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ABSTRACT 

The existing approaches to ruggedizing inherently fragile and sensitive critical components of 

electronic equipment such as printed circuit boards (PCB) for use in hostile industrial and military 

environment are either insufficient or quite expensive. 

This Thesis addresses a novel approach towards ruggedizing commercially-off-the-shelf PCBs 

using a miniature wide-band dynamic absorber aimed at essential suppressing of the resonant 

responses of the original structure. The development of an optimisation technique is based on the 

dynamic properties of the original system, where the mass, stiffness and damping properties of the 

dynamic absorber are chosen in such a fashion to minimise the level of vibration experienced by the 

system. 

The optimisation procedure relies on the analytical solution and computational resources. The 

results of the proposed single-mode and full-mode approximation are proven experimentally under 

random vibration. Further study of the dynamic absorber is achieved by considering the system 

under swept-sine and shock excitations. This approach eventually focuses on the universal 

performance of the optimal dynamic absorber. 

The unprotected PCB shows a power spectrum density of relative deflection of 312 ftm RMS When 

exposed to a typical excitation level of 14 g RMS. The analytical testing shows that a value of 78 

ftm RMS is theoretically achievable, while experimental work is achieved a value of 79 ftm RMS. 

The same optimal absorber has also achieved the reduction of the resonant peak value from 4617 

ftm down to 190 ftm for the relative deflection under I 0 g peak swept-sine excitation while the time 

settling under half-sine shock (200 g peak at 3 ms) is improved by 90% which are close to 

theoretical prediction. In addition, the optimal design dynamic absorber that designed for the critical 

area is also suppressed almost critical resonances of the entire PCB. This work is also backed up by 

comparison between analytical solutions and experimental results under random vibration. 

Further study of the dynamic absorber is achieved by using Matlab/ Simulink to model the system 

in time domain. This approach focuses on the improvement in the endurance life and reliability of 

the PCB under random vibration. 

In this Thesis, the author considers the performance delivered by the linear and nonlinear 

vibroimpact wide-band dynamic absorbers or impact damper under typical wide-band random, 

swept-sine and shock excitation. The attractions of these simple devices and computer resources 

have brought in the attention of additional work. The effective, predictability, robustness and 

sensitivity of impact damper are discussed through the illustration of numerical simulation 

performed by Matlab/Simulink. The interesting results are based on realistic model of visco-elastic 

collision. A similar performance is achieved in terms of overall relative deflection, peak deflection 
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and time settling in the corresponding of random vibration, swept-sine and shock excitation, 

respectively as compared to the perfonnance of dynamic absorber 

The results of the analytical study are backed up by the full-scale experiment. The experimental 

work is carried out with the use of a rattling ball bearing to illustrate the universal perfonnance and 

simplicity of the impact damper. A close correlation between numerically simulated predictions and 

experimental results increases the validity and accuracy of modelling of an actual system. As it is 

shown, the perfonnance of impact damper is almost similar to the perfonnance of the optimal 

dynamic absorber. This indicates that the lowest cost solution can also achieve the same 

perfonnance as compared to linear dynamic absorber. 
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Chapter 1 

1.0 Introduction 

Modem integrated military systems, which are used for reconnaissance, targeting, navigating, 

control and communication, rely widely on electronic equipment containing delicate internal 

components such as printed circuit boards (PCBs). This equipment is inherently fragile and 

sensitive to harsh enviromnental conditions to which military applications are normally 

exposed. 

Designing embedded "military" electronics presents a significant technical challenge. An 

increase in the reliability of the electronics in a demanding enviromnent of the global 

battlefield, where elevated levels of stresses are developed due to shock and vibration, requires 

special design and packaging approaches. 

The typical price of the bespoke hardware designed to military specs is legendary and military 

budgets were traditionally equal to the need. Since the end of the Cold War, military forces 

have been undergoing significant changes while downsizing. At the same time, the reliability 

of the relatively cheap commercially graded electronics has greatly improved. At this time 

military contractors realised that the commercial-off-the-shelf (COTS) electronics may 

potentially be an effective substitute to the expensive and quick to out date military hardware. 

This approach, which allows not only for cost saving manufacturing and maintaining, but also 

for rapid access to advanced technologies and faster time to market, was initiated in the mid 

nineties by the then US Secretary of Defence, William Perry [1]. The main objective of the 

COTS initiative was to create a wide market of low-cost commercially graded electronics 

capable of withstanding the demand of military environments. 

It is now becoming clear that the COTS initiative is achieving the above objectives. The 

extensive and dynamic market of COTS electronics allows the military subcontractor the 

widest choice of modem and reliable electronic hardware. 

Nevertheless, significant challenges still remain. Commercially graded hardware typically 

shows a shorter life as compared with "made-for-military" components and often cannot stand 

the increasing rigors of military life. When reliability becomes a critical factor, the industry 

moves back towards designs based on the strict military guidelines. 

Plug-in PCBs are typically plate-like structures, which are made of Epoxy Fibreglass, and 

carry soldered microchips along with lumped components which are interconnected using lead 

or copper wiring. The PCBs are supported by edge-guides and connectors from an electronic 

enclosure. 
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The dynamic properties of the commercially graded, unframed, PCBs are such, that the 

fundamental natural frequency and loss factor are inherently low [2]. During operation, PCBs 

encounter exposure to harsh environmental conditions such as shock and wide-band random 

vibration, the spectrum of which contains essential frequency components up to 2000 Hz 

[3,4]. As a result, the excessive narrow-band quasi-resonant dynamic response is built-up and 

resulting accumulated fatigue leads to the failure of the above wiring and soldered joints. 

Today vendors develop their own approaches to ruggedizing, do their own screening and even 

manufacturing. At the bottom line, developing the effective, miniature and cheap product 

means that shock and vibration control of electronic hardware has became a critical issue for 

the commercial and technical success of the COTS manufacturer. 

To improve the reliability of PCBs, the designers are looking now for different methods of 

protecting the PCBs, such as: the vibration isolation of the entire electronic box and 

ruggedizing on the PCB level. 

This Thesis analyses the response of a PCB held by screws at the sides and external wide-band 

random vibration transmitted directly from the base. Resulting from harsh environmental 

conditions, a need for a vibration protection system has been addressed. Sometimes the 

endurance of the COTS PCB is lower than required, thus slight modification is practised in 

order to protect the sensitive internal components in the electronic box. Currently, there are 

several existing methods of protection. However, this Thesis introduces a new concept for a 

"dynamic ruggedizing" which is based on the principle of wide-band dynamic absorber. This 

is applied to the wide-band suppressing of the dynamic response in terms of overall value of 

the relative deflection for PCB mounted inside the electronic box. In addition, this dynamic 

absorber is cheap, lightweight and small in size 

1.1 Vibration isolation 

To get around this problem, designers often use standard shock and vibration products such as 

wire rope isolators, elastomeric mounts, and hydraulic dampers. The single and multiple stage 

vibration isolation are the most effective way of reducing the transmission of vibratory energy 

to the PCBs. 

This method is based on the placement of the compliant member (vibration isolator) between 

the vibrating structure and electronic box [4,5,6, see also examples at 

http://www.rtdusa.com/images/movie/IDAN VIB.PDF]. The properties of such a vibration 

isolator have to be chosen to minimise the relative deflection and absolute acceleration of the 

plug-in PCBs while maintaining the peak deflection of the electronic box within allowed 

tolerances under the worst combination of G-loads and wide-band random vibration [5,6]. 
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However, if the above tolerances are tight, this method calls for a stiff isolator and is only 

applicable for the electronic box containing PCBs, the resonant frequencies of which are 

relatively high (the 2-octave rule is explained in [2], [5] and [7]). These are framed PCBs with 

the resonant frequencies well above 200 Hz. 

1.2 Damping treatment 

The PCBs inside the electronic box might be ruggedized using some kind of resin foam, which 

is applied to fill all the interior of the box and even tiny gaps between PCBs. This method is 

extremely efficient for vibration protection of critical electronic equipment; however, this 

complicates heat sinking and replacement. 

The reliability of the PCB may also be increased by damping being added at the board level 

[7,8] using, say, dampening strips. In spite of the apparent simplicity of this method, the 

attainable performance is not very impressive. The explanation of this surprising fact is 

simple. The overall RMS response of the system under random wide-band excitation is 

reciprocal to the loss factor of the system [9]. The dampening strips operate effectively only if 

their bending stiffness is comparable with that of the PCB. That is why the dampening strips 

in the form of a sandwiched structure were proposed [8,9]. Taking into account the mass 

added by such a dampening strip, the effective loss factor of the combined system cannot be 

altered significantly. Extra problems arise due to the outgassing and ageing of the plastic 

components along with bonding properties at elevated temperatures. This explains why 

dampening strips are not currently widely used. 

1.3 Stiffening frame 

To improve stability in severe shock and vibration conditions, board vendors use a variety of 

combinations of stiffening of the PCB by using ribs and frames as used in old-fashion military 

designs. It is aimed at increasing the resonant frequency of the PCB to above the excitation 

range. The obvious pitfall of this approach is the essential increase in the overall weight, 

dimension and reduction of the useful surface available for the placing of electronic 

components and wiring. 

It is a widespread opinion among the manufacturers of the modern electronic hardware that 

making the PCB stiffer could reduce the level of stresses involved. This opinion is based on 

the fact that the stiffening of the PCB leads to a decreased level of deflection [ 11]. 

Unfortunately, this conclusion is not applicable to stresses. Moreover, stiffening of the PCB 

leads to a decrease of the loss factor (increase of Q-factor). Since it is impossible to 

manufacture the PCB with the resonant frequency outside the excitation range, the increase of 
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the dynamic quasi-resonant response and stress level is most likely. In addition to this, the 

increased level of acceleration experienced by the PCB with increased Q-factor leads to the 

increased level of acceleration forces applied to the lumped components and fatigue of the 

soldered joints [7]. 

A novel solution - Ruggedizer was offered recently by the Thomson-CSF, CETIA (see 

http://www.cetia.com/product/whitepapers/prod bds whitepap ruggedizer 000 Oe.pdj) as a 

standard optional accessory to their commercially graded PCBs. The Ruggedizer is a board 

level heat sink designed to add mechanical stiffening and protection. As the Ruggedizer 

covers the entire top face of the board, the vibration and shock characteristics of the latter are 

drastically improved. The "sandwich" structure of the Ruggedizer-equipped PCB reduces the 

effects of harsh shock and vibration by eliminating the most dangerous low-frequency 

resonances and, thus, reduces the risks of physical-failure fatigue. However, such a design 

eventually leads to high-cost mechanical manufacturing, long re-design time, added weight, 

increased dimensions and price. 

1.4 Bumpered vibration control 

Nonlinear vibration control has been introduced in [2] to protect PCBs in extreme 

environmental condition with a reasonable cost. This method relies on using snubbers, 

sometime called bumpers [20], which are small devices that can be attached to adjacent PCBs 

so they hit each other in dynamic conditions. According to [2], there are two types which can 

be employed depending on the natural frequency of PCB. Soft rubber snubbers work best for 

PCBs with natural frequencies below 50 Hz; PCBs with higher natural frequencies above I 00 

Hz must use more rigid materials for effective reduction of the PCBs relative motion. The best 

location for snubbers or bumpers is close to the centres of the various PCBs, where the 

maximum displacements are expected. 

However, the analytical solution of such a nonlinear vibration problem is not discussed and 

experimental descriptions are not available. To our knowledge, the dynamic behaviour of such 

an arrangement may be classified as strongly nonlinear or vibroimpact system (20]. The best 

performance of the proposed solution strongly depends on clearance between bumpers and 

their dynamic properties. The dynamic properties of the PCBs and types of excitation, and G

loads also have great influence on optimal performance. In modem literature, a closed form 

solution for this similar type of vibration control has not been obtained. In a general sense, 

under dynamic conditions, this vibration control is only effective when both PCBs are moving 

out of phase to each other so that "head on" collision takes place. In a worse situation, both 

PCBs are moving in the same phase and have the same dynamic properties then this method 



does not provide any mean of vibration control. In addition, soft bumpers rely on the use of 

elastomeric or rubber. These materials have a poor history of maintaining their mechanical 

properties in extreme temperature conditions which increase the risk of noise level and 

nonlinear resonant phenomena. 

1.5 Linear dynamic absorber 

La Malfa et a! [12] recently considered an application of the tuned dynamic absorber for 

vibration control of PCB under constant frequency excitation. Design of such a dynamic 

absorber has a long history. As a practical application of the 2DOF system, it may consider 

here the spring-mass system. By tuning the system to the frequency of the excitation force, an 

undamped absorber can reduce the unwanted deflections to zero. 

However, for military application, wide-band random, dwell-sine vibration and shock are of 

primary importance. In many installations for military electronic equipment, random vibration 

tests have became very commonplace and primary military specifications for the testing of this 

type of equipment [3] have placed heavy emphasis on random vibration, tailored to the actual 

application. 

Under such an excitation, the above undamped dynamic absorber can make matters worse due 

to the excitation of resonant responses and even cause damage, which would not otherwise 

occur. Due to the excitation being experienced by the PCB being harsh random vibration the 

absorber has to protect against a wide-band excitation. This can be achieved by adding 

damping to the absorber. With damping, the absorber can no longer completely absorb the 

deflections at particular frequencies but with careful optimisation they can be greatly reduced. 

In this study, we are making an attempt to accommodate the idea of using a wide-band 

damped dynamic absorber for controlling the dynamic response of lightly damped and 

extremely responsive PCB under the wide-band random vibration. The proposed approach 

focuses primarily on the design of an optimal dynamic absorber tailored for avionics military 

specification. This new design concept will achieve higher reliability and fatigue life, greater 

shock and vibration resistance, lower cost and maintenance. 

Generally speaking, a damped dynamic absorber is a secondary sub-system consisting of a 

mass attached at the appropriate point of the structure under treatment using a visco-elastic 

member. The inertia and visco-elastic properties of dynamic absorber have to be carefully 

"tuned" for the best performance in minimising the dynamic response of the modified system 

in the specified environment. The market for these devices is large and covers a wide range of 

applications, from spacebome structure to sports equipment and from heavy construction to 

transport industries. These devices show their superiority by means of controlling either 
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torsional or rectilinear vibratory motion. Their size varies from as large as an engine flywheel 

to small size like as a fingertip, depending on natural existence of the base structure. 

Several authors have investigated different strategies for choosing the optimal parameters of 

dynamic absorber using either time domain or frequency domain performance indices. The 

first attempt to optimise the dynamic absorber for suppression of the undamped primary 

single-degree-freedom system (SDOF) structure under force harmonic excitation with 

frequency which was varied in a wide range was carried out by Den Hartog and Ormondroyd 

[13]. Warburton [14] has presented an expression for optimum absorber parameters for 

undamped SDOF primary systems, considering harmonic and white noise random force 

excitations. The effect of damping in the primary system on optimum absorber parameters has 

been also investigated by Wang and Cheng [15]. They have compared four optimisation 

methods (the equal peak method, the minimal variance method, the energy method and the 

area ratio method). 

Korenev [16] has addressed the problem of optimal design of dynamic absorber as applied to 

the vibration control of a SDOF system under the force and base-induced excitation. 

Analytical solutions were obtained for a specific type of excitation, e.g. white noise. 

When applied to the SDOF system with primary damping to the original system, Nishimura et 

al [17] addressed the optimisation of a dynamic absorber for a multiple-degree-of-freedom 

(MDOF) system subjected to random force input with a dominant frequency, using an 

optimisation method based on the optimal control theory. In reference [18], Kitis et al. 

proposed an efficient optimal design algorithm for minimising the vibratory response of 

MDOF systems under sinusoidal loading over several excitation frequencies. The method 

explores mass, stiffness and damping matrices provided by an analytical model and 

incorporates an effective time-saving analysis approach to compute the cost function and its 

derivatives. More recently, a modal theory for visco-elastic dynamic absorber was developed 

and associated to different optimisation techniques for the optimal over a wide frequency band 

[19]. 

This study will address the application of wide-band dynamic absorber to the vibration control 

of the PCB under typical random vibration, dwell-sine and shock test per MIL-STD [3]. Since 

the purpose of the dynamic absorber is to make the PCB more rugged using the dynamic 

effect, we introduce here the term dynamic ruggedizer which reflects the objective and method 

of its achievement. 

In this work, in the first approximation, we deal with the single-mode model of PCB, as 

proposed by Steinberg [2]. The improved solution is then obtained using full-mode model of 



-,-

PCB, where the dynamic properties of the latter are given through the experimentally 

measured complex frequency response functions (FRFs), namely local receptance and 

universal absolute transmissibility. 

In general, the analysis of an uniform plate-wise structure, if in the right condition, a single 

dynamic absorber has the capability of suppressing not only the critical resonant frequency 

where it is tuned but almost all neighbouring resonances if it is not placed at a node point. The 

influence of damped dynamic absorber, as long as it does not mounted in a node point, is an 

extremely powerful tool of vibration suppression. As well as suppressing all resonant 

responses where it is attached it also suppresses almost all resonant frequencies of other 

locations of the base structure without disturbing their anti-resonances even if it is a single 

attachment point. These positive features are explained why the damped dynamic absorber is a 

very popular device in the vibration control category for complex dynamic structures. 

However, making the right choice of dynamic absorber and its desired location are critical for 

this vibration control strategy. Due to the large amount of literature and algorithms currently 

available for optimising parameters of dynamic absorber, it has been rather difficult to 

determine the exact need for each method and which method is best. There is no ideal solution 

and the common methods are only approximations. Also, many methods are very similar to 

each other and in some cases, simply extensions of a few basic techniques. Selecting a "right" 

method for optimising the response of a COTS PCB is of primary concern of this study. Also, 

most of the above references, the FRFs of the MDOF-primary system are directly formulated 

from traditional methods and the vibratory motion is caused by force excitation in which 

inapplicable for this study. 

Additionally, PCBs are far more complex than the simple plate model, they can be very 

flexible or can be stiffened in multiple ways, and components can significantly affect the 

stiffness. Moreover, stiffeners, screws, standoffs, board cutouts, or other components can act 

as "stress risers". Under random vibration, stresses from multiple mode shapes combine. All 

these complexities affect component life, thus, there can be huge errors in predicting life 

capabilities using only the traditional method. 

To overcome these problems, in the analysis of the full-mode model ofPCB with base support 

motion, as here, we attempt to build a new radical optimising technique with the use of 

computational resources and experimentally measured FRFs of the original PCB design. The 

optimal design of such a damped dynamic system is independently investigated in different 

vibration environments, with the aim of minimising the relative deflection of the PCB. 
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1.6 Impact dynamic absorber 

An interesting approach to the nonlinear vibration control of a linear lightly damped SDOF 

system to the harmonically excited primary structure was initially proposed by Ormondroyd 

and Den Hartog [13). It is the simplest case when both the primary and the secondary sub

structures are lightly damped SDOF systems. The frequency response of such a combined 

two-degree-of-freedom (2DOF) system display two sharp resonant peaks and one anti

resonant notch that is located exactly at the natural frequency of the secondary sub-structure. 

The appearance of such a notch is used for the essential suppression of vibration of the 

primary system caused by harmonic force with a constant frequency. However, some 

variation, for instance, in speed of rotating machinery it is unavoidable. In addition, the first 

resonance frequency always has to be traversed before a steady speed of operation is achieved 

(at the tuning frequency) during the start-up and slow-down. Running through the first 

resonance frequency will inevitability induce large transient vibration. In order to avoid 

resonance peaks in the system containing such a dynamic absorber, the authors have proposed 

to limit the relative motion of the absorber to the primary structure by means of elastic stops. 

They also suggested designing the sway space of the dynamic absorber in such a marmer as to 

provide impactless linear motions for both masses in the desired vicinity of the anti-resonant 

frequency. Such a design allows for maintaining the desired feature of linear dynamic 

suppression of harmonic vibration. As soon as the relative motion between the dynamic 

absorber and the primary structure exceeds the pre-deigned clearance the stops come in to 

play, thus limiting the relative motion of the absorber. 

Since then, numerous researchers [22-27] have been attracted by this elegant engineering 

solution and have studied such an approach numerically in a simpler version, it is known as 

impact damper. In this class of dynamic absorbers, the secondary mass is unsupported by 

either a spring or a damper; it is constrained to move unidirectional in a container attached to 

the primary vibrating system, the ends of the container limiting its movement. When the 

primary system is vibrating the secondary mass moves back and forth impacting, alternatively, 

either end of the container. The amplitude of vibration of the main system is reduced by the 

mechanism of the transfer of momentum between the primary and the secondary system and 

by the conversion of mechanical energy into noise and heat. Early publications described the 

damper as an acceleration damper, because the damping force is proportional to the absolute 

acceleration of the secondary mass. But since energy is also converted into noise and heat in 

this class of damper, a more accurate description is impact dynamic absorber. 

There is a strong opinion [22-26) that the application of impact dynamic absorber is more 

superior as compared to a conventional damped dynamic absorber, in terms of performance, 



design, reliability and immune to environmental condition. This is despite the fact that a 

closed form of analytical solution has not yet been established and no comparison has been 

made. This conclusion may not be true for different vibration environments. In reality, 

designing for optimal performance using impact dynamic absorber will take a labour task [27], 

however, the optimal parameters have not been shown. It should be noted that although an 

impact dynamic absorber may improve the performance of primary structure under certain 

specified conditions, in general, they will degrade system performance under other operation 

conditions, such as a short duration shock. Under this condition, the impact dynamic absorber 

can make matters worse for other components even cause damage, which would not otherwise 

happen. 

The first publication describing a practical application of the impact dynamic absorber was 

that by Paget in 1937 [28] referring to the damper used to reduce turbine blade vibration. A 

similar application was described by Hahn [29] for damping the vibration of boring quills. 

Recently, impact dynamic absorber is used to control lightly damped structure such as street 

lampposts and suspended pipeline. 

In spite of their success, there is little known about the response of these absorbers to random 

excitation and shock. Probably the main reason for the lack of analytical studies is that this 

problem does not lend itself to treatment by the standard analytical techniques for determining 

the response of nonlinear systems to random excitation. The difficulty lies in the fact that the 

systems as a highly nonlinear dissipative 2DOF system in which the nonlinearity involves the 

relative displacement as well as the relative velocity of the two masses. 

Although the impact dynamic absorber has been long used in consumer products. The lack of 

demonstrated performance and relevant structure and the inability to predict behaviour has 

limited the application of impact dynamic absorber solutions to aerospace and other 

technology intensive application. Therefore in this study, we directly use the numerical 

solution based on the realistic model of non-momentary visco-elastic impact suggested [20]. A 

design of view of such an impact dynamic absorber is based on its universal performance as 

compared to its damped dynamic absorber subjected to different external excitations. This 

includes its optimal performance, sensitivity and robustness of the full-mode model of PCB 

despite its natural complexity. 

1.7 Objectives 

According to the above, the main aim of this project is to develop the theory and design a 

linear wide-band dynamic absorber for dynamic ruggedizing of PCB under wide-band 

vibration. All analytical and numerical modelling were completed prior to the experimental 
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testing with the goal of minimising the overall relative response of the critical point in PCB 

under the influence of damped dynamic absorber. This dynamic absorber was optimised based 

upon the dynamic properties of a particular PCB operating under wide-band vibration 

excitation. As an additional work of this project, the numerical solution of impact damper was 

developed to see how much difference there was in terms of optimal performance as compared 

to damped dynamic absorber. The appropriate experimental work was carried out to support 

its numerical solution. 

The complete route to completion of the project developed into the following series of steps: 

Stepl 

The experimental rig was set-up to identify the dynamic properties of the chosen PCB under 

actual working condition. All the necessary information was obtained and presented in terms 

of modal parameters and frequency response functions. 

Step 2 

The PCB carried the damped dynamic absorber which was modelled as a 2DOF system in a 

simplified approach. Mathematical modelling of the system was built in the frequency 

domain, using MS®Excel Solver function to optimise the response under random and swept

sine vibration to give the minimum deflection of the PCB. The system was modelled in the 

time domain using Matlab/Simulink to analyse the vibration fatigue and to check the shock 

response. 

Step 3 

To improve the result of designing an optimal damped dynamic absorber, the analytical 

solution of the full-mode model PCB was set-up with the use of experimentally obtained FRFs 

from step I and optimisation technique from step 2. The curve-fitting technique was used for 

extracting all modal parameters of the PCB for numerical simulation purposes. 

Step 4 

The numerical solution for impact dynamic absorber was developed with the main concern of 

optimal performance under random and swept-sine vibration for the single-mode and full

mode model ofPCB as compared to the damped dynamic absorber. 

Step 5 

Experimental validation was carried out for both types of dynamic absorber under Mil-STD-

81 0 test to support its analytical and numerical solution. The test rig from Step I was tailored 

to install the dynamic absorber. Prior to that, there was various experimental testing to obtain 

the required universal absolute transmissibility of the damped dynamic absorber. The 



prediction and experimental results were compared to obtain a suitable dynamic absorber. Due 

to space constraint in the electronic box, there was a stage for designing and manufacturing a 

miniature dynamic absorber. This dynamic absorber was able to perform well in a small sway 

space. 
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Chapter 2 

2.0 Dynamic properties of a PCB 

There are several methods that can be implemented to determine the dynamic characteristics 

of a PCB. One of the most popular procedures involves random vibration testing. With 

random vibration testing one is able to measure the response of a PCB to a wide-band of 

frequency excitations. The vibration test is fast and convenient. Once the frequency response 

is measured, the data can be further processed to build a mathematical model in terms of 

modal parameters. The choice of optimal dynamic absorber depends strongly on dynamic 

properties of PCB. 

2.1 PCB and mounting 

The PCB is typically constructed of a series of laminated, tracking and preimpregnated 

(insulating layers) in a vertical stack. Within the stack is often a series of drilled holes, plated 

forming vias (interconnecting between layers) between tracking or plated through holes 

between surfaces. Furthermore the components on the PCB are mounted through holes and 

soldered on the adjacent sides. This type of mounting has better mechanical properties 

compared to surface mounted component PCB. 

~ 0.6"(15mm)Spi!Oers{4pid<;<s) 

Figure 2.0. Typical PCB mounting (image adopted from http://www.rtcgroup.com/cotsjournal) 
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The manner in which the PCB is supported in the electronic box can be an important factor in 

determining how the boards will respond to vibration and shock. During vibration, high G

load or resonant phenomena will cause the PCB to bend back and forth in the vertical axis. 

This would eventually lead to fatigue and failure of the components due to dynamic stress that 

are developed because of the relative motion. In more severe applications, board edge guides 

are used to reduce rotation and translational forces and in contrast, increasing the natural 

frequency and loss factor. 

The electronic industry manufactures a wide variety of PCB with different sizes and shapes 

along with many different mounting arrangements. A simple PCB with typical electronic 

component parts such as integrated circuits, resistors, capacitors and flat-pack chips was 

chosen to demonstrate the principle of vibration protection system. There are various ways of 

mounting PCB, however, the common practice in military applications is to mount a PCB 

using pillars and screws allowing for high-pressure interfaces. This would allow the PCB to 

develop an excessive vibration at its fundamental resonant frequency (2]. 

2.2 Experimental Rig 

0 
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Figure 2.1. Vibration test Rig 
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Figure 2.1 a shows the typical rig for studying the dynamic properties of the PCB. The Epoxy 

Fibreglass PCB CD is mounted upon fixture @, which is attached to the vibration test system ® 

(V550 Series, Ling Dynamic System). The miniature accelerometer @ (Bruel and Kjaer, Type 

4393) is mounted upon the fixture and provides the signal for the internal feedback loop for 

the System Controller ® (DVC-48, Ling Dynamic System Ltd). The controller is connected to 

the Terminal ~- Vibration test system is programmed to provide the close-loop controllable 

wide-band random, sweep-sine vibration and shock. Dual Beam Polytec OFV 512 Fibre 

Interferometer and Polytec OFV 3001 Vibrometer Controller <V, ® are used to measure the 

absolute or relative velocity of the PCB. The second miniature accelerometer (Bruel and 

Kjaer, Type 4393) is bonded to the fixture and produces the reference signal of the absolute 

acceleration. The Charge Amplifier (Bruel and Kjaer, Type 2635) is used for signal 

conditioning. The above two signals (absolute acceleration of the base and relative velocity of 

PCB) are then passed to Signal Cal Ace @l (Data Physics Corporation, Vibration Analyser, 

DP104 -lOO) providing for the appropriate data acquisition and DSP using terminal~-

The heart of this vibration test is non-contact laser vibrometry with the advantages of avoiding 

unnecessary additional mass or interference and it can be either configured to measure the 

relative or absolute motion of the PCB to the supported fixture. 

To simulate the dynamic response of the PCB to the actual working enviromnent, the vibration 

test system is programmed to reproduce a wide-band random vibration with uniform power 

spectral density (PSD) O.llf/Hz in the frequency range 20-2000 Hz (overall level 14g RMS, 

typical military specification in accordance with [3]). Figure 2.2 shows the random vibration 

spectrum to which the PCB was exposed. 

The latest generation signal analysers and their companion Window base software contain all 

features for data acquisition and DSP. The input channel can be interfaced in several formats 

(force, acceleration, velocity and displacement) each of which depends on the receiving signal. 

Measurement functions such as windowing, averaging and Fast Fourier Transforms (FFT) 

computation are available within the software and readily to process the measuring signals. 

The analyser also enables of exporting of the relevant data to MS®Excel for further analysis or 

a screenshot to MS®Word document. Regarding random vibration testing, a Hanning window 

is used. Figure 2.3 shows a screenshot of the analyser, a typical FRF display. 
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Figure 2.2. Random vibration profile from vibration control screen 
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Figure 2.3. Analyser screenshot of universal absolute transmissibility of PCB 
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The complex frequency response function (FRF) or more specifically universal 

transmissibility as we are loosely using in this study is a mathematical model defining the 

input-output dimensionless relationship of a dynamic system. In this test, the PCB response 

(output) is caused by vibration excitation (input) from the shaker. Mathematically, the FRF is 

defined as the complex Fourier transform of the output divided by the complex Fourier 

transform of the input. Because it is a complex quantity, the frequency response function 

cannot be fully displayed on a single-two dimensional plot. It can however, be represented in 

several formats, one method of presenting the data is magnitude and phase versus frequency. 

Figure 2.4 shows the experimentally obtained modulus and phase of the universal 

transmissibilities at the origin location of the PCB. By plotting the magnitude in logarithmic 

scale versus logarithmic frequency, it is possible to distinguish the natural frequency and 

conveniently display the amplitude of the first mode in the response spectrum. From Figure 

2.4, the PCB may be thought of as a lightly damped MDOF, the first natural frequency of 

which is 220 Hz, which is typical for COTS PCBs. The amplification ratio at this frequency is 

about 90. This indicates that the amount of damping is extremely small and explains why the 

PCB is so susceptive to wide-band random vibration. 
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Figure 2.4. Experimentally measured transmissibilities of PCB 

It is clearly seen that contribution of the first vibration mode associated with this frequency 

will cause most of the accumulated fatigue to the PCB, as here the deflection of the PCB is 

greatest. 

2.3 Curve-fitting of results 

Curve-fitting or Parameter Estimation is a numerical process that is typically used to represent 

a set of experimental data by assuming analytical function. The results of this curve-fitting 

process are the coefficients, or parameters, that are used in defining the analytical function. 

With regard to the FRF, the parameters that are calculated are its so-called modal parameters 

(i.e. modal frequency, loss factor and form factor). The curve-fitting process can also be 

thought of as a data compression process since a large number of experimental values can be 

represented by a much smaller number of modal parameters. For the results to be of any use 

in designing an optimal dynamic absorber, values for the natural frequency and loss factor of 

the PCB need to be obtained from the experimental results. 
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Figure 2.5. Finite Element Analysis of PCB with supported corners (image adopted from 
http://www.indircct.com/www/pacnum/vibplus.html) 

Normally the typical PCB mounting in Figure 2.0, the relative deflection of the PCB at its 

central region would be maximum. Figure 2.5 shows the different relative deflection 

boundaries of the PCB using Finite Element Analysis for the above type of mounting. The 

critical area in black shows where the failure of mounted components normally occurs. In a 

worse situation, a crack may occur on the board level itself. In terms of vibration, it is often 

convenient to represent this type of mounting as a simple mass and spring, so then the 

approximate response characteristics can be evaluated. This type of analysis yields fast results, 

but the accuracy is reduced, since it is impossible to accurately represent a complex PCB with 

a few masses and springs. A real electronic system typically has many major resonant 

frequencies. The purpose of the simplified analysis is to try to simulate the first resonance 

where most of the damage normally occurs. Dynamic displacements, stresses and 

accelerations are usually maximum under these conditions [2]. Therefore, in this arrangement, 

the PCB might be mathematically approximated as a SDOF with base supporting motion, y(t) 

as shown in Figure 2.6. This system is said to undergo base induced vibration and the motion 

of the system is described using only single absolute co-ordinate x(t). In practice, this model 

is used to get a quick insight into the overall behaviour of the system. 



Figure 2.6. SDOF system 

Figure 2.6 shows a simple mass-spring-damper system for simplification representing the 

PCB. Here m1 is the apparent mass involved in motion of the PCB, k1 and c1 is the stiffness 

and damping characteristics of the PCB. The equation of motion is: 

(2.0) 

The Lap lace Transform changes the domain of the function from the positive real number line 

~) to the complex number plane (s) [31]. That is: 

x(t) <=> X(s) ;x(t) <=> sX(s) ;x(t) <=> s2 X(s) ;y(t) <=> Y(s) (2.1) 

This yields the equation of motion in the operator form: 

m/ X(s)+c1s[ X(s)- Y(s)]+q X(s)- Y(s)J = 0 (2.2) 

or (2.3) 

From (2.3), the universal absolute and relative transfer function are given by: 

(2.4) 

T ( )- X(s)-Y(s) 
' s - Y(s) (2.5) 

We further express the above transfer functions in terms of natural frequency and loss factor 

0 1 = ~k1 /m1 , q1 = c1 /(2~r.l 1 ). Each of the above expressions also the defines frequency 

response function, by the formal substitution of s = j m . Here s is restricted to lie along the 

imaginary axis in the complex plane and j = H , imaginary unit and m is the angular 

frequency in radians per second. This yields universal absolute complex transmissibility: 



(2.6) 

and universal relative complex transmissibility: 

(2.7) 

Various forms of the analytical transmissibility functions can be used to curve fit the FRF 

measurement. From experiment, the above PCB might be modelled as a first approximation, 

as a lightly damped SDOF system. As recognised, the modulus of the universal absolute 

transmissibility may be expressed in terms of undamped natural frequency, Q 1 , and loss 

factor, q1 that is: 

(2.8) 

The MS®Excel worksheet shown in Figure 2. 7 describes this process being carried out with 

the experimentally measured data. The estimated values for natural frequency and loss factor 

are inputted into the boxes, B3 and B4, and are used in Equation 2.8 to calculate the universal 

absolute transmissibility of column F. The square difference between the experimental, 

column H, and analytical data, column F is calculated in column I, and summed in the box in 

the figure, B7 within the frequency range of 20-400 Hz for first mode. This value should be 

zero for the two curves to be matched. This brings in the use of the Solver function in which 

the summed cell, B7, is minimised by the Solver by altering the parameters of the PCB. The 

embedded graphs show the superimposed experimental data and curve-fitted one of the 

corresponding universal absolute transmissibility and relative transmissibility within the entire 

measured frequency range. The worksheet shows how the two curves are made to closely 

match the first vibration mode, giving numerical values for the properties for the first mode 

PCB. It is also used to verify that the Solver has performed properly as the difference could be 

minimised by large positive and negative differences cancelling each other out. This technique 

can be later used for extracting all modal parameters of the full-mode model ofPCB. 
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400 

In Figure 2.8, curve-fitting is applied to the experimental data in the vicinity of the first 

resonant frequency. From curve-fitting, q1 = 0.0065, 0/{:r = 216.25 Hz are found. Figure 2.8 

shows the superimposed original transmissibility of the PCB and curve-fitted one in the 

frequency range of20-400 Hz. 



2.4 Determining the effective mass of PCB 

The mass of the PCB, required for further analysis, can not be found by weighting the whole 

PCB. Only certain parts of the PCB vibrate when it is shaken, as the edges are screwed firmly 

to the pillars. This means that the mass of the board actually moving part will be less than the 

mass of the whole board. 

Since J:z;,(ico )j from (2.8) does not contain a mass explicitly, a new experiment has to be 

carried out. The effective mass of the first mode of the PCB will be of a great importance in 

the further development of a dynamic absorber. The effective mass can be estimated by 

defining the modified value of the natural frequency, n. by attaching the trial mass, ma at the 

point where dynamic absorber to be attached. In accordance with [31]: 

(2.9) 

A trial mass of 9.3 gr was attached to the PCB, and modified natural frequency is estimated to 

be 206.25 Hz as shown in Figure 2.9. From (2.9), the first mode mass is m1=90 gr whilst the 

total mass of the PCB is 175.5 gr. 

100 
/Original 

~ With additional mass 
:0 10 
·u; 

"' E 
"' \J c: 
~ - ~ ~ 1 0 
"' .0 

"' -0 
Q) 

\li 
"0 
.a ·c: 
Cl 0.1 "' ::;; 

0.01 
10 100 Frequency, Hz 1000 10000 

Figure 2.9. Experimentally measured modulus of absolute transmissibility ofPCB 
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2.5 Additional measurement 

The dynamic properties of the complex plate-wise structured PCB might not be the same, 

typically FRF and effective mass if the above measuring technique is also to be considered for 

different locations on the PCB. Unlike a simple mass and spring system, a single point 

measurement might not be sufficient to represent the entire dynamic properties of the PCB for 

further analysis and comparison purposes. Although, the above measurements were made in 

the area where the relative deflection of the PCB is assumed to be maximum. It is clear that 

additional experimental data (universal transmissibilities) on different areas of the original 

PCB must be carried out at this stage. For this reason, observation point <D, <l), Q) and @) are 

marked symmetrically from the origin, observation point @ on the PCB which represents in 

the schematic layout in Figure 2.10 as reference. In this figure, observation point @ at the 

centre of PCB might be treated as a critical measurement and calculation point for appropriate 

vibration control method. Additionally, such an observation point ensures that the major nodal 

points will not be involved, the dynamic properties of the PCB are already obtained; the 

experimentally measured data and detailed analysis have been discussed above. 

y 

Figure 2.10. Schematic layout of the PCB marked with observation point 

Figure 2. I 1 shows the experimentally obtained moduli of universal transmissibilities of the 

corresponding observation point on the PCB. As would be expected the responses are different 

from each other, although these points are observed symmetrically from the origin. This could 

explain why traditional methods normally fail to predict the actual FRF of the PCB. However, 

the first natural frequency is about 220 Hz at which the peak amplification is steepest. 
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2.6 Measurement of receptance 

For single-mode approximation, the dynamic properties at observation point @ might be 

sufficient to represent dynamic properties of the PCB and experimentation with dynamic 

absorber can begin. However, for analysis of the full-mode model of PCB, it is necessary at 

this stage, to obtain the local and transient receptances of those corresponding observation 

points. 

2.6.1 Local receptance 

Figure 2.12 shows an experimental rig where the fixture @ supports the PCB CD and was 

rigidly clamped to the rigid and massive isolated table ® to avoid unwanted interference. The 

instrumented impact hamper @) (PCB Piezotronics) contains a piezoceramic force transducer 

<il providing the assessable force excitation to the PCB. To concentrate the whole energy in 

the frequency range up to 2000 Hz, a hard hammer tip was used. Through the Charge 

Amplifier®, the signal of the excitation force is passed firstly to channel of Signal Analyser 

®>. Simultaneously, the dual beam laser Vibrometer <V measures the velocity of PCB relative 

to the fixture. This relative signal is then passed to the second channel of the Signal Analyser 

via the Vibrometer Controller ®. 



-.Jv-

b) PCB mounted on the test bench 

Figure 2.12. Experimental rig for measuring local receptance ofPCB 

The first test was carried out at observation point @ on the PCB, where the dynamic absorber 

was to be attached. At this location, the impact hammer was struck on the PCB and the laser 

beam is positioned nearby. The pick up signals are determined as local receptance, expressed 

as the ratio of the displacement at a response point divided by the force at the input point at 

any frequency. 
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Figure 2.13 shows the superimposed local receptance and absolute transmissibility of the 

PCB. From Figure 2.13, the resonant sequence is consistent for absolute transmissibility and 

localreceptance. 

2.6.2 Transient receptance measurement 

Regarding the calculation of observation point <D, <6l, ® and @) for the modified PCB using a 

dynamic absorber and its designed location, it clearly indicates the transient receptance for 

these observation points of the original PCB must be obtained before the analysis can begin. 

The experimental procedure for measuring these data is the same as that in Figure 2.12. 

Q) 

. . . 
b 

Figure 2.14. Schematic layout of measuring transient receptance on PCB 

y 
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Figure 2.14 describes schematically a method of measuring transient receptance of different 

observation points. In this test, the hammer is struck at observation point @ (where the 

dynamic absorber is to be attached) and the responses of these observation points are obtained 

accordingly. 

Figure 2.15a and Figure 2.15b show the experimental modulus and phase of transient 

receptance in f.lrniN of the corresponding observation point on the original PCB. From a 

magnitude response perspective, they are quite consistent with each other and they all show 

the dominance of first-mode natural frequency of the PCB. Since effective mass of these 

observation points is partially embedded in the measured receptances, the method of 

determining effective mass for these locations is no longer needed. 

2.8 Concluding remarks 

Results obtained with experimental measurement proved to be quantitatively consistent. The 

experimental rig was set-up in accordance to the PCB mounting configuration, although it 

does not represent the actual PCB system mounting, but still has the desired properties of 

mass, natural frequency and damping ratio. As usual for this kind of analysis and its obtained 

results, the task was logically followed: 

~ Preparation of the PCB was made in such a way to reduce the inevitable experimental 

errors 

~ By appropriately exciting the PCB and measuring its dynamic response, and then these 

signals were treated to get information in the frequency domain 

~ Collection of frequency response function measurements with several different locations 

on the PCB for future purposes 

~ The reliability of modal parameter extraction methods using Least Squares is accepted, the 

PCB's constraints responds to good modal analysis practice requirements. Obviously, the 

high quality MS®Excel and its companion built-in Solver opens a whole new class of 

vibration design aspects, typically those that are concerned with optimal performance and 

graphical presentation 

~ The observability of the PCB was good, the information content of excitation and response 

signal was abundantly sufficient and the PCB proved to be time invariant and linear 

~ The analytical solution of the single-mode and full-mode model of PCB with dynamic 

absorber can be relied upon according to the above experimental information. 
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Chapter 3 

3.0 Single-mode model of PCB with dynamic absorber attached 

In this chapter, we are introducing a damped dynamic absorber as a new radical vibration 

control method for the PCB. In general, designing dynamic absorbers have a number of very 

attractive features: 

)> They are inherently compact, modular devices that can have a simple attachment to the 

base structure without external interface 

)> They can be readily added to a base structure that is already designed or even built 

)> The dynamic absorber does not impact the static strength or stiffness of the base structure 

)> For designing the dynamic absorber, it is often possible to characterise the base structure 

by inexpensive testing or analysis. Additionally, a dynamic absorber can be designed for 

any frequency resonance of the base structure, and there is no constraint of its design 

parameters. 

However, the practical challenge in designing and implementing a dynamic absorber is usually 

concerned with the optimal performance in different environment conditions. This means that 

a universal dynamic absorber for the PCB application must be capable of withstanding 

random, swept-sine vibration and even shock. For this purpose, we are accommodating single 

dynamic absorber in the development of the mathematical model. The investigation of optimal 

parameters of the dynamic absorber depends on its operational environment, random 

vibration, followed by swept-sine and shock excitation with the aim of minimising the relative 

deflection of the modified system. In order to achieve these tasks, first, we used MS®Excel 

and its Solver to find an appropriate optimal parameters set of the dynamic absorber. Once 

these parameters are known then a numerical simulation is built using Matlab/Simulink 

environment to verify its analytical solution. 

3.1 Mathematical model 

In this approach, the primary system (PCB) is thought of as a SDOF system with a mass, 111t, 

stiffness, le., , and damping c1 • The secondary system is a dynamic absorber mounted upon the 

PCB with mass, m, , stiffness, Js, and damping c2 • The excitation is due to the motion of the 

base, y(t). Figure 3.0 shows this model. 



Secondary subsystem 
(dynamic absorber) 

~ 

Primary subsystem 
(PCB) 

~ 

-J ,-

r-----------------------, .---------.: 

CJ 
ZJ(t) 

1---------------- --------------- y(t) j ..J__ 

~----------~----~ 
Figure 3.0. Model ofPCB in a single-mode approximation with attached dynamic absorber 

The equations of motion take the form: 

The values for stiffness and damping may be expressed through the appropriate values of mass 

ratio 17 = m, , partial undamped frequencies n,, n, and partial loss factors ,;, , ,;, . These are: 
~ 

In Figure 3.0, x1 , x2 and y are the absolute deflections of the PCB, dynamic absorber and the 

base, respectively, and z1 is the motion of the PCB relative to the base. Taking the Laplace 

transform, yields: 

where s is the Laplace variable. 

Expressing the equations of motion in the matrix form yields: 

From the matrix equation, absolute transfer function of the combined system is: 
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(3.3) 

By the formal substitution, s = j(J), where j = N and (J) is the angular frequency, we find 

the appropriate FRF i.e. complex universal absolute transmissibility 

(3.4) 

For the universal relative transmissibility, we find: 

(3.5) 

3.2 Random vibration 

Flight dynamics deal with the motion of an aircraft under the influence of forces, which 

contributes to the caustic environment. Resulting from these harsh environmental conditions, a 

need for a vibration protection system has been addressed. Sometimes the endurance of the 

COTS PCB is lower than required, thus slight modification is practised in order to protect the 

sensitive internal components in the electronic box. 

A wide-band random process is a stationary process whose spectral density function has 

significant values over a range or band of frequency [32]. Random vibration closely represents 

the true environment in which the electronic equipment operates. Random vibration tests have 

become very commonplace in many installations for military electronics equipment. Primary 

military specifications for the testing of this type of equipment (such as MIL-STD-81 0) have 

placed heavy emphasis on random vibration, tailored to the actual application. By designing, 

developing and producing a cost-effective and lightweight structure, the equipment is capable 

of operating in the desired environment with a high degree of reliability. 

A Gaussian distribution curve is used to represent the probability value of the instantaneous 

acceleration level expected for random vibration. The maximum acceleration levels 

considered for random vibration are the 3 er levels because the instantaneous acceleration is 

between +3 er and -3 er levels corresponds to 99.73% of the time which is close to 100% [32]. 

The relationship between power spectral density (PSD) of excitation and relative response is 

[32]: 

(3.6) 
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where s,(w) is PSD of the base acceleration and S
21

(£V) is PSD of relative deflection, 

w E [ 0, oo[. It is important to reduce the overall stresses in the system, and the mean square 

value of the relative deflection [32]: 

J ioo <Tz = - S2 (w)dw 
I 2Jr 0 I 

(3.7) 

may be thought of as a measure of these. 

3.2.1 Designing MS®Excel worksheet for minimising overall relative deflection 

In theory, most of the approaches presented in reference [13-19] may be used to find the 

optimal response for this particular problem. However, it has been rather difficult to select the 

right method, obviously, a high degree of accuracy in results is very time-consuming. 

Additionally, in their approaches the vibratory motion is caused by force excitation in which 

inapplicable for this study. 

With the increase in computational power, there are now a number of packages available to 

solve such problems without time-consuming and mathematical complication. One of the most 

popular packages is MS®Excel with the built-in Solver allowing for simplest optimisation. 

This package can handle complex numbers. Unlike other packages, MS®Excel is widely 

available and does not require high programming skills. 

The equation for the damped 2DOF system discussed earlier can be now set-up in MS®Excel 

worksheet. All the transfer functions are to be in complex numbers as a function of frequency. 

It is much easier to work in terms of a complex transfer function rather than absolute values of 

the latter. This is because as the degree of freedom increases from SDOF to 2DOF, the terms 

get more complicated and it is much more difficult to obtain the analytical expression for the 

modulus of the transfer function. Since most of the complex terms are often used more than 

once, the calculation ofthe complex resultant transfer function can be eased by breaking it into 

smaller "pieces" and formulating them in appropriate columns. These smaller terms can be 

conveniently "submerged" inside the worksheet to "give way" for the resultant equation. 

Summing the values of PSD over the frequency spectrum and multiplying by the frequency 

step to produce an appropriate RMS value. 

To make practical use of these resultant equations, a MS®Excel worksheet has been developed 

to calculate the RMS value of the power spectrum density of the relative deflection. The 

worksheet, shown in Figure 3 .I, takes predetermined parameters for the primary system and 

evaluates the relative response to excitation over a frequency range, taking into account the 

parameters of the dynamic absorber. 
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transmissibility, column K using Equation 3.5 with embedded graphs (superimposed of the 

original and the modified system) to make it easier to spot mistakes. The excitation 

experienced by the system is given in columns L and M in units of g2/Hz and m2/s4/Hz 

respectively. 

With the establishment of the PSD value for relative deflection, in column N, using Equation 

3.6 this spreadsheet will then calculate the overall RMS response of the PCB using Equation 

3.7. By manually varying the mass ratio, 17, in the range from 0 to 1, the Solver is then set to 

minimise the overall relative deflection response of the PCB (3. 7) by varying the values 1.12 

andq2 • 

Figure 3.1 features a built-in Solver function which can be found under the "Tools" drop 

menu. The Solver allows the minimisation or maximisation of a target cell by varying other 

cells related to the target. The program runs through trial and error iterations in a feedback 

loop within certain boundaries to optimise the solution. The boundaries consist of a period of 

time before the user is questioned before the computer continues and tolerance limits that can 

be altered depending on the desired result. 

The values obtained can be irrelevant for the particular problem, especially with negative 

numbers being returned. This can be clearly seen as the visualising graph which shows the 

curve as the incorrect shape. This problem can be overcome by altering the initial guesses 

inputted into the variable boxes. The Solver can then be rerun with the iterations taking a 

different path until the visualising graph looks closer to the expected shape. 
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Figure 3.2. Dynamic response of PCB at different mass ratios 



Figure 3.2 highlights the calculation results of optimal dynamic response of the PCB at 

different masses of the dynamic absorber, the results of the findings are best expressed in this 

graphical manner. It shows that the optimal tuning of the dynamic absorber is capable of 

modifying the lightly damped SDOF to a heavily damped 2DOF system. As the mass ratio is 

increased, the peak PSD at resonant frequency is reduced significantly, oppositely, the area at 

low frequency range (20-150 Hz) is increased, however, the peak value is not important for 

this analysis whereas the overall response (area under the curve) is critical. Thus a heavier 

mass could not produce a better performance in this case. 
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Figure 3.3. Optimal overall relative deflection ofPCB at different mass ratios 

Figure 3.3 shows the dependence of the overall level of deflection (in IJ.lll RMS) on the value 

of mass ratio. Figure 3.3 shows that the mass ratio of 65% corresponds to its optimal natural 

frequency and loss factor gives the lowest level for the overall relative deflection of PCB. 

Hence, the optimal mass of the dynamic absorber must be 58.5 gr (which indicates only 30% 

for the actual mass ratio relative to the overall mass of the PCB) for this particular application. 

Figure 3.4 shows the dependence of the normalised overall level of deflection on the value of 

mass ratio (the optimal value of the overall response is used for the normalisation). 

It should be noted here that the overall deflection decreases as the mass ratio is varied between 

5% to 65%. The overall dynamic response is said to be minimal when mass ratio is 65%. 

Beyond this optimal point, the overall deflection increases marginally. 
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Figure 3.4 shows 5% difference in the performance of the dynamic absorber between mass 

ratios of 25% and 65%. As far as the weight, space and performance are concerned, it would 

be reasonable to choose an appropriate mass of the dynamic absorber in this range. For this 

purpose, the mass ratio of 35% and 65% are chosen in which the optimal performance is only 

2% different whereas the mass ratio is 46% different. 
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Figure 3.5 shows the dependence of the optimal loss factor and natural frequency of the 

dynamic absorber at different mass ratios: 

~ At a mass ratio of 65%, the optimal natural frequency and optimal loss factor are found to 

be 106Hz and 0.35, respectively 

~ At mass ratio of 35%, the optimal natural frequency and optimal loss factor are found to be 

144Hz and 0.267, respectively. 

With reference to the actual mass of the PCB (175.5 gr), both dynamic absorbers would 

produce a 30% and 18% mass ratio, respectively. 
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10000 

Figure 3.6 shows the superimposed PSD of relative deflection of the original PCB (overall 

response 271.5 f.lffi RMS) with the optimised dynamic absorber at 65% and 35% mass ratio 

(overall response 65.9 f.lm RMS and 68.1 f.!m RMS), thus the optimal design gives a reduction 

ratio of 4.1 and 3.9 respectively. 

The novel optimal absorber design can be verified by using the conventional approach, say, 

[13]. A classical design method for wide-band frequency applications, known as the equal

peak method. The optimal natural frequency and loss factor of dynamic absorber at any given 

mass ratio can be found from the following expression [13]: 

377 
q2opt = 8(1 + 17)' (3.7a) 



For comparison purposes, the above expressions are best expressed in a graphical manner as 

shown in Figure 3.7 (see the curve labelled as Traditional optimal design). Also, in this 

figure the corresponding parameters of the new optimal absorber design are superimposed for 

reference (see the curve labelled as Optimal design). As can be clearly seen, both designs 

have a different natural frequency and loss factor at any mass ratio, these values are significant 

departed as the mass ratio increased. 
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Using the traditional approach for the PCB application, as a result, Figure 3 .8a highlights the 

traditional optimal dynamic response of the PCB, whereas Figure 3.8b shows its optimal 

overall relative deflection on the value of mass ratio. Also in Figure 3.8b the optimal response 

curve from Figure 3.3 is superimposed for comparison. It is clearly shown, the novel dynamic 

absorber design (see the curve labelled as Optimal design) produces a better performance 

than the traditional one (see the curve labelled as Traditional optimal design) at a higher 

mass ratio. 
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It should be noted that in Figure 3.8b, the curve labelled as Traditional optimal design, at 

the mass ratio of 45% corresponds to its optimal natural frequency, 149 Hz and optimal loss 

factor, 0.235 gives the lowest level for the overall relative deflection, 69.5 f!m RMS of PCB. 

However, it is not said to be an optimal dynamic absorber for this study, since a better 

performance can be achieved at this mass ratio, the evidence is clearly shown in Figure 3.8b. 

Figure 3.9 shows the superimposed optimal dynamic response of the PCB with the influence 

of novel design dynamic absorber (overall response 65.9 f!m RMS) and traditional one 

(overall response 69.5 J.Lm RMS) which corresponding to their optimal mass ratio. 
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Figure 3.9. Comparison of dynamic response in the case of traditional and novel design 

In this figure the equal-peak response does not seem to exist due to the fact that the peak PSD 

at first resonant frequency is much higher than that of the second one (see the curve labelled as 

Traditional optimal design) even it is thought of the equal-peak method. The explanation 

is rather simple, the traditional optimal parameters set is only applied for the system with force 

induced directly to the primary system whereas it does not apply for system with base 

supported motion. 

From [13], the optimal parameters set of absorber design for peak deflection, in a general 

sense, does not provide the optimal peak acceleration response at any given mass ratio for the 

system under swept-sine excitation and vice versa where the primary system is subjected to 

force excitation. This is also true for the system with base supported motion under swept-sine 

or random vibration. The dynamic absorber that design for optimal overall relative deflection 

would not provide optimal overall absolute acceleration under random vibration. Keeping in 



mind, the aim of this study is to design an optimal dynamic absorber to suppress the overall 

relative deflection of the PCB, therefore, an optimal design for overall absolute acceleration is 

not an intention. However, with the same worksheet and the Solver, such an optimal dynamic 

absorber can be designed if a target cell of overall absolute acceleration is generated. For this 

instance, Figure 3.10 shows the comparison PSD of absolute acceleration of the PCB with the 

influence of different optimal dynamic absorber designs. At 65% mass ratio the optimal 

overall absolute acceleration 8.73 g RMS (see the curve labelled as Independent optimal 

design) is found which corresponding to the optimal natural frequency, !51 Hz and optimal 

loss factor, 0.33 of dynamic absorber. Regarding to the novel dynamic absorber that design 

Q2opt 
for optimal overall relative deflection (i.e. 77 = 65%, ~ = I 06Hz and (;2opt = 0.35) gives 

I 0.1 g RMS in terms of overall absolute acceleration (see the curve labelled as Optimal 

n2opt 
77 = 45% --=149Hz and (;2opt = 0.235) produces 

2;rr 
design) whereas traditional one (i.e. 

10.1 g RMS (see the curve labelled as Traditional Optimal design) which give about the 

same reduction ratio, a factor of 5.1 with reference to the original PCB (overall response 51.10 

g RMS), see the curve labelled as Original). 
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Figure 3.10. Comparison of dynamic response in the case of traditional and novel design 

This study enhances the author's ideas in which the theory of optimal dynamic absorber for 

random vibration application does not appear to exist. Using a common dynamic absorber for 



the specific application, such the PCB, may not prove to be consistence, typically those that 

are concerned with optimal performance. 

3.2.2 Sensitivity analysis 

Nonetheless, during fabrication or operation, the desired loss factor and natural frequency may 

vary due to manufacturing tolerances, temperature and ageing, therefore it is very important to 

carry out the sensitivity analysis with the aim of finding out how differences in the dynamic 

absorber's properties affect its performance. This is performed by taking the optimal values 

for minimising the overall relative deflection response and varying optimal natural frequency 

and optimal loss factor separately. If the system proves not to be sensitive to an imperfect 

dynamic absorber there will be more freedom when designing it. 

Figure 3.11 a shows the typical dynamic response of the PCB at the mass ratio, 65% and 

optimal frequency, 106 Hz whilst the loss factor is varied in the range from 0 to 1. The 

corresponding Figure 3.llb shows a variation of its overall relative deflection together with 

sensitivity analysis for the mass ratio, 35% at its optimal frequency, 144Hz. 

Figure 3.11 c shows the dynamic response of the PCB at the same mass ratio, 65%, and 

optimal loss factor, 0.35, where the natural frequency is varied in the range from 50 to 200 Hz. 

The corresponding Figure 3.lld shows a variation of its overall relative deflection together 

with sensitivity analysis for the mass ratio, 35% at its optimal loss factor, 0.267 for reference. 

From sensitivity analysis in Figure 3.1 I reasonably small variations in optimal natural 

frequency and loss factor have little effect on the overall relative deflection of the PCB. The 

dynamic response of the PCB is very large when the loss factor approaches zero (see Figure 

3.1 !b). At a loss factor of between 0.2 and 0.5, the overall dynamic response only changes by 

20%. It is important to maintain the loss factor and natural frequency of the dynamic absorber 

in discrepancy of I 0% in terms of overall dynamic response. This would be sufficient to 

maintain a fail-safe vibration environment for electronic equipment and obviously, this allows 

for a lot of freedom when designing a real dynamic absorber. 
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3.2.3 Fatigue analysis 

The most obvious results are that there is lower relative transmissibility at the resonant 

frequency, which means lower relative deflection and acceleration of the PCB. Additionally, 

the overall RMS deflection of the system is reduced. According to Sloan [33], the endurance 

limit is given by: 

where c is experimental constant and the fatigue exponent b=6.4 is given by [2] for the PCBs, 

0' is the RMS level of deflection or stresses. In the conservative estimation, therefore, the 

lifetime of PCB is increased by a factor of: 

(
-0'-'--

0""-"1"--'-01-)h = (-27
-
1
-
5 )

6

.4 = 8615 times (mass ratio of65%), 
(J' rngg,diud 65.9 

and 
( )

b 6.4 

O'o,;gtnot = ( 271.5) = 6982 times (mass ratio of35%). 
(J' rngg,diud 68.1 

The calculation shows that the lifetime of the ruggedized PCB will be increased several 

thousand times as compared to its original design. 

The fatigue accumulated by the PCB under wide-band random vibration may be estimated 

more accurately using the method, which is schematically described by Bolotin [34]. This 

method is based on counting the amount of simple cycles that are characterised by the 

particular magnitude over the length of the analysed time history. Upon carrying out the 

simulation and obtaining the relative deflection, the cumulative fatigue is determined using the 

formula suggested by [33] 

In this formula: 

K 

Fatigue oc "L.N;O'f 
i=l 

0'; is the magnitude of the stress of the i-indexed simple cycles, 

N; is the number of simple cycles with the magnitude of stress 0' i, 

(3.8) 

a= 6.4 is the experimental parameter that defines the fatigue properties of glass epoxy, which 

is used in the typical PCB design by [2). 

K is the number of levels. 



The amount of simple cycles, N;, is counted along the simulated time history through the 

amount of the crossings of the level a i minus the amount of the crossings of the level a i+ 1 . 

When calculating we start from the highest levels of the stresses. 

At times, both vibration and fatigue analysis are of concern because specific frequencies can 

cause unexpected fatigue damage. The fatigue life of a component is generally made of a 

crack initiation phase. The stress and strain distributions are not evenly distributed due to the 

significant variation in the geometry of the PCB. 

A program performing the calculation of the number of stress cycle by the logic of zero 

crossing intersection in the stress-time graph is developed and is shown in Figure 3 .12a. 

Steady decrement from the peak until the x-axis, results in the number of levels, K . At each 

level, the number of zero crossing is determined. There are various methods of obtaining these 

values, the most efficient and timesaving is by carrying-out the product rule at each 

intersection. 

If the product of the values on adjacent sides of the zero crossings (i.e. point of intersection) is 

negative, then there is a zero crossing. It should be noted here that, there is a more positive 

product than negative. These values are later set up in an array, and assigned to zero. The zero 

crossings are later determined by using the function 'find'. These values are set to I and 

summed to determine the number of cycles N;. This program is run using the M-File and the 

data is collected for comparison purpose. The fatigue parameter is defined in the M-file script 

as shown in Figure 3.12b. With reference to the block diagram shown in Section 3.2.4, and the 

Matlab script, the RMS value and fatigue level is calculated for both relative deflection and 

absolute acceleration. For the purpose of this program, a Simulink modelling of the dynamic 

system with the parameters is considered. This model is able to simulate the dynamic response 

of the system. A general assessment on the accuracy of the theoretical analysis will also be 

carried out based on the results of the simulation. 
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3.2.4 Numerical simulation 

Traditional approaches to system design typically include building a prototype followed by 

extensive testing and revision. This method can be both time-consuming and expensive. As an 

effective and widely accepted alternative, simulation is now the preferred approach to 

engineering design. Simulink is a powerful simulation software tool that enables one to 

quickly build and test virtual prototypes so that one can explore design concepts at any level 

of detail with minimal effort. By using Simulink to iterate and refine designs before building 

the first prototype, engineers can benefit from a faster, more efficient design process. 

Simulink provides an interactive, block diagram enviromnent for modelling and simulating 

dynamic systems. It includes an extensive library of predefined blocks that can be used to 

build graphical models using drag-and-drop operations. Supported model types include linear, 

nonlinear, continuous-time, discrete-time, multirate, conditionally executed, and hybrid 

systems. Models can be grouped into hierarchies to create a simplified view of components or 

sub-systems. High-level information is clearly and concisely presented, while detailed 

information is easily hidden in sub-systems within the model hierarchy. Simulink has many 

features that allow customisation, especially with regard to incorporating existing user C 

codes. In addition, simulations can be run interactively or in batch mode from the Matlab 

command line. 

Firstly, a simulation based on the dynamic model in for single-mode PCB is carried out using 

a Simulink block diagram and M-File. The simulation model here is run to obtain a solution 

containing peak deflection, the overall RMS value and subsequent endurance limit. The 

system parameter is defined in the M-file script. The Matlab/ Simulink diagram is defined by 

means of expressing the equation of motion in terms of relative motion. Where, z1 = x 1 - y is 

the relative motion for the primary system and z2 = x, - y is the relative motion for secondary 

system. Upon substituting these expressions into the primary and secondary equation obtained 

from (3.0) and (3.1) yields: 

for the primary system 

(3.9) 

for the secondary system 

m2z2 +k2 (z, -z1)+c,(z2 -zJ=-m,y. (3.1 0) 

Based on the above manipulation, elements performing operation of integration, 

multiplication, derivation, summation and signal representing the force are readily available 



on Matlab/ Simulink environment. With reference to the equation of motion above, in terms of 

relative motion, the simulation diagram is shown below. 

y• 

y• 

Figure 3.13. Simulink diagram for random excitation 

Figure 3.13 shows the simulation model of PCB with the dynamic absorber attached. The 

corresponding gain block (marked with system parameters) generates its output by multiplying 

its input by a specified expression. The integrator blocks perform the transformation of 

acceleration to velocity and then to displacement using ode45 (Dormand-Prince) with an 

auto variable step time integration routine. This method is an effective timesaving approach of 

computing the derivative. The appropriate label scopes and workspaces records their 

corresponding response signal. It should be noted that in this model, any signal could be 

viewed by connecting a scope on the connected line. 

The internal structure of this Simulink model contains all the necessary algorithms of 2DOF 

and bookkeeping routines to provide an appropriate framework for simulating the system 

under random, swept-sine vibration or shock load. At will, these excitation signals can be 

simultaneously superimposed with G-loads for studying the time history of deflection, 

absolute acceleration responses and hence fatigue failure of the system under this extreme 

condition. 
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Random vibration is of primary concern at this stage, therefore force signal is designed using 

the Random Number, which is available from Simulink's library. The level and spectrum are 

controlled by the values of variance and time discrete of the Random Number block and cross

frequency of the band-pass Filter block as shown in Figure 3 .14a. The signal parameter is 



-J ,_ 

expressed in terms of variance at a specified sample time where it is tuned to match the 

required excitation signal of 14g RMS. In this design, a sampling time of O.lms is used in the 

Random Number dialog box which corresponds to a sampling frequency of 10000 Hz. The 

maximum frequency in this case is 5000 Hz. The cutoff frequencies are designed from the 

Analog Filter Design dialog box. In order to match the requirement, the setting starts from 

20 Hz and has a cutoff frequency of 2000 Hz. The order of the filter in this block determines 

the sharpness of the cutoff. The higher the order, the sharper the cutoff, for this reason a 30'h 

order filter is chosen. 

The signal from the simulation is recorded (see Figure 3.14b) with a time step of O.lms in a 

matrix form using the workspace labelled Y _a, the overall RMS value is calculated by using 

var command from Matlab, after 3s of simulation, the value shows its stability. 

Figure 3.15 shows the superimposed time domain of original and modified PCB with different 

mass ratios of dynamic absorber, the corresponding absolute acceleration and relative 

deflection are plotted at the vicinity of maximum magnitude response. Comparing the results 

obtained in Figure 3.15, it can be clearly seen that the relative deflection and absolute 

acceleration have reduced significantly. Furthermore, the obtained results are an acceptable 

base on which to predict results. Nonetheless, a simple verification check is carried on the 

above results. This is done by comparing the predicted reduction factor of the overall response 

from the Simulink model through the general methodology developed in Section 3.2.3. Table 

3.0 shows the simulation results together with its theoretical calculation. 

Overall relative Overall relative Improvement in Improvement in 
deflection, 1-1m deflection, 1-1m Endurance limit Endurance limit 
RMS (analytical) RMS (Simulation) (Overall (Simple cycles 

technique) technique) 

Original 271.5 271.9 - -
35% mass ratio 68.1 68.3 6,982 times 7,820 times 

65% mass ratio 65.9 65.5 8,615 times 10,030 times 

Table 3.0. Comparison of the increased life factor between the simple cycle and overall technique 

In order to illustrate the validity of this approach, the improvement in the endurance limit was 

calculated from the Simulink analysis. The increase in the endurance limit under which the 

PCB operates with the optimal dynamic absorber was found to be 10,030 times. It should be 

noted that the overall reduction factor of RMS value for the predicted and simulated results are 

almost similar, but the effective endurance limit differs significantly. This is due to the more 

adequate method of calculation used in the program. With reference to the endurance limit, the 

fatigue life of the structure is predicted by a computational approach. The high endurance limit 

refers to low dynamic stress and strain when subjected to wide-band dynamic response. 
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Figure 3.15a. Simulated time history of original and ruggedized PCB (with 11=6S%) 
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Figure 3.15b. Simulated time history of original and ruggedized PCB (with TJ=35%) 

The above simulation result can be further analysed by using Fast Fourier Transform (FFT). 

This technique would allow transformation of filter coefficient and white noise to the 

frequency domain for comparing it to its theoretical solution. Matlab itself provides a useful 
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command known as pwelch (signal, FFTs, Fs, window, Noverleap) which is capable of 

automatically transforming a stationary time signal to PSD without mathematical complication 

or being time-consuming. 

To verify the result of simulation to that appropriate analytical frequency response, an 

ensemble of 100,000 time points are generated by running the Simulink model up to 1 Os with 

a recording time step of O.lms in its workspace. Using the pwelch command for this 

configuration would provide an appropriate PSD response in the frequency range of 0-5000 

Hz. Figure 3.16 shows the transformation of time domain (Figure 3.14b) to PSD, the desired 

response shape is almost similar to that experimental excitation spectrum in which the "flat" 

spectrum has a magnitude of O.lg2/Hz in the frequency range of 20-2000 Hz. Thus, the 

response outside this frequency range has no effect on overall RMS value due to the sharp 

cutoff frequency. This enhances further the close findings between numerical and analytical 

results as shown in Table 3.0. 

A similar procedure is carried out to transform time domain of absolute acceleration and 

relative deflection of Figure 3.15 to frequency domain. As a result of the transformation, 

Figure 3.17 show the PSD of the original and ruggedized PCB (see appropriate label for 

reference). The differences between these curves and analytical ones are "smoothness" as 

shown in Figure 3.18. 
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Figure 3.18. Comparison of dynamic response of ruggedized PCB (1]=65%) 

The "roughness" of these simulation curves can be removed if an alternative FFT command 

from Matlab is used, a typical one is known as: tfe (input-signal, output-signal, FFTs, 

Fs, window, Noverleap). This command is basically defines the input-output relationship 

by producing an appropriate FRF, formally known as transfer function estimation. The 

analytical expression is applied in order to produce a relevant PSD and additional calculation 
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is probably required. In general, if in the right configuration, this technique would produce a 

"perfect" curve compared to its analytical one for any linear dynamic system under random 

vibration excitation. 

The Simulink model was built for studying the fatigue analysis usmg a simple cycles 

technique through its simulation response. The technique of building the Simulink model is 

entirely based on the equation of motions of 2DOF system, in addition, the time response 

combines with the signal processing command from the Matlab yields frequency response 

which produce identical results compared to analytical solution. In general, this method gives 

a full view of both time and frequency domain of any dynamic system under study which may 

be a useful tool to the study ofnonlinear systems i.e. Vibro-Impact systems. 

3.3 Sine vibration 

Today, numerous COTS manufacturers require sweep-sine and resonant dwell tests to be 

carried out as essential parts of qualification testing and screening of critical electronic 

systems. This kind of vibration testing is much more artificial as opposed to, say, a wide-band 

random vibration test which is considered in Section 3.2 of this study. However, while not 

completely representing true loading conditions, swept-sine and resonant dwell tests are 

important for testing the dynamic behaviour and fatigue of sensitive components of electronic 

equipment at resonance. 

In Section 3.2 we show that a wide-band dynamic absorber is a powerful tool for modifying 

the dynamic properties and ruggedizing of the sensitive components of electronic equipment 

such as PCBs. In this instance, the properties of a dynamic absorber were chosen with the 

purpose of minimising the overall RMS response of the PCB under wide-band random 

vibration. 

In this case, the base motion is g1ven by the acceleration, ji = A sin OJt , where A is 

acceleration magnitude and w is driving angular frequency. In this study, we use the typical 

military specification in accordance with [3], where A= lOg, and driving frequency is swept 

linearly from 20 to 500 Hz. The magnitude of relative deflection of the PCB at frequency w is 

[35]: 

(3.11) 
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Figure 3.19 shows the screen snapshot, where the add-in Solver is used for solving the optimal 

problem (3.12). It should be noted here, the FRFs have a similar feature to random vibration 

designed worksheet (see the embedded transmissibility graphs). This is due to the involvement 

of the same universal transmissibility formulations and probably from the same worksheet. 

For any linear dynamic system, MS®Excel worksheet proves to be the most convenient 

software for analysing frequency response under either random or swept-sine vibration, 

typically those that are concerned with optimal performance and quality graphical 

presentation. 
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Figure 3.20a highlights the relative deflection of the dynamically ruggedized PCB under 

swept-sine excitation where the dynamic absorber was optimised for the swept-sine excitation 

at different mass ratios. It should be noted in this figure the peak value is the same at first and 

second resonance at any mass ratio, a classical optimal response shape of a SDOF primary 

system with the influence of an optimal dynamic absorber, formally known as the equal-peak 

response. Figure 3.20b shows the relative deflection of the dynamically ruggedized PCB under 

swept-sine excitation where the dynamic absorber was optimised for the wide-band random 

excitation at different mass ratios. 
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Figure 3.21. Peak response ofPCB with different mass ratios 

Figure 3.21 shows the dependence of the minimised peak response on the mass ratio. For 

comparison, the similar curve obtained for the dynamic absorber optimised for the random 

excitation in Section 3.2.1 in this study is superimposed. The difference obtained is reasonably 

small. This result would further enhance the design of the universal dynamic absorber, as the 

mass, loss factor and natural frequency is slightly altered without significantly affecting the 

performance of the PCB. This criterion is an important factor in designing the dynamic 

absorber due to the space constraint in an electronic box. From Figure 3.21, for the mass ratios 

greater then 65% (77 > 65%) the performance of the dynamic absorber cannot be significantly 

improved. Hence, it would be reasonable to have single dynamic absorber which suits equally 

well both cases of wide-band random and swept-sine excitation, where the optimal parameters 

of an dynamic absorber would be based on results of random vibration: 
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17 = 65%, o.,opl =106Hz and S2opl = 035, 
2:r 

where the peak deflection 190 ~-tm is found as slightly higher compared to the case of swept

sine ( max peak deflection 175 ~-tm) at the same mass ratio. 
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Figure 3.22. Optimal parameters of dynamic absorber at different mass ratios 
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Figure 3.22 shows the dependencies of the optimal natural frequency (a) and loss factor (b) of 

the dynamic absorber at different mass ratios. In the same figures, the corresponding curves 

reflecting the case of the dynamic absorber obtained for the case of random excitation are 

superimposed. It appears that the optimal natural frequency of dynamic absorber is exactly the 

same for both types of excitations (see Figure 3.22b). However, the optimal loss factor is 

slightly different, as shown in Figure 3.22a. 

Similarly, using the traditional design [13] for the PCB application under swept-sine 

excitation, as a result, Figure 3.23 shows the peak relative deflection on the value of mass ratio 

(see the curve labelled as Traditional optimal design) also the novel optimal curves from 

Figure 3.21 is superimposed for reference. As can be clearly seen the traditional optimal 

dynamic absorber design does not gives any better results as compared to the above novel 

optimal ones at any given mass ratio, see appropriate curve in Figure 3.23 for reference. 

Regarding to the traditional design, 30% mass ratio gives a lowest value of peak deflection, 

275 f!m and it seems to be very sensitive as the mass ratio increased. 
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However, the aim of this study is to design a single dynamic absorber for both wide-band 

random and swept-sine excitations, as shown from the novel optimal approach, the chosen 

Q 
optimal dynamic absorber (i.e. 7J = 65%, ~=106Hz and ( 2opt = 0.35) for random 

2:r 

excitation is also suitable for swept-sine excitation. To see the differences between the novel 

design and the traditional one therefore the traditional dynamic absorber (i.e. 7J = 0.45%, 
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n 
_2"f"._ = 149Hz and (;2opt = 0.23 5) that design for optimal overall relative deflection is chosen. 
2~ 

As a result, Figure 3.24 shows the comparison of relative deflection of the PCB. 
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Figure 3.24. Comparison of relative deflection in the case of traditional and novel design 

As here the novel optimal design produces the peak relative deflection, 190 J.lm whereas the 

traditional one produces 281 J.lm at the same excitation level. These huge differences give the 

design improvement by 32% whereas there is only 5% improvement in term of overall 

deflection under random vibration. Although, swept-sine is not critical factor for the PCB 

application, however, as here we demonstrate a better performance can be achieved using 

novel design. 

3.3.2 Sensitivity analysis 

Similar to Section 3.2.3, the sensitivity analysis was carried out. For this purpose the mass 

ratios were fixed at values of 65% and 35% respectively. Figure 3.25a shows the 

corresponding optimal loss factors 0.35 and 0.267 as being fixed, whilst the value of the 

natural frequency varies from 50 Hz to 200 Hz. 

Figure 3.25b shows the same mass ratios of 35% and 65% with correspondent optimal natural 

frequencies I 06 Hz and 144 Hz are fixed, whilst the loss factor varies from 0 to 1. 
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From sensitivity analysis in Figure 3.25, a reasonably small variation of the loss factor and 

natural frequency around their optimal values would have little impact on the peak deflection 

ofthePCB. 
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Figure 3.26. Dynamic response of original and ruggedized PCB 

Figure 3.26 illustrates the dynamic response of the dynamically ruggedized PCB, where the 

dynamic absorber with the loss factor of 0.35, natural frequency of I 06 Hz and mass ratio of 

65%, yields 24-fold vibration suppression at resonance as compared with original design 

(from 46171-!m to 190 11m). 

In the same figure, the dynamic absorber with the mass ratio of 35%, natural frequency 144 

Hz and loss factor 0.29 yields 22-fold vibration suppression at resonance as compared with 

original design (from 4617 11m to 205 11m). It appears that the peak deflection of the 

ruggedized PCB has little impact on the selection of mass ratio between 35% and 65%. 

3.3.3 Numerical simulation 

As in random vibration study, the numerical simulation is carried for swept-sine excitation. 

The Simulink model is identical to that model of random vibration, however, in this model the 

random excitation (combination of Random Number and Analog Filter Design) is now 

replaced by harmonic excitation, the Swept-sine sub-system. It produces two signals, these 

are sinwt and coswt with a linearly increasing frequency w = w(t) = 2n:at, where a is sweep 

rate, Hz/s. This model also features a direct built-in signal processing, Statistics sub-system, 

this reduces the use of computational memory and the time being involved. The signal 

obtained via Statistics sub-system and instantly combined signal from Swept-sine sub

system could be either produced RMS value of peak-to-peak or the peak value of the 

fundamental harmonic process in frequency domain. In general, it would produce a 
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corresponding "live" envelope of the current time history response. The signal can be recorded 

in workspace for comparison with its analytical solution. The structures of these sub-systems 

are shown in Figure 3.28. 
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There is a critical point in this numerical simulation, the value of sweep rate has great 

influence on the accuracy of the response signal. If the chosen value were high then the "beat 

phenomena" would occur. It would behave like a real system, especially in systems with low 

loss factor, the response signal will be distorted at the resonant frequency area. If the sweep 

rate is too small for the system with the high resonant frequency, then the simulation process 

will take time to complete each run and overload the computational memory. From this 

reason, a sweep rate of 1 Hz/s is chosen to sweep up from 0 Hz to 500 Hz. The whole 

integration routine is still used ode45 (Dormand-Prince) with auto variable step time. 

Figure 3.29a shows a typical time history as it was swept through the frequency range of216.5 

Hz to 217.5 Hz, about resonant frequency of the original PCB. As can been seen from the plot, 

the recorded response in 1 s required a lot of computational memory and normally Simulink is 

automatically stopped if the workspace is overloading. Therefore the direct built-in signal 

processing, Statistics sub-system was used at this instance in order to avoid these problems 

and at the same time, the RMS or FH signals are shown as primarily of interest for this swept

sine vibration. 

Figure 3.29b shows the superimposition of RMS and FH curve from simulation of the 

modified PCB. It clearly shows that the FH signal is the peak envelope of the time signal. 

Since the response of the system is linear where the positive and negative peak of the time 

signal response is symmetrical, then FH signal is equal to ..fi RMS signal at any excitation 

frequency. 
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Figure 3.30. Simulated absolute acceleration of original and ruggedized PCB 
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Figure 3.31. Simulated relative deflection of original and ruggedized PCB 

As would be expected, the response shape of numerical solution using Simulink is close to 

that theoretical solution (see theoretical curve from Figure 3.31 for reference), where the peak 

value is the same in both cases. 

The fatigue calculation base on the peak relative reduction ratio between the original and 

ruggedized PCB is vague compared to that of random vibration in which the expected life of 
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the ruggedized PCB is increased tremendously. Since, sine vibration environment does not 

normally exist in a true vibration environment where normal electronic equipment would be 

used, the value of an increased lifetime factor for the PCB is not calculated in this case. 

However, in this section we show that the dynamic absorber, which has been optimised to 

dynamically ruggedize the PCB for application under severe wide-band random vibration, is 

still suitable for effective suppression of the PCB's resonant responses under swept-sine 

excitation. The investigation was carried out both analytically and numerically which 

produced identical results. In addition, the built-in signal processing sub-system design for 

calculating the frequency response during numerical simulation can apply in future research, 

say Vibro-lmpact system with harmonic excitation. Finally, some potential problems 

associated with the use of this numerical integration have been identified. 

3.4 Shock 

Various types of shock pulses are often used to excite electronic assemblies to simulate 

transport environments, bench handling conditions, weapon application and operating 

environments. The marmer in which the various electronic components respond to these 

shocks will determine if the components will survive the environments. 

Shock is often defined as a rapid transfer of energy to a mechanical system, which results in a 

significant increase in stress, velocity, acceleration or displacement within the system. The 

time in which energy transfer takes place is usually related to resonant frequency of the system 

and excites many natural frequencies in a complex structure. Fatigue is usually not an 

important consideration in shock, unless a million or more stress cycles are involved. When 

less than a few thousand stress cycles are expected, fatigue stress concentrations can be 

ignored because they do not have great influence on how or when the structure will fail. 

Many different methods have been used to specify shock motion or its effect. The most 

popular method is pulse shock. Pulse shock deals with acceleration or displacement in the 

form of well-known shapes such as square wave, half sine wave and various triangular (saw

tooth) waves. Pulse shocks are easy to work with because of their mathematical simplicity and 

convenience. However, pulse shocks do not represent the real world. The true shock is seldom 

a simple pulse. Nevertheless, simple pulses are often effective in revealing weak areas in many 

different types of structures. 

Pulse shocks are often specified for electronics equipment, and many military specifications 

such as MIL-STD-81 0 which defines types of shock pulses and detailed methods for testing 

with these pulses. The half-sine shock pulse (200g peak@ 3ms) is the most common shock 

pulse used for testing almost any kind of commercial, industrial or military product. 
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The purpose of the simplified analysis is to try to simulate the response of the first mode 

where most of the damage normally occurs. Dynamic displacements, stresses and 

accelerations are usually maximum under these conditions. Therefore, it is necessary to 

analyse how single-mode PCB responds to shock pulse. 

The dynamic model given in Figure 3.0 cannot be solved in a closed form for shock load, even 

if simplified by an excluding dynamic absorber. However, a numerical solution is possible in 

all cases. The simulation model from Figure 3.13 is reapplied with custom design of the half

sine shock sub-system in which it is required to generate a single shock pulse. In this design, a 

Sine Wave block would produce a pure single frequency excitation, n/0.003 radls at 

amplitude of 200 g for the entire simulation process, therefore a step block (step down 0.003 

s) is designed in a manner to capture a first single pulse only. Figure 3.32 and 3.33 show the 

detail of this design. 
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Figure 3.32. Custom design for half-sine shock 
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Figure 3.33. Simulink diagram for shock excitation 

The numerical solution approach entails a laborious task to find a possible optimal dynamic 

absorber in which there are many possible combinations of natural frequency, loss factor and 

mass ratio. Also, type of shock and its duration are not always the same in nature, therefore 

finding an independent optimal parameter set for the dynamic absorber is excluded from this 

investigation. Section 3.2 and 3.3 presented a new vibration protection of PCB, a wide-band 

dynamic absorber was studied in both analytical and numerical for random and sine vibration. 

It shows that the chosen optimal tuned dynamic absorber is suitable for both applications. To 

complete this study, this section examines further the influence of dynamic absorber mounted 

on PCB subjected to a shock test with the primary concern of peak absolute acceleration, 

overall relative deflection and time settling. For this reason, the recommend half-sine shock 

pulse (200g peak@ 3ms) and the optimal dynamic absorber designed for random vibration are 

implemented in this numerical simulation: 

77 = 65%, 
0

''P' =106Hz and t;,,P, = 035 , 
2tr 
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Figure 3.34. Shock response of original and ruggedized PCB (TJ=65%) 

Figure 3.34 shows the superimposed time history of PCB response with and without an 

optimal dynamic absorber. In terms of peak absolute acceleration, the ruggedized PCB 

response shows its reduction ratio of 18% compared to its original design whereas the peak 

relative deflection is deteriorated by I 0%. However, in terms of overall response and vibration 

time settling, both absolute acceleration and relative deflection show a significant 

improvement. The evidence is clearly shown with appropriate labels in Figure 3.34. 
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Figure 3.35. Shock response of original and ruggedized PCB (T\=35%) 

Figure 3.35 shows the results of simulation for mass ratio of 17 = 35% (optimal dynamic 

absorber that designed for random vibration); the condition of improvement is almost the same 

from the case of mass ratio 17 = 65% with its corresponding optimal parameters. 

The above simulation model is designed for the half-sine shock test for studying the effect of a 

dynamic absorber mounted on the PCB, such a design shows dynamic response in a 
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qualitative result. Using this model, the optimal dynamic absorber can be found if a specific 

shock profile in nature is known. In this study, we show that the optimal dynamic absorber 

designed for random vibration is still capable of suppressing vibration of the PCB per MIL

STD shock test. 

3.5 Concluding remarks 

:? A new optimisation novel has been developed for the single-mode PCB with dynamic 

absorber for random vibration. The optimal mass of dynamic absorber is 65% as compared 

with the effective mass, 90 gr of the PCB where its actual mass is 175.5 gr. 

:? The optimal dynamic absorber with 35% mass ratio is also provided a similar performance 

as compared to 65% mass ratio. However, this gives 46% mass ratio advantage. 

:? The optimal dynamic absorber chosen for random vibration is suitable for vibration 

suppression of PCB in sine vibration and shock, and it has a better performance than 

traditional one in term of relative deflection. 

Random vibration Swept-sine vibration 

Overall absolute Overall relative Peak relative 

acceleration deflection deletion 

Original response 51.10gRMS 271.5 J.Lm RMS 4617 J.lm 

With traditional 10.1 g RMS 69.5 Jlm RMS 281 J.lm 
optimal absorber 

With novel optimal 10. 1 g RMS 65.9 Jlm RMS 190 J.lm 
absorber 

Design improvement 0% 5% 32% 

Table 3.1. Comparison results in the case of novel and traditional designs 

:? Sensitivity analysis was carried out corresponding to its optimal values. It shows that a 

small variation of dynamic absorber has little effect on optimal dynamic absorber design 

:? The designed MS®Excel worksheet and its companion Solver allow instant access to find 

optimal parameters set of the dynamic absorber for both random and swept-sine vibration 

without being too time-consuming and fully supported from the numerical simulation. For 

shock loading, the analytical study was substituted by a numerical solution due to 

complexity time response of the combined system. 



:l> The method of fatigue analysis using a simple cycles technique was numerically studied 

which indicated that the endurance of the ruggedized PCB was improved compared to its 

conventional approach, say overall response 

:l> The Simulink model allowed an accurate prediction of the dynamic behaviour of the 

original and ruggedized PCB under extreme conditions. As in any simulation, this model 

provides definite advantages such as predicting fatigue failure of the PCB during the early 

design stage, repeatable quick and inexpensive numerical testing before carry out actual 

test. 

:l> From the unique results of the numerical solution, this indicates that Matlab/Simulink can 

be implemented to study nonlinear vibration control of the PCB as mentioned in Chapter I. 



Chapter 4 

4.0 Full-mode model of PCB with dynamic absorber attached 

From experiment, the frequency response function of the actual PCB indicates the presence of 

higher modes, although it was approximated as the SDOF system mainly for mathematical 

simplicity. This type of analysis yields fast results, but accuracy is reduced, therefore the 

above optimised dynamic absorber might not be optimal in a very general sense. The accuracy 

of analysis may be improved considerably by using the full-mode model ofPCB. 

This section deals with the new modal theory developed for the full-mode approximation. The 

methodology of the full-mode approximation is based on FRF of the primary system (PCB) 

obtained experimentally as well as the analytical approximation of the secondary system 

(dynamic absorber). This novel theory has coalesced of both experimentally and analytically 

obtained information, which makes it more accurate. Additionally, using this technique to 

analyse the dynamic response of the plate-wise structure like the PCB with multiple resonant 

frequencies, one must keep in mind these factors: 

~ The influence of optimal dynamic absorber would not only suppress the resonant 

frequency where it is tuned but almost all neighbouring resonances of the full-mode model 

of PCB would also be influenced as long as the dynamic absorber was not mounted in the 

node point 

~ The process of designing an optimal dynamic absorber is directly involved with 

experimental FRFs in which the modal parameters of the PCB are no longer required, 

therefore the methods of determining effective mass and parameter estimation may not be 

needed 

~ This type of analysis not only allows the study of the influence of dynamic absorbers 

where they are attached but it also allows the study of the dynamic response of the entire 

PCB if necessary 

~ Traditional methods have failed to predict the actual FRFs of the PCB therefore the degree 

of accuracy in designing an optimal dynamic absorber is entirely relies on the measured 

data and linearity of the original PCB. 

Designing an optimal dynamic absorber at the point where it is located may not give optimal 

response for different areas on the PCB. Therefore in this approach, we still accommodate a 

single dynamic absorber in which the major work would be carried out in the area where the 

relative deflection is assumed to be maximum. Similar to that single-mode approximation, the 

optimal dynamic absorber design is independently investigated for random, swept-sine and 
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shock application. Additionally, we attempt to find optimal performance for different 

observation points on the PCB. 

4.1 Mathematical model 

The primary limitation of the single-mode analysis is its single point measurement whereas all 

point measurements on the plate-wise structure of the PCB can be made which lead to unfair 

agreement in designing an optimal response. To narrow down the differences between them, 

in the improved approach, the dynamic properties of the original PCB are given through the 

universal absolute transfer function, T,(y 
0
,A

0
,s), and local receptance, H(y 

0
,A

0
,s), in the 

point of observation and in the point (y 0 ,A
0

) where the dynamic absorber should be attached, 

respectively. The corresponding frequency response functions are as follows; T,(y
0
,A

0
,jm) 

is the complex universal absolute transmissibility and H(y
0
,A

0
,jm) is the local receptance of 

the original PCB. These data may be directly obtained from the experiment as shown in 

Chapter 2. 

'*gjy(t) 'ti 1fy(t) 

Figure 4.0. Dynamic model of generic PCB and with attached dynamic absorber 

Figure 4.0 shows the schematic model of such a combined system. The equation of motion for 

the primary system, using operator method and superposition principle takes the form [ 40]: 

(4.0) 

Equation 4.0 reflects the fact that the motion of the primary system is due to the base 

excitation (first term in the right-hand side of the equation) and due to the force of reaction of 

the dynamic absorber (second add-end in the right-hand side of the equation). 

For the secondary system, we have 

(4.1) 



Equation ( 4.1) reflects the fact that the motion of dynamic absorber is due to the motion of its 

attachment. Substituting Equation (4.1) into (4.0) yields an absolute transfer function of the 

combined system: 

T ( A s) =XI (y .,A.o,s) 
a y, , Y(s) (4.2) 2 • 

1 
rn,_s H(y •• A-.,s)(c2s+ k2 ) 

+ 2 
rn,.s + c2s + k2 

The formal substitution, s = j (() , yields universal absolute transmissibility of the combined 

system: 

T-( ' . ) T,(y.,A..,j((J) 
a r 0 'A o 'j (() = ----c;2----''-"-''-'-c:-"'-'--'---- • 

1 111,.(() (c2j((J + k2) H( A, . ) 
2 • k r., .,J(() -m,_(() + C2j((J + 2 

(4.3) 

The corresponding universal relative transmissibility can be calculated using Equation 3.5. 

From Equation 4.3, at the antiresonant frequency of the original system, as 

H(y 
0
,A

0
,j((J) ~ 0, 'f;,(y 0 ,A

0
,j((J) ~ T,(y 

0
, A

0
,j((J). This means that for any value of mass, 

damping and stiffness of the dynamic absorber, the antiresonant notches of original system 

would not be altered. 

At the same time, the damped dynamic absorber suppresses the resonant peaks of the even 

undamped original system if it is not mounted in the node point. At resonant frequencies of the 

original undamped system, (() = (() ,., , the transmissibility becomes infinite, 

I;,(y 0 ,A0 ,j((J)i,,=,"' ~ oo. From the general theory oflinear systems, receptance and absolute 

transmissibility show the same resonant frequencies. Hence, at resonant frequencies the 

receptance also becomes infinite, H(y 0 ,A
0
,j((J)i,=.,., ~oo. Since the term 

111,.(()2(c2j((J + k,) 
-111,.(()2 + c2j((J + k, 

in Equation 4.3, which reflects the presence of the damped dynamic 

absorber and cannot be zero or infinity, the ratio in Equation 4.3 and, therefore, the 

transmissibility of the combined system is finite. 

4.2 Random vibration 

4.2.1 Designing MS®Excel worksheet for minimising overall relative deflection 

This new design method is to combine the analytical approximation of dynamic absorber and 

the experimentally measured FRFs of the original PCB. A design for optimal performance 

using the conventional method [13] might not be possible, since the modal parameters of the 
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mode model PCB design is. Therefore the optimisation procedure has to be carried out in a 

similar manner as mentioned in Section 3.2. Figure 4.1 shows the snapshot of appropriate 

MS®Excel worksheet. The calculation is straightforward, all the data captured from 

experiment are directly exported into spreadsheet in terms of complex numbers (absolute 

transmissibility in column E and receptance in column F) against frequency (column C in Hz 

and column Din rad/s). Once the combined universal transmissibilities, column Hand column 

I are calculated using Equation 4.3 and 3.5 then a few necessary columns are added to 

compute the PSD response of the PCB. The design of this spreadsheet is less complicated than 

the single-mode approximation because there are fewer variables involved. However, there is 

a critical factor when considering this design technique, that is frequency resolution. Since the 

combined absolute transmissibility contains two sets of experimental data of the original PCB, 

therefore it is very important to verify the frequency resolution between them prior to 

experimental measurements or building a spreadsheet. 

Since the information on the inertia properties of the PCB is "embedded" in the local 

receptance, the appropriate worksheet contains the value for the dynamic absorber's mass 

instead of the mass ratio as above. However, the effective mass of PCB is still assumed to be 

90 gr for comparison purposes only whereas the actual mass of the PCB is 175.5 gr. 
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Figure 4.2a shows the superimposed PSD of relative deflection at different mass ratios and 

optimised dynamic absorber. The peak value of PSD of relative deflection is reduced 

significantly as mass ratio is increased. However, the peak value itself is not important for 

random vibration application, since the area under the curve (overall response) is critical. 

Figure 4.2b highlights the results of optimisation for full-mode model compared with that 

carried out for the single-mode approximation ofPCB. 

As a result of the optimisation procedure, the optimal mass is 59 gr. The value produces a 

mass ratio close to 65% (relative to 90 gr), which yields the lowest overall relative deflection 

77.8 11m RMS. However, there is a significant difference of optimal overall deflection as 

compared to a single-mode approximation due to the contribution of higher frequency 

components. In this case, the overall deflection of the original full-mode model is 312 f.!m 

RMS. This yields a reduction ratio of 4.0, which is only slightly lower when compared to 

single-mode approximation. 

From Figure 4.2 it is clear that the accuracy of the mass factor has relatively little effect on the 

response of the system. With a mass factor ranging from 35% to 100%, the response only 

varies by 3 11m RMS. This means that the dynamic absorber's mass does not have to be 

exactly optimal to still achieve the desired result. 
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Figure 4.3 shows the dependence of the optimal loss factor and natural frequency of the 

dynamic absorber at different mass ratios for the full-mode model compared to that single

mode approximation of PCB, the difference is small. With reference to this figure, two 

dynamic absorbers with their optimal parameters are chosen: 

:» At mass ratio of 65%, the optimal natural frequency and optimal loss factor are found to be 

100 Hz and 0.4, respectively; 
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:» At mass ratio of 35%, the optimal natural frequency and optimal loss factor are found to be 

144 Hz and 0.29, respectively. 

The above mass ratios are calculated with reference to the effective mass of the PCB (90 gr). 

Based on the actual mass of the PCB (175.5 gr) both dynamic absorbers would produce an 

actual mass ratio of 18% and 30%, respectively. Again, these are still miniature vibration 

control devices compared to all means of vibration protections of PCB. If they were compact 

enough then only a small amount of room on the PCB is required to accommodate them. 

4.2.2 Sensitivity analysis 

The sensitivity analysis is carried out in the same manner as mentioned in Section 3.2.2. 

Obviously, the optimal loss factor, 0.4 and optimal mass ratio, 65% are fixed as is the mass 

ratio, 35% with its optimal loss factor 0.29 whilst the natural frequency is varied in the range 

from 50 to 200 Hz. The characteristics of the behaviour are shown in Figure 4.4a and 4.4b, the 

sensitivity analysis of single-mode approximation is superimposed for reference. 
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Similarly, Figure 4.4c and 4.4d show the variation of overall response when the loss factor is 

varied from 0 to 1 for the mass ratio of35% and 65% with their corresponding optimal natural 

frequency, respectively also sensitivity analysis of single-mode is shown for reference. 
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Figure 4.5. Dynamic response of original and ruggedized PCB 

Figure 4.5 shows the superimposed dynamic responses of the PCB with dynamic ruggedizer 

optimised in a single-mode approximation (overall deflection 65.8 J.lm RMS) and full-mode 



model (overall deflection 77.8 jliU RMS). The dynamic response of the original PCB is also 

shown for reference. From Figure 4.5, the influence of the dynamic absorber is that almost all 

resonances of the original PCB are suppressed significantly, while the antiresonant notches 

remain practically unaffected, as theoretically predicted above. 

Figure 4.6 summaries the result of findings in both single-mode and full-mode approximation 

using the traditional approach and the novel ones. Since the modal parameters of primary 

system is not presented, for the full-mode approximation using the traditional approach where 

the dynamic properties of the absorber is calculated with to reference (and m1 = 90 gr and 

0 ;{1!" = 216.25 Hz) as they were used in the single mode approximation. As can be seen 

again, the novel approaches produce a better result than the traditional one at a higher value of 

mass ratio with respect to the case of single-mode and full-mode model approximation. It 

should be noted that in this figure the curve labelled as Full-mode model (traditional 

optimal design), at the value of mass ratio, 45% it also produces a lowest value of relative 

deflection 83 Jlm RMS which is about 5J.1m RMS higher than that of the novel one (77.8 jliU 

RMS) with respect to its optimal mass ratio, 65%, see the curve labelled as Full-mode 

model (optimal design) in which the novel approach give an improvement by 5.4% 

compared to the traditional one. 
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Keeping in mind the aim of this work is to design an optimal dynamic absorber to suppress the 

over relative deflection of the PCB. In Chapter 2, the work was focused mainly on the 



comparison of overall relative deflection under random vibration between the novel technique 

and the traditional one in the single-mode approximation, as shown, the traditional optimal 

design provides the same performance than novel one in terms of overall absolute acceleration 

where the dynamic absorbers were chosen to optimise the overall relative deflection. 

However, the studied mathematical model was insufficient to reflect on the true response of 

the PCB in term of absolution acceleration due to the presence of higher mode, therefore, it 

was unfair at that stage to compare the performance between the traditional and novel design. 

Since the mathematical full-mode model of PCB with attached dynamic absorber is presented 

in this study, it is an opportunity to justify the performance between them further. 

For "fair play", the parameters of dynamic absorber design for the optimal overall relative 

deflection of the full-mode model PCB are considered. As a result, Figure 4.7 compares the 

overall absolute acceleration on the value of mass ratio between the traditional and novel 

design. At a lower value mass ratio the performance between them are almost the same. The 

novel design shows its superior performance as the mass ratio increased and no optimal mass 

ratio is shown for both cases. 
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To justify further, Figure 4.8 shows the superimposed power PSD of absolute acceleration of 

the original and modified PCB with the influence between optimal dynamic absorbers (see the 

curve with appropriate label) whereas they are chosen from the case of designing the optimal 

overall relative deflection i.e. 



traditional optimal dynamic absorber; 1lopt = 45%, O.>o/{1& =149Hz and !;2opt = 0.235 

novel optimal dynamic absorber; 
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Figure 4.8. Comparison of PSD of absolute acceleration in the case of traditional and novel design 

In term of reduction ratio as compared to the original PCB response (68.9 g RMS), the 

traditional design (26.2 g RMS) gives a factor of 2.3 whereas the novel one (23.6 g RMS) 

gives a factor of2.6 in which the performance is improved by 12%. This improvement factor 

would be increased considerably as compared to the traditional approach if the dynamic 

absorber were designed for optimal overall absolute acceleration, however, it is not an 

intention of this study. 

The above study shows that the absorber tuned for the optimal overall relative is only able to 

suppress the overall absolute acceleration by factor of 2.6 whereas for the overall relative 

deflection yields 4-fold vibration suppression. However, at will, the above worksheet and its 

Solver can be used to tune for an universal dynamic absorber which would be suitable for both 

overall relative deflection and absolute acceleration i.e. the same reduction ratio for both 

applications with respect to its original response. 

In a general conclusion, the novel optimal dynamic absorber provides a better performance 

than the traditional one in terms of overall relative deflection and absolute acceleration under 

random vibration. The improvement seems to be small in this particular application, however, 

using a common approach for a specific application, as shown, is not the case in this study. 



4.2.3 Additional measurement 

The following analysis will reflect on the effect of the dynamic absorber on different 

observation points. In this approach, the dynamic properties of the original PCB are given 

again through the universal absolute transfer function, T,(y,A.,s) at any observation y,A. and 

transient receptance, H(y,y
0
;A,A

0
;s) of that observation to the point y

0
,A0 where the 

dynamic absorber is mounted, respectively. Taking into account the influence of the combined 

universal absolute transfer function, 't;,(y 
0
,A

0
,s) at the dynamic absorber's attachment point. 

y(t) 

Figure 4.9. Dynamic model of generic PCB and with attached dynamic absorber 

Figure 4.9 shows the schematic model of such a combined system which is similar to that in 

Figure 4.0. A new co-ordinate (y,A.) marked on the PCB to analyse the response of this point 

in relation with the point where the dynamic absorber is mounted. Equation of motion for the 

primary system, using operator method and superposition principle takes the form of [ 40]: 

(4.4) 

for the secondary system: (4.5) 

or (4.6) 

The absolute motion of the primary system at co-ordinate, y o ,A-0 has the form: 

(4.7) 

Substituting Equation 4. 7 and 4.6 into Equation 4.4 yields an absolute transfer function of the 

combined system: 



- 1 X,(y,A-,s) T( 1 ) T,(y ,.IL,S) = = a y ,.IL,S 
Y(s) 

-':11-

(4.8) 

The formal substitution, s = jm, yields universal absolute transmissibility of the combined 

system: 

'f.(y,A-,jm) = T,(y,A,j(l)) (4.9) 

The corresponding universal relative transmissibility might be calculated using Equation 3.5. 

Equation 4.9 describes, in general, for the combined absolute transmissibility 'f.(y,A,,j(l)) at 

observation point,y,A, on the PCB can be calculated from the original universal absolute 

transmissibility, T,(y 
0

,A
0
,jm)and local receptance, H

0
(Y 

0
,A

0
,jOJ)at the point of dynamic 

absorber is mounted in connection with transient receptance H(y ,y 
0
;A,A

0
;jm). 

Equation 4.9 can be verified by assuming the combined universal absolute transmissibility at 

the observation point is in the same co-ordinate with the dynamic absorber, y 
0
,A

0
, which is: 

(4.10) 

Expressing the right hand side of Equation 4.10 in a common denominator and simplifying, 

gives: 

(4.11) 

The expression of Equation 4.11 is identical to that given by Equation 4.3. 

Similarly, the calculation procedure was used MS®Excel. Figure 4.10 describes the process 

being carried out with the experimentally measured data. The measured absolute 

transmissibility and local receptance of observation point @ are placed in column E and F 

versus frequency, respectively, as a reference worksheet. The absolute transmissibility and 

transient receptance of the corresponding observation point are directly imported to column G 

and column H, respectively. Once the combined transmissibility using Equation 4.9 is 

calculated, then all standard calculation procedure is carried out identical to that in Figure 4.1 

to produce the overall relative deflection value. 
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simultaneously altering the natural frequency, loss factor and mass of the dynamic absorber. 

This optimising technique would allow a reduced workload, although, the calculation for these 

additional observation points is not as critical as for observation point @,where the deflection 

of the PCB is assumed maximum. 

Optimal parameters Observation Observation Observation Observation 
_rJ_oint <D point a:> point® point@ 

Mass ratio 57% 92% 78% 72% 

Natural frequency, Hz 115.45 91.22 93.13 100.03 

Loss Factor 0.318 0.406 0.412 0.414 

Table 4.0. Optimal parameters 

Table 4.0 highlights the independent optimal parameters of the dynamic absorber for each 

observation point, bearing in mind that the attached location of the dynamic absorber is still at 

observation point @, and the effective mass of the PCB is still assumed to be 90 gr for 

comparison purpose only. As a result of optimising; the optimal mass ratio, loss factor and 

frequency are different from each other even though these points are observed symmetrically 

from the origin of the PCB. This can be explained from the complex plate-wise structure of 

the PCB and designed location of the dynamic absorber. 

Overall relative deflection Observation Observation Observation Observation 
point <D point a:> point® point@ 

Original response, !.lm RMS 234.43 260.82 301.31 305.45 

Local design response, f.lm 56.50 64.37 70.98 71.99 
RMS 

Universal design response, 56.84 65.74 71.42 72.58 
f.lm RMS 

Table 4.1. Optimal response 

Table 4. I highlights the overall relative deflection of each observation point, the influence of 

an universal dynamic absorber ( 17 = 65%, !.12 = 100 Hz, .;2 = 0.4) design shows little difference 

in terms of reduction ratio compared to local design. This table also shows that the overall 

relative deflection of these observation points is not as critical as from observation point @, 

therefore, the analysis of these observation points under swept-sine and shock can be 

neglected. Besides, obtaining the full modal parameters for numerical simulation purposes 

seems to be impossible in this case. 



1.E+05 

~ 1.E+03 

ii 
"-
~ ii 1.E+01 

~ 
'0 

.~ 
1ii 1.E-01 
~ 
0 
0 

~ 1.E-03 

10 

With universal optimal absorber 

~ 
----:7"'/:,____-~ 

With local ~a! absorber 

100 Frequency, Hz 1000 

a) Observation point <D 

10000 

1.E+05 r-----------------------------, 

;E 1.E+03 

~~ 

" .Q 1.E+01 -g 
~ 
'0 

j 
i!! 
0 
0 
(/) 

1.E-01 

"- 1.E-03 

10 

With local optimal absorber --------- Original 

100 Frequency, Hz 1000 10000 

c) Observation point@ 

1.E+05 ~----------------------------, 

~ 1.E+03 
M-
E 
"-
c' 
0 g 1.E+01 

~ 
'0 

~ 
~ 
0 
0 

~ 

1.E-01 

1.E-03 

1.E-05 

1.E+05 

;E 1.E+03 

"i= 
"-

" 0 ii 1.E+01 

~ 
'0 

j 1.E-01 
i!! 
0 
0 

~ 1.E-03 

With local optimal absorber 
Original 

/ 

10 100 Frequency, Hz 1000 10000 

b) Observation point @ 

---- Original 

With local optimal absorber 

\ 

10 100 Frequency, Hz 1000 10000 

d) Observation point @) 

Figure 4.11. Dynamic response of original and ruggedized PCB at different observation point 
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Figure 4.11 shows the optimal dynamic response of the corresponding observation point. In 

these figures, the curve labelled as With local optimal dynamic absorber to represent the 

local optimal response design in accompany with the localised optimal parameters set of the 

dynamic absorber. The curve labelled as With universal optimal dynamic absorber 

where the optimal parameters of the dynamic absorber are chosen as: ~ = 100 Hz, .;z =0.4 

and 7F6S%, the differences between them are really small. Since the overall relative 

deflection of the PCB is dictated by its first resonant frequency and its resonant peaks at high 

frequency range are not particularly strong at those observation points. Therefore, the major 

influence of the optimal dynamic absorber took place at the first mode as is clearly shown 

with the reference of original response curve. 

The analysis of full-mode model seems to be more practical as oppose to the single-mode 

approximation. However, the degree of accuracy still entirely depends on the experimental 

data and linearity of PCB and the dynamic absorber. 

4.2.4 Global curve-fitting of results 

The relative deflection at observation point @ is the primary concern for numerical 

simulation. As from analytical solutions, there are two critical transfer functions are required 

for practising with the dynamic absorber, namely, the universal absolute transmissibility and 

local receptance of the original PCB involved in a process of building a numerical model with 

full modal parameters. Since the PCB used for the experimental purposes is an off-the-shelf 

product, using Finite Element Analysis (FEA) to extract modal parameters (natural frequency, 

damping and form factor) might not be relevant. From the experimental results, the random 

excitation in the frequency range of 20-2000 Hz excites all critical resonances of the PCB. 

This causes all the modes to be activated and therefore, the response is, in general, the linear 

superposition of all modes which are activated by this input excitation. Figures 2.4 shows 

modes that are well separated and lightly damped. These types of modes can be approximated 

with SDOF fit for each mode [37], the technique of curve-fitting is similar to that in Section 

2.3.1. However, in this typical case, the universal absolute transmissibility of the PCB shows 

10 modes system which can be described by the following frequency domain representation of 

the system as 

(4.12) 

Here, El;is form factor, 0; is natural frequency and .;; is loss factor of the corresponding 

mode. 
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In this system, each mode poses 3 unknown variables, it is too obvious if a full-mode model 

curve-fitted is used to estimate parameters of this case, 10 modes, then the total of 30 

unknown parameters must be simultaneously identified during the curve-fitting process. 

However, the primary limitation of the Solver function is the number of variables in which it 

is set to perform. This means that fewer variables in the worksheet are the more accurate result 

that the Solver would produce and less time consuming. 

The accurate loss factor and form factor estimate are, in general more difficult to obtain than 

accurate frequency estimates. Loss factor is the most difficult parameter to estimate accurately 

from FRF measurements, and the form factor is often tightly coupled with the loss factor. That 

is, if the loss factor is in large error, the form factor estimate will be in large error even though 

the curve-fitting function closely matches the experimental data. 

These problems can be overcome by reducing the number of variables in the worksheet, this 

can be achieved by manually estimating the sequence natural frequency of each mode which 

corresponds to the experimental transmissibility. Also, properly guessed parameters of loss 

factor and form factor could reduce errors. 
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simultaneously altering the form factor and loss factor of all modes, subjected to constrain 

z:e, =I, [38]. 
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Figure 4.13. SDOF modal contribution 

Mode e Natural frequency, Hz 

Mode1 1.150 216.65 

Mode2 -0.150 438.67 

Mode3 -0.280 806.23 

Mode4 0.096 1132.78 

Mode5 0.103 1187.59 

Mode6 0.020 1310.59 

Mode? 0.010 1670.38 

Mode8 0.001 1767.56 

Mode9 0.020 1906.22 

Mode10 0.030 1983.12 

Table 4.2. SDOF modal parameters 

mode10 

1600 2000 

Loss factor 

0.0067 

0.0085 

0.0050 

0.0056 

0.0063 

0.0054 

0.0043 

0.0021 

0.0111 

0.0212 

Figure 4.13 and Table 4.2 review the results of each mode through the curve-fitting technique, 

as can be seen, the form factor of this complex structure can be either positive or negative 

which make up Le, = 1, this unity is very critical when considering numerical simulation. 
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These results have been used to create the graph of Figures 4.14 to more clearly illustrate what 

they mean as regards finding the closer match to experimental data. 
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Figure 4.14 shows the superimposition of curve-fitted and experimental transmissibility. As 

shown, a simple curve-fitting technique can be applied to extract all modal parameters for 

such a complex system such as PCB. 
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Since the natural frequency and loss factor of each mode have already been obtained and are 

ready for use as shown in Table 4.2. The design worksheet for receptance curve-fitting is the 

same as Figure 4.12 only involving Equation 4.13 

10 I 
H(jw)= L'¥, ( ' ') . 

id n, - (1) + 2 J w,;,n, 
(4.13) 

The task of the Solver is now set to match the curve-fitted and experimental local receptance 

by altering its form factors only. 

Mode 0 '¥ Natural frequency, Hz Loss factor 

Mode1 1.150 11.233 216.65 0.0067 

Mode2 -0.150 10.900 438.67 0.0085 

Mode3 -0.280 7.789 806.23 0.0050 

Mode4 0.096 2.789 1132.78 0.0056 

Mode5 0.103 4.556 1187.59 0.0063 

Mode6 0.020 1.011 1310.59 0.0054 

Mode? 0.010 0.789 1670.38 0.0043 

ModeS 0.001 0.578 1767.56 0.0021 

Mode9 0.020 0.356 1906.22 0.0111 

Mode10 0.030 0.356 1983.12 0.0212 

Table 4.3. SDOF modal parameters 

Table 4.3 shows the completed modal parameters from curve-fitted of both local receptance 

and absolute transmissibility. In this table, the value of 0 1 is different from '¥1 at their 

corresponding mode. These differences can be explained from different techniques of exciting 

the PCB and its mathematical expression [39]. 
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Figure 4.15. Local receptance 

The optimisation for full-mode model based on curve-fitted results could carry on using 

standard procedure as mentioned in Section 4.3.1. However, this could duplicate work due to 

the fact that the mode shape of curve-fitted ones are almost the same as the experimental 

results. 
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4.2.5 Numerical simulation 

The aim of this numerical simulation is to calculate the fatigue level using the Matlab-Script 

from Figure 3.12 of Section 3.2.3 for full-mode model of PCB. Since the program file is 

expressed in terms of relative motion, a formal substitution z1 = x1 - y, the relative motion for 

the primary system and z2 = x2 - y, the relative motion for secondary system into Equation 

4.0 and 4.1 are required. This yields for the secondary system: 

(4.14) 

and for the primary system 

z1 - s2 H(s)[ c2(z1 - z2) + k2(z1 - z2)] = T,(s)ji- ji (4.15) 

Here, H(s)is local receptance transfer function and T
0
(s) is universal absolute transfer 

function of the original PCB. 

Equation 4.14 and 4.15 are manipulated for simulation model as shown in Figure 4.16. This 

model contains 10 separated absolute transfer functions, Ta .(s)and 10 separated accelerance .. 
transfer functions, s 2 H 1(s) along with their corresponding form factors which are 

conveniently grouped in Original PCB sub-system. As for the single-mode PCB Simulink 

model, all the standard procedures are carried out to produce the corresponding signal for 

further analysis. Similarly, this simulation model can be either subjected to swept-sine or 

shock excitation at will. 

For convenience of using Simulink's transfer function, the modal parameters of the PCB per 

Equation 4.12 and 4.13 are now expressed in terms of system parameters (stiffness, damping 

and mass), i.e. 

universal absolute transfer function 

10 k 
T,(s) = 2)> ~~s+ ' , 

l=t ms +c1s+k1 

(4.17) 

and acclerance transfer function 

to 
8

2 

s2 H(s) = l:m'f'1 • 

l=t m? +c1s+k1 

(4.18) 

Here, we use m = 90 gr to calculate c and k from its modal parameters for all the modes. In 

terms of SDOF modal contribution, the value of m does not have any effect on the dynamic 

properties of the PCB whereas its form factors are of greater importance. The corresponding 

parameters of each mode are calculated and installed in Matlab m-file. 
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Figure 4.16. Simulink diagram for random vibration excitation 
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Figure 4.17. Sub-system Simulink block diagram of original PCB 

The base excitation level is still assumed to be 14g RMS, where the sub-system hock diagram 

of random excitation is identical to that Figure 3.14a. As a result of simulation, the plot of 

time history of the original system is still maximum at the typical time range from 5.5 s to 7 s 



in which the response patterns are almost the same as the simulation result of the single-mode 

model. However, in this case, the time history of the absolute acceleration response is denser 

in both original and ruggedized PCB compared to single-mode approximation (see Figure 4.18 

and 4.19 with appropriate label). This seems to be a more realistic approach. 

5.5 6 Time. s 6.5 7 

a) Absolute acceleration 

Time, s 

b) Relative deflection 

Figure 4.18. Simulated time history response of original and ruggedized PCB (1]=35%) 
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Figure 4.19. Simulated time history response of original and ruggedized PCB (TJ=65%) 

Based on these results, the parameters of the dynamic absorber are designed for optimal 

performance in terms of overall absolute acceleration for the single-mode approximation 

might not be as closed as the optimal design for the full-mode model of PCB. For a better 
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result of prediction or simulation using a dynamic absorber in vibration control, it is necessary 

not to force the system to be as simple as possible. 

Nonetheless, a simple verification check is carried out on the above relative results. This is 

done by comparing the predicted reduction factor of the overall response from the simulation 

model through the general methodology developed in Section 3 .2.3 for different dynamic 

absorber's mass ratios. Table 4.4 shows the simulation results together with their theoretical 

calculation for both single-mode and full-mode models 

Type of Overall relative Overall relative Increase life factor Increase life factor 
prediction deflection, 1-1m deflection, 1-1m (Overall (Simple cycles 

RMS, RMS, technique), times technique), times 
(Analytical), (Simulation) 

Single- Full- Single- Full- Single- Full- Single- Full-
mode mode mode mode mode mode mode mode 

Original 271.5 312 271.9 314 

35% mass ratio 68.1 79.8 68.3 80.2 6,982 5,968 7,820 7,095 

65% mass ratio 65.9 77.8 65.5 77.5 8,615 7,249 10,030 9,216 

Table 4.4. Comparison of the increased life factor between the simple cycle and overall technique 

The transformation of time signal to frequency domain for both absolute acceleration and 

relative are further carried out for the above simulation results. For a better match with 

analytical results, it is necessary to compensate the response signal through the "roughness" 

input excitation. Using tfe (input-signal, output-signal, FFTs, Fs, window, 

Noverleap) command from Matlab, the absolute transmissibility is obtained as shown in 

Figure 4.20. Since the dynamic characteristic of the system is said to be linear, then the PSD 

may be calculated using the appropriate expression to produce the desired curve. Figure 4.21 

and 4.22 show the PSD of absolute acceleration and relative deflection of the original and 

ruggedized PCB, respectively. As can be seen again, the influence of the dynamic absorber 

suppresses almost all resonances of the original PCB, while the antiresonant notches remain 

practically unaffected. 

In general these "perfect" PSD curves can be directly obtained from the analytical solution, 

providing modal parameters. However, here, we demonstrate the resourcefulness of 

Matlab/Simulink and the technique of building a MDOF system using transfer functions. The 

obtained results from numerical simulations are in time domain and hence frequency domain 

in a reasonable time without mathematical complication. This package obviously shows its 

superiority for studying any dynamic systems. 
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Figure 4.20. Simulated absolute transmissibility of original and ruggedized PCB 
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Figure 4.21. Simulated PSD of absolute acceleration of original and ruggedized PCB 
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Figure 4.22. Simulated PSD of relative deflection of original and ruggedized PCB 
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Figure 4.23. Comparison dynamic response ofruggedized PCB (11=35%) 
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Figure 4.24. Comparison dynamic response ofruggedized PCB (1']=65%) 

Nonetheless, the simulation results can be justified by comparing the results obtained 

analytically. As shown in Figure 4.23 and 4.24 the close match results are reflected on the 

accurate results of the curve-fitting procedure. This indicates that using numerical simulations 

and hence fatigue analysis for the full-mode PCB, one must keep in mind the initial design 

stage, that is the method of extracting modal parameters. 

4.3 Sine vibration 

4.3.1 Designing MS®Excel worksheet for minimising peak relative deflection 

The proceeding section deals with the optimal design of dynamic ruggedizer where the PCB 

was represented using the single-mode model. The application of the full-mode model gives 

more realistic results, especially when the frequency response function of the PCB contains 

essential high-frequency components. 

The spreadsheet in Figure 4.25 is set up based upon the measured data as used in Section 

4.3.1. Similarly, the MS®Excel Solver add-in is set to minimise the peak value calculated 

using Equation 3.11 by varying the natural frequency and loss factor of dynamic absorber at 

different mass ratios, where the input excitation is still assumed to be I 0 g. 
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Figure 4.26. Dynamic response of ruggedized PCB at different mass ratios 

Figure 4.26a highlights the relative deflection of the dynamically ruggedized PCB under 

swept-sine excitation where the dynamic absorber was optimised for the swept-sine excitation 

at different mass ratios. Again, in this figure the equal-peak response is shown at any mass 

ratio even the modal parameters of the PCB is not presented. This indicates the highly 

accuracy of MS®Excel Solver add-in for solving complex problem whereas the conventional 
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approaches may prove to be impossible. Figure 4.23b shows the relative deflection of the 

dynamically ruggedized PCB under swept-sine excitation where the dynamic absorber was 

optimised for the wide-band random excitation at different mass ratios. 
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Figure 4.27. Peak relative deflection of the PCB at different mass ratios 

Figure 4.27 shows the dependence of the minimised peak resonant response of the full-mode 

PCB in the swept-sine test on the mass ratio, where the dynamic absorber has been optimised 

for the swept-sine test (curve Swept-sine). For comparison, a similar dependence (curve 

Random) was obtained for the full-mode PCB with the dynamic absorber being optimised 

for the case of wide-band random excitation per Section 4.3.1. The departure obtained is 

reasonably small. 

Since the information about the inertia properties of the PCB is already imbedded in the 

appropriate complex receptance, the effective mass is assumed to be 90 gr for reference 

purpose only. As a result of the optimisation procedure, it is also found that there is no optimal 

mass ratio. 

From Figure 4.27, for the mass ratios greater than 65% (1] > 65%) the performance of the 

dynamic absorber could not be improved significantly. Hence, we can use a single design of 

dynamic absorber which suits practically equally well both cases of wide-band random and 

swept-sine excitation, where the optimal parameters of an dynamic absorber would be based 

on the results of Section 4.3 .1, namely: 
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02opl 
1J = 65%, --= I OOHz and ( 2opt = 0.40. 

2;r 

From Figure 4.27, the dynamic absorber with the above parameters yields the peak resonant 

deflection of the PCB to be 189 jlm in the specified swept-sine test instead of 175 Jlm, as 

compared to the case when the dynamic absorber is especially optimised for the case of the 

swept-sine test. However, this difference is reasonably small. 

Figure 4.28 shows the dependencies of the optimal natural frequency (a) and loss factor (b) of 

the dynamic absorber on mass ratio. In these figures, the corresponding curves reflecting the 

case of the dynamic absorber obtained for the case of random excitation are superimposed. It 

appears that the optimal natural frequency of the dynamic absorber is exactly the same for 

both types of excitations (see Figure 4.28a). However, the optimal loss factor is slightly 

different, as shown in Figure 4.28b. 

250 

N 2QQ 
I 

rf 
c 
(I) 

g. 150 
~ 
~ 
::> 

'" 100 c 
n; 
E a 
0 50 

0 
0 

\ 
Random 

0.2 0.4 0.6 0.8 1 

Mass ratio 

a) Optimal natural frequency of dynamic absorber at different mass ratios 



-LW-

0.8 

0.7 

0.6 
~ 

-§ 0.5 
~ 

Swept-~ 

"' "' .Q 0.4 
m 
E a o.3 
0 

0.2 Random 

0.1 

0 
0 0.2 0.4 0.6 0.8 1 

Mass ratio 

b) Optimal loss factor of dynamic absorber at different mass ratio 

Figure 4.28. Optimal parameters of dynamic absorber at different mass ratios 

From the above figures, a little difference in the performance of the dynamic absorber 

optimised for wide-band random and swept-sine vibration is found in the swept-sine test. 

Hence, the optimal dynamic absorber obtained from the optimal design random vibration 

would be fully adequate in swept-sine excitation. 

4.3.2 Sensitivity analysis 

The sensitivity analysis is carried out as in Section 4.2.2. For this purpose the mass ratios are 

fixed at values of 65% and 35%, respectively. 

Figure 4.29a shows, where the loss factors are also fixed at their optimal values, 0.4 and 0.29 

respectively where as their nature frequency varied from 50 to 200 Hz 

Figure 4.29b shows the dependence of the peak resonant response on the value of the loss 

factor of the dynamic absorber in the range from 0 to 1, where the natural frequencies are 

fixed at their optimal values, 100Hz and 144 Hz, respectively. 
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From Figure 4.29, a small departure of the dynamic absorber's parameters from their optimal 

values has little impact on the overall performance. 
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Figure 4.30. Dynamic response of original and ruggedized PCB 

Figure 4.30 shows the dynamic responses of the original PCB (curve Original) and those for 

the dynamically ruggedized PCB Wlder swept-sine test. The dynamic absorber with 35% mass 

ratio (curve labelled 77 = 35%) yields the peak relative deflection of the PCB of209 J.!m. The 

dynamic absorber with 65% mass ratio (curve labelled 77 = 65%) yields the peak relative 

deflection of the PCB of 189 1-1m. Compared with the peak relative deflection of the original 

PCB (4617 J.!ffi), the suppression ratios are 23 and 24 respectively. 

4.3.3 Numerical simulation 

Similarly, numerical simulation is carried for the full-mode model of PCB. This gave a closer 

look at analytical and numerical design and definitely, the reliability of the global curve-fitting 

technique can be further justified. The Simulink model from Figure 4.16 is implemented with 

appropriate Swept-sine sub-system and Statistics sub-system to produce FH value of 

relative deflection and absolute acceleration of the PCB. Figure 4.28 shows the details of 

design of this numerical solution. 
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Figure 4.31. Simulink diagram for swept-sine excitation 

For comparison purposes, the dynamic absorbers with their optimal parameters are chosen as: 

and 

77 = 65%, n,opt = 1OOHz and ~2opt = 0.40 
2:r 

n 
77=35% ~=144Hz and ~2opt =0.29, 

2:r 

which corresponds to 30% and 18% to the actual mass of the PCB (175.5 gr). 

The constant sweep rate is still used to be 1 Hzls and its amplitude is 1 Og, and all the 

necessary features of the integration procedure still remain the same for this numerical 

simulation. As a result of simulation, Figure 4.32 and 4.33 show the corresponding 

superimposed results of the original and ruggedized PCB (see appropriate label for reference). 
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Figure 4.33. Simulated relative deflection of original and ruggedized PCB 
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Figure 4.34. Comparison dynamic response of ruggedized PCB 

The results of peak relative deflection or general dynamic response of swept-sine vibration 

between analytical and numerical simulation in general are identical (see Figure 4.34). 

However, using Simulink alone to design optimal parameters of dynamic absorber would be a 

laborious task. For this reason, first, we used the advantages of MS®Excel and its Solver to 

design the optimal parameters set of dynamic absorber before practising a numerical 



simulation. In reality, Simulink is still regarded as the most powerful tool to solve many 

dynamic systems because of its capability of handling complex and nonlinear systems. In 

addition, it does not require solving complex mathematics only a simple set of equations of 

motion of a dynamic system are required, in context it produces "perfect" results in both time 

and frequency domains. The evidence was clearly shown in all our linear vibration studies. 

4.4 Shock 

Since the full-mode model of PCB has been developed for numerical simulation, this section 

is proceeding further by studying the dynamic response of the PCB subjected to half-sine 

shock pulse at 200g @ 3ms. Additionally, the following dynamic absorbers designed for 

random vibration were implemented in order to see their influence on the PCB, they are: 

and 

77 = 65% , 
02

opl = I OOHz and s 2opt = 0.40 
2:r 

n2opt 
77 = 35% --=144Hz and s2,P1 = 0.29 

2:r 

The simulation model is similar to that in Figure 4.16 with custom designed shock pulse being 

applied, Figure 4.35 shows detail of the model. In this numerical simulation, the primary 

concern is still peak absolute acceleration, settling time and overall relative deflection in time 

domain, therefore, all the necessary scope and workspace blocks are placed to capture the 

response signal. 
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Figure 4.35. Simulink diagram for shock excitation 
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Figure 4.36. Shock response of original and ruggedized PCB (65%mass ratio) 
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Figure 4.37. Shock response of original and ruggedized PCB (35% mass ratio) 

As a result of simulation, the dynamic behaviour of the full-mode PCB without or with 

optimal dynamic absorbers subjected to shock is almost similar to single-mode PCB (see 

Figure 3.34 and 3.35). The influence of optimal dynamic absorbers in this design still have a 

great impact on suppressing the vibration of the PCB in a shock environment. 
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4.5 Concluding remarks 

)> A new method has been developed for all point measurements on the full-mode PCB with 

the dynamic absorber based on measured FRFs. The optimising procedure was carried out 

using MS®Excel and its Solver which produced an optimal mass, 58.5 gr of dynamic 

absorber whereas the actual mass of the PCB is 175.5 gr which gives 30% mass ratio. 

)> For convenience, the effective mass of the PCB is assumed to be 90 gr which gives 65%, 

the same mass ratio compared to single-mode PCB design with a slight difference in 

optimal natural frequency and loss factor. 

)> The influence of this optimal dynamic absorber design shows all the locations of the PCB 

very close to their optimal response condition. 

)> The optimal dynamic absorber chosen for random vibration is again suitable for vibration 

suppression of PCB under sine vibration and shock. 

)> Sensitivity analysis was carried out corresponding to its optimal values. It shows that a 

small variation of dynamic absorber had a little effect on optimal dynamic absorber 

design. This means that under any operation conditions or qualification tests, the dynamic 

absorber would be one of the best candidates providing fail-safe vibration control of the 

PCB and was very simple to design. 

)> A numerical solution was developed to back up its analytical prediction even though it was 

an excessive work. However, the unique characteristics of the numerical model based on 

the actual dynamic properties of the PCB opens new opportunities for nonlinear analysis 

ofMODF system where the traditional approach might not be possible. 
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Chapter 5 

5.0 Impact dynamic absorber 

In this section we consider an application of strongly nonlinear - vibroimpact - dynamic 

absorber for the close control of dynamic response of the PCB under the action of different 

environmental excitations, namely: wide-band random vibration, swept sine vibration and 

shock. 

The behaviour of impact dynamic absorber is complex in nature. Using this technique to 

design an optimal performance for the PCB one must consider the critical parameters: 

restitution ratio, types of impacting (symmetrical or asymmetrical) and clearance. 

Furthermore, the degree of sensitivity will be involved on a number of linear parameters that 

introduced into the system despite the fact there is being problems in designing a real device 

and testing it. From this reason, the study of impact dynamic absorber will be considered of a 

loosened mass placed in a container which is then mounted upon the structure under treatment. 

The goals of the following analysis are: 

• Development of numerical approaches for optimal design of the vibroimpact dynamic 

absorber to suppress the dynamic response of the above PCB 

• Comparison of attainable performance delivered by the vibroimpact absorber with that 

delivered by the linear dynamic absorber considered above 

• Manufacturing and experimental testing of the optimal vibroimpact dynamic absorber. 

The numerical analysis will be based on the realistic model of visco-elastic impact developed 

in [20] and carried out in the Matlab/Simulink environment where the PCB will be represented 

using the above single-mode and full-mode approximations. 

5.1 Modelling ofvisco-elastic impact 

The mostly used model of vibroimpact interaction relies on the theory of momentary impact 

where the restitution ratio reflects the energy losses associated with impact. This approach, 

however, produces an infinite value for impact force and acceleration in the instance of 

collision and, therefore, is hardly applicable for numerical simulations. As an alternative, the 

experimentally proven [20] model of non-momentary visco-elastic impact is the most 

adequate choice for a systematically and computationally efficient way of determining the 

impact force and peak acceleration when the system comes in to contact with a stop or stops. 
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The model of a symmetrical impact shown in Figure 5.0 consists of a free mass, m. The 

movement of the mass is limited by the symmetrical visco-elastic stop which models 

schematically as parallel combination of spring, K and dashpot, C at a distance Ll from static 

equilibrium. 

V 

c c 
Figure 5.0. Dynamic model of visco-elastic impact 

The equation of motion takes the form: 

mi+<I>(x,x) =0 (5.0) 

where <I>(x,x) is threshold-type force of impact [20]: 

lC.:i: + K(lxl- ~) if lxl :2:: ~ and <I>(x,x) > 0) 
<I>(x,x) = 0 if lxl <:: ~ and <I>(x,x) <0 

0 if lxl:;; ~ 
(5.1) 

In accordance with equation of motion (5.0), the Simulink block diagram will be as shown in 

Figure 5.1. The lower loops on the grey background are details of the logical operation of the 

function, <I>(x,x) per (5.1). The upper and lower limit of the Dead Zone block is set at 

clearance,~. The Relational Operator block produces unity if the displacement and impact 

force are of the same sign and null otherwise. 
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Figure 5.1. Simulink model ofvisco-elastic impact 

Here, the stiffness, K and damping, C of the visco-elastic stop are expressed in terms of their 

apparent loss factor ,; and natural frequency Q in conjunction with the free moving mass, m 

(i.e. K = mn' and C = 2mn,;). 

For numerical purposes, the natural frequency, 0./2;r=80 Hz and loss factor, .;=0.2 ofthe 

symmetrical stops were used. The mass, m= 0.05 kg is excited by the initial velocity, 

V = 10 m!s and limited by the stops at !'>. = 0.02 mm from the position of static equilibrium. 
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Figure 5 .2a shows the time histories of impact force and acceleration of visco-elastic impact, 

whereas Figure 5 .2b shows the corresponding velocity and displacement of the free moving 

mass. The response shape of the impact force is strongly dominated by the amount of damping 

in visco-elastic stop, it can be very sharp when heavily damped bumper is used or it can be 

symmetrical with undamped one. In general, the amount of energy lost during collision would 

be associated with the damping of the stop. 

The above simulation highlights one of the possible types of impact force that would be used 

in nonlinear vibration suppression of the PCB. The technique of obtaining such useful 

information is based on the equation of motion, condition of impact and computational 

resources. The impact force subsystem can be systematically implemented for studying the 

nonlinear vibration suppression of the PCB. 

5.2 Random Vibration 

5.2.1 Dynamics of PCB in a ISDOF approximation with impact damper 

For simplicity of analysis, Figure 5.3 shows the model of the primary PCB represented as a 

mass-spring-dashpot(m1,k1,c1) SDOF combination. The impact dynamic absorber is a 

secondary mass which is unsupported by either a spring or damper, formally known as impact 

damper. The relative motion of the above two bodies is limited by symmetrical visco-elastic 

limiter which is modelled as parallel combination of linear spring, K and the dashpot, C at a 
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distance Ll. In Figure 5.3, x1 , x2 and y are the absolute deflections of the PCB, impact 

damper and the base, respectively. The system is subjected to base-induced vibration in which 

z1 and z2 are the motion of the PCB and the impact damper relative to the base, respectively. 

This arrangement could transform the impact damper response to a linear dynamic absorber if 

the gap is closed, the analytical solution can be obtained directly using a traditional method for 

either random or swept-sine excitation. 

c 

t c 
Xi 

ZJ(t) 

y(t) 

Figure 5.3. Mathematical model of impact damper 

The equations of motion which account for the collision take the form: 

for the primary sub-system 

and for the secondary sub-system. 

mA- <l>(i, ,z,) = -~ji. 

The symmetrical impact force takes the form: 

!
Ci, +K(Iz,I-Ci) if 14~ Ci 

<l>(i,,z,)= 0 if lzJ~t; 
0 if 

and <l>(i,,z,) > 0) 
and <l>(i,,z,)<O . 

lz,l :"': Ci 

(5.2) 

(5.3) 

(5.4) 

The presence of the symmetrical impact force function in the 2DOF system does not allow a 

general method of attack. Exact solutions can be found only in a few simple cases under 

specified excitation [30]. As an alternative, Matlab/Simulink has lead to new methods for 
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solving this problem. A numerical simulation technique by use of Simulink's library is very 

powerful in analysing and designing nonlinear dynamic systems. It is possible to handle rather 

complicated nonlinear systems in a reasonable amount of time. Where the complexity of a 

system precludes the use of any analytical approach, typically under random vibration 

excitation, Simulink may prove to be the most advantageous in obtaining the necessary 

information for design purposes. 

The Simulink model shown in Figure 5.4 is built identical to that in Figure 3.13 of Section 

3.2.4 with an extra feature of Impact Force sub-systems to represent the vibroimpact model 

as shown in Figure 5.5. It contains the diagram for simulation in which it transforms the 

relative velocity (input CD) and relative displacement (input (?)) between the primary and the 

secondary systems into the impact force (output CD). It only operates when the relative 

deflection between masses exceeds clearance, where in this diagram, the upper and lower limit 

of the Dead Zone block subsystem is set as !1. These sub-systems reflect on Equation 5.4 
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Figure 5.4. Simulink diagram for studying impact damper (single-mode model PCB) 
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An impact damper is conceptually a relative simple device. However, the behaviour of the 

impact damper is highly nonlinear and energy dissipation is derived from the shape of impact 

force (peak value and impact duration), a combination ofloss factor and stiffness of the visco

elastic limiter. Such a contact force can be seen in Figure 5.6. It seems that the numerical 

simulation based on the theory of visco-elastic impact is the most adequate choice of 

producing such a peak value of impact force and absolute acceleration whereas the numerical 

simulation base on momentary impact these peak values are infinite when collisions occur. It 

should be noted that the peak of contact force could be infinite if a very high stiffness value of 

visco-elastic limiter were introduced. This configuration is likely to contribute to a higher 

noise level. 
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5.2.2 Minimising the overall relative deflection of the PCB 

Under random vibration the overall relative deflection response is of primary concern, an 

optimal design would involve many possible combinations of the secondary mass mz, the 

visco-elastic limiter's parameters (Q and ,;) and clearance tl.. Therefore, a Matlab m-file is 

written to run the above simulation model for all the possible combinations of these variables 

under restricted limits. These are: 

Mass ratio of impact damper: 

Visco-elastic limiter: 

Clearance: 

m, e(O,IJ 
m, 

Q 
- e[O,SOOO]Hz, q e(O,l], 
2:r 

tl. e [O,I]mm. 

For each simulation run, these values are collected along with overall relative deflection using 

the var command. 
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Figure 5.7. Matlab script for random variable method 

In Figure 5.8.a, dots show the overall relative deflection of the PCB against the mass ratio at 

different natural frequencies, loss factors of the visco-elastic limiter and clearances. The 

optimal curve obtained for the linear case is superimposed for reference. From Figure 5.8.a, 

the impact damper does not show any better results compared to the linear case at any mass 

ratio. 

Further, Figure 5 .8.b shows the overall relative deflection of the PCB against the loss factor of 

the limiters at different masses, natural frequencies of the visco-elastic limiter and clearances. 

The optimal curve obtained for the linear case is superimposed for reference. From Figure 

5.8.b, the impact damper does show better results compared to the linear case at small values 

ofloss factor. 

Figure 5.8.c,d show the overall relative deflection of the PCB against the natural frequencies 

of the visco-elastic limiter at different masses, loss factors of the limiters and clearances. From 

Figure 5.8.c,d, the impact dynamic absorber again does show better results compared to the 

linear case in a wide range of natural frequencies. 

From the above analysis, the performance of the vibroimpact dynamic absorber is lower as 

compared with the linear case. However, the sensitivity of vibroimpact dynamic absorber to 

the variation of critical parameters, such as loss factor and natural frequency of the dynamic 
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absorber is smaller as compared with the linear case. Hence, the final tuning of the dynamic 

absorber may rely exclusively on the variation of the clearance. 

100 

95 
(/) 

90 :2 
c:: 
E 85 :;t 

c 
~ 80 
Q) 

"" 75 Q) 
"0 
Q) 

·"' 70 

'" ~ 65 
~ 
Q) 
> 60 0 

55 

50 

90 

(/) 85 
:2 
c:: 
E 80 
:;t 

~ 
~ 60 
0 

55 

50 

Linear dynamic absorber 
(single-mode approximation) 

0 0.2 

Linear dynamic absorber 
(single-mode approximation) 

0 0.2 

0.4 0.6 
Mass ratio 

a) 

0.4 0.6 
Loss factor 

b) 

0.8 1 

0.8 1 



~ 60 
~ 
0 

Cl) 
::;; 

55 

50 

90 

85 

et: 80 
E 
::1. 

§ 75 
u ., 
~ 70 
"0 

~ 65 
~ 

~ 60 
~ 
0 

55 

50 

0 

0 

500 1000 1500 

• • • 
•• • •• • ••• 

• • • . . : 
• 

• 
• ••• 

• 
• • 

• 
• • 

• 
• • .... • •• •• 

• • • I • • • 
• • • •• • • 

• • •• • • • 
•• 

• 
• •• 

• 
• . ·----~ 

• 

-1'11-

2000 2500 3000 
Natural frequency, Hz 

c) 

' . •• •• 
• ... 

• •• 
• 

• • • • 

• 

• • • • . ' ... : .. 
• •• • • • • • •• 

• • • ••• 
• ... 
., .. '· • • 

Linear dynamic absorber 
(single-mode approximation) 

50 100 150 200 250 300 
Natural frequency, Hz 

d) 

3500 

• • • 
• • 

•• • 
• • • •• • • .. 

350 

4000 4500 5000 

• • • .. . •• 

• • • •• 

,. . 
• • . ... -
• ••• 

• • • • • •• •• 
• • • • . ... 
• 

400 450 

• 

• • • 

• 

• 

0 

• •• 

500 

Figure 5.8. Overall relative deflection versus parameters of impact damper 

To support the above findings, the simulation model is again run for the mass ratio 35% and 

65% along with the loss factor and natural frequency of the visco-elastic Iimiter (optimal 

parameters set from linear absorber design) against a different clearance i.e. 

Q 
17 = 65%, -=106Hz,.;= 0.35 

2;r 
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Figure 5.9. Simulated PSD of relative deflection of ruggedized PCB at different clearances 
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Figure 5.9 shows the corresponding PSD of relative deflection for each mass ratio, the 

transformation from time domain to frequency domain of these simulation curves are directly 

obtained with the help of the Pwelch command from Matlab. In these figures, the lowest 

overall relative deflection can be found when the gap is closed (ll = 0) which correspond to the 

case of optimal linear absorber. It should be noted here, the response shape in these figures is 

almost similar to that sensitivity analysis on natural frequency of linear absorber (see Figure 

3.7c from Section 3.2.2 for reference) even the stiffuess of the visco-elastic limiter remains the 

same. This could be a new opportunity to ease the sensitivity of linear dynamic absorber 

outside its tuning range. 

5.2.3 Sensitivity analysis 

From the above simulation results, the superiority of an impact damper is its immunity to 

changes of loss factor and natural frequency ofvisco-elastic Iimiter as long as the clearance is 

not too tight. Therefore, in this section, we deal with the sensitivity analysis, similarly to the 

linear analysis the mass ratio 65% and loss factor of the symmetrical visco-elastic limiter is 

fixed at 0.35 whilst the natural frequency is varied from 50 Hz to 2000 Hz. As an additional 

parameter, the clearance is introduced in different values. 
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Figure 5.10. Sensitivity analysis of natural frequency dependence on clearance 

Figure 5.10 highlights the results. As can be clearly seen the system is very sensitive when the 

gap is closed, particularly at high frequency range. Under this condition, the influence of 

linear dynamic absorber deteriorates the original response of the PCB. With the presence of 

clearance, the sensitivity of the system is, somehow, reduced significantly. 
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Figure 5.11. A closer look of sensitivity analysis on natural frequency 
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Figure 5.11 shows the overall relative deflection in "zoom in" area of natural frequency (50-

300 Hz) which corresponds to Figure 5.19. In this vicinity, the performance of linear case 

(A=O) at I 00 Hz is much better than other nonlinear cases. However, it is very sensitive to a 

small variation in natural frequency. 
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Figure 5.12 shows the sensitivity analysis on different loss factors and clearances of impact 

damper where 65% mass ratio and natural frequency of the symmetrical visco-elastic limiter 

106 Hz are fixed while its loss factor is varied from 0 to 1. As can be seen again, the optimal 

linear response (see the curve labelled as I'J. = 0) is very sensitive to variation in loss factor, 

particularly outside its tuning value whereas the performance of impact damper is practically 

the same for any value of loss factors of the symmetrical visco-elastic Jimiter as long as the 

gap is not closed. 

The sensitivity analysis for 35% mass ratio was carried in the similar manner, the obtained 

results were almost similar to the 65% mass ratio case in which the natural frequency and loss 

factor have little impact on the performance where as the clearance is more critical. 

From sensitivity analysis, the desired performance of impact damper does not require any 

specific value of natural frequency or loss factor of the symmetrical visco-elastic limiter for 

any mass ratios whereas the clearance is more important. The assumption from [27] could, 

however, apply for the above results. This means that at any given set of parameters (m2, 

0 and .;) at a constant level of excitation and G-load environment, the clearance can be tuned 

in order to produce a best performance. In addition to this statement, the impact damper seems 

to be insensitive to the natural frequency and loss factor of the visco-elastic limiter if the 

clearance is not too tight. In practice, this could be a new technique of reducing the sensitivity 

of linear absorber outside its tuning range. However, in airborne application the external 

parameters are not always constant in nature, the optimal tuned clearance does not always 

provide the best performance. Therefore, it is necessary to carry out further the sensitivity 

analysis on clearance for the mass ratio of 35% and 65% where the loss factor and natural 

frequency of the symmetrical visco-elastic are chosen as 0.5 and 200Hz, respectively. 
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Figure 5.13. Sensitivity analysis on clearance 

In this case, the optimal clearance is found for each mass ratio with the same parameters set 

which provides the lowest overall response (see appropriate label in Figure 5.13). Reasonably 

small changes of clearance have a small impact on the desired performance. 

From Figure 5.13, 35% mass ratio provides a better performance than 65% mass ratio at its 

optimal clearance. It could mean that the performance of a lighter mass is better than a heavier 

one. However, these optimal performances only apply for this specified loss factor and natural 

frequency. Additionally, these differences can be significantly altered with a small increment 

of clearance. In a worse situation, a combination of high 0-loads and maximum vibration 

level, then the impact damper will lock to the primary system and vibrate as untuned linear 

2DOF system. Sometimes, the impact damper does not provide any means of vibration control 

if the external disturbance is not in critical condition. In a general conclusion, the comparison 

of the performance for the above mass ratios may prove inconsistent. 

Since impact damper is less sensitive than linear dynamic absorber and its universal design, 

an illustration of time domain and hence frequency domain for 35% mass ratio with 

implementation of the visco-elastic limiter's propertied (Q =200Hz, q= 0.5) at Ll = 150 Jlm 

is shown in Figure 5 .14. The relative deflection and absolute acceleration have shown a 

significant improvement compared to its original response and about the same reduction ratio 

compared to the linear absorber at the same mass ratio, this can be clearly seen from its PSD 

response in Figure 5.15. 
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The differences between nonlinear PSD curves and linear ones of the modified PCB are really 

small. However, maintaining this desired result still entirely depends on its chosen device and 

level of excitation. 

Similarly, at a mass ratio of 65% with the same visco-elastic limiter's properties (Q/21t = 200 

Hz, q = 0.5) at .d. = 150 J.Lm, the time history of absolute acceleration and relative deflection 

can be seen in Figure 5.16 with reference to its original response. Again, the differences of 
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performance between them and the linear case at the same mass ratio can be distinguished in 

Figure 5.17. 
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Figure 5.16. Simulated time response of original and modified PCB 
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Figure 5.17. Simulated PSD of original and modified PCB 

The performance between impact damper and optimal linear absorber at the same mass ratio is 

similar. It should be noted that any values of loss factor or natural frequency of the visco

elastic limiter could also produce a similar curve as shown in Figure 5.17 as long as the 

clearance is tuned. However, for the linear case, the natural frequency and loss factor of the 

dynamic absorber must be simultaneously tuned at a given mass ratio in order to produce an 
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optimal performance, thus, it narrows the freedom of design. As a general conclusion, the 

impact damper technique only shows its superiority in terms of universal design and 

application as far as it has a "tuneable" clearance characteristics. 

5.2.4 PCB with impact damper (full-mode model) 

The emphasis of many impact damper analyses has been considered the primary system as a 

SODF system. In the "real-world" a SDOF system does not seem to exist in many complex 

dynamic structures. Therefore, there is little known about the dynamic behaviour of these 

devices in the MDOF system under random vibration. Using numerical simulation of the full

mode model ofPCB, it is possible to justify the effect of such a technique in terms of vibration 

suppression. 

The Simulink model used in studying of linear absorber, Figure 4.16 is now implemented for 

studying the impact damper in which the value of k2 and c2 are set equal to zero. Similarly, the 

Impact Force subsystem is "wired" at the relative motion of the PCB and the impact damper 

mass. Figure 5.18 portrays the corresponding Simulink model 
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Figure 5.18. Simulink model for random vibration 

This numerical model, could, however, run interactively with M-file to find optimal 

performance of many independent combinations of m2, n, ,; and D.. However, due to a large 

algorithm presence in the sub-system, the task of finding an optimal parameters set was 

abandoned. It should be noted that the impact damper is a highly dissipative energy device, it 

might control the resonant frequencies of the PCB but also at the same time it will destroy all 

antiresonant notches. Thus, the overall performance is not very impressive compared to linear 

absorber under random vibration. 

The sensitivity analysis for this approach would not be carried out since the performance of 

single-mode and full-mode model of the PCB is dictated by the first resonant frequency and 

major influence of vibration suppression would take place at the first vibration mode. 

Additionally, from the sensitivity analysis of the single-mode approximation, the 

implementation of impact damper does not require any specific natural frequency or loss 

factor of the symmetrical visco-elastic limiter, therefore the parameters set of symmetrical 

limiter (Q/2n =200Hz,,;= 0.5) at D.= !50 J.tm in accompany with 65% mass ratio are chosen 

to illustrate the principle of nonlinear vibration suppression for MDOF system. It should be 

noted that these parameters have been used in the single-mode approximation. 

Figure 5.19 shows the superimposed absolute acceleration and relative deflection, 

respectively, of the original and modified PCB and correspondingly with PSD response as 



shown in Figure 5.20 and also the superimposed optimal PSD that was obtained from the 

linear case at the same mass ratio of 65%. 

As can be seen from Figure 5.20a, the influence of the impact damper suppresses almost all 

resonant frequencies of the PCB at the same time it destroys all antiresonant notches, thus the 

overall performance in terms of absolute acceleration is less impressive compared to the linear 

case. 
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Figure 5.20. Simulated PSD of original and modified PCB (1]=65%) 

However, the overall relative deflection is of primary concern where the performance of the 

impact damper for this particular case produces 90 1-1m RMS whereas the performance of the 



optimal linear case gives 78 J.lm RMS, see Figure 5.20b for reference. This difference is partly 

due to the alternation of antiresonances at a higher frequency range. 

Similarly, at 35% mass ratio with the same parameters set of symmetrical visco-elastic !imiter 

(Q/2n =200Hz,~= 0.5) at tJ. =ISO J.lm. The time history of absolute acceleration and relative 

deflection with the reference of original response can be seen in Figure 5 .21. The nonlinear 

PSD of absolute acceleration has the same characteristics as the 65% mass ratio in which all 

resonant frequencies are suppressed and antiresonances are destroyed (see Figure 5.22a for 

reference). In terms of vibration suppression, at this mass ratio the overall relative deflection 

89 J.lm RMS is found to be about 9 J.lm RMS higher compared to the optimal linear case at 

35% mass ratio (see Figure 5.22b for reference). Again, the desired response of the nonlinear 

case does not have to be dependent on the above chosen parameters set of the visco-elastic 

limiter whereas the clearance is more critical. For the linear case, the optimal response can be 

altered significantly if there is small variation of its optimal natural frequency of loss factor of 

the dynamic absorber. 
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Figure 5.22. Simulated PSD of original and modified PCB (TJ=35%) 

Generally, the differences in performance of impact damper between 35% and 65% mass ratio 

under random vibration is really small. This would allow a lot of choices when selecting a real 

device for vibration control of the PCB, the only drawback is its performance compared to the 

linear dynamic absorber but not much in terms of reduction ratio compared to the original 

response of the PCB. However, the parameters of the linear dynamic absorber are impossible 

to maintain at their optimal values due to manufacturing tolerances or temperature variations, 

with a small variation, the optimal performance can be altered significantly. This could 

explain why the impact damper is more superior in terms of sensitivity and design purposes. 

The principle of the impact damper is the exchange of momentum phenomena in which every 

collision is involved on the free distance travel between the masses and elasticity of the 

limiter. The harder the limiter, the higher the impact force and eventually the higher the noise 

level. However, the overall relative deflection is a major concern which increases the 

possibility of using an "all-metal" impact damper for vibration suppression of the PCB. 

5.3 Sine vibration 

Random vibration is of primary concern in the process of designing a new vibration control 

method for this typical PCB. Since the performance of the impact damper does not show any 

better result compared to the optimal linear absorber, an optimal design for swept-sine 
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application is no longer of interest. In addition, using numerical simulations to find optimal 

parameters set for nonlinear system under a swept-sine application will entail laborious tasks 

and require computational resources for either single-mode approximation or full-mode model 

of PCB. Unlike random vibration study, each simulation run will take time to sweep up from 0 

to 500 Hz for each parameter set, also there are too many possible combinations that can 

produce a desirable performance, even though the sweep-rate can step up, the degree of 

accuracy is reduced. If, however, a better performance can be found under the swept-sine 

application, it does not apply to random or shock enviromnent due to inconsistency in the 

excitation level and its sensitive nature. Thus, designing for a better universal performance 

using impact damper technique does not seem to exist in this study. Therefore, in this study, 

we analysed further the sensitivity of such a technique for the single-mode approximation 

instead of repeating the optimisation routine. 

The numerical model is similar to that in Figure 4.28 in our linear vibration study in which the 

Impact Force subsystem is positioned at the relative motion of the primary system and the 

secondary system as shown in Figure 5.23 whereas in this case, the gain blocks c2 and k2 are 

excluded in which the impact dynamic absorber is a free mass as has been configured for 

random vibration case. For a better result, the sweep rate is still used to be 1 Hz/s to sweep up 

from 0 to 500 Hz and its amplitude is 1 Og. 

Exclt.1don frequency Mlltlpfe s/( nal 

Sill 

sweep rate 

·14------< 

~ 
Clock To WorhS/'ace1 

Figure 5.23. Simulink diagram for swept-sine excitation 



Figure 5.24 shows a typical time history of impact force and acceleration under swept-sine 

excitation, in this case the impact process occurs in a periodic manner, 2 impacts per cycle of 

excitation. The chaotic behaviour from this system can be examined by either varying the 

clearance or its excitation frequency but it is not our intention. In general, a full detailed 

analysis of nonlinear responses in time domain can be relied in this numerical simulation. 

Nevertheless, the entire impact process is well presented by a fundamental harmonic in which 

the envelope of time histories. This particularly holds true for the symmetrical impact system 

behaving in a periodic manner (see Figure 5.24 with appropriate label). The magnitude of 

absolute acceleration and relative deflection signals in frequency domain can be readily 

obtained via statistic subsystem. 
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Figure 5.24. Time history of impact damper under swept-sine excitation 

5.3.1 Sensitivity analysis 

The sensitivity analysis is carried out for the mass ratio of 65% on loss factors and natural 

frequencies of the symmetrical visco-elastic limiter at different clearances, this would reflect 

on the performance and sensitivity of impact damper as compared to the linear case under 

swept-sine excitation. Firstly, this is done by fixing the loss factor to 0.35 (as it was used in 

linear case for 65% mass ratio) and natural frequency is varied from 50 Hz to 2000 Hz. 

Similar to Section 5.1.4, the clearance is introduced in different values. 
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Figure 5.25. Sensitivity analysis on natural frequency 

Figure 5.25 shows the variation of peak relative deflection against natural frequency of the 

symmetrical visco-elastic limiter, the curve labelled as (t:..=O) which corresponds to the linear 

case, as here, the sensitivity of the modified PCB is increased proportionally with the natural 

frequency of linear dynamic absorber. With the presence of clearance, the sensitivity outside 

its tuning has reduced significantly, in this case, when t:..=300 J.lffi, the natural frequency of the 

visco-elastic has no effect on the desired peak relative deflection. 
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Figure 5.26. Sensitivity analysis on loss factor 
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Figure 5.26 shows the variation of peak relative deflection on loss factor whilst the natural 

frequency is fixed at 106 Hz. In this figure, the curve labelled il=O is from the linear case 

which give the lowest value of relative deflection when it is tuned. However, this optimal 

value applies only for its optimal natural frequency of 106Hz. The performance of the impact 

damper does not show any specific value of loss factor as its clearance is increased, the higher 

value of loss factor is the most appropriate one. 

From sensitivity analysis, the desired performance of impact damper under swept-sine 

application at 65% mass ratio does not require any specific value of loss factor or natural 

frequency of the visco-elastic limiter. For this reason, we implement the parameter sets that 

chosen for random vibration application into swept-sine application i.e. 
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Figure 5.27. Simulated dynamic response of original and modified PCB (1]=65%) 

Figures 5.27 shows the superimposed absolute acceleration and relative deflection, 

respectively, of the original and modified PCB also the linear optimal response is 

superimposed for reference. For the nonlinear performance, the peak relative deflection is 

found to be 260 11m, this is about 70 !!ffi higher than that of the optimal linear case (I 90 11m) at 

the same mass ratio. This seems to be an acceptable performance compared to the original 

design in which the reduction ratio is about 19 times. 

Similarly, at a mass ratio of 35% with the same the visco-elastic Iimiter's properties (nl27t = 

200 Hz, q = 0.5) at .1. = 150 11m, the absolute acceleration and relative deflection can be seen 

in Figure 5.28 with reference to its original response and the optimal response of linear case at 

the same mass ratio. 

For this particular parameters set, the performance between linear and nonlinear cases is 

almost the same in which the peak relative deflection of both cases are found to be 2 I 0 11m. It 

should be noted here, the nonlinear performance of 35% mass ratio is better than 65% with the 

same parameters set, but it seems to be insignificant. Keeping in mind that these differences 

only apply for this specific clearance, loss factor and natural frequency of the visco-elastic 

Iimiter. 
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Figure 5.28. Simulated dynamic response of original and modified PCB ('1=35%) 

From this study, the same dynamic properties of the visco-elastic limiter and clearance that 

was chosen for the random vibration is still suitable for swept-sine application, and also 

suitable for both mass ratios. 

In swept-sine application, the peak relative deflection the PCB in the frequency range of 20-

500 Hz is of primary concern, therefore the analysis in the single-mode approximation would 
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be sufficient to reflect the performance of the full-mode model of the PCB in terms of 

reduction ratio. In addition, impact damper technique does not require any specific natural 

frequency or loss factor of the visco-elastic limiter. With this positive feature, the degree of 

accuracy is not required, therefore, the analysis of the full-mode model of PCB might not be 

relevant. 

5.4 Shock 

An impact damper could be an alternative method for vibration suppression of the PCB in 

random and swept-sine vibration. It shows that the chosen impact damper is suitable for both 

applications although its universal performance is so far a little less than target. The method of 

carrying out the investigation relied on numerical simulation which was based on a realistic 

model, the results of the finding proves to be consistent. As with the linear absorber study, the 

completion of this investigation is to consider the MIL-STD-81 0 shock test (half-sine shock 

pulse at 200g peak@ 3 ms) to see the influence of the impact damper on the PCB with the 

above parameters set s i.e. 

for both mass ratios. 
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For consistency, the numerical simulation of the single-mode model of PCB with the impact 

damper that used for the random vibration is now implemented for shock excitation in which 

all the necessary external features are connected to the internal structure of the Simulink 

model as shown in Figure 5.29. Again, this simulation model could be used for optimising the 

system subjected to shock but this was not our intention. However, the main concern of this 

simulation was to see the influence of the impact damper on the PCB with the above chosen 

parameters in which the time histories of absolute acceleration and relative deflection of the 

PCB are of primary interest 
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Figure 5.30. Shock response of original and modified PCB (l]=65%) 
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Figure 5.31. Shock response of original and modified PCB ('1=35%) 

The performance of impact damper under shock excitation is almost similar to that of linear 

dynamic absorber at the same mass ratio in which the overall absolute acceleration, relative 

deflection and time settling show a significant improvement compared to the original response 

of the PCB, see Figure 5.30 and 5.31 for reference. 

5.5 Concluding remarks 

~ In our nonlinear vibration study, the technique of building all Simulink models is almost 

similar to that of a corresponding linear case where all the necessary external disturbances 

and techniques of obtaining relevant signals practically remain the same 

~ With the presence of the Impact Force subsystem, the numerical simulation have made 

several contributions to the state-of-the-art and, as such, identified a number of unresolved 

issues of the vibroimpact system 

~ There is no optimal mass ratio to be found in the process of designing an impact damper. 

Strictly speaking, the differences of dynamic behaviour between the linear absorber and 

impact damper is clearance, it has an ability of reducing the sensitivity of the linear 

dynamic absorber beyond its tuning range 
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~ At any given parameters set, an attainable universal performance would be found by 

tuning the clearance, this means that the impact damper that is designed for random 

vibration is suitable for swept-sine application and also suitable for shock excitation 

~ In practice, this could be an easier approach because many potential devices are available 
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Chapter 6 

6.0 Experimental validation 

During the initial stage of this study, a concise explanation of the full-mode model and single 

mode-model of PCB were addressed with respect to the root cause of the vibration. The search 

for an optimal dynamic absorber was entirely based on the original dynamic response of the 

chosen PCB and experimental measuring. 

The fabrication and testing of the prototype dynamic absorber was the second stage. Taking 

into account that the dynamic absorber that was to be used was not available off-the-shelf, the 

design and manufacturing phase based on the optimal dynamic characteristics of the dynamic 

absorber and PCB was essential. 

The third stage included the fabrication and installation of the optimal dynamic absorber on 

the real PCB and testing. Also, at this stage the main objective of this research was met 

through the experimentally measured data of the combined system per Mil-STD test. 

6.1 Dynamic properties of dynamic absorber 

To put the theory into practice, this dynamic absorber has to be designed and manufactured 

based on the dynamic characteristics of the PCB. Therefore, the important feature of dynamic 

ruggedizer is the capability of "tuning" its properties. In application, the dynamic absorber 

consists of visco-elastic grommet <D providing for damping and stiffness required (see Figure 

6.0a). The heavy washer a> is used for inertia. The adjustment of frequency and loss factor of 

dynamic absorber relies on tightening the nut ® and squeezing the grommet. In our 

experiments, suitable EAR ISODAMP® visco-elastic grommet and Tungsten washer (for 

compactness) were used. The above visco-elastic grommet is available off-the-shelf and the 

material used is capable of maintaining the persistent mechanical properties over a wide 

temperature range (see EAR data sheets from http://www.earsc.com/grommets). The two 

washers of mass 58.5 gr and 31.5 gr were manufactured. These two masses correspond to the 

mass factors of 65% and 35%, respectively, which gives 30% and 18% as compared to the 

actual mass of the PCB (175.5 gr). Strictly speaking, these dynamic absorber's size are really 

small which can be conveniently mounted on the upper-face of the PCB if necessary. 
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a) Schematic layout of dynamic absorber 

Figure 6.0. Dynamic absorber 

Before carrying out the experiment on the PCB with dynamic absorber attached, it is 

necessary to test the dynamic properties of the dynamic absorber separately. The dynamic 

absorber parameters are the most important factor contributing to the performance of the PCB 

and probably the most critical choice. For this purpose, the dynamic absorber is mounted on 

the fixture, which is rigidly attached to the shaker; the experimental set-up and apparatus is the 

same as in Figure 2.1 where it provided measurement of universal absolute and relative 

transmissibilities the dynamic absorber as shown in Figure 6.1. 
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b) Dynamic absorber mounted on shaker 

Figure 6.1. Experimental rig for tuning dynamic properties of dynamic absorber 

The dynamic absorber mounted on the shaker is thought of as a SDOF system with base 

support motion. The modulus of absolute universal transmissibility of which may be expressed 

in terms ofundamped natural frequency 0 2 and loss factor ,;2 : 

(6.0) 
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Figure 6.2. Comparison of absolute transmissibility of optimal dynamic absorbers 

Figure 6.2 shows the absolute transmissibility of the chosen dynamic absorber. From curve

fitting with Equation 6.0 involved, the following modal parameters were identified: 42 = 0.39, 

f.l2 = 96.7 Hz, for the mass of 58.5 gr and 42 = 0.287, f.l2 =!50 Hz, for the mass of 31.5 gr, 

which are fairly close to the desired optimal values. Additionally, the above dynamic 

absorbers have the "tuneable" characteristics and they don't pose any nonlinearities at 
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different excitation levels. From sensitivity analysis, better accuracy is most probably not 

required 

6.2 Combined system 

The objective of this experiment is to measure the dynamic response of the PCB with dynamic 

absorbers attached per MIL-STD test to back up its analytical study. The apparatus set-up for 

this experiment were similar to that in Figure 2.1, and are shown in Figure 6.3. For a better 

match result between the prediction and experimental measures, the dynamic absorber is now 

attached on the PCB at point @ through a lightweight plastic screw as it was the main concern 

in the early stage of analysis. Additionally, this location of the dynamic absorber ensures that 

the major nodal points will not be involved. 

0 
. . . . . 

0 
0 

a) Schematic layout 
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Figure 6.3. Experimental rig for studying dynamic ofPCB combined with dynamic absorber 
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c) With 35% mass ratio 

Figure 6.4 Analyser screenshot of absolute transmissibility of the original and ruggedized PCB at different 
mass ratio and their input excitation 
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The dynamic absorber with mass ratios of 65% and 35% was attached to the PCB individually 

for experimental purpose. The universal transmissibilities are first to be measured, as the 

excitation level will not necessary be the same as the design excitation level. However, the 

input spectrum will be the same shape as the design-input spectrum (14g RMS) and is shown 

in Figure 6.4a. Firstly, the measurement was taken at point @, the analyser screenshot of the 

absolute transmissibility for both mass ratios is shown in Figure 6.4c and 6.5d together with 

the original response Figure 6.4b for comparison purposes. The measured magnitude response 

of the modified PCB is of primary concern, this information would be sufficient for to validate 

the analytical solution, therefore, the phase response will be necessary presented in this work. 
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Figure 6.5. Experimentally measured absolute transmissibility ofPCB with different mass ratios 

Figure 6.5 shows the optimal absolute transmissibility of the PCB with different dynamic 

absorbers. In terms of absolute transmissibility, both cases provide similar characteristics as 

compared to the original response. From Figure 6.5, the influence of the dynamic absorber is 

that almost all resonances of the original PCB are significantly suppressed, while the 

antiresonant notches remain practically unaffected, as theoretically predicted above. This is an 

important feature of vibration suppression. 

In terms of random vibration, the absolute acceleration of the PCB is normally expressed in 

RMS values. Generally, the measuring of RMS value would be calculated through the 

experimentally measured PSD. Table 6.0 highlights the results of overall absolute acceleration 

between prediction and experimentally measured data at the same level of excitation, 14 g 

RMS. 
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Single-mode model of Full-mode model of Experimentally 

PCB (prediction) PCB (prediction) measured 

Original 51.10gRMS 70.18 g RMS 70.18 g RMS 

35% mass ratio 11.18 g RMS 25.21 g RMS 25.10 g RMS 

65% mass ratio 10.13 g RMS 22.93g RMS 23.11 g RMS 

Table 6.0. Comparison between measured and predicted results 

The theoretical values of overall absolute acceleration (for full-mode model of PCB) are very 

close to its experimentally measured value. Both mass ratios of dynamic absorber produce a 

reduction ratio close to 3-fold vibration suppression compared to the original PCB design. 
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Figure 6.6. Experimentally measured PSD of absolute acceleration ofPCB with different mass ratios 

The reduction ratio between the original and ruggedized PCB in terms of overall absolute 

acceleration was calculated. This was best done by graphically representing the actual PSD 

curve as shown in Figure 6.6 which corresponds to measured data. 

Figure 6. 7 shows the superimposed PSD of the relative deflection of the dynamically 

ruggedized PCB (experiment) at mass ratios 65% and 35%in which the overall relative 

deflection 77.6 ~-tm RMS and 79.2 ~-tm RMS are found, respectively. 
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Figure 6. 7, Experimentally measured PSD of relative deflection of original and ruggedized PCB at 
different mass ratios 

Figure 6.8 shows the superimposed PSD of the relative deflection of the dynamically 

ruggedized PCB (experiment vs. theory) at a mass ratio 65% and 35%, respectively. 

Experimental results are in fair agreement with the analytical solution. 
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Figure 6.8. Comparison of PSD of relative deflection of ruggedized PCB at different mass ratios 

Table 6.1 illustrates the comparison of the optimal performance found in the single-mode and 

full-mode model of PCB. The calculation shows that the lifetime of the ruggedized PCB will 

be increased by several thousand times compared to its original design. 

Analysis Predicted (full-mode) Predicted single-mode) Measured 

Mass Ratio, 1J 35% 65% 35% 65% 35% 65% 

Overall RMS 4.0 4.1 3.9 4.05 3.95 4.07 
reduction factor 

Improvement in 
Endurance limit 6,982 8,615 6,040 7,721 6,579 7,969 

(times) 

Table 6.1. Comparison between measured and predicted results 

Additional measurement 

To validate the analytical solution for other observation points on the PCB and also compare 

the performance of dynamic absorber with the existing vibration controls (damping and 

stiffening) the experimental PSD of absolute accelerations of those corresponding points are 

measured as shown in Figure 6.9 in conjunction at full level (14g RMS) excitation. The PSD 

of accelerations are being measured, obviously this would give a general view of reduction 

ratio as compared to its original PCB design. Additionally, these results would be best to 

represent the influence of dynamic absorber as compared to other vibration protection in terms 

of frequency response for the entire structure. 
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Figure 6.9. Experimentally measured absolute transmissibility of original and ruggedized PCB at different observation points 
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Figure 6.9 shows the superimposed absolute transmissibility of the original and ruggedized 

PCB with application of optimal dynamic absorber (T]=65%). Again, the influence of the 

dynamic absorber is that almost all resonances of the original PCB are significantly 

suppressed. It is obvious that the optimal dynamic absorber shows its superiority as compared 

to damping and stiffening by the means of controlling all major frequency resonances without 

creating new one and shifting the fundamental resonant frequency ofthe PCB. 

The overall relative deflection of those observation points can be calculated through 

experimental PSD of relative deflection. The experimental results are shown in Figure 6.10 

together with the corresponding theoretical curve and the original response of the PCB for 

comparison. 

The comparison of the PSD of relative deflection for the experimentally and analytically 

obtained results are shown in Figures 6.1 0. They show how the analytical model is a close 

approximation to the true system. The insignificant differences between analytical and 

experimental curves can be distinguished by comparing the overall relative deflection in Table 

6.2 

Observation Observation Observation Observation 

point <D point <il point® point® 

Original, Jlm RMS 234.43 260.82 301.31 305.45 

Calculated, Jlm RMS 56.84 65.74 71.42 72.58 

Measured, Jlm RMS 57.93 66.31 72.50 73.69 

Table 6.2. Companson between measured and predicted results 

6.2.2 Sine vibration 

The second test is carried out for the combined PCB and the above dynamic absorbers under 

sine vibration. Since the tuned characteristics of the dynamic absorbers are close to the 

optimal condition and do not pose any degree of nonlinearities, the Electrodynamic Shaker is 

programmed to perform the swept-sine test from 10 to 500 Hz at a constant magnitude of 

acceleration 1 Og with linearly sweep rate of 5 Hz/s, as normally recommended for electronic 

manufacturers [3]. Figure 6.11 shows the screenshot from the controller, the typical vibration 

pattern in which the PCB was exposed. 
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Figure 6.11. Swept-sine vibration profile from vibration control screen 
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Figure 6.12. Analyser screenshot of absolute transmissibility of original and ruggedized PCB 
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Figure 6.12 shows the analyser screenshot of universal absolute transmissibility of the 

ruggedized PCB with the above individual dynamic absorber. 
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Figure 6.13. Experimentally measured absolute transmissibility and acceleration of original and 
ruggedized PCB 

Figure 6.13 shows the experimental absolute transmissibility and acceleration of the original 

(curve labelled Original) and dynamically ruggedized PCB at mass ratios of 65% and 35% (see 
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corresponding curves). From the acceleration in Figure 6.13b, both dynamic absorbers should 

provide for about a 23-fold vibration suppression at resonant frequency. 
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Figure 6.14. Comparison of relative deflection of ruggedized PCB at different mass ratios 

Figure 6.14a compares the experimentally and analytically obtained relative deflection of the 

ruggedized PCB at different mass ratios. As can be seen, the analytical prediction which is 

based on single-mode and full-mode models yield a peak relative deflection of 190 J.tm. The 
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experimentally obtained peak relative deflection of 195 J.lm is in close agreement with 

analytical prediction. 

Figure 6.14b shows the comparison between analytical and experimental relative deflection of 

the ruggedized PCB at 35% mass ratio. The predicted peak relative deflection of both full

mode and single-mode models are 210 J.lm, whereas the experimental peak relative deflection 

is 209 J.lm which is close to the predicted value, see appropriate curves for reference. 

10000 

1000 With absorber (YJ=35%) 
~Original 

E 

~ ::!. 

c 
~ 
Q) 
0: 100 Q) 
-o 
Q) 
> With absorber (TJ=65%) "" C1l 
Qi 
c::: 

10 

1 

0 100 200 300 400 500 
Frequency, Hz 

Figure 6.15. Experimentally measured relative deflection of original and ruggedized PCB 

Figure 6.15 compares the obtained experimentally the dynamic responses of the original 

system showing a peak relative deflection of 4617 J.lm, and those for the dynamically 

ruggedized system at mass ratios of 35% and 65%, showing peak relative deflections of 

209 J.1ffi and 195 J.lm, respectively. 

This experimental work addresses the problem of the optimal design of a dynamic absorber 

for the PCB subjected to sinusoidal vibration with variable frequency. Using single-mode and 

then full-mode approximations for the PCB, from the handy numerical procedure for 

optimising the properties of a dynamic absorber. They have shown by example that an optimal 

dynamic absorber is capable of essential 24-fold suppression of the peak resonant response as 

compared with the case of the original PCB under the typical swept-sine tests. The results of 

analytical prediction are in close agreement with the experiment, which has shown the 23-fold 

suppression of the peak resonant response. 



The work proves that the same dynamic absorber is equally suitable to effectively suppress the 

dynamic responses of PCB under wide-band random and sine excitation with a variable 

frequency. 

6.2.3 Shock 

To complete the experimental study of this new radical vibration protection for the sensitive 

PCB, the Electrodynamic Shaker is programmed a half-sine (200 g peak@ 3ms) as shown in 

Figure 6.16 to carry out a shock test on the original and ruggedized PCB. Also, to validate the 

numerical solution, the above chosen dynamic absorbers are individually mounted on the 

PCB. 

Figure 6.16. Shock profile from vibration control screen 

Figure 6.17 shows the analyser screenshot of absolute acceleration of the original PCB 

response. The peak value is measured to be about 300g which shows the amplification ratio to 

be 1.5 compared to its 200g input peak value and time settling is about 0.5 s, this shows a very 

close result with numerical simulation. 
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Figure 6.18. Analyser screenshot of absolute acceleration response of the ruggedized PCB with different 
mass ratios 

Figure 6.18 shows the absolute acceleration response of the ruggedized PCB combined with 

the individual dynamic absorber. As can be clearly seen, the response of the ruggedized PCB 

is almost instantly dies out after the shock pulse disappears 

The best way to represent the influence of dynamic absorber subjected to shock is to 

superimpose the corresponding experimentally measured absolute acceleration and relative 

deflection into the original PCB response. These comparison results can be seen in Figure 6.19 

and 6.20, respectively. 
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Figure 6.19. Experimentally measured of original and ruggedized PCB with 65% mass ratio 
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Figure 6.20. Experimentally measured of original and ruggedized PCB with 35% mass ratio 

Similar results were found in the relative deflection and absolute acceleration response for 

both optimal dynamic absorbers in shock test, in terms of vibration suppression both dynamic 

absorbers produce a similar factor compared to original PCB design. 
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6.3 Concluding remarks 

This experimental work has clearly demonstrated the effectiveness of using a dynamic 

ruggedizer to minimise the dynamic response of sensitive components for military electronic 

equipment operating in harsh environmental conditions. Implementation of dynamic 

ruggedizer does not require drastic modification or redesign of internal components or 

mounting configurations, only slight modification is required. 

Close correlation of the experimental and the theoretical results indicated accurate modelling 

of an actual system. Hence, optimisation of dynamic absorber properties and their impact on 

PCB response can be pre-determined theoretically before actual implementation. Although 

17opt is an optimal point, a smaller dynamic absorber design will be highly possible within the 

constraint for allowable space. This clearly illustrates the effectiveness of reducing the mass 

ratio to 35%, which increases the natural frequency, but reduces the loss factor, and actual 

mass as established in the theoretical prediction. Although this shows greater improvement in 

terms of size, and demonstrates the same vibration protection analogy, the only drawback is in 

terms of performance of the PCB, but it seems to be insignificant in this experimental study. 

6.4 Some practical considerations 

• Dynamic absorber design must have the "tuneable" characteristics in accordance with the 

dynamic properties of the original PCB. 

• The design of a dynamic absorber has to be compact and flat. 

• The PCB has to be designed to allow attachment of a dynamic absorber somewhere in the 

centre of the PCB away from edges-guide and connectors. 

• Such a dynamic absorber may by used for flat screens, walls of cabinets and enclosures 

instead of stiffening ribs and damping treatment. 

However, it is known that the widely used visco-elastic grommets tend to stiffen and gain 

damping at low temperatures and soften and lose damping at elevated temperatures. These 

variations make it impossible to keep optimised configuration in actual airborne applications. 

Most probably, the all-metal design, such as Metal & Mesh Bushing (see 

http://barrymounts.com) are the only feasible solutions. These are especially designed to 

withstand the serve environmental conditions while showing the persistence of the visco

elastic parameters in a wide temperature range ( -400°F to + 700°F). Upon the completion of 

this experimental work, the all-metal dynamic absorber was manufactured and tested. The 

design phase of this dynamic absorber is similar to that of the grommet design and is shown in 

Figure 6.21. This dynamic absorber has almost the same characteristics as from the above 
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dynamic absorber, however, it exhibits a small degree of nonlinearities at different excitation 

levels as shown in Figure 6.22, but this does not seem to have much influence on the optimal 

performance of the PCB, say, sensitivity analysis. 
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Figure 6.21. All-metal dynamic absorber 
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Figure 6.22. Absolute transmissibility of all-metal dynamic absorber 
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The experimental work for the combined system was carried in the same manner as compared 

to Section 6.2. Similarly, the all-metal dynamic absorber was attached on the PCB at point @ 

and experienced at the random vibration level (14g RMS). As a result, the dynamic response 

of the modified can be seen in Figure 6.23, also in this figure the response of the original PCB 

and that modified PCB using the visco-elastic grommet absorber are superimposed for 
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reference. As can be seen, at a similar mass ratio ( 'lop1 = 65%) both absorbers have the same 

ability to suppress almost critical resonant frequencies of the original PCB except the level of 

"smoothness". 
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Figure 6.23. Comparison of dynamic response of the modified PCB in the case all-metal and grommet 
dynamic absorber 
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Further experimental work could be carried using the all-metal absorber, typically, under 

shock and swept-sine excitation. However, this would lead to excessive work due to the fact 

that both dynamic absorbers have almost the same characteristics at ambient temperature. 

6.5 Experimental validation for impact damper 

To support the impact damper study, the experiment is carried out with the use of a "rattling" 

ball bearing (approximately 40 gr) which provides an adequate clearance, inertia and low 

restitution ratio, the essential ingredient of impact damper device, beside, it provides the 

lowest cost solution and is widely available. However, the accuracy value of these dynamic 

properties is impossible to determine through experimentally measured absolute 

transmissibility alone or by any means of standard measurement technique. Indeed, this device 

can be considered a "black box" and totally immune to temperature variation. Since the 

dynamic behaviour of the bearing is classified as a loose mass and is highly sensitive to the 

level of excitation, it might lead to some difficulties of deciding on the "right" parameters, 

also the accuracy of these parameters are not required whereas the clearance is critical, say, 

sensitivity analysis. In order to avoid these problems, the experimental work is carried out 

directly in where the inner ring of the bearing is rigidly clamped on the PCB, at observation 

point @ as shown in Figure 6.24. 

The dynamic behaviour of the combined system is now highly nonlinear. The experimentally 

measured universal transmissibility between random and swept-sine tests would be in different 

response shapes. For this reason, the Electrodynamic Shaker is firstly programmed with 

random vibration at level (I 4g RMS) in the frequency range of 20-2000 Hz with "flat" PSD 

spectrum. Finding an optimal clearance and hence performance (if the gap is too large) can be 

achieved by tightening the copper wire which runs between the inner and outer ring (see 

Figure 6.25). This technique would, somehow, produce an additional friction feature between 

components, which was a beneficial factor for vibration suppression. 
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Figure 6.24. Ball bearing mounted on PCB for studying impact damper behaviour 

Outer ring Nut Inner ring 

PCB 

Figure 6.25. All-metal impact damper 

Clearance 

Copper 
Wire 

Figure 6.26b shows the experimental analyser screenshot of absolute transmissibility of the 

combined system. As can be seen, the response signal is highly contaminated with noise, 

particularly at antiresonant notches although the frequency resolution is stepped up to 2.5 Hz. 

Indeed, contact between components can be classified as hard collision. 
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Figure 6.26. Analyser screenshot of absolute transmissibility under random vibration 
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Figure 6.27. Experimentally measured absolute transmissibility of original and modified PCB 
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Figure 6.28. Experimentally measured PSD of absolute acceleration of original and modified PCB 

Figure 6.27 shows the superimposed experimentally measured absolute transmissibility of the 

original and modified system. As shown, the impact damper has the capability of suppressing 

the first resonant peak ofthe PCB as well as its neighbour resonant frequencies while "filling" 

the antiresonant notches with noise as numerically predicted. The experimental absolute 

transmissibility of the ruggedized PCB with the use of linear dynamic absorber (31.5 gr) is 
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superimposed for reference. It clearly shows that both techniques equally well suppress all 

resonances of the original PCB except the noise level. 

For comparison purposes, an appropriate nonlinear PSD is measured, since the system is under 

full level of excitation ( 14g RMS), as has been used for linear case, therefore, it is reasonable 

to superimpose its corresponding PSD curve to those obtained in linear dynamic absorber case 

at a similar mass ratio. The result of PSD of absolute acceleration between linear dynamic 

absorber and impact damper together with the original PCB can be seen in Figure 6.28. Both 

techniques produce a similar reduction ratio close to 3-fold vibration suppression as compared 

to the original PCB design. 
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Figure 6.29. Experimentally measured PSD of relative deflection of original and modified PCB 

Figure 6.29 shows the PSD of relative deflection of modified PCB which produced an overall 

value of 95 f.tm RMS, about 3.3 reduction factor compared to the original response, 312 J.Ul1 

RMS and 15.8 f.tm RMS higher than linear case (79.2 J.l.m RMS) at about the same mass ratio, 

see the curve labelled as Original and With linear dynamic absorber reference. 

Providing the desired clearance of the impact damper device. The Electrodynamic Shaker is 

programmed to perform the swept-sine test from 10 to 500 Hz at a constant magnitude of 

acceleration 1 Og with linearly sweep rate of 5 Hz!s. This allows further study of the influence 

of such a device on the PCB in sine vibration environment. The analyser screenshot, Figure 

6.30b is best to represent the dynamic response of the combined system under such a test. 
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Figure 6.30. Analyser screenshot of absolute transmissibility of original and modified PCB under swept
sine vibration 
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Figure 6.31. Experimentally measured absolute transmissibility and acceleration of original and modified 
PCB 

Figure 6.31 shows the superimposed absolute transmissibility and acceleration of original and 

modified PCB, respectively, the application of impact damper produces 15-fold vibration 

suppression at resonant frequency as compared to its original design. However, unlike linear 

systems, this reduction ratio does not remain constant in varied excitation level. 
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The described situation from above would also apply for relative deflection of the modified 

PCB. Nonetheless, at this fixed level of excitation a similar value, IS-fold vibration 

suppression is found for relative deflection, see Figure 6.32 for reference. 
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Figure 6.32. Experimentally measured relative of original and modified PCB 
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It is interesting to notice that there is no "jump phenomena" and "frequency pulling" occurring 

in the system response during frequency sweep-up this is due to the critical choice of 

clearance and probably from the contribution of low restitution ratio and friction between 

components. 

Since, it is impossible to have massless inner ring of the ball bearing. Therefore the natural 

frequency of the modified system is slightly shifted to the left as shown in the result of the 

experimental data, Figure 6.32. If we then consider this alternative approach for vibration 

suppression it is necessary to have a smaller mass of inner ring. 

This experimental work mainly addressed the principle of impact damper as part of vibration 

protection. The attainable performance of the PCB was achieved by adjusting the clearance of 

the "broken" ball bearing, providing the fixed vibration condition. Under extreme condition, 

say, temperature variation or considering cost effective solution and survivability, this could 

be an alternative method to protecting the PCB. However, the drawback is its sensitive 

performance. 



7.0 Conclusions 

This project has clearly demonstrated the effectiveness of usmg dynamic ruggedizing 

technique to minimise the response of sensitive components in military airborne equipment 

under harsh vibration environment. The solution proposed utilising dynamic absorber and 

impact damper against harsh vibration involving the reduction of vibration was considered in 

depth. It has clearly illustrated the elimination to an acceptable amount of vibration in which 

the cost is also compromised. 

The author has shown theoretically and experimentally that the optimised linear damped and 

nonlinear vibroimpact dynamic absorbers can essentially suppress the dynamic responses and, 

therefore, increase the life of sensitive commercially-off-the-shelf PCBs operating in harsh 

environmental conditions under shock, wide-band random and swept sine vibration. From the 

conducted analysis, the optimal linear and nonlinear absorbers yield almost similar dynamic 

performance. 

Implementation of such dynamic absorbers does not require a drastic increase in mass and 

dimensions, modification or redesign of commercially-off-the-shelf PCBs along with their 

mounting configuration and might be thought of as a prospective alternative/supplement to the 

existing methods of increasing reliability of sensitive electronic equipment. Further efforts 

should be aimed at developing compact, cheap and easily tuneable dynamic absorbers 

maintaining the consistent properties over a wide range of ambient temperatures and lifetime. 

The choice of the all-metal design, Metal & Mesh Bushing type dynamic absorber (available 

off-the-shell offers significant improvements over the use of conventional rubber or plastic 

dynamic absorber. In particular, the non-temperature dependence of the dynamic properties so 

such material eliminates problems associated with the extreme temperature range of operation, 

and the vastly improved fatigue life minimises maintenance costs. 

In general, the optimal linear absorber can be considered one of the best candidates of 

vibration suppression for sensitive electronic equipment harsh vibration environment. Due to 

the constraint in the electronic box, the dynamic absorber with a smaller mass ratio was 

designed and it was offered similar improvement over the optimally designed absorber that 

governs the same vibration protection analogy. The miniature dynamic absorber would be able 

to perform well in a small space. 

The proposed optimising technique for linear dynamic absorber is very simple, there were no 

mathematical complication involved. The optimal dynamic absorber design has shown its 

superior as compared to the traditional one in term of performance, as shown, for a specific 

application such as the PCB, the design performance is improved by 5% in term of overall 
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relative deflection under random vibration and 32% in peak relative deflection under swept

sine vibration. Therefore, using a common method for solving optimal dynamic absorber may 

not be relevant for any specific application even it is a simple device. 

The novel optimising technique with the used of MS~xcel and its Solver may prove to be the 

most advantage technique to solve linear complex dynamic systems, typically to those systems 

with the unknown original mathematical model, only a set of measurement data is required. 

Further more, this package has shown its ability to obtain all modal parameters of a complex 

dynamic system such as the PCB whereas the traditional approach may prove to be 

complexity. 

Numerical simulation using Matlab/Simulink proves to be very powerful and consistent to 

solve linear and nonlinear dynamic systems, additionally, it does not require solving complex 

mathematics only a simple set equations of motion are required. 

The original objective of the Thesis-to provide recommendation for the design of a passive 

shock and vibration protection system-has been achieved through the analysis carried out. The 

design steps can be followed through for any similar system or environmental loading and the 

dynamic absorber's properties re-optimised. In fact when the spreadsheet described has been 

set up, it is a trivial matter of changing three or four numbers and running the Solver to 

optimise any combination system. 

8.0 Suggestions for further work 

The main objective of this study was design an dynamic absorber for optimal overall relative 

deflection of the PCB, as a result, the reduction ratio with a factor 4 was achieved whereas the 

overall absolute acceleration with a factor of 3 was obtained under a typical random vibration. 

This significant difference indicates the absorber may not be at its "best" universal 

performance. In some cases, it would be desirable to design a dynamic absorber that equally 

well suit both applications which would give a same reduction ratio as compared to its original 

design. By carrying out the analysis above, based on the principle outlined, the dynamic 

characteristics of the dynamic absorber would differ to match the optimal point of for any 

environmental condition. In this particular, the theory full-mode model and novel optimising 

technique may be the best case for designing such a dynamic absorber. 

The use of absorbers for the vibration protection of PCBs has been validated by this project. 

The methods used to achieve this can be readily adapted for a multitude of other tasks. There 

are opportunities to use this technique in the protection of other sensitive components. Strictly 

speaking, hard disk drive is very susceptible towards shock and vibration. It would be 

desirable to perform testing on hard disk drive with the application of dynamic absorber. 
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