detection process which may or may not include the 

use of a linear prefilter at its front end. Thus, from eqn. 2.19, the 
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sample value of the received signal at the input to the signal processor 

shown in Fig. 2.3, at time t= iT, is here given by the complex-valued 

quantity 

g 
V' si-hyh 

h-0 

where the {w 
i} are the complex-valued noise components, y0, y1' "" 'y g 

are the g+l complex-valued components of the channel sampled impulse 

response, and the {si} 
are the 16-point QAM data symbols whose values 

are to be determined here. It is assumed that the real and imaginary 

parts of the fwi) 
are statistically independent Gaussian random variables 

with zero mean and variance 82 
, where 262 is the two-sided power spectral 

density of the noise added at the output of the transmission path shown 

in Fig. 2.3. It is also assumed that the fsi} 
are statistically independent 

and equally likely to have any of their 16 possible values, where 

si = ai + jbi (5.2) 

and j ai = ±l, ±3, bi = ±1, ±3. The signal processor (Fig. 2.3) 

operates on the sample values 
{ri} 

given by eqn. 5.1, to give at its 

output the detected values of the data symbols fsi}. The detected 

value of si is here designated as s'. 

Various arrangements of the signal processor that uses a near- 

maximum likelihood detector are studied in this chapter. The arrangement 

where a simple linear prefilter is inserted ahead of a simple near- 

maximum likelihood detector is first considered. The investigation 

then continues with the studies of the arrangement where no prefilter 

is used in the signal processor. The performance of these systems are 

compared with those of the optimum nonlinear equalizer described in 

section 2.6.3, and the system to be described in the next section where 
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a linear filter that acts as a 'whitened matched-filter' is inserted 

at the input of a simple near-maximum likelihood detector. In order 

to have a better understanding of the systems developed and studied 

here, the channel sampled impulse response is assumed to be known and 

time invariant for the whole transmission period. 

The performances in tolerances to additive white Gaussian noise 

of the systems developed and studied in this chapter are evaluated 

by using computer simulation tests. In these tests, 40,000 binary digits 

are generated and converted (Table 2.2) into the corresponding 10,000 

16-point QCM data symbols 
[sil for transmission (assuming the data- 

transmission of Fig. 203), and the number of errors in the detection 

of these binary digits are recorded for each measurement of the bit 

error rate, bearing in mind that the same Gray code (Table 2.2) is 

used at the receiver to decode the detected data symbols 
fs! } into 

the corresponding detected binary digits here. The results of the 

computer simulation tests here are plotted as bit error rate Pe versus 

signal to noise ratio SNR, where Pe is'defined as 

Number of errors in the detection of binary digits 

p= (5.3) 
e Total number of binary digits transmitted 

When the simulation results appear to be more scattered which normally 

occur at low error rates (< 10-3), more simulation tests are carried out 

to measure the bit error rates at the same signal to noise ratios here. 

The signal to noise ratio SNR here is defined as 

SNR = 10 log10 ( 
2N 

) dB (5.4) 

0 

where E' is the average transmitted energy per data sybmol sip at the 
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input to the transmission path (Fig. 2.3), and No is the two-sided 

power spectral density of the additive white Gaussian noise at the 

input to the receiver filter. The channel sampled impulse responses 

to be used in the computer simulation tests here are those shown in 

Tables 2.4 - 2.7. In order to avoid using excessive computing time, 

only channel A (Tables 2.4 - 2.7) is used in the initial computer 

simulation tests to determine the tolerances to noise of the systems 

developed and studied in this chapter. The more promising systems here 

are then further tested over each of the channels B-F (Tables 2.4 - 2.7) 

to ensure a more representative test. All computer simulation tests 

here have been carried out on the CDC 7600 computer in Manchester. 

5.3 System 1 

This is the system referred to as system B in Ref. C42, and it 

is considered here as a reference system for comparison with the systems 

developed in this chapter. The basic model of the signal processor 

here is shown in Fig. 5.1. 

In Fig. 5.1, the 'optimum' linear prefilter is the filter that 

acts as a 'whitened matched-filter' described previously, and it is 

basically an all-pass network such that the sampled impulse response 

of the channel and filter is minimum phase. 
(C42) 

This filter effectively 

replaces all zeros of the z-transform of the channel that lie outside 

the unit circle in the z-plane by the complex conjugates of their 

reciprocals, leaving the remainning zeros unchanged. Thus, the sampled 

impulse response of the channel and optimum prefilter here has g+1 

components y yi, """ , y' which have a z-transform with all the 

zeros lying inside or on the unit circle in the z-plane. The first 
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component y0 is here one of the larger components in the sampled 

impulse response of the channel and prefilter. 
C42) 

Furthermore, the 

noise components at the output of this prefilter have the same statistical 

properties as the noise components at its input. 
(C42) 

Thus, the sample 

value at the output of the prefilter in Fig. 5.1, at time t= iT, is 

given by the complex-valued quantity 

ei si-hyh + wi 
h-0 

(5.5) 

where the {w1! } are the noise components whose real and imaginary parts 

are statistically independent Gaussian random variables with zero mean 

and variance d 2, 
and the (sif 

are the 16-point QAM data symbols (eqn. 5.2) 

whose values are to be determined here. The components y, y1, "" 7 yý 

in eqn. 5.5 are, of course, the g+l components of the sampled impulse 

response of the channel and prefilter here. 

The detector (Fig. 5.1) operates on its input samples {r! } to 

give the finally detected data symbols 
{s! }, 

s! being determined after 

the receipt of ri+n ' where n <g , so that there is a delay in detection 

of n sampling intervals. The operation of this detector will shortly 

be described. The intersymbol interference canceller Fig. 5.1) removes 

from the samples 
{ei} (eqn. 5.5), detected values of all components 

involving data symbols 
{si} 

whose final detected values 
{s! } have already 

been determined. That iss the intersymbol interference canceller operates 

on e. 
i 

to give the complex-valued quantity 

g 
T' rl e s' 

l h=n+l 
i-h h (5.6) 

Assuming for the moment that si-h = si-h for h= n+l, n+2, """ ,g 
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eqn. 5.6 now reduces to 

n 
ri = si_hyh + wi (5.7) 

h=0 

It can be seen from egns. 5.5 and 5.7 that, the effective number of 

components of the sampled impulse response of the channel and prefilter 

has been reduced from g+l to n+l, so that the detection process is now 

greatly simplified when n< g. Fig. 5.2 shows the arrangement for the 

intersymbol interference canceller just described. For the purpose 

of study here (where the sampled impulse response of the channel and 

prefilter is assumed to be known and time invariant), the arrangement 

of the adaptive adjustment of the prefilter and the intersymböl interference 

canceller for a time varying channel are not shown in Fig. 5.2. In 

Fig. 5.2, a square marked T is a device which introduces a delay of 

T seconds, where T seconds is the sampling interval, and a square marked 

T, is an accumulator that sums the input samples. Clearly, when there 

is no delay in detection (that iss n= 0), the intersymbol interference 

canceller shown in Fig. 5.2 becomes identical to that used in the pure 

nonlinear equalizer described in section 2.6.2. 

The operation of the near-maximum likelihood detector shown in 

Fig- 5.2 for system 1 is now described as follows. Just prior to the 

receipt of the sample r! at the detector input, the detector holds 

in store m n-component vectors 
{Xi-1} 

where 

Xi-1 
C 

Xi-n Xi-n+l ýýý Xi-1 J 
(5.8) 

and xk has one of the 16 possible values of sk for any positive integer 

value of ko Each vector Xi_l is associated with a cost Ci_1 which 

will shortly be discussed. 



S., 

_ 247 _ CH 0 

-i 

I 

a) 

a) 
CH 
0 
51, 
0 

U 
N 

N 

r-I 
N 

ý ßt0 
N ri 

+ý w CH - Ca 
1-1 E a) ý + 

(D 
O 

., -1 
+D 0 

a> uý 
r) a) NU 
-l 0 
R i-i 

Pl 
a) 

r-I r--I 
Cd Lý 

rl r{ 
U) In 

C\1 

LCl 

. rl 
w 



- 248 - 

On receiving r!, each of the m stored vectors 
{Xi-l1 is expanded 

into 16 (n+l)-component vectors 
{Pil, 

where 

P. = x. 
- 

xi- """ x. 
i 1n n+l i 

(5.9) 

The first n components of P. are as in the original vector Xi_1, and 

the last component x. 
1 

has the 16 possible values of s1. (given by a1 . +jb. 

for ai= ±l, ±3 and bi= ±1, ±3). The detector then evaluates the cost 

C. for each of the 16m vectors 
fPi1. The cost C. is here defined as 

Ci = c1 + c2 + ... + ci (5.10 

or C. Ci-1 + ci (5.11) 

and the quantity ck is here given by 

ek = 
Irk gk12 (5.12) 

n 
where qk =h xk-hyh (5.13) 

h=0 

and rk is as defined by eqn. 5.6, for k=1,2, "" , i. The quantity 

Irk qk, in eqn. 5.12 is the absolute value (modulus) of rk qk. 

Thus, if Ri and Q! are the i-component vectors whose kth components 

are given by rk and qk respectively, then the cost C. here is the square 

of the unitary distance between R! and Q. Under the various conditions 

assumed here, the maximum likelihood vector 
C 

xl x2 xi 

is its possible vector such that CI is minimized, and this vector is 

the possible vector of 
C 

sl s2 """ si 
] 

most likely to be correct(C42) 

Thus, the cost CI for each of the 16m expanded vectors 
IPi}is here 

evaluated by using egns. 5.11,5.121, and 5.13, bearing in mind that 
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the cost Ci-1 in eqn. 5.11 has already been evaluated in the previous 

detection process. The detector now proceeds to select the vector of 

IP. } here associated with the smallest cost, and it takes the value of J 

x in this vector to be the value of the detected data symbol s! 
i-n 1-n 

All vectors P. I for which xLs! are then discarded, and the 
i -n -n i-n 

first component (being xi 
-n 

) of each of the remaining vectors 
{Pi. } is 

omitted to give the corresponding n-component vectors 
{Xi}. The cost 

of a vector X. here is taken to be that of the corresponding vector Pi. 

Thus, the vector X. associated with the smallest cost is here the first 

selected vector. The detector then selects the second vector X. associated 
i 

with the smallest cost subject to the constraint that only the 16 

vectors 
{Xi} deriving from the previous first (best) vector Xi-1 are 

available for the selection here, bearing in mind that the first selected 

vector Xi is not to be selected again. This constraint is to ensure 

that the previous best vector is retained so that, in the case of severe 

impulsive noise where the noise samples are very large, not all the 

vectors deriving from the previous best vector are discarded from the 

store. Having selected the first two vectors, the detector then proceeds 

to select from the remaining vectors 
{Xi} 

the m-2 vectors associated 

with the smallest costs, to give a total of m selected vectors 
{ 

Xi}. 

These m selected vectors are stored together with their associated 

costs 
{Ci}. The detector is now ready for the next detection process 

where the data symbol si-n+l will be detected in the same way as 

is described above. 

At the start of transmission, the n components x1, x2, """ 9 xn 

of each of the m stored vectors 
{Xn} in the detector here are set to 

the corresponding values of the data symbols sl9 s2, """ , sn whose 

values are known at the receiver. However, only the cost Cn of the 
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first stored vector is set to zero, whereas the costs of the remaining 

m-1 stored vectors here are set to some very high values. Consequently, 

after a few detection processes have been completed, all the m stored 

vectors 
{Xi} (i > n) will have been derived from the vector Xn associated 

with a zero cost, and all these stored vectors will now be different. 

The process of discarding from further considerations those vectors 

{Pi} for which xi-n / si-n ' now sufficiently ensures that no two or 

more stored vectors 
{Xi} 

can subsequently become the same. That iss 

the stored vectors 
{Xi}. 

are here prevented from merging. 

In the case where no vectors of 
{Xi} 

are available for selection 

during the detection process, a vector with arbitrary components 
{xk} 

is selected and its associated cost is set to a very high value so 

that this vector is discarded in the next detection process. 

In the computer simulation tests to determine the tolerance to 

Gaussian noise of system 1, the linear prefilter shown in Fig. 5.2 

is included as part of the channel of Fig. 2.3, so that the near-maximum 

likelihood detector now operates directly over the resultant-'channel' 

with sampled impulse response yl, yl, "" yg (eqn. 5.5). The sampled 

Impulse responses of the resultant 'channels' to be used here are those 

given in Tables 2.6 and 2.7. This arrangement is very convenient for 

the computer simulation tests, and it does not affect the results since 

the noise components at the prefilter output here have the same statistical 

properties as those at its input. 
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5.4 System 2 

In system 1, the signal processor of Fig. 5.1 is implemented as 

a simple near-maximum likelihood detector with a linear prefilter inserted 

at its input. The improvement in tolerance to noise over the optimum 

nonlinear equalizer described in section 2.6.3 has been shown to be 

very satisfactory. 
(C42) 

However, as is mentioned in section 5.1, the 

weaknesses of using the linear prefilter used in system 1 are that, 

a long starting up procedure is required to set the tap-gain values 

of this prefilter to their correct values, and that a large number 

of taps are required to realise this prefilter so that a large number 

of multiplications are now required to evaluate a sample value at its 

output. The aim here is therefore to replace the linear prefilter used 

in system 1 by a simpler linear prefilter, or else to discard it altogether 

and use a more complicated near-maximum likelihood detector. System 2 

is the basic system here in that, each of the following systems to 

be described in the following sections is a further development of 

system 2. 

The signal processor of system 2 employs the arrangement where 

no prefilter is inserted ahead of the near-maximum likelihood detector. 

Before proceeding to describe the operation of this signal processor, 

consider first the detector used in system 1. It can be seen from 

section 503 that, the detector of system 1 is such that, only 16m possible 

combinations of the n+l components xi-n' xi-n+l' *** 9 xi are available 

for the selection of the m possible vectors 
{xi} 

associated with the 

smallest costs. However, since each vector X. here has n components 

xi-n+l' xi-n+2' .., xi 9 there are altogether 16n (>>16m) possible 

vectors of 
{Xi}, bearing in mind that xh (h -0) has one of the 16 possible 

values of the data symbol sh" Furthermore, the selection of the m vectors 
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{x. } here is carried out after the receipt of the sample r! (eqn. 5.7) 

which contains the components s. y , si-lyl' ' si-ny' of the 

corresponding signal elements carrying the respective data symbols 

si' si-1' *** ' si-n' It therefore follows that, after the receipt 

of siyý9 si-lyl' ýýý ' si-nyn ' some possible combinations of xis 

xi-1' "' ' xi-n are discarded and are thus not available for the 

subsequent detection processes. Consequently, if the magnitudes of 

y0' yl, ".. ' yf (f% C) are very small, then some possible combinations 

of xi, xi-1' ... ' xi-f+l are here discarded before any components 

of significant magnitude dependent on si' si-1' ... ' si-f+l are 

received, so that the m selected vectors 
{Xi} 

can be very poorly chosen. 

Nevertheless, the linear prefilter used in system 1 is such that y0 

is always one of the larger components in the sampled impulse response 

of the channel and prefilter, and so a satisfactory performance is 

always achieved here. In system 2, however, the detector is required 

to operate directly over the telephone channel whose sampled impulse 

response often has some small components at its front end, as can be 

seen from Tables 2.4 and 2.5. The detector of system 1 therefore may 

not operate satisfactorily if it is used in the arrangement of system 2. 

One approach to avoid the discard of some possible combinations of 

xi' xi-1' """ ' xi-f+l before any components of significant magnitude 

dependent on si, si-1, "', si-f+l are received, is to include all 

the possible combinations of xi, xi-1' -9 xi-f+l in the m selected 

vectors 
{Xi}. The drawback of this arrangement is that there is now 

a very considerable increase in both the number of stored vectors and 

in the number of operations per received signal element. Another approach 

is that employed in the detector of system 2 now to be described. 
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Basically, the detector of system 2 differs from that of system 1 

in that the selection of the m possible vectors 
{x. } 

associated with 

the smallest costs is here carried out after the first significant 

component siyf of the signal element carrying the data symbol si 

has been received. The signal processor of system 2 now has the arrangement 

shown in Fig. 5.3 where the data symbol si-n is detected after the 

receipt of the sample value ri+f (eqn. 5.1). The signal processor here 

operates as follows. After the receipt of the sample value ri+f' the 

intersymbol interference. canceller (Fig. 5.3) removes from the samples 

ri' ri+l1 ri+f ' detected values of all components involving 

data symbols whose final detected values s! si-n-2' ... ' si-g 

have already been determined. That iss the intersymbol interference. 

canceller operates on ri' ri+l' ... ri+f to give at the detector 

input the following complex-valued quantities 

r! 190 = ri - 

riýl - ri+l 

ri, f - ri+f 

g 

h= 1 
Si-huh 

9 
s' y' 

h=n+2 i+l-h h 

g 

is h= +li+f-hyh 
(5.14) 

where y0, yl, ", yg are the g+l components of the telephone channel 

sampled impulse response, 
{rk} are as defined by eqn. 5.1, and yf is 

the first significant component of the channel sampled impulse response. 

The selection of the component yf will be further discussed. Assuming 

for the moment that si_h = s}_h for h= n+l, n+2, "" 7 g, eqn. 5.14 
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now reduces to 

n 
ri, 0 

h 
Si-hyh + wi 

n+ I 

r! ö Si+l-hYh + Wi+l 

n+f 
ri, f ö Si+f-hyh + wTi+f (5.15) 

where {wk} are the noise components whose real and imaginary parts 

are statistically independent Gaussian random variables with zero mean 

2 
and variance 6. 

The detector (Fig. 5.3) of system 2 operates by ignoring the 

components associated with si+l' si+2' ' si+f in the sample values 

ri 0' ri 1' ... ' ri f, and this is now described as follows. Just 
>>> 

prior to the receipt of the sample ri+f (eqn. 5.1), the detector here 

holds in store m n-component vectors 
{Xi-1} (eqn. 5.8) together with 

the associated costs 
{CThe cost Ci-1 here is as defined by eqn. 5.10 

to be c1 + c2 + "" + ci-1 but the quantity ck used in system 2 is 

given by 

n 
Ö 

xk-hyh) (5.16 °k Irk, 
0 

2 

for any possible value of k, where rks. 0 
is as defined by eqn. 5.14, 

and xi has one of the 16 possible values of the data symbol si . On 

receiving ri+f' the detector expands each vector %i_1 into the corresponding 

16 vectors 
{Pi} (eqn. 5.9) having the 16 possible values of xi, and 
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it evaluates the cost C. for each of the 16 vectors 
{Pi}. The cost 

C. here is evaluated by using egns. 5.11 and 5.16. Furthermore, the 

detector also evaluates the quantity C! for each of the 16m expanded 

vectors 
{P 

i}9 where 

C! = C. , if f=0 

f n+h 
= Ci + 

Iri 
h-X xi+h- I2 

' if f>0 (5.17) 

h=1 ' j=0 
j 

xk =0 for k; 0, k> i, and the { 
ri h} are as defined by ecgn. 5.14. 

Thus, in the computation of the quantity C!, all terms {xi+h- 
y} for 

jj 

h-j = 1,2, "" ,f are neglected here, so that as far as the detector 

is concerned, the kth signal element has not arrived until its (f+l)th 

component skyf is received.. Having evaluated the value of Ci for 

each of the 16m vectors 
{Pi}, the detected data symbol s! is then 

taken as the value of xi-n in the vector P. having the smallest value 

of C!. All vectors 
{Pi} for which xi-n Si-n are now discarded, 

and the first component of each of the remaining vectors 
{Pi} is omitted 

to give the corresponding n-component vectors 
{Xi}. Each vector Xi 

iss of course, associated with the same C. and C! as those of the 

corresponding Pi. The detector now selects the m vectors 
{Xi} 

associated 

with the smallest values of 
{C1}, 

subject to the constraint that only the 

16 vectors 
{Xi} 

originating from the previous best vector Xi-1 are 

available for the selection of the second vector X. here, where the best 

vector Xi-1 here is referred to the vector having the smallest value 

of C! . These m selected vectors 
{Xz_}, together with their associated 

i-1 

costs 
JC. J 

are then stored, and the detector is now ready for the next 

detection process. 
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The starting procedure here is the same as that of system 1. 

That iss all the n components of each of the m initial stored vectors 

{x } 
are set to the values of the corresponding data symbols, and the 

cost is set to zero for the first vector and to a very high value for 

each of the remaining m-1 vectors. When no vectors of 
{Xi} 

are available 

for selection during the detection process, an arbitrary vector X. 

is selected and its cost is set to a very high value so that this vector 

is discarded in the next detection process. 

Thus, the detector of system 2 differs from that of system 1 

in that the quantity C! (eqn. 5.17) is used in place of the cost C. 

to select the m vectors 
{Xi}. In the special case when f=0 (that 

is, when y0 is the first significant component of the channel sampled 

impulse response), C! becomes identical to C. and the detector here 

reduces exactly to that of system 1. Furthermore, if f -09 then the 

values of 
{rl 

h} given by eqn. 5.15 may be substituted into eqn. 5.17 

so that the value of C! now becomes 
i 

f n+h 2 
C! C. + h1 

Z(si+h-j xi+h-j)Yj + Wi+hl 
J=O 

f n+h h-i 
2 

= Ci +EIE (si+h-j xi+h-j> rj + 
F- 

Si+h-Jy .+ wi+h 
h=1 j=h j=0 

= C1 + 
7- 1Z (si_j 

- Xi_j)Yh+j + Ih + wi+hl2 5.18) 
h=l j=0 

h-1 

and Ih Z si+h-j7j 
(5.19) 

j=o 

for h= 19 29 "" 'f where the {Ih} 
are the intersymbol interference 

components caused by neglecting the presence of si+l' si+2' "' ' Si+f 

in ri 1' ri 2' -' ri f of eqn. 5.15. It can now be seen from 

>>> 
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eqn. 5.18 that, by using a larger value of f, more components of the 

received signal elements associated with si-n+l' si-n+2' **' ' si 

are included in the value of C!, so that more information about the 

data symbols si-n+l' si-n+2' """ 9 si is now available for the selection 

of the m vectors 
{X 

1 . 
}. However, it can also be seen from egns. 5.18 

and 5.19 that, by using a larger value of f, more intersymbol interference 

components 
{Ih} 

are included in C! so that the effective noise level 

is now increased, bearing in mind that the effective noise components 

may be taken as Ih + wi+h in eqn. 5.18. Consequently, an appropriate 

value of f must now be used in the detection process so as to achieve 

the best performance achievable by system 2. A crude analysis of the 

value of f to be used at high signal to noise ratios is given as follows. 

At high signal to noise ratios when the error rates are low, most of 

the data symbols 
{s. 

are detected correctly. It is now very likely 

that the vector X. whose components are all correct (that is, xh = Sh 

for h= i-n+l, i-n+2, "" , i) is available for the selection process 

that selects the m vectors 
{Xi} 

associated with the smallest 
{Ci}. 

It appears intuitively that, the probability of error in detection 

is now likely to be determined to a large extent by the probability 

of discarding the vector X. 
1 

whose components are all correct during 

the selection process for the m vectors 
{Xi}. Consider now the 16 vectors 

{Xi} 
whose first n-l components are all correct. The value of Ci (eqn. 5.18) 

for each of these 16 vectors now reduces to 

f 
Oi = C. +ý 

I(Si 
- Xi) Yh + Ih + Wi+h I2 5.20) 

h=l 

where xi may have any of the 16 possible values of s1, and Ih is as 

given by eqn. 5.19. As eqn. 5.20 suggests, the inclusion of a component 

sigh is always accompanied by the inclusion of an intersymbol interference 
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component Ih in the value of C! which now determines which of the 16 

vectors 
{Xi} having the 16 possible values of xi are to be discarded 

during the selection process for {Xi}. Clearly, the inclusion of sigh 

in C! allows the detector to know more about the value of s. whereas 
11 

the inclusion of Ih in C! may be regarded as the additional 'noise' 

added to the value of siyh. it therefore follows that if the magnitude 

of siyh is larger than that of Ih, for h=1,2, "" ,f, then the 

value of C! is likely to be in favour of the system performance. Consequently, 

it appears that the value of f used here should be selected to be such 

that 

f-i 
jSiYf I>I If IIk Si+f-kYk (5.21) 

and the larger the difference between Isiyfl and Ilfl, the higher may 

be the tolerance to noise of the detector. Furthermore, since 

si+f-kYk 
II ýl Si+f-kYk (5.22) 

k=00 k=0 

the inequality of (5021 is always satisfied if 

f-1 
IsiYf I> 7- I si+f-kyk 

I (5.23) 

k=O 

fý-'1 (5.24) 
or S. l l'> 

öl si+f-. k 
(l Ykl 

Since the smallest possible value of Isil is I±l±jl or 
J, and the 

largest possible value of Isi+f-kl is I±3±3j1 or 3/2 , therefore if 

the quantity 

f-i 
d= lyfl 3 

-7 
lykl 

k=0 
(5.25) 

is larger than zero, then the inequalities of (5.24) and hence (5.21 
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are always satisfied. Thus, the value of f and hence the first significant 

component yf to be used in the detection process here, at high signal 

to noise ratios, should be such that the quantity d defined by eqn. 5.25 

is maximized. It is emphasized that, the above derivation is not rigorous 

and that the mechanism of the detection process here is more complicated 

than the simplified version described above. 

Computer simulation tests have been carried out to determine 

the tolerance to additive white Gaussian noise of system 2 operating 

over channel A (Table 2.4), and the results are shown in Fig. 5.4. 

The 95% confidence limits of these results are about ±0.5 dB, and 

the definitions of the bit error rate and the signal to noise ratio 

here are as defined by egns. 5.3 and 5.4 respectively. The performances 

of system 1 and the optimum nonlinear equalizer (section 2.6) are also 

shown here. Table 5.1 gives the calculated values of d (eqn. 5.25 

for h=0,1, and 2 for channel A. 

f-1 
f Yf 3ZI Hkl a 

(egn"5.25) 

0 0.025 0.000 0.025 

1 0.186 0.075 0.111 

2 0.492 0.633 -0.141 

Table 5.1 Calculated values of d (eqn. 5.25) for system 2 operating 

over channel A (Table 2.4). 
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As Fig. 5.4 shows, system 2 with f=1 appears to have a better 

tolerance to noise than that of the system with f=2 at high signal 

3 
to noise ratios where the error rates drop below 10-. At low signal 

to noise ratios, the situation is reversed and system 2 with f=2 

now appears to have a better tolerance to noise than that of the system 

with f=1. Furthermore, it can be. from Table 5.1 that channel A with 

f=1 has a larger value of d but a smaller value of Iyfl as compared 

to those of the same channel with f=2. It therefore appears, for 

channel A, that with a larger value of lyfl, system 2 has a higher 

tolerance to noise at low signal to noise ratios, and with a larger 

value of d, system 2 has a higher tolerance to noise at high signal 

to noise ratios. The exact explanation to these behaviours can be very 

complex but a crude explanation may be given as follows. It has been 

discussed before that the inclusion of siyf in Ci (eqn. 5.18) is 

in favour of the system performance, but this is always accompanied 

by the inclusion of the intersymbol interference component If (eqn. 5.19) 

and the noise component wi+f which both degrade the system performance. 

At low signal to noise ratios, the noise components 
Iwi} 

are very often 

so much larger than the intersymbol interference components 
{If} 

that 

the effect of 
{If} 

on the system performance becomes relatively insignificant 

Consequently, the system performance is now determined to a large extent 

by the magnitude of the component siyf and so system 2 with a larger 

value of Iyfl is now likely to have a better performance. At high signal 

to noise ratios when the noise components 
{wi} 

are often negligibly 

small, the intersymbol interference components 
{IA 

now have a significant 

effect on the system performance. Since If may be regarded as a noise 

component added to siyf , therefore system 2 with a larger value of 

Isiyfl-IIf( or d (eqn. 5.25) is now likely to have a better performance 

as has been explained before. 
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Nevertheless, it can be seen from Fig. 5.4 that the tolerance 

to noise of system 2 operating over channel A is not only poorer than 

that of system 1, but is also inferior to that of the optimum nonlinear 

equalizer. Modifications to this system are therefore needed. One main 

reason for having a poor performance here appears to be that the value 
f-1 

of lyfl is not very much larger than that of 3E lykl for channel A 
k=0 

(as can be seen from Table 5.1), so that the advantage of including 

the component siyf in Ci (eqn. 5.18) is now greatly reduced due 

to the large intersymbol- interference component If (eqn. 5.19) incurred 

here. Two approaches are considered to overcome this weakness. In the 

first approach, a simple linear prefilter is inserted ahead of the 

detector to, hopefully, increase the value of d (eqn. 5.25), and this 

leads to the developments of systems 3,4, and 5. The second approach 

uses no prefilter but a modified near-maximum likelihood detection 

process, and this leads to the developments of systems 6,7, and 8. 
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m 32 
f=1 

21 23 25 27 

Fig. 5.4 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 2 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. 
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5.5 System 3 

It has been suggested in section 5.4 that, the detector of system 2 

may have a higher tolerance to noise at high signal to noise ratios 
f-1 

if the channel has a larger value of lyfl 
-3E 

lykI 
, where y0, yl, 

k=0 

"" y are the channel sampled impulse response and yf is the first 
g 

significant component here. System 3 is a modification of system 2 

in that it uses a simple linear prefilter to maximize the first significant 

component of the sampled impulse response of the channel and prefilter. 

Fig. 5.5 shows the model of the signal processor of system 3. 

In Fig. 5.5, the linear prefilter is implemented as a linear 

feedforward transversal filter with p+l taps. let the z-transform of 

this linear prefilter be 

F(z) = f0 + flz-1 + ... + fz-P (5026) 

where {fk} are the tap gains of the prefilter. In system 3, the linear 

prefilter is selected to be matched to the first p+l components of 

the channel sampled impulse response. That is, the tap-gain values 

of the prefilter here are set to 

fk = Yp-k (5.27) 

for k=0,1, "" ,p where yj is the complex conjugate of yj. 

The advantage of this partially-matched filter is its simplicity 

in terms of practical implementation. There are here only p+l taps 

required where p is usually a very small number. Furthermore, as eqn. 5.27 

suggests, these p+l tap gains can very easily be obtained from the 

channel sampled impulse response which in turn can be estimated relatively 

A9; C39, ý43) 
simply and quite accurately. 
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The sample value ei at the output of the prefilter shown in 

Fig. 5.5, at time t= iT, is 

P 
ei h ri-hfh (5.28) 

where 
{rk} are the sample values at the prefilter input and 

{fk} 
are 

the tap gains of the prefilter. Substituting the values of {rk} from 

eqn. 5.1 into eqn. 5.28, the value of ei can be rearranged to become 

ei si-hYh + wi (5.29) 

h=0 

where =g+p+1 
(5.30) 

p 
E wi-kfk (5.31) wi 

k=O 

p 
Yh = Yh-kfk (5.32) 

k=0 

for h=0,1, "", ö and yj =0 for j< 0, j >g. In eqn. 5.29, 

y, y', "" , y, ' are the ö+l components of the channel and prefilter 01 

sampled impulse response, and Iwi} are the noise components at the 

output of the prefilter. Thus, as far as the detector and the intersymbol 

interference canceller (Fig. 5.5) are concerned, the ith transmitted 

signal element is now time-dispersed into ö+l components siy0' siyl' 

""" , siyý . Furthermore, since the real and imaginary parts of the 

noise components 
{wi} 

at the prefilter input are Gaussian random variables 

with zero mean and variance 62, it can be shown 
(A9) 

that, the real 

and imaginary parts of the noise components 
{w! } at the prefilter output 

are also Gaussian random variables with zero mean and variance 

ý2 d2 kp (5.33) 
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where 

kp 
OI 

fk 12 (5.34) 

and 
{f 

k} are the tap gains of the prefilter. Since the linear prefilter 

of system 3 is matched to the first p+l components of the channel sampled 

impulse response, it necessarily maximizes the energy of the component 

si_pyp in ei (eqn. 5.29) for a given noise level in ei(A9) That is, 

for a given value of the noise variance 62 (eqn. 5.33), the value of 

Iy1 is maximized in system 3. 
p 

Having described the properties of the linear prefilter used 

in system 3, the operations of the near-maximum likelihood detector 

and the intersymbol interference canceller of system 3 are now described 

as follows. Basically, they operate in a similar way as those of system 2. 

Thus, after receiving the sample value ei+f at the output of the prefilter 

shown in Fig. 5.5, the intersymbol interference canceller operates 

on the samples ei' ei+l' -** 9 ei+f to give the complex-valued quantities 

r! i9o = ei - 

r __ ei+l 

ri, f ei+f 

h=n+l 
Si-huh 

Si+l-huh 
h= n+2 

si+f-huh 
h=n+f+l 

(5.35) 

where si-n-1' si-n-2' ... , si-X are the previously detected data 

symbols, ei, ei+l, . ". 9 ei+f are as defined by eqn. 5.29, and yf 
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is the first significant component of the sampled impulse response 

"" 'I of the channel and prefilter. When si-h si-h for h= n+l, n+2, 

eqn. 5.35 reduces to 

n 
r_r ri, 0 

h_0 
Si-hyht + Wi 

n+l 
rr rill 

h_0 
Si+l-huh + Wi+l 

0 

0 

n+f 
ri, f ö si+f-huh + wi+f (5.36) 

where the noise components 
{wk} are as defined by eqn. 5.31. 

The detector (Fig. 5.5) operates on its input samples r! 0, 

r! 1, """ , r? f 
to give at its output the detected data symbol s! 

ss i-n 

so that there is now a delay in detection of n+f sampling intervals. 

Thus, just prior to the receipt of rl f, 
the detector holds in store 

m n-component vectors 
{Xi-1} (eqn. 5.8) together with the associated 

costs 
{Ci-1}. The cost Ci-1 here is as defined by eqn. 5.10 to be 

cl + c2 + -- + ci-1, but the quantity ck is now given by 

n 
ck= Irk 

0 xk-hyhl2 (5.37) 
' h=0 

for any possible value of kq where xj has one of the 16 possible values 

of the data symbol sj.. On receiving rl, f, each vector Xi-lis expanded 

into 16 (n+l)-component vectors 
{Pi} (eqn. 5.9) having the 16 possible 

values of xi. The detector then evaluates the cost C. for each of 

the 16m expanded vectors 
{Pi} by using egns. 5.11 and 5.37- It then 
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proceeds to evaluate the quantity C! for each of these vectors, where 

C! = C. if f=0 

f n+h 

= C. +Z Ir 
h 

Vxi+h- yý 
2' if f>05.38) 

1 h=1 
i' j=0 J 

xk =0 for k; 0, k >i, and the jr! } 
and 

{y'. } are as defined by 
l, h 

egns. 5.35 and 5.32 respectively. The detector then selects the vector 

P. associated with the smallest value of C!, and takes the detected 

data symbol s! to have the value of x. in this vector. All vectors 
i-n i-n 

{Pi} for which xi-n si-n are now discarded and the first component 

of each of the remaining 
{Pi} is omitted to give the corresponding 

n-component vectors 
{Xi}. The detector then proceeds with the selection 

of the m vectors 
{Xi} 

associated with the smallest {C! with the constraint 
11 

that, only those vectors originating from the previous best vector 

x1 (having the smallest C! 
_l) 

are available for the selection of 

the second vector X. here. These m selected vectors 
{Xi}together 

with 

their associated costs 
{Ci} 

are then stored and the detector is now 

ready for the next detection process. 

Thus, while the detector and intersymbol interference canceller 

of system 2 operate over the channel sampled impulse response with 

components 
{yj} 

9 the detector and intersymbol interference canceller 

of system 3 operate over the channel and prefilter sampled impulse 

response with components {yjI}. The detection process of system 3 is 

otherwise exactly the same as that of system 2. Furthermore, it can 

be seen from egns. 5.31,5.33, and 5.34 that, if the tap gains 
{f. } 

of the prefilter of system 3 are scaled to become {fk/kp}, 
where kp 

is as defined by eqn. 5.34, then the noise variance remains unchanged 

at the output of the prefilter here. The sampled impulse response of 
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the channel and prefilter now has the components 
{yl/kp} 

as can be 

seen from eqn. 5.32. Consequently, the arguments used to select the 

first significant component yf in system 2 may be carried over here 

to select the first significant component yf/kp (and hence yf), at 

high signal to noise ratios. That iss at high signal to noise ratios, 

the first significant component yf to be used in the detection process 

of system 3 should be selected to maximize the quantity 

Yf f-1 yk 
d Ik I -. 317 

p k=0 p 

(5.39) 

which is obtained from egno 5.25 (for system 2) by replacing yi by yi /kp 

for j=0,1, "" 9 f, and the constant kp is as defined by eqn. 5.34. 

The values of d given by eqn. 5.39 have been calculated for system 3 

operating over channel A (Table 2.4) at various values of p and f, 

where p+l is the number of taps used in the prefilter of system 3 shown 

in Fig. 5.5, and the results are shown in Table 5.2. It can be seen 

from Tables 5.1 and 5.2 that, the largest value of d for system 3 is 

about the same as that for system 2. Consequently, at high signal to 

noise ratios, the best tolerance to noise achievable by system 3 is 

likely to be about the same as that achievable by system 2, when operating 

over channel A (Table 2.4). 

Nevertheless, computer simulation tests are carried out to determine 

the tolerance to additive white Gaussian noise of system 3 operating 

over channel A (Table 2.4), and the results are shown in Fig. 5.6. 

The 95% confidence limits of these results are about ±0.5 dB. The 

bit error rate and the signal to noise ratio here are as defined by 

egns. 5.3 and 5.4 respectively. 
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f 
f-1 yt k 

p f k 
3717-1 d 

p p (ecgn. 5.39) 

1 0 0.025 0.000 0.025 

1 0.188 0.075 0.113 

2 0.512 0.639 -0.127 

2 0 0.023 0.000 0.023 

1 0.183 0.069 0.114 

2 0.527 0.618 -0.091 

3 0 0.018 0.000 0.018 

1 0.146 0.054 0.092 

2 0.472 0.492 -0.020 

4 0 0.012 0.000 0.012 

1 0.087 0.036 0.051 

2 0.274 0.297 -0.023 

Table 5.2 Calculated values of d (eqn 

over channel A (Table 2.4). 

the prefilter shown in Fig. 

defined by eqn. 5.34. 

It can be seen from Table 5.2 and 

5.39) for system 3 operating 

p+l is the number of taps of 

5.5, and kP is the constant 

Fig. 5.6 that, system 3 with 

a larger value of lyf/kpl appears to have a higher tolerance to noise 

at low signal to noise ratios where the error rates are higher than 

10-3. As the error rates drop to about 10-3, system 3 with the various 

arrangements shown in Fig. 5.6 (except those with p= 4) appear to 

have roughly the same tolerance to noise. At lower error rates, Table 5.2 
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m= 32 m= 32 
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Fig. 5.6 Variation of error rate Pe (ecgn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 3 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. 
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and Fig. 5.6 show that system 3 with a larger value of d (eqn. 5.39) 

tends to have a higher tolerance to noise here. System 3 with p=4, 

f=1 and p= 4ý f=2 appears to have relatively small values of 

Iyf/kPI 
and d, and relatively poor tolerances to noise over channel A 

here. These results are in agreement with the crude explanation given 

to the computer simulation results of system 2 operating over channel A 

in section 5.4, bearing in mind that the corresponding values of yf/k 
p 

and d (eqn. 5.39) for system 2 are yf and d (eqn. 5.25) respectively. 

It can be seen from Tables 5.1,5.2 and Figs. 5.4,5.6 that system 3 

can have a slightly larger value of 
Iyf/kpl 

and a slightly better tolerance 

to noise at low signal to noise ratios in relation. to those of system 2. 

Nevertheless, the largest value of d for system 3 here appears to be 

about the same as that for system 2, and the best tolerance to noise 

achievable at high signal to noise ratios for system 3 also appears 

to be about the same as that for system 2. The weakness of system 3 

therefore appears to be that, by increasing the magnitude of the first 

significant component of the channel sampled impulse response, the 

prefilter here also increases the magnitudes of the preceeding components, 

so that the value of d (egns. 5.25 and 5.39) is now changed only by 

an insignificant amount, bearing in mind that the value of d here 

is basically a measure of the relative magnitude of the first significant 

component and the preceeding components. Consequently, the improvement 

in the tolerance to additive white Gaussian noise gained by having 

the prefilter here (being a partially-matched filter) is limited to 

be at low signal to noise ratios and is quite small for channel A here. 

Further modifications to system 3 are therefore needed. 
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5.6 System 4 

Very often, the magnitudes of the first few components of the 

channel sampled impulse response are found to be such that 

Y0j` lyll ` ... Ycl (5.40) 

where c is a small positive integer. Let the z-transform of these c+l 

components be 

Vl(z) = y0 + yiz 
1+... 

+ ycz-c 5.41) 

The inequalities of (5.40) imply that all zeros (roots) of the z-transform 

V1(z) here must necessarily lie outside the unit circle in the z-plane. 

Consequently, this z-transform can easily be equalized by using a maximum- 

delay linear feedforward transversal egnalizer(A9) which forces to 

zero all components preceeding the last of the sequence y0' yl' ý" ' yc. 

This is the basis of system 4. 

Thus, system 4 uses the same basic model of signal processor 

as that shown in Fig. 5.5 where a linear transversal filter is inserted 

ahead of a near-maximum likelihood detector. The linear prefilter used 

in system 4 is selected to perform approximately the function of a 

maximum-delay linear feedforward transversal equalizer mentioned above. 

That is, the z-transform of the (p+l)-tap linear prefilter (Fig. 5.5) 

here is given by 

F(z) =f+ flz 
1+ 

""" + fpz p 

Cl- Z 
(c+P) 

Vll(Z) (5.42) 

where c is the positive integer defined in eqn. 5.40, and z 
ýc+pý 

is 
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the delay of the maximum-delay filter here. 
(A9) 

Thus, while the prefilter 

of system 3 is matched to the first p+l components of the channel sampled 

impulse response, the prefilter of system 4 is approximately an inverse 

filter for the first c+l components of the channel sampled impulse 

response. This further implies that, while the prefilter of system 3 

maximizes the value of lypl, the prefilter here (eqn. 5.42) may minimize 
c+p- l 

the value of 3E lykl, where y', yl, """ , y. are the sampled impulse 
k=0 

response of the channel and prefilter given by eqn. 5.32 and 6 is as 

given by eqn. 5.30. 

The evaluation of the partially-inverse prefilter F(z) (eqn. 5.42) 

of system 4 is now described as follows. Clearly, the z-transfrom 

z-(o+p) V_11(z) can be more accurately represented by the prefilter 

F(z) here if a larger value of p is used in this prefilter. However, 

it is also desirable to use a smaller value of p , 
in F(z) so that the 

components y, yl' "". ' Yc+p are affected to a smaller extent by 

the presence of the components yc+l' Yc+2' yc+p , bearing in 

mind that the prefilter F(z) here is a maximum-delay filter only 

for the components y0, yl, """ , yc. It therefore follows that, a 

moderate value of p must be used here. Thus, in system 4, the value 

of p is selected to be the same as that of c, and eqn. 5.42 now becomes 

F(z) = f0 + f1z-1 +"""+ fcz-c 

z-2c V-1(z) (5.43) 

The evaluation of V11(z) in eqn. 5.43 is now described as follows. 

It can be seen from egns. 5.40 and 5.41 that, a direct inversion of 

V1(z) using the long division operation will obviously lead to a divergent 

series which can not be realised by the (c+l)-tap prefilter F(z) here. 

It is therefore necessary now to perform the inversion of V1(z) in 
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two stages. 
(k9) 

Thus, the z-transform V1(z) in eqn. 5.41 is first 

rearranged to become 

V1(Z) = Z-O ( yc + yc_1Z + ... + Y0ZC (5.44) 

so that its inverse now becomes 

l(Z) 
_ v1 

C 
Z 

(5.45) 
Yc + Yc_lz + ... + Y0 ZC 

The long division operation 
(A9) 

can now be used to evaluate the value 

of V11(z) given by eqn. 5.45 to give 

V11(z) = z° ( f, + flz + "°" + fcz° + """' ) (5.46) 

where the values of fl, fl, """" here form a convergent series, so 

that 

V11(z) _ z° ( f, + fiz + ... + flz C (5.47) 

The z-transfrom of the linear prefilter of system 4 can now be obtained 

by substituting eqn. 5.47 into eqn. 5.43 to give 

F(z) fl + f' 1z-1 + ... + fI z° (5.48) 
c- 0 

where fc, fc-1, , fp are now the tap gains of the prefilter here. 

Consequently, so long as the inequalities of (5.40) remain valid, the 

partially-inverse prefilter (eqn. 5.43) of system 4 can readily be 

evaluated from the first c+l components of the channel sampled impulse 

response as is described above. Clearly, the linear prefilter here 

is only slightly more complex than that used in system 3 but is still 

very much simpler in comparison with the linear prefilter used in system 1. 
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The near-maximum likelihood detector and the intersymbol interference 

canceller of system 4 (Fig. 5.5) operate in exactly the same way as 

those of system 3. Thus, the intersymbol interference canceller operates 

on the prefilter output samples values (eqn. 5.29) to give, at the 

detector input, the sample values r! 0' ri l' r! f 
(eqn. 5.35)- 

1 

On receiving ri f, each of the m stored vectors 
{Xi_ll (eqn. 5.8) in 

the detector is expanded into 16 vectors 
{Pi} (eqn. 5.9). The detector 

then evaluates the cost Ci (by using egns. 5.11 and 5.37) and the quantity 

C! (by using eqn. 5.38) for each of the 16m expanded vectors 
{Pi}. 

The detected data symbol s! is then taken as the value of x. in 
i-n 1-n 

the vector P. associated with the smallest value of C!, and the detector 

then proceeds to select the m stored vectors 
{xi} 

in exactly the same 

way as for the detector of system 3. 

Thus, system 4 differs from system 3 only in having different 

tap-gain values {fj} for the prefilter, and so the argument used in 

system 3 to select the first significant component yf for the detection 

process can be carried over to system 4. That is, at high signal to 

to noise ratios, the first significant component yf in the sampled 

impulse response of the channel and prefilter should be selected to 

maximize the quantity d defined by eqn. 5.39. Table 5.3 shows some 

values of d for system 4 operating over channel A (Table 2.4). 

Computer simulation tests have been carried out to determine the 

tolerance to noise of system 4 operating over channel A (Table 2.4). Various 

values of f are tested here for each of the values of p shown in Table 5.3, 

and the simulation results for the system with the best values of f 

at p=1 and p=2 are shown in Fig. 5.7. p+l is here the number of 

taps used in the prefilter (Fig. 5.5) and yf is the first significant 

component of the sampled impulse response of the channel and prefilter. 
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Fig. 5.7 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 4 operating over channel k 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. 
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The 95% confidence limits of the results shown in Fig. 5.7 are about 

±0.5 dB, and the bit error rate and the signal to noise ratio here 

are as defined by egns. 5.3 and 5.4 respectively. 

Thus, system 4 with p=1 has the best performance when f=3, 

and the system with p=2 has the 'best performance when f=4. By comparing 

these results with those shown in Fig- 5.6, and from Tables 5.2 and 

5.3, it can be seen that any of the systems 3 and 4 that has a larger 

value of 
Jyf/kpl 

appears to have a higher tolerance to noise at low 

signal to noise ratios where the error rates are higher than 10-2, when 

operating over channel A here. At higher signal to noise ratios where 

the error rates drop to about 10-4, the best tolerance to noise achieved 

by system 4 here appears to be better than that achieved by system 3 

which may have about the same value of d (eqn. 5.39) but a smaller 

value of Iyf/kpI as compared to the corresponding values of system 4. 

It therefore appears that, for the values of signal to noise ratios 

considered here, a better performance over channel A is likely to be 

achieved by the system having the arrangement of Fig. 5.5 that gives 

not only a larger value of d but also a larger value of lyf/kkl. 

Thus, system 4 (with a partially-inverse prefilter) appears to 

have a slightly better tolerance to noise than that of system 3 at 

high signal to noise ratios, when operating over channel A here. However, 

the performance of system 4 still appears to be inferior to that of 

the optimum nonlinear equalizer as can be seen from Fig. 5.7. One 

weakness of the (p+l)-tap partially-inverse prefilter used in system 4 

is that, it has no control over the magnitudes of the components y, 
p 

yp+l' 'y although it reduces the magnitudes of the first p components 

y0' J17 "" 7 y' 1 of the channel and prefilter sampled impulse response. 
P-1 
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This implies that there is now an uncertainty in the magnitude of the 

first significant component yf here. Further modifications to this 

prefilter are therefore needed and this leads to the development of 

system 5. 

p f kf 
p 

3 ýl 17-1 

k=0 p 
d 

(eqn. 5.39) 

1 0 00003 0.000 0.003 

1 0.000 0.009 -0.009 
2 0.124 0.009 0.115 

3 0.434 0.381 0.053 

2 0 0.002 0.000 0.002 

1 0.010 0.006 0.004 

2 0.000 0.036 -0,036 

3 0.048 0.036 0.012 

4 0.282 0.180 0.102 

Table 5.3 Calculated values of d (eqn. 5.39) for system 4 operating 

over channel A (Table 2.4). p+l is the number of taps of 

the prefilter shown in Fig. 5.5, and kp is the constant 

defined by eqn. 5.34" 
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5.7 System 5 

Previous sections have shown that the partially-matched prefilter 

of system 3 maximizes the magnitude of the first significant component, 

and that the partially-inverse prefilter of system 4 reduces the magnitudes 

of the first few components of the channel and prefilter sampled impulse 

response y0l ylq "" 9 yj . Clearly, these two linear prefilters can 

be connected in cascade to give a linear prefilter that may maximize 

the magnitude of the first significant component yf while at the same 

time minimizing the magnitudes of the preceeding components here. This 

is in fact the linear prefilter used in system 5. 

Thus, system 5 has the same model of signal processor as those 

of systems 3 and 4, and is as shown in Fig. 5.5. The linear prefilter 

here is a (p+l)-tap linear feedforward transversal filter having the 

z-transform 

F(z) = f0 + flz 
1+ 

""" + fpz-p 

= F1(Z) F2(z) (5.49)' 

where 
{fi } 

are the tap gains of the prefilter, F1(z) is the z-transform 

of the partially-matched filter used in system 3, and F2(z) is the 

z-transform of the partially-inverse filter used in system 4. Thus, 

from egns. 5.27 and 5,48, 

F1(Zý y(PI2) + y(PI2)-lZ-1 + .. + yoz 
(PI2ý 

(5.50 

F2(z) = f' + f'-lz-1 + ... + föz 

Z-2c ( y0 + y1Z 
1+ 

-- + ycZ-c ) -1 (5-51) 

where p= 2c, yj is the complex conjugate of yj, and fkj are as 
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given by egns. 5.45 and 5.46. 

The near-maximum likelihood detector and the intersymbol interference 

canceller of system 5 (Fig- 5.5) operate in exactly the same way as 

those of system 3 or 4. That iss the intersymbol interference canceller 

operates on the prefilter output sample values (eqn. 5.29) to give 

the samples values 
{r1! 

h} 
(eqn. 5.35) which are then fed to the detector. 

The detector then proceeds with the detection of the data symbols 
{s. } 

using the same near-maximum likelihood detection process as that used 

in each of the systems 3-and 4. 

Again, system 5 differs from system 3 or 4 only in having different 

tap-gain values {fj} for the prefilter, and so the same argument used 

in system 3 or 4 to select the first significant component yf for the 

detection process can be carried over to system 5,. That is, at high 

signal to noise ratios, the component yf (or the value of f) should 

be selected to maximize the quantity d given by eqn. 5.399 where the 

value of d basically gives a measure of the relative magnitude of the 

first significant component to the preceeding components of the channel 

and prefilter sampled impulse response y', yi, """ 9 y' . Table 5.4 

shows some values of d for system 5 operating over channel A (Table 2.4). 

Computer simulation tests have been carried out to determine the 

tolerance to noise of system 5 operating over channel A (Table 2.4). Various 

values of f have been tested here for each of the two values of p shown 

in Table 5.4, and the results for the system with best values of f 

at p=2 and p=4 are shown in Fig. 5.8. p+l is, of course, the number 

of taps used in the prefilter here (Fig. 5.5). The 95% confidence limits 

of the simulation results shown in Fig. 5.8 are about ±0.5 dB. The 

definitions of the bit error rate and the signal to noise ratio here 

are as given by egns. 5.3 and 5.4 respectively. 
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Fig. 5.8 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 5 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. 



- 284 - 

p f 
Li ' 

k1 
p 

f-1 y 

3 kkl 
k=0 p 

d 
(eqn. 5.39) 

2 0 0.003 0.000 0.003 

1 0.000 0.009 -0.009 
2 0.125 0.009 00116 

3 0.454 0.384 0.070 

4 0 0.002 0.000 0.002 

1 0.011 0.006 0.005 

2 0.004 0.039 -0.035 
3 0.052 0.051 0.001 

4 0.321 0.207 0.114 

Table 5.4 Calculated values of d (eqn. 5.39) for system 5 operating 

over channel A (Table 2.4). p+l is the number of taps of 

the prefilter shown in Fig- 5.5, and kp is the constant 

defined by eqn. 5.34" 

It can be seen from Table 5.4 and Fig. 5.8 that system 5 with 

p=2 and f=3 has a larger value of Jyf/kpI and a higher tolerance 

to noise at low signal to noise ratios in comparison with those of 

the system with p=4 and f=4. The latter, however, has a larger 

value of d and a higher tolerance to noise at high signal to noise 

ratios when the error rates drop below 10-3. These behaviours are in 

agreement with the results obtained previously for any of the systems 

2,3, and 4. 
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As Figs. 5.4,5.69 507, and 5.8 show, system 5 appears to have 

a better tolerance to Gaussian noise than those of the systems 2,3, 

and 49 when operating over channel A here. At an error rate of 10-4 , 

the tolerance to noise of system 5 here is about 0.5 dB better than 

that of the optimum nonlinear equalizer. The performance of this system 

is, however, inferior to that of the equalizer at low signal to noise 

ratios. Since the number of stored vectors (being denoted as m in Fig. 5.8) 

used in the detection process of system 5 here is 32, the number of 

operations per data symbol involved in this system is very large as 

compared to that involved in the equalizer. Consequently, system 5 

does not appear to be a promising system as it involves a much more 

complex detection process while having only a very small improvement 

in tolerance to noise over the optimum nonlinear equalizer at high 

signal to noise ratios. 

It can be seen from the study of systems 3,4, and 5 operating 

over channel A (Table 2.4) that a higher tolerance to noise at high 

signal to noise ratios may be achieved by the system having a larger 

value of d (eqn. 5.39) and lyf/kpl (egns. 5.32 and 5.34). The value 

of d here gives a measure of the relative magnitude of the first significant 

component yf to the preceeding components of the channel and prefilter 

sampled impulse response, and kp is a constant such that the noise 

variance remains unchanged at the output of the prefilter used in the 

system here.. However, the linear prefilter here, being derived from 

the first few components of the channel sampled impulse response, appears 

to modify only very slightly the relative magnitude of the first significant 

component to the preceeding components of the channel sampled impulse 

response. Consequently, only a small improvement in tolerance to noise 

over system 2 may be gained here. The system that uses a short linear 

prefilter therefore does not appear to be promising and is thus not 

given any further consideration here. 
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5.8 System 6 

Previous studies have shown that the use of a short linear prefilter 

at the detector input could only give a limited gain in tolerance to 

Gaussian noise when operating over channel A (Table 2.4). The alternative 

approach of discarding entirely the linear prefilter and using a modified 

near-maximum likelihood detection process is now considered. 

It is recalled that the basic mechanism of system 2 is to ignore 

the first f components . of any received signal element until the (f+l)th 

component (the first significant component) is received, when all components 

of the signal element are taken account of in the detection process. 

The ignored components here are referred to as the intersymbol interference 

components and they may also be considered as the additional noise 

components added to the system. It has been discussed in section 5.4 

that, at high signal to noise ratios, the net gain in the system performance 

is likely to be larger when the relative magnitudes of the iitersymbol 

interference components in the first significant component are smaller. 

It therefore appears that, a higher tolerance to noise may be achieved 

here if the detection process of system 2 is modified to reduce the 

magnitudes of the intersymbol interference components mentioned above. 

This leads to the development of system 6. 

The model of the signal processor of system 6 is shown in Fig. 5.9 

where the data symbol si_n is detected after the receipt of the sample 

value ri+a " The sample values 
{rýh} 

are as defined by eqn. 5.1, 

and a is an appropriate positive integer to be discussed shortly. 

Thus, after the receipt of ri+a, the intersymbol interference 

canceller Fig. 5.9) removes from the samples ri, ri+ly .. ' ri+a 

detected values of all components involving data symbols whose final 
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detected values si-n-1' si-n-2' ý"" ' s1-g have already been determined. 

That is, the intersymbol interference canceller operates on ri' ri+l, 

""" 9 ri+a to give the following complex-valued quantities 

g 
ri, 0 ri 

h_ +l Si-huh 

g 
ri, l - ri+l 

h2 
Si+lhyh 

0 

g 
ri, a = ri+a E si+a-h3h 

h=n+a+1 
(5.52) 

where y0g ylq """ I yg are the g+l components of the channel sampled 

impulse response. Assuming for the moment that s-h = si-h for h= n+l, 

n+23, "" ' gý eqn. 5.52 reduces to 

n 
t_ ri70 

h-O 
si-hyh + W. 

n+l 
t r191 -L Si+l-hyh + Wi+l 

. 

0 

n+a 
rig« - 

hO 
Si+a-huh + wi+o( (5.53) 

where the real and imaginary parts of the noise components 
{wi} here 

are statistically independent Gaussian random variables with zero mean 

and variance 62 . 
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The detector (Fig. 5.9) here operates on its input sample values 

ri 0' ri 1' .ý rid to give at its output the detected data symbol 

s1 
_n , so that there is here a delay in detection of n+a sampling intervals. 

This detection process is now described as follows. Just prior to the 

receipt of the sample ri+a, the detector of system 6 holds in store 

m n-component vectors 
{Xi-1} (eqn. 5.8) together with their associated 

costs 
{Ci-1} 

, where the costs here are as defined by egns. 5.10,5.11, 

and 5.16. On receiving ri+a' the detector expands each vector Xi_l 

into the corresponding 16 vectors {Pi} (eqn. 5.9) having the 16 possible 

values of xi and it evaluates the cost CI for each of the 16m expanded 

vectors 
{pi} 

using egns. 5.11 and 5.16. The detection process so far 

is the same as that of system 2. The detector of system 6 next expands 
T 

each vector P. into 16 (n+l+?. )-component vectors tP! } where 

Pi =L xi-n xi-n+1 .. xi xi+l -- Xi+ T. 
] (5.54) 

and A> 0, bearing in mind that xj here may have any of the 16 possible 

values of the 16-point QAM data symbol sj for any possible value of j. 

In system 6y the value of ? 

of = a. 

is related to a (Fig. 5.9) by 

(5.55) 

where yf is the first significant component of the channel sampled 

impulse response here. The first n+l components of P! in eqn. 5.54 

are as in the original vector Pi (eqn. 5.9) and the last 7ý. components 

xi+l' xi+2' ".. 9 xi+ have the 16 possible combinations of the values 

of si+l' si+27 -9 si+X "A schematic diagram showing the expansion 

of 2 vectors 
{Xi-1} to 2x162 vectors {Pi} is given in Fig. 5.10. There 

are now altogether 16x+1m vectors 
{Pi} 

each of which has the same 

cost C. as that of its original vector Pi. The detector then evaluates 
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Xi-n Xi-n+1 xi-1 Xi xi+1 

f 
II11 

iII2 16 
t--- I 

I" 

III 
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I(I. 

II 

loo- 

ý 
lE 

Pii 
i ý. piý 

X. 
1 

Fig. 5.10 Schmatic diagram showing the expansion of vectors from 

m 
{X, 

_1} 
to l2*+lm fPi} in the detection process of system 6. 

m= 29 X=1 in this example. The components [xj} are 

here represented by the symbol ". 
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the quantity Ci for each of the 16? ý}lm vectors 
{Pi}, 

where 

a 
7 

n+h 2 
ýl ýl + 

hlri? 
h 

, j-j(5.56) J= 

xk =0 for k; 0, k> i- (see eqn. 5.54), and the {ri 
h} are as defined 

by ecgn. 5052. The {yj} in eqn. 5056 are, of course, the components 

of the channel sampled impulse response and d, is the positive integer 

given in eqn. 5.55. The significance of the value of C1 here will be 

further discussed shortly. Having evaluated the value of Ci for each 

of the 167'+1m vectors 
{Pi}, the detector then selects, for each vector 

Pi, the vector P! associated with the smallest value of Ci to give a 

total of 16m selected vectors 
{P! }. The remaining vectors of 

{P! } 
are 

then discarded from further consideration. Thus, each of the 16m selected 

vectors 
{P1} here has a different set of values for the components 

xi-n' xi-n+l' ""* 9 xi so long as each of the m original vectors 
IP J 

has a different set of values for its components. This necessarily 

prevents the stored vectors 
{x. } (to be selected shortly) from merging 

as can be seen later. Having selected the 16m vectors 
{P! j described 

above, the detected data symbol s! is then taken as the value of x. 
i-n 1-n 

in the vector P! associated with the smallest value of C!. All vectors 
11 

{Pi} for which xi-n / s! are now discarded. The first component i-n 

xi-n and the last .. components xi+l' xi+2' - x. of each of the 

remaining vectors 
{Pi} are omitted to give the corresponding n-component 

vectors 
{Xi}. Each vector K. iss of course, associated with the same 

C. and C! as those of the corresponding F!, and since each of the vectors 
ii 

{F! 1 here has a differect set of values for the components xi-n+l' 

xi-n+2' xi 9 the vectors 
{Xi} here must all be different. The 

detector now selects the m vectors 
{Xi} 

associated with the smallest 

values of 
[C! j in the same way as is carried out by the detector of 
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system 2. That iss the first selected vector is the vector X. associated 

with the smallest value of C!. The second vector is selected with the 
i 

constraint that only the 16 vectors 
{Xi} 

originating from the previous 

first (best) vector Xi-1 are available for the selection here. The 

next m-2 vectors are selected from the remaining vectors 
{Xi} 

associated 

the smallest values of 
{C! }. These m selected vectors 

{Xi}, together 

with their associated costs 
ICJ 

are then stored and the detector is 

now ready for the next detection process. It should be noted that, 

since all the vectors 
{X. 1 

available for the selection of the m finally 

stored vectors 
{Xi} just mentioned are different, all the m finally 

stored vectors here must also be different and are hence prevented 

from merging. 

The significance of the quantity Ci (egno 5.56 used in the detection 

process of system 6 is now discussed. By substituting the values of 

{ri 
h} 

from eqn. 5.53 into eqn. 5.56 and bearing in mind that Xk =0 
s 

for k0, k> i+a., the value of C! now reduces to 

a n+h 2 
Ci _ Ci +EI (si+h-j xi+h-j)Yj + Wi+hl 

j= 

x+f n+h 2 
Ci +=I 

o(si+h-j 
- Xi+h-j)3j + wi+hl 

Al n+k 2 (si+k-j xi+k-j)3'j + Wi+kl - CI +k1I 
=O j 

X +f n+k 
+EI 

T-(Si+k-j Xi+k-j)yj + Ik-T. + wi+kI 
2 (5.57) 

k=x+1 j=k- T 

hß-1 

and Ih = Si+a. 
+h-jYj 

(5.58) 

j=0 
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for h=1,2, -- 9f where ,a are as given by egns. 5.54,5.55, 

and 5.56, and the {Ih} 
are the intersymbol interference components 

caused by ignoring the presence of the f data symbols si+,, 
+l' 

si+, 
+2' 

si+x+f in ri,, 
"+l' 

ri, 
2, +2' ' ri, 

ý+f 
(eqn. 5.53) in the 

computation of the quantity C! here. At high signal to noise ratios 
i 

when the error rates are low, it is very likely that the vector X. 
I 

whose components are all correct (that is, xh = sh for h= i-n+l, i-n+2, 

"" , i) is available for the selection process that selects the m finally 

stored vectors 
{Xi}associated 

with the smallest values 
{C1! }. Intuitively, 

the probability of error in detection is now likely to be determined 

to a large extent by the probability of discarding this vector of X1X. 

The value of C! for this vector of X. is given by 

ci C. +k2 k1I 
(si+k-j 

- Xi+k-j)Yj + Wi+kl 
j= 

a+f k 
+kE 

11 j_ 

(Si+k-j xi+k-j)yj + Ik-a, + Wi+kl 
2 

5.59) 

where all the components involving si-n' si-n+l' ' si-1 in Ci 

(eqn. 5.57 have been removed here. Furthermore, since all the possible 

values of si+l'-si+2' -' si+ are considered for the components 

xi+l' xi+2' -' xi+ in the detection process here, the value of 

C! in eqn. 5.59 may be selected to become 
i 

Ci = C. +2 
ýl) (si 

- xi)yk + wi+kl 

X +f 
+ 

ý+(si 
- xi)yk + Ik-a + Wi+kl 

2 (5.60) 

k=? ý. +l 

where all the components involving si+l' Si+2' si+ý in Ci (eqn. 5.59) 
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have been removed here. The second term of eqn. 5.60 suggests that, 

the arrangement of system 6 that uses a larger value of ? ý. (eqn. 5.54) 

has a value of C! that includes more components of the signal element 
1 

associated with s., and must therefore have a higher tolerance to noise. 

Furthermore, since the third term of eqn. 5.60 resembles the second 

term of eqn. 5.17 (for system 2), the argument used in system 2 to 

select the value of f for use at high signal to noise ratios may be 

carried over to system 6. That is, at high signal to noise ratios and 

for a given value of ., 
the value of f to be used in system 6 should 

be selected to maximize the quantity 

f-1 
d=I yf 3 T- 

Ykl (5.61) 

where y0, yl, """ , yg are, of course, the components of the channel 

sampled impulse response, and lyJ. l is the modulus of yi. 

The drawback of system 6 is that, the number of operations per 

data symbol involved here increases sharply with the value of . In 

particular, a measurement of the quantity Ci (eqn. 5.56) is required 

for each of the 16 
lm 

expanded vectors 
{P! } (eqn. 5.54), where m 

is the number of stored vectors 
{Xis (eqn. 5.8) here. Even if = 1, 

the total number of measurements of 
{Cif involved in system 6 is 256m 

which is a very large number as compared to that involved in system 2 

where the number of measurements of 
{CT is 16m. Consequently, only 

the value of x=1 is considered for system 6 here. 

Computer simulation tests have been carried out to determine the 

tolerance to noise of system 6 with ý, =1 operating over channel A 

(Table 2.4), and the results are shown in Fig. 5.11,. The 95% confidence 

limits of these results are about ±0.5 dB, and the definitions of 

the bit error rate and the signal to noise ratio here are as given 
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Fig. 5.11 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 6 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. 
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by egns. 5.3 and 5.4 respectively. Table 5.5 also shows the values 

of the quantity d defined by eqn. 5.61 for the arrangements of system 6 

tested in Fig. 5.11. 

It can be seen from Table 5.5 and Fig. 5.11 that, system 6 with 

the arrangement that has the largest value of d (eqn. 5.61) has the 

best performance at high signal to noise ratios, and the system with 

the arrangement that has the largest value of ly, 
+fl(a, 

being equal to 

1 here) has the best performance at low signal to noise ratios. These 

behaviours are in agreement with the results obtained previously for 

each of the systems 2,3,4, and 5. It can be seen from Figs. 5.4 and 

5.11 that, system 6 with T. = 1 is able to give a better tolerance to 

noise than that of system 2 when operating over channel A here. However, 

the improvement in tolerance to noise of system 6 with X=1 over the 

optimum nonlinear equalizer (section 2.6.3) is only about 0.5 dB at 

an error rate of 10-4, as can be seen from Fig. 5.11. The improvement 

can be expected to be larger if a larger value of 7, is used in system 6, 

but an even more excessive amount of operations is now involved in 

the system. Consequently, system 6 does not appear to be a promising 

system, and further modifications to this system are therefore needed. 

Clearly, the modifications should aim at reducing the number of operations 

while keeping the basic idea of considering as many components of the 

received signal elements as possible in the detection process. This 

leads to the development of system 7. 

f-1 
f IY 3F y 

l d 
f - k 

k=0 (eqn. 5.25) 

0 0.186 0.000 0.186 

1 0.492 0.075 0.417 

2 0.533 0.633 -0.100 

Table 5.5 Calculated values of d (eqn. 5.61) for system 6 with 3=1 

operating over channel A (Table 2.4). 
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5.9 System 7 

In the detection process of system 6, each of the m stored vectors 

{Xi-1} (eqn. 5.8) is expanded into 169-+1 vectors of 
{P! } (eqn. 5.54) 

having all the 16X+1 possible combinations of the values for the 

+l components xi, xi+lý .. ' xi+ý' However, only m vectors of Pi} 

are finally selected and converted to the corresponding m stored vectors 

{Xi}. Since m is usually much smaller than 16 
1, 

many of the 166+1 

vectors {P! } originating from a vector of Xwill not be selected 

here. Consequently, it appears that, each vector Xi_1 may be expanded 

into much fewer (that is, -<<167"+l) vectors of 
{P! } in the detection 

process while having only a very small reduction in tolerance to noise. 

This is the basis of system 7. 

Thus, system 7 is a modification of system 6 in that, each vector 

Xi-1 is expanded into a small number (« 16"{1) of vectors 
{Pi} here 

by the use of a linear transversal filter and a threshold device. The 

basic model of the signal processor here is the same as that shown in 

Fig. 5.9. The intersymbol interference canceller in Fig. 5.9 operates 

on the received sample values ri, ri+1' ... ' ri+a (eqn. 5.1) to 

give, at the detector input, the sample values ri 0' ri 1' r! a >>> 
(eqn. 5.52), as is described before for system 6. The detector (Fig. 5.9) 

here operates on its input sample values {ri 
h) 

(eqn. 5.52) to give 
i 

at its output the detected data symbol si-n, and this is described 

as below. 

Just prior to the receipt of the samples 
{ri 

h}, 
the detector 

of system 7 holds in store m n-component vectors 
{Xi-1} (eqn. 5.8) 

together with the associated costs ICi-l1 (egns. 5.10,5.11, and 5.16). 

On receiving I ri h} , each of the m stored vectors { Xi-11 is expanded 

into m' vectors of 
{P! } (eqn. 5.54), where m' is a small number to 
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be discussed shortly. The first n components of these m' vectors 
{P! } 

are as in the original vector Xi_l, and the last i+l components xi, 

xi+l' -' xi+ are derived, in turn, as follows. For each of the 

original vector Xi_l, the detector first derives m' values for the 

component xis to give the corresponding mp (n+l)-component expanded 

vectors 
{Pi} (eqn. 5.9). For each of these ml expanded vectors 

{Pi} 

(originating from the same Xi-l and having the m0 values of xi just 

derived), the detector next derives ml values for the component xi+l 

to give a further ml (n+2)-component expanded vectors. The detector 

continues to operate in this way to derive, in turn, mh values for 

the component xi+h' for h= 27 3, "" , 
ý" Consequently, a total of 

m' (n+? ý. +1)-component expanded vectors {Pi} (eqn. 5.54) are derived 

here for each of the m stored vectors 
{Xi-1}' 

where 

m' = m' m' """ m' 01 
(5,62) 

An example of the operations just described is illustrated by the schematic 

diagram shown in Fig. 5.12 where a total of 16 vectors 
{Pi} 

are expanded 

from each of the 2 vectors 
{Xi-1} here. The derivation of the mh values 

for the component xi+h (0-< h< 2ý, ) will be described in details later. 

Thus, having derived the m' vectors 
{P1} for each of the m stored vectors 

Ix 
i-11 , the detector of system 7 then proceeds to evaluate the costs 

{c. } (by using egns. 5.11 and 5.16) and the quantities 
{c! } (by using 

eqn. 5.56 for the (m)(m') expanded vectors 
{P1! } here. It can be seen 

from egns. 5.11 and 5.16 that, those vectors 
{P! } 

originating from 

the same (n+l)-component vector Pi here (eqn. 5.9 and Fig. 5.12) are 

associated with the same cost as this vector Pi. Thus, having evaluated 

the (m)(mý) values of 
{C. } 

and the (m)(m') values of 
{C1} 

, the detector 

then selects, for each of the (m)(m6) vectors 
{P1} 

' the vector P! 
1 
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Fig. 5.12 Schematic diagram showing the expansion of vectors from 

m{ Xi_1} to (m)(m') {P! } in the detection process of system 7. 

m' is as defined by Cqn. 5.62. In this example, m=2. 
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that has the smallest value of C!, to give a total of (m)(m0) selected 

vectors 
{PI 

. The remaining (unselected) vectors 
{F! } are then discarded 

i) i 

from further consideration. The detected data symbol s! is then taken 

to have the value of x. in the vector P! associated with the smallest 
i-n 1 

C!. All vectors 
{P! } for which xi-n si-n are now further discarded. 

The first component xi-n and the last 2 components xi+l' xi+2' ". ' xi+, 

of each of the remaining vectors 
f} 

are omitted to give the corresponding 

n-component vectors 
{Xi} 

. Each vector X. here is, of course, associated 

with the same C. and C' as those of the corresponding vector P!. The 

detector then proceeds with the selection of the m vectors 
{Xi} 

associated 

with the smallest 
{C! } 

exactly as for the detector of system 6. These 

m selected vectors 
{Xi} together with their associated costs 

{C. } 
are 

then stored and the detector is now ready for the next detection process. 

Thus, system 7 basically operates in the same way as system 6 

except that a selection process is involved here to derive just m' 

possible vectors 
{Pi} (instead of using directly all the 16"-+1 possible 

vectors 
{P! } ) for the detection process, bearing in mind that the 

value of m' is much smaller than 161+1 . This selection process involves 

the derivations of mh values for the component xi+h in Pi, for h=0,1, 

"" 9 2. The derivation of the mh values for the component xi+h here 

is carried out by using a (p+l)-tap linear transversal filter and a 

threshold device, and this derivation process is now described as follows. 

The detector first removes from the p+l samples ri h' ri h+l' "' ' r! h+ s>>p 
(eqn. 5.52 detected values of all components involving the data symbols 

s 
i-n' 

s 
i-n+l' 

""- , si+h-1 whose values have already been determined 

(temporarily) as the values of the corresponding components x; 
-9 

x! 
_nl1, 1-11 ++ i 

' xi+h-1' That is, the detector operates on r! ri, h+l' ... ' ri, h+p 

to give the following complex-valued quantities 
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n+h 
e0 ri, h 

k 
Xi+h-kyk 

n+h 
ell = ri, h+l 

kk 
Xi+h-kyk+1 

n+h 
ei 

p= 
ri, h+p 

k1 
xi+h-kyk+p (5.63) 

where 
{yj 

are the components of the channel sampled impulse response. 

The detector then operates on these sample values (eqn. 5.63), using 

the (p+l)-tap linear transversal filter shown in Fig. 5.13, to give 

the complex-valued quantity 

1 

xi+h =2( e6y0 + ely1 + ... + epyp ) (5.64) 

k 
P 

P 
where kp = 

olý'kI2 

(5.65) 

and yj is the complex conjugate of yj. The value of p here is related 

to the values of a and a, by 

a=L, +P (5066) 

where d and A are as defined in Fig. 5.9 and eqn. 5.54 respectively. 

The detector now proceeds with the selection process that operates 

on the value of xi+h (eqn. 5.64) to select mh possible values for the 

component xi+h (eqn. 5.54). In this selection process, the detector 

assumes that the values of ri, h' ri, h+l' ".. ' ri, h+p 
in eqn. 5.63 

are as given by eqn. 5.53, and that xj = sj for j= i-n, i-n+l, "" , i+h-l, 

so that eqn. 5.63 now becomes 
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e0 Si+9O + wi+h 

e 1si+hýrl + si+h+1'YO + Wi+h+l 

. 

et = Si+hyp + Si+h+lYp-1 ++ Si+h+py0 + Wi+h+p (5.67) 

where 
{wi) are the noise components whose real and imaginary parts 

are statistically independent Gaussian random variables with zero mean 

and variance 6. Eqn. 5.64 now reduces to 2 

Xi+h - si+h + Si+h+la1 ++ si+h+pap + w1+h 

Si+h + i+h + wi+h (5.68) 

where 

1p 
Wi+h - 

k2 

Ö Wi+h+j5j 
(5.69) 

p 

p 
' Ji+h - Si+h+jaj (5-70) 

ý=1 

and 

1 

ak -2 

p-k 

= 
-vjyj+k 

(5.71) 

kp0 

for any possible value of k. It can be shown(A9) that, the real and 

imaginary parts of the filtered noise components 
{w1} in egns. 5.68 

and 5.69 are Gaussian random variables with zero mean and variance 

2/k2 
Thus, the value of xi+h in eqn. 5.68 consists of three components, 

P 

namely the signal component si+h (whose value is to be determined here 
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as the value of xi+h), the intersymbol interference component Ji+h' 

and the noise component w! Consequently, the value of xi+h here 

is treated as the estimated value of the 16-point QAM data symbol si+h' 

and the selection process now to be described uses this value of xi+h 

to select, from the 16 possible values of si+h' a total of 1,2,4, or 9 

values for the component xi+h" Four selection processes having the 

four values of mh (that is, 1,2,4, and 9) have been considered here. 

It should be noticed that when mh = 16, all the 16 possible values 

of si+h are used for the component xi+h' and hence no selection process 

is required here. In order to simplify the nomenclature for the selection 

processes here, rename si+h as sh' xi+h as xh x! as xh, Ji+h as Jh, 

and w! as wh . Eqn. 5.68 is now rewritten as i+h 

xh = Sh + Jh + wh (5.72) 

or Re(xh) = Re(sh) + Re(Jh) + Re(wh) 

Im(xh) = Im(sh) + Im(Jh) + Im(Wh) (5.73) 

where Re(. ) and Im(. ) are the real and imaginary parts of (. ), and 

the selection process now uses the estimate xh (of sh) to select mh 

possible values of sh for the component xh here. 

Selection process A (mh = l) 

This selection process operates on the estimate xh (eqn. 5.73), 

of sh, to select the poss 

xh may have any of the 16 

for ah = ±1, ±3 and bh 

out by comparing the real 

ible value of xh that is closest to xhq where 

possible complex values of sh given by ah+jbh 

= ±19 ±3. The selection process here is carried 

and imaginary parts of xh with the threshold 
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values of 2,0, and -2, as is shown in Table 5.6. 

Thus, effectively, the selection process here operates by partitioning 

the 16-point QAM signal constellation of sh into the 16 regions shown 

in Fig. 5.14, and it takes the value of xh to be the possible value 

of sh that lies in the same region as that of the value of xh, bearing 

in mind that XI is here treated as the estimate of sh. 

Re(xh) or Im(xh) = 
'-3 if -2 >_ Re(xh) or Im(xh) 

Re(xh) or Im(xh) = -1 if 03 Re(xh) or Im(xh) > -2 

Re(xh) or Im(xh) =l if 2 >- Re(xh) or Im(xh) >0 

Re(xh) or Im(xh) =3 if Re(xh) or Im(xh) >2 

Table 5.6 Selection of the possible value of xh closest to the estimated 

value xh (eqn. 5.73) of sh. Re(. ) and Im(. ) are the real 

and imaginary parts of (. ). 

Fig. 5.14 A 16-point QAM signal constellation of sh partitionned into 

16 regions having the 16 possible values (represented as 

points here) of sh. 
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Selection process B (ml = 2) 

This selection process operates on the estimate xh (eqn. 5.73), 

of sh' to select the 2 possible values of xh that are closest to the 

value of xh, where xh may have any of the 16 possible complex values 

of sh. 

Thus, the possible value of xh that is cloest to the value of 

xh is first selected here by using the method outlined in Table 5.6. 

Let this value of xh be designated as (xh)l. The selection process 

then proceeds to select the second possible value of xh that is cloest 

to the value of xh according to the principle described below. Let 

this second selected value of xh be designated as (xh)2' 

Being a possible value of the 16-point QAM signal sh (Fig. 5.14), 

the first selected value (xh)l of xh here may be one of the 4 central 

points (±l±j), or one of the 4 cornor points (±3±3j), or one of the 

8 side points (±l±3j or ±3±j), in the 16-point QAM signal constellation. 

Fig. 5.15 shows a possible arrangement for each of the three cases 

is here restricted to lie within just mentioned. The estimate xh (of SO 

the shaded area that contains the first selected value (xh)l of xh, 

as can be seen from Table 5.6 and Fig. 5.14, bearing in mind (xh)l 

is selected according to Table 5.6. Consider first the arrangement 

of Fig. 5.15a where (xh)1 is one of the 4 central points in the 16-point 

QAM signal constellation. It can be seen here that, so long as xh lies 

in the shaded area of region 
O, then is the possible value of 

xh that is cloest to xh (other than the central point (xh)1) and should 

therefore be taken as the second selected value (xh)2 here. Similarly, 

if xh lies in region 
OB 

,O, or 
OD 

, then Ob 
, 

Oc 
, or 

O 
respectively 

should be taken as the value of (xh)2. Consider next the arrangement 

of Fig. 5.15b where the point 
Oa in Fig. 5.15a is absent here. Clearly, 
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if xh lies in any of the regions 
g, OC 

, and c, then the selection 

process used in Fig. 5.15a should be used here to select the value 

of (xh)2. If, however, xh lies in region A, then it can be seen 

from Fig. 5.15b that, 0 is now the possible value of xh that is closest 

to XI and should therefore be taken as the value of (xh)2. Similarly, 

if XI lies in region , then O becomes the point closest to xh 

and should therefore be taken as (xh)2. Finally, ccr_sider the arrangement 

shown in Fig. 5.15c where both the points 
Oa 

and 
g in Fig. 5.15a 

are absent here. Again, so long as XI lies in any of the regions 
OC 

and 
OD 

, then the selection process used in Fig. 5.15a should be used 

here to select the value of (xß)2. If, however, xh lies in region 
(9 

then it can be seen from Fig. 5.15c that Od is now closest to xh and 

should therefore be taken as the value of (xh)2. Similarly, if xh lies 

in region 
OB 

, then ( 
should be taken as the value of (xh)2' 

Thus, the principle outlined above is used for the selection 

process here to select the second possible value (xh)2 of xh that is 

closest to the estimate xh of sh, bearing in mind that the first possible 

value (xh)l of xh that is closest to xh has already been selected using 

Table 5.6. The selection process now operates by first evaluating the 

two quantities 

Q1 = Re(xh) - Re((xh)l) 

and A2 = Im(xh) - Im((xh)l) (5.74) 

where Re(. ) and Im(. ) are the real and imaginary parts of (. ) respectively. 

In order to locate the region where XI lies (Fig. 5.15), the absolute 

value of Al is compared with that of p2. Two cases may now occur depending 

on whether 
I Q1 ( is larger or smaller than IA2 1, where 

I( 
.)I is the 
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absolute value of (. ). Consider first when 
jAll is larger than A21 , 

which implies that the estimate xh must now lie in any of the regions 

OA 
and CO in Fig. 5.15. Thus, the second selected value (xh)2 here 

is determined as 

Re((xh)2) = Re((xh)l) +2 sgn(Ql) 

and Im((xh)2) = Im((xh)l) (5.75) 

where sgn(. ) is the sign of (. ) and is either 1 or -1. The value of 

Re((xh)2) just determined is then checked and if it is not one of the 

4 possible values (±l, ±3) of Re(xh) (as may occur in Fig. 5.15b or 5.15c), 

then the value of (xh)2 is changed to 

Re((xh)2) = Re((xh)l) 

and Im((xh)2) = Im((xh)I) +2 sgn(, 62) (5.76) 

The value of Im((xh)2) just determined is again checked and if it is 

not one of the 4 possible values (±l, ±3) of Im(xh) (as may occur in 

Fig. 5.15c), then the value of (xh)2 is finally changed to 

Re((xh)2) = Re((xh)l) 

and Im((xh)2) = Im((xh)l) -2 sgn(A2) (5.77 

Consider now the case when 
jAll is smaller than or equal to IA2I 

, 

which implies that the estimate xh must now lie in any of the regions 

OB 
and 

OD in Fig. 5.15. Thus, the second selected value (xh)2 here 

is taken to be that given by eqn. 5.76. This value is then checked 

and if it is not a possible value of xh, then the value of (xh)2 is 
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changed to that given by eqn. 5.75. The new value of (xh)2 is again 

checked and if it is not a possible value of xh' then the value of 

(xh)2 is finally changed to 

Re((xh)2) = Re((xh)l) -2 sgn(Al) 

and Im((xh)2) = Im((xh)l) (5.78) 

The selection process just described is summarised in Table 5.7. 

When When 

11> IA21 1d1I'- IA21 

lst solution of (xh)2 eqn. 5.75 eqn. 5.76 

2nd solution of (xh)2 eqn. 5.76 eqn. 5.75 

3rd solution of (xh)2 eqn. 5.77 eqn. 5.78 

Table 5.7 Selection of the second possible value (xh)2 of xh closest 

to the estimated value xh (eqn. 5.73) of sh. 

* means 'evaluated only if lst solution is not a possible 

value of xh'. 

** means 'evaluated only if both 1st and 2nd solutions are 

not possible values of xh'. 
'All 

and 
IA21 

are the absolute values of A1 and A2 (eqn. 5.74) 

respectively. 
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Selection process C (mh = 4) 

This selection process operates on the estimate xh (eqn. 5.73, 

of sh' to select 4 possible values of xh, where xh may have any of 

the 16 possible complex values of sh. The selection process here is 

such that, the 2 possible values of Re(xh) that are closest to the 

value of Re(xl) and the 2 possible values of Im(xh) that are closest 

to the value of Im(xh) are selected to give a total of 4 possible values 

of xh, where Re(. ) and Im(. ) are, of course, the real and imaginary 

parts of (. ) respectively. Thus, this selection process is carried 

out by comparing (separately) the real and imaginary parts of xh with 

the 2 threshold values 1 and -1, as is shown in Fig- 5.16 and Table 5.8. 

Re(xh) or Im(xh) = -3 and -1 

Re(xh) or Im(xh) = -1 and 1 

if -1 >- Re(xh) or Im(s) 

if 1 -- Re(xh) or Im(xh) > -1 

Re(xh) or Im(xh) =1 and 3 if Re(xh) or Im(x) >1 

Table 5.8 Selection of the 2 possible values of Re(xh) (or Im(xh)) 

that are closest to the value of Re(xh) (or Im(xh)) given 

by eqn. 5.73. Re(. ) and Im(. ) are the real and imaginary 

parts of (. ) respectively. 

-3 -1 
II13 Re(x) 

li >1 I, 
f-( `r Im(x)) 

Re(xh)=-3, -1 Re(xh)=±l Re(xh)=+3, +1 

(or Im(xh)=-3, -1) 
'(or Im(x )=+lj (or Im(xh)=+3, +1) 

Fig. 5.16 Selection of the 2 possible values of Re(xh) (or Im(xh)) 

that are closest to the value of Re(xh) (or Im(xh)). 
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Selection process D (mh = 9) 

This selection process operates on the estimate xh (eqn. 5.73) 

to select 9 possible values of xh, where Xh may have any of the 16 

possible complex values of sh (eqn. 5.2). The selection process here 

is such that the 3 possible values of Re(xh) that are closest to Re(xh), 

and the 3 possible values of Im(xh) that are closest to Im(xh) are 

selected to give a total of 9 possible values of xh, where Re(. ) and 

Im(. ) are the real and imaginary parts of (, ) respectively. This selection 

process is carried out by comparing (separately) the real and imaginary 

parts of I with the threshold value of 0, as is shown in Fig. 5.17 

and Table 5.9. 

Re(xh) or Im(xh) = -3 and -1 and 1 

Re(xh) or Im(xh) = -1 and 1 and 3 

if Re(xh) or Im(xh) 0 

if Re(xh) or Im(xh) >0 

Table 5.9 Selection of the 3 possible values of Re(xh) (or Im(xh)) 

that are closest to the value of Re(xh) (or Im(xh)) given 

by eqn. 5.73. Re(. ) and Im(. ) are the real and imaginary 

parts of (. ) respectively. 
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Fig. 5.17 Selection of the 9 possible values of xh (Table 5.9). 

(a) when Re(xh) >0 and Im(xh) > 0. 

(b) when Re(xh) : 1,0 and Im(xh) < 0. 

(c) when Re(xh) .0 and Im(xh) > O. 

(d) when Re(xh) 0 and Im(xh) -- 0. 



- 314 - 

Thus, any of the 4 selection processes just described can be used 

to derive ml possible values of si+h (eqn. 5.68) for the component 

xi+h (0<- h --7%) in the expanded vectors 
{ P, 11 (ec n. 5.54 and Fig. 5.12)q 

in the detection process of system 7, where mh may have any of the 

four values l1 29 4ý and 9. It is desirable that the transmitted 

value of the data symbol si+h be included as one of the mh selected 

values of xi+h, so that the correct detection of si+h can be achieved 

here. The necessary condition for the value of si+h to be included 

as one of the mh selected values of xi+h have been derived in appendix A8 

for each of the four selection processes here, and the results are 

shown in Table 5.10. Furthermore, since xi+h (eqn. 5.68) is here treated 

as the estimate of si+h, it can be seen from eqn. 5.68 that the value 

of si+h is more likely to be included as one of the mh selected values 

of xi+h here if the magnitude of the intersymbol interference component 

Ji+h and the variance of the noise components {w! in eqn. 5.68 are 
i+hj 

smaller. The value of Ji+h is given by eqn. 5.70, and its magnitude 

can be seen to be such that 

Pp 
l 

lI 
akI (5.79) Ji+hI ZllSi+h-kllak 3L 

where the {a' here are as given by eqn. 5.71, and p+l is the number 

of taps of the transversal filter (Fig. 5.13) used in the detector 

of system 7. The real and imaginary parts of the noise components 
{wi+h} 

in eqn. 5.68 are Gaussian random variables with zero mean and variance 

62k 
p, 

where26 
2 

is the two-sided power spectral density of the noise 

added at the output of the transmission path shown in Fig. 2.3, and 

k2 is as given by eqn. 5.65. It therefore follows that, the number 

of taps, p+l , to be used in the transversal filter (Fig. 5.13). of 

system 7 should be selected to be such that, a small value of IJi+hl 
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P 
or 3/ Iakl (eqn. 5.79), and a large value of kp (that is, a small 

k=l 
value of d2/k2 ) are achieved here. In the absence of noise (w! 

Ph 
0), 

Table 5.10 suggests that the value of si+h is always included as one 

of the mh selected values of xi+h here so long as IJi+hl` vh . It therefore 

appears that at high signal to noise ratios, the value of p to be used 
p 

here should be further restricted to be such that, the value of 3J Llakl 

k=1 
(eqn. 5.79) does not largely exceed that of vh. The values of kp (eqn. 5.65) 

p 
and 3f ýJakj(egn. 5.71) have been calculated for system 7 operating 

k-1 
over channel A (Table 2.. 4) at various values of p, and the results 

are shown in Table 5.11. As Table 5.11 shows, system 7 with p=3 is 

very likely to have a very poor performance because its associated 
p 

value of 3f Llakl largely exceeds any of the 4 possible values of 
k=1 

vh given in Table 5.10- Consequently, only the values of 1 and 2 for 

p are considered in the evaluation of the system performance here. 

Computer simulation tests have been carried out to determine 

the tolerance to Gaussian noise of system 7 operating over channel A 

(Table 2.4), and the results are shown in Figs. 5.18 - 5.21. The 95% 

confidence limits of these results are about ±0.5 dB. The bit error 

rate and the signal to noise ratio here are as defined by egns. 5.3 

and 5.4 respectively. The number m' of vectors 
{Pi} (eqn. 5.54) expanded 

from each of the m stored vectors 
{x. 

1} 
(eqn. 5.8) here are restricted 

to be about 16 so that the total number of measurements of 
{c! } (eqn. 5.56) 

per data symbol involved here is about the same as the total number 

of cost measurements (egns. 5.11 - 5.13) per data symbol involved in 

system 1. This is to ensure that, the total number of operations per 

data symbol involved in the detection process of system 7 does not 

greatly exceeds that involved in the detection process of system 1, 

bearing in mind that system 1 uses the arrangement where an 'all-pass' 

transversal filter is inserted ahead of a near-maximum likelihood detector. 
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Number of selected 

values for xi+h 

m' h 

Condition for the transmitted value of si+h 

to be included as one of the mh selected values 

for xi+h (appendix A8) 

1 Ji+h + wi+hl < vh -1 

2 I Ji+h + Wi+h I< vh = 

4 IJ 
i+h + Wi+h I< vh 2 

9 IJi+h + Wi+hl < vh =3 

Table 5.10 The necessary conditions for the transmitted value of 

si+h (eqn. 5.68) to be included as one of the selected 

values for the component xi+h (O< hE 7) in the expanded 

vectors 
JP! ] (eqn. 5.54) in the detection process of 

system 7" Ji+h and w! h are the intersymbol interference 

component and noise component respectively (eqn. 5.68). 

p k 
2 d 2/kp P 

LI ak 
p k=1 

1 0.188 28.29362 0.564 

2 0.527 3.60162 1.658 

3 0.751 
2 1.7736 3.593 

p 
Table 5.11 The maximum intersymbol interference level 3/ ' 

22 k=l (eqn. 5.79) and the noise variance 6 /kp in the estimate 

xi+h of si+h in eqn. 5.68. The {ak} 
and kp are as given 

by egns. 5.71 and 5.65 respectively, and p+l is the number 

of taps used in the filter (Fig. 5.13) of system 7. 
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It can be seen from Fig- 5.18 that, system 7 with p=1 has a 

very poor tolerance to noise, where p+l is the number of taps of the 

filter (Fig. 5.13) used in deriving the values for the components 

xi' Xi+l' ".. ' xi+2ý- in the expanded vectors 
{Pi} (eqn. 5.54) here. 

One possible reason to this poor performance is that, the noise variance 

62/kp (Table 5011) involved in deriving the values for the component 

xi+h (Oh) is very high here so that the transmitted value of the 

data symbol si+h is very often not included as one of these derived 

values for xi+h' leading to a high probability of error in the detection 

of si+h" Figs. 5.18 - 5.21 also show that at high signal to noise ratios, 

system 7 with a small value (e. g. 4) of m6 (number of possible values 

of s. selected for the component xi in the vectors {Pir ) appears to have 

a poor tolerance to noise. This is probably because the intersymbol 

interference level (egns. 5.68 and 5.79 and Table 5.11 involved in 

deriving the values for xi here is so high that a large number of values 

for x. must now be selected so as to include the transmitted value 
1 

of si . Furthermore, if xi does not have the correct value of si here, 

then the intersymbol interferences of S. involved in deriving the values 

for the components xi+l, xi+29 .. xi+ 
, 

are increased instead of 

being removed, so that the transmitted values of si+l7 si+2' si+ T. 

are now less likely to be included in the corresponding selected values 

for xi+1, xi+2, .. * ' xi+ 
x. 

As Figs. 5.18 - 5.21 show, system 7 with 

the various arrangements tested here appear to have the best performance 

when ml = 9, mi = 2, and m2 =1 (Fig. 5.20), where mh is the number 

of selected values for the component xi+h (0 -h in the vectors 
[Pi} 

here (eqn. 5.54 and Fig. 5.12). However, this performance is only slightly 

better than that of the optimum nonlinear equalizer when operating over 

channel A here, as can be seen from Fig. 5.20. System 7 therefore does 

not appear to be promising when operating over channel A here, since 
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it requires many more operations per data symbol than that required 

in the optimum nonlinear equalizer while having only a slight improvement 

in tolerance to noise over the equalizer here. 

One weakness of system 7 appears to be that, the intersymbol 

interference levels involved in deriving the values for the components 

xi' xi+1' """ 9 xi+ 
X 

in the 

here are often so high that 

""" xi+ are now required 

process of system 7 so as to 

expanded vectors 
{P! } (ecgn. 5.54 and Fig. 5.12) 

3, large number of values for xis xi+l' 

to be selected and used in the detection 

achieve a satisfactory tolerance to noise. 

Further modifications to system 7 should therefore aim at reducing 

these intersymbol interference levels. 
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P 
e 

l0 1 

10 
2 

10-3 

10-4 

mý = 4, mi = 2, m2 = 2, m3 =1 (see Fig. 5.12 

System 7 
m= 16 

fp=1 
i` f=1 

System 1 
m= 16 or 32 

Optimum nonlinear 
equalizer 

SNR (dB) 

Fig. 5.18 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn.. 5.4) for system 7 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. m is the number of stored vectors, p+l is the 

number of taps of the filter of Fig. 5.13, and yf is the 

first significant component of the channel sampled impulse 

response. 

21 23 25 27 
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P 
e 

l0 1 

10-2 

10-3 

10-4 

mý = 4, m= 4, m2 l=1 

Optimum nonlinear 
equalizer 

System 1 
m= 16 or 32 

3 25 27 

Fig. 5.19 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 7 operating over channel A 

(see Fig. 5.12 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. m, p, and f are as in Fig. 5.18. 
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P 
e 

ml = 9, ml = 2, m2 =1 (see Fig. 5.12 

10-1 

l0- 2 

10-3 
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7 
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21 23 25 27 

Fig. 5.20 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 7 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) 
= 16. m, p, and f are as in Fig. 5.18. 
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mý = 16, ml =1 (see Fig. 5.12 

System 7 
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Fig. 5.21 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eqn. 5.4) for system 7 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 

is (n) = 16. m, p, and f are as in Fig. 5.18. 

(dB) 
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5.10 System 8 

In the detection process of system 7, each of the m n-component 

stored vectors 
{Xi-l} (eqn. 5.8) is expanded into m' (n+ýk+l)-component 

vectors 
{P! } (eqn. 5.54 and Fig. 5.12) having the m' possible values 

for their last +l components xi' xi+l' -' xi+X" These +l components 

are derived, one at a time using the linear filter shown in Fig. 5.13. 

System 8 is a modification of system 7 in that two linear filters 

(instead of one in system 7) are now used to derive the values, for 

two components at a time, for the +l components xi, xi+l' ".. I xi+? 
ý, 

here. The idea behind this modification is that, the intersymbol interference 

of, say s. 
+l , in system 7 in deriving the values for xj. is now 'eliminated' 

ý 

by regarding sj+1 also as a signal component (to be determined as xj+l) 

here, bearing in mind that the data symbol sj is a signal component 

(to be determined as xin the derivation process for xj and xj+l 

here. The operation of system 8 is otherwise similar to that of system 7. 

Thus, the basic model of the signal processor for system 8 is 

the same as that shown in Fig. 5.9. The intersymbol interference canceller 

in Fig. 5.9 operates on the received sample values ri, ri+l' ".. , ri+d 

(eqn. 5.1) to give, at the detector input, the sample values ri, 0' 171, 

""" , r! (eqn. 5.52), as is described before for system 6 or 7- 
11 CA 

The near-maximum likelihood detector (Fig. 5.9) operates on its input 

sample values (eqn. 5.52) to give at its output the detected data symbol 

s! , and this is described as below. 
1-n 

Just prior to the receipt of the samples 
{r! 

h} 
(eqn. 5.52), the 

detector of system 8 holds in store m n-component vectors 
{Xi-1} (eqn. 5.8) 

together with the associated costs 
{C 

i-1} 
(egns. 5.10,5011, and 5.16). 

On receiving 
{r! 

h} , each of the m stored vectors 
{Xi-l is expanded 

ij1 
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into m' (n+l)-component vectors 
{p. } (eqn. 5.9), where m' may have 

i 

any of the values 4,9, and 16 here. The first n components of these 

m' vectors 
{Pi} 

are as in the original vector Xi_l, and the last component 

xi may have any m' (4,9, or 16) of the 16 possible values of the data 

symbol s.. The derivation of the m' values of xi here will be described 

in details later. The detector now evaluates the cost C. 
i 

for each of 

the (m)(m') expanded vectors 
IPi} by using egns. 5.11 and 5.16. Each 

of these (m)(m') vectors 
{Pi} is then further expanded into a (n+3)- 

component vector Pig where 

Pi 
[ 

Xi-n Xi-n+l - xi Xi+l xi+2 
] (5.80) 

which is the same vector defined by eqn. 5.54 so long as the value 

of 2 in eqn. 5.54 is equal to 2. The first n+l components of the vector 

P! here are as in the original vector Pi, and the last two components 

xi+l and xi+2 are derived simultaneously by using two linear filters. 

The derivation process for xi+l and xi+2 here will be described in 

details later. An example of expanding 2 vectors of 
ix 

i-11 
into a total 

of 18 vectors 
{P! } for the operations just described is shown in Fig. 5.22. 

Thus, having derived the corresponding m' vectors 
{Pi} from each of 

the m vectors 
{Xi_1J', the detector of system 8 then proceeds to evaluate 

the quantity C!, by using eqn. 5.56, for each of the (m)(m') expanded 
i 

vectors 
{P! } here. The detected data symbol s! is then taken to have 

ij 

the value of x. in the vector P! associated with the smallest C!. 
i-n i 

All vectors 
{P! } for which xi-n si-n are now discarded. The first 

component xi_n and the last two components xi+l and xi+2 of each 

of the remaining vectors 
{P! } 

are omitted to give the corresponding 

n-component vectors 
{Xi} 

" Each vector X. here is associated with the 

same C. and C! as those of the corresponding vector Pi. The detector 
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Xi-1 Xi+l Xi+2 X. 

1 

`Pil 

ooý lP J i 

txir 

Fig. 5.22 Schematic diagram showing the expansion of vectors from 

m{X. 
_l} 

to (m)(m') or (m)(m6) {Pi} in the detection process 

of system 8. m' is as defined by eqn. 5.62. In this example, 

m=2. 
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then proceeds with the selection of the m vectors 
(X 

1. 

} 
associated with 

the smallest 
{C! } 

subject to the constraint that only the m' vectors 

of 
{X. } 

originating from the best vector of X1. 
-1 

(having the smallest 
1 

Ci_ in the previous detection process) are available for the selection 

of the second vector of X. here. These m selected vectors IXi3 together 

with their associated costs 
{Ci} 

are then stored and the detector is 

now ready for the next detection process where the detected value of 

the data symbol s 
i-n+l 

will be determined in exactly the same way as 

is described above. 

In the detection process described above, each n-component stored 

vector Xi-1 is expanded into m' (n+3)-component vectors 
{P! } (eqn. 5.80 

having m' different values for the last 3 components xi' xi+l' and xi+2' 

The derivation of the m' set of values for the 3 components xi' xi+l' 

and xi+2 here is carried out in system 8 by the use of two linear 

filters, and this derivation process is now described as below. 

Three slightly different arrangements for the derivation process 

mentioned above have been developed and studied, and are described 

in the following three versions of system 8. 

System 8 (Version a) 

In the derivation of the m' set of values for the 3 components 

xi' xi+l' and xi+2 in the vectors 
{P! } (eqn. 5.80), the detector here 

first removes from its input samples r1 0' r1 1' ... ' ri a 
(eqn. 5.52) 

detected values of all components involving the data symbols si-n9 

si-n+l' ". ' si-1 whose values have already been determined (temporarily) 

as the values of the corresponding components xi-n' xi-n+l' "" 9 xi-l* 

That is, the detector operates on its input sample values to give the 
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following complex-valued quantities 

e= ri 
n 

70 k1X 0 i-kYk 

n 
ell =rx ri9l 

k_1 
i-kYk+l 

n 
ea = ri, a k1 Xi-kyk+ (5081) 

where 
{yj} 

are the components of the channel sampled impulse response, 

and a is a constant to be described shortly. The detector then operates 

on the first p+l sample values e0, ei, """ , ep (eqn. 5.81), using 

the (p+l)-tap and the p-tap linear transversal filters shown in Fig. 5.23, 

to give the following two complex-valued quantities 

fl = eöy0 + elyl + ... + e'y (5082) 

and f2 = ely0 + """ + epyp_1 (5.83) 

where yj is the complex conjugate of yj. The value of p here is related 

to the value of a by 

a= P+1 (5.84) 

Having evaluated the two quantities fi and f2 , the detector then 

operates on the last p+i sample values el, e2, """ , eP+l in eqn. 5.81, 

using the same two transversal filters shown in Fig. 5.23, to give 
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fý 
n 

e' 

Yp-l 

yp 

Fig. 5.23 Linear transversal filters used in system 8 to evaluate 

the quantities fi and f2 (egns. 5.82 and 5.83) in deriving 

the possible values for the component xi in the expanded 
1 

vectors 
{Pi } (eqn. 5.80). 
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the following two complex-valued quantities 

f3 = e1ly0 + ely1 + ... + e' y* (5.85) 

and f4 = ely0 + """ + e'y 1 
(5.86) 

P+1 P- 

The detector now operates on fl and f2 to derive the m' values for 

the component xi in P! (eqn. 5.80), and it then operates on f3 and f4 

to derive the corresponding m' pairs of values for the components xi+l 

and x. in P! here. The detector here assumes that the values of 
1+2 1 

ri 0' r! 1' """ rid in eqn. 5.81 are as given by eqn. 5.53, and 

that xj = sj for j= i-n, i-n+l, "" , i-i so that eqn. 5.81 now 

becomes 

el = siy0 + w. 

ei =S+ Si+1y 0+ wi+l 

ed siya + Si+lya-1 + .. + si+ y0 + Wi+a (5.87) 

where a is as given by eqn. 5.84, and 
{wi} 

are the noise components 

whose real and imaginary parts are statistically independent Gaussian 

random variables with zero mean and variance 6 2. 
Substituting eqn. 5.87 

into egns. 5.82,5.83,5.85, and 5.86, and after rearranging of terms, 

we arrive at 
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fl sia' + si+la' + si+2 a' + .'+S. a' + W' (5.88) 

f2 = sib'1 + s, +1-b6 + si+2 b1 ++ si+pb'-1 + W2 (5.89) 

f' = sla'1 + si+l a' + si+2 a' + ..... + si+p+l at + W3 5.90) 

f' = sib'2 + si+l b'1 + si+2b0 + ..... + si+p+lbp-1 + w' 5.91) 

where 

p-k 
ak YjYj+k_ (5.92) 

j=0 

p 
a'k = Yj+kJj 5.93) 

J=O 

p-k-1 
bk =E yjýj+k 5.94) 

j=0 

b'k 
pý 

yj+Zj 5.95) 
J=O 

for any non-negative integer value of ký and the noise components are 

wl = 
A 

wi+jYj (5.96) 
j=o 

W2 = wi+l+- .y 
5.97) 

j=0 

w3 = wi+l+jyj (5.98) 
j=0 

W4 = 
P1 

L wi+2+jyj 5.99) 
j=0 

Having stated the assumptions of egns. 5.87 - 5.99 for the detection 

process here, the derivation process for xi (using f1 and f2), xi+l 

and xi+2 (using f3 and f4) is now described as follows. The detector 
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first operates on fl and f2 (egns. 5.82 and 5.83) to give the complex- 

valued quantity 

Xi =v( flbý - f'a' " (5.100) 

where v=( acb' - a1lb'1 )-1 (5.101 

and aý, al, bý, b'1 here are as given by egns. 5.92 - 5.95" It should 

be noted that, v is a real-valued quantity since a' and bl are real- 

valued quantities and a' and b'1 are a complex conjugate pair, as 

can be seen from egns. 5.92 - 5.95" It can be seen from egns. 5.88 

and 5.89 that, the quantity x! (eqn. 5.100 may be reduced to 

x! = s. + J. + u! 
1111 

(5.102) 

where the intersymbol interference component J. and the noise component 

ui here are given as follows 

Ji = si+2v(a2b0-blal) + .. + s1 v(a'bo-b' 1a') 
5.103) 

PP P- 

ui =v( Wlb' - W2a1 ) (5.104) 

The quantity x! here is treated as the estimate of the data symbol si 

whose value is to be determined as the value of x. in P! (eqn. 5.80). 
11 

It can be seen from egns. 5.102 and 5.103 that, the intersymbol interference 

of s. is removed in the estimated value x! of s.. Thus, having evaluated 

the value of x! by using eqn. 5.100, the detector then operates on 

x! to give m' possible values of s. for the component x. in P. This 
1111 

is carried out as follows. When m' = 4, Table 5.8 is used to derive 

the 4 possible values for xi, and when m' = 9, Table 5.9 is used to 
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derive the 9 possible values for xi, bearing in mind that xi here may 

have any of the 16 possible complex values of the data symbol si .0 
When 

m, = 16, however, all the 16 possible values of si are taken for the 

16 values of xis and so there is actually no need to evaluate any of 

the quantities fly 

possible values for 

operate on f3 and 

of xi just derived, 

and xi in this case. Having derived the m' 

component xis the detector then proceeds to 

(egns. 5.85 and 5.86) to give, for each value 

complex-valued quantity 

f 2, 

the 

f' 4 

the 

Xi+l =V( flbp - f4ai )- xiv' 5.105) 

where v' =v( a'lbl - b'2a' ) (5.106) 

and all, all, b0, b'2 are as given by egns. 5.92 - 5.95, and v is 

as given by eqn. 5.101. Assuming that xi = si here, it can be seen 

from egns. 5.90 and 5.91 that the quantity xi+l in eqn. 5.105 may be 

reduced to 

Xi+l = si+l + Ji+l + u! (5.107 

where the intersymbol interference component Ji+l and the noise component 

u! here are given as 
1+1 

Ji+l si+3v(a'b0-bla') + -- + si+p+lv(apb0 b' a') 5.108) 

u1+l =v( w3b0 - w4al (5.109) 

which obviously resemble egns. 5.102 - 5.104. The quantity x! 1 

is here treated as the estimate of the data symbol si+l" The detector 

now operates on x! 1 
(eqn. 50105) according to Table 5.6 to give the 
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value for xi+l' where xi+l here may have any of the 16 possible values 

of the data symbol si+l" Having derived the value for xi+l here, the 

detector operates on f4 (eqn. 5.91) to give the complex-valued quantity 

x' =1( f' -x b' -x b' ) (50110) 
i+2 b6 4i -2 i+l -1 

where boy b'lq and b'2 are as given by egne 5.95" Assuming that 

xi = si and xi+l si+l ' it can be seen from eqn. 5.91 that the 

quantity xi+2 evaluated here (eqn. 5.110) may be reduced to 

Xi+2 Si+2 + Ji+2 + ui+2 (5.111 

where the intersymbol interference component Ji+2 and the noise component 

u! here are given by 
1+2 

J1(s b' +s b' + "" + s. b' ) (50112) 
i+3 bý +3 1 i+4 2 i+p+ p-1 i 

w' 
u! =4 

(5.113) 
i+2 bo 

Again, the quantity xi+2 here is treated as the estimate of the data 

symbol si+2" The detector now operates on xi 
+2 

(eqn. 5.110) according 

to Table 5.6 to give the value for xi+2, where xi+2 here has a possible 

value of si+2° Thus, for each of the m' values derived for xi, the 

detector derives one value for xi+l (using eqn. 5.105 and Table 5.6) 

and one value for xi+2 (using eqn. 5.110 and Table 5.6), to give the 

corresponding m' (n+3)-component vectors 
{P! } (eqn. 5.80 and Fig. 5.22). 

All these are repeated for each of the m stored vectors 
{Xi-1} (egna 5.8 

and Fig. 5.22), to give a total of (m)(m') vectors 
{P! } here. The detector 

then proceeds with the evaluations of 
{Ci} (eqn. 5.56) for these 

{Pij 

and so on as is described before. 
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System 8 (Version b) 

In version a of system 8, the components xi+l and xi+2 in the 

vectors 
{P! } (eqn. 5.80) are restricted to have the possible values 

of the corresponding 16-point QCM data symbols. This restriction is 

removed in version b of system 8. The-detection process involved in 

version b here is otherwise the same as that involved in version a 

of system 8. Thus, in the derivation of the m' sets of values for the 

3 components xi, xi+1, and xi+2 in the expanded vectors 
{Pi} (eqn. 5.80 

and Fig. 5.22), the detector in system 8 with version b operates on 

its input sample values (eqn. 5.52) to give the complex-valued quantities 

given by eqn. 5.81. This detector then operates on these sample values 

(eqn. 5.81), using the linear filters shown in Fig. 5.23, to give the 

four complex-valued quantities fl, f2, f3, and f4 (egns. 5.82,5.83, 

5085, and 5.86). The estimated value x! of the data symbol si is then 

evaluated from fl and f2 by using eqn. 5.100. Table 5.8 or 5.9 with 

this value of x' 
i 

is then used to derive m' values for the component 

xi, where m' here may have a value of 4 or 9. When m' = 16, all the 

16 possible values of si are taken for the 16 values of xi and in this 

o case, it is not necessary to evaluate the values of fl, f2, and x! 

The operation described so far for version b is exactly the same as 

that for version a. Having derived the m' values for xi, the detector 

of version b next evaluates, for each value of xi just derived, an 

estimated value xi+l of si+l by using eqn. 5.105. The value of xi+l 

is then taken to be the value of xi+l here with the constraint that 

I Re(xi+i)+ `3 

IIm(xi+l)I `3 (5.114) 
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where Re(. ) and Im(. ) are the real and imaginary parts of (. ) respectively. 

That iss Re(xi+l) = Re(xl+l) unless Re(xi+l) >3 (or < -3) when 

Re(xi+l) =3 (or 
-3), and Im(xi+l) = Im(xi+l) unless Im(x! )>3 

(or < -3) when Im(xi+l) =3 (or 
-3)q where 3 and -3 are the maximum 

and minimum possible values respectively for the real or imaginary 

part of the data symbol si+lo Having determined the value of xi+l' 

the detector then evaluates the estimated value xi+2 of si+2 by using 

eqn. 5.110. The value of xi+2 is then taken to be the value of x! 

here with the constraint that 

3 IRe(xi+2)I 
-- 

+Im(xi+2)l 93 (5.115) 

which resembles the constraint of (5.114 for the component xi+l' Having 

derived the m' sets of values for the components xis xi+l' and xi+2 

in the corresponding m' vectors 
{Pi} (eqn. 5.80) originating from one 

of the m stored vectors 
{Xi-1} (eqn. 5.8), the detector then repeats 

the whole process here for each of the remaining m-1 vectors 
{Xi-l1 

to give a total of (m)(m') expanded vectors 
{Pi} having the (m)(m') 

sets of values for the corresponding components xis xi+l' and xi+2. 

The detector then proceeds with the evaluations of 
fc! } (eqn. 5.56 

for these 
{Pi} 

and so on as is described before. 

Thus, in deriving the value for any of the components xi+l and 

Xi+2 in the vector Pi, the detector here uses no prior knowledge of 

the possible values (3,1, 
-1, and -3) of the real and imaginary parts 

of the data symbols si+l and si+2' except that the maximum and minimum 

possible values here are given by 3 and -3 respectively. The reason 

for not setting the value of Re(xh) or Im(xh) (h = i+l, i+2) to a possible 
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value of Re(sh) or Im(sh) when Re(xh) or Im(xh) has a value that lies 

between 3 to -3 in the detection process here (version b) is given 

as follows. Consider first the case when the estimated value Re(xh) 

of Re(sh) (h = i+l, i+2) lies between 3 to -3. The distances from this 

value of Re(xh) to the nearest two possible values of Re(sh) now differ 

by an amount of less than 2. This difference can in fact be very small 

because of the presence of the intersymbol interference component Re(Jh) 

(eqn. 5.107 or 5.111) in Re(xh). Thus, the distances from Re(X1) to 

the nearest two possible- values of Re(sh) can differ by an amount so 

small that it is now very likely for the incorrect possible value of 

Re(sh) to be taken as the value of Re(xh) if Re(xh) is restricted to 

have a possible value of Re(sh). Furthermore, if Re(xh) has the incorrect 

possible value of Re(sh), then the distance between the values of Re(xh) 

and Re(sh) is equal to 2 here and is larger than the distance between 

the values of Re(xh) and Re(sh), bearing in mind that it is required 

here to determine the value of Re(sh) as the value of Re(xh). Consequently, 

it appears that because of the presence of the intersymbol interference 

component Re(Jh) in Re(xh), a better tolerance to noise may be achieved 

by taking the value of Re(xh) as the value of Re(xh) when Re(xh) lies 

between 3 to -3. The same argument just described can, of course, be 

applied to the case when the estimated value Im(xh) of Im(sh) (h = i+l, 

i+2) lies between 3 to -3, and hence a better tolerance to noise may 

be achieved by taking xh to have the value of XI instead of a possible 

value of sh here. If, however, Re(xh) or Im(xh) has a value larger 

than 3 (or smaller than -3), then the value of Re(sh) or Im(sh) is 

always nearer to the value of Re(xh) or Im(xh) than to the value of 

Re(x1) or Im(xh) so long as Re(xh) or Im(xh) is taken to have the value 

of 3 (or 
-3). In this case, a better tolerance to noise is likely to 

be achieved by having the constraints of (5.114) and (5.115). 
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System 8 (Version c) 

System 8 with version c is a modification of system 8 with version b. 

The modification here is aimed at reducing the number of operations 

involved in deriving the values for the components xis xi+l' and xi+2 

in the vectors 
{Pi} (eqn. 5.80 and Fig. 5.22) in the detection process 

of system 8 with version b. Basically this is achieved here by modifying 

the linear transversal filters (Fig. 5.23) used to derive the values 

for xi, xi+l, and xi+2 in version b of system 8 to have fewer taps. 

This version is otherwise the same as version b of system 8. 

Thus, in the derivation of the m' sets of values for the components 

xi' xi+l' and xi+2 in the expanded vectors 
{P! } (Fig. 5.22), the detector 

in system 8 with version c operates on its input sample values 
{ri 

h} s 
(eqn. 5.52 to give the complex-valued quantities 

{eh} 
given by eqn. 5.81. 

The detector then operates on 
{eh} 

, using the linear filters shown 

in Fig. 5.24, to give the following four complex-valued quantities 

f1 =e Ff + ei f+l Yf+l 

f2 = of+lYf 

ft = of+lyf + of+23rf+1 

f4 = of+2ý'f 

+ """ + epyp (5.116) 

+ ... + epyp-1 (5.117) 

e' .. + p+lyp 
(5.118) 

' 0.119) + ".. + ep+lyp-1 

where yj is the complex conjugate of yj 9 yf is the first significant 

component of the channel sampled impulse response, and p and p+l 

are the number of taps used in the two linear filters of Fig. 5.230 

It can be seen from Figs. 5.23 and 5.24 that, the two linear filters 

used in this version of system 8 can be obtained from the corresponding 

two linear filters used in version b of system 8 by removing those 
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f! 

Yp-l 

e' 
P 

Y_ 

Fig. 5.24 Linear transversal filters used in system 8 (version c) to 

evaluate the quantities fi and f2 (egns. 5.116 and 5.117 

in deriving the possible values for the component xi in 

the expanded vectors 
{Pi} (eqn. 5.80). 
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taps associated with the components y0, y1, ... 7 yf-l I bearing in 

mind that these components are assumed in the detection process here 

to have negligible magnitudes. Thus, the number of complex-valued 

multiplications involved in the linear filters to evaluate the quantities 

fl, f2, f3, and f4 for each of the m stored vectors 
{Xi-l} (eqn. 5.8 

and Fig. 5.22) is reduced from 4p+2 in version b of system 8 to 

4(p-f)+2 in version c of system 8, bearing in mind that f>0 here. 

By substituting the values of 
{eh} in eqn. 5.87 into egns. 5.116 - 5.119, 

and after rearranging of terms, the quantities fl, f2, f3, and f4 

can be reduced to those given by egns. 5.88 - 5.91 where the various 

constants and noise components given by egns. 5.92 - 5.99 are here 

given by 

ak 
P-k 

yjyj+k (5.120) 

j= k 

aýk 
P 

= y. y. 
+k 

(5.121) 

j=f 

bk 
p-k-1 

yjyj+k (50122 
j=f-k 

blk 
P-1 

yj+ky. 
ý 

=j 
(5.123) 

j=f 

where yh =0 for h<0, and 

wl 
p 

= wi+3Yj (5.124) 

j-f 

w2 
Pal 

- wi+l+jYj (5.125) 
j=f 

w3 
p 

ý"i+l+jyj (5.126 
j=f 

w4 _ wi+2+jýj (5.127) 

j=f 
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Having evaluated the values of fl, f2, f3, and f4 (by using eqns. 

5.116 - 5.119, the detection process of system 8 with version c then 

proceeds with the derivation of the m' sets of values for the components 

xi, xi+l' and xi+2 in {P! } (Fig. 5.22) and the evaluation of 
{c! } 

(eqn. 5.56) for these {Pi} 
, exactly as for system 8 with version b, 

bearing in mind that the values of fi, f2, ff4, fak} 
, 

{a! 
k} , 

{b j, 
and {b'kI 

are here given by egns. 5.116 - 5.123. 

Thus, system 8 with version c differs from system 8 with version b 

only in having fewer taps for the linear transversal filters (Figs. 

5.23 and 5.24) used to derive the values for xi, xi+l, and xi+2 

in {P! } (Fig. 5.22), and in having fewer terms in the constants 
{ak} 

a'k} , 
{bk} 

, and {b'k} used to evaluate the estimated values xi, 

xi+l, and xi+2 (egns. 5.100,5.105, and 5-110). The number of operations 

involved in this version of system 8 is therefore fewer than that involved 

in version b of system 8. 

Computer simulation tests have been carried out to determine 

the tolerances to Gaussian noise of system 8 with versions a, b, and c 

operating over channel A (Table 2.4). Various values of p and f have 

been tested here and the more promising results are shown in Fig. 5.25, 

where f is the number of small components at the front end of the channel 

sampled impulse response, and p and p+l are the number of taps used 

in the linear transversal filters shown in Fig. 5.23. The 95% confidence 

limits of the results shown in Fig. 5.25 are about ±0.5 dB. The bit 

error rate and the signal to noise ratios here are as defined by egns. 

5.3 and 5.4 respectively. Fig. 5.25 also shows the performances of 

the optimum nonlinear equalizer described in section 2.6.3 and the 

system described in section 5.3. 
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10-2 

System 8 version a 
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Fig. 5.25 Variation of error rate Pe (eqn. 5.3) with signal to noise 

ratio SNR (eon- 5.4) for system 8 operating over channel A 

(Table 2.4). Number of components in each stored vector X. 
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It can be seen from Fig. 5.25 that, the tolerance to noise of 

system 8 with version a is slightly better than that of the optimum 

nonlinear equalizer at low signal to noise ratios where the error rates 

are higher than 10-3. At error rates below 10-3, this version of system 8 

appears to have an inferior performance as compared to that of the 

equalizer. System 8 with version a therefore does not appear to be 

promising when operating over channel A here, bearing in mind that 

this system involves a more complicated detection process in relation 

to that involved in the-equalizer. 

As it appears in Fig. 5.25, system 8 with version c has the same 

tolerance to noise as that of the system with version b for given values 

of my m'7 f, and pq where m is the number of stored vectors 
IX 

i-11 

(eqn. 5.8), m' is the number of vectors 
{Pi} (eqn. 5.80) expanded from 

each of these stored vectors (Fig. 5.22), f is the number of small 

components at the front end of the channel sampled impulse response, 

and p and p+l are the number of taps of the filters shown in Fig. 5.23" 

When m= 16, the performance of system 8 with version b or c remains 

unchanged as the value of m' is reduced from 16 to 9, and the improvement 

in tolerance to noise over the optimum nonlinear equalizer here is 

about 2 dB at an error rate of 10-4, the improvement being larger as 

the error rate decreases further. When m' is reduced to 4, the degradation 

in the performance here becomes large and system 8 with version b or c 

now has the same tolerance to noise as that of the equalizer. When 

m=8, there is again no difference in the performance of system 8 

with version b or c for m' = 16 or 9. The loss in the tolerance to 

noise that results when m is reduced from 16 to 8 here, is about 1 dB 

for the range of signal to noise ratios considered in Fig. 5.25. 
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It can be seen from the results just described that, system 8 

with version c is the most promising of the systems studied here, bearing 

in mind that this version of system 8 involves fewer operations in 

the detection process as compared to that involved in version b of 

system 8. Both versions b and c of system 8 appear to be able to achieve 

a better tolerance to noise over channel A here in relation to that 

of the optimum nonlinear equalizer without involving an excessive number 

of operations per data symbol in the detection process. For example, 

when system 8 with version b or c operates with m= 16 and m' = 99 

the improvement gained in tolerance to noise over the equalizer here 

is about 2 dB at an error rate of 10-4. The number of measurements 

of the quantities 
{Cif (egno 5.56 per data symbol required in system 8 

here is (m)(m') or 144. The additional operations per data symbol involved 

in deriving the components xi' xi+l' and xi+2 in the expanded vectors 

{P! } (egno 5.80 and Fig. 5.22) here can also be seen from the descriptions 
i 

of the system given previously to be of the same order of magnitude 

as that involved in the measurements of 
{C, 1} o It should perhaps be 

reminded that system 8 has the advantage over system 1 and optimum 

nonlinear equalizer that, it can operate directly over the received 

sample values at the channel output (Fig. 2.3) and therefore without 

requiring the sampled impulse response of the channel to be adjusted 

into any particular form by means of a linear filter. System 8 with 

version b or c therefore appears to be very promising when operating 

over channel A here. 
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5.11 Further Computer Simulation Results 

Previous sections have shown that system 8 with version b or c 

is able to achieve a satisfactory performance over channel A (Table 204). 

Further computer simulation tests have therefore been carried out on 

this system operating over channels B, C, D, E, and F (Tables 2.4 and 2.5) 

to justify its usefulness over a wider range of conditions. The 

characteristics of these channels are described in section 2.5. Thus, 

channel A introduces very severe group-delay distortion as well as 

severe attenuation distortion, channel B introduces very severe attenuation 

distortion, and channels C, D, E, and F all introduce typical levels 

of both attenuation and group-delay distortions. In the computer simulation 

tests here, 10,000 data symbols 
{si} 

are transmitted for each measurement 

of the bit error rate, and the results are plotted as bit error rate 

(eqn. 5.3) versus signal to noise ratio (eqn. 5.4). When the results are 

more scattered (which normally occur at low error rates), more tests are 

carried out to measure the bit error rates at the same signal to noise 

ratios here. The results of these tests are shown in Figs. 5.26 - 5.30 

where the 95% confidence limits of the curves are about ±0.5 dB. The 

performances of the optimum nonlinear equalizer described in section 2.6.3 

and the system 1 described in section 5.3 are also included here. 

Various values of f and p used in the detection process of system 8 

have been considered in the computer simulation tests here, but only 

their values giving the better results are considered in Figs. 5.26 - 5.30. 

The value of n used in the tests here is 16, where n is the number of 

components of a stored vector X. (eqn. 5.8) in system 1 or 8. 

All computer simulation tests here have been carried out on the 

CDC 7600 computer in Manchester, and the programs are written in FORTRAN. 

The computer program for system 8 with version b is shown in appendix B2. 
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ratio SNR (eqn. 5.4) for system 8 operating over channel B 

(Table 2.4). Number of components in each stored vector X. 
i 

is (n) = 16. m' is the number of expanded vectors for each 

of the m stored vectors. p and f are as shown in Figs. 5.23 

and 5.24. 
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5.12 Assessment of Systems 

The operations involved in the detection processes of system 1 

and system 8 with versions b and c are summarised briefly as follows. 

System 1: A linear prefilter that acts as a 'whitened matched-filter' 

is inserted ahead of a near-maximum likelihood detector. 

The detector here expands each of the m n-component stored 

vectors 
{Xi_1} (ecgn. 5.8) into 16 (n+l)-component vectors 

{Pi} (ecgn. 5.9), and evaluates a cost value C. (egns. 5.10 - 5.13 

for each of these {Pi. }. The detected data symbol s! is 
i-n 

then taken to have the value of the first component x. 
i-n 

in the vector P. associated with the smallest cost. The 
i 

m vectors 
KI 

associated with the smallest costs are then 

selected to give the m stored vectors 
{Xi} having the last 

n components of the corresponding 
{Pi} here. 

System 8 (Version b) : The near-maximum likelihood detector here operates 

directly over the received sample values at the channel 

output (Fig. 2.3) without the use of any prefilter. The 

detector here expands each of the m n-component stored 

vectors 
{Xi-l} (eqn. 5.8) into m' (n+3)-component vectors 

{P! } (eqn. 5.80), where m' may have a value of 16,9, or 4. 

The expansion of the vectors 
{Xi-1} into the vectors 

{Pil 

is carried out by the use of two linear filters (Fig. 5.23) 

and some threshold devices (Table 5.8 or 5.9). The detector 

then evaluates a quantity C! (eqn. 5.56) for each of the 

expanded vectors 
{Pi} 

here, and takes the detected data 
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symbol s'. to have the value of x. in the vector P' 
i-n I- n1 

associated with the smallest value of C!. The m vectors 

[P! } 
associated with the smallest 

{c! } 
are then selected 

to give the m stored vectors 
{Xi} having the appropriate 

components of the corresponding 
{P! } here. 

i 

System 8 (Version c) : This version is the same as version b of system 8 

except that the taps associated with y0' yl' ** ' yf-l 

in the two linear filters (Fig. 5.23) used in version b 

are now removed to give the corresponding two linear filters 

(Fig. 5.24) for version c here, where yf is the first 

significant component of the channel sampled impulse response. 

It can be seen from Figs. 5.25 - 5.31 that, system 8 with version c 

appears to have the same performance(over the six telephone circuits 

tested)as system 8 with version b. System 8 with version c is 

therefore more attractive than the system with version b, since it 

requires fewer operations in the detection process. 

When m= 16 and m' = 16, system 8 with version b or c is seen 

to have a better tolerance to noise than that of the optimum nonlinear 

equalizer over all the six channels, at error rates below 10-2. The 

gains over the equalizer, at an error rate of 10-4, are about 2 dB 

on channel A, Q. o5 dB on channel B, and 1 dB on channels C, D, E, and F. 

Its performance over channel C also appears to be the same as that 

of system 1. At an error rate of 10-4, the reductions in tolerance 

to noise of system 8 with version b or c over system 1 are about 0.5 dB 

on channels B, D, E, F, and 1 dB on channel k, the differences being 

becoming smaller as the error rates decrease further. 
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When m' is reduced to 9 with m= 16, the performance of system 8 

with version b or c remains unchanged for all the channels tested here 

except for channels D and F where the system becomes inferior to the 

optimum nonlinear equalizer. When m' is further reduced to 4 with the 

same value of m, the performance of system 8 with version b or c operating 

over any of the channels A, C5 Dq E, and F is further degraded. 

When m is reduced from 16 to 8 for a given value of m'q the 

performance of system 8 with version b or c is degraded for any of 

the six channels tested here. Nevertheless, the system is still superior 

to the optimum nonlinear equalizer at higher signal to noise ratios, 

so long as a sufficiently large value of m' is used in the system. 

In particular, when m=8 and m' = 16, the gains in the tolerance to 

noise over the equalizer, at an error rate of 10-4, are about 1 dB 

on channels A and F, 3 dB on channel B, 0.5 dB on channels C and D, 

and 0 dB on channel E. The effect of the values of m' on the performance 

of system 8 with version b or c with m=8, is roughly the same as 

that of the system with m= 16. That is, if the performance remains 

unchanged for m' = 16 and 9, with m= 16, then it will also remain 

unchanged for m' = 16 and 9, with m=8. 

It can be seen from the results given above and the descriptions 

of the channels given in section 2.5 or 5.11 that, the worse the channel, 

in terms of the severity of its attenuation distortion, the more improvement 

may be gained by the system 8 here over the optimum nonlinear equalizer, 

for the six channels tested here. 

All the simulation results here suggest that, system 8 with 

version b or c is able to achieve a very satisfactory performance with 

the use of a moderate or small value of m (number of stored vectors 

Xi 
. 

), especially in applications where the error rates are required 
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to be very low. Furthermore, the tests here have also shown that, all 

the m n-component stored vectors obtained at the end of the detection 

process here, generally, have exactly the same values for the corresponding 

components except for their last few components. This indicates that 

the value of n to be used in the detection process here could be considerably 

less than 16, for the given values of m considered here, without noticeably 

degrading the performance of the detection process, hence leading to fewer 

operations required in the system here. 

The main advantage of system 8 with version b or c over system 1 

and the optimum nonlinear equalizer is that, it can operate directly 

over the received sample values at the channel output (Fig. 5.23), 

without requiring the sampled impulse response of the channel to be 

adjusted into any particular form by means of a linear prefilter. This 

means that in adjusting the receiver adaptively for a time-varying 

channel, the simpler or more effective techniques avaliable to adaptive 

detectors, such as the direct estimation of the channel sampled impulse 

response using the channel estimator, and the use of this estimate 

to achieve time synchronisation(C38) may now be used in system 8 here. 

One possible drawback of system 8 with version b or c is that, the 

additional signal processing involved in the detection process here 

may sometimes greatly exceed the number of operations involved in the 

prefilter of system 1, especially when large values of m and m' are 

required to be used in the system here. 

Overall, system 8 with version b or c appears to be very promising 

for use over a time-varying channel which introduces severe attenuation 

distortion when the optimum nonlinear equalizer is unable to operate 

satisfactorily. 
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CHAPTER 6 

SYSTEMS WITH CODED SIGNALS 

6.1 Introduction 

It is well known that, when a transmitted binary signal is not 

significantly bandlimited by the transmission path, a useful improvement 

in tolerance to additive-white Gaussian noise can be achieved through 

the use of a binary convolutional code which, for a given information 

rate (binary data bit rate), appropriately increases the transmitted 

binary-digit rate. The received signal is here decoded by a maximum 

likelihood decoder using the Viterbi algorithm or else by a near-maximum 

likelihood decoder which is a suitable development of the Viterbi algorithm 

that is simpler to implement. 
(Dl59Dl69D299D329D349D389D409D417D42) 

It has been recently shown that the Viterbi algorithm may also 

be employed for the maximum likelihood detection of an uncoded digital 

signal, that has been distorted in transmission over a linear channel 

through being convolved with the impulse response of the channel. Appropriate 

modifications or developments of the Viterbi algorithm, which are simpler 

to implement, may again be used for the near-maximum likelihood detection 

(C37, C38, C42) 
of the received signal. 

More recently, tests have shown that, the Viterbi algorithm (and 

hence at least some of its developments) may be used for the maximum 

(or near-maximum) likelihood detection of a convolutionally coded digital 

signal that has itself been distorted through being convolved with 

the impulse response of the channel. 
(D399D40 ) 

The detector here operates 

directly on the received (noisy and distorted) coded signal to give 
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the detected values of the original uncoded data signal at the transmitter 

without involving a separate decoding process. The problem with this 

arrangement is that the coded signal is related to the corresponding 

uncoded signal by having the same signal alphabet (usually binary) 

but having an appropriate higher symbol rate to accomodate the additional 

symbols introduced by the convolutional code. This means that when 

the symbol rate of the uncoded signal is close to the Nyquist rate 

for the channel, no very useful advantage in tolerance to noise is 

achieved through the convolutional coding of this signal because of 

the consequent large increase in distortion of the received signal. 

It has been known for sometime that, if the very best available 

tolerance to additive white Gaussian noise is to be achieved at high 

signal to noise ratios, it is necessary to transmit a suitably coded 

multi-level signal, the optimum number of levels increasing with the 

signal to noise ratio. 
(A4) 

A convenient arrangement here, which combines the advantages 

of all the facts mentioned above, is to use a binary convolutional 

code to convert the original binary data signal into a suitable multi- 

level coded signal, having the same symbol (signal-element rate as 

the original uncoded signal. The received coded signal has again been 

distorted by the channel and is now detected by a suitable development 

of the Viterbi-algorithm detector, without involving a separate decoding 

process. Since there is here no change in the symbol rate, as a result 

of the coding operation, the distortion in the received multi-level 

coded signal is, of course, the same as that in the corresponding received 

uncoded signal. 

The arrangement just described is studied in chapter 7 for the 

case when the uncoded signal is binary, and in chapter 8 for the case 

when the uncoded signal is a 16-point W signal. 



- 356 - 

6.2 Model of the Data-Transmission System for Coded Signals 

The baseband model of the data-transmission system to be studied 

in chapters 7 and 8 is shown in Feig. 6.1. The information to be transmitted 

is here carried by a sequence of binary data digits [sil 
, which for 

i>0 are statistically independent and equally likely to have any 

of the two values 0 and 1. When i -- 0, si = 0. The coder in Fig. 6.1 

converts the sequence 
{si} into the corresponding sequence of multi- 

level coded symbols 
{qi}. Again, qi =0 when i 0. The conversion 

of {si} to {qi} here is carried out by using a binary convolutional 

encoder with error correction capability to code the fsi} into a longer 

binary sequence which in turn is then mapped into the multi-level coded 

symbols 
fgil by the use of a suitable Gray coder. The characteristics 

of the linear baseband channel in Fig. 6.1 is the same as that described 

in section 2.1 and will not be discussed again here. Thus, the signal 

at the output of the receiver filter which forms a part of the linear 

baseband channel is 

r(t) _ giy(t - iT) + w(t) (6.1) 

where y(t) is the impulse response of the equivalent basebanä channel, 

and w(t) is the additive white Gaussian noise waveform added at the 

output of the receiver filter here. The waveform r(t) is then sampled 

once per signal element at the time instants, .[ iTJ 9 where i takes 

on all positive integer values. Let the sampled impulse response of 

the baseband channel here be given by the (g+l)-component vector 

VC y0 yl ... yg 
(6.2) 

where yi = y(iT). The delay in transmission, other than that involved 
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in the time dispersion of the transmitted signal, is neglected here 

so that y0 L0 and yi =0 for i<0 and i>g. The sample value 

of the received signal at the output of the baseband channel, at time 

t= IT, is now given by 

9 
ri 

h 
qi-hyh + wi 

- 

(6.3) 

where ri = r(iT) and wi = w(iT). The detector (Fig. 6.1) is assumed 

to have the prior knowledges of both V (eqn. 6.2) and the possible 

values of si and qi. This detector employs a joint near-maximum likelihood 

detection and decoding process and it operates on the sample values 

{r 
i} 

to give at its output the detected values of {si} 
. The detected 

value of si is here designated as s! 

In chapter 8 where a QAM (Quadrature Amplitude Modulation) signal 

is transmitted over the channel, the values of 
fsi}' fqi}' 

. 
}i jwil 

and 
{r 

i} 
are all complex-valued quantities. The equivalent baseband 

model of the data-transmission system here is otherwise the same as 

that given above. 

It is assumed that the transmitter filter (Fig. 6.1) is such 

that, the average transmitted energy per signal element is the mean 

square value of qij where qi is the coded symbol carried by the ith 

transmitted signal element here. Furthermore, it is also assumed that, 

the receiver filter is such that the real and imaginary parts of the 

noise components 
fwi} (eqn. 6.3) are statistically independent Gaussian 

random variables with zero mean and a fixed variance d2 = 2No, bearing in 

mind that the imaginary parts of 
{w 

1. 
} 

are absent in the data-transmission 

system considered in chapter 7. Thus, the noise added at the output of 

the transmission path shown in Fig. 6.1 has a two-sided power spectral 

density of 2No for the binary system studied in chapter 7, or No for the 

QAM system studied in chapter 8. 
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6.3 Mathematical Model of a Convolutional Encoder 

The input sequence 
{sh} 

and the output sequence 
{vh} 

of a (c, b) 

convolutional encoder can be represented by the two vectors 

Si =r sl s2 ... Sib J 
(6.4) 

and vi =[ vi, v2 ... v' J 
(6.5) 

where sh is a binary input digit (0 or 1) and vh is a binary output 

digit (0 or 1). The function of the convolutional encoder is therefore 

to map the vector S. (ecin. 6.4) into the vector V. (eqn. 6.5), and 

this is achieved by using a generator matrix G, where 

V. = S. G 

G= G0 Gl G2 Gk-l 0 0 

v '0 ýl N2 

_ 
(1) (2) 

Gh gh, l gh, l 

(1) (2) 
gh, 2 gh, 2 

(l) (2) 
gh, b gh, b 

gh, l 

(c) 
ýýý gh, b 

ýk-1 v 

(6.6) 

(6.7) 

(6.8) 

and ghee has a binary value of 0 or 1, bearing in mind that a vector 
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is also treated as a row matrix in this thesis. For short convolutional 

codes, b and c are usually small integer 

matrix G, a convolutional encoder can be 

and c modulo-2 adders, where b, k, and c 

Fig. 6.2 shows a possible arrangement of 

where the input sequence 
{sh} is divided 

values. Given the generator 

constructed with bk registers 

are as defined in egns. 6.4 - 6.8. 

a (3,2) convolutional encoder, 

into b (or 2 in this case 

parallel streams of sequence. A symbol marked sh is a register or store 

holding the binary digit sh, and the symbol marked (@ is a modulo-2 

adder. The binary digits {shh in each of the b parallel streams of 

input sequence are here shifted 1 place to the right at eachb sampling 

instantS. 

Fig. 6.2 Construction of a (c, b) convolutional encoder from its 

generator matrix (ecgns. 6.6 - 6.8). c=3, b= 21 k=2. 

G_0 
(1 017 

G_ 
[1 1 11 

[110 1 001J 

O is a modulo-2 adder. 

--S- 
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The quantity bk is often referred to as the constraint length 

of the convolutional code. That iss 

V= bk bits (6.9) 

where ( is the constraint length of the convolutional code. Furthermore, 

it can be seen from egns. 6.4 - 6.8 that, in order to produce c coded 

digits at the output of a (c, b) convolutional encoder (Figo 6.2), b(k-l) 

previous input digits are required in the coding process here, and 

thus the code is said to'have a memory of 

me=b (k 
- 1) bits (6.10 

The code rate of the encoder here is defined to be 

Rc= b/c bits/code symbol (6.11 

One alternative arrangement 
(D16) 

of the convolutional encoder 

to that shown in Fig. 6.2 is to have just one (instead of b) stream 

of input sequence, and to use c code generators which can be derived 

easily from the generator matrix. Let the eth code generator be given 

by the V' -component vector or row matrix 

g(e) gýe) ... g(e) L01 v'-1 
(6.12) 

for e=1,2, "" ,c where (eqn. 6.9) is the constraint length 

of the convolutional code here. These c code generators are related 

to the generator matrix by 

G(e) _L g0eb goe_1 g0el gleb gl'1 .... gkel, b gkel, b-1 ** gkel, l 

(6.13) 
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for e=1,2, "" ,c where the {ghý, e)j} 
are as defined in eqns. 6.7 

and 6.8. Fig. 6.3 shows the alternative arrangement of the convolutional 

encoder just described for the same example given in Fig. 6.2. The 

binary digits {SO here are now shifted b places at a time to the right 

with an interval between each shifting of b sampling instants. A value 

of 0 for ghe) means an open circuit, and a value of 1 for ghe) means 

a closed circuit. 

The arrangement just described for the convolutional encoder 

(Fig. 6.3) is the model 'for the convolutional encoder considered in 

Fig. 6.1 for the investigations here. 

Fig. 6.3 Construction of a (c, b) convolutional encoder from its 

code generators (eqns. 6.12 and 6.13). c=3, b=2, k=2. 

G(1) = 
C1 

10 1] , G(2) = 
C1 

00 11 , G(3) = 
10 

11 11 

O is a modulo-2 adder. 
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6.4 Viterbi-Algorithm Decoder 

The Viterbi decoding algorithm is a sequential decoding algorithm 

used to decode the convolutionally coded sequence. It has been known 

that, if the convolutionally coded sequence is corrupted by stationary 

additive white Gaussian noise, then the Viterbi decoding can achieve, 

for practical purposes, the maximum likelihood decoding which minimizes 

the probability of error in the decoding of the whole data sequence when 

the binary digits in the uncoded sequence are statistically independent 

and equally likely to have any of their possible values. 
A10) 

The operation 

of the Viterbi-algorithm docoder is described as below, assuming the 

communication system shown in Fig. 6.4. 

Binary data Binary code 
sequence Convolutional sequence 

Encoder i1 sh I vhJ 

Non-dispersive 

Channel 

white 
Gaussian 

noise 

Detected 
sequence 

ISJ 
hl 

iT 

Fig. 6.4 A communication system employing a convolutional encoder 

over a non-dispersive channel with a stationary additive 

white Gaussian noise. 
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In Fig. 6.4, a (c, b) convolutional code is used for the encoder 

to convert the binary data sequence 
{shl (eqn. 6.4) into the binary 

coded sequence {vh} (eqn. 6. F) for transmission. A stationary white 

Gaussian noise is then added to the transmitted sequence to give, at 

the decoder input, the sample values 

rh = Vh + wh (6.14) 

for h=1,2, "" , is where {wh} are the noise components which are 

the statistically independent Gaussian random variables with zero mean 

and a fixed variance. The decoder then operates on these sample values 

(eqn. 6.14) to give the decoded values for the data sequence 
{sh}. 

For an ideal Viterbi-algorithm decoder, this is carried out as follows. 

Just prior to the receipts of the sample values ric+l' r! 
c 

.. " ' r! i2' ic+c 

the Viterbi decoder holds in store my (ib)-component vectors 

Xl 
=[ X1 x2 ... Xib 

1 (6.15 

where xh may have any of the two possible values of Sh (eqn. 6.4). These 

my stored vectors 
{Xi} 

are such that, they have all the possible combinations 

for their last me (ecin. 6.10) components, where me is the memory of 

the (c, b) convolutional code used to convert {sýý} to {v j here. Since 

each component of X. here can have a value of either 0 or 1, there are 
(me) i 

altogether 2 possible combinations for the last me components of 

X. here and hence 
i 

m=2 
v 

(6.16) 

Associated with each stored vector X. is stored the corresponding value 
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of C., where C. is here defined as 

Cl = c1 + c2 + """ + ci (6.17) 

and ch =Z (ncc-j 
- uhc-j) (6.18) 2 

j=0 

for h= 19 29 "" 'i where 
{uff} 

are the possible values of 
{vý} (eqn. 6.14) 

obtained by coding the corresponding 
{xj} (ecgn. 6.15) using the same 

(c, b) convolutional code as that used to convert the fsj} into the 

{vt}. The true maximum likelihood vector X. is the one of the stored 

vectors 
{X. } for which the value of C1 is the minimum. 

(D42) 
On the 

i 

receipts of the sample values ric+l' r! 
c 

... ' r! ' the Viterbi i' ic+c 

decoder expands each of the my stored vectors 
{Xi} into 2b (ib+b)-component 

vectors 
{7i+1} having the 2b possible combinations for the last b components 

xib+l' xib+2' """ ' xib+b " Each of these (mv)(2b) expanded vectors 

has the associated value of 

ci+l - Ci + ci+l (6.19) 

which is determined using the appropriate stored value Ci. For each 

of the my (eqn. 6.16) possible combinations of the values of the last 

me (eqn. 6.10) components of the {Xi+1}(eqn. 6.15), the Viterbi decoder 

now selects the vector Xi+l associated with the smallest value of Ci+lThe 

resultant my vectors 
{Xi+l1 

are then stored together with the associated 

values 
{Ci+l} 

" One of these vectors is the true maximum-likelihood 

vector Xi+l. The process continues in this way until the whole message 

has been received when all the data digits {sh} are decoded simultaneously 

to have the values of the corresponding components {xh} of the true 

maximum likelihood vector. 
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The decoding process just described is the ideal arrangement 

of the Viterbi decoding algorithm which achieves the maximum likelihood 

decoding. In practice, the data digits {sh} are decoded at a delay 

before the receipt of the whole message so as to reduce the number 

of stored digits required in the decoder. Thus, the b data digits 

s(i-n)b' s(i-n)b-1' -* ' s(i-n)b-(b-l) are now decoded to have the 

values of the corresponding components x(i-n)b' x(i-n)b-l' *** ' 

x(i-n)b-(b-l) in the true maximum likelihood vector Xi (that associated 

with the smallest value, of Ci). The integer n is preferably much larger 

than the memory me (eqn. 6.10) of the convolutional code. After the 

decoding of s (i-n)b' s(i-n)b-1' '** s(i-. )b-(b-1) 9 the decoder does 

not need to consider the values of x(i-n)b' x(i-n)b-1' -*' in the 

following decoding processes. Thus, instead of storing my (ib)-component 

vectors 
{Xi} 

, the decoder here stores the corresponding my (nb)-component 

vectors 
{X 

1. 
} 

, where 

Xi -L x(i-n)b+l X(i-n)b+2 '** Xib 
1 (6.20) 

so that X. 
i 

is formed by the last nb components of the corresponding 

vector X.. 
I 

The drawback of the Viterbi-algorithm decoder is that the number 

of operations and the amount of storage involved in the decoding process 

here increases exponentially with the memory me of the convolutional 

code. Consequently, when a large value of me is used, the decoding 

process here may become unduly complex, and a near-maximum likelihood 

decoding process 
042) 

that involves fewer number of operations and 

less amount of storage must now be used instead. 
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6.5 Optimum Free Distance Rate 2 and 3 Convolutional Codes 

The free distance d of a convolutional code is defined to be 
CO 

the minimum Hamming distance between some coded sequences 
I VI (eqn. 6.5) 

generated from a data sequence (eqn. 6.4) with sl = 1, and some {V} 

with s1=0. dm is also the minimum Hamming weight of the coded 

sequence V., generated from the data sequence with sl = 1. The significance 

of the free distance dm is that it appears to be the principal determiner 

of the probability of error in decoding a convolutionally coded sequence 

with the maximum likelihood (or nearly so) decoding process 
. D30) 

This 

being such that, the larger the value of d 
co , the lower may be the 

probability of error in the decoding process. 

Some optimum (maximal) free distance rate 2 and 3 nonsystematic 

convolutional codes have been found by JohannessonD30ý and Paaske 
(D27) ( 

The rate2 codes that are used in this thesis are those found by Johannesson, 

whereas the rate3 codes that are used in this thesis are those found 

by Paaske. Tables 6.1 and 6.2 give the corresponding code generators 

for these codes. It can be seen from Tables 6.1 and 6.2 that, a code 

having a larger constraint length (eqn. 6.9) also has a larger optimum 

free distance. Furthermore, for a given value of V, the optimum free 

distance of a rate2 code appears to be larger than that of the corresponding 

rate 3 code. One drawback of using a code with a larger constraint 

length is that, the equipment complexity involved in implementing the 

encoder and decoder here also increases. The values of the constraint 

length are therefore selected to be not more than 10 for the investigations 

here. 
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Code 
memory 

Constraint 
length 

Code generators Free 
distance 

(l) (2) 
d m G G 

e CD 

3 4 1111 1011 6 

5 6 111101 101101 8 

7 8 11001011 10111101 10 

10 11 11110100101 10110111001 14 

Table 6.1 Code generators (egns 6.12 and 6.13) for the optimum 

rate -21- binary convolutional codes. 
(D30) 

Code 

memory 

Constraint 
length 

Code generators Free 
distance 

G(1) G(2) G(3) d m e co 

4 6 011101 100011 111010 5 

7 9 0101101010 1001011110 1110111100 8 

10 12 011110001101 101001110011 111000010110 10 

Table 6.2 Code generators (ecins. 6.12 and 6.13) for the optimum 
(D27) 

rate3 binary convolutional codes. 
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6.6 Channel Sampled Impulse Responses to be used for the Computer 

Simulation Tests in Chapters 7 and 8 

These channels are used for the computer simulation tests to 

determine the tolerance to Gaussian noise of the various systems developed 

in chapters 7 and 8, assuming the data-transmission system of Fig. 6.1. 

Table 6.3 gives the three channel sampled impulse responses for chapter 7 

where the binary data sequence is coded into a quaternary coded sequence 

for transmission. In Table 6.3, channel A is a non-dispersive channel 

which. does not introduce any signal distortion. Channel B introduces 

a typical combination of amplitude and phase distortions, and channel C 

introduces considerable bandlimiting of the signal leading to severe 

amplitude distortion. 

Fcr the Q, M system studied in chapter 8, four of the six sampled 

impulse responses given in Tables 2.6 and 2.7 are considered for the 

computer simulation tests here. These sampled impulse responses have 

the same property that all the zeros (or roots) of their z-transform 

lie inside the unit circle in the z-plane. Table 6.4 gives the values 

of these sampled impulse responses. In Table 6.4, channels A and B 

introduce very severe attenuation distortion, whereas channels C and D 

introduce negligible level of distortion. 

The sampled impulse response of each of the channels shown in 

Tables 6.3 and 6.4 is normalised, so that 

TO IyhI2 
=1 

(6.21 

where y07 ylý """ , yg are the g+l components of the channel sampled 

impulse response, and lyjl is the modulus or absolute value of yj. 
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Channels Sampled Impulse Responses 

A 1.000 0.000 0.000 00000 0.000 

B 0.548 0.789 0.273 -0.044 0.012 

C 0.167 00471 00707 0.471 0.167 

Table 6.3 Channel sampled impulse responses to be used in chapter 7. 
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Channel A Channel B Channel C Channel D 

Real Imaginary Real Imaginary Real Imaginary Real Imaginary 

part part part part part part part part 

0.4211 -. 4187 -. 1998 -. 2576 0.9335 -. 1289 0.8702 -. 0360 
0.6547 0.2704 0.4609 -. 4590 0.3278 0.0183 0.4450 0.1566 

-. 2270 0.2622 0.2913 0.4834 -. 1294 -. 0182 -. 1262 -. 0020 

-. 0062 -. 1387 -. 3389 -. 0154 0.0270 -. 0006 0.0257 -. 0095 
0.0292 0.0441 0.1233 -. 1104 0.0020 0.0011 0.0084 0.0064 

-. 0090 -. 0073 -. 0143 0.0587 -. 0026 -. 0013 -. 0120 -. 0029 
0.0026 0.0044 0.0040 -. 0153 -. 0012 0.0008 0.0089 0.0002 

-. 0053 -. 0010 -. 0062 0.0117 -. 0011 -. 0003 -. 0095 -. 0008 
0.0057 -. 0011 0.0016 -. 0078 0.0018 0.0007 0.0073 0.0018 

-. 0031 0.0001 0.0026 0.0040 -. 0012 0.0002 -. 0039 -. 0016 
0.0006 0.0006 -. 0007 0.0007 -. 0009 -. 0003 0.0002 0.0021 

-. 0007 -. 0040 -. 0014- 0.0002 0.0015 -. 0003 0.0011 -. 0019 
0.0007 0.0015 0.0001 0.0000 -. 0005 0.0001 -. 0003 0.0017 

-. 0002 -. 0021 -. 0014 0.0022 -. 0006 0.0003 -. 0007 -. 0007 

-. 0005 -. 0002 -. 0001 -. 0026 0.0006 -. 0002 0.0001 -. 0002 
0.0013 0.0002 0.0020 -. 0002 0.0000 0.0004 0.0002 0.0005 

-. 0012 0.0001 0.0004 0.0022 0.0002 -. 0004 -. 0001 -. 0004 
0.0002 0.0001 -. 0014 -. 0012 -. 0004 0.0000 -. 0003 -. 0001 
0.0000 0.0001 0.0012 -. 0004 0.0000 0.0002 -. 0003 0.0003 
0.0002 -. 0001 0.0003 0.0001 0.0004 "-00002 0.0004 -. 0001 
0.0001 0.0008 0.0002 0.0003 -. 0001 0.0002 0.0001 0.0001 

-. 0005 0.0003 -. 0007 0.0000 -. 0002 -. 0001 -. 0003 -. 0001 
0.0001 -. 0001 -. 0002 -. 0008 0.0002 0.0001 0.0002 0.0000 
0.0004 0.0005 0.0006 -. 0003 0.0003 -. 0001 0.0003 0.0001 

-. 0002 0.0001 0.0000 0.0004 -. 0004 -. 0001 -. 0003 -. 0002 
0.0001 -. 0001 -. 0002 -. 0001 0.0000 0.0002 0.0000 0.0001 
0.0000 -. 0004 0.0001 -. 0001 0.0002 -. 0001 0.0004 -. 0001 
0.0002 -. 0001 0.0000 0.0000 0.0000 0.0001 -. 0001 0.0002 

-. 0003 0.0000 0.0000 0.0000 -. 0002 0.0000 -. 0001 -. 0001 
0.0000 -. 0004 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 
0.0003 -. 0001 0.0001 0.0000 0.0002 0.0000 

-. 0001 0.0001 -. 0002 -. 0001 -. 0002 -. 0001 

-. 0002 -. 0001 0.0001 0.0001 0.0001 0.0001 

-. 0001 0.0000 0.0000 -. 0001 0.0000 0.0000 

0.0001 -. 0001 0.0001 0.0000 0.0001 -. 0001 
0.0002 0.0002 0.0000 0.0000 0.0000 0.0001 

-. 0001 0.0003 -. 0002 0.0000 -. 0002 0.0000 
0.0000 0.0000 0.0002 0.0000 0.0002 0.0000 
0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 
0.0000 0.0001 -. 0001 0.0000 -. 0001 0.0000 
0.0000 -. 0001 0.0001 0.0000 0.0000 0.0000 
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0001 -. 0001 0.0000 0.0000 0.0000 
0.0000 0.0000 -. 0001 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 6.4 Channel sampled impulse responses to be used in chapter 8. 
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CHAPTER 7 

CODED SYSTEM FOR BINARY SIGNALS 

7.1 Introduction 

This chapter is concerned with the study of a coded system which 

converts the binary data sequence into the appropriate quaternary coded 

sequence for transmission, assuming the data-transmission system described 

in section 6.2. Two different ceding schemes have been developed here 

and are described in sections 7.3 and 7.4 respectively. The coded system 

studied here employs a joint near-maximum likelihood detection/decoding 

process which is described in section 7.5. The tolerance to Gaussian 

noise of the coded system is here compared with that of the uncoded_ 

system by using computer simulation tests, and the results and discussions 

are given in sections 7.7 and 7.8 respectively. 

7.2 Basic Assumptions 

The model of the data-transmission system for this chapter has 

been described in section 6.2. The coder in Fig.. 6.1 is here implemented 

as a rate 2 binary convolutional coder and a Gray coder to convert 

the binary data sequence {si} into the appropriate quaternary coded 

sequence 
{q. } for transmission, hence having the same symbol (signal 

i 

element) transmission rate as the original uncoded binary signals. The 

isif here are assumed to be statistically independent and equally likely 

to have any of the two values 0 and 1. The average transmitted energy 

per signal element is assumed to be equal to the mean square value 
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of the {qi} 
9 where qi is the coded symbol carried by the ith transmitted 

signal element here. The baseband channel (Fig. 6.1) here iss in general, 

time dispersive, and it has a sampled impulse response of g+l real- 

valued components y0g ylq """ 9 yg which are assumed to be known 

and time-invariant for the purpose of study here. Stationary white 

Gaussian noise is assumed to be the only noise added at the output 

of the transmission path shown in Fig. 6.19 to give, at the detector 

input, the noise sample values 
{w 

i} which are the statistically independent 

. Gaussian random variables with zero mean and a fixed variance 2N0 

The detector (Fig. 6.1) here employs a joint near-maximum likelihood 

detection/decoding process, and it operates on the received sample 

values 
{ri} (eqn. 603) to give at its output the detected values of 

the data digits {sil 

7.3 Coder 1 

The schematic diagram of coder 1 is shown in Fig. 7.1. As Fig. 7.1 

shows, this coder is implemented as a rate2 binary convolutional coder 

followed by a Gray coder. In converting the binary data digits {s 
i} 

into the quaternary coded symbols 
{qi} 

, the coder here first codes 

the {si} into a longer binary coded sequence by using the convolutional 

coder. This is carried out by determining, for each qi, the two quantities 

V'-1 

v(eý _ 
)-' 

sl-hgheý 
h=0 

for e= 19 2 where. the {ghe) } are the components of the code generators 

{G (e)} 
(eqn. 6.12) of the convolutional code with constraint length rý 

and 
Z' is a modulo-2 adder. Since modulo-2 addition is used in eqn. 7.1ý 
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the value of v(e) is either 0 or 1 so that the 2-component vector 
1 

Vi r 
v. V(2) (7.2) 

has one of the four possible values 00,01,10, and 11. The value 

of qi is now determined from the vector V. using the Gray code shown 

in Table 7.1. A Gray code is used here, so that, for adjacent values 

of qi, the corresponding vectors 
{Vi} differ in only one component. 

Since the {s 
i} 

are statistically independent and equally likely to 

have any of their two possible values 0 and 1, it can be seen from 

eqn. 7.1 that, the {v(e), are also statistically independent and equally 

likely to have any of their two possible values 0 and 1. Consequently, 

it can be seen from eqn. 7.2 and Table 7.1 that, the coded symbol q. 

is also equally likely to have any of its four possible values. Thus, 

the mean-square value of 
{qi} here is equal to unity, bearing in mind 

that the mean-square value of {qi} is here assumed to be equal to the 

average transmitted energy per signal element. It has, in fact, been 

observed to be true in the computer simulation tests that over a 

sufficiently long sequence of sample values 
{qi} 

, the mean-square 

value of these samples approaches unity. 

V. ýi 

00 -3// 

01 -1//v 
11 1// 

10 3//_ 

Table 7.1 Relationship between the vector V. (eqn. 7.2) and the 

coded symbol qi (Fig. 7.1). 
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7.4 Coder 2 

An effective increase in the constraint length of the convolutional 

code used in coder 1 may be achieved quite simply through the process 

of interleaving, and this leads to the development of coder 2 here. 

Thus, in converting the data digits {s 
i} 

into the coded symbols 
Nil 

coder 2 first determines the two quantities 

V1 
h-Y 0 

Si-hdgh (7.3) 

for e= 19 2 where d is the interleaved gap here, the {ghe)} 
are 

the components of the code generators of the convolutional code used 

in coder 1, and E' is a modulo-2 adder. The coder here then forms 

the 2-component vector V. (eqn. 7.2) and it uses Table 7.1 to determine 

the corresponding value for the coded symbol qi. The value of d considered 

in the investigations here is 5, and the. cdiematic diagram of an example 

of this coder is shown in Fig. 7.2. It should be noted that, when d= 19 

coder 2 reduces exactly to coder 1 as can be seen from eqns. 7.1 and 7.3. 
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7.5 Detector 

The detector (Fig. 6.1) here employs a joint near-maximum likelihood 

detection/decoding process9 and it operates on the received sample 

values {ri} (eqn. 6.3) to give at its output the detected values for 

the data digits {s 
i} . The received sample value ri at time t= iT 

is, from eqn. 6.3, given by 

9 
ri qi-hyh + Wi (7.4) 

h-0 

where {qi} are the transmitted coded symbols, {w 
i} are the noise components, 

and y0, yl, """ ,yg are the g+l components of the channel sampled 

impulse response. The detector here operates as below. 

Just prior to the receipt of ri, the detector holds in store 

m n-component vectors 
{x. 

1} where 

Xi-1 
C 

xi-n Xi-n+l xi-i 
I (7.5) 

and xh may have any of the two possible values (0 and i) of the data 

digit sh for any possible value of h. The value of n here is selected 

to be such that 

ng+ (d'- 1)d (7.6) 

where is the constraint length of the convolutional code used at 

the transmitter, and d is the interleaved gap of the code. Associated 

with each stored vector Xi_l , is stored the corresponding value of 

cost Ci_1 which will shortly be considered. 
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On the receipt of ri, each vector Xi-1 is expanded into two 

(n+l)-component vectors 
{Pi} 

, where 

P. ._r xi.. 
-n 

xi-n+l ... xiI (7.7) 

The first n components of P. are as in the original vector Xi-l, and 

the last component xi has the two possible values of s Associated 

with each vector Pi, are the g+l scalar quantities 
{uilý} 

and the g+l 

scalar quantities 
{uý2)} 

, for j=i, i-l, -- 7 i-g, where 

(e) 
. 

(e) 
u 

h=0 
xý-hdgh (7.8) 

for e= l9 2, and the quantities d, V", and {, 
h(e) 

} are as defined in 

eqn. 7.3. Since modulo-2 addition is used in eqn. 7.8, the value of use) 

is either 0 or 1. These values of {uýe)} can be used to form the g+l 

2-component vectors 

u(2) 
JJJ 

(7.9) 

for j=i, i-1, -- 9 i-g. These vectors in turn determine the g+l 

scalar quantities 
{qjl} 

,j=i, i-l, "" , i-g, where the relationship 

between ql and U. is identical to that between q and V. in Table 7-1- 
iJij 

The g quantities 
{qjI} 

,j= i-l, i-2, °" , i-g, have already been 

determined for each vector Xi-l in the previous detection process, 

and so only the quantity qi is required to be determined for each of 

the 2m expanded vectors 
{Pij here, following the receipt of ri. The 

g+l quantities 
{qý} i, i-l, "" , i-g, associated with any one 

of the 2m vectors 
{Pi} 

, determine the scalar quantity 



- 380 - 

g 
Zi - qi-hyh (7.10 

h- 

This is the corresponding estimate of the quantity 

g 
Zi = qi-hyh (7.11 

h-0 

which is the signal component in the received sample value r. 
1 

(eqn. 7.4). 

Having evaluated the quantity zl (eqn. 7.10 for each of the 2m expanded 

vectors {Pi} 
' the detector here then evaluates the cost C. for each 

of these { Pi} as 

C. = Ci-1 + (ri 
- z. 

1 
(7012 

where Ci_l has already been determined for each vector Xi_l in the 

previous detection process. It can be seen from eqn. 7.12 that 

i2 
Ci = 

(rh 
- Zh) 

h=1 
(7.13) 

so that the cost C. is in fact the square of the Euclidean distance 

between the corresponding estimate Z! of the received sequence of sample 

values in the absence of noise, and the sequence of sample values actually 

received Ri' where 

Zi =[ Zi 7,2 ... zi 
] (7.14) 

gi =r rl r2 ... ri (7.15) 

The detector now holds 2m vectors 
{Pi} together with their associated 

costs {Ci} 
. It then selects, from these vectors, a total of m vectors 

as follows. When m= 32, the detector selects, for each of the two 
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possible values of xi-(m12)+2 ' the vector P. associated with the 

smallest cost Ci, to give two selected vectors having the two possible 

values of xi-(m/2)+2 ' This process is repeated, in turn, for xi-(m/2)+3' 

xi-(m/2)+4' --- , xi, a vector once selected not being available for 

selection a second time, so that no vector can be selected more than 

once. Having selected the m-2 vectors 
{Pi} 

using the selection process 

just described, the detector next selects, from the remaining vectors, 

the two vectors 
{Pi} 

associated with the smallest costs, to give the 

required total of m selected vectors. When m=8, the detector begins 

the selection process with the selection of the two vectors 
{P. } having 

1 

the two possible values of xi-(m/2)+1 and associated with the smallest 

costs 
{Ci} 

, and continues in this way with xi-(m/2)+2' xi-(m/2)+3' 

""" , xi, to give the m selected vectors {Pi}. Having selected the 

m vectors 
{Pi} 

, the detector then takes the detected value s! of 

the data digit s. 
1-n 

to have the value of x 
i. -n 

in the vector P1. associated 

with the smallest cost. The first component xi-n of each of the m selected 

vectors 
{Pi} is now discarded to give the corresponding m vectors 

{Xi} 

which are then stored together with their assocaited costs 
{C. } 

. The 

detector is now ready for the receipt of ri+l, and the detection process 

continues in this way. 

During the selection process for the m vectors 
JP J described 

above, the detector may occasionally fail to find a vector available 

for selection. In this case, the detector selects an arbitrary vector 

to which it ascribes an extremely high cost value. This vector is then 

discarded at the next detection process. 

To start the detection process here, the detector stores m vectors 

{x 
n} 

which are all the same and correct, a known synchronizing signal 

being transmitted here, and to one of these vectors it ascribes a cost 
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value of zeros whereas to each of the remainders it ascribes a very 

high cost value. Correct operation of the detection process is now 

normally achieved after the receipt of only a few sample values 
{ri} 

7.6 Uncoded System 

The uncoded system operates in the same way as does the coded 

system except that the conversion of the data digits Isi} to the transmitted 

symbols 
{qi} is here given by 

qi =2 (s. - 2) (7.16) 

for i>0. Thus, q. = -1 when s. = 0, and q. =1 when s. = 1.1 

7.7 Computer Simulation Results 

Computer simulation tests have been carried out to determine 

the tolerances to Gaussian noise of the coded and the uncoded systems 

studied in this chapter. The sampled impulse responses of the three 

channels Aý B9 and C tested here are given in Table 6.3. The results 

of the tests are shown in Figs. 7.3 - 7.8 where the various systems 

considered here are shown in Table 7.2. The 95% confidence limits of 

the results shown in Figs. 7.3 - 7.8 are about ±0.5 dB and are slightly 

wider at the lower error rates (< 10-3). The signal to noise ratio 

here is defined as 

SNR = 10 log( 
-) dB (7.17) 

10 2N0 

where E' is the average transmitted energy per signal element, and 
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2No is the two-sided power spectral density of the noise added at the 

output of the transmission path shown in Fig. 6.1. 

All computer simulation tests have been carried out by using 

the CDC 7600 computer at Manchester, and the computer programs are 

written in FORTRAN. Appendix B3 gives the computer program for the 

coded system with coder 1 here. 

Systems d m m n Coding 
e 

A 1 0 32 16 or 64 uncoded 

B1 1 7 32 64 

B2 1 5 32 64 

B3 1 3 32 64 

Cl 1 7 32 16 

C2 1 5 32 16 coder 1 

C3 1 3 32 16 
Dl 1 7 8 16 

D2 1 5 8 16 

El 5 7 32 128 

E2 5 5 32 128 

E3 5 3 32 128 coder 2 

Fl 5 7 32 64 
F2 5 5 32 64 

F3 5 3 32 64 

Table 7.2 Systems tested (Figs. 7.3 - 7.8). d is the interleaved 

gap and me is the memory of the convolutional code, m is 

the number of stored vectors in the detector, and n is 

the number of components in each stored vector. 
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Fig. 7.3 Variation of error rate with signal to noise ratio for the 

various systems with coder 1 (Table 7.2) operating over 

channel A (Table 6.3). 
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Fig. 7.4 Variation of error rate with signal to noise ratio for the 

various systems with coder 1 (Table 7.2) operating over 

channel B (Table 6.3). 
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Fig. 7.5 Variation of error rate with signal to noise ratio for the 

various systems with coder 1 (Table 7.2) operating over 

channel C (Table 6.3). 
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various systems with coder 2 (Table 7.2) operating over 

channel B (Table 6.3). 
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various systems with coder 2 (Table 7.2) operating over 

channel C (Table 6.3). 
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7.8 Assessment of Systems 

Figs. 7.3 - 7.5 show the tolerances to noise of the coded systems 

with coder 1 operating over the channels A, B, and C (Table 6.3). When 

m=8 and n= 16 (see Table 7.2), the coded systems here appear to have 

relatively poor performances when operating over channel C which introduces 

very severe amplitude distortion. Increasing the value of m to 32 generally 

moves the curves of these systems to the left except for those systems 

operating over channel A where the improvements are observed to occur 

only at high error rates. When the value of n is increased from 16 

to 64 while keeping m at 32, a significant improvement in the tolerance 

to noise at low error rates is observed for each of the coded systems 

here. This appears to suggest that, delay detection is an important 

factor that determines the performance of the coded systems studied 

here, bearing in mind that n sampling intervals is the delay in the 

detection/decoding process here. 

Figs. 7.6 - 7.8 show the tolerances to noise of the coded systems 

with coder 2 operating over the channels A, B, and C (Table 6.3). As 

it appears, there is no significant difference in the tolerances to 

noise for n= 64 and 128 in the coded systems here. It therefore follows 

that, for a given value of m used in the coded systems here, there is 

a maximum value of n beyond which no significant improvement can be 

achieved in the tolerance to noise of the system. For the given values 

of m and n tested here, the performance of the coded system with coder 2 

is generally observed to be poorer than that of the coded system with 

coder 1. 

An important observation for the coded systems studied here is 

that, increasing the memory or the constraint length of the code shifts 

the curves to the left but steepens the slopes of them so that the 
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system having a larger memory may do better at low error rates while 

being more inferior at high error rates. This is in agreement with 

the basic principle of a coded system that employs an error correcting 

code in the system, and can be explained as follows. The effect of 

using an error correcting code that has a larger (or longer) memory 

is that, a longer stream of data digits is now being correlated. This 

necessarily implies that, errors tend to propagate more severely at 

high error rates, whereas more errors can be corrected at low error 

rates, when the coded system uses an error correcting code (such as 

the convolutional code used in the investigation here) that has a larger 

memory. 

For the larger values of m, n, and me (memory) tested here, the 

cross-over point at which there is no difference in the tolerance to 

noise between the coded and the uncoded systems is generally at an 

error rate close to 10-2, the uncoded system giving a better tolerance 

to noise than the coded system at higher error rates. As the error 

rate is reduced from 10-2, the coded system gains an increasing advantage 

in tolerance to noise over the uncoded system, the advantage being 

typically around 3 dB at an error rate of 10-4, for the better coded 

systems, and increasing rapidly as the error rate is further reduced. 

At an error rate of 10 
4, 

the best system appears to be Bl (Table 7.2) 

where coder 1 with me =7 is used with m= 32 and n= 64 for the coded 

system. The performance of the coded system may be improved yet further 

by using larger values of m and n, but with an increase in the equipment 

complexity involved in the system. 

Thus, the coded system with coder 1 developed in this chapter 

appears to be particularly promising in those applications where a 



binary data signal is being transmitted at a r_: e close to the Nyquist 

rate of the given channel, and where it is requi-, ed to reduce the error 

rate in the detected binary data values from around 10-4 to an extremely 

low value. 
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CHAPTER 8 

CODED SYSTEM FOR 16-POINT QAM SIGNALS 

8.1 Introduction 

This chapter is concerned with the study of the coded system 

which converts the 16-point QAM (Quadrature Amplitude. Modulation) signals 

into the appropriate 256-point or 64-point QAM signals for transmission, 

assuming the data-transmission system described in section 6.2. The 

coded system to be studied here is a development of the coded system 

developed in chapter 7. Since coder 1 (that involves no interleaving 

scheme) in chapter 7 appears to be the more promising coder without 

involving an excessive amount of operations and storage in the system, 

no interleaving scheme will be considered in this chapter. Three coding 

schemes each of which involves the use of a rate2 or 3 convolutional 

code have been considered in the study here. Section 8.2 gives an account 

of the basic assumptions for the investigation considered in this chapter. 

Sections 8.3 - 8.5 give the corresponding descriptions of the three 

coders developed in this chapter, while section 8.6 is devoted to the 

descriptions of the detector used in the system here. The tolerance 

to Gaussian noise of the coded system is here compared with that of 

the uncoded system by using computer simulation tests, and the results 

and discussions are given in sections 8.8 and 8.9 respectively. 

8.2 Basic Assumptions 

The model of the data-transmission system for the coded system 

studied in this chapter has been described in section 6.2. The coder 

in Fig. 6.1 converts the binary data digits {s, } into the appropriate 
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256-point QAM or 64-point QAM coded symbols qj for transmission, 
i 

while keeping the same symbol (signal element) transmission rate as 

the original unccded 16-point QAM signals. The {si}here are assumed 

to be statistically independent and equally likely to have any of the 

two values 0 and 1. The average transmitted energy per signal element 

is assumed to be equal to the mean square value of the 
{qi} , where 

qi is the coded symbol carried by the ith transmitted signal element 

here. The baseband. channel (Fig. 6.1) here is assumed to be such that 

all zeros (or roots) of. the z-transform of the channel sampled impulse 

response lie inside or on the unit circle in the z-plane. This assumption 

can always be realised by inserting, at the detectcr (Fig. 6.1) input, 

a linear filter that acts as a 'whitened matched-filter' so that the 

sampled impulse response of the channel and filter now has a z-transform 

with all the zeros lying inside or on the unit circle in the z-plane 

and the detector then operates on this sampled impulse response. 
(C42) 

For the purpose of study here, the arrangement of the linear filter 

just described is omitted and the detector here operates on the channel 

sampled impulse response that has all the zeros lying inside or on 

the unit circle. The channel sampled impulse response here has g+l 

complex-valued components y0, yl, "' , yg which are assumed to be 

known and time-invariant. Stationary white Gaussian noise is assumed 

to be the only noise added at the output of the transmission path shown 

in Fig. 6.1, to give, at the detector input, the noise sample values 

{wi} 
whose real and imaginary parts are statistically independent 

Gaussian random variables with zero mean and a fixed variance 2No. 

The detector (Fig. 6.1) here employs a joint near-maximum likelihood 

detection/decoding process, and it operates on the received sample 

values fr. } (eqn. 6.3) to give at its output the detected values of 

the data digits {s. } 
. The quantities q., w., and r, are, in general, 

complex-valued quantities here. 
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8.3 Coder 1 

This coder encodes the binary data digits {sil into the appropriate 

256-point QCM coded symbols 
{qi} for transmission. The Schematic diagram 

of the coder here is shown in Fig. 8.1, and its operation is described 

as follows. A rate-! - binary convolutional coder is first used to code 

the {si} into binary coded digits jvýe)} 
where 

V. 
h=0 . 

i-hgh 
(8oi) 

for e=1,2. In eqn. 8.1, the {9(e)} are the components of the code 

generators 
{G(ES)} (eqn. 6.12) of the convolutional code with constraint 

length v°, and 
)7' is a modulo-2 adder. Eqn. 8.1 is in fact identical 

to eqn. 7.1. Since modulo-2 addition is used here, the value of v(e) 

is either 0 or 1. Every 8 neighbouring values of 
{v(e)} 

are here combined 

to give the 8-component vector 

V=C v(1) V(2) V V(2) V(1) V(2) v(. V(2) ' (802) 
i 4i-3 4i-3 4i-2 4i-2 4i-l 4i-1 4i 4i 

A Gray coder (Fig. 8.1) is then used to map the vector V. into a suitable 

256-point QCM coded symbol qi for transmission. Being a 256-point QAM 

signal, qi may be expressed as the complex-valued quantity 

a. + jb. ýi 
11 

and a., bi =± 1/ , 

± 9/ 9 

(803) 

± 3//1-70 ,± 5//170 ,± 7/I, 

±11/11-70, ±13/J, ±15//170 (8.4) 

where j= /-l, and a1 and bi are the in-phase component and the 

quadrature component of qi respectively. The factor is included 
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in eqn. 8.4 to ensure that the average transmitted energy per signal 

element, which is the mean-square value of the {qi} 
9 is unity. The 

Gray code used to convert the vector V. (eqn. 8.2) into the coded symbol 

qi here is such that, the first two components of V1. are used to determine 

the quadrant in which qi should lie as is shown in Fig. 8.2. The next 

three components of V. are then used to determine the absolute value 

of the in-phase component ai of qi, while the last three components 

of V. are used to determine the absolute value of the quadrature component 
1 

bi of q., according to Table 8.1. The mapping of V. into qi described 

above is summarised in Fig. 8.3 where each possible vector of V. is 

expressed as a decimal value corresponding to the binary value formed 

by the 8 components of V. (eqn. 8.2). It can be seen from Fig. 8.3 

that, for any adjacent values of {qi} (which are separated by a distance 

of 2//1-70), the ccrresponding vectors 
{VJ differ in only one component. 

In-phase 
component 

Fig. 8.2 Relationship between the first two components v(1)3 v(2) 4i- 4i-3 
of V. (eqn. 8.2) and the quadrant in which qi lies. 

Quadrature 

component 
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v(1) 4i-2 

(or v4i)1 

v(2) 4i-2 

v4i) 

v(1) 4i-1 

v4i) ) 

lall 

(or I bi I) 

0 0 0 1/J 

o o 1 3/ 

0 1 1 5//170 

0 1 0 7/ 770 

1 1 0 9/ 

1 1 1 11/ 

1 0 1 13/ 

1 0 0 15/0 

Table 8.1 Relationship between the last six components of Vi (ecgn. 8.2) 

and the absolute values of the in-phase component ai and 

quadrature component bi of the coded symbol qi for coder 1. 
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100 108 24 116 84 92 76 J 6 

101 109 25 117 85 1 1 93 77 6 

103 111 27 119 7 95 79 7 

102 110 26 118 86 94 78 7 

97-1 106 22 114 82 90 74 6 

99 T107 23 115 83 91 75 6 

96 1104 20 112 60 88 72 6 

1 
224 232 48 240 1 208 216 200 1 

225 -2 3I 49 241 209 217 201 1 

227 235' 5-51 243-" 211; 219 203 1 

226 234 150 242 210 218 202 1 

230 238 54 246 214 222 206 1 

231 239 55 247 215' 223 " 207- 1 

229 237 53 245 213 221 205 1 

228 236 52 244 212 220 204 1 

4 12 ý8 20 52 60 44 36 

5 13 9 21 53 61 45 - 37- 

7 15 31, 23 55 63 47 39 

6 14 0 22 54 62 46 38 

2 10 6 18 50 58 42 34 

3 11 7 19 51 59 43 35 

o 8 41 16_ 148 56 40 2 

128 136 52 144 176 184 168 6o 

131 139 55 147 179 187 171 63 

130 138 54 146 178 186 170 62 

134 142 58 150 182 190 174 66 

135 143 59 151 183 191 175 67 

133 141 57 149 181 189 173 65 

132 1140 156 1148 1180 1188 1172 
. 
64 

Fig. 8.3 Mapping of the 8-component vector V. (eqn. 8.2) into the 

256-point QAM signal qi for coder 1. The 8 binary digits 

in V. are represented by their corresponding decimal value 

here. 
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8.4 Coder 2 

Coder 2 is a modification of Coder 1 in that, it uses the same 

rate 2 binary convolutional coder but a different Gray coder to convert 

the binary data digits {sil into the appropriate 64-point (instead 

of 256-point) QAM coded symbols {qi} for transmission. This coder is 

otherwise the same as coder 1. Thus, coder 2 has the same schematic 

diagram as that shown in Fig. 8.1 and it operates as follows. The 

rate 2 convolutional coder (Fig. 8.1) is first used to code the {si} 

into the coded digits {v(e)} (eqn. 8.1) in the same way as is done in 

coder 1. A 6-component vector V. is then formed from every 8 neighbouring 

coded digits {v(e)} 
' where 

V. VW v(2) VW v(2) v(2) vM 
] (8.5) 

1 4i-3 4i-3 4i-2 4i-2 4i-1 4i 

A Gray code is then used to convert the vector Vi here into a 64-point 

QAM coded symbol qij where qi has a complex value given by ai + jbi 

and 

air bi = ±1/i , ±3 42, ±5/14T2, ±7/ J (8.6) 

The factor is included here so that the average transmitted energy 

per signal element is equal to unity, bearing in mind that the average 

transmitted energy per signal element is here assumed to be equal to 

the mean-square value of the {qi}. The conversion of the vector Vi 

given by eqn. 8.5 into the 64-point QAM symbol qi is here carried out 

(1 (2 
as follows. The first two components v4i-3 and v4i-3 of V. here 

are first used to determine the quadrant in which qi should lie. This 

is carried out according to the arrangement shown in Fig. 8.2. The 
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next two components of V. are then used to determine the absolute value 

of the in-phase component ai of qi, while the last two components of 

V. are used to determine the absolute value of the quadrature component 

bi of q. ý according to Table 8.2. The mapping of the vector V. (eqn. 8.5) 

into the corresponding qi described above is summarised in Fig. 8.4. 

It can be seen from Figs. 8.3,8.4 and Tables 8.1,8.2 that, coder 2 

effectively operates by reducing every four neighbouring signal points 

in Fig. 8.3 (which contains the 256 possible coded symbols for coder 1) 

into just one signal point in Fig. 8.4 (which contains the 64 possible 

coded symbols for coder 2)ý as is illustrated in Fig. 805. 

Thus, the system with coder 2 has the advantage of having fewer 

possible values for the transmitted symbols {qi} and hence a probably 

higher tolerance to noise, as compared to the system with coder 1. 

However, the penalty that has to be paid here is that, there are now 

less redundancies in the coded symbols 
{qi} 

so that the effective minimum 

free distance of the convolutional code may now become smaller leading 

to a reduction in the error correction capability of the coded system 

here. 

v4i 2 v4(i)2 (or v4(i)1 v4iM la. (or ýiJ) 

00 1/V/4-2- 

01 3/, /4-2 

11 5/ 42 
10 7/ 

Table 8.2 Relationship between the last four components of Vi (eqn. 8.5) 

and the absolute values of the in-phase component ai and 

quadrature component bi of the coded symbol qi for coder 2. 
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011010 011110 010110 O10 10 000010 000110 001110 001010 

26 

011011 

30 

011111 

22 

010111 

18 

0100 11 

2 

000011 

6 

000111 

14 

001111 

10 

001011 

27 

011001 

31 

011101 

23 

010101 

19 

0104 01 

3 

000001 

7 

000101 

15 

001101 4 

11 

, 001001 
25 

011000 

29 

011100 

21 

010100 

17 

O10 00 

1 

000000 
1 

5 

000100 1 

13 

001100 

1 9 

001000 
T 2 24 28 20 16 0 4 12 8 

00 
56 60 52 48 32 36 44 40 

111001 111101 110101 " 1100 01 100001 100101 101101 01 
57 

111011 

61 

111111 

53 

110111 

49 

110 11 

33 

100011 

37 

100111 

45 

101111 

41 

101011 
59 3 55 51 35 39 47 43 

111010 111110 110110 1110110 100010 100110 101110 101010 

58 62 54 50 34 38 46 42 

Fig. 8.4 Mapping of the 6-component vector V. (eqn. 8.5) into the 

64-point QAM signal qi for Coder 2. 



- 403 - 

Quadrature 
component 

Nj 
xxx /\ 0 

" 

ill 

ý" "i 
ý" 

"\ 

IG 

""y 

!4 

xxx x 

" 

\1 !C""\, IC 

"", 

r"y/ 

xxxx 
..... 

* 

\s, 
x v/ 

40 40 

\, 
x0 llýý\ 

0 40 

/ 

40 

In-phase 
componeni 

Fig. 8.5 Relationship between the coded symbols for coder 1 (Fig. 8.3) 

and the coded symbols for coder 2 (Fig. 8.4) in the first 

quadrant of the corresponding QAM signal constellations of 
these coded symbols. " is for coder 1, and )( is for coder 2. 

Every four neighbouring " correspond to one X here. 
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8.5 Coder 3 

Coder 3 employs a coding scheme which involves the use of a rate 3 

binary convolutional code and a suitable Gray code in converting the 

original uncoded 16-point QAM signals into the appropriate 64-point 

QAM signals for transmission, assuming the data-transmission system 

of Fig. 6.1. The schematic diagram of this coder is shown in Fig. 8.6. 

In Fig. 8.6, the binary data sequence {si} is coded into three 

streams of binary sequences 
{v(l)1, {vý2)}, and){v(3)j through the 

rate 3 binary convolutional coder which consists of three code generators 

G(l), G(2) , and G(3), where the {výe) } and the {G(e)} 
are as defined 

by eqns. 8.1 and 6.12 respectively. The data digits {si} in Fig. 8.6 

are shifted two places at a time to the right so that after shifting 

twice, four new digits of {s 
i} 

have entered the coder and six corresponding 

coded digits {v(e)} are produced at the output of the convolutional 
i 

coder, to give the 6-component vector V. where 

V. 
C 

v(1) v(2) v(3) v(1) v(2) v(3) 
] (8.7) 

ý 4(i-)2 4i-2 4i-2 4i 4i 4i 

The Gray coder (Fig. 8.6) then maps the vector V. into a 64-point Q, AM 

coded symbol qi in the same way as is done in coder 2. That is, the 

first two components of V. are used to determine the quandrant in which 

qi should lie according to the arrangement shown in Fig. 8.2. The next 

two components of V. are then used to determine the absolute value 

of the in-phase component ai of q., while the last two components of 

V. are used to determine the absolute value of the quadrature component 

bi of qi, according to Table 8.2. The resultant mapping of V. to qi 

is summarised in Fig. 8.4. 
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One possible advantage of coder 3 over coder 2 is that, it uses 

an apparently more appropriate convolutional code in converting every 

four data digits s. } (corresponding to a 16-point QAM uncoiled signal) 

into one 64-point QAM coded symbol q., bearing in mind that a rate2 

convolutional code is used in coder 2 which is apparently more appropriate 

in converting a 16-point QAM signal into a 256-point QAM signal. The 

drawback of the coding scheme used in coder 3 is that, the optimum 

free distance (see section 6.5) of the rate 3- convolutional code (which 

is being used in coder 3) increases more slowly with the constraint 

length of the code as compared with the rate2 convolutional code, 

so that more components are required to be used in the code generators 

here to achieve the same free distance. Furthermore, the implementation 

of a rate3 convolutional coder also appears to be slightly more complex 

than that of a rate2 convolutional coder as can be seen from Figs. 8.1 

and 8.6. 
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8.6 Detector 

The detector (Fig. 6.1) here employs a joint near-maximum likelihood 

detection/decoding process, and it operates on the received sample 

values Ir. } (eqn. 6.3) to give at its output the detected values for 
1 

the data digits {s. } 
. The received sample value ri at time t= iT 

is, from eqn. 6.3, given by 

el, 
ri qi-hyh + wi (8.8) 

h-0 

where {qi) are the transmitted QAM coded symbols, {wil are the noise 

components, and y0, yl, """ ,yg are the g+l components of the channel 

sampled impulse response. The model of the detector here is shown in 

Fig. 8.7, and its operation is described as below. 

The near-maximum likelihood detection/decoding processor in 

Fig. 8.7 operates on its input samples 
{ri} to give the finally detected 

data digits {si} and the corresponding detected coded symbols {qi} 

where s' ' s' , s' , s' and their corresponding detected coded 4i-3' s' 4i-l 4i 

symbol ql are here determined after the receipt of r' and n<g. 
i i+n 

The operation of this processor will shortly be described. The intersymbol 

interference canceller in Fig. 8.7 operates by removing from the received 

samples 
{r. } (eqn. 8.8), detected values of all components involving 

Z 

coded symbols 
{qi} 

whose final detected values {q! } have already been 

determined. That iss the intersymbol interference canceller operates 

on r. 
1 

to give the complex-valued quantity 

9 
Cli-huh 

h=n+1 
(8.9) 

Assuming for the moment that qi-h = cli-h for h= n+l, n+2, "", g 
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eqn. 8.9 now reduces to 

n 
ri qi-hyh + wi (8.10 

h=0 

where the {yj} are the components of the channel sampled impulse response, 

and the {wi} are the noise components here. It can be seen from eqns. 8.8 

and 8.10 that, the effective number of components of the sampled impulse 

response of the channel has now been reduced, from g+l, to n+l, so 

that the detection/decoding process is now greatly simplified when n«g. 

The operation of the near-maximum likelihood detection/decoding 

processor shown in Fig. 8.7 is now described as follows. Just prior 

to the receipt of the sample ri at the processor input, the processor 

holds in store m (4n)-component vectors {x. 
1} where 

xi-i =L X4(i-n)-3 x4(i-n)-2 ... x4(i-l) J 
(8.11) 

and xh may have any of the two possible values (0 and 1) of the data 

digit sh for any possible value of h. Associated with each stored vector 

Xi-l, are stored the corresponding value of cost CI-1 which will shortly 

be considered, and the corresponding n quantities qi-n , qi-n+l ' ** 

q- where qh may have any of the possible values of the coded symbol 

qh. The evaluations of the values of the {qh} here will shortly be 

considered. 

On the receipt of rl, each vector Xi-1 is expanded into 16 

(4n+4)-component vectors {Pi} 
, where 

Pi =L x4(i-n)-3 x4(i-n)-2 ... x4i 
1 (8.12) 

The first 4n components of P. are as in the original vector Xi_lý and 
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the last 4 components x 4i-3, x4i-2, x4-1-1, x 4i 
have the 16 possible 

values of the data digits s 4i-3, s4i-2, s4i-1, s4i , bearing in mind 

that sh may have any of the two possible values 0 and 1 for h> 0. Each 

vector P. here is also associated with the same set of quantities 

qi-n' qi-n+l' as the original vector XThe value of 

qi for each of the 16m expanded vectors 
{Pi} is now evaluated as follows. 

When coder 1 is used in the s-Irstem, the processor here (Fig. 8.6) first 

forms the 8-component vector 

u. =[ u( u(2) u(1) u(2) u(1) u(2) u( u(2) (8.13) 
1 4i-3 4i-3 4i-2 4i-2 4i-1 4i-1 4i 4i 

where the quantity use) is evaluated as 

VI-1 
use) _ 

ý' xj-hghe) (8.14) 
h=O 

for e=1,2, and the quantities V' and {9(e)} 
are as defined in 

eqn. 8.1. The symbol 
Y' in eqn. 8.14 is a modulo-2 adder. The vector 

U. (eqn. 8.13) is then used to determine the value of qi for the given 

vector P. , where the relationship between q! and U. is identical to 
1 

that between qi and V. in Fig. 8.3. When coder 2 is used in the system, 

the processor (Fig. 8.6) forms the 6-component vector 

u. =C u(1) u(2) u(1) u(2) u(2) u(1) (8.15) 
1 4i-3 4i-3 4i-2 4i-2 4i-1 4i 

where the {uýe)} here are as defined in eqn. 8.14. The value of q' 
i 

for the given vector P. 
i 

is then determined from this vector (eqn. 8.15), 

where the relationship between q! and U. here is identical to that 

between qi and V. in Fig. 8.4. When coder 3 is used in the system, 
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the processor (Fig. 8.6) forms the 6-component vector 

U. =C u(1) u(2) u(3) u(1) u(2) u(3) 
' (8.16) 

4i-2 4i-2 4i-2 4i 4i 4i 

where the {u(e)} here are as defined in eqn. 8.14. This vector is then 

used to determine the value of qi for the given vector Pi (eqn. 8.12), 

where the relationship between qi and U. here is identical to that 

between qi and V. in Fig. 804. Having evaluated the value of qi for 

each of the 16m expanded vectors 
{Pi} 

, the processor (Fig. 8.6) then 

determines, for each of these {P. }, the scalar quantity J 

n 
Zi = qi-huh (8.17 

h=O 

This is an estimate of the quantity 

n 
zi y qi-hyh (8.18) 

h=0 

which is the signal component in the sample value ri (eqn. 8.10). Having 

evaluated the value of zi for each of the 16m vectors 
{PJ, the processor 

then evaluates the cost C. for each of these IPiT 
as 

Ci = Ci-1 + Ir. 
- zil2 (8019 

where Iri 
- z! is the absolute value of the complex-valued quantity 

11 

ri - zig and the value of Ci-1 here has already been determined for 

each vector Xi-1 in the previous detection process. It can be deduced 

from eqn. 8.19 that 

1. 

C. =: Irh 
- zhl2 (8.20) 

h=1 
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so that the cost C. 
i 

is in fact the square of the unitary distance between 

the sequence of sample values, R!, and the estimate Z! of this sequence 

in the absence of noise, where 

Zi =[ Zl Z2 ... Zi 
] (8.21) 

Ri 
L rl r2 ri 

] (8.22 

Having evaluated the cost C. for each of the 16m expanded vectors iPil, 

the processor then proceeds to select the vector Pi associated with 

the smallest cost, and it takes the values of x,, (; ý1_ýý 
xn(; 

_rl_ýý 'j- \ Lam-/-, 
_) 

ýt ` . 1-11 j-L 

x4(i-n)-l' and x4(i-n) to be the corresponding values of the detected 

data digits s4(i-n)-3' s4(i-n)-2' s4(i-n)-l' and s' All vectors 

{Pi} for which at least one of the first four components in the vector 

are not equal to the corresponding values of the four detected data 

digits just determined are now discarded. The first four components 

of each of the remaining vectors 
{Pi} 

are then omitted to give the 

corresponding (4n)-component vectors 
{Xi}. The cost of a vector X. 

here is taken to be the cost of the corresponding vector Pi. Thus, 

the vector X. associated with the smallest cost is here the first selected 
1 

vector. The processor then selects the second vector X. associated 

with the smallest cost subject to the constraint that, only the 16 

vectors 
{Xi} 

originating from the previous first (best) vector Xi-1 

are available for the selection here. The constraint here is to ensure 

that the previous best vector is retained so that, in the case of severe 

impulsive noise where the noise samples are very large, not all the 

vectors originating from the previous best vector are discarded from 

the store. Having selected the first two vectors, the processor then 

proceeds to select, from the remaining vectors {Xi}, the m-2 vectors 
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associated with the smallest costs, to give a total of m selected vectors 

{X. }. These m selected vectors are then stored together with their 
i 

associated costs 
{CJ. The detector is now ready for the next detection/ 

decoding process and the process continues in this way. 

To start the detection/decoding process here, the detector stores 

m vectors 
{Xn} 

which are all the same and correct, a known synchronizing 

signal being transmitted here, and to one of these vectors it ascribes 

a cost value of zero, whereas to each of the remainders it ascribes 

a very high cost value: 

In the case where no vectors of 
{Xi} 

are available for selection 

during the detection/decoding process described above, a vector with 

arbitrary components {xh} is selected and its associated cost is set 

to a very high value so that this vector is discarded in the next 

detection/decoding process. 

8.7 Uncoded System 

The uncoded system here is a system which does not employs any 

convolutional coder for error correction. The conversion of every four 

binary data digits {s 
i} 

into one 16-point QAM signal qi for transmission 

is here carried out by using a Gray code whose mapping is shown in 

Fig. 8.8. Thus, in Fig. 8.8, the two data digits s4i-3 and s4i-2 

determine the quadrant in which qi should lie, while the two data digits 

s4i-1 and s4. determine the absolute values of the in-phase component 

a. of q. and the quadrature component b. of q. as follows 

ail =2 (S4i-1 + z/ VOTO 

lbil =2 (s 
4i + 2ý/ 

(8.23) 

(8.24) 

The uncoded system is otherwise the same as the coded system studied here. 
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Fig. 8.8 Mapping of the 4 components s 4i-3, s4i-2, s4i-1, s4i into 

the 16-point QAM signal qi for the uncoded system. 
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8.8 Computer Simulation Results 

Computer simulation tests have been carried out to determine 

the tolerances to Gaussian noise of the coded and the uncoded systems 

studied in this chapter. The sampled impulse responses of the four 

channels A, B, C, and D tested here are given in Table 6.4. The results 

of the tests are shown in Figs. 8.9 - 8.12 where the various systems 

considered here are summarised in Table 8.3. The 95% confidence limits 

of the results shown in Figs. 8.9 - 8.12 are about ±0.5 dB. The signal 

to noise ratio here is defined as 

SNR = 10 log10( 
2N 

) dB (8.25) 

where E'is the average transmitted energy per signal element, and No 

is the two-sided power spectral density of the noise added at the output 

of the transmission path shown in Fig. 6.1. 

All computer simulation tests have been carried out by using 

the CDC 7600 computer at Manchester, and the computer programs are 

written in FORTRAN. 
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Systems m Coding 
e 

A 0 uncoded 

B1 10 

B2 7 Coder 1 

B3 3 

Cl 10 
C2 7 Coder 2 

C3 3 

Dl 10 

D2 7 Coder 3 

D3 3 

Table 8.3 Systems tested (Figs. 8.9 - 8.12). m= 32, n= 16. 

me memory of the convolutional code 

m number of stored vectors 
{Xi} 

4n number of components in each vector X. 
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Fig. 8.9 Variation of error rate with signal to noise ratio for the 

various systems (Table 8.3) operating over channel A (Table 6.4). 
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Fig. 8.11 Variation of error rate with signal to noise ratio for the 

various systems (Table 8.3) operating over channel C (Table 6.4). 
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Fig. 8.12 Variation of error rate with signal to noise ratio for the 

various systems (Table 8.3) operating over channel D (Table 6.4). 
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8.9 Assessment of Systems 

It can be seen from Figs. 8.9 - 8.12 and Table 8.3 that, for 

a given coding scheme (that is, coder 1,2, or 3), the coded system 

that uses a larger value of me (memory of the convolutional code used 

in the system) generally yields a better tolerance to noise at low 

error rates while giving a more inferior tolerance to noise at high 

error rates. The coded system here also appears to have a better tolerance 

to noise than the uncoded system at sufficiently low error rates while 

having a poorer tolerance to noise than the uncoded system at high 

error rates. These results are in agreement with the results obtained 

in chapter 7 where a quaternary coded system and its corresponding 

binary uncoded system are studied. 

Generally, for the four channels tested here, the coded system 

with coder 1 appears to have roughly the same tolerance to noise as 

that of the coded system with coder 2 although the latter is sometimes 

seen to have a slightly better tolerance to noise at low error rates, 

the same value of me being used in each of the two coders here. It 

therefore appears that the gain of coder 2 over coder 1 in having 

fewer possible values for the transmitted signals is approximately 

cancelled by the loss of coder 2 over coder 1 in having a reduced value 

of free distance for the code. Nevertheless, the coded system with 

coder 2 is likely to be more attractive than the coded system with 

coder 1 since it is likely to involve less equipment complexity by 

having a simpler coding process and a smaller number of possible values 

for the transmitted signals. 

For a given value of me (Table 8.3), the coded system with coder 3 

appears to have an inferior performance as compared to that of the 

coded system with coder 2 at high error rates. At low error rates, 
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however, the coded system with coder 3 tends to do better than the 

coded system with coder 2 here. This may, probably, be explained by 

assuming that the effective free distance of coder 2 is actually lower 

than that of coder 3 for the same value of m used in each of these 
e 

coders, so that coder 2 effectively behaves like coder 3 but with a 

smaller effective me, bearing in mind that coders 2 and 3 both involve 

the coding of a binary data sequence into a 64-point QAM coded sequence. 

The difference in performance between the use of different coders 

(that is, coders 1,2, and 3) in the coded system here is, however, 

very marginal for the range of signal to noise ratios tested here. 

Coder 2 therefore appears to be the most attractive of the three coders, 

since it is likely to have the simplest practical implementation as 

can be seen from the descriptions of the various coders given in sections 

8.3 - 8.5. 

It can be seen from Figs. 8.9 - 8.12 that, the cross-over point 

at which there is no difference in the tolerance to noise between the 

uncoded system and the better coded system is generally at an error 

rate close to 10-3, the coded system giving a better tolerance to noise 

than the uncoded system at lower error rates. At an error rate of 10-4, 

the gain in tolerance to noise of the better coded system over the 

uncoded system is about 1 dB on each of the channels A and B, and is 

about 1.5 dB on each of the channels C and D. The value of me (Table 8.3) 

that gives the best performance at low error rates is 10 for any of 

the channels A, C, and D, and is 3 or 4 for channel B. 

It has also been observed from the tests that, all the m (4n)-component 

stored vectors 
{Xi} 

obtained at the end of the transmission in the 

coded system here have the same values for their corresponding components 

except for the, last few components. This implies that, the value of 
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n used in the tests here (Table 8.3) is probably too large for the 

given value of m (=32) considered here. Consequently, a smaller value 

of n (that is, smaller than 16) may be used in the coded system with 

m= 32 here without introducing any reduction in the tolerance to noise 

of the system, bearing in mind that reducing the value of n also reduces 

the amount of storage and operations involved in the detection/decoding 

process of the system here. 

The coded system developed in this chapter appears to be 

promising in those applications where a 16-point QAM signal is being 

transmitted at a rate close to the Nyquist rate of the given channel, 

and where it is required to reduce the error rate in the detected binary 

data values of the corresponding QAM signals to a value much lower 

than 10-4. 
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CHAPTER 9 

COMMENTS ON THE RESEARCH PROJECTS 

9.1 Originality 

All the experimental work described in this thesis which is not 

ascribed specifically to others, usually by quoting the appropriate 

references, is original-to the best of the author's knowledge, although 

much of the new material has been originated either by Dr. A. P. Clark 

or through mutual discussions between Dr. A. P. Clark and the author. 

The followings are the more important contributions which have been 

originated by the author alone :- 

Chapter 3: Systems 3,4,5,6,7,9,10, and 11. 

Chapter 4: Systems 3,5, and 6. 

Chapter 5: Systems 5 and 8. 

Chapter 7: Coder 2. 

Chapter 8 Coders 2 and 3. 

All the computer simulation tests described in this thesis have 

been carried out by the author alone. 
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9.2 Conclusions 

Various iterative detection processes have been developed and 

studied for use with a synchronous serial binary baseband data-transmission 

system. Among them, is the very promising detection process implemented 

as system 5 in chapter 3 which requires very few operations in achieving 

a near-optimum performance at high signal to noise ratios. The implementation 

of system 5 also appears to be relatively simple which makes it very 

attractive for use over a time-varying channel. 

A systematic search detection process that involves a linear 

filtering of the received signals has been developed and studied for 

use with binary signals. The operation of this detection process is 

very simple and with the appropriate filter, such as that used in any 

of the systems 1,29 4,5, and 6 in chapter 4, this detection process 

is able to achieve a near-optimum performance. The drawback of this 

detection process is that, a fairly large amount of storage is required 

in the system. The application of this detection process is restricted 

to be in the system that operates over a known time-invariant channel. 

Near-maximum likelihood detection processes have also been considered 

for use with a 16-point QAM system operating over a severely distorted 

telephone channel. System 8 with version b or c in chapter 5 is the 

most promising of the various systems studied here. Its tolerance to 

Gaussian noise is generally better than that of the optimum nonlinear 

equalizer but is slightly inferior to that of system 1. The advantage 

of system 8 over system 1 is that, no linear prefilter is needed in 

the detection process, which reduces the synchronization period required 

in the system. Each of the systems 3,4, and 5 uses a greatly shortened 

linear prefilter and is able to achieve only a small gain in tolerance 

to noise over the nonlinear equalizer at high signal to noise ratios. 
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Finally, the coded system that involves the use of a convolutional 

coder and a Gray coder at the transmitter, and a joint detection/decoding 

process at the receiver, has been developed and studied for use over 

a time dispersive channel. It is found that, this coded system has 

a better tolerance to Gaussian noise than the corresponding uncoded 

system at low error rates. The gain here appears to be larger when 

the channel introduces less severe amplitude or attenuation distortion. 

Thus, for the uncoded data-transmission system considered in 

this thesis, a system that employs the maximum likelihood detection 

process is known to achieve the best tolerance to additive white Gaussian 

noise but it suffers from having an unduly complex implementation in 

practice. For systems operating with binary signals, system 3 of chapter 3 

appears to be the simplest, in terms of equipment complexity, of all 

the more important systems developed here. System 5 of chapter 3 is, 

however, likely to be the most cost-effective system here. For systems 

operating with 16-point QAM signals, both system 1 and system 8 of 

chapter 5 appear to be very promising in terms of their performances 

in tolerance to Gaussian noise and the equipment complexity involved, 

as compared to the system employing the maximum likelihood detection 

process. 
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9.3 Possible Further Investigations 

The iterative detection processes studied in chapter 3 have only 

been tested with binary signals. The more promising systems, such as 

systems 5,6,7, and 9, should be further tested for use with multi-level 

and QAM signals. Furthermore, methods of updating adaptively the tap-gain 

values of the filter used in system 9 may be studied and developed 

so as to make system 9 well suited for use over a time-varying channel. 

The systematic search detection process developed in chapter 4 

has the advantage of being able to operate with very high speed. However, 

the weakness of this detection process is that, a fairly large amount 

of storage is required in the system. Further investigations may therefore 

be carried out to modify the detection process here so as to reduce 

the amount of storage required in the system. 

If the carrier phase of a data-transmission system is incorrectly 

detected at the receiver, then a long burst of errors in the detection 

of the transmitted data signal could occur. One usual way of overcoming 

this problem is to apply differential coding onto the system. Further 

investigations into applying the differential coding onto the more 

promising systems developed in chapters 5 and 8 would therefore be 

very useful. 

It has been assumed in this thesis that, the channel is known 

and time-invariant. However, some of the systems developed here appear 

to be well suited for use over a time-varying channel. These systems 

could therefore be further studied for use over a time-varying channel. 

The detailed hardware designs of the more promising systems developed 

in this thesis could be produced to assess the cost effectiveness of 

these systems for use in a synchronous serial data-transmission system. 
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APPENDIX Al 

DERIVATION OF THE THRESHOLD VALUES THAT PREVENT THE ITERATIVE PROCESSES 

OF SYSTEMS 1-7 (CHAPTER 3) FROM DIVERGING 

This appendix shows that, the iterative process used in any of 

the systems 1-7 (chapter 3) is prevented from diverging if the threshold 

value th (Tables 3.1 and 3.2) used in the updating process for the 

hth component xh of the n-component vector X (eqn. 3.13) is such that 

th > +I Yh II2 if Xh _ ±l 

th ell Yh'2 if Xh =0 (Al. 1) 

for h=1,2, -- ,n where the value of xh here is referred to its 

value before it is updated, and 
JjYhll is the Euclidean norm or length 

of the n-component vector Yh (eqn. 3.9). The iterative process here 

employs the arrangement of Fig. 3.4, and divergence is defined to have 

occurred when the value of (IRaII increases during the iterative process, 

where Ra is the n-component vector defined by eqn. 3.22. 

Consider first the case when xh = ±1. In the updating process 

for xh, the quantity eh (eqn. 3.24) is first evaluated at the output 

of the network Yh shown in Fig. 3.4 as 

eh Rä 
T 
h 

(Al. 2) 

where Yh is the transpose of Yh. The increment Axh of xh is next determined 

using Table 3.2. Thus, if the value of xh has the same sign as that 

of eh, or if fehl $ th, then the value of Qxh is set to zero and the 
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vector Ra (being updated by using eqn. 3.31) remains unchanged so that 

neither divergence nor convergence can occur here. If, however, the 

value of xh has a different sign from that of eh and if 

Lehi > th (Al 
. 3) 

then the value of pxh is set to 2 or -2 depending on whether xh is 

negative or positive. The vector Ra is now updated as (eqn. 3.31) 

+ = Ra 
new 

Ra 
- 

2Yh (Alo4) 

In the n-dimensional Euclidean vector space containning the vectors 

Ra and Yh' the quantity eh/ Yh (eqn. A1.2) is the orthogonal projection 

of Ra onto Yh, as shown in Fig. Al. l. In Fig. A1. l, OA represents 

the vector of Ra before it is updated, and OB represents the updated 

vector of Ra. The Euclidean norm 
(IRali is here given by the corresponding 

value of the length of OA or OB. The straight line AB here is parallel 

to the direction of the vector Yh as is implied by eqn. A1.4. It can 

be seen from Fig. A1.1 that, if B lies between A and Cy then the length 

of OB is smaller than that of OA, so that the Euclidean norm IIRa+I for 

the updated vector of Ra is now smaller than that for the vector of 

Ra before it is updated, and hence divergence is prevented from occurring 

here. Thus, from Fig. Al. l, B lies between A and C if 

2Iye 
hI 

11 
hi' 

2Nyhlý 
ýI 

or 'ehi ' 
Il 

h112 
(Al. 5) 

Since fehl 
> th here, therefore the inequality of (Al-5) is always 
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satisfied so long as 

th ý> 
11 Yh'I2 (Al. 6) 

which is therefore the necessary condition for the iterative process 

to be prevented from diverging when the value of xh is 1 or -1. 

Consider now the case when xh = 0. It can be seen from Table 3.1 

that, if Iehl 
-- thq then Qxh is set to zero and the vector Ra (being 

updated by using eqn. 3.31) is unchanged so that neither divergence 

nor convergence can occur here. If, however, lehl 
> th, then pxh is 

set to 1 or -1 depending on whether eh is positive or negative, and 

Ra is now updated as 

Ra 
new 

Ra 
- 

Yh (A1.7) 

which obviously resembles eqn. A1.4. The same argument used for the 

case when xh = ±1 can thus be applied here to show that the necessary 

condition for the iterative process to be prevented from diverging, 

when the value of xh is zero, is 

th 2IIYh+'2 (A1.8) 

which is similar to that given by (Al-5) 
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C 

21 ehl 4 YJ 

21 Yh1) 

BD IA 

--h- 
I ehi /II Yhil I eh I /II Yhil 

Fig. A1.1 Ra and Yh (eqn. A1.4) represented as vectors in the 

n-dimensional Euclidean vector space. 

OA : vector of Ra before it is updated 

OB : updated vector of Ra 

Yh 
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APPENDIX A2 

PROOF OF SYSTEMS 3.1 - 3.4 (CHAPTER 3) BEING ABLE TO ACHIEVE 

ERROR-FREE DETECTION IN THE ABSENCE OF NOISE 

This appendix shows that, in the detection of s1 (eqn. 3.5) from 

R' (eqns. 3.7 and 3.8), each of the systems 3.1 - 3.4 (chapter 3) is 

able to achieve, in the absence of noise, 

X=S (A2.1) 

and hence an error-free detection, bearing in mind that the detected 

value of the first component sl of the n-component vector S (eqn. 3.5) 

is taken to have the value of the first component x1 of the n-component 

vector X (eqn. 3.13) obtained at the end of the detection process here. 

Assuming that all previous data symbols 
{si} have been detected 

correctly so that the vector R' is now given by eqn. 3.8. In the absence 

of noise, eqn. 3.8 reduces to 

R' = SY 

= s1Y1 + s212 + """ + sri 
n 

(A2.2) 

where Yl, Y2, """ , Yn are the n n-component vectors defined by eqn. 3.9. 

The vector Ra (eqn. 3.22) now becomes 

R= R' - XY 
a 

= SY - XY 

_ (s 
- x1)Yl + (S2 

- x2)Y2 ++ (sn 
- xn)Yn (A2.3) 

In any of the systems 3.1 - 3.4, the initial vector X0 of X is set to 
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X_rr 
o_ 

s2 s3 ... st 0J (A2.4) 

where s2, s3, """ , sn are the detected values of the corresponding 

data. symbols s2, s3, """ , sn obtained at the end of the previous 

detection process, bearing in mind that these data symbols are renamed 

as sl, s2, """ , sn_l respectively for the next detection process. 

Assuming that the values of s2, s3, """ , sn in eqn. A2.4 have been 

determined correctly, the initial vector of Ra (eqn. A2.3) now becomes 

R= SY -XY ao 

=sY nn 
(A2.5) 

Tne iterative process of system 3.1 now begins with the evaluation 

of the quantity e1 (eqn. 3.24) as RaYT, so that from eqn. A2.5, 

el RY 
T 

a1 

= sn(YnYTT) (A2.6) 

which, in turn, is used to update the value of xl (Table 3.2 and eqn. 3.30). 

It can be seen from Table 3.2 and eqn. 3.30 that, when xh = ±11 the 

value of xh remains unchanged during its updating process so long as 

I eh l II fh 11 2 (A2.7) 

for h= 19 27 -- ' n. The value of jell in eqn. A2.6 is given by 

f ll - 
lY T Ie1 ISnY T 

n1 
(A2.8) 

since sn can only have a value of 1 or -1. Furthermore, it can be seen 
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from eqn. 3.9 that, IIIJ 
nll > 

II Yh II so that 

YnYh I' YhYh 1=I Yh'I 2 (A2.9 

for h= l9 29 "" , n-l. It therefore follows from egns. A2.7 - A2.9 

that, jell 
< 

jjY112 here, so that the value of x1 (being equal to s2) 

and hence the vector Ra (being updated by using eqn. 3.31) are unchanged 

in the updating process here. The iterative process next evaluates 

the quantity e2 as RaY2, and from eqn. A2.5, 

e2 _ RY 
T 

a2 

= s(YY 
T 

nn 2) 
(A2o10) 

for the updating process for x2 (Table 3.2, egns. 3.30 and 3.31). Again, 

it can be seen from eqns. A2.7, A2.9, and A2.10 that, le21 < 
I1y2112 

here, so that the value of x2 (being equal to s3) and hence the vector 

Ra are unchanged in the updating process here. Following the same argument 

just described, it can be shown that the values of x3 (= s4), x4 (= s5O, 

""" , xn_1 (= s') and the vector Ra (being given by eqn. A2.5) are 

all unchanged following the evaluations of e3, e 4' en_,. The 

quantity en is now evaluated as Rä Y 
n, 

and from eqn. A2.5, 

e=R YT 
nan 

= S(YY 
T 

nn n) 

SnIIYn112 (A2.11) 

Since the initial value of xn here is zero (eqn. A2.4), the updated 

value of xn is determined as 1 if en > 0, and as -1 if en ,0 (Table 3.2). 
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Furthermore, since the value of en is given by eqn. A2. ll, the updated 

value of xn here must be equal to the value of sn. Consequently, all 

the values of xl, x2, """ , xn are now equal to the corresponding 

values of sI' s2, """ , sn (that is, X= S), and the vector Ra (eqn. A2.3) 

is now equal to zero. In the subsequent iterative cycles of the iterative 

process of system 3.1 here, the values of xl, x2, """ , xn are always 

unchanged since the inequality of (A2.7) is always satisfied here, 

bearing in mind that eh (l< h--<n), being equal to RaYh, is always equal 

to zero here. Thus, X=S here so long as all the previous data symbols 

have been detected correctly. Since a known sequence of more than g 

data symbols is transmitted at the start of the detection process of 

system 3.1, therefore X=S here and the following data symbols now 

continue to be detected correctly and so on. Error-free detection in 

the absence of noise is therefore always achieved by system 3.1. 

It can be seen from above that, the value of eh (1-- h *i n) is 

always equal to sny T 
before the value of xn is determined, so that 

n 

the value of xn is always determined correctly as the value of sn. 

Furthermore, the value of eh (1 <h; n) is always equal to zero after 

the value of xn has been determined. In any case, the inequality of 

(A2.7) is always satisfied whenever xh = ±1, so that the value of xh 

once being determined as 1 or -1 will not be changed anymore during 

the iterative process, regardless of whether the iterative process 

operates from xl to xn or from xn to xl. The argument described above 

for system 3.1 can therefore be used to show that each of the systems 3.2 

- 3.4 is also able to achieve X=S and hence error-free detection in 

the absence of noise, bearing in mind that systems 3.1 - 3.4 differ 

only in the 'direction' of operation (that is, operating from xl to xn 

or from xn to xi). 
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APPENDIX A3 

DERIVATION OF THE CONDITION FOR SYSTEM 3.5 (CHAPTER 3) TO ACHIEVE 

ERROR-FREE DETECTION IN THE ABSENCE OF NOISE 

This appendix shows that, in the detection of sl (eqn. 3.5) from 

R' (eqns. 3.7 and 3.8), the condition for system 3.5 (chapter 3) to 

achieve error-free detection (or X= S) in the absence of noise is 

n- h 
YhII 2'Zl 

h+jYh 1 
j=1 

(A3"1) 

for h= n-f+l, n-f+2, "" , n-1 where IlYhll is the Euclidean norm or 

length of the n-component vector Yh (eqn. 3.9), IYh+jYhl is the absolute 

value of the scalar quantity Yh+jYh , and f is an integer between 1 to n. 

In the absence of noise, and assuming that all previous data 

symbols {si} have been detected correctly, the n-component vector R' 

is given by (eqn. A2.2) 

RI =s1y1+s2y2+... +snyn (A3.2) 

and the n-component vector Ra is given by (eqn. A2.3) 

Ra = (sl 
- xl)Yl + (s2 

- x2)Y2 + -- + (sn 
- xn)Yn (A3.3) 

where sl, s2, """ , sn are the n components of the data-symbol vector 

S (eqn. 3.5), and xl, x2, """ , xn are the n components of the vector 

X (eqn. 3.13). In system 3.5, the initial vector X0 of X is set to 

f 

go = S2 s3 Sn-f+l 0] (A3.4) 

where s2, s3, "" ' sn-f+l are the detected values of the corresponding 
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data symbols s2' s3' "' sn-f+l obtained at the end of the previous 

detection process, bearing in mind that these data symbols are shifted 

one place forward in S and renamed as sl, s2, "" , sn-f respectively 

for the next detection process. Assuming that the values of ss 

sn-f+l in eqn. A3.4 have been determined correctly, the initial 

vector of Ra (eqn. A3.3) now becomes 

R= R' -XY ao 

sn-f+1 
n-f+1 

+ sn-f+2Yn-f+2 + -- + snYn (A3.5) 

The iterative process of system 3.5 now begins with the evaluation 

-f+l' 
and from eqn. A3.51 of the quantity en-f+l (eqn. 3.24) as RaYnT 

nT 
en-f'+l = Sn-f+lll Yn-f+l l2+ (ShYh)Yn-f+l ( A3.6) 

h=n-f+2 

The value of xn-f+l is then determined as 1 if en-f+l ' 0, and as -1 

if en-f+l 4 0. It can be seen from eqn. A3.6 that, the value of xn-f+l 

is always determined correctly as the value of sn-f+l here so long as 

I2T I! 
n-f+l 

11 

h=n-f+2I 
YhYn-f+l (A3.7) 

Having updated the value of xn-f+l and the vector Ra (eqn. 3.31), the 

iterative process next evaluates the quantity en-f+2 as RaYn-f+2' Clearly, 

if the inequality of (A3.7) is satisfied, then xn-f+l sn-f+l' and 

the component sn-f+l In-f+l is removed from Ra, so that the value 

of en-f+2 now reduces to 

n 
en-f+2 sn-f+2llYn-f+2112 + (Shhh)Yn-f+2 (A3.8) 

h=n-f+3 
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The value of xn-f+2 is then determined as 1 if en-f+2 ' 0, and as -1 

if en-f+2 ' 0. The situation here obviously resembles that for the 

updating process for xn-f+l' and the value of xn-f+2 is thus always 

determined correctly as the value of sn-f+2 here so long as 

II 2 ýn T 
9) II 

n-f+2 
11 

h=n= f+3I 
Yhhn-f+21 A3. 

which resembles the inequality of (A3.7). Following the same argument 

just described, it can be seen that the values of xn-f+l' xn-f+2' 

""" , xn-l are always determined correctly as the corresponding values 

of sn-f+l' sn-f+2' '** ' sn-1 in the first iterative cycle of the 

iterative process here so long as 

2 n-h T 11 
hfl j1 

IYh+jYhl (A3.10) 

for h= n-f+l, n-f+2, -- , n-l. Thus, if this inequality (A3.10) is 

satisfied, then the vector X becomes 

g=r sl s2 ... sn_1 (A3.11) 

following the updating process for xn-1 in the first iterative cycle 

here. This vector of X is identical to the initial vector of X used 

in system 3.1 (in the absence of noise). Since system 3.5 now operates 

in the same way as system 3.1 in the subsequent operations, the same 

argument described in appendix A2 for system 3.1 can be applied here 

to show that, system 3.5 is now always able to achieve X=S and hence 

error-free detection. Consequently, system 3.5 is always able to achieve 

X=S and hence error-free detection in the absence of noise so long 

as the condition of (A3.10) (being identical to (A3.1)) is satisfied. 
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APPENDIX A4 

DERIVATION OF eqn. 3.70 (CHAPTER 3) 

This appendix shows that 

.Z 
Y = 0 if j< h 

J h 

> 0 if j= h 

(A4.1) 

(A4.2) 

for h= l1 29 "" In where {YJ. } are the (lx n) row matrices defined 

by eqn. 3.9, and {Zh} are the transposes of the corresponding (lx n) 

row matrices {ZhI defined by egns. 3.65 and 3.66. 

It can be seen from eqn. 3.65 that 

j-1 1 
Y. = Z'. +2Y (Zi) TZi (A4.3) 

J i=1 l1 Z1ll 

and 
h-1 1T 

(Zhý T= CYh 
- (I Z II 2 

Y(Z') 
TZ 

h 
k=l k 

h-1 1 
Yh _! 2 

(Z, ) T(Zk)Yh (A4.4) 

k=1 II Zk ýý 

for any possible values of j and h. Thus, 

h-1 1 
Yý(Zh)T = YýYh - I2 

Yý(Zk)T(Z')Yh (A4.5) 
k=1 

T Ur 

or 

yj(Z, ) 
= 

(zt)yh +Z yj(Zi)T(Z')Y 
i=1 11 Z FI 

h-1 1 

_k 7ýu2 yj(ZkýT(Zk)yh (A4.6) 

kIý 
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Consider first the case when j<h. Eqn. A4.6 may be reduced to 

Yj(Zh)T (Zj)yh 
12 

Yj(ZkT(Zk)Yh 
k= j II Zk (I 

h-1 1 j-1 1 
_ 

(Zý)i 
- 

ký Zý II2 
(Zý) + 

lE Z' 
2Y j(Zi)T(Zi)'(Zk)T(Zk)Yh T 

ku 
II 

i 

(A4.7) 

Since (Z! )(Zk)T =0 for iIk (ecgn. 3.68), eqn. A4.7 may be further 

reduced to 

1 
Y. (Zh)T (Z, )Yh (Zý)(Zý)T(Zj)y 

IIZýýý 

= ('-)y 
- Z' 

2(Z')Y 

3T h IIZ'II2 JJh 
J 

=0 (A4.8) 

It can now be seen from egns. 3.66 and A4.8 that 

ry =0 (A4.9) y zh = Yi (Z, )T T FU 
hll 

which is identical to eqn. A4.1. 

Consider now the case when j=h. Eqn. A4.5 may be reduced to 

Yh(Zh) 
T= 11YhII2 

- 

= 
11 Yh (l 2- 

h-1 1 

II ZkII2 
Y 

h(Zk 
(Zk)YT 

h 
k=l 

tyh(2k) 
[(Zk)i ] 

k=1 

11 Yh I12 - 
11 YhZk 1I 2( 

A/ß. 10 
k=1 
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If Yh and Zk are each treated as a n-component vector in the n-dimensional 

Euclidean vector space, then YhZT is the orthogonal projection of k 

the vector Yh onto the unit vector Zk, as is shown in Fig. A4.1. Moreover, 

since the n unit vectors Zl, Z2, """ Zn are orthogonal to each 

other (eqns. 3.67 and 3.69), they necessarily form a complete set of 

basis in the n-dimensional Euclidean vector space here. 
(E5) 

This means 

that, the Euclidean norm or length of the vector Yh (that is, I'YhII) 

is such that 

IIYhII2 
_ 

(YhZkI2 

k= 1 
(A4.11) 

Fig. A4.2 illustrates the meaning of eqn. A4.11 for n=2. It can now 

be seen from egns. A4.10 and A4.11 that 

1 (zh)T1 >0 (A4.12) 

since h -< n. Ecgns. 3.66 and A4.12 can now be combined to give 

YhZh Ii Zhll 0 

or YhZh >0 (A4.13) 

which is identical to eqn. A4.2. 



- 458 - 

It- 

Zh 

Fig. A4.1 Orthogonal projection of the vector Yh onto the unit vector 

Zk in the Euclidean vector space. 

Z2 

lYhZ T 
21 

Z1 

Fig. A4.2 A 2-dimensional Euclidean vector space containning the 

vector Yh, and the unit vectors Zl and Z2. 

LhZ 
T 
h 

T 
YhZh 



- 45519 - 

APPENDIX A5 

DIVERGENCY OF THE ITERATIVE PROCESSES OF SYSTEMS 8- 11 (CHAPTER 

This appendix shows that, divergence can occur in the iterative 

process of any of the systems 8- 11 (chapter 3). The iterative process 

here employs the arrangement of Fig. 3.14, and divergence is defined 

to have occurred when the value of 11 RaII increases during the iterative 

process, where Ra is the n-component vector defined by eqn. 3.22. 

In the iteratiJe process here, the values of the n components 

xl, x2, """ , xn of the vector X (eqn. 3.13) are updated sequentially 

using Tables 3.1,3.2,3.8, and eqn. 3.91, and the vector Ra is updated 

using eqn. 3.31. A constraint is placed on the values of the components 

ýxh) (1 ;h; n), so that each component here can only have a value of 

-1,0, or 1 during the iterative process. 

Consider first the case when xh = ±1, for 1; h, n. In the updating 

process for xh' the quantity eh (eqn. 3.72) is first evaluated at the 

output of the network Zh shown in Fig. 3.14 as 

eh = Rath 
T (A501) 

where Zh is the transpose of Zh. The increment Axh of xh is next determined 

using Table 3.2. Thus, if xh has the same sign as that of ehe or if 

lehi 
IYhZT ( Yh Zh), then pxh is set to zero and the vector Ra 

is unchanged so that neither divergence nor convergence can occur here. 

Yh iss of course, the n-component vector defined by eqn. 3.9. Ifs however, 

xh has a different sign from that of eh and if fehl 
> 

IYhZhI 
9 then 

Axh is set to 2 or -2 depending on whether xh is negative or positive. 
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The vector Ra is now updated as (eqn. 3.31) 

(Ra) 
new 

Ra ± 2Yh (A5.2) 

In this case, divergence can sometimes occur as is shown below. Fig. A5.1 

shows the n-component vectors Yh and Zh in the n-dimensional Euclidean 

vector space. In Fig. A5. l, OP represents the vector of Ra before it 

is updated, and OQ represents the updated vector of Ra. The value of 

IR 
all 

is here given by the corresponding length of OP or OQ. The straight 

line PQ is parallel to the direction of the vector Yh as is implied 

by eqn. A5.2. The point P here is restricted to lie on the right hand 

side of CD, since it is considered here that leh1 
> 

IYhZhl. It can be 

seen from Fig. A5.1 that, if P lies between G and H, then OQ has a 

larger length or JJR 
a 

+i as compared to that of OF, which necessarily 

means that divergence will occur here. In general, it can be seen that, 

divergence occurs in the iterative process here (xh = ±l) so long as 

P lies in the shaded area shown in Fig. A5.1. 

Consider now the case when xh = 0. Table 3.1 shows that if fehl 5 th' 

then Axh is set to zero and the vector Ra remains unchanged so that 

neither divergence nor convergence can occur here. The value of th 

is here equal to 0, or 4IYhZhl, or 2IYhZhI 
, or IYhZhI as is shown 

in Table 3.8. If, however, 'eh' > th, then Axh is set to 1 or -1 depending 

on whether eh is positive or negative, and the vector Ra is updated 

as (eqn. 3.31) 

Ra) 
new 

Ra ± Yh (A5.3) 

which resembles eqn. A5.2. The same argement used for the case when 

xh = ±l can thus be applied here to show that divergence can occur for 

the case when xh = 0. 
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Although the argument used in this appendix assumes that all 

the vectors Rai Yh, and Zh lie in the same 2-dimensional plane shown 

in Fig . A5.1 9 it can be seen that the argument also applies 

for the general case when these vectors are not all containned in. the 

same 2-dimensional plane, so that divergence can occur in the iterative 

process here for any given vectors of Ra, Yh, and Zh so long. as Yh ý Zh. 

G\ / 
2IlY ý/ 

h1 11 ZhII =1 
7 

Z> 

uY ii \/ li Yhil I le 

Iuý 
Qt 

I\ I\ý. 
--- _/ 

P 
H 

I\/\ 
\ 

Z I\( /I. /''\ h 

\/I 

O\ yh 

\ 
lYhZ Thl 

ehi IRath) 

D 

Fig. A5.1 Ra, Yh, and Zh (eqn. A5.2) represented as vectors in the 

n-dimensional Euclidean vector space. 

OP : vector of Ra before it is updated 

OQ : updated vector of Ra 
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APPENDIX A6 

PROOF OF SYSTEM 8 (CHAPTER 3) BEING ABLE TO ACHIEVE 

ERROR-FREE DETECTION IN THE ABSENCE OF NOISE 

This appendix shows that, in the detection of sl (eqn. 3.5) from 

R' (egns. 3.7 and 3.8), system 8 (chapter 3) is able to achieve error- 

free detection in the absence of noise. 

In the absence of noise, and assuming that all previous data 

symbols 
{s 

i} 
have been detected correctly, the vector R' now becomes 

R' = SY 

= s1Y1 + s2Y2 + ... + snYn (A6.1) 

where sly s2' """ , sn are the n components of the data-symbol vector 

S (eqn. 3.5)y and 
{Yj} 

are the n-component vectors defined by eqn. 3.9. 

The quantity eh (eqn. 3.72) in system 8 now becomes 

eh = 
(R' 

- X') Zh 

_ (SY 
- XY)Zh 

_ (s1 
- x1)Y1Zh + (s2 

- x2)Y2Zh + "" + (sn 
- xn)YnZh (A6.2) 

for h=1,2, "" ,n where x1, x2, """ , xn are the n components of 

the vector X (eqn. 3.13), and {Zh} are the transposes of the corresponding 

{z1 } defined by eqns. 3.65 and 3.66. Eqn. 3.70 suggests that, eqn. A6.2 

may be reduced to 

eh = (sh xh)IYhZht + (sh+l Xh+l)Yh+lzh 
T+.. 

+ (sn xn)y 
n 

zh 
T 

(A6.3) 
for h=1,2, -- 9 n. 
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In the iterative process of system 8.1 with any of the versions 

a, b, c, and d given in Table 3.8, the values of xl, x2, """ , xn 

are updated according to Table 3.1 in the first iterative cycle, and 

according to Table 3.2 in each of the subsequent iterative cycles. 

The values of xl, x2, """ , xn are here initially set to zero. Thus, 

in the first iterative cycle here, the value of eh is, from eqn. A6.3, 

given by 

eh = shlYhZhf + sh+lYh+1Zh ++ snYnZT (A6.4) 

for h=1,2, "" , n. Clearly, e=s IY ZTI here, so that the 
nnnn 

value of xn is always determined correctly as the value of sn in the 

first iterative cycle here as can be seen from Tables 3.1 and 3.8. 

This means that, at the end of the first iterative cycle, the vector X 

in system 8.1 becomes 

g=r xl x2 ... Xn-1 Sn J (A6.5) 

where xl, x2, """ , xn-1 may have any of the values 1,0, and -1. 

In the second iterative cycle, the value of eh is now given by 

eh (Sh Xh)iYhZhi + (sh+l xh+l)yh+lzh + ... 

_T + (Sn-1 xn-1 
n-1 

zh (A6.6) 

for h=1,2, "" , n-l, and is equal to zero for h=n. The value 

T 
of en-1 is now given by (sn-1 xn-lý+Yn-lZn-lI' Thus, if xn-1 sn-1' 

then en-1 =0 and from Table 3.2, the value of xn-1 must now remain 

unchanged during the updating process for xn-1' If xn-1 -sn-1 

then en-1 = 21Yn-1zT so that, from Table 3.2, the value of xn-1 

must now be set to 1 which is the value of sn-1 here. Similarly, if 
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xn-1 sn-1 = 1, then en-1 = -21Yn-lZT11 so that, from Table 3.2, 

the value of xn-1 must now be set to -1 which is the value of sn-1 

here. Finally, if xn-1 = 0, then en-1 sn-llYn-lZn-1I, and from Table 3.2, 

the value of xn-1 is set to the value of sn-l. It therefore follows 

that, in the second iterative cycle here, the value of x is always 
r_-1 

updated to be equal to the value of sn-1. The value of xn, being set 

to the value of sn in the first iterative cycle, remains to be unchanged 

in the second and subsequent iterative cycles since the value of e 
n 

is now always equal to zero (see Table 3.2). The vector X obtained 

at the end of the second iterative cycle here is therefore given by 

X=I xl x2 ... xn_2 sn_1 sn 
I 

(A6.7) 

where xl, x2, """ , xn-2 may have any of the two values 1 and -1 

which are the two possible values of the data symbols {sh}. Each subsequent 

iterative cycle here operates in exactly the same way as for the second 

iterative cycle. Consequently, it can be seen from the argument given 

above that, at the end of the nth iterative cycle here, the vector X 

becomes 

g= Sl s2 ... sn J 
(A6.8) 

which is obviously identical to the data-symbol vector S (eqn. 3.5). 

All the values of el, e2, """ , en are now equal to zero, and thus, 

from Table 3.2, the vector X (= S here) must always remain to be unchanged 

in the subsequent iterative cycles. 

cycle) is equal to or larger than n, 

previous data symbols {si} have been 

sequence of more than g data symbols 

Thus, if no (number of iterative 

then X=S so long as all the 

detected correctly. Since a known 

is transmitted at the start of 
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the detection process of system 8.1, therefore X=S here (assuming 

that no _> n) and the following data symbols now continue to be detected 

correctly and so on. Error-free detection in the absence of noise is 

therefore always achieved by system 8.1 so long as nc >- n. 

Since system 8.2 differs from system 8.1 only in the 'direction' 

of operation of the iterative process (that is, system 8.1 operates 

from xl to xn whereas system 8.2 operates from xn to xl for each iterative 

cycle), therefore the same argument used for system 8.1 can be used 

to show that error-free detection in the absence of noise is always 

achieved by system 8.2 so long as nc 3 1. 
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APPENDIX A7 

DERIVATION OF THE CONDITIONS FOR SYSTEMS 9- 11 (CHAPTER 3) 

TO ACHIEVE ERROR-FREE DETECTION IN THE ABSENCE OF NOISE 

This appendix shows that, in the detection of s1 (eqn. 3.5) from 

R' (eqns. 3.7 and 3.8), the condition for error-free detection to be 

achieved in the absence of noise is 

n 
IY1Z1I 

-2ZY. Z, I (A7.1) 
j=2 

for any of the systems 9 and 11, and is 

IYhZhI >2Y IYizhI ( A7.2) 
j=h+l 

for h=2,3, "" , n, for system 10, where {Yj} are the n-component 

vectors defined by eqn. 3.9 and 
{z } 

are the transposes of the corresponding 

{zh} derived in section 3.13 (chapter 3). 

In the absence of noise, and assuming that all previous data 

symbols {si} have been detected correctly, the value of eh in eqn. 3.79 

becomes 

n 
eh = (sh 

- xh) YhZh +E (sj 
- xj)YjZh (A7.3) 

j=l 
j/h 

for h= l9 27 "" 'n where IYhZht is the absolute value of YhZh9 

and the {xj} may have any of the values 1,0, and -1, bearing in mind 

that 1 and -1 are two possible values of {si} here. Assuming for the 

moment that the values of xl, x2, """ , xh-1 have been determined 
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correctly (that is, xi = sj for h=1,2, "" 9 h-l), eqn. A7.3 now 

reduces to 

eh = 
(sh 

- xh), 
IYhZhJ 

+nE (s. 
-x 

)Yjzh T (A704) 
j j=h+l 

for h=1,2, -- , n. Since the value of (si 
- xi ) can only be one 

of the values ±2, ±1, and 0, the maximum magnitude of the intersymbol 

interference component of eh in eqn. A7.4 is equal to 2 IY. Zh{* 
j=h+l 

That is, 

2 IY. ZTI l (s. 
- x. ) zh (A7.5) 

j=h+l ýh j=h+l ýýh 

for h= 19 21 -- , n. In the iterative process (Fig. 3.14) of any 

of the systems 9- 11, the value of xh (1, -- h5 n) is determined from 

the value of eh using Tables 3.1,3.2,3.8, and eqn. 3.91. However, 

only those updating processes for Ixhl that involve the use of Table 3.2 

and eqn. 3.91 are considered here. This means that, each of the systems 

9- 11 with any of the versions b, c, and d (Table 3.8) is assumed 

to operate with at least two iterative cycles here. It can be seen 

from Table 3.2 that, the value of xh before it is updated here, can 

be any of the values 1,0, and -1. Consider first the case when xh = 0. 

The value of eh in eqn. A7.4 now reduces to 

nT 
eh ShIYhZhl + (s Xj)Yjzh 

j=h+l 
(A7.6) 

for h= l1 29 .., n. The updated value of xh here is set to 1 if 

eh > 0, and to -1 if eh -- 0. It can be seen from eqn. A7.6 that, when 

sh = 1, eh >0 if 
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n 
(YhZh ý>-7, (s 

-x. 
)y zh 

T (A7.7) 

j=h+1 JJjh 

and when sh = -1, eh ý0 if 

IY 
hh 

Zh iE (s 
- x. )Y zh (A7.8) 

j=h+1 JJJh 

Furthermore, it can be seen from eqn. A7.5 that, the inequalities of 

(A7.7) and (A7.8) are always satisfied so long as 

i YhZh 
Tj 

>2nXfYj Zh 
T l 

j=h+l 
(A7.9) 

which is therefore the condition for the updated value of xh to be 

equal to the value of sh here. Consider next the case when xh = ±1 

before it is updated. The value of eh in eqn. A7.4 now reduces to 

n 
eh = 2IYhZh! +7 

lsi 
- xj)Yi Zh if xh = -sh = -1 

nT 
= -2IYhZhI +Z (sj - xj)YiZh 9 if xh = -sh =1 

j=h+1 

nT 
=0+Z (sj 

- xj)YiZh ' if xh = sh = ±1 (A7.10) 

j=h+l 

for h=1,2, "" , n. The updating process for xh here is such that, 

when xh = 1, the value of xh remains unchanged unless eh < -IYhZhI when 

the updated value of xh is set to -1, and when xh = -1, the value of 

xh remains unchanged unless eh > IYhZT, when the updated value of xh 

is set to 1. It can now be seen from eqn. A7.10 that, when xh = -sh 

the updated value of xh is equal to sh if eh > 
JYhZhl or 

n IYhZh+ 
>-E (sj 

- xj)YjZT (A7.11) 
h 

j=h+l 
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and when xh = -sh = 1, the updated value of xh is equal to sh if 

eh < -IYhZh 
I 

or 

n 
lYhZhI ' (s 

-x 
)Yjzh T 

j=h+l 
(A7.12) 

and finally when xh = sh' the updated value of xh remains unchanged 

if I ehI ; IYhZh Ti 
or 

n 
IY ZhI z (s. 

-x 
)i zT 

hh 
j_h+l JJh 

(A7.13) 

It can be seen from eqn. A7.5 that, the inequalities of (A7.11) 
- (A7.13) 

are always satisfied so long as the inequality of (A7.9) is satisfied, 

and the inequality of (A7.9) is therefore the condition for the updated 

value of xh to be equal to the value of sh here. Consequently, so long 

as the values of x1, x2, """ 9 xh l are equal to the corresponding 

values of s1, s2, """ ' sh_1 (being the assumption made in the analysis 

given above), the inequality of (A7.9) is the condition here for the 

updated value of xh to be equal to the value of sh regardless of what 

value xh has before it is updated. 

In system 9 or 11, the detected value of s1 is taken to be the 

value of xl obtained at the end of the iterative process here. It follows 

that, the condition for the detected value of s1 to be equal to s1 

(that iss the condition for error-free detection to be achieved) in 

the absence of noise is here given by the inequality of (A7.9) with 

h 1, or 

n IY1Z1 >2EIY jzl 
l (A7.14) 

j=2 

which is the inequality of (A7.1). 
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In system 10y however, the detected value of sl is taken to be 

the value of xl obtained at the end of the one of the two iterative 

processes here associated with the smaller distance IJR' 
- XY11, where 

R' = SY in the absence of noise, and X (egna 3.13) and S (eqn. 305 

are the two n-component vectors having the components x1, x2, """ , xn 

and s1, s2, """ , sn respectively. The two iterative processes of 

system 10 differ only in having a different value of xl, this being 

such that, one of the iterative processes here is associated with xh =1 

whereas the other is associated with xh = -l. Clearly, if all the values 

of x2, x3, """ , xn obtained at the end of the iterative process 

associated with correct value of x1 (that is, xl = sl) are equal to 

the corresponding values of s2, s3, """ , sn , then in the absence 

of noise, the distance +IR' 
- XY+I or 

I+SY 
- XY'+ of this iterative process 

is equal to zero so that the value of xl here (being equal to sl) is 

always taken as the detected value of sl. Consequently, the condition 

for system 10 to achieve error-free detection in the absence of noise 

is when all the values of xV x3' """ ' xn obtained at the end of 

the iterative process associated with the correct value of x1 (= sl) 

are equal to the corresponding values of s2' s3, """ ' sn , and is 

therefore, from eqn. A709, given by 

n TI>2Z fijZhl (A7.15) IYhZT 

j=h+l 

for h=2,3, -- 7n which is the inequality of (A7.2). 
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DERIVATION OF THE CONDITION GIVEN IN TABLE 5.10 (CHAPTER 5) 

This appendix shows that, in the detection process of system 7 

(chapter 5)q the necessary condition for the transmitted value of si+h 

(0<-h<-? k, ) to be included as one of the mh selected values for xi+h 

(eqn. 5.54) is given by 

IJi+h + Wi+hl < vh =1' if mh =1 (A8.1) 

li 
i+h +W! 

i+h 
l< vh =' if mh =2 (A8.2 

Ji+h + Wi+hl < vh =2 if mh =4 (A8.3) 

IJi+h + wi. 
+h 

I< vh =39 if mh =9 (A8.4) 

where the estimated value x! of si+h is (eqn. 5.68) 

xi+h si+h + Ji+h + wi+h (A8.5) 

The mh selected values for xi+h here are obtained by using the selection 

processes k-D described in section 5.9 (chapter 5) for mh = 19 29 4ý 

and 9 respectively. 

Consider first for the case when mh =1 (selection process A). 

The 16-point QAM signal constellation of si+h here is divided into 

16 regions shown in Fig. 5.14, and the selected value of xi+h here 

is taken to be the possible value of si+h that lies in the same region 

as that of the estimate xi+h of si+h' Clearly, if xi+h lies within 

the circle with centre si+h and radius 1, then it can be seen from 

Fig. 5.14 that si+h must now lie in the same region as that of x! h' 
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This means that, the value of si+h is always taken as the selected 

value of xi+h here so long as 

Ixi+h si+hI <1 (A8.6) 

or, from eqn. A8.5, 

1+w! <1 (A8.7) Ji+h 
i+h 

which is the condition of (A8.1). 

Consider next for the case when mh =2 (selection process B). 

The two selected values of xi+h here are taken to be the two possible 

values of si+h closest to the estimate x! of si+h" Three different 
i+h 

situations may now arise depending on whether si+h is one of the four 

central points, or one of the four corner points, or one of the eight 

side points in the 16-point QAM signal constellation, as is shown in 

Fig. A8.1. It can be seen from Fig. A8.1 that, si+h is always included 

as one of the two selected values of xi+h here so long as x! lies 

in the shaded area shown in Fig. A8.1. Furthermore, if x! lies in 
i+h 

the circle with centre si+h and radius, 
/2, then it must also lie in 

the shaded area here as can be seen from Fig. A8.1. It therefore follows 

that, si+h is always included as one of the two selected values of 

xi+h here so long as 

IXi+h 
Si+h1 ` (A8.8) 

or, from eqn. A8.5, 

IJi+h + Wi+hI < (A8.9ý 

which is the condition of (A8.2). 
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L/io 
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Fig. A8.1 Part of the 16-point Q, AM signal constellation showing the 

transmitted data symbol si+h an d its neighbouring points. 

(a) is one of when s the 4 central points, i+h 
(b) is one of when s the 8 side points, i+h 
(c) when si+h is one of the 4 corner points. 
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Consider now for the case when mh =4 (selection process C). 

The selection process here is such that, the 2 possible values of Re(si+h) 

that are closest to the value of Re(x! ) are taken as the 2 selected 
i+h 

values for Re(xi+h) ' and the 2 possible values of Im(si+h) that are 

closest to the value of Im(x! ) are taken as the 2 selected values 

for Im(xi+h), to give a total of 4 selected values for xi+h' where 

Re(. ) and Im(. ) are the real and imaginary parts of (. ) respectively. 

The four possible values of Re(si+h) or Im(si+h) are here given by 

3,1, -1, and -3, and from eqn. A8.5, 

Re(x! 
h) = Re(si+h) + Re(Jl+h + w. h) 

(A8.10) 

and Im(x! 
h) 

Im(Si+h) + Im(Ji+h + Wi+h) (A8.11) 

The selection process here is also shown in Fig. 5.16. It can be seen 

from Fig. 5.16 that, if Re(si+h) = 3, then it is always included as 

one of the 2 selected values of Re(xi+h) so long as Re(x! 
h) >1 or, 

from eqn. A8.10, 

Re(Ji+h + wi+h) -2 
(A8.12) 

Similarly, if Re(si+h) = -3, then it is always included as one of the 

2 selected values of Re(xi+h) so long as Re(x! h) < -1 or, from eqn. A8.10, 

Re(Ji+h + wt h) 
2 (A8.13) 

If Re(si+h) = 1, then it can be seen from Fig. 5.16 that, this value 

of Re(si+h) is always included as one of the two selected values of 

Re(xi+h) so long as Re(xf 
h) > -1 or, from eqn. A8.10, 

Re(Ji+h + wl h) > -2 
(A8.14) 
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Similarly, if Re(si+h) = -1, then it is always included as one of the 

two selected values of Re(xi+h) so long as Re(x' ) -1 -l or, from eqn. A8.10, 
i+h 

Re(Ji+h + Wi+h) 2 (A8.15) 

Consequently, so long as Re(Ji+h + Wi+h) satisfies all the inequalities 

of (A8.12) - 
(A8.15), that is, 

IRe(J. + w! )I<2 
i+h i+h 

(A8.16) 

then the transmitted value of Re(si+h) is always included as one of 

the 2 selected values of Re(xi+h) here. The same argument can be used 

to show that, so long as 

2 IIm(Ji+h 
+ W! )I -- (A8.17) 

then the transmitted value of Im(si+h) is always included as one of 

the 2 selected values of Im(xi+h) here. It follows that, if both the 

inequalities of (A8.16) and (A8.17) are satisfied, then the transmitted 

value of si+h is always included as one of the 4 selected values of 

Xi+h here. Consequently, it can be seen that, the condition for the 

transmitted value of si+h to be included as one of the 4 selected values 

of xi+h here is given by 

I Ji+h + w! 
l-2 (A8.18) 

i+h 

which is the same as the inequality of (A8.3). 

Consider finally for the case when m' =9 (selection process D). 

The selection process here is carried out according to Table 5.9. Thus, 

if Re(si+h) = ±l, then it is always included as one of the 3 selected 
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values of Re(xi+h) as can be seen from Table 5.9. If Re(si+h) 3' 

then it can be seen from Table 5.9 that this value of Re(si+h) is always 

included as one of the 3 selected values of Re(xi+h) so long as Re(xf 
h) >0 

or, from eqn. A8.10, 

Re(Ji+h + Wi+hý -3 
(A8.19) 

Similarly, if Re(si+h) = -3, then it is always included as one of the 

3 selected values of Re(xi+h) so long as Re(x! h) -< 0 or, from eqn. A8.10, 

Re(Ji+h + Wi+h) 3 (A8.20) 

Consequently, so long as Re(Ji+h + Wi+h) satisfies both the inequalities 

of (A8.19) and (A8.20), that is, 

IRe(Ji+h + w! )I `3 i+h 
(A8.21) 

then the transmitted value of Re(si+h) is always included as one of 

the 3 selected values of Re(xi+h) here. The same argument can be used 

to show that, so long as 

Im(Ji+h + Wi+h) 
143 (A8.22) 

then the transmitted value of Im(si+h) is always included as one of 

the 3 selected values of Im(xi+h) here. It can now be seen that, the 

transmitted value of si+h is always included as one of the 9 selected 

values of xi+h here so long as 

i+h + Wi+hl 3 (A8.23) 

which is the condition of (A8.4). 



- 477 - 

APPENDIX B1 

COMPUTER PROGRAM FLOR SYSTEM 5 (ChAPTER 3) 

INTEtiE_R FRRitR, CS*5 ý. ý, CE (5 ). WERi2C? y, (32. ), X(64). Et. EN<'2! 
I NTEOER*4 NON 
'.. R 

. 
V(-M0.. RNt_"c- ), RE'64. )" _i Cis 2 0. ', &('2C0. W2. ) 

PEW ? 4*40,401.7Y<4 . 40 
DOUR E PRECISION G3O5CEF.. 6015CRF, 605&W, PP. - SD 

. 90100 FORNH 
914-74-1 FORNN T 
9 20 FORMT'IH . I: '., '' I'''4', 15, 'ý', {, I.,, 
'ý 00 FORt1AA T' 1H, F, 5.3. X. « 192. ) 
. 
9400 ' FORMA T '«1 H. {I. i 
951-113 FORMA T (I H. F5.3'. ) 
9600 FORtMT''. 1H , ELEHENT TRANSII'ITTED 
9700 FtiRMATr UH , 'ERROR DETECTED _ '. 17) 
9800 FORIIATU H, FTRNORR& DEVIATION F?. 4) 
991: 14. FORMAT' 1H., 'SNR IN DE - "A F7 4. ) 
5400 FORt4ATý1H SF7.3) 
85,00 FORNAT'. IH ., 20r1 
8600 FORMA TC .H" `' ZV-NATRI X` //) 
C 
t' SOME CONSTANTS 
C 

REAci1, *. )NO, N, NI. NO., NF 
RFHCi(1.. *)NON 
READ (I, *. )NC 
READ I "v) ý V(' I}" F= . NO, I) 
REAP! 4*1, *. "`SC/ 
ERROR- 
0-TB 

=1 
IE=1 
NI1=N+NI-1 
NI=N-1 
f 7= NF+. 1 
1S=N-NF 
t/0 10 1=1,20.1 
NER (J) =0 

. 10 CONTINUE 
I1. =N-N3 
fai t} F=1.. I1, 
s/`ýI+Nuy=i. 0 

20 CONTINUE 

RITE<Lf 000) 
WRITESI., 8600) 
DO 3-cl 11=1, M. - I 

DO 40 12=1.. Nr1 
Z' I.. Ili=ti. 0 



- 478 - 

K. 1=12-11+3, 
iF' K1. LE. 0. >GOTO 40 

fit F3i=ttt I t. f+ý ; 'Ii" F4 *71 11., 12) 
40 CONTINUE 
314-1 CONTINUE 

WRITE'' . 9180) 
WRITEt' tit ýtý ýi" 1=LN. I? 
UPI TF(i, 910ü) 
14RI TEU,. 8 600 
litt "0 

.: =3. N, 
&0 60 J=1, N., I 

DO 70 K1.. N.. I 

IF(*KI. LE. 0. )t3OTO 70 

CONTINUE 
60 CONTINUE 

MRI TE(1.. 8400) Z('1, L), L=L, N, 1. ) 
51-1 CONT iNUF 
C 

C TTRRT I N13 PROCEDURE 
c 
888 CALL G05CSF'. NONi 
999 Pat? 80 

F`it'ý. ý=tst}5f}ffFýý: t. 0&0tß 0> 
Ct7NTiNUE 
ES=I 

C'" 
C STORING THRESHOLD- VRLUES 
E 

1)0 fit: } 1=1.. N.. I 

DO ICIO J=I, N.. I 
Yj I)=Y<I. ) + I, tFf" t. Ff 

100 CONTINUE 
90 CONTINUE 

C. 
C DETECTION PROCESS 
C 
c 

IR=l 
c 
C 
C 

S 
S' 

i. 
777 
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00 110 
.r =1., NI I 

d; =1+1 
S10=501) 

EXt I)=E; fß, 1. " RA< 1 >=RA! f; li 
110 CONTINUE 
C 
C GENERATING NEXT ELEMENT 
C 

SN=GO5QFQP ) 
IFr LN. GT, O. 5)GOTO 120 
5'N--i 
GO TO 1.? 0 

120 E03=+i 
130 

Q 140 ; _: NGi. i 

IFt K1. LE. 8, )GOTÜ 140 
K2=500-EXIAf 
VKI =V K)+VVE; i 
IF IK2. EQ. 2)RA(N? =RR N%+VKl 
IF'J 

. 
FQ. -2'>RA<'N)=RR Nt-VK1 

140 CONTINUE. 
IF' S' N). EQ. 1 iRH! N. >=RH' N t+V! ii 
IF! S''N.. EQ. -1)RA. N)=R'A<Ni-4`; 'ß. t 

CI Tr RA T. I VE PROCESS TO DETERMINE 5 FROM RR 
C 

EK N)=0 
Ji<. 

iS) -+1 

X (I4 +N)=-1 
DO 150 ,. FRF=3 "L" .1 U'JJi=0. O 
IF(JJ. EQ. 1? NN= t 
.[F<J. 

EQ. 2) N= 

00 160 I=L, N.. I 
L=1+NN 
RE L . >=RN! 1i 
IFt'I. Eta. I`; iGOTO 160 

160 CONTINUE 
C" 

K1=EXt IS. ý 
F: 2_, +: !IS +NN. ) 
v2=0 
DO 165 F; =IL, N.. 1 
KWAI 
K4=K+NN 
EF(KI. EQ. 

, 
yRE K4)= `EW)+V0) 

1F<K1. FQ. -1)RE'tK4}=RE(K4>-V K; 'i 
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IFVK2 FG. 1R 8 04 r` =R8'Kf-,: K) 

165 CONT3 Nub' 

ii'<N{'. LE. 0. IGOTO ii U 

00 180 I1.. NF. I. 
J=N-I+1 

K1_0 
DO 185 (; =tip, Px" I 
KI_K1+.? 
. _, _. 5. 

IF_(J . 
EQ. 1 )R8I. K )=tie02 +$ Mi 

185 

. 
180 CONTINUE 
7 i{.: =3 
666 00 f 9o 1=k. N. I 

L=l 

EL 8.0 

LI=L+NN 

MIC. EQ. 1. AND LX. NE. & i{3OTO 190 
D{{ 200 K 

.i. 
N, I 

KI =K +NPN 
EL=EL.. +RE(Kl)"* <Lx K) 

200 CONTINUE 
Tr, =0 

210 EF<LX. >220.240 2''0 
220 fF{EL. GT. YL)I . =G 

60TO 250 
230 IF(EL. LT. -YL ). i X_-2 

60TO 250 
240 lF< EL >260.260.. 20 
260 In-1 

tits TO 250 
2'ßi IX=+l 
250 

. 
MIX. EQ. WGUTO 190 
&0 280 J= ß. N. 1 

IF(('1. LE. 0)6itTO 280 
V I=V<KI 
Ji=J+NN 
IF< IX. GE. 2)V I=VKI+Yip; I 
IFt X LE. -2)YKI=YKI+Y: 'I 
1 F' M: L T. 0 )R J1) RB( +YKI 
JFUX. GT. 0)RBt JI)=RBr Ji)-YKI 

280 CONTINUE 
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MIM WX 
... 
t ?0 CONTINUE 

I F! 1 C-. GE. NC. ? GOT+_t 29C 

Fr=Ic+GOTO 
66 

290 DO 300 _ it r 

JI _ j+Nf' 

300 CONTINUE 
150 CONTINUE 

IQi+(.. i.. ST. (J >GOTO 1 

ES=r+ V 
00 320 I=I, N, f 
EX i. >=x' I 
MIAMI) 

340 CONTINUE 
SO TO 330 

? 1= 
1.. lMAN. r 

i DO 340 i =3 ý N! i 
L=f+W 
EX': f- 

rye 
fL.! 

RA': . I)=, RB'. L 
340 CONTINUE 
330 IC. =i 

IF! IR. LT. 
_N 

)GO TO 350 

. 
JF! S 1ä. Eta. ES; j30T0 260 
ERROR=ERROR+i 
NEB'' . 

lE >=NER(IE) l 
360 

. 
F! ' ID. L T. 50 %GO TO 370 

IF'UE. LT. 20)GOTO =SC-- 
WFI TEj. 6500)! NER (l), I=1.20,1 
00 390 1=1.20. 

S 

NERV I)=0 
'90 CONTINUE 

IM 
380 IE=IE+i 

I0=0 
370 lD=. lD+i 
3503 IF' Its. GE. NI1)GOTO 400 

. rA=IAT1 
SOTO 777 

400 IFS SD. LE. 0.0)GOTO 410 

410 URI TES 1,9000) 
WRITE(. 92001NC. N. NI. NE. NF 
URI TF! '. t 9300M, NON 
WRI TEt 1,9400. NC 
URITEf1, MO}! V' i 1.11. W6.. 1) 
4RITF<i, 9000 
WR1TE11,9600)NI 



- 482 - 

WRI TF C, 97 t. ER ÜR 
WRliE'1,98LW! & 
WRs TE! 1.9_90. _`. NR 
UPI TEA, 9000. ) 
UR1TEt1,9100. ) 
MS GE. N8'6ÜTO 4$& 
18=18+1 
1F' lc. EQ. &REAL)' '. yNON 
REP501,:; >5f: 
ERROR=O 
i'c_. 'i. 
10=1 
IE=l 

. IFUB. EQ. 6)JO TÜ 888 
GU TO 999 

420 CALL EXIT 
EN& 
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APPENDIX B2 

COMPUTER PROGRAM FOR SYSTEM 8 WITH VERSION b (CHAPTER 5) 

FROGRPM ORM I NFU T. OL1TF LIT , TNPEl =I NF'uT. = TAPE2=OU TFU T; 
C 
C 

1~ 
L. 

C 

INTEGER F5'65 & fAi5' PETE IEE, UAW 40), In4+O: 401,1HW 
1. ERRORS, E. FROFE, NER'F(20 NER`St 2O> NEI 't 20 , NEFE; "2f 
2, PXAi6; k" INR(60O), RYSt40: 40; ', IYSt40,40. %, P. 'Nt20;, It'Ni200 
_. RZA16 . IZS(16)! R'cIF If%IF 

PEAL F 'V 50' Is, '&50%: NINU. F'E, Utii y%: IF. f. it7(9), PZUt1i9i, IZUfi yi, F'YLi11 I `Uf1 
I FP' S. ' , IRKS), U(600), YLI' 40. _ , WOOL `" 40. ' , TH' lE. ' , 2 FXUPi. IicUM 

9000 FORMAT 11111. > 
9101 FOFl1A; i H0 1 WIT TRRNSM T TEI' = "17" 
9102 F? Rl1RT: '1H0. `SVf&ÜL TRRN5MITFOP ''ID 
9201 FOR11AT: '1H0 'BIT ERROR = "'ID 
9202 FORNATt1H0. ' SVNE'OL ERROR - I') 
9 300 FoRt1AT i. Ha 'BEAN T4`ß IGNAL POWER = "; F7.4) 
9400 FORMR T? H&; ' STRNDAR'1J PEV IR TI CAN = 'F?. 
9500 FÜRNA TC1 H0. ' ENR IN CAE - F'. 4) 
9999 FORP1A T : "I HI, 

.% 82_00 F RMR Tt 111 H1: " Nth I SE -0 '" 
8600 FORK T' //) 
8700 FOR'NNT( H . 32l3) 
8800 FORHA7IHt. ySK: F1O. 4,2 F1.0.4) 
8 900 FÜR1 AT : "; '. % 
7000 FORMRT IH ; 4d2. W? 15, K ß': 'I2,34k 
7100 FORtIAT(IH . FE. 4' Vs I2)000 

FORMAT (I H. 6(/10F7.4)) 
7300 FORt9ATUH 161 
7400 FORPIAT (1 H 

. 
2015) 

7500 FOR! IA TiIH. 'U=', F12.5,5X. VW, F12.5 
c 
C SOME CONSTANTS 
C 

READ (I *)NY NM, NL.. N.. NI, NB. NF. NFL N2 
READ (1, .) NQN 
REAfftL *itfV(I%. " I-L, Nis, 1. ) 
READ I, *1 (IVt I f. I=1: NG. 1. > 
j' EA C' 1. *) f, 

N=N+i. 
EERORB=0 
ERROR'S=0 
18=1 
I0-1 
10 =1 
IH=t, 
NMI=NM-NL-1 
NI. =2*N! 
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?- Z-- NIi 
jF{'NN. GE. NG!;, -30T0 10 
IH=Mtn-N 

i 0 20 j=i! 20f! I 
NEfR& j) =o 
NER-1 (j)=0 
NEIB(I )=t 
NEIE=0 

C- CONTINUE 
N1= N+ I H+NF+ ' 
W =NN*N2 
N5=W4 +1 
N7 =N4-Nil 
js=NI+N-j 
12=Ni -1 

j'= tF+1 

j71= IFI+1 

NN= j'+ 
EE=t. Cl 
GO 0 j=1. j! 1 
BB=BE` + 
CONTINUE 

RR=PE + tRS (17A. l '. 'srýj; N). > + jý, {'j; N. ) . ý: jsr: j; 'ti. %i 

DO 40 1=. j! j; !1 4r RI=+F$`{ 1) 

A2R=H2F + <'YRi*VR2. % 
R21=R r+ (YR1 *'sr`j2) + (Vll *W2. ) 

40 CONTINUE 
ALPHA= (RA*8 
TH(*1. )=i. 0/1 .0 G0 50 j= , 14.1 
TH{ j+1) TH{ j i+TH{ i.. ) 

50 CONTINUE 
Pit--i 

1>0 60 j=1,4,1 
., _-., a;.. = : 1+ 

DO 70 T=I! 4.1 
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K4 =~J 

RN K4) `- +Kl 
INNVK4 j_-3+K2 

70 t'. ÜNTINIE 
60 CONTINUE 
C. 

C START I NG PROCEDURE 
C 

CALL GOSC: GF(NQN) 
999 WRI TE: '2,9) 

00 80 I=i. = Nl_ i. 
RS(I)=1 
ZS(Z)=l 
R'(I) G05DcFA. 0.5D. % 
IR I)=GOWF<0. Ei., SD) 
LI=I 
IF' I. GT. NG. %L1=NG 
DO 90 AI L. I: I 

VI= I4`i'J) 
RR_; I)=RRfIf + 'VR-VI 
1R(I =lR' I) + <'VI+VR) 

90 CONTINUE 
so CONTINUE 

T; F'oM=a a 
C 

C STORING VECTORS 
C 

!` 
DO 100 I= 

. NN. I 
U<I y=. 10E18 
DO 110 01,13A 
RX'S<I, 0=I 
lull, JW 

110 CONTINUE 
100 CONTINUE 

Ui I >=&i. 8 
00 120 J=1. I.:.. I 
Ki=NN+i 
RX_s{RI. J) _S 
IXS(KI, tT)=j. L 

120 CONTINUE 
C 

C GENERATING NEXT ELEMENT 
C 

RES=ß 
IES=i 
CDU MR, Its=f, r .i DO 130 1=1,12,1 

A 



- 486 - 

IS'. i J=iSM. ) 

RR < 1.! = Rf (r. 
IF(I)=IR( :?. ) 130 CONTINUE 
SN=G05CNF; 'PP. > 
K2=11 
DO 140 WAY! 
1F(Std. LT. THi 1. % 00T0 150- 
K2=1+1 

140 CONTINUE 
150 RSl Ni. =RXNV 2f 1S (Nl ?=I XN K2 

.ß 
FRCNI. ? =G05 PF: Ei. On Y, 
IR: Ni )MADF. 0. 0.. SD) 
DO 160 All NG; 1 

MR_`+(A ! 

AMOK 
Vl=1'/: J. ' 

RR4Ni. '=FRt I? + (SR*VR - SI*Vf) 
IRCNi.! =iR(N1 J+ ! SR*'#; I + 51$. Sf`RS 

160 CONTINUE 
IF, ' H. LE. 0 X6010 17LI 

C 
C, INTER-S'WIBUtL INTERFERENCE CANC: EL. AliON CIRCUIT 

11 90 

C 

C 

2 00 

Cell #S! 3 : J=i. TH.. j 
L, 7=12: J 
LS N+, T 
It`d'=RV , L9 .! VI IV: "L ) 
RR, ': 'L; )=RR{L, j 

CONTINUE 
( 'F` . e. -V r 

DERIVING 4'NF1 Ale i VECTORS 
AND 
CALCULATING NEW COSTS Lt t WL £'f 

DO 190 I =i: NP I, i 
Ki I +N 
DO 20 J=r. k'. . Nt' Cf(*tF)=UiIi 
CONTINUE 
Do : '10 J=i. IS. 1 
RSUt7(J)=t. 0 

DO l. '= I 
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22& 

21Cý 
C' 

24 & 

L4=1 -K+i 
LWK. 
F: R=R; '5 i l, L4 

.ß 1 i. i=Srti 
S; S! L4 

IF< R. &T. Lr %GOTÜ 22L 
IF: I. CT. L5)GÜTQ 22L1 
VR= R4 `i L5 

R5tlnt z . 
%=R'Suf1 M. % +< KR*VR 

I'SLIII J. %=1SLUI(J. > + KR"*'V; 
CONTINUE 

: R_, LlN, J%_RR'; L_: - RLUri; J 
ISL! f! J'=1R'4L3' - f`un(j) 
CONTINUE 

FIRST EXPNN4iON OF VECTOR 

AUSKAM= 20 
RrL Pf- _3.0 
IXL'I. l e. 0 
RTfi. lN 

.0 

IY. 1I7-&. & 
_ &0 241 s 1_ F! 1 0 ". H- 

KE=KR 
KC=P". A+I 

a. äf-R'SLlMMiP: C! 

I LIP1(. f, C 
.> zI- 

_ VRA +RV{KC 

a t 

VR&=+ 'V: 'KB. > 

XL1M= . L1 +; 'R*VRt 
Iý, Ctlf=lr. Cllý + IZ R*VIH * Z". I*, '`RR,, 

_ RYL1fl=RYLIil +c LR*VRF - r.:. I*VIE 
IYtft4-.: KM rtý`ý'; °fE` { LI*'VR&i 
CUNT I NL IE 

} UMS) 
EI-f5LlP17'1. % 

VIA -1Vt1. % 
RXL! frl RXL1f +Z *VRA - Z AV IN 
IXUt'f=lXLtt1 f< '*VIR + GI*VR°A} 
r'i'I1R=j : Rr'Llf( A- (F "f{ft%*A R) + 

MI= . ; 'IXCtABE' - (Fc'ttti*A2I )- 
IF4'N2. Eta. 9 %GOTO 25& 
KAM `' 
IF<XAR. 61. -1. =NA: 
IF. 'XAR. 61. A. &)KA -i. AM 

- 
IFtNI. OT. -1. 

" il- 22L1 

<7R*VR - KI*VI) 
KR*VI + KI*VR) 

I YUf *A2I) ),, AL PHA 
(I YLtt1*'A2f) ), -ALPHFI 
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t'170 
26L 

250 

290 

2 30 

310 
C 

C 

C 

280 

3'0 

IF; ' °AI. &T. +: f. OYKB=-i. 
f: E= 0 
DO 260 KC=1,2,1 
KRAM 
F; F= R'F 
DO 270 KD=1,2,1 

KE_KE+l 
k. F=f:: F+2 
RZ AF: E)=F; R 
IZE, kf, =KF 
CONTINUE 
CONTINUE 
B0 T0 280 
KR=-S 
IF; ' AR. 6T. ü. &M -37 
M-5 
IF NRI. 6T. 0. 
KE=O 
DO 290 KC=1,3,1 
RAW +2 
KF= KE, 
DO 300 MI' M . F: E=FE+I 
KF=1 F+2 
RZS KE) A 
I ZS( E? =KF- 
CONTINUE 
CONTINUE 
60T0 280 
DO 310 W, N2. I 
RZAK}_R: '; N(K) 
IMMAMMA) 
CONTINUE 

SECOND E;; 'PAN5l Üw OF VECTOR 

I =I-NMII 
A 320 f; =. ßf2. I 
MUM 
MUM) 

RXA41c %=KR 
IXA f M. 1 
DO 330 M!, 18: 1 
VR=RV(KR) 
VI=I V4k: tii 
Rt: UIr{ 14A. l F SC(l! KR f 
IZL! 1' KR)=. 1SUUM4 KA r 
CONTINUE 
Rig. UM= &. !f 

- : KR*VI + Kf*VR) 
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40 

IF<'x&k. &T. Q. OM M0.0 
IF(XBR. L T. -3. &. >XSR--=.. jI 
IF: XB1. GT. +3.0J X& =+'. Cl 
IF(Al. LT. -3. &. >XBI=-3. & 

LI-ILttM! l 
D 16M16) +< ZR*ZR) +VI *Zl 
U(16)116) 
DO 350 KR=1,2,1 
XR=MR 
XI=XHI 
IF (KA. Ei?. 2)XR= BE 
IFSKA. EQ. 2%XI=L, EI 
KB A'+1 

DO 360 k. C=KE o IS.. I 
E; D=KC'+I 
WR `{ KE`a? 

YI=IY' KD 

I S`Cff7**A2I > 1; "'HLPHA 
tI S`L(P1*H2Ri) 'ALPHA 

:: fix=<RYLIM BB 

If; 
r 

LI11 
.. G 

RYL f 
j'.. 

Ü. 0 

Is un= O. cl 
DO 340 KH=i= 151 1. 

KC=;: A+2 
ZR'=RZCIfl(KC:, 
Z I=IZCttf<. K 
VRA=+RV(K 

VIA- I V! K& 

VRB f" '1'ß; f: R) 
V B=-ZV(KR) 

+ : ZR'*VRfA - ZI *YI h.? 
Iý Cti =a,; Ct1 + :'R *VIN + ZI. *VRR. i 
R. YCft4 RYLl! 'Y + _ ; ; _R'*"VRB - ZI*f,; t t .! IYUII=JYUf + (ZR*VI + ZI*YRE. ) 
CONTINUE 
Cri"". 

ý. y=RZ L"! 
i 

(2. ) 

ZI=I Uf1c2. ) 
VRA=+R=V 1.. % 

VIFA=-IY 
RKC'f1=RXC1IT + 4' , R'* RR - ZI. *VIN 
I; C'Pf=IXCFPI + f ZR'. *VIN - ZAVRt 
MR= CC RXUM*B E%- (RYUM*A2R) + 
XAI= (IXCfri*B B) - (R 'C; t1*A2I ;- 
IF<taiAR. Uf. Q 

. 
0. jXAR`+ 

. 

IFARR. LT. -3 .O MM-1 0 
IF; , NI. GT. +' . 

&. %XHI=+ . 
0 

IF%XAI. LT. -3 . &. > Al=-=. 0 
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cL 

-770 
32L 
s9L 
C" 
C 
C 

780 

390 

400 

410 

C" 
C" 
C 
C 
C 

C 
C 
C 

RZUM C)=R Llti< <t %- <'XR'AW - XI*V j% 
Z i= UM( )-"; a "Vf + KIM) 

CONTINUE 
CONTINUE 
90 =Y KR= I, 7ß, R, 1 
KE KR+I ZR R4Cff; "f:: E. ) 
Zr I LIII(K8) 
}{10r: 0(16) + ; ZR"*Z. 'R. > + 4ZI*Zf 

CONTINUE 
CONTINUE 
CONTINUE 

DETECT E, 1 . 1. % AS s; 'i) 

00 380 I=1. NPD: I 
1Y(I)=N5 
VD(I )=I. &E9 
CONTINUE 
DO 390 I=i, N4,1 
IF> I %. UT. YD<: f > )GOTU 390 
Iv I %=I 
YXI M< I" 
CONTINUE 
! IWI-I'r`i' 
IF IINI. LE. W! DtitsTO 41CI 
MINI=MINI- V 
GOTO 400 
RESAX <lIN.. 
IE5-I ist t1INI ,i Dt I'r Ci. _? =KEi0 

SELECTING rec. BEST PREVIOUS VECTORS 
SELECTING NMI BEST PRESENT VECTORS 
ALL HA H ANTI-MERGING) 

J'F('WL. LE. L )GÜTÜ 4r-"O 
ELECTING NL. REST PREVIOUS VECTOR", 

_1+ 

DO 4'0 r=1. NL: I 
IF(RXS(1. K. NE. RE )GÜTÜ 420 
7F(1 S(l, 10. NF. IES)GOTÜ 420 
L1=LI+ 
K1=I+N7 
00 440 AN, KI Ntj 
IF' DIA). GT. 'r`C'(LI. %i6OTÜ 440 
IYtL. i=ßi2 
Yta(Ll)WR) 
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440 

420 
C" 
c 
C 

4 i'L1 
480 

500 
490 

460 
450 
C 
C 
C 

5 30 

52 

540 

550 

CONTINUE 
P: iY; L % %=1CIE! 0 
CON 

f 
I(, 

(LIE 

5EL C T1, NG . NNL REST PRESENT VECTORS 

£00 450 I=1. NM, 
IF; .tII. j. NE. FES)GÜTÜ 45C 
IF(IXS'I= I,,. NE. . IEE)GOTÜ 450 
: 1=I*N 

00 460 A=i! Ri± Nil 

Rc=N 1 

1>0 4 70 W, NMI, I 
IF; 'E)%A. %. GT. YDtF`. 2i iGÜTO 40L-1 
K2=K2-1 

CONTINUE 
IFt K. GE. Ntl. )GOTO 460 

_2+.. 
IF(K2. UT. NM)GQTO 490 
K4 =NM 
&0 5100 K. =K2.. Nfl. :t 
K5 =K4 
K4=K4-1 
IV: KS. >=I'r`rK 
T£>A. 

rt }-Vf' 14ä 

CONTINUE 

iVK) =Ji 

4`£ß t !: 'c.,. i =1) (Ji i 
CONTINUE 
CONTINUE 

SETTING VALUES FOR YU AND YS 

Do 510 1=1, NN. 1. 
t4a NI= I `(r 
IF MINI. LT. N5)GOTÜ 520 
DO 530 

. 
F=l, N, I 

_ 
rYS('i. 

Ir)=Ie 
CONTINUE 
YU: I %=1OEI0 
GUTO 510 
#'L! < '. t )=Ctt IT. IN. I 
RYS% i. N. %=RXA< PlINf 
f 4`ß+( f. N. %=IXA<fllINI ) 
IF(IIINI. LE. NN>GOTU 550 
III NI =t'iiNI -NPD 
GOTO 54 
DO 56Ct d=. ß 1?. 1 
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RY4 . I, AMA MINA J. 

560 CONTINUE 
510 CONTINUE 
C 
C TRANSFER Y ER f; TO X 
C 

£'! 0 5; 10 I=l, Nt1. I 
Lf( 'I. l=VU 1) 
Cro580<<= I= 1 

R'"""s1I=r; -F'YS I, P-*. 'I ) 

580 CONTINUE 
5r'! ß CONTINUE 
C 
C CALCULATE ERROR ENTE 
C 

IF<IH. LT. I )GOTO L8$ 

RD I F= RES_-RE :'f> 
ICIF`IEý'-ILi1. r 
IFeRC, IF. LT. fit. >RC'IF=-FC>IF 
IFr ICDIF. LT. 0. )IGiIF=-IC'IF 
IF<'RC'IF. Et?. 0>60TO 590 
NER`; 'ID`l=NEB``(ID)+ I 
ERROR`=ERRORS +I 
I F: 'FCCIF. NE. 4 ! GOTO 6t. 0 
NERBt IC'. f=NER& *ICr. % +2 
ERR'ORE=ERRORS +2 
GUTO 590 

600 NER & ('I C, >= NER'E (* I D) +I 
EFROR'B=ER'R'OR&' +1 

590 I F: 'TI'JF. EQ. 0. >GOTO t tO 
NEI_`t ICS. >=NEIti. 'ID. > +I 
ERROR'S=ERRORS +I 
IF(IDIF. NE. 4. %GOTO r2Et 
NEIR=; 1D. >=NEI&'r ID.; +2 
ERRÜRE=ERRÜR$ + 
GOTO 610 

620 NEI& ID. f-NEIF : 'ID %+I 
ERFORB=ERRORB +I 

610 IF: 'Ii::. LT. 50 GÜTO 630 
IF<: ICr. LT. 20)GÜTO C. 40 
WRITE(. ', 7400. ) (NER'B(l ), I =1 t 20.1 
URI TF<'2.7400) NEI&`; 'I) I=1.. 20. 
AI TF( . 7400 )i NER! ý (I .I =1.20: 1 
WRITE< 2,400 NEI5tAD. I= . 201 1 
DO 650 1=1,20. s 1 
NERB("I)=& 
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MAIM 
NER5 :' 0=0 
NE 1' ' 1' >L 

650 CONTINUE 

GOTO 660 
640 IL>=IM 
660 1 C= i 

GO TO $88 
630 

.I 
C= C+1 

$89 CONTINUE 
L. 
C CALCULATE SNR IN £>B 

TWOW=TX OW. '! 'NI*1.0i 
IF''5D. LE. 0.0 %GOTO 670 

GOTO 690 
670 b/RI TE<'2. F, 200. % 
680 b/ 

SfE: L'! y000J 

URI MCA 8700. % (RAD; J=2. Nj 1)P/R 
TE W 8700) (ISM, A2, N? 1. ) 

i/Ri TE; '2 8900. ) 
DO 690 I=1. Nti. 
b/R1TE(2,8 00)'; Rx . 'i, J), Al, I2: 1) 
URITE (2870)(1 L' I, J. % J=1 13: I 
b/RI TF: -2,88&0, U: 'I). STi< i 

690 CONTINUE 
URI TEM 9000. ) 
URI TE (2,7000. ) NG ý NPl, NL, 13. NI. NE NF s NFI, N2 
WRITE<'2,71Ü0iED, N? N 
URITE(2,7200) R'v(ri, In, NG. a. % 
W1 TE 2.7200Y 7 VW b 1=1v NG, 
WRITE ;2,9000. ) 
URITES2.9.101. >N12 

b/Ri TE<'2.91.02%NI1 
GJRITE(2.920. )ERF'ÜF'E' 
b/Ri TEt 2.9202YERRORS 
GIRT TE(2,9300 )T, ̀ "+"; FOW 
WRITE :'', 9400 i 
URI TEt 2. _9500. >SNR 
1'Ft I'6'. GE. NFiGOTO 700 
ERRORB= ü 
ERRORS= O 
READ (i t& Sr, 
I8=10+1 
GO TO 999 

700. STOP 
ENO 
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APPENDIX B3 

COMPUTER PROGRAM FOR CODED SYSTEM WITH CODER 1 (CHAPTER 7ý 

FR06RAH Ct? D! '. INFLIT, OUTPUT, TA EI=INPUT, TNPEr: -`=üUTF`UP 
t_: 

t.: 

C" 

IN' FEGER E4'13Oi, ESI, ESQ., E:. -,?, E`74, EE`., E-r, ;, S! ''0,1 20), t3! 'L, 0' Pr % 
I ERROR!, ERRORr, ERROR?, ERROR4, ERROR5, ERRORS.. Y-17(50, ý1 Lei, Niti` {'j e? 
. ti -' ,c "c "c scc. (,. S_ < st: ýi, t4ý`! 'ý: t: ýi, t_. ý tc4"t0i. CES-il 

.4 
"tc0i 

t'L !'t? , t'F_ k-1(20. 
), 
, t'F4 r5i i, L'"E `4'`lýi, LE_: Eý! 'SLii, NEP14'20i, NEP 4"20) 

4 NF_ R2 <r t} 1. NF R4 NFR54 20 !, NER64 ̀ 0 .? 
REAL V! 'c :? i, U4' 70), (liNL{, 1I1NY, VUt TO), Q 4'i. 3ü t, : 04''0, 'ti 

t `r`t? j 5t?, { 
. 
i'0 , lit 12. '' i't? 

.t 
`ct; , L`0 C 50 Y, CQ.: {'S i, C(4 { ýtl. i, CC154 =0' t: " 

{ `L 
9000 FORMR 
971? 1-1 FORIIATU HO.. `ELEMENT TRHNEH 1 TTED 17) 
921-11 Ft? Rt4A TU; : MHO, ' ERROR IN=128 ?=i. 17 } 
9202 FORtIR T< HO, ' ERROR 4'N=96. ) -', 17. ) 
920' FORK T! ' HO. "ERROR . "N=64 i='"I ?ä 
92 04 FORM Tt t HO, ' ERROR (N=48) _ 17) 
9205 FORtNH T%'1H0, ̀ ERROR 4: N=32 ?= 17 
%`06 FORMA T(UHO, ' ERROR <'N=1 6) -'. 17) 
9'tß FORM TU1. H43, ̀MEAN T, S: 1 GNNL POWER _ F'. 4 
9400 FORM TU HO, "ETANDIA#RC, &EV R TiON = F'. 4) 
9500 FORlrAT! '.: I HO,. 5NR IN OR = F7.4) 
9999 FORMA T H. 
$000 FORNR T (//I Ht, <F6.2)) 
S10 Ft? R! IAT: '. H, `0 16F, 5.2) 
, 921-70 FORKIA Tr //I HO, ' Nt.? iLE- Cl 'i 
$_00 FORtNAT 
8400 FORNH TU H, '212 
851-70 FORNRT{. H, 70t.., F12.5,59, ', F12.5) 
700 Ft? 'i is THIß, "3A. ", 12 ';; ' . E;, 5, 

_ K.. ý i, ', t;, 
11-11-1 Ft? RNNAT! '. UH , F5.3, 'K, 12) 

7e 1 171-1 FORtI RTtIH F5.3. ) 
300-1 FORt'It? TtUH , $11) 

7400 FORtlAT<'UH 
.. 

2015) 
C 
t SOME CONS THNTS 
C 

FEADýt ., *)NG.. Nfl., NL, N, NT, NE, NH.. NK' 
RF_AD1t , "iNt7N 
READtß, iiVtIi, I'=1, NG.. 
REED I, )(. 6'. 1 J).. J=1.. " NK, I I=1.. NH. I 
REAO4'f, *>SD 
Eta=0.0 
ERRORI=0 
ERRORS=0 
ERROR 
ERROR4=0 
ERRORS=0 
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ERROR6= 3 
18=1 

DO 10 1=02A 

Lf'. 2*t 
f'f+S 

)=IOEI & 

&0 20 J=I, N, l 
X5{ 2"*Nil+1, J>=ü 
'Q< ~*'Nf+i. ji=W0 

x CONTINUE 

10 CONTINUE 
L/Z} 30 1=1,20,1 

NERi1 1 i=O 
NERc !_0 

NER. J IM 
NERO' 1i-0 
NEARS' IM 
WERT 1 i=0 

30 CONTINUE 
L. 

C' 4 FAR TINE PROCEDURE 
C 

G05CEFOWQW ALL 
999 _ bRt Tt! 2, 

_99.9_`1) DO 40 1=I. N, i 

011=0.0 
RKIM. 0 

40 CONTINUE 
DO 50 I=3, N, f 
Ji=N-3 
DO 60 BF=I N1 i 
y;, F =5rtF+ji 
WKWAI) 
R. JF)=, RtJ+. i) 

60 CONTINUE 
L <N ý=+1 
00 '0 W"N, i 

_+54 
K. >=_ ! 

70 CONTINUE 
CALL ENCOt 4S.. 6,00.. N, NH, N0 
01N)=00 
R<N). M5DDF(0.0, SDi 
&0 80 W" NG, I 
R' W)=R(N) + Q{ i+W- ; AK) 

81.1 CONTINUE 
0 CONTINUE 

C STORING VECTORS 
C 
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00 90 1=1, mm" I. U' 
S )=I0EIS 

DO 100 J=1.3N, 1 
X501, J i=+1 

Q' Jr XQ. I M= 
I00 _ CONTINUE 
90 CONTINUE 

U 
. 
i"=0.0 

C 

t" _ GENERATING NEXT ELEMENT 
L" 

J? =Nf+N-ý 
00 888 Iii=1, Molt 
J4= N-1 
&0 110 I_1, J4, I 

; ", {Y=Sri+i 

RCM= '`! i +1 ) 

110 CONTINUE 
SN=GO5CAF' FPi 
rE<4N. G T. 0. M OTO 120 

': N>=-1 

GOTO 120 
12¬ 5{ N, =+1 
110 00 140 K=1.. N, 

140 CONTINUE 
CALL ENCO! SE, Go QQ.. N. NH.. NK 
AN)=00 
RrN}=rJet 00F'fit. f, Di 
DO 150 6; _?. NO" 1 

'N>= 'N. `"' + Q/1+W-K)*V! K. ' 
i50 CONTINUE 

C 

t EXPAND NG STORED VECTORS 
t'. 

DO 160 10, WPI., I 
j5=N-1 
DO 170 J= i. J5 i 

170 CONTINUE 
160 CONTINUE 

DO ISO 1=11 Nß'1, i 

K2= f +Nt 

180 CONTINUE 
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tilt 
cci: itr T=I, t`v'! i. 

-S' (' J>=X-5 I, r,! 
r0 CON T1 NL. i E 

CrL. L ENCO N, ''-S! L, toi, f; ! `dlt! Nt r 

ll 91 CONTIMUE 
L 
C CALCULATING; NEW CO TS 
t: 

1Itrý'ti i=! Nt't! 
tf 

. ý+Nfq >=ttt I. > 
A i=e 

.0 

0 JF: : i+N-f; !. ýi GYý^. N: ý. T ýýi }r0 22 ý 

' C'ONT. rMe 

+N, V=-. l + ri: t? t3+Nt1! Nfa's, ̀=; ý% 
7( T f- 4 

t! ý +tVt i=tit I+Nfl' + (W0 N>-mo tI +Nt't% i ßt .' 
`{'Ni- +NK. ° " 

210 CONTIA(W 
L= 
C EEL SELECTING NN VEL: TOR S 
C" 

J7= j Nth-NL 
. 
>; ' 

Lit? tt L=L! cF; '! 
tq i NU= . 0E9 
tlINV=? 0¬9 
NINI=cam. *Ntrt+I 

tt cY - 'Ntc+ 
+L 

'. Ft'. -U 5 t'ý"c_ 
00 240 1=1, JS! I 
. 
IFf %- ý'I! D. LT. 1 itsar iO 250 
IF(fi<'I). GT. NINU. >GCTO 28 
(i .F NU= Cf r' 
tNINs=I 
GOTO 24th 

. ''50 fFt U' I i. GT. NI NV>GOTO 240 
ti. 

( 
Nf! '=U i 

241-1 CONTINUE 
1ý0 L JY=3! N, I 

f`. ̀<L+'NM-NL )r'2., JV)=ý; L<WfNJ,, Ff`i 
YP<'L., , FT'. >' Q{ t1lNl, 'FY)tr{INJ! 

JYf 

260 trONTINUF 
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rU(L. i=U(NIN. i.: 
YU L+'N&NC , "2> LiftiINJ) 
U M. iNI -1000 
U(NINJ-=1 FEI. 0 

230 CONTINUE 
IF4'NL. LE. MOTO 270 
00 280 Iä=1.. Nt_±I 

MI NLi Mt 9 
J9=NN"*2 
00 290 I=i: J. I. 

`F%Ll(I i. GT. KINUkGOT'O 290 
MINU=U I 
NENI= F 

290 CONTINUE 
ft! 

_! '' 
I I+Ali-N& j= U'. t1 IN I) 

WMINI 1= E10 
&i0 300 jV=! N.. 1 
YS( II+tW -NL .. JYMt ; NIN, Y) 
Yt?! 

.f 
l+% Nil-NL J. JY =XQ! /'IINI. JY. > 

200 CONTIM/F 
r 80 CONTINUE 
c 

C DETECT X5 RS L 
C 

270 t'1INt1=10E9 
DO 310 W. NN.. I 
IF' VLf Q!. OT, NINor 6OTO 31CI 
Ni NU=Y !I 
MINI=1 

110 CONTINUE 
ESI=YS! NINl.. N-128+. I 
F_5 =YSENINI, N-9t+i ) 
Ems. '=Y 't? INI, N-64+ f 
E54-YS! t'fINIL N-48+1) 
FS5=YS<MINI, N-' + 
E 6=Y VMINI.. N-16+1) 

L'" 
G TRANSFER Y SACK TO X 
C 

00 320 I=1. NM.. 1 
U' I >=YUI Ii 
DO "0J N! 1 
Mr, J)=VSO A 

`F. 
X0(I " &=YQt I, LI i 30 CONTINUE 

320 CONTINUE 
C 
C CALCULATE ERROR RATE 
C 

IFUA. LT. WOW 888 
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WIG LT. 50)GOTO 40 

. 
IF;. D, LT. 20>GOTO 250 
WRITE' 2.. 7400. r S NERI 'Ii .; =1.20, j) 
WRITE<2.7400. >. NER2! 1>.; =i. 20.1) 
G1R; TECH, 7400i(NERD 

.) 
i=1,20,1i 

MR! TEA, 7400) NERO' i, Al, 20, 
k! RITE' . 7400 . NER5< 

. 
>, I=1.2t, 1. 

URITEfr 74OO" , ̀ ERWI), i=3,20,1 
WRITE !A $600 i 
00 260 I=L, 0,1 
NERl <1 f=0 
NERV f)=0 
NERV If=0 
NERW>=0 
NER 1 ! =0 
N Rb: I/=0 

360 CONTINUE 

Q=l 

GO TO "0 

. 
'50 ID=10+1 
_'70 1C=1 

LL TO 80 
.? 40 f C= iC+l 
380 FFt E51. *S N-1280. > >400.400,410 
400 ERROR. =ERRORI. +1 

WF_Rl ; "ID =: ERI < 1D i+3 
414- 

. 
rFf E52*s < w-96+3. l 

.: 
420,420,4'0 

420 FRSROR =ERROR2, +1 

WEERAI0l=Ni1: 
c*. { tDl+1 

430 IFr"E53" S(N-64+1 >440,440.450 
440 ERROR? =EFFOR2+1 

NFR? t W>=NER~ J &W 
450 . FJ E 4* r W-4 +11. rß60,4 0,4 70 
460 ERROR4=ERROR4+1 

NEROS ID)=NEROCIDi+1 
470 

. 
lF! 'E54", (N-2 2+l) )480.480,490 

480 FRRORS=E. FROR5+3. 
NER5 lD. >=NERA10+1 

490 TF! 'E 6*S'N- t+ i. >` 0.. 500.. hý; ý; 
500 ERROR =E RROR6 +l 

NER6(ID =NER'VIDW 
888 CONTINUE 
C 

C CALCULATE $NR IN 08 
t" 

ENi=NI"*1.0 
EG=EQIENJ 
I& SO. LE. 0.0>GOTO 510 
%R'=10.0 <ALO+Ci1.0<GQ/SD/5D. > 
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60 TO `tome 
R. ITL ! ',, t8 510 ; ýý ý`e t" f 

520 URITH2,9000 
URI TE' 2,7000 MG, Nt� Nb M M!, NE NH, Nt'. ' 
URI TE? P'. 71ü0 i `D, NON 
OR! fE 1'' 7200)(M), 10, NO, 
00 510 1=1. Nlf, i 

R1 E 2,7300)''G I r. >�F=3 , UK. 1 
530 CONTINUE 

WRFTE< . 900 
WR TEf . 9100 irNi 
/RITE! 2. _92'02. rERRU, R'I. 

URi Tt (2.9202) ERRUR2 
G/R! TEt 2.920=: jE RR'UR 
WRiTEC2,9204)ERRO 4 
WEITE(', 9'205)ERRU, R5 
b/R T E' ,? 2'0$) E R, R`O, R'r 
WRiTE12, ? 00)E t 
ORITE(: '2,9400) SO 
b/RiTE! 2.9500>SNR 
IM S, GE. NB)GOTO 540 
F0=0. U 
ERRORS=0 
ERROR2=0 

E, RRUR3=t_t 
ERROR4=0 
ERROR`=0 
ERROR'6=0 
1F EA D': , *150 
18=18+1 
OR TE! ' . 8'00. ) 
&0 550 W, NX I 
OR! TE_W, ti40lt> C iý; ': l J), J=: I " No 3 
WRITE( 

. 8500)T'U? i 

550 CONTINUE 
6010 999 

540 STOP 
END 
SUE. RUUTINE ENCOMR, NO. ON, UN, NWk, NW0 
P. It1FN 0N N0130), N6<2.10), NC0 i 
&0 5000 1 SE=. 1 NW`" 3 
WN, A 

. 
zE i. E«. 1)60Tot 5000 

NA! 'f 5E. r=0 
MOO CONTINUE 

00 5100 I4E=. " NN'H. I 
N0150=0 
00 5200 JyE=3 NNt; ..? 
NC ISE. =NC IEt+ NR! NN-J_ E+? )*N f ISE. JS E> 
IF<NCO. SF: i. AT. 2. )GOTO 52001 
NC' i5_)=W .. `E) -2 
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`2tß# r CON T1N1! F.. 

, 
`t 2. t: ' 

t CONTINUE 

1f 
NC(i ). EQ. 0. 

it't? Xt'. (pit. 
(;.:. 

WNW). EQ 0. , RAID AC'' 
i F<NC. i 1. FO. 1. 

SANG. 
NA W 

(W TO 5600, 
530 0 M-3.0 

60 TO ~66ät:? 
5400 W- Y i{ 

GOTO 5600 
5504 DISC=+ 

.0 
5f+00 RETURN 

ENO 

Et.?. i) t3O TO 5 40 
Eil. V ./ 'GOTO 


