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ABSTRACT 

This thesis presents a model of the complete Electro Discharge Machining (EDM) system 

and the design and implementation of a digital controller for the servomotor control and the 

gap voltage and current pulse power generator. A Matlab/Simulink simulation is used to 

investigate the EDM system model behaviour and based on the simulation results, a 

compensated EDM control system is designed. Simulation studies were also earned out to 

predict the material removal rate of a steel workpiece in mm3 I min . The control software 

of the EDM control process and servo system control was performed mainly in software 

with minimal hardware implementation. The control hardware consists of an eZdsp, user

interface device and analogue signal processing and interfacing circuit. The eZdsp 

communicates with the user-interface device by sending the information/instruction to the 

LCD screen while the user-interface device uses push button switches to communicate with 

the eZdsp. It is shown that one DSP microcontroller can be used to provide the control 

functions for the EDM system. 

The experimental studies of the Electro Discharge Machining process using a copper 

electrode, a graphite electrode and steel workpiece materials are presented in tabular and 

graphical forms. The analysis of the experimental results show that the material removal 

rate is influenced by the process parameters such as the gap current Igap• gap voltage V arc. 

pulse on-time Ion, and sparking frequency F, as well as the material properties of the 

electrode and the workpiece. Comparison studies between simulation and experimental 

results show reasonable agreement. Further improvement was made to the EDM process 

model based on the comparison studies. As a result, the predicted material removal rate 

using the improved EDM process model shows better agreement with experimental results. 
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PREFACE 

THE REQUIREMENT FOR THIS RESEARCH 

This research is the result of an investigation to develop a model of a complete Electro 

Discharge Machining (EDM) system and uses the model in a computer simulation to 

predict the performance of EDM systems. Simulated results from the model are used to aid 

in the design and development of a DSP based controller for the servomotor control and the 

current generator control. The digital controller is to replace the conventional analogue 

controllers used in existing EDM systems. 

THE SCOPE OF THIS RESEARCH 

The core of this research considers a Die-sinking EDM system with a DC servomotor and 

an existing high efficiency switch-mode current generator with fast current pulse rise and 

fall times. The EDM process, which is a sequence of sparks is a discrete event system. 

Existing EDM process models were investigated with the view to selecting the most 

suitable model for simulation and in the event of a suitable model not being found, to 

develop one for accurate EDM process modelling. 

The DC servomotor axis drive is a continuous-time system with considerably friction. Its 

purpose is to maintain accurate electrode position (10!-lm to 50!-lm gap length) in the z-axis 

relative to the moving eroded workpiece surface. The servomotor drive system should thus 

xvii 



be modelled to accurately describe the electro-mechanical system dynamics subject to 

position and velocity control. Both the EDM process model and the servomotor model are 

combined into an EDM system model that can be used to accurately predict the material 

removal rate of the EDM system. 

The final objective of this research is to develop a compact single DSP based controller for 

the EDM system. The results from the simulation should show good agreement with those 

from the practical system. 

STRUCTURE OF THE THESIS 

Chapter 1 gives an introduction to EDM systems and conducts a comprehensive literature 

survey of such systems. 

Chapter 2 describes the modelling and simulation studies of a Die-sinking EDM system. 

Chapter 3 explains the digital control strategy adopted for the EDM system. A 

TMS320LF2407A processor of DSP microcontroller was chosen for software 

implementation. The design strategy for current generator control is also explained. 

Chapter 4 presents the system's hardware development. The circuit for the analogue-to

digital interface, feedback signal conditioning and various DSP on-chip peripherals are 

discussed. The design and implementation of a digital user-interface controller is explained. 

Chapter 5 presents the material removal rate experimental results. Various experiments 

were undertaken for different EDM process parameters. 

xviii 



Chapter 6 compares the simulation results with the experimental results. The comparison 

was poor in many instances and investigation showed that the EDM process model used in 

the simulation was inadequate. A new improved EDM process model was then developed 

to identify the factors that influences material removal rate. 

Chapter 7 concludes the studies and gives suggestion for further research. 

xix 



CHAPTER! 

INTRODUCTION 

1.1 ELECTRO DISCHARGE MACHINING (EDM) SYSTEMS 

Electro Discharge Machining (EDM) is a process of electric conductive material removal 

using an accurately controlled electrical discharge (spark) through a small gap 

(approximately 10 to 50 microns) filled with dielectric fluid between an electrode and a 

workpiece. The technique allows machining high-strength and wear-resistant materials such 

as high-strength alloys, polycrystalline diamond and ceramic (ultra-hard conductive 

material) since the hardness of the workpiece has no effect on the process. Unlike the 

traditional cutting and grinding processes, which depends on the force generated by a 

harder tool to remove the softer material workpiece, the EDM process is free from contact 

force and chatter vibration. Furthermore, EDM technique permits the machining to be done 

even after the hardening process. The EDM process has been used in high precision 

machining of metals, and to date, there are several different types of EDM systems that 

were developed for specific industrial applications. EDM applications ranging from drilling 

micro-holes that are smaller than a human hair to the machining large automotive dies [1]. 

The two most common EDM systems are Die-sinking EDM and Wire EDM. Of the two, 

the Die-sinking EDM system presents the more challenging task as regards to the current 

generator and the servo system control requirements. For this reason, the Die-sinking EDM 

system is chosen to be the main focus of this research. However, many other EDM systems 

such as Milling, Grinding, Abrasive Grinding and Wire Grinding exist but these are less 

popular due to their limited application [1-2]. For completeness, the following suq-section 

gives a brief description of these EDM systems. 



Introduction 

1.1.1 Types ofEDM systems 

EDM Milling uses cylindrical electrodes to perform the electrical discharge erosion in the 

form of milling. Consecutive passes of the electrode down to just less than the desired depth 

forms a mould cavity [3). Basically, the method of material removal is similar to Die

sinking EDM. EDM Milling allows complex shapes to be machined using simple shaped 

electrodes. This is illustrated in Figure 1.1 where a custom-made electrode is used in Die

sinking EDM. However the main limitation in the EDM Milling process is that complex 

shapes with sharp corners cannot be machined due to the rotating electrode [4). 

Custom made 
Electrode 

Workpiece 

(a) 

Simple <:;' 

electrode \.. 

Workpiece 

(b) 

Electrode 
movement 
,E 

Figure 1.1 Electrode comparisons of(a) Die-sinking EDM and (b) EDM Milling 

Electrical Discharge Grinding (EDG) is a non-contact process that is similar to Die-sinking 

EDM but uses a rotating conductive (i.e. carbon) wheel as the tool electrode. The name of 

EDG originated many years ago due to the original equipment that resembled a tool and 

cutter grinder [5]. EDG is also known as Rotary EDM. This is an alternative process for 

sharpening tungsten carbide and diamond tipped cutting tools such as polycrystaiiine 

diamond. The sparking area is sprayed with a dielectric fluid. The rotating elec~ode helps 

to 'keep the gap wldfu fre~ from debris arid reduce eiectrode wear. Basic features of the 

EDG system are shown in the following Figure 1.2. 
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~N 
/ 

Dielectric 

Figure 1.2 Basic features of the EDG system 

Introduction 

A hybrid process of Abrasive Electrical Discharge Grinding (AEDG) removes advanced 

ultra-hard materials by a combination of action of electrical discharge erosion and 

mechanical grinding. A diagram illustrating the AEDG process is shown in Figure 1.3 . 

....__ _.>( 

Rotation grinding wheel 

Metal-bond electrode 
Insulator ...... 

Diamond grit_.... 

) Fine surface « finish 

Figure 1.3 Electrical discharge and grinding process 

This process is useful for machining polycrystalline conducting diamond materials. 

Electrical discharges perform the material removal and the mechanical grinding uses 

diamond grain grit for fine surface: finish. The spark discharges, thermally soften the 

workpiece material in the grinding zone. According to [ 6], the grinding action removes the 

3 



Introduction 

debris from craters and also decreases the chances of resolidification of molten material, 

leading to a higher material removal rate. 

Wire EDMing was introduced around 1970, twenty years later than Die-sinking EDM [7]. 

The principle of Wire EDM is similar to Die-sinking EDM. The electrical sparks cause 

material removal, and the dielectric circulates through a deionizing system in the cooling 

module [8]. The system uses a travelling thin wire (approximately 50 to 300 microns) to cut 

through a workpiece as discharges takes place [9]. The wire electrode wears as it cuts and is 

therefore continuously replaced as it moves horizontally. The vertical path of the cutting 

direction is controlled by a computer program for particular shapes such as molds for IC 

lead frames. Figure 1.4 shows the basic features of Wire EDM. 

Figure 1.4 Basic features of the Wire EDM system. 

The wire electrode we.ars during machining due .to the electrical spark dischl!l'ge and the . . . 

combination of wire wear and the thermal load on the wire increases the risk of wire 

rupture. Some research has been carried out to improve EDMing wire electrode properties 
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Introduction 

[I 0-11]. The wire core material uses high electrical conductivity and high strength thermal 

resistance materials, while its coated layer uses a high concentration zinc (coated with 

zinc). The combination of both core and coated materials thus increase the electrical and 

thermal lower resistance strength of the wire electrode. However, preventing wire rapture 

by means of improving wire material has added an extra cost to Wire EDM. Alternatively, a 

control strategy can be applied to Wire EDM system to reduce the risk of wire rupture [12-

13]. 

1.2 DIE-SINKING EDM SYSTEM 

Signals 

11 H Feed backs 

Servomotor 
controller 1- ... 

" .. 
.c 
il 
" "" Gap voltage 

and current 
pulse power 

f generator 

-:='::::--

Tacho generator 

/ 
/ DC motor 

'TT' 
,_._-Gear 

' . 

; ; 
~ 1:!1 

Leadscrew 

----
I -Ram 

- r;] 
Electrode 

--V Dielectric 
/.fluid 

l1 r _, Workpiece 

Figure 1.5 Die-sinking EDM system 

The Die-sinking .EDM system is shown in Figure 1.5. The system consists of a servo 

system made up of a servomotor, leadscrew and ram holding the tool electrode and a gap 
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Introduction 

voltage and current pulse power generator. The electrode and the workpiece are immersed 

in a tank containing dielectric fluid. 

1.2.1 Die-sinking EDM Process 

The process of removing material in Die-sinking EDM is shown in Figure 1.6. An electrical 

potential from the gap voltage and current pulse generator is created between the electrode 

and the workpiece. The electrode is slowly lowered towards the workpiece but there is no 

flow of current because of the strong insulating properties of the dielectric fluid. 

-ve 
· · · · Workpiece · · · · · 

(a) Before machining 

(c) After machining 

·ve 
Workpiece 

(b) During machining 

-----.... - ........ ., .... 
/""' Electrode , 

/ i ,. ·t·~-:::m< ~ \ I $! ("".' • J.'f.l-. ~~.'.··· ·.'· .... , ~. •. :··~. I I . i ' • '-k"'' ·~··~· ·····: .... 
2 · . ;_\.;,r . .•:·· · ~·~ t;):.:: I 

\ 7 ~····"~'·"" •'•'\·''' I \ .,.,.._,~~I 
' -- + ~ / '.... Workpiece ., ""' 

.... _______ _ 

Figure 1.6 (a) Electrode and workpiece before machining (b) Development of plasma 
reaction (c) Formation of the workpiece 

. . 
When the gap between the electrode and the workpiece is sufficiently small (1 0 - 50J.tm), 

said gap being controlled by the position control servo system, an electrical spark occurs in 
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Introduction 

the gap between the electrode and the workpiece. In this process, which is also known as a 

discharge, current produces r2R loss, which converted into heat. The surface of the material 

is intensely heated in the area of the discharge channel. If the flow of current is interrupted 

the discharge channel collapses very quickly. Consequently the molten metal on the surface 

of the material evaporates explosively and takes liquid material with it down to a certain 

depth. A small crater is formed. If one discharge is followed by another, new craters are 

formed next to the previous ones and the workpiece surface is constantly eroded. These 

particles immediately resolidify into small spheres and flushed away by the dielectric fluid. 

Material removal rate is defined as the cavity volume removed by the spark, divided by the 

sum of the discharge pulse on-time ton and pulse off-time !off for each cycle of operation 

[14]. 

Material removal rate= Cavity volume removed by spark I (ton+!off) (1.1) 

The spark phenomenon is shown in Figure 1. 7. 

Electrode 
(anode) 

(a) 

'v 00 

I &.sl I 

li) ! ~ ton 1 ~toff 
f-~.~ 

I/ ... 

(f..) 
(c) 

Figure l.7 (a) Electrode and workpiece in dielectric fluid (b) Cross-sectional area showing 
electrical spark between electrode and workpiece (c) Profile of voltage 'across and current 
in spark gap 
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The profile of voltage across and current in the spark gap is illustrated in Figure 1.7(c). 

First, a high voltage V oc is applied during the delay time to. During this time, a high electric 

field is formed between the electrode and workpiece (at the highest field strength). At the 

end of the delay time, the insulating effect of the dielectric fluid breaks down, current 

begins to flow whilst the voltage falls, signalling the start of the discharge phase. The spark 

is thus formed and machining takes place during the on-time ten with a machining current 

Igap and a voltage across the gap V arc· At the end of the on-time, the flow of current is 

interrupted and the desired insulating electric properties of the dielectric fluid are recovered 

during the off-time tcrr. 

1.2.2 Electrodes and dielectric fluids in EDM 

The electrode material properties are important factors to consider when choosing the 

electrodes. Those with the lowest electrical resistivity and the highest melting point are 

preferred. Traditionally, electrodes have been manufactured from metallic materials such as 

copper, tungsten, brass and steel. For non-metallic materials, graphite is preferred. Copper 

is normally chosen for electrode fabrication due to the fact that it is low in cost, easy to 

machine and widely available. 

Research by [15] into electrode fabrication, used copper-tungsten for the electrode material 

due to its high wear resistance and better electrical conductive properties. A comparison 

study of micro-hole machining between tungsten-carbide electrodes and copper electrodes 

[I 6] revealed that better surface finish and lower electrode wear are obtained while 

machining with the copper electrode, whilst higher material removal is achieved when 

using the tungsten-carbide electrode. Tungsten-carbide possesses good wear resistance and 

high temperature resistance properties and its high stiffuess makes it easy to machine in 

small diameters [17]. Sancez et al. [18] conducted research into EDM technology for 

advanced ceramics using three different electrode materials, namely pure graphite·, copper

graphite and copper-tungsten. In their study, it was highlighted that the highest electrode 
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wear occurs when using pure graphi te followed by copper-graphite and copper-tungsten 

respecti ve ly. [n addition, they also report that the worst surface conditions are obtained 

when using a graphite electrode. 

Tool electrodes are manufactured using various techniques such as etching, stamping, 

turning. grinding and EDM processing f 19-22]. The tw·ning (lathe) machine easily cuts the 

tool electrode for EDM Milling since the shape is cylindrical (3]. However, tllis method is 

not applicable fo r complicated shapes. A set of gear components fabricated from multiple 

machining operations of turning, wire EDM and Die-sinking EDM is shown in Figure 1.8 

(23l 

Figure 1.8 Gear-set components fabricated from multiple machining 

The lathe maclline cuts a blank tool electrode in a cyljndrical shape. The blank tool 

electrode is then machined by Wire EDM to produce a geared tool electrode. Later. the gear 

tool electrode is use in Die-sinking EDM to fabricate the gear mould. 

Research [24] states that Wire grind ing EDM is an effective method to fabricate 

rnicroelectrodes to very small diameters. A cylindrical electrode has been successfully 

machined down to 20J..Lm in diameter and a rectangular electrode down to l5Jlm in corner 
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radius. The EDM processing for the mesh electrode and the block electrode methods are 

also applicable for fabrication of microelectrodes. The mesh electrode method is used to 

produce multiple electrodes but machining to micrometre levels using this method is 

tedious due to the flushing difficulty. The block electrode method on the other hand is a 

preferable approach for producing microelectrodes due to its low cost and simple 

preparation compared to other methods [25). However, machining electrodes via the EDM 

process is time consuming and could account for more than 50 percent of the total 

machining costs [26-27]. 

Electrode wear in EDM is unavoidable. However, with proper machining setup, the 

electrode erosion rate can be kept down to a minimal level. The term 'electrode wear' is 

referred to some amount of material removed from the tool electrode whilst machining. 

Electrode wear is in fact, a serious drawback of the EDM process. Research has been 

conducted to minimize electrode wear. However, such methods increase machining time 

[2] , [28). Nevertheless, most electrodes can be reused several times before losing their 

shape and dimensional accuracy. 

Mineral oil hydrocarbon is the most common dielectric fluid used in EDM systems. 

However, the choice of dielectric fluid used depends on the EDM tasks. The dielectric fluid 

must have sufficient fluidity to enable it to flow freely between the narrow gap between the 

electrode and the workpiece [22] , [29]. For example, high viscosity mineral oil is suitable 

for roughing, whilst low viscosity mineral oil is used in finishing tasks. In extremely small 

parts in wire EDM applications, water is used as the dielectric fluid. In this process, water is 

continuously de-ionized while being circulated in order to reduce its electrical conductivity 

to a suitable level [30]. It is important for the dielectric fluid to provide the electrical 

insulation, cool the electrode-workpiece, inflammable and flush away the erosion debris 

simultaneously. Furthermore, the dielectric fluid must ionize and de-ionize as quickly as 

possible, so that sparks can occurs with short· pulse on and off times. The ability to 

continuously remove or flush away the eroded particles from the immediate sparking zone 
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is one of the main criteria in choosing the dielectric fluid . Pocr flushing results in electrode

workpiece bridges and short-circuits, which leads to thermal damage on the workpiece 

surface [31]. Open flushing is the most common method used in EDM processes and the 

technique is applied in this research. Figure 1.9 illustrates the open flushing technique in the 

EDM process. 

Figure 1.9 Open flushing 

There are several other flushing methods used in EDM systems. For example in pressure 

flushing, the dielectric is pushed through a flushing hole in the electrode from the top 

direction or the workpiece from below. Suction flushing is suitable for a fine fmish task 

where the eroded particles are sucked from the electrode-workpiece gap. For complicated 

shaped electrodes and complex tasks, a combined suction and pressure flushing is used. 

1.2.3 Workpiece finish 

One of the major manufacturing industries using the EDM process is in the making of dies 

and m9lds. The main concern in the making of.dies and moulds is the quality regarding the 

dimensional, geometrical and surface accuracy. A technical brochure [32] highlighted that 

better quality of surface finish is achieved by reducing the discharge energy. Low 
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machining current however. produces relatively low material remova l, thus increasing 

machining time. In some workshop practice, a rougher surface is initially machined with 

higher discharge energy followed by a finer one with reduced discharge energy. This 

procedure proves to be time saving of overall erosion process in re lation to the degree of 

machinjng accuracy. Some of the samples are shown in Figure 1.10 [23]. 

(a) Emblems (b) Tooling component 

(c) Injector module (d) Adjustable wrench 

Figure I. I 0 Sample of dies and moulds 
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A study [33] in material cracking behaviour reveals that machining parameters are directly 

related to surface damage. Experimental observation indicates that an increase in pulse on

time ton enlarges the sparking zone, thus increases the number of cracks on the surface. A 

technical manual [29] elaborates that a short pulse off-time toff gives positive impact on 

surface finish and increases erosion rate. ln addition, the report explains that the surface 

finish is also influenced by the working gap. Increased discharge energy widens the 

working gap, and surface roughness becomes more pronounced. 

The EDM process is also used in micro machining technology. The micro Die-sinking 

EDM process has become an important requirement [24], [28], [34]. In addition, this type 

of micro EDM is well known for its ability to machine boles down to diameters of 5j..UD 

[17], [20]. In machining micro holes, material removal rate is low due to the inefficient 

removal of debris. However, the flushing technique using ultrasonic vibration helps to 

improve the situation [35-37] . 

1.3 CONCLUSION 

EDM is a non-traditional precision machining process. The technique is widely used in 

manufacturing industries ranging from large automotive dies down to drilling micro-holes 

in injector units. The EDM process removes material due to spark energy, thus allowing 

machining of high-strength and wear-resistant materials. Several different types of EDM 

systems are available, differentiated mainly by their particular applications. However, the 

method of removing material. is fundamentally the same in all EDM based systems. The 

two most common EDM systems are Die-sinking and Wire EDM. Die-sinking EDM uses a 

tool electrode while Wire EOM uses a wire in machining a workpiece. 

13 



Introduction 

The Die Sinking EDM uses a high precision positioning control system to position the 

electrode away from the workpiece. The servomotor controller maintains the gap length in 

the range of I Ojlm to 50jlrn by processing the feedback signals from the servomotor and the 

gap voltage. An electrical potential from the gap voltage and current pulse generator unit is 

applied between the electrode and workpiece, which causes the insulating properties of the 

dielectric fluid in the gap to breakdown resulting in a spark current flow between the 

electrode and the workpiece. Material removal in the EDM process is dominated by the 

machining parameters such as on-time, off-time and gap current. High workpiece removal 

rate and low electrode wear can be obtained by proper machining set-up. However, it is 

difficult to satisfy these two conditions since other factors, such as electrode-material 

properties, dielectric fluid properties and the flushing technique influence, the EDM 

process. 

The EDM process dominates the dies and moulds manufacturing industries, where the main 

concern is in regards to the dimensional, geometrical and surface accuracy. Lower 

discharge energy improves surface finish but increases machining time and cost. It is 

known that EDM is a slow material removal process compared to traditional machining 

such as turning, grinding and milling. However EDM can machine complex shapes and the 

hardness of the workpiece has no effect on the process. Free from contact force and chatter 

vibration, makes the EDM process suitable for micro parts and micro device fabrication. 

Micro Die-sinking EDM is able to machine holes down to a diameter of 5J.lm but is unable 

to flush the debris efficiently. As a result, it slows down the material removal rate. 

In brief, Chapter 1 serves to explain the factors surrounding the issues of EDM systems and 

their applications. In the following chapter, a modelling and simulation study of a Die 

Sinking EDM system is presented. 
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CHAPTER2 

MODELLING AND SIMULATION STUDIES OF 

AN EDM SYSTEM 

Modelling is a well-established engineering process and plays an important role in 

designing an engineering system. It is important that the model of the system is accurately 

developed as it provides the basis whereby the fundamental behaviour of the system can be 

determined. This chapter describes the development of the EDM system model. A 

dimensional analysis technique is applied in the development of the EDM process model 

and the servo system is modelled according to the differential equations of Newton's and 

Kirchhoff's laws. A Matlab/Simulink simulation is used to analyze the EDM system model 

behaviour and system compensation is performed in order to improve system performance. 

The simulation studies are also used to ascertain the erosion rate of material removal in 

mm 3 / min . 

2.1 EDM PROCESS MODEL 

The EDM process is a teclmique for removing material using a complex combination of 

electrical, thermal and mechanical effects. A comprehensive description of the material 

removal process has been explained in section ·1.2.1 of Chapter 1. Some mathematical ·. 
models of the process have been developed previously based on the boundary condition of 

the plasma formed between the cathode (workpiece) and the anode (electrode). These 
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models are a cathode erosion model [14] and an anode erosion model [38] and are based on 

the thermophysical properties of the plasma applied over the temperature range from solid 

to liquid melt. However, these models are presented in a complex relationship between the 

material and the plasma and are not compatible for use in the Matlab/Simulink simulation 

study intended by the author. In this work, the EDM process model is developed based on 

three sub models, which are a material removal rate model, a breakdown model and an 

average gap voltage model. The material removal rate model is developed from a 

Dimensional Analysis technique as discussed in the following sub section. 

2.1.1 Material removal rate model using Dimensional Analysis 

Application of Dimensional Analysis to determine material removal rate V can be 

presented by an equation of the form, 

. 
V = f(x 1, x 2 , x 3 ............ x") (2.1 ) 

. 
A number of parameters have been identified that effect removal rate V [14], (29], [32], 

[38-40]. These parameters are the discharge pulse on-time ton, the sparking frequency Fs 

(1/(t
00 

+ t
0
rr + t 0 )), the gap current I gap, the gap voltage V arc, and the material properties 

factor a.. Parameters ton, F5, Igap and Varc are shown in Figure 1.7. The a. parameter is a 

factor representing the material properties of the electrode and the workpiece. Thus 

equation (2.1) can be formulated: 

. 
V = f(t00 , V arc•Fs, l gap>a.) (2.2) 
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All of the parameters in equation (2.2) can be expressed in tenns of four fundamental 

quantities of length L, mass M, timeT and current I where the dimensions of the parameters 

are shown in Appendix I . This leads to the following dimensional dependency matrix 

shown in equation (2.3). 

V t on van: Fs I saP a 

L 3 0 2 0 0 

M 0 0 0 0 -1 (2.3) 

T -I -3 -I 0 2 

I 0 0 -1 0 0 

Observation of the dimensional matrix shows that the number of variables Nv is six, the 

determinant is non-zero and the rank RoM is four. Thus, the number of dimensionless 

variables Ndv needed to characterise the system is two as shown in equation (2.4). 

Ndv = Nv - RoM = 6 - 4 = 2 (2.4) 

Following Langhaar [41], enables the dimensional matrix to be rewritten in the form: 

kt k2 k3 ~ ks ~ 

• t on V arc Fs I gap 
a 

V 

L 3 0 2 0 0 1 

M 0 0 0 0 -1 (2.5) 

T -1 -3 -1 0 2 

I 0 0 -1 0 0 
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where k1, k2, k3, k.t, ks and k6 are the indices of the variables in equation (2 .2). The 

following set of homogenous linear algebraic equations can then be derived from 

consideration of the four rows of this matrix . 

(2.6) 

(2.7) 

(2.8) 

-k3 + ks = 0 (2.9) 

which may be solved for k3, ~. k5 and k6 in terms of k 1 and k2• Two dimensionless 

variables written as 1t1 and 1t2 are now introduced [ 42], with k1 and k 2 assigned values of 

dimensionless variables 1t1 and 1t2 as shown in the square identity matrix of equation (2. 1 0). 

kt k2 k3 ~ ks ~ 
• 
V ton V arc Fs I gap a. 

: 1 
.. .. 

o·i (2.1 0) 
1tl -1 0 -1 -1 I 

1t2 : 0 1 i L .. _ .. _ , 0 1 0 0 

t 
Square identity matrix 

The va lues for k2, k3, ~. k5 and k6 shown in the matrix of equation (2. I 0) were obtained as 

follows. 

·. 
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Equation (2.7) can be rearranged to be k 3 = k6. Substituting for k6 in terms of k3 into 

equation (2.6) results in k3 = -1 . Thus, k6 = -1 and from equation (2.8), k5 = -1 . By replacing 

all known kn values in equation (2.8), ~ is found to be zero. 

Similarly for row 1t2: k1 = 0 and k2 = 1 

Substituting these values into equations (2.6) to (2.9), gives k3 = 0, ~ = 1, k5 = 0 and~= 0. 

The set of dimensionless parameters resulting from the matrix of equation (2.1 0) is as 

follows: 

. 
V 

7tl =--
V arcl gapa. 

(2.11) 

(2.12) 

According to Buckingham's theorem, the dimensionless parameters are related as follows: 

(2.13) 

where f is a function of the dimensionless parameter 1t 2 . As far as dimensions are 

concerned, the monomial power form is always applicable [42]. Thus, equation (2.13) can 

be expressed as: 

(2.14) 

where C is a dimensionless constant and n is an unknown power. Combining equations 

(2.11) and (2.12) into equation (2.14), gives the following equation: 
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(2.15) 

Mathematically, the constant index n can be solved using an Indicia! Method discussed in 

[43] . However, experimental evidence [42], [44] enables equation (2.15) to be simplified in 

that the constant index n can be made equal to 1 since the material removal rate is 

proportional to both the pulse duration fon and the sparking frequency F 5• Therefore, the 

material removal rate is given by equation (2.16): 

V = Ca V arc I gap t on F s (2.16) 

The dimensionless constant C is determined from analysis of experimental data [14] as 

explained below. 

The first step in evaluating C is to rearrange equation (2.1 6) as follows: 

. 
V 

C = - - - --
a V arc I gap t on Fs 

(2.1 7) 

Then, C is calculated by inserting the experimental data into equation (2.17). From [14], an 

a =2 x 10-12 m3/J and Varc=25V were used to calculate the C value at Igap of 8.5A, 12.5A, 

18A, 25A, 36A and 50 A. Thus, the average value of C was found as 1. 74. 

2.1.2 Empirical breakdown model 

When the gap width between the electrode and the workpiece is sufficiently small, 

discharge takes place. Experimental observations [45] on this breakdown phenomenon 

show that the gap position 8 is nonlinearly related to the ignition delay time to and to a 
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lesser extent on dielectric fluid flushing velocity. Figure 2.1 shows reproducted data from 

reference [45], of the average ignition delay in (Jls) and the gap width in (Jlm) for a typical 

flushing velocity of I m/s. 

30 
~ _a, 

Cl ... 
~ 20 
"il ., 
0: 
.9 10 .;:: 
§, -

0 10 20 30 

Gap width o(J.tm) 

Figure 2.1 Experimental curve of breakdown model 

Using this data, a curve fitting technique [ 46] was used to generate the following equation 

relating the ignition delay to the gap width: 

(2.18) 

where, 

v = 1.04xl025 and n = 6.57 

2.1.3 Average gap voltage model 

Regulation of the gap width is achieved in the prototype (Chapter 4) by using the average 

gap voltage as an indirect measure indicator of the gap width. An average gap voltage is 

calculated according to the following equation; 
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V = (Vmax xt 0 )+(V,, xtoJ 
gap_avg t +t +t (2.19) 

on off D 

This is then filtered with a filter time constant t. The three sub-sectioned EDM process 

models have been combined to form the complete Simulink EDM process model as shown 

in Figure 2.2. 

v(m3 /s) r-~-:r....._...L.._--I...., 
f 1+-----1 Cx ax v.ro X I gap X F, X ton 

~(m) Material removal rate model 

z(m) 
li(m) t 0 (s) 

r---~~--~ vxo"r---~----+ 

Breakdown model 

1 
vgap_avg (v)+-----l 

s't' + 1 

vm.. varo ton toff 
Average gap voltage model 

Figure 2.2 Model ofEDM process 

The gap width li is the error between the electrode position z and the workpiece surface 

position ~· The time delay to is a function of the gap width as shown by the breakdown 

model and is one of the parameters that affects the material removal rate. By taking the 

integral of the material removal rate, volumetric material removal is obtained. The 

volumetric material removal is then divided by the electrode area AE in order to obtain the 

workpiece surface position. 
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2.2 SERVO SYSTEM MODEL 

The servo system consists of two major subsystems; an armature voltage controlled 

permanent magnet DC motor with its controller and a lead-screw load containing the tool 

electrode. The leadscrew load consists of gears, lead screw shaft and ram. The gears are 

loc.ated between the motor shaft and the lead-screw shaft with the ram holding the 

electrode. Figure 1.5 in Chapter 1 iiiustrates the mechanical structures of the EDM servo 

system. The servo system model transfer function is calculated based on the total inertia of 

the system. 

2.2.1 DC motor model 

Verification of the DC motor model is carried out through a comparison analysis between 

simulation and experimental test. The Simulink model is used in simulation analysis and 

the results are compared with the information provided from the manufacturer data sheet 

for this particular DC motor. A practical test on the DC motor is conducted for further 

validation of the motor. In general, the equivalent circuit as shown in Figure 2.3 represents 

the DC motor. 

+ 

Figure 2.3 DC motor equivalent circuit 

A combination of Newton's Second Law of Motion and Kirchhoft's Voltage Law gives the 

following differential equations [47-49]. 
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e, (t) = L, di, (t) + R,i, (t) + eb (t) 
dt 

(V) (2.20) 

(Nm) (2.21) 

(V) (2.22) 

(Nm) (2.23) 

A Simulink model using a Transfer Function approach is used to represent the DC motor in 

block diagram form and the parameters are defined in a Matlab m-file (see Appendix 2). 

The Laplace Transform of equations (2.20) to (2.23) gives the Simulink model depicted in 

Figure 2.4. The DC motor position em (s) is obtained by taking the integral of the motor 

speed rom(s). 

1 
L,.s+R, 

L---------------CK,~----------------~ 

Figure 2.4 DC motor Simulink model 

2.2.1.1 DC motor linear model 

An initial linear model of the DC motor as shown in Figure 2.5 is used in simulation 

analysis. 
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The parameters for the model are listed in Table 2.1. All of the parameters, except Kr are 

manufacturer's data sheet values. 

Table 2.1 DC motor parameters 

From data sheet Use in simulation 

Motor parameter Symbol Value Units Value Units 

Armature inductance L, 3 mH 3 X 10'3 H 

Armature resistance R. 0.9 n 0.9 n 

Torque constant K, 1.38 kg.cm/A 0.1356 Nm/A 

Rotor inertia Jm 2.3 X 10'3 kg.cm-s2 0.2255 x I 0'3 kg.m2 

Viscous friction coefficient Kr - - 0.268 X 10'3 Nm.s/rad 

Static friction T, 0.44 kg. cm - Nm 

Back e.m.f contant K. 14.2 Vlkrpm 0.1356 V.s/rad 

In some cases, the units obtained for a parameter from the manufacture data sheet were not 

expressed in the standard metric unit of SI. Thus, those units as shown in Table 2.1 have 

been converted to the appropriate SI unit for consistency purpose in simulation analysis. Kr 

was obtained from tests carried out on the motor as explained in the foiiowing subsection. 

2.2.1.2 Friction coefficient, Kr 

In a DC motor, any resistance to movement results in the force acting in opposition to the 

rotational motion. This term is known as frictional torque. A typical frictional torque-speed 

characteristic is shown in Figure 2.6. 
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i 

~ 1 Viscous friction i 7friction 
....... _, ______ , ___ , __ _..! 

~~ ... ~ l 

- ! 
Coulomb friction 

I~ 
; Linearised friction 

Angular velocity, ro 

Figure 2.6 Components of friction 

Three friction component of the motor torque are Static, Coulomb and Viscous. These are 

affected by bearings, brush material, air gap flux density, lubricant and the magnetic circuit 

configuration [50-52]. Static friction or so-called stiction torque is the torque required for 

the drive to commence rotation. As the drive starts to rotate (break-away), the initial static 

friction falls quickly to a value known as the Coulomb friction. The viscous friction then 

takes over and varies proportionally to the angular velocity of the drive. In many cases, 

viscous friction is non-linear. However for simplicity of simulation, the frictional torque for 

the motor is defined by the following linear relationship [53]: 

Frictional torque, T r = Kr.ro (2.24) 

where Kr is the friction coefficient in (Nm.s/rad ) and ro is the angular velocity in rad/s. 

Neglecting static friction does not give rise to significant simulation errors, providing the 

motor is not required for the motor to accelerated to high velocities and decelerated quickly . . . 
in a repetitive process. It should be noted that coefficients for Coulomb and Viscous friction 

are not provided in the manufacturer data sheet. According to Figure 2.4, friction 
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coefficient Kr is multiplied with the angular velocity in order to provide the total frictional 

torque to the motor. The friction coefficient is found through the experimental tests on the 

motor. In an open loop test, 24V DC was applied to the annature. This is, the maximum 

voltage that will be applied to the motor annature by the servo amplifier in the practical 

servo control system as explained in Chapter 4. The motor was allowed to accelerate to a 

steady state velocity without load. Fixed to the motor is a tachometer supplied by the 

manufacturer, with a coefficient of 7V lkrpm. The tachometer output was measured at 

11.46V and the annature current was measured at 0.34A. An SI conversion gives the 

tachometer coefficient of 0.067V/rad.s·1• Knowing that at steady state, the motor torque is 

equal to load torque (frictional torque losses in the un-loaded case), Kr is calculated as 

follows; 

Tr =Tm =K,.I. =0.1356x0.34=0.0461Nm 

Rearranging equation (2.24); 

Tr 
Kr=

m 

0.1356x0.34 
11.46/ 

70.061 

0.268x I0-3Nm.s/rad 

2.2.1.3 Linear model verification 

(2.25) 

Simulation analysis is carried out using the parameters presented in Table 2.1 in order to 

verify the model parameters. This first simulation was undertaken with a step input of 48V 

(rated annature voltage) in order to determine from simulation the maximum angular 

velocity, peak armature current, peak torque, peak acceleration,' and the. mechanical and 

electrical time constants. A comparison with the manufacturer's data sheet values will 
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indicate the validity or otherwise of the selected model parameters. Various simulation 

results are shown in Figures 2. 7-2.10 and the results are summarised in Table 2.2. 
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Figure 2. 7 Time response of armature current 
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Figure 2.8 Time response of torque 
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Table 2.2 Comparison between manufacturer data sheet and simulation data 

Motor parameters Symbol Unit Value stated Measured value 

on data sheet from simulation 

Angular velocity ro rads'1 314.16 315.4 

Peak armature current I, peak A 40 38.1 

Peak torque Tpeak Nm 4.7 5.2 

Peak acceleration m rads'2 21 X 103 21.8 X 103 

Mech. time constant fmech ms 12 11.5 

Elect. time constant felect ms 3 2.1 

For a given step input of 48V amplitude, the results show only slight differences when 

compared. Thus, for the linear model, the parameters used in the simulation are adequate to 

represent the fundamental motor model in the simulation analysis aimed at predicting peak 

values of the motor variables as shown in Table 2.2. However, further analysis will be 

carried out for low level armature voltage amplitudes to check the performance consistency 

of the model at low velocities. 

Practical tests were therefore undertaken on the motor with armature voltages in the range 

of 1.17V to 24V. The voltage as measured from the tachometer output represents the motor 

velocity. The angular velocity in rad/s can be obtained by dividing the tachometer voltage 

and by the tachometer coefficient of 0.067. The results are then compared with the 

simulation results for the same input magnitude. The results are shown in tabular form in 

Table 2.3 and in graphical form in Figure 2.11. 
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Table 2.3 Comparison results for armature voltages in the range of 1.17V to 24V 

Experimental DC motor open loop test results 

Applied Armature voltages, V, (V) 1.17 2 5 10 15 20 24 

Measured current, I, (A) 0.22 0.23 0.25 0.29 0.31 0.33 0.34 

Measured tacho voltage, V'" (V) 0.18 0.6 1.98 4.48 6.86 9.35 11.32 

Simulink DC motor open loop test results 

Applied Armature voltages, V, (V) 1.17 2 5 10 15 20 24 

Measured current, I, (A) 0.02 0,03 0.06 0.13 0.19 0.26 0.33 

Measured tacho voltage, V'" (V) 0.57 0.97 2.43 4.87 7.31 9.74 11.68 
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Figure 2.11 Open loop test results of DC motor 
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The difference between experimental and simulation results for the armature current is 

clearly seen in Figure 2.11, especially at low voltages. However, as the applied armature 

voltage increases, the simulation results for armature current tend to match with the 

practical results. This indicates that at low velocities, the resulting linear frictional losses in 

the linear model do not account correctly for the dominant Coulomb friction. Thus, to give 

a true representation of the actual DC motor behaviour at low applied armature voltages, a 

nonlinear model needs to be developed. 

2.2.1.4 DC motor nonlinear model 

A nonlinear model of the DC motor is based on the nonlinear behaviour of frictional losses. 

The two most common frictions that are always considered in the nonlinear model are 

viscous and Coulomb friction. These friction phenomena have been mentioned briefly in 

section 2.2.1.2 with the aid of Figure 2.6. The Viscous friction is proportional to the angular 

velocity and in the model it is always considered as a linear function with respect to the 

change of the angular velocity [54]. Coulomb friction on the other hand does not depend on 

the angular velocity but exists subject to the sign(+/-) of the angular velocity. A general 

description to describe those frictions in the nonlinear DC motor model is shown in 

equation (2.26). 

(2.26) 

Thus equation (2.21) becomes, for the nonlinear model; 

(2.27) 

where 
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(2.28) 

The linear model of the DC motor in Simulink is therefore modified accordingly in order to 

include the nonlinear friction as shown in Figure 2.12. 

""'. 

Figure 2.12 Simulink nonlinear model of a DC motor 
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The Coulomb and Viscous frictions were determined from analysis of open loop motor 

tests. The test results and the calculated friction components are shown in Table 2.4. The 

armature voltage of 1.17V was applied to commence rotation and viscous friction losses as 

rotation commences were assumed to be zero. The resulting calculated friction torque was 

therefore assumed to be purely Coulomb friction torque. The results of current and angular 

velocity were obtained for a range of armature voltages. 

Table 2.4 Determination of coulomb and viscous friction 

Measured during open loop velocity tests 

Applied Armature 
1.17 2 5 10 15 20 24 

Voltages, V, (V) 

Measured current, I, (A) 0.22 0.23 0.25 0.29 0.31 0.33 0.34 

Measured tacho 
0.18 0.6 1.98 4.48 6.86 9.35 11.32 

voltage, V"' (V) 

Equivalent angular 
2.69 8.97 29.62 67.02 102.63 139.87 169.34 

Velocity (rad/s) 

Torque (Nm) 0.029 0.031 0.033 0.039 O.o42 0.045 0.046 

Coulomb friction 

torque loss (Nm) 0.03 

Viscous friction - 0.001 0.003 0.009 0.012 0.015 0.016 
torque loss (Nm) 

Approximating Kr to 

linear curve (Nm.s/rad) 9.66 x to·' 

The Coulomb friction torque as calculated above is an estimation, and will have to be 

assesed in simulation. To improve the most accuracy of the simulation results, the frictional 

components were adjusted slightly. The Coulomb friction is chosen to be 0.035Nm and the 

viscous friction coefficient is 9.66 x l0"5Nm.s/rad. A complication arises when changing 

the rotational direction in a single simulation test. The complication is one of instability of 
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the motor speed around the zero speed. To overcome the problem, a look-up table is used to 

represent the frictional losses. Due to the fact that static and Coulomb frictional losses are 

0.04Nm and 0.035Nm respectively, when rotation begins, the look-up table linearises the 

value of the friction losses between zero and Coulomb friction loss as shown in Figure 2.6. 

With the new frictional loss representation, error in the armature current was reduced but 

still proved to be unacceptable. A potential source of the inaccuracy is the value of the 

armature resistance chosen for the simulations, which neglects brush voltage drops [55]. To 

give an indication of the effective armature resistance, a voltage of 1.5V DC was applied to 

the motor terminals with the rotor locked in a stationary position, the current flowing 

through the armature was measured at 0.526A. Performing a fundamental calculation using 

Ohm's Law; 

Resistance, R = V = ~ = 2.850 
I 0.526 

The armature resistance quoted on the data sheet for the DC motor is 0.90. The measured 

differences are due to the brush voltage drop and reduced quality of the electrical contact 

with the comutator for small currents. The brush voltage drop is a non-linear parameter and 

difficult to model. The simulated brush voltage drop effect was modelled by using a fixed 

value of resistance of2.850 (1.950, added to the armature resistance). 

The revised DC motor parameters used to produce DC motor simulation results are given in 

Table 2.5. 
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Table 2.5 Revised DC motor parameters used in the Simulink model 

Used in simulation 

Motor parameter Symbol Value Units 

Armature inductance La 3 X 10'3 H 

Armature resistance R. 2.85 n 

Inertia of rotor and gear motor Jm o.22ss x 10·3 Kg.m2 

Back e.m.f contant K, 0.1356 V.s/rad 

Torque constant K, 0.1356 Nm/A 

Viscous friction coefficient Kr 9.66 X J0'5 Nm.s/rad 

Coulomb friction torque T. 0.035 Nm 

The revised parameters were used in the nonlinear Simulink model shown in Figure 2.12. 

The simulation results for tacho voltage and motor current are shown in Table 2.6. 

Table 2.6 Simulation results for armature voltages in the range of 1.17V to 24V 

Simulink nonlinear DC motor open loop test results 

Applied Armature voltages, v. (V) 1.17 2 5 10 IS 20 24 

Measured current, I. (A) 0.26 0.265 0.28 0.31 0.33 0.35 0.37 

Measured tacho voltage, V,., (V) 0.21 0.61 2.07 4.49 6.92 9.35 11.3 
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Figure 2.13 shows the graphical comparison between the simulation and the experimental 

results for the DC motor without load. It can be seen that the Simulink model results now 

compare favourably with the practical results. 
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Figure 2.13 Open loop test results of nonlinear DC motor 

2.2.2 DC motor model with EDM mechanical load 

Open loop tests as described in section 2.2.2.2 of the DC motor with mechanical load were 

also performed to determine the load torque and the viscous friction losses for the model 

with load. The mechanical system model equations are used to determine the inertias of the 

EDM mechanical system. The calculated inertias are later included in the Simulink model 

for simulation analysis of the DC motor with mechanical load. 
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2.2.2.1 Mechanical system inertias and load torque 

The mechanical system inertias are calculated based on the mechanical EDM system 

illustrated in Figure 2.1 4. 

Ram 
Load 

DC Motor 
Gear 

Electrode -
Figure 2.14 Components of mechanical EDM system 

Calculations of the mechanical system's inertias were carried out according to Newton's 

Second Law of Motion [47], [56]. Component efficiencies, conversion factors and material 

densities were taken from a data sheet supplied in reference [57]. Due to the complexity and 

number of calculations performed, the complete mechanical system's inertias calculation is 

documented in Appendix 3_. . 
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2.2.2.2 Load torque T, and frictional loss coefficient Kn of DC motor with load 

Open loop tests are carried out by applying a range of armature voltages to the motor and 

the results in terms of tacho voltage and current are measured. From the results shown in 

Table 2. 7, load torque and viscous friction losses were determined. From these, a viscous 

friction coefficient was estimated. 

Table 2.7 Determination ofload torque and viscous friction coefficient 

Measured during open loop test 

Applied Armature 
2.25 3 5 10 15 20 24 

voltages, V, (V) 

Measured current, I, (A) 0.89 0.91 0.98 1.1 1.22 1.31 1.36 

Measured tacho 
0.23 0.53 1.48 3.87 6.24 8.67 10.57 

voltage, V"' (V) 

Equivalent angular 

velocity (rad/s) 3.44 7.92 22.14 57.89 93.35 129.7 158.1 

Motor torque Tm (Nm) 0.121 0.123 0.133 0.149 0.165 0.177 0.184 

Load torque T1 at 

'break away' (Nm) 0.121 

Viscous friction - 0.0027 0.0122 0.0285 0.0447 0.0569 0.0637 
torque loss (Nm) 

Kn (Nm.s!rad) 40.62 X \0"5 

It should be noted that the calculations from section 2.2.2.1 result in a load torque reflected 

back to the motor, which is only 2.436 x 10·~m greater than motor torque produced at the 

'break away' condition, according to Table 2.7, The Simulink model to represent the DC 

motor with mechanical load is shown in Figure 2.15. 
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L--------cK,~------~ 

Figure 2.15 Simulink nonlinear model of a DC motor with load 

The model has been extended to include the electrode position, which is required for later 

simulations. The gain block Ngm!Ngt represents the gear reduction. The final gain block 

represents the conversion of angular position of the leadscrew to linear position of the 

electrode z. The experimental and simulation results are depicted in Table 2.8. The 

graphical results can be seen in Figure 2.16. The results show close agreement. 
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Figure 2.16 Open loop test results of a nonlinear DC motor with load 
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Table 2.8 Experimental and simulation open loop test results 

Experimental results 

Applied Armature 
2.25 3 5 10 15 20 24 

voltages, V, (V) 

Measured 
0.89 0.91 0.98 1.1 1.22 1.31 1.36 

current, I, (A) 

Measured tacho 
0.23 0.53 1.48 3.87 6.24 8.67 10.57 

voltage, V tac (V) 

Simulation results 

Measured 
0.9 0.93 0.97 1.1 1.19 1.29 1.37 

current, I, (A) 

Measured tacho 
0.22 0.55 1.5 3.86 6.22 8.58 10.47 

voltage, V tac (V) 

2.3 MULTI-LOOP CONTROLLER DESIGN 

The proposed control scheme uses a multi-loop controller consisting of a current loop 

controller, a velocity loop controller and an average gap voltage loop controller as shown in 

block diagram form of Figure 2.17. 

Current feedback 

l I I, Process parameter 

.0. 
s 

V gap_re r+ 
Multi-loop v, EDM DC motor with ..:... EDM 

~ controller 
~ mechanical load Process 

• 
V 

i loom 
V gap_avg 

Velocity feedback 

Average gap voltage feedback 

Figure 2.17 Block diagram of multi-loop control system 
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The current and velocity loops are inner loops with the current loop being the innermost 

loop. The average gap voltage loop is the outer loop and is used to indirectly control the 

position z of the electrode. The system controllers are designed via a frequency-domain and 

a time-domain simulation analysis using the Matlab/Simulink. The frequency response 

analysis provides information on the system stability and transient and steady state 

responses [47][58-60]. The time domain simulation allows the response to be analysed in 

term of steady-state error, rise time and overshoot percentage. 

2.3.1 Current loop controller design 

The current loop, also known as the torque loop, is introduced to control the motor torque 

so that the motor reacts quickly to overcome the system load torque. A Proportional

Integral (PI) controller shown in equation (2.32) is placed in cascade with the servomotor as 

shown in Figure 2.18. 

PI =K + K;, 
' "' s 

Current feedback 

PI current 
controller 

(2.32) 

EDM DC motor with mechanical load 

I 

L,.s+ R, 

Figure 2.18 Current loop control 
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The current loop transfer function PL: can be converted to a pole-zero equation to enable 

design parameters to be easily defined, and the resulting diagram is shown in Figure 2.19 

[61]. 

Current feedback 

I 

'· 
PI current V • 
controller 

Figure 2.19 Pole-zero current loop diagram 

The pole-zero controller representation has proportional gain Kpc, one zero and one pole at 

the origin. As shown in Figure 2.19, cop1, and corl are defined as follows: 

(2.33) 

(2.34) 

By using pole-zero cancellation, cop1 is made equal to co<~. K;c is then equal to KP, x R, 
L, 

Therefore, the response of the system can be obtained for any chosen value of Kpc. 

Simulation tests using Figure 2.18 were performed and the value ofKpc of 12 was chosen as 

it gave fast transient response with minimal current overshoot. The resulting open loop and 

closed loop frequency response characteristics are shown in Figure 2.20 and Figure 2.21 

respectively. 
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Figure 2.20 Open loop frequency response characteristics of current loop 
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Figure 2.21 Closed-loop frequency response characteristics of compensated current loop 

In Figure 2.20, the frequency response of the compensated current loop shows a large 

improvement compared to the uncompensated current loop. The DC gain is at 67.5dB and 

the low frequency range is adequately bjgh to retain the steady-state accuracy. The gain 
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crossover frequency is increased to 4.01 x 1 03rad/s . This indicates that the current loop has 

a fast response to ensure the motor torque rises quickly to overcome the load torque of the 

servo system. The phase margin is measured at 90°, which is sufficient to maintain the 

required relative stability of the servo system. In Figure 2.2 1, the closed-loop bandwidth at 

- 3dB is found to be 3.94 x 1 03rad/s . The result shows that the closed-loop bandwidth is 

large enough to ensure the fast time response required. 

2.3.2 Velocity loop controiJer design 

The velocity or speed loop controller is designed as the second stage of the multi-loop 

control of the EDM system. Figure 2.22 shows the block diagram of the EDM servo motor 

control consisting of the inner current loop and the velocity loop. 

Piv velocity 
controller 

Current feedback 

Plc current 
controller 

Velocity feedback 

EDM DC motor 
with 

mechanical load 

Figure 2.22 Speed loop control 

Like the current loop, the velocity loop also uses a PI controller of the form: 

PI K K iv 
v = pv +

S 
(235) 

Initially an open-loop simulation test was performed with Pi~ set equal to 1 in order to 

obtain basic information about the frequency response performance of the velocity loop. 

From the simulation, a gain crossover frequency of 526rad/s was obtained and this is 
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insufficient to ensure a fast transient response. To obtain a higher gain crossover frequency, 

the proportional gain of the velocity controller Kpv was set to 5 and this results in a gain 

crossover frequency of 2.31 x 1 03rad/s, giving a much faster transient response. The 

controller is further tuned by adding an integral gain Kiv of 111 . The PI controller increases 

the open loop DC gain and the low frequency range, thus better steady state accuracy is 

achieved. The phase margin of 59.6° is sufficient to retain the required relative stability. 

The resulting open-loop frequency response characteristic is shown in Figure 2.23. 
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Figure 2.23 Open loop frequency response characteristics of velocity loop 

In the close-loop frequency response as shown in Figure 2.24, a small resonant peak of 

0.333dB exists at the resonant frequency but the system stability is maintained. It should be 

noted that a large excessive resonant peak indicates poor system stability. Figure 2.24 also 

shows a bandwidth of 3.65 x 1 03rad/s indicating a fast transient response. The bandwidth of 
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the system can be extended further, by increasing the Kpv value. However, higher 

bandwidth could pick up undesirable high-frequency noise and affect control performance. 
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Figure 2.24 Closed-loop frequency response characteristic of compensated velocity loop 

2.3.3 Anti-wiodup scheme due to saturation limit 

In practical implementation, the armature voltage of the EDM servomotor is limited to 

± 24V and the armature current to ± 4A . Therefore, saturation limits are used within the 

Simulink model to limit the applied voltage and armature current to the above values as 

shown in the block diagram of Figure 2.25. 

Plv velocity 
controller 

Current feedback 

Plc current 
controller 

Velocity feedback 

•• 
EDM DC motor 

with 
mechanical load 

Figure 2.25 Simulink model with saturation limit 
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Figure 2.26 shows the velocity response to a 1 OOrad/s step input. The response shows a 

large overshoot for a long period of time that may lead to a deterioration of response and 

even instability. 

1~------~----~----~----~-----, 

~80 
s 
·~ 
0 ., 
:> 40 

0.2 0.4 0.6 0.8 1 
Time (s) 

Figure 2.26 Velocity step response of Simulink model incorporating saturation limit 

The cause of the problem lies on the applied voltage and armature current saturation limit 

and the integral part of the PI control loop. The error between the demand/reference and the 

feedback loop is multiplied with the PI gain and the error is integrated over a longer 

duration by the integral mode. The integrator output continues to increase (wind-up) 

resulting in an increased to the drive signal until the integrator output begins to reduce 

(wind-down). To correct the wind-up problem, an anti wind-up scheme within the PI 

controllers was applied [62,63]. 

The block diagram of the Simulink model incorporating the saturation limits and the anti 

wind-up scheme within the PI controller is shown in Figure 2.27. The velocity response to a 

1 OOrad/s step input as illustrated in Figure 2.28 shows a response without overshoot and 

zero steady state error. 
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Figure 2.28 Velocity response using anti wind-up scheme 

2.3.4 Average gap voltage loop controller design 

A general servo position control system is a point-to-point position control system where 

the actuator is coordinated to yield a desired motion for a specific end [64]. Generally the 

desired position is known and can be measured directly. Although position control in the 

EDM system is philosophically similar due to the fact that the position is controlled to 

maintain a certain gap width, the gap width cannot however be measured directly. In the 

EDM system, the average gap voltage is used as a feedback parameter as shown in Figure 

2.29 in order to indirectly control the gap width. 
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In positioning the electrode accurately, the average gap voltage controller is designed to 

meet certain response requirements such as no overshoot and zero steady state error. In 

order to design the controller, EDM process parameters from [14) are used in the simulation 

analysis. These parameters are defined in a Matlab m-file as follows Igap=25A, V max= 160V, 

Varc=25V, ~n=IlOf.!S, ~ff=4.2!J.S, Fs=8.605 kHz, a =2 x 10-12 m3/J and C=l.74. 

In the Simulink model shown in Figure 2.29, the average gap voltage reference V gap_ref is 

obtained by filtering a PWM waveform of amplitude Varc and PWM duty ratio 

(to+ton)/(to+~n+~rr). A portion of the average gap voltage p.V gap_avg is used as the feedback 

quantity. p is under manual control in order to control the amount of the average gap 

voltage feedback to the controller. p is set to a value between 0 and I . p effectively controls 

the value of t0 . A p value of one effectively gives to a zero value. A p value of zero results 

in open circuit gap operation (i.e. gap breakdown does not occur) where to occupies the 

whole of the on-time period, as can be inferred from Figure 1.7. The set value of p 

corresponds to a chosen ignition delay time to giving an appropriate gap width 8 from the 

relationship given in (2.18) . p is adjusted to give a time delay to of 2)..ls. In a time domain 

analysis, the proportional gain Kavg of the average gap voltage controller is tuned to 0.3 1. 

The response of the average gap voltage control loop is shown in Figure 2.30 where the 

feedback signal follows the demand with no overshoot and where the steady state error 

tends to zero. Thus the proportional controller with Kavg =0.31 for the average gap voltage 

control loop is adequate to achieve a satisfactory performance. Further simulation results in 

Figure 2.31 show the response of the steady state values of electrode position z, workpiece 

surface position ~. gap width 8 and time delay t0 . 
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The figure shows that the electrode position z is continuously moving while the depth of the 

workpiece surface position s is simultaneously increasing. The gap width o is maintained at 

21.13 J..lm which corresponds to the fixed control time delay to of 2J..lS. 

2.4 SIMULATION RESULTS OF MATERIAL REMOVAL RATE 

This section describes a series of Matlab/Simulink simulations of the complete EDM 

system shown in Figure 2.17 for different gap currents in order to obtain predicted of 

material removal rates. The gap currents are 4A, 6A, 8.5A, 12.5A, 18A, 25A, 36A and 50A. 

The material properties factor a is 2 x 10"12 m3/J, the constant C is 1.74 and the open gap 

voltage is 160V [14]. 

For each value of gap current, simulations were run at different 'on' and 'off times. The 

results are recorded as process 1, 2, etc. In simulation, the erosion rate is measured in m3 /s, 

thus a conversion factor of 60 x 109 is used to present the results in the more practical unit 

of mm3 /min. The simulation data and results are presented in tabular and graphical forms as 

shown in Table 2.9 and Figure 2.32 respectively. 
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Table 2.9 Simulation data and results of material removal rate 

. 
V (rnrrf /min ) 

Process t, (J.lS) torr (J.lS) F. (kHz) 
at 18,p=4A at lg.p=6A at lg.p=8.5A at lg,p=12.5A at lgap=l8A at lg,p=25A at lg.p=36A atlg.p=50A 

I 2 4 125 5.22 7.83 - - - - - -

2 3 4 11 1.11 6.96 10.44 14.79 21.75 - - - -

3 4 4 100 8.35 12.53 17.75 26.1 37.58 52.2 - -

4 6 4 83.33 10.44 15.66 22.19 32.63 46.98 62.25 93 .96 130.5 

5 12 4 55.55 13.92 20.88 29.58 43.5 62.64 87 125.28 174 

6 25 4 32.25 16.84 25.26 35.78 52.65 75.77 105.24 151.55 2 10.48 

7 50 6 17.24 18 27 38.25 56.25 81 112.5 162 225 

8 100 12 8.77 18.32 27.47 38.92 57.24 82.42 114.47 164.84 228.95 

9 200 25 4.41 18.40 27.59 39.09 57.49 82.78 114.98 165.57 229.96 

10 400 50 2.21 18.48 27.72 39.27 57.74 83 .15 115.49 166.3 230.97 
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Figure 2.32 Material removal rate simulation results 

Graphs of material removal rate and sparking frequency versus pulse on-time as depicted in 

Figures 2.32 show that erosion with a low current gives a low rate of material removal, 

whi le conversely a high current gives a high rate of material removal. Detail discussions of 

the material removal rate results are presented in Chapter 6 when a comparison is made 

between the simulation and the experimental results. 
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2.5 CONCLUSION 

The development of an EDM system model has been detailed within this chapter. The EDM 

system model consists of two major parts, namely the EDM process model and the serve 

system model. The EDM process model was developed from sub-models such as the 

material removal rate model, the empirical breakdown model and the average gap voltage 

model. The material removal rate model was developed using a dimensional analysis 

technique. The empirical breakdown model on the other hand was identified from the 

experimental observations by previous researchers . The average gap voltage model was 

constructed and used to indirectly measure the gap width in term of voltage level. The 

model of the servo system was developed in Simulink using the Transfer Function 

approach. The DC motor and the EDM mechanical system parameters were identified from 

theory and from experiments and the validity of the model was verified through comparison 

analysis between experimental and simulation results. A suitable controller was designed 

using frequency and time domain analysis and applied to control the EDM servo system in 

a multi-loop controller. An anti-wind up scheme is also incorporated within the controller in 

order to overcome the complicated response due to saturation. The complete EDM system 

model consisting of the EDM process model and the servo system model were then used to 

produce the simulation results of material removal rate. A comprehensive explanation on 

modelling and simulation has been presented in Chapter 2. The following chapter is 

dedicated to the development and implementation of control system software using a DSP 

microcontroller. 
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CHAPTER3 

DSP BASED CONTROL STRATEGY FOR AN 

EDMSYSTEM 

A digital control strategy for the EDM system was developed and implemented within an 

eZdsp TM LF2407 ( eZdsp) microcontroller development board. The microcontroller uses a 

TMS320LF2407 A fixed point Digital Signal Processor (DSP) for software implementation 

and various on-chip interface components [65,66]. Control software was designed using the 

structure programming methodology that combines a flowchart and program structure 

diagrams for clear description of the program code [58,67]. The code, written in C 

language, was compiled, debugged and then downloaded into the DSP on-chip Flash ROM 

using a dedicated C2000 Tools Code Composer for the eZdsp [68]. Explanations on the 

DSP peripherals using jargon words such as CMPRx, ACTRx, TxCNT etc. may require the 

reader to refer to reference [ 69]. 

3.1 CONTROL STRATEGY OF EDM SYSTEM 

Flowchart 3.1 shows the overall program structure. At start, the program initializes DSP 

registers, various programs' constants and variables. After activating a real-time timer 

interrupt service routine ISR, it moves to a ' continuous loop' to execute the main program. 

The structure diagram of the main program is shown in Figure 3 .1 . 
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Flowchart 3.1 Overall program structure 
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Figure 3. 1 Block structure diagram of main program 
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In the continuous loop of the main program, the user selects either manual or EDM control 

modes of operation. In the manual control mode, the program executes the servomotor 

control software with controllable speed. The software code detects the up and down limits 

of the electrode position as shown in Flowchart 3.2. 

Set 
servomotor 

speed 

Generate 
PWM, up 
direction 

Generate 
PWM, down ~------....., 

direction 

Flowchart 3.2 Up/Down limit of electrode position · 
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In the EDM control mode where the EDM process takes place, at first, the user sets the 

EDM parameters such as ton, torr, tup. l:oown and Igap· The parameters are then saved but can be 

updated to new values. These parameters are pre-defined in order to execute the next 

program code. The ISR executes the servomotor control program code whi le the main 

program is running in the EDM control mode. The program structure diagram of the ISR is 

shown in Figure 3.2. 

Interrupt Service 
Routine ISR 

I 
Up/Down time 

servomotor 

I 
I I 

ND conversion 
Servomotor 

control 

I 
Servomotor 

position 
control signal 

Figure 3.2 Block structure diagram ofthe ISR 

The input/output (I/0) data that is processed by the eZdsp are shown in Figure 3.3. V c is the 

control signal for the servomotor PWM controller, V L is the inductor control feedback 

signal, and V N,man is the servomotor manual speed control signal. The inductor current 

control signal is a PWM signal that controls a MOSFET switch Q~. whi lst the EDM timing 

control signal is a PWM signal that control a power MOSFET switch Q2 as discussed in 

Chapter 4 (see Figure 4.8). The servomotor control signals PWM1 and PWM2 are used to 
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control power MOSFET switches in an l-1-bridge configuration for the servomotor control 

(see Figure 4.6). The complete EDM program code with comments can be found in 

Appendix 4. 

Ye 

VL 

VN. "'"" 
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Lnductor current control (Q 1) 

EDM timing control (Q2) 
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PWM 1 } PWM
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Servo motor control 

Figure 3.3 Input and output signal processes by the eZdsp 

3.1.1 Software design for the user-interface control device and EDM parameters 

selection 

A user-interface control device is used to communicate between the user and the eZdsp in 

order to select/set the EDM parameters digitally. Eight-bit signal transfer is used to send the 

data to the eZdsp. The software part of the LCD does not require any programming except 

some LCD register initialization. The software implementation for the user-interface 

control device and EDM parameters se lection is designed according to the Finite State 

63 



DSP based control strategy for an EDM system 

Machine FSM (70]. In this way, the number of switches on the user-interface device is 

minimized . The control states of the FSM are shown in Figure 3.4. 

Figure 3.4 Control state for the user-interface device and EDM parameters selection 

For every next state, the user-interface device displays the information and instruction on 

the LCD screen as shown in Figure 3.5. 
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There are twelve programmed states (SO to S 12) and screen displays. At SO, the first line of 

the LCD screen shows the display information of "EDM CONTROLLER" with the 

instruction "Manual Menu". Pressing PushButton I PB l leads to the manual control of the 

servomotor in stateS 11 as explained in section 3.1. Pressing PushButton3 PB3, leads to the 

main menu selection, whether to run/activate the EDM process or control the servomotor 

manually or setting up the process parameters. S2 to S6 allows the user to select the process 

parameters. 

For example, state 2 displays the "On time: _ ___ JlS" information on the LCD screen. 

The LCD screen also displays the instruction of "pg. nxt. in c.'' on the second line of 

the screen. This represents which of the push button is active. Selecting the "pg." (by 

pressing the assign button PBl) brings the next page of display. In other word, the program 

code executes the next state program, displaying other information and instruction. The 

"nxt." instruction places the cursor (blink cursor) to the assign position. Then, pressing the 

"inc." instruction button, the number 0 to 9 appears on the cursor. The process parameters 

are then saved at S7. 

In state S 1, pressing PB 1 leads to state S8 where the user has to press two buttons together 

(PBx) to run/activate the EDM process. However the EDM process activation is subject to a 

faultless condition as explained in section 3.1.5. If any faults occur, the state goes to 812 or 

else to 89. At 89, the LCD screen displays "System running" indicating that the EDM 

process is being activated. Subroutine functions were used in the main program as required 

since some of the displays share the same characters and words. 

3.1.2 Software design for EDM servo system control 

The signals from motor current, velocity and gap width feedback are to be processed by the 

analogue EDM signal processing circuit (discuss in Chapter 4). The output of this circuit V c 
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is the control signal for the digital servomotor PWM controller. Only the analogue control 

signal V c is digitised in order to obtain the highest possible resolution with the 1 O-bit 

eZdsp's AID module of the eZdsp microcontroller. 

Program code was developed to digitize the output signal Ye of the analog controller. The 

digitised signal is then used to generate the PWM waveform. The PWM waveform is a 

20kHz Symmetric Fixed Frequency type that is generated by initializing and configuring 

specific DSP registers and modules respectively as shown in Flowchart 3.3 [71]. 

Con figure 
clock frequency 

Configure Event 
Manager A to update 

PWM control registers 

Configure 110 for 
PWM generation 

Flowchart 3.3 Configuring eZdsp modules to generate the PWM waveform 
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The control registers of Event Manager A that changed the PWM duty cycle are updated 

every time the ISR executes within the main program. The servomotor is under the 

feedback control loop mode within the down time !down period (EDM machining time), 

while in the up time tup period the electrode lifts off at full speed allowing gap debris to be 

flushed away. The strategy for the Up/Down time control is shown in Flowchart 3.4. 

Servomotor 
under feedback 

control loop 

y 

Electrode 
lift off at full 

speed 

Flowchart 3.4 Up/Down time control strategy 
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3.1.3 Software design for EDM timing control 

For EDM timing control, the parameters ton and torr control the pulse duration of switch Q2 

(see Figure 4.8). In practice, Q2 is turned ' on' to divert the inductor current from the gap 

during the pause off-time torr. During the pulse on-time ton, Q2 is turn 'off and inductor 

current flows into the gap during gap breakdown. The relation between EDM control and 

the Q2 control is shown in Figure 3.6. 

EDM controllJ u 
: ~ ~:~ ~ : 

ton : t ff: 
: 0 : 

Q2 control j:l 'off' r:l 'off 

Figure 3.6 Relation between EDM control pulse duration and Q2 control switch 

The method of generating the ton and totr times for EDM timing control is similar to that 

explained in section 3 .1.2 except that the frequency varies according to the summed values 

of ton and toff. A control strategy for EDM timing control is depicted in Flowchart 3.5. By 

knowing the ton and torr values as pre-defined by the user, the frequency of the waveform 

can be calculated internally. The waveform is generated internally by configuring various 

associate registers of Event Manager A. The frequency and the duty cycle of the waveform 

rely on the register values of CMPRx and TxPR. These register values vary according to the 

selection of ton and toff. Within Event Manager A, the 110 port must be correctly configured 

to choose the PWM output since most of the 110 and PWM modules sharing the same port. 
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Flowchart 3.5 EDM timing control strategy 

3.1.4 Software design for EDM bystcretic current control 

The inductor current IL is controlled according to the hysteretic current control technique. 

The control scheme switches Q1 ' on' and 'off' as necessary to maintain the chosen current 

level. An illustration ofhysteretic current control is shown in Figure 3.7. 
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50 A 

lA 

Figure 3.7 Hysteretic current control scheme 

The inductor current increases when Q1 is on and decreases when Q1 is off. The hysteretic 

controller switches Q1 ' on' whenever the inductor current reaches the lower limit according 

to equation (3 .1). 

IL low limil = IL -10% X Cl1) (3.1) 

The controller switches Q1 'off whenever the inductor current reaches the upper limit 

according to equation (3.2). 

(3.2) 

A strategy control to implement hysteretic current control is shown in Flowchart 3.6. The 

gap current I gap is selected digitally via the user-interface device. The gap current variation 
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is set to a 10% (peak-to-peak) tolerance band. The processor reads the gap current feedback AID 

module and evaluates the feedback according to the 10% tolerance band as defined by 

equations (3.1) and (3.2). Then logic ' 0' or ' 1' is send to the selected VO port (see Figure 

4.4) to activate the Q1 switch. 

Set I gap & Set I 0% 
tolerence band 

Flowchart 3.6 Hysteretic current control strategy 
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3.1.5 Software design for EDM fault-detection 

In an existing analogue EDM circuit controller, three fault-detection signals output were 

available. These signals recognise the emergency push button, the fan fault and the 

electrode/serve contact. These signals were used in a control strategy for EDM fault

detection as shown in Flowchart 3.7. 

control mode 

- EDM process stop, 
ie. Q2 turn 'on' 

- LCD displays 
"FAULTY" 

-Red LED bli nking 

Flowchart 3.7 EDM fault detection 

If any of the fault signals are triggered, the program code halts the EDM process i.e Q2 

switch is turn ' on' and the system exits the EDM control mode. The LCD's screen on the 

user-interface control device displays a "FAULTY" message with a red LED indication. 
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After clearing the fault, the user can re-start the process or go to the main menu for 

changing/up-dating parameters. 

3.2 CONCLUSION 

The EDM system is controlled digitally using the eZdsp microcontroller development 

board. The microcontroller uses a DSP TMS320LF2407 A fixed point processor as a 

platform to develop the digital control scheme for the EDM system. Flowcharts and 

program structure diagrams were employed as a guideline to design and implement the 

program code (software). A user-interface device was used to communicate by digitally set 

the EDM process parameters to the processor, and to control the servomotor manually. The 

LCD screen displays the selected information and instructions via an eight-bit data transfer 

from the eZdsp. In manual control mode, the program executes the PWM waveform for 

driving the servomotor with controllable speed, while in EDM control mode, the 

servomotor operates in a control loop. For real-time control, the program code for 

servomotor control is executed via the ISR. 

In the main program, the software executes several other programs as explained in sections 

3.1.1 to 3.1.5. Software design for the user-interface device and process parameters 
' 

selection uses a Finite State Machine approach in order to reduce the use of hardware 

switching and eZdsp 110 ports. The EDM timing control program employs variable PWM 

software control to generate the pulse times ton and toff. The hysteretic current controller 

executes program code to generate a switching 'on' and 'off' signal for Q2 depending on 

the feedback value of the gap current. The software for fault-detection signal detects the 

rising edge of the digital input, which then stops the continuous loop program immediately. 

The control strategy of the EDM system has been designed and implemented in software, 

while the hardware implementation for the control strategy is discussed in Chapter 4. 
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CHAPTER4 

HARDWARE DEVELOPMENT OF THE EDM 

SYSTEM 

A block diagram of the EDM system hardware is shown in Figure 4.1. The system consists 

of three block subsystems; a digital controller unit, a servo system and a gap voltage and 

current pulse power generator. 

Faults detection & limit switch signals 

~-------------------------------------. 
r-~~------------~:1 

0 

DC-DC buck converter 
! I 

Figure 4.1 Block diagram ofEDM system hardware 
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The digital control unit uses the eZdsp microcontroller to process the control signals for the 

servomotor control and the gap voltage and current pulse power generator. The analogue 

EDM circuit board provides opto-isolated fault and V gap signals as explained in section 

3.1.5. The following subsections describe the EDM block subsystems. 

4.1 DIGITAL CONTROLLER UNIT 

User-interface device 
r ----------------, 

I 

T c I 

R E I 

A lA: LCD A-I 

eZdsp A_ 'C N V IVT 
S E I 'I" 

I R I 
I 

@~ 
I • 

," 
'- ----------------~ 

Figure 4.2 Block diagram of digital controller unit 

The digital control unit consists of the eZdsp microcontroller development board and the 

user-interface device as shown in the block diagram of Figure 4.2. The software code is 

downloaded to the eZdsp's Flash ROM via a serial cable from the personal computer (PC). 

The eZdsp communicates to the user-interface device by sending the 

information/instruction to the LCD screen while the user-interface device uses push-button 

switches to communicate with the eZdsp. The user-interface device is equipped with two 

dial potentiometer for fine adjustment of V gap_f1b and manual speed control VN.man· 
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4.1.1 eZdsp 

The eZdsp is a microcontroller development board (5.25" x 3") that uses a 3.3V DC supply, 

with a multi-layered printed circuit board as shown in Figure 4.3. 

Figure 4.3 eZdsp microcontroller development board 

The eZdsp operates from a parallel printer port, therefore no internal adapter card is 

required to communicate between a host PC and the eZdsp. The board is equipped with 

peripheral units for motor control applications [72, 73]. A hardware layout function of the 

eZdsp is shown in Figure 4.4. It has six digital ports (A to F). Each port has eight 1/0 units. 

However, only five ports (A, B, C, E, F) are available for receiving and producing digital 

signal. The manufacturer reserves Port D internally. Nevertheless, all the 1/0 units share 

other functions. For example, 110 unit 6 of port A has two functions; PWMl or digital 

output 6 can only use one function at any time. Two ND units were used to convert the 

analogue inductor current feedback signal V L and the servo system PWM control signal V c· 
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One AID unit was used for the servomotor manual speed control input signal VN.m""· Fifteen 

digital 1/0 units were connected to the LCD unit; eight for data communication and seven 

for unit initialization. Ten digital input units were used for Up/Down limit switches, push 

button switches and fault detection signals. Seven digital output units were used; two units 

were allocated for servomotor system PWM signals, two units for switching control of the 

gap voltage and current pulse power generator and another three units for LED indication of 

running and failing system. 

Used by { x 0 Q1 (lnductor current control) 

internal x p p Q2 (EDM timing control) 
software x 

0 0 2 Fan fault 

r r 3 Ypp_rcr 
Reserved e t 4 LEDr4(Fault detection indicator) for encoder c 

A E 
s Gap contact 

PWM, 6 LED., } System running 
PWM, 7 LEDn indicator 

LeD.., 0 Leo ... 
LCO..,.. p p Leo"" 
LCO.., 0 eZdsp 0 2 LCDcmc~ 

Leo .... r 3 Leo ... 
Leo .... t 4 LCDtmd 

Leo ... 
B F 

s LCDtmd 
Leo.., 6 LeO""' 
Leo..,.. 7 Not use 

Push button 0 VN,m&ll 

Push button p p VL 
Push button 0 0 2 V, 

Push button r r 3 

}~·~ Push button t t 4 

Emergency switch e AIDS 
Up limit 6 

Down limit 7 

Figure 4.4 Hardware layout function ofthe.eZdsp 
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4.1.2 User-interface device 

The user-interface device is made up of an LCD unit for display purposes and push button 

switches for digital parameter selection. As shown in Figure 4.2, a transceiver was used 

between the eZdsp output signals and the LCD input signals. Figure 4.5 shows the circuit 

diagram of the user-interface device. 

A 

' 

eZdsp 

A 
• 

VccA VccB 

rt------l T/R - N/C 

r r--1-1-t\+ _-_--1-1~~ ~ ~~ ~~~~!~~~~~~~~~1:J:~~--l 
r+t-f---1 A2 • 81 ,.- E 

A3 : 82 080 LCD 
A4 e 83 081 
AS I 84 082 
A6 V 8S 083 

• A7 r 86 
l GND'-- 87 
t- GND GNDh 

r----1084 

r---1085 
,---!086 

VOO-

Vo _.. VR
1 

IOPFO 11-
IOPFI IJ-
IOPF21J--
IOPF3 tJ----' 
IOPF4 4-- VccA Vcc8 rr 

r--o..:0:::8c..7 _._:V..::ss:...J

"".=-
IOPFS T/R T N/C 

IOPF6 ii-Jlfr 1 AO r OE f-
,----JAI a 80 1----' 

IOP80 w I A2 • 811-----' 
IOP81 ii--J I A3 I 82 1-----' 
IOP82 0---J I I A4 ~ 83 
IOP83 II AS 1 84 f-----' 
IOPB4 · 11 A6 V 8S f-----' 
IOP85 I r- A7 • 86 
IOP86 I [ GNO ~ 87 f------' 
IOP87 • r GNO GND 1-J 

IOPCO~========~========~-~======~J IOPCI b-
IOPC2tJ------------------' 
IOPC3tJ------------------' 

IOPC4 

Figure 4.5 Circuit diagram of the user-interface device 

79 

!h 
P81 

P82 

P83 
.~ 

P84 



Hardware development of the EDM system 

4.1.2.1 Push button switch 

Five 'push-to-make' push button switches were used for selecting the parameter values in 

digital form. These switches perform different tasks according to the assigned state position 

as explained in section 3.1.1. The digital input ports are holding logic '1' as initial input 

signals (see Figure 4.5). Pressing the button sends logic '0' to the eZdsp input port that 

indicates a signal to activate a particular software function. 

4.1.2.2 LCD display unit 

The display information/instruction unit uses a Powertip 1602 series LCD. The LCD is 

capable of displaying sixteen characters in two lines (16 x 2). As explained in Chapter 3, 

the LCD does not require any special programming except some signals initialization. The 

LCD accepts an 8-bit signal for displaying characters. To display the characters at a specific 

place on the LCD screen, command (3-bit) and data character (8-bit) signals are sent via the 

eZdsp output ports. 

4.1.2.3 Transceiver 

Direct connection between the eZdsp and the LCD unit carmot be established due to their 

different voltage levels. The output signals from the eZdsp is 3.3V DC maximum while, the 

input signal to the LCD unit is 4.5V DC minimum. Therefore, a signal level (voltage) 

interface is used to effect signal transfer. The interface device is an 8-bit Dual Supply 

Translating Transceiver 74LVX3245. The side connected to the eZdsp is supplied with 

3.3V DC and the side connected to the LCD is supplied with SV DC. Two ICs were used to 

accommodate the 3-bit command signals and the 8-bit data signals. 
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4.2 SERVO SYSTEM 

In the servo system shown in Figure 4.1, rotational motion of DC motor rotor is reduced by 

the gear system ng to linearly drive the electrode position z towards the workpiece. The 

PWM signals from the eZdsp are connected to the DMOS H-bridge DC servomotor power 

driver inputs to control the servomotor. An LEM Hall effect current sensor is used to 

measure the motor current Im and provides the current feedback signal to the controller. The 

signal from the tache-generator provides the speed information to the controller and the gap 

voltage V gap signal that is measured between the electrode and the workpiece is fedback to 

the average gap voltage controller. Signals to the eZdsp are conditioned in order to obtain 

compatible voltage levels from the analogue circuits. 

4.2.1 DC servomotor power drive circuit 

The DC servomotor power drive circuit uses an L6203 48V SA DMOS Full Bridge driver 

as shown in Figure 4.6. IN! and IN2 are the driver's PWM inputs with 24V DC supply 

used to drive the motor via the H bridge. These inputs are connected to the eZdsp's I/0 

ports via opto-isolator components that provide voltage level isolation between the eZdsp 

and the power drive circuit. The circuit is also equipped with an over-current protection 

circuit to 'shut-down' the driver's operation by sending a disable signal (logic '0') to the 

ENABLE input pin. The current sensing circuit uses an LEM LA 2S-NP (SA max) to sense 

the motor current Im. 

4.2.2 Analogue EDM signal processing and interfacing circuit 

The analogue control scheme in Figure 2.29· is implemented as in figure 4.7 using· 

operational amplifiers and associate components. With reference to Figure 4.7 and Figure 

2.29, the gap reference voltage Vgap_rer used to indirectly set the gap width is obtained from 
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the microcontroller via opto-isolators. op-amp I and the associated component Rzz, R23 and 

Ct4 amplify and smooth this signal. The V gap feedback voltage Vgap_flb is obtained from the 

analogue EDM circuit board. op-amp2 performs the summing and proportional 

amplification of the error using components R24, R2s,R2s,VR2 and Cts· Cts is used to 

suppress noise and also provides smoothing of the error signal. VR2 is used to fine tuned 

the gap voltage feedback level. The output of op-amp2 is the speed reference for the 

servomotor. The speed reference and the tachometer output from the analogue EDM circuit 

board are fed to the Proportional Integrator PI circuit consisting of op-amp3 and associated 

components R26. R21, R3o and Ct6· R29 and Ct7 filter any noise on the tachometer output. Dzt 

and Dz2 limit the output of op-amp3 to just over+/- I OV thus preventing op-amp saturation. 

The output of op-amp3 is the current reference for the servomotor. The current feedback 

signal is obtained via an LEM current transducer, op-amp4, and resistors R39 and ~o. The 

current error function and PI function are performed by op-amp5 and components ~t. ~2, 

~3 and Cl8. Dz3 and D.4 limit the output of op-amp5 to just over +/-IOV. The output of op

amp5 is conditioned via op-amp6 and components ~4 to ~8 and Dz5. The output of op

amp5 is the PWM control signal Vc to the eZdsp and is limited to 3.3V. VR3 is used to 

control the servomotor speed in the manual mode. Fault detection is performed by 

switching networks consists of transistor and resistor components. The fan fault signal for 

example, turns 'on' Tx2 via R33 and R34 sending a logic signal '0' to the eZdsp. 

4.3 GAP VOLTAGE AND CURRENT PULSE POWER GENERATOR 

The gap voltage and current pulse generator is the buck converter shown in Figure 4.8 and 

consists of MOSFET switches Q1,z, diodes Dt.z and inductor L. The output quantity being 

control is t!J.e· inductor current up to SOA maximum. The hystereti9 control ~ethod as 

explained in section 3.1.4 is used to control the current. .The maximum gap voltage is fixed 

by V d to 160V, which is the input voltage to the buck converter. Q2 is turned on to divert the 
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inductor current from the gap during the pulse off-time torr. During the pulse on-time Ion and 

also for the period t0 , Q2 is turn off and inductor current flows into the gap during gap 

breakdown or back to the supply via D2 during a gap open circuit condition. The above 

voltage and current pulse generator is a new topology applied to EDM and results in 

efficient gap voltage and current generation without the attendant power loss associated 

with the use of a switch power resistor that is used to generate the current in previous EDM 

system [74]. The above topology gives fast voltage and current pulse rise and fall times. A 

signal conditioning circuit is used to interface V L signal level from the existing signal 

generator circuit to eZdsp's AID I. Details operation of the gap voltage and current pulse 

power generator appear in Appendix 5. 

Q, 
Drive circuit 

Q, 
Drive circuit 

Figure 4.8 Gap voltage and current pulse power generator topology and circuit diagram 
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4.4 CONCLUSION 

The eZdsp microcontroller development board was used in order to utilize the 

TMS320LF2407 A DSP fixed point processor for digital control and to minimize the 

associate hardware components of the EDM control system. All of the existing hardware 

EDM system control was implemented in software terms and includes the process 

parameter signal generation as well as the servomotor control function. Operational 

amplifiers were used for analogue EDM signal processing and interfacing circuitry. The 

analogue signals are conditioned to the 3.3V level required by the eZdsp. The user-interface 

device uses an LCD and push button switches for displaying purposes and for the selection 

of process parameters as well as for manual and start/stop control functions. A transceiver 

was used to effect transfer of information between the eZdsp and the LCD. The hardware 

component list is shown in Appendix 6. 
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CHAPTERS 

EXPERIMENTAL STUDIES 

This chapter describes the experimental studies of the EDM process when using a copper 

electrode and a graphite electrode with a steel workpiece. Experimental results of the 

material removal rate from a steel workpiece are recorded and presented in tabular form. A 

widely used BP200 hydrocarbon mineral oil was employed as the dielectric fluid. An 'Open 

flushing' condition (see Figure 1.9) was applied to circulate the dielectric fluid between the 

electrode and the workpiece. 

A cylindrical electrode of diameter 20mm is used. The open gap voltage at maximum V max 

is 160V. For each gap current value, several experiments were conducted at different 'on' 

and 'off times in order to adjust the sparking frequency F, for maximum material removal 

rate. Experiments at particular gap current settings were recorded as process I, 2, 3, etc. 

When breakdown occurs, the average gap voltage feedback is fine tuned by adjustment of 

VR2 in Figure 4.7 to give a time delay to of2J-ls. The gap voltage V arc falls to about 25V and 

the gap current rises to the selected constant value. 

Figure 5.1 shows an oscillographic recording of gap current and gap voltage for the 

experimental system. The digital storage scope used to capture the waveforms was not 

capable of sampling and displaying the 2J.!S delay period. The delay period is clearly seen in 

Figure 5.1 where an adjustment was made in the servo gap width control potentiometer 

VR2: ·· · 
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Figure 5.1 Showing EDM operation, gap current and gap voltage waveforms 

CHl :Igap=5A/div CH2:V gap=50V /div T ime= I OO).ls/div 

Figure 5.2 is an oscillographic recording of gap voltage and servo system control voltage 

with VR2 set to provide too large a gap width, leading to open circuit EDM conditions. 

Adjusting VR2 to reduce the gap width for normal EDM condition leads to the 

oscillographic recording of Figure 5.3. 
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The removed material for a given period is measured in cubic millimetres per minute, is of 

a cylindrical form and calculated as detailed in Figure 5.4. The diameter D and height h 

were accurately measured using a precision digital dial calliper. The following sections 5.1 

and 5.2 present the material removal rate results of the steel workpiece for copper and 

graphite electrodes respectively. 

Steel workpiece 

(
nD

2 J Volume of material removal = -
4
- x h 

Figure 5.4 Method used to measure material removed 

5.1 MATERIAL REMOVAL RATE RESULTS FOR A STEEL WORKPIECE AND 

A COPPER ELECTRODE 

The gap currents were selected at 4A, 6A, 8.5A, 12.5A, 18A, 25A, 36A and 50A. The 

following Table 5.1 shows the process parameters of the experimental data selected and the 

experimental results of the material removal rate. 

90 



Table 5.1 Experimental data and results of a steel workpiece and a copper electrode 

• 
V (mrrf /min ) 

ProCess !, (!iS) lorr (!is) F, (kHz) 
at r,.,=4A at Ig,,=6A at I,.,=8.5A at r,.,=l2.5A at I,.,=I8A at r,.,=25A at Ig,,=36A at r,.,=SOA 

I 2 4 125 4 7 - - - - - -

2· 3 4 111.11 6 9 11 16 - - - -

3 4 4 100 8 11 16 20 16 46 - -

4 6 4 83.33 10 12 21 31 42 60 72 82 

5 12 4 55.55 13 19 23 43 54 81 Ill 143 

6 25 4 32.25 15 23 31 48 68 99 137 170 

7 50 6 17.24 17 26 36 52 79 126 181 218 

8 100 12 8.77 19 23 38 54 86 126 175 250 

·9 200 25 4.41 13 21 33 47 72 110 151 221 

10 400 50 2.21 12 19 29 43 65 90 141 200 



'D 

"' 

Process 

I 

2 

3 

4 

5 

6 

7 

s 

9 

10 

11 

12 

Table 5.2 Experimental data and results of a steel workpiece and a graphite electrode 
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Experimental studies 

5.3 DISCUSSION 

Tables 5.3 and 5.4 show the optimum values of process parameters to., toff and the steel

workpiece material removal rate results at specific gap currents. From the tables, graphs of 

the material removal rate as a function of average gap power (I gap x V.,. x ton ) 
ton +toff +to 

were plotted as shown in Figures 5.5 and 5.6. 

Table 5.3 Process parameters at optimum value of material removal rate for a copper 

electrode and a steel workpiece 

Experiment Igap (A) ton (!ls) toff (!ls) • 
V(mm3/min) 

2 4 100 12 19 

3 6 50 6 26 

4 8.5 100 12 38 

5 12.5 100 12 54 

6 18 100 12 86 

7 25 50 6 126 

8 36 50 6 181 

9 50 100 12 250 
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Figure 5.5 Optimum material removal rate as a function of average gap power for a copper 

electrode and a steel workpiece 

Table 5.4 Process parameters at optimum value of material removal rate for a graphite 

electrode and a steel workpiece 

Experiment Igap (A) lon (J..LS) lotT (J..IS) V (mm3/min) 

I 6 18 6 19 

2 8 38 6 36 

3 12.5 38 6 49 

4 18 50 6 81 

5 25 50 6 115 

6 37.5 50 6 180 

7 50 75 18 243 

94 



Experimental studies 

300 SOA 

250 1 
37.5A • 

:5 200 
.§ 

L-------- .... 
2SA .~-·· 

l 150 
'-' 

·> 100 

50 

T _ ... .1----·:··y 
12l.sA _....- v= 0.22 x Gp 

SA .··• 
6t t.--.----
+ .. --+ 

--·· 0 

0 200 400 600 800 1000 1200 
Average gap power, Gp (W) 

Figure 5.6 Optimum material removal rate as a function of average gap power for a 

graphite electrode and a steel workpiece 

At gap currents of 12.5A, 18A, 25A and SOA, the optimum value of material removal rate 

for a copper-electrode is 54mm3/min, 86mm3/min, 126mm3/min, 248mm3/min respectively 

and for a graphite-electrode, the optimum material removal rate is 49mm3 /min, 81mm3 /min, 

115mm3/min, 243mm3/min, respectively. The experimental results show that a higher 

material removal rate of the steel workpiece is achieved using the copper electrode material 

compared to graphite electrode materiaL Even at the same level of the applied gap current, 

a different amount of material removal rate is observed which is mainly related to the 

thermal conductivity of both electrode and workpiece [75]. Thus, proper parameter setting 

for ton and toff is necessary in order to obtain optimum material removal rate. 

From the experimental data and results at particular gap current, as shown in Tables 5.1 and 

5.2, it can be noticed that as the pulse on-time increases, material removal rate also 

increases up to the optimum value of specific pulse on-time. Beyond this value, material 
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removal rate starts decreasing rapidly. This is due to the long pulse duration that diminishes 

pressure and energy of the plasma channel over the molten material of the electrode [74]. 

As a consequence, this phenomenon brings instability to the process that reduces the 

material removal rate. The graph in Figure 5.5 and 5.6 illustrate that the material removal 

rate increases with the increase of average gap power. The graph also indicates that the 

material removal rate linearly increases with the average gap power. Therefore, based on 

• 
the experimental evidence, the material removal rate V is proportional to the gap current 

Igap, gap voltage V arc, pulse on-time ton and sparking frequency F,. 

5.4 CONCLUSION 

Copper and graphite electrodes have been used in material removal rate experiments with a 

steel workpiece material. It was found that a copper electrode results in a higher material 

removal rate when compared to a graphite electrode. These two electrodes are different in 

material properties. Copper is a metallic material while graphite is a non-metallic material. 

As reviewed in Chapter 1, the electrode material properties are an important factor to 

consider when choosing the electrode. Those materials with the lowest electrical resistivity 

and the highest melting point are preferred. For metallic workpiece materials, a copper 

electrode is preferred and for a non-metallic workpiece material, a graphite electrode is 

favoured. A graphite electrode produces a lower material removal rate and is more 

expensive, compared to a copper electrode. However a graphite electrode is still sometimes 

used because of its high resistance to heat and this makes it suitable for machining high 

melting point workpiece materials such as high temperature alloys[75]. 
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CHAPTER6 

COMPARISON BETWEEN SIMULATION AND 

EXPERIMENTAL RESULTS 

This chapter compares the simulation results generated in Chapter 2 with the experimental 

results produced in Chapter 5. 

6.1 SIMULATION AND EXPERIMENTAL RESULTS 

Simulation and experimental results of material removal rate (mm3/min) versus ton (!ls) for 

a copper electrode and a steel workpiece are shown in Figure 6.1. Simulation results show 

reasonable agreement with the experimental results except at short and long pulse on-time. 

The discrepancies of material removal rate at short and long pulse on-times are due to the 

low plasma flushing efficiency and material resolidification respectively. The plasma 

flushing efficiency is the fraction of the theoretical melt volume actually removed upon 

collapse of the plasma. As the current increases so does the optimum pulse time for 

maximum erosion rate. This causes the energy · contained in the plasma, which is 

proportional to Igapfon, to increase significantly. Low energy plasma fails to build up 

sufficient pressure during its relatively short pulse time to expel all of the melt into the 

dielectric, thus lowering the plasma flushing efficiency. The resolidification phenomena 

arise as follows. At the end of the on-time, a pause period fotr begins when power is 

terminated to the workpiece. During this period, a violent collapse of the plasma charmel 

and the vapor bubble occurs, causing the superheated, molten liquid on the surface of both 

electrodes to explode into the liquid dielectric. While some of this material is carried away 
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by the dielectric, the remainder of the melt in the cavities resolidiiies in place, waiting to be 

removed by a later spark. As a consequence of tllis, the erosion rate reduces at long pulse 

on-times. 
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Figure 6.1 Material removal rate versus pulse on-time of simulation and experiment 
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6.2 IMPROVED EDM PROCESS SIMULATION MODEL 

The simulation results use equation (2.16) in order to predict the material removal rate. 

However, equation (2. 16) has been developed without considering the reduced erosion rate 

factor, [RERF] that accounts for the low plasma flushing efficiency at short pulse on-times 

and the material resolidification at long pulse on-times. The plasma flushing efficiency and 

the resolidification effects can be taken into account with the addition of a dimensionless 

equation, formulated from the experimental results. The following section explains the 

[RERF] generation. 

6.2.1 Generation of [RERF] 

Regression analysis is utilised in order to obtain an equation that enables the theoretical 

results to match the experimental results at short and long pulse on-times. The reduced 

erosion rate factor [RERF] is introduced into equation (2.16) as shown in equation (6.1). 

(6 .1) 

Equation (6.1) is rearranged as shown in equation (6.2) to evaluate [RERF]. 

(6.2) 

The experimental data of the eight EDM process.es listed in Table 6.1 was used in equation 
. . 

(6.2) to evaluate the average value for [RERF] with Varc=25V, a=2 x 10-12 and C~l.74. 
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Table 6 .1 Experimental data and [RERF] value 

11ap=4A 11A1>=6A 11ap=8.5A lpp=I2.5A laap=18A 1'""=25A 
Process loo F, 

v(:~:) [RERFJ • (mm') [RERF] V("":'') . ( "":'') v(::') • (mm') 
(115) (kHz) V-;;,;- m•n [RERF] V m1n [RERF] [RERF] V mon [RERF] 

I 2 125 4 0.76 7 0.89 . - - - - - - -
2 3 111.1 6 0.86 9 0.86 11 0.74 16 0.73 - - - -
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A ratio of ton/ t0 is established in order to obtain a dimensionless [RERF]. Plotting the 

average value of [RERF] so obtained against t
0
n/ t0 (see Figure 6.2) and using regression 

analysis, leads to the following equation; 

[RERF] = 0.81 +8.37 xW ' ( :: )-9.66x iO·'( :: r +2.7l x W ' ( :: )' (6.3) 

1.2 

....... ........... .. ......... 

0 .9 ~-··· .. .-

/ 
. · .... . .. . 

... . . 

(RERf) = 0.81 +8.37 x10-
3

( ~: )-9.66 x Jo-s( ~: r +2.71 x W
7

( ~: J 
~ g_ 0.6 

0.3 

0 +---------~--------~--------~--------r-------~ 

0 40 80 120 160 200 

ton / to 

Figure 6.2 [RERF] value as a function of t
00

/t 0 

Equation (6.3) is valid for ton up to 400j.ls, which is the maximwn on-time used for the 

experimental results. Combining equation (2.16) and (6.3) gives the fmal equation for 

material removal rate as 
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6.2.2 Improved simulation model versus experimental result 

The improved simulation model uses the new material removal rate equation (6.4). Graphs 

of materi al removal rate and sparking freq uency versus pulse on-time for various gap 

current are shown in the following Figure 6.3 with Yarc=25V, a.=2 x 10· 12 and C=1.74. 
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Figure 6.3 Material removal rate versus pulse on-time of simulation with [RERF] and 

experiment 
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Simulation results show acceptable agreement with the experimental results after taking 

into account the reduce erosion rate factor [RERF]. Equation (6.4) is only valid for to equal 

to 2f1S. A new [RERF) equation must be regenerated if to is set to a different value. 

6.3 CONCLUSION 

Comparison studies between sim1,1lation and experimental results have been presented in 

this chapter. The results of the comparison using the original material removal rate equation 

developed using dimensional analysis reveal reasonable agreement of material removal rate 

in the region of optimum pulse on-time. However at short and long pulse on-times, large 

discrepancies occur. This discrepancy is a result of low plasma flushing efficiency at short 

pulse on-times and material resolidification at long pulse on-times. Therefore an improved 

EDM process model was developed to include the reduce erosion rate factor [RERF] that 

accounts for the low plasma flushing efficiency at short pulse on-times and material 

resolidification at long pulse on-times. The [RERF] factor was constructed from analysis of 

experimental results. Using the improved EDM process model, the predicted material 

removal rate shows better agreement with the experimental results. 
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CHAPTER 7 

CONCLUSION AND SUGGESTIONS FOR 

FURTHER RESEARCH 

This chapter concludes the study and discusses some suggestions for future research. The 

overall research activities are emphasized and several limitations are also highlighted. 

7.1 CONCLUSION 

The research presented in this thesis proposes a model of the complete Electra Discharge 

Machining (EDM) system and the design and implementation of a digital controller for the 

servomotor control and the gap voltage and current pulse power generator. The complete 

EDM system model consists of two sub models, namely an EDM process model and the 

servo system model. The EDM process model was developed using a dimensional analysis 

technique and the servo system model was developed using the differential equations of 

Newton's and Kirchhoff's laws. The complete EDM system model was used in a 

Matlab/Simulink simulation to investigate the EDM system model behaviour. The results of 

the simulation were used to aid in the design of the compensated EDM control system. 

Simulation studies ~ere then carried out to predict the material removal rate in m!h3 /min. 
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The design and development of the digital EDM control system were performed mainly in 

software with minimal hardware. The control software was designed using the structure 

programming methodology that combines a flowchart and program structure diagrams for 

clear description of program code. EDM control processes such as timing control ton, lotr, 

hysteretic current control Igap and servo system control tup. t.lown are implemented in 

software. The control hardware consists of an eZdsp, user-interface device and analogue 

signal processing and interfacing circuit. The eZdsp communicates to the user-interface 

device by sending the information/instruction to the LCD screen while the user-interface 

device uses push-button switches to communicate with the eZdsp. The software 

implementation for the user-interface device and EDM process parameter selection is 

designed using a Finite State Machine FSM, thus minimising the number of switches on the 

user-interface device. Digital EDM parameter selection using a keypad would be an ideal 

and practical way, but was not used because the eZdsp's 1/0 has been fully utilised to 

accommodate all the necessary signals from/to the eZdsp. The eZdsp uses 3.3V low voltage 

for operation but requires additional components for signal compatibility between the user

interface device and the eZdsp. 

The analogue EDM signal processing circuit processes motor current, velocity and gap 

width feedback signals. The output of this circuit V c is the control signal for the digital 

servomotor PWM controller. Only the analogue control signal V c is digitised in order to 

obtain the highest possible resolution with the 10-bit eZdsp's AID. The analogue signal 

processing and interfacing circuit was implemented using operational amplifier circuitry. 

The signals from the eZdsp to the power drive circuit were opto-coupled to isolate the 

voltage levels between these devices. It has been shown in this research that a single DSP 

microcontroller can be used to provide the control functions for the EDM system. 
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The experimental studies of the EDM process using a copper electrode, a graphite electrode 

and steel workpiece materials were presented in tabular and graphical form. Analysis of the 

experimental results shows that the material removal rate is influenced by the process 

parameters such as the gap current Igap, gap voltage V an;, pulse on time ton and sparking 

frequency F, as well as the material properties of the electrode and the workpiece. In 

comparison studies, simulation results of material removal rate show reasonable agreement 

with experimental results, except at short and long pulse on-times. The discrepancy 

between the simulation and experimental results is due to the low plasma flushing 

efficiency at short pulse on-times and material resolidification at long pulse on-times. To 

correct the discrepancy, a reduction erosion rate factor [RERF], developed from regression 

analysis, that accounts for the low plasma flushing efficiency at short pulse on-times and 

material resolidification at long pulse on-times, is introduced into the EDM process model. 

As a result, predicted material removal rate using the improved EDM process model shows 

acceptable agreement with experimental results. 

7.2 SUGGESTIONS FOR FURTHER RESEARCH 

It has been demonstrated that the research objectives have been achieved throughout the 

research work. However, there are several suggestions that can be addressed by further 

research such as: 

I. The present controller is not programmed to detect the presence of an arc when 

machining. Some form of arc detection/prevention system should be investigated in 

order to prevent arcs from datnaging the workpiece. Such a system. could be 

implemented via a fuzzy logic or neural network controller. 
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2. Although the user has the ability to control EDM gap width, no indication is given 

to the user concerning gap width. A visual of display of gap width could be 

implemented indicating too large gap, too small gap and ideal gap. 

3. Since removal rate is proportional to pulse current, a higher power gap voltage and 

current pulse power generator could be developed. 

4. Investigate a linear motor servo system to replace the DC servomotor. It is 

acknowledged that the linear motor is superior in positioning system performance 

but expensive when compared to the DC servomotor. A better positioning system 

would lead to a stable process, resulting in a higher material removal rate. 

All the above suggestions would enhance the performance of the EDM system but would be 

subject to cost constraints. 
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APPENDIX 1 

Dimension of parameters 

Variables Symbols Dimensions 

Material removal rate • m3s·t 
V 

Pulse on-time ton s 

Gap voltage V arc m2kg s·3 Kt 

Sparking frequency F, s ·I 

Gap current I gap A 

Material properties factor a mkg"1s2 
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APPENDIX2 
Matlab m-file 

% EDM servomotor parameters 
L, = 3 e-3; % inductance (H) 
R. = 2.85; %resistance (ohm) 
K, = 0.1356; %torque constant (Nm/A) 
K. = 0.1356; %back emfconstant (V.s/rad) 
Jm = 0.225Se-3; %motor inertia 
J, = 0.2545 e-3; %motor and mechanical load inertias (kg-m2

) 

Kr= 0.268e-3; %viscous friction coefficient of linear model (Nm.s/rad) 
Kfut = 9.66e-S; %viscous friction coefficient ofnonlinear model (Nm.s/rad) 
Kfl = 40.6264e-3; %viscous friction coefficient of model with load (Nm.s/rad) 
Ngm= IS; %number of gear teeth at motor 
N81 = 60; %number of gear teeth at load 
d1, = 0.005; % leadscrew pitch (m/rev) 
K,.,=0.06684; % tacho coefficient (V.s/rad) 

% Current control loop PI parameters 
Kpo = 12; %proportional gain 
K;, = 11400; % integrator gain 
Kw,= 44; % anti wind-up gain 

% Velocity control loop PI parameters 
Kpv = S; % proportional gain 
K;v = Ill ; % integrator gain 
Kwv = 44; % anti wind-up gain 

% Average gap voltage control loop P parameters 
Kavg = 0.31; % proportional gain 

% EDM process parameters 
% Values are changeable for different processes. The following values are chosen for 
%tuning the average gap voltage controller parameter. 
V.,.= 25; %gap voltage 
V rnax= 160; % maximum voltage 
ton= 11 Oe-6; % pulse on-time 
toff= 4.2e-6; %pulse off-time 
18ap = 25; % gap current 
Ap = 2e-12; % a, material removal properties 
C = 1.74; % dimensionaless constant 
A= 0.01; % surface area for cylindrical electrode 
n = 6.57; %parameters for breakdown model 
v = 1.04e+25; 
t =IS.Se-3; %time constant filter 
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APPENDIX3 

Mechanical system inertias calculation 

Consider a solid cylinder of leadscrew shaft and a hollow cylinder of gear at motor shaft 
and at leadscrew shaft. Gearatmotorshaft Gearatleadscrewshaft 

h,, 

Component Measured Parameter Material Density, p 

Length, lgm 0.038m 
Gear at 

motor shaft Radius, r gm·;• 0.005m 
fgm.-out O.Olm 

No. of teeth, Ngm 15 Aluminium 
2657 kg/m3 

Length, lg1 0.02m 
Gear at 

leadscrew Radius, rg~.;0 0.0075m 
shaft fgl-out 0.047m 

No. of teeth, N81 60 

Length, l1s 0.37m 
Leadscrew 

Radius, r1s 0.0075m 

Screw nut 
efficiency, e, 0.5 Steel 7833kg/m3 

Length I rev, db 0.005rnlrev 
(rev is dimensionless) 

Ram load Weight, w 30kg 
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The total equivalent inertia J1 as seen by the EDM DC motor is given in the following 

equation (2.29); 

(2.29) 

where, 

Jm , inertia of the DC motor 

Jgm, inertia of the gear at motor shaft 

J gtHm , reflected inertia of gear at leadscrew shaft load to the DC motor 

J tSHm, reflected inertia of the leadscrew to the DC motor 

J rtHm , reflected inertia of the ram load to the DC motor 

Inertia of the DC motor, Jm; 

Jm = 0.2255x10-3kg-m2 (data sheet value) 

Inertia of the gear at motor shaft, I gm; 

Jgm 
= 1t X lgm X p a X (rgm-oot 4 - rgrn-m 4) 

2 

= 7tX0.038mx2657kg/m3 x(0.Ql 4 -0.005 4 }n4 

2 

Reflected inertia of gear at leadscrew shaft load to the DC motor, J gtHm ; 
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J gh-+m 
= (Nsm/ )2 X 7tX lgl X PaX (rgl-o•t 4 -rgl-in 4) 

/Nsl 2 

= (I%oJ x nx0.02mx2657kg/m~x(0.047 4 
-0.0075

4)n4 

= 2.5441 X 1 o-s kg-m2 

Reflected inertia of the leadscrew to the DC motor, J lsr+m; 

= (I%oJ x nx0.37mx7833k~/m3 
x0.0075

4
m

4 

= 0.9002x10-6kg-m2 

Reflected inertia of the ram load to the DC motor, J<~,...m; 

Jrl,...m = (N~J
2 

xwx(2dXb7tJ 

=(Is/ \2 x(30kg)x(0.005m/rev)
2 

/601 0.9 2xn 

= 1.1873xl0-6kg-m2 

Thus, 

J1 = ( (0.2255 X J0-3
) +(1.4868x}Q-6)+(2.544J X J0-5)+(0.9002x J0-6) 

+ (1.1873 xI 0-6) ] kg-m2 
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= 0.25 X 10-3 kg-m2 

Load Torque 

The load torque reflected to the DC motor from the mechanical system is calculated by 

considering torques due to sliding friction and gravity at the load side. The load torque at 

the load side of the gear load is given by; 

where; 

F g, force due to gravity = W1 x sin{y) 

F tr. force due to sliding friction = J.l. x W1 x cos{y) 

Tp, preload torque= 0 (zero in this case, Nm) 

w~, weight ofload (ram and electrode, N) 

f.!, coefficient of sliding friction 

d1,, lead of screw (m/rev) 

y, angle of screw inclination from horizontal (degrees) 

e, , efficiency of screw nut 

(2.30) 

Since the leadscrew in the physical system is situated in the vertical plane, y is equal to 

90°. Therefore the force due to sliding friction, Frr becomes zero and the force due to 

gravity is at maximum; 

Fg = W1 (30kg x 9.8 m/s2
) x sin (90°) 

=294N 
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. 0.005x294 
Thus, the load torque at the load s1de of the gear load, T1...,, = = 0.46Nm (un-

2x1tx0.5 

reflected to the motor). The following equation is applied in order to obtain the reflected 

load torque; 

(2.31) 

where; 

eg, efficiency of gear system (95%) 

Therefore; 

T _ '!; .... , = 0.4679 

refl- (N~Jxeg 4x0.95 
0.123Nm 

122 



APPENDIX4 

EDM program codes 

!****************************************************************** 
* Filename: edm.c * 

* 
* 
* 
* 
* 

Author: Azli Y ahya, Loughborough university 

Description: Main program for eZdsp 

* 
* 
* 
* 
* 

******************************************************************/ 

/***Address Definitions***/ 
#include "f2407 _c.h" 
#include "edml.h" 

I*** Constant Definitions ***I 

/*** LCD Definitions***/ 

unsigned int a, b, cj, d, q,f,v,w=O,PF; 
static unsigned char ai=O, aj=O; 
int t_on, t_off,t_up ,!_down; 
int state=O; 
int cntl=O; 
int count_ on=O,count_la= I ,count_2a=l,count_3a=l,count_ 4a= I; 
int count_ off=O,count_l b=l ,count_ 2b=l ,count_3b=l,count_ 4b=l; 
int count_ current=O,count_l c=l ,count_ 2c=l; 
int count_ up=O,count_l d= I ,count_ 2d= I ,count_ 3d= I ,count_ 4d= I; 
int count_ down=O,count_le=l,count_2e=l,count_3e= I ,count_ 4e=l; 

int value _I a=O,value _ 2a=O,value _3a=O,value _ 4a=O; 
int value _I b=O,value _ 2b=O,value_3b=O, value_ 4b=O; 
int value _I c=O, value_ 2c=O; 
int value_ld=O,value_2d=O,value_ 4d=O; 
int value_le=O,value_2e=O,value_ 4e=O; 

#define period 
#define pwrn _duty_ 0 
#define timer2 _per 

#define motor_ stop 

3125 

0 
0 

500 

I* !Oms timer2 period with a 1/64 timer prescaler and 
40MHzCPUCLK */ 

#define motor _reverse · I 00 I* 10% duty cycle*/ 
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void main( void) 
{ 

dsp_setup(); 
lcd_display_main(); /*use Final State Machine concept*/ 

while(!){ /*continuous loop program*/ 
lcd_display_function(); /*call pushbutton LCD function*/ 

if(w==l){ 
faulty(); /* function to detect the switch failure • I 
hysteretic_ current();} 

if(w==2)manual_mode(); } 
} 

/***************** INTERRUPT SERVICE ROUTINES *******************/ 

interrupt void timer2_isr(void) /*generate up I down time*/ 
{ /* timer2 interrupt every lmS */ 

ai++; 
if(ai==l 00){ 

aj++; 
ai=O; 
if(aj<=t_up) 

reverse_ motor(); 
else if((t_up+l)<=aj && aj<=(t_down+t_up)){ 

if(sense_pushbutton(Ox0080)=0)CMPRI =500; /*if hits the limit, 
motor stop *I 

else error_controller(); } 
if(aj=(t_down+t_up))aj=O;} 

EV AIFRB = EV AIFRB & OxOOO 1; I* clear T2PINT flag *I } 

void manual_ mode(){ 
TIPR=lOOO; /*settimer period*/ 
MCRA = OxOOCO; /*select as pwm*/ 
if( sense _pushbutton(OxOO I 0)) { 

if( sense _pushbutton(Ox0040)=0)CMPRI =500; 
else{ ACTRA = Ox0009; /*forward pwm *I 

CMPRI =(float)(0.48828125*ReadADC(0)+500);}} /*eqn refers 
to Ov=500CMPRI & 3.3V=IOOOCMPRI */ 

else if( sense _pushbutton(Ox0004)){ 
if( sense _pushbutton(Ox0080)=0)CMPRI =500; 
else{ ACTRA = Ox0006; /*reverse pwm for reverse drive */ 

CMPRI =(float)(0.48828125*ReadADC(0)+500);}} 
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else CMPRI=SOO; /*no press means motor stop hence 50% duty cycle*/ 
state=I7;} /*after completing the manual cmd, go back to *I 

/*start the system or change setup*/ 

void hysteretic_current(){ 
int Iref_a, H_limit_d, L_limit_d; /*define high and low limit constants *I 
float d limit, I d, H limit, L limit,Iref d; - - - - -

Iref_a = (value_1c*10)+value_2c; /*set I ref*/ 

d_limit = (float)Iref_a*(0.1); /*calculate limit digitally*/ 
I_ d = ( float)d _limit/2; 
H_limit = (float)Iref_a + I_d; 
L_limit = (float)Iref_a- I_d; 
H _limit_ d = (float)H _limit*18.804363; 
L_limit_d = (float)L_Iimit*18.804363; 

if(ReadADC(O) <L_Iimit_d) PEDATDIR= OxFFOI; /*on QS */ 
else if (ReadADC(O) >= H _limit_d) PEDATDIR = OxFFOO; /* off QS *I 
} 

void faulty() { 
if ((sense _pushbutton(Ox0040)&&sense _pushbutton(Ox0080) 

&&sense_FF(Ox0001)}=0) 
{ /* . .if any of the switches goes low, led off • I 

/* LED indicates switch fail */ 

led_ cmd(OxFFO 1 ); 
state=12; 
delay_ mS(80); 
fault_ system(); 
w=O; 

/*clear display command*/ 

setting_ offQ; I* Thus, start button must be pressed again*/ 
} /*out from the main loop *I 

void led_ display_ main() { 
PFDA TDIR=OxFF08; 
delay_ mS(SO); 
led _initialize(); 

else w=1;} 

lcd_cmd(OxFFOC); /*Led blink*/ 
lcd_cmd(OxFFOE); /*cursor on *I 
display_ edm _controller(); /*state=O*/ 
state=O;} 

void run_system(){ /*get to,, totr, up, down time digitally*/ 
t_on = (value_1a*1000)+(value_2a* 1 OO)+(value_3a*10)+value_ 4a; 
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t_off= (value_! b*IOOO)+(value_2b*IOO)+(value_3b*IO)+value_ 4b; 
t_ up = (value _I d*l OO)+(value _ 2d*l O)+(value _ 4d*l ); 
t_down = (value_le*IOO)+(value_2e*IO)+(value_ 4e*l); 
generate_Q6_Q70;}/*run */ 

void setting_ off(){ 
MCRA = OxOOCO; 
TIPR=IOOO; 
CMPRI=SOO; 
T2PR=O; 
T3PR=O; 
count_ IQ; 
ai=O; 
aj=O;} 

void setting_ on() { 

/*select as pwm */ 
/*motor hold • I 

/*off timer 2 & 3*/ 

/*ai & aj is declared globally to reset these counter (ai */ 
/* & aj) after stop button is pressed. • I 

MCRA = OxOOCO; /*return to select pwm*/ 
TIPR=IOOO; 
T2PR=20000;}/*on timer! & 2*/ 

void error_controllerQ{ 
ACTRA = Ox0006; 
CMPRI = (float)(0.9765625*ReadADC(2)); /*varies according to error*/ } 

void reverse_motor(){ 
ACTRA = Ox0006; /*reverse pwm for reverse drive */ 
CMPRI =(float)(0.48828125*ReadADC(O)+SOO); } 

void count_ IQ{ 
count_ on=O; 
count_ off=O; 
count_current=O; 
count_ up=O; 
count_down=O;} 

void pwm_O(){ /* SCSRI must be masked/set to Ox06FD for correct freq*/ 
TIPR = 0; /*This apllies to all pwm_xx */ 
CMPRI =0; 
} 

void lcd_cmd(int cmd){ /* LCD initializations*/ 
delay_mS(6); 
PFDATDIR = OxFFOC;/*PFDATDIR I OxFF04; I* RS = 0 RW= 0 E =I */ 
PBDATDIR = cmd; /* command- initialize display */ 
PFDATDIR= OxFF09;/*PFDATDIR I OxFFOI; /* RS=l E =0 *I 
} 

void led_ data(int data){ 
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PFDATDIR= OxFFOD;/*PFDATDIR I OxFFOS; /* E=l RS=l */ 
PBDATDIR =data; /* data E */ 
PFDATDIR= OxFF09;/*PFDATDIR I OxFFOI; /* RS =I E=O*/ 
delay_mS(6);} 

/* Function set S-bit, 2 lines, Sxl 0 dots */ 
/* Led off ) *I 

void lcd_initialize() { 
lcd_cmd(OxFF3C); 
led_ cmd(OxFFOS); 
lcd_cmd(OxFFOI); 
lcd_cmd(OxFFOC); 
led_ cmd(OxFF02); 
lcd_cmd(OxFFOC); 
delay_mS(5);} 

I* clear display) *I 
I* Led on ) *I 

/*Led home) *I 
I* Led blink off) *I 

void cursorposition(int c){ 
/* SOh is the address for cursor position. SOh plus address LCD 
of Olh,where at start of 1st line. Thus=Slh. */ 
PFDATDIR = OxFFOC;/*PFDATDIR I OxFF04; /* RS = 0 RW= 0 E =I *I 
PBDA TDIR = c; /* command - cursor position to I st line, 2nd block */ 
PFDATDIR=OxFF09;/*PFDATDIRIOxFFOI; /*RS=IE=O */ 
delay_mS(5); } 

I* LCD subroutines functions *I 
void time(){ 

lcd_data(OxFF74); /*time*/ 
lcd_data(OxFF69); 
lcd_data(OxFF6D); 
lcd_data(OxFF65); 
led_ data(OxFF3A);} 

void setup() { 
lcd_data(OxFF53); /*Setup*/ 
lcd_data(OxFF65); 
lcd_data(OxFF74); 
lcd_data(OxFF75); 
led_ data(OxFF70);} 

void uS(){ 
lcd_data(OxFFSF); /*_uS*/ 
led_ data(OxFFSF); 
lcd_data(OxFFSF); 
lcd_data(OxFFSF); 
lcd_data(OxFFE4); 
lcd_data(OxFF73);} 

void pge(){ 
lcd_data(OxFFSO); /*pge*/ 
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led_ data(OxFF67); 
led_data(OxFF65); 
led_ data(OxFF7E); } 

void nxtQ{ 
led_data(OxFF4E); /*nxt*/ 
led_ data(OxFF78); 
led_data(OxFF74); 
led_ data(OxFF7E); } 

void ineQ{ 
led data(OxFF49); /*ine*/ 
led_ data(OxFF6E); 
led_ data(OxFF63); 
led_ data(OxFF7E);} 

void onO{ 
led_data(OxFF4F); /*on*/ 
led_ data(OxFF6E); } 

void off(){ 
led_data(OxFF4F); /*off*/ 
led_ data(OxFF66); 
led_data(OxFF66);} 

void Stop(){ 
led_ data(OxFF53); /*Stop*/ 
led_data(OxFF74); 
led_ data(OxFF6F); 
led_data(OxFF70);} 

void Current(){ 
led_data(OxFF43); /*Current*/ 
led_ data(OxFF75); 
led_data(OxFF72); 
led_ data(OxFF72); 
led_ data(OxFF65); 
led_ data(OxFF6E); 
led_data(OxFF74); 
led_data(OxFF3A); } 

void amps(){ 
led_data(OxFFSF); /*amps*/ 
led_ data(OxFFSF); 
led_ data(OxFF41 ); 
led_ data(OxFF6D); 
led_ data(OxFF70); 
led_ data(OxFF73); } 
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void Press() { 
lcd_data(OxFF50); /*Press*/ 
led_ data(OxFF72); 
led_ data(OxFF65); 
led_ data(OxFF73); 
lcd_data(OxFF73);} 

void Run(){ 
lcd_data(OxFF52); /*Run*/ 
led_ data(OxFF75); 
led_ data(OxFF6E);} 

void Up(){ 
led_ data(OxFF55); /*Up* I 
led_ data(OxFF70); } 

void Down(){ 
lcd_data(OxFF44); /*Down*/ 
led_ data(OxFF77); 
led_ data(OxFF6E); } 

void sec(){ 
lcd_data(OxFFSF); /*sec*/ 
lcd_data(OxFFSF); 
led_ data(OxFF2E); 
led_ data(OxFFSF); 
led _data(OxFF73); 
lcd_data(OxFF63);} 

void view(){ 
lcd_data(OxFF56); /*View*/ 
led_ data(OxFF69); 
led_ data(OxFF65); 
led_ data(OxFF77);} 

void system() { 
lcd_data(OxFF53); /*system*/ 
led_ data(OxFF79); 
lcd_data(OxFF73); 
lcd_data(OxFF74); 
lcd_data(OxFF65); 
lcd_data(OxFF6D);} 

void error() { 
lcd_data(OxFF45); /*error*/ 
lcd_data(OxFF72); 
lcd_data(OxFF72); 
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led_ data(OxFF6F); 
led_ data(OxFF72);} 

void input() { 
led_data(OxFF49); /*input *I 
led_data(OxFF6E); 
led_ data(OxFF70); 
led_data(OxFF75); 
led_data(OxFF74);} 

void menu(){ 
led_data(OxFF4D); /*Menu*/ 
led_ data(OxFF65); 
led_ data(OxFF6E); 
led_data(OxFF75);} 

void manual(){ 
led_data(OxFF4D); /*Manual*/ 
led_data(OxFF61); 
led_ data(OxFF6E); 
led_ data(OxFF7 5); 
led_data(OxFF61); 
led_data(OxFF6C);} 

void control(){ 
lcd_data(OxFF43); /*control*/ 
lcd_data(OxFF6F); 
led_ data(OxFF6E); 
led_ data(OxFF7 4 ); 
lcd_data(OxFF72); 
lcd_data(OxFF6F); 
lcd_data(OxFF6C);} 

void fault(){ /*fault *I 
lcd_data(OxFF22); 
led_ data(OxFF46); 
led_ data(OxFF41 ); 
lcd_data(OxFF55); 
lcd_data(OxFF4C); 
lcd_data(OxFF54); 
lcd_data(OxFF59); 
lcd_data(OxFF21); 
led_ data(OxFF22);} 

void reset(){ /*reset*/ 
lcd_data(OxFF52); 
lcd_data(OxFF73); 
lcd_data(OxFF74); 
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lcd_data(OxFF3F);} 

void fault_system(){/*"FAULTY"*/ 
delay_ mS(2); 
cursorposition(OxFFS3); 
system(); 
cursorposition(OxFFSA); 
Stop(); 
cursorposition(OxFFCO); 
menu(); 
cursorposition(OxFFC6); 
fault();} 

void display_edm_controller() { 
delay_mS(4); /*200*/ 
cursorposition(OxFFSI ); 
lcd_data(OxFF45); /*EDM*/ 
lcd_data(OxFF44); 
lcd_data(OxFF4D); 
cursorposition(OxFFSS); 
lcd_data(OxFF43); /*CONTROLLER*/ 
led_ data(OxFF 4F); 
lcd_data(OxFF4E); 
lcd_data(OxFF54); 
led_ data(OxFF52); 
lcd_data(OxFF4F); 
lcd_data(OxFF4C); 
lcd_data(OxFF4C); 
lcd_data(OxFF45); 
led_ data(OxFF52); 
eursorposition(OxFFCO); 
manual(); 
eursorposition(OxFFCC); 
menu();} 

void display_main_menu(){ 
/* SOh is the address for cursor position. SOh plus address LCD 
of03h,where at start of 1st line. Thus=S3h. */ 

delay_mS(5); 
eursorposition(OxFFS3); 
led_ data(OxFF4D); /*Main* I 
lcd_data(OxFF61); 
led _data(OxFF69); 
led_data(OxFF6E); 
eursorposition(OxFFS9); 
menu(); 
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/* 80h is the address for cursor position. 80h plus address LCD 
of 40h, where at start of 2nd line. Thus;COh. *I 

cursorposition(OxFFCO); 
Run(); 
cursorposition(OxFFC5); 
reset(); 
cursorposition(OxFFCB); 
setup();} 

void display_manual_mode(){ 
delay_mS(5); 
cursorposition(OxFF81 ); 
manual(); 
cursorposition(OxFF88); 
control(); 
cursorposition(OxFFCO); /*Fwd* I 
lcd_data(OxFF46); 
led_ data(OxFF77); 
led_ data(OxFF64); 
cursorposition(OxFFC6); 
lcd_data(OxFF4D); /*Main*/ 
lcd_data(OxFF61); 
lcd_data(OxFF69); 
led_ data(OxFF6E); 
cursorposition(OxFFCD); /*Rvr*/ 
led_ data(OxFF52); 
lcd_data(OxFF76); 
lcd_data(OxFF72);} 

void display_press_start(){ 
t• 80h is the address for cursor position. 80h plus address LCD 
ofOlh,where at start of 1st line. Thus;8Jh. */ 

delay_mS(5); 
cursorposition(OxFF81 ); 
Press(); 
cursorposition(OxFF87); 
lcd_data(OxFF74); 
lcd_data(OxFF6F); 
cursorposition(OxFF8A); 
lcd_data(OxFF73); 
lcd_data(OxFF74); 
lcd_data(OxFF61); 
lcd_data(OxFF72); 
lcd_data(OxFF74); 
cursorposition(OxFFCO); 
lcd_data(OxFF7F); 
cursorposition(OxFFC6); 

/*Press*/ 

/*to*/ 

/*start*/ 
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menu(); 
cursorposition(OxFFCF); 
led_ data(OxFF7E); } 

void system_running(){ 

/*Stop*/ 

I* SOh is the address for cursor position. SOh plus address LCD 
ofOlh,where at start of 1st line. Thus=Slh. */ 

delay_ mS(l ); 
cursorposition(OxFFSI ); 
system(); 
cursorposition(OxFFSS); 
led_ data(OxFF52); /*running* I 
led_ data(OxFF7 5); 
lcd_data(OxFF6E); 
led_ data(OxFF6E); 
led_ data(OxFF69); 
led_ data(OxFF6E); 
lcd_data(OxFF67); 
cursorposition(OxFFC6); 
Stop(); /*Stop*/ 

} 

void display_on_time(){ 
cursorposition(OxFFSO); 

on(); 
cursorposition(OxFFS3); 
time(); 
cursorposition(OxFFSA); 
uS(); 
cursorposition(OxFFCO); 
pge(); 
cursorposition(OxFFC6); 
nxt(); 
cursorposition(OxFFCC); 
incO; 

} 

void display_off_time(){ 
cursorposition(OxFFSO); 

offD; 
cursorposition(OxFFS4); 
time(); 
cursorposition(OxFFSA); 
uSQ; 
cursorposition(OxFFCO); 
pgeQ; 
cursorposition(OxFFC6); 
nxtQ; 

/*on*/ 

/*time*/ 

/*uS*/ 

/*pge*/ 

/*nxt*/ 

/*inc*/ 

/*off*/ 

/*time*/ 

/*sec*/ 

/*pge*/ 

/*nxt*/ 
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cursorposition(OxFFCC); 
inc(); 

} 

void current() { 
cursorposition(OxFF80); 
Current(); 
cursorposition(OxFF8A); 
amps(); 
cursorposition(OxFFCO); 
pge(); 
cursorposition(OxFFC6); 
nxt(); 
cursorposition(OxFFCC); 
inc(); 

} 

void save_settings(){ 
int noO={OxFF4E,OxFF6F}; 
delay_ mS(2); 
cursorposition(OxFF81 ); 
lcd_data(OxFF53); 
lcd_data(OxFF61); 
lcd_data(OxFF76); 
lcd_data(OxFF65); 
cursorposition(OxFF86); 
led_data(OxFF53); 
led_data(OxFF65); 
led_data(OxFF74); 
led_data(OxFF74); 
led_data(OxFF69); 
led_ data(OxFF6E); 
led_ data(OxFF67); 
led_ data(OxFF73); 
led_data(OxFF3F); 
cursorposition(OxFFCO); 
lcd_data(OxFF59); 
lcd_data(OxFF65); 
lcd_data(OxFF73); 
cursorposition(OxFFCE); 
lcd_data(OxFF6E); 
lcd_data(OxFF6F); 

} 

void system_stop(){ 
delay_mS(2); 
cursorposition(OxFF82); 
system(); 

/*inc*/ 

/*Current* I 

/*amps*/ 

/*pge*/ 

/*nxt*/ 

/*inc*/ 

/*save*/ 

/*settings?*/ 

/*yes*/ 

/*no*/ 
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cursorposition(OxFF8A); 
Stop(); 
cursorposition(OxFFCO); 
manual(); 
cursorposition(OxFFCC); 
menu();} 

void up_time(){ 
delay_ mS(2); 
cursorposition(OxFF80); 
Up(); 
cursorposition(OxFF83); 
time(); 
cursorposition(OxFF8A); 
sec(); 
cursorposition(OxFFCO); 
pge(); 
cursorposition(OxFFC6); 
nxt(); 
cursorposition(OxFFCC); 
inc(); } 

void down_time(){ 
delay_mS(2); 
cursorposition(OxFF80); 
Down(); 
cursorposition(OxFF84); 
time(); 
cursorposition(OxFF8A); 
sec(); 
cursorposition(OxFFCO); 
pge(); 
cursorposition(OxFFC6); 
nxt(); 
cursorposition(OxFFCC); 
inc(); } 

/*push button function*/ 

/*up*/ 

/*time*/ 

/*se*/ 

/*pge*/ 

/*nxt*/ 

/*on*/ 

/*time*/ 

/*se*/ 

/*pge*/ 

/*nxt*/ 

int next_cursor_on(void){ /*function for digital inc. */ 
switch (count_ on){ 
case 0: if(count_on=O){ 

break; 

delay_mS(600); 
lcd_cmd(OxFFSA); 
count_on=l;} 

case 1: if(count_on=l){ 
delay_mS(600); 
lcd_cmd(OxFFSB); 
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} 

count_on=2;} 
break; 

case 2: if{count_on=2){ 

break; 

delay_ mS(600); 
led_ cmd(OxFF8C); 
count_on=3;} 

case 3: if{count_on==3){ 

break; 

delay_ mS(600); 
led_ emd(OxFF8D); 
count_ on=4; } 

case 4: if{eount_on==4){ 

break; 
return count_ on; } 

delay_ mS(600); 
lcd_emd(OxFF8A); 
count_ on= I;} 

int next_ cursor_ off( void){ /* function for digital inc. */ 

switch (count_ off){ 
case 0: if( count_ off=O){ 

break; 

delay_ mS(600); 
led_ cmd(OxFF8A); 
count_off=l;} 

case I: if( count_ off=!){ 

break; 

delay_ mS(600); 
led_ cmd(OxFF8B); 
count_ off=2;} 

case 2: if{count_off==2){ 

break; 

delay_ mS(600); 
led_ cmd(OxFF8C); 
count_off=3; } 

case 3: if{ count_ off 3){ 

break; 

delay_mS(600); 
led_ cmd(OxFF8D); 
count_ off=4; } 

case 4: if{ count_ off 4){ 

break; 

delay_mS(600); 
led_cmd(OxFF8A); 
count_off=l;} 
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return count_ off; } 

} 

int next_cursor_current(void){ /*function for digital inc. *I 

} 

switch (count_ current){ 
case 0: if( count_ current=O){ 

break; 

delay_ mS( 600); 
lcd_cmd(OxFFSA); 
count_ current= I;} 

case I : if( count_ current= I){ 
delay_mS(600); 
led_ cmd(OxFFSB); 
count_ current=2; } 

break; 
case 2: if(count_current=2){ 

break; 
return count_ current; } 

delay_ mS( 600); 
lcd_cmd(OxFFSA); 
count_ current= I; } 

int next_cursor_up(void){ /* function for digital inc. *I 

switch (count_ up){ 
case 0: if( count_ up=O){ 

break; 

delay_mS(600); 
led_ cmd(OxFFSA); 
count_up=l;} 

case I: if( count_ up= I){ 

break; 

delay _mS(600); 
led_ cmd(OxFFSB); 
count_ up=2; } 

case 2: if(count_up==2){ 

break; 

delay_mS(600); 
lcd_cmd(OxFFSC); 
count_up=3;} 

case 3: if(count_up=3){ 
delay_mS(600); 
lcd_cmd(OxFFSD); 
count_up=4;} 
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} 

break; 
case 4: if(count_up==4){ 

break; 
return count_ up; } 

delay_ mS( 600); 
lcd_cmd(OxFF8A); 
count_ up=!;} 

int next_cursor_down(void){ t• function for digital inc. */ 

switch (count_ down){ 

} 

case 0: if( count_ down=O){ 
delay_mS(600); 
lcd_cmd(OxFF8A); 
count_down=l;} 

break; 
case 1: if(count_down=l){ 

delay_mS(600); 
led_ cmd(OxFF8B); 
count_ down=2;} 

break; 
case 2: if( count_ down=2){ 

break; 

delay_ mS(600); 
lcd_cmd(OxFF8C); 
count_down=3;} 

case 3: if( count_ down 3){ 
delay_mS(600); 
lcd_cmd(OxFF8D); 
count_down=4;} 

break; 
case 4: if( count_ down=4){ 

delay_mS(600); 
led_ cmd(OxFF8A); 
count_ down= I;} 

break; 
return count_ down; } 

int increament_onO(void){ /*function for digital inc. */ 
if( sense _pushbutton(Ox0004 )) { 

delay_mS(SOO); 
lcd_data(OxFF20); 
led_ cmd(OxFFOD); 
lcd_cmd(OxFFIO);}} 
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int increament_onl(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_ mS(SOO); 
led_ data(OxFF30+count_l a); 
led_ cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value _I a=count_l a; 
count_la"'Count_la+ 1; 

if( count_ I a== 1 O)count_l a=O; 
return value_la;} } 

int increament_on2(void){ 
if(sense_pushbutton(Ox0004)){ 

delay_mS(SOO); 
led_ data(OxFF30+count_ 2a); 
lcd_cmd(OxFFOD); 
Jcd_cmd(OxFFI 0); 
value_ 2a"'Count_ 2a; 
count_ 2a=count_ 2a+ I; 

if( count_ 2a== I O)count_ 2a=O; 
return value_2a;} } 

int increament_on3(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
Jcd_data(OxFF30+count_3a); 
led_ cmd(OxFFOD); 
led_ cmd(OxFFl 0); 
value_ 3a=count _ 3a; 
count_3a=count_3a+ 1; 

if( count_3a=J O)count_3a=O; 
return value_3a;} } 

int increament_ on4(void) { 
if( sense _pushbutton(Ox0004)) { 

delay_ mS(SOO); 
led_ data(OxFF30+count_ 4a); 
led_ cmd(OxFFOD); 
led_ cmd(OxFFl 0); 
value_ 4a"'Count_ 4a; 
count_ 4a=count_ 4a+ 1; 

if( count_ 4a=l O)count_ 4a=O; 
return value_ 4a;} } 

int increament_offi(void){ 
if(sense_pushbutton(Ox0004)){ 

delay_mS(SOO); 
led _data(OxFF30+count_l b); 
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led_ cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value _I b=count_l b; 
count_! b=count_l b+ I; 
if( count_! b== I O)count_l b=O; 

return value_lb;} } 

int increament_ofl2(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
led_ data(OxFF30+count_ 2b ); 
lcd_cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value_ 2b=count_ 2b; 
count_ 2b=count_ 2b+ I; 
if( count_ 2b==l O)count_ 2b=O; 

return value_2b;} } 

int increament_ofD(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
lcd_data(OxFF30+count_3b); 
led_ cmd(OxFFOD); 
led _cmd(OxFFI 0); 
value_ 3 b=count_3 b; 
count_3b=count_3b+ I; 
if(count_3b=IO)count_3b=O; 

return value_3b;} } 

int increament_ off4(void){ 
if\ sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
led_ data(OxFF30+count_ 4b ); 
lcd_cmd(OxFFOD); 
led_ cmd(OxFFI 0); 
value_ 4b=count_ 4b; 
count_ 4b=count_ 4b+ I; 
if\ count_ 4b=IO)count_ 4b=O; 

return value_ 4b;} } 

int increament _current I (void){ 
if\sense_pushbutton(Ox0004)){ 

delay_mS(SOO); 
led_ data(OxFF30+count_l c); 
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led_ cmd(OxFFOD); 
led_ cmd(OxFFI 0); 
value _I c=count_l c; 
count_! c=count_l c+ I; 
if{ count_! c==l O)count_l c=O; 

return value_lc;} } 

int increament_current2(void){ 
if{sense_pushbutton(Ox0004)){ 

delay_mS(500); 
lcd_data(OxFF30+count_2c); 
lcd_cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value_ 2c=count_ 2c; 
count_2c=count_ 2c+l; 
if( count_ 2c= I O)count_2c=O; 

return value_2c;} } 

int increament_upl(void){ 
if{sense_pushbutton(Ox0004)){ 

delay_mS(500); 
led_ data(OxFF30+count_l d); 
led_ cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value _I d=count_l d; 
count_ld=count_ld+l; 

if{ count_! d= I O)count_l d=O; 
return value _Id;} } 

int increament_up2(void){ 
if{sense_pushbutton(Ox0004)){ 

delay_mS(500); 
led_ data(OxFF30+count_ 2d); 
led_ cmd(OxFFOD); 
led_ cmd(OxFFI 0); 
value_ 2d=count_ 2d; 
count_ 2d=count_ 2d+ I; 

if{ count_ 2d=l O)count_ 2d=O; 
return value_2d;} } 

int increament_up4(void){ 
if{ sense _pushbutton(Ox0004)) { 

delay_mS(500); 
lcd_data(OxFF30+count_ 4d); 
led_ cmd(OxFFOD); 

·lcd_cmd(OxFFIO); 
value_ 4d=count_ 4d; 
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count_ 4d;count_ 4d+ I; 
if( count_ 4d;; I O)count_ 4d;O; 

return value_ 4d;} } 

int increament_downl(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
Jcd_data(OxFF30+count_le); 
led cmd(OxFFOD); 
led_ cmd(OxFFI 0); 
value_le~ount_le; 
count_ I e;count_l e+ 1 ; 

if( count_ le;;} O)count_l e;O; 
return value _1 e;} } 

int increament_down2(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
led_ data(OxFF30+count_ 2e ); 
lcd_cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value _2e~ount_ 2e; 
count_2e;count_ 2e+ 1; 

if( count_ 2e;;J O)count_2e;O; 
return value _2e;} } 

int increament_down4(void){ 
if( sense _pushbutton(Ox0004)) { 

delay_mS(SOO); 
lcd_data(OxFF30+count_ 4e); 
lcd_cmd(OxFFOD); 
lcd_cmd(OxFFIO); 
value_ 4e;count_ 4e; 
count_ 4e~ount_ 4e+ 1; 

if( count_ 4e=IO)count_ 4e;O; 
return value_ 4e;} } 

int sense_pushbutton(int pb) { /*pushbutton shares with limit switch*/ 
unsigned char value; /*electro contact & emergency • I 
value ; PCDA TDIR & pb; 
if(value = OxOOOO) return 1; 
else return 0; 
} 

int sense_FF(int sf) { /*Fan Fault, FF switch 0 / 

unsigned char value; 
value ; PDDA TDIR & sf; 
if (value = OxOOOO) return I; 
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else return 0; 
} 

void delay_ mS(k){ 
for G=Oj<kj++ ){ 

unsigned int i; /* I rnS delay with SCSRI = OxOOFD;*/ 
for (i=O;i<4000;i++ ); } } /* this is generated by software*/ 

void delay_s(f){ 
int x; 
for(x=O;x<f;x++){ 

delay_mS(l); 
if( sense __pushbutton(Ox0008)) { 

delay_mS(SO); 
lcd_cmd(OxFFOI); 
state=!6; 
system_stopQ; 

PFDA TDIR = OxFFOO; 
break; } 

} } 

unsigned int ReadADC(int adc _channel) { /* Read ADC *I 
unsigned int adc _value; 
ADCTRL2 = Ox2000; 
if(adc_channel=O) { 

adc_value=RESULT0»6 & Ox03FF;} 
else if(adc_channel==l) { 

adc_value=RESULT1»6 & Ox03FF;} 
else if(adc_channel=2) { 

adc_value=RESULT2»6 & Ox03FF;} 
return adc _value; } 

void auto_up_down_stopQ{ 
/*stop associate timer*/ 
CMPRI=SOO; /*set pwm to 50% DC so motor stop*/} 

void dsp_setupQ{ 
/*** Configure the System Control and Status registers***/ 

SCSRI = OxOOFD; /*40MHz clock freq */ 
SCSR2 = (SCSR2I OxOOOB) & OxOOOF; 

/*** Disable the watchdog timer***/ 
WDCR = OxOOE8; 

/** * Setup external memory interface for LF2407 EVM • • *I 
WSGR = Ox0040; 

/** * Setup shared 110 pins • • *I 
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MCRA = OxOOCO; /*activate pwml & pwm2 *I 
MCRB = OxOOOO; /*group B pins*/ 
MCRC = OxOOOA; /* pwm7=Q6, pwm9=Q7 *I 

/*** Configure 10 pin as an input ••• 
PCDATDIR = OxOOOO; 
PCDATDIR = PADATDIR I Ox4000; /*set pwml o/p * 
PDDATDIR = OxOOOO; 

/*** Configure 10 pin as an output**/ 
PFDA TDIR = OxFFOO; 
PBDA TDIR = OxFFOO; 
PEDA TDIR = OxFFOO; 
PADA TDIR = OxFFOO; 

/*** Setup the core interrupts ***/ 
IMR = OxOOOO; /* clear the IMR register *I 
IFR = Ox003F; /* clear any pending core interrupts *I 
IMR = Ox0004; /* enable desired core interrupts *I 

/*** Setup the event manager interrupts ***/ 
. EVAIFRA = OxFFFF; I* clear all EVA group A interrupts *I 
EVAIFRB = OxFFFF; I* clear all EVA group B interrupts *I 
EVAIFRC = OxFFFF; I* clear all EVA group C interrupts *I 
EVAIMRA = OxOOOO; /* enable desired EVA group A interrupts *I 
EVAIMRB = OxOOOI; /*enable desired EVA group B interrupts *I 
EVAIMRC = OxOOOO; /* enable desired EVA group C interrupts */ 

EVBIFRA = OxFFFF; 
EVBIFRB = OxFFFF; 
EVBIFRC = OxFFFF; 
EVBIMRA = OxOOOO; 
EVBIMRB = OxOOOO; 
EVBIMRC = OxOOOO; 

/*** Enable global interrupts ***/ 

I* clear all EVB group A interrupts *I 
I* clear all EVB group B interrupts */ 
I* clear all EVB group C interrupts */ 
I* enable desired EVB group A interrupts *I 
I* enable desired EVB group B interrupts *I 

I* enable desired EVB group C interrupts *I 

asm(" CLRC INTM"); /*enable global interrupts *I 

/**** ADC Setup****/ 
ADCTRLI = Ox4000; 
ADCTRLI = Ox2F82; 
MAX _ CONV = Ox0002; 
CHSELSEQI = Ox0210; 
ADCTRL2 = OxOOOO; 

/***Setup timers I and 2, and the PWM configuration***/ 
T1 CON= OxOOOO; /* disable timer I */ 
T2CON = OxOOOO; I* disable timer 2 */ 
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GPTCONA = OxOOOO; I* configure GPTCONA *I 

I* Timer 1: configure to clock 20kHzPWMI & PWM2 pin *I 
I* Asymmetric PWM, user set carrier frequency & duty cycle*/ 

Tl CNT = OxOOOO; /* clear timer counter *I 
T1 PR = 0; /* initialized timer period to 0 *I 
DBTCONA = OxOOOO; /* deadband units off*/ 
CMPRI = 0;/*500; /* initialized PWMI & PWM2 duty cycle */ 
ACTRA = Ox0009; /*pwml active low & pwm2 active high */ 
COMCONA = Ox8200; /* configure COMCON register *I 
TICON = Ox0940; /* Assymetric & prescaler 2 */ 

I* Timer 3, generate Q6 & Q7 *I 
I* Timer 3: configure to clock PWM7 & PWM9 pin*/ 
I* Asymmetric PWM, user set carrier frequency & duty cycle */ 
I* Q? always 2.2uS delay start from Q6 *I 

T3CNT = OxOOOO; /* clear timer counter */ 
T3PR = period; /* initialized timer period to 0 *I 
DBTCONA = OxOOOO; /* deadband units off*/ 
CMPR4 = pwm_duty_O; I* initialized PWM7 duty cycle*/ 
CMPR5 = pwm_duty_O; /*initialized PWM9 duty cycle*/ 
ACTRB = Ox0021; /*use PWM7(Q6) & PWM9(Q7) invert ,PWM2 pin set 

active high *I 
COMCONB = Ox8200; 
T3CON = Oxl240; /* Assymetric & prescaler 2 */ 

I* Timer 2: configure to generate a O.Ols periodic interrupt*/ 
T2CNT = OxOOOO; /* clear timer counter *I 
T2PR = 0; /* initialized timer period*/ 
T2CON = Ox0840; I* configure T2CON register*/ 

t••• Enable global interrupts •••t 
asm(" CLRC INTM"); /* enable global interrupts */ 

} 

void lcd_display_function(){ 
switch( state){ 

case 0: if{state=O&&sense_pushbutton(Ox0004)){ 
delay_mS(50); 
lcd_cmd(OxFFOI); /*clear display command*/ 
state=!; 
display_ main_ menu();} 

else if{state=O&&sense _pushbutton(OxOOI 0)){ 
delay_ mS(SO); 
lcd_cmd(OxFFOI); /*clear display command*/ 
state= I!; 
display_ manual_ mode(); 
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w=2; /*start manual mode program in loop *I } 
break; 

case I: if\state=l&&sense_pushbutton(OxOOI 0)){ 
delay_mS(SO); 
led_ cmd(OxFFO I); 
state=8; 
display _press_ start(); } 

else if(state=l&&sense_pushbutton(Ox0008)){ 
delay_mS(SO); 
lcd_cmd(OxFFOI); /*clear display command*/ 
state=ll; 
display_ manual_ mode(); 
w=2; /*start manual mode program in loop */ } 

else if\ state= I &&sense _pushbutton(Ox0004)) { 
delay_mS(SO); 

break; 

lcd_cmd(OxFFOI); 
state=2; 
count_!(); /*reset *I 
display_on_time(); 
cursorposition(OxFFSA); 
led_ data(OxFF30+value_l a); 
cursorposition{OxFFSB); 
lcd_data(OxFF30+value_2a); 
cursorposition(OxFFSC); 
led_ data{OxFF30+value _3a); 
cursorposition(OxFFSD); 
lcd_data(OxFF30+value_ 4a); 
cursorposition(OxFF89); 
led_ cmd(OxFFOD); } 

case 2: if\state==2&&sense_pushbutton(Ox001 0)){ 
delay_mS(SO); 
lcd_cmd(OxFFOI); 
state=3; 
display_ off_ time(); 
cursorposition(OxFF8A); 
led_ data(OxFF30+value _I b); 
cursorposition(OxFFSB); 
lcd_data{OxFF30+value_2b); 
cursorposition(OxFFSC); 
lcd_data{OxFF30+value_3b); 
cursorposition(OxFFSD); 
led _data{OxFF30+value _ 4b ); 
cursorposition(OxFF89); 
led_ cmd(OxFFOD);} 

if\state 2&&sense_pushbutton(Ox0008))next_cursor_on(); 
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if( state==2&&sense _pushbutton(Ox0004)) { 
if(count_on=O) increament_onO(); 
else if (count_ on= I) increament_ on I(); 
else if (count_ on=2) increament_ on2(); 
else if(count_on=3) increament_on3(); 
else if(count_on=4) increament_on4();} 
break; 

case 3: if(state=3&&sense_pushbutton(Ox0010)){ 
delay_mS(SO); 
lcd_cmd(OxFFOI); 
state=4; 
current(); 
cursorposition(OxFFSA); 
lcd_data(OxFF30+value_lc); 
cursorposition(OxFFSB); 
led_ data(OxFF30+value _ 2c ); 
cursorposition(OxFF89); 
led_ cmd(OxFFOD);} 
if(state==3&&sense_pushbutton(Ox0008)) 

next_ cursor_ off(); 
if(state=3&&sense_pushbutton(Ox0004)){ 
if(count_off=l) increament_offi(); 
else if (count_ off==2) increament_ off2(); 
else if (count_ off==3) increament_ off3(); 
else if(count_off. 4) increament_off4();} 
break; 

case 4: if(state==4&&sense_pushbutton(Ox001 0)){ 
delay_mS(SO); 
lcd_cmd(OxFFOI); 
state=S; 
up_time(); 
cursorposition(OxFFSA); 
lcd_data(OxFF30+value_ld); 
cursorposition(OxFFSB); 
led_ data(OxFF30+value _ 2d); 
cursorposition(OxFFSD); 
lcd_data(OxFF30+value_ 4d); 
cursorposition(OxFF89); 
lcd_cmd(OxFFOD);} 
if(state=4&&sense_pushbutton(Ox0008)) 

next_ cursor_current(); 
if(state==4&&sense_pushbutton(Ox0004)){ 
if (count_ current= I) increament_ current I(); 
else if(count_current=2) increament_current2();} 
break; 
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case 5: if{state;;S&&sense_pushbutton(OxOOIO)){ 
delay_mS(SO); 
lcd_cmd(OxFFOI); 
state;6; 
down_time(); 
cursorposition(OxFF8A); 
lcd_data(OxFF30+value_le); 
cursorposition(OxFF8B); 
lcd_data(OxFF30+value_2e); 
cursorposition(OxFF8D); 
lcd_data(OxFF30+value_ 4e); 
cursorposition(OxFF89); 
led_ cmd(OxFFOD);} 
if{ state;;S&&sense _pushbutton(Ox0008)) 

next_cursor_up(); 
if(state;;S&&sense _pushbutton(Ox0004)) { 
if(count_uF;I) increament_upl(); 
else if(count_up 2) increament_up2(); 
else if(count_up=4) increament_up4();} 
break; 

case 6: if{ state=6&&sense _pushbutton(OxOO I 0)) { 
delay_mS(SO); 
lcd_cmd(OxFFOI); 
state;7; 
save_ settings(); } 
if{state=6&&sense_pushbutton(Ox0008)) 

next_ cursor_down(); 
if(state;;6&&sense_pushbutton(Ox0004)){ 
if (count_ down= I) increament_down I(); 
else if(count_down--2) increament_down2(); 
else if(count_down-~) increament_down4();} 
break; 

case 7: if{state=7&&sense_pushbutton(Ox0004)){ 
delay _mS(SO); 
led_ cmd(OxFFO I); 
state;2; 
count_!(); 
display_ on _time(); 
cursorposition(OxFFSA); 
lcd_data(OxFF30+value_la); 
cursorposition(OxFF8B); 
lcd_data(OxFF30+value_2a); 
cursorposition(OxFF8C); 
lcd_data(OxFF30+value_3a); 
cursorposition(OxFF8D); 
Icd_data(OxFF30+value_ 4a); 
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cursorposition(OxFF89); 
led_ cmd(OxFFOD); } 
else if(state=7 &&sense _pushbutton(OxOOI 0)){ 
delay_mS(SO); 
led_ cmd(OxFFO I); 
state=!; 
display _main_ menu(); 
count_O();} 
break; 

case 8: if(state=8&&sense_pushbutton(Ox0002)&&sense_pushbutton(Ox0020)){ 
delay_mS(SO); 
led_ cmd(OxFFO I); 
state=9; 
system _running(); 
lcd_cmd(OxFFOD); 
run_system(); 
setting_ on(); 
w=l;} /*w=l, to main loop, activate detect faulty*/ 
else if( state=8&&sense _pushbutton(Ox0008)){ 
delay_mS(SO); 
lcd_cmd(OxFFOI); 
state=!; 
display_ main_ menu(); 
led_ cmd(OxFFOD); } 
break; 

case 9: if(state=9&&sense_pushbutton(Ox0008)){ 
delay_mS(SO); 
led_ cmd(OxFFOI ); 
state=IO; 
system_stop(); 
setting_ off();} 
break; 

case I O:if(state=l O&&sense _pushbutton(Ox0004)){ 
delay_mS(SO); 
led cmd(OxFFO I); 
state=!; 
display_ main_ menu();} 
else if( state= I O&&sense _pushbutton(OxOO I 0)) { 
delay_mS(SO); 
led cmd(OxFFOI); 
state=!!; 
display _manual_ mode(); 
w=2; /*start manual mode program in loop*/} 
break; 
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} 

case 11: if(state==II&&sense_pushbutton(Ox0008)){ 
delay_ mS(SO); 
led_ cmd(OxFFO I); 
display_ main_ menuO; 
state= I; 
w=O; /*stop manual mode program in loop*/ 
lcd_cmd(OxFFOD);} 
break; 

case 12: if(state=-12&&sense _pushbutton(OxOO I 0)){ 
delay_mS(50); 
lcd_cmd(OxFFOI); 

} 

state=O; 
display_ edm_ controllerO; 
led_ cmd(OxFFOD);} 
break; 
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;•································································· 
• Filename: !2407 _ c.h • 
• 
• Author: Azli Yahya, Loughborough University. 
• 

• 
• 
• 

• Description: LF2407 A DSP register definitions for EDM C-code. • 
******************************************************************I 

I* Core registers • I 
#defineiMR 
#define GREG 
#define IFR 

*(volatile unsigned int *)Ox0004 I* Interrupt mask reg *I 
*(volatile unsigned int *)Ox0005 I* Global memory allocation reg *I 
*(volatile unsigned int *)Ox0006 I* Interrupt flag reg *I 

I* System configuration and interrupt registers *I 
#define PIRQRO *(volatile unsigned int *)Ox7010 I* Peripheral interrupt request reg 0 *I 
#define PIRQRI *(volatile unsigned int *)Ox7011 I* Peripheral interrupt request reg I *I 
#define PIRQR2 *(volatile unsigned int *)Ox7012 I* Peripheral interrupt request reg 2 *I 
#define PIACKRO *(volatile unsigned int *)Ox70141* Peripheral interrupt 

#define PIACKRI 

#define PIACKR2 

#define SCSRI 
#define SCSR2 
#define DINR 
#define PIVR 

acknowledge reg 0 *I 
*(volatile unsigned int *)Ox70 15 I* Peripheral interrupt 
acknowledge reg I *I 
*(volatile unsigned int *)Ox70 16 I* Peripheral interrupt 
acknowledge reg 2 *I 

*(volatile unsigned int *)Ox70!8 I* System control & status reg I *I 
*(volatile unsigned int *)Ox7019 I* System control & status reg 2 *I 
*(volatile unsigned int *)Ox701C I* Device identification reg *I 
*(volatile unsigned int *)Ox701E I* Peripheral interrupt vector reg *I 

I* Watchdog timer (WD) registers *I 
#define WDCNTR *(volatile unsigned int *)Ox7023 I* WD counter reg *I 
#define WDKEY *(volatile unsigned int *)Ox7025 I* WD reset key reg • I 
#define WDCR *(volatile unsigned int *)Ox7029 I* WD timer control reg *I 

I* Serial Peripheral Interface (SPI) registers *I 
#define SPICCR *(volatile unsigned int *)Ox7040 I* SPI configuration control reg *I 
#define SPICTL *(volatile unsigned int *)Ox7041 I* SPI operation control reg *I 
#define SPISTS *(volatile unsigned int *)Ox7042 I* SPI status reg *I 
#define SPIBRR *(volatile unsigned int *)Ox7044 I* SPI baud rate reg • I 
#define SPIRXEMU *(volatile unsigned int *)Ox7046 I* SPI emulation buffer reg *I 
#define SPIRXBUF *(volatile unsigned int *)Ox7047 I* SPI serial receive buffer reg *I 
#define SPITXBUF *(volatile unsigned int *)Ox7048 I* SPI serial transmit buffer reg *I 
#define SPIDAT *(volatile unsigned int *)Ox7049 I* SPI serial data reg *I 
#define SPIPRI *(volatile unsigned int *)Ox704F I* SPI priority control reg *I 

I* SCI registers *I 
#define SCICCR 
#define SCICTLI 

. *(volatile unsigned int *)Ox7050 I* SCI communication control reg *I 
*(volatile unsigned int *)Ox7051 I* SCI control reg I • I 
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#define SCIHBAUD 
#define SCILBAUD 
#define SCICTL2 
#define SCIRXST 
#define SCIRXEMU 
#define SCIRXBUF 
#define SCITXBUF 
#define SCIPRI 

*(volatile unsigned int *)Ox7052 I* SCI baud-select reg, high bits *I 
*(volatile unsigned int *)Ox7053 I* SCI baud-select reg, low bits *I 
*(volatile unsigned int *)Ox7054 I* SCI control reg 2 *I 
*(volatile unsigned int *)Ox7055 I* SCI receiver status reg *I 
*(volatile unsigned int *)Ox7056 I* SCI emulation data buffer reg *I 
*(volatile unsigned int *)Ox7057 I* SCI receiver data buffer reg *I 
*(volatile unsigned int *)Ox7059 I* SCI transmit data buffer reg *I 
*(volatile unsigned int *)Ox705F I* SCI priority control reg *I 

I* External interrupt configuration registers *I 
#define XINTICR *(volatile unsigned int *)Ox7070 I* Ext interrupt I config reg *I 
#define XINT2CR *(volatile unsigned int *)Ox7071 I* Ext interrupt 2 config reg *I 

I* Digital 110 registers *I 
#define MCRA *(volatile unsigned int *)Ox7090 I* 110 mux control reg A *I 
#define MCRB *(volatile unsigned int *)Ox7092 I* 110 mux control reg B *I 
#define MCRC *(volatile unsigned int *)Ox7094 I* 110 mux control reg C *I 
#define PADATDIR *(volatile unsigned int *)Ox7098 I* 110 port A data & dir reg *I 
#define PBDATDIR *(volatile unsigned int *)Ox709A I* 110 port B data & dir reg *I 
#define PCDATDIR *(volatile unsigned int *)Ox709C I* 110 port C data & dir reg *I 
#define PDDA TDIR *(volatile unsigned int *)Ox709E I* 110 port D data & dir reg *I 
#define PEDA TDIR *(volatile unsigned int *)Ox7095 I* 110 port E data & dir reg *I 
#define PFDATDIR *(volatile unsigned int *)Ox7096 I* 110 port F data & dir reg *I 

I* Analog-to-Digital Converter (ADC) registers *I 
#define ADCTRLI *(volatile unsigned int *)Ox70AO I* ADC control reg 1 *I 
#define ADCTRL2 *(volatile unsigned int *)Ox70Al I* ADC control reg 2 *I 
#define MAX_CONV *(volatile unsigned int *)Ox70A2 I* Maximum conversion 

channels reg *I 
#define CHSELSEQ I *(volatile unsigned int *)Ox70A3 I* Channel select 

sequencing control reg I • I 
#define CHSELSEQ2 *(volatile unsigned int *)Ox70A4 I* Channel select 

sequencing control reg 2 *I 
#define CHSELSEQ3 *(volatile unsigned int *)Ox70A5 I* Channel select 

sequencing control reg 3 • I 
#define CHSELSEQ4 *(volatile unsigned int *)Ox70A6 I* Channel select 

sequencing control reg 4 *I 
#define AUTO_SEQ_SR *(volatile unsigned int *)Ox70A7 I* Autosequence 

status reg *I 
#define RESULTO *(volatile unsigned int *)Ox70A8 I* Conversion result buffer reg 0 *I 
#define RESULT! *(volatile unsigned int *)Ox70A9 I* Conversion result buffer reg I *I 
#define RESUL T2 *(volatile unsigned int *)Ox70AA I* Conversion result buffer reg 2 *I 
#define RESULT3 *(volatile unsigned int *)Ox70AB I* Conversion result buffer reg 3 *I 
#define RESULT4 *(volatile unsigned int *)Ox70AC I* Conversion result buffer reg 4 *I 
#define RESULTS *(volatile unsigned int *)Ox70AD I* Conversion result buffer reg 5 *I 
#define RESULT6 *(volatile unsigned int *)Ox70AE I* Conversion result buffer reg 6 *I 
#define RESULT? *(volatile unsigned int *)Ox70AF I* Conversion result buffer reg 7 *I 
#define RESULTS *(volatile unsigned int *)Ox70BO I* Conversion result buffer reg 8 *I 
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#define RESULT9 *(volatile unsigned int *)Ox70BI /*Conversion result buffer reg 9 *I 
#define RESULTIO*(volatile unsigned int *)Ox70B2 /*Conversion resultbufferreg 10 */ 
#define RESULTII*(volatile unsigned int *)Ox70B3 /*Conversion result buffer regll */ 
#define RESULT12 *(volatile unsigned int *)Ox70B4 /*Conversion result buffer reg12 */ 
#define RESULT13 *(volatile unsigned int *)Ox70B5 /*Conversion result buffer regl3 */ 
#define RESULTI4 *(volatile unsigned int *)Ox70B6/*Conversion result buffer reg 14 *I 
#define RESUL TIS *(volatile unsigned int *)Ox70B7 /*Conversion result buffer reg 15 *I 
#define CALffiRATION *(volatile unsigned int *)Ox70B8 /*Calibration result reg */ 

I* Controller Area Network (CAN) registers */ 
#define MDER 
#defineTCR 
#defineRCR 
#defineMCR 
#define BCR2 
#define BCR I 
#defineESR 
#define GSR 
#define CEC 
#define CAN_IFR 
#define CAN_IMR 
#define LAMO_H 

#define LAMO_L 

#define LAMI_H 

#define LAMI_L 

#define MSGIDOL 

#define MSGIDOH 

#define MSGCTRLO 

#define MBXOA 
#define MBXOB 
#define MBXOC 
#define MBXOD 
#define MSGIDIL 

#define MSGIDIH 

#define MSGCTRLI 

#define MBXIA 
#define MBXIB 
#define MBXIC 

*(volatile unsigned int *)Ox71 00 /*CAN mailbox direction/enable reg */ 
*(volatile unsigned int *)Ox7101 /*CAN transmission control reg */ 
*(volatile unsigned int *)Ox71 02 /* CAN receive control reg */ 
*(volatile unsigned int *)Ox7103 /*CAN master control reg */ 
*(volatile unsigned int *)Ox71 04 /* CAN bit config reg 2 *I 
*(volatile unsigned int *)Ox7105 /*CAN bit config reg I */ 
*(volatile unsigned int *)Ox7106 /*CAN error status reg */ 
*(volatile unsigned int *)Ox7107 /*CAN global status reg */ 
*(volatile unsigned int *)Ox7108 I* CAN trans and rev err counters*/ 
*(volatile unsigned int *)Ox7109 /*CAN interrupt flag reg */ 
*(volatile unsigned int *)Ox71 Oa /* CAN interrupt mask reg *I 
*(volatile unsigned int *)Ox71 Ob /* CAN local acceptance mask 
MBX0/1*/ 
*(volatile unsigned int *)Ox71 Oc /* CAN local acceptance mask 
MBX0/1*/ 
*(volatile unsigned int *)Ox71 Od /* CAN local acceptance mask 
MBX2/3 *I 
*(volatile unsigned int *)Ox71 Oe /* CAN local acceptance mask 
MBX2/3 */ 
*(volatile unsigned int *)Ox7200 /* CAN message ID for mailbox 
0 (lower 16 bits) *I 
*(volatile unsigned int *)Ox7201 /* CAN message ID for 
mailbox 0 (upper 16 bits) *I 
*(volatile unsigned int *)Ox7202 /* CAN RTR and DLC for 
mailbox 0 *I 
*(volatile unsigned int *)Ox7204 *CAN 2 of8 bytes ofmailbox 0*/ 
*(volatile unsigned int *)Ox7205/* CAN 2 of8 bytes ofmailbox 0 *I 
*(volatile unsigned int *)Ox7206/* CAN 2 of8 bytes ofmailbox 0 *I 
*(volatile unsigned int *)Ox7207/* CAN 2 of8 bytes ofmailbox 0*/ 
*(volatile unsigned int *)Ox7208 /* CAN message ID for mailbox 
I (lower 16 bits) *I 
*(volatile unsigned int *)Ox7209 /* CAN message ID for 
mailbox I (upper 16 bits)*/ 
*(volatile unsigned int *)Ox720A /* CAN RTR and DLC for 
mailbox I */ 
*(volatile unsigned int *)Ox720C/* CAN 2 of8 bytes ofmailbox I*/ 
*(volatile unsigned int *)Ox720D/* CAN 2 of8 bytes ofmailbox I*/ 
*(volatile unsigned int *)Ox720E/* CAN 2 of8 bytes ofmailbox I*/ 
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#define MBXID 
#define MSGID2L 

#define MSGID2H 

#define MSGCTRL2 

#define MBX2A 
#define MBX2B 
#define MBX2C 
#define MBX2D 

#define MSGID3L 

#define MSGID3H 

#define MSGCTRL3 

#define MBX3A 
#define MBX3B 
#define MBX3C 
#define MBX3D 
#define MSGID4L 

#define MSGID4H 

#define MSGCTRL4 

#define MBX4A 
#define MBX4B 
#define MBX4C 
#define MBX4D 
#define MSGID5L 

#define MSGID5H 

#define MSGCTRL5 

#define MBX5A 
#define MBX5B 
#define MBX5C 
#define MBXSD 

*(volatile unsigned int *)Ox720F/* CAN 2 of8 bytes ofmailbox I */ 
*(volatile unsigned int *)Ox7210 /*CAN message ID for mailbox 2 
(lower 16 bits)*/ 
*(volatile unsigned int *)Ox7211 /*CAN message ID for 
mailbox 2 (upper 16 bits)*/ 
*(volatile unsigned int *)Ox7212 /*CAN RTR and DLC for 
mailbox 2 *I 
*(volatile unsigned int *)Ox7214 /*CAN 2 of8 bytes ofmailbox 2 *I 
*(volatile unsigned int *)Ox7215 I* CAN 2 of 8 bytes of mailbox 2 *I 
*(volatile unsigned int *)Ox7216 I* CAN 2 of8 bytes ofmailbox 2 *I 
*(volatile unsigned int *)Ox7217 I* CAN 2 of 8 bytes of mailbox 2 *I 

*(volatile unsigned int *)Ox7218 I* CAN message ID for mailbox 
3 (lower 16 bits) *I 
*(volatile unsigned int *)Ox7219 I* CAN message ID for 
mailbox 3 (upper 16 bits) *I 
*(volatile unsigned int *)Ox721A /* CAN RTR and DLC for 
mailbox 3 *I 
*(volatile unsigned int *)Ox721 C I* CAN 2 of 8 bytes of mailbox 3 *I 
*(volatile unsigned int *)Ox721D /*CAN 2 of8 bytes ofmailbox 3 *I 
*(volatile unsigned int *)Ox721E I* CAN 2 of8 bytes ofmailbox 3 *I 
*(volatile unsigned int *)Ox721F /*CAN 2 of8 bytes ofmailbox 3 *I 
*(volatile unsigned int *)Ox7220 /* CAN message ID for mailbox 4 
(lower 16 bits) *I 
*(volatile unsigned int *)Ox7221 /* CAN message ID for 
mailbox 4 (upper 16 bits) *I 
*(volatile unsigned int *)Ox7222 /* CAN RTR and DLC for 
mailbox 4 *I 
*(volatile unsigned int *)Ox7224 I* CAN 2 of 8 bytes of mail box 4 *I 
*(volatile unsigned int *)Ox7225 /*CAN 2 of8 bytes ofmailbox 4 *I 
*(volatile unsigned int *)Ox7226 I* CAN 2 of 8 bytes of mailbox 4 *I 
*(volatile unsigned int *)Ox7227 I* CAN 2 of8 bytes ofmailbox 4 *I 
*(volatile unsigned int *)Ox7228 I* CAN message ID for mailbox 
5 (lower 16 bits) *I 
*(volatile unsigned int *)Ox7229 I* CAN message ID for 
mailbox 5 (upper 16 bits) *I 
*(volatile unsigned int *)Ox722A I* CAN RTR and DLC for 
mailbox 5 *I 
*(volatile unsigned int *)Ox722C I* CAN 2 of 8 bytes of mailbox 5 *I 
*(volatile unsigned int *)Ox722D I* CAN 2 of 8 bytes of mailbox 5 *I 
*(volatile unsigned int *)Ox722E I* CAN 2 of8 bytes ofmailbox 5 *I 
*(volatile unsigned int *)Ox722F I* CAN 2 of8 bytes ofmailbox 5 *I 

I* Event Manager A (EV A) registers *I 
#define GPTCONA *(volatile unsigned int *)Ox7400 I* GP timer control reg A *I 
#define TICNT *(volatile unsigned int *)Ox7401 I* GP timer I counter reg *I 
#define TICMPR *(volatile unsigned int *)Ox7402 I* GP timer I compare reg *I 
#define TIPR *(volatile unsigned int *)Ox7403 I* GP timer I period reg *I 
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#define T1 CON 
#define T2CNT 
#define T2CMPR 
#define T2PR 
#define TICON 
#define COMCONA 
#define ACTRA 
#define DBTCONA 
#define CMPRI 
#define CMPR2 
#define CMPR3 
#define CAPCONA 
#define CAPFIFOA 
#define CAPIFIFO 
#define CAP2FIFO 
#define CAP3FIFO 
#define CAPIFBOT 

#define CAP2FBOT 

#define CAP3FBOT 

#define EV AIMRA 
#define EV AIMRB 
#define EV AIMRC 
#define EV AIFRA 
#define EV AIFRB 
#define EV AIFRC 

*(volatile unsigned int *)Ox7404 I* GP timer I control reg *I 
*(volatile unsigned int *)Ox7405 I* GP timer 2 counter reg *I 
*(volatile unsigned int *)Ox7406 I* GP timer 2 compare reg *I 
*(volatile unsigned int *)Ox7407 I* GP timer 2 period reg *I 
*(volatile unsigned int *)Ox7408 I* GP timer 2 control reg *I 
*(volatile unsigned int *)Ox7411 I* Compare control reg A *I 
*(volatile unsigned int *)Ox74131* Compare action control reg A *I 
*(volatile unsigned int *)Ox74151* Dead-band timer control reg A *I 
*(volatile unsigned int *)Ox7417 I* compare reg I *I 
*(volatile unsigned int *)Ox7418 I* compare reg 2 *I 
*(volatile unsigned int *)Ox7419 I* compare reg 3 *I 
*(volatile unsigned int *)Ox7420 I* Capture control reg A *I 
*(volatile unsigned int *)Ox7422 I* Capture FIFO status reg A *I 
*(volatile unsigned int *)Ox7423 I* Capture Channel! FIFO top *I 
*(volatile unsigned int *)Ox7424 I* Capture Channel2 FIFO top *I 
*(volatile unsigned int *)Ox7425 I* Capture Channel3 FIFO top *I 
*(volatile unsigned int *)Ox7427 I* Bottom reg of capture FIFO 
stack I *I 
*(volatile unsigned int *)Ox7427 I* Bottom reg of capture FIFO 
stack2 *I 
*(volatile unsigned int *)Ox7427 I* Bottom reg of capture FIFO 
stack 3 *I 
*(volatile unsigned int *)Ox742C I* EVA interrupt mask reg A *I 
*(volatile unsigned int *)Ox742D I* EVA interrupt mask reg B *I 
*(volatile unsigned int *)Ox742E I* EVA interrupt mask reg C *I 
*(volatile unsigned int *)Ox742F I* EVA interrupt flag reg A *I 
*(volatile unsigned int *)Ox7430 I* EVA interrupt flag reg B *I 
*(volatile unsigned int *)Ox7431 I* EVA interrupt flag reg C *I 

I* Event Manager B (EVB) registers *I 
#define GPTCONB *(volatile unsigned int *)Ox7500 
#defme T3CNT *(volatile unsigned int *)Ox7501 
#define T3CMPR *(volatile unsigned int *)Ox7502 
#define T3PR *(volatile unsigned int *)Ox7503 
#defme T3CON *(volatile unsigned int *)Ox7504 
#define T4CNT *(volatile unsigned int *)Ox7505 
#define T4CMPR *(volatile unsigned int *)Ox7506 
#define T4PR *(volatile unsigned int *)Ox7507 
#define T4CON *(volatile unsigned int *)Ox7508 
#define COMCONB *(volatile unsigned int *)Ox7511 
#define ACTRB *(volatile unsigned int *)Ox7513 

register B *I 

I* GP timer control reg B *I 
I* GP timer 3 counter reg *I 
I* GP timer 3 compare reg *I 
I* GP timer 3 period reg *I 
I* GP timer 3 control reg *I 
I* GP timer 4 counter reg *I 
I* GP timer 4 compare reg *I 
I* GP timer 4 period reg *I 
I* GP timer 4 control reg *I 
I* Compare control register B *I 
I* Compare action control 

#define DBTCONB 
#define CMPR4 
#define CMPRS 
#defme CMPR6 
#define CAPCONB 
#define CAPFIFOB 

*(volatile unsigned int *)Ox7515 I* Dead-band timer control reg B *I 
*(volatile unsigned int *)Ox7517 I* Compare reg 4 *I 
*(volatile unsigned int *)Ox7518 I* Compare reg 5 *I 
*(volatile unsigned int *)Ox7519 I* Compare reg 6 *I 

. *(volatile unsigned int *)Ox7520 I* Capture control reg B *I 
*(volatile unsigned int *)Ox7522 I* Capture FIFO status reg B *I 
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#define CAP4FIFO 
#define CAPSFIFO 
#define CAP6FIFO 
#define CAP4FBOT 

#define CAPSFBOT 

#define CAP6FBOT 

#define EVBIMRA 
#define EVBIMRB 
#define EVBIMRC 
#define EVBIFRA 
#define EVBIFRB 
#define EVBIFRC 

*(volatile unsigned int *)Ox7523 I* Capture channel4 FIFO top *I 
*(volatile unsigned int *)Ox7524 I* Capture channelS FIFO top *I 
*(volatile unsigned int *)Ox7525 I* Capture channel6 FIFO top *I 
*(volatile unsigned int *)Ox7527 I* Bottom reg of capture FIFO 
stack 4 *I 
*(volatile unsigned int *)Ox7527 I* Bottom reg of capture FIFO 
stack 5 *I 
*(volatile unsigned int *)Ox7527 I* Bottom reg of capture FIFO 
stack 6 *I 
*(volatile unsigned int *)Ox752C I* EVB interrupt mask reg A *I 
*(volatile unsigned int *)Ox752D I* EVB interrupt mask reg B *I 
*(volatile unsigned int *)Ox752E I* EVB interrupt mask reg C *I 
*(volatile unsigned int *)Ox752F I* EVB interrupt flag reg A *I 
*(volatile unsigned int *)Ox7530 I* EVB interrupt flag reg B *I 
*(volatile unsigned int *)Ox7531 I* EVB interrupt flag reg C *I 

I* 110 space mapped registers *I 
#define FCMR portFFOF I* Flash control mode register *I 
ioport unsigned int portFFOF; 
#define WSGR portFFFF 
ioport unsigned int portFFFF; 

I* C2xx compiler specific keyword • I 
I* Wait-state generator reg *I 

I* C2xx compiler specific keyword *I 
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!****************************************************************** 
• Filename: edm l.h • 
• 
• Author: Azli Yahya, Loughborough University. 
• 

• 
• 
• 

• Description: Header file for EDM C-code. • 
******************************************************************/ 

/*PROTOTYPE DEFINITIONS*/ 

void error _input(); 
void run_system(); 
void disable _interrupts(); 
void dsp_setup(); 
void event_manager_init(); 
void enable _interrupts(); 
void start_main_program(); 
unsigned int ReadADC(); 
void select_Imax(); 
void delay_sec(); 
void delay_ mS(); 
void lcd_clear_display(); 
void lcd_initialize(); 
void lcd_S_bit(); 
void display_ main_ menu(); 
void display_ on _time(); 
void display_ off_timeO; 
void display_ on_ off(); 
void display_ current(); 
void display _edm_controller(); 
void display_press_start(); 
void sensor(); 
void current(); 
void system_running(); 
void save_settings(); 
void movecursor(); 
void led_ cmd(); 
void cursorposition(); 
int next_ cur_ on( void); 
int next_cur _of!{ void); 
int next_cur_curr(void); 
int inc_nol(void); 
int increament_onl(void); 
int increament_on2(void); 
int increament_on3(void); 
int increament_offi(void); 
int increament_ off2(void); 
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int increament_off3(void); 
int increament_ current! (void); 
int increament current2(void); 
int up_timetest(void); · 
int down timetest(void); 

void error_controller(); 
void inc _ no3(); 
void Icd_dataQ; 
void view_on_time(); 
void view_off_time(); 
void view current(); 
void on_off_time(); 
void up_time(); 
void down time(); 
void view_up_time(); 
void view_down_time(); 
void run_settings(); 
void system_stop(); 
void count_ 0(); 
void hysteretic _current(); 

void pwm_O(); 
void current(); 
int sense _push button(); 
void setting_ off(); 
void setting_ on(); 
void generate_Q6_Q7(); 
void lcd_display_main(); 
void Icd_display_function(); 
void manual_ mode(); 
void fault_ system(); 
void faulty(); 
void reverse_ motor(); 
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/****************************************************************** 
• Filename: edm.cmd • 
• 
• Author: Azli Yahya, Ioughborough University. 
• 

• 
• 
• 

• Description: LF2407 A DSP memory allocation for EDM C-code. • 
******************************************************************/ 

MEMORY 
{ 
PAGE 0: /*program memory *I 

VECS: org=OOOOOh, len=00040h 
FLASH: org=00044h, len=07FBCh 
EXTPROG: org=08800h, len=07800h 

PAGE I: /*data memory*/ 
B2: org=00060h, 
BO: org=00200h, 
B I: org=00300h, 
SARAM: org=00800h, 
EXIDA TA: org=08000h, len=08000h 

SECTIONS 
{ 

I* specify sections */ 

I* Sections generated by the C-compiler */ 
.text: > FLASHPAGE 0 
.cinit: > FLASH PAGE 0 

len=00020h 
len=OOIOOh 
len=OOIOOh 
len=00800h 
} 

.const: > Bl PAGE I 

.switch:> FLASHPAGE 0 

.bss: > Bl PAGE I 

.stack: > SARAM PAGE I 

.sysmem: > Bl PAGE I 

/* Sections declared by the user */ 
vectors: > VECS PAGE 0 } 
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APPENDIXS 

Pre-existing gap voltage and current pulse power generator 

The pre-existing gap voltage and current pulse power generator circuit shown in Figure 4.8 

was designed to supply a specify current into the gap during machining. The topology is a 

buck converter consisting of Q~, Dt and inductor L with parallel switch Q2 and feedback 

diode D2. The inductor current is controlled using the hysteretic method described in 

section 3.1.4. The inductor current h is measured with the aid of LEM Hall effect current 

transducer. The output of the current transducer is the isolated V L proportional to the 

inductor current. The PWM pulses from the hysteretic controller in eZdsp is fed to Q1 from 

the IOPEO port via opto-isolatorl as shown in Figure 4.6. The 15V floating supply for Q1 

gate drive is obtained from a circuit shown below in Figure A6.1. 

' 

r = = 15V 

Figure A6.1 Floating supply for Q1 gate drive 

This consists of a simple square wave oscillator running at 250kHz feeding a primary 

winding of a small Toroidal transformer (OD=16mm) via a lJ.!F ceramic DC blocking 

capacitor. The secondary voltage of the transformer is full wave rectified and filtered by a 

lJ.!F ceramic capacitor. The buck converter at any time can see a short circuit when Q2 is 

'on', a load when the gap breaks down and an open circuit when the gap does not breaks 

down. During short circuit at the buck converter output, the inductor current flows through 

Q2. When the gap breakdown, the inductor current flows through the gap as shown in 

Figure 4.8. During open circuit, the inductor current is feedback to the supply via D2, thus 

limiting the maximum gap voltage to V d· 
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APPENDIX6 

Hardware components list 

Components 

Semiconductor 

eZdsp™ TMS3201F2407 microcontroller 1 unit 

1CD PC1602-H series Power Tip 1 unit 

Transceiver 741 VX3245 2 units 

16203 DMOS Full Bridge Driver 1 unit 

1M317 voltage regulator 1 unit 

Transistor Tx1 to T14 ZTX302 

Diode zener Dz1 to D,4 BZX79Cl0 

Diode zener Dz5 BZX79C3V3 

Operational amplifier op-ampl to op-amp 5, op-amp7 T1071 

Operational amplifier op-amp6 MAX473 

Opto-isolator opto-iso. 1. opto-iso.z HCP13120 

Opto-isolator opto-iso.3 to opto-iso.s 74016010 

Resistor n. l%.0.6W 

RI 220 

Rz 680 

R3 toR1 20k 

R9, Rn, R21 10 

Rs, Rw, R12, R14, R16 560 

R13, R1s, R11 330 

Rl8, RI9. ~8 lk 
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R2o 0.15, 5%, 5W 

R22 4.99k 

R23, R24, R33, R3s, R31, ~t. ~s. ~6. ~9 lOk 

R2s 1.58k 

R26 1.6k 

R21 453k 

R2s 4.7k 

R29, Rso 8.2k 

R3o 1.8k 

R3 t. Rn, R34, RJ6, RJs, ~7 3.3k 

R39, ~o 510 

~2 6.49k 

~3 3.24k 

R« 27k 

VRt. VR3 5k 

VR2 lOOk 

Capacitor F.25V 

Ct. C2 (ceramic) lJ.l 

C3 to c,, C9, Ct7(ceramic) O.lJ.l 

Cs (electrolytic) 680J.1 

Cw (plastic) 220n 

Cu, Cu (plastic) 15n 

cl2 (ceramic) 22n 
Ct4 (ceramic) lOJ.l 
Cts (ceramic) 0.47J.1 
Ct6, CIB (ceramic) 470n 
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CulTent transducer 

LEMLTS25 NP 

LEM HX 50-NP 

Push button swi tches 

Series 59 - miniature sealed 

DC servomotor 

M818T(03 1) San Driver 

1 unit 

1 unit 

5 units 

1 unit 

Hardware photo shot showing user interface device, analogue processing and interface 

circuit, eZdsp and PC. 
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Hardware photo shot showing eZdsp EDM controller attached to the EDM machine 
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