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Abstract

Radar systems are undoubtedly included in the hall of the most momentous
discoveries of the previous century. Although radars were initially used for
ship and aircraft detection, nowadays these systems are used in highly diverse
fields, expanding from civil aviation, marine navigation and air-defence to
ocean surveillance, meteorology and medicine. Recent advances in signal pro-
cessing and the constant development of computational capabilities led to radar
systems with impressive surveillance and tracking characteristics but on the
other hand the continuous growth of distributed networks made them suscep-
tible to multisource interference. This thesis aims at addressing vulnerabilities
of modern radar networks and further improving their characteristics through
the design of signal processing algorithms and by utilizing convex optimiza-
tion and game theoretic methods. In particular, the problems of beamform-
ing, power allocation, jammer avoidance and uncertainty within the context
of multiple-input multiple-output (MIMO) radar networks are addressed.

In order to improve the beamforming performance of phased-array and
MIMO radars employing two-dimensional arrays of antennas, a hybrid two-
dimensional Phased-MIMO radar with fully overlapped subarrays is proposed.
The work considers both adaptive (convex optimization, CAPON beamformer)
and non-adaptive (conventional) beamforming techniques. The transmit, re-
ceive and overall beampatterns of the Phased-MIMO model are compared with
the respective beampatterns of the phased-array and the MIMO schemes, prov-
ing that the hybrid model provides superior capabilities in beamforming.

By incorporating game theoretic techniques in the radar field, various vul-
nerabilities and problems can be investigated. Hence, a game theoretic power
allocation scheme is proposed and a Nash equilibrium analysis for a multistatic
MIMO network is performed. A network of radars is considered, organized into
multiple clusters, whose primary objective is to minimize their transmission
power, while satisfying a certain detection criterion. Since no communication
between the clusters is assumed, non-cooperative game theoretic techniques
and convex optimization methods are utilized to tackle the power adaptation
problem. During the proof of the existence and the uniqueness of the solution,
which is also presented, important contributions on the SINR performance and
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the transmission power of the radars have been derived.
Game theory can also been applied to mitigate jammer interference in a

radar network. Hence, a competitive power allocation problem for a MIMO
radar system in the presence of multiple jammers is investigated. The main
objective of the radar network is to minimize the total power emitted by the
radars while achieving a specific detection criterion for each of the targets-
jammers, while the intelligent jammers have the ability to observe the radar
transmission power and consequently decide its jamming power to maximize
the interference to the radar system. In this context, convex optimization
methods, noncooperative game theoretic techniques and hypothesis testing
are incorporated to identify the jammers and to determine the optimal power
allocation. Furthermore, a proof of the existence and the uniqueness of the
solution is presented.

Apart from resource allocation applications, game theory can also address
distributed beamforming problems. More specifically, a distributed beamform-
ing and power allocation technique for a radar system in the presence of mul-
tiple targets is considered. The primary goal of each radar is to minimize its
transmission power while attaining an optimal beamforming strategy and sat-
isfying a certain detection criterion for each of the targets. Initially, a strategic
noncooperative game (SNG) is used, where there is no communication between
the various radars of the system. Subsequently, a more coordinated game the-
oretic approach incorporating a pricing mechanism is adopted. Furthermore,
a Stackelberg game is formulated by adding a surveillance radar to the system
model, which will play the role of the leader, and thus the remaining radars
will be the followers. For each one of these games, a proof of the existence and
uniqueness of the solution is presented.

In the aforementioned game theoretic applications, the radars are consid-
ered to know the exact radar cross section (RCS) parameters of the targets
and thus the exact channel gains of all players, which may not be feasible in
a real system. Therefore, in the last part of this thesis, uncertainty regard-
ing the channel gains among the radars and the targets is introduced, which
originates from the RCS fluctuations of the targets. Bayesian game theory
provides a framework to address such problems of incomplete information.
Hence, a Bayesian game is proposed, where each radar egotistically maximizes
its SINR, under a predefined power constraint.
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Statement of Originality

The contributions of this thesis are mainly on the development and improve-
ment of optimal beamforming and power allocation techniques within the
context of multiple-input multiple-output (MIMO) radars, using convex op-
timization and game theoretic techniques. Additionally, novel game theoretic
techniques for jammer cancelation and handling uncertainty are also presented.
The novelty of the contributions is supported by the following international
journal and conference publications:

• In Chapter 3, a new fully overlapped subaperturing technique for two-
dimensional (2D) MIMO radar arrays is proposed. The transmit, wave-
form diversity and overall beampatterns for the resulting 2D Phased-
MIMO radar are compared with the respective beampatterns for the
phased array and MIMO only radar models. The proposed model offers
substantial improvements in beamforming performance and accuracy as
compared to the phased-array and MIMO only radar schemes. The study
considers both adaptive and conventional beamforming techniques. The
results of this work have been published in [4] and [5].

• The novel contribution of Chapter 4 is a rigorous mathematical Nash
equilibrium analysis for a game theoretic power allocation model within
the context of a multistatic MIMO radar network. In particular, the exis-
tence and uniqueness of the solution are proved, by exploiting the frame-
works of standard functions, duality and Karush-Kuhn-Tucker (KKT)
conditions. The mathematical analysis of the uniqueness of the solu-
tion leads to substantial results on the relation between the performance
with respect to the detection criterion and the transmission power of
the radars. Furthermore, a jammer cancelation technique based on hy-
pothesis testing and noncooperative game theoretic resource allocation
among a distributed radar network and multiple jammers is presented.
The novelty of the Nash equilibrium analysis is supported by [2] and
jammer-radar interaction is supported by [6].

• In Chapter 5, a novel Bayesian game theoretic joint SINR maximiza-
tion and power allocation technique within a distributed radar network
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is proposed, by introducing multilevel channel gain uncertainty. The im-
portance of the a priori belief of a player is highlighted to the outcome
of the game and the proof of the existence and the uniqueness of the
solution is presented. The novel results of this work will be submitted
for journal publication [3].

• Chapter 6 presents a novel, broad game theoretic analysis for joint op-
timal beamforming and resource allocation within a distributed MIMO
radar network with multiple targets. Convex optimization methods, non-
cooperative, partially coordinated and Stackelberg game theoretic tech-
niques have been applied to obtain the optimal beamformers and power
allocation strategy and standard function and duality properties are ex-
ploited to prove the existence and uniqueness of the solution. This work
has been accepted for journal publication [1].
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Chapter 1

Introduction

Radar is an object-detection system that uses electromagnetic energy to deter-
mine the range, altitude, direction, or speed of objects. Radar can be regarded
as a way of extending human’s sense of vision. Although radar is not able to
resolve the characteristics of an object as detailed as the human eye, it has
the ability to "see" a target under conditions such as darkness, fog, snowfall,
rain or haze, and at such ranges that a human eye would fail. As a result,
the importance of this breakthrough invention is colossal and the prospects of
development vast.

The radar transmit dish or antenna emmits pulses of electromagnetic waves
that bounce off any object in their path. The object returns a small part of the
wave’s energy to a receive dish or antenna that is usually located at the same
site as the transmitter. Although the signal returned is usually very weak,
the signal can be amplified. This enables radar to detect objects at ranges
where other emissions, such as sound or visible light, would be too weak to
detect. The range of the target is determined by measuring the time needed
for the radar signal to travel to the target and back [1]. Regarding the angular
position (direction) of the target, it is determined from the direction of arrival
(DOA) of the reflected waveform. In order to distinguish moving targets from
stationary objects, the shift in the carrier frequency of the reflected waveform
(doppler effect) is used. Furthermore, doppler effect is used to calculate the
target’s relative velocity [2]. Modern radar technology applications are highly
diverse, including military air-defence and antimissile systems, commercial air
traffic control, meteorology, oceanology, police detection of speeding traffic,
altimetry and medicine.

The fundamental principle of distance measurement exploits the fact that
the radar signal pulse travels at the speed of light. By measuring the time
needed for the signal emitted by the transmit antenna to arrive to the target
and return to the receive antenna and assuming that the transmit and receive
antennas are collocated, the distance R between the transmit antenna and the
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target is estimated as:

R =
c× t

2

where c is the speed of light (c=3 ∗ 108 m/s) and t is the time needed for the
pulse to travel to the target and arrive back. The factor of two in the equation
comes from the observation that the radar pulse must travel to the target and
return before detection, or covers twice the range, as shown in Fig.1.1.

Figure 1.1: Basic Principle of Radar Detection

The vast field of radar research is far from young. The existence of elec-
tromagnetic waves and their ability to transmit through different types of
materials and be reflected off metal surfaces were introduced in the late 19th
century by Heinrich Hertz [3]. It was not before 1935 however, when Sir Robert
Watson-Watt developed and patented a working radar system, that had all the
necessary features of a functional pulsed radar.

During World War II, the capabilities and features of radars improved sig-
nificantly. Sir Robert Watson-Watts radar technology was quickly reviewed,
allowing the British Air Ministry to be the first to fully exploit radar as a
defence against aircraft attack. This technology served as the basis for the
Chain Home network of radars to defend Great Britain, which detected ap-
proaching German aircrafts in the Battle of Britain in 1940. This success led
the radar to become pervasive by the military during the war. Furthermore,
many of the radar projects currently implemented were developed during or
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just after the war, such as air defence, ground-approach radar, fire control and
moving-target indication (MTI) radars.

After World War II, the development of radar technology continued, al-
though not at the same rate. The next big step in the radar concept was the
advent of synthetic aperture radar (SAR), which introduced a new active and
unexplored area of research during the 1950s [4]. Moreover, in the 1960s, the
development of phased-array antennas becomes a pioneer area of research, al-
lowing radars to quickly change the probing beam direction. The introduction
of digital signal processing, during the 1970s, was a gigantic breakthrough for
the academic and research community worldwide. Naturally, this technology
was also applied to radar signal processing, enabling adaptive array processing
in modern radar system. Finally, the constant growth in computational capa-
bilities allowed system engineers to introduce an emerging technology, known
as Multiple-Input Multiple-Output (MIMO) radars.

MIMO radar innovative technology has raised expectations over the last
decade that it will provide substantial improvements to the currently used
radar systems. The superiority of a MIMO radar against other radar schemes
lies in its waveform diversity, which in essence defines that a MIMO radar can
simultaneously emit several diverse, possibly linearly independent waveforms
via multiple antennas, in contrast to existing radar systems that transmit
scaled versions of the same, predefined waveform [5, 6, 7](Fig.1.2). In par-
ticular, there are two principal types of MIMO radar, those that incorporate
colocated antennas [8] and systems equipped with widely separated antennas
(bistatic, multistatic) [9]. Radar systems with colocated antennas enjoy a sub-
stantially improved spatial resolution, as the matched filter receiving process
extracts multiple channel information from all transmitting antennas to all re-
ceiving antennas. In other words, due to the phase differences induced by the
different transmit and receive antennas, colocated MIMO radar system have
the capability of forming long virtual receive arrays with a small number of an-
tennas. MIMO radar with colocated antennas has been proved to offer better
parameter identifiability [10], higher sensitivity to detect slowly moving tar-
gets, higher angular resolution, increased number of detectable targets, direct
applicability of adaptive array and beamforming techniques [11] and excep-
tional clutter interference mitigation capabilities [12, 13]. On the other hand,
distributed MIMO radar systems provide the ability to capture the target’s
geometrical characteristics through the radar cross section (RCS), since each
widely separated radar captures a different aspect of the target [14, 15, 16]. In
addition, multistatic MIMO radar system offers direct applicability of adaptive
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beamforming techniques, enhance the ability to combat signal scintillation and
estimate precisely the parameters of fast moving targets.

Figure 1.2: MIMO radar versus phased array radar.

Nevertheless, modern decentralized radar networks suffer from multiple
source of interference imposed at the receivers of each radar, namely the cross
channel interference among different radars in the same network, the clutter
interference, the background noise and possible jamming interference. This in-
terference seriously deteriorates the performance, the reliability and the track-
ing performance of a radar system. Hence, in order to mitigate this drawback
the research community developed methods for optimized beamforming and
power allocation, jammer suppression, physical and virtual array processing
and uncertainty handling.

The term beamforming originates from the fact that early airborne radars
incorporated parabolic type antennas, which formed pencil beams, in order to
steer the beam at the direction of interest and to attenuate interfering signals
from other directions [17]. Beamforming can be applied both at the trans-
mitter and the receiver side of a radar system. Modern radars employ one
dimensional or two dimensional arrays of antennas both at the transmitter
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and the receiver side and hence the transmit and receive beam steering is
performed electronically by applying various signal processing techniques. In
order to determine the appropriate beamformer, an estimate of the direction
of interest is needed. Hence, in the absence of array calibration errors, several
nonparametric adaptive techniques can be utilized such as the minimum vari-
ance distortionless response (MVDR or Capon) estimator [18], the amplitude
and phase estimation (APES) approach or the MUSIC algorithm. After the
acquisition of the target direction, the objective is to design accurate transmit
and receive beamformers and thus one can use adaptive or non-adaptive tech-
niques. Conventional non-adaptive beamforming is a simple technique, where
the transmit and receive beamforming vectors are the normalized transmit
and receive steering vectors at the direction of the target [19]. Furthermore,
a receive beamformer that protects the target return signal and at the same
time minimizes the sidelobe levels of the beampattern is the MVDR or Capon
beamformer [18], [20]. Since 1990, convex optimization techniques have been
widely exploited in engineering and more specifically in signal processing ap-
plications. Following the stream, convex approximation of a desired transmit
or receive beampattern has been investigated, where the convex optimization
problem minimizes the difference between a desired beampattern at the di-
rection of the target and the actual beampattern produced by the array of
antennas, under several power constraints [11], [21]. Convex optimization has
been also used for power minimization beamforming and minimum sidelobe
beampattern design [22],[11].

Apart from an optimal beamforming strategy, in order to combat multiple
source interference in a radar field, while achieving high SINR, the system
should apply an optimal power allocation strategy. Although uniform power
allocation is currently used in many modern radar systems, it is proved that
it is not necessarily the optimal solution for a specific power budget [23]. In
communication theory, a centralized scheme is proposed for optimal resource
allocation using convex optimization techniques [24]. Nevertheless, centralized
control is impractical and computationally expensive to be implemented in a
distributed radar network, as it requires large communications overhead, and
thus an autonomous decentralized power allocation scheme is more appropri-
ate. A natural and efficient tool to achieve an optimum interference mitigation
is game theory, as it offers a mathematical framework of conflict and cooper-
ation among intelligent, self-interested and rational players.



6 Chapter 1. Introduction

The increasing need for independent, autonomous and decentralized com-
munication systems has sparked much interest in using game theoretic tech-
niques in the communication literature [25]. More specifically, the aforemen-
tioned distributed, multistatic beamforming and resource allocation problem
in radar systems can be compared to similar issues raised in multicell wireless
systems in communication applications [26]-[27]. In [26], the authors intro-
duced the idea of joint beamforming and power control, proposing an iterative
algorithm to simultaneously obtain the optimal beamforming and power vec-
tors. The incorporation of game theory in this context then rapidly became a
focal point in communications research [28]-[29]. The majority of this literature
considers the technique of strategic noncooperative games (SNG), where each
player selfishly maximizes its payoff function, given the strategies of the other
players. The authors of [28] exploited an iterative water-filling algorithm to
reach the Nash equilibrium in a non-cooperative, distributed, multiuser power
control problem. Since each player greedily optimizes its utility function, the
equilibrium might not be the Pareto-optimal solution. Introducing pricing
policies to the system resources leads to a more Pareto-efficient solution and
increases the social welfare of the system. A pricing regime that is a linear
function of the transmit power was studied in [30]. Another example of pricing
the transmit power of each player is considered in [31], whereas in [32] and [33]
the pricing policy is applied on the intercell interference among the players.
In [29], the authors considered the optimization of a set of precoding matrices
at each node of a multi-channel, multi-user cognitive radio MIMO network
in order to minimize the total transmit power of the network, while applying
a pricing scheme based on global information. Cooperative game theoretic
techniques combined with a two-level Stackelberg game were utilized in [34]
to address the problem of relay selection and power allocation without the
knowledge of channel state information (CSI). Finally, the authors in [27] for-
mulated a Stackelberg Bayesian game to obtain the optimal power allocation
for a two-tier network, while applying an interference constraint at the leader
and considering channel gain uncertainty. Recently, game theoretic techniques
have been extensively explored within the radar research community to ob-
tain optimal resource allocation. The authors in [35] and [36] addressed the
power allocation problem by formulating a non-cooperative game with prede-
fined SINR constraints. Since a radar in a distributed network can not obtain
information regarding the transmission power of the remaining radars in the
network, an SINR estimation technique was applied in [37], to extend the work
in [35]. Furthermore, the authors in [38] exploited cooperative game theoretic
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techniques to encounter the resource allocation problem through maximizing
the Bayesian-Fisher information matrix (B-FIM) and utilizing the Shapley
value solution. A combination of a water filling algorithm and a Stackelberg
game was used in [39] for optimal power distribution.

An adaptive defence system may also employ game theoretic methods when
confronting smart targets equipped with jammers, that are able to damage the
radar system and deteriorate its performance. Using several game theoretic
techniques, such as non-cooperative games, when there is no communication
among the players, cooperative games, when there is some coordination be-
tween the players, zero sum games, when each player’s profit (or loss) of utility
is exactly equal to the losses (or profits) of the remaining players, Stackelberg
games, when there is hierarchy in the game considered, and Bayesian games,
when there is some sort of uncertainty within the system, the radar engineer
can model several scenarios and respond optimally to the jammer threat.

Handling uncertainty is a crucial problem in radar systems, especially
within a decentralized and multistatic network, where no communication among
the radars is considered. Most of the game theoretic radar literature employs
non Bayesian and perfect information systems, where every player can obtain
any information needed as common knowledge, such as other player’s exact
channel gains, the precise value of clutter channel gain or the target’s RCS.
However, this may not be feasible in a real distributed system. Therefore,
uncertainty regarding the various channel gains or the RCS parameters is es-
sential in order to obtain an optimal and realistic solution. Bayesian game
theory provides the framework to address such problems of incomplete infor-
mation. In a Bayesian game, the players are not considered uniform but they
are characterized from their type, that depends on the uncertainty parameter
and its distribution.

Overall, radar arrays subaperturing techniques, exploitation of waveform
diversity, adaptive beamforming techniques, game theoretic beamforming and
resource allocation methods, jammer suppression and uncertainty handling
techniques provide promising ground to improve radar characteristics and mit-
igate multi-source interference in a radar network. This thesis presents and
describes novel algorithms associated with the aforementioned approaches.

Thesis Outline

Interference attenuation, jammer suppresion, uncertainty handling and opti-
mal beamforming and power allocation techniques are crucial challenges within
the radar community, especially if one takes under consideration the increased



8 Chapter 1. Introduction

demands of the modern air-defence and electronic warfare systems. The work
in this thesis is focused on addressing the aforementioned challenges and im-
proving the respective solutions. Therefore novel two-dimensional beamform-
ing techniques and game theoretic techniques for beamforming, resource allo-
cation, jammer suppression and uncertainty handling have been proposed for
MIMO radar systems.

In Chapter 2, a thorough literature review is presented along with the
necessary methodology and technical background. More specifically, the basic
principles of the MIMO radar technology have been summarized. The chapter
also includes adaptive and non-adaptive techniques for transmit and receive
beamforming and array subaperturing. Furthermore, the basic frameworks for
convex optimization and game theory are introduced and their applications in
optimal beamforming, power allocation, SINR maximization and uncertainty
handling are discussed.

In Chapter 3, a subaperturing technique for two-dimensional (2D) arrays
within the context of MIMO radar is investigated. Initially, the performance
of transmit beamforming using fully overlapped subarrays of a 2D transmit ar-
ray is investigated. Then, the waveform diversity and overall transmit-receive
beampatterns for the Phased-MIMO radar with fully overlapped subarrays
are derived and compared with the respective beampatterns for the phased-
array and mimo radar systems. As reported for one-dimensional linear arrays,
fully overlapped subarrays offer substantially improved beamformers as com-
pared with the phased-array and MIMO radar schemes. In order to obtain
the optimal transmit-receive beamformers both adaptive (convex optimiza-
tion, MVDR) and non-adaptive (conventional) techniques are considered.

In Chapter 4, a game theoretic power allocation scheme is investigated
and a Nash equilibrium analysis for a MIMO radar network is performed.
A network of radars is considered, organized into multiple clusters, whose
primary objective is to minimize their transmission power, while satisfying
a predefined SINR criterion. Since there is no communication between the
distributed clusters, convex optimization methods and noncooperative game
theoretic techniques based on the estimate of the SINR to tackle the power
adaptation problem are utilized. Therefore, each cluster egotistically deter-
mines its optimal power allocation in a distributed way. Furthermore, the best
response function of each cluster regarding this generalized Nash game (GNG)
is proved to belong to the framework of standard functions. The standard
function property together with the proof of the existence of solution for the
game guarantees the uniqueness of the Nash equilibrium. The mathematical
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analysis of the uniqueness of the solution leads to two substantial contributions
on the relation between the performance with respect to the detection criterion
and the transmission power of the radars. In addition, a competitive power al-
location problem for a MIMO radar system in the presence of multiple targets
equipped with jammers is assumed. The main objective of the radar network
is to minimize the total power emitted by the radars while achieving a specific
detection criterion for each of the targets, while the intelligent jammers have
the ability to observe the radar transmission power and consequently decide
its jamming power to maximize the interference to the radars. In this context,
convex optimization methods, noncooperative game theoretic techniques and
hypothesis testing to identify jammers and to determine the optimal power
allocation are incorporated. Finally, a proof of the existence and uniqueness
of the solution is presented.

Chapter 5 investigates a Bayesian game theoretic SINRmaximization scheme
for a multistatic radar network. Specifically, a distributed network of radars
is considered, whose primary goal is to maximize their signal-to-noise ratio
(SINR), while satisfying a predefined power constraint. Moreover, no commu-
nication between the radars is assumed and hence a noncooperative approach
is utilized. The channel gain between a radar and the target is assumed as
private information and characterizes the type of the player, whereas the dis-
tribution of the channel gain is common knowledge to every player in the game.
Subsequently, the examination and proof of the existence and the uniqueness
of the Bayesian Nash equilibrium for the aforementioned game is presented.

Chapter 6 considers a distributed beamforming and resource allocation
technique for a radar system in the presence of multiple targets. The pri-
mary objective of each radar is to minimize its transmission power while at-
taining an optimal beamforming strategy and satisfying a certain detection
criterion for each of the targets. Therefore, convex optimization methods are
utilized together with noncooperative and partially cooperative game theoretic
approaches. Initially, a strategic noncooperative game (SNG) is considered,
where there is no communication between the various radars of the system.
Hence each radar selfishly determines its optimal beamforming and power allo-
cation. Subsequently, a more coordinated game theoretic approach is assumed
incorporating a pricing mechanism. Introducing a price in the utility func-
tion of each radar/player, enforces beamformers to minimize the interference
induced to other radars and to increase the social fairness of the system. Fur-
thermore, a Stackelberg game is formulated by adding a surveillance radar
to the system model, which will play the role of the leader, and hence the
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remaining radars will be the followers. The leader applies a pricing policy
of interference charged to the followers aiming at maximizing his profit while
keeping the incoming interference under a certain threshold. Finally, the proof
of the existence and uniqueness of the Nash Equilibrium (NE) in both the
partially cooperative and noncooperative games is presented.

Concluding remarks and possible future research challenges are discussed
in Chapter 7.
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Chapter 2

Literature Review and Technical
Background

2.1 Introduction

In this chapter, a comprehensive literature review and the respective techni-
cal and methodology background required for the contributing chapters are
presented. Initially, the basic principle and the description of the main char-
acteristics of the MIMO technology are provided. Then, adaptive and con-
ventional beamforming techniques are presented and particular emphasis is
placed on the adaptive convex beamforming methods. Furthermore, resource
allocation techniques within the game theoretic framework are discussed and
various game theoretic schemes are explained.

2.2 MIMO Radar Spatial Diversity Techniques

2.2.1 Virtual Array Concept

As mentioned in the introduction, emerging MIMO radars technology provides
the ability for a radar system to transmit via its antennas multiple probing
signals that may be correlated or uncorrelated, depending on the application
requirements. Therefore, by matched filtering these signals at the receiver
side, the radar system can exploit this waveform diversity and enable superior
capabilities regarding target detection, higher resolution and better parameter
identifiability. Another substantial benefit from waveform diversity is that the
phase differences corresponding to different transmit antennas combined with
the phase differences caused by different receive antennas can produce a virtual
receive array, much longer than the actual one. Thus, the spatial resolution
of the target and the mitigation of the interfering sources can be dramatically
increased.
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Consider a MIMO radar system with Mt antennas at the transmitter and
Mr antennas at the receiver. The transmit and receive arrays are assumed to
be colocated so that they see the targets at the far field at same directions.
Moreover the ith transmit antenna emits the ith element of the predesigned
independent waveform vector ψ(t) = [ψ1(t), . . . , ψMt(t)]

T of size Mt×1, which
satisfies the orthogonality condition

∫
T0
ψ(t)ψH(t)dt = IMt . Assuming that

there is a target present at the far-field of the transmit and receive arrays
at direction θt, the probing signal emitted at the target direction from the
transmit array can be described as [5, 11, 21]:

xtr(t) = aH(θt)ψ(t) (2.1)

where a(θ) denotes the transmit steering vector associated with direction θ

and is given by:

a(θ) = [ej2πf0τ1(θ) ej2πf0τ2(θ) . . . ej2πf0τMt (θ)]T (2.2)

where f0 is the carrier frequency of the radar and τm(θ) is the amount of time
needed by probing signal emitted from the mth antenna to arrive at the target.
The corresponding time delay can be given by:

τm(θ) =
dsin(θ)

v
=
dsin(θ)

f0λ

where d is the distance between adjacent antennas, v denotes the speed of
light and λ the wavelength of the incident waves. Hence, the transmit steering
vector can be restated as:

a(θ) = [1 e
j2πdsin(θ)

λ . . . e
j2π(M−1)dsin(θ)

λ ]T (2.3)

TheMr×1 snapshot vector arriving at the receive array from the direction
of the target θt can be modeled as:

xrec(t) = βt(a
H(θt)ψ(t))b(θt) + n(t) (2.4)

where βt is the complex valued amplitude reflecting the RCS of the target and
b(θ) is the actual receive steering vector associated with direction θ and is
given by:

b(θ) = [ej2πf0τ̄1(θ) ej2πf0τ̄2(θ) . . . ej2πf0τ̄Mr (θ)]T (2.5)

where τ̄m(θ) is the time needed for the signal reflected by the target located
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Figure 2.1: Spatial delay of the received signal.

at θ to arrive at the mth receive antenna. Following the steps derived for the
transmit steering vector above, the receive steering vector can be restated as
(see Fig. 2.1):

b(θ) = [1 e
j2πdsin(θ)

λ . . . e
j2π(Mr−1)dsin(θ)

λ ]T (2.6)

The returns of the transmitted waveforms can be extracted by applying in
each receive antenna matched-filtering to the received signal with each of the
orthogonal waveforms ψi(t), i = 1, . . . ,Mt. Hence, the maximum number of
recovered signals can be MtMr and the MtMr × 1 virtual receive data vector
can be obtained as:

y = [xT1 . . .x
T
Mt

]T = βta(θt)⊗ b(θt) + n̂ (2.7)

where n̂ =
∫
T0

n(t)ψ∗k(t)dt is the MtMr × 1 noise term with covariance matrix
Rn = σ2

nIMtMr (σ2
n is the noise variance) and xTi is given by:

xi =

∫
T0

xrec(t)ψ
∗
i (t)dt, i = 1, . . . ,Mt

The target signal part can be expressed as:

yt = βtu(θt) (2.8)

where u(θt) = a(θt)⊗b(θt) corresponds to theMtMr×1 virtual receive steering
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vector. It is straightforward that the phase differences are created by both
the transmitting antennas and the receiving antennas at relevant locations.
Therefore, the received target signal component in (2.8) is identical to the
response received by a receive array withMtMr antennas. ThisMtMr element
size array is known as MIMO virtual receive array (Fig.2.2) . Hence, a MIMO
radar system withMt transmit andMr receive antennas can enjoy up toMtMr

degrees of freedom by utilizing only Mt +Mr physical sensors. The interested
reader can find more detailed reviews regarding the virtual array concept in
the literature [40, 6, 7, 41].

Figure 2.2: (a)Illustration of a ULA MIMO radar with Mt =
3 and Mr = 3 antennas.(b)Corresponding virtual receive array.

2.2.2 Target Estimation Adaptive Techniques

In this section, the ability of MIMO radars to use adaptive localization and
detection techniques is discussed [42, 43]. This significant advantage of MIMO
radars leads to much higher resolution and much more efficient interference
rejection capability than phased-array radars. Furthermore, the direct ap-
plication of adaptive techniques is made possible for MIMO radar systems
without the use of secondary range bins or even range compression, since the
probing signals reflected back from the targets are linearly independent and
uncorrelated of each other [44, 45].

Under the assumption that the targets are points in space, the received
data vector, when N samples of the continuous time are considered, can be
expressed by the equation [14]:
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y(n) =
K∑
k=1

βkb∗(θk)aH(θk)x(n) + ε(n), n = 1, . . . , N (2.9)

where n corresponds to the considered snapshot, K is the number of targets
of interest, N is the total number of snapshots, βk are the complex amplitudes
proportional to the radar cross section (RCS) of the targets, θk are the location
parameters of the targets, ε(n) expresses the interference plus noise term. The
objective of Parameter Estimation is to estimate the unknown parameters βk
and θk.

Let

Ā = [β1a(θ1) β2a(θ2) . . . βKa(θK)] (2.10)

The sample covariance matrix of the target reflected waveforms is ĀHRxxĀ,
where

R̂xx =
1

N

N∑
n=1

x(n)xH(n) (2.11)

is the sample covariance matrix of the transmit signal vector. In the case
of orthogonal waveform vectors used for MIMO transmit beampattern and
N ≤ Mt, then R̂xx is a scaled identity matrix. As a result, ĀHR̂xxĀ has
full rank, if the columns of Ā are linearly independent to each other, which
requires thatK ≤Mt. This fact implies that the target reflected waveforms are
not completely correlated with each other. The fact that the target reflected
signals are noncoherent allows the unconstrained application of many adaptive
techniques for parameter estimation [44, 45].

It is assumed that θ is the direction of arrival (DOA) of the target, when
the target is far away from the array of the receivers. The matrix form of the
signal at the output of the receiving array can be expressed with the following
equation:

Y = b∗(θ)β(θ)aH(θ)X + Z (2.12)

whereX = [x(1) x(2) . . . x(N)], the received data samples {y(n)}Nn=1 are
the columns of Y ∈ CMr×N , and β(θ) ∈ C expresses the complex amplitude
of the reflected signal from θ, which is analogous to the RCS of the location
θ. Finally, the interferences from targets at different locations than θ or at
other range bins, the intentional or not jamming, and the atmospheric noise
are denoted by the matrix Z ∈ CMr×N .
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The objective of the target estimation techniques is to estimate β(θ) from
the data matrix Y. A spatial spectrum can then be created by the estimates
of β(θ). As a result, the location of the targets can be decided by looking for
the peaks in the aforementioned spatial spectrum.

Least Squares Estimation

The least-squares (LS) method is the simplest way of estimating β(θ). This
method leads us to the following equation:

βLS(θ) =
bT (θ)YXHa(θ)

N‖b(θ)‖2[aH(θ)R̂xxa(θ)]
(2.13)

Although it is a really fast method that requires minimum computational
power, the LS method suffers from high sidelobes and displays low resolution
results. Furthermore, when strong jamming and interference are present, this
method fails to provide acceptable results.

Minimum Variance Distortionless Response (MVDR)

A much more efficient method of determining β(θ) is the Minimum Variance
Distortionless Response beamformer, as it is well known [18, 20]. The MVDR
beamformer can be designed as follows:

min
w

wHR̂yyw subject to wHb∗(θ) = 1 (2.14)

wherew ∈ CMr×1 is the optimum set of weights that minimizes the mean square
value of y(n), while suppressing noise, interference and jamming factors. Ryy

is the correlation matrix of the received signal vector at the array of antennas:

R̂yy =
1

N
YYH (2.15)

Using the method of Lagrangian multipliers to optimize (2.14), the solution
for the weight vector can be obtained as:

ŵCapon =
R̂−1
yy b∗(θ)

bT (θ)R̂−1
yy b∗(θ)

(2.16)

As a result, the output of the MVDR beamformer will be given by:

bT (θ)R̂−1
yy Y

bT (θ)R̂−1
yy b∗(θ)

(2.17)

By substituting (2.12) to (2.17) the following stands:
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bT (θ)R̂−1
yy Y

bT (θ)R̂−1
yy b∗(θ)

= β(θ)aH(θ)X +
bT (θ)R̂−1

yy Z

bT (θ)R̂−1
yy b∗(θ)

(2.18)

Finally, in order to obtain β(θ), the LS method is applied to (2.18). As a
result, the MVDR estimate of β(θ) will be given as:

βCapon(θ) =
bT (θ)R̂−1

yy YXHa(θ)

N [bT (θ)R̂−1
yy b∗(θ)][aH(θ)R̂xxa(θ)]

(2.19)

Amplitude and Phase Estimation (APES)

An adaptive method that achieves better amplitude estimation accuracy is the
Amplitude and Phase Estimation method (APES) [5, 46, 47]. Following [47]
the APES method can be formulated as follows:

min
w,β
‖wHY− β(θ)aH(θ)X‖2 subject to wHb∗(θ) = 1 (2.20)

where w denotes the same as in CAPON method. The translation of the
aforementioned minimization problem is to acquire a beamformer that best
approximates the waveform a(θ)HX.

Minimizing the objective function in (2.20) with respect to β(θ) yields:

β̂APES(θ) =
wHYXHa(θ)

NaH(θ)R̂xxa(θ)
(2.21)

As a result, the optimization problem (2.20) reduces to

min
w

wHQ̂w subject to wHb∗(θ) = 1 (2.22)

where Q̂ is the residual covariance estimate calculated as follows:

Q̂ = R̂yy −
YXHa(θ)aH(θ)XYH

N2aH(θ)R̂xxa(θ)
(2.23)

Solving the optimization problem in (2.22), the APES method weight vec-
tor can be obtained as:

wAPES =
Q̂−1b∗(θ)

bT (θ)Q̂−1b∗(θ)
(2.24)

By inserting (2.24) to (2.21), the estimation of APES method regarding
β(θ) can be acquired as
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βAPES(θ) =
bT (θ)Q̂−1YXHa(θ)

N [bT (θ)Q̂−1b∗(θ)][aH(θ)R̂xxa(θ)]
(2.25)

It is observed that the two estimations of β(θ) from CAPON and APES
are quite similar. In fact, at APES method the sample covariance matrix Ryy

in (2.19) is replaced by the residual covariance estimate Q̂.

CAPES and CAML

Although the CAPON and APES methods seem similar, in fact there is a
major difference between these two beamformers. This difference is a trade-off
between high resolution and amplitude estimation. CAPON method provides
high resolution, leading to accurate estimates of the targets location. However,
its amplitude estimates are significantly biased downward. On the other hand,
APES method manages to exactly approximate the amplitude, but trading-off
resolution. In other words, CAPON beamformer is capable of resolving two
targets, even if they are closely spaced, but lacks at the amplitude estimation.
In contrast to this, APES method provides an exact estimation on the targets
location, but needs greater minimum distance to resolve them.

To take advantage of the benefits of both CAPON and APES, a combi-
nation, known as CAPES, has been proposed [48]. This method initially es-
timates the target locations through the CAPON method and then estimates
the amplitude at these locations using the APES estimator.

An improvement to the CAPES method has been proposed lately [49],
referred to as CAML estimator. This method combines CAPON and the more
recently proposed approximate maximum likelihood (AML) estimator, which is
based on a diagonal growth curve (DGC) model. In fact, AML is substituting
the procedure of APES at CAPES, in other words, it is used to estimate the
target amplitudes after the target locations are acquired by CAPON. CAML
is able to provide better amplitude estimation accuracy than CAPES, because
AML, unlike APES, estimates the amplitudes of all targets at the same time
rather than one at a time.

2.2.3 Transmitter Beamforming

It is assumed that the system is able to provide an estimate of the targets’
locations through a surveillance radar. After acquiring an initial information
on the target location coordinates from the aforementioned estimation tech-
niques, then beamforming techniques are applied at the physical layer of the
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transmit array of the MIMO radar in order to control the directionality of the
probing signal and focus the transmitted power at a desired sector of space,
usually at the targets’s direction [17]. Hence a beamformer coefficient should
be designed for each transmit antenna to steer the transmit beam towards the
desired sector in space. A typical linear transmit array is depicted in Fig.2.3,
also showing the beamformer coefficients.

Figure 2.3: Linear transmit array with beamforming coeffi-
cients.

Transmit Matched Filtering Beamforming

The complex envelope of the signals at the output of the transmit array can
be given as follows:

s(t) = w �ψ(t) (2.26)

where w ∈ CM×1 is the transmit weight vector regarding the linear transmit
array, as shown in Fig.2.3, and ψ(t) is the predesigned independent waveform
vector. The power of the probing signal emitted by the transmit array gives
the transmit beampattern of the MIMO radar and can be modeled as:
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P (θ) = aH(θ)

∫
T0

s(t)sH(t)dta(θ) = aH(θ)wwHa(θ)

In the absence of interfering or clutter sources, the non-adaptive matched
filtering beamforming is the simplest technique to design the optimal transmit
beampatterns. However, this method offers the highest possible output SINR
gain only when a single target is observed in the background of white Gaussian
noise [19]. By applying the matched filtering beamformer in a uniform linear
array, the normalized transmit weight vector is obtained as

w =
ak(θt)

‖ak(θt)‖
(2.27)

and drives the transmit beampattern towards the direction of the single target.

Beampattern Matching Beamforming

In an actual radar field, the presence of more than one targets is probable
and the absence of any interfering signals unrealistic. Thus, a more efficient
beamforming technique than matched filtering is necessary. Having applied
the target estimation adaptive techniques, the next step is to design a probing
signal vector to approximate a desired transmit beampattern, containing the
location information acquired by the aforementioned techniques. Transmit
beampattern design is crucial in many fields including communications, defence
and biomedical applications. By denoting as θ1, . . . , θK the target locations,
the desired beampattern is defined as follows:

φ(θ) =

{
1, θ ∈ [θk −∆, θk + ∆], k = 1, . . . , K

0 otherwise
(2.28)

where 2∆ is the chosen beamwidth for each target. The power of the probing
signal at location θ is given by [21, 11, 50]:

P (θ) = aH(θ)Ra(θ) (2.29)

where R is the covariance matrix of x(n):

R = E{x(n)xH(n)} (2.30)

The equation (2.29), as a function of θ, is known as the transmit beampattern.
The primary objective is to determine the covariance matrixR, which must

be positive semidefinite, in order to minimize the difference between the desired
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transmit beampattern and the one obtained from (2.29). In other words, the
desired R utilizes the available transmit power to maximize the probing signal
power at the locations of the targets of interest and to minimize it anywhere
else [11]. Furthermore, a second goal is that the covariance matrix R must
minimize the cross-correlation between the probing signals at locations θ and θp
(θ 6= θp), given by aH(θ)Ra(θp). This optimization problem is solved through
convex optimization techniques [51].

Let {µl}Ll=1 be a fine grid of points that cover the radar far field area of inter-
est and approximate the target locations {θk}Kk=1, whereK denotes the number
of the targets of interest. It is presumed that some of these grid points are ac-
ceptable approximations of the locations {θk}Kk=1 and these points are denoted
as {θ̂k}Kk=1. Mathematically, the aforementioned problem of choosing R, such
that the transmit beampattern aH(θ)Ra(θ), best approximates the desired
transmit beampattern φ(θ) and furthermore such that the cross-correlation
aH(θ)Ra(θp) is minimized over the acceptable approximations {θ̂k}Kk=1, can be
formulated as:

min
a,R

{
1

L

L∑
l=1

wl[αφ(µl)− aH(µl)Ra(µl)]
2 +

2wc
K2 −K

K−1∑
k=1

K∑
p=k+1

|aH(θ̂k)Ra(θ̂p)|2
}

s.t. Rmm =
Pmax
Mt

, m = 1, . . . ,Mt

R ≥ 0 (2.31)

where Pmax/Mt is the transmitted power from each antenna and Pmax is the
total transmit power, which is given. The first constraint reflects the fact
that transmit power from each antenna element should be the same, which
allows the MIMO radar system to transmit at the maximum available power.
Moreover, the second constraint ensures that R is a positive semidefinite ma-
trix. At the minimization problem, α is an optimal scaling factor, introduced
because our interest lies in approximating an appropriately scaled version of
φ(θ), wl is the weight for the lth gridpoint, and wc is the weight for the cross-
correlation term. A crucial advantage of this optimization problem is that
it provides the freedom to choose the weights wl and wc. As a result, if the
beampattern matching is considered more important than the minimization of
the cross-correlation between the probing signals wl > wc is set and vice versa.
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Sidelobe Control

In beampattern design with sidelobe control, a method is formulated, which
guarantees the distortionless response in the mainlobe domain, i.e. the direc-
tions of the targets, and in parallel minimizes the sidelobe level in a prescribed
region. Within this sidelobe region, strong clutter could be present, which
interferes with the radar network and deteriorates its performance.

This optimization problem can be formulated as a semidefinite program,
which can be solved by convex optimization techniques [51], as follows:

mint,R −t (2.32)

s.t. aH(θ0)Ra(θ0)− aH(µl)Ra(µl) ≥ t, ∀µl ∈ Ω

aH(θ1)Ra(θ1) = 0.5aH(θ0)Ra(θ0)

aH(θ2)Ra(θ2) = 0.5aH(θ0)Ra(θ0)

R ≥ 0

Rmm =
Pmax
Mt

, m = 1, . . . ,Mt

where θ0 belongs to the desired beampattern mainlobe and θ2−θ1 (θ2 > θ0 and
θ1 < θ0) determines the necessary 3dB width of the mainbeam and Ω denotes
the sidelobe region, where the clutter originates from.

Two relaxation techniques can be performed on the constraints in order to
have a beampattern with lower sidelobe levels. The first one is applied on the
3dB width constraint and is implemented by replacing this constraint by

(0.5− δ)aH(θ0)Ra(θ0) ≤ aH(θi)Ra(θi) ≤ (0.5 + δ)aH(θ0)Ra(θ0)

, i = 1, 2, for some small δ. The second relaxation technique is implemented
by introducing some flexibility in the elemental power constraint by allowing
the elemental power to be within a certain range around Pmax/Mt. Although
this flexibility is allowed, the same total transmit power of Pmax is maintained.
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SINR Constraint Beamforming

It comes as a result from the previous section that adaptive techniques in-
corporating convex optimization methods offer substantial advantages at the
transmit beamforming. Initially, following [52, 51], these convex problems can
be efficiently solved using standard semidefinite programming algorithms with
guaranteed convergence speed. Furthermore, by exploiting this method, new
constraints, such as power allocation constraints, sidelobe control or SINR
constraints can be added straightforwardly, without deteriorating the main
objective, which is to focus the transmit power towards the targets’ directions.
In addition, convex optimization techniques can be used to increase the ro-
bustness of the system when facing channel gain uncertainty and estimation
errors [22].

In this section, the main goal is to design the optimal transmit beampat-
terns, while minimizing the transmission power of the radar and satisfying a
certain detection criterion for each of the targets, translated into SINR con-
straints. Hence, the following minimization problem arises [22, 53, 26, 54]:

min
wi

K∑
i=1

‖wi‖2 (2.33)

s.t. SINRi ≥ γi,∀i

where wi is the transmit beamforming vector for target i and γi denotes the
predefined SINR threshold. The optimization problem in (2.33) is a quadrati-
cally constrained non-convex problem. However, it can be efficiently solved by
applying semidefinite programming (SDP) techniques through rank relaxation
methods and using convex optimization toolboxes [51, 55].

Numerical Example

An example is presented to demonstrate the performance of the beampattern
matching technique. Consider a MIMO radar system with a uniform linear
array (ULA) constituted of Mt = Mr = 10 antennas with half-wavelength
spacing between adjacent antennas. The same antennas are used for both
transmitting and receiving signals. The total transmit power is set to cp = 1.

The desired beampattern is given from (2.28). Suppose that the desired
beampattern has one wide beam centered at θk = 00 with a beamwidth of
500(∆ = 250), as shown in Fig.2.4. Using the beampattern matching design
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technique from (2.31) and choosing without loss of generality wl = 1 and
wc = 0, the following optimization problem occurs:

minα,R

L∑
l=1

sl

s.t. ‖αφ(µl)− aH(µl)Ra(µl)‖ ≤ sl l = 1, . . . , L

Rmm =
cp
Mt

, m = 1, . . . ,Mt

R ≥ 0

Solving this problem using the CVX Matlab Software [51], the following
result is obtained as depicted in Fig.2.4.

Figure 2.4: MIMO Beampattern matching design under the
uniform elemental power constraint.

It is evident from Fig.2.4 that the power allocation of the transmit beam-
pattern is concentrated in a specific sector, defined by the desired beampattern.
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Furthermore, the sidelobe levels are very low and therefore high level of in-
terference is prevented from undesirable targets, located outside the desired
sector.

2.2.4 Receiver Beamforming

Besides the transmit array, it is also beneficial to apply beamforming tech-
niques at the receive array of a MIMO radar system in order to enhance the
performance in terms of the target parameters acquisition and the target track-
ing capabilities of the system. A typical receive beamformer scheme is shown
in Fig.2.5.

Figure 2.5: Linear receive array with beamforming coeffi-
cients.

Receive Matched Filtering Beamforming

Similar to the transmit matched filtering beamforming, when the system can
obtain information regarding the target’s direction and there is a single target
in the absence of any other form of interference, then the optimal receive
beamformer is the conventional, non-adaptive matched filtering at the recive
array. Therefore, the signal return is coherently combined at the virtual receive
array and the optimum matched filtering receive weight vector of size MN ×1

can be defined as

wr = u(θt) (2.34)
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where u(θt) denotes the virtual receive steering vector at the direction of the
target.

Minimum Variance Distortionless Response (MVDR) Beamforming

Within an actual radar field except the desired target signal return, there
are also interfering sources, that mitigate the performance of receive matched
filtering beamforming. By considering L active interfering sources at locations
{θi}Li=1 and with reflection parameters {βi}Li=1, then under the assumption of
point sources, the N × 1 receive data vector can be obtained as

y(t) = βtw
H
t a(θt)ψ(t)b(θt) +

L∑
i=1

βiw
H
t a(θi)ψ(t)b(θi) + n(t) (2.35)

In this case, the premium goal is to secure the desired signal and mitigate the
undesired interference. Thus, a popular beamforming method that satisfies
both the steering capabilities whereby the target signal is always protected
and the cancellation of undesired interference, so that the output SINR is
maximized, is the Minimum Variance Distortionless Response (MVDR) beam-
former [20, 18]. The main idea of the MVDR beamformer is to minimize the
covariance of the beamformer output subject to a distortionless response to-
wards the direction of the target. Hence, it can be formulated as the following
optimization problem

min
wr

wH
r R̂yywr subject to wH

r u(θt) = 1 (2.36)

where R̂yy =
∑N

n=1 y(n)y(n)H is the sample covariance matrix of the observed
data samples that can be collected from N different radar pulses. The solution
to (2.36) is [20],

wr =
R̂−1
yy u(θt, φt)

uH(θt, φt)R̂−1
yy u(θt, φt)

(2.37)

From (2.37) the MVDR or Capon receive beamformer is designed.
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2.2.5 Phased-array and MIMO Radars: Merging the past

with the future

There has been much conflict in recent years on whether or not MIMO radar
will confirm its superiority as a breakthrough technology that will eventu-
ally substitute phased-array radar [56]. It is undeniable that compared to
the phased-array radar, MIMO radar with colocated antennas provides higher
angular resolution, improved target parameters identifiability, increase of the
number of detectable targets, and flexibility for transmit beamforming design.
However, the aforementioned benefits of MIMO radar arise at the cost of miss-
ing the transmit coherent processing gain offered by the phased-array radar
[57]. As a result, MIMO radar suffers a substantial loss in signal-to-noise ratio
(SNR) gain. Furthermore, the MIMO radar evinces a beam-shape loss which
is the reason of performance decrease especially when the target’s RCS is fad-
ing. This section stems from the belief that MIMO radar is not inevitably a
disruptive technology that will outclass and supplant phased-array radar, but
on the other hand it is a major factor of the evolution of phased-array radar.
The innovative idea of combining the advantages of phased-array and MIMO
radars has been reported recently in the literature.

Phased-MIMO Radar Analysis

The first attempt to jointly exploit the advantages of both the phased-array
and MIMO radars is introduced in [44]. More specifically, a general antenna
configuration is proposed where both the transmitter and receiver have multi-
ple well-separated subarrays with each subarray containing closely spaced an-
tennas and operating in phased-array mode. As a result, the resulting MIMO
system achieves both coherent processing gain and spatial diversity gain. In
[58, 59, 60], the Hybrid MIMO Phased Array Radar (HMPAR) is proposed,
utilizing the idea of dividing a large number of transmit/receive elements into
multiple disjoint subarrays, that are not allowed to overlap. Presenting a
method for generating partially correlated signals, the authors have developed
algorithms for MIMO signal sets to achieve arbitrary rectangular transmit
beampatterns, while maintaining desirable temporal proerties. Moreover, the
simulation results show that the height and width of the beampattern can be
controlled by modifying the level of correlation between the signals. Finally,
in [61] the authors presented a transmit subaperturing technique for MIMO
radars, which results in a tunable system that offers a continuum of operating
options from the phased array radar to the omnidirectional transmission based
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MIMO radar, providing a tradeoff between the directional gain and interfer-
ence rejection capability of the system.

Phased-MIMO Radar is a breakthrough notion in radar technology, intro-
duced by A. Hassanien and S. A. Vorobyov [62]. The vantage point of the
proposed technique against the aforementioned techniques is the partition of
the transmit array into K (1 ≤ K ≤M) subarrays that are allowed to overlap,
where M is the number of transmit elements. In particular, each subarray can
be formed of any number of antennas from 1 to M , so no subarray is precisely
the same as another one. The antennas of the kth subarray of the transmit Uni-
form Linear Array (ULA) coherently emit the kth element of the predesigned
independent waveform vector φ(t) = [φ1(t), . . . , φK(t)]T of size K × 1, which
satisfies the orthogonality condition

∫
T0
φ(t)φH(t) = IK , where T0 is the radar

pulse width, t refers to the time index within the radar pulse, IK is the K×K
identity matrix.

In order to define the kth subarray, a M × 1 selection vector zk is used
containing 0 and 1 entries. When the mth entry equals 1 then the mth element
of the transmit array belongs to the kth subarray, while 0 means that the
element does not belong to the subarray. Using the selection vector zk, the
M × 1 steering vector associated with the kth subarray can be derived as
ãk(θ) = zk � a(θ), where � denotes the Hadamard product.

In one radar pulse, K transmit beams are formed, each of them is steered
by the corresponding subarray. Primary objective is to focus the transmitted
energy into the location sectors of interest, which approximate the locations
of the targets. The complex envelope of the signals at the output of the kth

subarray can be designed by sk(t) =
√

M
K
w̃∗kφ(t), where w̃k ∈ CM×1 is the

transmit weight vector, used to form the kth transmit beam.
Assuming that a target is located at direction θ in the far-field of the

collocated transmit/receive array, the signal reflected by this target can be
modeled as:

r(t, θ) =

√
M

K
β(θ)

K∑
k=1

w̃H
k ãk(θ)φ(t) =

√
M

K
β(θ)

K∑
k=1

wH
k ak(θ)e

−j2πf0τk(θ)φ(t)

(2.38)
where β(θ) are complex amplitudes proportional to the radar cross section
(RCS) of the target, wk is the weight vector containing only the elements
corresponding to the active antennas of the kth subarray, ak(θ) is the steering
vector also containing only the active antennas elements of the kth subarray,
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and τk(θ) is the time needed for the wave to cross the distance between the
first antenna of the transmit array and the first antenna of the kth subarray.

In order to compare the transmit and waveform diversity, the authors of
[62] have introduced the K × 1 transmit coherent processing vector

c(θ) = [wH
1 a1(θ), . . . ,wH

KaK(θ)]T

and the K × 1 waveform diversity vector

d(θ) = [e−j2πf0τ1(θ), . . . , e−j2πf0τK(θ)]T .

Incorporating these two vectors, the reflected signal (2.38) by a hypothetical
target can be reformulated as

r(t, θ) =

√
M

K
β(θ)(c(θ)� d(θ))Tφ(t). (2.39)

Taking into account that there exist F interfering targets with reflection
coefficients {βi}Fi=1 and directions {θi}Fi=1, the received data vector can be
described by the equation

x(t) = r(t, θs)b(θs) +
F∑
i=1

r(t, θi)b(θi) + n(t) (2.40)

where b(θs) and b(θi) are the receiving steering vectors associated with the
target and interference directions respectively, and n(t) is the noise term. By
matched-filtering x(t) to each of the waveforms {φk}Kk=1, the KN × 1 virtual
data vector is formulated, where N is the number of receiving antennas:

y =

√
M

K
β(θs)u(θs) +

F∑
i=1

√
M

K
β(θi)u(θi) + ñ (2.41)

where β(θs) and β(θi) are the reflection coefficients of the target and the in-
terference respectively, and the KN × 1 vector u(θ) is defined as follows

u(θ) = (c(θ)� d(θ))⊗ b(θ) (2.42)

and stands for the virtual steering vector regarding direction θ, and ñ is the
KN × 1 noise vector.

At this point, the flexibility of the proposed model can be observed. If
K = 1 is chosen, all the transmit antennas are considered as one subarray and
the signal model (2.39) simplifies to the phased-array radar signal model, as
only one waveform is emitted. At the other extreme, if K = M is chosen, then
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the signal model transforms to the signal model for the MIMO radar without
array partitioning at all. In between the two extremes, the choice of K offers
a tradeoff between transmit coherent gain and waveform diversity gain.

Comparison of Phased-array, MIMO and Phased-MIMO radar

As suggested in [62], nonadaptive transmit/receive beamforming can be used
to produce the transmit, waveform diversity, and overall beampatterns. Since
all subarrays consist of the same number of antennas, the weight vectors for
conventional uplink beamforming, are given by the equation:

wk =
ak(θs)
‖ak(θs)‖

, k = 1, . . . , K (2.43)

At the receive array, the conventional beamformer is applied to the resulting
virtual array. So, the receive beamformer weight vector is equal to the virtual
steering vector associated with the direction of the target of interest θs:

wr = u(θs) = (c(θs)� d(θs))⊗ b(θs) (2.44)

As a result, the overall normalized radar beampattern is given by:

P (θ) =
|wH

r u(θ)|2

|wH
r u(θs)|2

=
|uH(θs)u(θ)|2

‖u(θs)‖4
(2.45)

For the shake of the comparison, a ULA consisting of M=10 transmit an-
tennas and a ULA of N=10 receiving antennas with half-wavelength spacing
between adjacent elements are assumed. The direction of the target of in-
terest is θ(s) = 10o and two interfering targets are presumed at angles −30o

and −10o. It is evident from Fig.2.6,2.7 that although the phased-array radar
has the most efficient transmit conventional beampattern, it has no waveform
diversity gain. On the other hand, MIMO radar has flat (0db) coherent trans-
mitting gain, but it has the most efficient waveform diversity beampattern.
However, it is clear from Fig.2.8 that the overall beampattern for the phased-
MIMO radar is improved as compared to the phased-array and the MIMO
overall beampatterns.

It is confirmed from the results that the phased-MIMO radar has a su-
perior performance, as it combines the advantages of the phased-array and
MIMO radars. More specifically, it exploits all advantages of MIMO radar
such as detecting a higher number of targets, improving parameter identifia-
bility, extending the array of antennas with virtual sensors, improving angular
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Figure 2.6: Transmit beampatterns.

Figure 2.7: Waveform diversity beampatterns.

resolution, without losing the transmit coherent gain offered by the phased-
array technology. Furthermore, it provides the possibility of designing the
overall beampattern of the virtual array. Moreover, by choosing the number
of subarrays, this model offers a tradeoff between robustness against beam-
shape loss and angular resolution. Finally, it provides high robustness against
powerful interference.
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Figure 2.8: Overall transmit/receive beampatterns.

2.3 Game Theory in Radar Networks

Some of the advantages of the distributed radar networks were mentioned in
Chapter 1. Furthermore, the superiority of decentralized systems is enhanced
from the fact that they can operate independently and autonomously, without
the demand of constant or central control. Nevertheless, within a modern dis-
tributed radar field, the dynamic multiple sources of interference deteriorates
the performance of the system and constantly alternates the features and the
constraints of the detection and tracking process. As a result, the system must
automatically adopt to the new requirements autonomously. Game theory is
a natural and effective tool for modeling this kind of interactions and provide
a stable solution in a dynamic environment.

2.3.1 Fundamentals of Game Theory

Game theory is a study of strategic decision making and a natural and efficient
tool to provide a formal mathematical framework for analyzing coordination
and conflict between rational but selfish players. Initially, game theory pro-
vided pioneering results within the social sciences, especially in economics and
politics. The foundations of the notion behind game theory were set from four
innovative works [63, 64, 65, 66]. In [63], the author introduces the evolu-
tionary notion of the best response, when a player adopts the best strategy
given the actions of other players. Furthermore, the same work offers an initial
intuitive approach to the solution of non-cooperative games, which more than
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Defect Cooperate
Defect (-5,-5) (0,-20)
Cooperate (-20,0) (-1,-1)

Table 2.1: Prisoner’s Dilemma payoffs.

a century later will be formally defined by John Nash [66, 67]. In particular,
the Nash equilibrium refers to a stable solution of a game, where no player
can benefit by unilaterally deviating its strategy and this strategy is a best re-
sponse to all other strategies in that equilibrium. The author in [64] proposed
the idea of competitive equilibria in a two-type economy framework. Finally,
a stable mathematical background of non-cooperative games along with the
definition of the Minimax Theorem were introduced in [65].

In general, a game is defined as the tuple:

G =< N , {Si}i∈N , {ui}i∈N >

• The finite set of players is denoted as N .

• The set of acceptable strategies for player i is denoted as {Si}i∈N .

• The utility function for player i is denoted as {ui}i∈N .

A classical example to introduce the basic principles of game theory is the
"Prisoner’s dilemma" game. The game scenario involves two criminals arrested
for a serious crime. However the police do not have enough evidence to convict
either of them on the principal charge. Hence, the police interrogate them in
separate cells and offer the following deal. If one criminal testifies against the
other, he will be set free or charged with a minor crime and get a reduced
sentence. It is important to notice that the two suspects are kept separated
and have no information on each other’s actions. Thus, this scenario can be
modeled as a non-cooperative game, where the two suspects are the players,
the strategy set is to cooperate with each other and stay silent or defect and
confess against the other player and the utility function is the final sentence.
As depicted in Table 2.1, if both players confess against each other (D,D),
they get a reduced sentence of 5 years. If both of them choose to cooperate
and stay silent (C,C), then they will be convicted for 1 year, as there is no
evidence of the major crime. Finally, if only one of them confesses against
the other and the other does not (D,U) or (U,D), the betrayer gets the best
possible payoff as he walks free whereas the other player is imprisoned for 20
years, facing charges on the principal crime.
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It is evident from Table 2.1 that if a player cooperates, the other player
will choose to defect as it leads to a better payoff. If the first player chooses
to defect then the other player will still defect as it again provides a better
payoff. Therefore, regardless of the other player’s action, a player in this non-
cooperative game has an incentive to always defect and that is the equilibrium
of the game (D,D), though mutual cooperation would provide a better utility
for both players. This game also provides an insight of greediness and suspicion
among rational and egoistic players.

2.3.2 Non-Cooperative Games

During the last decade, game theory has provided a robust mathematical and
analytical framework to tackle various issues arisen in radar networks, such as
resource allocation, beamforming, target detection and jammer suppression.
Before the introduction of game theoretic methods in radar systems, game
theory has already been studied and provided some impressive results in wire-
less communication networks. Many applications of game theory in wireless
networks are used to solve similar problems that can also arise in radar net-
works, such as resource allocation and beamforming. One popular technique to
tackle the aforementioned problems is the non-cooperative game theory. Non-
cooperative game theory is considered to be a dominant branch of game theory
regarding wireless and radar networks, since it studies and models competitive
decision making among several egoistic but intelligent players, with no com-
munication or coordination of strategic choices. Hence, the aforementioned
properties highly resemble the interactions between widely separated stations
or radars in a fully autonomous, distributed communication or radar network,
respectively. In a non-cooperative game, each player attempts to optimize its
utility function selfishly by selecting the most appropriate strategy, without
any communication among the players, and this move has an impact on the
utility functions of the other players. It is important to highlight at this point,
that partial cooperation is feasible in non-cooperative games, bearing under
consideration that any cooperation assumed in the system is self imposed to
each player without any communication or coordination among the players.

Some pioneering studies of non-cooperative game theoretic techniques in
communications networks are presented in [26, 28, 68, 69, 70]. The authors
in [26] introduced the idea of joint beamforming and power control, designing
an iterative algorithm to simultaneously obtain the optimal beamforming and
power vectors. In [28], an iterative water-filling algorithm was utilized to
obtain the Nash equilibrium in a non-cooperative, distributed, multiuser power
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control problem. A decentralized non-cooperative game was also proposed
in [68] to perform sub-channel assignment, adaptive modulation, and power
control by adding a referee to improve the results. Moreover, the authors in [69]
perform a detailed literature review and concentrate some important results
on distributed resource allocation game theoretic techniques, where a variety
of utility functions and constraints is presented. Finally, a non-cooperative
potential game method was exploited in [70] to obtain the optimal resource
allocation both in the case of static and fluctuating channels.

Noncooperative game theoretic techniques have been also intensively stud-
ied lately within the radar research field to confront several problems and to
improve and optimize various radar parameters. In particular, the authors in
[35] and [36] formulated a non-cooperative game to address the power opti-
mization problem with a predefined SINR constraint. Furthermore, to extend
the study in [35], a signal-to-disturbance ratio (SDR) estimation technique was
applied in [37]. A two-player, non-cooperative, zero-sum game was considered
in [71] to investigate the interaction between a radar and a jammer. Further-
more, non-cooperative MIMO radar and jammer games were applied in [72],
where the utility functions were formulated using the mutual information cri-
terion. The authors in [73, 74] studied the problem of polarimetric waveform
design by forming a zero-sum game between a target and a radar engineer. Fi-
nally, in [75] a novel noncooperative game model is considered for joint design
of amplitudes and frequency-hoping waveforms.

An essential notion in game theory, that leads to the path of obtaining the
final solution of a game, is that of the best response function and is defined as
follows [76, 77]:

Definition: The best response function of player i when the remaining
players of the game follow the profile of strategies s−i is a set of strategies that
satisfies the following equation:

BRi(s−i) = {si ∈ Si | ui(s−i, si) ≥ uk(s−i, s
′

i), ∀s
′

i ∈ Si}

where si is the strategy chosen by player i. The essence of the best response
function is of great importance for game theory, as it provides a set of strate-
gies for a player that produce the highest payoff when compared to different
strategies that do not belong in BRi(s−i) and when the other players are fixed
at s−i. In other words, the best response of player i means that this player
performs better by choosing a strategy from the set BRi(s−i), when the rest
of the players choose exactly the strategies s−i. The best response concept
inspires one of the most challenging goals when designing a game, which is
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to prove that a solution exists and in some cases that this solution is unique.
In non-cooperative games the most common solution notion is the Nash equi-
librium, which describes a situation where no player can improve its payoff
function by alternating its strategy, as aforementioned in Section 2.3.1 and is
formally defined as [78]:

Definition: A pure strategy Nash equilibrium of a non-cooperative game
G =< N , {Si}i∈N , {ui}i∈N > is a strategy selection s∗ ∈ S such that ∀i ∈ N
the following stands:

ui(s
∗
−i, s

∗
i ) ≥ ui(s

∗
−i, si), ∀si ∈ Si(s∗−i),∀i ∈ N .

The investigation on the equilibria of a game, which correspond to possible
stable solutions in cooperative or antagonistic games, is of high importance in
radar networks. This is because it is crucial for the radar network designer
to have the ability to foresee and even ensure the final, stable states at which
the system offers the highest possible desired utility. Therefore, the research
community heavily investigated the existence and uniqueness of such equilibria.
Regarding the existence of an equilibrium, most game theorists used fixed
point theorems, also exploiting the topological and geometrical properties of
the strategy sets and the utility functions [67, 79, 80]. One of the most useful
and popular existence theorems is defined as follows [81, 82, 83, 84]:

Theorem 2.1: Game G =< N , {Si}i∈N , {ui}i∈N > is assumed to be a
strategic noncooperative game (SNG). If for every player i ∈ N , the strategy
set Si is a compact and convex set, the payoff function ui(s−i, si) is a continuous
function in the profile of strategies s ∈ S and quasi-concave in si, then the
SNG G has at least one pure Nash equilibrium.

Securing the existence of the Nash Equilibrium is the first important step
that is required to ensure its uniqueness. By guaranteeing the uniqueness of
the Nash equilibrium, one can not only obtain an accurate prediction of the
final state of the network when studying a radar game but may also transcend
convergence issues. There are two important theorems that can be applied
in radar network games to secure the uniqueness of the Nash equilibrium,
after the existence is proved [85]. In the first theorem, Yates utilized the
standard function property to prove the uniqueness of the solution [86]. In an
earlier work, Rosen exploited the diagonally strict concavity (DSC) property
to secure that an equilibrium is unique [87]. Before stating the two theorems,
it is important to revisit the definition of a standard function:
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Definition: A function F(x) is standard if for all x ≥ 0, the following
properties hold:
• Positivity: F(x) > 0

• Monotonicity: If x ≥ x′, then F(x) ≥ F(x′)

• Scalability: ∀a ≥ 1, aF(x) ≥ F(ax)

Theorem 2.2: [86] If the best response functions of all players in a SNG
G are standard, then the game admits a unique NE.

Theorem 2.3: [87] Assume a strategic game G where ∀i ∈ N , the strategy
set Si is a compact and convex set and the utility function ui(s−i, si) is a
continuous function in the set of strategies s ∈ S and concave in si. Consider
r = (r1, . . . , rN) be an arbitrary vector of fixed positive parameters. If the
DSC property stands for some r > 0

∀s, s′ ∈ S, s 6= s
′
: (s− s

′
)(d(s, r)− d(s

′
, r)) > 0,

where d(s, r) = [r1
∂u1
∂s1
, . . . , rN

∂uN
∂sN

]T , then the game G admits a unique pure
Nash equilibrium.

Both Theorems provide a rigorous mathematical proof of the uniqueness of
the solution and have been thoroughly used in wireless communication works.
Theorem 2.3 is used in [88], where an optimal power allocation problem in fast
fading multiple access channels is investigated, and in the water-filling game
of [89]. The standard function Theorem 2.2 is exploited in [32] to prove the
uniqueness of the solution regarding a joint optimal beamforming and resource
allocation game in multicell wireless systems.

2.3.3 Stackelberg Games

In some non-cooperative scenarios, one or more players may be in a vantage
position to select and impose their desired strategy before the other players
act. Thus, these scenarios introduce some hierarchy in game theory, allowing
the dominant players to enforce their strategies upon the remaining players
in order to maximize their payoff. The dominant player that can apply its
strategy first is called the leader of the game, whereas the rest of the players
are known as followers. It is possible to model games with multiple leaders
or multiple followers or both. Such scenarios in game theory are known as
Stackelberg games.

The Stackelberg leadership model was initially described and applied in
economics by Heinrich Freiherr von Stackelberg in 1934 [90]. In particular,
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Player 2
U D

Player 1 L (4,3) (8,6)
R (5,5) (9,2)

Table 2.2: Utility matrix for the Stackelberg example.

the Stackelberg model is a two part game, where two firms offer an identi-
cal product with known demands. In the first part of the game, the leader
plays first and chooses its quantity of the product. The leading firm usually
rises in the hierarchy of a market because of its size, brand name reputation,
historical precedence in the market, research and information capabilities etc.
In the second part of the game, the following firm chooses its quantity based
on the quantity chosen by the leader and the selected quantity must agree
with the best response function of the follower. In other words, depending on
the quantity announced by the leader, the follower always chooses the best
response strategy to maximize its utility. It is assumed that the leader has a
priori knowledge of the best response function of the follower and strategically
chooses its action to maximize its utility. Hence, the optimal strategy of the
leader along with the corresponding best response of the follower, establish a
Stackelberg equilibrium of the game [78, 77].

Definition: Let us assume a two-player Stackelberg game, where player 1
is the leader and player 2 is the follower. A strategy s∗1 ∈ S1 is a Stackelberg
equilibrium strategy for the leader, when:

min
s2∈BR2(s∗1)

u1(s∗1, s2) = max
s1∈S1

min
s2∈BR2(s∗1)

u1(s1, s2) = u∗1

It is obvious that u∗1 denotes the utility of the leader. In a Stackelberg game, the
utility of the leader u∗1 at the Stackelberg equilibrium could impose a secured
level of utility for the leader.

In order to illustrate the concepts around Stackelberg game theory, a game
with utilities shown in Table 2.2 is considered. Consider that player 1 is the
leader and player 2 the follower. If player 1 selects strategy L, player 2 would
play strategy D, since it provides a higher payoff of 6 instead of 3 if he chose
U . Hence, this leads to a payoff of 8 for the leader. On the other hand, if the
leader plays strategy R, the follower would choose strategy U , as it offers a
better utility of 5 instead of 2 if he played D. This case leads to a utility of 5
for the leader. As a result, the leader (player 1) will play strategy L, because
it will provide a better payoff of 8 instead of 5 if he chooses strategy R. Thus,
the Stackelberg equilibrium for this example is (L,D).
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Stackelberg game theory can provide a highly efficient description of the
hierarchy and interactions that arise in wireless communication or radar net-
works. The vast majority of the work that utilizes Stackelberg games in the
aforementioned systems addresses the resource or power allocation problem.
Concentrating on communications literature, the authors of [91] proposed a
Stackelberg power allocation game in which the leader imposes a pricing pol-
icy for the available spectrum to the followers and subsequently the follow-
ers compete for the available bandwidth with primary objective to maximize
their own utilities. In [92] a joint pricing and power allocation Stackelberg
game for dynamic spectrum access networks is investigated, where the pri-
mary user (leader) determines both the power allocation and the interference
price charged to the secondary user (follower) and the follower determines its
resource demand with respect to the leader’s action. The authors of [93] for-
mulated a downlink power allocation problem as a Stackelberg game, where
the macrocell base stations are the leaders and the femtocell access points are
the followers. Primary target of every station is to maximize its capacity under
power constraints. A price based resource allocation Stackelberg game for two-
tier femtocell networks is formulated in [94], where the macrocell base station
(leader) is self-protected by charging a price for interference to the femtocells
(followers).

Apart from communication networks, Stackelberg game theory has been
applied recently to encounter various issues in radar networks. The authors
in [39, 95] proposed a water filling method for optimal power distribution by
formulating a Stackelberg game, considering two optimization schemes, one
with the radar as a leader and one with the target dominant in the presence
of clutter. In [72] and [96] the interaction between a smart target and a smart
MIMO radar is formulated as a Stackelberg game, where the utility functions
are derived from the mutual information criterion. A Stackelberg game con-
sisting of a single leader and multiple followers is investigated in Chapter 6
of this thesis. More specifically, a hybrid radar network is considered, where
a single surveillance radar plays the role of the leader and multiple tracking
radars are the followers. The leader applies a pricing policy of interference
charged to the followers aiming at maximizing its profit while keeping the in-
coming interference under a certain threshold and the followers react to the
leader’s policy based on their best response function, which is a function of
the leader’s pricing charge and the strategies of the remaining followers.
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2.3.4 Bayesian Games

The game theoretic techniques studied and analysed in the preceding sections
were discussed under the ambiguous assumption that all players have common,
complete information on the components that characterise the game, more
specifically the player set, the strategy set and the players’ utility functions.
As a result, under the assumption of complete information games, each player
i ∈ N chooses a strategy si ∈ Si deterministically with probability 1 and this
describes a pure strategy game. Nonetheless, in many realistic scenarios in a
competitive environment, the players do not have complete information on the
elements of the game. Bayesian game theory provides a rigorous mathematical
framework to address situations of incomplete information [97, 98, 99].

Definition: A non-cooperative Bayesian game of incomplete information
can be fully characterised as [82]:

GB =< N ,A, T ,Π,S,U >

• The set of players: i ∈ N = 1, . . . , N .

• The acceptable action set for player i: Ai ∀ i ∈ N , with ai ∈ Ai denoting
an instantaneous action of player i.

• The type set for each player is denoted as T = T1× . . .×TN , with ti ∈ Ti
denoting a possible type for player i.

• The common prior or probability set is defined as Π = Π1 × . . . × ΠN ,
where Πi is the probability distribution of the type for player i and it is
common knowledge to every player.

• The strategy set for player i Si: si ∈ Si: T → Ai, meaning that the
strategy of player i si is a function of the action of player i ai for each
type ti.

• The Bayesian game model is concluded by defining the utility function
set as U(a, t) = {u1, . . . , uN}, where ui represents the ith player payoff
function, a = (a1, . . . , aN) and t = (t1, . . . , tN). It is evident that the
utility function is a function of actions and types of all players.

Before the initialization of a Bayesian game, nature selects the types of all
players, based most of the times on a predefined distribution that is common
knowledge to all players. Each player’s type is solely known to itself as pri-
vate information, as chosen by nature. It is assumed that the players choose
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their strategies simultaneously, with primary objective to optimize their util-
ity function, based on the belief about the types of other players. After the
completion of the game, each player receives its utility value. Similarly to the
Nash equilibrium notion, one can define the Bayesian Nash equilibrium con-
cept as the final solution of a Bayesian game, which is defined as the strategy
s∗ = (s∗1, . . . , s

∗
N) and is given by:

s∗i (ti) = max
si∈Si

∑
t−i∈T−i

Ui(s∗−i, si; t−i, ti)Pr(t−i|ti)

In a wireless communication or radar network, the uncertainty could emerge
from multiple sources, although in the majority of the literature it is translated
into channel gain uncertainty. The authors of [100] modeled different jamming
attack scenarios in various wireless networks exploiting Bayesian game theory,
where uncertainty is assumed on user identity, traffic dynamics, channel gain
or the costs and rewards of the users. In [101] a Baysesian game is formu-
lated to design and analyze the power allocation problem in fading multiple
access channels, where the players’ main objective is to maximize their ergodic
capacity with incomplete information about the channel gains. A joint Stack-
elberg Bayesian game was formulated in [27] for power allocation in two-tier
networks, where the uncertainty comes from the channel gain incomplete infor-
mation and characterizes the type of the players. A Bayesian game theoretic
approach that extends the classical water-filling game [102, 89], is presented
in [103] for the distributed resource allocation problem within the context
of fading multiple access channels, where the uncertainty is associated with
the channel state information of the players. A distributed power allocation
problem is considered in [104] for a MIMO network utilizing Bayesian game
theoretic techniques, where the local channel state information determines the
type of each player. The authors of [105] proposed an interference aware MAC
protocol by formulating a Bayesian channel-access game model, considering
incomplete information on the channel gain. Finally, [106] attempts a broad
analysis on the distributed resource allocation issue in wireless networks under
uncertainty using different Bayesian game models.

Although Bayesian game theory can provide a realistic and accurate model
of a multistatic radar network with incomplete information, its potential have
not yet been fully exploited in radar literature. An initial attempt to include
uncertainty in radars is performed in [107], where the interaction between a
statistical MIMO radar and an intelligent target equipped with a jammer is
investigated. The target has incomplete information regarding the radar cross
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section (RCS) and thus the channel gain of the target and the jammer does
not know the radar receiver condition. The objective of the radar is obviously
target detection by maximizing its signal to interference plus noise ratio (SINR)
and on the contrary the objective of the jammer is to always attempt to prevent
the target detection via the power allocation optimization. It is evident that
Bayesian game theory in radar networks can be further exploited and provides
a challenging area for further research. In particular, several target models
(for example the Swerling target models [108]) could be utilized to define the
distribution of the radar cross section in a radar network and subsequently
define the distribution of the channel gains. As a result, it is feasible to obtain
the distribution of the type set for every player and this distribution is common
knowledge for all players. This knowledge can be exploited in order to address
several problems in radar networks, as power allocation or SINR maximization
issues.

2.4 Conclusion

This chapter presented a framework to set the basis for the following four con-
tributing chapters. As aforementioned in this chapter, adaptive beamforming
techniques (convex optimization techniques, MVDR beamformer) and nonco-
operative, Stackelberg and Bayesian game theoretic techniques provide sig-
nificant potential to address several important issues in radar literature and
substantially improve the currently used radar systems. This thesis aims to
exploit those techniques and provide substantial results that improve the ef-
ficiency of MIMO radar networks and tackle critical problems, such as beam-
forming optimization, optimal power allocation and SINR maximization.
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Chapter 3

2D Phased-MIMO radar

3.1 Introduction

The field of radar research is vast and has been endlessly developing since late
1930’s. The gigantic breakthroughs in digital signal processing and the con-
stant growth in computational capabilities have enabled the introduction of an
emerging technology known as multiple-input multiple-output (MIMO) radar
[5]. The essence of MIMO radar is the use of multiple antennas to simulta-
neously transmit diverse, possibly linearly independent waveforms, in contrast
to a phased-array radar which transmits scaled versions of a single waveform.
This waveform diversity offers superior capabilities as compared to the phased-
array model. There are two fundamental regimes of operation investigated in
the literature. In the first type, the transmit and receive antenna elements are
widely spaced, whereas, in the second type, the antenna elements are closely
spaced.

MIMO radar with colocated antennas [8] is known to offer higher sensi-
tivity to detect slowly moving targets, higher angular resolution, increased
number of detectable targets, direct applicability of adaptive array techniques
and better parameter identifiability. On the other hand, MIMO radar with
widely spaced antennas provides the ability to capture the spatial diversity of
the target’s radar cross section (RCS), enhance the ability to combat signal
scintillation, estimate precisely the parameters of fast moving targets and im-
prove the target detection performance, by taking advantage of the target’s
geometrical characteristics [9].

The substantial improvements offered by MIMO radar technology come at
the cost of losing the transmit coherent processing gain offered by phased-
array radar [56, 62]. This absence can lead to signal-to-noise ratio (SNR)
decrease and beam-shape loss [56, 62]. The aforementioned disadvantages
raise the dilemma of whether or not MIMO radar will meet the expectations
that it will provide a colossal opportunity for improvements in the field of radar
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research. This work stems from the belief that MIMO radar is not a substitute
technology that will totally outclass phased-array radars, but rather it provides
the opportunity of jointly exploiting the benefits of both models, as reported
recently in the literature [62, 58]. The authors of [58] proposed a radar model,
utilizing the idea of dividing a large number of colocated transmit/receive
elements into multiple subarrays, that are not allowed to overlap. Phased-
MIMO radar is a breakthrough notion in radar technology, introduced in [62].
The vantage point of this technique is the partition of the transmit array
into subarrays that are allowed to overlap. Earlier work in [109] investigated
the application of this Phased-MIMO radar notion to 2D transmit arrays by
designing the transmit beampattern through a convex optimization problem
that minimizes the difference between a desired transmit beampattern and the
actual one produced by the system [5].

The transmit beamforming design in MIMO radar with colocated transmit
arrays has been extensively investigated in the literature [110, 21, 11]. In
particular, most of the work is focused on a one dimensional ULA. It has been
shown in [11] and [21] that convex optimization techniques can solve efficiently
the problem of transmit beamforming in a ULA. The extension of this to two-
dimensional transmit beamforming optimization is presented in [110].

In this chapter, transmit beamforming design for phased-MIMO radar with
fully overlapped 2D transmit subarrays is investigated. Each subarray is pro-
gramed to coherently transmit a waveform which is orthogonal to the wave-
forms transmitted by other subarrays. In order to achieve high coherent pro-
cessing gain, a weight vector should be designed for each subarray to steer the
transmit beam to a specific 2D sector in space, determined by a desired trans-
mit beampattern. To accomplish this, an optimization problem is designed,
that minimizes the difference between the desired transmit beampattern and
the actual beampattern obtained by the array of antennas under the constraint
of uniform power allocation across the transmit antennas. It is possible to add
more constraints, such as minimum sidelobe level and uniform power distri-
bution over each subarray. As the optimization problem in its original form
is non-convex, it has been converted to convex form using semidefinite relax-
ation techniques. The simulation results highlight the advantage of the 2D
subaperturing technique for MIMO radars.

Later in the chapter, transmit, waveform diversity and overall transmit-
receive beamforming design is examined for Phased-MIMO radar with fully-
overlapped 2D transmit subarrays. The Phased-MIMO beampatterns are ob-
tained using both conventional and adaptive techniques and compared with the
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respective beampatterns of the phased-array and MIMO radars. Specifically,
in order to design the adaptive transmit beampattern, a convex optimization
problem is solved, that minimizes the difference between a desired transmit
beampattern and the actual one produced by the system. Furthermore, the
adaptive overall transmit-receive beampattern are designed by utilizing the
Minimum Variance Distortionless Response (MVDR) Capon beamformer. The
simulation results highlight the benefits provided by the 2D Phased-MIMO
radar with fully overlapped subarrays.

3.2 Transmit Beamforming Design for Two-Dimensional

Phased-MIMO Radar with Fully-Overlapped

Subarrays

A subaperturing technique for two-dimensional (2D) transmit arrays within
the context of multiple-input multiple-output (MIMO) radar is investigated.
Specifically, the performance of transmit beamforming using fully overlapped
subarrays of a 2D transmit array is studied. As reported for linear array of
antennas, this 2D transmit array exploits the advantages of the MIMO radar
technology without sacrificing the coherent processing gain at the transmit
side provided by the phased-array concept. In order to achieve high coherent
processing gain, a weight vector should be designed for each subarray to steer
the transmit beam in certain 2D sector in space. This is achieved by solving a
convex optimization problem that minimizes the difference between a desired
transmit beampattern and the actual beampattern produced by the 2D array
of antennas, under a constraint in terms of uniform power allocation across
the transmit antennas.

3.2.1 System Model

In the proposed model, a radar system that has a uniform rectangular array
(URA) at the transmit side is considered, which consists of Mt×Nt antennas,
where Mt is the number of antennas in each column and Nt is the number
of antennas in each row of the planar transmit array. The adjacent antenna
elements at each column are assumed to be equidistant with spacing dm and at
each row also equidistant with spacing dn. The main idea behind the system
model is to partition the transmit 2D array into K subarrays (1 ≤ K ≤
Mt ×Nt) which are fully overlapped. An example of the fully overlapped
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Figure 3.1: Fully overlapped subaperturing of a 5×5 uniform
rectangular array(URA) when K=5.

subaperturing of a 5 × 5 URA into 5 subarrays is shown in Fig. 3.1. As
described in Fig. 3.1, each subarray consists of Mt × Nt − K + 1 antennas.
In order to achieve this subaperturing, the selection matrix Zk is introduced,
which is anMt×Nt matrix containing 0 and 1 entries. When the (mn)th entry
equals 1 then the (mn)th element of the 2D array belongs to the kth subarray,
while 0 means that the element does not belong to the kth subarray. As a
result, the matrix Zk defines the kth subarray. The MtNt × 1 steering vector
associated with the kth subarray can be denoted as:

ak(θ, φ) = vec(Zk � [u(θ, φ)vT (θ, φ)]) (3.1)

where vec(·) is the operator that stacks the columns of a matrix in one column
vector, � denotes the Hadamard product, (·)T denotes the transpose, θ and φ
denote the elevation and azimuth angles respectively. The vectors µ(θ, φ) ∈
CMt×1 and ν(θ, φ) ∈ CNt×1 are written as:

µ(θ, φ) = [1, ej2πdmsin(θ)cos(φ), . . . , ej2π(Mt−1)dmsin(θ)cos(φ)]T

ν(θ, φ) = [1, ej2πdnsin(θ)sin(φ), . . . , ej2π(Nt−1)dnsin(θ)sin(φ)]T

The kth subarray of the transmit URA emits the kth element of the pre-
designed independent waveform vector ψ(t) = [ψ1(t), . . . , ψK(t)]T of sizeK×1,
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which satisfies the orthogonality condition
∫
T0
ψ(t)ψH(t)dt = IK , where T0 is

the radar pulse width, t refers to the time index within the radar pulse, IK is
the K ×K identity matrix, and (·)H denotes the Hermitian transpose.

The aim is to focus the energy of the transmit array into a 2D spatial
sector defined by Θ = [θ1 θ2] in the elevation domain and Φ = [φ1 φ2] in
the azimuth domain. Therefore, K transmit beams are formed, each of them is
steered by the corresponding subarray. Then each of the orthogonal waveforms
ψk is radiated over one beam. The complex envelope of the signals at the
output of the kth subarray can be designed by sk(t) =

√
MtNt
K

wkψk(t), where
wk ∈ CMtNt×1 is the transmit weight vector, used to form the kth transmit
beam. The power of the probing signal emitted by the kth subarray towards
the direction (θ, φ) can be modeled as

Pk(θ, φ) = aHk (θ, φ)E{sk(t)sHk (t)}ak(θ, φ)

=
MtNt

K
aHk (θ, φ)wkwH

k ak(θ, φ) (3.2)

The array transmit beampattern is hence defined as

P (θ, φ) =
K∑
k=1

MtNt

K
aHk (θ, φ)wkwH

k ak(θ, φ) (3.3)

The equation (3.3) of the total transmit power defines the array transmit
beampattern.

3.2.2 Transmit Beamforming Design

In order to design the 2D transmit beamforming, the optimization problem of
minimizing the maximum difference between the desired 2D transmit beam-
pattern and the transmit beampattern of the system given by (3.3) is derived.
The constraint of the optimization problem is the uniform power allocation
across the transmit antennas. Therefore, similar to the work in [110] for URA
without subaperturing, the following optimization problem is formulated:

min
w1,...,wK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

wH
k ak(θ, φ)aHk (θ, φ)wk| (3.4)

s.t.
K∑
k=1

|W[lk]|2 =
E

MtNt − (K − 1)
, l = 1, . . . ,MtNt (3.5)
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where W = [w1, ...,wK ] ∈ CMtNt×K is the transmit beampattern weight ma-
trix, Pd(θ, φ) is the desired beampattern and E is the total available power. In
the constraint (3.5), the total power is divided with MtNt − (K − 1) because
there areMtNt−(K−1) elements in each subarray space. It is possible to have
additional constraints for this optimization problem, such as sidelobe control or
uniform power distribution over each subarray. This optimization problem is in
a non-convex form. Defining a matrixXk = wkwH

k ∈ CMtNt×MtNt , k = 1, ..., K,
the optimization problem is formulated as:

min
X1,...,XK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

Tr{ak(θ, φ)aHk (θ, φ)Xk}|

s.t.

K∑
k=1

diag{Xk} =
E

MtNt − (K − 1)
1MtNt×1

Xk � 0, k = 1, . . . , K

rank(Xk) = 1, k = 1, . . . , K (3.6)

where Tr{·} denotes the trace of a matrix, diag{·} denotes the diagonal of
a square matrix, 1MtNt defines the MtNt × 1 vector of ones, and rank(...)

denotes the rank of a matrix. The notation Xk � 0, k = 1, . . . , K is used
to indicate that Xk is positive semidefinite. The rank constraint maintains
the optimization problem (3.6) as non-convex. Relaxing the rank constraint
(semidefinite relaxation), the optimization problem is recasted as follows [111]:

min
X1,...,XK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

Tr{ak(θ, φ)aHk (θ, φ)Xk}|

s.t.

K∑
k=1

diag{Xk} =
E

MtNt − (K − 1)
1MtNt×1

Xk � 0, k = 1, . . . , K (3.7)

After the rank relaxation, the optimization problem (3.7) is convex and it is
solved using semidefinite programming (SDP). The next step is to extract the
transmit weight vectors from the optimal solution of the optimization prob-
lem (3.7), denoted as X∗k, for k = 1 , . . . ,K . There are two cases for deriving
the optimal weight vectors wk. If the rank of X∗k is one, which is the ideal
case, the optimal wk is obtained straightforwardly as the eigenvector of X∗k,
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corresponding to the principal eigenvalue, multiplied by the square root of the
principal eigenvalue. On the other hand, it is still possible the rank of X∗k is
greater than one. In this case the use of randomisation techniques is needed
to derive the optimal transmit weight vectors [110].

The following randomisation technique is applied. Initially, the eigenvalue
decomposition of X∗k is defined as X∗k = UkLkUH

k . Then Λ random vectors
are produced, i.e. rλk , λ = 1 , ...,Λ, with elements uniformly distributed on the
unit circle of the complex plane, providing the Λ candidate transmit weight
vectors as wλ

k = UkL
(1/2)
k rλk . Then, the optimal weight vector is chosen wopt,k,

as the one which minimizes the objective function of the optimization problem
(3.7). Finally, the optimal weight vector wopt,k is normalised as:

wnorm,k = wopt,k
||Xk||F

||wopt,kwH
opt,k||F

(3.8)

where || · ||F denotes the Frobenius norm. Using the transmit weight vectors
derived in (3.8) the transmit beampattern is designed for the system.

3.2.3 Simulation Results

In this section, simulation results of the proposed design model are presented.
A 5× 5 transmit URA is assumed with half-wavelength spacing between adja-
cent antennas (dm = dn = λ/2, where λ is the wavelength). In the first exam-
ple, the transmit array is divided into 5 subarrays which are fully overlapped
as described in Fig.3.1. Each subarray consists of 21 antennas. The desired
beampattern has a mainlobe defined by the 2D sector Θ = [−40o,−20o] in the
elevation domain and Φ = [50o, 85o] in the azimuth domain. Also, a transi-
tion zone is incorporated and defined by Θ = [−50o,−40o]

⋃
[−200,−10o] and

Φ = [40o, 50o]
⋃

[85o, 95o]. Any error that occurs in this region is ignored in the
beamforming design. The 2D transmit beampattern is obtained by solving the
optimization problem (3.7) and it is shown in Fig.3.2. It is obvious that the
power allocation of the transmit beampattern is concentrated in the desired
2D sector. Moreover, the sidelobe levels are very low and do not extend to the
whole 2D space.

In the second example the same 5× 5 transmit URA is considered, but the
transmit array is divided into 7 subarrays which are fully overlapped. Each
subarray consists of 19 antennas. In this simulation, the 2D sector of interest
is defined by Θ = [15o, 55o] in the elevation domain and Φ = [110o, 140o] in the
azimuth domain. Furthermore, a transition zone is incorporated and defined
by Θ = [5o, 15o]

⋃
[55o, 65o] and Φ = [100o, 110o]

⋃
[140o, 150o]. The resulting
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Figure 3.2: Transmit beampattern in the case of k=5 subar-
rays.

Figure 3.3: Transmit beampattern in the case of k=7 subar-
rays.

2D transmit beampattern is shown in Fig.3.3. It is clear from the two figures
that in the case of 7 fully overlapped subarrays, the sidelobe levels are even
lower than the case of 5 subarrays.

In the third example, the main objective is to compare the proposed sub-
aperturing technique with the case when the URA uses all of its elements when
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Figure 3.4: Transmit beampattern in the case of full URA.

(a) Elevation cross section (b) Azimuth cross section

Figure 3.5: Cross sections of the transmit beampattern at
φ = 63o and θ = −27o, respectively.

transmitting the probing signal. Once again, a 5× 5 transmit URA with half-
wavelength spacing between adjacent antennas is assumed. The 2D sector of
interest is defined as in the first example in order to facilitate the comparison.
Five transmit beams are used to synthesize the 2D transmit beampattern.
The resulting 2D transmit beampattern is shown in Fig.3.4. The results in
Fig.3.5 show two cross sections of the transmit beampattern, incorporating
both the proposed method and the full URA case. The first cross section is
plotted against the elevation angle by keeping the azimuth angle constant at
63o. Similarly, the second cross section is derived against the azimuth angle
by holding the elevation angle constant at −27o. It is worth noting that the
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sidelobe levels are clearly lower for the proposed method.

3.3 Beamforming for Fully-Overlapped Two-Dimensional

Phased-MIMO Radar

In this section, the design of joint transmitter and receiver beamformer is in-
vestigated within the context of multiple-input multiple-output (MIMO) radar
employing two-dimensional (2D) arrays of antennas. Specifically, the trans-
mit, waveform diversity and overall transmit-receive beampatterns are derived
for the Phased-MIMO radar with fully-overlapped subarrays and compared
with the respective beampatterns for the Phased-array and MIMO radar only
schemes. As reported for one-dimensional linear arrays, fully-overlapped 2D
subarrays offer substantial improvements in performance as compared with
the phased-array and MIMO only radar models. The work considers both the
adaptive (convex optimization, CAPON beamformer) and non-adaptive (con-
ventional) beamforming techniques. The simulation results demonstrate the
superiority of the fully-overlapped subaperturing in both cases.

3.3.1 2D Phased-MIMO System Model

Figure 3.6: Fully overlapped subaperturing of a 5×5 uniform
rectangular array (URA) when K=4.

In this work, a monostatic radar system is considered employing a uniform
rectangular array (URA), which consist of Mt × Nt and Mr × Nr antennas
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at the transmitter and the receiver respectfully, where Mt and Mr are the
number of elements in each column and Nt and Nr are the number of antennas
in each row of the planar arrays. The 2D Phased-MIMO model is based on
partitioning the transmit 2D array into K subarrays (1 ≤ K ≤ Mt ×Nt)
that are fully overlapped [62], as depicted in Fig. 3.6, where a subaperturing
of a 5 × 5 transmit URA into 4 subarrays is presented. Moreover the kth

subarray is composed of Mt ×Nt −K + 1 antennas and emits the kth element
of the predesigned independent waveform vector ψ(t) = [ψ1(t), . . . , ψK(t)]T of
size K × 1, which satisfies the orthogonality condition

∫
T0
ψ(t)ψH(t)dt = IK ,

where (·)T denotes the transpose, t refers to the time index within the radar
pulse, T0 is the radar pulse width, IK is the K ×K identity matrix, and (·)H

denotes the Hermitian transpose.
In order to characterize the fully overlapped subaperturing of the 2D Phased-

MIMO model mathematically, an Mt × Nt selection matrix is introduced Zk
[110]. When the (mn)th entry equals 1 then the (mn)th element of the 2D array
belongs to the kth subarray, while a 0 entry in Zk means that the element is
not a part of the kth subarray. Thus, the matrix Zk defines the structure of
the kth subarray. As a result, the MtNt× 1 transmit steering vector related to
the kth subarray can be constructed as:

ak(θ, φ) = vec(Zk � [µ(θ, φ)νT (θ, φ)]) (3.9)

where vec(·) is the operator that stacks the columns of a matrix into one
column vector, � denotes the Hadamard product, θ and φ denote the elevation
and azimuth angles respectively. The auxiliary vectors µ(θ, φ) ∈ CMt×1 and
ν(θ, φ) ∈ CNt×1 are derived from the array geometry and they are defined as
follows:

µ(θ, φ) = [1, ej2πdmsin(θ)cos(φ), . . . , ej2π(Mt−1)dmsin(θ)cos(φ)]T

ν(θ, φ) = [1, ej2πdnsin(θ)sin(φ), . . . , ej2π(Nt−1)dnsin(θ)sin(φ)]T

where dm and dn are the distances between the adjacent antennas at each
column and at each row respectively.

The primary objective of the work is to focus the transmit energy onto
a certain 2D sector in space, determined by the direction of the target, and
at the same time to achieve high transmit coherent processing gain. Hence,
a weight vector should be designed for each of the K subarrays to steer the
transmit beam in the desired spatial sector. TheMtNt×1 vector which consists
of the complex envelope of the signals at the output of the kth subarray can
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be modeled as sk(t) =
√

MtNt
K

wkψk(t), where wk ∈ CMtNt×1 is the transmit
beamformer weight vector, used to form the kth transmit beam. The power of
the emitted signal from the kth subarray focused at a generic focal point with
coordinates (θ, φ) is given by

Pk(θ, φ) = aHk (θ, φ)E{sk(t)sHk (t)}ak(θ, φ)

=
MtNt

K
aHk (θ, φ)wkwH

k ak(θ, φ) (3.10)

Using the far field assumption and adding the power of the probing signals
emitted by all K subarrays, the 2D array transmit beampattern can be written
as

P (θ, φ) =
K∑
k=1

MtNt

K
aHk (θ, φ)wkwH

k ak(θ, φ) (3.11)

Assuming that there is a target present in the far-field of the transmit and
receive arrays at direction θt in the elevation domain and φt in the azimuth
domain, the signal reflected by the aforementioned target is modeled as

r(t, θt, φt) =

√
MtNt

K
βt

K∑
k=1

wH
k ak(θt, φt)e

−jτk(θt,φt)ψk(t) (3.12)

where βt is the complex amplitude proportional to the radar cross section
(RCS) of the target, and τk(θt, φt) is the time required for the signal to cover the
distance between the first element of the transmit array and the first element
of the kth subarray.

If it is assumed that in addition to the desired target, there are L active
interfering targets at locations {θi}Li=1, {φi}Li=1 and with reflection coefficients
{βi}Li=1, then under the simplifying assumption of point targets, the MrNr× 1

received data vector can be described by the equation

x(t) = r(t, θt, φt)b(θt, φt) +
L∑
i=1

r(t, θi, φi)b(θi, φi) + n(t) (3.13)

where b(θ, φ) is the MrNr × 1 steering vector of the received array and n(t) is
the noise component that is supposed to have zero mean. By applying matched
filtering to the received data vector for each of the orthogonal waveforms ψk(t),
k = 1, ..., K, the KMrNr × 1 virtual receive data vector can be constructed as
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y =

∫
T0

x(t)ψ∗k(t)dt

=

√
MtNt

K
βtu(θt, φt) +

L∑
i=1

√
MtNt

K
βiu(θi, φi) + n̂ (3.14)

where n̂ =
∫
T0

n(t)ψ∗k(t)dt is the KMrNr×1 noise term with covariance matrix
Rn = σ2

nIKMrNr (σ2
n is the noise variance) and the KMrNr × 1 vector

u(θ, φ) = (c(θ, φ)� d(θ, φ))⊗ b(θ, φ) (3.15)

is the virtual steering vector of the system. In order to derive the virtual
steering vector, the K × 1 transmit coherent processing vector is used

c(θ, φ) = [wH
1 a1(θ, φ), . . . ,wH

KaK(θ, φ)]T (3.16)

and the K × 1 waveform diversity vector

d(θ, φ) = [e−jτ1(θ,φ), . . . , e−jτK(θ,φ)]T (3.17)

In the case of the fully-overlapped partitioning of the 2D transmit array into
K subarrays, the waveform diversity vector is equal to the K first elements of
the transmit steering vector a(θ, φ) = vec(µ(θ, φ)νT (θ, φ)).

At this point it is apparent that the 2D Phased-MIMO radar scheme ex-
ploits the benefits of both the phased-array and the MIMO radar model as
a tradeoff between transmit coherent processing gain and higher angular res-
olution. This tradeoff is determined by the selection of the number of fully
overlapped subarrays of the 2D transmit array. In particular, if K = 1 is
chosen the radar model simplifies to the conventional phased-array scheme,
since the whole transmit array forms the only subarray which emits only one
waveform. However, if K = MtNt is selected, the radar model simplifies to a
MIMO radar.

3.3.2 Transmit-Receive Beamforming for the Phased-MIMO

model

In this section, conventional and adaptive techniques are investigated to design
the transmit and the overall transmit-receive beampattern of the Phased-array,
Phased-MIMO and MIMO radar schemes.
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Conventional Beampattern Design

Conventional non-adaptive beamforming is the simplest technique to design
the transmit and overall beampatterns, however, it offers the highest possible
output SNR gain only when a single target is observed in the background of
white Gaussian noise [19]. By applying the conventional beamforming in the
proposed 2D Phased-MIMO model, the normalized transmit weight vector for
the kth subarray can be obtained as

wk =
ak(θt, φt)

‖ak(θt, φt)‖
, k = 1, . . . , K (3.18)

where || · || denotes the Euclidian norm. In order to derive the conventional
transmit beampattern, (3.18) is substituted in (3.11). By enforcing the conven-
tional beamformer at the virtual receive array, the KMrNr × 1 receive weight
vector is defined as

wr = u(θt, φt) (3.19)

The overall transmit-receive beampattern is given by

Q(θ, φ) = |wH
r u(θ, φ)|2 (3.20)

Adaptive Beampattern Design

It is presumed that a surveillance radar is incorporated within the radar net-
work, which detects incoming targets and provides an initial estimation re-
garding their coordinates. The technical analysis of the surveillance method
goes beyond the scope of this thesis and is not investigated. After the target
location coordinates are obtained from the detection scan of the surveillance
radar as (θt,φt), the main goal is to focus the power of the next beam at a
spatial sector around the target, defined by

Θ = [θt −∆1, θt + ∆1] (3.21)

Φ = [φt −∆2, φt + ∆2] (3.22)

in the elevation domain and the azimuth domain, where 2∆1 and 2∆2 are
the chosen beamwidths for the target in the elevation and azimuth domain
respectively (∆1 and ∆2 should be greater than the expected error in θt and φt
respectively). Following this approach, more accurate parameter identifiability
is guaranteed for the target. The derivation of the transmit weight vector
for each subarray is achieved by solving a convex optimization problem that
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minimizes the difference between the desired transmit beampattern and the
beampattern produced by the 2D array of antennas, under a constraint in
terms of uniform power allocation across the transmit antennas [110, 109]. In
this work, strong clutter is considered, imposed by an obstacle within a certain
2D spatial sector, already estimated as Θc = [θc1 θc2] and Φc = [φc1 φc2]

from training signals. The second constraint in the optimization problem is to
restrain the sidelobe level in the prescribed region under a certain value δ, thus
minimizing the clutter effect in the system. Hence, defining a matrix Xk =

wkwH
k ∈ CMtNt×MtNt , k = 1, ..., K, the optimization problem is formulated as:

min
X1,...,XK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

Tr{ak(θ, φ)aHk (θ, φ)Xk}|

s.t.

K∑
k=1

diag{Xk} =
E

MtNt − (K − 1)
1MtNt×1

|
K∑
k=1

Tr{ak(θc, φc)aHk (θc, φc)Xk}| − δ ≤ 0, θc ∈ Θc, φc ∈ Φc

Xk � 0, k = 1, . . . , K (3.23)

where Pd(θ, φ) is the desired beampattern, E is the total available power, Tr{·}
denotes the trace of a matrix, diag{·} denotes the diagonal of a square matrix
and 1MtNt defines the MtNt × 1 vector of ones. The notation Xk � 0, k =

1, . . . , K is used to indicate that Xk is positive semidefinite. The convex op-
timization problem (15) is solved using semidefinite programming (SDP) [51].
After obtaining the optimal solution, denoted as X∗k, the optimal transmit
weight vectors wk are derived. If X∗k is of rank one, which is the ideal scenario,
the optimal weight vector wk is obtained straightforwardly as the principal
eigenvector of X∗k multiplied by the square root of the principal eigenvalue
of X∗k. However, if the rank of X∗k is greater than one, one must resort to
randomisation techniques to obtain the optimal transmit weight vectors [109].

Besides the transmit array, it is also important to use adaptive techniques
at the 2D receive array of the system in order to maximize the output signal
to interference plus noise ratio (SINR). A beamformer that satisfies both the
steering capabilities whereby the target signal is always protected and the can-
celation of interference so that the output SINR is maximized, is the Minimum
Variance Distortionless Response (MVDR) beamformer [20]. The main idea
of the MVDR beamformer is to minimize the covariance of the beamformer
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output subject to a distortionless response towards the direction of the target.
Hence, it can be formulated as the following optimization problem

min
wr

wH
r R̂yywr subject to wH

r u(θt, φt) = 1 (3.24)

where R̂yy = 1
N

yyH is the sample covariance matrix of the observed data
samples that can be collected from N different radar pulses. The solution to
(3.24) is [20],

wr =
R̂−1
yy u(θt, φt)

uH(θt, φt)R̂−1
yy u(θt, φt)

(3.25)

The receive weight vectors derived by (3.25) are employed to design the overall
transmit-receive beampattern in the simulations.

3.3.3 Simulation Results

The performance of the fully-overlapped 2D Phased-MIMO radar is compared
to the phased-array and the conventional MIMO radar schemes. A 5 × 5

transmit-receive URA with half-wavelength spacing between adjoining anten-
nas is assumed (dm = dn = λ/2, where λ is the wavelength). The emitted
orthogonal baseband waveforms from each subarray are modeled as [112]:

ψk(t) =

√
1

T0

ej2π(k/T0)t, k = 1, . . . , K

The desired target is located at directions θt = −30o and φt = 60o. Further-
more, one interfering target is assumed at directions θi = 30o and φi = 90o.
The 2D transmit array is divided into 5 subarrays that are fully overlapped
and each of them consists of 21 antennas. The noise is considered as com-
plex Gaussian with zero mean and variance 0.1. In order to derive the sample
covariance matrix N = 100 data samples are used.

In the first example, the conventional non-adaptive beamformer is used to
derive both the transmit and receive weight vectors. In order to obtain the
waveform diversity beampattern, the waveform diversity vector obtained by
(3.17) is considered as the weight vector. As a result, the transmit, the wave-
form diversity and the overall beampatterns for the 2D Phased-MIMO radar
are depicted in Fig. 3.7. In Fig. 3.8, the same beampatterns are simulated for
the phased-array radar model, by considering the whole 2D transmit array as
the only subarray (K = 1). On the contrary, in order to simulate the conven-
tional MIMO radar, K = MtNt is set (each antenna of the transmit array is
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considered as a subarray) and the respective beampatterns are shown in Fig.
3.9. To facilitate the comparison between the three models, Figs. 3.10-3.12
show the cross section plotted against the elevation angle by keeping the az-
imuth angle constant at 60o as well as the cross section plotted against the
azimuth angle by holding the elevation angle at −30o for all three schemes.

(a) Conventional transmit beampattern
(dB).

(b) Conventional waveform diversity
beampattern (dB).

(c) Conventional overall beampattern
(dB).

Figure 3.7: The beampatterns for the non-adaptive 2D
Phased-MIMO radar.

As reported for the case of the one-dimensional (1D) linear array in [62],
for the 2D array also it is evident from Figs. 3.10 and 3.11 that although the
phased-array radar has the most efficient transmit conventional beampattern
due to its high transmit coherent processing gain, it has zero waveform diversity
gain. On the other hand, the MIMO radar has flat (0dB) transmit beampat-
tern, but it has the most accurate waveform diversity beampattern, because
of the simultaneous emission of MtNt orthogonal waveforms. However, it is
clear from Fig. 3.12 that the 2D Phased-MIMO radar remarkably outperforms
the phased-array and MIMO radars in terms of the overall transmit-receive
beampattern, as it has lower sidelobes and approximates better the desired
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(a) Conventional transmit beampattern
(dB).

(b) Conventional waveform diversity
beampattern (dB).

(c) Conventional overall beampattern
(dB).

Figure 3.8: The beampatterns for the non-adaptive 2D
phased-array radar.

target direction. Moreover, it is important to highlight that in the case of
conventional beamforming the overall beampatterns of the phased-array and
the MIMO radar are exactly the same.

In the second example, adaptive beamforming techniques are employed to
derive the transmit and receive beampatterns. In particular, convex optimiza-
tion techniques are used to determine the transmit beamformer weight vectors
and the MVDR (CAPON) based receiver beamformer for the receive weight
vectors. In the simulations, strong clutter is assumed at the 2D spatial sec-
tor defined by Θc = [−90o,−60o] and Φc = [140o, 180o]. It is considered that
δ = 0.01 (-20dB) to restrain the sidelobe level in the clutter region. The de-
sired beampattern that it is wished to be approximated is given by (3.21) and
(3.22) where ∆1 = 10o and ∆2 = 20o. The total available power for the system
is equal to one (E = 1) and the interference to noise ratio (INR) is fixed to
30dB. The 2D transmit beampattern for the Phased-MIMO radar is obtained
by solving the optimization problem in (3.23) as shown in Fig. 3.13a. Similarly,
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(a) Conventional transmit beampattern
(dB).

(b) Conventional waveform diversity
beampattern (dB).

(c) Conventional overall beampattern
(dB).

Figure 3.9: The beampatterns for the non-adaptive 2D
MIMO radar.

(a) Elevation cross section. (b) Azimuth cross section.

Figure 3.10: Cross sections of the transmit beampattern at
φ = 60o and θ = −30o, respectively.

by solving the same optimization problem considering the whole URA as one
subarray (K = 1), the 2D transmit beampattern for the phased-array scheme
is generated as shown in Fig. 3.13b. It is clear that the power allocation of
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(a) Elevation cross section. (b) Azimuth cross section.

Figure 3.11: Cross sections of the waveform diversity beam-
pattern at φ = 60o and θ = −30o, respectively.

(a) Elevation cross section. (b) Azimuth cross section.

Figure 3.12: Cross sections of the overall beampattern at
φ = 60o and θ = −30o, respectively.

both beampatterns is concentrated in the desired space and the sidelobe level
is very low, especially over the predefined clutter regions, where it has values
lower than 20dB.

At the receive array, the MVDR beamformer is employed to derive the over-
all transmit-receive beampatterns for all radar schemes investigated, as shown
in Fig. 3.14. Similar to the first example, Fig. 3.15 shows the cross sections
of the overall beampatterns to help to facilitate the comparison between the
three types of radar configurations. Corresponding to the results for conven-
tional beamforming, it is clear from Fig. 3.15 that the 2D Phased-MIMO radar
exploits the transmit superiority of the phased-array model and the waveform
diversity of the MIMO scheme to result in a substantially improved overall
beampattern.
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(a) 2D Phased-MIMO radar. (b) 2D Phased-array radar.

Figure 3.13: Transmit beampatterns using convex optimiza-
tion(dB).

(a) 2D Phased-MIMO radar. (b) 2D phased-array radar.

(c) 2D MIMO radar.

Figure 3.14: Adaptive Overall Beampatterns using MVDR
beamformer (dB).

3.4 Conclusion

In this chapter, a new subaperturing technique for MIMO radars with planar
URA at the transmit side was investigated. Specificaly, the problem of 2D
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(a) Elevation cross section. (b) Azimuth cross section.

Figure 3.15: Cross sections of the overall beampattern at
φ = 60o and θ = −30o (adaptive beamforming).

transmit beamforming design was considered for the MIMO radar with fully
overlapped subarrays. The simulation results confirmed that the system trans-
mit beampattern approximates the desired sector of space with high accuracy.
Furthermore, the sidelobe levels are very low and are restricted in an area
close to the mainlobe, without covering the whole 2D space. Moreover, it is
apparent that as the number of subarrays increases the transmit beampattern
produces lower sidelobe levels. Finally, a comparison was performed between
the proposed method and the case when the transmit side consists of a full
URA. It is shown that the concentration of the power within the desired 2D
sector is more evident in the proposed method.

Furthermore, the performance of transmit/receive beamforming has been
studied within the context of 2D Phased-MIMO radar with fully overlapped
subarrays. The simulation results confirmed that there are substantial im-
provements of the overall transmit/receive beampattern of the 2D Phased-
MIMO radar as compared to the phased-array and the conventional MIMO
model. In particular, it was demonstrated that the Phased-MIMO scheme
combines the transmit coherent processing gain of the phased-array radar and
the waveform diversity of the MIMO model to produce a more efficient and
accurate overall beampattern with very low sidelobe levels. This superiority
is highlighted using both non-adaptive (conventional) and adaptive (convex
optimization and MVDR) beamforming techniques.
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Chapter 4

Resource Allocation Games and
Nash Equilibrium Analysis

4.1 Game Theoretic Power Allocation and the

Nash Equilibrium Analysis for a Multistatic

MIMO Radar Network

In this section, a game theoretic power allocation scheme is investigated and
a rigorous Nash equilibrium analysis for a multistatic multiple-input multiple-
output (MIMO) radar network is provided. In particular, a network of radars
is assumed, organized into multiple clusters, whose primary objective is to min-
imize their transmission power, while satisfying a certain detection criterion.
Since there is no communication between the distributed clusters, convex opti-
mization methods and noncooperative game theoretic techniques are incorpo-
rated based on the estimate of the signal to interference plus noise ratio (SINR)
to tackle the power adaptation problem. Therefore, each cluster egotistically
determines its optimal power allocation in a distributed scheme. Furthermore,
it is proved that the best response function of each cluster regarding this gen-
eralized Nash game (GNG) belongs to the framework of standard functions.
The standard function property together with the proof of the existence of
solution for the game guarantees the uniqueness of the Nash equilibrium. The
mathematical analysis of the uniqueness of the solution leads to substantial
results on the relation between the performance with respect to the detection
criterion and the transmission power of the radars. Finally, the simulation
results confirm the convergence of the algorithm to the unique solution and
demonstrate the distributed nature of the system.
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4.1.1 Introduction

Recent advances in digital signal processing and the constant development of
computational capabilities suggest that it may be feasible for next generation
radar systems to incorporate multiple-input multiple-output (MIMO) technol-
ogy. The superiority of a MIMO radar against other radar schemes lies in its
waveform diversity, which in essence defines that a MIMO radar can simul-
taneously emit several diverse, possibly linearly independent waveforms via
multiple antennas, in contrast to existing radar systems that transmit scaled
versions of the same, predefined waveform [5]. In particular, there are two prin-
cipal types of MIMO radar, those that incorporate colocated antennas [8] and
systems equipped with widely separated antennas (bistatic, multistatic) [9].
MIMO radar technology provides direct applicability of adaptive beamform-
ing [113], waveform design and power allocation, higher angular resolution,
ability to acquire the target’s geometrical characteristics through the radar
cross section (RCS) and multiple target detection [5]. However, in order to
combat multiple source interference in a radar field, while achieving high de-
tection performance using minimum power consumption, the system should
adopt an optimal resource allocation strategy. A centralised approach to re-
source allocation is possible using convex optimization techniques for example.
Nevertheless, centralised control is impractical to be implemented in a multi-
static radar network and thus it is preferred to consider an autonomous de-
centralised resource allocation scheme. A natural and efficient tool to achieve
this is game theory, which provides a framework for analyzing coordination
and conflict between rational but selfish players.

Recently, game theoretic techniques have been extensively explored within
the radar research community to tackle several issues and to improve and
optimize various radar parameters. Specifically, the authors in [35] and [36]
formulated a non-cooperative game to address the power optimization problem
with a predefined SINR constraint. Furthermore, to extend the study in [35],
a signal-to-disturbance ratio (SDR) estimation technique was applied in [37].
A two-player, non-cooperative, zero-sum game was considered in [71] to inves-
tigate the interaction between a radar and a jammer. Non-cooperative MIMO
radar and jammer games were also applied in [72], where the utility functions
were formulated using the mutual information criterion. The authors in [74]
studied the problem of polarimetric waveform design by forming a zero-sum
game between a target and a radar engineer. Moreover, in [38], the power allo-
cation problem of a distributed MIMO radar was tackled using a cooperative
game approach through maximizing the Bayesian-Fisher information matrix
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(B-FIM) and exploiting the Shapley value solution scheme. Potential game
theory techniques were exploited in [114] for optimal waveform design and
maximization of the detection performance. Finally, the authors in [39] pro-
posed a water filling method for optimal power distribution using a Stackelberg
game theoretic framework.

In this paper, motivated by the results in [35] and [37], the power allocation
problem of a distributed, multistatic radar network is revisited, where multiple
MIMO radars are organized into clusters. The primary goal of each cluster is to
secure a certain detection criterion, in terms of signal-to-interference plus noise
(SINR) ratio, while allocating the minimum possible power to each radar. An
optimal power allocation is of great importance to a radar system that works
on a specific power budget, i.e. portable radars operating with a battery, as
by minimizing the power consumption the tracking time is extended. Further-
more, a minimized transmit power induces less interference to the receivers
of other radars in the same field, belonging to the same organization. Hence,
a generalized Nash game (GNG) is formulated, where there is no communi-
cation between the clusters of the network, despite the fact that they belong
to the same organization. Such a scheme could be deployed in a scenario,
where the opponent incorporates electronic warfare methods to intercept in-
formation about the location of the radars. In this case, in order to apply the
game theoretic algorithm, an estimation of the SINR is required, as there is no
coordination between the clusters and thus no information on the inter-cluster
channel gains.

The main contribution of this work lies in the proof of the uniqueness of
the Nash equilibrium of the game theoretic power allocation problem described
above. Specifically, it is demonstrated that the best response function of each
cluster in this GNG belongs to the family of standard functions by using convex
optimization techniques and by analyzing the Lagrangian dual of the initial
optimization problem. Moreover, through the game theoretic analysis, results
were obtained on the behavior of the radars in a cluster. More specifically, the
theoretical results showed that in a cluster, the number of radars that exactly
achieve the desired SINR is equal to the number of radars that are actively
transmitting. However, from the Lagrangian duality, this does not necessarily
imply that the active radars are the ones that attain the target SINR. Fur-
thermore, the simulation results confirm the convergence of the algorithm to
the unique Nash equilibrium.

This Chapter is organized as follows. Section II introduces the decentral-
ized radar network as the system model. In Section III the game theoretic
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formulation of the problem is presented and the definition of the generalized
Nash game (GNG) considered in this paper. The SDR estimation technique
utilized in this work is demonstrated in Section IV. The analysis on the ex-
istence and uniqueness of the Nash equilibrium is performed in Section V.
Finally, the simulation results and the concluding remarks are presented in
Sections VI and VII, respectively.

Notation: Bold lower-case letters and bold uppercase letters are used to
denote column vectors and matrices, respectively. aH gives the Hermitian of
the vector a and aT denotes its transpose. A(i, j) corresponds to the element
located on the ith row and jth column of matrix A. IM stands for the M ×M
identity matrix. The Euclidean norm is denoted by || · ||. An N × 1 vector of
ones is indicated by 1N . Finally, any inequalities among vectors are considered
element-wise.

4.1.2 System Model

Figure 4.1: A distributed MIMO radar network with three
radars and their corresponding channel gains.

We consider a decentralized, multistatic radar network that consists of K
separate clusters C = {C1, . . . , CK} each consisting of M radars, i.e. Ck =

{Rk1, . . . , RkM} for all k = 1, . . . , K. A target is considered in the far-field of
the radars, as shown in Fig.1. The primary aim for each radar in every cluster
is to attain a predefined detection criterion, consuming the minimum possible
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transmission power. In the considered framework of noncooperative games,
each cluster performs the power minimization autonomously, since there is
communication and coordination among the radars within the same cluster,
whereas there is no coordination between different clusters in the network.
Consequently, each cluster possesses full information regarding the channel
gains of its respective radars, whereas it has no knowledge of the inter-cluster
cross channel gains. Nevertheless, this scenario is not competitive and the
radars should avoid causing interference to the rest of the clusters of the net-
work intentionally, since they belong to the same organization.

In order to identify the desired target, each one of the M radars in the
kth cluster transmits the respective element of the independent, predesigned
waveform vector ψk(t) = [ψk1(t), . . . , ψkM(t)]T of size M × 1, which satisfies
the orthogonality condition

∫
T0
ψk(t)ψ

H
k (t)dt = IM , where T0 is the radar

pulse width and t refers to the time index within the radar pulse. Hence,
we exploit the waveform diversity of the MIMO architecture, since the wave-
forms corresponding to different radars of the same cluster are orthogonal, i.e.,∫
ψki(t)ψkj(t)dt = 0, where i 6= j. On the other hand, waveforms emitted from

radars belonging to different clusters may not be orthogonal and thus could
induce considerable inter-cluster interference. We assume that each cluster
decides the presence of a target, by applying binary hypothesis testing on the
received signal based on the generalized likelihood ratio test (GLRT) as pro-
posed in [35]. The sampled pulses of the received signal for radar i in cluster
k Rki, under the two hypotheses H0 and H1 of target being absent and target
being present respectively, is written as the complex N × 1 vector as:

H0 : xki = iki + dki (no target present) (4.1)

H1 : xki =
M∑
j=1

αkjiskj + iki + dki (target present) (4.2)

where skj =
√
pkjψkj(n)� akj denotes the received signal at radar Rkj, which

cooperates the Doppler shift introduced by the target. The parameter αkji
denotes the channel gain, including including the radar cross section (RCS) of
the target from radar Rkj to radar Rki, akj = [1, ej2πfD,k,j , . . . , ej2π(N−1)fD,k,j ]T

is the Doppler steering vector of radar Rkj regarding the desired target, fD,k,j
denotes the normalized Doppler shift at radar Rkj originating from the target’s
movement, N is the number of signal return samples that the radars receive
at each time step of duration T0 and pkj stands for the transmission power of
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radar Rkj. The inter-cluster interference experienced by radar Rki due to the
emissions from radars belonging to all other clusters is denoted as

iki =
K∑
`=1
6̀=k

M∑
j=1

β`jki
√
p`jψlj(n)� 1N

where β`jki describes the cross-channel gain from radar R`j to radar Rki, which
depends on the respective antennae characteristics and the distance between
the radars. Since all the radars are considered stationary in the proposed
model, there is no relative Doppler frequency regarding the cross-channel inter-
ference, hence the Doppler based steering vector associated with the waveform
vector transmitted from the radars in clusters other than k is shown as an N×1

vector of all ones 1N . The last components of the received signal in (4.2) are
the clutter introduced by the waveforms transmitted by the radars in cluster k
and the noise denoted by the parameter dki =

∑M
j=1 ckji

√
pkjψkj(n)�ackj +n),

where ckji includes the signal propagation loss at the direction of the clut-
ter and the geometrical characteristics of the clutter, in other words its RCS,
ackj = [1, ej2πf

c
D,k,j , . . . , ej2π(N−1)fcD,k,j ]T denotes the Doppler steering vector of

radar Rkj associated with the clutter and f cD,k,j denotes the normalized Doppler
shift at radar Rkj originating from the clutter’s movement and n is white
Gaussian noise (WGN) with variance σ2

n. Furthermore, in our work, we have
included the clutter disturbance caused by the transmission of waveforms by
all other radars than those in the kth cluster in the noise term n.

The received signal xki is subsequently sent to a bank of matched filters,
matching each of the orthogonal waveforms ψki(n), i = 1, . . . ,M and the cor-
responding energy at the output of the matched filter is accumulated. Hence,
the expected energy of the signal originating from the target direction for radar
Rki can be given by:

‖yexp(ki)‖2 =
M∑
j=1

hkjipkj (4.3)

where αkji ∼ CN (0, hkji), hence hkji denotes the variance of the desired channel
gain, which includes the information on the target’s RCS. As observed from
Fig.1 and equation (4.2) the detection of a target is deteriorated by direct
inter-cluster interference, in addition to the clutter effect and the noise power.
Therefore, the expected power of the accumulated interfering and noise for
radar Rki can be modeled as:
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‖yinterf(ki)‖2 =
M∑
j=1

νkjipkj +
K∑
`=1
`6=k

M∑
j=1

µ`jkip`j + σ2
n (4.4)

where ckji ∼ CN (0, νkji) and νkji defines the accumulated clutter channel gains,
embedding information on the clutter’s RCS, β`jki ∼ CN (0, µ`jki%`jki) and
µ`jki%`jki describes the accumulated cross-channel gain, incorporating a non-
zero correlation factor %`jki between the waveform vector emitted from radar
R`j and the matched filtering waveform ψki(n) and σ2

n denotes the noise power.
Based on the above definitions, the expected SINR for the ith radar in the

kth cluster is written as

SINRki =

M∑
j=1

hkjipkj

M∑
j=1

νkjipkj +
K∑̀
=1
`6=k

M∑
j=1

µ`jkip`j + σ2
n

. (4.5)

In order to design an efficient detector for the hypothesis testing we utilize
the GLRT. Assuming clutter and interference contribution is considered as
Gaussian noise, the probability density functions of xki under hypothesis H0

and H1 respectively, can be given by:

fH0(xki;σ
2
H0

) =
1

(2π)N/2σNH0

e
− ‖xki‖

2σ2
H0 (4.6)

fH1(xki;aki,σ
2
H1

) =
1

(2π)N/2σNH1

e
−
‖xki−

∑M
j=1 αkjiskj‖

2

2σ2
H1 (4.7)

where aki = [αk1i, . . . , αkMi]
T . The maximum likelihood (ML) estimate of

noise variance under the hypothesis H0, when there is no target present, can
be obtained by σ̂2

H0
= ‖xki‖2/N. Subsequently, by keeping σ2

H1
fixed, the ML

estimate for αkji ∀i = 1, . . . ,M is given by α̂kji = sHkjxki/N. After obtaining the
ML estimate for αkji, we substitute it in (4.7) and maximize with respect to
σ2
H1

to derive the maximum likelihood estimate for σ2
H1

as:

σ̂2
H1

=
‖xki −

∑M
j=1 αkjiskj‖2

N

We assume that λki ∈ [0, 1] denotes the detection threshold for the hypothesis
testing for each radar i = 1, . . . ,M in cluster k and thus the GLRT can be
reformulated as:
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fH1

fH0

=

∑M
j=1 |αkjiskj|2

‖xki‖2N

H1

≷
H0

λki (4.8)

The performance and efficiency of the hypothesis testing is evaluated by
utilizing the probabilities of miss-detection Pmd and false alarm Pfa for each
radar. Following [36, 115, 116], the calculation of those probabilities can be
derived from the following equations:

Pfa(λki) = (1− λki)N−1

Pmd(SINRki, λki) = 1−
(

1 +
λki

1− λki
1

1 +NSINRki

)1−N

By setting an upper bound εki on the sum of Pmd and Pfa, we can decide the
acceptable performance of the detection test:

Pfa(λki) + Pmd(SINRki, λki) ≤ εki (4.9)

As demonstrated in the analysis of [36], the optimum detection threshold
can be obtained when (4.9) is satisfied with equality. The optimum SINR for
each radar in cluster k is denoted by γ∗ki and can be determined by exploiting
the optimum detection threshold as shown below:

γ∗ki = min{SINRki | ∃λki ∈ [0, 1]

s.t. Pmd(λki) + Pfa(SINRki, λki) ≤ εki}. (4.10)

The aforementioned technique allows us to obtain the optimum SINR for
a desired Pfa, by appropriately deciding the design parameter εki and the
detection threshold λki ∈ [0, 1]. The optimum SINR γ∗ki for each radar in the
system will be utilized within the game theoretic formulation for the proposed
model, as presented in the next section.

4.1.3 Game Theoretic Formulation

As described in the previous sections, the main goal for each cluster is to
decide the optimal power allocation to its respective radars, while attaining
a specific detection criterion. It is observed from the SINR equation (4.5)
that although increased power allocation at a specific cluster improves the
detection performance, it induces higher interference to the environment and
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consequently to the remaining radars of the network. Therefore, by exploiting
noncooperative game theoretic techniques, this interaction is modeled as a
generalized Nash game. The set of clusters C = {C1, . . . , CK} are considered
to be the players of the game. The action set of the kth player is Pk =

Pk1 × . . .× PkM with

Pki = {pki ∈ R+ | pki ∈ [0, pki]}, ∀i ∈ {1, . . . ,M}

where pki denote the maximum available power for radar Rki. The acceptable
strategy set of the GNG depends both on the action of the kth player Pk and
the actions of all other players P−k and is defined as

Sk(p−k) = {pk ∈ Pk | SINRki ≥ γ∗k, ∀i = 1, . . . ,M} (4.11)

where p−k denotes the power allocation adopted by all other players except
player k. Let us also define pk = [pk1, . . . , pkM ]T as the power allocation vector
of cluster k. It is evident from equation (4.5), that the SINR is a function of the
power allocation of all K players. Thus, the interdependency of the admissible
strategies is clearly stated through the constraints in (4.11). The game model
is completed by defining the utility function as uk(p−k,pk) =

∑M
i=1 pki, which

represents the total transmission power of cluster k. At this point, the game
may be summarized as:

G =< C, (Pk)k∈{1,...,K}, (Sk)k∈{1,...,K}, (uk)k∈{1,...,K} >

In this GNG, player k greedily minimizes its transmission power, while all
radars belonging to cluster k attain the target SINR, given the power allocation
strategies of all the other players. Therefore, the best action for the kth player
is given by the following set, denoted by BRk:

BRk(p−k) = {p∗k ∈ Pk |

uk(p−k,p
∗
k) ≤ uk(p−k,pk), ∀pk ∈ Sk(p−k)}

Recalling the action set of player k, the above set can be determined by solving
the following convex optimization problem:

min
pk∈Pk

uk(p−k,pk) (4.12)

s.t. SINRki ≥ γ∗ki, ∀i = 1, . . . ,M
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The most crucial part of a game theoretic analysis is to investigate whether
the game G converges to a stable solution, where no player can benefit by
unilaterally deviating its power allocation strategy. Such a solution defines the
Nash Equilibrium and for the game G describes the strategy profile (p∗−k,p

∗
k)

when:

uk(p
∗
−k,p

∗
k) ≤ uk(p

∗
−k,pk), ∀pk ∈ Sk(p∗−k),∀k ∈ C.

It is evident from the constraints of (4.12) and the definition of SINR (4.5),
that each radar in cluster k requires the knowledge of the inter-cluster inter-
ference plus noise term, denoted as r−ki =

∑K
`=1
`6=k

∑M
j=1 µ`jkip`j +σ2

n, in order to

decide its optimal power allocation. However, sinc no communication between
the clusters is assumed, it is impossible to obtain the required information and
thus this deficiency is tackled by using the estimate of the instantaneous SINR.

4.1.4 SINR Estimation

Each cluster, after receiving N signal return samples at each time step, de-
cides its optimal power allocation by solving the convex optimization problem
(4.12), that requires the value of the instantaneous SINR γ̂ki. However, direct
calculation of γ̂ki requires the knowledge of the inter-cluster cross-channel gains
and hence, the transmission power from the radars in the remaining clusters
of the system. Since we assume no coordination among different clusters, this
information cannot be obtained. According to the model by [36], we can obtain
an estimation of the SINR by taking the expected values of the numerator and
the denominator of the SINR equation (4.5) with respect to the transmission
power. Recalling that hkjipkj is the variance of the parameter αkji

√
pkj, simi-

larly
∑M

j=1 νkjipkj +σ2
n denotes the variance of parameter dki and µlkjiplj is the

variance of βlkji and considering only the resulting dominant terms, we arrive
at the following equation for radar Rki:

γ̂ki =

M∑
j=1
|sHkjxki|

2

N
− ||xki||

2

N

||xki||2 −

M∑
j=1
|sHkjxki|

2

N

(4.13)

By substituting the received signal given by (4.2) in the numerator of (4.13)
and expanding, we conclude that the dominant terms of the numerator of
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(4.13) are ∑M
j=1 |sHkjxki|

2

N
≈

M∑
j=1

|αkji|2N

||xki||2

N
≈

M∑
j=1

|αkji|2

which yields an approximation of the numerator of the SINR in (4.5). Similarly,
by substituting the received signal in the denominator of (4.13) and taking into
account the low correlation among the transmitted signal and the interference
terms, the dominant terms of the result are the terms in the denominator of
the SINR equation (4.5).

4.1.5 Existence and Uniqueness of the Nash Equilibrium

Existence

The existence of a generalized Nash equilibrium (GNE) follows from the result
by [117] on abstract economies. According to this result, a GNE exists if the
following hold: for all players k = 1, . . . , K the set Pk is compact and convex,
the utility function uk(p−k, pk) is continuous on P and quasi-convex in pk. For
every p−k the set-valued function Sk is continuous with closed graph and for
every p−k the set Sk(p−k) is non-empty and convex. For the studied problem,
these requirements can be straightforwardly established using analytic notions,
hence there exists a GNE for the game.

Uniqueness of the Solution through Duality Analysis

The main contribution of this paper lies in the analysis of the Nash equilib-
rium for the strategic noncooperative game G through the Lagrangian duality.
According to the result in [86], the primary objective is to prove that the best
response of each cluster is a standard function, which is a sufficient condition
for the uniqueness of the solution. The definition of a standard function is
given below [86]:

A function F(x) is standard if for all x ≥ 0, the following properties hold:
• Positivity: F(x) > 0

• Monotonicity: If x ≥ x′, then F(x) ≥ F(x′)

• Scalability: ∀a ≥ 1, aF(x) ≥ F(ax)

In order to prove that the best response function of each cluster is a stan-
dard function, the optimization problem of the kth cluster will be considered
as defined in (5). By rearranging the constraints in matrix form and explicitly
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imposing constraints for non negative radar power, the following minimization
problem for the kth cluster arises:

min
pk∈Pk

M∑
i=1

pki (4.14)

s.t. Gpk + r−k ≤ 0

−pk ≤ 0

where r−k = [r−k1, . . . , r−kM ]T is the inter-cluster interference plus noise vector,
which can be written as r−k =

∑K
` 6=k M`p` + 1σ2

n, where the cross-channel
matrix Mi is given by:

M` =


µ`1k1 . . . µ`Mk1

... . . . ...
µ`1kM . . . µ`MkM


Let us also define the M ×M matrix G as:

G = −


hk11
γ̂k
− νk11 . . . hkM1

γ̂k
− νkM1

... . . . ...
hk1M
γ̂k
− νk1M . . . hkMM

γ̂k
− νkMM


For the multi-static scenario considered in this paper, it is possible that not

all radars in a cluster illuminate signals. There is a possibility that all radars
in a cluster could satisfy the target SINR only using the signals illuminated
by a subset of radars. Therefore, in order to optimize the transmission power
certain radars in a cluster may opt to be silent but could use other radars’
signal as signal of opportunity for target detection. When all radars are active,
it is straightforward to establish uniqueness of GNE as will be shown in the
forthcoming analysis, however, when at least one radar in a cluster is inactive,
the establishment of Nash equilibrium requires further analysis in terms of the
Karush-Kuhn-Tucket (KKT) conditions. Hence, the Lagrangian L associated
with the problem (4.14) is defined as:

L(pk,λa,λb) =
M∑
i=1

pki + λ1(G11pk1 + . . .+G1MpkM + r−k1)+

. . .

+λM(GM1pk1 + . . .+GMMpkM + r−kM)
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−m1pk1 −m2pk2 − . . .−mMpkM

= λTa r−k + (1 + Gλa − λb)Tp1 (4.15)

where λa = [λ1, . . . , λM ]T and λb = [m1, . . . ,mM ]T are the Lagrange multi-
pliers associated with the inequality constraints of (4.14). Let (p∗k,λ

∗
a,λ

∗
b) be

the primal and dual optimal points of (4.14). Then, the KKT conditions on
convexity must be satisfied [51]. In particular one has:

∂L
∂pk1

= 1 + λ1G11 + . . .+ λMGM1 −m1 = 0

. . .

∂L
∂pkM

= 1 + λ1G1M + . . .+ λMGMM −mM = 0

 (4.16)

λ1(G11pk1 + . . .+ G1MpkM + r−k1) = 0

. . .

λM(GM1pk1 + . . .+GMMpkM + r−kM) = 0

 (4.17)

m1pk1 = 0, . . . ,mMpkM = 0 (4.18)

In order to investigate all the potential outcomes of the game G, all possi-
ble cases are considered with respect to the values of the Lagrange multipliers
λa, which correspond to the SINR constraints. In particular, firstly the case
when all radars exactly achieve the SINR target and hence all the constraints
in (4.14) are satisfied with equality is studied. In this case, the uniqueness is
proved straightforwardly by exploiting the KKT conditions and the definition
of the standard function. Secondly, the case when all the Lagrangian multipli-
ers are zero is considered and it is shown that this case is infeasible. Finally,
the case when at least one radar exactly achieves the SINR target and the
remaining radars in the same cluster perform better than the SINR target is
studied. When this happens, the analysis of the Lagrange dual problem and
the derivation of the Lagrangian function and the KKT conditions for the dual
optimization problem are exploited to conclude the proof of the GNE of the
considered GNG. The mathematical analysis of the proof of the uniqueness of
the solution for every possible case is demonstrated below.

Case 1: λi 6= 0,∀i = 1, . . . ,M . In this case, the set of equalities (4.17) from
KKT conditions implies that all the SINR inequality constraints are inactive
and must be satisfied with equality. Hence, from (4.17):

G11pk1 + . . .+G1MpkM = −r−k1
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. . .

GM1pk1 + . . .+GMMpkM = −r−kM

Reformulating the aforementioned equations in matrix form, one has Gp∗k =

−r−k. Following Proposition 1 in [118] and Claim 2 in [32]. Assuming that
the optimization problem (7) is always feasible ∀rk > 0, hence G must be
invertible so p∗k = −G−1r−k. Since the elements of matrix G are non-zero by
definition, this case corresponds to the scenario when all radars are active and
actually transmit signal. As a result, by replacing the interference vector, the
best response function can be stated as:

BRk(p−k) = p∗k = −G−1

(
K∑
`6=k

M`p` + 1σ2
n

)
(4.19)

Lemma 1: The best response function (4.19) is a standard function.

Proof. Following [32], the best response strategy (4.19) satisfies the following
necessary properties for all p ≥ 0:

a) Positivity: The best response of the kth cluster p∗k is always positive, as
r−k =

∑K
6̀=k M`p` + 1σ2

n > 0 and p∗k = −G−1r−k is feasible ∀rk > 0.
b) Monotonicity: Let p,p′ ∈ Pk with p ≥ p′, then:

BRk(p)−BRk(p
′) = −G−1

(
K∑
`6=k

M`(p` − p′`)

)
≥ 0

c) Scalability: For all a > 1, aBRk(p) > BRk(ap). Indeed:

aBRk(p)−BRk(ap) = −(a− 1)G−11Mσ
2
n > 0.

This concludes the proof on the uniqueness for Case 1, where all the SINR
constraints are satisfied with equality.

Case 2: The Lagrangian multipliers corresponding to the SINR constraints
are zero, i.e. λ1 = λ2 = . . . = λM = 0. It is proved that this case does not
exist, as follows.

Assuming λ1 = λ2 = . . . = λM = 0, then from (4.16) one has that m1 =

. . . = mM = 1. By substituting in (4.18), pk1 = . . . = pkM = 0 is obtained
which indicates that all the radars in cluster k are inactive. Consequently, the
constraints of the optimization problem (4.14) can be restated as:
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r−k1, . . . , r−kM ≤ 0

which is a contradiction, since the inter-cluster interference plus noise terms
are always positive, i.e. r−k1, . . . , r−kM > 0. As a result, at least one radar in
the cluster must be active in order for the optimization problem (4.14) to be
feasible.

Case 3: Here, the case when at least one of the radars in the kth cluster
achieves the SINR target with equality is investigated and the remaining radars
with inequality. Without loss of generality, suppose that the first n radars
satisfy the SINR constraint with equality, hence from (4.17) λ1, . . . , λn 6= 0

and λn+1 = . . . = λM = 0. The Lagrangian function in this case becomes:

L̃(pk,λa,λb) =
M∑
i=1

pki + λ1(G11pk1 + . . .+G1MpkM + r−k1)

. . .

+λn(Gn1pk1 + . . .+GnMpkM + r−kn)

−m1pk1 −m2pk2 − . . .−mMpkM

= λ̃
T

a r̃−k + (1 + G̃λ̃a − λb)Tpk (4.20)

where λ̃a = [λ1, . . . , λn, 0, . . . , 0]T , r̃−k = [r−k1, . . . , r−kn,

0, . . . , 0]T . In this case, the matrix G̃ of size M ×M is defined as:

G̃ =



G11 . . . G1M

... . . . ...
Gn1 . . . GnM

0 . . . 0
... . . . ...
0 . . . 0


In order to investigate the interdependence among the number of radars

that satisfy the detection criterion with equality and the number of the radars
in cluster k that are active and actually illuminate waveforms, a critical analysis
on the Lagrange multipliers λb is essential. Hence, the Lagrange dual function
g is obtained as:

g(λ̃a,λb) = inf
pk
L̃(pk,λa,λb) = (4.21)
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= λ̃
T

a r̃−k + inf
pk

(1 + G̃λ̃a − λb)Tpk

It is straightforward from (4.20) that the Lagrangian is an affine function of
pk and is bounded below only when 1 + G̃λ̃a − λb = 0. Thus, it follows

g(λ̃a,λb) =

{
λ̃
T

a r̃−k, if 1 + G̃λ̃a − λb = 0

−∞, otherwise
(4.22)

Next, the Lagrange dual problem is formulated as:

max g(λ̃a,λb)

s.t. λ̃a ≥ 0

λb ≥ 0

By excluding the case when g is infinite and changing the sign of the ob-
jective function and by exploiting the fact that from (4.22), λb = 1 + G̃λ̃a,
the aforementioned maximization problem can be rewritten as the following
minimization problem:

min −λ̃Ta r̃−k (4.23)

s.t. 1 + G̃λ̃a ≥ 0

λ̃a ≥ 0

Subsequently, the Lagrangian of the dual optimization problem (4.23) is de-
fined as:

Ld(λ̃a, ca, cb) = −λ̃Ta r̃−k − c1(1 +G11λ1 + . . .+G1nλn)

. . .

−cn(1 +Gn1λ1 + . . .+Gnnλn + r−kn)− cn+1 − . . .− cM

−δ1λ1 − δ2λ2 − . . .− δnλn

where ca = [c1, . . . , cM ]T and cb = [δ1, . . . , δn]T . Let (λ∗a, c
∗
a, c
∗
b) be the optimal

points of (4.23). Then the KKT optimality conditions for the optimization
problem (4.23) are satisfied and can be written as:
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∂Ld
∂λ1

= −r−11 + c1G11 + . . .+ cnGn1 − δ1 = 0

. . .

∂Ld
∂λn

= −r−1n + c1G1M + . . .+ cnGnn − δn = 0

 (4.24)

c1(1 +G11λ1 + . . .+G1nλn) = 0

. . .

cn(1 +Gn1λ1 + . . .+Gnnλn) = 0

cn+1 = 0, . . . , cM = 0


(4.25)

δ1λ1 = 0, . . . , δnλn = 0 (4.26)

It is apparent from (4.25) that the Lagrangian multipliers vector ca be-
comes ca = [c1, . . . , cn, 0, . . . , 0]T . Next, all possible cases for the Lagrangian
multipliers ca are investigated:

Subcase I: c1 = . . . = cn = 0. In this case, by following the KKT
conditions (4.24), one has:

r−11 = −δ1, . . . , r−1n = −δn

which is infeasible, as the inter-cluster interference plus noise terms are always
strictly positive and cb ≥ 0 element wise. As a result, this case is impossible.

Subcase II: c1, . . . , cn 6= 0. When the Lagrange multipliers are strictly
positive, one has from the KKT conditions of (4.25):

1n + Gredλ
red
a = 0. (4.27)

where λred
a = [λ1, . . . , λn] and the reduced square n× n matrix Gred is defined

as:

Gred =


G11 . . . G1n

... . . . ...
Gn1 . . . Gnn


Subsequently, by revisiting (4.22) and omitting the case when the Lagrangian
dual function is infinite, one has:

λb = 1M + G̃λ̃a (4.28)

By replacing (4.27) in (4.28), one has that the first n elements of the Lagrangian
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multipliers vector λb are equal to zero, i.e. m1 = . . . = mn = 0 and the
remaining M − n elements are equal to one, i.e. mn+1 = . . . = mM = 1.

Subcase III: At least one of the Lagrange multipliers is equal to zero.
Without loss of generality, it is assumed that c1 = 0 and c2, . . . , cn 6= 0. Hence
the corresponding constraint to the Lagrange multiplier c1 will become:

1 +G11λ1 + . . .+G1nλn ≥ 0 (4.29)

By inserting a non-negative value ε ≥ 0 into (4.29), one has:

G11λ1 + . . .+G1nλn = ε− 1 (4.30)

Since the elements of matrix G are straightforwardly negative by definition
and the Lagrangian multipliers λ̃a strictly positive from the assumption of
Case 3, one has that ε − 1 < 0 and 0 ≤ ε < 1. Additionally, given the fact
that from the objective function in (4.23) it is desired to acquire the maximum
possible λ̃a, the value of ε becomes exactly zero (minimum possible value of
(ε− 1)) and thus equation (4.29) can be rewritten as:

1 +G11λ1 + . . .+G1nλn = 0

Thus, the same result for λb as in Subcase II is derived.
At this point, all the possible cases have been studied for the Lagrangian

multipliers ca and the following theorem can be explicitly derived, which con-
stitutes one of the most important contributions of this paper.

Theorem 1: In the case when exactly n radars in cluster k achieve the
detection criterion and satisfy the SINR constraints with equality, then at least
M − n radars in cluster k remain inactive and do not illuminate any signals.

Proof. By replacing the elements of λb from (4.28) in (4.18) one has that
pkn+1 = . . . = pkM = 0.

Corollary 1: The indices of the radars that are inactive in a cluster are
determined only by the target and clutter channel characteristics of the cor-
responding cluster and the target SINR, and is independent of the actions of
the other clusters and the corresponding cross-clutter channel interference.

Proof. It comes straightforwardly from the proof of Theorem 1 and equation
(4.28) that the indices of the radars that remain silent in a cluster depend
solely on the matrix G̃, whose elements are functions of the channel gains and
the target SINR of the corresponding cluster.
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The finding in Corollary 1 is very important for the Nash equilibrium anal-
ysis. When a subset of radars is inactive in a cluster, the action set in terms
of the power allocation of a cluster is reduced to the power allocation of those
radars that will eventually be active. In other words, determining indices of
radars that are inactive is not part of the action set of the game as it will not
be influenced by the action of other clusters. Hence the best response func-
tion for standard function analysis should include only the power allocation of
active radars. Furthermore, the distributed nature of Corollary 1 strengthens
the decentralized approach of the considered model.

By revisiting equations (4.17) from KKT conditions of the convex optimiza-
tion problem (4.14), the SINR constraints corresponding to λ1, . . . , λn 6= 0, are
satisfied with equality. Thus, from (4.17) one has:

G11pk1 + . . .+G1npkn = −r−k1

. . .

Gn1pk1 + . . .+Gnnpkn = −r−kn

 (4.31)

Rewriting the above equations in matrix form, one has Gredq
∗
k = −rred

−k , where
q∗k = [p11, . . . , p1n]T and rred

−k = [r−k1, . . . , r−kn]T . It is straightforward, that
the solution of this set of n equations solely depends on matrix Gred, which
is determined from the channel gains regarding cluster k and from the target
SINR. Hence, as the problem is always feasible (Claim 2 in [32]) ∀rred

−k > 0,
Gred must be invertible and the best response function of cluster k in this case
can be defined as:

BRk(p−k) = q∗k = −G−1
redr

red
−k (4.32)

When Gred from equation (4.31) is full rank and when n radars in cluster
k attain the SINR with equality, then exactly n radars in cluster k will be
active and actually transmitting, whereas the remaining (M − n) radars will
remain inactive. However, it is possible theoretically to have certain channel
gains, clutter gains and target SINR such that n radars could attain SINR
with equality but with fewer than n radars being active. This happens when
Gred is rank deficient or when any column of Gred is co-linear with rred

−k . In
the latter case for example, all n radars may be achieving SINR with equality,
however, only one radar will be transmitting. Although this may happen with
almost zero probability, the following Lemma is still applicable to this scenario
as well with a reduced size Gred. Hence, without loss of generality, the case of
full rank Gred is considered.
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Lemma 2: The best response function (4.32) is a standard function.

Proof. Following Lemma 1, the best response strategy (4.32) satisfies the
following necessary properties for all p ≥ 0:

a) Positivity: The best response of the kth cluster q∗k is always positive, as
rred
−k > 0 and q∗k = −G−1

redr
red
−k is feasible ∀rred

−k > 0.
b) Monotonicity: for p ≥ p′, one has from Lemma 1 that r−k ≥ r

′

−k

element wise and consequently rred
−k ≥ r

′red
−k . As a result:

BRk(p)−BRk(p
′) = −G−1

red

(
rred
−k − r

′red
−k

)
≥ 0

c) Scalability: Using the same approach as Lemma 1, for all a > 1, it
needs to be shown that aBRk(p) > BRk(ap). Indeed:

aBRk(p)−BRk(ap) = −(a− 1)G−1
red1nσ

2
n > 0.

Lemma 2 completes the uniqueness of the Nash equilibrium of the SNG
G, considering all possible cases. In the next section, simulation results are
presented to support the mathematical analysis.

4.1.6 Simulation Results

In this section, simulation and numerical results are presented to illustrate
the convergence of the algorithm to the unique solution and to demonstrate
the distributed structure of the network. Initially, a network consisting of two
clusters with six radars each is considered. In every time step, each radar
receives N = 32 signal samples. The maximum number of iterations is set at
T = 30 to investigate the convergence of the game. Before the initialization
of the game, each radar determines the detection criterion by computing the
optimum SINR using (4.10), which gives γ∗k = 2.1599 for all radars when the
design parameter is set to εki = 0.05. For a predefined target channel gain hkji,
the values of the cross-channel and clutter gain are set as µljki = hkji/20 and
νkji = hkji/10. The channel gains for the simulations were chosen following a
uniform distribution in the range [0, 1]. Finally, the Doppler shift is considered
to be fD,k,i = 0.1 for all k = 1, . . . , K, i = 1, . . . ,M and the noise power is set
to σ2

n = 0.01.
In order to study the convergence of the GNG, Figures 4.2 and 4.3 demon-

strate the power allocation update of all the radars in the network for two
different initial power allocations of cluster 2. The channel gains remain the
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same in both simulations. First, it is obvious that the number of active radars
in both clusters is the same in both examples, regardless the initial power allo-
cation. Furthermore, both simulations converge to the same Nash equilibrium,
as expected. The efficiency of the algorithm is evident, as the process converges
to the optimal power allocation within 6 iterations. This result confirms Theo-
rems 1 and 2, suggesting convergence to the unique Nash equilibrium regardless
of the initial strategy.

Figure 4.2: Power allocation of the network when K = 2 and
M = 6 (p1 = 0.01× 1M , p2 = 0.02× 1M .)

Figure 4.3: Power allocation of the network when K = 2 and
M = 6 (p1 = 0.01× 1M , p2 = 0.05× 1M .)
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In the second example a network of four clusters is considered. Each clus-
ter consists of three radars. Figure 4.4 depicts the convergence to the opti-
mal solution for player 1 for seven different initial strategies, when the rest
of the players initialize the game with p2 = [0.2855, 0.6874, 0.8295], p3 =

[0.3217, 0.4094, 0.4947] and p4 = [0.7034, 0.0840, 0.2690]. Similarly to this, in
Figure 4.5 the same setup is considered, with the difference that the rest of the
players begin the game with p2 = [0.8080, 0.5531, 0.7784], p3 = [0.8942, 0.7354, 0.9214]

and p4 = [0.7888, 0.6853, 0.7785]. The results highlight that regardless of the
starting point of the players, the game converges to the unique Nash equilib-
rium.

Figure 4.4: Convergence of power allocation of player 1 for
different starting strategies when K = 4 andM = 3, first simu-
lation (different linestyles correspond to different initial strate-

gies for player 1).

In order to assess the efficiency of the proposed power allocation technique,
the results of the proposed method are compared with the case when uniform
power allocation is considered among the radars of the same cluster. Uniform
power allocation has been studied in [14, 112] when a fixed system power bud-
get is considered. By imposing an additional constraint at the optimization
problem (4.12), which allocates uniformly the power among the radars in the
same cluster, the resource allocation for the uniform power allocation GNG
is obtained. To facilitate a fair comparison, the same SINR target in both
cases is set and three different radar system scenarios are simulated, the first
consisting of two clusters with two radars each, the second consisting of two
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Figure 4.5: Convergence of power allocation of player 1 for
different starting strategies when K = 4 and M = 3 , sec-
ond simulation (different linestyles correspond to different ini-

tial strategies for player 1).

clusters with six radars each and the last one considers three clusters con-
sisting of three radars each. Table 4.1 presents the total power consumption
in each cluster for each scenario comparing the proposed GNG with the uni-
form resource allocation case. It is obvious that the proposed game theoretic
technique outperforms the uniform power allocation in all cases, as the total
power consumption in each of the cluster is sufficiently lower in every scenario
considered. In order to illustrate the aforementioned result, Fig.4.6 presents a
histogram of the power consumption at cluster 1, comparing the two methods
for the three different radar network cases. It is yet again evident, that the
first cluster needs much less power to attain the SINR target in the proposed
method for all system scenarios simulated, as compared to the uniform power
allocation (UPA) technique.

For the third example, a network of two clusters is assumed, where each
consists of four radars. Figure 4.7 shows the power allocation of the radars
in the first cluster throughout the convergence process using the true and the
estimated SINR from (4.13). It is evident that the estimation is sufficiently
accurate and the convergence based on the estimation of the SINR follows the
convergence trajectories of the power allocation game obtained using the true
SINR values.
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Table 4.1: Total power consumption in each cluster for three
different system realizations considering the proposed GNG and

the GNG with uniform power allocation.

K=2, M=2 K=2, M=6 K=3, M=3

Proposed GNG 0.0763 0.0418 0.1382 0.1398 0.0641 0.1190 0.0895

GNG with UPA 0.1186 0.0762 0.5993 0.6351 0.2918 0.3854 0.2375

Figure 4.6: Total power consumption at cluster 1, comparing
the proposed GNG and the uniform power allocation GNG, for

different system scenarios.

4.1.7 Conclusion

This section has studied game theoretic power allocation for a distributed
MIMO radar system. By defining a GNG and exploiting convex optimiza-
tion techniques and duality properties, an extended Nash equilibrium analysis
was presented, concluding with the proof of the existence and uniqueness of
the solution. Through this analysis, important properties of the system were
also derived. In particular, it was shown that the number of active radars
in a cluster that actually transmit signals is exactly the same as the number
of radars in the same cluster that satisfy the detection criterion with equal-
ity. In addition, the number of active radars and the optimal strategy of a
cluster is dependent only upon the channel gains and the target SINR and is
totally independent of the other players’ power allocation. This contribution
strengthens the decentralized and distributed nature of the system. Finally,
the simulation results confirm the mathematical analysis of the convergence
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Figure 4.7: Power allocation in the second cluster using the
true and the estimated value of the SINR when K = 2 and

M = 6.

and the study of the existence and uniqueness of the Nash equilibrium.

4.2 Power Allocation Game Between a Radar

Network and Multiple Jammers

In this section, a competitive power allocation problem for a MIMO radar
system in the presence of multiple targets equipped with jammers is inves-
tigated. The main objective of the radar network is to minimize the total
power emitted by the radars while achieving a specific detection criterion for
each of the targets, while the intelligent jammers have the ability to observe
the radar transmission power and consequently decide its jamming power to
maximize the interference to the radars. In this context, convex optimization
methods, noncooperative game theoretic techniques and hypothesis testing are
incorporated to identify jammers and to determine the optimal power alloca-
tion. Furthermore, a proof is presented on the existence and uniqueness of the
Nash Equilibrium (NE). The simulation results confirm the effectiveness of the
proposed algorithm and demonstrate the convergence of the game.
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4.2.1 Introduction

While a distributed radar network offers significant advantage in terms of diver-
sity and accurate caption of target’s radar cross section (RCS), a considerable
disadvantage is the multiple source interference inflicted at the receivers of the
system. Namely, the jammer interference, the inter-radar interference and the
background noise yield substantial deterioration of both performance and de-
tection capability. Thus, a successful strategy against a jamming attack based
on the power allocation is critical in order to maintain a satisfactory detection
performance while minimizing the power consumption of the network. Such
an adaptive defence system is even more important when confronting smart
targets with jammers, that are able to optimize their own jamming strategy.

A natural and efficient asset to address this kind of interactions is game
theory, as it provides a framework for analyzing cooperation and confrontation
among intelligent and egoistic players. In radar systems, game theory has been
used to tackle various problems. Specifically, zero-sum games were used in [74]
and [72] for polarimetric waveform design as an interaction between a MIMO
radar and a smart jammer. Moreover, radar and jammer conflicts have been
investigated in [71] and [107]. The authors in [36] and [35] incorporated game
theory to tackle power allocation problems and highlighted the superiority of
the game theoretic results in terms of signal to interference plus noise ratios
(SINR). Finally, potential game theory was used in [114] to maximize the SINR
by choosing appropriate coded waveforms.

In this section, the case when multiple aircrafts equipped with self-screening
jammers attack a distributed radar network is investigated. It is assumed that
the radars belong to the same organization, hence they can cooperate and
be controlled centrally. Moreover, each radar in the network has the ability
to identify the interfering jammer by applying directional beamforming and a
hypothesis testing at its receiver. Furthermore, the intelligent targets/jammers
can promptly estimate the transmission power of the radars and adapt their
jamming power. Hence, a power allocation non-cooperative game (NCG) is
developed between the centrally controlled radar regime and the jammers.
Primary objective of the radar system is to attain a specific detection criterion
using minimum possible power, while the jammers decide the optimal jamming
power to maximize the damage induced to the radar system.
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Figure 4.8: A multistatic radar network with a central con-
troller, two radars and two jammers/targets.

4.2.2 System Model and Game Formulation

A multistatic air defence system is considered that consists of K separate
radars and a central controller, that obtains the data from the radars and
optimizes the transmission power for each radar. In order to complete the
model, K aircrafts equipped with jammers approach the radars with primary
objective to deteriorate or nullify the operation of the radar system. It is
assumed that the opponent aircrafts have information about the approximate
position of the radars and each jammer can attack only one radar, because the
radars of the multistatic regime are installed too far apart from each other.
Furthermore, each radar can identify the jammer attacking its receivers by
applying a hypothesis testing based on the receiving power from the direction
of each target, as follows:

H0 : xki = akpRk + σ2
n (normal target)

H1 : xki = βkpJk + akpRk + σ2
n (jammer present)

xk
H1

≷
H0

δk

where xki is the received signal for radar k from the direction of target i, ak is
the channel gain from the transmitters to the receivers of radar k including the
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effect of RCS, βk is the channel gain from jammer k to the respective radar,
pRk is the transmission power of radar k, pJk is the jamming power of jammer
k, σ2

n denotes the noise power, δk is the detection threshold for radar k and
is defined as δk = akpRk + σ2

n + ε and ε is a positive design parameter that
provides specific probabilities of missed detection and false alarm.

After identifying the respective jammer, each radar designs the transmit
and receiver beampatterns applying a null at the direction of the attacker.
In particular, the radar central control mechanism assigns a target for each
radar, avoiding the interfering jammer. However, a residue of the interfering
jammer’s power will still affect the respective radar and this leakage power
is denoted as lkpJk, where lk is the leakage gain for jammer k. Although
an optimal hypothesis testing is considered, there is always a probability for a
radar to misidentify an active jammer as a normal target and attempt to detect
it, leading to severe SINR degradation or even missed detection. Following,
a study on all possible outcomes of the hypothesis testing that could lead to
missed detection is presented, considering a distributed radar network with a
central controller, two radars and two jammers as depicted in Fig. 4.8, and it
is assumed that jammer 1 attacks radar 1 and jammer 2 interferes with radar
2:

Case 1: Both radars identify the same target as jammer (x11 > δ1, x12 <

δ1, x21 > δ2, x22 < δ2). In this case, since the fact that each jammer can
affect only one target is common knowledge, the central control mechanism
compares the receiver power from the supposed jammer for both radars and if
(x11 < x21) assigns erroneously the attacking jammer to the interfered radar.

Case 2: Both radars do not identify any target as jammer (x11 < δ1,
x12 < δ1, x21 < δ2, x22 < δ2). In this case, the central controller compares
the receive power from both targets for each radar and if ((x11 < x12) and
(x21 > x22) mistakenly assigns the wrong jammer to each radar.

Case 3: Both radars identify both targets as jammers (x11 > δ1, x12 > δ1,
x21 > δ2, x22 > δ2). Similar to Case 2, there is potential missed detection if
((x11 < x12) and (x21 > x22).

Case 4: Both radars identify as jammer the wrong target (x11 < δ1,
x12 > δ1, x21 > δ2, x22 < δ2).

The investigation on the probabilities of missed detection and false alarm,
within the context of the hypothesis testing, goes beyond the scope of this
paper, which is focused on the game theoretic analysis of the model.
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The interaction between the jammers and the radar system could be trans-
lated to a noncooperative game, where the players are the central radar con-
troller and the jammers. The strategy set of the game is the transmission
power of the radars pR and of the jammers pJ , respectively. Primary objec-
tive of the radar system is to minimize its total transmission power, while
attaining a predefined signal to interference and noise ratio (SINR) for each of
the targets. Thus, the best response strategy for the radar system is derived
as the outcome of the following optimization:

min
pR

K∑
k=1

pRk (4.33)

s.t.
akpRk

K∑
j=1
j 6=k

mkjpRj + lkpJk + σ2
n

≥ γk, ∀k

where pR = [pR1, . . . , pRK ]T and mki is the inter-radar channel gain between
radar i and radar k.

It is clear from the constraint of the optimization problem (4.33) that the
SINR for each radar is dependent on the power allocation of the other radars
and the respective jamming power. Hence, the acceptable strategy set for the
radar system is defined as SR(pJ) = {pR ∈ RK×1

+ |SINRk ≥ γk,∀k}, where
pJ = [pJ1, . . . , pJK ]T . In order to complete the game theoretic framework,
the definition of the utility function for all players is essential. Regarding the
radar system, the utility function is the total power consumption of the radar
system, defined as:

uR(pR,pJ) =
K∑
k=1

pRk (4.34)

The utility function for jammer k is given by [119]:

uJk(pR,pJ) = − akpRk
βkpJk + σ2

n

− CkpJk (4.35)

where CkpJk is the cost function for jammer k and the best action for the
jammer k is to attack the radar with transmission power given by:

p∗Jk = argmax
pJk

uJk(pR,pJ), k = 1, . . . , K

The solution of a noncooperative game is called Nash Equilibrium (NE).
One of the primary objectives when designing a game is to investigate the
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existence and the uniqueness of the NE. In the game considered, the NE is
a stable point, where no player can further profit by unilaterally changing its
power allocation and is defined as the strategy set pR

∗, pJ
∗ where:

uR(pR
∗,pJ

∗) ≤ uR(pR,pJ)

uJ(pR
∗,pJ

∗) ≥ uJ(pR,pJ).

4.2.3 Existence and Uniqueness of the Nash Equilibrium

The existence of the solution for the noncooperative game defined in the pre-
vious section is guaranteed through the Arrow-Debreu theorem [117]. Since
the existence of the NE is secured, the uniqueness of this NE is guaranteed
by proving that the utility function of each jammer is strictly concave in [0, p̂]

and that the best response function of the radar system is standard.
Lemma 1: The utility function of each jammer is a strictly concave func-

tion.
Proof: In order to prove that (4.35) is strictly concave, it needs to be

shown that the second order partial derivative of uJk(pR,pJ) with respect to
pJk is negative:

∂uJk(pR,pJ)

∂pJk
=

akβkpRk
(βkpJk + σ2

n)2
− Ck (4.36)

∂2uJk(pR,pJ)

∂2pJk
= − 2akβ

2
kpRk

(βkpJk + σ2
n)3

(4.37)

This concludes the proof that the utility function of each jammer is strictly
concave.

Lemma 2: The best response function of the radar system is a standard
function.

Proof: Initially, it is proved in [32] that all the constraints in (4.33) must be
satisfied with equality at the optimal power allocation. Thus, the constraints
of the optimization problem can be written as:

GpR = rJ (4.38)

where G ∈ RK×K and is defined as [G]i,i = (ai
γi

) and [G]i,j = (−mij) and rJ

denotes the total interference induced by the jammers to the radar system plus
the additive white Gaussian noise (AWGN) from the environment vector and
is defined as rJ = (GJpJ +1σ2

n). The jammer interference matrix GJ ∈ RK×K
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is diagonal and is defined as [GJ ]i,i = (βi) and [GJ ]i,j = 0. The optimal
power allocation for the optimization problem (4.33) can be obtained from the
solution of (6) and thus, the best response strategy for the radar system is
given by p∗R = G−1rJ . Furthermore, by replacing the interference vector rJ ,
the best response strategy can be reformulated as:

BRR(pJ) = p∗R = G−1(GJpJ + 1σ2
n) (4.39)

The best response strategy (4.39) must satisfy the following necessary proper-
ties in order to qualify as a standard function for all pJ ≥ 0:

a) Positivity: The best response strategy is strictly positive, BRR(pJ) > 0,
as G−1 is a positive matrix straightforwardly from (4.39) and GJ is a positive
matrix from its definition.

b) Monotonicity: Assuming pJ ≥ p′J , then:

BRR(pJ)−BRR(p′J) = G−1 (GJ(pJ − p′J)) ≥ 0

c) Scalability: For all a > 1, one has:

aBRR(pJ)−BRR(apJ) = (a− 1)G−11σ2
n > 0.

This concludes the proof that the best response function of the radar system
is a standard function.

Having proved Lemma 1 and Lemma 2, the uniqueness of the NE is secured.

4.2.4 Simulation Results

In this section, the convergence of the resource allocation noncooperative game
between the radar system and the jammers to the unique Nash Equilibrium is
illustrated. Thus, a bistatic MIMO radar network is assumed, where the two
tracking MIMO radars are centrally controlled. Moreover, two intelligent tar-
gets are considered incorporated with jammers as depicted in Fig. 4.8. Due to
the distance between the radars in the network, each jammer can only attack
one radar. Furthermore, it is assumed that there is some communication be-
tween the jammers so they interfere against different radars. The environment
noise is considered as AWGN with variance 0.5. The parameters represent-
ing the channel gains applied in this simulation are a1 = 0.75, a2 = 0.71,
m1 = 0.0085, m2 = 0.0064, l1 = 0.0044, l2 = 0.0062, β1 = 0.73, β2 = 0.52. The
cost parameter for both jammers is set equal to 2.4 (C1 = C2 = 2.4) and the
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detection criterion for both radars is considered equal to 6.5 (γ1 = γ2 = 6.5).
Finally, the maximum number of game iterations is set at T = 30.

Figure 4.9: Power allocation convergence for the noncooper-
ative game with jammer identification.

In order to verify the improved power allocation of the radar system when
applying a hypothesis testing and identifying the interfering jammers, the re-
sults of the game with jammer suppression are compared to the outcome of the
case, where the radars have no jammer identification technology. Under this
assumption, the radars do not apply hypothesis testing for each of the targets
and attempt to detect the target closer to them, which in the model is the
interfering jammer. Hence, the jammer interference gain for the second game
considered is equal to the actual gain βk and not the leakage gain lk as in the
first game. The best response strategy of the radar system is reformulated as:

min
pR

K∑
k=1

pRk (4.40)

s.t.
akpRk

K∑
i=1
i 6=k

mkipRi + βkpJk + σ2
n

≥ γk,∀k

In order to prove that the best response strategy in the second game (4.40)
is a standard function and so there is a unique Nash equilibrium, Lemma 2 is
followed. To facilitate the comparison, the same parameters representing the
channel gains and set the same SINR targets as the first game are assumed
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(γ1 = γ2 = 6.5). Similar to the first game, the cost parameter for both jammers
is set equal to 2.4 (C1 = C2 = 2.4). The number of iterations is set at T = 60

for the second game.

Figure 4.10: Power allocation convergence for the noncoop-
erative game without jammer identification.

Fig. 4.9 and Fig. 4.10 depict the resource allocation convergence for the
jammers and a radar network with jammer suppression and without, respec-
tively. A first important observation is that in both cases the noncooperative
game converges to its unique solution, as proved in section III. Moreover, a
second crucial remark is that a radar network equipped with a jammer iden-
tification system can achieve the desired detection criterion consuming less
power. This stems from the fact that the transmit and receive beamformers in
the case of the game with jammer suppression apply a null at the direction of
the jammer, whereas in the case of the game without jammer identification the
beamformers are steered at the direction of the jammer and thus the jammer
channel gain is much greater in the second case, i.e. βk > lk. Therefore, in the
game without jammer identification the radars need to transmit more power to
overcome the increased jammer interference. Furthermore, it is obvious that
the game with jammer suppression converges faster to its unique solution. This
is due to lower interference from the jammers to the radar network and thus
the interaction between the players is less intense, leading to quicker conver-
gence. Table 4.2 presents the interference induced by the jammers to the radar
network for each of the two games. It highlights the substantial interference
mitigation when a radar system incorporates a jammer suppression algorithm.
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Table 4.2: Interference induced by the jammers to the radar
system for each game.

Game played

Receiver Radar I Radar II Total

With Jammer Suppression 0.0034 0.0042 0.0076

Without Jammer Identification 1.4239 1.1580 2.5819

4.2.5 Conclusion

A power allocation game theoretic problem between a radar system and multi-
ple jammers was investigated. Initially, the interaction between the radar net-
work and the jammers was modelled as a simultaneous noncooperative game
and then a proof was presented on the uniqueness of the solution. Further-
more, the simulations highlighted the comparison between the case when the
radars using a hypothesis testing to identify the interfering jammers and the
case when the radars attempt to detect the target on the basis of proximity (i.e.
distance), even if it is an interfering jammer. Finally, the simulation results
confirm that the game with hypothesis testing provides a more Paretto-efficient
Nash equilibrium than the game without jammer identification, as the radars
utilize less resources to achieve the same SINR criterion.
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Chapter 5

SINR Optimization and Resource
Allocation for a Multistatic Radar
Network: A Bayesian
Game-Theoretic Approach

This chapter investigates a Bayesian game theoretic SINRmaximization scheme
for a multistatic radar network. A distributed network of radars is considered,
whose primary goal is to maximize their signal-to-noise ratio (SINR), while
attaining a predefined power constraint. Furthermore, no communication is
assumed between the radars and hence a noncooperative approach is utilized.
The channel gain between a radar and the target is assumed as private infor-
mation and characterizes the type of the player, whereas the distribution of
the channel gain is common knowledge to every player in the game. Subse-
quently, the existence and the uniqueness of the Bayesian Nash equilibrium
for the aforementioned game is examined and proved. Finally, the simulation
results confirm the convergence of the algorithm to the unique solution.

5.1 Introduction

Distributed radar networks benefit from many substantial advantages such as
direct applicability of adaptive array techniques, capture of the geometrical
characteristics of the target through the spatial diversity in the target’s radar
cross section (RCS), multiple targets detection, and slow moving targets track-
ing [9]. Nevertheless, multistatic radar networks suffer from multiple source
interference imposed at the receivers of each radar, namely the cross channel
interference induced by other radars in the same network and the clutter in-
terference. This interference seriously deteriorates the performance and the
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tracking capabilities of the system and thus an optimal power allocation strat-
egy that minimizes the interference and maximizes the detection performance
is necessary. Game theory is an appropriate and efficient tool to address this
issue, as it constitutes a mathematical framework of confrontation and coor-
dination among selfish, intelligent and rational players.

Game theoretic techniques have been utilized recently to confront vari-
ous radar problems. Especially optimal power allocation and distribution in
radar networks motivated many authors to utilize different game theoretic
techniques. The authors in [35] and [36] addressed the power allocation prob-
lem by formulating a non-cooperative game with predefined SINR constraints.
Since a radar in a distributed network can not obtain information regarding
the transmission power of the remaining radars in the network, an SINR esti-
mation technique was applied in [37], to extend the work in [35]. The authors
in [38] exploited cooperative game theoretic techniques to solve the resource al-
location problem through maximizing the Bayesian-Fisher information matrix
(B-FIM) and utilizing the Shapley value solution. A combination of a water
filling algorithm and a Stackelberg game was used in [39] for optimal power
distribution. In addition, a noncooperative power allocation game between a
multistatic radar network and multiple jammers was presented in [120], to-
gether with the proof of the existence and uniqueness of the Nash equilibrium.

In the aforementioned radar literature, the radars have been assumed to
have exact knowledge of the channel gain in terms of the RCS parameters
of the targets and clutter, which may not be feasible in a real system. In
this chapter, uncertainty is introduced on the channel gains associated with
the radars and the targets, which arises due to the RCS fluctuations of the
targets. Bayesian game theory provides a framework to address this problem of
incomplete information. Therefore, a Bayesian game is considered, where each
player egotistically maximizes its SINR, under a predefined power constraint.
Within this framework, it is assumed that each radar/player exactly knows
the channel gain between itself and the target as private information, however
having uncertainty on the channel experienced by other radars in the network.
Only the distribution of the channel gains is considered as common knowledge
to every player. The distribution of the channel gains can be obtained by
exploiting several target models, such as Swerling or extended-Swerling models,
depending on the targets’ type [108]. This problem is solved using a Bayesian
game framework as proposed for communication application in [101]. The
existence and uniqueness of the Bayesian Nash equilbrium is also proved.
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5.2 System Model

Figure 5.1: A multistatic MIMO radar network with two
radars and one target.

The system model incorporates a multistatic radar network, that consists
of K widely separated radars. In the far-field of the radars, a flying target
is assumed. Hence, the primary objective of each radar is to achieve the
highest possible SINR, while satisfying a maximum power constraint. In the
noncooperative approach of the distributed radar network, each radar performs
the optimization of the SINR selfishly and autonomously, having complete
knowledge only for its own channel gain realization as private information.
On the other hand, only the distribution of the inter-radar channel gains is
available to every radar as common knowledge. In particular, this uncertainty
on the cross channel gains is generated from the radar cross section (RCS)
of the target, as only the distribution of the RCS is common information for
every radar and not the exact instantaneous value of the RCS. Since it is
assumed that all radars belong to the same organization, the game scenario is
not competitive and there is no intentional interference among the radars.

In the presence of a target, the received signal for radar k is obtained by:

xk = hkpksk +
K∑
j=1
j 6=k

gjkpj + ckpk + n̂ (5.1)

where sk = ψkak describes the transmitted signal from radar k and ak =

[1, ej2πfD,k , . . . , ej2π(N−1)fD,k ]T is the steering vector of radar k regarding the
desired target, fD,k denotes the normalized Doppler shift at radar k, N is the
number of signal return samples that the radars receive at each time step and
ψk corresponds to the predesigned waveform transmitted from radar k. The
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parameter hk denotes the desired channel gain at the direction of the target,
pk stands for the transmission power of radar k, gjk describes the cross-channel
gain among radars k and j, ck and n̂ denote the clutter channel gain and a
zero-mean white Gaussian noise with variance σ2

n. Hence, the SINR for the
kth radar is straightforwardly defined as:

SINRki =
hkpk

ckpk +
K∑
j=1
j 6=k

gjkpj + σ2
n

. (5.2)

In the next section, the Bayesian game theoretic formulation for the system
is described.

5.3 Game Theoretic Formulation

In this section, the interactions between the K radars in the network as a
Bayesian game are modeled, in which the main goal for each radar is to maxi-
mize its SINR for target detection under a power constraint and channel uncer-
tainty. More specifically, the incomplete information in the considered system
model reflects the inability of radar k to obtain the exact value of the cross
channel gains, i.e. [g1k, g2k, . . . , gKk]. Nevertheless, since each radar knows the
type of the target, then the distribution of the RCS of the target and subse-
quently the distribution of the cross channel gain is common information. It is
clear from the SINR equation (5.2) that although increased transmission power
at a radar strengthens the desired signal, it induces higher cross interference to
the remaining radars in the network. Thus, the aforementioned interaction is
modeled as a noncooperative Bayesian game, which can be fully characterized
as:

G =< R, T ,P ,Π,U >

• The set of radars is considered to be the player set: R = {R1, . . . , RK}.

• The type set is denoted as T = T1 × . . . × TK , and corresponds to each
player’s channel gain, i.e. Tk = {g−, g+}.

• The action set of the game is P = P1 × . . .× PK with

Pk = {pk ∈ R+ | pk ∈ [0, Pmax
k ]}, ∀i ∈ {1, . . . , K}

where Pmax
k denotes the maximum available power for radar R1.
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• The common prior or probability set is defined as Π = Π1 × . . . × ΠK ,
where Πk is the probability distribution of the channel gain for radar
Rk and hence the distribution of the player’s type and it is common
knowledge to every player.

• The Bayesian game model is concluded by defining the utility function
set as U = {u1, . . . , uK}, where uk represents the kth radar SINR as
shown below:

uk(p1, . . . , pK) =
hkpk

ckpk +
K∑
j=1
j 6=k

gjkpj + σ2
n

(5.3)

It is evident from equation (5.3), that the utility function is a function
of the power allocation of all K players.

In the considered Bayesian Nash Game (BNG), player k egotistically maxi-
mizes its SINR, while attaining a maximum power constraint, given the trans-
mission power strategies of the remaining players. Therefore, the best response
for player k can be determined by solving the following optimization problem:

max
pk∈Pk

E[uk(p1, . . . , pK)] (5.4)

s.t. E[pk] ≤ Pmax
k

pk > 0

The study on the convergence of the game G to a stable solution is the most
critical part of the game theoretic analysis, as it provides the ability to predict
the performance and the stability of the distributed radar system under chan-
nel uncertainty. This specific solution defines the Bayesian Nash equilibrium,
where no player could benefit by unilaterally change its power allocation strat-
egy. Hence, for the considered game G the Bayesian equilibrium describes the
action profile (p∗−k, p

∗
k), where p−k denotes the transmission power adopted by

all other players except player k, when:

ūk(p
∗
−k, p

∗
k) ≥ ūk(p

∗
−k, pk), ∀pk ∈ Pk,∀k ∈ R.

where ūk defines the expected utility for player k. The next section presents
a rigorous mathematical analysis on the existence and the uniqueness of the
Bayesian equilibrium.
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5.4 Existence and Uniqueness of the Bayesian

Equilibrium

Initially, it is important to underline that for a given set of opponent power
strategies p−k, the optimization problem (5.4) is a convex optimization prob-
lem, since the objective and the constraint functions are quasiconcave and
quasiconvex functions, respectively. Therefore, the maximization problem
(5.4) can be reformulated to a standard form convex optimization problem,
by changing the sign of the objective function, as follows:

min
pk∈Pk

−E[uk(p1, . . . , pK)] (5.5)

s.t. E[pk]− Pmax
k ≤ 0

−pk < 0

At this point, the Lagrangian L corresponding to the convex optimization
problem (5.5) may be defined as:

L(pk, λ1, λ2) = E

−
hkpk

ckpk +
K∑
j=1
j 6=k

gjkpj + σ2
n

+

λ1(pk − Pmax
k )− λ2pk (5.6)

where λ1 and λ2 are the Lagrange multipliers associated with the inequality
constraints of (5.5). It is presumed that (p∗k, λ

∗
1, λ
∗
2) are the primal and dual

optimal points of (5.5). Thus, the Karush-Kuhn-Tucker (KKT) conditions on
convexity must be satisfied and one has:

λ∗1 = E


hk

K∑
j=1
j 6=k

gjkpj + hkσ
2
n

ckpk +
K∑
j=1
j 6=k

gjkpj + σ2
n


2


(5.7)

λ∗1(p∗k − Pmax
k ) = 0 (5.8)
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From (5.7) it is straightforward that the optimal Lagrange multiplier λ1

is strictly positive. Therefore, from (5.8) the optimal transmission power for
radar k is equal to the maximum power constraint, i.e. p∗k = Pmax

k . However,
it is evident from (5.7) that the optimal solution for radar k is a function
of the transmission power of all K players, which is not common knowledge.
Hence, in order for each player to obtain the optimal power allocation, each
radar must optimize its transmission power based on an estimation of all the
remaining radars’ power allocation. The investigated Bayesian game theoretic
framework models exactly this kind of interaction.

5.4.1 Existence

The existence of a Bayesian Nash equilibrium (BNE) follows from the result
by [117] on abstract economies. According to this result, a BNE exists if the
following hold: for all players k = 1, . . . , K the set Pk is compact, nonempty
and convex, the utility function uk(p−k, pk) is continuous on P and quasi-
convex in pk. For every p−k the set-valued function Pk is continuous with
closed graph and for every p−k the set P(p−k) is non-empty and convex. For the
considered problem, these requirements can be straightforwardly established
using analytic notions, hence there exists a BNE for the proposed game.

5.4.2 Uniqueness

In order to prove the uniqueness of the Bayesian equilibrium, it must be proved
that the second derivative of the utility function of radar k is strictly concave
with respect to its action set. Therefore, geometric programming techniques
are utilized to prove the uniqueness of the solution [51], as the following Lemma
suggests:

Lemma 1: The Bayesian game G has a unique solution.

Proof. Following [51], it is feasible to maximize a nonzero monomial utility
function, by minimizing its inverse. Thus, the best response optimization prob-
lem (5.4) for player k following geometric programming techniques is restated
as:

min
pk∈Pk

(hkpk)
−1

ckpk +
K∑
j=1
j 6=k

gjkpj + σ2
n

 (5.9)

s.t. E[pk]− Pmax
k ≤ 0
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−pk < 0

At this point, by redefining the utility function as u′k(p−k, pk) = (hkpk)
−1(ckpk+

K∑
j=1,j 6=k

gjkpj + σ2
n), game G becomes:

G ′ =< R, T ,P ,Π,U ′ >

where U ′ = {u′1, . . . , u
′
K}. Since it is shown from the KKT conditions (5.7)

and (5.8) that the optimal transmission power is obtained when the power
constraint is satisfied with equality, the transmission power when the channel
gain is g+ can be defined as π+pk(g+) = Pmax

k − π−pk(g−), where π+ and π−
correspond to the probability of high channel gain g+ and low channel gain
g−, respectively. Hence the average utility function ū′k is defined as a weighted
sum function:

ū
′

k(p−k, pk) =
∑
i

φi(h
i
kpk)

−1(ckpk +
K∑

j=1,j 6=k

gijkpj + σ2
n) (5.10)

where i stands for the different jointly probability realizations of the channel
gains, φi represents the respective probability for event i, hik and gijk denote
the desired and cross-channel gains for event i. At this point, the first and the
second derivative of the utility function of player k with respect to its strategy
pk can be derived, as shown below:

∂ū
′

k(p−k, pk)

∂pk
=
∑
i

φi

(
−(hik)

−1p−2
k

K∑
j=1,j 6=k

gijkpj − (hik)
−1p−2

k σ2
n

)
(5.11)

∂2ū
′

k(p−k, pk)

∂2pk
=
∑
i

φi

(
2(hik)

−1p−3
k

K∑
j=1,j 6=k

gijkpj + 2(hik)
−1p−3

k σ2
n

)
(5.12)

It is evident from (5.12) that the second derivative of the payoff function
regarding the kth player is strictly positive ∀pk > 0 and hence the Bayesian
game G ′ has a unique solution. Consequently, the initial game G admits a
unique Bayesian Nash equilibrium.
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5.5 Simulation Results

In this section, simulation results are introduced to validate the theoretical
background. A bistatic radar network is presumed consisting of two radars and
two possible channel states g− = 1 and g+ = 4. There is also a target assumed
at the far-field of the radars and substantial clutter, whose gain is set to c1 =

0.5 and c2 = 0.3. Initially, Fig. 5.2 displays the convergence of the power
allocation to the unique solution for two different starting strategies when
π− = π+ = 0.5. It is clear that the proposed Bayesian geometric programming
game converges swiftly to the unique solution, regardless the initial strategy
of the radars.

(a) p1(g+) = 0.5, p2(g+) = 0.00001. (b) p1(g+) = 0.8, p2(g+) = 0.2.

Figure 5.2: Convergence of the power allocation correspond-
ing to g+ for π− = π+ = 0.5 and different initial strategies.

(a) p1(g+) = 0.5, p2(g+) = 0.00001. (b) p1(g+) = 0.8, p2(g+) = 0.2.

Figure 5.3: Convergence of the power allocation correspond-
ing to g+ for π− = 0.25 and π+ = 0.75 and different initial

strategies.

Fig. 5.3 confirms the convergence of the algorithm for different channel gain
probabilities, hence π− = 0.25 and π+ = 0.75 is chosen. Similar to the first
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Table 5.1: Bayesian equilibrium and SINRs for the two players
for different values of π+.

Probability π+ 0.1 0.5 0.75

Bayesian equilibrium (0.5263,0.5263) (0.6667,06667) (0.8000,0.8000)

SINR 1 0.7830 0.8886 0.9009

SINR 2 0.8442 0.9493 0.9540

example, the convergence is secured, whatever the starting power allocation
of the radars. In addition, one can observe that when the belief regarding the
higher channel gain is stronger, both players allocate more power to the higher
channel gain. This fact is further analyzed in Table 5.1, where the Bayesian
equilibrium for different values of the probability π+ is displayed along with
the SINRs of the two radars. As expected, the higher the belief for g+, the
players transmit with increased power corresponding to the stronger channel
and also the SINR for both players is increasing with respect to the confidence
of the high channel gain π+.

Fig. 5.4 highlights the importance of the prior belief of a player regarding
the channel gains on the resulting power allocation. As the belief for a bet-
ter channel gain gets more robust, the player is more confident of deciding a
mixed strategy, where the transmission power is increased. On the other hand,
when the aforementioned probability gets slimmer, the transmission power is
restrained, as a worse channel gain is more probable.

5.6 Conclusion

This chapter investigated a Bayesian game theoretic SINR maximization and
resource allocation technique within a distributed radar network, where the
radars are considered to have private information only about their own chan-
nel gains. Initially, the interactions were modeled within the aforementioned
multistatic network as a Bayesian game and then a proof of the existence and
uniqueness of the Bayesian Nash equilibrium was presented. The simulation
results validated the convergence to the unique solution, regardless the initial
resource allocation strategy of the players. Furthermore, it was shown that the
higher the confidence of a player regarding a better channel gain associated
with the remaining players the higher the SINR and the transmission power
of this player. In addition, the importance of the prior belief of a player was
highlighted to the outcome of the game. A possible future extension would be
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Figure 5.4: Transmission power (p+) convergence for player
2 for different channel gain probabilities π+.

the utilization of Swerling target models to model the uncertainty regarding
the channel gains and analyze the SINR results.
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Chapter 6

Game Theoretic Analysis for
MIMO Radars with Multiple
Targets

This chapter considers a distributed beamforming and resource allocation tech-
nique for a radar system in the presence of multiple targets. The primary ob-
jective of each radar is to minimize its transmission power while attaining an
optimal beamforming strategy and satisfying a certain detection criterion for
each of the targets. Therefore, convex optimization methods are used together
with noncooperative and partially cooperative game theoretic approaches. Ini-
tially, a strategic noncooperative game (SNG) is considered, where there is no
communication between the various radars of the system. Hence each radar
selfishly determines its optimal beamforming and power allocation. Subse-
quently, a more coordinated game theoretic approach is assumed incorporat-
ing a pricing mechanism. Introducing a price in the utility function of each
radar/player, enforces beamformers to minimize the interference induced to
other radars and to increase the social fairness of the system. Furthermore, a
Stackelberg game is formulated by adding a surveillance radar to the system
model, which will play the role of the leader, and hence the remaining radars
will be the followers. The leader applies a pricing policy of interference charged
to the followers aiming at maximizing his profit while keeping the incoming
interference under a certain threshold. A proof of the existence and uniqueness
of the Nash Equilibrium (NE) is also presented in both the partially cooper-
ative and noncooperative games. Finally, the simulation results confirm the
convergence of the algorithm in all three cases.
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6.1 Introduction

Multiple-input multiple-output (MIMO) radar is an innovative technology that
has raised expectations over the last decade that it will provide substantial im-
provements to the currently used radar systems. The main characteristic that
allows MIMO radar to offer superior capabilities as compared to other radar
regimes is its waveform diversity, which implies that MIMO radar can use mul-
tiple antennas to simultaneously transmit several orthogonal waveforms and
multiple antennas to receive the reflected signals from the targets [5]. There are
two principal MIMO radar schemes considered in the literature, the systems
incorporating colocated antennas and those that consist of widely separated
antennas (bistatic, multistatic) [8], [9]. The leading fields of research within
MIMO radar technology are beamformer and waveform design, detection opti-
mization and radar imaging [58]-[121]. Succeeding the advances in those fields,
the main advantages offered by MIMO radar are higher angular resolution, di-
rect applicability of adaptive array techniques, multiple targets detection and
the ability to obtain spatial diversity in the target’s radar cross section (RCS).
Nevertheless, one substantial drawback in a multiple target, distributed radar
system, that has not yet been completely resolved, is the multiple source inter-
ference imposed at the receivers of each radar. More specifically, the inter-radar
1, the intra-radar 2 and the clutter interference lead to reduced efficiency and
performance degradation of the radar system. Hence, an optimal beamform-
ing and power allocation strategy is crucial as it minimizes the interference
in between the radars of the same organization, while preserving a detection
criterion. Game theory is a natural and effective tool for modeling this kind of
interactions, as it offers a mathematical framework of conflict and cooperation
between intelligent, self-interested and rational players.

The increasing need for independent, autonomous and decentralized com-
munication systems has sparked much interest in using game theoretic tech-
niques in the communication literature [25]. More specifically, the aforemen-
tioned distributed, multistatic beamforming and resource allocation problem
in radar systems can be compared to similar issues raised in multicell wireless
systems in communication applications [26]-[27]. In [26], the authors intro-
duced the idea of joint beamforming and power control, proposing an iterative
algorithm to simultaneously obtain the optimal beamforming and power vec-
tors. The incorporation of game theory in this context then rapidly became a

1Cross channel (direct) and indirect interference induced among different radars.
2Interference imposed from the transmitters to the receivers of the same radar when

detecting two or more different targets.
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focal point in communications research [28]-[29]. The majority of this literature
considers the technique of strategic noncooperative games (SNG), where each
player selfishly maximizes its payoff function, given the strategies of the other
players. The authors of [28] exploited an iterative water-filling algorithm to
reach the Nash equilibrium in a non-cooperative, distributed, multiuser power
control problem. Since each player greedily optimizes its utility function, the
equilibrium might not be the Pareto-optimal solution. Introducing pricing
policies to the system resources leads to a more Pareto-efficient solution and
increases the social welfare of the system. A pricing regime that is a linear
function of the transmit power was studied in [30]. Another example of pricing
the transmit power of each player is considered in [31], whereas in [32] and [33]
the pricing policy is applied on the intercell interference among the players.
In [29], the authors consider the optimization of a set of precoding matrices
at each node of a multi-channel, multi-user cognitive radio MIMO network
in order to minimize the total transmit power of the network, while applying
a pricing scheme based on global information. Cooperative game theoretic
techniques combined with a two-level Stackelberg game were utilized in [34]
to address the problem of relay selection and power allocation without the
knowledge of channel state information (CSI). Finally, the authors in [27] for-
mulated a Stackelberg Bayesian game to obtain the optimal power allocation
for a two-tier network, while applying an interference constraint at the leader
and considering channel gain uncertainty.

Game theory is also an efficient tool to overcome various problems that arise
in radar systems. In particular, the authors in [74] approached the problem
of polarimetric waveform design by considering a zero-sum game between an
opponent and the radar system engineer. The zero-sum game was also used
in [72] to investigate the interaction between a MIMO radar and an intelligent
target, that applies jamming techniques. Potential game theory was exploited
in [114] with the main objectives of optimal waveform design and maximization
of the signal-to-interference plus noise ratio (SINR). A non-cooperative game
theoretic per antenna power optimization based on signal-to-disturbance ratio
(SDR) estimation with a desired SINR constraint was investigated in [37].
Non-cooperative game theory was also employed in [36] to facilitate the power
control problem in a radar network. To address the power allocation problem
the authors of [38] used a cooperative game approach and exploited the Shapley
value solution scheme.

In this paper, inspired by the aforementioned game theoretic methods ap-
plied in communications [31], [32], [29], although reinvestigated to adapt to



114
Chapter 6. Game Theoretic Analysis for MIMO Radars with Multiple

Targets

the radar case, a broad game theoretic analysis has been developed for the
optimal beamforming and resource allocation problem in a MIMO tracking
radar system with multiple targets. Initially, an SNG is considered, where
each radar/player greedily optimizes the beamforming and power allocation
vectors in two stages. In the first stage, the optimal transmit and receive
beampatterns are designed by exploiting convex optimization techniques in a
power minimization problem, while attaining a certain detection criterion. Af-
ter designing the optimal beampatterns, the primary joint beamforming and
resource allocation problem reduces to a power only minimization game. Thus,
in the second stage of the game the best response strategy of a radar in an
SNG setup is obtained and it is showed that it is a standard function [86],
which proves the uniqueness of the Nash equilibrium, similar to the work in
[32] for wireless communication applications.

The fact that each radar acts selfishly and does not take into account the
damage it may inflict to other radars, through inter-radar interference, leads
to a solution that may not be optimal from a social welfare point of view.
Since it is presumed that the radars belong to the same organization, it is
safe to consider some sort of cooperation and introduce a pricing policy to all
players in order to minimize the interference induced to other radars. More
specifically, the radars are encouraged to steer their beams in directions that
cause less damage to other players, which results in a more Pareto-optimal
solution.

In order to complete the radar model, a surveillance radar is incorporated
as part of the previously studied MIMO tracking radar system. The main ap-
plication of the surveillance radar is to continuously search the operating area
for new incoming targets. By adding a surveillance radar, the hybrid radar
system is capable of both acquiring new targets and tracking every target in
an operating field. However, all radars operate simultaneously and hence the
tracking radars interfere with the surveillance radar and increase the proba-
bility of false alarm. In order to secure the smooth operation of the system,
a maximum limit of interference induced at the surveillance radar is set. In
order to achieve both the target SINR and to guarantee the interference limit
at the surveillance radar, a Stackelberg game approach is utilized. In particu-
lar, the surveillance radar is the leader and the MIMO tracking radars are the
followers in the hierarchy of the game. Next, the system model is introduced.
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Figure 6.1: A multistatic MIMO radar network with two
radars and two targets.

6.2 System Model

The system model considers a multistatic radar network that consists of K
separate radars each consisting of M transmit/receive antennas. The set of
radars is denoted by C = {1, . . . , K}. In order to complete the model, L
targets are assumed in the far-field of the radars, so that the main objective for
each radar is to attain a specific detection performance for every target using
the minimum possible transmission power. In the noncooperative design of the
multistatic radar network, the radars try to minimize their transmission power
independently, having full knowledge of the uplink and the downlink channels
of their own radar, whereas they have no knowledge of the inter-radar channel
gains. Since it is considered that the radars belong to the same organization,
the design of the model is not competitive, as there is no deliberate interference
between the radars. However, as no communication between radars is assumed,
a noncooperative game is appropriate. An example of a multistatic radar
network with two radars, two targets and clutter in the far-field is illustrated
at Fig. 6.1.

In order to detect the lth target, the transmit array of the kth radar emits
the lth element of the independent, predesigned waveform vector ψk(t) =

[ψk1(t), . . . , ψkL(t)]T of size L × 1, which satisfies the orthogonality condition∫
T0
ψk(t)ψ

H
k (t)dt = IL, where (·)T denotes the transpose operator, t refers to

the time index within the radar pulse, T0 is the radar pulse width, IL is the
L × L identity matrix, and (·)H denotes the Hermitian transpose operator.
Thus, the waveforms corresponding to different targets are not correlated, i.e.
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∫
T0
ψkl(t)ψkl′(t)dt = 0, where l 6= l′. It is assumed that the waveform vector

maintains the orthogonality condition for a set of acceptable time delays τa,
τa′ and Doppler frequency shifts fDa, fDa′ , such as [112]:

∫
T0

ψka(t− τa)ψka′(t− τa′)ej2π(fDa−fDa′ )tdt ≈

1, if a = a′

0, if a 6= a′

However, if the waveforms arrive with considerable delays and Doppler shifts,
nonzero correlation between waveforms may be expected. This correlation
factor is denoted as:

%k,l,l′(τl,l′) =

∫
T0

ψkl(t)ψkl′(t+ τl,l′)e
j2π(∆f)tdt

where τl,l′ is the relevant delay of the waveform returned from the lth target as
compared to the delay of the waveform returned from l′th target. The relative
difference in Doppler frequency is given by ∆f = fDl − fDl′ . This introduces
interference between the signals returning from different targets, as discussed
later.

The M × 1 vector which consists of the complex elements of the signal
transmitted from the kth radar and intended for the lth target is of the form

xkl(t) = wt(k,l)ψkl(t)

wherewt(k,l) is theM×1 transmit beamforming vector from radar-k to target-l.
Hence, the overall transmitted signal from radar-k is

xk(t) =
L∑
l=1

xkl(t) =
L∑
l=1

wt(k,l)ψkl(t)

As depicted in Fig. 6.1, hkl is the channel gain vector from target-l to radar-k,
ckl denotes the interfering signal returns from the clutter when the kth radar
tags target-l. The cross-channel gain between radar-k and radar-i is denoted
as µki and λkij represents the inter-radar interfering signal channel at the
kth radar echoing from the jth target and emitted from the ith radar. The
uplink and downlink parts of the path gains can be obtained by the following
equations with respect to the transmit beamforming vectors and the receive
beamforming vectors respectively:

ht(kl) = b(θkl)wH
t(k,l)a(θkl)βl

hr(kl) = b(θkl)wH
r(k,l)a(θkl)βl
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ct(kl) = b(θcl(k))wH
t(k,l)a(θcl(k))βcl

cr(kl) = b(θcl(k))wH
r(k,l)a(θcl(k))βcl

µt(ki) =
L∑
j=1

b(θrad(k,i))wH
t(k,j)a(θrad(i,k))

µr(ki) =
L∑
j=1

b(θrad(k,i))wH
r(k,j)a(θrad(i,k))

λt(kij) = b(θki)wH
t(i,j)a(θij)βj

λr(kij) = b(θki)wH
r(i,j)a(θij)βj

where wr(k,l) is the M × 1 receive weight vector for radar-k when aimed at
target-l, βl is the complex amplitude proportional to the radar cross section
(RCS) of target-l, βcl denotes the RCS amplitude of the clutter and a(θkl)

and b(θkl) are the M × 1 transmit and receive steering vectors for radar-k
respectively as defined below:

a(θkl) = [1, ej
2π
λ
dsin(θkl), . . . , ej

2π
λ

(M−1)dsin(θkl)]T

b(θkl) = [1, ej
2π
λ
dsin(θkl), . . . , ej

2π
λ

(M−1)dsin(θkl)]T

where d is the distance between the adjacent antennas and is considered the
same for all radars, θkl is the azimuth direction of target-l by considering radar-
k as reference, θcl(k) is the direction of the clutter as seen from the kth radar
and θrad(k,i) is the direction of radar-i as observed from radar-k and λ is the
wavelength of the transmitted signal. From the definition, it is apparent that
the transmit and receive steering vectors are equal, as the uplink and downlink
channels remain constant over the duration of a full game.

By matched-filtering at the receiver of radar-k each of the orthogonal wave-
forms ψkl(t−τl)ej2πfDlt, l = 1, ..., L, the desired received signal for the detection
of target-l is obtained by

ydes(kl) = wH
r(k,l)ht(kl) (6.1)

Considering a distributed, multistatic and multitarget radar scheme, the
detection of a target is deteriorated by direct and collateral inter-radar in-
terference, in addition to the interference induced by the signals intended for
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other targets by the same radar, the clutter effect and the noise power. As a
result, the interference signal can be modeled as

yinterf(kl) = (
L∑
j 6=l

wH
r(k,l)ht(kj)%k,l,j(τl,j)+

K∑
m6=k

L∑
j=1

wH
r(k,l)λt(kmj)%k,l,m,j(τl,j)+

K∑
m 6=k

wH
r(k,l)µt(km) +

L∑
i=1

wH
r(k,l)ct(ki) + n̂) (6.2)

where %k,l,m,j(τl,j) denotes the correlation factor between the waveform emitted
from the kth radar and echoed by the lth target and the waveform emitted from
the mth radar but echoed by the jth target.

Since the desired and interfering signals for radar-k regarding target-l are
defined in (6.1) and (6.2), the relevant SINR is straightforwardly defined as

SINRkl =
‖ydes(kl)‖2

‖yinterf(kl)‖2
(6.3)

where || · || denotes the Euclidian norm.
Using the above system model, the next section describes the game theo-

retic formulation of the proposed scheme.

6.3 Beamformer Design and Power Allocation

Game

6.3.1 Game Theoretic Formulation

In order to determine the optimal transmit/receive beamformers and power
allocation between the radars, an SNG is incorporated. The various radars
are considered as players, and therefore the player set is denoted by C =

{1, . . . , K}. Consider the transmit beamforming weight vector matrix Wt(k) =

{wt(k,1), . . . ,wt(k,L)} as the strategy of player-k and the matrix Wt(−k) as the
strategy chosen by the other players. Hence, the acceptable strategy set for
radar-k is defined as

Pk(Wt(−k)) = {Wt(k) ∈ CM×L | SINRkl ≥ γkl,∀l}
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where γkl is the desired SINR for target-l when targeted from the antennas
of radar-k. The decision on the desired SINR depends on the probabilities of
misdetection Pmd and false alarm Pfa, which are derived from the following
equations [115, 116]:

Pmd(ξkl) = (1− ξkl)N−1

Pfa(SINRkl, ξkl) = 1−
(

1− ξkl
1− ξkl

1

1 +NSINRkl

)1−N

where ξkl denotes the threshold of the generalized likelihood ratio test (GLRT),
applied to determine if there is absence or presence of a target [116] and N is
the number of samples used for the GLRT. A specific design parameter εkl is
defined to set an upper bound on the tolerance regarding Pmd and Pfa. Hence,
the optimum SINRkl for each radar regarding each target can be determined
as [35, 36]:

γ∗kl = min{SINRkl | ∃ξkl ∈ [0, 1] s.t. Pmd(ξkl) + Pfa(SINRkl, ξkl) ≤ εkl}. (6.4)

It is evident from (6.3) that the SINRkl for player-k is a function of the
beamforming weight vectors (which include transmission power) of all players.
Hence, the set of admissible strategies Pk(Wt(−k)) for radar-k depends on the
beamforming weight matrix Wt(−k) of every other player (radar).

The last component required to complete the game is the utility function
for each player, which is defined as uk(Wt(k)) = ‖Wt(k)‖2

F representing the
transmit power of player-k, where || · ||F denotes the Frobenius norm. The
game is summarized as

G =< C, {Pk(Wt(−k))}k∈C , {uk(Wt(k))}k∈C >

In the SNG considered, given the beamforming strategies of the other play-
ers, each player selfishly minimizes its power allocation subject to a predefined
detection criterion. As a result, the best response strategy for player-k is the
result of the following optimization:

min
Wt(k)

‖Wt(k)‖2
F (6.5)
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s.t.
|wH

t(k,l)hr(kl)|2
L∑
j 6=l

|wH
t(k,l)hr(kj)|2 +

L∑
i=1

|wH
t(k,l)cr(ki)|2 + r−kl

≥ γkl,∀l

where r−k = [r−k1, . . . , r−kL]T is the total interference induced by all other
radars except radar-k plus the additive white Gaussian noise (AWGN) from the
environment vector. For target-l, it is defined as r−kl =

∑K
m 6=k

∑L
j=1 |wH

t(k,l)λr(kmj)|2+∑K
m 6=k |wH

t(k,l)µr(km)|2 + σ2
n.

One of the main objectives of this work is to investigate whether the game G
converges to a stable point, where no player can profit by unilaterally changing
its beamforming strategy, as it will lead to higher power consumption to achieve
the same SINR for every target. Such a point is a Nash Equilibrium (NE) and
for the game considered, it is defined as the strategy set {W∗

t(1), . . . ,W
∗
t(K)}

where:

uk(W
∗
t(k)) ≤ uk(Wt(k)), ∀Wt(k) ∈ Pk(W∗

t(−k)),∀k ∈ C

In the next section the optimal beampatterns will be determined and the
best response strategy will be investigated. Also, the existence and uniqueness
of the NE of the game G will be proved.

6.3.2 Convex Optimization Beamforming and the Best

Response Strategy

Convex optimization has been widely utilized in the radar beamforming liter-
ature. Most of the work concentrates on designing the beamforming vectors
in order to approximate a desired beampattern, decided by the target position
[21, 122, 11, 113]. In the first stage of this analysis, the optimal beampattern
for every radar is determined corresponding to each of the targets using con-
vex optimization techniques. After securing the optimal beampatterns, each
player should just allocate the minimum possible transmission power, while
minimizing the inter-radar interference and achieving a certain detection per-
formance.

The optimal transmit beampatterns for each radar can be designed by
solving the following optimization problem:

min
Wt(k)

L∑
l=1

‖wt(k,l)‖2 (6.6)
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s.t.
|wH

t(k,l)hr(kl)|2
L∑
j 6=l

|wH
t(k,l)hr(kj)|2 +

L∑
i=1

|wH
t(k,l)cr(ki)|2 + r−kl

≥ γkl,∀l

The optimization in (6.6) can be converted to semidefinite programming
(SDP) using the rank relaxation method and solved as in [22] and [111]. The
optimal receive weight vectors can be found using generalised eigenvector tech-
niques.

Claim 1: The optimal transmit and receive beampatterns are independent
of the inter-radar interference r−k.

Proof: The proof can be found in Appendix A.
Hence, when the radars reallocate the power of transmission, the inter-

radar interference plus noise vector r−k is modified. From Claim 1, radar-k
retains the optimal beampatterns derived from (6.6), however reallocates only
its transmission power for each target, in order to achieve the detection crite-
rion. This observation is similar to that considered in wireless communication
applications [32], regardless of the appearance of additional clutter in the de-
nominator of the SINR equation in (6.6). As a result, after obtaining the
optimal transmit/receive beamforming vectors, the initial optimization prob-
lem (6.5) can be reformulated as a power minimization problem shown below:

min
pk1,...,pkL

L∑
l=1

pkl (6.7)

s.t.
pkl|ŵH

t(k,l)hr(kl)|2
L∑
j 6=l

pkj|ŵH
t(k,l)hr(kj)|2 +

L∑
i=1

pki|ŵH
t(k,l)cr(ki)|2 + r−kl

≥ γkl

where ŵt(k,l) =
w∗
t(k,l)

‖w∗
t(k,l)

‖ is the normalised optimal transmit weight vector and pkl
is the power used by radar-k on the beam directed to target-l. At this point,
by redefining the acceptable strategy as P ′k(p−k) = {pk ∈ RL

+ | SINRkl ≥
γkl, ∀l} and the utility function as u′k(pk) =

∑L
l=1 pkl, game G becomes a

power allocation SNG:

G ′ =< C, {P ′k(p−k)}k∈C , {u′k(pk)}k∈C >

In order to prove the existence and the uniqueness of the NE of game G, it
is needed to show that the best response strategy for every player is a standard
function. It must be highlighted that all the constraints must be active at the
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optimal power allocation. As a result, the inequality in the constraints of (6.7)
can be replaced by equality and can be written as:

Gkp
∗
k = r−k (6.8)

where Gk ∈ RL×L and its elements are defined as [Gk]ii = (
|ŵH
t(k,i)

hr(ki)|2

γki
−

|ŵH
t(k,i)cr(ki)|2) and [Gk]ij = −|ŵH

t(k,i)hr(kj)|2 − |ŵH
t(k,i)cr(kj)|2, for i 6= j. The

solution of (6.8) provides the optimal power allocation for (6.7). Following
Claim 2 in [32], the problem (6.7) is always feasible ∀r−k > 0 elementwise. As
a result, the matrix Gk must be invertible so the best response strategy for
the kth cluster can be straightforwardly obtained as:

p∗k = G−1
k r−k (6.9)

The existence of the solution is guaranteed through the Arrow-Debreu the-
orem [117]. Since the NE exists, the uniqueness of this NE is proved by es-
tablishing the best response function is standard [32]. The inter-cluster inter-
ference matrix from the mth radar to the kth radar is defined as Gmk ∈ RL×L

and [Gmk]i,j = |ŵH
t(k,i)λr(kmj)|2 + |ŵH

t(k,i)µr(km)|2. Hence, by replacing the inter-
ference vector r−k, the best response strategy can be restated as:

BRk(p−q) = p∗k = G−1
k

(
K∑
m 6=k

Gmkp
∗
m + 1Lσ

2
n

)
,∀k (6.10)

where 1L denotes the all ones vector of size L× 1.
Lemma 1: The best response function (6.10) is a standard function.
Proof: The best response strategy (6.10) satisfies the following necessary

properties for all p ≥ 0:
a) Positivity: BRk(p) > 0, as G−1

k is a positive matrix straightforwardly
from (6.9) and Gmk is a positive matrix from its definition.

b) Monotonicity: If p ≥ p′, then:

BRk(p)−BRk(p
′) = G−1

k

(
K∑
m 6=k

Gmk(pm − p′m)

)
≥ 0

c) Scalability: For all a > 1, aBRk(p) > BRk(ap). Indeed:

aBRk(p)−BRk(ap) = (a− 1)G−1
k 1Lσ

2
n > 0.

By applying a pricing policy to each player some cooperation is introduced
among them, which leads to a more Pareto efficient solution, as described in



6.4. Beamformer Design and Power Allocation Game with Pricing 123

the next section.

6.4 Beamformer Design and Power Allocation

Game with Pricing

6.4.1 Game Theoretical formulation

Since each radar optimizes its beamformers and power allocation greedily, the
equilibrium point is not necessarily the best solution from a social fairness
point of view. This is explained because each player ignores the direct path
interference it induces on other players. In order to obtain a more Pareto
efficient solution and to increase the social welfare of the SNG, a pricing scheme
is introduced and applied to each radar’s utility function. As a result, the
players are encouraged to allocate their available resources more efficiently by
minimizing the direct path interference induced to the other radars.

In order to achieve the aforementioned advantages, each radar/player needs
to have information about the channel to the other radars in the system. Since
the radars are presumed to belong to the same organization, the knowledge
of the channels between the radars is justified, as each radar knows the exact
position of the others. Hence, each radar performs the following optimization:

min
Wt(k)

L∑
l=1

‖wt(k,l)‖2 +
K∑
m6=k

L∑
i=1

κkmi‖wt(k,i)µr(km)‖2 (6.11)

s.t.
|wH

t(k,l)hr(kl)|2
L∑
j 6=l

|wH
t(k,l)hr(kj)|2 +

L∑
i=1

|wH
t(k,l)cr(ki)|2 + r−kl

≥ γkl,∀l

where κkmi is the price charged to radar k for the interference it induces to
radar m when aiming at target i and ‖wt(k,i)µr(km)‖2 denotes the corresponding
interference.

The aforementioned optimization encourages each player to adopt a more
socially efficient power allocation strategy by steering its beampattern to the
desired target, while keeping the sidelobes at the direction of the other players
low and therefore causing less interference to other radars. As a result, the
efficiency of the system as a whole is improved, yet the distributed nature of
the game is preserved.

In order to reformulate the SNG G to a more cooperative game with pricing
cosideration, it is just needed to redefine the utility function of radar k as
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vk(Wt(k)) = ‖Wt(k)‖2
F +

∑K
m6=k

∑L
i=1 κkmi‖wt(k,i)µkm‖2. The mathematical

form of the pricing game is:

Gpr =< C, {Pk(Wt(−k))}k∈C , {vk(Wt(k))}k∈C >

6.4.2 Optimal Beamforming and the Best Response Strat-

egy

In this section, the optimal transmit and receive beamformers and the best
response strategy for each of the players are designed. Therefore, the fact that
the optimization problem (6.11) can be reformulated as a convex optimization
problem with second order cone (SOC) constraints [22] allows to obtain the
optimal solution via duality. The Lagrangian associated with the optimization
problem (6.11) can be written as:

L(Wt(k),λk) =
L∑
l=1

‖wt(k,l)‖2

+
K∑
m6=k

L∑
i=1

κkmi‖wt(k,i)µr(km)‖2

+
L∑
l=1

λkl

( L∑
j 6=l

|wH
t(k,l)hr(kj)|2 +

L∑
i=1

|wH
t(k,l)cr(ki)|2 + r−kl

− 1

γkl
|wH

t(k,l)hr(kl)|2
)

where λk = [λk1, . . . , λkL]T is the L × 1 vector of the Lagrangian multipliers
associated with the SINR inequality constraints of the problem in (10). The
Lagrangian can be reorganized as:

L(Wt(k),λk) =
L∑
l=1

λklr−kl +
L∑
l=1

wH
t(k,l)

(
Ωk(κkml)

−λkl
γkl

hr(ki)h
H
r(ki) +

L∑
j 6=l

λkjhr(kj)h
H
r(kj)

+
L∑
i=1

λklcr(ki)c
H
r(ki)

)
wt(k,l)
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where Ωk(κkmi) =
∑K

m 6=k
∑L

i=1 κkmiµr(km)µ
H
r(km) + I. At this point, the La-

grange dual function is defined as the minimum value of the Lagrangian over
Wt(k):

gk(λk) = inf
Wt(k)

L(Wt(k),λk)

It is clear that if Ωk(κkml)−λkl
γkl

hr(ki)h
H
r(ki)+

∑L
j 6=l λkjhr(kj)h

H
r(kj)+

∑L
i=1 λklcr(ki)c

H
r(ki)

is not positive semi-definite, the Lagrangian is unbounded below in Wt(k) and
the dual function can take the value −∞. Hence, the dual problem associated
with (6.11) can be formulated as:

max
λk1,...,λkL

L∑
l=1

λklr−kl (6.12)

s.t.
L∑
i=1

λklhr(ki)h
H
r(ki) +

L∑
i=1

λklcr(ki)c
H
r(ki) + Ωk(κkml)

�
(

1 +
1

γkl

)
λklhr(kl)h

H
r(kl), ∀l

As mentioned in [118] and [32], where the authors investigate the downlink
beamforming problem for communications application, the dual problem (6.12)
is analogous to the following receive beamforming optimization problem:

min
λk1,...,λkL

wr(k,1),...,wr(k,L)

L∑
l=1

λklr−kl (6.13)

s.t.
λkl|wH

r(k,l)ht(kl)|2
L∑
j 6=l

λkj|wH
r(k,l)ht(kj)|2 +

L∑
i=1

|wH
r(k,l)ct(ki)|2 + wH

r(k,l)Ωk(κkmi)wr(k,l)

≥ γkl,∀l

Since the constraints are satisfied with equality at optimality, the optimal
Lagrangian multipliers can be obtained by applying the fixed point iteration
[118], as shown below:

λ
(n+1)
kl =

γkl
1 + γkl

× 1

hHt(kl)

(∑L
i=1 λ

n
klht(ki)h

H
t(ki) +

∑L
i=1 λ

n
klct(ki)c

H
t(ki) + Ωk(κkml)

)−1

ht(kl)

(6.14)
As proved in [118], the fixed point iteration described in (6.14) is shown to be
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a standard function and is guaranteed to converge to a unique solution, if the
optimization problem (6.12) is feasible.

Subsequently, the optimal receive weight vector is the minimum mean-
square error (MMSE) receiver, obtained as the following equation:

wr(k,l) =

( L∑
i=1

λklht(ki)h
H
t(ki) +

L∑
i=1

λklct(ki)c
H
t(ki)

+ Ωk(κkml)

)−1

ht(kl) (6.15)

Following [123], the optimal transmit beamformer can be obtained as a
scaled version of the receive weight vector, wt(k,l) =

√
δk,lwr(k,l), where δk,l is a

scalar factor. The scaling factors δk,l can be found by exploiting the fact that
the SINR constraints in (6.11) are met with equality at optimality. Hence by
replacing wt(k,l) =

√
δk,lwr(k,l) into the SINR constraints, the scaling factors

can be found from the following equation:

δk = F−1r−k (6.16)

where δk = [δk1, δk2, . . . , δkL]T and F ∈ RL×L and is defined as [F]ii = (
|wH
r(k,i)

ht(ki)|2

γki
−

|wH
r(k,i)ct(ki)|2) and [F]ij = −|wH

r(k,i)ht(kj)|2 − |wH
r(k,i)ct(kj)|2, for i 6= j.

Having decided the optimal transmit and receive beamformers, the solution
of problem (6.11) is concluded. Similar to the game without pricing consider-
ation, the initial optimization problem (6.11) can be reformulated as a power
minimization problem. Following the same analysis as in Section III and by
denoting the power vector of radar k as πk ∈ RL

+, the best response strategy
for the kth radar can be obtained from the following equation:

π∗k = ∆−1
k r−k (6.17)

where ∆k ∈ RL×L and is defined as [∆k]ii = (
|wH
t(k,i)

hr(ki)|2

γki
− |wH

t(k,i)cr(ki)|2)

and [∆k]ij = −|wH
t(k,i)hr(kj)|2 − |wH

t(k,i)cr(kj)|2, for i 6= j. Moreover, the inter-
radar interference matrix from the mth radar to the kth radar is denoted as
∆mk ∈ RL×L and [∆mk]i,j = |wH

t(k,i)λkmj|2 + |wH
t(ki)µr(km)|2. Consequently, by

replacing the interference vector r−k =
∑K

m6=k ∆mkp
∗
m + 1σ2

n the best response
strategy may be redefined as:

BRk(π−k) = π∗k = ∆−1
k

(
K∑
m 6=k

∆mkπ
∗
m + 1σ2

n

)
,∀k (6.18)
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Lemma 2: The best response function (6.17) of the game with pricing
consideration is a standard function.

Proof: The proof is identical to that in Lemma 1.
In the next section a hierarchical strategic game is presented, known as

Stackelberg game.

6.5 Stackelberg Game System Model

Figure 6.2: A hybrid distributed MIMO radar network with
a surveillance radar, two tracking radars and two targets.

In this section, a hybrid MIMO network is considered. More specifically, in
addition to the multistatic tracking radar network mentioned in Section 6.2, a
surveillance radar is incorporated as part of the network, as seen in Fig. 6.2. It
is presumed that all radars belong to the same organization and operate in the
same field. As a result, the tracking radars may interfere with the surveillance
radar and deteriorate its performance (increase the probability of false alarm).
In order to guarantee the unimpeded operation of the system, the interference
observed at the surveillance radar must not exceed a specific value, as shown
below:

K∑
k=1

L∑
l=1

|qHr(sur)gkl|2 ≤ Imax (6.19)

where gkl = wH
t(k,l)a(θsur(k)) denotes the interfering signal in the direction of

the surveillance radar when the kth tracking radar tags target l, θsur(k) is the
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direction of the surveillance radar as observed from the kth tracking radar,
and Imax is the maximum interference allowed. Since there is no transmit
or receive beamformer at the surveillance radar, its receive filter qr(sur) is a
complex scalar.

In order to guarantee constraint (6.19), an interference cost can be imposed
on every tracking radar in order to minimize their effect on the surveillance
radar. Thus, a similar pricing mechanism to the previous section can be applied
to every radar with the main objective to minimize the direct path interference
to the surveillance radar. Owing to the fact that all radars belong to the
same organization, it can be safely assumed that the information of the inter-
radar channels is given. Similarly to the previous section, each tracking radar
performs the following optimization:

min
Wt(k)

L∑
l=1

‖wt(k,l)‖2 +
L∑
i=1

κsur‖wt(k,i)gkl‖2 (6.20)

s.t.
|wH

t(k,l)hr(kl)|2
L∑
j 6=l

|wH
t(k,l)hr(kj)|2 +

L∑
i=1

|wH
t(k,l)cr(ki)|2 + r−kl

≥ γkl,∀l

where κsur is the pricing factor of interference, which is equally imposed by
the surveillance radar to all tracking radars.

This interaction between the radars can be translated to a power allocation
Stackelberg game, where the surveillance radar is the leader and the tracking
radars are the followers. The strategy of the leader is the price of interference
charged to the followers and the leader’s utility function is its profit, which is
defined as:

slead =
K∑
k=1

L∑
l=1

|wHr(sur)gkl|2κsur (6.21)

Based on the price imposed by the leader, the followers decide their best re-
sponse strategy as the result of the optimization in (6.20).

6.5.1 Followers’ Game

Since the followers know the price of interference announced by the leader,
they decide their optimal beamformers and resource allocation by solving the
optimization problem in (6.20). In order to formulate the followers’ game, it is
obvious that this game is similar to the game Gpr, when the utility function of
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player k is redefined as sk(Wt(k)) = ‖Wt(k)‖2
F +

∑L
i=1 κsur‖wt(k,i)gkl‖2. Hence

the mathematical representation of the followers’ game is:

Gfol =< C, {Pk(Wt(−k))}k∈C , {sk(Wt(k))}k∈C >

Following the same analysis as for game Gpr, the optimal beamforming
vectors can be derived by exploiting the duality properties of the convex op-
timization problem (6.19). Hence, respectively to the receive weight vector
optimization problem (6.13), the following optimization problem is addressed:

min
λ̄k1,...,λ̄kL

w̄r(k,1),...,w̄r(k,L)

L∑
l=1

λ̄klr−kl (6.22)

s.t.
λ̄kl|w̄H

r(k,l)ht(kl)|2
L∑
j 6=l

λ̄kj|w̄H
r(k,l)ht(kj)|2 +

L∑
i=1

|w̄H
r(k,l)ct(ki)|2 + w̄H

r(k,l)Ωk(κsur)w̄r(k,l)

≥ γkl,∀l

The vector of the Lagrangian multipliers associated with the inequality SINR
constraints of problem (6.20) is denoted as the L×1 vector λ̄k = [λ̄k1, . . . , λ̄kL]T ,
Ωk(κsur) =

∑L
i=1 κsurgklg

H
kl + I and w̄r(k,l) denotes the M × 1 receive weight

vector for radar-k regarding target-l for the study of the Stackelberg game.
Similar to (6.14), the optimal Lagrangian multipliers are obtained as shown
below (the fixed point iteration below is a standard function and admits a
unique solution [118]):

λ̄
(n+1)
kl =

γkl
1 + γkl

× 1

hHt(kl)

(∑L
i=1 λ̄

n
klht(ki)h

H
t(ki) +

∑L
i=1 λ̄

n
klct(ki)c

H
t(ki) + Ωk(κsur)

)−1

hkl

(6.23)
and the optimal receive beamformers through the MMSE receiver as:

w̄r(k,l) =

( L∑
i=1

λ̄klht(ki)h
H
t(ki) +

L∑
i=1

λ̄klct(ki)c
H
t(ki)

+ Ωk(κsur)

)−1

ht(kl) (6.24)

The optimal transmit beamformers are scaled versions of the optimal re-
ceive weight vectors:
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w̄t(k,l) =
√
δk,lw̄r(k,l) (6.25)

Correspondingly to the method of Gpr and by indicating the power vector of
radar k as ρk ∈ RL

+, the best response strategy for the kth radar can be obtained
from the following equation:

ρ∗k = Ξ−1
k r−k (6.26)

where Ξk ∈ RL×L and is defined as [Ξk]ii = (
|w̄H
t(k,i)

hr(ki)|2

γki
− |w̄H

t(ki)cr(ki)|2) and
[Ξk]ij = −|w̄H

t(ki)hr(kj)|2 − |w̄H
t(ki)cr(kj)|2, for i 6= j. Furthermore, the inter-

radar interference matrix from the mth radar to the kth radar is denoted as
Ξmk ∈ RL×L and [Ξmk]i,j = |w̄H

t(ki)λr(kmj)|2 + |w̄H
t(ki)µr(km)|2. Consequently, by

replacing the interference vector r−k =
∑K

m 6=k Ξmkp
∗
m + 1σ2

n, the best response
strategy can be redefined as:

BRk(ρ−k) = ρ∗k = Ξ−1
k

(
K∑
m6=k

Ξmkρ
∗
m + 1σ2

n

)
,∀k (6.27)

The study on the existence and the uniqueness of the solution is similar to the
one in Section II.

6.5.2 Leader’s Game

From the definition of the Stackelberg game, the leader knows the best response
strategy of the followers. Likewise in the considered model, the surveillance
radar is aware of the existence of the tracking radars, as they belong to the
same organization, and can determine the followers best response strategy.
Hence, the leader’s optimal strategy is extracted from the following optimiza-
tion problem, where the leader’s profit is maximized, while the interference is
constrained under a maximum value to guarantee the efficient performance of
the surveillance radar.

max
κsur

K∑
k=1

L∑
l=1

|wHr(sur)gkl|2κsur (6.28)

s.t.

K∑
k=1

L∑
l=1

|wHr(sur)gkl|2 ≤ Imax

In order to determine the optimal price imposed by the leader to the track-
ing radars and solve the optimization problem (6.28), the learning algorithm
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for the leader is adopted as proposed in [27]. Initially, the price κ∗sur is deter-
mined at the point where the constraint of the optimization problem (6.28) is
met with equality:

K∑
k=1

L∑
l=1

|wHr(sur)gkl|2 = Imax (6.29)

Hence, since the interference is a decreasing function of the price imposed by
the leader, the constraint can be guaranteed when the price charged to the
followers is not less than κ∗sur, i.e. κsur ≥ κ∗sur. In Algorithm 1, it is presumed
that α is the learning rate of the algorithm (α > 0) and κtsur is the price
imposed by the leader at iteration t.

Algorithm 1: Learning algorithm for optimization problem (6.28)
1 Set an initial price κ1

sur = κ∗sur determined at the equality of the
constraint of optimization problem (27);

2 Determine an increment ∆κsur and set the second price value as:
κ2
sur = κ∗sur + ∆κsur

3 Set t = 1
4 while the convergence is not reached do:
5 Obtain the best response strategies for the tracking radars, by playing
the followers’ game at price κtsur

6 Calculate the profit of the leader slead at price κtsur
7 Determine the new price from the following learning equation:
8

κt+2
sur = max

(
1 + α

st+1
lead − stlead
κt+1
sur − κtsur

κt+1
sur , κ

∗
sur

)
(6.30)

9 Set t = t+ 1
10 end while

6.6 Simulation Results

In this section, some simulation results are presented to illustrate the per-
formance of the beamformers and the convergence of the resource allocation
methods for all three different games, which are the beamformer design and
power allocation SNG, the beamformer design and power allocation game with
pricing policy and the Stackelberg game. Thus, a bistatic network of two
tracking MIMO radars is considered, where each one consists of 10 trans-
mit/receive antennas with half-wavelength spacing between adjacent anten-
nas. The referential direction of the second radar as seen from the first radar
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is θrad(1,2) = 72o and θrad(2,1) = −75o conversely. Moreover, two targets are as-
sumed and placed at directions θ11 = 37o, θ12 = 22o as observed from the first
radar and θ21 = −38o, θ22 = −12o using the second radar as reference. Further-
more, strong clutter is presumed as a focal point with directions θcl(1) = 52o

from radar-1 and θcl(2) = −54o using the second radar as reference. The com-
plex amplitudes of the targets and the clutter radar cross sections are equal
to β1 = β2 = βcl = 1. The background noise is considered as AWGN with
variance 0.4 and the correlation factors between the waveforms for different
targets l 6= l′ are fixed to be equal to 0.1 (%k,l,l′ = %k,l,m,l′ = 0.1).

6.6.1 Comparison of the SNG and the coordinated game

with pricing consideration

The first stage of the algorithm refers to the design of the optimal transmit
and receive beamformers. In particular, for the SNG the aforementioned beam-
formers are obtained using convex semidefinite programming methods for the
optimization problem (6.6), whereas for the coordinated game with pricing
policy the duality properties of the optimization problem (6.11) are exploited
and the transmit and receive weight vectors using the solution of the dual
problem (6.15) are found. It is obvious that in both games the beampatterns
are concentrated on the desired target by maintaining very low sidelobe levels
in other directions. Figs. 6.3-6.6 clearly depict the tendency towards social
welfare of the game with pricing consideration, since the beampatterns of the
first player enforce deep nulls at the direction of the other player, minimizing
the interference leakage.

(a) Without pricing consideration. (b) With pricing consideration.

Figure 6.3: Comparison of the transmit beampatterns for
player 1 aiming at target 1 (dB).
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(a) Without pricing consideration. (b) With pricing consideration.

Figure 6.4: Comparison of the transmit beampatterns for
player 1 aiming at target 2 (dB).

(a) Without pricing consideration. (b) With pricing consideration.

Figure 6.5: Comparison of the transmit beampatterns for
player 2 aiming at target 1 (dB).

(a) Without pricing consideration. (b) With pricing consideration.

Figure 6.6: Comparison of the transmit beampatterns for
player 2 aiming at target 2 (dB).
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The resource allocation optimization is considered at the second stage of the
algorithms for both games compared. Before the initialization of the games,
the detection criterion for each player is decided by setting the SINR targets
at 7 for radar 1 (γ11 = γ12 = 7) and 6.5 for radar 2 (γ21 = γ22 = 6.5) for
both games. Moreover, the maximum number of game iterations is set at
T = 40 to study the convergence of the algorithms. Figs. 6.8-6.9 depict the
resource allocation update for each radar aiming each target. Power allocation
using both methods clearly converges to a unique solution. Comparing Fig.
6.8 to Fig. 6.9 the advantages of the coordinated design with pricing are
obvious, since the transmit power of each radar is lower compared to that of the
SNG without pricing consideration. This result shows that due to the reduced
interference among the radars using the coordinated design, as displayed in
Fig.6.7, each player needs less power to attain the SINR target, and hence the
resource allocation for this game is more efficient.

Figure 6.7: Interference among the MIMO tracking radars
with and without pricing consideration.

6.6.2 Stackelberg Game

The surveillance radar is placed at direction θsur(1) = 65o as observed from
the first tracking radar and θsur(2) = −67o using the second radar as reference.
Based on the price announced by the leader, the followers decide their optimal
beamformers and power allocation by following game Gfol. The transmit weight
vectors and the power allocation of the followers, when the price set by the
leader is κsur = 7.4 are depicted in Figs. 6.10-6.11 and Fig. 6.12, respectively.
It is clear that the beampatterns of both the followers are steered away from
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Figure 6.8: Power allocation convergence for the SNG without
pricing consideration.

Figure 6.9: Power allocation convergence for the coordinated
game with pricing policy.

the direction of the leader and hence the interference leakage to the surveillance
radar is minimized.

In order to find the optimal value of the price set by the leader, the opti-
mization problem in (6.28) is solved incorporating the learning algorithm from
Section V. The maximum interference allowed at the surveillance radar is set
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at Imax = 0.0103 and the learning rate at α = 0.2. For this interference thresh-
old, the corresponding price is determined as κsur = 7.4, which is considered as
the initial price for the leader’s game. The convergence of the price set by the
leader is shown in Fig. 6.13. As expected, the algorithm rapidly converges to
the starting price κsur = 7.4, which is the minimum price so that the leader’s
interference constraint is secured.

(a) Target 1 (dB). (b) Target 2 (dB).

Figure 6.10: Transmit beampatterns for player 1 aiming at
targets 1 and 2 respectively (Stackelberg game).

(a) Target 1 (dB). (b) Target 2 (dB).

Figure 6.11: Transmit beampatterns for player 2 aiming at
targets 1 and 2 respectively (Stackelberg game).

6.7 Conclusion

This chapter investigated a game theoretic approach to tackle the problem of
joint beamforming and power allocation in a distributed radar network. At
first, an SNG was studied, without any coordination among the radars/players.
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Figure 6.12: Power allocation convergence for the follower
game when κsur = 7.4.

Figure 6.13: Convergence of the price imposed by the leader.

Thus each player greedily decides its optimal beamformers and power alloca-
tion. Furthermore, a pricing mechanism was incorporated to minimize the
inter-radar interference and to improve the social welfare of the network. The
simulation results confirmed that this partially coordinated game provides a
more Paretto-efficient Nash equilibrium. Additionally, a Stackelberg game was
formulated by introducing a surveillance radar within the network and stud-
ied the convergence of both the followers’ and the leader’s games. Finally,
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the proofs for the existence and the uniqueness of the solution for both the
partially coordinated and the noncooperative games have also been presented.
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Chapter 7

Summary, Conclusion and Future
Work

In this chapter, the novel contributions of this thesis and the conclusions that
can be drawn from them are summarised. Subsequently, a discussion on pos-
sible future work is also presented.

7.1 Summary and Conclusions

The research focus of this thesis has been on developing, analysing and vali-
dating signal processing algorithms, utilizing in particular convex optimization
and game theoretic techniques in order to address various issues in radar net-
works, such as distributed power allocation, optimal beamforming, jammer
avoidance and unceratinty handling. The improved beamforming capabilities
of a two-dimensional Phased-MIMO radar with fully overlapped subarrays have
been presented. It was shown that this hybrid model combines the benefits
of both the phased array radar scheme and the MIMO only radar technology.
Furthermore, noncooperative game theoretic techniques were applied to tackle
power allocation problems in distributed radar networks and jamming scenar-
ios, along with the studies on the existence and the uniqueness of the solution
in each problem. Moreover, a Bayesian game theoretic study was performed to
handle channel uncertainty in a multistatic radar system. Partially coordinat-
ing game theoretic techniques and Stackelberg games have also been applied
to analyse the scenario of a distributed MIMO radar network with multiple
targets. Analysing each chapter in more detail:

Chapter 1 introduced the basic principles of radar systems. Furthermore, a
definition on what is a MIMO radar was given and the most crucial challenges
in this technology were analysed.

In Chapter 2, a literature review on MIMO radar beamforming and game
theory in wireless and radar networks was demonstrated. In particular, the
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virtual array concept and target estimation techniques were analysed. More-
over, the basic adaptive and conventional beamforming techniques for both
the transmit and receive array were presented. An introduction in noncoop-
erative, Bayesian and Stackelberg game theoretic techniques in wireless and
radar systems completed Chapter 2.

The first contributing chapter "2D Phased-MIMO Radar" presents a novel
two-dimensional fully overlapped MIMO transmit and receive arrays subaper-
turing technique. Specifically, the transmit, waveform diversity and overall
transmit-receive beampatterns are derived for the 2D Phased-MIMO model
and compared with the phased-array radar scheme and the MIMO radar model.
The simulation results confirmed that the system beampatterns approximate
efficiently the desired sector of space with high accuracy, restricting the side-
lobe levels at low amplitude. Furthermore, there are substantial improvements
of the overall transmit-receive beampattern of the proposed model as compared
to the phased-array and the conventional MIMO scheme. In particular, it was
demonstrated that the 2D Phased-MIMO regime combines the transmit coher-
ent processing gain of the phased-array radar and the waveform diversity of the
MIMO scheme to produce a more efficient and accurate overall beampattern.
This superiority is highlighted using both conventional (matched-filtering) and
adaptive (convex optimization, MVDR) beamforming techniques.

In Chapter 4, a game theoretic power allocation scheme for a distributed
MIMO radar system is proposed. A novel and rigorous Nash equilibrium anal-
ysis is also presented, by defining a GNG and utilizing convex optimization
techniques and duality properties of the system, concluding with the proof of
the existence and the uniqueness of the solution. During this study, impor-
tant properties of the system’s resource allocation were also derived. More
specifically, it was proved that the number of active radars in a cluster that
actually transmit signals is exactly the same as the number of radars in the
same cluster that satisfy the detection criterion with equality. In addition, the
number of active radars and the optimal strategy of a cluster is dependent
only upon the channel gains and the target SINR and is totally independent
of the other players’ power allocation. This contribution supports the decen-
tralized and distributed nature of the system. Finally, the simulation results
confirm the extended mathematical analysis of the convergence and the study
of the existence and uniqueness of the Nash equilibrium. Later in the chapter,
a noncooperative power allocation game between a radar system and multiple
jammers was investigated and a proof was presented on the uniqueness of the
solution. Furthermore, the simulations highlighted the comparison between
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the case when the radars using a hypothesis testing to identify the interfering
jammers and the case when the radars attempt to detect the target on the ba-
sis of proximity (i.e. distance), even if it is an interfering jammer. Finally, the
simulation results confirm that the game with hypothesis testing provides a
more Paretto-efficient Nash equilibrium than the game without jammer identi-
fication, as the radars utilize less resources to achieve the same SINR criterion.

Chapter 5 investigated a Bayesian game theoretic SINR maximization and
resource allocation technique within a distributed radar network, where uncer-
tainty regarding the channel gains was introduced. Each radar is considered
to have private information only about its own channel gain, whereas only
the distribution of the remaining radars’ channel gains is common knowledge.
A proof of the existence and uniqueness of the Bayesian Nash equilibrium
was also highlighted. The simulation results validated the convergence to the
unique solution, regardless the initial power allocation strategy of the players.
Moreover, it was shown that the higher the confidence of a player regarding a
better channel gain associated with the remaining players the higher the SINR
and the transmission power of this player. Also, the importance of the prior
belief of player was highlighted to the outcome of the game.

The final contributing chapter proposed a game theoretic approach to tackle
the problem of joint beamforming and power allocation in a distributed radar
network. Initially, an SNG without any coordination among the players was
designed. Hence, each player egotistically decides its optimal beamforming and
resource allocation strategy, without considering the interference it imposes
on the other players. This is however, not desirable, as it leads to socially
unfair solutions, that are not close to Paretto optimality. Therefore, a pricing
mechanism was incorporated to minimize the inter-radar interference and to
improve the social welfare of the network. The simulation results confirmed
that this partially coordinated game provides a more Paretto-efficient Nash
equilibrium. Additionally, a Stackelberg game was formulated in a hybrid
MIMO radar network, by introducing a surveillance radar within the network
and studying the convergence of both the followers’ and the leader’s games.
Finally, extended analysis for the existence and the uniqueness of the solution
for both the partially coordinated and the noncooperative games has also been
presented.

In summary, in this thesis initially a new 2D subaperturing method for
MIMO arrays and the corresponding beamforming techniques were proposed.
Furthermore, several game theoretic scenarios for optimal beamforming and
resource allocation strategies have been investigated, within the context of
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distributed MIMO radar networks. Each game theoretic technique was fol-
lowed by the proof of the existence and uniqueness of the Nash equilibrium,
that guarantees convergence to a stable, unique state solution. Finally, game
theory was also applied in the cases of jammers attacking a multistatic radar
system and in the case when there is incomplete information about the channel
gain, followed by the equilibrium existence and uniqueness analysis.

7.2 Future Work

The studies presented in this thesis can be extended towards several directions.
First of all, multiple source uncertainty could be introduced in a radar system.
In particular, uncertainty could originate from the clutter channel gain distri-
bution, that could be considered Weibull or K-distribution [124]. Additionally,
uncertainty can be introduced in a scenario where a radar network is attacked
by a jammer and the type of the jammer is not common knowledge. The tar-
get’s channel gain imperfect information could be addressed if Swerling target
models are used to derive each target’s RCS. Bayesian game theory could han-
dle multiple source uncertainty and this is a challenging problem that should
be studied in the future.

Another property of MIMO radar systems that is not yet fully exploited
is the control of the sidelobe levels when designing the transmit beamformers.
The sidelobe sector could provide the benefit of combining the radar operation
with wireless communication between sensors of the same organisation [125].
More specifically, radar-comms systems could secure the detection of the target
by designing an accurate transmit beampattern, where the mainlobe points at
the direction of the desired target and simultaneously transmit encrypted data
to trustworthy receivers by exploiting the sidelobe sector to the direction of
the desired receivers and the waveform diversity of a MIMO system.
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Proof of Claim 1

In order to prove the optimal beampatterns independence of the inter-radar
interference, the dual problem of the optimization problem (6.6) is investigated.
The Lagrangian associated with the aforementioned problem is given as:

L(Wt(k),λk) =
L∑
l=1

‖wt(k,l)‖2 +
L∑
l=1

λkl

( L∑
j 6=l

|wH
t(k,l)hr(kj)|2

+
L∑
i=1

|wH
t(k,l)cr(ki)|2 + r−kl −

1

γkl
|wH

t(k,l)hr(kl)|2
)

where λk = [λk1, . . . , λkL]T is the L × 1 vector of the Lagrangian multipliers
associated with the SINR inequality constraints of the problem in (6.11). The
Lagrangian can be reformulated as:

L(Wt(k),λk) =
L∑
l=1

λklr−kl +
L∑
l=1

wH
t(k,l)

(
I− λkl

γkl
hr(ki)h

H
r(ki)

+
L∑
j 6=l

λkjhr(kj)h
H
r(kj) +

L∑
i=1

λklcr(ki)c
H
r(ki)

)
wt(k,l)

Subsequently, the Lagrange dual function is written as:

gk(λk) = inf
Wt(k)

L(Wt(k),λk)

It is clear that I− λkl
γkl

hr(ki)h
H
r(ki)+

∑L
j 6=l λkjhr(kj)h

H
r(kj)+

∑L
i=1 λklcr(ki)c

H
r(ki) must

be positive semi-definite, for the dual problem to be feasible. Hence, the dual
problem associated with (6.6) can be designed as:

max
λk1,...,λkL

L∑
l=1

λklr−kl (A.1)
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s.t.
L∑
i=1

λklhr(ki)h
H
r(ki) +

L∑
i=1

λklcr(ki)c
H
r(ki) + I

� λkl
γkl

hr(kl)h
H
r(kl), ∀l

Following [118] and [32], the dual problem (A.1) can be solved through the
receive beamforming optimization problem below:

min
λk1,...,λkL

wr(k,1),...,wr(k,L)

L∑
l=1

λklr−kl (A.2)

s.t.
λkl|wH

r(k,l)ht(kl)|2
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j 6=l

λkj|wH
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L∑
i=1

|wH
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≥ γkl,∀l

Since the constraints are satisfied with equality at optimality, the optimal
Lagrangian multipliers can be derived by applying the fixed point iteration
method as shown below [126]:

λ
(n+1)
kl =

γkl
1 + γkl

× 1

hHt(kl)

(∑L
i=1 λ

n
klht(ki)h

H
t(ki) +

∑L
i=1 λ

n
klct(ki)c

H
t(ki) + I

)−1

ht(kl)

(A.3)
It is also shown in [126] that the fixed point iteration function in (A.3)

belongs to the framework of standard functions. Thus, the aforementioned it-
eration process is guaranteed to converge to a unique solution, if the respective
optimization problem is feasible.

The optimal receive weight vector is the minimummean-square error (MMSE)
receiver, obtained from the following equation:

wr(k,l) =

=

(
L∑
i=1

λklht(ki)h
H
t(ki) +

L∑
i=1

λklct(ki)c
H
t(ki) + I

)−1

ht(kl) (A.4)

Following [123], the optimal transmit beamformer can be obtained as a
scaled version of the receive weight vector wr(k,l). Thus, it is clear that the
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optimal transmit and receive beampatterns are independent of the inter-radar
plus noise vector r−k.
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