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ABSTRACT 

Lung sound signal (LSS) measurements are taken to aid in the diagno

sis of various diseases. Their interpretation is difficult however due to 

the presence of interference generated by the heart. Novel digital signal 

processing techniques are therefore proposed to automate the removal 

of the heart sound signal (HSS) interference from the LSS measure

ments. 

The HSS is first assumed to be a periodic component so that an adap

tive line enhancer can be exploited for the mitigation of the HSS in

terference. The utility of the scheme is verified on synthetic signals, 

however its performance is found to be limited on real measurements 

due to sensitivity in the selection of a decorrelation parameter. 

An improved solution with multiple measurements, that does not re

quire a decorrelation parameter and exploits the spatial dimensions, is 

therefore proposed on the basis of blind source extraction based upon 

second-order statistics. This approach is found to have improved per

formance on both real and synthetic datasets, although the level of 

departure from true periodicity impacts this improvement. 

A new sequential blind extraction algorithm for removing quasi-periodic 

signals with time-varying period is then developed. Source extraction 

is performed by sequentially converging to a solution which effectively 

diagonalizes auto correlation matrices at time lags corresponding to the 
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Abstract iii 

time-varying period, and thereby exploits a key statistic of the nonsta

tionary desired interfering source. The algorithm is shown to have fast 

convergence and to yield much improvement in signal-to-interference 

ratio (SIR) as compared to when a fixed period is assumed. Separation 

of the HSS interference is confirmed on measurement datasets. 

To conclude, a complete algorithmic solution for the removal of the 

HSS interference from the LSS measurements, incorporating automatic 

peak detection based on particle-filtering to extract the time-varying 

period of the HSS interference, is proposed and validated on real-world 

lung sound recordings. 
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STATEMENT OF 

ORIGINALITY 

The original contributions are focused upon exploiting the periodicity 

of the source of interest (Sol) in order to extract it from other signals. 

The novelty of the contributions are supported by one published full 

journal paper, one full journal paper in preparation, and two published 

conference papers. 

In Chapter 3, an adaptive line enhancement technique is employed to 

enhance a quasi-periodic heart sound signal (HSS) in a mixture of heart 

sound signal and lung sound signal (HSS-LSS signal). Since the results 

are sensitive to adaptive line enhancer parameters selection, the key 

to achieving good results lies in carefully choosing the parameters of 

the adaptive line enhancer especially the decorrelation parameter. The 

results of this approach have been published in: 

• T. Tsalaile and S. Sanei, "Separation of heart sound signal from 

lung sound signal by adaptive line enhancer," in Proc. Int. Conf· 

EUSIPCO, 2007, Poznan, Poland. 

In Chapter 4, a procedure based on blind source extraction (BSE) by 

second-order statistics (SOS) is employed for the extraction of the heart 

sound signal (HSS) from linear mixtures of the heart sound and lung 
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sound signals (HSS-LSSs). This procedure works by jointly diagonaliz

ing the auto correlation matrices at time lags corresponding to integer 

multiple of the perceived period of the Sol which is assumed fixed. 

From this approach it is appreciated that any departure from strict 

periodicity impacts performance. For a quasi-periodic, nonstationary 

signal such as the HSS or the ECG, the periodic duration generally 

varies from cycle-to-cycle and hence it has time-varying period. To al

low for such signals to be extracted, a method that effectively matches 

the time variations of the Sol is incorporated in the BSE algorithm, 

thereby resulting in a new BSE algorithm for quasi-periodic signals 

with time-varying period. The power of this algorithm lies in detect

ing the peaks of the source (signal) of interest. The results of both 

algorithms have been published in: 

• T. Tsalaile, S. M. Naqvi, K. Nazarpour, S. Sanei and J. A. 

Chambers, "Blind source extraction of heart sound signals from 

lung sound recordings exploiting periodicity of the heart sound," 

in Proc. ICASSP, 2008, Las Vegas, USA . 

• T. Tsalaile, R. Sameni, S. Sanei, C. Jutten, and J. A. Chambers, 

"Sequential blind source extraction for quasi-periodic signals with 

time-varying period," IEEE Tran. Biomed. Eng., 

Doi: 1O.1109/TBME.2008.2002141. 

In Chapter 5, peak detection of the HSS is automated. A signal which 

is easy to detect peaks from is derived from the original HSS through 

sequential Bayesian estimation techniques. Here the HSS is modelled 

by an AR process whose parameters are tracked by Kalman and particle 

filtering thereby resulting in an evolution signal of the AR parameters. 
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A signal made up of the norm of the AR parameters is used in the peak 

detection algorithm. The ideas developed in Chapter 5 are incorporated 

into Chapter 4 to form a complete solution (presented in Chapter 6) for 

the extraction of quasi-periodic signals with time-varying period. The 

results of the complete solution are to be submitted to: 

• T. Tsalaile, and J. A. Chambers, "A complete solution to the 

problem of blind source extraction of quasi-periodic signals with 

time-varying period," EURASIP J. Adv. Sig. Process. 

The results of other contributions which are related to the general ap

proaches adopted in this work are published in: 

• S. M. Naqvi, Y. Zhang, T. Tsalaile, S. Sanei and J. A. Cham

bers, "A multimodal approach for frequency domain independent 

component analysis with geometrically-based initialization," in 

Proc. Int. Gonf. EUSIPGO, 2008, Lausanne, Switzerland. 

• S. M. Naqvi, Y. Zhang, T. Tsalaile, S. Sanei and J. A. Cham

bers, "Evaluation of emerging frequency domain convolutive blind 

source separation algorithms based on real room recordings" in 

Proc. IEEE SAM, 2008, Darmstadt, Germany. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

Lung sound signals (LSSs) are produced in the airways of a human being 

during inhilation and expiration cycles [2]. The LSSs propagate through 

lung tissues in the parenchyma and can be recorded over the chest wall 

using a digital stethoscope. The tissue acts as a spatial frequency filter

like structure whose characteristics can vary according to pathological 

and indeed physiological changes [2]. Besides the fact that normal and 

abnormal lung sounds are mixed in the airways, which poses a problem 

in terms of their potential use for classification of respiratory diseases; 

the quasi-periodic heart sound signal (HSS), from heart beat activity, 

invariably interferes with the LSS and therefore masks or inhibits clini

cal interpretation of LSS particularly over low frequency ranges [3]. The 

main frequency components of HSS are in the range 20-100 Hz and this 

is the range in which LSS has major components [4]. Therefore, since 

HSS and LSS overlap in frequency and they are somewhat statistically 

non-stationary (due to their dependency on physiological changes), the 

major problem faced in separating HSS from LSS is, doing so, with

out degrading the main characteristic features of the LSS. Cardiologists 

also rely on auscultation of heart sounds for detection and discrimina-
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tion of cardiovascular diseases (CVD). Since the HSS and LSS overlap 

in frequency, the cardiovascular information may be corrupted by the 

intruding LSS which may lead to misinterpretation of cardiovascular 

information and could consequently lead to the wrong diagnosis by the 

cardiologist. Any means that will separate the HSS from LSS without 

degrading the main characteristics of both HSS and LSS will prove ex

tremely beneficial for cardiologists as well as physicians and clinicians. 

Although several signal processing techniques have been employed to 

reduce HSS from LSS recording [5], [6], [7], [8], [9], [10], and [11], none of 

them exploit the key statistical nonstationary characteristic of the HSS 

in order to separate it from the lung sound recording. These approaches 

are briefly reviewed in Chapter 2. 

1.2 Scope of this study 

The following describes the scope of this study 

• To identify and apply available digital signal processing algo

rithms in the context of separation of heart sound from lung sound 

recordings. 

• To develop novel, robust, statistical signal processing algorithms 

which exploit the key statistical nonstationary characteristic of 

the heart sound. 

• To test the above developed algorithms with real recorded lung 

sound data. 

• To recommend future research directions. 
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Figure 1.1. A schematic diagram of the human heart showing its ma
jor parts. The human heart is a four-chambered muscular organ made 
up of the left and right atria and the left and right ventricles. Each 
atrium and its corresponding ventricle is separated by an atrioventric
ular(AV) valve. The right atrium and right ventricle are separated by 
the tricuspid valve and the left atrium and left ventricle are separated 
by the mitral (bicuspid) valve. The two ventricles and arteries are also 
separated by valves. The right ventricle and the pulmonary artery are 
separated by the pulmonary valve, while the left ventricle and the aorta 
are separated by the aortic valve [1]. 
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1.3 The cardiovascular system 

The systemic circuit and the pulmonary circuit are two systems through 

which blood flows in the human body. The pulmonary circuit carries 

blood to and from the lungs while the systemic circuit carries blood to 

and from the rest of the body. There are three types of vessels that 

transport blood namely: Arteries which carry blood away from the 

heart, veins which carry blood to the heart and, capillaries that per

mit the exchange of the nutrients and gases between the blood and the 

surrounding tissues [1]. 

A schematic diagram of the human heart is shown in Fig.!.!. The 

human heart is a four-chambered muscular organ: the left and right 

atria and the left and right ventricles. Each atrium and its correspond

ing ventricle is separated by an atrioventricular(AV) valve. The right 

atrium and right ventricle are separated by the tricuspid valve and the 

left atrium and left ventricle are separated by the mitral (bicuspid) 

valve. The two ventricles and arteries are also separated by valves. 

The right ventricle and the pulmonary artery are separated by the pul

monary valve, while the left ventricle and the aorta are separated by 

the aortic valve. 

The right atrium receives deoxygenated blood from the body via the 

superior and inferior vena cavae. From the right atrium the blood is 

pumped through the tricuspid valve to the right ventricle, from where 

it goes through the pulmonary valve into the pulmonary artery, which 

takes the blood to the lungs where it receives oxygen. The oxygenated 

blood is transported to the left atrium via the pulmonary vein. The 

oxygenated blood is pumped through the mitral valve to the left ven

tricle. When the left ventricle contracts, the blood is pumped through 
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the aortic valve into the aorta, from where it is distributed to the rest 

of the body. 

1.4 The cardiac cycle 

The cardiac cycle is divided into two phases for any of the four chambers 

of the heart. These are the contraction (systole) and relaxation (dias

tole) phases. During contraction or systole, the chamber pushes blood 

into an adjacent chamber; and in relaxation or diastole, the chamber 

relaxes and is filled with blood. 

A cardiac cycle starts with an atrial contraction which fills the ventri

cles, after which follows an atrial contraction, ventricular contraction, 

and atrial dilation. During ventricular contraction, the pressure in the 

ventricles increases and forces the mitral and tricuspid valves to close. 

The high pressures also forcedly open the pulmonary valve and the aor

tic valve and the blood flows into the pulmonary artery and aorta. At 

this point, ventricular relaxation begins and the ventricles as well as 

the atria are in a dilation phase. The pressures in the ventricles decline 

and fall below the pressures in the pulmonary artery and aorta, and 

the pulmonary valve and aortic valve close as a result. As ventricular 

pressure continues to fall, the pressure drops below the pressure in the 

atria and the mitral and the tricuspid valve open, allowing blood to 

flow from the major veins through the atria to the relaxed ventricles. 

1.5 ECG and heart sounds 

The ECG [12] provides a noninvasive measurement of the electrical 

activity of the heart. A typical ECG tracing, corresponding to a sin-
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gle cardiac cycle is presented in Fig.1.2( a). Distinct electrophysiolog

ical events appear as disturbances in the ECG signal. The P wave 

in Fig.1.2(a) corresponds to the electrical excitation (depolarization) of 

the top two atrial chambers of the heart. The P wave is associated with 

blood being pushed by atrial contraction into the lower two ventricular 

chambers. The Q, R, and S waves together form the QRS complex, 

which is associated with contraction of the ventricles due to ventricular 

depolarization. This results in blood being pushed out of the heart into 

arterial vessels. The T wave corresponds to repolarization of the ven

tricles, which restores the heart tissue to the normal state and allows 

the ventricles to relax prior to the next cardiac cycle (Atrial repolariza

tion is typically concealed by the higher-amplitude QRS complex in the 

normal ECG). The electrical activity of the heart produces mechanical 

effects that manifest themselves as acoustical signals [12J. Fig.1.2(a) 

shows time-correlated audio with the ECG in Fig.1.2(b) for a normal 

heart. The first heart sound, called SI, occurs shortly following the 

R wave. It is produced as a result of ventricular contraction causing 

blood to flow back towards the atria, shutting the AV valves between 

the chambers. The second heart sound, S2, can be heard at the end 

of the T wave. This is produced by the relaxation of the ventricles 

causing blood to flow back into these chambers from the arteries, shut

ting the valves between the ventricles and the arterial vessels. In each 

case, the closing of valves is associated with vibrations that produce 

sounds. In the acoustic signal, the period from 81 to S2 is known as 

systole (ventricular contraction), while the 82-81 phase corresponds to 

diastole (ventricular relaxation). Other heart sounds include the third 

and fourth heart sounds 83 and 84. 83 is due to sudden termination of 
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the ventricular rapid-filling phase while 84 is due to atrial systole. In 

this work, 83 and 84 are not considered as they do not occur normally 

but are indicative of abnormal operation of the heart. 

R 

(J 0.4 

o 0.2 0.4 

TIme (s) 
(a) 

0.6 

0.6 
l1me (s) 

(b) 

0.8 

O.B 

Figure 1.2. Time correlated ECG (a) showing P, QRS, and T waves 
and acoustic H88 (b) highlighting the first and the second heart sounds 
(81 and 82). The ECG signal shown corresponds to a single cardiac 
cycle. The first heart sound 81 occurs shortly following the R wave. It 
is produced as a result of ventricular contraction causing blood to flow 
back towards the atria, shutting the AV valves between the chambers. 
The second heart sound 82 can be heard at the end of the T wave. 
This is produced by the relaxation of the ventricles causing blood to 
flow back into these chambers from the arteries, shutting the valves 
between the ventricles and the arterial vessels [13]. 

1.6 Lung sounds 

A typical lung structure showing its key components is shown in Fig-

ure 1.3. Generally, lung sounds are produced during inspiration and 

expiration cycles, and are found in the frequency range 20-1200Hz [14]. 

There are two types of lung sound, namely - normal and abnormal lung 

sounds. Normal lung sounds originate from within each lobe (made up 
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of bronchi, broncioles and alveoli) of the lung during inspiration and 

from central airways (trachea) during expiration, and they have fre

quency distribution between 70 and 600Hz [14], [15], and [2]. 

Abnormal or adventitious sounds are of two types - lung wheeze and 

crackles. Wheezes are musical or continuous abnormal lung sounds with 

frequency distribution that extends from less than 100Hz to more than 

1000Hz. They originate from air turbulence and oscillations of the 

walls of narrowed airways (especially the bronchioles) and are heard 

typically in patients with airway obstruction. Wheezes can further 

be classified into two categories namely, monophonic and polyphonic 

wheezes. Monophonic (single tone) wheezes originate from single nar

rowed airways and are pure tones heard during expiration in patients 

with airway obstruction. Polyphonic (multi-tone) wheezes have differ

ent frequencies. When these frequencies are harmonically related, the 

wheezing most likely originates from different airways [2]. Crackles on 

the other hand are non-musical sounds that are essentially short, explo

sive bursts of sounds that do not have distinct frequencies compared to 

wheezes. They have broad frequency distribution and originate from 

airways that open or deform very abruptly in the lung fibrosis when 

retractile forces of the lung are increased. They may be produced by 

movement of bubbles in airway fluid and secretions in patients with pul

monary edema or with chronic bronchitis. Crackles may also be clas

sified into two categories: high pitched or fine crackles heard typically 

in patients with interstitial pulmonary fibrosis, pneumonia, or during 

early stages of congestive heart failure and the low pitched crackles 

common in patients with chronic obstructive lung diseases [2]. 
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Figure 1.3. Lung structure showing the key respiratory components. 
Typical sites where normal and abnormal lung sounds originate are 
shown. Normal lung sounds originate from within each lobe (upper, 
middle and lower lobe) of the lung during inspiration and from central 
airways (trachea) during expiration. Abnormal or adventitious sounds 
from air turbulence and oscillations of the walls of narrowed airways 
(especially the bronchioles) [1]. 
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1. 7 Organization of the thesis 

The objective of Chapter 2 is two-fold, notably, to lay the foundation 

for blind source extraction (BSE) or more generally blind source sepa

ration (BSS) and to briefly review signal processing techniques already 

employed in the literature to solve the problem at hand. 

Chapter 3 proposes the adaptive line enhancer (ALE). The basis of this 

approach stems from the fact that the signal to be removed or extracted 

has periodic structure which is exploitable through the use of the ALE. 

The ALE is traditionally used to enhance periodic signals from white 

or coloured noise. 

Chapter 4 introduces a new algorithm, in the context of blind source 

extraction, for extraction of quasi-periodic signals with time-varying 

period. The time-varying period is a manifestation of the nonstation

arity of the signal of interest. This algorithm is effectively made up 

of two algorithms. The crucial period or peak information is obtained 

manually through eye-balling. 

Chapter 5 addresses the problem of manually picking the peaks of the 

signal of interest using sequential Bayesian estimation techniques to in

troduce a signal suitable for automatic peak-picking. 

Chapter 6 presents the complete solution to blind source extraction of 

quasi-periodic signal with time-varying period. This chapter is effec

tively made up of material presented in Chapter 5 incorporated in the 

material presented in Chapter 4. 

Chapter 7 concludes the thesis and includes suggestions for future work. 



Chapter 2 

LITERATURE SURVEY 

As the main work presented in this thesis is based on blind source ex

traction, this chapter presents an overview of blind source separation 

and/ or extraction and their general approaches in the context of in

dependent component analysis (ICA). Furthermore, signal processing 

techniques investigated prior to this research for separation of heart 

and lung sounds are discussed. 

2.1 Fundamentals of blind source separation/extraction 

A classical problem in blind source separation (BSS) and blind source 

extraction (BSE) is to recover the constituent n sources contained 

within s(t) given a set of m observable mixture signals collected in 

x(t), with minimum assumptions about the mixing medium and the 

underlying sources. In this work, it assumed that the dimension m 

of the observed signals x(t) is equal to that of the source signals, i.e. 

m = n. The mixtures of sources can be divided into several categories, 

such as instantaneous mixtures and convolutive mixtures. In the main 

work presented in Chapter 4, instantaneous mixing is considered in

stead of the convolutive mixing of sources. This is motivated by the 

fact that the distances involved (between source signal origin and the 

sensor) are very small such that the reflections associated with convo-

11 
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lutive mixing can be ignored, thereby making the necessity to model 

convolutive mixing unnecessary. The general noise-free instantaneous 

BSS problem may be formulated as 

x(t) = As(t) (2.1.1) 

where x(t) = [Xl(t), ... , xm(t)]T is a vector of observed mixed signals 

measured at m spatially distinct locations, s(t) = [Sl(t), ... , sn(t)f is a 

vector of source signals assumed to be either statistically independent 

and jor have different temporal structures, A is an unknown full col

umn rank mixing matrix, and [.f denotes vector transpose. Through

out this thesis all signals are assumed to be real valued and zero mean, 

and only linear mixing models are considered. The temporal structure 

of the source signals is very attractive in this research as shall be seen 

in Chapter 4, wherein it is shown to be possible to exploit this struc

ture of the signals to extract them from their mixtures. In practice, 

it is possible for the model in Equation (2.1.1) to have a noise term 

that represents additive white observation noise. In this work however, 

only the noise-free model (Equation (2.1.1) is assumed but the effect of 

additive noise is demonstrated in the simulation section of Chapter 4). 

In general, two approaches are available for recovering the original 

sources from the instantaneous mixtures: the simultaneous separa

tion approach [16], [17], [18], [19], [20], and [21] and the extraction 

approach [22], [23], [24], [25], [26], [27], and [28], widely known in the 

literature respectively as the blind source separation (BSS) and blind 

source extraction (BSE) approaches. In BSS, all sources are separated 

simultaneously as 
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y(t) = Wx(t) (2.1.2) 

where y(t) = [Yl(t), ... ,Yn(t)f is the vector of recovered or estimated 

source signals, and W is known as the unmixing or separating matrix. 

On the other hand, in the BSE approach the objective is to extract 

the sources sequentially one-by-one from the available mixtures x(t) 

according to the extraction model 

y(t) = qT x(t) (2.1.3) 

where q is a vector designed to extract the source of interest (Sol) at 

each extraction stage and y(t) is the output of the extraction algorithm 

(a single extracted source). Normally, a deflation operation [29J fol

lows the extraction stage in order to remove the extracted source from 

the mixtures before the next source is extracted. The extraction of 

each source signal is generally achieved subject to having some a prior 

knowledge about the signals of interest (for example, its stochastic prop

erties, temporal structure or spareness). This is a major attraction of 

BSE, since in many applications a large number of sensors (electrodes, 

microphones or transducers) is available but only a few source signals 

are of interest. A typical example is the "so-called" cocktail party prob

lem, where it is usually desired to extract the voice of a specific person 

rather than to separate all the available source signals from an array 

of microphones. Moreover, in biomedical signal-processing applications 

such as electroencephalogram/magneto encephalogram (EEG/MEG) data 

processing, in which the number of sensors (observations) can be very 

large, it is desired to recover only some components matched to the 
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problem of interest. 

A common approach to solving BSS and BSE problem is to use some 

kind of objective function in the context of independent component 

analysis (leA) [30]. Independent component analysis estimates statis

tically independent sources albeit with scaling and permutation ambi-

guities in the extracted sources. Attempts to solve the permutation 

problem have been addressed in [31] (using audio-visual information) 

and the references therein for convolutive mixing of source signals. In 

the instantaneous mixing and especially when employing blind source 

extraction, permutation problem is less important and therefore is not 

considered in this work. leA is reviewed next. 

2.1.1 Independent component analysis 

Independent component analysis is a statistical approach designed to 

decompose multivariate data into components that are as statistically 

independent as possible. In the literature [30] and [32], leA normally 

refers to using a linear transform, i.e.as in the instantaneous BSS model. 

Nevertheless, within the same literature, some authors address convo-

lutive BSS and implicitly convey the idea that these convolutive BSS 

algorithms form part of the leA family. For simplicity in this thesis, 

leA refers to the techniques which solve BSS and BSE based on the 

assumption of statistical independence of the sources. In effect, leA 

implies that the joint probability density function p( s( t)) of the sources 

can be factorized as: 

n 

p(s(t)) = ITPj(Sj(t)) (2.1.4) 
j=l 
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where Pj(Sj(t)) is the marginal distribution of the jth source. Further

more, the statistical independence of the sources implies the uncorre

latedness of the sources, but the reverse is not necessarily true. As 

a pre-processing step, most leA algorithms decorrelate (pre-whiten) 

the mixtures via spatial whitening, before optimizing their separating 

objective or cost functions. This spatial whitening is achieved by em

ploying the well-known principal component analysis (peA), which is 

explained next. 

2.1.2 Principal component analysis 

Generally, in the context of BSS, principal component analysis (peA) 

seeks to remove the cross-correlation between the observed signals, and 

ensures that they have unit variance. peA operates by finding the 

projections of the mixture data in orthogonal directions of maximum 

variance [30]. A vector v(t) is said to be spatially white if 

E(v(t)vT(t)) = I (2.1.5) 

where E(.) denotes the statistical expectation operator and I is the 

identity matrix. The unmixing matrix, W, can be decomposed into 

two components, i.e. 

W=UV (2.1.6) 

where V is the whitening matrix and U is the rotation matrix [33]. 

For m = n, there are n2 unknown parameters in W. peA requires the 

n diagonal elements of the whitened data covariance matrix Cv to be 

unity, and due to the symmetry property of Cv, it suffices that only 
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(n2 - n)/2 of its off-diagonal terms be zero. Therefore, spatial white

ness imposes n{n + 1)/2 constraints. This leaves n{n - 1)/2 unknown 

parameters. Hence, as described by Cardoso, prewhitening only does 

half of the BBB job [33]. The whitening matrix V can be computed as 

follows: 

(2.1.7) 

where E is the eigenvector matrix of the covariance matrix of v{t), Cv' 

This matrix projects the data into the n-dimensional source space. Q 

is a diagonal matrix storing the eigenvalues of Cv' Q-t ensures the 

projections have unit variance. It is however important to note that 

the whitening matrix V is not unique because it can be pre-multiplied 

by an orthogonal matrix to obtain another version V. 

2.1.3 ICA approaches to BSS/BSE 

ICA relies on fundamentally two factors: 1) a statistical criterion ex

pressed in terms of a cost function l{y{t)), which requires to be either 

minimized or maximized, 2) an optimization technique to perform the 

minimization or maximization of the cost function. 

Many researchers have focused mainly on formulating new cost func

tions to propose novel BSS/BSE algorithms. In doing so, it is common 

in the BSS community to employ either the traditional steepest de

scent/ ascent algorithm, or those more specific to the BSS field such as 

the natural gradient algorithm (NGA) [34]. The natural gradient can 

be expressed as: 

(2.1.8) 
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where J(y(t)) is the cost function to be either minimized or maximized, 

and \lW is the natural gradient with respect to the unmixing matrix 

W. This gradient is derived based on the fact that the optimization is 

Reimannian or curved [34]. The concept of Reimannian is intrinsically 

related to differential geometry, which is the mathematics of curved 

spaces. The NGA has been shown to work more efficiently in terms of 

convergence than the normal gradient approach [34], and therefore it 

has been used extensively [29]. 

In general, the statistical criteria employed by the majority of ICA-type 

algori thms are summarized as 

• Many algorithms use second-order statistics (SOS) and thereby 

exploit the time structure of the sources, mainly the temporal 

correlation of the sources. Thus, in these methods, the nonGaus

sianity assumption on the sources, generally required by HOS 

based approaches, is replaced by assumptions on the time struc

ture of the signals. Typical examples include the famous second

order blind identification (SOBI) algorithm [35], and an algorithm 

for multiple unknown signal extraction (AMUSE) [36]. Other 

second-order based techniques such as Parra's algorithm [37] ex

ploit the statistical non-stationarity of the source signals. These 

techniques are particularly attractive, as they involve only second

order statistics, which are computationally less intensive and less 

sensitive to data length than the methods based on higher-order 

statistics (HOS) . 

• Another class ofICA algorithms utilizes knowledge about stochas

tic properties (notably the higher-order statistics (HOS)) of the 

source signals to maximize the statistical independence or non-
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Gaussianity. These are based on fourth-order cumulants or kurto

sis which is a measure of nonGaussianity. For instance, the joint 

approximate diagonalization of eigenmatrices (JADE) algorithm 

jointly diagonalize a set of fourth-order cumulant matrices, such 

that the sum of squared cross-cumulants is minimized [38]. Sim

ilarly, in [29], Cichocki et al. proposed an extraction algorithm 

which extracts a source of interest, whose absolute normalized 

kurtosis value is the largest amongst all the mixed source sig

nals. Furthermore, in [39] an extraction algorithm is proposed 

that extracts a source signal whose kurtosis value lies within a 

specific range. The reason why these algorithms employ higher

order statistics (HOS) lies in the fact that the sources are statis

tically independent. In other words, uncorrelatedness in terms of 

higher-order statistics entails statistical independence, whilst un

correlatedness in terms of second-order statistics does not imply 

independence, except for sources that are Gaussian [30] . 

• The last class of ICA algorithms is derived from an information 

theoretic perspective. This family of ICA algorithms exploits con

cepts borrowed from information theory such as entropy and mu

tual information. It is noted that two variables are said to be 

statistically independent whenever their mutual information is 

zero [40]. Examples of this ICA category are the lnfomax algo

rithm of Bell and Sejnowski [41], which attempts to maximize the 

entropy of the estimated sources, and FastICA of Hyvarinen et 

al. that utilizes differential entropy, negentropy [30]. 

In this research, the stochastic properties of the signals in question 

are not readily known. However, information regarding the temporal 
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structure is available in the literature. Therefore, algorithms based on 

second-order statistics are adopted in this work. 

2.2 Previous research 

2.2.1 Signal processing techniques 

Several different techniques have been implemented to remove or reduce 

the level of heart sound signals (HSSs) within lung sound recording. 

These include classical band-pass filtering, adaptive processing tech

niques (such as the least mean square adaptive noise canceller (LMS

ANC) [5] and the recursive least squares adaptive noise canceller (RLS

ANC)) [9], together with wavelet [10] and Fourier transform-based [11] 

methods. 

2.2.2 Adaptive processing 

There are applications where a particular band of frequencies needs 

to be filtered from a wider range of mixed signals. The band-pass 

filter is a suitable candidate for achieving this task. Methods based 

on linear band-pass fixed filtering are not suitable for separation of the 

heart sound signal (HSS) from the lung sound signal (LSS) because 

of spectral overlap of these two signals. Given the time-variance or 

nonstationarity of the signals in question, time-domain adaptive noise 

cancelling techniques have been implemented instead to remove the 

interfering noise (HSS) from the signal (LSS). 
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Adaptive noise cancellation 

Adaptive noise cancellation is an approach used to remove background 

noise from useful signals. Usually, the background noise does not re

main statistically stationary. In this case, the noise canceller must be 

adaptive or exploit an algorithm that is able to adjust to the changing 

conditions. 

A typical adaptive noise canceller is shown in Figure 2.1. The basic 

idea of the adaptive noise cancellation algorithm is to pass the cor

rupted signal through a filter that tends to suppress the noise while 

leaving the signal unchanged. Since this is an adaptive process, it does 

not require a priori knowledge of the signal or noise characteristics. 

In order to realize the adaptive noise cancellation, two inputs x{t) (pri

mary input) and nl{t) (secondary input) where t denotes the discrete 

time index) are used in conjunction with an adaptive filter. The signal 

x{t) is information bearing which is corrupted by additive interfering 

noise no{k). Thus, x{t) = s{t) +no{t). The signal nl{t) is the reference 

noise input which is related in some way to the interference noise in 

the primary input but ideally uncorrelated with the signal. The noise 

reference input passes through the adaptive filter and an output y{ t) 

is produced which is as close a replica as possible to no{t). The struc

ture of filter employed for adaptive filtering is almost invariably finite 

impulse response because of the inherent stability and- mathematical 

tractability for computation of its coefficients. The filter, through an 

adaptive algorithm, readjusts its coefficients w{t) at each time sample 

such that the actual filter output y{ t) is as close to the interference 

component no{t) of the primary input signal as possible in the mean 

square error (MSE) sense [42]. Then the output y{ t) is subtracted from 
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the primary input to produce the system output e(t) = x(t) - y(t), 

which becomes an estimate of the source s(t), denoted as s(t), of the 

information bearing component of the primary signal x ( t): 

s(t) = e(t) = x(t) - y(t) = (s(t) + no(t) - y(t)) (2.2.1) 

Using (2.2.1) and assuming jointly wide-sense stationarity inputs x(t) 

and nl(t), the MSE is determined as 

E(e(t)2) = E( {x(t) - y(t)}2) 

= E( {s(t) + no(t) - y(t)}2) (2.2.2) 

= E(S(t)2) + E( {no(t) - y(t)}2) + 2E(s(t){no(t) - y(t)}) 

where E(.) denotes statistical expectation. Clearly, the first term is 

independent of the adaptive noise canceller. Since all signals in the third 

term of (2.2.2) have been filtered to remove DC and hence have zero

mean, and s(t) is uncorrelated from no(t) and nl(t), this term reduces to 

zero. Therefore, when the filter coefficients are adjusted so that E( e( t)2) 

is minimized, importantly E( {no(t) - y(t)P) is also minimized. In the 

steady state therefore, theoretically, the system output e( t) serves as the 

noise-free information bearing signal. Several adaptation algorithms 

can be used for adjusting the filter coefficients. The most widely used 

are the least mean square (LMS) and the recursive least squares (RLS) 

families of algorithms. 
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Figure 2.1. Adaptive noise canceller with primary input x(t) and 
reference input nl(t). 
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Least mean square adaptive noise canceller 

Generally, the LMS algorithm operates by automatically setting the 

filter coefficients w(t) so that the square of the instantaneous error 

signal e( t)2 is minimised. The optimum minimum mean square error 

filter coefficients may be obtained by solving the Wiener-Hopf equation 

[42] to yeild 

R - 1 
Wapt = * P (2.2.3) 

where R and p are the auto-correlation matrix and cross correlation 

vector respectively. The LMS algorithm attempts to approximate this 

solution. In practice, the computational burden of finding the inverse 

of the autocorrelation matrix R is high, requiring O( lvP) operations for 

a length M filter when R is Toeplitz. An iterative search method is 

therefore preferred. One such method is the method of steepest descent 

(MSD) [42]. If an objective function is defined as: J = E(e(t)2). The 

aim of the MSD is to try to find the optimum filter coefficients that 

minimize this objective function. A recursive way to obtain the filter 

coefficients based on the MSD is through [42] 

w(t+ 1) = w(t) + I1MsEE(e(t)x(t)) (2.2.4) 

where I1MSE is called the learning rate of the algorithm, w( t + 1) and 

w(t) are the next and present coefficient vectors respectively. Instead 

of minimizing the mean square error J = E( e( t)2), the LMS algorithm 

adapts the filter coefficients so that the instantaneous squared error 

e(t)2 is minimized. The LMS algorithm is a stochastic approximation 

of the MSD algorithm in that it replaces the cost function E( e( t)2) by 

its instantaneous coarse estimate j = e( t)2. If j is substituted for J in 
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the development of the method of steepest descent recursion formula, 

the recursive formula for the weight updates within the LMS algorithm 

becomes [42]: 

w(t+ 1) = w(t) + /-lLMSe(t)x(t) (2.2.5) 

where /-lLMS refers to the learning rate when the LMS algorithm is used 

and w(O) = O. 

Recursive least squares adaptive noise canceller 

The adaptation algorithm of Figure 2.1 may instead be the recursive 

least squares algorithm (RLS). For this case, the recursive algorithm 

for updating the coefficients takes the form [42] 

w(t) = w(t - 1) + k(t)(x(t) - wT(t -1)u(t)) (2.2.6) 

The filter output is given by: 

y(t) = wT(t - l)u(t) (2.2.7) 

where wT(t - 1) is a transpose of the filter coefficients (tap-weight) 

vector calculated for the iteration t-l, u(t) = [Ul(t), ul(t-l), ... , Ul(t

M + 1)] and, M is the filter length. 

For every u(t), the Kalman gain vector, k(t), is determined as: 

k P(t - 1)"\ -1 * u(t) 
(t) = (1 + u(tY * P(t - 1).,\-1 * u(t)) 

(2.2.8) 

The matrix P(t), which is a sample estimate of the inverse of the adap

tive filter input covariance matrix, is initialized as P(O) = 10, where I 

is the identity matrix, and 0 is the regularization parameter, chosen as 
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less than 0.01 times the variance of the primary input [9]. The param

eter A E [0, 1] is the forgetting factor and is related to the memory of 

the algorithm, given by l~A' 

In the literature reviewed, LMS-ANC and RLS-ANC have been used to 

remove HSS from lung sound recordings. In [5], researchers have used 

an adaptive filter based on the LMS algorithm to remove heart sound 

(HS) interferences. In this work, the HSS recorded from above the per

son's heart location (to maximize the presence of the heart sound) was 

used as the reference signal nl(t) for the adaptive system. The HSS 

recorded this way is not without the LSS and this is a discrepancy in 

the method since the adaptive scheme requires a 'noise only' (HSS in 

this case) reference signal. The presence of such signal leakage into the 

reference degrades the performance of the ANC. Similarly, researchers 

in [6] and [7] have used an adaptive system with the ECG signal as 

the reference signal. The noise signals nl(t) and no(t) of the adaptive 

noise canceler (Fig.2.1), corresponding to the contaminating HSS in the 

LSS and the reference HSS respectively, are assumed to be correlated 

in time. Thus, their time alignment is crucial to successful reduction 

of the contaminating HSS which is assumed additive to the LSS. Apart 

from the fact that the ECG signal does not occur at exactly the same 

time as the HSS, it has only one spike or significant peak (the R-wave) 

corresponding to the first heart sound 51 (contraction of the heart), 

while the contaminated LSS (with HSS) has two heart sounds 51 and 

52 corresponding to the contraction and relaxation of the heart. While 

a new reference signal may be designed by adding to the ECG a de

layed version of itself to account for the occurrence of 52, the delay 

used will be subject to error because it may be chosen to be approxi-
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mately the time between the two heart sounds. Thus, the error of the 

estimate of this delay between the two heart sounds plays a pivotal role 

in successfully removing or reducing the second heart sound. The sta-

tistical nonstationary nature of the HSS makes estimation of the delay 

a challenging task. Efforts to eliminate the use of a reference signal, 

by using a single recording (eliminating the use of the reference signal) 

have proved futile due to improper identification of the HSS sounds 

within the long sound recording [8]. An RLS-based adaptive noise can

cellation filtering technique has also been implemented to separate or 

reduce the HSS from the LSS where the reference signal was derived 

through band-pass filtering and segmentation of the LSS recording (see 

for instance [9]). For similar reasons presented above, the reference 

HSS signal was not free of LSS. Thus, generally, the major challenge 

in using the ANC has been to identify the appropriate choice of the 

reference signal. In this work therefore, proceeding with the ANC is 

abandoned due to its inherent use of the reference signal. 

2.2.3 Time-frequency techniques 

Wavelet transform 

Computing the wavelet transform consists of breaking up a signal into 

shifted and scaled versions (~a,b(t')) of an original (mother) wavelet 

(~(t')), where t' denotes continuous time, and is similar to the Fourier 

transform which breaks up the original into sinusoids of different fre-

quencies. The continuous wavelet transform (CWT) is calculated as: 

1 (t' -b) ~a,b(t') = ya~ -a- ,a> 0, b E ~ (2.2.9) 
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where a is the dilation (scale) parameter and b is the translation pa

rameter. An original mother wavelet is chosen from a pre-defined set 

of wavelets, or alternatively, a custom wavelet can be constructed. The 

wavelet is then stepped through the signal, multiplied with the signal 

at every time instant of interest and intergraded to yield a wavelet co

efficient. The scale of the wavelet is then changed to compress or dilate 

it. The new wavelet undergoes the same process of stepping through 

the signal, multiplication and integration to yield wavelet coefficients. 

This process is repeated for the set of scales chosen. If the coefficient 

that has been calculated is relatively large, the signal contains a com

ponent that is similar to the wavelet of the specific scale. 

The discrete wavelet transform (DWT) computes coefficients for a dyadic 

scale sequence. This means that the wavelet coefficients are only cal

culated for scales based on the power of two. The resolution of the 

DWT is not as good as the resolution of the CWT, but its computa

tion time is highly reduced since the coefficients are not calculated for 

every scale and integration is replaced by summation, which is more 

easily implemented. The analysis can be equally accurate as the CWT 

nonetheless [43]. 

Mallat developed an efficient way to implement the DWT by using 

the subband coding scheme [44] known as the fast wavelet transform 

(FWT). With this scheme, the signal is broken down into low-frequency 

(approximation) and high-frequency (detail) components by passing the 

signal through low and high-pass finite impulse response (FIR) filters 

respectively. At each breakdown level, the signal bandwidth is split 

in half. For example, if a signal is sampled at 4000Hz, the maximum 

frequency present in the signal is 2000Hz according to the Nyquist 
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criterion. This implies that after the first set of filters in the DWT, 

the approximation will essentially contain the components between 0-

1000Hz and the detail will essentially contain the components between 

lOOO-2000Hz. In the next breakdown level, the approximations of the 

previous level are broken down further, yielding another set of approx

imations and details. The approximation of this level essentially con

tains the frequency components between 0-500Hz and the detail the 

frequency components between 500-1000Hz. The signal has to be down 

sampled at each level to ensure that the number of samples at the break

down level is half the amount of samples contained in the signal that is 

passed through the filters. The FWT process is explained graphically 

in Fig.2.2. 

In the reviewed literature, wavelet-based filtering has been implemented 

to separate respiratory signals as well as in reducing phonocardiogram 

signals from lung sound recording. The wavelet-based filter was first 

proposed by Hadjileontialdis and Pan as [45] with the assumption that 

the nonstationary part of the signal in the time domain produces large 

WT coefficients over many wavelet scales, as (from Equation (2.2.9)) 

whereas for the stationary part, the coefficients die out quickly with 

increasing scale. They applied the method to separate discontinuous 

adventitious sounds (crackles) from vesicular sounds based on the sig

nificant wavelet transform (WT) coefficients at each scale - most sig

nificant coefficients at each scale with amplitude above some predeter

mined threshold correspond to nonstationary signals (crackles) in the 

time domain and the rest correspond to a stationary signal (the vesicu

lar). Researchers in [10] have applied a wavelet-based filter to separate 

the H88 from the L88. These researchers suggested that generally the 
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HSS has larger peaks in HSS-LSS recording, and therefore they con

sidered the HSS as nonstationary and the LSS as a stationary signal. 

However, the HSS peak is not always larger that of LSS. Making such 

a conclusion about the HSS and LSS, and using a wavelet-based filter 

to separate the two signals, could lead to failing to completely remove 

the HS8 from the L8S, primarily due to ambiguity in determining the 

threshold amplitude. In fact, according to reported results, the HSS 

was not completely removed [11]. 
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ri HP Rlter I ~ 2t I-i D1:[1000·2000Hz] 

g(n) I-

~ HP Rlter I-- 2~ ~ D2: [500·1000 Hz] 

LP Filter H 2t 

<- LP Finer .....- 2t I-t f:I2: [0·500 Hz] 

Figure 2.2. Graphical representation of FWT procedure. With this 
scheme, the signal is broken down into low-frequency (approximation) 
and high-frequency (detail) components by passing the signal through 
low and high-pass finite impulse response (FIR) filters. At each break
down level, the signal bandwidth is split in half. 
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Short-time Fourier transform 

A time-domain signal may be transformed into a frequency-domain 

signal by applying the Fourier transform (FT). The resulting Fourier 

coefficients are indicative of which frequencies are contained in a given 

time-domain signal. In practice, the discrete Fourier transform (DFT) 

is implemented to obtain the frequency-domain signal for discrete time

domain signals. In order to compute the FT of a signal in a more fast 

and efficient manner, in 1965, Cooley and Tukey developed the fast 

Fourier transform (FFT) algorithm. The details of the FFT algorithm 

can be found in [46]. The spectrum or the frequency information of a 

signal is of vital importance, since for a composite signal like the lung 

sound recording, which comprises of the breath sound (LSS) and the 

HSS, it is possible to deduce the occurrence of each one of them and 

possibly use this information to separate them. 

The major setback in performing the FT is the fact that if the signal 

under analysis is nonstationary all the temporal information in the sig

nal is lost [47]. The FT can only be properly applied if the signal being 

analyzed is assumed stationary [48]. A stationary signal is a signal 

whose statistical characteristics do not change with time [49]. HSS and 

LSS signals vary according to pathological and physiological changes 

and therefore exhibit extremely nonstationary properties. The FT is 

thus not suitable for the analysis of these signals [50]. To determine 

how the frequency content of a signal changes over time, a signal is cut 

into blocks and the spectrum of each block is computed. In an effort 

to avert the disadvantage (of loosing temporal information) of the FT, 

the short time Fourier transform (STFT) was developed. The STFT is 

implemented by cutting the signal of interest into smaller blocks, where 
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each block is assumed stationary and the FT is performed on each one 

of them. In order to improve the results, blocks overlap each other 

and each block is multiplied by a window function that is tapered at 

its endpoints (this is called windowing) to mitigate spectral smearing. 

The spectrum is thus determined by computing spectra of overlapping 

signal blocks. The discrete STFT is computed as: 

hD+(T/2)-1 

STFT(t, fk) = I: w(t*D-l)x(l)e-i *27r*fk*I/T = ~(w(t * D - l)x(l)) 
l=hD-(T/2) 

(2.2.10) 

where x( l) is the sampled signal, t and A are the time and frequency 

sample indices respectively, w( t* D -l) is a time domain window whose 

location is a multiple of D samples in time, and ~ corresponds to eval-

uation of T uniformly spaced samples via the discrete-time Fourier 

transform. 

Typical LSS and LSS spectrograms, computed using the STFT are 

shown in Figs.2.3(a) and 2.3(b) respectively. The STFT cannot track 

very sensitive changes in the time direction [51] and hence is not suit-

able for the analysis of nonstationary and rapidly changing HSS and 

LSS. However, a method based on the adaptive thresholding of the 

spectrum (of the HSS-LSS signal) obtained through the STFT was 

proposed in [11] for detection of segments which include HSS. Finally, 

these segments were removed by band-stop filtering. Although the main 

components of HSS are in the range of the chosen band-stop filter (20-

100Hz), there are still some HSS components (weak) at frequencies 

higher than this range. Therefore, this technique could not completely 

remove the HSS signal from the LSS signal. 

The main deficiency of STFT is that the length of the window is fixed 
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and, thus, is not an effective way to describe structures much smaller 

than the window length. Although the wavelet transform overcomes 

this limitation by allowing for a variable window length, there is fun

damental reciprocal relation that exists between the central frequency 

of a wavelet and its window length. Thus, the wavelet transform does 

not provide precise estimates of low frquency components with short 

duration or narrow-band high frequency components. In view of the 

above disadvantages in time-frequency techniques (WT, FT, STFT), 

they are not considered further in this thesis. 
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(b ) Normal heart sound spectrogram. 

Figure 2 .3. Typical spectrograms of the normal lung sound and heart 
sounds are shown on Figs. 2.3(a) and 2.3(b) . This shows the prevalent 
frequency components during breathing (inspiration and expiration) 
and those due to heart activity (81 and 82). 
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Chirplet transform 

A chirp function is a rapidly swept wave. Just as the short time Fourier 

transform (STFT) is a windowed Fourier transform (FT), a chirplet 

function is a windowed chirp function. The STFT and the wavelet 

transform (WT) may be considered as special cases of the chirplet 

transform (CT). The basis function for a Gaussian CT is derived from 

a single Gaussian function through four operations namely: scaling, 

chirping, time and frequency shifting, which lead to a family of wave 

packets with four adjustable parameters [52]. 

(2.2.11) 

where j = H, te, is the time center, We is the frequency center, !:It' is 

the effective time spread, and c is the chirp rate that characterizes how 

quickly the frequency changes. The chirplet transform of a signal [(t') 

is defined as the inner product between the signal and the Gaussian 

chirp let defined in (2.2.11) 

where * denotes the complex conjugate operation. The coefficient 

atc,wc,C,At' represents the signal energy content in the time-frequency 

region specified by the chirplet, and the absolute value of the coeffi

cient is the amplitude of the projection. If the set of parameters is 

defined by a continuous index set 1= (te, We, C, ~t'), then an arbitrary 

signal [(t') can be constructed as a linear combination of Gaussian 
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chirplets, thus, 

P 

f(t') = L aIngIn (t') + RP+! f(t') = fp(t') + R P+1 f(t') (2.2.13) 
n=l 

where In is the parameter set of the nth chirplet, RP+! f( t!) denotes the 

residue and fp(t!) is the .Ph-order approximation of the signal. The 

optimal estimation of the aIn , and In corresponding to the decom

position of a signal into the basis functions gIn' is a nondeterministic

polynomial time (NP) hard problem [53]. Thus, there is no known 

existing polynomial time algorithm to solve this problem. However, 

suboptimal techniques have been developed [54], [55], and [56]. One 

such technique involves obtaining initial coarse estimates by the match

ing pursuit (MP) algorithm; the estimates obtained undergo progressive 

refinement with maximum likelihood estimation (MLE); the values ob

tained from MLE are optimized through the Newton-Raphson method; 

the estimates obtained are further refined by the expectation maximiz-

ing (EM) algorithm. 

The main deficiency of the STFT is that the length of the window is 

fixed. Therefore, it is not an effective way to describe structures much 

smaller or much larger than the window length. The discrepancy with 

the WT is that it does not provide precise estimates of low frequency 

components with short-time duration or narrow-band high frequency 

components. This is because of the reciprocal relationship between 

central frequency of the wavelet and its window length. The Chirplet 

transform overcomes the deficiencies in the STFT and WT by allow-

ing for adjustment of four parameters of time-spread, chirp rate, time 

center and frequency center giving a more compact representation of 
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the signal under analysis. The CT has also found applications in the 

analysis of biomedical signals such as visual evoked potentials [57]. 

To this end, HSS and LSS in the lung sound recording could be mod

elled by Gaussian chirplets and the lung sound recording by a linear 

combination of these chirplets. However, as noted in the discussion 

above, the solution requires greedy algorithms which are computation

ally demanding because they perform exhaustive search along the signal 

to estimate each chirplet. Furthermore, in modeling HSS and LSS, crit

ical parameter information In has to be estimated in order to construct 

chiplets dictionary. Due to computational constraints and possible er

rors in parameters estimation, the CT method is not considered in this 

thesis. 

2.3 Chapter summary and conclusions 

In this chapter the fundamentals of blind source separation/extraction 

(BSS/E) algorithm have been presented. It has been noted that, com

pared with blind source separation (BSS), blind source extraction (BSE) 

provides more flexibility and has some advantages over BSS such as 

relative low computational complexity and extraction of sources of in

terest (when a priori knowledge of the source of interest is available). 

In general, BSS/E solutions include methods based on either second

order statistics (SOS) or higher-order statistics (HOS). Methods based 

on SOS that exploit the temporal structure of the signal of interest are 

preferred in this thesis. 

Furthermore, in this chapter, signal processing techniques such as adap

tive noise cancellation (ANC), time-frequency techniques and time

scale-frequency (TSF) are reviewed. It is suggested not to proceed 
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with ANC methods due to their inherent use of a noisy reference signal. 

Time-frequency techniques are also abandoned because of limitations 

in transforms used (FT, STFT, WT). It is suggested that the TSF 

(chirplet transform) could be used to mitigate HSS from lung sound 

recording. However, the major setback of this technique lies in its rela

tively high computation burden and the need to design a dictionary of 

chirplets corresponding to the HSS and LSS. New techniques are there

fore required, and the following chapters contain new contributions to 

the field. 



Chapter 3 

SEPARATION OF HEART 

SOUND SIGNAL FROM LUNG 

SOUND SIGNAL WITH AN 

ADAPTIVE LINE ENHANCER 

In this chapter, the adaptive line enhancer (ALE) is employed for re

ducing heart sound signal (HSS) from lung sound recordings. The ALE 

is tested on both synthetic and real recorded data mixed with the HSS. 

This is the first time the ALE is used in this application. 

3.1 Introduction 

The adaptive line enhancer (ALE) was originally introduced by Widrow 

et al. [58]. It was coined adaptive line enhancer because of its ability 

to 'enhance' narrowband signals in the presence of wide-band noise [59] 

and [60]. The adaptive line enhancer has also been used to enhance 

sinusoidal signals in "coloured" noise [59]. This technique has also 

found applications in spectral estimation, frequency estimation and de

tection [58], [61], [60], interference rejection [58], predictive deconvolu-

39 
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tion [62], and adaptive linear predictive coding [63]. 

The time domain representation of the ALE structure is shown in 

Fig.3.1. The ALE comprises of an M-weight linear predictive finite 

impulse response (FIR) filter. The ALE adaptively filters the delayed 

version of the input signal in accordance with the well known least 

mean square (LMS) adaptation algorithm of [42]. 

n(t) 

+ 
s(t) 

y(t) 

Figure 3.1. Adaptive line enhancer with input x(t). 

The time domain analysis of the structure is as follows: 

x(t) = set) + net) 

e(t) 

ALE 

~ 

(3.1.1) 

where s( t) is the periodic narrowband signal and n( t) is the broad-band 

noise signal. 

At any time instance t, the output yet) of the ALE is defined as: 

M-I 

yet) = L Wl(t)X(t -l - del) (3.1.2) 
l=O 

where del is the prediction distance of the filter in terms of the normal

ized sampling interval, M is the filter length, and Wl(t), l = 0,1, ... , M-1 
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are the ALE coefficients (FIR filter weights). 

According to Widrow et al. [58], y(t) is an estimate of s(t) provided the 

delay del exceeds the correlation time of n ( t). The delay del should be 

chosen equal to a lag, T, for which the auto correlation function of n( t), 

Zn( T) can be considered small relative to zn(O) . Suffice to note that 

when dealing with sinusoidal signals in 'coloured' noise, a relatively 

large value of the delay del is often chosen [58]. The adaptive filter 

weights Wl(t), 1 = 0, ... , M-I, are chosen to minimise approximately 

the mean square error (MSE) defined as: 

~ = E( {x(t) - y(t)}2) (3.1.3) 

Now, since the only correlated component with x(t) and its delayed 

versions, x(t - del), ... ,x(t- del- M + 1) is the underlying narrowband 

signal s(t) the MSE is minimized when y(t)= x(t) [64]. In order to 

adjust the ALE coefficients the LMS algorithm is preferably used due 

to its low computational complexity and robustness. 

w(t + 1) = w(t) + /1ALEX(t - del)(x(t) - w(tfx(t - del)) (3.1.4) 

where w(t) = [wo(t), ... ,WM-l(t)f, and M is the length of the adaptive 

filter x(t - del) = [x(t - del), ... ,x(t - del- M + l)f is the ALE input 

vector, and /1ALE is the ALE convergence rate. 

The use of the LMS algorithm for the ALE and its properties have 

been discussed extensively in [64]. There are three parameters that 

determine the performance of the LMS-ALE algorithm for a given ap

plication. These are the ALE adaptive filter length M, the prediction 

distance del, and the LMS convergence parameter /1. Several perfor-
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mance criteria may be considered in choosing ALE parameters. These 

include: adaptation rate, excess mean square error (EMSE) or misad

justment, and finally the frequency resolution. The adaptation rate is 

controlled by the choice of fJ, M, and the condition of the data autocor

relation matrix [42]. Typically, the MSE for the LMS-ALE converges 

geometrically with a time constant TLMS-ALE [65] as: 

1 (3.1.5) 
TLMS-ALE ~ 4 A 

fJALE min 

where Amin is the minimum eigenvalue of the input vector autocorre-

lation matrix. Clearly, the convergence speed is proportional to the 

convergence rate fJALE . The EMSE ~mis, resulting from the noisy esti

mate of the MSE gradient in the LMS algorithm is approximately given 

by [65] 

(3.1.6) 

where Aav is the average eigenvalue of the input vector auto correlation 

matrix. Since the user has no control over Aav (determined by input 

data), EMSE may be controlled by choosing values of fJALE and M. 

Smaller values of fJALE and M reduce the EMSE, while larger values 

increase the EMSE. The frequency resolution fres' of the ALE is given 

in [65] as: 
Fs 

fres = M (3.1.7) 

where Fs is the sampling frequency. Hence, clearly, fres may be con-

trolled by M. Equation (3.1.6) in concert with Equation (3.1.7) show 

that larger values of M improve fres at the expense of increased EMSE, 

and smaller values reduce the EMSE at the expense of the reduced fres· 

The choice of the three parameters of fJ, M, and del when the ALE is 
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used in this chapter is largely motivated by the performance criteria 

discussed above. 

An expression for the signal-to-noise ratio (SNR) gain due to process

ing by the ALE for sinusoids in white noise has been given in [66]. For 

large M, the expression is simplified to 

SNRout 

SNRin 

1 
(3.1.8) 

where ~min is the minimum MSE. Clearly, decreasing J-lALE increases 

the SNR gain at the expense of slower adaptation rate. 

The ALE operation may be summarized as follows; the introduced 

delay, del, causes decorrelation between the noise components within 

the input signal x(t) and that contained in the delayed input signal 

x(t - del). The adaptive filter responds by forming a transfer function 

equivalent to that of a narrow-band filter centred at the frequency of the 

sinusoidal components. The noise component of the delayed input is 

rejected, while the phase difference of the periodic components is read-

justed so that the components cancel each other at the summing point, 

producing a minimum error signal composed of the noise component of 

the instantaneous input data alone. 

3.2 Simulation results 

The objective of this section is to show the use of the ALE in miti

gating, for the first time, the HSS in LSS measurement. The section 

demonstrates the ability of the ALE to recover the HSS signal from the 

combined heart sound signal and white Gaussian noise (HSS-WGN) sig

nal as well as from the combined HSS-LSS signal. The aforementioned 
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composite signals are applied sequentially to the ALE. Evaluation is 

performed by comparing the power spectral densities (PSDs) at the 

input of the adaptive line enhancer and those of the recovered signals 

at the output of the adaptive line enhancer after convergence. The 

normalized frequency ranges from 0 to 1, where 1 corresponds to the 

normalized Nyquist frequency, this convention is used throughout the 

thesis. The effectiveness of the ALE is further evaluated by listening 

to the resulting recovered HSS and LSS to detect any artefacts. HSS 

and LSS data are obtained from R.A.L.E. data sets [67]. Reference is 

made to Fig. 3.1 for discussions in the following section. 
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Figure 3.2. PSDs of the original HSS and recovered HSS, S N Rin = 

27dB: The PSD of the recovered HSS generally matches that of the 
original HSS within the whole normalized frequency range. 

3.2.1 HSS-WGN 

The purpose of this subsection is to demonstrate that processing by 

the ALE does not affect the signal to be enhanced therefore a low level 

noise component is added. The input signal to the ALE x(t), is the 

noise-free HSS signal s(t), corrupted by synthetic WGN n(t), with SNR 
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Figure 3.3. PSDs of the original WGN (top) and recovered WGN 
(bottom), SNRin = 27dB: The PSD of the recovered WGN resembles 
that of the original WGN within the whole normalized frequency range. 



Section 3.2. Simulation results 46 

equal to 27dB. The signal x(t) was applied to the ALE of Fig. 3.1 with 

ALE parameters f.L = 0.0001, M = 256, and del = 15. The PSDs of 

the recovered HSS y( t)-ALE output, and that of s( t) are compared in 

Fig. 3.2. In Fig. 3.3, the PSD of the recovered WGN e(t), is compared 

with that of n( t). From Figs. 3.2 and 3.3, it is observed that at SNR 

of 27 dB, the PSD of the recovered HSS generally matches that of the 

original, noise-free HSS. Also, the PSDs of the recovered WGN and 

that of the original synthetic WGN match. Thus, the PSDs of both the 

original signals and the recovered signals are generally the same within 

the entire frequency range. This confirms that the ALE introduces 

essentially no distortion to the HSS signal. 
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Figure 3.4. PSDs of the original HSS and recovered HSS, SNRin = 
5dB: The PSD of the recovered HSS essentially matches that of the 
original HSS within the whole normalized frequency range. 

3.2.2 HSS-LSS 

The procedure outlined in Section 3.2.1 above was repeated with WGN 

replaced by LSS and SNR adjusted to 5dB and -5dB with initial ALE 

parameter settings of f.L =0.0001, M = 256, and del = 15. Figs. 3.4 
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Figure 3.5. PSDs of the original LSS (top) and recovered LSS (bot
tom), SN~n = 5dB: The PSD of the recovered LSS closely resembles 
that of the original LSS within the whole normalized frequency range. 

0.9 

Figure 3.6. PSDs of the original HSS and recovered HSS, SN Rin = 
-5dB: The PSD of the recovered HSS matches that of the original HSS 
within the whole normalized frequency range. 
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and 3.5 show PSD comparison for when the SNR equals 5dB and Figs. 

3.6 and 3.7 show PSD comparison for a case when SNR equals -5dB, in 

this case all parameters were identical to the 5dB case except the delay 

parameter del = 375. This increase is motivated by better matching the 

correlation properties of the LSS signal and is discussed in more detail 

later in this section. For both cases, the PSDs show close resemblance 

in the entire frequency range. The PSD of the signal x(t), which in 

this case comprises of HSS and LSS with SNR of -5dB is shown on 

Fig. 3.8. The mixing of the two signals is shown most clearly below 

normalized frequency 0.1, for normalized frequencies above 0.2, x(t) 

is dominated by LSS. The success of the ALE is confirmed in Fig 3.6 

which represents the PSD of yet). The PSD of the ALE output clearly 

matches very closely the PSD of the original HSS. Moreover, the PSD 

of e(t) as shown in the bottom plot of Fig. 3.7 matches the original 

LSS signal very well. Comparing Fig. 3.8 with Fig. 3.6 shows that 

processing has improved x(t) to better match the original HSS. Figs. 3.9 

and 3.10, included for completeness, depict the comparison between the 

input HSSjLSS time domain signals and HSS-LSS output time domain 

signals for both cases of SNR equal to 5 and -5dB respectively. Clearly, 

the two signals are separated however the definition of the recovered 

time domain signals degrades as the input SNR decreases. 
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Figure 3.7. PSDs of the original LSS (top) and recovered LSS (bot
tom), SN Rin = -5dB: The PSD of the recovered LSS closely resembles 
that of the original LSS within the whole normalized frequency range. 
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Figure 3.10. Time domain signals: the original HSS/LSS (top) and 
recovered HSS/LSS (bottom), SNRin = -5dB. 
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3.2.3 Discussions 

The ALE is primarily used to extract a periodic signal component from 

additive white background noise without any knowledge of constituent 

frequencies of the periodic component and without making any assump

tions a priori about the stationarity of the signal. The ALE can also 

be applied to periodic signals in "coloured" noise. 

Application of the ALE to periodic signals in "coloured" noise is char

acterized by longer prediction distances [59]. Fig. 3.11 shows the auto

correlation function of the LSS. It can be seen that the autocorrelation 

function decays to a small value at a lag of approximately 400 samples 

relative to the zero lag z(O). Consistent with the discussion on choosing 

the prediction distance (decorrelation parameter) del, it is clear that for 

this particular signal choosing the prediction distance equal to approx

imately 375 would be best for ALE-based HSS-LSS processing. This 

result is likely to change however for a new signal, and further com

putational load would be required for its recalculation. Therefore, any 

method that does not depend upon a decorrelation parameter would 

be desirable. To this end, other approaches need to be explored. 
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Figure 3.11. Absolute value of the auto correlation of the L88: The 
function decays to a small value at a lag of approximately 375 samples 
relative to the zero lag. 
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3.2.4 Chapter summary and conclusions 

The ALE has been used as a new technique for separation of the HSS 

from HSS mixed with synthetic white Gaussian noise and from an HSS

LSS mixed signal. It goes without saying that ALE may be used in a 

single channel recorded HSS-LSS signal for separation of the two. For 

HSS in the presence ofLSS (noise), the ALE performs even at low SNRs 

when the delay del is chosen to match the correlation properties of the 

LSS signal. However, in this thesis the target is next to avoid the need 

for the selection of this delay parameter. 



Chapter 4 

SEQUENTIAL BLIND 

SOURCE EXTRACTION OF 

QUASI-PERIODIC SIGNALS 

WITH TIME-VARYING 

PERIOD 

In this chapter, a novel sequential blind source extraction algorithm for 

the extraction of quasi-periodic signals with time-varying period is pre

sented. The algorithm is a combination of the sequential blind source 

extraction (BSE) algorithm introduced in [68] and the time-varying lag 

(period) calculation procedure proposed in [69]. The proposed algo

rithm is tested on both synthetic and real-world recorded data. 

4.1 Introduction 

Blind source extraction (BSE) has received much research attention 

because of its potential utility in a wide range of applications including 

many in biomedical signal processing [70]. The problem arises when 

55 
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linear, instantaneous mixtures or observations, generated as a set of 

signals are mixed by traversing an unknown medium, essentially with

out delay, need to be processed to estimate or recover a number or all 

of the original sources. One of the important and challenging issues 

in BSE is how to extract specific sources of interest. This requires the 

proper use of prior information about the sources or the mixing oper

ation in forcing the algorithm to extract the sources of interest rather 

than any arbitrary sources. The objective of blind source separation 

(BSS), on the other hand, is to recover or estimate simultaneously all 

the original sources from their mixtures. Compared with BSS, BSE 

provides more flexibility and has some potential advantages over BSS, 

in terms of computational complexity and extraction of only the sources 

of interest. 

Over the last decade or so, several approaches have been developed for 

the solution of both BSS and BSE problems, which are based on either 

second or higher-order statistics of the data. Typically, the higher

order techniques consist of two steps: a whitening step for exploiting 

the second order statistics, and a rotation step for exploiting the higher 

order statistics. They require few assumptions aside from the statis

tical independence of the sources, and therefore, have generally been 

the preferred approach to the solution of BSE and BSS. Higher-order 

statistics based solutions include [16], [38], [71] and [34]. Second-order 

statistics methods, on the other hand, have the advantage of requiring 

shorter data records due to their reduced sensitivity to small sample 

estimation errors, and do not limit the number of Gaussian sources that 

can be separated to one (see for instance [37], [72], [73] and [74]). As 

opposed to higher-order methods, second-order methods operate in a 
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semi-blind context, since their derivation usually requires that certain 

additional assumptions are made on the nature of the original signals, 

such as statistical nonstationarity of the sources, presence of tempo

ral structure in stationary signals, or cyclostationarity [37], [72], [73] 

and [74]. Such information is usually available in certain biomedical 

applications, for instance in physiological signals such as the electro

cardiogram (ECG), and should be exploited. 

Several algebraic block-based methods exist that exploit the tempo

ral correlations of the source signals, and perhaps the best known is 

the second-order blind identification (SOBI) algorithm [35]. Consistent 

with the operation of batch algorithms, the original SOBI algorithm 

entails prewhitening the data; followed by the (approximate) joint di

agonalization of a set of covariance matrices at different time lags, thus 

potentially allowing separation of sources based on their temporal struc

ture. However, in the SOB! algorithm, the time lags at which the covari

ance matrices are jointly diagonalized, are fixed, and are not matched 

to the extraction of a quasi-periodic signal with time-varying period. 

Furthermore, computational complexity of this algorithm is generally 

substantially greater than sequential algorithms due to the need to di

agonalize a number of sample covariance matrices and therefore will 

not be considered further in this work. Related algorithms that are 

essentially based on a similar principle can be found in [75] and [76]. 

Recently, a sequential algorithm was developed for a class of periodic 

signals in [77]. In that work however, the signals, although periodic, 

have a constant or fixed period. In this work, the combination of the 

sequential blind source extraction (BBE) algorithm using second-order 

statistics based on the approximate joint diagonalization (AJD) of auto-
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correlation matrices [68] and the time-varying lag (period) calculation 

procedure recently proposed in [69] is exploited, and thereby a novel 

sequential blind source extraction algorithm for the extraction of quasi

periodic signals with time-varying period is introduced. This work is 

motivated by the observation that the majority of physiological signal 

measurements (for example, ECG) exhibit some degree of periodicity 

and statistical nonstationarity. The nonstationarity manifests itself as 

variations in period as a function of time. This makes the assumption 

of a fixed period (as in [77]) invalid for the ECG signal, and perhaps 

many other biomedical signals. To the best of the author's knowledge, 

a sequential blind source extraction algorithm that is matched to such 

variations in the signal period has not previously been discussed. Using 

a time-varying period can moreover help with extraction of a specific 

desired source. 

To this end, a time-varying period Tt, which is estimated for each new 

cycle-to-cycle interval of the quasi-periodic source to be extracted, is 

incorporated in the sequential blind extraction algorithm. Source ex

traction is performed by sequentially converging to a solution which 

effectively diagonalizes the auto correlation matrices, at lags Tt corre

sponding to the different periods. 

The rest of the chapter is organized as follows. Problem formulation, 

in the context of BSE using second-order statistics is presented in Sec

tion 4.2. In Section 4.3, the concept of time-varying period is presented 

and incorporated in the problem formulated in Section 4.2. Simulation 

results are presented in Section 4.4. In Section 4.5, results of applying 

the new algorithm to extraction of a heart sound signal (HSS) from 

real lung sound recordings are provided. A summary and concluding 
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remarks are given in Section 4.6. 

4.2 Problem formulation 

Consider the real valued signal generating model: 

x(t) = As(t) + net) (4.2.1) 

where set) = [Sl(t), S2(t), ... , SN(t)]T is a column vector of N mutually 

uncorrelated zero-mean unknown source signals, A = [aI, a2, ... , aN] is 

an NxN invertible unknown mixing matrix, x(t) = [XI(t), X2(t), ... , XN(t)]T 

is a column vector of N observed sensor signals, net) = [nl(t), n2(t), ... , nN(t)]T 

denotes a column vector of additive white Gaussian zero-mean measure-

ment noise, ai is the i-th column of A, [.]T and t denote respectively 

the vector transpose and the discrete time index. In the discussion that 

follows, the noise term net) in (4.2.1) is dropped, but the effect of the 

noise on the algorithm is shown in the simulation section (Section 4.4). 

Based on the assumption that the sources are spatially uncorrelated 

and wide sense stationary, the time lagged auto correlation matrix R k , 

can be defined as 

k = 1,2,3 ... ,K (4.2.2) 

where K is the index of the maximum time lag, i.e., TK and E(·) de

notes the statistical expectation operator. 

The vector x(t) in (4.2.1) (ignoring the noise term) is a linear com

bination of the columns of matrix A, i.e., the aiS' Therefore, the 

most intuitive way to extract the i-th source is to project x(t) onto 
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the space in ]RN orthogonal to, denoted by -L, all of the columns of 

A except ai, i.e., {aI, ... , ai-b ai+1, ... , aN}' Henceforth, by defining a 

vector q-L{ab ... ,ai-l,ai+l, ... ,aN} and setting t = ai, together with 

adopting oblique projector notation [78], gives 

y(t)t = EtlqJ.x(t) (4.2.3) 

where y(t) is an estimate of one source, q.l.. is a subspace in }RN or-

thogonal to q, i.e. the space spanned by {aI, ... , ai-I, ai+l, ... , aN} and 

Et1qJ. = (tqT)/(qTt) is the oblique projection of t onto the space q.l... 

By omitting the scalar l/(qT t) and dropping t from both sides of equa

tion (4.2.3) results in 

y(t) = qT x(t) ( 4.2.4) 

In BSE based on second-order statistics, both vectors t and q are un-

known. In order to extract one source, the same approach and assump-

tions as in Section III of [68] are adopted, that is, the following cost 

function is exploited to find these vectors 

It, <1, cl] = argmin J(t, q, d) 
t,q,d 

(4.2.5) 

umn vector of unknown scalars, and 11 . 11 denotes the Euclidean norm. 

The cost function in (4.2.5) utilizes the fact that for BSE, Rkq should 

be collinear with t incorporating the coefficients dk which provides t 

with proper scaling. The trivial answer for (4.2.5) is its immediate 

global minimum point when t = q = d = O. This solution has been 

avoided by imposing the condition Iltll = Ildll = 1. Minimization of the 
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cost function (4.2.5) with respect to q leads to the identification of vec

tor q in equation (4.2.4) which can thereby be used to extract one of the 

sources. It is however worth noting that the actual extracting vector is 

given by q/(qTt) due to earlier omission of the scaling factor l/(qTt) in 

order to arrive at (4.2.4). The convergence of (4.2.5) is rather difficult 

to prove analytically in the time domain due to the product term dkt 

in (4.2.5). The formal analytical proof of the convergence is left as a 

subject of future research. 

4.2.1 Signal extraction algorithm 

By employing the sequential approximate diagonalisation algorithm 

(SDA) proposed in [68], the cost function (4.2.5) is minimized by ad-

justing its parameters alternatively as follows: 

• Stage 1: Freeze both t and d and adjust q. Taking the gradient of 

J with respect to q leads to analytical solution for q as fJJ / fJq = 

2 L:f=l Rk(Rkq - dkt) = 0 to yield a new value of q: 

(4.2.6) 

where H = [L:f=l R%l-l, and e f-- f denotes replacing e by f· 

• Stage 2: Freeze both t and q and adjust d. Utilizing the property 

that Ildll = 1 and considering the Lagrangian function 

(4.2.7) 

where .Ad is the Lagrange multiplier, to obtain a new value of d 
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(4.2.8) 

• Stage 3: Freeze both q and cl and adjust t. Using Iltll = 1 and 

exploiting the Lagrangian function 

(4.2.9) 

to obtain the adjustment for t 

(4.2.10) 

These three stages are repeated until the cost function (4.2.5) converges, 

and one source can be extracted according to (4.2.4). For the later pre

sented results on ECG signals, five iterations are typically sufficient and 

no problem with ill-convergence has been experienced. This, however, 

depends on the dimensions of the subspace that is being extracted [79]. 

After extracting one source a deflation procedure is employed to remove 

it from the mixture as follows [29]: 

(4.2.11) 

where x(t) is the original observation signal defined in (4.2.1), and 

( 4.2.12) 

where Ro(i) - E(Xi(t)Xf(t)) , I is the N x N identity matrix, and 

O'~ = E(y2). 
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The auto correlation matrix is then updated as 

(4.2.13) 

before another source can be extracted following the same procedure, 

using equations (4.2.6)-(4.2.13). An alternative way to obtain a defla

tion matrix is to design a matrix Z = [Zl' Z2, ... , ZN-l] whose columns 

Zi span the subspace orthogonal to the estimated source direction t, 

i.e., zi..Lt for 1 ~ i ~ N - 1. This latter approach can speed up the 

algorithm in the case of slow convergence. 

This extraction algorithm is computationally simple when compared 

with one stage of other algorithms such as those proposed in [22] which 

extract the sources one-by-one by using fourth-order cumulants. It is 

worth noting, however, that the iterative extraction algorithm for es

timating one source at a time in this work in fact replaces the joint 

diagonalization procedure in the SOBI algorithm [35], whereby the 

computation is simplified since full eigen-decomposition is not required. 

Nonetheless, performing the iterative procedure in this method is very 

similar to the procedure that is carried out within techniques which 

calculate the first (or the first few) eigenvalues [80]. In the next section 

this algorithm is extended to the extraction of periodic signals with 

time-varying period. 

4.3 Sequential extraction algorithm for quasi-periodic signals with 

time-varying period 

Successful minimization of the cost function (4.2.5) in concert with 

(4.2.4) leads to the extraction of anyone source. It is not possible to 
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extract the source of interest (Sol) unless some additional information is 

known a priori. The Sol in this case is a quasi-periodic signal of varying 

period duration. If the fundamental period, or its approximation, of the 

Sol is fixed and known, then the algorithm can be made to focus only on 

this specific source. This is based on the fact that if the fundamental 

period is, say, T samples, then its auto correlation matrix will have 

the same value at time lags corresponding to integer multiples of T. 

Hence, the auto correlation matrices Rks as computed in (4.2.2) can 

jointly be diagonalized at time lags T, ... , KT along with the constraint 

d1 = d2 = ... = dK • 

However, if the Sol has a period that varies from period to period 

(see, for instance Fig. 4.10), then to jointly diagonalize the Rks, at 

the time lags T, ... , KT and applying the extraction algorithm, would 

invariably result in erroneous results. Before proceeding on to develop 

a method that effectively matches the variations in the period of the 

Sol, illustrative examples are presented, which have been published 

in [81], showing the performance of the extraction algorithm outlined 

in Section 4.2.1 when exploiting knowledge about the periodicity of the 

Sol. 

4.3.1 Illustrative examples 

In this section, two examples are considered. In the first example a 

deterministic periodic signal and WGN that have been mixed by a 

mixing matrix A with elements drawn from a standardized Gaussian 

distribution are considered, and the second example considers two real 

HSS and LSS measurement signals that have been mixed in the same 

manner. The HSS and LSS signals are obtained from the R.A.L.E. data 
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sets [67]. Qualitative evaluation is performed in the second example by 

comparing power spectral densities (PSDs) of the signals before and 

after mixing for the proposed method and for the JADE algorithm, a 

benchmark BSS algorithm [82]. 
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Figure 4.1. Pulsetrain and noise before mixing (top), and the linear 
mixtures (bottom). 
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Figure 4.2. Extracted signals using fixed-period algorithm. The signal 
of interest is the pulse train with a period of 50 samples. Setting this 
period in the algorithm results in the extracted pulse train (top), and 
when no period information is specified the algorithm locks onto the 
noise component (bottom). 

Blind source extraction of a periodic signal of known period 

In this example two source signals are considered . One is the periodic 

pulsetrain signal of known period and the other is a white Gaussian 

noise (WGN) signal, a portion of which is shown in Fig. 4.1 (top sub

plot). The Sol is the periodic signal whose period is 50 samples. The 

two signals are mixed as shown in the same Fig. 4.1 (bottom sUbplot). 

By setting the period to 50 samples, and K, the number of autocorre

lation matrices, to 30, the algorithm is run and the Sol is obtained as 

in Fig. 4.2 (top subplot), confirming an accurate reconstruction. As 

seen from Fig. 4.2 (bottom subplot), when no information about the 

periodicity is incorporated in the algorithm, the algorithm locks onto 
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the noise component. 

Blind source extraction of the HSS 

In this example, the two source signals are the HSS and the LSS sig

nals, shown in Fig. 4.3 (top subplot). The Sol in this case, is the HSS 

signal. The knowledge of the HSS periodicity is exploited in order to 

extract it from the HSS-LSS mixtures. By using a technique such as 

the one introduced in [83], the cycle frequency of HSS may be esti

mated and hence its period. This method, called heart instantaneous 

frequency (HIF), was developed for the extraction of the instantaneous 

heart rate from non-stationary electrocardiagram (ECG) signals, the 

value of which varies over time due to pathological and physiological 

changes. 

In practice, any lung sound recording performed invariably contains 

both HSS and LSS. However, if the recording transducer is placed closer 

to the person's heart location, then HSS spectral components would be 

more dominant in the recorded signal than LSS. The method outlined 

above can then be used to estimate the period of the HSS dominant 

signaL 

The two signals are mixed by a matrix A with random elements drawn 

from a standardized Gaussian distribution to yield the mixtures in Fig. 

4.3 (bottom subplot). Fig. 4.4 shows the recovered HSS signal ob

tained after running the algorithm. As seen from Fig. 4.4, the HSS has 

also been recovered from the mixture though it is slightly corrupted 

in the regions of low signal-(HSS)-to-noise (LSS) ratio. The PSDs in 

Fig. 4.5 show that the frequencies of the original HSS signal have been 

preserved in the recovered signal for both cases, although there is a 
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change in magnitude of the extracted signal, but this is a result of scale 

ambiguity and can easily be mitigated. Moreover, the performance is 

as good as the full benchmark JADE blind source separation algorithm 

which extracts all the sources, but suffers from the problem of reliably 

estimating fourth order statistics. 
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our method, and extracted HSS using the JADE algorithm. 

4.3.2 Proposed method 

The method, recently proposed in [69] for multichannel ECG decompo-

sition, entails detecting the peaks of the quasi-periodic signal which are 

assumed to define the period of the Sol, as is the case in ECG signals, 

and allowing a linear phase signature (}(t), to span the range from -7r 
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to 7r, between the peaks. The phase signature is then allocated to each 

sample of the signal, with the positions of the R-peaks being fixed at 

O( t) = a as shown in Fig. 4.6. It follows that the samples correspond

ing to a certain specific phase angle are compared along the signal. For 

example, in Fig. 4.6, for the phase angle of 2rads, the samples at time 

instant t and t + Tt are compared accordingly. Therefore, in the sequen-

tial algorithm explained in Section 4.2, the following key equations can 

be redefined: 

• The auto correlation matrix in (4.2.2) 

(4.3.1 ) 

where Et (.) denotes averaging over t, and 

Tt = min{ TIO(t + T) = O(t), T > a}. (4.3.2) 

• The cost function in (4.2.5) is again exploited 

[i,q,d] = argminJ(t,q,d) 
t,q,d 

(4.3.3) 

K - -
where J(t,q,d) = L:p=11IRpTtq-dptI12. where the Rrrrt terms 

are also calculated as time averages. 
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Figure 4.6. Demonstration of phase allocation procedure first pro
posed in [69] for computing Tt. The sawtooth signal depicts the phase 
signature O(t) ranging from -7r to 7r. The peaks positions are assigned 
to O(t) = O. For each period of the signal, half of the signal samples are 
assigned to O(t) ranging from -7r to 0 and the other half is assigned to 
O(t) ranging from 0 to 7r. Typically, a sample at time instant t is com
pared with the sample at t+Tt. Tt is recalculated on a period-by-period 
basis. 
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Therefore, the auto correlation matrix and the cost function, now take 

into account the variable period Tt, that is calculated from O(t) from 

cycle-to-cycle of the· signal. This leads to a new algorithm for extract

ing Sol with a variable period duration. The main difference in the 

algorithm of Section 4.2, and the one proposed in this chapter is the 

way in which the time lagged autocorrelation matrix R is computed, 

which in turn, leads to the re-definition of the cost function (4.2.5). 

In this algorithm, the autocorrelation matrices are calculated at vary

ing time lags Tt rather than at fixed time lags. Thus, after performing 

peak detection, and calculating the O(t) and the time-varying Tt, each 

autocorrelation matrix is calculated by computing correlations between 

sample points t and their dual samples t + Tt across the entire signal 

length and then averaging over the number of correlation and phase 

angle points. The resulting Rs are used in the sequential algorithm of 

Section 4.2 to extract the Sol from multi channel mixtures. 

4.4 Simulation results 

Computer simulations were carried out to illustrate the performance of 

the proposed method, and were compared to the one proposed recently 

in [81], which is based on a fixed period of the Sol. 

4.4.1 Signal-to-interference ratio and the cost function 

The performance of the algorithm was evaluated by both: 

• The peak signal-to-interference ratio (SIR) in decibels (dB) given 

by 
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(4.4.1) 

where [VI, V2, ... , VN] = qT A is the global transform vector, and 

(4.4.1) is evaluated by first calculating the average of SIR in a 

linear scale, and then converting to dBs. For completeness, note 

that from (4.2.1) and (4.2.4) 

(4.4.2) 

• The cost function in dBs given by J(t, q, d)/N(K + 1). 
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Figure 4.7. SIR(dB) versus number of iterations for both fixed and 
time-varying extraction algorithms for the case of noise-free BSE, aver
aged over 250 independent runs when extracting the first source signal. 
N represents the number of signals while K represents the number of 
autocorrelation matrices used. SIR performance improves as the num
ber of matrices increases. The SIR performance of the time-varying 
period algorithm almost doubles that of the fixed period algorithm. 
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Figure 4.8. J(t, q, d)/N(K + 1) (dB) versus number ofiterations for 
both fixed and time-varying extraction algorithms for the case of noise
free BSE, averaged over 250 independent runs when extracting the first 
source signal. N represents the number of signals while K represents 
the number of auto correlation matrices used. The proposed algorithm 
converges faster than the fixed-period algorithm. 

In the simulation, blind extraction of the ECG signal obtained from 

the DaISY database (available at: http://homes.esat.kuleuven.be/smc/daisy /) 

was considered. The 2500 samples long clean ECG signal, sampled 

at 500Hz, was concatenated to form a 7500 sample long signal. It is 

worth noting that no discontinuity problems were experienced when 

concatenating the signal. The ECG signal was mixed with white Gaus

sian noise (WGN) by a mixing matrix A with elements drawn from a 

standardized Gaussian distribution. Figs. 4.7(a) and 4.7(b) show the 

SIR( dB) versus number of iterations averaged over 250 independent 

runs when extracting the Sol assuming a fixed and time-varying pe-

riod respectively. Figs. 4.8(a) and 4.8(b) represent the corresponding 

cost function performance in dBs for both cases. Nand K, shown in 

the figures represent the number of original signals and the number of 

autocorrelation matrices used respectively. Thus, the performance cri-
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teria were evaluated for N = 2 and K set to 5,10,15,20, accordingly. 

It is seen from Figs. 4.8(a) and 4.8(b) that the proposed algorithm 

converges faster than the fixed-period algorithm, with convergence im

proving with the number of matrices used. The SIR performance also 

improves as the number of matrices is increased. As seen from Fig. 

4.7(b), there is a marked increase in SIR performance for the proposed 

algorithm. In fact, the SIR performance of the proposed algorithm al

most doubles that of the algorithm using a fixed period. For instance, 

from Figs. 4.7(a) and 4.7(b), the maximum SIR when assuming fixed 

and time-varying period, and using 20 matrices is 33dB and 65dB, re

spectively. This underlines the motivation for the work in this chapter, 

since by exploiting the nonstationarity of the source, captured in the 

varying period, improved SIR performance is achieved for the same fast 

convergence performance. 

The performance of the algorithm was also investigated using differ

ent signal-to-noise ratios (SNRs) on mixture signals for the case of the 

noisy model given by (4.2.1). Figs. 4.9(a) and 4.9(b) show SIR(dB) 

and convergence performance as a function of SNR(dB), respectively. 

It is seen from the figures that the performance degrades as more in

dependent noise is added to the mixtures, i.e. as SNR(dB) reduces. 

It is however seen (from Figs. 4.7(a) and 4.9(a)) that the algorithm, 

when applied to the noisy BSE, still outperforms (at least at SNR of 

lOdB) the one using a fixed period in terms of SIR(dB), when applied 

to noise-free BSE. 
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Figure 4.9. J(t, q, d)/N(K + 1) (dB) and SIR(dB) versus number of 
iterations using time-varying extraction algorithm for the case of noisy 
BSE, averaged over 250 independent runs when extracting the first 
source signal. N represents the number of signals while K represents 
the number of auto correlation matrices used. 
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4.4.2 Extraction of synthetic variable period signal 

This simulation considers extraction of a synthetic, deterministic sig-

nal, with time-varying period (Fig. 4.10). The signal is mixed with 

white Gaussian noise in the same manner as above. Both algorithms 

are run to extract the periodic signal. Figs. 4.11(a) and 4.11(b) show 

the mixtures while Figs. 4.12(a) and 4.12(b) show the extracted peri-

odic signal using algorithms employing the fixed and the time-varying 

periods, respectively. As seen from the latter figures, when a fixed pe-

riod is used in the algorithm, the algorithm recovers the signal, but 

also heavily locks onto the noise component. When running the pro-

posed algorithm, however which incorporates the time-varying period, 

accurate reconstruction is achieved as confirmed by Fig. 4.12(b). 
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Figure 4.10. Synthetic periodic signal designed to have considerable 
period variations. This signal acts as a source of interest (Sol) after 
mixing it with white Gaussian noise. 
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(a) Mixture 1 of synthetic signal with time- (b) Mixture 2 of synthetic signal with 
varying period and white Gaussian noise. time-varying period and white Gaussian. 

Figure 4.11. Mixtures of synthetic periodic signal with time-varying 
period and white Gaussian noise, generated by a mixing matrix A with 
elements drawn from a standardized Gaussian distribution: The syn
thetic periodic signal is designed to have significant period variations. 
The aim is to extract the synthetic periodic signal (Fig. 4.10). 

4 
Sample number 

: , , , , 
1.5 -- -, -- -, -- - --, , , , , , , , 

~ 1 -- --! -- -1-- ---
f " 0.5 -- --I -- 4 -- - --, , , , , , 

, , , , 
--- - - -- --- - -r- --, , , , 
--- - - -- --- - -!- --, , , , , 
--- - - -- --- - -f.-- --, 

,., 
~50~--~~~~~~'~~--~~~ 

Sample number 

(a) Extracted synthetic signal using the al- (b) Extracted signal using the algorithm 
gorithm with fixed period. with time-varying period. 

Figure 4.12. Extracted synthetic signals using algorithms with the 
fixed and time-varying period. Clearly, the algorithm employing time
varying period much better reconstructs the synthetic signal and we 
can see the variations in the signal period. The algorithm using the 
fixed period locks onto the noise component and results in a poorly 
reconstructed signal. 
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period durations. signal. 

Figure 4.13. ECG and a zoomed-in portion of a synthetic pure pe
riodic signal whose repetition frequency is not a multiple of that of 
the ECG. These signals are combined by a mixing matrix A with el
ements drawn from standardized Gaussian distribution. The aim was 
to extract the ECG signal which has a time-variant period. 
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(a) Extracted ECG using the algorithm (b) Extracted ECG using the algorithm 
employing fixed period. employing time-varying period. 

Figure 4.14. Extracted ECG signals using algorithms with fixed and 
time-varying period. The algorithm employing time-varying period re
constructs the ECG signal perfectly. Although the algorithm using 
the fixed period reconstructs the ECG, it is also affected by the noise 
component. 
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4.4.3 Separation of two periodic signals 

Another investigation was performed considering separation of two non

harmonically related periodic signals, i.e. the ECG signal having vary

ing period duration (see Fig. 4.13(a)), mixed with a synthetic purely 

periodic signal shown in Fig. 4.13(b). The signal of interest in this 

case is the ECG signal. The recovered ECG signals are shown in Fig. 

4.14(a) and 4.14(b) for algorithms employing fixed and time-varying 

periods, respectively. As seen in Fig. 4.14(b), the proposed algorithm 

recovers the ECG completely. This shows that the algorithm works, 

not only for a periodic signal contaminated with WGN, but also for 

separating periodic signals. This can be likened to biomedical applica

tions, such as the extraction of the heart sound signal (HSS) from lung 

sound recordings, where both the HSS and lung sound signal (LSS) 

have distinct periodicity but are generally not harmonically related. 

Another example is the extraction of fetal ECG signals from mater

nal abdominal sensors that are highly contaminated with the maternal 

ECG [84]. 

4.5 Application of the proposed algorithm to separation of the 

heart beat sound signal from real lung sound recordings 

In this section, the applicability of the proposed algorithm to extraction 

of the HSS from real recorded lung sound recordings is demonstrated. 

The data set comprised of two synchronized recordings obtained from 

channel (1), front left chest (heart location), and channel (2), front 

right chest, by digital stethoscopes sampled at 44, 100Hz with 16-bits 

resolution. It is worth noting that, in order to use the algorithm, a 
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clean reference signal with clear distinct peaks is required such that the 

peaks could automatically be detected using the readily available peak 

detection algorithm. The clean reference signal in this case would be 

the ECG signal that is synchronized with the two channel recordings. 

However, since this ECG was not available, 'manual' peak detection 

was used where data from channel (1) was pre-filtered prior to using 

an individual judgement about the occurrence of the peaks in the data. 

Using the resulting peak locations, both the O( t) and the Tt were calcu

lated, which are necessary to compute the Rs for two channel data. The 

algorithm was run with the two raw recordings as mixture signals. The 

two recordings are shown in Figs. 4.15(a) and 4.15(b). The recovered 

HSSs for when both the fixed and time-varying algorithms are used, are 

shown in Figs. 4.15(c) and 4.15(d), respectively. The HSS recovered 

from using the time-varying algorithm has clear distinct peaks depicting 

a better estimate of the actual HSS. Using the fixed period algorithm 

results in a noisy reconstructed HSS. These results have been further 

corroborated by listening tests. In the listening tests, five subjects of 

normal hearing ability were asked to listen to both the recovered HSSs, 

and to comment on their intelligibility. All subjects observed that al

though it was evident that the recovered signals were HSSs, the one 

recovered when using the fixed period was less intelligible due to the 

presence of noise. 
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Figure 4.15. Extraction of heart sound signal from lung sound record
ings. (a) & (b) are the lung sound recordings (also called mixtures since 
each contain both heart and lung sound signals). The aim is to extract 
the heart sound signal from the recordings. Subplots (c) & (d) depict 
the resulting extracted heart sound signal for algorithms employing 
fixed and time-varying period respectively, the definition of the signal 
in subplot (d) is much improved. 



Section 4.6. Chapter summary and conclusions 86 

4.6 Chapter summary and conclusions 

The performance of the BSE algorithm depends on a prior knowledge 

of the source signal. Knowledge of the period of the signal of interest 

helps to extract the source signal of interest from the mixtures. In this 

chapter, a novel sequential algorithm using second-order statistics for 

the BSE of quasi-periodic source signals, which exploits the temporal, 

time-varying, quasi-periodicity of the source signals, was introduced. 

The algorithm was based on partial approximate joint diagonalization 

of auto correlation matrices at time-varying lag Tt, which is recalculated 

on a cycle-by-cycle basis. The algorithm is suitable for multichannel 

decomposition of periodic signals with or without a time-varying pe

riod. Simulation results suggest that if the signal of interest has a 

time-varying period, then using an algorithm employing a fixed period 

results in erroneous results. Results from other investigations show that 

the algorithm is suitable for removing a heart sound signal from lung 

sound recordings where the periodic variation in the heart beat has 

been extracted manually. However, with the availability of a suitably 

clean ECG signal, which would be synchronous with the underlying 

heart sound within the phonocardiogram signals, significant improve

ments might be possible and the heart beat period extraction could 

then be automated. Furthermore, due to the multidimensional nature 

of the ECG, the results for multichannel recordings may be improved 

by using more ECG reference signals [84] which could thereby better 

exploit the sub-components of the ECG recording, i.e. the P, QRS, and 

the T waves. 

The cost function in (4.2.5), proposed in [68] has some limitations. 

Firstly, its convergence is rather difficult to prove analytically in the 
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time domain. Secondly, there are some questions regarding its exact 

formulation and constraints imposed on the associated vector norms. 

This, together with increasing the number of channels for lung sound 

recordings and exploring other algorithms based on cost functions that 

do not exhibit the aforementioned shortcomings could be future work. 

In conclusion, this work is nonetheless a step forward in overcoming the 

time-varying periodic characteristic of many nonstationary biomedical 

measurements such as the heart sound signals, thereby allowing sepa

ration using information about a signal's periodicity. 



Chapter 5 

AUTOMATING PERIOD 

PICKING BY NONLINEAR 

SEQUENTIAL BAYESIAN 

FILTERING 

In this chapter nonlinear sequential Bayesian filtering techniques, in 

particular the Kalrnan filter and the particle filter are proposed to derive 

a much cleaner and more reliable signal from the HSS for the purpose 

of automating heart sound signal peak-picking for subsequent use by 

the peak detection algorithm. 

5.1 Introduction 

Many biomedical signals including the heart sound signal (HSS), lung 

sound signal (LSS) and the electrocardiogram (ECG) exhibit some de

gree of nonstationarity and quasi-periodicity. Several algorithms have 

been developed that rely on period information of the signal of interest 

(Sol) to extract it from other signals or noise (see for instance [77]). 

It has been shown in [81] that assuming strict periodicity for a signal 

88 
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of interest which is, in actual fact, quasi-periodic, invariably impairs 

performance. Recently, a sequential blind source extraction algorithm, 

based on variable period information, to account for nonstationarity of 

the signal of interest was proposed [85]. This algorithm, to a larger 

extent, was based on the ECG signal, which has clear, distinct peaks 

necessary for detection of period information. Although the algorithm 

performed well in the extraction of the HSS, the period information 

was captured manually through eye-balling, which, needless to say, is 

not convenient for automatic period detection necessary for on-line pro

cessing. The reason for eye-balling heart signal period information was 

because, normally, unlike the ECG, the HSS, due to its acoustic na

ture, exhibits multiple peaks during each heart beat and, in such a 

scenario, the detection algorithms fail to perform. Therefore, the heart 

sound signal needs some prior processing or to be modified in some way 

before it can be used in the established peak detection algorithms to 

detect its peaks. 

It is common in many science and engineering situations to estimate 

the hidden state of the system that changes over time using a sequence 

of noisy observations made on the system. Normally, the state-space 

approach, which focuses attention on the state vector of the system, 

is adopted for modelling a dynamic system. In state-space formula

tion, at least two joined signal models are required: the state model 

which describes the evolution of the system state with time and the 

observation model relating the noisy observations to the system state. 

Proceeding with these models in their probabilistic form provides a 

basis for dynamic state estimation with a Bayesian-type approach to 

state estimation. In the Bayesian approach to stochastic state estima-
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tion, the idea is to construct the posterior probability density function 

(pdf) of the state based on all the available information, including the 

received observations. Since such a pdf contains all the available sta

tistical information, it can be considered to be the complete solution 

to the estimation problem. 

For many problems, some sort of recursive processing is required in that 

each time an observation is received, an estimate is required based on 

that observation. This may be achieved by the use of a recursive fil

ter. Essentially, such a filter comprises of prediction and update stages. 

During the prediction stage, the state pdf is predicted using the state 

model. Since the state is usually subject to some unknown disturbances 

(modelled as random noise), prediction generally deforms the state pdf. 

The predicted pdf, resulting from the prediction stage, is modified by 

the latest observation during the update stage. The update operation 

is achieved through Bayes' rule. 

The purpose of this chapter is to use nonlinear sequential Bayesian fil

tering techniques, in particular the Kalman filter and the particle filter, 

to derive a much cleaner and reliable signal from the HSS itself for the 

purpose of automating heart sound signal peak picking for ultimate use 

by the peak detection algorithm. The proposed approach entails track

ing the time-varying autoregressive (AR) parameters of the AR model 

fitted to the HSS information. The so-called "Kalman filter autore

gressive (KF-AR)" model is a widely adopted approach for estimating 

and tracking the AR parameters of a nonstationary time series [42]. 

The conventional Kalman filter itself assumes linear state and observa

tion models as well as Gaussian pdfs. In order to extend the idea of 

the conventional Kalman filter to nonlinear systems, with approximate 



Section 5.2. Problem formulation 91 

Gaussian pdfs, several variants of the conventional Kalman filter have 

been developed and documented in the literature (see for example [86]). 

Particle filtering on the other hand is a versatile algorithm in that it can 

be applied to almost any type of problem where signal variations are 

present including models with high nonlinearities and with pdfs that 

are not necessarily Gaussian. 

This chapter is organized as follows: The problem is formulated, in the 

context of Kalman filter and particle filtering approaches, in Section 

5.2. In Section 5.3 an overview of nonlinear sequential Bayesian fil-

tering is presented. In the same section Kalman and particle filtering 

algorithms are reviewed. Examples of suitable signals for peak-picking 

by Kalman and particle filtering based approaches are presented in 

Section 5.4. Chapter conclusions are presented in Section 5.5. 

5.2 Problem formulation 

The heart sound signal (HSS) is modelled by a time-varying AR process. 

The AR model fits the spectral characteristics of the HSS since its 

power spectral density (PSD) possesses distinctive peaks. This model 

is arrived at by using the heart sound information which is free of noise 

and respiratory sounds (see Fig.5.1). The time-varying part accounts 

for the nonstationarity nature of the HSS. 

Consider the observed data {y(t), tEN} representing an Mth order 

time-varying AR process 

M 

y(t) = L am(t)y(t - m) + u(t) (5.2.1) 
m=l 
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where {a( m) }~=1 are the parameters of the AR process at each time in

stant t, u(t) is independently and identically distributed (LLd.) driving 

noise which could take the form of either a Gaussian or non-Gaussian 

distributed signal and y(t) models the heart sound signal. A nonGaussian-

type driving noise may be modelled as either a Gaussian mixture with 

two mixands, thus, 

u(t) f'J (1 -,)N(O, oD + ,N(O, a~) (5.2.2) 

where 0 < , < 1, and a~ » ar, or as a Laplacian distribution, thus, 

where Cl! > 0 

u(t) f'J Cl! e-o:1u(t)1 
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Figure 5.1. Power spectral density of noise-free HSS. 

(5.2.3) 

Based on the premise that the AR parameters evolve according to 

the changes in y(t), and hence maybe used to explicitly show changes 

in y(t), the objective is to track the evolution of the AR parameters 

{a(m)}~=l for all t and to represent the heart sound signal by a new 

signal composed of the evolution of the norm of these parameters. 
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Bayesian filtering techniques are suitable candidates for the problem 

at hand. In particular, Kalman and particle filtering algorithms are 

chosen to track the AR parameters. This is motivated by the fact that 

the noise term u(t) in (5.2.1) could be considered to have been drawn 

from either Gaussian or non-Gaussian distributions. 

5.3 Overview of nonlinear Bayesian filtering 

A classical problem in nonlinear filtering theory is to estimate recur

sively the state sequence {x(t), tEN} of a system, from noisy obser

vation sequence {y(t), tEN} made on the system. 

Let x(t) evolve according to the dynamic model: 

x(t) = g(x(t - 1), v(t - 1)), (5.3.1) 

and the observation sequence y(t) be related to the state sequence via 

the observation model: 

y(t) = h(x(t), e(t)), (5.3.2) 

where g(.) is the state evolution function and h(.) is the observation 

function that represents the relationship between the state and obser

vation sequences. The signals v(t - 1) and e(t) are the system and 

observation noises respectively. 

The state sequence x(t) is characterized by its probability density func

tion estimated from a sequence of observations y(t). In the sequential 

Bayesian filtering framework, the conditional density of the state se

quence given the observations is propagated through prediction and 

update stages; 
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1
+00 

p(x(t)Jy(1 : t-l)1) = -<Xl p(x(t)Jx(t-l))p(x(t-l)Jy(l: t-l))dx(t-l). 

(5.3.3) 

p(x(t)Jy(1 : t)) = p(x(t)Jy(t), y(1 : t - 1)) 

p(y(t)Jx(t), y(1 : t - 1))p(x(t)Jy(1 : t -1)) 
p(y(t)Jy(1 : t - 1)) 

p(y(t)Jx(t))p(x(t)Jy(1 : t - 1)) 
p(y(t)Jy(1 : t - 1)) 

(5.3.4) 

where p(y(t)Jy(1 : t -1)) = J p(y(t)Jx(t))p(x(t)Jy(1 : t -l))dx(t -1) is 

a normalization constant independent of x(t). p(x(t - l)Jy(l : t - 1)) 

is the prior probability density function, p(x(t)Jy(l : t - 1)) is the pre

dicted probability density function and p(y(t)Jx(t)) is the observation 

likelihood function. The posterior probability density function at time 

instant t, p(x(t)Jy(1 : t)), is used as the prior probability density func-

tion at time instant t + 1. 

When the system dynamics and observation models (Equations (5.3.1) 

and (5.3.2)) are known and linear, the solution to relations (5.3.3) and 

(5.3.4) is provided by the Kalman filter, which can be proved to be the 

optimal filter under certain general constraints. Suboptimal algorithms 

have been developed for nonlinear systems including the particle filter, 

a thorough treatment of both optimal and suboptimal algorithms can 

be found in [86]. The particle filter approximates the posterior densities 

by samples (particles) and their associated weights. The Kalman and 

the particle filters are summarized in the following sections. 

ly(l : t - 1) = y(l), y(2), ... , y(t - 1) as in MAT LAB notation. 
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5.3.1 Kalman filtering 

Under the standard assumptions that the noise terms v(t -1) and e(t) 

are white and Gaussian, the state dynamics function g(.) is known and 

linear with respect to both x(t - 1) and v(t - 1) and, the observa

tion function h(.) is known and linear with respect to both x(t) and 

e(t) the prediction and update problems (5.3.3) and (5.3.4) are opti

mally resolved by the Kalman filter [87]. Hence, in the Kalman filtering 

framework, (5.3.1) and (5.3.2) can be written as: 

x(t) = Gx(t - 1) + v(n) (5.3.5) 

y(t) = hT x(t) + e(t) (5.3.6) 

where G is a known matrix and h is a known vector defining the linear 

functions of the state and observation respectively, v(t) and e(t) are 

assumed LLd. '" N(O, Q(t -1)) and LLd. '" N(O, r(t)) where Q(t -1) 

and r(t) are covariances of the system state and observation noises 

respectively. 

Given the assumptions about v(t) and e(t), the state of the system can 

be recursively estimated, accordingly to 

x(tlt) = x(tlt -1) + k(t)(y(t) - hTx(tlt -1)) (5.3.7) 

where the Kalman gain k(t) is obtained by the Kalman recursion [88] 

P(tlt - 1) = Q(t) + GP(t - lit - 1)GT (5.3.8) 
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k(t) = P(tlt - 1)hc-1(t) (5.3.9) 

P(tlt) = P(tlt - 1) - k(t)c(t)kT(t) (5.3.10) 

where c(t) = hTp(tlt-1)h+r(t) defines the covariance ofthe innovation 

term y(t) - hTx(tlt - 1). 

5.3.2 Particle filtering 

The fundamental idea in particle filtering is to represent the density 

of interest p(x(O : t)ly(l : t)) as in (5.3.3) by a set of samples (parti

cles) {Xi(O : t), i = 1,2, ... , N}, and their associated weights {wi(t), i = 

1,2, ... , N}. The weights are normalized such that 2:i w(t) = 1. The 

density of interest p(x(O : t)ly(l : t)), at time t, based on particles and 

their weights, can be approximated as 

N 

p(x(O: t)ly(l : t)) ~ L wi(t)8(x(O : t) - Xi(O : t)) (5.3.11) 
i=l 

where 8(.) is the Dirac delta function. The weights wi(t) are chosen 

according to the principle of importance sampling [89] whereby if the 

samples {Xi(O : t), i = 1,2, ... , N} cannot be directly taken from the 

posterior p(x(O : t)ly(l : t)), then they are drawn from a so-called 

'importance density' q(x(O : t)ly(l : t)) and then the weights wi(t), can 

be defined as 

i() p(xi(O : t)ly(l : t)) 
w t ex: q(Xi(O: t)ly(l : t) (5.3.12) 
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If at time t -1 an approximation of the posterior density p(x(O : t) Jy(1 : 

t)) subject to having density p(x(O : t - I)Jy(1 : t - 1)), then the 

importance density is chosen to be factorized such that 

q(x(O: t)Jy(l: t))~ q(x(t) Jx(O : t-l),y(l: t))q(x(O: t-l)Jy(1 : t-l)) 

(5.3.13) 

then the samples Xi(O : t) rv q(x(O : t)Jy(1 : t)) may be obtained 

by augmenting each of the existing samples Xi(O : t - 1) rv q(x(O : 

t -1)Jy(1 : t -1)) with new state Xi(t) rv q(x(t)Jx(O: t -1),y(1 : t)). 

To derive the weight update equation, the probability density function 

p(x(O : t)Jy(1 : t)) is first expressed in terms ofp(x(O : t-l)Jy(1 : t-l)), 

p(y(t)Jx(t)), and p(x(t) Jx(t -1)): 

p(x(O: t)Jy(1 : t)) = p(y(t)Jx(O: t),y(l: t -1))p(x(O: t)Jy(l: t -1)) 
p(y(t)Jy(1 : t - 1)) 

= p(y(t) Jx(t))p(x(t) Jx(t - 1)) p(x(O : t - I)Jy(1 : t - 1)) 
p(y(t)Jy(1 : t -1)) 

(5.3.14) 

p(x(O : t)Jy(1 : t)) ex: p(y(t)Jx(t))p(x(t)Jx(t-l))p(x(O : t-l)Jy(1 : t-l)) 

(5.3.15) 

Using Bayes' rule (Equation (5.3.4)) and substituting (5.3.13) and (5.3.15) 

into (5.3.12) yields the weight update equation 
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If q(x(t)lx(O : t - 1), y(1 : t)) = q(x(t)lx(t - 1), y(t)), then the impor-

tance density becomes only dependent on x(t - 1) and y(t). This is 

particularly useful in the case when only a filtered estimate of posterior 

p(x(t)ly(1 : t)) is required at each time step, as is the case in this work. 

In such a case Xi(O : t - 1) and the history of observations, y(1 : t - 1) 

can be discarded leading to a modified weight update equation 

(5.3.17) 

and the posterior density p(x(t)ly(1 : t)) is then approximated as 

N 

p(x(t)ly(1 : t)) ~ L wi(t)8(x(t) - Xi(t)) (5.3.18) 
i=l 

whereby, as N ~ 00, (5.3.18) approaches the true posterior p(x(t)ly(1 : 

t)). Therefore, particle filtering consists of recursive propagation of im

portance weights w i ( t) and support points Xi(t) as each measurement 

is received sequentially. 

The choice of importance density is crucial in the design of particle fil-

ters and is significant to filter performance. This function must have the 

same support as the probability density function to be approximated. 

Generally, the closer the importance function to the distribution, the 

better the approximation to the approximated probability density func

tion. A widely used choice of the importance function which will be 
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adopted in this chapter is given as 

q(x(t)Jxi(t - 1), y(1 : t)) = p(x(t)Jxi(t - 1)) (5.3.19) 

This choice of importance function implies that it is necessary to sample 

p(x(t) JXi(t -1)) and that the importance weights from (5.3.18) can be 

updated by 

(5.3.20) 

The importance sampling weights indicate the level of importance of 

the corresponding particle. A relatively small weight implies that the 

sample is drawn far from the main body of the posterior distribution 

and has a small contribution in the final estimation. Such a particle is 

said to be ineffective. If the number of ineffective particles is increased, 

the number of particles contributing to the estimation of states is de-

creased, so the performance of the filtering procedure deteriorates. The 

degeneracy can be avoided by a resampling procedure. Resampling is 

a procedure that eliminates the particles with small weights and repli

cates those with large weights according to their weights. A suitable 

measure of degeneracy of the algorithm is given by the effective sample 

size Nef [90], 

(5.3.21 ) 

Whenever a significant degeneracy is observed (i.e. when Nef falls below 

some threshold Nth), resampling is performed. 
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5.4 Deriving a signal suitable for peak-picking from the AR pro-

cess by Kalman and particle filtering based approaches 

The AR process (5.2.1) can be written as 

y(t) = y(t - If a(t) + u(t) 

where 

a(t) = (al(t), ... , aM(t)) 

y(t) = (y(t), ... , y(t - M + 1)) 

(5.4.1) 

(5.4.2) 

(5.4.3) 

A simple state-space representation of the univariate AR process in 

(504.1) that is suitable for recursive estimation of the AR parameters 

can be given by the following state and observation equations 

a(t) = a(t - 1) + v(t) (5.4.4) 

y(t) = y(t - If a(t) + u(t) (5.4.5) 

Since the dynamic behavior of a(t) is not known, it can be assumed that 

it performs a random walk ( [91], [92]). That is, the AR parameters 

vary according to a simple Markov process. This is modelled by adding 

the noise process v(t), of known distribution, in Equation (5.4.4). Us

ing the Kalman filter algorithm and the standard assumptions therein, 

the state estimate of a(t), a(tlt), can then be recursively computed ac

cording to (5.3.7). The particle filter algorithm on the other hand, can 
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be outlined as follows, 

• initialize particles and the corresponding weights {ai(O), Wi(O) }!1' 

then for each time step t repeat the following steps 

• for i = 1, ... ,N, obtain samples {ai(t)} from importance function 

p(a(t)lai(t - 1)) 

• for i = 1, ... , N, update the importance weights by 

(5.4.6) 

• normalize the weights according to 

(5.4.7) 

• res ample to obtain particles of equal weights 

It is possible however that since the state of the system is condition

ally Gaussian in terms of the Kalman filter and nonGaussian when 

considering the particle filter, the parameter estimates can be of high 

variance. Therefore, the resulting estimates from both algorithms may 

need smoothing. A recursive nonlinear filter of the form 

a(t + 1) = (1- v(t))a(t) + v(t)a(t + 1) 

C(a(t + 1) - a(t))2 
v ( t) - --'-::-:-7--:--':"'-"'---'-'-:'-:-:-::

- 1 + C(a(t + 1) - a(t))2 

(5.4.8) 

(5.4.9) 

is proposed for each component a(t) of the estimated coefficient vector 

a(t), where C is a suitable constant and, v(t) E (0,1) defines a low pass 
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filter. 

5.4.1 Simulation results 

In this section it is demonstrated how an evolution signal, with more 

definition than the actual heart sound signal (HSS), can be derived 

by simply tracking the evolution of its AR parameters. The heart 

sound signal, obtained from the R.A.L.E. [67], is first mixed with white 

Gaussian noise (WGN), with signal-to-ratio (SNR) equal to 5dB and 

20dB. The WGN models the interference, possibly the lung sound, that 

can be picked up by digital stethoscopes during heart sound signal 

recordings (a typical noisy heart sound signal is shown on Fig.(5.2)). 

In practice such a signal would be recorded closer to the person's heart 

location or at any place on the body where the heart sound is perceived 

dominant. This noisy heart sound signal is modelled by a time-varying 

AR process whose evolution is tracked. After tracking the evolution 

of the parameters along the AR process each parameter is smoothed 

according to (5.4.8). For reasons that will become apparent in the 

following subsections, a much better signal to consider is the evolution 

of the norm of the parameters. The Kalman filter and the particle 

filter algorithms are considered for tracking the parameters. In both 

algorithms, the functions G(t - 1) and h in (5.3.5) and (5.3.6) are 

assumed to be identity functions and the covariances Q and r in the 

Kalman filter are assumed to be O'qI and O'r respectively. Whereas in the 

particle filter the covariance of noise matrices Qp and r p are assumed 

to be qpI and rp respectively, where O'qI, O'n qpI, and rp are known and 

constant parameters, and I is the identity matrix. The parameters O'q 

and O'n in the case of the Kalman filter and, qp and r p for the particle 
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filter, need proper adjusting in order to obtain good results. In this 

work, these parameters were set as follows; aq = 1, ar = 0.01, qp = 0.1 

and Tp = 0.1. 
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Figure 5.2. A typical noisy heart sound signal. 

5.4.2 Using Kalman filtering 

Here the norm of the parameters and the innovation signal that results 

from using the Kalman filter are considered. At SNR of 20dB, Figs. 

5.3 and 5.4 show the evolution of the norm of unfiltered and low-pass 

filtered parameters respectively, while Fig. 5.5 depicts the evolution 

of the innovation signal. By comparing Fig. 5.2 with 5.4, it is seen 

that in Fig. 5.4, the peaks are more defined and this is a prerequisite 

for signal detection algorithms. The innovation signal (Fig. 5.5) is 

less interesting and is not considered. It is seen that even at SNR of 

5dB, some very interesting results are still obtained for the norm of 

the smoothed parameters as depicted by Fig.5.7. Figs. 5.6 and 5.8, 

depicting the evolution of the norm of unfiltered parameters and the 

evolution of the innovation respectively, are presented for completeness. 
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Figure 5.3. Unsmoothed evolution of the norm of parameters obtained 
by Kalman filtering at 20dB SNR. This shows high variance in the AR 
parameter estimates and therefore requires smoothing. 
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Figure 5.4. Smoothed evolution of the norm of parameters obtained 
by Kalman filtering at 20dB SNR. The smoothed evolution signal is 
a result of recursive nonlinear filtering according to Equation {5.4.8}. 
The signal is cleaner and has clear distinct peaks which can easily be 
detected by peak detection algorithm. 
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Figure 5.5. Evolution of the innovation signal obtained by Kalman 
filtering at 20dB SNR. This signal is noisy and therefore less interesting 
for peak detection. 
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Figure 5.6. Unsmoothed evolution of the norm of parameters obtained 
by Kalman filtering at 5dB SNR. The AR parameter estimates require 
more smoothing. 
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Figure 5.7. Smoothed evolution of the norm of parameters obtained 
by Kalman filtering at 5dB SNR. Even at 5dB SNR, some very inter
esting results are obtained. 
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Figure 5.S. Evolution of the innovation signal by Kalman filtering 
at 5dB SNR. This signal is noisy and hence less interesting for peak 
detection. 

5.4.3 Using particle filtering 

In this simulation, a simple choice of the importance function, p(a(t)la(t

l)i), was used with 500 particles. Here, the driving noise sequence u(t), 

is assumed to be non-Gaussian and is modelled according to (5.2.2). 

Figs. 5.9 and 5.10 show the evolution of the norm of the smoothed 

parameters at SNR of 20dB and 5dB respectively. As seen from the 

two figures, the particle filter performs well even when non-Gaussian 

noises are considered especially at higher SNR. 
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Figure 5.9. Smoothed evolution of the norm of parameters obtained 
by particle filtering with SNR of 20dB. The smoothed evolution signal 
is a result of recursive nonlinear filtering according to Equation (5.4.8). 
The signal is cleaner and has clear distinct peaks which can easily be 
detected by peak detection algorithm. 
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Figure 5.10. Smoothed evolution of the norm of parameters obtained 
by particle filtering with SNR of 5dB. The positions of the peaks are 
indicated by vertical lines on the figure. 
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5.5 Chapter summary and conclusion 

In this chapter, it has been shown that rather than picking the peaks 

of an HSS by an eye-balling procedure, this HSS can be represented 

by the evolution signal of the norm of its AR parameters, which has 

more defined peaks that are suitable for automatic peak picking by es

tablished peak detection algorithms. The noisy HSS is thus modelled 

by a time-varying AR process whose parameters are trackable through 

non-linear Bayesian filtering techniques. In particular, two Bayesian 

filtering candidates were considered, namely, the Kalman filter and the 

particle filter. The Kalman filter is suitable when the associated noises 

in the state-space equations are assumed Gaussian and for nonGaus

sian noises the particle filter is exploited. The solution for automatic 

peak picking, presented in this chapter, means that there is no need to 

rely on the ECG signal (recorded simultaneously with HSS) for detect

ing HSS peaks and that a recording of HSS is essentially sufficient for 

detecting its peaks. In the following chapter, the ideas expressed here 

are incorporated and provide a complete solution for sequential blind 

source extraction of quai-periodic signals with time-varying period. 



Chapter 6 

PROPOSED COMPLETE 

SOLUTION FOR 

SEQUENTIAL BLIND 

SOURCE EXTRACTION OF 

QUASI-PERIODIC SIGNALS 

WITH TIME-VARYING 

PERIOD 

This chapter presents a potential complete solution for sequential blind 

source extraction of quasi-periodic signals with time-varying period. 

The solution is a result of the combination of the blind source extraction 

algorithm presented in Chapter 4 and the ideas proposed in Chapter 5 

for automating pick-peaking of the signal to be extracted. 

110 
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6.1 Introduction 

It has already been mentioned in Chapter 5 that the sequential blind 

extraction (SBE) algorithm developed in [85] and presented in Chapter 

3 relies heavily on detecting the peaks of the signal of interest (Sol) in 

order to extract it from mixtures. If the signal has clear distinct peaks, 

as the ECG signal, then detecting its peaks can easily be performed au

tomatically through peak detection algorithms. The peak information 

thereby obtained can then be used in the SBE algorithm for extrac

tion purposes. However, if the signal peaks are less obvious (as is the 

case with the HSS) and pose problems when trying to detect them us

ing peak detection algorithms, one can only rely on prior knowledge 

about the separation time of the peaks to approximate peak location 

and manually pick the peak locations through eye-balling. This nec

essary peak information can then be fed into the SBE to extract the 

Sol. It has been shown in Chapter 5 that a signal such as the HSS, 

which exhibits some degree of ambiguity about its peak location, can 

be represented by the evolution of the norm of its parameters. Such an 

evolution signal, as seen in Chapter 5, has more defined peaks. This 

is a much more desired feature if the peak detection algorithm is to be 

employed for picking the locations of signal peaks. 

The reason for this chapter is to show how the ideas presented in Chap

ter 5 can be incorporated in the SBE algorithm presented in Chapter 

4 so that rather than picking the peaks of the signal of interest manu

ally through eye-balling or using some reference signal that is recorded 

simultaneously with the Sol as suggested in [85], the peak picking proce

dure is automated and performed by using only the Sol. Thus, a com

plete solution for sequential blind source extraction of quasi-periodic 
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signals with time-varying period incorporating automatic peak picking 

is presented in this chapter. In the following section a model of the 

approach for the proposed complete solution is presented, followed by 

the results of incorporating the ideas developed in Chapter 5 into the 

algorithm presented in Chapter 4. 

6.2 Model of approach 

The schematic diagram of the proposed complete solution to sequential 

extraction of quasi-periodic signal with time-varying period is shown 

on Fig.6.l. The signal of interest in this case is the heart sound signal 

(HSS) which is known to be quasi-periodic and somewhat nonstation

ary. The goal is to extract the HSS from the interfering lung sounds. 

Digital stethoscopes are used as sensors to pick up the heart/lung sound 

mixtures through a suitable interface that records the mixtures as they 

are measured. It is proposed that sensor 1 be located closer to the 

person's heart location while sensor 2 can be placed anywhere appro

priate on the body where both heart and lung sounds can be picked up 

by the sensor. This arrangement ensures that mixture 1 from sensor 1 

contains heart sound as the dominant sound and mixture 2 can contain 

heart and lung sounds in any proportion. Mixture 1 is fed into the 

Kalman/particle filtering to derive the evolution signal (as discussed 

in Chapter 4) which is then used for peak detection. The peak infor

mation is then used, together with the two mixtures, in the extraction 

algorithm to extract the heart sound signal. An enhanced lung sound 

measurement, free of HSS, is thereby obtained to aid in diagnosis. The 

dotted signal flow indicates an alternative procedure using the ECG 

signal recorded simultaneously with the two mixtures for peak picking. 
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The beauty of sequential Bayesian estimation stage proposed is that it 

replaces the eye-balling procedure and the use of the ECG signal by 

providing a signal suitable for use by the peak detection algorithm and 

thereby effectively automates the whole process of peak-picking. 

The limitation in practical implementation of the proposed method 

is that a complete new stethoscope would need to be designed. The 

stethoscope would have two sensors for capturing the two mixture sig

nals. The sensors would be connected to a processing system (possibly 

a digital signal processor (DSP)) that implements the proposed algo

rithm. An enhanced lung sound measurement, free of HSS, would then 

be used in diagnosis. 
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Figure 6.1. Schematic diagram of the proposed complete solution 
to sequential extraction of quasi-periodic signal with time-varying pe
riod. In practice, the HSS is the signal to be extracted from lung 
sound recording. Digital stethoscopes are used as sensors to pick up 
lung sound recordings (mixtures). The solid signal flow lines indicate 
the proposed procedure while the dotted lines indicate an alternative 
procedure when using the ECG signal for peak information. 
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6.2.1 Simulation results 

In this simulation a signal is derived as in Section 5.4.1 from a real 

recorded noisy heart sound signal and the peak detection algorithm is 

used to detect its peaks. The peak information obtained is used in the 

SBE algorithm to extract the heart sound signal from a linear mixture. 

An example discussed in Section 4.3.1 of Chapter 4, where HSS was 

mixed with LSS by a matrix with elements drawn from a standardized 

Gaussian distribution, is considered again in this chapter. The original 

HSS and LSS together with their mixtures are shown on Fig. 6.2 top 

and bottom subplots respectively. This figure has been brought forward 

from Chapter 4 for ease of reference. The resulting HSS extracted from 

the mixtures of HSS and LSS, obtained through the proposed procedure 

used on the algorithm developed in [85] and presented in Chapter 4, 

is shown on Fig.6.3. As seen from the figure, accurate reconstruction 

is achieved. Comparing Fig.6.3 with the extraction results obtained in 

Section 4.3.1 of Chapter 4 (Fig.6.4), it is seen that essentially the same 

results are obtained although departure from strict periodicity degrades 

performance as seen from Fig.6.4. 
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Figure 6.2. HSS and LSS before mixing (top), and the linear mixtures 
(bottom) (brought forward from Section 4.3.1 of Chapter 4 for ease of 
reference). Mixing is achieved by a matrix with elements drawn from 
a standardized Gaussian distribution. 
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Figure 6.3. Extracted HSS by the new algorithm with automatic peak 
detection incorporated. By using the new algorithm, which accounts 
for nonstationarity of the signal of interest and incorporating automatic 
peak detection, a clean HSS is extracted. 
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Figure 6.4. Extracted HSS by a fixed-period algorithm (brought for
ward from Section 4.3.1 of Chapter 4 for ease of reference). It is seen 
that the performance is degraded since the HSS extracted is noisy. 

6.3 Chapter summary and conclusion 

In this chapter, a potential complete solution for sequential blind source 

extraction of quasi-periodic signals with time-varying period is pre-
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sented. This is achieved by replacing the eye-balling procedure and the 

use of a separate ECG in peak picking by using the evolution signal de

rived from the recorded signal mixture by nonlinear sequential Bayesian 

filtering techniques. The simulation results confirm the utility of the 

proposed solution. Using the ECG signal to approximate heart sound 

peaks would require additional equipment (ECG recording machine) 

and, although the heart sound signal is considered to follow the ECG 

signal, there is still a possibility for error since in actual fact the heart 

sound signal happens immediately after the ECG. This delay may be 

accounted for by introducing some time delay in the ECG signal. In 

practice, however, this delay would be variable due to nonstationarity 

of the heart sound and the ECG signal and hence may not be easily 

estimated. On the other hand, relying on eye-balling is not suitable for 

online-processing. 



Chapter 7 

CONCLUSION AND 

FURTHER RESEARCH 

7.1 Summary and conclusions 

This study has presented novel signal processing approaches leading 

to a complete solution to the problem of extraction of quasi-periodic, 

nonstationary signals with time-varying period. The emphasis is on bi

ological signals such as the heart sound signal (HSS) and the electroen

cephalogram (ECG). The contributions can be summarized as follows: 

1. A novel approach using an adaptive line enhancer (ALE) exploit

ing periodicity of the signal of interest (Sol). 

2. A novel blind source extraction based on second-order statistics 

(SOS) approach exploiting periodicity of the signal of interest. 

3. Development of a new algorithm suitable for the extraction of a 

quasi-periodic signals with time varying period. 

4. Automating periodic signal peak-picking. 

5. A proposed complete solution to the problem of extraction of 

quasi-periodic, nonstationary signals with time-varying period. 

119 
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The first contribution illustrates how the adaptive line enhancer (ALE) 

can be used to enhance an approximately periodic signal such as the 

heart sound signal (HSS) in the presence of coloured noise signal such 

as the lung sound signal (LSS). There are three very important parame

ters that determine the performance of the ALE, notably, the adaptive 

filter length L, the prediction distance del and the adaptation algo

rithm convergence parameter J-l. In choosing the ALE parameters, sev

eral performance criteria are considered including: the adaptation rate, 

the excess mean square error (EMS E) and the frequency resolution re

quired. All these are controlled by the choice of both J-l and L. The 

prediction distance del has to be chosen such that decorrelation be

tween the periodic signal (to be enhanced) and the "noise" component 

is achieved. Normally it is chosen as the sample number at which the 

auto correlation function of the "noise" component decays to a small 

value relative to the zero lag z(O). Therefore, for the best results to 

be achieved, the ALE parameters have to be chosen carefully, and this 

may be impractical in a real-time system. 

The second contribution is based on a blind source extraction (BSE) 

algorithm by second-order statistics (SOS) that exploits the periodicity 

of the signal of interest (HSS) in order to extract it from its mixtures. 

The extraction is based on jointly diogonalizing the auto correlation 

matrices at integer multiples of the fundamental period (if it is known) 

of the HSS. This hinges on the fact that if the fundamental period is, 

say, T samples, then its auto correlation matrix will theoretically have 

the same value at time lags corresponding to integer multiples of T. A 

method such as the heart instantaneous frequency (HIF) estimation can 

be applied to the Sol to determine its period. It should be noted that 
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any errors in period estimation could lead to erroneous results, and any 

departure from strict periodicity due, for example, to nonstationarity 

of the signal of interest (Sol) may impact performance. This subject 

and considering the effect of error in the period estimation given non

stationary HSS are the focus of the third contribution. 

In the third contribution, a novel sequential algorithm using second

order statistics for the blind source extraction of quasi-periodic source 

signals, which exploits the temporal, time-varying, quasi-periodicity of 

the source signals, has been developed. The algorithm is based on par

tial approximate joint diagonalization of auto correlation matrices at 

time-varying lag Tt corresponding to period variation, which is recalcu

lated on a cycle-by-cycle basis. Most importantly, the time-varying lag 

Tt information is captured by detecting the peaks of the signal of inter

est (in this case, the HSS). Peak detection may be performed manually 

or by using a suitably clean ECG signal in conjunction with estab

lished automatic peak-detection algorithms. The ECG proposed would 

be synchronous with the underlying heart sound within the phonocar

diogram signals. Alternatively, rather than extracting the HSS peak 

information manually or using the ECG, a more suitable signal can 

be derived from the HSS itself. Such a signal should be cleaner with 

more defined peaks than the HSS such that it can be fed into the 

peak detection algorithm, and thereby automate the whole process of 

peak-picking/detection. This is the focus of the fourth contribution of 

this work. In conclusion, however, the work presented in this chapter 

is nonetheless a step forward in overcoming the time-varying periodic 

characteristic of many nonstationary biomedical measurements such as 

the heart sound signals, thereby allowing separation using information 
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about the periodicity of a signal. 

The fourth contribution presents an approach based on Bayesian fil

tering techniques notably, Kalman filtering and particle filtering, to 

derive a signal (from the HSS) that is suitable for automatic peak

picking/detection by established peak detection algorithms. The solu

tion for automatic peak picking, presented in this contribution, means 

that there is no need to rely on the ECG signal (recorded simulta

neously with HSS) for detecting HSS peaks and that a recording of 

HSS is essentially sufficient for detecting its peaks. In the following 

contribution, the ideas expressed here are incorporated in the previous 

contribution to provide a complete solution for sequential blind source 

extraction of quasi-periodic signals with time-varying period. 

The last but not least contribution presents a complete solution for 

sequential blind source extraction of quasi-periodic signals with time

varying period. Here, pick-peaking procedures by eye-balling or by 

using a separate ECG are replaced by the use of the evolution sig

nal derived from the recorded signal mixture by nonlinear sequential 

Bayesian filtering techniques. 

7.2 Future research 

The cost function in (4.2.5), proposed in [68] has some limitations. 

Firstly, its convergence is rather difficult to prove analytically in the 

time domain. Secondly, there are some questions regarding its exact 

formulation and constraints imposed on the associated vector norms. 

This, together with exploring other algorithms based on cost functions 

that do not exhibit the aforementioned shortcomings forms part of the 

proposed future work. 
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The lung is an echoic environment. Therefore extraction of the HSS 

from the LSS recording leaves the LSS still contaminated with some 

echoes and possibly some noise from instruments. In order to obtain 

an enhanced lung sound, free of any echos and other noises, the result

ing LSS from blind source extraction stage needs to be applied to an 

echo canceller to remove any echos. Thus, an echo canceller could be 

proposed. 

A more robust approach for future work entails considering the lung 

as a time-varying echoic mixing system used in the context of non

linear blind source separation or extraction, possibly constrained by 

physiological aspects. Thus a hybrid blind source separationj extraction 

(BSS jE)-adaptive noise (echo) cancellation system for detection of lung 

and heart sounds could be proposed. 

After detecting and separating the HSS and the LSS, the next step 

would be to classify them in terms of conditions that course them. 

Localizing the lung sounds is another aspect that could form part of 

the future work. Here, time-frequency techniques combined with com

plex image processing techniques could be employed to show where the 

sounds originates in the human body. This would go a long way in 

improving lung diagnosis of lung and heart diseases. 
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