LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY

THE INFLUENCE OF FLUTE FORM ON

DRILL DESIGN AND PERFORMANCE

by

MANUEL DOS SANTOS PAIS, MSC (England), Lic.Eng.Mec, CEng, MEOrEng (Portugal).

A Doctoral Thesis
Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the Loughborough University of Technology

July 1982

Supervisor: D J Billau, PhD, MSc, CEng, MIMechE, FIProdE
Department of Engineering Production
(C) by Manuel dos Santos Pais, 1982

ACKNOWLEDGEMENTS

I would like to express my gratitude to the Instituto Nacional de Investigação Científica - INIC - for the financial support that made this thesis possible.

I am also obliged to the following people:

Professor R J Sury, Head of the Department of Engineering Production and my Director of Research for the interest he took in my studies in England;

Dr D J Billau, my supervisor, for his constant encouragement, advice and assistance;

Osborn-Mushet Tools Limited, Sheffield, and Marsh Brothers and Co. Ltd, Engineers, Sheffield for the drills manufacture;

Mr D G Johnson, from the Department of Management Studies, for helping with the statistical design of the experiments;

Mr R E Phelps, from the Centre for Industrial Studies, for his assistance with the analysis and heat treatment of the materials;

Mr K Pugh and Mr M Frost for the photographs, and

All the other people, mainly in the Computer Centre and in CIS, who contributed to making this work come true.

The text was typed by Mrs J Smith whose help is also acknowledged.
"... an ordinary twist drill is extremely complex, geometrically".

Shaw and Oxford
"... when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind".

Lord Kelvin

THE INFLUENCE OF FLUTE FORM ON DRILL DESIGN AND PERFORMANCE

SYNOPSIS

Many modifications have been made in the past to the conventional drill points and references to the better performance of curved lip drills when cutting cast iron can be found. Similar drill points do not seem to be as successful with steel.

The objective of this research was set to analyse drill design and to study the effect on drill performance of changing the drill conventional flute form when cutting steel.

Changing the conventional flute form has an immediate effect on the shape of the drill lip - it is no longer a straight cutting edge.

A new range of problems arises when the drill lip is a curved line as the available expressions in literature for drill cutting angles calculation are not valid except for straight lines. However, to be able to calculate and to predict the cutting angles with a nonconventional flute drill is a matter of necessity, especially if the new flute design is based or specified upon some condition relative to these angles.

The drill lip shape is also influenced by the flank surface. Thus the analysis of the drill lip shape and the calculation of the cutting angles cannot be made without studying both the flute and the flank surfaces.

Geometric surfaces are better dealt with by computing techniques and computers. Thus the shape of a drilip- the intersection of the flute with the point flank - and the cutting angles, are analysed by means of computer designtaids for both varying flute and point flank surfaces.

First, the conventional flute face design is revised as far as its design parameters and profiles normal to the drill axis are concerned. The flute heel is analysed and incorporated with the mathematical model for the flute face. Additionally, as a matter of interest for the flute cutter design, the flute sections normal to the flute direction are computed from the mathematical model for the flute.

The cylindrical grinding concept is analysed and mathematically modelled in order to simulate the capabilities of many cylindrical grinding machines in industry and the one available to the author. The name "extended cylindrical grinding" is proposed as the orthodox cylindrical grinding concept is extended to allow for free selection of all drill point features generally available with conical grinding.

A mathematical model for the extended cylindrical grinding is built up, the parameters defined, and the equations implemented in a computer program for the analysis of the effect of these parameters on the drill point features by numerical investigation, and by simulation by computer aided design.

To make possible the complete simulation of the drill point, the chisel edge - the intersection of two point flanks symmetric relatively to the drill axis - is also analysed.

The intersection of the modelled cylindrical flank surface with any modelled flute - conventional or non-conventional - yields the drill lip which is simulated for shape and analysed for the cutting angles such as rake angle, inclination angle, clearance angle and wedge angle.

By varying the flute form, the law to each cutting angle along the lip is altered. Reciprocally, to each pre-fixed law to some of the cutting angles along the drill lip corresponds to a different flute form.

One method to compute the flute form, given a law to the selected cutting angle along the drill lip, is presented, analysed and used for designing a new drill flute.

Based on the assumption that the effective rake angle is the important rake angle in cutting, and that it may be nearly unaltered when a decrease in the normal rake angle is compensated by an increase in the inclination angle, an attempt is made to increase drill life by designing a special flute with increased wedge angle (known as "heat sinking" at many workshops) at the outer corner.

Drills were manufactured according to the new flute design by drill manufacturers.

Tests were run with steel in order to compare the performance of a conventional fluted drill and the non-conventional design put forward.

The wear was measured at several points on the lips of the tested drills and appeared to be more uniform along the lips of the new design drill type than along the lips of the conventional one. Lip wear rate however, tended to be higher for the new design drill type than for the conventional one.

Comparing the drilling forces, the drilling thrust values for the new design drill type were smaller than for the conventional one; the drilling torque values however, were smaller for the conventional type than for the new design one.

Chips produced by both drill types were also analysed as a further aspect of drill performance.

The rigid body concept - a mechanics concept - was introduced for chip flow mathematically modelling and for computer aided analysis in order to study the influence of flute form on chip kinematics. The potential of this approach by the author for drilling chip analysis is shown by means of geometrical simulation, chip flow angle prediction
and chip length ratio prediction. This approach also allows for other predictions which correlate with experimental data already reported in literature.

The suggestion is made for drill design to be based on specifications established according to rigid body drilling chip production.

NOMENCLATURE

i) Notations
(BSj) British Standards specification number \mathbf{j}
(C.j) Catalogue number j
[D.j] Definition number j
i.j Equation number \mathbf{j} in Chapter \boldsymbol{i}.
(j) Bibliographic reference number j.
(j, k) Bibliographic reference numbers j and k.
3D Three dimensional
ii) Vectors and Vectorial Operations

Vectors and vectorial operations are represented as in (78).
A summary of those representations used throughout the present work is given in this section.

OP -	Vector with original point at 0 and terminal point at P
$\stackrel{\text { A }}{ }$	Vector A
$\overrightarrow{\mathrm{a}}$	Unit vector a
A or $\|\vec{A}\|$	Magnitude of vector A
$\|\vec{a}\|=$	1
市 =	$A \vec{a}=\|\vec{A}\| \vec{a}$
$\vec{A} \cdot \vec{B}=$	$\|\vec{A}\|\|\vec{B}\| \operatorname{Cos} \psi-\operatorname{dot}$ product of vectors A and $B ; \psi$ is the angle between \vec{A} and \vec{B}
$\vec{A} \times \vec{B}=$	$\|\vec{A}\|\|\vec{B}\| \operatorname{Sin} \psi \vec{C}$ - cross product of vectors A and $B ; \psi$ is the angle between \vec{A} and $\vec{B} ; \quad \vec{c}$ is a unit vector perpendicular to vectors A and B
$\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathrm{k}}$	Unit vectors in the directions of the axes of a 3 D rectangular coordinate system
$\overrightarrow{\mathrm{a}}=$	$\left(a_{1}, a_{2}, a_{3}\right)$ - components of vector a in the directions of the axes of a 3 D rectangular coordinate system
$\overrightarrow{\mathrm{i}}=$	$(1,0,0) ; \vec{j}=(0,1,0) ; \vec{k}=(0,0,1)$

$$
\left.\begin{aligned}
\vec{A} \cdot \vec{B} & =|\vec{A}||\vec{B}| \vec{a} \cdot \vec{D}=|\vec{A}||\vec{B}|\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) \\
\vec{A} \times \vec{B} & =|\vec{A}||\vec{B}| \vec{a} \times \vec{B}=|\vec{A}||\vec{B}| \\
\vec{i} \quad \vec{j} & a_{k} \\
a_{1} & a_{2} \\
b_{1} & a_{3} \\
& =|\vec{A}||\vec{B}|\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \vec{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k}
\end{aligned} \right\rvert\, \begin{aligned}
& b_{3} \\
& \\
&
\end{aligned}
$$

The following symbols are also used:
\vec{t} - unit vector tangent to a line or surface
\vec{n} - unit vector normal to a surface
\vec{e} - vector tangent to a cutting edge
iii) List of Symbols
$A, B, C, D, E, ~ c o e f f i c i e n t s ~ t o ~ t h e ~ e q u a t i o n s ~ o f ~ t h e ~ s u r f a c e s ~ r e p r e s e n-~$ $F, G, H, I, J \quad$ ting the drill flanks
$A_{h 1}, B_{h l}, C_{h 1}{ }^{-}$coefficients to the equation of the drill heel contour
$\mathrm{b}_{\boldsymbol{1}} \quad-\quad$ uncut chip width
b_{2} - chip width
$C_{1}, C_{2}, C_{3}, C_{4} \quad \begin{aligned} & \text { coefficients } \\ & \text { tial system }\end{aligned}$ to equation of a plane in a $3 D$ referen-
$d_{0} \quad-\quad$ drill diameter
$d_{o g}, \nu_{g}, ~ e x_{g}$, parameters to mathematical model of drill flank surface
${ }^{k} g$ generated by cylindrical grinding

$\mathrm{D}_{\mathrm{og}}, \mathrm{v}_{\mathrm{g}}, \mathrm{Ex}_{\mathrm{g}}, \mathrm{RK}_{\mathrm{g}}$	- the same as ($\left.d_{o g}, v_{g}, ~ e x_{g}, x_{g}\right)$ used in the FORTRAN computer programs (appendices)
$\mathrm{ex}_{g}, E \mathrm{x}_{\mathrm{g}}$	- see $d_{o g}$ and $D_{\text {og }}$ entries, respectively
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots$	- numerical constants
ℓ	- drill flute lead
${ }_{1} 1$	- uncut chip length
${ }_{2}$	- chip length
r	- radial distance on a drill
$r_{\text {c }}$	- radial distance on a chip
r_{ℓ}	- cutting length ratio
$r_{0}, 2 W^{\prime}, \gamma_{f}, k$	- parameters to the conventional flute face mathematical model
R_{0}, Web, $\mathrm{H}_{0}, \mathrm{R}_{\mathrm{k}}$	- equivalent to ($\left.r_{0}, 2 W^{\prime}, \gamma f, k\right)$ used in the FORTRAN computer programs (appendices)
s	- variable length measured along the drill lip
t_{1}	- uncut chip thickness
t_{2}	- chip thickness
	- coordinate transformation matrices
T_{h}	- drilling thrust
T_{0}	- drilling torque
v	- cutting speed
V_{C}	- chip speed
X_{p}, y_{p}, Z_{p}	- coordinates of point P in a referential system with axes X, Y and Z
$\mathrm{XCHI}, \mathrm{YCHI}, \mathrm{ZCHI}$	- chisel edge coordinates used in the FORTRAN computer programs (appendices)
$\chi^{\prime}, y^{\prime}, z^{\prime}$	
$\begin{aligned} & x_{x \star}^{\prime \prime}, y^{\prime \prime}, Z_{z}^{\prime \prime} \end{aligned}$	- coordinates in auxiliary referential systems
W, W'	- half web thickness and half lip spacing, respectively
Z_{dc}	- distance of chisel point (dead centre) to referential plane XY
${ }^{a} n$	- normal clearance angle
${ }^{\text {n }}$	- normal wedge angle
γ_{n}, r^{\prime}	- normal and effective rake angle, respectively

iv) Definitions

Writers in the area of drilling do not use always the same terms when referring to similar drill and drilling concepts. To avoid ambiguity, a glossary of the terms used throughout this work is presented in this section. Terms are given in alphabetical order.
[D.1] - Body - the part of the drill extending from the chisel edge to the shank end of the flute (3) (Figure 1.1)
[D.2] - Body clearance - the part of the body surface reduced in diameter to provide diametral clearance (3) (Figures 1.1 and 1.2)
[D.3] - Built up edge, BVE - a thin crusted layer on the tool face, adjacent to the cutting edge (4)
[D.4] - chip flow angle, η - Section 4.4
[D.5] - chip length ratio, r_{2} - Section 8.6.3
[D.6] - chisel edge - Section 3.4
[D.7] - chisel edge angle, ψ - the obtuse angle between the tangent to the projection of the chisel edge at the chisel point and the projection of the lips on a plane normal to the drill axis (67) (Figure 1.3).
[D.8] - clearance angle, lip, α_{f} - the same as nominal relief angle
[D.9] - clearance angle, normal, α_{n} - Section 4.3.2.
[D.10] - contact length, chip - length of tool - chip contact (79)
[D.11] - cylindrical grinding, extended - drill point grinding by generation of a cylinder surface which, for convenience, can be positioned in such a way that allows for free selection of all drill point features generally available with conical grinding
[D.12] - face, flute (rake) - part of the flute on which the chip impinges as it is cut from the work and which, together with the flank surface, determines the drill lip (Figure 1.1)
[D.13] - flank (surface) - the surface of a drill point which extends behind the lip to the following flute (Figure 1.2)
[D.14] - flute (surface) - Section 2.1
[D.15] - flute face, conventional - a flute face which is a ruled surface - Section 2.7
[D.16] - flute face, non-conventional - Section 2.7
[D.17] - heel flute (surface) - the surface which, together with the flute face completes the flute surface (Figure 1.1)
[D.18] - heel drill point contour - intersection of heel flute surface with flank surface (Figure 4.1)
[D.19] - inclination angle, λ - Section 4.3.4
[D.20] - lands - the cylindrical ground surfaces on the leading edges of the drill flute (3) - (Figure 1.2)
[D.21] - lip - Section 4.1 (Figure 4.1)
[D.22] - lip height, relative - distance between two planes normal to the drill axis each one containing one of the two drill outer corners
[D.23] - lip spacing, $2 W^{\prime}$ - distance between the projections on a plane normal to the drill axis of the tangents to the drill lips at a radial distance r
[D.20] - margin - same as land
[D.24] - point angle, flute design, $2 k$ - Section 2.2
[D.25] - point angle, ground, $2 \mathrm{k}_{\mathrm{g}}$ - Section 3.2.1
[D.26] - rake angle, effective, γ_{e} - Section 4.5
[D.27] - rake angle, normal, γ_{n} - Section 4.3.1
[D.28] - relief angle, nominal - the angle between the drill point surface and a plane perpendicular to the drill axis, measured in a plane parallel to the drill axis and perpendicular to a radius. The angle is usually measured from the lip (3)
[D.29] - rigid body - a material system for which the distance between any pair of points is a constant with respect to time (80)
[D.30] - ruled surface - surface which is generated by a moving straight line (62)
[D.31] - web thickness, 2W - Section 2.4.2
[D.32] - wedge angle, normal, β_{n} - the angle between the face and the flank measured in a plane normal to the cutting edge
v) Units

Where it is not referred to otherwise, the distances are measured in mm and the angles in degrees.

CONTENTS

Frontispiece i
Acknowledgements ii
Synopsis iv
Nomenclature viii

1. GENERAL INTRODUCTION 1
1.1 General Literature Survey 2
1.2 Statement and Approach to Problem 12
2. CONVENTIONAL TWIST DRILL FLUTE DESIGN 16
2.1 Introduction 17
2.2 Conventional Flute Face Design and Parameters 17
2.3 Conventional Flute Face Mathematical Model 20
2.4 Flute Heel Analysis 23
2.4.1 Flute heel mathematical model 23
2.4.2 Web thickness 28
2.5 Flute Contour in a Plane Normal to the Helical Direction of Drill Flute 29
2.6 Some Alterations to Conventional Flutes 31
2.7 Flute Design Classification 37
2.8 Chapter Closure 37
3. MATHEMATICAL MODEL TO ANY DRILL POINT YIELDED BY CYLINDRICAL GRINDING 39
3.1 Introduction 40
3.2 Cylindrical Grinding Analysis 41
3.2.1 Setting parameters 41
3.2.2 Mathematical model for the cylindrical flank surface 41
3.3 Computing Approach 49
3.4 The Chisel Edge 49
3.5 Chapter Closure 57
Page No
4. DRILL POINT GEOMETRIC SIMULATION AND CUTTING ANGLES ALONG ANY SHAPED DRILL LIP 58
4.1 Introduction 59
4.2 Drill Point Geometric Simulation 60
4.3 Lip Geometry Related Cutting Angles along any Shape Drill Lip 67
4.3.1 Rake angle 77
4.3.2 Clearance angle 91
4.3.3 Wedge angle 96
4.3.4 Inclination angle 99
4.4 Chip Flow Angle 102
4.5 Effective Rake Angle 106
4.6 Chapter Closure 108
5. AN APPROACH TO NON-CONVENTIONAL DRILL FLUTE DESIGN 109
5.1 Introduction 110
5.2 General Mathematical Approach to Flute Design 110
5.3 Computation of a Non-Conventional Drill Flute Profile 113
5.3.1 Analysis for computation 113
5.3.2 Non-conventional drill flute profiles 119
5.4 Drill Prototype Manufacture 126
6. PERFORMANCE TESTS - COMPARING LIP WEAR ON CONVEN- TIONAL AND NEW DESIGN DRILL 136
6.1 Introduction 137
6.1.1 Review of drill performance concept 137
6.1.2 Drill life 138
6.1.3 Drill wear 139
6.2 Experimental Design 140
6.2.1 Drill test type 140
6.2.2 Factors selection 142
6.2.3 Equipment 144
6.2.3.1 Drilling machine 144
6.2.3.2 Drill grinding machine 144
6.2.3.3 Drill geometry measurement machine 146
6.2.3.4 Microscope 146
Page No
6.2.4 Preliminary life tests for selection of values of factors 149
6.2.5 Statistical design of experiments 149
6.3 Drill Wear Testing 151
6.3.1 Testing procedure 151
6.3.2 Drill features 155
6.3.3 Material 164
6.4 Wear Tests Results 164
6.5 Analysis of the Results 165
7. PERFORMANCE TESTS - COMPARING DRILL FORCES ON CONVENTIONAL AND NEW DESIGN DRILL 197
7.1 Introduction 198
7.2 Experimental Design 198
7.2.1 Factors selection 198
7.2.2 Equipment 199
7.2.2.1 Dynamometer 200
7.2.3 Preliminary work 204
7.3 Main Drilling Forces Tests 205
7.3.1 Testing procedure 205
7.3.2 Drills features 205
7.3.3 Material 205
7.4 Experimental Results 206
7.5 Analysis of Results 213
8. ANALYSIS OF THE INFLUENCE OF FLUTE FORM ON CHIP FLOW 228
8.1 Introduction 229
8.2 Common Approach to Machining Chips 229
8.3 Chips and Rigid Body Concept 230
8.4 Drilling Chips 230
8.5 Mathematical Hodel of an Helical Rigid Body Chip 231
8.5.1 Equations 233
8.5.2 Analysis of parameter p_{C} 238
8.5.2.1 Drilling chip diameter 239
8.5.2.2 Drilling chip helix angle 241
8.6 Computing Approach to Drilling Chips 245
8.6.1 Drilling chip geometrical simulation 247
8.6.2 Chip flow angle: prediction by the present model compared to measurements by Oxford 251
8.6.3 Variation of the chip length ratio along drill lip. Prediction by the present model versus experimental data reported in literature 270
8.6.4 Fitness of the rigid body drilling chip to the flute face at the drill lip and corre- lation with experimental data of lip stress and lip temperature reported in literature for conventional drills 275
8.7 Chapter Closure 282
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 283
Conclusions 285

- Suggestions for Further Work 290
REFERENCES 292
i) Bibliography 292
ii) British Standards 307
iii) Catalogues 307
iv) Films 307
APPENDICES:
Appendix 1: Computer program for drill point geometric simulation and cutting angles computation for any set of cylindrical grinding conditions and any flute shape (refer to Chapters 2, 3 and 4) 309
Appendix 2: Computer geometric simulation of drill point showing the effect of flute design and cylindrical grinding para- meters on drill point design (refer to Chapter 4) 336
Appendix 3: Computer plots of normal rake angle against radial distance showing the effect of flute design and cylindrical grinding parameters on rake angle variation (refer to Chapter 4) 351
Appendix 4: Computer plots of normal clearanceangle against radial distance showingthe effect of flute design and cylin-drical grinding parameters on clearanceangle variation (refer to Chapter 4)358
Appendix 5: Computer plots of inclination angle against radial distance showing the effect of flute design and cylindri; cal grinding parameters on inclination angle variation (refer to Chapter 4) 365
Appendix 6: Computer program for non-conventional (and conventional) flute generation. General flute design according to the cutting angles along the drill lip (refer to Chapter 5) 372
Appendix 7: Wear loss at points 2, 3, 4 and 5 (outer corner) along the drill lips for both tested drill types and for all tested drilling conditions (refer to Chapter 6) 381
Appendix 8: Computer program for chip geometricsimulation with any flute shape andany set of cylindrical grinding con-ditions providing for chip flow angleprediction, cutting ratio predictionand other chip related variables(refer to Chapter 8) 414

> "The complex nature of conventional twist drills and their cutting action has challenged research workers for many years"
> Armarego

1. GENERAL INTRODUCTION

1.1 General Literature Survey

Drilling is one of the oldest (1,2) and most widely used operations (1,2,3,4,5,6,7,8,9,10) in the manufacturing process.

Kahng and Ham estimated hole-making to be more than 30% of the total metal cutting business (9). Billau quotes a PERA survey according to which 28.2% of the total general engineering industry in Britain consisted of work carried out on drilling machines (6). Ernst and Haggerty estimated about 20% of the machine tools in the USA were drilling machines (2). Drilling, however, can also be done on turning machines and other machine tools capable of providing a relative rotation of workpiece and cutting tool (8).

The drilling operation is affected by many factors (3) and its success depends mainly on the performance of the drilling tool.

To meet the requirements of the manufacturing process there are several types of drilling tools which may be as different as those referred to in Table 1.1.

The twist drill, Figure 1.l, a two lipped diametrically opposed helical fluted tool - is currently made of high speed steel and it is the most commonly used drilling tool (5).

According to Billau (11) the twist drill was invented in 1863 by Martignoni, and Wiriyacosol and Armarego (12) also refer to Morse as having patented a twist drill in 1863.

Twist drills have been produced since a century ago (10), and their development has been dependent on manufacturers incentives $(6,10)$. However, for Billau, the development of alternative designs by drill manufacturers "has not proved fertile ground for the academic researcher" (6).

Specifications for the twist drill - also known as conventional drill (13), regular twist drill (14), standard drill (3) and orthodox

	Twist drill	Half-round drill	Pivot (micro)	Spade	Indexable insert drill	Gundrill	BTA system	Ejector drill	Trepanning
Diameter typical range (mm)	$0.51-51$	$0.15-6.35$	$0.025-0.51$	$25.4-152$	$15.9-76$	$2-25.4$	$11-203$	$19-57$	$44.5-254$
Depth/ diameter ratio common maximum	$5-10$	>10(horiz)	$3-10$	s40(horiz)	$2-3$	100	100	50	100

FIGURE 1.1: Twist drill [(BS 328), with alterations]

FIGURE 1.2: Twist drill point
drill (15) - have been issued by several national standard organizations (16, 17, 19, BS328).

A two fluted twist drill is generally considered to be geometrically complex $(16,20,21,22)$, and its main active surfaces are as follows (Figure 1.1 and Figure 1.2):

- two flanks (the surfaces produced by the drill user at the drill point)
- two flutes (the helical canals along the body of the drill)
- two margins $(3,18)$ or lands $(3, B S 328)$ [they belong to the cylindrical (3) surface determining the leading edges of the flutes].

The intersection of the two flank surfaces yields the chisel edge.

Each flute comprises two parts:

- the face - the leading side where the chip formation occurs
- the heel - the trailing side which is the chip former.

Each flank intersects both flutes: the face of one flute and the heel of the other one. The intersections of the flank surfaces with the flute faces determine the lips (BS 328) or major cutting edges (BS 5533). The intersections of the flute faces with the margins determine the minor cutting edges (Figure 1.1) (BS 5533).

According to Armarego and Wright there are six features commonly specified in handbooks for twist drills (Figure 1.3) (16):

- the point angle, [D.25],2 kg
- the chisel edge angle, [D.7],
- the lip clearance angle at the outer corner, [D.8], α_{f}
- the web thickness, [D.31],2W
- the helix angle at the outer corner, γ_{f}
- the drill diameter, d_{0}.

Three of the above listed features are determined at the manufacture stage: $d_{0}, 2 W$ and γ_{f}; the other three can be selected by the user at the drill point grinding stage.

For Shaw (discussion of paper 20), the important features are: the point angle, the helix angle and the web thickness.

As far as the point angle is concerned the author would prefer to make a distinction between the (conventional) flute design point angle, [D.24], $2 \ddot{k}$, and the actual ground point angle, [D.25], 2 kg , for they may be different.

As shown in Chapter 2,it is necessary to define a point angle to design a conventional flute. If the ground point angle at the grinding machine is different to that for the flute design, the lips will be curve shaped (either convex or concave - Figure 1.4) as it is known in the workshop, and has been referred to, for instance, by Galloway (3).

To measure the actual drill point angle by measuring the angle of two curved lips becomes slightly ambiguous as it varies from point to point along the lips.

Also the relative position of the chisel edge to the curved lip (ψ, Figure 1.3) is open to reconsideration as the direction of the lip varies from point to point.

The web thickness, $2 W$, is taken equal to the lip spacing [D.23], $2 W$ ' (Figure 1.3), by several workers (3, 12, 16), however, the author did not find in the many works in literature any reference to the actual difference between $2 W$ and $2 W$ '. Furthermore, the lip spacing feature is open to clarification too, when the lips are curved.

Most research work on twist drills was aimed at finding how drill performance correlates with the twist drill features, usually one at a time (23).

FIGURE 1.4: Conventional twist drill ground to three different point angles

The influence of point angle variation on drill life has been reported by Galloway (3) and PERA (24), for example. Its influence on drilling forces was studied by Galloway (3), Galloway and Morton (10), Wiriyacosol (12), Micheletti (23), Bhattacharyya and co-workers $(25,26)$ and 0xford and Shaw (27). Micheletti (23) also quotes Codron, Bird and Fairfield.

The effect of the chisel edge angle on drilling forces was referred to by Micheletti (23).

The influence of the lip clearance angle [D.8] on drill life was investigated by Lorenz (28); on drill life and drilling forces, by Galloway and Morton (10) and PERA (24).

The web thickness has been reported to influence the drilling forces $(3,10,20)$, and the helix angle to influence drill life $(3,29,31,32)$ and drilling forces (10, 27).

The effect of drill diameter on drilling forces has also been reported (10, 12, 27).

According to Micheletti (23), Tourret (32) would have reviewed most of the papers on drill performance published up to 1957.

Drill performance, according to many research workers in the drilling area, varies a great deal, for nominally similar twist drills, and for each set of cutting conditions. According to the same research workers such variation is due to the inaccuracies of drill geometry (3, 20, 28, 33, 34).

Inaccuracies of symmetry of the two fluted twist drill can occur at the manufacture stage (flute spacing inaccuracy, for example), and/ or at the point grinding stage (flank positioning error, for example).

One frequently referred to error of twist drill symmetry is the relative lip height [D.22] (3, 9, 10, 33, 34, 35, 37, C.1) as it can diminish drill life. Some other errors of symmetry are:

- eccentricity of web (1, 17)
- eccentricity of chisel edge (9, 35)
- unequal lip spacing (1, 17)
- defective drill straightness (17)

Many attempts to improve drill performance consisted of modifying the conventional drill point:

- spiral point (2, 17)
- four facets point (17)
- six facets point (17)
- double cone $(17,38)$
- split point (2, 17)
- point thinning (3, 10, 17, 38, 39)

However, special flank surface shapes cannot be implemented except with special grinding machines and/or by expert toolmakers. Additionally, the performance improvement with these altered drill points is frequently limited to some drilling conditions, and some drill point forms alter the shape of the lips and are bound to affect the mechanics of cutting along these cutting edges (3).

Encouragement for the analysis of the drilling process to be made with a cutting mechanics approach has come from a great deal of workers who have suggested that there is no fundamental difference between the cutting process of complex tools such as drills and other simpler tools such as the single point cutting tool.

- Oxford and Shaw stated that an ordinary twist drill operates in the same way as a single point tool (27);
- Dagnell underlines the similarities between the drill lip action and the lathe single point cutting tool (40);
- Wiriyacosol and Armarego predicted some drilling performance characteristics by approaching the drill lip and the chisel edge to a certain number of elementary single point cutting tools (12);
- Kumar et al are of the opinion that the drill lip action is "more or less an inclined and oblique cutting process" (25).

The same opinion is shared by Bera and co-workers (26).

- Wu et al employed photoelastic techniques in the analysis of drill stress and found that at drill periphery their results suggested an action analogous to orthogonal cutting (41).
- Venkataraman attempted a theory of tool simulation consisting of one to one correspondence of the cutting angles along the drill lip with that of a shaper tool (42).
- Oxley and Palmer think that the shape of any tool is connected with the orthogonal cut case (43).

The influence of such angles as the rake angle [D.26, D.27] and/or the inclination angle [D.19], for example, on the mechanics of cutting has been emphasized by Merchant (44), Stabler (45, 81), Shaw (77, discussion of paper 20), Armarego and Brown (46), Lee and Shaffer (47), Hirota and Usui (48), Ramalingam (49), Catrina et al (50) and others (51, 52).

Some workers such as Galloway (3), Oxford (53), Williams (54) and Amaradasa (55) have presented expressions for the calculation of such angles as, the rake angle, the inclination angle and the clearance angle along the straight twist drill lips. These expressions are usually based on the features of the twist drills and the referred to cutting angles may be calculated for each point at a radial distance r selected on the straight drill lip.

By using the referred to expressions the following facts may be established for the straight lip of a conventional flute twist drill:

- normal rake angle [D.27] is maximum at the outer corner
- inclination angle [D.19] is minimum at the outer corner
- normal wedge angle [D.32] is minimum at the outer corner

It is also easy to find that:

- cutting speed is maximum at the outer corner
- the outer half of the drill removes 75% of the material from the hole.

Yokoyama and Watanabe made a thermal analysis of the drilling process and found calculated temperature to increase with radial distance on the drill lip and claimed good agreement with the experiments (56). Wu and co-workers have also analysed drill temperature distribution by numerical solutions (57) and found the higher values to be near the outer corner; they claimed good agreement with experiments too.

Oxford measured the chip flow angle along the drill lip and found the smaller values to be at the outer corner (20).

1.2 Statement and Approach to Problem

The outer corner (Figure 1.2) is the part of a conventional twist drill most subject to wear, according to Bhattacharyya (38, 58). Also Galloway (34) and Kanai and Kanda (33) referred to the wear near the outer corner and suggested it to be used as a drill life criterion.

The relatively quicker wear near the outer corner of a conventional drill may be attributed, at a first approach, to an unfavourable combination of high temperature and small wedge angle ("heat sink"), for, as suggested by Galloway (34), the amount of metal supporting the drill lips may influence drill life.

In an early preliminary numerical investigation on the expressions available in the literature, and measurements made by Amaradasa (55), the author found the wedge angle with conventional twist drills to vary from about 50° at the outer corner up to about 80° near the chisel corner.

The hypothesis is put forward that the flute face, which is produced at the manufacture stage, can possibly by changed in order to yield a more uniform wedge angle along the drill lip than that
with the conventional flute, and a more uniform wear along the new drill lip may be obtained while leaving the grinding process unaltered.

Drill lip wear may possibly be diminished at the outer corner by making the wedge angle bigger than that of a conventional flute drill, even at the expense of the normal rake angle. This would probably not impair drill efficiency as the effective rake angle [D.26] - the angle that in the field of oblique cutting replaces the normal rake angle in orthogonal cutting, according to Shaw and co-workers (59) and Yokoyama and co-workers (56) - depends on the normal rake angle and inclination angle, according to Stabler (45), and a decrease in the normal rake angle can be compensated by an increase in the inclination angle (Figure 1.5).

Any departure from the conventional flute (rake) face [D.15] - a ruled surface [D.30] - has an imnediate effect on the shape of the drill lip: it is no longer a straight cutting edge.

To deal with non-conventional flute faces [D.16]or, in general, with non-straight drill lips, arises a new range of problems as the available expressions in the literature for drill lip cutting angles calculations are not valid except for straight lips.

The analysis of cutting variables such as rake angle, clearance angle and inclination angle along curved lips cannot be made without defining the surfaces which determine the drill lips - the flute face and the flank surface.

These two rather complex surfaces can be mathematically modelled and their properties and mutual intersections determining the cutting edges can be analysed by computer design aids.

A numerical investigation and geometrical simulation is to be performed in this work, as far as it is needed, for lip shape determination and cutting angles computation when the lips are not straight.

FIGURE 1.5: Effective rake angle computed from the normal rake angle and inclination angle.
[After Stabler (45);also Shaw (77)
and others (25)]

To design a method for designing drill flutes specified by the cutting angles along the lip is also one of the author's purposes; especially to design a drill with such a flute that the lips would comply with the condition of uniform wedge angle.

The author's objectives can be summarised as follows:

- to analyse the influence of flute form on drill point design
- to design a new flute that hypothetically may improve drill performance
- to study the influence of flute form on drill performance (chips included) when cutting steel.

For these purposes the drill lip geometry is to be analysed by means of the cutting angles by computer aided design.

"It is ordinary thought that the shape of the drill flute should be such that the cutting lip will be a straight line"

Moore
2. CONVENTIONAL TWIST DRILL FLUTE DESIGN

2.1 Introduction

Galloway and Morton (10) defined the drill flute as a chip disposal groove extending from the drill point towards the shank. Tsai (5) points out the following functions to the flute:
i) form the cutting edges on the drill point
ii) allow the chip to escape
iii) cause the chips to curl
iv) permit cutting coolant to reach the cutting edges.

For Shaw and 0xford (27) the flute-shape details may be ignored for a "normally functioning dxill". According to Cetim (17), the flute form affects the shape of the drilling chips. Shaw (21) refers to the influence of flute form on lip shape, chip flute space and drill torsional rigidity. Billau (11) also refers to the flute as providing a cutting lip after point grinding, assisting the removal of chips, and affecting drill rigidity.

2.2 Conventional Flute Face Design and Parameters

One half of the flute - the face - is commonly determined in order to yield a straight cutting edge ($3,20,21,60$). The other half - the heel - is chosen in such a way that drill strength (3), drill rigidity $(11,21,61)$ and space for chip conveyance $(3,21$, 31) are at a compromise.

A straight line - the conventional drill main cutting edge can be defined by two parameters relatively to an axis - the drill axis (Figure 2.1):

W' - the distance to the drill axis (half of drill lip spacing)
κ - angle to the drill axis (half of drill point angle)

An helical movement of this straight line around the drill axis generates a ruled surface - the conventional flute face. The locus of a point on the generating line, at a distance $r_{0}\left(=d_{0} / 2\right)$ from the drill axis,is an helical line with angle γ_{f} - the drill helix angle.

> Z - drill axis
> f_{1} - flute face cross section
> Cc - chisel corner
> Oc - outer corner
> Cc-Oc - drill lip
> $2 r_{0}, w_{j}^{\prime}, \gamma_{f}, k$ - parameters to the conv. Flute face model

FIGURE 2.1: Twist drill conventional flute face generation and parameters

The four parameters, $r_{0}, W^{\prime}, \gamma_{f}$ and k define mathematically the conventional drill flute face as no further paremeters are needed.

Galloway (3) has already developed the parametric equations to the conventional flute face and from his analysis Tsai and Wu (60) deduced the mathematical model of the flute shape. As a matter of necessity the author presents the analysis by Galloway, further studied by Tsai, for the conventional flute mathematical model.

For the mathematical model reference, a coordinate system of rectangular cartesian axes is defined (Figure 2.1):

Z - drill axis, pointing to the shank;
$X Y$ - plane normal to the drill axis at the point where the distance from the drill axis to the flute generating line is measured;
X - axis parallel to the projection of the flute generating line on the plane $X Y$, pointing to the same direction as that referred to projection;
Y - axis in the plane $X Y$, normal to X, orientated in such a way that the reference system XYZ is a right-hand coordinate system.

From Figure 2.1 it can be seen that:

$$
* \phi=* \phi_{1}+k \phi_{2}
$$

where

$$
\begin{align*}
& k \phi_{1}=\sin ^{-1}\left(W^{\prime} / r\right) \\
& k \phi_{2}=\left(r^{2}-W^{\prime 2}\right)^{\frac{1}{2}} \tan r_{f} \cot k / r_{0}
\end{align*}
$$

where r and ϕ are the polar coordinates of a selected point on the flute profile in the plane XY.

The flute cross-section can be determined numerically and/ or geometrically if $r_{0}, W^{\prime}, \gamma_{f}$ and k, or some relationships between them, are known.
$2 W^{\prime}$ is close to the web thickness, as it will be shown, and the web thickness, $2 W$, is usually specified according to the drill diameter, d_{0}, (17, 36, C.1). In (C.1) for instance, the recommended minimum web thickness reads approximately

$$
2 W=0.2\left(d_{0}\right)^{0.283}
$$

from a graphical relationship.
The classical helix angle, γ_{f}, has been $27 \frac{1}{2}^{\circ}$, according to Lorenz (29), and in his opinion this was inherited from the past when milling machines tables for flute cutting had a swivel of 55°.

For the parameter $2 k$, the point angle, 118° is the most common value (3, BS 328).

The influence of the referred to parameters on the flute form is better shown graphically. For this purpose and according to one of the author's aims, a computer program, to be extended, is built up and its flow diagram shown in Figure 2.2.

Figure 2.3 shows the influence of the parameters to the conventional flute mathematical model on its cross-section.

2.3 Conventional Flute Face Mathematical Model

The flute cross-section at a distance ℓ from the XY plane, equal to the drill lead, projects on this plane confounded with the cross-section in this plane. The projection of any cross-section between these two can be found by rotating the cross-section in the $X Y$ plane by an angle ζ (Figure 2.4).

The angle of rotation, ζ, of two distinct flute normal crosssections, distant Z from each other, can be obtained from the geometric

FIGURE 2.2: Flow diagram of the computer program segment to compute and plot (Figure 2.3) conventional flute (face) cross-sections

$2 W^{\prime}\left(\begin{array}{l}0.0 \mathrm{~mm}(\mathrm{i}) \\ 1.5 \mathrm{~mm}(\mathrm{ii}) \\ 3.0 \mathrm{~mm}(\mathrm{iii})\end{array}\right.$

$2 k \left\lvert\, \begin{gathered}90^{\circ}(\mathrm{i}) \\ 118^{\circ}(\mathrm{ii}) \\ 146^{\circ}(\mathrm{iii})\end{gathered}\right.$

Central set of parameters:

FIGURE 2.3: Computer analysis of the influence of the conventional flute design parameters
on the flute face cross section.
analysis of helices (62):

$$
\zeta_{\zeta}=\frac{\tan \gamma_{f}}{r_{0}} Z
$$

where γ_{f} is the helix angle at a radial distance r_{0}.
The angle, ϕ_{Z}, for a point on the flute contour distant Z from the XY plane, at a radial distance r from the drill axis, can be computed from the angle, ϕ, for a point on the flute contour in the XY plane at the same radial distance, r, from the drill axis as follows:

$$
\begin{align*}
& \phi_{Z}=\phi+\zeta \text { or } \\
& \phi_{Z}=\operatorname{Sin}^{-1}\left(W^{\prime} / r\right)+\left(r^{2}-W^{\prime 2}\right)^{\frac{1}{2}} \tan \gamma_{f} \cot k / r_{0} \\
&+\tan \gamma_{f} z / r_{0}
\end{align*}
$$

This equation, of the form $f(r, \phi, Z)=0$, represents the points of the conventional flute face in cylindrical coordinates and it is the mathematical model to this surface.

2.4 Flute Heel Analysis

2.4.1 Flute heel mathematical model

For commodity, in the computer plots in Figure 2.3, the flute heel has been given the same law as the face of the flute. However, the drill cross-section influences the drill torsional rigidity and this affects drill life as referred by several workers ($3,6,21,31$, $63,64)$. It also affects the conveyance of drilling chips, and the design solution to the conflicting aspects of chip clogging properties and drill rigidity is usually based on a compromise between these two effects.

FIGURE 2.4: Two flute cross sections distant Z, projected on a plane normal to the drill axis.

FIGURE 2.5: Comparing the heel designed according to the same law as to the flute face (i), to the heel designed according to a more realistic law (ii) [refer to FIG. 2.6]

According to Armarego (16), there is no full specification for the "drill point heel shape" (heel point contour- Figure 1.2) and the heel corner position.

For the purpose of mathematical modelling of the complete flute surface, the heel surface is approached in this work on a geometrical basis.

For simplicity, and because the heel is not critical (3), its cross-section in the XY plane is given, in this work, the law:

$$
Y=A_{h 1} X^{2}+B_{h 1} X+C_{h 1}
$$

which proved to describe satisfactorily the actual heel cross-sections produced, projected, magnified and studied by the author for all drills observed.

The flute normal cross-section resembles two circular sectors diametrically opposed (Figure 2.6i). From his observations the author found the contour heel corner, H_{1} (Figure 2.5), to be 90% 950 apart of the contour face corner, F_{1} (Figure 2.5), on the flute contour.

The heel design is approached in the following way:
i) the body clearance is neglected
ii) the heel contour corner, H_{1}, is determined from the face corner, F_{1}, on the basis of the empirical observations
iii) the heel contour joins the face contour at point H_{2} (Figure 2.5) that originates the chisel corner, after grinding, by smooth transition.
iv) the heel contour in plane $X Y$ is represented by a second degree polynomial $Y=h_{\rho}(X)$ such as it complies with the following conditions:

FIGURE 2.6 (i): Cross section (view from the drill point) of a conventional drill, normal to axis, with the following features: $d o=12.7 \mathrm{~mm}, 2 \mathrm{w}=2.0 \mathrm{~mm} ; \gamma_{f}=31^{\circ}, \mathrm{Kg}=60^{\circ}$

FIGURE 2.6(ii): Computer simulated cross section for a conventional Flute face with the following values to the paranters: $\mathrm{do}=12.7 \mathrm{~mm}, 2 w^{\prime}=2.0 \mathrm{~mm}, \gamma_{f}=31^{\circ}, \mathrm{K}=60^{\circ}$, and heel according to a second degree polynomial model.
a) contains point H_{1}
b) contains point H_{2}
c) has a common tangent with the flute face at point H_{2}

To determine numerically and geometrically the shape of the heel contour is to find $A_{h 1}, B_{h 1}$ and $C_{h 1}$ to Equation 2.7.

The conditions established above lead to the following equations:

$$
\begin{aligned}
& A_{h 1} X_{1}^{2}+B_{h 1} X_{1}+C_{h 1}-Y_{1}=0 \\
& A_{h 1} X_{2}^{2}+B_{h 1} X_{2}+C_{h 1}-Y_{2}=0 \\
& 2 A_{h 1} X_{2}+B_{h 1}-\left[\frac{d Y}{d X}\right]_{: H 2}=0
\end{aligned}
$$

where $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are the coordinates of point H_{1} and point H_{2} respectively and $[\mathrm{dY} / \mathrm{dX}] \cdot{ }_{H_{2}}$ is the slope of the tangent to the flute face at point H_{2},

Figure 2.5(ii) shows a flute heel profile plotted after being computed according to the above introduced criterion compared to the one that follows the same law as the conventional flute face profile.

An actual flute profile is shown in Figure 2.6(i). Figure 2.6(ii) shows the computer plot of the flute profile simulated according to the mathematical approach presented above and according to the specifications referred to in Figure 2.6(i).

The heel surface, like the face, is an helical surface and it is better represented by cylindrical coordinates, r, ϕ and Z, which can be written in parametric form

$$
r=\left(y^{2}+x^{2}\right)^{\frac{1}{2}}=\left(\left(A_{h 1} x^{2}+B_{h 1} x+C_{h 1}\right)^{2}+x^{2}\right)^{\frac{1}{2}}
$$

$$
\begin{aligned}
\phi & =\tan ^{-1}(Y / X)+\left(\tan \gamma_{f} / r_{0}\right) \mu=\tan ^{-1}\left(\left(A_{h 1} X^{2}+B_{h 1} X+C_{h 1}\right) / X\right) \\
& \quad+\left(\tan \gamma_{f} / r_{0}\right) \mu \\
Z & \\
& 2.9
\end{aligned}
$$

where μ and X are the parameters to the coordinates r, ϕ and Z.

2.4.2 Web thickness

0xford (53) defines the web as "the minimum section of metal between the two flutes".

Figure 2.3 (face and heel profiles computed from equations 2.1 to 2.3) suggests that the web thickness, 2 W , is measured along one of the axes of the flute profile. Analysis of equations 2.1 to 2.3 shows that the minimum radial distance for the points of the flute occurs for $\phi=90^{\circ}$ and therefore $2 \mathrm{~W}=2 \mathrm{~W}^{\prime}$.

Figure 2.5(ii), representing a more realistic heel contour than Figure 2.3, suggests that $2 W^{\prime}$ might be different from $2 W$.

According to the definition, W can be found by determining the minimum distance from the heel to the drill axis:

$$
r=\left(X^{2}+Y^{2}\right)^{\frac{1}{2}}
$$

where

$$
Y=A_{h l} X^{2}+B_{h 1} X+C_{h 1} .
$$

From the condition $d r / d X=0$ it results:

$$
x=-\frac{B_{h 1}}{A_{h l}+T}
$$

and W can be computed.
Numerical investigation revealed that 2 W is slightly higher than $2 W$ ' and the difference seems to be irrelevant for many purposes.

As an example, the web thickness was computed for the conditions

$$
2 W^{\prime}=2 \mathrm{~mm} ; \quad \gamma_{f}=300 ; \quad k=590 ; \quad d_{0}=12.7 \mathrm{~mm}
$$

and it was found $2 W=2.008 \mathrm{~mm}$, i.e. a difference of less than 1%.

2.5 Flute Contour in a Plane Normal to the Helical Direction of Drill Flute

The flute cutter design is better dealt with if the cross-section of the flute profile perpendicular to its helical direction is known.

A method for determining such a section should be available if a new flute form is to be designed and manufactured.

The solution to this problem is approached as follows:
i) A plane p_{1} (Figure 2.7) normal to the helical direction of the flute is defined and represented by:

$$
c_{1} X+c_{2} Y+c_{3} Z+c_{4}=0
$$

in the coordinate system (X, Y, Z).
ii) For each point P (Figure 2.7) of the flute contour in the plane $X Y$, a point Q belonging to the same helical line on the flute surface as P, and on the plane p_{1}, is found by computing the intersection point of the helical line with plane p_{1}.
iii) The set of points Q belonging to the flute surface and to the plane p_{1} are better represented in graphical form if a new coordinate system ($X^{\prime}, Y^{\prime}, Z^{\prime}$), is defined such as the plane $X^{\prime} Y^{\prime}$ coincides with the plane p_{1} (Figure 2.7).

FIGURE 2.7: flute cross section in a plane nornal to the flute helical direction.
iv) The coordinates of each point $Q,\left(X_{Q}, Y_{Q}, Z_{Q}\right)$ are transformed into the new coordinates ($X_{Q}{ }^{\prime}, Y_{Q}{ }^{\prime}, Z_{Q}{ }^{\prime}$).
Note: Transformations of coordinates are dealt with in Chapter 3, Section 3.2.1. To avoid repetitions and as the subject is analysed in the referred to section no further details are given here. (See Figure 2.8 for flow diagram of computer program segment).

The flow diagram of the computer program segment (see Appendix 1) for the computation of the above referred to sections is shown in Figure 2.8.

Cross-sections perpendicular to the helical direction of the flute, for several values of the parameters of the conventional flute and heel mathematical models are shown in Figure 2.9.

2.6 Some Alterations to Conventional Flutes

Many works in literature refer to some deviations from the conventional flutes, usually due to manufacture inaccuracies and/or manufacturing variations. Some variations are introduced for the purpose of creating special drilling characteristics such as the ones to implement a stronger chip breaking effect than that yielded by the regular flute (Figure 2.10).

Drill flute variations have been referred to by Galloway (3, 34), Galloway and Morton (10) and Lorenz (29), for instance. Arshinov and Aleksev (4) also refer to flute deviations and point a cause for them. According to these workers, for each set of the drill flute features, $r_{0}, 2 W^{\prime}, \gamma_{f}$ and k, a proper flute profile cutter should be designed and used. This, however, would require a great many cutters for cutting the flutes of a given range and the manufacturers frequently use the same flute cutter within a certain drill diameter range. The influence of these flute deviations on the cutting angles such as the normal rake angle inclination angle, for instance, will be shown later when a method for finding the drill lip cutting geometry is presented.

FIGURE 2.8 (continued)

FIGURE 2.8: Flow diagram of the computer program (refer to Appendix 1) for the computation of the flute cross-section perpendicular to the helical direction of the flute

$\gamma_{f} \left\lvert\, \begin{aligned} & 20^{\circ}(\mathrm{i}) \\ & 30^{\circ}(\mathrm{ij}) \\ & 40^{\circ}(\mathrm{iij})\end{aligned}\right.$

Central set of parameters :

2 ro $=\mathrm{do}$	2 w	γ_{f}	$2 k$
12.7	1.5	30	118

FIGURE 2.9 (continued)

FIGURE 2.9: Computer analysis of the flute sections normal to the flute helical direction by varying the conventional flute model parameters.[refer to previous page].

i

iii

ii

iv

FIGURE 2.10: Modified flutes :
(i) Chip breaking grooves (15,38)
(ii) Typical chip breaking drill $(15,17)$
(iii) Self-thinned heavy duty drill (21,38)
(iv) Crisp design chip breaker (21,38)

2.7 Flute Design Classification

The flutes which are ruled surfaces generated as shown above, according to the parameters $r_{0}, 2 W^{\prime}, \gamma_{f}$ and κ are designated in this work by conventional flutes. The conventional flutes for which $2 k=118^{\circ}$ are designated standard flutes as this is the point angle specified in (BS 328).

Any flute which is not designed to comply with the condition to yield a straight lip is called non-conventional flute.

The following classification of drill flutes is proposed:

2.8 Chapter Closure

The conventional drill flute is determined on the basis of a very simple condition: the linearity of the drill lip.

It seems fortunate that such a criterion could serve the many different drilling conditions - drill sizes, feeds, speeds and materials, for example - and has succeeded for the many years the conventional drills have been used in industry.

The flute face, however, is curved and it has never been proved that a straight li e lip is better than any other shape. Furthermore, reports are found from time to time referring to the improved performance of drills ground to curved lips as for drilling cast iron.

Nearly all research work took this flute form for granted and has generated an important body of information data that applies only to such forms.
"The effects of the grinding parameters on the drill geometry are complex"

Fujii
3. MATHEMATICAL MODEL TO ANY-DRILL POINT

YIELDED BY CYLINDRICAL GRINDING

3.1 Introduction

For complete determination of the drill point geometry and cutting lip geometry it is necessary to define the flank surfaces.

The drill surfaces are usually machine produced. In some cases, in industry, the drill points are manually ground, however, this is uncommon in drilling research. The author came across in the literature with just one case, by Lorenz (7), where drills manually ground were compared, for drill performance, against drills ground at a drill grinding machine.

Assessing drill sharpening methods and proposing "acceptable grinder criteria", Armarego (16) compares three drill grinding points: 'conical flank', 'cylindrical flank' and the 'plane flank'.

The conical grinding method was first (65) dealt with by Galloway (3) and further analysed by Fujii and co-workers $(65,66)$, Tsai and Wu (60) and Armarego and Rotenberg (22, 66, 68).

A cylindrical drill grinding machine was available to the author and many similar machines are used in industry.

It is unfortunate that the cylindrical grinding method is scarcely dealt with in the literature; and, according to Armarego (16), this method is "unsuitable for general purpose drill point sharpening".

At the time the author started his work, the paper by Armarego (16, Annals of CIRP 29/1/1980) was not available to him. Later, when the paper was available, the author found the analysis of Armarego to be a particular case, with a major simplification, of the one made by the author. In fact the analysis of the author considers four parameters while Armarego considers only three. However, the analysis by the author further aims at:

- building a mathematical model for drill cylindrical grinding;
- including in this model all setting possibilities usually available in current practice of drill cylindrical grindings;
- implementing the mathematical model in a computer program in order that it can be analysed by computer aided design.

3.2 Cylindrical Grinding Analysis

In a previous work (11), Billau manufactured a perspex model representing the mechanism of the type of the grinding machine available to the author (Figure 6.4) and has shown that the flank point surface is of cylindrical form.

In this work the author approaches the cylindrical grinding in an analytical way, in order to build up a mathematical model to be dealt with by computing methods and computer design aids.

3.2.1 Setting parameters

From the study of the work by Billau $(11,69)$ and further analysis of the referred to grinding machine, the following grinding setting parameters were established by the author (Figure 3.1):
$d_{o g}-\quad\left(=2 r_{o g}\right)$ diameter of the cylinder generated by grinding $\nu_{g} \quad-\quad$ angle for the position of the flute relative to the generated cylinder by grinding
e_{g} - distance between the axis of the generated cylinder by grinding and the drill axis
$\mathrm{K}_{\mathrm{g}} \quad$ - angle between the axis of the cylinder generated by grinding and the drill axis.

3.2.2 Mathematical model for cylindrical flank surface

For reference of the mathematical model, referential systems are needed.

One referential system (X, Y, Z), has already been defined in the previous chapter, for flute and drill reference. This will always be, for consistency, the ultimate reference system (Figure 3.2).

FIGURE 3.1: Drill setting parameters for cylindrical grinding : dog(=2rog), vg, exg,kg [extended cylindrical grinding]
ag - axis of grinding cylinder ad - axis of drill

FIGURE 3.2: coordinate reference systems
$X Y Z$-Drill reference system
$X^{-} Y^{\bullet} Z^{\circ}$-Drill holding device
reference system

However, for analysis simplicity, other referential systems are also considered.

The cylinder generated by grinding is firstly referred to an auxiliary referential system ($X^{\prime}, Y^{\prime}, Z^{\prime}$) attached to the drill holding device (Figure 3.2).

For clarity, the generated cylinder by grinding and system ($X^{\prime}, Y^{\prime}, Z^{\prime}$) attached to it are further represented in Figure 3.3.

From Figure 3.3 the cylindrical surface can be described as follows:

$$
\begin{align*}
& \left(X^{\prime}-e X_{g}\right)^{2}+Y^{\prime 2}=r_{o g}{ }^{2} \\
& Z^{\prime} \text { any real number }
\end{align*}
$$

For consistency, this cylinder surface - one drill flank surface - shall be referred to the referential $\operatorname{system~(X,Y,Z).~To~}$ help with the coordinates transformation, two auxiliary referential systems, ($X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$) and (X^{*}, Y^{*}, Z^{*}), are introduced. The referred to four systems are shown in Figure 3.4 which shows also their geometrical relationships.

The system (X^{*}, Y^{*}, Z^{*}) has its X^{*} axis coincident with the axis X^{\prime} of system ($X^{\prime}, Y^{\prime}, Z^{\prime}$); Y^{*} and Z^{*} are in the same plane as the Y^{\prime} and Z^{\prime} axes but rotated kg - the grinding point angle - relatively to these axes.

From Figure 3.4:

$$
\begin{aligned}
& X^{\prime}=X^{*} \\
& Y^{\prime}=Y^{\star} \cos k g=Z^{*} \sin k g \\
& Z^{\prime}=Y^{*} \sin k g+Z^{*} \cos k g \quad \text { or, in other form: }
\end{aligned}
$$

FIGURE 3.3: Generated grinding cylinder of axis ag [refer to FIG 3.1 and FIG 3.2]

FIGURE 3.4: Drill referential system (X,Y,Z); Drill holding device referential system ($X^{\prime}, Y^{\prime}, Z^{\prime}$) ; Auxiliary referential systems $\left(X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}\right)$ and ($\left.X^{*}, Y^{*}, Z^{*}\right)$.

$$
\left|\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \operatorname{Cos} \mathrm{~kg} & -\operatorname{Sin} \mathrm{kg} \\
0 & \operatorname{Sin} \mathrm{~kg} & \cos \mathrm{~kg}
\end{array}\right|\left|\begin{array}{c}
X^{*} \\
Y^{*} \\
Z^{*}
\end{array}\right|=T_{1}\left|\begin{array}{c}
X^{*} \\
Y^{*} \\
Z^{*}
\end{array}\right|
$$

where T_{1} is the coordinates transformation matrix:

$$
T_{1}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
& \operatorname{Cos} \mathrm{~kg} & -\operatorname{Sin} \mathrm{kg} \\
0 & \operatorname{Sin} \mathrm{~kg} & \operatorname{Cos} \mathrm{~kg}
\end{array}\right|
$$

The system ($X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$) is a translation of system (X^{*}, Y^{*}, Z^{*}) and they are apart from the distance Z_{0} (distance from 0 to 0^{\prime}) measured either along $Z^{\prime \prime}$ or Z^{*} :

$$
\begin{aligned}
& X^{\star}=X^{\prime \prime} \\
& Y^{*}=Y^{\prime \prime} \\
& Z^{\star}=Z^{\prime \prime}-Z_{0} \quad \text { or, in other form, } \\
& \left|\begin{array}{l}
X^{*} \\
Y^{*} \\
Z^{*}
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{l}
X^{\prime \prime} \\
Y^{\prime \prime} \\
Z^{\prime \prime}
\end{array}\right|+\left|\begin{array}{c}
0 \\
0 \\
-Z_{0}
\end{array}\right|=T_{2}\left|\begin{array}{c}
X^{\prime \prime} \\
Y^{\prime \prime} \\
Z^{\prime \prime}
\end{array}\right|+\left|\begin{array}{c}
0 \\
0 \\
-Z_{0}
\end{array}\right| 3.3
\end{aligned}
$$

Finally, the referential system (X, Y, Z) attached to the drill has its Z axis coincident with $Z^{\prime \prime}$; the $X Y$ plane is the same as the plane $X " Y "$ and X axis is rotated ig relatively to the X^{\prime} axis.

From Figure 3.4:

$$
\begin{aligned}
& X^{\prime \prime}=X \operatorname{Cos} v g-Y \operatorname{Sin} v g \\
& Y^{\prime \prime}=X \operatorname{Sin} v g+Y \operatorname{Cos} v g \\
& Z^{\prime \prime}=Z
\end{aligned}
$$

or: $\left|\begin{array}{l}X^{\prime \prime} \\ Y^{\prime \prime} \\ Z^{\prime \prime}\end{array}\right|=\left|\begin{array}{ccc}\cos v g & -\sin v g & 0 \\ \sin v g & \cos v g & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{l}X \\ Y \\ Z\end{array}\right|=T_{3}\left|\begin{array}{c}X \\ Y \\ Z\end{array}\right|$

The cylindrical surface can now be expressed in terms of X, Y and Z. In fact from 3.3 and 3.4:

$$
\left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
Z^{\prime}
\end{array}\right|=T_{1} T_{2} T_{3}\left|\begin{array}{c}
x \\
y \\
Z
\end{array}\right|+T_{1}\left|\begin{array}{c}
0 \\
0 \\
-Z_{0}
\end{array}\right|
$$

and this leads to

$$
\begin{aligned}
& X^{\prime}=X \operatorname{Cos} v g-Y \sin v g \\
& Y^{\prime}=(X \sin v g+Y \cos v g) \cos k g-\left(Z-Z_{0}\right) \sin k g \\
& Z^{\prime}=(X \sin v g+Y \cos v g) \sin k g+\left(Z-Z_{0}\right) \cos k g .
\end{aligned}
$$

Substituting X^{\prime} and Y^{\prime} in Equation 3.1 it results a an equation of the form:

$$
\begin{align*}
f_{\alpha 1}(X, Y, Z)= & A X^{2}+B Y^{2}+C Z^{2}+D X Y+E X Z+F Y Z+ \\
& +G X+H Y+I Z+=0
\end{align*}
$$

$$
\text { where: } \quad \begin{aligned}
A & =\cos ^{2} v g+\sin ^{2} v g \cos ^{2} k g \\
B & =\sin ^{2} v g+\cos ^{2} v g \cos ^{2} k g \\
C & =\sin ^{2} k g
\end{aligned}
$$

```
D = -2 Cos vg Sin vg + 2 Sin vg Cos vg Cos
E=-2 Sin kg Coskg Sinvg
F=-2 Sin kg Cos kg Cos vg
G=2 Sin kg Cos kg Sinvg Zo - 2 exg Cos vg
```



```
I = - 2 Z Sosin
J = ex g}\mp@subsup{}{g}{2}+\mp@subsup{Z}{0}{2}\mp@subsup{\operatorname{Sin}}{}{2}kg-\mp@subsup{r}{0g}{2
Zo
```

This equation represents the model of one flank whose parameters are, $r_{o g}, v g, e_{g}$ and $k g$ which determine completely the coefficients A to J of function $f_{\alpha 1}$.

A two-fluted drill point is made of two similar flanks and one flank substitutes the other when the drill is rotated 180°. For each point $P_{1}=(X, Y, Z)$ on the flank represented by equation $f_{\alpha 1}$ there is a diametrically opposed point $P_{2}=(-X,-Y, Z)$ on the other flank. The equation $f_{\alpha 2}$ for this flank can be found from $f_{\alpha 1}$ by substituting X for $-X$ and Y for $-Y$:

$$
\begin{align*}
f_{\alpha 2}= & A X^{2}+B Y^{2}+C Z^{2}+D X Y-E X Z-F Y Z- \\
& -G X-H Y+I Z+J=0
\end{align*}
$$

3.3 Computing Approach

The equations dealt with in the previous sections can be easily dealt with by computing methods.

The implementation of these equations in a computer program do not present any particular problem and the respective flow diagram is omitted from this writing.

The segment computer program relative to the drill flank point can be seen in the computer program shown in Appendix 1.

Figures 3.5 to 3.8 show computer plotted cross-sections through both flank surfaces, normal to the drill axis. Each figure shows the effect of one of the four grinding parameters on the size or on the position of the flank surface relative to the referential system attached to the drill.

3.4 The Chisel Edge

The intersection of the two flank surfaces forms the chisel edge. To find the chisel edge is to find the common solution to f_{α} and $f_{\alpha 2}$ at the drill point region.

The chisel edge can be found geometrically and numerically from the successive cross-sections on both flank surfaces yielded along the drill axis: Figures 3.5 to 3.8 .

The chisel edge intersects the drill axis at the chisel point (dead centre), $\left(0,0, Z_{d c}\right)$, where $Z_{d c}$ can be found from either $f_{\alpha 1}$ or $f_{\alpha 2}$ by making $X=Y=0$. In doing so, $Z_{d c}$ is found from the equation:

$$
C Z_{d c}^{2}+I Z_{d c}+J=0
$$

which results from $f_{\alpha 1}(0,0, Z)=f_{\alpha 2}(0,0, Z)=0$.

FIGURE 3.5: Computer plotted cross sections of the flank surfaces normal to the drill axis.

FIGURE 3.6: Computer plotted cross sections of the flank surfaces normal to the drill axis.
Effect of Vg

FIGURE 3.7: Computer plotted cross sections of the Flank surfaces normal to the drill axis.
Effect of Exg

The direction of the chisel edge at the chisel point is given by the tangent to the chisel edge at this point.

Let $S_{\alpha 1}$ be the flank surface represented by equation $f_{\alpha 1}$; from geometry, the normal vector, \vec{n}_{1}, to surface $S_{\alpha 1}$ at one point (X, Y, Z) is in the same direction as the vector $\left(\partial f_{\alpha 1} / \partial X, \quad \partial f_{\alpha 1} / \partial Y, \quad \partial f_{\alpha 1} / \partial Z\right)$:

$$
N_{1} \overrightarrow{n_{1}}=\left(\partial f_{\alpha 1} / \partial X, \quad \partial f_{\alpha 1} / \partial Y, \quad \partial f_{\alpha 1} / \partial Z\right)
$$

In the same way, for flank $S_{\alpha 2}$:

$$
N_{2} \overrightarrow{n_{2}}=\left(\partial f_{\alpha 2} / \partial X, \quad \partial f_{\alpha 2} / \partial Y, \quad \partial f_{\alpha 2} / \partial Z\right)
$$

At the chisel edge, \vec{n}_{1} and $\overrightarrow{n_{2}}$ are both normal to the tangent to this line; then the tangent to the chisel edge is in the direction of vector $\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$, that is, normal to both $\overrightarrow{n_{1}}$ and \vec{n}_{2}.

At the chisel point, $\left(0,0, Z_{d c}\right)$,

$$
\begin{align*}
& N_{1} \vec{n}_{1}=\left(E Z_{d c}+G, \quad F Z_{d c}+H, \quad 2 C Z_{d c}+I\right) \\
& N_{2} \vec{n}_{2}=\left(-E Z_{d c}-G, \quad-F Z_{d c}-H, \quad 2 C Z_{d c}+I\right) \\
& N_{1} N_{2} \vec{n}_{1} \times n_{2}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
E Z_{d c}+G & F Z_{d c}+H & 2 C Z_{d c}+I \\
-E Z_{d c}-G & -F Z_{d c}-H & 2 C Z_{d c}+I
\end{array}\right|
\end{align*}
$$

where \vec{i}, \vec{j} and \vec{k} are the unit vectors associated with the axes-of the referential system (X, Y, Z).

DOg= 25.40
$\mathrm{Ug}=\square$
Exg $=2.50$
Rkg= 59.00
FIGURE 3.10: Effect of Vg on the chisel edge angle

$\mathrm{Ug}=90.00$
$E \times g=\square$
RKg
FIGURE 3.11: EFfect of Exg on the chisel edge angle

FIGURE 3.12: Effect of Rkg on the chisel edge angle

57

$$
\begin{align*}
N_{1} N_{2} \overrightarrow{n_{1}} \times \vec{n}_{2} & =(E Z+G)\left(2\left(F Z_{d c}+H\right)\left(2 C Z_{d c}+I\right)\right. \\
& \left.-2\left(F Z_{d c}+H\right)\left(2 c Z_{d c}+I\right), 0\right)
\end{align*}
$$

As expected, the $\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$ vector is normal to the drill axis (third component null), i.e. the tangent to the chisel edge at the drill chisel point is normal to the drill axis.

This tangent makes an angle ψ^{\prime} (Figures 3.9 to 3.12) with the X axis, which is the same as the chisel edge angle, ψ, when the drill lip is a straight line.

Let \vec{c} be the unit vector in the direction of $N_{1} N_{2} \vec{n}_{1} \times \overrightarrow{n_{2}}$, or, in the chisel edge direction; let \vec{i} be the unit vector along the X axis:

$$
\vec{c} . \vec{i}=|\vec{c}| \cdot|\vec{i}| \cdot \cos \psi^{\prime}=\cos \psi^{\prime}
$$

The variation of angle ψ^{\prime} with the flank model parameters is shown in Figures 3.9 to 3.12 which reveal the parameter $v g$ to have in general a greater influence than the other parameters.

Numerical investigation, not included in this work, also revealed the direction of the tangent along the chisel edge to vary very little: less than 1% at a point 1 mm away from the chisel point.

3.5 Chapter Closure

In building up the novel model of the cylindrical grinding and implementing it in a computer program, the author aimed at designing a 'tool' to be used in flute design. Thus the analysis was carried out just up to the stage that was needed for that purpose. However, the analysis has been brought to a point that makes easy any further numerical and geometrical investigation on the cylindrical flank surfaces.
"The drill is geometrically the most complex tool to be found in the workshop and offers a real challenge to anyone attempting to visualize the effective rake congle or other quantities of fundamental importance".

Milton Show
4. DRILL POINT GEOMETRIC SIMULATION AND

CUTTING ANGLES ALONG ANY SHAPED DRILL LIP

4.1 Introduction

In attempting to design a new drill flute based on the prefixed values of the cutting angles along a drill lip, the author found himself committed to the task of devising and designing analytical and computing 'tools' not available so far. Designing, developing and implementing these 'tools' has been a major task in his work to achieve the main purpose, and, as a result, an extensive, quite complex computer program was built up.

One objective with this computer program was to design it in order that it could simulate any drill point either for any flute form or for any set of the setting parameters of a drill point cylindrical grinding machine.

Simulation of the drill point by computer aided design presents the following advantages:

- it is an additional design aid in drill design;
- it allows for visualization of drill point before flute manufacture and/or actual drill point grinding;
- it can offer an overall view of the drill point configuration represented by its complete contour, for example;
- it allows for elimination of undesired configurations;
- it eliminates trial and error grindings for a set of desired features;
- it reveals design details not immediately available from the traditional set of features used to characterize a drill point;
- it offers a useful approach in unusual situations as the one referring to non-conventional flute design;
- it allows for finding, by comparison with the actual drill points, the error and/or deviations of the flute form and/or the ground surfaces.

4.2 Drill Point Geometric Simulation

The geometry of the drill point is determined by the flutes and flanks and their mutual intersections. The drill surfaces are designated as follows (Figure 4.1):

- $\quad S_{\alpha 1}$ - represented by a function $f_{\alpha 1}$ - is the flank surface extending towards the positive semi-axis X
- $\quad S_{\alpha 2}$ - represented by a function $f_{\alpha 2}$ - is the flank surface extending towards the negative semi-axis X and symmetric to $S_{\alpha 1}$ relative to the drill axis (Z axis)
- $\quad S_{\gamma 1}$ - represented by a function $f_{\gamma l}$ - is the flute face which, with $S_{\alpha]}$, determines the lip 1
- $\quad S_{\gamma 2}$ - represented by a function $f_{\gamma 2}$ - is the flute face which, with $S_{\alpha 2}$, determines the lip 2
- $\quad S_{h 1}$ - represented by a function $f_{h 1}$ - is the heel surface that, together with S_{γ}, completes one flute surface
- $\quad S_{h 2}$ - represented by a function $f_{h 2}$ - is the heel surface that, together with $S_{\gamma 2}$, completes the second flute surface
- $\quad S_{\alpha f}$ - represented by a function $f_{\alpha f}$ - is the drill external cylindrical surface

For the sake of simplicity and without any relevant loss of geometric information, the drill body clearance is not considered and therefore the drill margin (land) is not simulated.

The flow diagram of the computer program segment for drill point simulation is presented in Figure 4.2. The computer program itself, to which belong the referred to segment and other segments already referred to in previous chapters, is presented in Appendix 1 and has been the source for other computer programs the author developed and used throughout his work.

FIGURE 4.1: Drill point surfaces and drill point contour lines.

FIGURE 4.2 (continued)

FIGURE 4.2: Flow diagram of computer program segment for drill point geometric simulation

From the computer program implemented numerical model for the drill point, many simulations either numeric (Table 4.1) or geometric (Figure 4.3) were done with two purposes:
i) numerical and geometrical investigation
ii) for comparison with actual drill points produced on the grinding machine available to the author, with drills mainly from the shelf.

Figure 4.3 shows a simulated drill point of a 19.05 mm (${ }^{3 \prime}$) diameter conventional flute drill for which the cylindrical grinding parameters were selected as follows:

$$
d_{o g}=38 \mathrm{~mm} ; \quad v_{g}=65^{\circ} ; \quad e x_{g}=3 \mathrm{~mm} ; \quad \kappa_{g}=59^{\circ}
$$

Figure 4.4 shows the actual drill point, after grinding, of a conventional flute drill without margins which has been manufactured for research purposes, with the features used for the simulation shown in Figure 4.3.

Figures 4.5 to 4.10 are presented to illustrate drill point simulation for one conventional flute ground to three different point angles. The effect of the other cylindrical grinding parameters and the conventional flute design parameters is illustrated in Appendix 2.

4.3 Lip Geometry Related Cutting Angles Along Any Shape Drill Lip

Drill features, as presented in Chapter 1, are inadequate to take account of the differences between flute forms which influence the length and shape of the lips and the chisel edge length together with the cutting angles along the lips.

Lip length and chisel edge length can be put in evidence from the computations presented in the previous section (Table 4.1 and geometric simulations).

1

RADI	X	Y	Z	S
9.52	9.44	-1.20	4.90	Ø. $0 \square$
9.04	8.95	-1. 26	4.60	0.59
8.55	8.45	-1.31	4.29	1.17
8.06	7.94	-1.36	3.99	1.77
7.56	7.43	-1.40	3.68	2.36
7.06	6.92	-1.43	3.38	2.96
6.56	6.39	-1.46	3.97	3.56
6.05	5.87	-1.49	2.77	4.17
5.54	5.33	-1.51	2.47	4.79
5.03	4.80	-1.52	2.16	5.41
4.52	4.25	-1. 53	1.86	6.03
4.00	3.69	-1. 54	1.55	6.67
3.49	3.13	-1. 54	1.25	7.31
2.99	2.56	-1.54	0.94	7.95
2.51	1.98	-1.54	0.64	8.61
2.07	1.39	-1.53	0.33	9.27

3

XCHI	YCHI	ZCHI
1.39	-1.53	$\emptyset .33$
1.35	-1.48	$\emptyset .33$
1.30	-1.42	$\emptyset .32$
1.25	-1.37	$\emptyset .31$
1.19	-1.31	$\emptyset .30$
1.14	-1.25	$\emptyset .29$
1.08	-1.18	0.28
1.02	-1.12	$\emptyset .28$
0.95	-1.05	0.27
$\emptyset .88$	$-\emptyset .97$	0.26
$\emptyset .8 \emptyset$	$-\emptyset .88$	0.25
$\emptyset .72$	-0.79	$\emptyset .24$
0.62	$-\emptyset .68$	$\emptyset .23$
$\emptyset .51$	$-\emptyset .56$	$\emptyset .23$
$\emptyset .36$	$-\emptyset .4 \emptyset$	$\emptyset .22$
$\emptyset . \emptyset \emptyset$	$-\emptyset . \emptyset \emptyset$	$\emptyset .21$

4

XCLE	YCLE	ZCLE	PHCL
			(deg)
0.78	9.49	7.08	85.32
1.79	9.35	7.14	79.15
2.79	$9.1 \emptyset$	7.13	72.97
3.75	8.75	7.06	66.80
4.67	8.30	6.95	60.63
5.53	7.75	6.80	54.46
6.33	7.11	6.64	48.28
7.06	6.38,	6.46	42.11
7.71	5.59	6.27	35.94
8.26	4.73	6.08	29.77
8.72	3.81	5.89	23.59
9.08	2.85	5.69	17.42
9.34	1.86	5.50	11.25
9.48	0.84	5.31	5.08
9.52	-0.18	5.11	-1.10
9.44	-1.20	$4.9 \emptyset$	-7.27

TABLE 4.1: Computer printout for drill point (an example)

 [Refer to FIGURES 4.3 and 4.4]1 - Radial distance and coordinates along the drill lip (From the outer corner)
2 - Distance along the drill lip (from the outer corner)
3 - Half-chisel edge coordinates (from the chisel corner to the chisel point)
4 - Circunferential drill flank contour coordinates and angle (from heel corner)

$$
\begin{array}{ll}
\begin{array}{l}
\text { Flute } \\
\text { conventional }
\end{array} & \begin{array}{l}
\text { Grinding- } \\
\text { cylindrical }
\end{array} \\
\text { R0 }=9.52 & \mathrm{DOg}=38.00 \\
\text { Web }=3.00 & \mathrm{Ug}=65.00 \\
\mathrm{HO}=30.00 & \text { Exg }=3.00 \\
& \text { Rkg }=59.00
\end{array}
$$

FIGURE 4.4: Actual drill point
[Compare with FIG 4.3 for computer simulated drill point]

$$
\begin{array}{ll}
\text { Flute - } & \text { Grinding- } \\
\text { conventional } & \text { cylindrical } \\
& \\
R 0=6.00 & \mathrm{DOg}=26.00 \\
\text { Web= }=1.80 & U \mathrm{~g}=90.00 \\
\mathrm{HO}=27.50 & \text { Exg }=2.50 \\
\mathrm{Rk}=59.00 & \text { Rkg }=59.00
\end{array}
$$

FIGURE 4.5: Computer simulation of drill point.

Flute - conventional	Grinding- cylindrical			
$R O=6.00$	$\mathrm{DOg}=26.00$			
$\mathrm{Reb}=$	1.80	$\mathrm{Ug=90.00}$	$\mathrm{HO}=27.50$	Exg= 2.50
:---	:---			
$\mathrm{Rk}=59.00$	Rkg $=48.00$			

[Compare with FIG 4.5 for ground point angle]

FIGURE 4.6: Computer simulation of drill point.

[Compare with FIG 4.5 for ground point angle]
FIGURE 4.7: Computer simulation of drill point.

Flute - conventional	Grinding- cylindrical
$\mathrm{RO}=6.00$	$\mathrm{DOg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	Rkg=48.00

Flute -
conventional
$R 0=6.00 \quad D 0 g=26.00$
Web= $1.80 \quad \mathrm{Vg}=90.00$
$\mathrm{HD}=27.50 \quad \mathrm{E} \times \mathrm{g}=2.50$
$\mathrm{Rk}=59.00 \quad$ Rkg $=59.00$

Flute -
conventional

$\mathrm{RO}=6.00$	$\mathrm{DEg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	Rkg $=68.00$

FIGURE 4.8: Comparing similar views of computer simulated drill points ground to three different point angles (refer to FIG 4.5 to FIG 4.7).

Flute - conventional	Grinding- Cylindrical
$\mathrm{RO}=6.00$	$\mathrm{DOg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}_{\mathrm{g}}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	$\mathrm{Rkg}=48.00$

Flute -
conventional
Grinding-

$\mathrm{R0}=6.00$	$\mathrm{DOg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}=90.00$
$\mathrm{HD}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	$\mathrm{Rkg}=59.00$

Flute -
conventional
Grindingcylindrical

$\mathrm{RD}=6.00$	$\mathrm{DQg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	Rkg=68.00

FIGURE 4.9: Comparing similar views of computer simulated drill points ground to three different point angles (refer to FIG 4.5 to FIG 4.7).

Flute - conventional	Grinding- cylindrical
$\mathrm{RD}=6.00$	$\mathrm{DQg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}_{g}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	$\mathrm{Rkg}=48.00$

Flute - conventional	Grinding- cylindrical
$R 0=6.00$	$\mathrm{DOg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{E} \times \mathrm{g}=2.50$
$\mathrm{Rk}=59.00$	$\mathrm{Rkg}=59.00$

Flute - conventional	Grinding- cylindrical
$\mathrm{RD}=6.00$	$\mathrm{DOg}=26.00$
$\mathrm{Web}=1.80$	$\mathrm{Vg}=90.00$
$\mathrm{HD}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	Rkg=68.00

FIGURE 4.10: Comparing similar views of computer simulated drill points ground to three different point angles (refer to FIG 4.5 to FIG 4.7).

For a more complete knowledge of a drill cutting capability, the cutting geometry along its edges must be known.

Single point cutting tools are usually dealt with in terms of rake angles, inclination angle and clearance angle, for example. These angles are the concepts which eventually should be used in comparing such different tools as drills and single point cutting tools.

To design new drill flutes according to prefixed conditions such as a uniform wedge angle along the drill lip, it is not possible before a method is available to compute such an angle along the cutting edge.

Galloway (3) and others presented expressions to calculate some basic cutting angles along the drill lips. These expressions are not valid except for straight lips.

Drill curved lips are reported from time to time to perform better than the straight ones, at least in special cases - with cast iron, for instance.

Approaching the cutting angles of curved edges could be made, according to Stabler (45), in the same way as for straight cutting edges by taking the tangent at the selected point to the curved cutting edge. This approach is considered in the following analysis and computations.

4.3.1 Rake angle

The rake angle has always received a great deal of attention which is expressed in the number of papers which deal with this particular variable, and in the many designations used with the same basic concept.

The many designations used with the rake angle derive mainly from the oblique cutting case as for this case the definition of rake is dependent on the selection of the reference plane and measurement plane.

The normal rake angle is a basic angle, for the many works reporting on its influence upon cutting performance and for being a basic variable for the calculation of other rake angles such as the velocity rake and the effective rake.

The normal rake angle (Figure 4.11), γ_{n}, is measured in a plane perpendicular to the cutting edge, p_{n}, between the face $\left(S_{\gamma 1}\right.$ or $S_{\gamma 2}$) and the normal to the plane defined by the cutting edge and the cutting velocity.

The vector simultaneously normal to the cutting edge vector, \vec{e}, and velocity vector, \vec{v}, is designated by \vec{n}_{m} (Figures 4.11 and 4.12). The vector on the rake face, normal to the cutting edge is designated by $\vec{t}_{Y 1}$.

From Figure 4.11:

$$
\vec{n}_{m} \cdot \vec{t}_{\gamma 1}=\left|\vec{n}_{m}\right| \cdot\left|\vec{t}_{\gamma \mid}\right| \cos \gamma_{n}=\cos \gamma_{n}
$$

Computing \vec{n}_{m} and $\vec{t}_{\gamma l}$:
From Figure 4.12:

$$
\begin{align*}
& N_{n} \vec{n}_{m}=\vec{e} \times \vec{v} \\
& \vec{v}=(-\sin \phi, \cos \phi, 0)
\end{align*}
$$

where $N_{m}=|\vec{e} \times \vec{v}|$
Vector \vec{v} is normal to radial vector \vec{r} and parallel to the $X Y$ plane (Figure 4.12). Vector \vec{e} is computed from the vector, $\vec{n}_{\alpha}{ }^{7}$, normal to the flank at point P, and from the vector $n_{\gamma l}$, normal to the rake face (Figure 4.13):

$$
\mathrm{E} \overrightarrow{\mathrm{e}}=\vec{n}_{\gamma 1} \times \vec{n}_{\alpha\rceil}
$$

FIGURE 4.11: Normal rake angle deFinition

FIGURE 4.12: Definition of vector normal to the cutting edge and to cutting velocity, \vec{n}_{m}

FIGURE 4.13: Determination of vector \vec{e} and cutting edge direction.

F - normal flute cross section
h - helical line on flute face

FIGURE 4.14: Determination of vector, $\vec{n}_{\gamma_{1}}$, normal to the rake face.
[Refer to previous FIGS.].
where $E=\left|\vec{n}_{Y} \times \vec{n}_{\alpha}\right|$
and $\quad N_{\alpha 1} \cdot \vec{n}_{\alpha 1}=\left(\partial f_{\alpha 1} / \partial X, \partial f_{\alpha 1} / \partial Y, \partial f_{\alpha 1} / \partial Z\right)$
where $f_{\alpha 1}$ is the expression for the mathematical model of flank $S_{\alpha 1}$ and $N_{\alpha 1}$ is the length of the vector on the right side of the equation.

Vector $\vec{n}_{\gamma 1}$ is computed from the vector, \vec{t}_{h}, tangent to the helix containing P, and from the vector, \vec{t}_{f}, tangent to the flute crosssection at point P (Figure 4.14).

From Figure 4.14:

$$
N_{\gamma l} \cdot \vec{n}_{\gamma l}=\vec{t}_{h} \times \vec{t}_{f}
$$

where

$$
N_{\gamma 1}=\left|\vec{t}_{h} \times \vec{t}_{f}\right|
$$

The vector \vec{t}_{h}, tangent to helix h (Figure 4.15) can be computed from vector, \vec{v}, normal to \vec{r} at P and from the helix angle γ_{h} at point P.

From Figure 4.15:

$$
T_{h} \cdot \vec{t}_{h}=\vec{v}+\cot \gamma_{h} \cdot \vec{k}
$$

Vector \vec{t}_{f} can be computed as shown in Figure 4.16:

$$
\vec{t}_{f}=\left(-\cos \left(\tan ^{-1}\left(\frac{d Y}{d X}\right)_{Z=0}-\xi\right),-\sin \left(\tan ^{-1}\left(\frac{d Y}{d X}\right)_{Z=0}-\xi\right), 0\right)
$$

4.8

Finally, $\vec{t}_{\gamma 1}$ is computed from \vec{n}_{γ} and $\vec{e}^{\text {(Figure 4.13): }}$

$$
T_{\gamma 1} \vec{t}_{\gamma 1}=\vec{n}_{\gamma 1} \times \vec{e}
$$

FIGURE 4.15: Determination of tangent to helix h, \vec{t}_{h}, from the normal to radial vector and from the helix angle.

$\vec{t}_{f}=\left(\cos \left(\tan ^{-1}(d y / d x)_{Z=0^{-5}}^{-5}, \sin \left(\tan ^{-1}(d y / d x)_{Z=0}-5\right), 0\right)\right.$
FIGURE 4.16: Determination of tangent, \vec{F}_{f}, to flute cross section at point P.
where $T_{Y \mid}=\left|\vec{n}_{Y \mid} \times \vec{e}\right|$
$\vec{v}, \vec{n}_{\alpha l}, \vec{t}_{h}$ and \vec{t}_{f} are computed directly from Equations 4.3, $4.5,4.7$ and 4.8 respectively. From $\vec{v}, \vec{n}_{\alpha l}, \vec{t}_{h}$ and \vec{t}_{f}, the algorithm to compute the normal rake angle is devised as follows:

$$
\begin{align*}
& \vec{t}_{f}, \vec{t}_{h} \rightarrow \vec{n}_{\gamma l} \tag{Equation4.6}\\
& \vec{n}_{\gamma l}, \vec{n}_{\alpha l}+\vec{e}^{2} \tag{Equation4.4}\\
& \vec{e}, \vec{v} \rightarrow \vec{n}_{m} \tag{Equation4.2}\\
& \vec{n}_{\gamma l}, \vec{e} \rightarrow \overrightarrow{\mathrm{t}}_{\gamma l} \\
& \overrightarrow{\mathrm{t}}_{\gamma l}, \vec{n}_{m}+\gamma_{n}
\end{align*}
$$

(Equation 4.9)
(Equation 4.1)

For computing purposes the variables which are vectors must be represented by their components in a referential system, as shown in Section 'Nomenclature'.

The flow diagram of the computer program (Appendix 1) segment to compute the normal rake angle is given in Figure 4.17.

The above presented method was tested, for straight lips, against the expression for the normal rake angle, γ_{n}, given by Galloway (3):

$$
\tan \gamma_{n}=\frac{\left(\rho^{2}-\sigma^{2} \sin ^{2} k\right)}{\left(\rho^{2}-\sigma^{2}\right)^{\frac{1}{2}} \sin k} \tan \gamma_{f}-\frac{\sigma \cos k}{\left(\rho^{2}-\sigma^{2}\right)^{\frac{1}{2}}}
$$

where $\rho=\frac{r}{r_{0}}$ and $\sigma=\frac{W^{\prime}}{r_{0}}$

FIGURE 4.17 (continued)

FIGURE 4.17 (continued)

FIGURE 4.17: Flow diagram of computer program segment to compute the normal rake angle

The normal rake angle, γ_{n}, was calculated both with the formulae by Galloway and with the algorithm by the author for the case of straight lips. Large ranges of parameters, r_{0}, W^{\prime}, k and γ_{f} and varying radial distances, r, were investigated and the results were coincident.

The need and advantage of the present method refers mainly to the cases where the lips are curved and for which Equation 4.10 cannot be applied.

The present algorithm allows for numerical and graphical investigation of the normal rake angle for any practical range of the grinding parameters $-d_{o g}, v_{g}, e_{g},{k_{g}}$, for any practical range of the conventional flute parameters - $r_{0}, W^{\prime}, \gamma_{f}, k$ - and for other flutes defined by their cross-sections in the XY plane.

In Figure 4.18 it is shown the variation of the normal rake angle with the radial distance for three different conventional flutes; the flutes have different design point angles and are ground accordingly (Figure 4.5 and Appendix 2).

In Figure 4.19 it is shown the variation of the normal rake angle with the radial distance for one conventional flute and three different ground point angles (Figures 4.5, 4.6 and 4.7).

One curve from Figure $4.18-48^{\circ}$ design point angle flute and 48° ground point angle - is compared with one curve from Figure 4.19-590 design point angle flute and 48° ground point angle in Figure 4.20.

The influence of the conventional flute design parameters other than k, and the influence of the cylindrical grinding parameters other than k_{g} on the normal rake angle is shown in Appendix 3.

91

4.3.2 Clearance angle

The space between the flank of a cutting tool and the machined surface is usually measured by the clearance angle.

To produce a cutting edge with an excessive clearance angle weakens the lip (10); to make it minute increases interference between tool and machined surface (17).

The clearance angle may be measured in a number of different measurement planes through the cutting edge, and several definitions of clearance angle are possible. As for the rake angle, all possible definitions can usually be referred to and calculated from the normal clearance angle.

The normal clearance angle, (Figure 4.21), a_{n}, is measured in a plane perpendicular to the cutting edge, p_{n}, between the flank ($S_{\alpha 1}$ or $S_{\alpha 2}$) and the plane defined by the cutting edge and the cutting velocity (Figure 4.21).

From Figure 4.21

$$
\vec{t}_{m} \cdot \vec{t}_{\alpha l}=\left|\vec{t}_{m}\right|\left|\vec{t}_{\alpha l}\right| \cos \alpha_{n}=\cos \alpha_{n}
$$

where \vec{t}_{m} and $\vec{t}_{\alpha 1}$ are both normal to the cutting edge, the first being tangent to the machined surface and the second being tangent to the flank.
\vec{t}_{m} can be computed from \vec{e} and from \vec{n}_{m} (Figure 4.22) which have already been determined:

$$
T_{m} \vec{t}_{m}=\vec{n}_{m} \times \vec{e}
$$

where $T_{m}=\left|\vec{n}_{m} \times \vec{e}\right|$
$\vec{t}_{\alpha_{1}}$ - vector tang to flank at point P

FIGURE 4.21: Normal clearance angle definition

$$
\begin{aligned}
& \vec{t}_{\alpha 1} 1 \vec{n}_{\alpha_{1}} \\
& \vec{t}_{\alpha 11} \vec{e}^{3} \\
& \vec{t}_{m}+\vec{n}_{m} \\
& \vec{t}_{m} \perp \vec{e}^{2}
\end{aligned}
$$

\vec{n}_{m} - vector normal to machined surface at point P
$\vec{n}_{\alpha_{q}}$-vector normal to flank ($S_{\alpha_{1}}$) at point P

FIGURE 4.22: Determination of vector, $\overrightarrow{\mathrm{t}}_{\mathrm{m}}$, tangent to the machined surface.
[Refer to FIG 4.12 and 4.21]

FIGURE 4.23: Normal clearance angle and the effect of the grinding parameter Exg. [Refer to Appendix 4 for the other parameters]

FIGURE 4.24: Normal clearance angle and the effect of the grinding point angle,Rkg. [Refer to Appendix 4 for the other parameters]

FIGURE 4.25: Comparing the normal clearance to the relief angle.
$\vec{t}_{\alpha 1}$ can also be computed from \vec{e} and $\vec{n}_{\alpha l}$ which have been determined too:

$$
T_{\alpha\rceil} \overrightarrow{\mathrm{t}}_{\alpha\rceil}=\overrightarrow{\mathrm{e}} \times \overrightarrow{\mathrm{n}}_{\alpha 1}
$$

where $T_{\alpha]}=\left|\vec{e} \times \vec{n}_{\alpha \mid}\right|$

Computation of the normal clearance angle was carried out according to a similar method as for the normal rake angle. Thus the author thinks it unnecessary to repeat an identicaln flow diagram to that in Figure 4.17 of the computer program segment (refer to Appendix 1) for this computation.

Figure 4.23 shows the influence of the grinding parameter exg (refer to Appendix 2 for simulated drill points) on the normal clearance angle. This grinding parameter, as the author found from numerical investigation, has a strong effect on the clearance angle without influencing so strongly the other drill point features.

The influence of the ground point angle, K_{g}, on the normal clearance angle is also shown in Figure 4.24 (refer to Appendix 2 for simulated drill point).

The influence of the other cylindrical grinding parameters and the influence of the conventional flute design parameters is shown in Appendix 4.

The nominal relief angle, as defined by Galloway [D.28] is compared with the normal clearance angle in Figure 4.25.

4.3.3 Wedge angle

The wedge angle is a measure of the amount of metal supporting the cutting edge.

FIGURE 4.26: Definition of the normal wedge angle [Refer to FIG 4.11 and 4.21]

FIGURE 4.27: Definition of the inclination angle

FIGURE 4.28: Normal wedge angle for one flute and three different ground point angles. [Refer to FIG 4.5 to 4.7$]$

The normal wedge angle, B_{n}, is measured in a plane normal to the cutting edge between the face and the flank (Figure 4.26).

From Figure 4.26:

$$
\vec{t}_{\gamma 1} \cdot \vec{t}_{\alpha 1}=\left|\vec{t}_{\gamma 1}\right|\left|\vec{t}_{\alpha \mid}\right| \cos \beta_{n}=\cos \beta_{n}
$$

where $\vec{t}_{\gamma 1}$ and $\vec{t}_{\alpha 1}$ have already been defined in the previous sections. Also: (BS 5533):

$$
B_{n}=\pi / 2-\gamma_{n}-\alpha_{n}
$$

Computing β_{n} from equation 4.14 serves as a verification for the computations with equation 4.15.

Figure 4.28 shows the variation of the normal wedge angle along the drill lip when one conventional flute is ground to three different point angles (refer to Figures 4.5 to 4.7 for drill point simulation).

4.3.4 Inclination angle

The angle of inclination has received a great deal of attention since Stabler (45). It has a major influence upon the chip flow and affects the cutting efficiency in several ways.

The inclination angle is measured in the plane determined by the cutting edge and the cutting velocity, between the normal to the velocity in this plane and the cutting edge (Figure 4.27).

From Figure 4.27:

$$
\begin{align*}
& \vec{v} \cdot \vec{e}=|\vec{e}||\vec{v}| \cos \left(90^{\circ}-\lambda\right), \\
& \vec{v} \cdot \vec{e}=\sin \lambda
\end{align*}
$$

FIGURE 4.29: Inclination angle for one conventional drill flute and three different ground point angles. [Refer to FIG 4.5 to 4.71

FIGURE 4.38: Effect of the grinding parameter $V g$ on the inclination angle.
[Refer to Appendix 2: varying Vg]

Figure 4.29 shows the inclination angle variation with the radial distance for the same conventional flute drill, ground to three different point angles.

The influence of the grinding parameter v_{g} is also shown in Figure 4.30 where it can be seen to be relatively small.

The influence of other cylindrical grinding parameters other than k_{g} and v_{g} and the influence of the conventional flute design parameters is shown in Appendix 5.

4.4 Chip Flow Angle

The chip flow angle, as the inclination angle, has received a lot of attention since the paper (45) by Stabler. Workers such as Colwell (51), Spaans (73), Usui and Hirota (48) and others (46, 70, 71,72) have also dealt with this variable for the oblique cutting.

Apart from the need for the effective rake angle calculation, the importance of the chip flow angle arises from the interest in chip flow control.

As the author will refer to the chip flow angle, later in this work, some laws are revised in the present section.

The chip flow angle is measured on the rake face, between the normal to the cutting edge and the chip flow velocity (16) - Figure 4.31 .

Several methods to determine the chip flow angle have been reviewed and shortly discussed by Venuvinod and Shing (74). Prediction rules $(45,48,51)$ have also been reported.

The most well known prediction rule is the one due to Stabler, for the number of papers referring to it and for the number of reported experiments carried out to test it. This is an empirical rule and reads:

FIGURE 4.31: Definition of chip flow angle.

$$
n=\lambda
$$

where n - chip flow angle
λ - inclination angle

According to Stabler (75), the rule expressed by equation 4.17 has been challenged by Shaw, Cook and Smith, Rapier and wilkinson, among others.

Stabler himself, after further experimental work, later proposed an alteration to the previous rule which should now read (75):

$$
\eta=k \lambda
$$

where K is a constant: $0.9 \div 0.95$.
Spaans, in a recent doctoral thesis (73), found that K could vary from 0.6 to 1.4 and Rapier and Wilkinson, according to Russell and Brown (70), reported that η is often greater than λ.

Spaans (73) also found that if the rake angle and/or the inclination angle differ from zero, the chip flow angle is material dependent.

Armarego and Cheng (72) suggested that chip flow angle is either entirely dependent on the inclination angle and slightly influenced by the normal rake angle. Brown and co-workers (46), Russell and co-workers (70) and Armarego and Cheng (72) found the expression

$$
n=\tan ^{-1}\left(\tan \lambda \cos \gamma_{n}\right)
$$

to correlate satisfactory with the results of some experiments.
Very recently, Usui and Hirota (48) approached the mechanics of oblique cutting from the point of view of the theory of plasticity,

FIGURE 4.32: Chip flow angle against inclination angle along a drill lip, according to laws to oblique cutting, by three workers
in a similar way as Lee and Shaffer (47) did for the orthogonal cutting, and derived the following expression for the chip flow angle:

$$
n=\tan ^{-1}\left[\frac{\tan \lambda}{\sin \gamma_{n}+\cos \gamma_{n}}\right]
$$

The laws by Stabler, by Brown and by Usui if used with a drill lip would result in the curves shown in Figure 4.32.

4.5 Effective. Rake Angle

As referred to in the general introduction, some authors believe that with oblique cutting the effective rake angle replaces the normal rake angle as used with orthogonal cutting.

The effective rake angle, γ_{e}, can be computed from the normal rake angle, the inclination angle and the chip flow angle. The geometrical relationship between these variables has been referred to by Stabler (45), Oxford (20) and Armarego and co-workers (46) and reads:

$$
\sin \gamma_{e}=\sin \lambda \sin n+\cos \lambda \cos n \operatorname{Sin} \gamma_{n}
$$

Equation 4.21 shows that, for a given cutting edge, the effective rake angle, γ_{e}, depends on the chip flow angle, n.

Figure 4.33 shows the variation of the effective rake angle with the radial distance, computed according to three chip flow angle laws referred to in the previous section.

FIGURE 4.33: Effective rake angle for several chip flow laws

4.6 Chapter Closure

For all the drill points ground according to the parameters utilised for geometric simulation, the author found very good agreement between the predicted contour and the actual drill point contour. Very small observed deviations, however, may be attributed to flute manufacture deviations and/or very small errors in setting the grinding machine, together with measurement errors.

A very well known drill point error, nearly always present, is the relative lip height. The simulation here presented is rigorously symmetric and does not take any account of this error, or web eccentricity, or other drill errors such as those referred to in the general introduction. The author could easily simulate these errors with his computing approach by introducing assymetrics either in the flutes shapes or in the flank point surfaces and simulating accordingly. This however is not included in this project as it is out of purpose.

An extensive piece of work could be set, in another project, for assessing the significance of the small deviations between the actual drill points and the simulated ones in order to gain information on the accuracy of the drill grinding machine type available to the author. In the same work the objective could be set to find the relative influence of each parameter upon the different. types of deviations.

> "The flute geometry behind the cutting edge mainly influences the conveyance of chips and assumes an important role only when chips tend to jam in the flutes".

Shaw and Oxford.
5. AN APPROACH TO NON-CONVENTIONAL DRILL

FLUTE DESIGN

5.1 Introduction

As referred to in Chapter 2, the flute profile is usually designed in order to yield a straight cutting edge. However, some workers $(13,58,76)$ have reported on the better performance of the drill curved lips - as those yielded by grinding the drill to a point angle different to the one relative to the flute design (refer to Chapter 4, Figure 4.6).

The condition for the drill lip to be straight seems to stem from tradition and from empirical grounds.

The specifications for drill flute design may be given in terms of the cutting angles along the drill lip.

This chapter deals with the problem of designing a drill flute which, together with the flank surface, yields a lip with uniform wedge angle.

5.2 General Mathematical Approach to Flute Design

As in the previous chapters, the symbol $S_{\alpha]}$ is used for the flank surface and the symbol $S_{\gamma 1}$ for the flute face. Also the equations expressing the properties of the coordinates for each surface are designated by $f_{\alpha l}$ and $f_{\gamma l}$ respectively.
$f_{\alpha \gamma}$ has been dealt with in Chapter 3. $f_{\gamma \gamma}$ is to be found according to the specifications to the drill lip.

Let a current point on the cutting edge, Q, be represented by (x, y, z) - Figure 5.1 - and any point on $S_{\alpha l}$, or $S_{\gamma l}$, to be represented by (X, Y, Z).

As the drill lip is one intersection of surfaces $S_{\gamma l}$ and $S_{\alpha l}$, the equations:

$$
\begin{aligned}
& f_{\gamma l}(X, Y, Z)=0 \\
& f_{\alpha l}(X, Y, Z)=0
\end{aligned}
$$

have a common solution for the points (x, y, z).
The unit vector tangent to the drill lip is represented by:

$$
\vec{e}=\left(e_{1}, e_{2}, e_{3}\right)
$$

and the perpendicular to $\mathrm{S}_{\alpha 1}$ is represented by

$$
\begin{aligned}
\vec{n}_{\alpha 1} & =\left(n_{\alpha 11}, n_{\alpha 12}, n_{\alpha 13}\right) \\
& =\left(\partial f_{\alpha 1} / \partial X, \partial f_{\alpha 1} / \partial \gamma, \partial f_{\alpha 1} / \partial Z\right)
\end{aligned}
$$

where $f_{\alpha 1}$ is a continuous function of X, Y and Z (Chapter 3).
The condition for \vec{e} to be tangent to $S_{\alpha \rho}$ is:

$$
\overrightarrow{\mathrm{e}} \cdot \overrightarrow{\mathrm{n}}_{\alpha 1}=0
$$

If s is chosen to represent the length from a reference point on the drill lip to (x, y, z), measured along the lip, vector \vec{e} may be further represented by:

$$
\vec{e}=(d x / d s, d y / d s, d z / d s)
$$

where $x=x(s), y=y(s)$ and $z=z(s)$ are the parametric equations for the coordinates of point (x, y, z).

Equation 5.1 may be rewritten as follows:

$$
\begin{array}{r}
\left(\partial f_{\alpha 1} / \partial X, \partial f_{\alpha l} / \partial Y, \partial f_{\alpha l} / \partial Z\right)_{x, y, z}(d x / d s, d y / d s, d z / d s)=0 \\
5.1^{\prime}
\end{array}
$$

or

$$
\left[\frac{\partial f_{\alpha l}}{\partial X}\right]_{x, y, z} \cdot \frac{d x}{d s}+\left[\frac{\partial f_{\alpha l}}{\partial Y}\right]_{x, y, z} \cdot \frac{d y}{d s}+\left[-\frac{\partial f_{\alpha l}}{\partial Z}\right]_{x, y, z} \cdot \frac{d z}{d s}=0
$$

$$
5.1^{\prime \prime}
$$

where:

$$
(d x / d s)^{2}+(d y / d s)^{2}+(d z / d s)^{2}=1
$$

as

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}+(d z)^{2}
$$

A third relationship independent of the above two is needed for finding points (x, y, z) of the cutting edge. This will be given by considering the vector \vec{v} with the same direction as the cutting velocity:

$$
\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)
$$

By definition of inclination angle (equation 4.16):

$$
\vec{v} \cdot \vec{e}=\sin \lambda \quad \text { (Equation } 4.16 \text {), or }
$$

in other notation:

$$
\left(v_{1}, v_{2}, v_{3}\right) \cdot(d x / d s, d y / d s, d z / d s)=\sin \lambda
$$

$$
4.16^{\prime}
$$

The tangent to the cutting edge is tangent to the flank surface and makes an angle $\pi / 2-\lambda$ with the cutting velocity, so, the components

$$
\left(e_{1}, e_{2}, e_{3}\right)=(d x / d s, d y / d s, d z / d s)
$$

of the unit vector in the direction of the tangent to the cutting edge must be a solution to the following equations:

$$
\left[\partial f_{\alpha 1} / \partial X\right]_{x, y, z} \frac{d x}{d s}+\left[\partial f_{\alpha l} / \partial Y\right]_{x, y, z} \frac{d y}{d s}+\left[\partial f_{\alpha l} / \partial Z\right]_{x, y, z} \frac{d z}{d s}=0
$$

$$
\begin{align*}
& v_{1} \frac{d x}{d s}+v_{2} \frac{d y}{d s}+v_{3} \frac{d z}{d s}=\sin \lambda \\
& \left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}+\left(\frac{d z}{d s}\right)^{2}=1
\end{align*}
$$

The points (x, y, z) on the cutting edge can be found by integration of $d x / d s, d y / d s$ and $d z / d s$.

5.3 Computation of a Non-conventional Drill Flute Profile

5.3.1 Analysis for computation

The drill specifications for the drill with a new flute design are as follows:

- body
d_{0} - drill diameter (12.7 mm) (${ }^{\prime \prime}$ ")
2 W - web thickness (2 mm)
γ_{f} - helix angle at drill periphery (30°)

FIGURE 5.1: Geometric elements for the analysis of the drill lip.

FIGURE 5.2: Specification parameters and geometric reference elements for the new flute design.

- point (cylindrical grinding parameters)
$d_{o g}$ - grinding cylinder diameter (28 mm)
v_{g} - grinding cylinder rotation (90°)
ex. - distance from grinding cylinder axis to drill axis (3 mm)
$2 \kappa_{g}$ - grinding point angle (118°)
- flute
face - designed in order to yield, together with the flank point, a uniform wedge angle
heel - determined as for the conventional flute (Chapter 2)

The flute to be designed will be referred to as a referential system of Cartesian coordinates (X, Y, Z).

The outer corner, 0_{c}, of the new design drill is defined as if it belonged to a conventional flute drill with the following design parameters: $d_{o}, 2 W, \gamma_{f}$ and κ (Figures 5.2 and 5.3). For reference, the chisel corner, C_{c}, that would be yielded with such a conventional flute drill is also considered (Figure 5.2).

Let. $Q(x, y, z)$ be a point on the lip of the new design drill such that it is on the same helix as $P(X, Y, 0)$ of the new flute profile in the plane XY (Figure 5.3).

Let $\vec{v}=\left(v_{1}, v_{2}, 0\right)$ to be parallel to the rotational velocity at point Q and

$$
|\vec{v}|=1
$$

From Figure 5.3

$$
\begin{align*}
& \phi_{1}=\tan ^{-1}(y / x) \\
& r=\sqrt{x^{2}+y^{2}}
\end{align*}
$$

FIGURE 5.3: Geometric elements for the analysis of a new flute design

$$
z=r_{0} \phi_{2} / \tan \gamma_{f}
$$

where ϕ_{l}, r and z are the cylindrical coordinates of point Q.

Also from Figure 5.3:

$$
\begin{align*}
& v_{1}=\sin \phi_{1} \\
& v_{2}=\cos \phi_{1} \\
& v_{3}=0
\end{align*}
$$

where $\left(v_{1}, v_{2}, 0\right)$ is in the direction of the rotational velocity at point Q.

Equation $f_{\alpha 1}=0$ has already been dealt with in Chapter 3:

$$
\begin{align*}
f_{\alpha 1}(X, Y, Z) & =A X^{2}+B Y^{2}+C Z^{2}+D X Y+E X Z+F Y Z \\
& +G X+H Y+I Z+J=0
\end{align*}
$$

where coefficients from A to J depend on the grinding parameters $d_{o g}, \nu_{g}, ~ e x g$ and k_{g} and have also been given.

From equation 3.6:

$$
\begin{align*}
& {\left[\partial f_{\alpha l} / \partial X\right]_{x, y, z}=2 A x+D y+E z+G} \\
& {\left[\partial f_{\alpha l} / \partial Y\right]_{x, y, z}=2 B y+D x+I z+H} \\
& {\left[\partial f_{\alpha 1} / \partial Z\right]_{x, y, z}=2 C z+E x+F y+I}
\end{align*}
$$

All terms in the system of equations, Equations 5.1", 4.16" and 5.2, except λ, have been expressed in terms of the coordinates (x, y, z) of point Q on the drill lip.

To express the inclination angle, λ, immediately in terms of the coordinates $(x, y, z), \lambda=\lambda(x, y, z)$, is not possible as, in the present situation, the lip is not specified in terms of the nornal wedge angle. One solution however, is to proceed by successive approximations, by investigating different laws to the angle λ, till the desired values for the normal wedge angle are arrived at. This procedure can be implemented in a computer program and quickly and properly done by computers.

A relationship between the inclination angle, λ, and the point Q position along the cutting edge may be expressed as

$$
\lambda=\lambda\left(k_{1}, K_{2}, K_{3}, \ldots, r\right)
$$

where $K_{1}, K_{2}, K_{3}, \ldots$ are constants and r is the radial distance from Q to the drill axis.

As λ enters in Equation 4.16" under the form of $\operatorname{Sin} \lambda$ it appears more reasonable to think of a relationship with the form

$$
\sin \lambda=\lambda\left(K_{1}, K_{2}, K_{3}, \ldots r\right)
$$

or, rather,

$$
r \sin \lambda=\lambda\left(K_{1}, K_{2}, K_{3}, \ldots r\right)
$$

as, by doing $\lambda\left(K_{1}, K_{2}, K_{3}, \ldots r\right)=$ const, the law

$$
r \operatorname{Sin} \lambda=\text { const is similar to }
$$

$$
r \sin \lambda=W \sin x=\text { const for }
$$

a conventional drill.

As a matter of simplicity and as the result of computer aided numerical investigation, the polynomial law

$$
r \sin \lambda=k_{1} r^{3}+k_{2} r^{2}+k_{3} r+k_{4}
$$

was selected. If $r \neq 0$ this equation becomes:

$$
\begin{equation*}
\sin \lambda=k_{1} r^{2}+k_{2} r+k_{3}+k_{4} / r \tag{1}
\end{equation*}
$$

5.3.2 Non-conventional drill flute profiles

In order to solve numerically the problem above analysed, a computer program was designed and built.

The flow diagram for this computer program is presented in Figure 5.4 and the program itself is shown in Appendix 6.

For the purpose of the computation, the cylindrical grinding surface was selected, as it would be for grinding a regular conventional drill point.

In order to decide the range of wedge angles that could be reasonably selected for the present computation, the wedge angle for a 12.7 mm ($\frac{1}{2}$ ") diameter conventional drill with the same parameters $R_{0}, 2 W, \gamma_{f}$, as for the non-conventional flute, and the standard point 118° was analysed - Figure 5.5.

Several wedge angle values, mainly within the range falling in the middle of curve in Figure 5.5, were tested by means of the computer program referred to above. As an example, Figures 5.6 and 5.7 show the computer plots for flutes yielding a 65° and 60° normal wedge angle respectively.

Observing the computer plots as shown in Figures 5.6 and 5.7 it can be noticed a "gap" between the special flute (a) and the heel (c) near the point that yields the chisel corner. This "gap" increases with the selected wedge angle, and the modification to be made to the flute at this area in order to bridge the flute face with the heel surface, for manufacture, becomes larger.

FIGURE 5.4 (continued)

FIGURE 5.4 (continued)

FIGURE 5.4: Flow diagram for the computer program for finding a nonconventional flute

FIGURE 5.5: Normal wedge angle for conventional drill
a-newflute (65° wedge angle)

```
a - new Flute < }6\mp@subsup{0}{}{\circ}\mathrm{ wedge angle)
b - conventional flute
c - heel
\begin{tabular}{c|ccccc} 
\\
-7 & & \\
-6 & -5 & -4 & -3 & -2 & -1
\end{tabular}
FIGURE 5.7: Computer plots of conventional and new design flutes.
```

From his numerical investigations and his observations, the author decided to select the wedge angle to be 60°, as it is well above the wedge angle at the outer corner of the conventional drill (Figure 5.5) and it yields a flute face (Figure 5.7) for which the normal wedge angle is nearly constant (Figure 5.8). Additionally, the inclination angle (Figure 5.9) and the normal rake angle (Figure 5.10) are such that the effective rake angle, after Stabler (45), is very close to the one to the conventional drill (Figure 5.11). Finally, the alteration necessary to be made to the flute face, for manufacture, in order to bridge it with the heel surface at the region of the chisel corner is small (Figure 5.7).

5.4 Drill Prototype Manufacture

Drill prototype manufacture involved the collaboration of drill manufacturers and was not controlled by the author.

The drill normal cross-section design, after the computer plot shown in Figure 5.7, is presented in Figure 5.12.

The geometric simulation of the drill point according to new design (Figure 5.12) is shown in Figure 5.14.

The flute cross-section, normal to flute helical direction, for flute cutter design (at the drill's manufacture) is shown in Figure 5.13.

The author has had two lots of prototypes of the new drill design build, one after the other, from two different drill manufacturers.

Drills belonging to one lot presented a web weakness and some of them. split into pieces, after a few dozen holes. Drills belonging to the other lot have been made by another drill manufacturer, and they have shown (Figures $5.15,5.16$ and 5.17) to be closer to the design by the author (Figure 5.12) than the ones from the first batch.

FIGURE 5.8: Normal wedge angle for the new flute design.

FIGURE 5.9: Inclination angle for the new flute design.

FIGURE 5.11: Effective rake angle computed for chip flow angle law according to Stabler's rule for oblique cutting.

FIGURE 5.12: Drill cross section designed after FIG 5.7

FIGURE 5.13: Flute cross section normal to the flute helical direction for the new flute design

FIGURE 5.14: Computer geometric simulation of drill point according to design shown in FIG 5.12

FIGURE 5.15
New design drill cross section - view from the drill point

FIGURE 5.16
Computer simulated cross section after manufactured new design drill (FIG 4.15) - viek from the drill point

FIGURE 5.17
As in FIG 5.16 -

- view from the drill
shank

FIGURE 5.18: Computer geometric simulation of drill point as manufactured. [Refer to FIG 5.16 and 5.17]

Drills belonging to the referred to second lot will be designated by new design drills, or new flute drills and the simulation for this actual new design drill point is shown in Figure 5.18.
"No man ought to be discouraged if the experiments he puts in practice answer not his expectations; for what succeeds pleases more, but what succeeds not many times informs no less".

Bacon
6. PERFORMANCE TESTS - COMPARING LIP WEAR

ON CONVENTIONAL AND NEW DESIGN DRILL

6.1 Introduction

6.1.1 Review of drill performance concept

The author did not find in the literature a generally accepted drill performance measure. He rather found that the drill performance concept comprehends several aspects. For convenience some drill performance aspects will be revised concisely.

For waller (31) the aspect of drill performance most emphasized in the past was drill life. Lorenz $(28,29)$ also refer to drill life when he reports on drill performance. Valery (82) reported upon durability of drills.

Micheletti and Levi (23) restrained the analysis of drill performance to the study of drilling forces, and so did Fujii and coworkers (37).

Billau (11) emphasized the hole quality with the double margin drill. Burant and Skingle (83) looked for high metal-removal rates when testing different drills for the determination of optimum drilling conditions for an Al-Si alloy.

Ernest and Haggerty (2) investigated drill performance by considering the following aspects: (i) torque and thrust, (ii) drill life and (iii) hole oversize.

Galloway and Morton (10) have listed the main objectives of drill users:
i) high rate of penetration;
ii) long drill life;
iii) accuracy of holes;
iv) high drilling efficiency.

Later, Galloway (3) considered drilling performance criteria as follows:
i) rate of penetration;
ii) drill life;
iii) efficiency of metal removal;
iv) hole accuracy;
v) hole surface finish.

Kanai and Kanda (33), in a contribution for the development of a standardized drill test, recommended the wear at the drill outer corner to be measured and to be used as a drill performance index.

Farnworth (84) defined a drilling performance index based on economic factors where drill life is one of the variables accounting for the index calculation.

Nakayama (66), Arshinov and Aleksev (4), CETIM (85) and others (83) referred to chip geometry in assessing machining performance.

6.1.2 Drill life

In spite of being very frequently used as a performance criterion, drill life definition is still open to discussion.

According to Singpurwalla and Kuebler (86) drill life could mean different things to different people. Galloway and Morton (10) found it difficult to recommend means to determine the end of drill life but based on personal judgement. Also Valery (82) stated that drill life is somewhat vague and Williams and McGilchrist (87) referred that no current drill life criterion provides a unique measure of drill failure. Burant and Skingle (83) referred to the fact that drill life was determined more or less subjectively.

The author found in some reports $(86,87)$ the writer's referring that they relied on the personal opinions of drilling operators rather than on any objective criterion to judge upon the end of drill life.

Frequently, squeaking (82,88), crying. (86), screaming (89) and screeching $(11,35)$ during drill is taken as an indication of drill failure. Singpurwalla and Kuebler (86) and PERA (24) determined the end
of drill life by a change in sound during drilling. Iwata and Moriwaki (90) and Weller and co-workers (91) studied acoustic emission from the cutting process in order to find some useful information about the cutting state.

The change in colour of the drill during drilling has also been suggested by Singpurwalla and Kuebler (86) as a (subjective) method for drill life criterion.

Drilling torque and thrust have been suggested by Galloway (3), Galloway and Morton (10) and others (89), as indicators of drill dulling. Also (BS 5623) refers to the cutting forces used as a basis for tool life criterion in scientific research and in adaptive control systems. However, some doubts on the methods based upon the use of dynamometers and upon the variations of drilling forces in assessing drill life have been put forward by 0xford (discussion of paper (3)), Williams and McGilchrist (87) and Billau (35).

6.1.3 Drill wear

To allow a drill to reach the state of complete failure can lead to irreparable damages or long lasting regrinding operations. Thus $0 x f o r d$ (92) and others (93) recommended that excessive drill wear should be avoided as a matter of cost effectiveness.

Frequently drill life (and in general tool life) is associated with flank wear by some workers. (Billau (35) found the "wear rate"/ "life" to correspond favourably with the "screech"/"life" for the drills and conditions he tested. For Valery (82), the end of drill life appears to be related to an area of wear at the drill lip. Burant and Skingle (83) decided that drill life would be ended at the point at which the "wear pattern changes to an increasing rate". Šoloja and Toko (64) also based drill life upon wear criteria. Subramanian and Cook (94) reported that the limit of the economical life of a tool is determined by the extent of wear on the tool, and according to Tseng and Noujaim (95) the wear land width "is considered by many to be the most dependable guide of tool life".

Frequently tool life is defined in terms of a pre-determined wear land width (Figure 6.1) (1, 88, 95, 97, 98, BS 5623), and one great advantage of such a method consists of not being dependent on individual judgement.

Subramanian and Cook (94) and Kanai and Kanda (33) find the drill flank wear to be relatively easy to measure, however, Lorenz (88), considers that it is very time consuming.

Billau (11), Subramanian and Cook (94), among others, established that drill lip flank wear develops in three stages (Figure 6.2);

A - rapid and non-linear increase of the wear land width due to the removal of the sharp edge.
B - slow, long and uniform rate of wear.
C - accelerated wear rate leading to increase of noise and drill failure.

In order to monitor and to assess as objectively as possible the decreasing ability of drill lips to cut, as drilling progresses, the drills dealt with in this work will be tested for wear.

6.2 Experimental Design

The aim for the experiments to be made is to compare two drill types - conventional and new design - for wear at the neighbourhood of the drill outer corner with the number of holes drilled.

6.2.1 Drill test type

A great selection of drilling speeds and feeds are usually available to drilling researchers and drill users. Lorenz (28), Lenz (99), Galloway and Morton (10), Valery (82), Williams (87), Singpurwalla and Kuebler (86) and Billau (35), among others, reported on the influence of speed and feed on drill life and they found the drill life to decrease with increasing speeds and feeds.

FIGURE 6.1: Geometry of a worn cutting edge

FIGURE 6.2: Drill lip wear pattern (11)
[Refer to text for phases A, B and $C]$

As a matter of economy and because resources to researchers are usually scarce, tests should be as short as possible. However, there is no general agreement on the acceptance of accelerated life testing (100). Some workers (101) argue that the same phenomena (thermic, dynamic, structural) are present during cutting, either during slow or accelerated cutting; others (10) think that the mechanism of drill failure or wear varies with the cutting conditions.

Drilling tests may be divided into three types $(3,10)$:

- short duration tests - up to approximately 30 holes, each two diameters deep
- medium duration tests - up to approximately 40-140 holes, each two diameters deep
- long duration tests - more than 150 holes, each two diameters deep.

A literature survey revealed that many reported drilling tests $(3,5,28,29,87,88,89,94)$ are medium duration tests as they are frequently roughly centred at 100 holes. For Galloway (3), the knowledge gained through medium-duration life tests could be used in the workshop.

In view of the above, the author decided to perform medium duration drilling tests.

6.2.2 Factors selection

The author thought it to be necessary to investigate the two different flute designs response to the variation of (i) speed, (ii) feed and (iii) point angle as theseare the variables with a major influence on drill performance and over which the user has usually a wide control. Limitations to these variables may be imposed by the available range of speeds and feeds in the drilling machine and by the maximum point angle that can be set in the grinding machine.

FIGURE 6.3: Radial arm drilling machine

The very limited amount of experience on the new design drill and also the limited resources available to the author prevented the inclusion of a larger number of variables.

6.2.3 Equipment

The drilling machine, the coolant, other equipment, the drills and other factors were involved in close control.

6.2.3.1 Drilling machine

A radial drilling machine (Figure 6.3) was used for all drilling tests relating to this project. Its features are as follows:

Manufacturer:	Archdale Limited
Type:	6 ft radial arm
Power:	5 HP motor
Spindle:	2.5 inch diameter - No 5 internal
Speeds:	Morse tape
	6085110140197260
Penetration:	$35049064082011401500 \mathrm{rev} / \mathrm{min}$
Coolant supply:	$304570103157240 \mathrm{rev} / \mathrm{in}$
	$51 / \mathrm{min}(\simeq 1.1$ gallons/minute $)$

To produce a portal frame-like structure an adjustable brace was fixed to the free end of the arm.

The machine was checked for alignment. The speeds were checked with a stroboscope device and the feeds by a dial gauge.

6.2.3.2 Drill grinding machine

A Dormer model 84 drill grinding machine was used in this work for the preparation and regrinding of the drill points (Figure 6.4).

Billau (ll) has investigated with a perspex model the shape of the flank face produced by this grinding machine and found it to be of a cylindrical form.

FIGURE 6.4: Drill point grinding machine

The relevant technical data for this machine is as follows:

Grinding wheel, diameter:	203 mm
width:	25 mm
bore:	102 mm
Maximum peripheral speed:	$30 \mathrm{~m} / \mathrm{sec}$
Range of drill diameters:	$3 \mathrm{~mm}-32 \mathrm{~mm}$
Maximum overall length of drill:	420 mm
Range of point angles:	$90^{\circ}-1400$

With the machine available to the author, the point angle could not be larger than about 135°.

6.2.3.3 Drill geometry measurement machine

Much of the drill geometrical accuracy depends on the careful control of quality during the manufacture stage. Careful drill point grinding however is as much important as the manufacture.

The drills reported in this work have been manufactured under special control and the drill grinding by the author has been made and controlled in the most careful way. For the control of the geometrical drill features, before any test, a Dormer model 94 goniometer drill inspection unit was used (Figure 6.5). The angles can be measured to the 5^{\prime} and the distances to the 0.01 mm .

For proper positioning of the drill in the goniometer and for more accurate results, the main vee block as from the manufacturer was provided with a clamping system in order the drill could be properly set and held during measurement (Figure 6.5).

6.2.3.4 Microscope

For the wear measurement on the flank face of the drills a Hilger and Watts microscope provided with a table operated by two perpendicular micrometer screws was used. The normal eyepiece of the microscope was replaced by a micrometer graticule type of eyepiece (Figure 6.6).

FIGURE 6.5: Drill geometry measurement machine

FIGURE 6.6: Hilger and Watts microscope adapted

The position of the points on the cutting edge and the position of the points on the line determining the wear land on the flank were measured relatively to a reference line etched on the flank (Section 6.3.1). Measurements were made at five equally spaced points near the outer corners, on both lips of each drill (Section 6.3.1).

6.2.4 Preliminary life tests for selection of values of factors

In order to establish the cutting conditions for the main wear testing the author: (i) surveyed technical data available for the conventional drills (mainly reports on drill life), (ii) ran preliminary tests with both drill types.

The preliminary tests were run to determine the penetration rates which would lead to medium-duration tests (see Section 6.2.1). The results were used to select the cutting speed and drilling feed values shown in the next section.

6.2.5 Statistical design of experiments

In designing the experimental work for the drill wear tests the following objectives were considered:

- investigate the difference (if any) between the conventional and the new design drill when speed, feed and point angle are varied
- design the experiments in order that statistical analysis can be exercised with the data collected
- plan statistically the experimental sequence and the combination of factors for each experiment
- provide for conclusions relating to the interaction between factors
- make the series of experiments as economical as possible

The advantages of statistical design of experiments have been emphasized in many works by statisticians $(103,104,105)$ and by some researchers in the drilling area $(87,88)$.

Each drill type is tested for combinations of some values of the factors referred to in Section 6.2.2 : (i) cutting speed, (ii) drilling feed and (iii) point angle.

As a matter of efficiency, a factorial design experiment will be used in the present investigation, and for statistical analysis the experiments relating to the same drill type are arranged in separate blocks.

According to the factorial design, each factor is given two values: one conventionally called low and the other high. To use a special notation similar to the one frequently found in books on statistics $(102,105)$ the symbols shown in Table 6.1 were adopted.

TABLE 6.1: Symbols for Factor Levels

Factor	Leve	High
Speed (S)	1	s
Feed (F)	1	f
Point angle (κ)	1	κ

The following factors levels were considered:

Speed $1-32.72 \mathrm{~m} / \mathrm{min}$	$(820 \mathrm{rpm})$
$\mathrm{s}-45.48 \mathrm{~m} / \mathrm{min}$	$(1140 \mathrm{rpm})$

Feed $1-0.106 \mathrm{~mm} / \mathrm{rev}$	$(240 \mathrm{RPI})$	
f	$-0.162 \mathrm{~mm} / \mathrm{rev}$	$(157 \mathrm{RPI})$
Point $1-118^{\circ}$		
k	-134°	

The different combinations of the above factors levels for wear testing are shown in Table 6.2.

TABLE 6.2: Combination of Factors Levels for Wear Testing

Symbol	Factors		
	S(rpm)	F(RPI)	$\kappa($ deg $)$
l	820	240	118
s	1140	240	118
f	820	157	118
K	820	240	134
sf	1140	157	118
SK	1140	240	134
fK $^{\text {sfk }}$	820	157	134
	1140	157	134

6.3 Drill Wear Testing

6.3.1 Testing procedure

The aim of the wear testing was to compare the performance of two drill types differing by the flute form. For the purpose of eliminating the effect of any difference between drills other than the flute profile shape, only one drill of each type was used. To use more than one drill of each type would introduce additional geometric differences such as minor flute shape differences among the drills of the same type as well as differences in web thickness, web eccentricity, relative lip height and drill straightness which would affect the variability of the results of the drilling tests (Chapter
1). To use only one drill was found in literature $(3,87)$ to be acceptable.

Two drills, one of each type, were selected with the most approximate web thicknesses, helix angles and drill diameters (Section 6.3.2).

The decreasing length of the drills with the successive drill regrindings could be compensated by a special drill holder (Figure 6.7) that allows for control of drill projection length.

To keep to a minimum any discrepancies from drill regrindings, the tests were run first for one point angle. After completion of these tests the grinding machine was set for the other angle and this set-up was kept until all the tests had been run.

After each drill regrinding the web thickness and the drill diameter of each drill were checked for differences due to possible web taper and to the negligible drill diameter taper (Tables 6.3 and 6.4). The differences were found to be within the measurement error for the drill length removed by regrinding during all drilling tests.

After each test the drills were observed for any change of colour that could affect drill material hardness and structure and drill regrinding was made carefully as recommended in (35) to avoid drill burning. Drill hardness was measured on the drill margins after each regrinding and was found to be within the measured values as received (Section 6.3.2).

Each hole was 3 drill diameters deep and the drill wear was measured at five points, on both lips of each drill, numbered as shown in Figure 6.8. Point 5 is coincident with the outer corner and each point is 0.508 mm ($0.02^{\prime \prime}$) distant to the next one.

With this procedure, not only the wear at the outer corner but also along a length of about $1 / 3$ of the whole lip length was measured, and in this way it will be possible to monitor and to compare the pattern of wear in the neighbourhood of the outer corner for both drill types.

FIGURE 6.7: Bristol Erickson chuck for variable drill length projection

FIGURE 6.8: Wear measurement points on drill lips in the neighbourhood of the outer corner

FIGURE 6.9
Etched line on the drill flank surface for wear measurement reference

The wear was measured after the fifth, tenth, fifteenth, and twentieth holes and each ten holes after the twentieth. Wear measurements were carried out until the drill failed, or, until the 150th hole if failure had not occurred before.

For measurement reference, etched lines were produced on the flanks, parallel to the line defined by the outer corner and the chisel corner (Figure 6.9).

For reading accuracy three readings were taken at each measurement point.

6.3.2 Drill features

As it has already been referred to, the tests were run with two types of drills: conventional and new design. For this purpose, together with the new design drills, some conventional drills were also manufactured from the same lot of material and according to the same production and treatment processes, in a way that only the differences in the flute geometries would be expected (Figure 6.10).

The drills were manufactured from the same lot of M2 high speed steel whose nominal composition is:

$C(\%)$	$W(\%)$	$\mathrm{Mo}(\%)$	$\mathrm{Cr}(\%)$	$\mathrm{V}(\%)$
0.83	6	5	4	2

The drills were heat treated as follows:

Pre-heat	$800-850^{\circ} \mathrm{C}$
High heat	$1220-1240^{\circ} \mathrm{C}$
Temperature	$550-560^{\circ} \mathrm{C} \quad$ - one hour twice
Steam temperature	$470^{\circ}-$ for half an hour

All the drills, especially manufactured, both conventional and new design, are straight shank drills and are held in a Bristol Erikson chuck (Figure 6.7).

i ij

FIGURE 6.10: Cross sections of conventional (i) and new design (ii) drill - view from the drill point

Drill hardness was measured on the drill margins, near the drill point, in a Vickers Armstrong pyramid hardness testing machine and all results were found to be within the interval 64-66 HR ${ }_{c}$ (Rockwell C scale)

Drill nominal relief angle [D.28], chisel edge angle and heel corner elevation (height of the heel corner relative to the outer corner), were the same as for the design of the new drill (Chapter 5) (Tables 6.3 and 6.4).

The point angle was selected for two values: 118° and 134°; the first being the standard point angle (BS 328), and the second being the maximum possible within the grinding machine available to the author.

Two drills of each type were chosen and their cross-sections projected and magnified. For each drill type the differences found between the two sections were within the measurement errors.

For the new design drill, the differences between the designed profile and the profile as manufactured were found to be small (Chapter 5). However, for drill point geometric simulation and for all other computing purposes, as a matter of accuracy, the new drill flute profile as manufactured is used instead of the designed one.

For the purpose of mathematical representation of the profile as manufactured, a set of points with coordinates (X, Y) was taken by superimposing a graticule to the projected profile. This set of points was further represented by a polynomial law that better fitted their coordinates in order that the profile could be mathematically dealt with as a continuous curve.

The conventional drill profiles as manufactured were also compared to the conventional computed profiles and appeared to be similar.

Simulations for both drill types and both drill point angles are shown from Figures 6.11 to 6.14 and the actual features as measured are shown in Tables 6.3 and 6.4.

TABLE 6.3: Drill Specification for Drills Used with Tests for 118° Nominal Point Angle

TABLE 6.4: Drill Specification for Drills Used with Tests for 134° Nominal Point Angle

Grinding Parameters	$\mathrm{d}_{\mathrm{og}}(\mathrm{mm})$	$\nu_{g}(\mathrm{deg})$	exg(mm)) $\mathrm{k}_{\mathrm{g}}(\mathrm{deg})$
	34	100	3.8	$\simeq 67$
DRILL SPECIFICATION				
Item		Dimension		
		Conventional Drill		New Design Drill
Shank		Straight		Straight
Overall len (before fir point)	134°	144.5		145.5
Flute lengt		95		96.5
Drill diame		12.70		12.70
Web thicknes		1.95		1.95
Helix angle		33.0		33.2
Point angle chisel corn	orner/ eg)	133.8		133.5
Nominal rel	(deg)	13.6		13.8
Chisel edge corner/chis (deg)		117.5		116.2
Width of ma		0.90		0.90
Back taper		0.00		0.00
Elevation o relative to (mm)	corner corner	0.65		0.69
Lip length chisel corn	rner/ m)	6.35		6.40
Chisel edge		2.10		2.35
Eccentricity	1 (mm)	0.01		0.01
Lip height	(mm)	0.01		0.02
Flute spacing (deg)		< ${ }^{\prime}$		<51

Flute conventional

$$
\begin{aligned}
& R O=6.35 \\
& W e b=1.95 \\
& H O=33.00 \\
& R K=59.00
\end{aligned}
$$

Grindingcylindrical

DOg= 28.00
$\mathrm{Ug}=90.00$
Exg= 3.00
Rkg $=59.00$

FIGURE 6.11: Computer geometric simulation of conventional flute drill point. [Refer to TABLE 6.3]

Flute -
Grinding-
new cylindrical

$$
\begin{array}{ll}
R 0=6.35 & \mathrm{DOg}=28.00 \\
\mathrm{Web}=1.95 & \mathrm{Ug}=90.00 \\
\mathrm{HO}=33.20 & \mathrm{Exg}=3.00 \\
& \text { Rkg= } 59.00 \\
& \\
&
\end{array}
$$

FIGURE 6.12: Computer geometric simulation of new design flute drill point. [Refer to TABLE 6.3]

Flute - conventional	Grinding- cylindrical
$R 0=6.35$	$\mathrm{DOg}=34.00$
$W e b=1.95$	$U g=100.00$
$H 0=33.00$	Exg= 3.80
$R k=59.00$	$R k g=67.00$

```
[scale - 4.5 / 1]
```

FIGURE 6.13: Computer geometric simulation of conventional flute drill point. [Refer to TABLE 6.4]

Flute -
Grindingcylindrical

$$
\begin{array}{ll}
\mathrm{RO}=6.35 & \mathrm{DOg}=34.00 \\
\mathrm{Web}=1.95 & \mathrm{Ug}=100.00 \\
\mathrm{HO}=33.20 & \mathrm{E} \times \mathrm{g}=3.80 \\
& \text { Rkg }=67.00
\end{array}
$$

$$
\text { [scale }-4.5 / 1]
$$

FIGURE 6.14: Computer geometric simulation of new design flute drill point. [Refer to TABLE 6.4]

6.3.3 Material

Selection of the testing material was limited to existing stocks in CIS (Centre for Industrial Studies, Loughborough University).
$152 \mathrm{~mm} \times 152 \mathrm{~mm} \times 77 \mathrm{~mm}$ ($6^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$) blocks of EN43 steel in the normalised condition were used for the wear tests. The nominal chemical composition for this steel is:

$C(\%)$	$\mathrm{Si}(\%)$	$\operatorname{Mn}(\%)$	$S(\%)$	$P(\%)$
$0.45 / 0.50$	$0.05 / 0.35$	$0.7 / 1.0$	0.06 Max	0.06 Max

A sample analysis indicated that the material was within the chemical specifications.

The blocks were machined on both faces for parallelism and surface roughness uniformity. The hardness was measured on all blocks, on both faces and it was found that approximately 90% of the readings fall in the interval $180 \mathrm{HB}-190 \mathrm{HB}$.

The blocks were drilled on both faces.

6.4 Wear Tests Results

The "screech" many times referred to in literature (Section 6.1.2) and observed in the workshop was the criterion to decide that the drilling operation should not be continued.

When "screech" occurred the bottom of the hole presented radial marks of the type already referred to by Singpurwalla and co-workers (86), and the electric power input to the drilling machine increased by a significant amount as also reported in (89).
"Screech" occurred in the following cases:

$1180 \times 1140 \mathrm{rpm} \times 240 \mathrm{RPI}$	Conventional drill-90 holes New design drill -84 holes
$118^{\circ} \times 1140 \mathrm{rpm} \times 157 \mathrm{RPI}$	Conventional drill-71 holes New design drill -60 holes
$134^{\circ} \times 1140 \mathrm{rpm} \times 240 \mathrm{RPI}$	Conventional drill - 50 holes New design drill -69 holes
$134^{\circ} \times 1140 \mathrm{rpm} \times 157 \mathrm{RPI}$	Conventional drill - 31 holes New design drill -42 holes

The results for the wear loss (Figure 6.1) at point 1 (Figure 6.8) against the number of holes drilled, for each set of drilling conditions, and for both drill types are shown from Figure 6.15 to Figure 6.22. Similar results for the outer 4 points selected along the drill lips are shown in Appendix 7.

The variation of the wear loss with point position along each lip of each drill type, at the neighbourhood of the outer corner, at the end of the 150th hole, or shortly before drill failure, is represented from Figures 6.23 to 6.30 for all sets of drilling conditions tested.

6.5 Analysis of the Results

The wear curves shown in Figures 6.15 to 6.22 and in Appendix 7 appear to fit phases A and B of the typical wear curve shown in Figure 6.2. Phase C of the referred to typical curve hardly could be noticed with point 5 (Appendix 7) for one experiment leading to drill failure ($1340 \times 1140 \mathrm{rpm} \times 157 \mathrm{RPI}$).

FIGURE 6.15: Wear loss at point 1 of each drill lip

FIGURE 6.16: Wear loss at point 1 of each drill lip

FIGURE 6.17: Wear loss at point 1 of each drill lip

FIGURE 6.18: Wear loss at point 1 of each drill lip

FIGURE 6.19: Wear loss at point 1 of each drill lip

FIGURE 6.20: Wear loss at point 1 of each drill lip

FIGURE 6.21: Wear loss at point 1 of each drill lip

FIGURE 6.22: Wear loss at point 1 of each drill lip

suots!atp patado

FIGURE 6.24 Wear loss at five points along each drill lip

FIGURE 6.25: Wear loss at five points along each drill lip

FIGURE 6.26: Wear loss at five points along each drill lip

FIGURE 6.27: Wear loss at five points along each drill lip

FIGURE 6.28: Wear loss at five points along each drill lip

FIGURE 6.29: Wear loss at five points along each drill lip

FIGURE 6.30: Wear loss at five points along each drill lip

There is an immediate detectable difference between the wear profiles referring to the new design drill and those for the conventional one: the initial phase A for the conventional drills portrays a more intense wear than that for the new design drill, especially with points 3, 4 and 5 (Appendix 7). For point 5, for instance, the wear loss relative to phase A of the wear curves is 2 to 3 times bigger with the conventional drill than with the new design drill.

Phase B is longer than phase A and it is expected to reflect more consistently the wear performance of each drill type.

To compare the wear performance of both drill types, the wear rate, measured by the slope of the straight line that better fits phase B of each wear curve (Figures 6.15 to 6.22 and Appendix 7), was computed and averaged for each pair of lips of each drill and for each set of drilling conditions. The results are shown in Table 6.5.

With few exceptions, all values shown in Table 6.5 appear to be higher for the new design drill than for the conventional one, for the same drilling conditions. Comparing the values for the new design drill with those for the conventional drill shown in Table 6.5 , the minimum ratio was found to be 0.51 and the maximum 2.52. However, on average, the values of the wear rate for the new design drill are approximately 50% higher than those for the conventional drill, for the same speed, feed and point angle.

In order to test the statistical significance of the differences between the values shown in Table 6.5 an analysis of variance has been carried out on these values.

The results of the tests are arranged in two separate blocks: one referring to the conventional drill and another to the new design drill.

The results for point 1 (Figure 6.8) on the lips are taken from Table 6.5, multiplied by 10 for convenience of the calculations, and

TABLE 6.5: Wear Rate
In optical divisions per hole (Average for two lips. After Figures 6.15-6.22 and Appendix 7)

Drill Type	Point Angle (deg)	RPI	RPM	Point 1	Point 2	Point 3	Point 4	Point 5
Conventional	118	240	820	0.071	0.053	0.066	0.088	0.350
			1140	0.230	0.250	0.298	0.316	0.345
		157	820	0.168	0.180	0.184	0.159	0.350
			1140	0.335	0.380	0.391	0.436	0.465
	134	240	820	0.036	0.052	0.048	0.066	0.370
			1140	0.233	0.278	0.348	0.308	0.645
		157	820	0.114	0.132	0.132	0.128	0.355
			1140	0.387	0.446	0.551	0.756	1.275
New	118	240	820	0.044	0.068	0.087	0.121	0.465
			1140	0.375	0.407	0.464	0.550	0.660
		157	820	0.176	0.207	0.276	0.289	0.415
			1140	0.371	0.468	0.614	0.690	0.720
	134	240	820	0.064	0.084	0.104	0.146	0.325
			1140	0.292	0.342	0.390	0.456	0.440
		157	820	0.186	0.248	0.280	0.322	0.340
			1140	0.590	0.639	0.608	0.664	0.650

presented in Table 6.6 (refer to Section 6.2 .5 for the meaning of the symbols).

TABLE 6.6: Wear Rate (x 10)
Point 1 on the lips
Block $\underset{\text { drill) }}{\text { (Conventional }} \quad$ Block N (New design Drill)

Treatment (drilling condition)	Yield (wear rate \times 10)
(1)	0.71
s	2.30
f	1.68
sf	3.35
к	0.36
sk	2.33
fk	1.14
sfk	3.87
Total:	15.74

Treatment (drilling condition)	Yield (wear rate \times 10)
(1)	0.44
s	3.75
f	1.76
sf	3.71
к	0.64
Sk	2.92
f_{k}	1.86
sfk	5.90
Total:	20.98

Total Sum: $15.74+20.98=36.72$

TABLE 6.7: Sum of Squares (Ref to Table 6.6)
Point 1 on the lips

Block C

Treatment	Yield
(1)	0.504
s	5.290
f	2.822
sf	11.222
к	0.130
Sk	5.429
fk	1.300
sfk	14.977
Total :	41.674

Block N

Treatment	Yield
(1)	0.194
s	14.063
f	3.098
sf	13.764
k	0.410
sk	8.526
f_{k}	3.460
sfk	34.810
Total:	78.325

Sum of square (Table 6.7):

Sum of squares within Block C:

$$
41.674-\frac{(15.74)^{2}}{8}=10.706
$$

Sum of squares within Block N :

$$
78.325-\frac{(20.98)^{2}}{8}=23.305
$$

Total sum of squares $=41.674+78.325-\frac{(36.72)^{2}}{16}=35.727$
Between blocks sum of squares:

$$
\frac{(15.74)^{2}}{8}+\frac{(20.98)^{2}}{8}-\frac{(36.72)^{2}}{16}=1.716
$$

Total sum of squares within blocks:

$$
10.706+23.305=34.011
$$

Analysis of variance between and within blocks is shown in Table 6.8.

TABLE 6.8: Analysis of Variance Point 1 on the lips

Source	Sum of Squares	Degrees of Freedom
Between blocks Within blocks	1.716 34.011	1
Total:	35.727	14

TABLE 6.9: Treatment Sum of Squares (refer to Table 6.6)
Point 1 on the lips
Block C + Block N

Treatment	$\begin{aligned} & \text { Yield C }+ \\ & \text { Yield } N \end{aligned}$	(Yield ${ }^{\text {C }}$ (${ }^{+}$ Yield $N)^{2}$
(1)	1.15	1.3225
S	6.05	36.6025
f	3.44	11.8336
sf	7.06	49.8436
k	1.00	1.0000
SK	5.25	27.5625
f_{k}	3.00	9.0000
sfk	9.77	95.4529
	Total:	232.6176

Treatment sum of squares (Table 6.9:

$$
\frac{232.6176}{2}-\frac{(36.72)^{2}}{16}=32.036
$$

Table 6.10 shows the sum of squares relative to residual treatments and between blocks.

TABLE 6.10: Analysis of Variance
Point 1 on lips

Source	Sum of Squares	Degrees of Freedom
Between blocks	1.716	1
Treatments	32.036	7
Residual	1.975	7
Total:	35.727	15

According to a common algorithm $(105,124)$ the effect of factor S, for instance, can be represented as follows:
$(s-(l))(f+(1))(k+(l))=s f k+s f+s k$
$-f_{k}+s-f-k-(1)$

Similar "expressions" can be used for the other cases. The effects of the different combinations of factors are presented in Table 6.11. In Table 6.12 is presented the analysis of variance for all factors and their interactions.

Proceeding in a similar way as for point 1 for the analysis of variance of the wear rate at points 2, 3, 4 and 5 , the effects of the different factors and their interactions were computed and presented in Tables $6.13,6.14,6.15$ and 6.16 respectively.

TABLE 6.11: Treatment Effect
Point 1 on the lips

Effect of	sfk	f	SK	f_{K}	S	f	κ	(1)	Total	Square	Sum of Squares
S	9.77	+7.06	+5.25	-3.00	+6.05	-3.44	-1.00	-1.15	19.54	381.812	23.863
F	9.77	+7.06	-5.25	+3.00	-6.05	+3.44	-1.00	-1.15	9.82	36.432	6.027
SF	9.77	+7.06	-5.25	-3.00	-6.05	-3.44	$+1.00$	+1.15	1.24	1.5383	0.096
k	9.77	-7.06	+5.25	+3.00	-6.05	-3.44	+1.00	-1.15	1.32	1.742	0.109
Sk	9.77	-7.06	+5.25	-3.00	-6.05	+3.44	-1.00	+1.15	2.50	6.25	0.391
FK	9.77	-7.06	-5.25	+3.00	+6.05	-3.44	-1.00	+1.15	3.22	10.368	0.648
SFK	9.77	-7.06	-5.25	-3.00	+6.05	+3.44	+1.00	-1.15	3.80	14.44	0.902

TABLE 6.12: Analysis of Variance (Refer to Tables 6.10 and 6.11) Point 1 on the lips

Source (i)	Sum of Squares (ii)	Degrees of Freedom (iii)	Variance Estimate Mean Square (iv) $=(\mathrm{ii}) /(\mathrm{i} i \mathrm{i})$	Variance Ratio (v)
Between Blocks	1.716	1	1.716	6.09
Treatments	32.036	7		
s	23.863	1	23.863	84.62
f	6.027	1	6.027	21.37
k	0.109	1	0.109	0.39
sf	0.096	1	0.096	0.34
SK	0.391	1	0.391	1.39
f_{k}	0.648	1	0.648	2.30
sf\%	0.902	1	0.902	3.20
Residual	1.975	7	0.282	1.00
Total:	35.727	15		

*** Significant at 0.1% level (highly significant (105))
** Significant at 1% leve] (significant (105))

* Significant at 5% level (probably significant (105))
n.s. Not significant at 5% level (non-significant(105))

TABLE 6.13: Analys is of Variance
Point 2 on the lips

Source (i)	Sum of Squares (ii)	Degrees of Freedom \qquad (iii)	Variance Estimate Mean Square $(\mathrm{iv})=(\mathrm{ii}) /(\mathrm{iii})$	
Between blocks	2.993	1	2.993	14.29
Treatments	39.942	7		
S	29.866	1	29.866	142.63
f	8.497	1	8.497	40.58
κ	0.270	1	0.270	1.29
sf	0.133	1	0.133	0.64
SK	0.230	1	0.230	1.10
f_{K}	0.397	1	0.397	1.90
sfk	0.548	1	0.548	2.62
Residual	1.466	7	0.209	1.00
Total:	44.401	15		

*** Significant at 0.1% level (highly significant (105))
** Significant at 1% level (significant (105))
n.s. Not significant at 5% level (non-significant (105))

TABLE 6.14: Analysis of Variance
Point 3 on the lips

Source (i)	Sum of Squares (ii)	Degrees of Freedom (iii)	Variance Estimate Mean Square $(\mathrm{iv})=(\mathrm{ii}) /(\mathrm{iii})$	Variance Ratio (v)
Between Blocks	4.050	1	4.050	16.09
Treatments	48.852	7		
S	38.657	1	38.657	153.57
f	9.471	1	9.471	37.63
k	0.041	1	0.041	0.16
sf	0.059	1	0.059	0.23
Sk	0.201	1	0.201	0.80
f_{K}	0.107	1	0.107	0.43
$s f_{k}$	0.316	1	0.316	1.26
Residual	1.762	7	0.252	1.00
Total:	54.664	15		

*** Significant at 0.1% level (highly significant (105))
** Significant at 1% level (significant (105))
n.s. Not significant at 5% level (non-significant (105))

TABLE 6.15: Analysis of Variance
Point 4 on the lips

Source (i)	Sum of Squares (ii)	Degrees of Freedom (iii)	Variance Estimate Mean Square (iv) $=(i i) /(i i i)$	Variance Ratio (v)
Between Blocks	6.015	1	6.015	9.22
Treatments	66.769	7		
s	51.015	1	51.015	78.17
f	12.128	1	12.128	18.58
k	0.243	1	0.243	0.37
sf	1.205	1	1.205	1.85
Sk	0.219	1	0.219	0.33
f_{k}	0.975	1	0.975	1.49
$s f_{k}$	0.984	1	0.984	1.51
Residual	4.568	7	0.653	1.00
Total	77.352	15		

*** Significant at 0.1% level (highly significant (105))
** Significant at 1% level (significant (105))

* Significant at 5% level (probably significant (105)
n.s. Not significant at 5% level (non-significant (105))

TABLE 6.16: Analysis of Variance
Point 5 on the lips

* Significant at 5\% level (probably significant (105))
n.s. Not significant at 5% level (non-significant (105))

194

TABLE 6.17: Summary of Tables 6.12 to 6.16 for Statistical Analysis of Significance

Factors	Point 1	Point 2	Point 3	Point 4	Point 5
Drill type Drilling speed	$*$	$\star *$	$* *$	$*$	n.s.
Drilling feed	$* *$	$\star * *$	$* * *$	$* *$	n.s.
Drill point Intersec- tion of factors	n.s.	n.s.	n.s.	n.s.	n.s.

*** Significant at 0.1% level (highly significant (105))
** Significant at 1% level (significant (105))

* Significant at 5% level (probably significant (105))
n.s. Not significant at 5% level (non-significant (105))

For the ranges of the drilling factors tested, the analysis of tables 6.12 to 6.16 reveals that the difference between the drill types is significant (1\% level) for points 2 and 3; the difference is probably significant (5\% level) for points 1 and 4. For point 5, the probability of the difference between drill types to occur by chance is greater than 5% and it can be considered non-significant.

For the ranges of the drilling factors tested, the effect of speed is highly significant (0.1% level) for points $1,2,3$ and 4 (Tables 6.12 to 6.15) and probably significant (5\% level) for point 5 (Table 6.16). The effect of drilling feed is highly significant (0.1% level) for points 2 and 3 (Tables 6.13 and 6.14), is significant (1% level) for points 1 and 4 (Tables 6.12 and 6.15) and non-significantfor point 5 (Table 6.16).

These results are summarised in Table 6.17.
Surprisingly, the effects of the drilling factors (Table 6.17) do not mirror significantly at point 5, the outer corner, with the exception of drilling speed (probably significant). This might be taken, on a purely statistical basis, as meaning that the wear rate at the outer corner is independent of the drilling factors tested (except for drilling speed). However, this is not true as it is known by the workers in the drilling area. The reason for this result should be looked for in the residual for point 5 (Table 6.16) which is much higher than those for the other points $1,2,3$ and 4 and reflects a large variability in the wear rate at this point. Therefore, inner points to the outer corner on the drill lip must be selected when wear rate performance measurement is intended.

The above analysis of the drill wear results reveals that the expectations built upon the hypothesis of better drill wear performance, with a new flute yielding a better "heat sink" while maintaining approximately the same effective rake angle as the conventional one, did not succeed. However, the observation of Figures
6.23 to 6.30 shows a more uniform wear for the new design drill than for the conventional one as, for the majority of cases, the transition from point 4 to point 5, for the wear curves, is smoother for the first drill type than for the second one.

It can also be noted that for the tests which ended with "screech", the wear loss is greater for the conventional drill than for the new design drill at point 5 (outer corner), where the wear is shown to vary from approximately 0% ($118^{\circ} \times 1140 \mathrm{rpm} \times 240 \mathrm{RPI}$) to more than $+50 \%$ ($134^{\circ} \times 1140 \mathrm{rpm} \times 157 \mathrm{RPI}$) relatively to the new design drill (Appendix 7). The reverse appears to happen with the other points, especially points 3 and 4, for which the wear loss with the new design drill varies from approximately 0% (point $4,118^{\circ} \times 1140$ $\mathrm{rpm} \times 157 \mathrm{RPI}$) to more than $+20 \%$ (point $4,118^{\circ} \times 1140 \mathrm{rpm} \times 240 \mathrm{RPI}$) (Appendix 7).

The tests reported in this chapter have been set to investigate the drills wear performance, however, on the basis of reported work in literature (35) on drill life, and on the higher wear rate for the new drill design, a shorter life, according to the "screech" criterion (Section 6.1.2), might be expected with the new design drill. Nevertheless, the tests which ended with "screech" (Section 6.4) do not allow such a definitive statement.
> "Mechanical efficiency in drilling operations can be expressed in terms of torque and total thrust on the driž".

Galloway
7. PERFORMANCE TESTS - COMPARING DRILLING FORCES

ON CONV́ENTIONAL AND NEW DESIGN DRILL

7.1 Introduction

Many papers $(3,12,17,23,24,25,26,27,106,107)$ report on drilling forces measurement.

The importance of drilling forces derives from the need to compute drilling power consumption and stress and/or strain on working elements such as the components being drilled, component holders, drill holders and drilling machine spindle. Drilling forces can also be important in comparing drill performance for different drill designs.

It is usual to measure drilling torque and thrust and many drilling variables have been investigated for their influence on drilling forces.

Drilling forces have been studied for the variation of helix angle ($3,23,27,42$), point angle $(3,17,23,42)$, clearance angle $(3,23)$, point shape $(2,17)$, chisel edge length (3), drill diameter $(3,5,27,42)$, feed $(5,23,27,42,53,99)$, speed (42), workpiece material $(3,5,23,27,42,53)$, depth of hole (42) and number of holes (3) and with and without pilot holes (25).

7.2 Experimental Design

The author aimed at designing an experiment to compare, for drilling forces, $12.7 \mathrm{~mm}\left(\frac{1}{2}\right)$ drills of two types - a conventional drill and the new flute design drill. To define the number and the range of the variables to be tested was one of his targets.

To exclude the cutting speed as a testing factor was justified on the basis of the reports of some workers who found the influence of the cutting speed on drilling forces to be negligible (27), insignificant (12) or null (107).

7.2.1 Factors selection

Each drill type is to be tested for the drilling forces with varying drill point angle and drilling feed.

As a result of the conditions fixed for the wear tests, and the drilling feeds range available in the drilling machine used by the author, the combinations of drilling factors shown in Table 7.1 were selected for testing.

TABLE 7.1:

Drilling Factors Combinations Used with the Drilling Forces Tests

Drill Type	Drill point angle, deg	Revolutions per inch penetration
Conventional	118	240
		157
		703
		70
	134	240
		157
		103
		70
		240
		157
		103
		70

7.2.2 Equipment

The drilling machine, the grinding machine and the geometry measurement machine have already been described in Chapter 6 (Section 6.2.3).

7.2.2.1 Dynamometer

A Kistler two-component measuring platform type 9271A was used in this work (C.2).

This measuring platform is a piezo-electric transducer which measures simultaneousily a force parallel to the transducer axis, F_{Z}, and a moment in the plane normal to the line of application of the force, M_{Z} (Figure 7.1).

Each channel comprises a charge amplifier and a galvo-amplifier, driving a recording galvonometer in an ultraviolet oscillograph. The charge amplifier converts the electrical charge into a proportional voltage, taking into account the individual transducer sensitivity, so that the output voltage is an even scale of N / V. In addition, the desired range can be selected over four decades in steps of $1,2,5$. The set up is shown in Figure 7.2.

The technical specification for the dynamometer is as follows:

Maximum measuring range:	$\begin{aligned} & F_{Z}:-5000 \text { to } 20,000 \mathrm{~N} \\ & M_{Z}: \pm 100 \mathrm{Nm} \end{aligned}$
Overload capacity:	$\pm 50 \%$
Resolution:	$\mathrm{F}_{\mathrm{Z}}: \quad 0.02 \mathrm{~N}$
	$M_{Z}: \quad 0.0002 \mathrm{Nm}$
Cross sensitivity:	$\begin{aligned} & F_{Z} \rightarrow M_{Z} \leqslant \pm 0.0002 \mathrm{Nm} / \mathrm{N} \\ & M_{Z} \rightarrow F_{Z} \leqslant \pm 1.0 \mathrm{~N} / \mathrm{Nm} \end{aligned}$
Linearity:	$\leqslant \pm 1 \%$ full scale output
Hysteresis:	$\leqslant \pm 0.5 \%$ full scale output
Resonant frequency:	$\simeq 3.5 \mathrm{KHz}$
Rigidity:	$\mathrm{F}_{\mathrm{Z}}: \simeq 6500 \mathrm{~N} / \mu \mathrm{m}$
	$M_{Z}: \simeq 0.5 \mathrm{Nm} / \mu \mathrm{rad}$
Sensitivity:	$\mathrm{F}_{\mathrm{Z}}: 2.0 \mathrm{p}_{\mathrm{c}} / \mathrm{N}$
	$\mathrm{M}_{\mathrm{z}}: 150 \mathrm{p}_{\mathrm{c}} / \mathrm{Nm}$
Working temperature range:	00 to $70^{\circ} \mathrm{C}$
Mass:	2.9 Kg

FIGURE 7.1: Kistler thrust (Fz) and torque (Mz) measuring platform

The oscillograph was a Southern Instruments direct reading ultra-violet unit series MI 300 with the following specifications:

Gal vanometer:
Number of data channels:
Datum traces:
Writing speed:
Max. deflection:
Recording material:
Paper speeds:

Speed stability:
Timing lines:

Galvanometer specification:
Natural frequency:
Terminal resistance
d.c. sensitivity:

Maximum safe current:
Maximum safe voltage

SMI/N $100 \mathrm{c} / \mathrm{s}$
10
2
$762 \mathrm{~mm} / \mathrm{s}$
152 mm
Kodak linagraph direct print paper 120 mm wide
3.8, 7.6, 12.7, 25.4, 38.1, $76.2,254,762,1270,2540$ mm / s
better than $\pm 5 \%$
$0.01,0.1$, or 10 s
$1000 \mathrm{c} / \mathrm{s}$
35Ω
$0.05 \mathrm{~mA} / \mathrm{mm}, 1.75 \mathrm{mV} / \mathrm{mm}$
50 mA
1.75 V

Calibration of the dynamometer:

The dynamometer was calibrated by directly applying a proving ring in the axial direction and loading a lever arm for the calibration of the torque component as reported in (84). A torsion balance was also used for moment calibration, as indicated by the manufacturer [C.2], and similar results as for the arm were obtained.

Calibration charts and calibration set-up pictures are not presented for dynamometer calibration procedures for drilling forces measurement are already well established (3, 5, 35, 84 ; 125).

7.2.3 Preliminary work

The purpose of the experiments reported in this chapter was to test the effect of flute form on drilling forces with steel.

The author considered, as for the:wear tests, two point angles - 118° and 1340 - and tested the whole range of drilling feeds available with the drilling machine.

Some tests were performed with two materials: EN3 and EN8 steels.

The results of the experiments with EN3 steel with the conventional drill appeared to be unexpectedly much higher than the values predicted by the simplified formula equations 7.1 and 7.2 after 0xford and Shaw (27):

$$
T_{0}=0.087 \mathrm{HBf}^{0.8} \quad d_{0}^{1.8}
$$

$$
T_{h}=0.195 \mathrm{HBfO}^{0.8} \quad d_{0} 0^{0.8}+0.0022 \mathrm{H}_{B} d_{0}{ }^{2}
$$

where $T_{0}=$ drilling torque, 1 b .in
$\mathrm{T}_{\mathrm{h}}=$ drilling thrust, lb
$H B=$ workpiece hardness, psi
$f=$ drilling feed, $i n / r e v$
$d_{0}=$ drill diameter, in
(units as given in (27)).
Close inspection of the drill after drilling EN3 steel revealed the presence of an important built-up-edge (BUE) on the lip and for this situation - large BUE - Oxford and Shaw had found no good agreement between their formula and the experimental data. Thus EN3 steel was discarded from the main drilling forces tests.

To specify a cutting speed was conditioned by the absence of coolant and by the heaviest feed to be tested. The author found the speed 260 rpm , within the range available, to be the more appropriate to the drilling forces tests.

7.3 Main Drilling Forces Tests.

7.3.1 Testing procedure

The tests for drilling forces measurement were run dry to protect the dynamometer, to simplify the testing procedure and to avoid possible effects due to the variation in the cutting fluid and its action.

The number of drills tested was as for the wear tests (Section 6.3.1).

As for the wear tests, the drilling forces tests were first run for one drill point angle (Section 6.3.1). To eliminate any possible systematic error, the tests were run in a random sequence for the combination of the remaining factors. After completion of the tests with one point angle, the grinding machine was set for the other point angle and testing procedure was as for the first point angle.

For each set of drilling conditions and each drill type, tests were run four times in order to eliminate, by averaging, the effect of experimental random deviations. Drilling torques and thrusts were recorded by a UV recorder as specified in Section 7.2.2.1.

7.3.2 Drills features

Drills features were as for the wear tests (Section 6.3.2).

7.3.3 Material

The work material, EN8 steel, supplied in 3.05 m (10") lengths of 19.05 mm ($\mathbf{3}^{\prime \prime}$) diameter bar was a nominal 0.40% carbon steel with the following limits to chemical composition:

	C	Si	Mn	S	P
\min	0.35	0.05	0.60	-	-
\max	0.45	0.35	1.00	0.060	0.060

A material sample was submitted for chemical analysis and the result proved it to be within the specified composition.

The bars were cut into pieces 30 mm long and the end pieces had been discarded.

The specimens were normalized and cleaned, and the tops were ground. The specimens were numbered and ten pieces were selected at random for hardness tests at each top.

A Rockwell hardness tester was used for testing the specimens hardness and the hardness numbers obtained after the readings fell in the interval 197 HB - 206 HB .

The pieces for drilling tests were selected in a random sequence and drilled with a 25 mm ($\simeq 2 d_{0}$) deep hole.

7.4 Experimental Results

The results of the experiments are shown in Tables 7.2 (thrust) and 7.3 (torque). These results are presented graphically in Figure 7.3 (thrust for 118° point angle), Figure 7.4 (thrust for 134° point angle), Figure 7.5 (torque for 118° point angle) and Figure 7.6 (torque for 134° point angle).

TABLE 7.2: Thrust (N)

$\begin{gathered} \text { RPI } \\ (\mathrm{rev} / \mathrm{in}) \end{gathered}$	Feed (mm/rev)	Conventional Drill		New Design Drill	
		Ground point angle		Ground point angle	
		$118{ }^{\circ}$	134°	118^{0}	1340
240	0.106	1610	1943	1521	1668
		1697	1999	1603	1617
		1648	1952	1572	1626
		1627	1982	1553	1647
157	0.162	2456	2502	2262	2187
		2359	2540	2241	2179
		2406	2471	2311	2129
		2351	2556	2232	2213
103	0.247	3375	3447	3186	3015
		3429	3437	3085	3017
		3329	3510	3153	2956
		3469	3369	3134	3042
70	0.363	4802	4694	4248	4155
		4824	4877	4294	4259
		4887	4727	4381	4127
		4709	4807	4208	4293

TABLE 7.3: Torque (N.cm)

$\begin{gathered} \text { RPI } \\ (\mathrm{rev} / \mathrm{in}) \end{gathered}$	$\begin{gathered} \text { Feed } \\ (\mathrm{mm} / \mathrm{rev}) \end{gathered}$	Conventional Drill		New Design Drill	
		Ground point angle		Ground point angle	
		1180	1340	1180	134°
240	0.106	642.0	751.6	622.8	711.0
		671.4	743.7	694.0	784.4
		645.4	738.1	636.3	738.1
		653.3	757.3	648.8	732.4
157	0.162	1060	1135	1082	1267
		1017	1122	1076	1157
		1066	1099	1113	1191
		1041	1159	1053	1231
103	0.247	1485	1507	1631	1717
		1537	1637	1635	1683
		1499	1552	1568	1635
		1550	1573	1672	1755
70	0.363	2221	2254	2204	2502
		2140	2287	2316	2281
		2212	2224	2281	2400
		2199	2320	2201	2355

FIGURE 7.3: Drilling thrust for 118° point angle [four tests with each drilling feed]

FIGURE 7.4: Drilling thrust for 134° point angle [four tests with each drilling feed]

FIGURE 7.5: Drilling torque for 118° point angle [four tests with each drilling feed]

FIGURE 7.6: Drilling torque for 134° point angle [four tests with each drilling feed]

7.5 Analysis of Results

The drilling forces were averaged for each set of cutting conditions and the results presented in Table 7.4 (thrust) and Table 7.5 (torque).

Graphics from Figures 7.3 to 7.6 and Tables 7.4 and 7.5 show that, for both drill types, drilling forces increase with feed, as expected. They also show some differences between the conventional drill and the new design drill.

For each feed, the thrust value relative to the 118° point angle conventional drill has been given the value 100 and the thrust values for the other cases have been computed accordingly; the results are shown in Table 7.6. The same procedure has been adopted for the torque values and the results are shown in Table 7.7.

Table 7.6 shows that, for the 118° point angle, the thrust is 5 to 10% (depends on the feed) lower for the new design drill than for the conventional one. For the 134° point angle, the thrust.for the new design drill is 10 to 20% lower than for the conventional one.

Table 7.7 shows that the reverse happens with the drilling torque: the new design drill yields a drilling torque approximately 0 to 10% bigger than the conventional one for either drill point.

An analysis of variance on the drilling forces results has been done in order to find if the effects of the tested drilling factors are statistically significant. Let drilling thrust be considered first and let all the drilling factors tested be analysed.

The following symbols are used:
d_{1} - conventional drill
d_{2} - new design drill
$f_{1}, f_{2}, f_{3}, f_{4}-$ the feeds corresponding to $240,157,103$ and 70 RPI respectively

TABLE 7.4: Thrust (N) Averages (refer to Table 7.2)

RPI (rev/in)	Feed (mm/rev)	Conventional Drill		New Design Drill	
		118°	134°	118°	134°
240	0.106	1646	1969	1562	1640
157	0.162	2393	2517	2261	2177
103	0.247	3400	3441	3139	3007
70	0.363	4806	4776	4283	4209

TABLE 7.5: Torque (N.cm) Averages (refer to Table 7.3)

RPI (rev/in)	Feed $(m m / r e v)$	Conventional Drill		New Design Drill	
		Ground point angle		Ground point angle	
240	0.106	653	748	118^{0}	134°
157	0.162	1047	1129	1082	1211
103	0.247	1518	1568	1626	1698
70	0.363	2193	2272	2250	2385

TABLE 7.6: Comparative Drilling Thrusts

RPI (rev/min)	Feed (mm/rev)	Conventional Drill		New Design Drill	
		1180	1340	1180	1340
240	0.106	$1646 \mathrm{~N}=$ 100	120	95	100
157	0.162	$2394 \mathrm{~N}=$ 100	105	94	91
103	0.247	$3400 \mathrm{~N}=$ 100	101	92	88
70	0.363	$4806=$ 100	99	89	88

TABLE 7.7: Comparative Drilling Torques

RPI (rev/min)	Feed (mm/rev)	Ground point angle		Ground point angle	
		118°	1340	118°	134°
240	0.106	$653 \mathrm{~N} . \mathrm{cm}=$ 100	115	100	113
157	0.162	$1047 \mathrm{~N} . \mathrm{cm}=$ 100	108	103	116
103	0.247	$1518 \mathrm{N.cm}=$ 100	103	107	112
70	0.363	$2193 \mathrm{~N} . \mathrm{cm}=$ 100	104	103	109

k_{1}, k_{2} - the point angles 1180 and 134° respectively.

The drilling thrust averages (Table 7.4) for each set of drilling conditions are divided by 1000, for the sake of simplification of the calculations, and presented in Table 7.8.

TABLE 7.8: Thrust-related Values (refer to Table 7.4)

Feed	d_{1}		d_{2}		TOTALS
	κ_{1}	κ_{2}	κ_{1}	κ_{2}	
f_{1}	1.646	1.969	1.562	1.640	6.817
f_{2}	2.394	2.517	2.261	2.177	9.349
f_{3}	3.400	3.441	3.139	3.007	12.987
f_{4}	4.806	4.777	4.283	4.209	18.075
TOTALS:	12.246	12.704	11.245	11.033	47.228

Grand total $=47.228$
Sum of squares for feed effect, SSF (Table 7.8):

$$
S S F=\frac{1}{16}\left(6.817^{2}+9.349^{2}+12.987^{2}+18.075^{2}\right)-\frac{47.228^{2}}{64}=4.47638
$$

Summing for the factor drill type (Table 7.8):

d_{1}	$\mathrm{~d}_{2}$
24.950	22.278

Sum of squares for drill type effect, SSD:

$$
S S D=\frac{1}{32}\left(24.950^{2}+22.278^{2}\right)-\frac{47.228^{2}}{64}=0.11156
$$

Summing for the factor drill point (Table 7.8):

Sum of squares for point angle effect, SSP:

$$
S S P=\frac{1}{32}\left(23.491^{2}+22.737^{2}\right)-\frac{47.228^{2}}{64}=0.00095
$$

Summing for the cross effect of drill type and feed (Table 7.8):

	d_{1}	d_{2}
f_{1}	3.615	3.202
f_{2}	4.911	4.438
f_{3}	6.841	6.146
f_{4}	9.583	8.492

Sum of squares for cross effect drill type and feed, SSDF:

$$
\begin{array}{r}
S S D F=\frac{1}{8}\left(3.615^{2}+3.202^{2}+4.911^{2}+4.438^{2}+6.841^{2}+6.146^{2}+\right. \\
\left.9.583^{2}+8.492^{2}\right)-0.111556-4.47638-\frac{47.2288^{2}}{64}=0.01767
\end{array}
$$

Sum of squares for drill type and point angle cross effect (Table 7.8), SSDP:

$$
\begin{array}{r}
\operatorname{SSDP}=\frac{1}{16}\left(12.246^{2}+12.704^{2}+11.245^{2}+11.033^{2}\right)- \\
-0.11156-0.00095-\frac{47.228^{2}}{64}=0.00700
\end{array}
$$

Summing for the cross-effect of point angle and feed (Table 7.8):

${ }^{\prime} k_{1}$	k_{2}	
f_{1}	3.208	3.609
f_{2}	4.655	4.694
f_{3}	6.539	6.448
f_{4}	9.089	8.986

Sum of squares for point angle and feed cross-effect, SSPF:

$$
\begin{aligned}
& S S P F=\frac{1}{8}\left(3.208^{2}+3.609^{2}+4.655^{2}+4.694^{2}+6.539^{2}+6.448^{2}\right. \\
& \left.+9.089^{2}+8.986^{2}\right)- \\
& -0.00095-4.47638-\frac{47.228^{2}}{64}=0.01038
\end{aligned}
$$

Sum of squares for the three factors cross-effect, (Table 7.8):

$$
\begin{aligned}
& \frac{1}{4}\left(1.646^{2}+1.969^{2}+\ldots+4.209^{2}\right)-4.47638-0.11156- \\
& \quad-0.00095-0.01767-0.00700-0.01038-\frac{47.228^{2}}{64}=0.00143
\end{aligned}
$$

Total sum of squares (Table 7.2): 4.63013

The analysis of variance for drilling thrust is presented in Table 7.9 .

TABLE 7.9: Analysis of Variance for Drilling Thrust

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Drill type	0.11156	1	0.11156	1115
Drill point	0.00095	1	0.00095	9.5
Feed	4.47638	3	1.49213	14,921
Type x point	0.00700	1	0.00700	70.0
Type x feed	0.01767	3	0.00589	58.9
Point x feed	0.01038	3	0.00346	34.6
Type x point x feed	0.00143	3	0.00048	4.8 **
Error	0.00476	48	0.00010	
Total:	4.63013	63		

** Significant at 1% level

Observing Table 7.9, the interaction of the three tested drilling factors appears to be significant, (terminology as in Section 6.5). In such a case separate analyses on the original data should be done (105) to test statistically the effect of the drilling factors.

It is well established that feed has an important effect on the drilling forces (Section 7.1), thus let us first do a breakdown analysis by drilling feeds. Tables 7.10 to 7.13 present the analysis of variance for the data of Table 7.2 separated according to the feed value.

TABLE 7.10: Analysis of Variance for Drilling Thrust for 240 RPI

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Point angle	3.4468	1	3.4468	64.03
Drill type	0.0078	1	0.0078	0.15
Interaction pointxtype	0.0012	1	0.0012	0.02
Error	0.6460	12	0.0538	n.s.
Total:	4.1018	15		

TABLE 7.11: Analysis of Variance for Drilling Thrust for 157 RPI

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Point angle	4.5478	1	4.5478	45.39
Drill type	1.3867	1	1.3867	13.84
Interaction pointxtype	0.2278	1	0.2278	2.27
Error	1.2024	12	0.1002	
Total:	7.3467	15		

*** Significant at 0.1% level
** Significant at 1% level

* Significant at 5% level
n.s. Not significant at 5\% level

TABLE 7.12: Analysis of Variance for Drilling Thrust for 103 RPI

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Point angle	1.4522	1	1.4522	6.98
Drill type	5.7119	1	5.7119	27.44
Interaction pointxtype	0.0459	1	0.0459	0.22
Error	2.4980	12	0.2082	
Total:	9.7080	15		

(See previous page for symbols)

TABLE 7.13: Analysis of Variance for Drilling Thrust for 70 RPI

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Point angle	4.5078	1	4.5078	12.13
Drill type	2.9180	1	2.9180	7.85
Interaction pointxtype	0.3086	1	0.3086	0.83
Error	4.4590	12	0.3716	
Total:	12.1934	15		

(See previous page for symbols)

Analysis of Tables 7.10 to 7.13 shows that the interaction between drill type and point angle is probably not significant for any feed. The effect of point angle is highly significant for the low to moderate feeds (240 RPI and 157 RPI, Tables 7.10 and 7.11), and significant (Table 7.13) or probably significant (Table 7.12) for the moderate to high feeds. (70 RPI and 103 RPI). The analysis of the same tables also shows that the effect of drill type on drilling thrust is highly significant (Table 7.12), or significant (Table 7.11), for moderate feeds (103 RPI and 157 RPI, respectively) and probably not significant for low feeds (Table 7.10). For high feeds the effect of drill type on drilling thrust is probably significant (Table 7.13).

In Table 7.14 is presented a resumé of Tables 7.10 to 7.13 .

TABLE 7.14: Resume of Analysis of Variance for Drilling Thrust, by Drilling Feeds (refer to Tables 7.10 to 7.13) Variance Ratios

Effect	240 RPI	157 RPI	103 RPI	70 RPI
Point angle	$64.03 \star * *$	$45.39 * * *$	$6.98 *$	$12.13 * *$
Drill type	0.15 n.s.	$13.84 \star *$	$27.44 * * *$	$7.85 *$
Interaction point x type	0.02 n.s.	2.27 n.s.	0.22 n.s.	0.83 n.s.

(See Tables 7.10 and 7.11 for symbols)

Two further breakdown analyses for the effects on drilling thrust were done by drill point angles (Tables 7.15 and 7.16) and by drill types (Tables 7.17 to 7.18).

TABLE 7.15: Analysis of Variance for Drilling Thrust for 118^{0} Point Angle

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Feed	38.7422	3	12.9141	4562.46
Drill type	0.4987	1	0.4987	176.17
Interaction Feed x Type	0.2325	3	0.0775	27.39
Error	0.0680	24	0.0628	
Table:	39.5414	31		

(See Tables 7.10 and 7.11 for symbols)

TABLE 7.16: Analysis of Variance for Drilling Thrust for 134° Point Angle

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Feed	33.0329	3	11.0110	4065.43
Drill type	1.3958	1	1.3958	515.34
Interaction Feed x Type	0.0731	3	0.0243	8.99
Error	0.0650	24	0.0027	
Total:	34.5668	31		

TABLE 7.17: Analysis of Variance for Drilling Thrust for Conventional Drill

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Feed	40.3805	3	13.4602	4282.16
Point angle	0.1053	1	0.1053	33.50
Interaction Feed x Point	0.1398	3	0.0466	14.83
Error	0.0754	24	0.0031	
Total:	40.7010	31		

(See Tables 7.10 and 7.11 for symbols)

TABLE 7.18: Analysis of Variance for Drilling Thrust for New Design Drill

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Feed	31.5111	3	10.5037	4375.24
Point angle	0.0229	1	0.0229	9.55
Interaction Feed x Point	0.0491	3	0.0164	6.82
Error	0.0576	24	0.0024	
Total:	31.6407	31		

(See tables 7.10 and 7.11 for symbols)

Analysis of Tables 7.15 and 7.16 reveals that the interaction of feed and drill type on drilling thrust is highly significant. Tables 7.17 and 7.18 show that the effect of the interaction between feed and point angle on drilling thrust is highly significant for the conventional drill (Table 7.17) and significant for the new design drill (Table 7.18).

Proceeding for the torque (Table 7.3) as for the thrust, the analysis of variance was also carried out and summarised in Table 7.19.

TABLE 7.19: Analysis of Variance for Drilling Torque

Effect	Sum of Squares	Degrees of Freedom	Variance Estimate	Variance Ratio
Drill type	0.00416	1	0.00416	71
Point angle	0.00837	1.37687	3	0.00837
Feed	0.00023	1	0.45896	7832
Type x Point	0.00205	3	0.00023	3.8
Type x Feed	0.00034	3	0.00011	11.9
Point x Feed	0.00014	3	$n . s$.	
Type x Point x Feed	0.00281	48	0.000047	0.8
Error	1.39497	63	0.000059	
Total :				11.6

(See Tables 7.10 and 7.11 for symbols)

Table 7.19 shows that the effect of the interaction of the three factors, drill type x point angle x drilling feed, the effect of the interaction of drill type and point angle and the effect of the interaction of the point angle and drilling feed on the drilling torque are probably not significant. It also shows that the effect of the interaction of drill type and drilling feed on the drilling torque is significant while the effect of the point angle is highly significant.

To study the effect of the other factors, a breakdown analysis was done by feed and drill type. A resumé of the variance analysis by drilling feed is presented in Table 7.20

TABLE 7.20: Resumé of Analysis of Variance for Drilling Torque by Drilling Feed
Variance ratios

Effect	240 RPI	157 RPI	103 RPI	70 RPI
Point angle	$64.03 * * *$	$45.39 * * *$	$6.98 *$	$12.13 * *$
Drill type	0.15 n.s.	$13.84 \star *$	$27.94 * * *$	$7.85 *$
Interaction point x type	0.02 n.s.	2.27 n.s.	0.22 n.s.	0.83 n.s.

(See tables 7.10 and 7.11 for symbols)

Analysis of Table 7.20 shows that the effect of the interaction of point angle and drill type on drilling torque is probably not significant as already seen in Table 7.19. The effect of the drill type is highly significant (103 RPI) or significant (157 RPI) for moderate drilling feeds and probably significant for high feeds (70 RPI); for low feeds (240 RPI) the effect of drill type on the drilling torque is probably not significant. The effect of point angle on the drilling
torque is highly significant for low to moderate feeds (240 RPI and 157 RPI) and probably significant to significant for moderate to high feeds (103 RPI to 70 RPI).

A resumé of the variance analysis by drill type is presented in Table 7.21.

TABLE 7.21: Resumé of Analysis of Variance for Drilling Torque, by Drill Type
Variance Ratios

Effect	Conventional Drill	New Design Drill
Feed	$3355.89 \star * *$	$1475.45 \star * *$
Point angle	$45.08 \star * *$	$34.52 \star * *$
Interaction feed x point	0.71 n.s.	0.71 n.s.

(See Tables 7.10 and 7.11 for symbols)

Analysis of Table 7.21 shows that the interaction of drilling feed and point angle on the drilling torque is probably not significant, as already shown in Talbe 7.19. It also shows that feed and point angle are highly significant for drilling torque, as expected.
"...most of the information for the evaluation of cutting operations ... is closely related to the chip geometry".

Nakayama

8. ANALYSIS OF THE INFLUENCE OF FLUTE

8.1 Introduction

The new design drill has shown higher wear rates and higher torque (especially for stronger feeds) in spite of presenting a better "heat sink" and approximately the same effective rake angle as the conventional drill.

In an attempt to investigate the reasons for such a difference in the performance of the two compared drill types, and further to develop a better criterion for drill design, the author took the view that the chip characteristics, being specific to each drill type, should be considered in analysing the drilling operation and the drill action.

8.2 Common Approach to Machining Chips

Frequently machining chips are looked at as a nuisance for the inconveniences such as chip disposal and interruption of the machining operation. Some chip classifications reflect this approach and they show the chips grouped into two major classes (71, 108): acceptable and unfavourable.

Many chip classifications can be found in literature (71, 73, 108, $109,110,111,112,113$) and even in a recent edition of a British Standard (BS 5623). Many times, however, these classifications focus mainly on the conveyance and disposal features of the chips.

There are many reports in the literature on the devices and on the cutting conditions for chip control with single point cutting tools. For drilling chip control, literature is more scarce. However, some drills with special chip breaking features have been reported by Bhattacharyya (38), 0xford (21) and CETIM (17) (refer to Chapter 2, too).

The influence of drilling conditions on chip form and size have been referred to by Nakayama and co-workers (14), CETIM (17) and Galloway and co-workers (10).

Some workers, such as Spaans (100), Nakayama et al (14) and others (114, 115,116) take the view that chip geometry is related to cutting efficiency. The author also believes that the machining chips are an important source of a great deal of information data about the cutting process.

8.3 Chips and Rigid Body Concept

In many works the chip is either explicitly or implicitly referred to as a rigid body [D.19] .

Lee and Shaffer (47), in a paper on the orthogonal cutting, stated that the chip must leave the plastic region as a rigid body. For Dewhurst (117) the chip can be viewed as the continuous emergence of a rigid body. Spaans (73) assumes the chip to behave as a rigid body. Armarego and Cheng (72) make the assumption that the chip travels as a rigid body after shearing has occurred. Kronenberg (118) referred to the fact that it is customary to consider the chip as a stationary body in static equilibrium. Wallace (119) also assumed the chip to slide as a rigid body up the tool rake face.

The assumption that the chip is a rigid body is also implicit in works by Nakayama (120) and Kenriksen (112), for instance.

8.4 Drilling Chips

0xford (20) reported once on the chip formation mechanism along drill lips and found it to be similar to any other metal-cutting operation. He further measured the chip flow angle for several radial distances and for several drilling conditions.

Armarego and Cheng (121) measured the chip length ratio [D.5] for drilling chips.

Nakayama and co-workers (14), discussed, in qualitative terms, the factors which are supposed to influence the formation of drilling
chips and would determine their shape and size. They observed that "the basic form of the chip produced by twist drills is the conical helical chip with short pitch". (Figures 8.1 and 8.2).

Observations by the author of the drilling chips and the drilling operation were complemented by a visual study of a high speed cine film (1000 frames per second) showing a 19.52 mm diameter conventional drill producing 38.1 mm deep holes in EN8 steel at 640 rpm and $0.25 \mathrm{~mm} / \mathrm{rev}$. In this film the drill entry stage can be seen with great detail and the chips emerging from the hole, along the flute, can also be seen during drill penetration (Figures 8.1 and 8.2).

The author believes that the rigid body concept can be used with the drilling chips for analysis of their shape and kinematic properties.

Rigid bodies have properties of their own which are likely to enlighten some drilling aspects and to help with some predictions otherwise difficult.

The rigid body concept is used in this work as an analytical approach which is surprisingly successful, as it will be shown, mainly for the correlations between its predictions and experimental results reported in literature (Sections 8.6.2, 8.6.3 and 8.6.4).

8.5 Mathematical Model of an Helical Rigid Body Chip

The rigid body concept is a physical one and it is more general than most of the machining concepts.

To use the rigid body concept for chip analysis allows for the utilization of mathematical models and for implementation in computer programs.

This approach permits geometrical simulation and numerical investigation to be carried out which is expected:

FIGURE 8.1: Drilling chip inside hole and drill flute. [Frame from high speed cine film

FIGURE 8.2: As in FIGURE 8.1 after drill rotated approximately 90 degrees

- to make possible to identify the parameters that govern the variation of chip flow along a drill lip
- to allow to identify the conditions and constraints the geometry of the flute drill imposes on the determination of chip form and size and chip flow
- to produce new information to be taken into account in the definition of a criterion for drill flute design.

8.5.1 Equations

The rigid body motion features are dealt with in many books on mechanics such as (80).

The motion of a rigid body can be regarded as a translation along a certain axis, a, and simultaneous rotation about it.

Let (Figure 8.3i):
a - the rigid body axis
0 - any point on the axis a,
P - a current point on the rigid body,
$\vec{V}_{t} \quad$ - the translation velocity of the rigid body along axis a
$\vec{W}_{c} \quad$ - the angular velocity of the rigid body about axis a
$\vec{\nabla}_{c}$ - Velocity of point P
Let a drilling chip (Figures 8.1, 8.2 and 8.3) be a rigid body.

From the mechanics of rigid bodies (80) :

$$
\vec{V}_{c}=\vec{V}_{t}+\vec{W}_{c} \times \overrightarrow{O P}
$$

This can also be written:

$$
\vec{v}_{c}=\vec{v}_{t}+\vec{W}_{c} \times \vec{R}_{c}
$$

i

FIGURE 8.3: Rigid body geometrical and kinematical variables (i) and rigid body chip (ii)
where \vec{R}_{c} is the radial vector of point P referred to the chip axis.

The relevant geometrical features of an helical chip are shown in Figure 8.4 from where the following relationship can be written:

$$
P_{c}=\pi d_{c o} \cot \gamma_{c o}
$$

where

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{c}}-\text { chip lead } \\
& \mathrm{d}_{\mathrm{co}}-\text { chip diameter } \\
& \gamma_{\mathrm{co}}-\text { chip helix angle at radius } \mathrm{d}_{\mathrm{co}} / 2
\end{aligned}
$$

The number of revolutions per time unit of the chip about its axis is designated by N_{c} and the following expressions can be written:

$$
\begin{array}{ll}
W_{c}=2 \pi N_{c} & 8.3 \\
V_{t}=p_{c} N_{c} & 8.4
\end{array}
$$

where

$$
\begin{aligned}
& W_{c}=\left|\vec{W}_{c}\right| \text { and } \\
& v_{t}=\left|\vec{v}_{t}\right|
\end{aligned}
$$

Let \vec{a} be the unit vector on the chip instantaneous axis of rotation of the chip, then:

$$
\begin{align*}
& \vec{v}_{t}=p_{c} N_{c} \vec{a} \\
& \vec{w}_{c}=2 \pi N_{c} \vec{a}
\end{align*}
$$

Also let

$$
\begin{array}{ll}
\vec{v}_{c}=v_{c} \vec{v}_{c} & \text { where } \quad\left|\vec{v}_{c}\right|=1 \\
\vec{R}_{c}=R_{c} \vec{r}_{c} & \text { where } \quad\left|\vec{r}_{c}\right|=1
\end{array}
$$

As \vec{V}_{t} is normal to $\vec{W}_{c} \times \vec{R}_{c}$, from equation 8.1, it can be written

$$
\begin{align*}
& v_{c}=\left(v_{t}{ }^{2}+\left(\left|\vec{W}_{c} \times \vec{R}_{c}\right|\right)^{2}\right)^{\frac{1}{2}} \\
& v_{c}=\left(\left(p_{c} N_{c}\right)^{2}+\left(2 \pi N_{c} R_{c}\right)^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

If equations 8.5, 8.6 and 8.7 are substituted in equation 8.1 then

$$
\begin{align*}
& N_{c}\left(p_{c}^{2}+\left(2 \pi R_{c}\right)^{2}\right)^{\frac{1}{2}} \vec{v}_{c}=p_{c} N_{c} \vec{a}+2 \pi N_{c} \vec{a} \times\left(R_{c} \vec{r}_{c}\right) \\
& \vec{v}_{c}=\frac{p_{c}}{\left(p_{c}^{2}+\left(2 \pi R_{c}\right)^{2}\right)^{\frac{1}{2}}} \vec{a}+\frac{2 \pi R_{c}}{\left(p_{c}^{2}+\left(2 \pi R_{c}\right)^{2}\right)^{\frac{1}{2}}} \vec{a} \times \vec{r}_{c} \tag{יו.}
\end{align*}
$$

Equation 8.1 ' is the mathematical model, in the vectorial form, for a helical chip with lead p_{c} where p_{c} depends on the external diameter, $d_{c o}$, of the chip and on the helix angle, $\gamma_{c o}$, at the chip periphery (Equation 8.2).

The mathematical model represented by equation 8.1' can be written in algebraic form if the components of \vec{v}_{c}, \vec{a} and \vec{r}_{c} in a referential system are known.

Let:

$$
\begin{aligned}
& \vec{v}_{c}=\left(v_{1}, v_{2}, v_{3}\right) \\
& \vec{a}=\left(a_{1}, a_{2}, a_{3}\right) \\
& \vec{r}_{c}=\left(r_{c 1}, r_{c 2}, r_{c 3}\right)
\end{aligned}
$$

a - chip axis
p_{c} - chip lead
${ }^{\circ} \mathrm{CO}^{-}$chip diameter
$\gamma_{\text {co }}$ - chip nelix angle
at radial distance $d_{\mathrm{CO}^{\prime 2}}$

FIGURE 8.4: Geometrical features of an helical chip

FIGURE 8.5: Steel drilling chips diameter distribution for 12.7 mm diameter conventional drill. [Refer to 1 next FIG for $\mathrm{d}_{\mathrm{co}}^{\prime}$]

So: $\quad \vec{a} \times \vec{r}_{c}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{1} & a_{2} & a_{3} \\ r_{c 1} & r_{c 2} & r_{c 3}\end{array}\right|=$

$$
\begin{aligned}
= & \left(a_{2} r_{c 3}-a_{3} r_{c 2}, a_{3} r_{c 1}-a_{1} r_{c 3}\right. \\
& \left.a_{1} r_{c 2}-a_{2} r_{c 1}\right)
\end{aligned}
$$

where $\vec{i}, \vec{j}, \vec{k}$ are the unit vectors on the referential axes.
Then:

$$
\begin{array}{ll}
v_{c 1}=M\left[p_{c} a_{1}+2 \pi R_{c}\left(a_{2} r_{c 3}-a_{3} r_{c 2}\right)\right] & 8.1 ' a \\
v_{c 2}=M\left[p_{c} a_{2}+2 \pi R_{c}\left(a_{3} r_{c 1}-a_{1} r_{c 3}\right)\right] & 8.1{ }^{\prime} b . \\
v_{c 3}=M\left[p_{c} a_{3}+2 \pi R_{c}\left(a_{1} r_{c 2}-a_{2} r_{c 1}\right)\right] & 8.1{ }^{\prime} c
\end{array}
$$

where

$$
M=\frac{1}{\left(p_{c}^{2}+\left(2 \pi R_{c}\right)^{2}\right)^{\frac{1}{2}}}
$$

Equations 8.1'a to 8.1'c represent, in algebraic form, the mathematical model for a helical chip with parameter p_{c}.

8.5.2 Analysis of parameter P_{C}

The rigid body chip lead, p_{c}, is related to the chip helix angle through the chip diameter as can be seen in equation 8.2 and Figure 8.4 .

8.5.2.1 Drilling chip diameter

From the earlier stages of this work many chips produced by different drill sizes, in different drilling conditions, for various steels, have been collected.

It was observed, and it has also been reported (17), that drilling chips produced by conventional drills tend to appear fragmented when feed increases and/or drill diameter decreases.

With 12.7 mm ($\frac{1}{2}^{\prime \prime}$) conventional drills and for the feeds relative to 240 RPI and 157 RPI, many helical chips of full width (the length of the lip, from chisel corner to outer corner) could be collected. The diameters of these chips were measured and the respective distribution analysed (Figure 8.5).

The chips for the 240 RPI appeared to concentrate around the 5.9 mm diameter, and the ones for the 157 RPI around 5.6 mm diameter.

The author thought that these diameter values might be related to the space available inside the flute. This space was computed according to the biggest circle inside a section normal to the drill axis, as shown in Figure 8.6, and the computed value, d^{\prime} co, resulted to be 5.3 mm (refer to Figure 8.6).

The actual chip diameters appear to be somewhat over the computed value of $\mathrm{d}^{\prime}{ }_{\mathrm{co}}$ (refer to Figure 8.5): 5.9 mm and 5.6 mm against 5.3 mm for $\mathrm{d}^{\prime}{ }^{\prime}$. ${ }^{\circ}$. This fact may be explained by the ability of the drilling chips to accommodate large elastic deformation as it can be checked by twisting, by hand, any drilling chip, by opening it (increases diameter) or closing it (decreases diameter). This is believed to be supported by the fact that different feeds (thus different chip thicknesses) yield chips of different average diameters (different compliance of the chips).

As a matter of chip diameter specification, for the computation with the chip model, a dimension of the space available inside the flute ${ }^{\text {can }}$ be used as an approximation. Such a dimension can be, as a

FIGURE 8.6: Maximum circle inside the drill flute in a section normal to the drill axis
matter of simplification relatively to the method illustrated in Figure 8.6, the computed difference between the drill radius (r_{0}) and the half web thickness $(W): r_{0}-W$ (Figure 8.6).

Nevertheless, the diameter of the chip decreases from the outer corner to the chisel corner mainly as a consequence of the decreasing cutting speed along the lip, from the periphery to the drill axis.

8.5.2.2 Drilling chip helix angle

The chip helix angle, $\gamma_{c o}$ (Figure 8.4), can be related to the chip flow angle, n_{0} (Figure 8.3), at the point 0_{c} (outer corner) as it will be shown.

If, as generally recognized in the field of oblique cutting, the inclination angle has an important influence on the determination of the chip flow angle, the chip helix angle will be equally determined by the inclination angle too.

By definition, the chip flow angle, η, is given by (Figure 8.3):

$$
\cos (90-n)=\frac{\vec{V}_{c} \cdot \vec{e}}{\left|\vec{V}_{c}\right|\left|\vec{e}^{\prime}\right|}=\frac{\vec{V}_{c} \cdot \vec{e}}{\vec{V}_{c}}
$$

where \vec{e} is assumed to be the unit vector on the tangent to the cutting edge at the selected point.

From equations 8.1 and 8.8:

$$
\begin{align*}
& \sin \eta=\frac{\left(\vec{V}_{t}+\vec{W}_{c} \times \vec{R}_{c}\right) \cdot \vec{e}^{V_{c}}}{\sin \eta=\frac{\vec{V}_{t} \cdot \vec{e}+\left(\vec{W}_{c} \times \vec{R}_{c}\right) \cdot \vec{e}}{V_{c}}}=\text {, }
\end{align*}
$$

Using equations 8.5 and 8.6 in equation 8.9 it results:

$$
\begin{align*}
& \sin n=\frac{N_{c} p_{c} \vec{a} \cdot \vec{e}+\left(2 \pi N_{c} \vec{a} \times \vec{R}_{c}\right) \cdot \vec{e}}{V_{c}} \\
& \sin n=N_{c} \frac{p_{c} \cos \kappa_{c}+2 \pi R_{c}\left(\vec{a} \times \vec{r}_{c}\right) \cdot \vec{e}}{V_{c}}
\end{align*}
$$

where k_{c} (Figure 8.7) is the angle between the cutting edge at the selected point and the instantaneous axis of rotation of the chip, and \vec{r}_{c} is the unit vector in the direction of \vec{R}_{c}, and R_{c} the length of \vec{R}_{c}.

From vectorial analysis (78), the product ($\vec{a} \times \vec{r}_{c}$). \vec{e} represents the volume of a parallelepiped having \vec{a}, \vec{r}_{c} and \vec{e} as edges.
\vec{a} and \vec{r}_{c} are unit vectors and normal to each other. From Figure 8.7:

$$
\begin{aligned}
& \frac{H J}{A H}=\frac{G I}{A G} ; A H=1 ; H J=\frac{G I}{A G} \\
& \frac{A B}{A G}=\operatorname{Cos} \kappa_{c} ; \quad A B=1 ; \quad A G=\frac{1}{\operatorname{Cos} \kappa_{c}} ; H J=G I \operatorname{Cos} \kappa_{c} \\
& G I=M N \\
& \frac{M N}{A N}=\frac{g_{c}}{R_{c}} \\
& M N=\frac{g_{c}}{R_{c}} A N ; \quad A N=B G=\tan \kappa_{c} ; M N=\frac{g_{c}}{R_{c}} \tan \kappa_{c}=G I \\
& H J=G I \operatorname{Cos} \kappa_{c}=\frac{g_{c}}{R_{c}} \tan \kappa_{c} \operatorname{Cos} \kappa_{c}=\frac{g_{c}}{R_{c}} \sin \kappa_{c} \\
& \therefore \quad\left(\vec{a} \times \vec{r}_{c}\right) \cdot \vec{e}=1.1 . H J=H J=\frac{g_{c}}{R_{c}} \sin \kappa_{c}
\end{aligned}
$$

FIGURE 8.7: Position of the chip axis relative to the cutting edge

FIGURE 8.8: Maximum theoretical possible chip flow angle at the drill outer corner

Equation 8.9" can now be written in the following way:

$$
\begin{equation*}
\sin \eta=N_{c} \frac{p_{c} \cos \kappa_{c}+2 \pi R_{c}{ }^{g_{c}} \sin \kappa_{c}}{V_{c}} \tag{ii}
\end{equation*}
$$

As V_{c} is given by equation 8.7, then equation $8.9^{\prime \prime \prime}$ becomes:

$$
\begin{array}{ll}
\sin \eta=\frac{p_{c} \cos \kappa_{c}+2 \pi g_{c} \sin k_{c}}{1 / M} & 8.9^{i v} \\
\sin \eta=p_{c} M \cos \kappa_{c}+2 \pi R_{c} M \frac{g_{c}}{R_{c}} \sin k_{c} & 8.9^{v}
\end{array}
$$

or

From Figure 8.3 it can be seen that:

$$
\begin{align*}
& \cos \gamma_{c}=p_{c} M \\
& \sin \gamma_{c}=2 \pi R_{c} M
\end{align*}
$$

where $\quad M=\frac{1}{\left(p_{c}{ }^{2}+\left(2 \pi R_{c}\right)^{2}\right)^{\frac{1}{2}}}$

Then $\quad \sin \eta=\cos \gamma_{c} \cos \kappa_{c}+\sin \gamma_{c} \frac{{ }_{c}{ }_{c}}{R_{c}} \sin \kappa_{c} \quad 8.9^{v i}$
where (Figure 8.7):
γ_{c} - chip helix angle at the selected point
R_{c} - chip radial distance from the selected point to the chip axis
g_{c} - distance from the chip instantaneous axis of rotation to the tangent to the lip at the selected point
k_{c} - angle between the chip instantaneous axis of rotation and the tangent to the lip at the selected point.

At the outer corner, equation 8.9^{vi} is written:

$$
\sin \eta_{0}=\cos \gamma_{c o} \cos \kappa_{c o}+\sin \gamma_{c o} \frac{g_{c o}}{R_{c o}} \sin \kappa_{c o} \quad 8.9^{v i i}
$$

The maximum theoretically possible value of n_{0} at the drill periphery is illustrated in Figure 8.8.

For one conventional drill with the features $2 W^{\prime}=2 \mathrm{~mm}$; $\gamma_{f}=30^{\circ} ; \kappa=59^{\circ}$ and $d_{0}=12.7 \mathrm{~mm}\left(\frac{k^{\prime \prime}}{}\right)$ the angle n_{0} was computed and found to be 30.9°.

Making $g_{c o}=0.1$ and $k_{c o}=18^{\circ}$, which have been obtained from one example, and for one chip 5.3 mm diameter, the above equation $8.9^{\text {vii }}$ gives $\gamma_{c o}=60^{\circ}$ for $\eta_{0}=30.9^{\circ}$. This corresponds to a chip lead of nearly 10 mm .

The chips referred to in the last section were also measured for chip lead. The results have shown a dispersed distribution with the majority of the values falling in the interval $3-5 \mathrm{~mm}$. These values correspond to chip helix angles comprehended between approximately 80° and 73°.

8.6 Computing Approach to Drilling Chips

For computing approach purposes the following conditions are supposed to apply to drilling chips:
i) the chip is formed at the drill lip and it is born a rigid body;
ii) the chip is generated all along the lip, from the chisel corner up to the outer corner, and any lateral deformation is neglected;
iii) any action (by the hole wall or the flute heel, for example) on the chip formed at the lip is responded by the chip, for its permanent form and size, at its root, i.e. at the surface of separation chip/workpiece;
iv) the rigid body chip tends to be tangent to the rake face at the drill lip and the chip contact length [D.10] is neglected;
v) the chip diameter is governed by the space available in the drill flute and in the hole;
vi) chip radius decreases from the outer corner towards the chisel corner.

One condition is also assumed for the lip and for the flute face: the lip and the flute face are not altered either by wear or by built-up-edge [D.3] during drilling.

At this stage the instantaneous axis of rotation of the chip is not yet known. However, some conditions controlling the size and the flow of drilling chips have already been referred to.

It is possible to compute a chip rigid body motion, for a given chip lead, with the drill lip as a generator line, for an instantaneous axis selected to a guess. Then it is possible to compute the deviation of the computed rigid body to the pre-specified conditions: chip diameter and tangency to the rake face.

If the instantaneous axis is defined by two points, B and M, Figure 8.9, it is possible, starting from the points determined to a guess, to determine a set of pairs of points in the neighbourhood of the starting one and to define a set of instantaneous axes with each pair of points. The above referred to deviations can be computed for each new instantaneous axis and compared between each other in order to find the one which is nearer to the desired solution.

From the new instantaneous axis the process can proceed as indicated until the best axis is found as an exact solution may not be possible.

FIGURE 8.9: Strategy for numerical search of the best rigid body chip instantaneous axis. B,M - starting points.

A computer program (Appendix 8) was designed and built up, according to the described strategy, in order that the best rigid body chip complying to the specifications could be found.

A rigid body chip axis is presented in Figure 8.10 for one chip 4 mm lead, 6.4 mm diameter. For this example, the axis is 0.09 mm distant from the cutting edge and inclined 27.01° to the same edge as referred to the outer corner.

8.6.1 Drilling chip geometrical simulation

The above referred to computer program was developed in order to geometrically simulate the chip. Figure 8.11 shows the geometrically simulated rigid body chip for the same conditions as for Figure 8.10.

a - enip axis

Flute - Grinding-
conventional cylindrical
$\mathrm{RO}=6.35 \quad \mathrm{DOg}=26.00$
Web= 1.95
$\mathrm{HO}=33.00$
$\mathrm{Ug}=80.00$
Rk $=59.00$
Rkg= 59.00

FIGURE 8.18: Computer generated drilling chip axis for one chip 4 mm lead and 6.4 mm diameter

FIGURE 8.11: Computer geometrically simulated rigid body chip for axis and conditions as in FIGURE 8.10

FIGURE 8.12: Views of drilling chip emerging from the drill lip [Refer to FIGURE 8.11 - computer simulated chip]

Figure 8.12 shows an actual chip. produced by a conventional drill with the features as for Figures 8.10 and 8.11, and for the following cutting conditions: $820 \mathrm{rpm}, 240$ RPI, EN43 steel, soluble oil as coolant.

Figure 8.13 shows the computed chip axis for the new design drill. A similar simulation to that in Figure 8.12 is shown in Figure 8.14 for this drill.

The main apparent difference between the simulated chip shown in Figure 8.11 and the one shown in Figure 8.14 refers to the geometric shape which is cone-like for the conventional flute and belllike for the new design flute. Other major and more significant differences will be referred to in the sections ahead.

8.6.2 Chip flow angle: prediction by the present model

Some workers, in studying the conventional drill lip action with the cutting mechanics approach, have made several assumptions for the chip flow angle.

Bhattacharyya (25) once assumed the empirical Stabler's rule:

$$
\eta=\lambda
$$

to be valid in the drilling operation.

Armarego and Cheng (72) made a study of conventional drills to which the rake face was made flat at the drill lip, by grinding, and attempted three different chip flow angle laws:

$$
\begin{align*}
\text { i) } n & =\lambda \\
\text { ii) } n & =\tan ^{-1}\left(\tan \lambda \cos r_{n}\right) \\
\text { iii) } n & =\left(0.9-0.2 r_{n}\right) \lambda
\end{align*}
$$

where the two last ones are arbitrary laws.

a - chip axis

Flute - new	Grinding- cylindrical
$\mathrm{RO}=6.35$	$\mathrm{DOg}=26.00$
Web= $=6.95$	$\mathrm{Ug}=80.00$
$\mathrm{HO}=33.00$	$\mathrm{Exg}=2.80$ Rkg $=59.00$

FIGURE 8.13: Computer generated drilling chip axis for one chip 4 mm lead and 6.4 mm diameter

FIGURE 8.14: Computer geometrically simulated rigid body chip for axis and conditions as in FIGURE 8.13

Laws (i) and (ii) have already been dealt with by the author in Chapter 4.

The law (iii) has shown to better serve the theoretical purposes of Armarego and Cheng who found it to yield smaller angles than those with the rule by Stabler.

For conventional drills, the same workers - Armarego and Cheng assumed the chip velocity at each point to be on a plane parallel to the drill axis and normal to the radius at the selected point (72).

They further developed a formula for the calculation of this angle, which is, according to the assumption, the angle between the lip and the tangent to the helix, measured on the plane tangent to the rake face, at the selected point, and found

$$
n=\operatorname{Sin}^{-1}\left(\operatorname{Cos} \gamma \operatorname{Cos} \kappa+\frac{W^{1}}{r} \operatorname{Sin} \gamma \operatorname{Cos} \kappa\right)
$$

where

```
    n:- chip flow angle at the selected point
    \gamma-helix angle at the selected point
    k-\frac{1}{2}}\mathrm{ point angle
2W'- lip spacing
    r - radial distance.
```

The author computed this angle by the model presented in Chapter 4 and by means of vectorial analysis and found the values to coincide, as expected, with those by the above formula. Incidentally the author notes that the formula by Armarego and Cheng is unusable with curved lips.

Equation 4.17 (Stabler) and equation 8.13 (Armarego and Cheng) are presented in Figure 8.15 compared to drilling chip measurements by 0xford (20), (refer to Figure 8.16 ii).

FIGURE 8.15: Drilling chip flow angle versus inclination angle from three sources : i (28) [refer to FIG 8.16ii] ; ii (45) ; iii (72)

FIGURE 8.16: Chip Flow lines :
i - Computer simulated (author"s approach)
ii - Recorded by OXFORD (1,20)

FIGURE 8.17: Drilling chip flow angle versus inclination angle as predicted by the author. [Compare with FIGURE 8.15]

The drill features to which Figure 8.15 refers to are (0xford (20)): $r_{0}=9.52 \mathrm{~mm}, 2 \mathrm{~W}=2.79 \mathrm{~mm}, \gamma_{f}=32^{\circ}, 2 \mathrm{k}=118^{\circ}$.

The author used his rigid body approach for computing the chip flow angle (Figure 8.16) and for $d_{c o}=8 \mathrm{~mm}$ and $p_{c}=5.5 \mathrm{~mm}$ (values that tests with 19.52 mm diameter conventional drills from the shelf confirmed to be representative) found the result shown in Figure 8.17.

The agreement between the experimental values and the prediction by the present model is not only qualitative but also quantitative.

The deviations of the predicted chip flow angle from the measured ones, for the higher values of the inclination angle (occurring close to the chisel corner) may be explained by the effect of the chisel edge chips, which has not been considered in the present approach, and may increase the chip flow angle of the lip produced chips by locally forcing them out (Figure 8.18). However, the chip flow near the chisel corner is likely to be so strongly complex and disturbed (there are two distinct processes of cut at the chisel corner neighbourhood - one by the lip and the other by the chisel edge) that a theoretical approach for this point could hardly succeed.

FIGURE 8.18
Drilling chip embeded in press moulded resin,cut along its axis,showing larger concentrations of material at the area closer to the chip axis(a)

To compare the conventional drill with the new design one, the rigid body approach was considered for both 12.7 mm diameter drill types.

Figure 8.19 shows the chip flow angle together with the inclination angle versus the distance along the lip for the conventional drill. The chip flow angle was also plotted against the inclination angle in Figure 8.20.

Figures 8.21 and 8.22 show similar representation to Figures 8.19 and 8.20 respectively, for the new design drill.

Figure 8.21 shows that the inclination angle is such that it has a minimum near the point at 3 mm from the chisel corner, and increases to either side of this point.

Figure 8.22 shows that for the conditions considered in the computation (chip diameter to be accommodated inside the flute) a rigid body chip would have two parts with two distinct performances: for one part the chip flow angle would increase together with the inclination angle, for the other the chip flow angle would decrease with increasing inclination angle.

If the inclination angle is the major variable controlling the chip flow angle for oblique cutting ($14,45,73$) (see equation 4.17, for example) the situation depicted in Figure 8.22 would be quite unusual as it shows two different tendencies for two distinct parts of the same chip. In fact, it is observed in Figure 8.26 (compare to Figure 8.24) and Figure 8.27i that, for the case analysed, the chip splits in two as if two chips were produced.

Apparently it could be asked if a rigid body that yields a chip flow angle as the one shown in Figures 8.28 and 8.29 - chip flow angle increases when the inclination angle increases and decreases with decreasing inclination angle - would be possible with the new design drill.

FIGURE 8.19: Drilling chip flow angle,from rigid body approach [5.4 mm chip diameter and 4 mm chip lead], and drill lip inclination angle

FIGURE 8.20: Drilling chip flow angle from rigid body approach (i) [refer to FIGURE 8.19] and STABLER`s rule versus drill lip inclination angle

FIGURE 8.21: Drilling chip flow angle,from rigid body approach [5.4 mm chip diameter and 4 mm chip lead], and drill lip inclination angle

FIGURE 8.22: Drilling chip flow angle from rigid body approach (i) [refer to FIGURE 8.21] and STABLER`s rule versus drill tip inclination angle

FIGURE 8.23: Cone-like chips produced on drill entry [1/2" and 118° conventional drill; 828 rpm and 157 rpi ; EN43 steel]

FIGURE 8.24: Conical helical drilling chips generated inside hole and Flute - drill and conditions as for FIG 8.23 [Refer to FIG 8.1]

FIGURE 8.25: Bell-like chips produced on drill entry [1/2" and 118° new design drill;820 rpm and 157 rpi ; EN43 steel]

FIGURE 8.26: Split drilling chips generated inside hole and flute - drill and conditions as for FIG 8.25]

.i
ii

FIGURE 8.27: Frozen drilling chips:
i) by non-conventional drill (split chip)
ii) by conventional drill

Such a chip flow angle was computed for a rigid body chip with parameters $d_{c o}=9 \mathrm{~mm}$ (chip diameter) and $\mathrm{p}_{\mathrm{c}}=4 \mathrm{~mm}$ (chip lead) (Figure 8.30).

This rigid body would be possibly produced if enough space was provided for the chip to flow as it would require a "cylinder" at least approximately 9 mm diameter (the flute and hole "produce" a "cylinder" about only 5.4 mm).

Such a space is actually available at the entry of the drill where the chip is not constrained by the hole walls, Figure 8.25 (compare to Figure 8.23), and can proceed without splitting as a rigid body.

FIGURE 8.28: Drilling chip flow angle, from rigid body approach $[9.0 \mathrm{~mm}$ chip diameter and 4 mm chip lead], and drill lip inclination angle

FIGURE 8.29: Drilling chip flow angle from rigid body approach (i) [refer to FIGURE 8.28] and STABLER`s rule versus drill lip inclination angle

Flute - new	Grinding- cylindrical
$R O=6.35$	$\mathrm{DOg}=28.00$
$\mathrm{ROb}=1.95$	$U \mathrm{~g}=90.00$
$\mathrm{HO}=33.00$	$\mathrm{Exg=}=3.00$
	Rkg=59.00

FIGURE 8.30: Computer geometrically simulated rigid body chip
[drill entry] for the new design drill

8.6.3 Variation of the chip length ratio along drill lip. Prediction by the present model versus experimental data reported in literature

The cutting ratio is the ratio of the uncut chip thickness, t_{1}, to the chip thickness, $t_{2}: t_{1} / t_{2}$. Sometimes the reciprocal, t_{2} / t_{1} - chip thickness ratio - is used instead.

In the cases where chip thickness is difficult to measure, another ratio is used: the chip length ratio, which is the chip length divided by the corresponding uncut length.

The cutting ratio has been analysed, measured and discussed by many workers in the area of machining (4, 12, $25,43,45,47,73,119$, 122). It depends on many factors, and reports in literature frequently refer to empirical correlations between the cutting ratio and the cutting factors. However, only one reference dealing with one sort of cutting ratio (chip length ratio) of the drilling chips was found in literature (121).

The chip length ratio (and the cutting ratio too) is difficult to predict, in general. Nevertheless it appears that it would be possible to predict its relative variation along a cutting edge such as a drill lip as regards to the lip cutting geometry variation, chip flow variation and material approaching speed variation.

From Figure 4.34 and admitting that there is no loss of material, neither material density variation across the lip, nor chip lateral deformation, it can be written:

$$
\ell_{1} t_{1} b_{1}=\ell_{2} t_{2} b_{2}
$$

where ℓ_{1} - length of uncut chip
t_{1} - uncut chip thickness
b_{1} - uncut chip width
ℓ_{2} - length of chip
t_{2} - chip thickness
b_{2} - chip width

If cutting time is equal to 1 , equation 8.14 can be written:

$$
v t_{1} b_{1}=v_{c} t_{2} b_{2}
$$

when: $\quad V$ - cutting speed

$$
V_{c}-\text { chip speed }
$$

The chip length ratio is defined by:

$$
r_{\ell}=\ell_{2} / \ell_{1}=\frac{V_{c}}{V}
$$

V_{c} is proportional to the chip radial distance at the selected point on the lip, and V is proportional to the drill radial distance at the same point.

Making $r_{\ell}=1$ at the outer corner, the variation of r_{ℓ} along the lip can be referred to this value.

Armarego (121) once reported on the experimental determination of the chip length ratio of drilling chips by cutting and measuring annuli chips of different sizes. He used one drill with the following features: $r_{0}=12.7 \mathrm{~mm}, 2 \mathrm{~W}=3.2 \mathrm{~mm}, \gamma_{f}=32^{\circ}$ and $\kappa_{g}=122^{\circ} 50^{\prime}$. His results are shown in Figure 8.31 by the points fitted by curve i.

The features of the drill utilized by Armarego were used with the rigid chip model and the relative chip length ratio was computed and computer plotted in Figure 8.31 (curve ii).

The model, in accordance with the experimental results which Armarego obtained by special methods, predicts a decrease in the chip length ratio along the lip, from the outer corner towards the chisel corner.

FIGURE 8.31: Variation of the relative chip length ratio along the drill lip. [Refer to text for drill features]

The author would like to consider the subject a little further, considering the cutting ratio too.

From Figure 4.34 it results:

$$
\frac{b_{1}}{\cos \lambda}=\frac{b_{2}}{\cos \eta}
$$

where: λ - inclination angle n - chip flow angle

Then, from equation 8.15:

$$
\begin{array}{ll}
& v t_{1} b_{1}=v_{c} t_{2} \frac{\cos n}{\cos \lambda} b_{1} \\
\therefore & \frac{t_{1}}{t_{2}}=\frac{v_{c}}{v} \frac{\cos n}{\cos \lambda}
\end{array}
$$

The variation of the cutting ratio along the lip is determined by the chip radial distance, drill radial distance, inclination angle and chip flow angle at each point selected on the lip (equation 8.17).

As for the chip length ratio, making arbitrarily $t_{1} / t_{2}=1$ at the outer corner, the variation of t_{1} / t_{2} along the lip can be referred to this value.

For the same drill and conditions used for Figure 8.31, the variation of t_{1} / t_{2} was computer plotted in Figure 8.32 where it is represented by curve i together with the variation of the chip length ratio, curve ii.

Curve i in Figure 8.32 predicts a sudden increase of the chip thickness close to the chisel corner.

Some full width chips, as in Figure 8.18, show a sudden increase of thickness close to the chisel corner. However, no systematic experiment (with and without pilot holes, for example) has been made

FIGURE 8.32: Variation of the relative cutting ratio and length ratio of drilling chip, along the lip. [Drill features and drilling chip parameters as for FIGURE 8.31]
at this stage to prove that the increase of thickness agrees quantitatively with the predictions.

If the chip yielded by the new design drill could be described for all drill lip points as a full width rigid body (from the outer corner to the chisel corner), the relative cutting ratio to be expected would appear like the one shown in Figure 8.33. In other words, such a chip would show a greater thickness at the middle than at the inner and outer parts.

Few bits of chips produced by the new design drill (Figure 8.26) keep full width. Some of these bits were embedded in resin and press moulded and prepared as shown in Figure 8.18 to be observed and to be measured by the microscope.

The tendency was for the chips to show a higher thickness, thus a lower cutting ratio, at their middle zones. At this stage, however, no systematic experiment has been undertaken in order to provide that the prediction for the new design drill is correct.

8.6.4 Fitness of the rigid body drilling chip to the flute face at the drill lip and correlation with experimental data of Tip stress and lip temperature reported in the literature for conventional drilis

The drill flute is an helical rigid body with an axis which is the drill axis.

The drilling chip is approached in this work as a rigid body with an helical motion with a proper axis, in general not coincident with the drill one, with a maximum diameter determined by the flute/ hole space and conically shaped.

The rigid body chip was computed in the previous sections according to the conditions and restrictions imposed on it by the flute geometry.

FIGURE 8.33: Variation of the relative chip cutting ratio along the new design drill lip computed from the rigid body chip approach. [Drilling chip parameters as for FIGURE 8.21]

For simplicity of analysis the chip contact length [D.10] is not considered, and one condition to be imposed on the computed rigid body chip should be that it would be tangent to the flute face at the drill lip. However, numerical and graphical investigation revealed that this condition is in conflict with the limits on chip size (flute size). Thus the condition that the rigid body chip should be as tangent as possible to the flute face at the lip was imposed instead.

After a rigid body chip solution is found, the final deviation of the rigid body chip from the tangent to the flute face can be known at each point.

Fitness of the computed drill chip to the flute face is assessed at each lip point by computing the deviation of the chip velocity from the tangent to the flute face (Figure 8.34).

The patterns of contact (Figure 8.34) between the computed chip and the flute face was found to be similar to each other in a very extensive numerical investigation carried out by the author with conventional drills. A perfect tangency between computed chip and the flute face appear at some distance from the outer corner (point A, Figure 8.34), and no tangency between this point and the outer corner as the computed chip velocity points up the flute face. For the points from point A to near the chisel corner, the computed chip velocity points down the flute face as if it was penetrating it.

The referred to pattern of contact between the computed chip and the conventional flute face at the lip is shown in Figure 8.34 by the line (i).

This pattern of contact means that the chip would tend to leave the flute face, behind the lip, near the outer corner, and would tend to penetrate the flute face behind the lip, along the area in the middle of the lip.

This can be shown by using a plan that contains the chip axis and rotates about it producing successive sections of the chip and

FIGURE 8.34: Pattern of contact between the computed chip and the flute (rake) face at the lip.
[Refer to FIGURES 8.19 and 8.21 for drill
features and drilling chip parameters]
of the flute behind the lip.
This technique was also implemented in the computer program shown in Appendix 8 and some sections were computer plotted. Figure 8.35 shows the sections yielded by the above referred to plan passing at the outer corner, after rotating 5° from the previous position and after rotating 10^{0} from the first position.

This pattern of contact of the chip model at the drill lip suggests that, for some stress components on the drill lip resultant from the action of the chip on the flute face, the outer corner and its vicinity should appear alleviated relative to other points further located from the outer corner. This hypothesis seems to be supported and validated by experimental results already reported in literature $(41,57)$.

Law and co-workers (41) have found by photoelastic methods that the maximum shear stress along the lip presents a pattern shown by line (ii) in Figure 8. 36.

These workers specified the drill they used just by its diameter: 78.2 mm (3"). In order to use his model and computing approach to find the pattern of contact between the chip and the flute face at the lip shown by line (i), Figure 8.36, the author assumed the following additional features: $2 \mathrm{~W}=8 \mathrm{~mm}$ (the minimum web for a 76.2 mm diameter drill, according to catalogue $C .1 ; \gamma_{f}=30^{\circ}$ (a common drill helix angle) and $2 k=1180$ (standard drill point angle).

Also Saxena and co-workers $(57,123)$ have measured the temperature at the drill lip and found it to have the pattern represented by line (iii) in Figure 8.36. This was known to Law and co-workers who wrote in their paper (41): "It is interesting to note that the maximum shear distribution along the cutting edge is similar to an experimental temperature distribution (57)".

FIGURE 8.35
Computer plotted sections of chip and Flute face, near the lip,yielded by a plan rotating about the chip axis, and at three positions : i,ii,iii.
[Refer to FIG 8.19 for chip and drill features]

```
ii - Fitting experimental paints }O\mathrm{ (41)
iii - Fitting experimental points }\square\mathrm{ (123)
```


FIGURE 8.36: Computed pattern of contact between chip and flute face at (ip (i) - refer to FIGURE 8.34 ; maximum shear stress at the Lip (ii)(41) ; temperature near the lip (iii)(123)

8.7 Chapter Closure

Chip splitting, seems to correlate with torque increase, thrust decrease and wear rate increase.

Approaches to drilling forces prediction can be found which consist of dividing the main cutting edge in a number of elementary cutting edges, and computing the total. force as a summation of the forces on each one of these smaller cutting edges. One of such approaches (1.2) - claimed to give good predictions with the conventional drill : has been tested by the author (included in computer program shown in Appendix l) with the new design drill and failed: it predicts higher torques and higher thrusts (experiments show lower thrusts, compared to the conventional drill) (Chapter 7).

Based on the belief (and on the successes reported in this thesis) that the rigid body concept would be a better approach to drilling forces computation, the author could predict a torque increase and a thrust decrease with the new design drill. However, a deeper analysis of the assumptions and method for drilling forces prediction by the author has to be done before a definitive statement can be made.

The author believes that rigid body chips can be formed and flow with different degrees of efficiency within a range of drill lip and drill flute geometries. To base flute design on a rigid body chip criterion seems to the author a direction strongly worthwhile to take.

CONCLUSIONS AND SUGGESTIONS

The work reported in this thesis can be divided into the following parts:
i) Analysis of drill geometry (Chapters 2, 3 and 4).
ii) Design of a new drill flute (Chapter 5).
iii) Comparative performance tests between a conventional drill and the new flute drill (Chapters 6 and 7).
iv) Analysis of the drilling chips in relation to the drill lip and drill flute geometry (Chapter 8).

In the present work, twist drills are analysed according to the geometry and cutting angles along the lips rather than according to the traditional drill features such as those referred to in Chapter 1. The main purpose of this approach is to deal with nonstraight drill lips either with conventional or non-conventional flute faces.

To deal with twist drills by referring to the cutting angles is more complex than by the traditional drill features as the surfaces determining the drill have to be defined and mathematically modelled and the cutting angles have to be computed by vectorial analysis.

Mathematical models are better dealt with by computing techniques. The advantages of these techniques are multi-fold and some of them have been experienced by the author throughout this work as they:
i) provide for numerical solutions when the analytical ones could hardly be achieved;
ii) allow for numerical investigation;
iii) allow for geometric simulation;
iv) allow for mathematical model testing;
v) allow for reformulation of problems and hypotheses;
vi) enlarge the field of research for the amount of information data that can be dealt with and for the complex relationships that can be analysed.

Conclusions

1. When the drill lips are straight lines the flute face related cutting angles can be calculated by formula available in literature. For non-straight drill lips the cutting angles either flute face related, or flank surface related, or flute face and flank surface related depend on the lip shape and cannot be computed before defining the surfaces determining the lip.
2. Twist drill surfaces are generally machine generated and can be mathematically modelled.
3. Seven distinct mathematical models (corresponding to the same number of surfaces) can be used to determine and to simulate completely the drill point:
i) two flute faces
ii) two flute heels
iii) two flank surfaces
iv) one cylindrical surface.

The complete determination and simulation of the drill point by these mathematical models can be demonstrated by computer aided design techniques.
4. Traditionally a flute face is defined as a ruled surface whose shape depends on four parameters: $r_{0}, 2 W^{\prime}, \dot{\gamma}_{f}$ and k. For complete definition of the flute profile the flute heel can be mathematically modelled. This model can be defined by one parameter determining the heel profile corner relatively to the face profile corner and by the condition of a common tangent with the face profile at the point on the same helical line as the chisel corner.
5. For convenience the cylindrical grinding was used.

The cylindrical grinding surface can be mathematically modelled with four parameters: $d_{o g}, v_{g}$, e_{g} and κ_{g} which allow for free
specification of the drill point features: point angle, chisel edge angle, nominal relief angle and elevation of the heel corner relatively to the outer corner. The freedom to specify the referred to features is achieved at the cost of the lip straightness.
6. The flute face mathematical model and the flank surface mathematical model determine the drill lip and the cutting angles which can be computed by vectorial analysis. The shape and the length of the lip and the chisel edge can be computed from the simulated intersections of the referred to mathematical models. The flank contour on the drill cylindrical surface and the heel point contour can also be computed from these mathematical models and the others referred to in conclusion 3.
7. The configuration of a geometrically simulated drill point depends on the parameters of the mathematical models relative to the surfaces determining the drill point. The cutting angles such as the normal rake angle, the normal clearance angle and the inclination angle along the drill lip also depend on these parameters.
8. The flute face form can be determined on the basis of other conditions rather than to be a ruled surface. To use non-ruled surfaces for the flute face form makes the lip to be curved and makes the cutting angles to be flank surface dependent.
9. The flute form can be determined from the inclination angle law along the lip once the flank surface is known. Iterative numerical methods implemented in a computer program allow for the flute specification to be given in terms of other cutting angles rather than the inclination angle. Such a flute can be determined by successive controlled alterations to an inclination angle law given to a guess.
10. A flute form to yield a uniform wedge angle along the lip produces a normal rake angle law and an inclination angle law different to those of the conventional drill. For some values of. the wedge angle, used as a design parameter, little modification is introduced. to the effective rake angle as compared to the conventional drill.
11. To modify the flute form, the lip shape and the cutting angles along the lip affects drill performance as far as lip wear, drilling forces and chip form and size are concerned.
12. Lip wear at five equally spaced points on the lip, from the outer corner, for both the conventional drill and the new design drill show similar wear patterns but different intensities as far as drill type, point position and drilling conditions are concerned. Lip wear is smaller for the new design drill at the initial drilling stage, especially for the points closest to the outer corner. For this drill type, the average wear rate during the longer and slower part of the global wear process is in general higher than for the conventional drill.
13. Analysis of variance of the wear rate results shows that: the points equally spaced on the drill lips, near the outer corner, do not respond in the same way to wear performance; the points at the same radial distance on the two tested drill types do not respond in the same way either. The very outer corner of the drill is not so representative of lip wear as referred to drilling factors as other points in its neighbourhood.
14. Analysis of variance of the wear rate results at five points on the drill lips, at the neighbourhood of the outer corner, has shown that the difference between drill types is significant at two intermediate points (points 2 and 3), probably significant at one extreme point (point 1) and at the nearest point to the outer corner (point 4), and non-significant at the outer corner.
15. Analysis of variance has also shown that, for both drill types, the effect of cutting speed is highly significant for the points tested except for the outer corner where it appears to be probably significant. The effect of the drilling feed is highly significant for two intermediate points (points 2 and 3), is significant for points 1 and 4 and non-significant for the outer corner. The effect of the point angle and the effect of the interaction of the drilling factors analysed are non-significant too.
Variability of the wear rate at the very outer corner suggests that other inner points on the lip near the outer corner should be selected when drill lip wear rate measurement is intended.
16. Drilling torque in general is higher and drilling thrust is lower for the new design drill than for the conventional one. The experimental results show that with the new design drill the torque increases between 0 to 10% as the thrust decreases between 5 to 20%.
17. Analysis of variance on the drilling forces results has shown that, for the drilling thrust, the effect of the interaction of drilling feed and drill point angle and drill type is significant. Analysis of variance by drill point angles, for the drilling thrust, has shown that the effect of the interaction of drilling feed and drill type is highly significant, and the analysis of variance by drill types has shown the effect of the interaction of drilling feed and drill point to be also highly significant.
18. Analysis of variance on the drilling thrust results, by drilling feeds, has shown the effect of the interaction of the drill point angle and drill type to be non-significant, and the effect of the drill point angle to be highly significant for low to moderate feeds (240 to 157 RPI) and significant or probably significant for high (70 RPI) and moderate feeds (103 RPI), respectively. The effect of the drill type has shown to be highly significant
to significant for moderate feeds (103 and 157 RPI) and probably significant or non-significant for the extreme feeds (70 and 240 RPI, respectively).
19. Analysis of variance on the drilling torque results has shown the effect of the interaction of the three factors tested, drill type, drill point angle and drilling feed, to be non-significant. Also, the effect of the interaction of the drilling feed and drill point angle, and the interaction of drill type and drill point angle have shown to be non-significant.
20. Analysis of variance on the drilling torque results, by drill types, has shown that the effect of the drilling feed and the effect of the drill point angle are highly significant. Analysis of variance by drilling feeds has shown the effect of the point angle to be highly significant for low to moderate feeds (240 and 157 RPI), and significant to probably significant for high to moderate feeds (70 to 103 RPI). The effect of the drill type has revealed it to be highly significant (103 RPI) to non-significant (240 RPI).
21. To increase the wedge angle - "heat sink " - at the outer corner and thereabouts, and designing for the same effective rake angle as for the conventional drill, according to the hypothesis put forward, did not improve drill lip wear rate performance. The departure from the conventional flute reported in this work appears to correlate with wear rate increase, drilling torque increase, thrust decrease and chip splitting.
22. Chips can be analysed from the rigid body concept. Rigid body chips can be mathematically modelled and dealt with by computing techniques.
23. Drilling chip mathematically modelling allow for chip flow simulation and for prediction of variables such as: drilling chip flow angle, relative chip speed, relative chip length ratio and relative cutting ratio. It also allows for the analysis of fitness of a modelled drilling chip to the flute face.
24. Predictions for the chip flow angle by the approach by the author agree with experimental data reported in literature (by 0xford). Predictions for relative chip length ratio by the same approach correlate with experimental data reported in literatüre (by Armarego).
Prediction, by the novel approach to drilling chip flow, of the fitness of the modelled chip to the flute face at the drill lip correlates with experimental data relative to shear stress and to temperature near the lip reported in literature (by Law and co-workers and Saxena and co-workers, respectively).

Suggestions for Further Work.
The new flute design - based on the condition of an increased wedge angle at the outer corner when compared to the conventional drill design while leaving the effective rake angle almost unaltered did not prove to be an improvement in drilling steel relative to the conventional drill.

Drill flute is traditionally designed to yield a straight lip.
It seems fortunate that such a purely geometric and empirical criterion has in general succeeded for the many different drilling conditions (feeds, speeds, materials, for instance).

Such a success, in the author's opinion, is due to the fact that the traditional flute design can cope with full width (outer corner to chisel corner) rigid body chips. However, rigid body chips may possibly be produced within a certain range of flute designs though with different chip flow efficiency and different drill performance.

An approach to general flute design and also drill point simulation has been given.in the present work. Chip rigid body mathematical modelling and computer aided chip simulation has been given in this work too.

The avenues ahead suggested by the author are:

1. To investigate and establish the range of drill flute (and drill point) designs that can cope with rigid body chips.
2. To introduce in the analysis and simulation the chip contact length and investigate its influence on the range of flute designs established in the previous point.
3. To extend the rigid body chip mathematical model to provide for consideration of drilling feed or rather "drilling feed"/"drill diameter" ratio.
4. To build up an approach to drilling forces prediction based on chip flow (which should predict for torque increase and thrust decrease with flutes similar to the one the author designed and tested).
5. To investigate the possibilities of lip wear prediction (or relative wear along the lip) by a chip flow approach.
6. To base drill design on specifications established according to rigid body drilling chip production.

REFERENCES

i) Bibliography

1. OXFORD, C J Jr.

Fundamentals of drilling, tapping and reaming.
Influence of metallurgy on hole making operations.
Proceedings from an International Symposium of the American
Society for Metals, 1978.
2. ERNST, H and HAGGERTY, W A:

The spiral point drill - a new concept in drill point geometry. Transactions of the ASME, 1958. Paper No 57-A-98.
3. GALLOWAY, D F:

Some experiments on the influence of various factors on drill performance.
Transactions of the ASME, 1957.
Paper No. 56-SA-18.
4. ARSHINOV, V and ALEKSEEV, $G:$

Metal cutting theory and cutting tool design.
MIR Publishers, Moscow; 1976.
5. TSAI, W D:

Drill geometry and dynomics of drilling.
PhD Thesis, University of Wisconsin, Madison, 1977.
6. BILLAU, D J, McGOLDRICK, P F and heginbotham, W B:

The performance of double margin drills with both margins cutting. Proceedings of the 19th International Machine Tool Design and Research Conference, Manchester, 1978.
7. LORENZ, G:

A study of the effect of drill sharpening and sizeability of workpiece material on the process variability in drilling.
Int. J. Mach. Tool Des. Res. Vol. 10, pp 133-141, Pergamon Press 1970.
8. Fundamentals of drilling.

American Machinist, February 1979, McGraw-Hill.
9. KAHNG, C H and HAM, I:

A study on sequential quality improvement in hole making processes. Annals of the CIRP Vol. 24 January 1975.
10. GALLOWAY, D F and MORTON, I S:

Practical drilling tests.
Research Department of the Institution of Production Engineers, 1946.
11. BILLAU, D J:

An investigation relating to double margin drill performance and flank face geometry.
PhD Thesis, University of Nottingham, 1977.
12. WIRIYACOSOL, S and ARMAREGO, E J A:

Thrust and torque prediction in drilling from a cutting mechanics approach.
Annals of the CIRP Vol. 28 January 1979.
13. LYUBIMOV, V E:

New method of grinding curved-lip dxills. Machines and Tooling, Vol. XXXIX No. 8, 1968.
14. NAKAYAMA, K and OGAWA, M:

Basic rules on the form of chip in metal cutting.
Annals of the CIRP, Vol. 27 January 1978.
15. PERCIVAL, N:

The use of chip breakers in drilling. Metalworking Production, 18/25 Dec. 1968.

294

16. ARMAREGO, E J A and WRIGHT, J D:

An analytical study of three point grinding methods for general purpose twist drills.
Annals of the CIRP, Vol. 29 January 1980.
17. CETIM:

Guide du percage au foret hélicoïdal
CETIM - Service de Coupe, 1977.
18. RODIN, P:

Design and production of metal-cutting tools.
MIR Publishers, Moscow, 1968.
19. SPUR, G and MASUHA, J R:

Drilling with twist drills of different cross-section profiles. Annals of the CIRP Vol. 30 January 1981.
20. OXFORD, C J Jr:

On the drilling of metals.
I: Basic Mechanics of the Process.
Transactions ASME, 77, 103, 1955.
21. OXFORD, C J Jr:

A review of some recent developments in the design and application of twist drills.
Advances in Machine Tool Design and Research, MTDR Conference, 1964.
22. ARMAREGO, E J A and ROTENBERG, A:

An investigation of drill point sharpening by straight lip conical grinding method - I. Basic analysis.
Int. J. Mach. Tool.Des. Res. Vol. 13, pp 155-164, Pergamon Press, 1973.
23. MICHELETTI, G F and LEVI, R:

The effect of several parometers on twist drill performance. Advances in Machine Tool Des. and Res. MTDR Conference, 1964.
24. PERA:

Drilling alloy steel.
PERA Report No. 53, August 1957.
25. PAL, A K, BHATTACHARYYA, B and SEN, G C:

Investigation of the torque in drilling ductile materials.
Int. J. Mach. Tool Des. Res. Vol. 4, pp 205-221, Pergamon Press, 1965.
26. BERA, S and BHATTACHARYYA, A:

On the determination of torque and thrust dioing drilling of ductile materials.

Advances in Machine Tool Des. and Res. MTDR Conference, 1967.
27. SHAW, M C and OXFORD, C J Jr:

On the drilling of metals, 2 - The torque and thrust in drilling. Transactions of the ASME, 1957.
28. LORENZ, G:

A contribution to the standardization of drill performance tests. Annals of the CIRP Vol. 25 January 1977.
29. LORENZ, G:

Helix angle and drill performance.
Annals of the CIRP Vol. 28 January 1979.
30. WILLIAMS, R A:

Dynamic geometry of a twist drill.
Int. Jn7. Prod. Research, Oct 2, 1968.
31. WALLER, C E:

Some special equipment and techniques developed for the performance testing of twist drills.
Annals of the CIRP Vol. XIII, 1966.
32. TOURRET, R:

Performance of metal-cutting tools.
Butterworths Scientific Publications, 1958.
33. KANAI, M, IWATA, K, FUJII, S and KANDA, Y:

Statistical characteristics of drill wear and drill life for the standardized performance tests.
Annals of the CIRP Vol. 27 January 1978.
34. GALLOWAY, D F:

Advances in drilling techniques arising from recent research. Microtecnic, Vol. IX, No. 3.
35. BILLAU, D J:

Economic considerations of drill performance.
MSc Thesis, University of Nottingham, 1964.
36. PERA:

An investigation into the effects of point thinning and drill stiffness on drill performance.
PERA Report No. 89, 1962.
37. FUJII, S, DeVRIES, M F and WU, S M:

Analysis and design of a drill grinder and evaluation of grinding parameters.
Transactions of the ASME, 1972. Paper No. 71-WA/Prod-5.
38. BHATTACHARYYA, A and HAM, I:

Design of cutting tools.
ASTME, 1969.
39. BHATTACHARYYA, A, BHATTACHARYYA, A, CHATTERJEE, A B and HAM, I: Modification of drill point for reducing thrust.
Transactions of ASME, 1971. Paper No. 71-Prod-12.
40. DAGNELL, J:

Machineability test by a drilling method.
Annals of the CIRP, Vol XV, pp 301-308.
41. LAW, S S, DeVRIES, M F and WU, S M:

Analysis of drill stress by three-dimensional photoelasticity. Transactions of the ASME, 1972. Paper No. 71-WA/Prod-21.
42. VENKATARAMAM, R:

Principles and applications of tool simulation in the metal cutting process.
Int. J. Mach. Tool.Des. Res. Vol. 8, pp 97-106, ${ }^{\circ}$ Pergamon Press, 1968.
43. PALMER, W B and OXLEY, P L B:

Mechanics of orthogonal machining.
Proc. Instn. Mech. Engns. Vol. 173, No 24, 1959.
44. MERCHANT, M E:

Mechanics of the metal cutting process. I: Orthogonal cutting and a type 2 chip.
Journal of Applied Physics, Vol. 16, No. 5, May 1945.
45. STABLER, G V:

The fundamental geometry of cutting tools.
Inst. of Mech. Engrs, Proceedings, 1951, Vol. 165.
46. ARMAREGO, E J A and BROWN, R H:

The machining of metals.
Prentice-Hall, Inc. 1969.
47. LEE, E H and SHAFFER, B W:

The theory of plasticity applied to a problem of machining.
Journal of Applied Mechanics, Dec. 1951, Paper No. 51-A-5.
48. USUI, E and HIROTA, A.

Lee-Shaffer's type solution for oblique cutting.
Bull. Japan Soc. of Prec. Engg. Vol. 12, No. 2, June 1978.
49. RAMALINGAM, S:

Plastic deformation in metal cutting.
PhD Thesis, 1967. University of Illinois, Mechanical Eng.
50. ENASHE, S, CATRINA, D and STRAFESCU, E:

Recherches concernant l'influence de la géométrie de l'outil
sur les conditions de coupe.
Annals of the CIRP Vol. 23 January 1974.
51. COLWELL, L V:

Predicting the angle of chip flow for single-point cutting tool.
Transactions of the ASME, 1954, Paper No. 53-SA-17.
52. CONNOLLY, R and RUBENSTEIN, $\mathrm{C}:$

The mechanics of continuous chip formation in orthogonal cutting. Int. J. Mach. Tool Des. Res., Vol. 8, pp 159-187, Pergamon Press, 1968.
53. OXFORD, C J Jr:

Drilling technology.
Draft for presentation at the Metal Cutting Seminar, May 1958,
(American Society of Tool Engineers).
54. WILLIAMS, R A:

A study of the drilling process.
Transactions of the ASME, 1974, Paper No. 73-WA/Prod-6.
55. AMARADASA, S R:

Measurement of twist drill geometry.
MSc dissertation, UMIST, May 1966.

299

56. WATANABE, K, YOKOYAMA, K and ICHIMIYA, R:

Thermal analysis of the drilling process.
Bull. Japan of Prec. Engg. Vol 11, No. 2, June 1977.
57. SAXENA, U K, DeVRIES, M F and WU, S M:

Drill temperature distributions by numerical solutions.
Transactions of the ASME, 1971, Paper No. 70-Prod-E.
58. BHATTACHARYYA, A, CHATTERJEE, A B and MULLICK, B K:

Geometry and performance of multi-cone and curved-lip twist drills. Annals of the CIRP Vol. 22 January 1973.
59. SHAW, M C, COOK, N H and SMITH, P A:

The mechanics three-dimensional cutting operations.
Transactions of the ASME, 1952, Paper No. 51-A-61.
60. TSAI, W D and WU, S M:

Measurement and control of the drill point grinding process.
Int. J. Mach. Tool Des. Res. Vol. 19, pp 109-120.
Pergamon Press, 1979.
61. Short drills vs long drills.

Metal Cutting, July 1954, Vol. 1, No. 4.
62. BELL, R J T:

An elementary treatise on coordinate geometry of three dimensions. Macmillan and Co, London, 1956.
63. BILLAU, D J and HEGINBOTHAM, W B:

Some aspects of drill performance and testing.
9th International MTDR Conference Proceedings, 1968.
64. ŠOLAJA, V and STANIÉ, J:

Selected results from a project on drilling.
Annals of the CIRP, Vol. 21 January 1972.
65. FUJII, S, DeVRIES, M F and WU, S M:

An analysis of drill geometry for optimom drill design by computer.
Part I: Drill geometry analysis.
Transactions of the ASME, 1970, Paper No. 70-Prod-5.
66. FUJII, S, DeVRIES, M F and WU, S M:

An analysis of drill geometry for optimum drill design by computer. Part II: Computer-aided design.
Transactions of the ASME, 1970, Paper No. 70-Prod-6.
67. ARMAREGO, E J A and ROTENBERG, A:

An investigation of drill point sharpening by the straight lip conical grinding method - II. A criterion for selecting a solution. Int. J. Mach. Tool Des. Res. Vol. 13, pp 165-182.
Pergamon Press, 1973.
68. ARMAREGO, E J A and ROTENBERG, A:

An investigation of drill point sharpening by the straight lip conical grinding method - III. Drill point grinder design features. Int. J. Mach. Tool Des. Res. Vol. 13, pp 233-241.
Pergamon Press, 1973.
69. BILLAU, D J and McGOLDRICK, P F:

An analysis of the geometry of the periphery of the flonk face of twist drills ground with cylindrical and conical forms.

Int. J. Mach. Tool Des. Res. Vol. 19, pp 69-86.
70. RUSSELL, J K and BROWN, R H:

The measurement of chip flow direction.
Int. J. Mach. Tool Des. Res. Vol. 6, pp 129-138, Pergamon Press, 1966.
71. KLUFT, W, LUTTERVELT, C A van, NAKEYAMA, K and PEKELHARING, A J: Present knowledge of chip control. Annals of the CIRP, Vol. 28 February 1979.

301

72. ARMAREGO, E J A and CHENG, C Y:

Drilling with flat rake face and conventional twist drills - I: Theoretical investigation.
Int. J. Mach. Tool Des. Res. Vol. 12, pp 17-35, Pergamon Press, 1972.
73. SPAANS, C :

The fundamentals of three-dimensional chip curl, chip breaking and chip control.
Doctor-thesis, TH Delft, 1971.
74. PATRI, $V K$ and SHING, $L W:$

On the estimation of chip flow angle in oblique cutting.
Microtecnic 2/1977.
75. STABLER, G V:

The chip flow law and its consequences.
Advances in Machine Tool Des. and Res, 1964.
76. RAMALINGAM, S :

What's new in metal cutting research?
American Machinist, July 1979.
77. SHAW, M C:

Metal cutting principles.
MIT Press, 1968.
78. SPIEGEL, M R:

Vector analysis.
McGraw-Hill, 1959.
79. NAKAYAMA, K:

A study on chip-breaker.
Bulletin of JSME, Vol. 5, No. 17, 1962.
80. ATKIN, R H:

Classical dynamics.
Heinemann, London, 1964.
81. STABLER, G V:

The basic nomenclature of cutting tools. Inst. Prod. Engs. Journal, May 1955.
82. VARLEY, G:

Durability of twist drills machining cast iron. The Engineer, 17 August 1934.
83. BURANT, R 0 and SKINGLE, T J:

Drilling, tapping Al-Si alloys.
American Machinist, Oct. 1979.
84. FARNWORTH, G H:

Evolutionary optimization of machining processes. Doctoral Thesis, LUT, 1974.
85. CETIM:

Le percage.
CETIM, Service "Coupe", 1980.
86. SINGPURWALLA, $N \mathrm{D}$ and KUEBLER, $\mathrm{A} A$:
A quantitative evaluation of drill life.
ASME, 1967. Paper No. 66-WA/Prod-11.
87. WILLIAMS, R A and McGILCHRIST, C A:

An experimental study of drill life.
Int. J. Prod. Res. 1972, Vo1. 10, No. 2, 175-191.
88. LORENZ, G:

Comparative drill performance tests.
Manuscript submitted to the 1978 ASM/SME International Conference on Machineability Testing and Utilization of Machining Data.
89. Twist drill life testing.

Metal Cutting, April 1955, Vol. 2, No. 3.
90. IWATA, K and MORIWAKI, T :

Cutting state identification and in-process tool wear sensing by acoustic emission analysis.
Bull. Japan Soc. of Prec. Engg, Vol. 12, No. 4, Dec. 1978.
91. WELLER, E J, SCHRIER, H M and WEICHBRODT, B:

What sound can be expected from a worn tool?
Transactions of the ASME, 1969, Paper No. 68-WA/Prod-4.
92. IWATA, K and MORIWAKI, T :

An application of acoustic emission measurement to in-process sensing of tool wear.
Annals of CIRP Vol. 25 January 1977.
93. Excessive drilling is expensive.

Draft of paper with no author reference.
94. SUBRAMANIAN, K and COOK, NH :

Sensing of drill wear and prediction of drill life.
Transactions of ASME, 1977, Paper No. 76-WA/Prod-33.
95. TSENG, M M and NOUJAIM, R A:

On the measurement and propagation of flank wear in cutting tools.
Transactions of the ASME, 1979, Paper No. 78-WA/Prod-23.
96. KALDOR, S and LENZ, E:

Investigation in tool life of twist drills.
Annals of the CIRP, Vol. 29 January 1980.
97. LENZ, E and KATZ, Z:

A correlation between chip-tool contact length and flank-wear. Annals of the CIRP Vol. 22 January 1973.
98. COLDING, B and KÖNIG, W:

Validity of the Taylor equation in metal cutting.
Annals of the CIRP 1971, Vol. XVIV, pp 793-812.
99. LENZ, E, MAYER, J E and LEE, D G:

Investigation in drilling.
Annals of the CIRP Vol. 27 January 1978.
100. RABINOWICZ, E, McENTIRE, R H and SHIRALKAR, B:

A technique for accelerated life testing.
Transactions of the ASME, 1970, Paper No. 70-Prod-10.
101. CHEVALIER, A:

Étude de la coupe.
Librairie Delagrave, Paris, 1972.
102. QUENOUILLE, $\mathrm{M} \mathrm{H:}$

The design and analysis of experiment.
Charles Griffin and Co, London, 1953.
103. FISHER, R A:

The design of experiments.
01 iver and Boyd, Edinburgh, 1960.
104. BROWNLEE, K A:

Industrial experimentation.
Ministry of Supply. HMSO, London, 1957.
105. MORONEY, M J:

Facts from figures.
Penguin Books, England, 1978.
106. HAMBOOLY, A N and KOURA, M M:

Theoretical determination of the drilling forces for the conventional twist drills.
Paper manuscript, Ain Shaws University, Cairo.
107. ROADINGER, T J and TOWNSEND, M A:

Torque and thrust parameters in drilling using dimensional analysis.

Transactions of the ASME, 1980. Paper No. 79-WA/Prod-4.
108. KALDOR, S, BER, A and LENZ, E:

On the mechanism of chip breaking.
Transactions of the ASME, 1979. Paper No. 78-WA/Prod-21.
109. BOOTHROYD, G:

Fundomentals of metal machining and machine tools. McGraw-Hill, Tokyo, 1975.
110. OKUSHIMA, K, HOSHI, T and FUJINAWA, T:

On the behaviour of chip in steel cutting.
Part 2, In the case of parallel type chip breaker.
Bulletin of JSME, Vol. 3, No. 10, 1960.
111. OKUSHIMA, K and MINATO, $K:$

On the behaviour of chip in steel cutting.
Bulletin of JSME, Vol. 2, No. 5, 1959.
112. HENRINKSEN, E K:

Chip breaking - a study of three-dimensional chip flow.
ASME, 1953, Paper No. 53-S-9.
113. RICE, W B:

The formation of continuous chips in metal cutting.
The Engineering Journal, February 1961.
114. COOK, N H and NAYAK, P N:

The thermal mechanics of tool wear.
Transactions of the ASME, 1966, Paper No. 65, Prod-9.
115. PONKSHE, G R:

A new explanation of the phenomenon of chip curling during machining. Transactions of the ASME, 1967, Paper No. 66-Prod-E.
116. MAZUR, J C:

A technique to optimize control of process variables in related studies of causes and effects of metal cutting behaviour.
Annals of the CIRP, 1967. Vol. XV, pp 287-293.
117. DEWHURST, P:

Is the machining process uniquely defined?
Annals of the CIRP. Vol. 27 January 1978.
118. KRONENBERG, M:

Machining science and application.
Pergamon Press, England, 1966.
119. WALLACE, W P:

An investigation on the friction between chip and tool in metal cutting.
Fellowship thesis, Royal College of Advanced Technology, Salford, April 1962.
120. NAKAYAMA, K:

Chip curl in metal cutting process.
Bull. of the Faculty of Engineering, Yokohama National University, Vol. 11, March 1962.
121. ARMAREGO, E J A and CHENG, C Y:

Drilling with flat rake face and conventional twist drills - II:
Experimental investigation.
Int. J. Mach. Tool Des. Res. Vol. 12, pp 37-54, Pergamon Press, 1972.
122. ZOREV, N N:

Metal cutting mechanics.
Pergamon Press, 1966.
123. DeVRIES, M F, SAXENA, U K and $W U, S M$:

Temperature distributions in drilling.
Transactions of the ASME, 1968, Paper No. 67-Prod-16.
124. FINNEY, D J:

An introduction to the theory of experimental design. The University of Chicago Press, 1963.
125. LEVI, R:

Drill press dynamometers.
Int. J. Mach. Tool Des. Res. Vol. 7, pp 269-287. Pergamon Press, 1967.
ii) British Standard Specifications

BS 328: Twist drills and combined drills and countersinks, BS 328: Part 1: 1959.

BS 5533: Geometry of the active part of cutting tools, BS 5533: Part 1: 1978.

BS 5623: Tool life testing with single point turning tools, BS 55623: 1979 (identical with ISO 3685: 1977).
iii) Catalogues
C. 1 Guhring twist drills, 2nd Edition, Milton, Abingdon.
C. 2 Kistler, Two-component measuring platform. Operating and service instructions.
iv) Films

1. Drill action and drilling chip flow.

Loughborough University of Technology, 16 mm Black and white print.
2. Plastic flow of material during machining. The College of Aeronautics Cranfield, England. 16 mm Black and white print.

APPENDIX 1

Computer program for drill point geometric simulation and cutting angles computation for any set of cylindrical grinding conditions and any flute shape (refer to Chapters 2, 3 and 4).

This FORTRAN program uses subroutines from GINO and NAG libraries which are not listed here.

DRILL POINT SIMULATION AND
CUTTING ANGLES COMPUTATION FOR ANY SET OF CYLINDRICAL GRINDING CONDITIONS AND ANY flute shape

DESIGNED，DEVELOPED AND IMPLEMENTED BY MANUEL DOS SANTOS PAIS

SUBROUTINES FROM
NAG LIBRARY AND
gino library are used

IMPLICIT DOUBLE PRECISION（A－H，O－Z）
REAL XWEARG（200），YWEARG（20日），ZWEARG（20の），DWEARG（200）
REAL RGH，WEBH，HGH，ROH，EXGH，VGH，RKGH，ROGH
REAL YELIC8，ZELICB，ZLIM日，Rの日，YFLON，YFHIGH
REAL RAGE（2g6），XOOPOS，Yagpos
REAL XAXIS，YAXIS，XØPOS，YOPOSX，YOPOSY，XCAP REAL RAKFS（20б），RAKFL（2日月），RAKFA（20日），RAKFB（200）
\＄，RAKFK（200）
REAL XPACG（209），YPACG（200），2PACG（200）
REAL DFTR（200），DFNR（290）．DFTE（200）．DFNSU（209）
REAL X1（200），Y1（200），YIN（20日），Y1A（200），X1A（200），X1AN（200）
REAL TIMEU（200），TIWI（200），TIMAU（290）
REAL XFLU（20日），YFLU（290），XCHIG（2日月），YCHIG（20日），ZCHIG（200）
REAL RAKCHI（20日），CHIRAK（200）
REAL RAKE（200），WEDGE（200），RELIEF（20日），AINC（2日の），CLEAR（20日）
REAL ETAARM（206），ETALEE（200），ETABRO（26日），ETAKRO（2б0）

REAL XCLEA（20日）YCLEA（20日）2CLEA（200），PHICLE（200
REAL DFPR（20日），YFOR（200）DFRR（200）DVSNI（209） 200
（20日），YHEELG（2gव），ZHEELG（20日），XEELG（2aの）
S．YEELG（200）
REAL XSECG（396），YSECG（3बの），ZSECG（36日）
，XSCFLG（300）
REAL VCSIET（20の），SVCSIE（200），VVSIIN（200），SVVSII（2のब）
REAL XELICl（200），YELICl（20日），ZELIC1（20日）
REAL XELIC2（200），YELIC2（200），ZELIC2（20日
DIMENSION XCHI2（200），YCHI2（2日日）
DIMENSION ZSTGD（20ן），XSTGD（200），YSTGD（2日月）
DIMENSION THRUS（2ดQ），TORQU（2ดQ），THRCH（2ดの），TORCH（2の日）
DIMENSION RCHISE（2ga），CHIXA（200）
DIMENSION DER（14），EREST（14）

DIMENSION XMSU（20б），YMSU（20б），ZMSU（200）
DIMENSION XL（2बб），YL（20日），DERIV（2日б）
DIMENSION RSTFL（4日），PHSTFL（4の），COFL（4日），XHSTFL（46）
§，YHSTPL（40）
IMANSION CCE1（200）， $\operatorname{CCE} 2(2 \theta \theta), \operatorname{CCE} 3(2 \theta \theta), \operatorname{CCE} 3 \mathrm{P}(2 \theta \theta)$
DIMENSION DIDL（200），DRADL（200），VVD（200）
DIMENSION ZTGHG（2g日），ETAS（2ब0），WIETA（200）
DIMENSION CORN（3），RE（3），RU（3），WEQ（120）
DIMENSION FJAC
DIMENSION $\operatorname{ALAMB}(2 \sigma G), \operatorname{PPOO}(20 日)$

DIMENSION VCHIP（2gの）
DIMENSION XCHID（290），YCHID（200），ZCHID（200）
DIMENSION XHEELD（200），YHEELD（206），ZHEELD（200
DIMENSION XCLEAD（200），YCLEAD（2ดの），ZCLEAD（200
COMMON／BLOI／RØ，WEB，HØ，EXG，VG，RKG，ROG
COMMON／BLO2／CONS，PI
COMMON／BLO 3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／Z．ZØ，ZHH
COMMON／BLO5／S，NPOINT，NLAAP，ISEC．IHE
COMMON／BLO6／COEF，NCOEF，III
COMMON／BLOT／XCLE，YCLE，IFL，IHILST，PHIIL2
COMMON／BLOB／XFLUEE，Y LUEE，DMAR，XSTEEL，YSTEEL，ANGCLE，YEEL
COMMON／BLOII／COFL，NSTFLI
COMMON／BLO12／RSE PHSELI SEC SCE1 SCE2．SCE3
COMMON／BLOI $3 /$ XSEC，YSEC，ZSEC，ZMSEC
COMMON／BLOI 4／RPACE，PHPA，YPACE
COMMON／BLOI5／XLの，YLの
COMMON／BLO16／COEA，COEB
COMMON／BLO17／XEELA，YEELA，ZWEB
COMMON／BLOLB／XCHID，YCHID，ZCHID
COMMON／BLO19／XHEELD，YHEELD，ZHEELD
COMMON／BLO20／XCLEAD，YCLEAD，ZCLEAD
COMMON／BLO21／XOUT，YOUT
COMMON／BLO22／RAKFS，RAKFL，RAKFA，RAKFB
COMMON／BLO23／XSTGD，YSTGD，ZSTGD，RADI，IWEAR，RPI，DZWEAR COMMON／BLO24／XWEAR，YWEAR，ZWEAR
EXTERNAL FAN，FEEL，FIIL，FIN，FLANK，FON，FOUTCR，FPACE，FSCFL
EXTERNAL FUN，FUNSEC，FWEB，GRIN，GPACE，MONIT，MONUT，RESID
EXTERNAL FUN，FUNSEC，FWEB，G
EXTERNAL RESUD，ROTAC，VIJK
C
data reading
60日g FORMAT（＇READ PARAMETERS TO CONV FLUTE：RG，WEB，HG，RO＇）
READ（ 1 ，＊）Rø，WEB，HQ，RO
WRITE（1，705）
Format（＇Grinding parameters＇）
READ（1，＊）EXG，VG，RKG，ROGG
ROG＝2．＊ROGG
WRITE（1，8060）

10 FORMAT('READ S=1. FOR SPECIAL DRILL/
\$READ ALSO NPOINT')
READ (1, *)S,NPO
IF
. NE. 1.) GO TO 12
WRITE(1,11)
READ(1,*)NCOEF
WRITE $(1,13)$
13 FORMAT ('READ RADIAL LIMITS TO FLUTE') READ (1,*)RSTAN1, RSTAN2
C
WRITE (1,8004)
8004
FORMAT ('DATA FOR CHISEL CORNER COMPUTATION') WRITE (1,8600)
gag FORMAT ('IPRINT/(-1)-NO CALL/(1)-EACH ITERATION' S.'(σ)-FINAL ITER.'

C STARTING POINT FOR CHISEL CORNER COMPUTATION $\operatorname{CORN}(1)=$ WEB $/ 2$.
$\operatorname{CORN}(3)=$ WEB $/ 2$
WRITE(1,80の2)
8 ag2 FORMAT('READ STEP FOR CHISEL CORNER CALCULATION' READ (1,*)STEP
C MAXCAL IS THE NUMBER OF ITERATIONS
MAXCAL=1000
WRITE(1,0065)
$80 \varrho 5$ FORMAT ('READ STEP FOR PRINTING TABLES')
READ (1,*)NSALTO
WRITE (1,8066)
8006 FORMAT('DRILLING FORCES ?')
READ(1,*)NFORCA
7001 FORMAT('READ HEEL PARAMETER')
$\operatorname{READ}(1, *)$ ANGCLE
ANGCLE=ANGCLE*CONS
WRITE (1,7015)
7015 FORMAT(' OPEN HEEL ?')
$\operatorname{READ}(1, *)$ IHILST
C
FTOL=1.E-7
$\mathrm{XTOL}=1 . E-6$
EPS=1.E-7
EPS $1=E P S$
EPV=EPS
EPVI=EPS
IFAIL= 0
ZCLEL=1.
ZCLE2=1.5*R
$\mathrm{DMAR}=0.35$
$\mathrm{PI}=3.141592$

CONS=PI/180.
$\mathrm{H} \emptyset=\mathrm{H} \boldsymbol{\square} * \operatorname{CONS}$
c
CSVG=DCOS(VG*CONS
SNVG=DSIN(VG*CONS)
CSKOI=DCOS (RKG*CONS
CSKOI $=$ DCOS (RKG*CONS $) ~$
SNKOI $=$ DSIN (RKG*CONS
CSKOU $=$ DCOS (RO*CONS)
SNKOU=DSIN (RO*CONS)
Z $\sigma=$ DSQRT (ROG**2-(EXG-WEB/2.)**2)/SNKOI
C COMPUTING THE OUTER CORNER
PQX=DSQRT (RG**2-(WEB/2.)**2)
$P G Y=-W E B / 2$.
$\mathrm{PQZ}=\mathrm{PGX*}$ CSKOI/SNKOI
ZOUT $1=P G Z-2$.
ZOUT $2=P G Z+2$.
ZOUT $2=P B Z+2$
CALL CGSACF(ZOUT1, ZOUT2,EPS, EPV, FOUTCR, ZOUT, IFAIL)

WRITE(1,278Б

2789 FORMAT ('OUTER CORNER COMPUTED')

C READING FROM FILE
READ (5, *)NP
DO $294{ }^{\circ} \mathrm{I}=1$, NP
$\operatorname{READ}(5, *) \times L(I), Y L(I)$
204 CONTINUE
WRITE(1, 266)(XL(I), YL(I), I=1,NP)
FORMAT (2F10.4)
CALL EO2ACF (XL, YL, NP, COEF, NCOEF, REF)
$\mathrm{XLL}=\mathrm{RG} / 2$.
XL2=RG
CALL C95ACF (XL1, XL2, EPS , EPV, ROTAC, XLK, IFAIL)
PHL = DATAN (YL $\sigma / X L \varnothing$)
PHLA=DATAN ((-WEB/2./RG)/DSQRT(1.-(WEB/2./Rg)**2))
POX=DSQRT (R日**2-(WEB/2.)**2)
PQZ=PGX CSKOU/SNKOU
PHCB
SO 610 I 1 NP

XL
XLG(I)=XL(I)
YLG $(I)=Y L(I)$
616 CONTINUE
SISAN=SISANG/CONS
WRITE(1, 298)(XL (I), YL(I), I=1,NP)
208 FORMAT(2F10.4)
600 CONTINUE
C NON-CONV. FLUTE SECTION
CALL EØ2ACF (XL, YL, NP, COEF, NCOEF, REF)
C WEB=-2.* $\operatorname{COEF}(1)$ IF WEB WAS MEASURED ALONG Y AXIS
$15 \quad \begin{aligned} & \mathrm{M}=3 \\ & \mathrm{~N}=3 \\ & \end{aligned}$
LV=3
$\mathrm{L} J=3$
$L W=120$
LTA＝1
IF（S
CHISEL CORNER
CALL EO4FCF（M，N，RESID，MONIT，IPRINT，MAXCAL，ETA，XTOL SSTEP，CORN，FE，RE，FJAC，LJ，SMON，V，LV，NITER，NF，IW，LIW，WEG \＄LW，IFAIL）
C
GO TO 8014
8011 CALL EØ4FCF（M，N，RESUD，MONUT，IPRINT，MAXCAL，ETA，XTOL， SSTEP，CORN，FU，RU，FJAC，LJ，SMON，V，LV，NITER，NF，IW，LIW，WE® SLW，IFAIL）
8914
CONTINUE
WRITE（1，2779）
779 FORMAT（／＇CHISEL CORNER COMPUTED＇
XCORN＝CORN（1）
YCORN $=$ CORN（2）
C
ZWEB1＝の． の
2WEB2＝2CORN＋1
CALL CG5ACF（ZWEB1，ZWEB2，EPS，EPV，FWEB，ZWEB，IFAIL） WRITE（1，9999）ZWEB
999 FORMAT（＇ZWEB＝＇，F10．3）

C COMPUTING ANGLES，POINT BY POINT

$111=$
$111=1$
Z＝ZOUT－FLOAT（I－1）＊（ZOUT－ZCORN）／FLOAT（NPOINT－1）
ALPHA $=Z / R \emptyset * D S I N(H \varnothing) / D C O S(H \sigma)$
ZSTG（I）$=2$
ZSTGD（I）$=\mathrm{Z}$
IF（S ．EQ．1．）GO TO 30
FLUTE AND FLANK INTERSECTIO
CALL CO5ACF（RSTAN1，RSTAN2，EPS，EPV，FUN，RSTAN，IFAIL）
© TO 32
CALL CQ5ACF（RSTAN1，RSTAN2，EPS，EPV，FAN，XST，IFAIL）
YST $=0.9$
YST＝YST＋COEF（J）＊XST＊＊（J－1）
CONTINUE
GO TO 34
32 W2R＝WEB／2．／RSTAN
PHST＝－（DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSQRT（RSTAN＊＊2
\＄－（WEB／2．）＊＊2）＊DSIN（HD）／DCOS（Hも）／R日＊CSKOU／SNKOU）
XFLU（ I ）$=$ RSTAN＊DCOS（PHST）
YFLU（I）$=$ RSTAN＊DSIN（PHST）
$\left.\begin{array}{l}\text { XFLUD } \\ \text { YFLUD }(I) \\ \text { I }\end{array}\right)=$ RSTAAN＊DCOS $($ PHST $)$

IF（I ．EQ．1）XFLUEE＝RSTAN＊DCOS（PHST IF（I ．EQ．1）YFLUEE＝RSTAN＊DSIN（PHST XST＝RSTAN＊DCOS
YST＝RSTAN＊DSIN（PHST）
YST＝RSAN＊DSIN（PHST
XSTG（I）＝XST
YSTG（I）＝YST
YSTGD（I）$=$ YST
RADI（I）＝RSTAN
GO TO 36
TAN＝DSORT
XFLU（I）$=X S T$
YFLU（I）＝YST
XFLUD（I）＝XST
YFLUD（I）＝YST
IF（I ．EQ．1）XFLUEE＝XST
IF（I EQ．1）YFLUEE＝YST
RADI（I）＝RSTAN
PHST＝DATAN YST／XST
HST $=$ PHST + ALPHA
YSTl＝RSTAN＊DCOS（PHST）
YST1（I）
XSTG（I）＝XST1
XSTGD（I）$=$ XST
$\operatorname{YSTGD}(\mathrm{I})=\mathrm{YST} T$
XST＝XST1
YST＝YST

C POINTING OUTWARDS
DFDX＝2．＊XST＊AXX＋YST＊CXY＋DDX
DFDY＝2．＊YST＊BYY＋CXY＊XST＋EY
DRSZ
DF＝DSORT（DFDX＊＊2＋DFDY＊
OF＝DSQRT（DFDX＊＊2＋DFDY＊＊2＋DFDZ＊＊2）
$D F D X=D F D X / D F$
$\mathrm{DFDZ}=\mathrm{DFDZ} / \mathrm{DF}$
IF（DFDX．GT．Ø．日）GO TO 4ø
DFDX＝－DFDX
DFDY $=-$ DFDY
DFDZ $=-$ DFDZ
C VECTOR NORMAL TO RADIUS AND ON THE FLANK
C POINTING IN THE VELOCITY DIRECTION
$40 \quad$ UR $1=D C O S$（PHST）
UR2＝DSIN（PHST）
UR3＝A． 0
XFLNRE1．
YFLNR＝－UR1／UR2＊XFLNR

ZFLNR＝（－XFLNR＊DFDX－YFLNR＊DFDY）／DFDZ
FLNR $=$ DSQRT（XFLNR＊＊ $2+\mathrm{YFLNR} * * 2+\mathrm{ZFLNR} * * 2$ ）
XFLNR＝XFLNR／FLNR
FFLNR＝ZFLNR／FLNR
IF（YFLNR ．GT．0．0）GO TO 169
XFLNR＝－XFLNR
XFLNR＝－XFLNR
ZFLNR $=-$ ZFLNR
166 CONTINUE
C VECTOR TANGENT TO FLUTE AT Z
C POINTING OUTWARDS

NDER＝1

HBASE $=1 E-5$
IF（S ．EQ．1．）GO TO 130
C DERIVATIVES
CALL DG4AAF（RSTAN，NDER，HBASE，DER，EREST，FON，IFAIL）
DYDXN＝DSIN（PHST）／DCOS（PHST）＋RSTAN＊DER（1）
DYDXD $=1,-$ RSTAN＊DER（1）＊DSIN（PHST）$/$ DCOS（PHST $) ~$
DYDX＝DYDXN／DYDXD
DYDX＝DYDXN／DYDXD
GOT＝ 14
YST＝YFLU（I）
CALL D日4AAF（XST，NDER，HBASE，DER，EREST，FIN，IFAIL）
DYDX＝DER（1）
DYDXE＝DATAN（DYDX）
XTG＝DCOS（DYDXE）
YTG＝DSIN（DYDXE）
2TG＝の．σ
$\operatorname{DERIV}(I)=$ DYDXE／CONS
IF（XTG ．GT．g．g）GO TO 129
XTG $=-X T G$
YTG $=-Y T G$
C VECTOR TANGENT TO HELIX AND POINTING TO SHANK
C HELIX ANGLE TOO
$12 \mathrm{~A} \quad \mathrm{XTGH}=-\mathrm{DSIN}$（PHST）
YTGH＝DCOS（PHST）
COTH＝R $9 / R S T A N * D C O S(H \sigma) / D S I N(H \theta)$
XYC＝DSQRT（XTGH＊＊2＋YTGH＊＊2＋COTH＊＊2）
XTGH $=\mathrm{XTGH} / \mathrm{XYC}$
YTGH＝
TTCH1＝DSORT（1
ZTGH1＝DSORT（1．－ZTGH＊＊2）
C VECTOR NORMAL TO RAKE FACE POINTING TO SHANK
XNRA $=$ YTG＊2TGH
ZNRA＝XTG＊YTGH－XTGH＊YTG
XYZN＝DSQRT（XNRA＊＊2＋YNRA＊＊2＋ZNRA＊＊2）
XNRA $=X N R A / X Y Z N$
YNRA $=$ YNRA／XYZN
ZNRA $=Z N R A / X Y Z N$
45

VECTOR TANGENT TO CUTTING EDGE
C POINTING OUTWARDS
CEI＝YNRA＊DFDZ－ZNRA＊DFDY
$\mathrm{CE} 2=\mathrm{ZNRA} * \mathrm{DFDX}-\mathrm{XNRA}$＊DFDZ
CE $3=X N R A$＊DFDY－YNRA＊DFDX
CEE＝DSQRT（CE1＊＊2＋CE2＊＊2＋CE3＊＊2）
CE1＝CE1／CEE
$\mathrm{CE} 2=\mathrm{CE} 2 / \mathrm{CEE}$
c
CCE1（I）＝CE1
CCE2（I）＝CE2
CCE3（I）$=$ CE 3
CE3A＝DSQRT（1．－CE3＊＊2）
CCE3P（I）＝DATAN（CE3A／CE3）／CONS
IF（CE1 ：LT．$\quad .0$ ）WRITE（1，50）
50 FORMAT（＇CEI IS NEGATIVE＇）
c VECTOR NORMAL TO THE CUTTING EDGE
C POINTING TO DRILL AXIS
XTRA＝1
CZTRA1 $=($ ZNRA＊CE2－YNRA＊CE3）$/($ ZNRA＊CE2 $)$
CZTRA2 $=(Y N R A * X T R A * C E 1-X N R A * X T R A * C E 2) /(C E 2 * 2 N R A)$
ZTRA＝CZTRA2／CZTRA1
YTRA $=(-Z T R A * C E 3-X T R A * C E 1) / C E 2$
TRA＝DSQRT（XTRA＊＊2＋YTRA＊＊2＋ZTRA＊＊2）
YTRA $=X T R A / T R A$
YTRA $=$ YTRA／TRA
ZTRA＝ZTRA／TRA
IF（YTRA．GT．の．a）GO TO 55
XTRA $=-X$ TRA
YTRA $=$－YTRA
ZTRA $=-$ ZTRA
C ANGLE BET．TANGENT TO HELIX AND NORMAL TO
C CUTTING EDGE ON THE RAKE FACE
55 AFLOI $=\mathrm{XTGH}$＊XTRA + YTGH＊YTRA $+2 T G H * Z T R A$
AFLO2＝DSORT（1．－AFLO1＊＊2）
ETAARM（I）＝DATAN（AFLO2／AFLOI）／CONS
C VECTOR NORMAL TO CUTTING EDGE AND ON THE
C RAKE FACE，POINTING IN VELOCITY DIRECTION

CZFLAl＝

2FLA1 $=$（DFDZ＊CE2－DFDY＊CE3）／（DFDZ＊CE2）
CZFLA $2=(D F D Y * X T F L A * C E 1-D F D X * X T F L A * C E 2) /(C E 2 * D F D Z)$
ZTFLA $=$ CZFLA $2 /$ CZFLA
YTFLA＝（－ZTFLA＊CE3－XTFLA＊CE1）／CE2
FLA＝DSQRT（XTFLA＊＊2＋YTFLA＊＊2＋ZTFLA＊＊2）
XTFLA $=$ XTFLA／FLA
TTFLA＝YTFLA／FLA
ZTFLA＝ZTFLA／FLA
IF（YTFLA ．GT．Ø．σ ）GO TO 60
XTFLAE－XTFLA
YTFLA $=-$ YTFLA
ZTFLA $=-$ ZTFLA
C normal wedge angle
$60 \quad \operatorname{COSAN}=\mathrm{XTRA} * X T F L A+Y T R A * Y T F L A+Z T R A * Z T F L A$
SINAN=DSQRT (1.-COSAN**2)
IF (ANGC.GT. ©. G) GO TO 100
ANGC=PI+ANGC
$100 \operatorname{WEDGE}(\mathrm{I})=$ ANGC/CONS
C VECTOR NORMAL TO MACHINED SURFACE
C POINTING TO THE SHANK
VVI $=-2$. *PI 2 RPM/60.*RSTAN*DSIN(PHST)
VV2 $=+2 . *$ PI*RPM $/ 6$. $*$ RSTAN*DCOS (PHST)
$\mathrm{VV} 3=25.4 / \mathrm{RPI} * \mathrm{RPM} / 60$.
VV=DSQRT(VV1**2+VV2**2+VV3**2)
$\mathrm{VVD}(\mathrm{I})=\mathrm{VV}$
VV1 $=$ VV1/VV
$\mathrm{VV} 2=\mathrm{VV} 2 / \mathrm{VV}$
vv3 $=\mathrm{vV} 3 / \mathrm{vv}$
XNMSU $=-V V 2 * C E 3+V V 3 * C E 2$
YNMSU $=-V V 3 * C E 1+V V 1 * C E 3$
ZNMSU $=-\mathrm{VVI}$ *CE2+VV2*CE1
SU=DSQRT (XNMSU**2+YNMSU**2+2NMSU**2)
XNMSU=XNMSU/SU
ZNMSU=2NMSU/SU
c
$\operatorname{XMSU}(I)=X N M S U$
YMSU (I)=YNMSU
ZMSU (I) $=$ ZNMSU
T1MEU(I) $=.5 / \mathrm{RPI} * 25.4 * \mathrm{CE} 3 \mathrm{~A}$
TIMAU(I)=.5/RPI*25.4*ZNMSU
C VECTOR NORMAL TO CUTTING EDGE, ON THE MACHINED SURFACE
C AND POINTING IN THE VELOCITY DIRECTION
XTHSU=1.
CZMSU1 $=($ ZNMSU*CE2-YNMSU*CE3)/(ZNMSU*CE2)
CZMSU2=(YNMSU*XTMSU*CE1-XTMSU*XNMSU*CE2)/(CE2*ZNMSU
ZTMSU=CZMSU2/CZMSU1
YTMSU $=(-Z$ TMSU*CE $3-X T M S U * C E 1) /$ CE2
TMSU=DSQRT (XTMSU**2+YTMSU**2+ZTMSU**2)
XTMSU $=$ XTMSU/TMSU
YTMSU $=$ YTMSU/TMSU
IF (YTMSU .GT. O. 0) GO TO 20
XTMSU $=-$ XTMSU
YTMSU $=-$ YTMSU
C Normal Clearance angle
29 COSSN=XTFLA*XTMSU+YTPLA*YTMSU+ZTFLA*ZTMSU
SINSN=DSQRT (1.-COSSN**2)
ANSA=DATAN (SINSN/COSSN)
SIGN3=XNMSU*XTFLA+YNMSU*YTFLA+ZNMSU*ZTFLA
IF(SIGN3.GT. ⿹. ${ }^{\text {G GO TO }} 170$
ANSA=-ANSA
$170 \quad \operatorname{CLEAR}(I)=A N S A / C O N S$
\mathcal{E} YECTOR NORMAL TO THE CUTTING EDGE AND ROTATION VELOCITY

UU1 $=-$ DSIN (PHST)
$\mathrm{UU} 2=\mathrm{DCOS}(\mathrm{PHST})$
XVCE=1
YVCE $=-$ UU1 /UU2*XVCE
ZVCE $=(-\mathrm{CE} 1 * \mathrm{XVCE}-\mathrm{CE} 2$ *YVCE $) / \mathrm{CE} 3$
VCE $=$ DSQRT (XVCE**2+YVCE**2+ZVCE**2)
XVCE $=X V C E / V C E$
YVCE $=Y V C E / V C E$
ZVCE $=2 V C E / V C E$
IF(ZVCE .GT. 日. $\boldsymbol{\text { O GO TO }} 110$
XVCE $=-$ XVCE
YVCE $=-Y V C E$
ZVCE $=-\mathrm{ZVCE}$
110 XNMSU1=-UU2*CE3+UU3*CE2
YNMSU1=-UU3*CE1+UU1*CE
ZNMSUl=-UU1*CE2+UU2*CE1
SU1=DSQRT (XNMSU1**2+YNMSU1 **2+ZNMSU1**2)
XNMSU1=XNMSU1/SU1
INMSU1=YNMSU1/SUl
C
80
XTSU=1.
CTU1=XTSU*XNMSU1*UU2-XTSU*UU1*YNMSU
CTU2=YNMSU1*UU3-2NMSUl*UU2
2TSU=CTU1/CTU2
YTSU $=-$ (XTSU*XNMSU1 + ZTSU*ZNMSU1)/YNMSU1
CTU $3=$ DSQRT (XTSU**2+YTSU**2+ZTSU**2)
XTSU=XTSU/CTU3
YTSU=YTSU/CTU3
ZTSU=ZTSU/CTU3
IF(ZTSU .GT. 9.G) GO TO 111
XTSU=-XTSU
YTSU=-YTSU
ZTSU=-ZTSU
C INCLINATION ANGLE
$111 \mathrm{COSI=UU1*CE1+UU2*CE2}$
SINI=DSORT ($1,-\operatorname{COSI**2)}$
AIN=DATAN (SINI/COSI
AINCI/2.-AIN
C NORMAL PAKE ANGLE
$\operatorname{COSRA}=X V C E * X T R A+Y V C E * Y T R A+Z V C E * Z T R A$
SINRA=DSORT (1.-COSRA**2)
SIGN1=XVCE*XNRA+YVCE*YNRA+ZVCE*ZNRA
SIGN2=DABS (SIGN1)
SIGN=SIGN1/SIGN2
RAK=DATAN (SINRA/COSRA)
RAK $=$ SIGN*RAK
RAKE (I)=RAK/CONS
C PARALLEL RAKE ANGLE (AS DEFINED BY GALLOWAY)
CEM1=XOUT-XCORN
CEM2=YOUT-YCORN
CEM $3=$ ZOUT-ZCORN
CEMM $=$ DSORT $(C E M 1 * * 2+$ CEM $2 * * 2+$ CEM $3 * * 2)$

CEMI＝CEMI／CEMM
 CEM $2=$ CEM $2 / C E M M$

c
XNEG＝1．
YNEG＝XNEG＊CEM $2 /$ CEM1
ZNEG $=-$（XNEG＊CEM1＋YNEG＊CEM2）／CEM3
$\mathrm{XYZ}=\mathrm{DSQRT}(\mathrm{XNEG} * * 2+\mathrm{YNEG} * * 2+Z N E G * 2$ ）
XNEG＝XNEG／XYZ
YNEG＝YNEG／XYZ
ZNEG＝ZNEG／XYZ
COSRA $=X N E G * X T R A+Y N E G * Y T R A+Z N E G * 2 T R A$
SINRA＝DSQRT（1．－COSRA＊＊2）
SIGNl＝XNEG＊XNRA＋YNEG＊YNRA＋ZNEG＊ZNRA
SIGN2＝DABS（SIGNI）
SIGN＝SIGN1／SIGN2
RAG＝DATAN（SINRA／COSRA）＊SIGN／CONS
RAGE（I）＝RAG
C NOMINAL RELIEF ANGLE（AS DEFINED BY GALLOWAY）
COREL＝UU1＊XFLNR＋UU2＊YFLNR
REL＝DATAN（SIREL／COREL）
RELIEF（I）＝REL／CONS
C CHIP FLOW ANGLE ACCORDING TO BROWN AND ARMAREGO ETAB $=\mathrm{DATAN}(\mathrm{DSIN}(\mathrm{AIN}) / \mathrm{DCOS}(\mathrm{AIN}) * \operatorname{DCOS}(\mathrm{RAK}))$ ETABRO（I）＝ETAB／CONS
CHIP FLOW ANGLE ACCORDING TO AN OBLIQUE CUTTING
A APPROACH OF USUI TYPE
IF（NSTAB ．EO．2）GO TO 8067
ETA＝AIN
GO TO 8069
$8067 \operatorname{ETA=DATAN}(1 . /(D C O S(R A K)+D S I N(R A K)) * \operatorname{DSIN}(A I N) / D C O S(A I N))$
ETALE＝DABS（ETA／CONS）
ETALEE（I）＝ETALE
3069 ETAS（I）＝ETA／CONS
（D）$D C O S$（AIN）＊DSIN（RAK）
ETAKR－DATAN（ETAK）／CONS
SNKRTAK
IN（AIN）
RSNI（I）＝RSN
IF $(1)=\dot{A}$ ．
$\operatorname{DL}(\mathrm{I})=\operatorname{DSQRT}((\operatorname{XSTGD}(\mathrm{I})-\operatorname{XSTGD}(\mathrm{I}-1)) * * 2+(\operatorname{YSTGD}(\mathrm{I})$
S－YSTGD（I－1））＊＊2＋（ZSTGD（I）－ZSTGD（I－1））＊＊2）
SS＝SS＋DL（I）
$\operatorname{SSS}(\mathrm{I})=\mathrm{SS}$
IF（NFORCA ．EQ．日）GO TO 1009

WIRIYACOSOL PREDICTOR FOR DRILLING FORCES
VECTOR NORMAL TO PLANE PARALLEL TO CUTTING EDGE AND TO
DRILL AXIS，POINTING OUTWARDS
XNZETA $=$ CE2

NZETA＝0
CNZETA＝DSORT（XNZETA＊＊2＋YNZETA＊＊2＋ZNZETA＊＊2） NZETA＝XNZETA／CNZETA

C VECTOR NORMAL TO THE CUTTING EDGE AND ON THE
C PLANE PARALLEL TO DRILL AXIS AND TO CUTTING EDGE
C POINTING TO THE DRILL SHANK
XTZETA＝1．
YTZ ETA＝－XNZETA／YNZETA＊XTZETA
ZTZETA＝1．／CE3＊（－XTZETA＊CE1－YTZETA＊CE2）
CTZETA＝DSQRT（XTZETA＊＊2＋YTZETA＊＊2＋ZTZETA＊＊2）
XTZETA＝XTZETA／CTZETA
TZETA＝YTZETA／CTZETA
ZTZETA $=Z$ TZETA／CTZETA
C ZETA ANGLE（WIRIYACOSOL）
COZETA＝XVCE＊XTZ ETA＋YVCE＊YTZETA $+Z V C E * Z T Z E T A$
IF（COZETA ．LT．．Ø）COZETA＝－COZETA
SIZETA＝DSQRT（1．－COZETA＊＊2
C FORCES ON THE MAIN LIP
W2 $2=\operatorname{Sin}(E T A) / D C O S(E T A)$
DINC＝DCOS（AIN）
INC＝DSIN（AIN）
RAKU＝RAK
TF（NDESLI ．EQ．の）RAKU＝ 0 ．
TAU $=(74390 .-191.3 *$ RAKU／CONS $) * .45359 /(25.4) * * 2$
Tl＝1．／RPI／2．＊CE3A＊DCOS（ZET）＊25．4
TiWI（I）＝T1
$\mathrm{DB}=\mathrm{DL}(\mathrm{I}) * D I N C$
$\mathrm{DA}=\mathrm{T} 1 * \mathrm{DB}$
FRIC＝32．84＋．559＊RAK／CONS
FRICN＝DATAN（DSIN（FRIC＊CONS）／DCOS（FRIC＊CONS）＊DCOS（ETA））
RAKC＝RAK
IF（NCORT
IF（NCORT．EQ．a）RAKC＝の．
CUTRATE．3427＋．ब®292＊RAKC／CONS＋．gの日96＊VV／25．4／12．＊60．
$\operatorname{CHIP}(I)=V V D(I) * C U T R A T$
HINI＝CUTRAT＊（DCOS（ETA）／DINC）＊DCOS（RAK）
HIN2＝1．－CUTRAT＊（DCOS（ETA）／DINC）＊DSIN（RAK）
HIN＝DATAN（PHIN1／PHIN2）
WIRIY＝（DCOS（PHIN＋FRICN－RAK））＊＊2
WIRY1＝（BW2＊DSIN（FRICN））＊＊2
BWI＝FRICN－RAK
BW2＝BW2
BW3＝DS IN（FRICN
BW4＝DSIN（PHIN）
$3 W 5=T A U^{*} D A$
DFP＝BW5＊（DCOS（BW1）＊DINC＋BW2＊SINC＊BW3）／BWIRIY／BW4／DINC $\operatorname{DFPR}(I)=D F P$
DFQ＝BW5＊DSIN（BW1）／BWIRIY／BW4／DINC DFQR $(I)=D F Q$

RTORQ $=($ RSTAN + RESO $) / 2$
DK1P $=(481.25-7.957 *$ RAK／CONS $) * .45359 / 25.4$

CF1＝UU1＊XTRA＋UU2＊YTRA＋UU3＊2TRA
CF2＝XVCE＊XTRA＋YVCE＊YTRA＋ZVCE＊ZTRA CF3 $=\mathrm{XTSU*XTRA+YTSU*YTRA+ZTSU*ZTRA}$ CF4＝UUl＊XNRA＋UU2＊YNRA＋UU3＊ZNRA CF5＝XVCE＊XNRA＋YVCE＊YNRA＋ZVCE＊ZNRA CF6＝XTSU＊XNRA＋YTSU＊YNRA＋ZTSU＊ZNRA $\mathrm{CF} 7=\mathrm{UU1} * \mathrm{CE} 1+\mathrm{UU} 2 * \mathrm{CE} 2+\mathrm{UU} 3 * \mathrm{CE} 3$ $\mathrm{CFB}=\mathrm{XVCE} * \mathrm{CE} 1+\mathrm{YVCE} * \mathrm{CE} 2+\mathrm{ZVCE} * \mathrm{CE} 3$ $\mathrm{CF} 9=\mathrm{XTSU} * \mathrm{CE} 1+\mathrm{YTSU} * \mathrm{CE} 2+\mathrm{ZTSU} * \mathrm{CE} 3$
$D F T R A=D F P * C F 1+D F Q * C F 2-D F R * C F 3$ $\operatorname{DFTR}(\mathrm{I})=\mathrm{DFTRA}$

OFNRA $=-$ DFP＊CF4－DFQ＊CF5＋DFR＊CF6＋1の日月ดの．$/($ RPI $) * *$ DFNR（I）＝DFNRA

DFTED＝－DFPTED
DFTE（I）＝DFTED
CF1g＝UU1＊XNMSU＋UU2＊YNMSU＋UU3＊ZNMSU
CF11＝XVCE＊XNMSU＋YVCE＊YNMSU＋ZVCE＊ZNMSU
CFI2＝XTSU＊XNMSU＋YTSU＊YNMSU＋ZTSU＊ZNMSU
DFNSU（I）$=(\mathrm{DFP}+\mathrm{DK} 1 \mathrm{P}) * \mathrm{CF} 1 \mathrm{G}+(\mathrm{DFQ}+\mathrm{DK} 10) * \mathrm{CFI} 1+\mathrm{DFR} * \mathrm{CF} 12$
DFPU $=+$ DFTRA＊CF1－DFNRA＊CF4＋DFTED＊CF7
DTH $=+$ DFTRA＊ZTRA－DFNRA＊ZNRA + DFTED＊CE 3
THE $=2 . * D K 1 Q * D B * C O Z E T A * C E 3 A$
TOE $=2$ ，＊RTORQ＊DKIP＊DB
TOOE $=$ TOOE + TOE
THHEE＝THHE／． 45359
TOOEE $=$ TOOE $/ .45359 / 25.4$
THRUST＝THRUST＋2．＊（DFO＊COZETA＊CE3A－DFR＊（DINC＊CE3＋SINC
\＄＊CE3A＊SIZETA）+ THE
TORQUE $=T O R Q U E+2$ ．＊RTORQ＊DFP＋TOE
THRUS（I）＝THRUST／．45359
TORQU（I）＝TORQUE／．45359／25．4
TRIQUE＝TRIQUE $+2 . *$ RTORQ＊DFPU + TOE
THRIO $=$ THRIO +2 ．＊ $\mathrm{DTH}+\mathrm{THE}$
TRUQUE＝TRIQUE／g．45359／25．4
THRUQ＝THRIO／$\sigma .45359$
CONTINUE
498 RESQ＝RSTAN
NLUP＝I
CONTINUE
781 FRITE（1，2781）

2CHIG＝ZO－DSORT（（ROG＊＊2－EXG＊＊2）／SNKOI＊＊2）
c CHISEL EDGE

NCHI $2=2$＊NPOINT ZCHIG（I）＝ZCHI
ZCHID（I）$=\mathrm{ZCHI}$
AXX＝CSVG＊＊2＋（CSKOI＊＊2）＊（SNVG＊＊2）
BYY $=$ SNVG＊＊2＋CSVG＊＊2＊（CSKOI＊＊ 2 ）
CXY $=-2 \cdot$ ．${ }^{\text {SNVG＊CSVG }}$ 2．＊（CSKOI＊＊2）＊SNVG＊CSVG
DDX $=-2 \cdot * E X G * 1 . *$ CSVG－2．＊（ZCHI－Z $\sigma) * S N K O I * C S K O I * S N V G ~$
EY＝2．＊1．＊EXG＊SNVG－2．＊（ZCHI－ZG）＊SNKOI＊CSKOI＊CSVG
$\mathrm{CHI}=\mathrm{BYY}+(E Y / D D X) * * 2 * A X X-E Y / D D X * C X Y$
YCHI 2 （I）$=+$ DSQRT（－FF／CHI 1 ）
XCHIG（I）＝－YABS（XCHI）＊EY／DDX
YCHIG（I）＝－DABS（YCHI2（I）
$\mathrm{XCHID}(\mathrm{I})=\mathrm{DABS}(\mathrm{XCHI} 2(I))$
YCHID（I）＝－DABS（YCHI2（I））
DFDX＝2．＊XCHID（I）＊AXX＋YCHID（I）＊CXY－DDX
DFDY＝2．＊YCHID（I）＊BYY＋CXY＊XCHID（I）－EY
DFDZ $=$ XCHID（I）＊（－2．＊SNKOI＊CSKOI＊SNVG） $\mathrm{YCHID}(I) *(-2 . *$
SSNKOI＊CSKOI＊CSVG）＋SNKOI＊＊2＊2．＊（Z－Zら）
DF＝DSQRT（DFDX＊＊2＋DFDY＊＊2＋DFDZ＊＊2）
DFDX $=D F D X / D F$
DFDY＝DFDY／DF
$D F D Z=D F D Z / D F$
RAKCHI（I）$=-(90 .-$ DATAN（DSQRT（1．－DFDZ＊＊2）／（－DFDZ））／CONS）
AMOD $=$ DSORT $($（XCHI $2(I)) * * 2+(Y C H I 2(I)) * * 2)$
F（AMOD ．EQ．の．）AMOD $=1 . E-8$
XCHIXA $=X C H I 2$（I）／AMOD
CIXA＝XCHIXA
IF（CIXA．－EQ．の．）CIXA＝1．E－8
IXA＝DSQRT（1，－CIXA＊＊2）
TIXA $=$ SIXA／CIXA
CHIXA（I）＝DATAN（TIXA）／CONS +180 ．
RCHISE（I）＝DSQRT（（XCHID（I））＊＊2＋YCHID（I）＊＊2）
VAXI＝RPM／RPI＊25．4
VRAD＝2．＊PI＊RCHISE（I）＊RPM／6の．
IF（VRAD ．EQ．D．）GO TO 2635
ANGl＝DATAN（VAXI／VRAD）／CONS
GO TO 2636
2635
${ }_{c}^{263}$
CHIRAK（ I ）＝ANG1－RAKCHI（I）－96．
RCHISE（ $\mathrm{NPOINT}+\mathrm{I}$ ）$=$ RCHISE（I）
continue
WRITE（1，2782）
782 FORMAT（／＇CHISEL EDGE COMPUTED＇）
C FORCES ON THE CHISEL EDGE
NCHII＝NPOINT－1
$\operatorname{RCHI}=(\operatorname{RCHISE}(I)+\operatorname{RCHISE}(I+1)) / 2$
802 BETAW＝DATAN（1．／RPI＊25．4／2．／PI／RCHI）
GAMAW＝DATAN（SNKOI／CSKOI＊DSIN（（180．－CHIXA（I））＊CONS） RAKCH＝（EETAW－GAMAW）／CONS
DLCHI＝DSQRT（ $(X C H I D(I)-X C H I D(I+1)) * * 2+(Y C H I D(I)$
\＄－YCHID（I＋1））＊＊2＋（ZCHID（I）－ZCHID（I＋1））＊＊2）
CHILEN＝CHILEN＋2．＊DLCHI
T1CHI $=1 . / \mathrm{RPI} / 2$. DCOS（BETAW）
C1P＝5574日．＊T1CHI＊＊．651＊（90．＋RAKCH）＊＊．06＊．45359／25．4
C10＝8525øब．＊T1CHI＊＊．635＊（90．＋RAKCH）＊＊（－．62）＊．45359／25．4
DFPCHI＝C1P＊DLCHI
DFQCHI $=$ CIQ＊DLCHI
THRUCH $=$ THRUCH $+2 . *$ DLCHI $*(C 1 P * D S I N(B E T A W)+C 1 Q * D C O S(B E T A W)) ~$
THRUCH $=$ THRUCH +2 ． DLCHI＊（CIP＊DSIN（BETAW）＋CIQ＊DCOS
TOROCH $=$ TOROCH +2 ＊RCHI＊DLCHI＊（CIP＊DCOS（BETAW）
\＄＊DSIN（BETAN））
THRCH（I）$=$ THRUCH $/ .45359$
TORCH（I）$=$ TORQCH／．45359／25．4
continue
DO $330 \mathrm{I}=2$ ，NLUP
ORAK＝RAKE（I＋1）－RAKE（I）
DRADL（I）＝DRAK／DL（I
336 CONTINUE
CYLINDRICAL CLEARANCE
READ（1，＊）ZCLE1，ZCLE 2
PHIIL1＝DATAN（YSTGD（1）／XSTGD（1））
DO 194日 IFL＝1，MPOINT
XCLE＝Rの＊DCOS（PHIIL2－FLOAT（IFL－1）／FLOAT（NPOINT－1）＊
S（PHIIL2－PHIILI））
YCLE＝R6＊DSIN（PHIIL2－FLOAT（IFL－1）／FLOAT（NPOINT－1）＊
（PHIIL2－PHIIL1））
CALL CASACF（ZCLE1，ZCLE2，EPS，EPV，FLANK，ZCLE，IFAIL ）
YCLEA（IFL）$=$ YCLE
ZCLEA $($ IFL $)=$ ZCLE
XCLEAD（IFL）＝XCLE
YCLEAD（IFL）＝YCLE
ZCLEAD（IFL）$=$ ZCLE
ZHH＝ZCLEA（1）
IF（ZCLEA（I）．GT．ZHH）ZHH＝ZCLEA（I
PHICLE（IFL）$=$（PHIIL2－FLOAT（IFL－1）／FLOAT（NPOINT－1）＊（PHIIL2－ PHIILI））／CONS
IF（IFL．EQ．1）ZCLEEE＝ZCLE
1940 CONTINUE
WRITE（1．2783）
2783 FORMAT（／＇FLANK CONTOUR ON CYLINDRICAL SURFACE COMPUTED＇） IF（IAINCL ．EQ．A）GO TO 2.661

WRITE $(6,2664)$ Rg，WEB，HO，RO，EXG，VG，RKG，ROG WRITE $(6,2663$ ）（RADI（I），AINC（I）$, I=1, N P O I N T)$
FORMAT（I4，F12．6）
2662
2663 FOPMAT（ $2 \mathrm{Fl2}$ ；
2664 FORMAT（8F12．6）
2661 WRITE（1，2001）
2001 FORMAT（／／／RESUME OF RESULTS ？＇）
200 FORMAT（／／／＇RESUME OF RESULTS ？＇）

READ（1，＊）IJK9

F（IJK9．EQ．9）GO TO 2902
WRITE（1，200）RKG
ORITE（ 205 ）VG
（1，205）VG POINT ANGLE＇，F7．
FORMAT（＇GRINDING SET ANG
FORMAT（1，8942）RELIEF（1）
RMAT（＇RELIEF ANGLE
RTTE（1，8970）ZSTCI
FORMAT（＇CLEARANCE
WRITE（ 1 la）Rg
FORMAT（＇DRILL RADIUS＇，F7．2
WRITE（1，212）ROG
FORMAT（il／2 CAM RADIUS, F7．2）
WRITE（1，215）RPM \quad ，F8
FORMAT（／＇REVS PER MINUTE ，F8．
WRITE（1，220）RPI
FORMAT（＇REVS PERTE 1.8044 ）THRCH（NPOINT－1）
FORMAT（／＇THRUST（CHISEL）
FORMAT（／＇THRUST（CHISEL）－，Flの．3）
FORMAT（＇THRUST（LIPS），，F1G．3）
THTOT $=T H R C H$（NPOINT－1）＋THRUS（NPOINT）
WRITE（1，8048）THTOT
8048
THNOVO $=$ THRCH（NPO（TOTAL ）
WRITE（1，8649）THNOVO
8049
WRITE（1 1955）THHEE
FORMAT（＇THHEE＝＇FIG．3）
WRITE（1，8ब54）TORCH（NPOINT－1）
FORMAT（＇TOROUE（CHISEL），FIG． 3 ）
WRITE（1，8656）TORQU（NPOINT）
FORMAT（＇TOROUE（LIPS ）＇，F16．3）
OTOT＝TORCH（NPOINT－1）＋TORQU（NPOINT）
WRITE（1．8058）TOTOT
ORMAT TORQUE（TOTAL ）
ORTOT＝TORCH（NPOINT－1）＋TRUQUE
WRITE（ $1,805 \sigma$ ）TONTOT
WRITE（1，1956）TOOEE
FORMAT（＇TOOEE＝，FIの．3）
WRITE（1，221）WE
221
WRITE(1, 8022)XSTG(1), YSTG(1), ZSTG(1)
FORMAT (/'XOUTE=' F6.3,' YOUTE='F6.3
$\operatorname{WRITE}(1,8020)$ (CORN(I), $I=1,3)$

0 FRITE(1,8028)ZCHI
8028 FORMAT(' Z VALUE AT $X=9.1 Y=9$. , 3)
ZOUCOR=ZSTG (1)-ZCORN
WRITE (1, BQ4の) ZOUCOR FORMAT DIFFERENCE ZOUTE－ZCORN •，F6．3） ZOUCHI＝ZSTG（1）－ZCHI
8032 FORMAT（＇DIFFERENCE ZOUTE－ZCHIO \qquad ARESTA $=$ DSORT $((X S T G D(1)-X C O R N) * * 2+(Y S T G D(1)-Y C O R N) * * 2+$ （ZSTGD（1）－ZCORN）＊＊2）
ANPTMA $=($ ZSTGD（1）－ZCORN）／ARESTA ANPTME $=$ DSQRT（1．－ANPTMA＊＊2） ANPTM＝DATAN（ANPTME／ANPTMA）／CONS＊2
WRITE（1，8933）ANPTM
CORMAT（＇POINT ANGLE（AVERAGE）
COCHCO $=(-X C H I 2(2)-X C O R N) *(X S T G D(N P O I N T-1)-X C O R N)$
＋+ －YCHI 2（2）－YCORN）＊（YSTGD（NPOINT－1）－YCORN）
RICHCO＝DSQRT（（－XCH12（2）－XCORN）＊＊2＋（－YCHI2（2）－YCORN）＊＊2）
RECORN）＊＊2） －YCORN）＊＊2）
COCHCO＝COCHCO／RICHCO／RECHCO
AICHCO＝DATAN（SICHCO／COCHCO）／CONS＋180．
WRITE（ 1,8934 ）AICHCO
FORMAT（／＇CHISEL ANGLE AT CORNER DOCHCO $=X C O R N *(X S T G D(1)-X C O R N)+Y C O R N *(Y S T G D(1)-Y C O R N) ~$ FECHCO $=\operatorname{DSORT}((\operatorname{XSTGD}(1)-X C O R N) * * 2+(Y S T G D(1)-Y C O R N) * * 2)$ DOCHCO＝DOCHCO／FICHCO／FECHCO
EOCHCO＝DSQRT（1．－DOCHCO＊＊2）
BICHCO $=-$ DATAN（EOCHCO／DOCHCO）／CONS +18 ．
WRITE（1，8936）BICHCO FOCHCO＝XCORN＊1．
FOCHCO $=$ FOCHCO／FICHCO／l ．
GOCHCO＝DSQRT（1．－FOCHCO＊2
FOCHCO＝18日．－DATAN（GOCHCO／FOCHCO）／CONS
FORMAT（＇ANGEE
9ø3B FORMAT（＇ANGLE BET，CHISEL EDGE AND XX AXIS＇，F12．2）
FORMAT
FORMAT（＇CHISEL EDGE LENGTH＇，F6．3）

IF（IHILST ．EQ．1）GO TO 7014
IF（S ．EO．1．）GO TO 7012
NSTFLU＝46
DO $7013 \mathrm{~J}=1, \mathrm{NSTFLU}$

SSTFL（J）＝WEB／2．＋FLOAT（J－1）／FLOAT（NSTFLU－1）＊WEB

 2R＝WEB／2．／RSTFL（J）IF（RSTFL（J）．LE．WEB／2．）GO TO 7020
PHSTF（WJ）＝DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSQRT（RSTFL（J）
＊2－（WEB／2．）＊＊2）＊DSIN（H0）／DCOS（Hб）／Rø＊CSKOU／SNKOU
GO TO 7921
762 －PHSTFL（J）＝PI／2．
$\operatorname{XHSTFL}(J)=\operatorname{RSTFL}(J) * D C O S(\operatorname{PHSTFL}(J))$
YHSTFL（J）$=$ RSTFL（J）＊DSIN（PHSTFL（J））
CONTINUE
READ（1，＊）NSTPLI
CALL E02ACF（XHSTFL，YHSTFL，NSTFLU，COFL，NSTFLI，REFL）
7012 DO 7 7 Ø日 $\mathrm{I}=1$ ，NPOINT
Z＝2CLEEE－FLOAT（I－1）＊（ZCLEEE－ZCORN）／FLOAT（NPOINT－1） ALPHA＝Z／Rの＊DSIN（Hの）／DCOS（H0）
III＝I
IE（I．NE．1）GO TO 14
RHEEL1 $=-3$ ．
RHEEL $2=$ Rの
CALL Cの5ACF（RHEEL1，RHEEL2，EPS1，EPV1，FEEL，XEEL，IFAIL） RHEELI＝XEEL－． 8
XHEETG（I）＝XSTE
XHEELG $(\mathrm{I})=\mathrm{XSTEEL}$
HEEELG（I）＝Z
HEELG $(I)=$ Z
$\operatorname{XHEELD}(I)=X S T E E L$
HEELD（I）＝YSTEEL
$\operatorname{XEELG}(I)=X E E L$
YEELG（I）＝YEEL
XEELGD（I）＝XEEL
YEELGD（I）＝YEEL
OO To 7022
7014 DO $7016 \quad I=1$ ，NPOIUT
III＝1
Z＝ZCLEEE－FLOAT（I－1）＊（ZCLEEE－ZCORN）／FLOAT（NPOINT－1）
ALPHA＝2／RG＊DSIN（HG）／DCOS（HO）
F（I ．NE．1）GO TO 7 g17
RHEELI $=8$＊R
7017 CALL CG5ACF（RHEEL1，RHEEL2，EPS1，EPV1，FIIL，RHEEL，IFAIL） RHEEL $1=.8 *$ RHEEL
RHEEL $1=.8^{*}$ RHEEL
RHEEL2 $=1.2^{*}$ RHEEL
IF（RHEELI ．LT．WEB／2．）RHEELI＝WEB／2．
XHEELG（I）＝XSTEEL
XHEELG $(I)=X S T E E L$
YHEELG（I）＝Z
XHEELD（I）＝XSTEEL
YHEELD（I）＝YSTEEL
ZHEELD（I）$=$ Z
XEELG（I）$=$ XEELA
YEELG（I）＝YEELA
$\operatorname{XEELGD}(\mathrm{I})=\mathrm{XEELA}$

YEELGD（I）＝YEELA

7916
WRITE（1，6901）
$60 \sigma 1$ FORMAT（＇HEEL DRILL POINT CONTOUR COMPUTED＇）
WRITE（1，9062）
9 9ø® 2 FORMAT（＇PLOTS（2）OR TABLES（1）？＇）
READ（1，＊）NGRAFI 1 ）CO TO 9065
WRITE（1，1985）
1985 FORMAT（＇ANGLES ACROSS LIP ？＇）
READ（1，＊）IJKI
IF（IJK1 ．EQ．ஏ）GO TO 1996
9－ $\operatorname{WRITE}(1,98)$
FORMAT（／／／5X，＇RADI＇，3X，＇RAKE＇，3X，＇RAGE＇，3X，＇CLEA＇， 3 X ， \＄＇RLIF＇， 3 X ，＇WEDG＇， 3 X ，＇＇INC＇， 3 X ＇，＇ETAS＇， 3 X ＇，＇RSNI＇／／／）
WRITE（1，95）（RADI（I），RAKE（I），RAGE（I），CLEAR（I），RELIEF（I）
， WEDGE（I），AINC（I），ETAS（I），RSNI（I），I $=1$, NLUP，NSALTO
95
C
987 WRITE（1，1987）
FORMAT（＇LIP AND FLUTE ？＇）
$\operatorname{READ}(1, *) I J K 2$
IF（IJK2 ．EQ．日）GO TO 2987
C

§＇DERI＇，3X，XFLU＇，3X＇YFLU＇， 3 X, ＇CCE3＇／／／）
WRITE（1，94）（RADI（I），XSTG（I），YSTG（I），ZSTG（I），DERIV（I）
$\$, \operatorname{XFLU}(\mathrm{I}), \mathrm{YFLU}(\mathrm{I}), \operatorname{CCE} 3 \mathrm{P}(\mathrm{I}), \mathrm{I}=1$ ，NLUP，NSALTO）
94
C
2987 WRITE（1，2988）
2988 FORMAT（＇ARC AND MACHINED SURFACE ？＇）
IF（IJK3 ．EQ．
IF（IJK3 EO．G）GO TO 1989
C $\operatorname{WRITE}(1,93)$
93 FORMAT（／／／／／／／5X，＇RADI＇，3X，＇SS＇，3X，＇XNSU＇，3X，＇YNSU＇ \＄3x，＇ZNSU＇，3X，＇DNSU＇／／）
WRITE（1，97）（RADI（I），SSS（I），XMSU（I），YMSU（I），ZMSU（I）， SDFNSU（I），I＝1，NLUP，NSALTO）
97
c
1989
FORMAT（ $2 \mathrm{X}, 6 \mathrm{F7} 7$ ）
WRITE（1，1996）
1996 FORMAT（＇CHISEL EDGE ？＇） READ（1，＊）IJK4
IF（IJK4 ．EO．g）GO TO 1991
c
WRITE $(1,510)$

1992 FORMAT（＇DERIVATIVES AND FORCES ？＇） READ（1，＊）IJK5 IF（IJKS ．EQ．©）GO TO 1993
c

WRITE（1．96

FORMAT（／／／／／，5X，＇RADI＇：3X，＇DIDL＇，3X，＇RADL＇，3X，＇HELI＇ \＄3X，＇HEN＇，4X，＇TORO＇，4X，＇THRU＇／／／／／）
WRITE（1，520）（RADI（I），DIDDL（I），DRADL（I），ZTGHG（I），
SETAARM（I），TORQU（I），THRUS（I），I＝1，NLUP，NSALTO）
520 FORMAT（ $2 \mathrm{X}, 5 \mathrm{F7} 7$ ．2，2F8．1）
1994 （1）
ORMAT（ SECONDARY CLEARANCE ？＊）
READ（1，＊）IJK
F（IJK6 ．EQ．0）GO TO 1995
1010 FORMAT（／／／，5X，＇XCLE＇，3X，＇YCLE＇，3X，＇ZCLE＇，3X，＇PHCL＇／／） WRITE（1，1015）（XCLEA（I），YCLEA（I），ZCLEA（I），PHICLE（I）． \＄I＝1，NPOINT，NSALTO
1015 FORMAT（2X，4F7．2）
1995 VRITE（1．1996）
1996 FORMAT（＇THICKNESS＇？）
$\operatorname{READ}(1, *) I J K 7$
IF（IJK7 ．EQ．0）GO TO 9 ＠日，
WRITE（1，1012）

WRITE（1，1916）（RADI（I），TlWI（I），TIMEU（I），TIMAU（I）
\＄I＝1，NLUP，NSALTO
1016 FORMAT（2X，4
9095 HRITE（1 9030）
9030 FORMAT（＇PLOTTING FORCES DFP，DFP，DFR ？＇）
$\operatorname{READ}(1, *)$ IFORC
IF（IFORC．EQ．9）GO TO 9933
HRITE（1，2628）
2628 FORMAT（／＇DEVICE－TEK（1），Clg（2）＇
READ（1，＊）IDEV
$I R G=I F I X(R Q+1$.
RDØ＝FLOAT（IRQ）
YFLOIV $=-2$ ．
YFHIGH＝15．
NFY＝IFIX（YFHIGH）－IFIX（YFLOW）
YAXIS $=120$ ．
O TO 2629,2630 ），IDEV
2629
CALL T481
XAXIS $=169$ ．
XAPOS＝3日．
YøPOSY＝30．
YgPOSX＝YgPOSY＋YFLOW＊YAXIS／FLOAT（NFY）
GO TO 2631
CALL CIO51N

XAXIS $=180$

XøPOS＝50．
YのPOSY＝4
YøPOSX＝YgPOSY＋YFLOW＊YAXIS／FLOAT（NFY）
2631 CALL PICCLE
CALL PICCLE

CALL AXIPOS（ 9, XGPOS，YGPOSY，YAXIS， 2 ）
CALL AXISCA（2，IRの，D．，R日の，1）
CALL AXISCA（2，NFY，YFLON，YFHIGH， 2 ）
CALL AXIDRA $(2,1,1)$
CALL AXIDRA $(-2,-1,2)$
NLOO $=$ NPOINT
CALL CHASIZ（2．．2．）
CALL GRASYM（RADI，DFPR，NLOO，4， 0 ）
CALL GRASYM（RADI，DFQR，NLOO，5， 0 ）
CALL GRASYM（RADI，DFRR，NLOO，7， 9
C
READ（1，＊）SEPARA
9033 WRITE（1，9031）
9031 FORMAT（＇PLOTTING FORCES DFTR，DFNR，DFTE ？＇）
$\operatorname{READ}(1, *)$ IFORC
IF（IFORC．EQ．9）GO TO 932
WRITE $(1,2623)$
2623 FORMAT（／＇DEVICE－TEK（1），Clg（2）＇
READ（1，＊）IDEV
$I R \theta=I F I X(R \theta+1$.
ROg＝FLOAT（IRG）
YFLOW＝－2．
YFHIGH $=15$ ．
NFY＝IFIX（YFHIGH）－IFIX（YFLOW）
GO TO $(2624,2625)$ ，IDEV
C 26
ALL T4610
YAXIS＝120．
X \quad PPOS $=30$ ．
YgPOSY＝30．
YøPOSX＝YดPOSY＋YFLOW＊YAXIS／FLOAT（NFY）
GO TO 2626
CALL Clg5lN
XAXIS＝18 ．
AXIS $=120$ ．
Y QPOSY $\mathrm{Y}=4$ ． ．
YMPOSX＝YMPOSY＋YFLOW＊YAXIS／FLOAT（NFY）
CALL DEVPAP $(297 ., 210 ., 0)$
CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ \varnothing ，XGPOS，YgPOSX，XAXIS， 1 ）
CALL AXIPOS（ $\square, X \boxminus P O S, Y G P O S Y, Y A X I S, 2)$

CALL AXISCA（2，IRØ，Ø．，Røモ，1）
CALL AXISCA（2，NFY，YFLOW，YFHIGH， 2 ）
ALL AXIDRA $(2,1,1)$
CALL AXIDRA（ $-2,-1,2$ ）
NLOO＝NPOINT－2
CALE CHASIZ（2．，2．）
CALL GRASYM（RADI，DFTR，NLOO，4，\varnothing ）
CALL GRASYM（RADI，DFNR，NLOO，5，0
CALL GRASYM（RADI，DFTE，NLOO，7，0）
CALL GRASYM（RADI，DFNSU，NLOO， 8,0 ）
CALL CHAMOD
READ（1，＊）SEPARA
ORMAT（／＇ANGLES PLOTTING ？•／）
$\operatorname{READ}(1, *)$ IANG
WRITE（1，1988）
88 Format（＇RAK（1），RAG（2），REL（3），WED（4），INC（5），RAK AND＇／ （＇RAG（6）＇／＇CLE（7），REL AND CLEA（8）＇）
READ（1，＊）IANG 1
c
CALL SE281
CALL PICCLE
CALL WINDOW（2）
IF（IANG1．EO．4）GO TO 2505
CALL AXIPOS $(\emptyset, 2 日, 5 日$.
CALL AXIPOS（ 0.2 ． 6.5 ，5月． $186 ., 1$ ）
CALL AXIPOS（ $0,29 ., 50 \ldots 120 ., 2$ ） GO TO 2506
2505
2506
CALL AXIPOS（ $0,29,26 \ldots 180.1)$
CALL AXIPOS（0，20．，29．，120．， 2
IF（IANG1．EO．4）GO TO 25
CALL AXISCA（1，8，－39，50．2）
GO TO 2504
2503 CALL AXISCA（1，5，30．，80．，2）
2504 CALL AXIDRA $(2,1,1)$
CALL AXI DRA $(-2,-1,2)$
GO TO（1997，1998，1999，2000，2500，2502，2522，2523），IANG1
1997

CALL CHAMOD

GO TO 2501
1998 CALL GRACUR（RADI，RAGE，NPOINT） CALL CHAMOD
GO TO 2501
1999
CALL GRACUR（RADI，RELIEF，NPOINT CALL CHAMOD
GO TO 2561
2000 CALL GRACUR（RADI，WEDGE，NPOINT）
CALL CHAMOD
2509

CALL GRACUR（RADI，AINC，NPOINT）
CALL ChAMOD

GO TO 2501

CALL GRACUR (RADI, CLEAR, NPOINT) CALL CHAMOD GO TO 25 ø1
CALL GRACUR (RADI, CLEAR, NPOINT) CALL GRACUR(RADI,RELIEF,NPOINT) CALL CHAMOD

READ(1,*)SEPARA
GO TO 932
C
562 WRITE (1, 2561)
2561 FORMAT(/'EFFECTIVE RAKE PLOTTING?')
READ (1,*)IRK
IF (IRK . EQ. G) GO TO 1979
($\operatorname{RAKFS}(1), \operatorname{RAKFL}(2), \operatorname{RAKFA}(3), \operatorname{RAKFB}(4), \operatorname{RAKFK}(5) \cdot /$ S'RAKFS, RAKFL, RAKFA , RAKFB AND RAKFK(6)')

CALL SE281
CALL WINDOW (2)
CALL AXIPOS (9, 25.. 59.,189.,1)
CALL AXIPOS (9, 20.,5K.,12の.,2)
CALL AXISCA $2,19,0,16,1)$
CALL AXISCA $2,8,-36 ., 50.2$)
CALL AXIDRA $(2,1,1$
CALL AXIDRA $(-2,-1,2)$
DO 2564 I=1, NPOINT
SRAK1=DSIN(AINC(I)*CONS)**2+DCOS(AINC(I)*CONS)**2*
SAKPS(I)=DATAN(SRA
RAKE (SRAK1/DSQRT(1.-SRAK1**2))/CONS
SRAK2=DSIN(AINC(I)*CONS)*DSIN(ETALEE(I)*CONS)+DCOS
(AINC(I)*CONS)*DCOS(ETALEE (I)*CONS)*DSIN(RAKE (I)*CONS
RAKFL (I) = DATAN(SRAK2/DSQRT(1.-SRAK2**2))/CONS
S(AINC (I)*CONS)*DCOS (ETAARM (I)*CONS)*DSIN(RAKE (I)*CONS
RAKFA(I)=DATAN(SRAK3/DSORT(1.-SRAK3**2))/CONS
SRAK4 $=$ DSIN(AINC (I) *CONS)*DSIN(ETABRO(I)*CONS) +DCOS
(AINC (I)*CONS)*DCOS(ETABRO (I)*CONS)*DS IN(RAKE (I)*CONS RAKFB(I)=DATAN(SRAK4/DSQRT(1.-SRAK4**2))/CONS
SRAKSEDSIN(AINC(I)*CONS)*DSIN (ETAKRO (I) *CONS) +DCOS (AINC(I)*CONS)*DCOS(ETAKRO(I)*CONS)*DSIN(RAKE (I)*CONS) RAKFK(I)=DATAN(SRAK5/DSQRT(1.-SRAK5**2))/CONS CONTINUE
GO TO (2565, 2566, 2567, 2568, 2569, 2573), IRAKF

CALL CHAMOD

2566

GO TO 2579

 CALL CHAMODGO TO 2570
2567 CALL GRACUR(RADI, RAKFA, NPOINT) CALL CHAMOD
GO TO 2570
CALL CHAMOD
GO TO 2570
CALL GRACUR
CALL Chamod
LL GRACUR(RADI, RAKFS, NPOINT)
CALL GRACUR(RADI, RAKFL, NPOINT)
CALL GRACUR (RADI, RAKFA, NPOINT)
CALL GRACUR (RADI, RAKFB, NPOINT)
CALL GRACUR (RADI, RAKFK, NPOINT)
2570
CALL CHAMOD
$\operatorname{READ}(1, *)$ SEPAR
WRITE (1,2571)
2571 FORMAT(/'MORE EF. RAKE PLOTS ?')
READ(1,*)IGR
IF (IGR . NE. ©) GO TO 2562
1979
WRITE(1,2525)
2525 FORMAT('CHIP FLOW ANGLE AGAINST INCLINATION ANGLE ?') READ (1,*)ICHFL
IF (ICHFL.EO. G) GO TO 2524
2526 WRITE (1.2527)
FORM(/LEE(1), ARM (2), BRO (3), KRO (4), LEE, ARM, BRO AND'/ READ (1 *) IF

CALL T4010
CALL PICCLE
CALL WINDOW (2)
CALL AXIPOS (0, 20.,20.,150..1)
CALL AXIPOS(0,29.,29.,129.,2)
CALL AXISCA $(2,6,0 ., 60 ., 1)$
CALL AXISCA $2,9,0 ., 90 ., 2$)
CALL AXIDRA $(2,1,1)$
CALL AXIDRA ($-2,-1,2$)
GO TO (2528, 2529, 2539, 2533, 2572), IFLOW CALL GRACUR (AINC, ETALEE, NPOINT)

GO TO 2531
(ANC ETAARM,NPOINT) GO TO 2531
CALL GRACUR(AINC, ETABRO,NPOINT)
GO TO 2531 (ALNC, ETAKRO, NPOINT) GO TO 2531

CALL GRACUR(AINC, ETALEE,NPOINT)
CALL GRACUR (AINC, ETAARM, NPOINT CALL GRACUR (AINC, ETABRO, NPOINT) CALL GRACUR (AINC, ETAKRO, NPOINT)
CALL GRAMOV (0., 9.$)$
CALL BROKEN (1)
CALL GRALIN(AINC(NPOINT), AINC(NPOINT))
CALL CHAMOD
READ(1,*)SEPARA

WRITE (1, 2532)
FORMAT('MORE CHIP FLOW PLOTS ${ }^{\prime}$ ')
READ(1,*)IGEL
IF (IGFL .NE. D)GO TO 1979
2524 WRITE (1,933)
933 FORMAT('TOP VIEW OF THE SIMULATED DRILL POINT ?' READ(1,*)IPONTA
IF(IPONTA . EQ. の) GO TO 1942
WRITE (1,1959)
1959 FORMAT(/'READ FACTOR TO COORDINATE AXES')
READ (1, *) FACT
XAXIS=FACT*157.89
YAXIS=FACT*127
WRITE(1.1970)
RRITE (1, 25ə7)
2597 FORMAT('DRAWING AXES ?')
$\operatorname{READ}(1, *)$ IAX
IF (IDEV .EQ. 1)
YAXIS=FACT* 120 .
CALL C195IN
GO TO 1976
1971 CALL T4016
976 CALL PICCLE
CALL WINDOW (2)
CALL AXIPOS ($6,80.80$. XAXIS, 1)
CALL AXIPOS $(9,86 ., 86 .$, YAXIS, 2
CALL AXISCA $2,26,-10,10.1$
CALL AXISCA $(2,15,-8,7,2)$
IF (IAX.EQ. ${ }^{\circ}$) GO TO 2568
CALL axidra $(2,1,1)$
CONTINUE
250 CONTINUE

DO $937 \mathrm{I}=1$,NPOINT
$X M A X=R G$
X1 (I) $=-($ Rס-1. $)+$ FLOAT (I) /FLOAT (NPOINT)*2.* (XMAX-1.) $\mathrm{Yl}(\mathrm{I})=\operatorname{DSQRT}\left(\mathrm{Rg} \mathrm{A}^{*} 2-\mathrm{XI}(\mathrm{I}) * * 2\right)$

$\operatorname{XIA}(I)=\operatorname{DSQRT}(R G * * 2-Y 1 A(I) * * 2)$
$\operatorname{XIAN}(I)=-X 1 A(I)$
CONTINUE
DO $1937 \mathrm{I}=1$, NPOINT
XSTG(I)=XSTGD(I)
YSTG (I) =YSTGD(I
XCHIG(I)=XCHID(I)
YCHIG(I) $=$ YCHID (I)
XHEELG (I)=XHEELD (I
YHEELG (I) $=$ YHEELD (I
XSTG(I)=-XSTG(I)
XHEELG (I) $=-$-XHEELG (I)
CONTINUE
OO $1938 \mathrm{~J}=1$, NPOINT
XCHIG (J) $=-\operatorname{XCHIG}(J)$
IF (IWFILE .EQ. Ø) GO TO 2657
RITE(6, 2655)Rの, WEB, Hø, RO, EXG, VG, RKG, ROG
FORMAT(8F12.6)
WRITE (6, 2651)NPOINT $Y 1(I), Y 1 N(I), Y 1 A(I), X 1 A(I), X 1 A N(I)$
WRITE (6, 2652) (XIT (I);
WRITE(6, 262 $)$) (YSTG (I), XCHIG (I), YCHIG (I), XHEELG(I)
\$, YHEELG (I), I=1,NPOINT)
2651 FORMAT(I4)
2652 FORMAT (7F12.6)
2620 FORMAT(5F12.6)
2657 CONTINUE
DO 2559 IG=1, IL
CALL GRACUR (XSTG, YSTG, NPOINT)
CALL GRACUR (XCHIG, YCHIG, NPOINT)
CALL CHAMOD
NPOTNT
YSTG(I)=-YSTG(I)
CONTINUE
DO $1936 \mathrm{I}=1$, NPOIN
XCHIG (I.) $=-$ XCHIG (I)
YCHIG (I) $=-$ YCHIG (I)
IE(IWFILE .EQ. Ø) GO TO 2658
WRITE(6, 2653)(XCHIG(I), YCHIG(I), XSTG(I), YS'TG(I),
$\left.\$ \mathrm{I}=1, \mathrm{NPO} \mathrm{INT}^{(}\right)$

CALL GRACUR (XSTG, YSTG, NPOINT)
CALL GRACUR (XCHIG, YCHIG, NPOINT)
CALL GRACUR (XHEELG, YHEELG, NPOINT)
CALL CHAMOD
DO $7902 I=1$, NPOINT
XHEELG $\binom{\mathrm{I}}{$ YHEELG }$=-$ XHEELG (I)

IF（IWFILE ．EQ．ஏ）GO TO 2659
WRITE（6， 2654 ）（XHEELG（I），YHEELG（I），I＝1，NPOINT）

2653

 2654 CCALL GRACUR（XHEELG，YHEELG，NPOINT）
CALL GRACUR（X1，Y1，NPOINT）
CALL GRACUR（XI，Y1N，NPOINT）
CALL GRACUR（XIA，YlA，NPOINT）
CALL GRACUR（XIAN，YIA，NPOINT）
CALL CHAMOD
READ（1，＊）SEPARA
WRITE $(1,2518)$
FORIAT（／MORE
READ（1，＊）IVIEN VEWS ？＇
IF（IVIEW ．NE．日）GO TO 2524
c
1942 WRITE（1；i941）VEW OF THE SIMULATED DRILL POINT ？＇ READ 1 （1，＊）IPLADO
IF（IPLADO ．EQ．の）GO TO 1948
WRITE（1，25シ9）
2509 FORMAT（＇DRAWING AXES ？＇）
READ（1，＊）IAX
WRITE（1，2543）
2543 FORMAT（／＇T4G1G（1）OR CIO5IN（2）？＇） READ（1，＊）IDEV
WRITE $(1,2515)$
2515 FORMAT（／＇READ FACTOR TO COORDINATE AXES＇） READ（1，＊）FACT
GO TO（2541，2542），IDEV
2541 XAXIS＝FACT＊157．89
YAXIS＝FACT＊127．53
CALL T4019
GO TO $2544 *$
2542 XAXIS＝FACT＊16日．
CALL CIO5IN
CALL PICCLE
2544 CALL PICCLE
CALL AXIPOS（ $0,90 ., 20 .$, XAXIS，1）
CALL AXIPOS（9，9の．，2の．，YAXIS， 2 ）
CALL AXISCA $(2,20 ;-10 ., 10 ., 1)$
CALL AXISCA $(2,15,-3 ., 12,2)$
IF（IAX ．EQ．9）GO TO 2510
CALL AXIDRA $(2,1,1)$
CALL AXIDRA（ $-2,-1,2$ ）
$\operatorname{xSTG}(I)=X S T G D(I)$
YSTG（I）＝YSTGD（I）
XHEELG（I）＝XHEELD（I）
XCLEA（I）＝XCLEAD（I）
$\mathrm{XCHIG}(I)=\mathrm{XCHID}$（I）
ZELIC＝2STG（1）＋FLOAT（I－1）／FLOAT（NPOINT－1）＊（ZLIM2－ZSTG（1）） 2ELIC1（I）＝ZELIC
ZELI＝2ELIC－ZSTG（1）
PHLIl＝DATAN（YSTG（1）／XSTG（1））
PHLI＝PHLI $1+Z E L I * D S I N(H \varnothing) / D C O S(H \theta) / R \varnothing$
XELIC1（I）$=$ R日＊DCOS（PHLI）
YELICI（I）＝R日＊DSIN（PHLI）
CONTINUE．
C
DO $2941 \mathrm{I}=1$ ，NPOINT
ZELIC＝ZHEELG（I）＋FLOAT（I－1）／FLOAT（NPOINT－1）＊（ZLIM2
\＄- ZHEELG（1））
ZELIC2（I）＝ZELIC
ZELI＝ZELIC－ZHEELG（1）
PHLI $1=$ DATAN（YHEELG（1）／XHEELG（1））
IF（PHLII．GE．． 0 ）PMLI $=-($ PI－PHLI $)$
HLI＝P2（I）＝Rの＊DCOS（PHLI）／DCOS（H0）／R
YELIC2（I）＝RG＊DSIN（PHLI）
CONTINUE
CALL GRACUR（XSTG，2STG，NPOINT）
CALL GRACUR（XCHIG，ZCHIG，NPOINT
CALL GRACUR（XELIC1，ZELIC1，NPOINT）
CALL CHAMOD
DO $1945 I=1$ ，NPOINT
XSTG（I）$=-$ XSTG（I）
XCLEA（I）$=-$ XCLEA（I）
XHEELG（I）＝－XHEELG（I）
XELIC1（I）$=-$ XELICI（I）
CONTINUE
DO $1946 \mathrm{~J}=1$ ，NPOINT
XCHIG（J）$=-\mathrm{XCHIG}(\mathrm{J})$
1946
cont
CALL GRACUR（XSTG，ZSTG，NPOINT）
CALL GRACUR（XCHIG，ZCHIG，NPOINT
CALL GRACUR（XHEELG ZHEELG NPOINT
CALL GRACUR（XELIC1，ZELTCl NPOINT
CALL GRACUR（XELIC2，ZELIC2，NPOINT
CALL CHAMOD

READ（1，＊）IVIEW
IF（IVIEN ．NE．日）GO TO 1942

1947 FORMAT（＇SIDE VIEW AFTER 90 DEGREES ROTATION ？•） READ（1，＊）IPLADO
IF（IPLADB．EQ．6）GO TO 934
WRITE（1，2511）．
2511 FORMAT（＇DRAWING AXES ？＇）
$\operatorname{READ}(1, *)$ IAX
WRITE（1，2545）
2545 FORMAT（／＇T4016（1）OR C1651N（2）？＇）
$\operatorname{READ}(1, *) \operatorname{IDEV}$
WRITE（1．2516）
2516 FORMAT（／＇READ FACTOR TO COORDINATE AXES＇）
READ（1，＊）FACT
GO TO（2546，2547），IDEV
2546 XAXIS＝FACT＊157．89
YAXIS＝FACT＊ 127.53
CALL T4010
GO TO 2548
2547 XAXIS＝FACT＊160
YAXIS＝FACT 12
2548 CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ $0,90,20$, XAXIS，1）
CALL AXIPOS $(6,90 ., 20 ., X A X I S, 1)$
CALL AXIPOS $(\sigma, 9 日 ., 2 日 ., Y A X I S, 2)$
CALL AXISCA $(2,20,-10 ., 19.1)$
CALL AXISCA $(2,15,-3 \ldots 12 \ldots, 2)$
IF（IAX ．EQ．Q）GO TO 2512
CALL AXIDRA $(2,1,1)$
CALL AXIDRA（ $-2,-1,2$ ）
${ }_{c}^{251}$
DO 1977 I＝1，NPOINT
YSTG（I）＝YSTGD（I）
YCHIG（I）＝YCHID（I）
1977 CONTINUE
CALL GRACUR（YCHIG，ZCHIG，NPOINT）
CALL GRACUR
DO 1950 I＝1，NPOINT
1950 CONTINUE
CALL GRACUR（YCHIG，ZCHIG，NPOINT）
CALL Chamod
IF（YSTG（NPOINT）．LT．g．）GO TO 1953
DO $1954 \mathrm{I}=1$ ，NPOINT
YSTG（I）$=-$ YSTG（I）
1954 CONTINUE
1953 －CONTINUE
CALL GRACUR（YSTG，ZSTG，NPOINT
CALL GRACUR（YHEELG，ZHEELG，NPOINT
CALL GRACUR（YELICl，zELIC1，NPOINT）
CALL GRACUR（YELIC2，ZELIC2，NPOINT）
YELIC8＝YELIC2（1）
ZELICB＝2ELIC2（1）

2LIM8＝2LIM2

CALL GRAMOV（YELICB，ZELICB）

CALL GRALIN（YELICB，ZLIMB）
CALL CHAMOD
DO 1951 I＝1，NPOINT
YHEELG（I）＝－YHEELG（I）
YELIC2（I）$=$＝－YELIC2（I）
1951 CONTINUE
CALL GRACUR（YHEELG，ZHEELG，NPOINT CALL GRACUR（YCLEA，ZCLEA，NPOINT）
YELIC8＝YELIC2（1）
CALL GRAMOV（YELIC8，zELIC8）
CALL GRALIN（YELIC8，ZLIM8）
CALL CHAMOD
READ（ 1 ，＊）SEPARA
WRITE（1，2520）
FORMAT（／＇MORE VIEWS ？＇／）
IF（IVIEW ．NE．曰）GO TO 1948
934 WRITE（1，2575）
2575 FORMAT（＇THREE SIMULTANEOUS VIENS ？＇）
READ（1，＊）IPONTA
IF（IPONTA ．EQ．©）GO TO 257
FORMAT（＇／＇READ FACTOR TO COORDINATE AXES＇）
READ（1，＊）FACT
XAXIS＝FACT＊157．89
YAXIS＝FACT＊127．53
WRITE（1．2577）
FORMAT（／＇T4R1の（1）OR CIG51N（2）？＇／）
READ（1，＊）IDEV
WRITE（1，2578）
FORMAT（＇DRAWI
READ（1，＊）IAX
IF（IDEV ．EQ．1）GO
KAXIS＝FACT＊ 160 ．
YAXIS＝FACT＊
CALL CIG51N
Go TO 258 g
CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ $0,50 ., 4 \pi$. XAXIS，1）

CALL AXISCA $(2,20,-10 ., 10 ., 1)$
CALL AXISCA $(2,15,-8 ., 7 ., 2)$
IF（IAX ．EQ．ब）GO TO 2581
CALL AXIDRA $(2,1,1)$
CALL AXIDRA（－2，－1，2）

DO $2582 \mathrm{I}=1$ ，NPOINT
XMAX $=R$ g

MAX=R

YI $(I)=\operatorname{DSQRT}(R G * * 2-X 1(I) * * 2)$
YIN(I) $=-Y 1(I)=-(R G-1)+,F L O A T(I) / F L O A T(N P O I N T) * 2 . *($ MMAX-1.)
XIA (I) $=\operatorname{DSORT}\left(R \theta^{* * 2-Y 1 A(I) * * 2) ~}\right.$
XIAN $(I)=-X 1 A(I)$
DO 2583 I=1,NPOINT
XSTG(I)=XSTGD(I)
YSTG(I)=YSTGD(I)
XCHIG(I)=XCHID(I)
YCHIG(I)=YCHID(I)
XHEELG (I) $=X H E E L D(I)$
YHEELG(I)=YHEELD(I)
XSTG(I) $=-X S T G(I)$
XHEELG (I)=-XHEELG (I)
DO $2584 \mathrm{~J}=1$, NPOINT
(J) $=-\mathrm{XCHIG}(\mathrm{J})$

C
CALL GRACUR (XSTG,YSTG, NPOINT)
CALL GRACUR(XCHIG, YCHIG,NPOINT)
CALL CHAMOD

DO 2587 I $=1$,NPOINT
 XSTG(I) $=-X S T G(I)$

CONTINUE
C
DO $2588 \mathrm{I}=1$ NPOINT
$\mathrm{XCHIG}(\mathrm{I})=-\mathrm{XCHIG}(\mathrm{I})$
YCHIG(I)=-YCHIG(I)
258
continue
CALL GRACUR(XSTG, YSTG,NPOINT)
CALL GRACUR(XCHIG,YCHIG,NPOINT) CALL GRACUR (XHEELG, YHEELG, NPOINT

C
DO $2589 \mathrm{I}=1$, NPOINT XHEELG(I) $=-\operatorname{XHEELG}(I)$ YHEELG (I) $=-$ YHEELG (I)

CALL GRACUR (XHEELG, YHEELG,NPOINT
CALL GRACUR (X1,Y1,NPOINT)
CALL GRACUR (XI, Y1N,NPOINT)
CALL GRACUR (XIA, Y1A, NPOINT)
CALL GRACUR (XIAN, Y1A, NPOINT) call chamod

CALL AXISCA (2, 20,-10., 10., 1
CALL AXISCA $(2,15,-3 \ldots, 12 \ldots 2)$
F(IAX EQ. 5) GO TO 2599
CALL AXIDRA $(2,1,1)$
CALL AXID
CONTINUE
$\operatorname{LIM} 2=Z C L E A(1)+.5 * R G$
D 2591 I=1,NPOINT
XSTG(I)=XSTGD(I)
YSTG(I) $=$ YSTGD (I
XHEELG(I)=XHEELD (I
YHEELG(I)=YHEELD (I)
XCLEA (I) =XCLEAD (I
$\mathrm{XCHIG}(I)=\mathrm{XCHID}(I)$
$\operatorname{ZELIC}=2 \operatorname{STG}(1)+$ FLOAT $(I-1) /$ FLOAT (NPOINT-1) *(ZLIM2
\$2STG(1))
ELIC1
ELI
(XLTG (1))
HLI=PHLI $1+2 E L I$ *DSIN(Hの)/DCOS (H $\sigma) / R \varnothing$
(PLI)
CONTINUE
DO 2592 I=1,NPOINT
ZELIC $=$ ZHEELG(1) +FLOAT (1-1)/FLOAT(NPOINT-1)*(ZLIM2-ZHEELG(1) ZELIC2(I)=ZELIC
ZELI=ZELIC-ZHEELG(1)
PHLIl=DATAN (YHEELG(1)/XHEELG(1))
IF(PHLII .GE. - σ) PHLII $=-($ PI-PHLII)
PHLI=PHLII+ZELI*DSIN(HO)/DCOS(HO)/RE
XELIC2(I) $=$ RG*DCOS (PHLI)
EELTC2(I) $=$ R0*DSIN(PHLI)
CONTINUE
CALL GRACUR (XSTG, ZSTG, NPOINT)
CALL GRACUR (XCHIG, ZCHIG,NPOINT)
CALL GRACUR (XELICI, ZELICI, NPOINT)
CALL CHAMOD
DO $2593 I=1$, NPOINT
XSTG(I)=-XSTG(I)
$\operatorname{XCLEA}(I)=-X C L E A(I$
XHEELG (I) $=-$ XHEELG (I)
XELIC1 (I) =-XELIC1 (I)

O $2594 \mathrm{~J}=1$, NPOINT

$\operatorname{xCHIG}(J)=-X C H I G(J)$
c

CALL AXIPOS $(6,56.99 .$, XAXIS, 1$)$
CALL AXIPOS $(9,59 ., 96 ., Y A X I S, 2)$

CALL GRACUR (XSTG, ZSTG, NPOINT)
CALL GRACUR (XCHIG, ZCHIG, NPOINT
CALL GRACUR(XCHIG, ZCHIG, NPOINT)

CALL GRACUR（XHEELG，ZHEELG，NPOINT） CALL GRACUR（XELICI，ZELICl，NPOINT） CALL GRACUR（XELIC2，ZELIC2，NPOINT）

DO $2684 \mathrm{I}=1$ ，NPOINT
XSTG（I）$=-X S T G(I)$
XCLEA（I）$=$－XCLEA（I
XHEELG（I）＝－XHEELG（I）
XELIC1（I）$=-$ XELICI（I）

CALL AXIPOS（ $0,130 ., 90 ., Y A X I S, 2)$
CALL AXISCA $(2,20,-10 ., 19 ., 1)$
CALL AXISCA $2,15,-3 \ldots 12,{ }^{2}$
IF（IAX ．EQ．6）GO TO 2595
CALL AXIDRA $(2,1,1)$
CALL AXIDR（ $-2,-1,2)$
DO $2596 \mathrm{I}=1$ ，NPOINT
YSTG（I）＝YSTGD（I）
YCHEELG（I）＝YCHID（I）
CALL GRACUR（YCHIG，ZCHIG，NPOINT）
CALL CHAMOD

DO $2597 \mathrm{I}=1$ ，NPOINT
YCHIG（I）$=-$ YCHIG（I）
CALL GRACUR（YCHIG，ZCHIG，NPOINT
CALL CHAMOD
IF（YSTG（NPOINT）．LT．B．）GO TO 2598
DO $2599 \mathrm{I}=1, \mathrm{NPOINT}$
CONTINUE YSTG（I）
CONTINUE
CALL GRACUR（YSTG，ZSTG，NPOINT）
CALL GRACUR（YHEELG，ZHEELG，NPOINT
CALL GRACUR（YHEELG，ZHEELG，NPOINT）
CALL GRACUR（YELIC2，2ELIC2，NPOINT）
YELIC8＝YELIC2（1）
ZELIC8＝ZELIC2（1）
ZLIM8＝2LIM2
CALL GRAMOV（YELIC8，ZELIC8）
CALL GRALIN（YELIC8，ZLIM8）
CALL CHAMOD

DO 2690 I＝1，NPOINT
YHEELG（I）＝－YHEELG（T）
YELIC2（I）＝－YELIC2（I）

2600 CONTINUE
CALL GRACUR（YHEELG，ZHEELG，NPOINT）
CALL GRACUR（YCLEA，ZCLEA，NPOINT）
CALL GRACUR（YCLEA
CALL GRAMOV（YELICB，ZELIC8）
CALL GRALIN（YELICB，ZLIMB）
CALL CHAMOD
READ（1，＊）SEPARA WRITE（1，2661）
READ（1，＊）IVIE
IF（IVIEW．．NE．Q）GO TO 934
2574 WRITE（1，93日
FORMAT（＇SECTION NORMAL TO DRILL AXIS $?^{\circ}$ ）
READ $\left(1, *^{*}\right)$ IFLUT
$\operatorname{READ}(1, *)$ IFLUT
IF（IFLUT－EQ．5）GO TO 939
WRITE（1，2513）
2513 FORMAT（＇DRAWING AXES ？＇）
NRADE（i，TAK
FORMAT（／＇BROKEN LINES ？＇）
READ（1，＊）IBRO
2549 FORMAT（／＇T4ด1Ø（1）OR CI日5IN（2）？＇）
READ（1，＊）IDEV
WRITE（1，2517）
2517 FORMAT（／＇READ FACTOR TO COORDINATE AXES＇） $\operatorname{READ}(1, *)$ FACT RQH $=$ RG WEBH＝WEB $\mathrm{H} 日 \mathrm{H}=\mathrm{H} 0 / \mathrm{CONS}$
READ（1，＊）XØPOS，XCAP
GO TO（2550，2551），IDEV
2550 XAXIS＝FACT＊157．89
YAXIS＝FACT＊127．53
CALL T4016
2551 XAXIS＝FACT＊160．
XAXIS＝FACT＊160．
YAXIS＝FACT＊120．
CALL CIG5IN
2552 CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ \varnothing ，XøPOS，B0．：YAXIS，2）
CALL AXISCA $(2,20,-10,10,1)$
CALL AXISCA $(2,15,-8,7 ., 2)$
IF（IAX ．EQ．Ø）GO TO 2514
CALL AXIDRA $(2,1,1)$
CALL AXIDRA $(-2,-1,2)$
2514 CONTINUE
DO 7906 I＝1，NPOINT
XFLU（I）＝XFLUD（I）
$\operatorname{YEELG}(I)=\operatorname{YEELGD}(I)$
XFLU（I）$=-\operatorname{XFLU}(I)$
$\operatorname{YEELG}(I)=-\operatorname{YEELGD}(I)$
7006
CALL GRACUR（XFLU，YFLU，NPOINT）
CALL BROKEN（IBRO）
CALL GRACUR（XEELG，YEELG，NPOINT）
CALL CHAMOD
－c
DO $7607 \mathrm{I}=1, \mathrm{NPOINT}$
$\operatorname{XFLU}(I)=-X F L U(I)$
YFLU（I）$=-\mathrm{YFLU}(\mathrm{I}$
XEELG（I）＝－XEELG（I）
IF（NORSEC ．EQ．D）GO TO 7007
C WRITE IN FILE
WRITE（6，2638）XFLU（I），YFLU（I），XEELG（I），YEELG（I）
7097 CONTINUE
CALL BROKEN（ 0 ）
CALL GRACUR（XFLU，YFLU，NPOINT）
CALL BROKEN（IBRO）
CALL GRACUR（XEELG，YEELG，NPOINT）
CALL CHAMOD
OD＝－YEELG（i）
Y1D＝－YEELG（1）＋FLOAT（I－1）／FLOAT（NLUP－1）＊（YFLU（1）＋YEELG（1）） Y1AD＝－YFLJ（1）＋FLOAT（I）
Y1AD $=-\operatorname{SORT}(R G * * 2-\mathrm{Y} 1 \mathrm{AD} * * 2)$ FLOAT（NLUP－1）＊（YEELG（1）＋YFLU（1））
Y 1 （ I ）$=\mathrm{Y} 1 \mathrm{D}$
$\mathrm{XI}(\mathrm{I})=\mathrm{XID}$
YlA（I）＝YIAD
X1A（I）＝X1AD
IF（NORSEC．EO．x ）GO TO 7 abs
WRITE（6，2638）Y1（I），X1（I），YlA（I），XIA（I）
7 908 CONTINUE
2638 FORMAT（4F1A． 4
CALL CHAMOD
CALL BROKEN（6）
CALL GRACUR（X1，Y1，NPOINT）
CALL GRACUR（X1A，YIA，NPOINT）
c
READ（ $1, *$ ）SEPARA
WRITE（1．2521）
2521 FORMAT（／＇MORE VIEWS ？！／）
READ（1，＊）IVIEW
IF（IVIEN．NE．9）GO TO 934
939 WRITE（1，794の）
7040 FORMAT（＇CIRCLE INSIDE THE FLUTE ？＇）
$\operatorname{READ}(1, *)$ IFLUT
IF（IFLUT ．EQ．g）GO TO 94
DO $7041 I=1$ ，NPOINT
XFLU（I）＝XFLUD（I）
YFLU（I）＝YFLUD（I）

YEELG（I）＝YEELGD（I

YEELG（I）＝－YEELG（I
7541
CONTINUE
7028 CONTINUE
WRITE（1，7926）
7026 FORMAT（／＇READ RCD，XCD AND YCの＇／）
READ（1，＊）RC日，XCG，YC
CALL SE195I
C CALL CIG51N
CALL WINDOW（2）
CALL AXIPOS（0，96．，86．，157．89．1）
CALL AXIPOS（0．90．，80．，127．53，2）
CALL AXISCA $(2,20,-10,10 ., 1)$
CALL AXISCA（2，15，－8．，7．，2）
CALL AXIDRA $(2,1,1)$
c

DO $7631 \mathrm{I}=1$ ，NPOINT

XMAX＝R

YMAX $=R \varnothing$
X1（I）$=-($ Ra－1．$)+$ FLOAT（I）／FLOAT（NPOINT）＊2．＊（XMAX－1．）
YI（I）$=\operatorname{DSQRT}\left(\mathrm{R} \mathrm{g}^{* *} 2-\mathrm{XI}(\mathrm{I}) * * 2\right)$
YiA（I）$=-Y($（I）

XIAN（I）$=-X 1 A(I)$
CONTINUE
ALL GRACUR（XFLU，XFLU，NPOINT ）
CALL GRACUR（XEELG，YEELG，NPOINT）
CALL GRACUR（XI，Y1，NPOINT）
CALL GRACUR（XI，YIN，NPOINT）
CALL GRACUR（XIA，Y1A，NPOINT）
CALL GRACUR（XIAN，YIA，NPOINT）
CALL CHAMOD
C
7644 YMIN＝YCO－RCe
YMAX＝YCD＋RC Q
XMIN $=\mathrm{XCO}-\mathrm{RCD}$
DO $7032 \mathrm{I}=1$ ，NPOINT
YID＝YMIN＋2＋FLOAT（I－1）（FLOAT（NPOINT－1）＊（2．＊RCG－4）

XIAD＝XMIN＋．2＋FLOAT（I－1）／FLOAT（NPOINT－1）＊（2．＊RC®－．4）
Y1AD＝YC $+\mathrm{DSQRT}(R C$ ®＊＊2－（X1AD－XCa）＊＊2）
$Y 1(I)=Y 1 D$
$\mathrm{XI}(\mathrm{I})=\mathrm{XID}$
Y1A（I）＝Y1AD
X1A（I）$=\mathrm{XlAD}$

CALL GRACUR（X1，Y1，NPOINT）
CALL GRACUR（XIA，Y1A，NPOINT）
CALL CHAMOD
c

DO 7630 IE1，NPOINT
 Y1A（I）$=2$＊YCの－Y1A（I）

7039
CONTINUE
CALL GRACUR（XI，Y1，NPOINT）
CALL GRACUR（XIA，YIA，NPOINT
CALL CHAMOD
C
IF（IFLUT ．EQ．Q）GO TO 7845
WRITE（1，7824）
FORMAT（／＇CIRCLE AGAIN ？＇／）
READ（1，＊）IFLUT
IF（IFLUT ．EQ．1）GO TO 7028
ALPHA＝ZOUT／Rの＊DSIN（Hの）／DCOS（Hの）
HCOEDATAN（YC $\emptyset / X C G$ ）
PHC $=\mathrm{PHC}$ C $\operatorname{ANALPHA}$
C COORDINATES OF THE CENTER OF THE CIRCLE
ZEM＝ZOUT
XEM $=$ RXYC ${ }^{*}{ }^{*}$ DCOS（PHC）
YEM $=$ RXYCg＊DS IN（PHC）
XCのㅋ․
YC $\sigma=Y E M$
GO TO 794
7845 URITE（1，7942）XEM，YEM，ZEM
7642 FORMAT（／＇XEM＝＇，F8．4，3X，＇YEM＝＇，F8．4，3X，＇ZEM＝＇，F8．4／）
94 NRITE（I，1964）
1964 FORMAT（＇SECTIONS ACROSS THE FLUTE ？＇）
READ（1，＊）ISEC
IF（ISEC ．EQ．a）GO TO 2911
1962 WRITE（1，1961）
1961 FORMAT（＇AT WHICH POINT IS THE SECTION WANTED ？
XSEl＝XSTGD（NSEC）
YSEl＝YSTGD（NSEC）
YSE1＝7STGD（NSEC）
2SE1＝ZSTGD（NSEC）
PHSEC $2=89.9 *$ CONS
WRITE（1，1973）
1973 FORMAT（＇SECTION NORMAL TO LINE CHISEL C－OUTER C LIP ？＇）
READ（1，＊）ILIP
IF（ILIP ．EQ．0）GO TO 1975
SCE4＝XSTGD（1）－XCORN
SCE5＝YSTGD（1）－YCORN
SCE6＝2STGD（1）－ZCORN
SCEの $\Rightarrow D S Q R T$（SCE4＊＊2＋SCE5＊＊2＋SCE6＊＊2）
SCE1－SCE4／SCEG
SCE2＝SCE5／SCE 0
SCE $3=$ SCE6／SC

GO TO 1974

1975 WRITE（1， 2535 ）

READ（1，＊）IEAL
Ir：TNAL．EQ．6）GO TO 2536
SCE1＝CCE1（NSEC）
SCE $2=C C E 2$（NSEC
GO TO 1974
2536 WRITE（1，2557）
2557 FORMAT（／＇SECTION NORMAL TO THE TANGENT TO HELIX ？＇）
READ（ $1, *$ ）IHE
TF（IHE ．EQ．©）GO TO 2558
PHH1＝DATAN（YSTGD（1）／XSTGD（1））
PHH $2=\mathrm{PHHI}-(\mathrm{PI}-A N G C L E) / 2$
XHH2＝Rø＊DCOS（PHH2）
YHH2＝R日－DSIN（PHH2）
HRX $=-$ YHH 2
HRY＝XHH2
XSE1 $=\mathrm{XHH} 2$
YSEL＝YHH2
SSE1＝ZSTGD（1）
RRXY＝DSQRT（HRX＊＊2＋HRY＊＊2）
HRX $=$ HRX／RRXY
HRY $=$ HRY／RRXY
SCE1＝HRX
SCE $2=H R Y$
SCE $3=$ DCOS（HØ）／DSIN（Hの）
SCE＝DSQRT（SCEl＊＊2＋SCE2＊＊2＋SCE3＊＊2
SCE1＝SCE1／SCE
SCE $2=\operatorname{SCE} 2 /$ SCE
SCE $3=$ SCE $3 /$ SCE
GO TO 1974
C
255
2558 WRITE $(1,2537)$
2537 FORMAT（／＇FOR OTHER SECTION READ COORDINATES＇／ \＄＇TO 2 POINTS＇
$\operatorname{READ}(1, *) \mathrm{XPO} 1, \mathrm{YPO} 1, \mathrm{ZPO} 1, \mathrm{XPO} 2, \mathrm{YPO} 2, \mathrm{ZPO} 2$
SCE1＝XPO2－XPO
CCE3＝2PO2－2PO1
SCE $3=2 \mathrm{DSORT}$（SCE1＊
CEEDSQRT（SCE1＊＊2＋SCE2＊＊2＋SCE3＊＊2）
SCE1 $=$ SCE1／SCE
SCE2
SCE3＝SCE3／SCE
1974 CONTINUE
CALL VIJK（SCE1，SCE2，SCE3，VJ1，VJ2，VJ3，VI1，VI2，VI3） WRITE（1，1982）
1982 FORMAT（＇READ LIMITS（2）TO FLANK SECTION AND NLEEP＇） READ（1，＊）YSCFL1，YSCFL2，NLEEP
WRITE（1，2534）
2534 FORMAT（／＇READ DELTAY＇）
READ（1，＊）DELTAY
NLOOSC＝2＊NPOINT
LeEC
ISEC＝6
NLAAP＝NSEC

Do 1966 I $=\mathrm{NSEC}$, NLOOSC
IF (I .GT. NPOINT) GO TO 1957
YSE=XFLUD (I)
GO TO 1972
$\mathrm{J}=2 *$ NPOINT-I +
XSE=-XEELGD(J)
YSE=-YEELGD(J)
CONTINUE
IF (XSE . NE. \quad.
FORMAT('XSECTION IS 日. 0 AT POINT '.I4
CALL EXIT
PHSE=DATAN (YSE/XSE
IF(PHSE . GT. \quad.) PHSE=PHSE-PI
RSE $=$ DSQRT (XSE**2+YSE**2)
DSEC=-(SCE1*XSE1 + SCE $2 * Y S ~$
DSEC=-(SCE1*XSE1+SCE2*YSE1+SCE3*ZSE1)
CALL C $05 A C F(P H S E C 1$, PHSEC2, EPS, EPV, FUNSEC, PHSEC, IFAIL)
PHSEC2=PHSEC+10. *CONS
$\operatorname{XSECG}(I)=X S E C$
YSECG(I)=YSEC
ZSECG(I) $=$ ZSEC
$\mathrm{xMSEC}=\mathrm{XSEC}$
ZMSEC=2SEC
CALL GRIN(ZSEC,Zg,AXX,BYY,CXY,DDX,EY,FF)

IF (I .GT. NPOINT AND. F2.GT. ©. G) GO TO 1981
XSTAR $=(X S E C-X S E 1) * V I 1+(Y S E C-Y S E 1) * V I 2+(2 S E C-2 S E 1) * V I 3$ YSTAR $=(X S E C-X S E 1) * V J 1+(Y S E C-Y S E 1) * V J 2+(Z S E C-Z S E 1) * V J 3$
C FOR ZSTAR=(XSEC-XSE1)*VK1+(YSEC-YSE1)*VK2+(ZSEC-ZSE1)*VK3 XSTARG(I)=XSTAR
YSTARG(I)
IF (I . GT. NLEEP) GO TO 2 agos
CALL CG5ACF (YSCFL1, YSCFL2, EPS, EPV, FSCFL, YSCFL, IFAIL)
YSCFLI=YSCFL-DELTAY
YSCFL2=YSCFL+DELTAY
YSCFLA $=(X S E C-X S E 1) * V J 1+(Y S C F L-Y S E 1) * V J 2+(Z S E C-Z S E 1) * V J 3$ YSCFLG(I) =YSCFLA

XSCFLG(I) $=$ XSTARG(I)

2065
NLAAP=I
1966 CONTINUE
1981 NLOOSC=NLAAP
WRITE (1,1944)
1944
FORMAT (/'LOOP 1966 FINISHED')
WRITE(1,1952)
WRITE (1,1952)
1952 FORMAT('READ YSCFLI, YSCFL2 AND XDIF')
READ (1, *) YSCFL1, YSCFL 2, XDIF
NABC $1=$ NLOOSC +1

NABC $2=\mathrm{NLOOSC}+20$

2564 ISEC=NABC1, NABC2
XSEC=XMSEC-FLOAT (ISEC-NABC1)/FLOAT (NABC2-NABC1)*XDIF CALL COSACF (YSCFL1, YSCFL2, EPS, EPV, FSCFL, YSCFL, IFAIL) SCFL $2=\mathrm{YSCFLL}-5$
ZSEC= (-SCE1*XSEC-SCE2*YSCFL~DSEC)/SCE3
YSCFLA $=(\mathrm{XSEC}-\mathrm{XSE} 1) * \mathrm{VJ1}+(\mathrm{YSCFL}-\mathrm{YSE1}) * \mathrm{VJ} 2+(\mathrm{ZSEC}-\mathrm{ZSE1}) * \mathrm{VJ}$ YSCFLG (ISEC) =YSCFLA
XSTAR $=($ XSEC - XSE1 $) * V I 1+(Y S C F L-Y S E 1) * V I 2+(Z S E C-Z S E 1) * V I 3$ XSCFLG (ISEC) =XSTAR

WRITE(1,2539)
FORMAT (/'DRAWING AXES ?')
READ(1,*)IAX
RITE (1, 2553
2553 FORMAT (/'T4の1ø (1) , C1051N (2) OR SE281 (3) ?')
WRITE (1, 254G)
2540 FORMAT (/'READ FACTOR TO COORDINATE AXES')
READ (1,*)FACT
GO TO(2554, 2555,2650$)$, IDEV
2554 XAXIS=FACT*157.89
YAXIS=FACT*127.53
CALL T4010
GO TO 2556
2555 XAXIS=FACT*16ด.
YAXIS=FACT*120.
CALE CIG51N
XAXIS $=$ FACT* 16 .
YAXIS=FACT*120.
CALL SE2B1
2556 CALL PICCLE
call axipos (
CALL AXIPOS (0, 121.578,80.,XAXIS,1)
CALL AXIPOS ($8,121.578,80 .$, YAXIS, 2)
CALL AXISCA $2,20,-14 ., 6 ., 1)$
IF (IAX .EQ. σ) GO TO 2538
CALL AXIDRA $(2,1,1)$
CALL AXIDRA $-2,-1,2$)

Continu
NLOO =NLOOSC-NSEC+
NLI I $P=$ NLEEP $-N S E C-$
NNLL $=$ NABC $2-$ NABC1 +1
CALL GRAPOL(XSTARG (NSEC), YSTARG (NSEC), NLOO)
CALL GRAPOL(XSCFLG (NSEC), YSCFLG(NSEC), NLIIP)
CALL GRAPOL(XSCFLG (NABC1), YSCFLG(NABC1), NNLL) CALL CHAMOD
$\operatorname{READ}(1, *)$ SEPARA

1967 FORMAT ('MORE SECTIONS ?')
F(MSEC .NE. Ø) GO TO 1962
TE(1; 201b)
2010 FORMAT('SECTIONS PARALLEL TO THE LIP ?')
EEAD(1,*)ISEPAR
IF(ISEPAR EQ. (9) GO TO 2031
2012 FORMAT('READ Y AT WHICH IS THE PLANE PAR. TO CUT. EDG.')
READ(1,*)YPACE1
PHPAC1 $=0.6$
PHPAC2 $=89.9^{*}$ CONS
DO $2013 \mathrm{I}=1$, NPOINT
RPACE=DSQRT (XFLUD (I)**2+YFLUD(I)**2)
PHPA=DATAis (YFLUD (I)/XFLUD(I))
CALL CQ5ACF (PHPAC1, PHPAC2, EPS, EPV, FPACE, PHPACE, IFAIL)
XPACE=RPACE*DCOS (PHPACE+PHPA)
YPACE=RPACE*DSIN (PHPACE+PHPA)

$\mathrm{XPACG}(I)=X P A C E$
YPACG $(I)=Y P A C E$
$Z P A C G(I)=Z P A C E$
ZPACG(I)=ZPACE
201
CALL SE281
CALL PICCLE
CALL WINDOW (2)
CALL AXIPOS (9.90.,8日.,157.89,1)
CALL AXIPOS (9,9a.,80.,127.53,2)
CALL AXISCA $(2,20,-10 ., 10 ., 1)$
CALL AXISCA $(2,15,-8 ., 7,2)$
CALL AXIDRA (2,1,1)
CALL AXIDRA $(-2,-1,2)$
CALL GRACUR (XPACG, ZPACG, NPOINT) CALL CHAMOD

READ (1,*)SEPARA
WRITE (1, 2018)
2018
FORMAT ('MORE SECTIONS ?')
READ (I, MORE ME
c
2031 WRITE (1, 2032)
2032 FORMAT('SECTIONS ON A VERTICAL ROTATING PLANE ?')
$\operatorname{READ}(1, *)$ ISEPAR
IF(ISEPAR .EQ. 6) GO TO 1906
WRITE (1, 2633)
2033 FORMAT('READ ANGLE OF ROTATION OF THE PLANE') READ(1,*)ROT
COEA D DSIN (ROT *CONS) /DCOS (ROT*CONS)
$\operatorname{COEB}=-$ WEB $/ 2$. * (DSIN (ROT*CONS) *COEA $+\mathrm{DCOS}($ ROT* $\operatorname{CONS})$) PHPACl $=6 * \mathrm{CONS}$

DO $2034 \mathrm{I}=1$, NPOINT
RPACE $=\operatorname{DSORT}(\operatorname{XFLUD}(\mathrm{I}) * * 2+\mathrm{YFLUD}(\mathrm{I}) * * 2)$
PHPA=DATAN(YFLUD(I)/XFLUD(I))
ALL COSACF PHPAC1, PHPAC2, EPS, EPV, GPACE, PHPACE, IFAIL)
YPACE=RPACE*DSIN (PHPACE+PHPA)
ZPACE=PHPACE*RØ*DCOS (HØ)/DSIN(Hø)
XPACG (I) =XPACE
YPACG(I)=YPACE
ZPACG(I)=2PACE
ONTINUE
CALL SE281
CALL WINDOW (2
CALL AXIPOS (9.90..89..157.89.1)
CALL AXIPOS (9,99.,80.,127.53,2
CALL AXISCA $(2,20,-10 ., 10 \ldots 1)$
CALL AXISCA $(2,15,-8 ., 7 ., 2)$
CALL AXIDRA $(2,1,1)$
CALL AXIDRA $-2,-1,2)$ GRACUR (XPACG, ZPACG, NPOINT)
CALL CHAMOD
READ (1,*)SEPARA
WRITE(1,2036)
FORMAT ('MORE SECTIONS ${ }^{\prime}$ ')
READ(1,*)MORE
C
2023 Call devend CALL EXIT END

FUNCTION FAN(XST)
MPLICIT DOUBLE PRECISION(A-H, O-Z)
DIMENSION COEF(20)
COMMON/BLOI/RG, WEB, H , EXG, VG, RKG, ROG
COMMON/BLO2/CONS, PI COMMON/BLO4/Z,Zの, ZHH
COMMON/BLO6/COEF, NCOEF, III

CALL GRIN(Z, Z0, AXX, BYY,CXY, DDX, EY,FF)
$Y S T=0.0$
DO $70 \quad J=1$, NCOEF
YST=YST+COEF(J)*XST**(J-1)
CONTINUE
PHST=DATAN (YST/XST)
PSTAN $=$ DSQRT $(X S T * * 2+Y S T * * 2)$

PHST $=$ PHST + ALPHA

XSTI＝RSTAN＊DCOS（PHST）

 YST1＝RSTAN＊DSIN（PHST）FAN＝AXX＊XST1＊＊2＋BYY＊YST1＊＊2＋CXY＊XST1＊YST1＋DDX＊XST1 S＋EY＊YSTI＋FF

RETU

FUNCTION FEEL（XEEL
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（2a），COEEL（3），COFL（40）
COMMON／BLO1／RØ，WEB，HO，EXG，VG．RKG，ROO
COMMON／BLO2／CONS，PI
COMMON／BLOZ／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／2，2g，ZHH
COMMON／BLOS／S，NPOINT，NLAAP，ISEC，IHE
COMMON／BLOK／COEF，NCOEF，II I
COMMON／BLOR／XFLUEE，YFLUEE，DMAR，XSTEEL，YSTEEL，ANGCLE，YEEL COMMON／BLOL1／COFL，NSTFLI

C CALL GRIN（Z，ZO，AXX，BYY，CXY，DDX，EY，FF $)$
C YEELDV＝COEF（2）
IF（S ．NE．1．）YEELDV＝の．
XEELI＝g．
YEEL1＝WEB／2．
$\mathrm{IF}(\mathrm{S} . \mathrm{EQ}$ ．1．）YEELI $=-\operatorname{COEF}(1)$
XEEL2＝－YFLUEE
YEEL2＝XFLUEE
PHEEL＝DATAN（YEEL2／XEEL2）
PHIIL＝PHEEL＋（ANGCLE－PI／2．
XEEL $2=\operatorname{DSORT}($ XEEL2＊＊2＋YEEL $2 * * 2) * \operatorname{DCOS}($ PHIIL $)$
YEEL2＝DSQRT（XEEL2＊＊2＋YEEL2＊＊2）＊DSIN（PHIIL）
COEEL（1）＝YEELI
$\operatorname{COEEL}(3)=($ YEEL2－XEEL 2＊COEEL（2）$-\operatorname{COEEL}(1)) / X E E L 2 * *$
IF（XEEL ．GE ．．σ ）GO TO I
$\operatorname{IF}(\mathrm{S} . \mathrm{EQ} .1$ ．．AND．XEEL ．LT．g．）GO TO
YEEL＝の．
XEELL＝－XEEL
DO $6 \mathrm{~J}=1$ ．NSTELI
YEEL＝YEEL＋COFL（J）＊XEELL＊＊（J－1）
CONTINUE
YEELL＝－YEEL
PHST＝DATAN（YEELL／XEELL）＋3．14159265
GO TO 2
XEELL＝－XEEL
DO $7 \mathrm{~J}=1$ ，NCOEF
YEEL＝YEEL＋COEF（J）＊XEELL＊＊（J－1）
CONTINUE

PHST＝DATAN（YEELL／XEELL）＋3．14159265

EEL＝－YEEL
EEL $=\operatorname{COEEL}(1)+\operatorname{COEEL}(2) * \operatorname{XEEL}+\operatorname{COEEL}(3) * X E E L * * 2$
PHST＝DATAN（YEEL／XEEL）
RSTAN＝DSORT（XEEL＊＊2＋YEEL＊＊2
PHST＝PHST＋ALPHA
XST1＝RSTAN＊DCOS（PHST
STl＝RSTAN＊DSIN（PHST）
XSTEEL＝XST1
YSTEEL＝YST

FEEL』AXX＊XST1＊＊2＋BYY＊YST1＊＊2＋CXY＊XST1＊YST1＋DDX＊XST \＄＋EY＊YSTl＋FF

RETUR

END
$===$
UNCTION FIIL（RHEEL）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20）．COEEL（3）．COFL（40）
COMMON／BLOI／RG，WEB HG，EXG VG，RKG，ROG
COMMON／BLO2／CONS，PI
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，5NKOI ，CSKOU，SNKOU
COMMON／BLO4／Z，Z日，2HH
COMMON／BLO5／S，NPOINT，NLAAP，ISEC，IHE
COMMON／BLO6／COEF，NCOEF，III
COMMON／BLO8／XFLUEE，YFLUEE，DMAR，XSTEEL，YSTEEL，ANGCLE，YEEL COMMON／BLOI1／COFL，NSTFLI
COMMON／BLO17／XEELA，YEELA，ZWEB

W2R＝WEB／2．／RHEEL
F（RHEEL．LE．WEB／2．）GO TO 1
PHST＝ANG（W2R／DSQRT $(1 .-$ W2R＊＊2）$) * * 2) * \operatorname{DSIN}(H \theta) / D C O S(H \sigma)$
／Rg＊CSKOU／SNKOU
IF（z．L
PHST $=\mathrm{PI} / 2$ ．
2 XEELAA＝RHEEL＊DCOS（PHST）
YEELA＝RHEEL＊DSIN（PHST）
PHST＝PHST＋ALPHA
XST $1=$ RHEEL＊DCOS（PHST）
YST1＝RHEEL＊DSIN（PHST）
XSTEEL＝XST
YSTEEL＝YST1

```
    FUNCTION FIN(XST)
        IMPLICIT DOUBLE PRECISION(A-H,O-Z
    IMENSION COEF(20
    COMMON/BLO3/ALPHA, CSVG, SNVG, CSKOI, SNKOI , CSKOU, SNKOU
    COMMON/BLOG/COEF,NCOEF,III
c
    ST=0.0
    DO 150 J=1,NCOEF
YST=YST+COEF(J)*XST**(J-1)
    ONTINUE
    PHST=DATAN (YST/XST)
    RSTAN=DSQRT(XST**2+YST**2)
    HST=PHST+ALPHA
    SSTl=RSTAN*DCOS(PHST)
    STl=RSTAN*DSIN(PHST)
    IN=YSTI
RETURN
    END
C =
    UNCTION FLANK(ZCLE)
    SION(A-H,O-Z
    MOMMON/BLO1/Ra(2a)
    OMMON/BLO2/CONS, PI
    OMMON/BLO3/ALPHA, CSVG, SNVG, CSKOI, SNKOI, CSKOU, SNKOD
    COMMON/BLO4/Z,ZO, ZHH
    OMMON/BLO6/COEF,NCOEF, III
    COMMON/BLO7/XCLE, YCLE,IEL., IHILST, PHIIL2
    COMMON/BLO8/XFLUEE, YFLUEE, DMAR, XSTEEL, YSTEEL, ANGCLE, YEEL
C
    IF(IFL .NE. 1) GO TO 1
    PHEEL=DATAN (YFLUEE/XFLUEE
    PHIIL=PHEEL+ANGCLE
    IF(IHILST .NE. 1) GO TO 2
    N2R=WEB/2./Rg
    PHIIL=DATAN(W2R/DSQRT(1.-W2R**2))+DSORT(Ra**2
    $-(WEB/2.)**2)*DSIN(HO)/DCOS(H\sigma)/RG*CSKOU/SNKOU
    ALPHA=ZCLE/RG*DSIN(HO)/DCOS(H0)
    CLERO*DCOS(PHST)
    CCE=RG*DSIN(PHST)
    PHIIL2=DATAN(YCLE/XCLE)
    Z=ZCLE
    CALL GRIN(Z,Z0,AXX,BYY,CXY,DDX,EY,FF)
    FLANK=AXX*XCLE**2+BYY*YCLE**2+CXY*XCLE*YCLE+DDX*XCLE
    $+EY*YCLE+FF
C
    RETURN
    END
c
```


FUNCTION FON（RSTAN）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
COMMON／BLOI／Rの，WEB，Hの，EXG，VG，RKG，ROG
COMMON／BLO2／CONS．PI
c
W2R＝WEB／2．／RSTAN
PHST＝－（DATAN（W2R／DSORT（1，－W2R＊＊2））＋DSQRT（RSTAN＊＊2
－（WEB／2．）＊＊2）＊DSIN（H®）／DCOS（H0）／R日＊CSKOU／SNKOU
FON＝PHST＋ALPHA

END
FUNCTION FOUTCR(ZOUT)
IMPLICIT DOUBLE PRECISION(A-H,O-Z
COMMON/BLOI/Rछ, WEB, Hछ, EXG,VG,RKG, ROG
COMMON/BLO2/CONS, PI

COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／Z，Z日，ZHH
COMMON／BLOS／S，NPOINT，NLAAP，ISEC，IHE
COMMON／BLO21／XOUT，YOUT
ALPHA＝ZOUT／Rの＊DSIN（Hø）／DCOS（Hø）
W2R＝WEB／2．／Rø
PHST＝－（DATAN（W2R／DSORT（1．－W2R＊＊2））＋DSORT（RG＊＊2
$S-($ WEB $/ 2) * * 2.) * D S I N(H ด) / D C O S(H g) / R g * C S K O U / S N K O U)$
PHST＝PHST＋ALPHA
XST＝Rの＊DCOS（PHST）
YST＝RE＊DSIN（PHST）
XOUT $=X S T$
YOUT $=Y S T$

CALL GRIN（ $Z, Z \sigma, A X X, B Y Y, C X Y, D D X, E Y, F F)$
FOUTCR＝AXX＊XST＊＊2＋BYY＊YST＊＊2＋CXY＊XST＊YST＋DDX＊XST \＄＋EY＊YST＋FF

RETURN

END

FUNCTION FPACE（PHPACE）
IMPLICIT DOUBLE PRECISION（A－H，O－Z
COMMON／BLO14／RPACE，PHPA，YPACEI
YPACE＝RPACE＊DSIN（PHPACE＋PHPA）
FPACE $=Y$ PACE－YPACE1
C

RETURN

FUNCTION FSCFL（YSCFL）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
COMMON／BLOI／RG，WEB，Hの，EXG，VG，RKG，ROG

COMMON／BLO2／CONS，PI
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO4／Z，Zन，ZHH
COMMON／BLO5／S，NPOINT，NLAAP，ISEC，IHE
COMMON／BLO12／RSE，PHSE，DSEC，SCE1，SCE2，SCE 3

IF（ISEC ．GT．NLAAP）ZSEC＝（－SCE1＊XSEC－SCE2＊YSCFL－DSEC）／ SSCE 3
CALL GRIN（Z，Zの，AXX，BYY，CXY，DDX，EY，FF）
IF（ISEC．LT．NLAAP）GO TO 2
IF（ZMSEC＊LE，ZHH
FSCFL＝R日＊＊2－XSEC＊＊2－YSCFL＊＊2
GO TO 1
FSCFL＝AXX＊XSEC＊＊2＋BYY＊YSCFL＊＊2＋CXY＊XSEC＊YSCFL－DDX＊XSEC S－EY＊YSCFL＋FF
GO TO 1
FSCFL＝AXX＊XSEC＊＊2＋BYY＊YSCFL＊＊2＋CXY＊XSEC＊YSCFL＋DDX＊XSEC ＋EY＊YSCFL＋FF

E．1）GO TO 4
FSCFL＝R9＊＊2－XSEC＊＊2－YSCFL＊＊2
continue
RETU
FUNCTION FUN（RSTAN
IMPLICIT DOUBLE PRECISION（A－H，O－2）
INTEGER NPOINT
COMMON／BLO1／Rด，WEB，H月，EXG，VG，RKG，ROG
COMMON／BLO2／CONS，PI
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO4／z，2g，ZHH
COMMON／BLO5／S，NPOINT，NLAAP，ISEC，IHE
c
W2R＝WEB／2．／RSTAN
PHST $=-($ DATAN $($ W2R $/$ DSQRT $(1,-W 2 R * * 2))+D S Q R T(R S T A N * * 2$
S－（WEB／2．）＊＊2）＊DSIN（H曰）／DCOS（H曰）／R日＊CSKOU／SNKOU）
XST＝RSTAN＊DCOS
YST＝RSTAN＊DSIN（PHST）
c
CALL GRIN（Z，ZG，AXX，BYY，CXY，DDX，EY，FF）
FUNaAXX＊XST＊＊2＋BYY＊YST＊＊2＋CXY＊XST＊YST＋DDX＊XST
C \＄＋EY＊YST＋FF

RETURN

END

FUNCTION FUNSEC（PHSEC）
IMPLICIT
COMMON／BLOI／RQ，WEB，H

COMMON／BLO2／CONS，PI
COMMON／BLO12／RSE，PHSE，DSEC，SCE1，SCE2，SCE3 COMMON／BLOI $3 /$ RSEC，YSEC，ZSEC，ZMSEC

XSEC＝RSE＊DCOS（PHSEC＋PHSE）
ZSEC＝PHSEC＊RG＊DCOS（Hの）／DSIN（HØ）
FUNSEC $=$ SCE1＊XSEC＋SCE2＊YSEC＋SCE3＊ZSEC＋DSEC RETURN

IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20）， $\operatorname{COEEL}(3), \operatorname{COFL}(4 \Omega)$
COMMON／BLOI／R＠，WEB，HO，EXG．VG，RKG，ROG
COMMON／BLO2／CONS，PI
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO4／Z，Z9，ZHH
COMMON／BLOS／S，NPO INT，NLAAP，ISEC，IHE
COMMON／BLOR／XPLUE YE，III
EE，DMAR，XSTEEL，YSTEEL，ANGCLE，YEEL COMMON／BLOII／COFL，NSTFLI

SUBROUTINE GRIN（Z，ZG，AXX，BYY，CXY，DDX，EY，FF） IMPLICIT DOUBLE PRECISION（A－H，O－Z）
COMMON／BLO1／RG WEB HO EXG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI ，CSKOU，SNKOU
AXX＝CSVG＊＊2＋（CSKOI＊＊2）＊（SNVG＊＊2）
BYY＝SNVG＊＊2＋CSVG＊＊2＊（CSKOI＊＊2）
CXY $=-2 . * S N V G * C S V G+2 . *(C S K O I * * 2) * S N V G * C S V G$
DDX $=-2 . *$ EXG＊CSVG－2．＊$(2-Z \sigma) *$ SNKOI＊CSKOI＊SNVG
EY＝2．＊EXG＊SNVG－2．＊（Z－Zの）＊SNKOI＊CSKOI＊CSVG FF＝EXG＊＊2－ROG＊＊2＋（（z－20）＊＊2）＊SNKOI＊＊2

RETURN

END

FUNCTION GPACE（PHPACE）
MPLICIT DOUBLE PRECISION（A－H，O－Z）
COMMON／BLO14／RPACE，PHPA，YPACEI

YPACE＝RPACE＊DSIN（PHPACE＋PHPA

XPACE $=$ RPACE \star DCOS（ $\mathrm{PHPACE}+\mathrm{PHPA}$ ）
YPACE $1=C O E A * X P A C E+C O E B$
GPACE $=Y$ PACE $-Y$ PACE 1
C

RETURN

$c=$
END

SUBROUTINE MONIT（M，N，CORN，RE，FJAC，LJC，SMON，IGR，NITER
S，NF，IW，LIW，WEG，LW）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
$\mathrm{FE}=\mathrm{RE}(1) * * 2+\operatorname{RE}(2) * * 2+\operatorname{RE}(3) * * 2$
WRITE（1，20）NITER，FE
FORMAT（＇AFTER＇，I4，＇ITERATIONS＇， $2 \mathrm{X}, ' \mathrm{THE}$ SUM OF SQ．IS＇
\＄．F9．3）
WRITE（1，22）（CORN（I）， $1=1, N)$
2 FORMAT（＇AT THE POINT＇，FIG．4）
RETURN
END

SUBROUTINE MONUT（M，N，CORN，RU，FJAC，LJC，SMON，IGR，NITER
S，NF，IW，LIW，WEG，LW）
IMPLICIT DOUBLE PRECISION（A－H，O－Z
DIMENSION CORN（3），RU（3），FJAC（3，3）， $\operatorname{SMON}(3), \operatorname{IW}(1)$, WE (-120)
FRITE（1）＊＊）
FOPMAT（＇AFTER＇．
I ${ }^{\prime}$ ITERATIONS＇， 2 X, ＇THE SUM OF SQ．IS＇
，F9．3）
WRITE（1，22）（CORN（I），I＝1，N）
FORMAT（＇AT THE POINT＇，FID．4）
RETURN
C
－
SUBROUTINE RESID（IELAG，M，N，CORN，RE，IW，LIW，WEG，Liv）
IMPLICIT DOUBLE PRECISION（A－H，O－2）
DIMENSION RE（3），CORN（3），IW（1），WEO（120）
COMMON／BLOI／R日，WEB，HG，EXG，VG，RKG，ROG
COMMON／BLO2／CONS，PI
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI ，CSKOU，SNKOU COMMON／BLO4／Z，Zも，ZHH
c
XCORN $=$ CORN（1）
YCORN $=$ CORN（2）
ZCORN $=$ CORN（3）
RSTAN＝DSQRT（XCORN＊＊2＋YCORN＊＊2）
ALPHA＝ZCORN／R $0 * D S I N(H \theta) / D C O S(H \theta)$
W2R＝WEB／2．／RSTAN
PHST＝－（DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSORT（RSTAN＊＊2

$1 \quad \mathrm{PHST}=-\mathrm{PI} / 2$ ．
2 PHSTXY $=$－DATAN（YCORN／XCORN）
CALL GRIN（Z，Z \quad ，AXX，BYY，CXY，DDX，EY，PF）
RE（1）$=\mathrm{AXX} *$ XCORN＊＊ $2+\mathrm{BYY} * Y C O R N * * 2+C X Y * X C O R N * Y C O R N+D D X$ $\$ *$ XCORN $+E Y^{*}$ YCORN $+F F$
$R E(2)=A X X * X C O R N * * 2+B Y Y * Y C O R N * * 2+C X Y * X C O R N * Y C O R N-D D X$ \＄＊XCORN－EY＊YCORN＋FF
RE（3）$=$ PHST + PHSTXY＋ALPHA

RETURN

 SUBROUTINE RESUD（IFLAG，M，N，CORN，RU，IW，LIW，WEG，LW） IMPLICIT DOUBLE PRECISION（A－H，O－Z
DIMENSION COEF（2日），RU（3），CORN（3），IW（1），WEG（12日）
COMMON／BLOI／RG，WEB，HO，EXG，VG，RKG，ROG
COMMON／BLO2／CONS ，PI
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO4／2，20，zHH
COMMON／BLO6／COEF，NCOEF，III
XCORN $=$ CORN（I）
YCORN＝CORN（2）
ZCORN＝CORN（3）
CALL GRIN（Z，Zø，AXX，BYY，CXY，DDX，EY，FF）
RSTAN＝DSQRT（XCORN＊＊2＋YCORN＊＊2）
PHSTXY＝－DATAN（YCORN／XCORN）
ALPHA $=Z$ CORN $/$ Rの＊DSIN（Hの）／DCOS（Hの）
PHST $=-$ PHSTXY－ALPHA
XST1＝RSTAN＊DCOS（PHST）
YSTl＝RSTAN＊DSIN（PHST）
YST＝0．0
DO $70 \mathrm{~J}=1$ ，NCOEF
YST＝YST＋COEF（J）＊XST1＊＊（J－1）
CONTINUE
RU（1）＝AXX＊XCORN＊＊2＋BYY＊YCORN＊＊2＋CXY＊XCORN＊YCORN＋DDX \＄＊XCORN＋EY＊YCORN＋FF
RU（2）＝AXX＊XCORN＊＊2＋BYY＊YCORN＊＊2＋CXY＊XCORN＊YCORN－DDX \＄＊XCORN－EY＊YCORN＋FF
RU（3）＝YST－YST1

RETURN

END

FUNCTION ROTAC（XLK）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（2日）
COMMON／BLO1／RG，WEB，HG，EXG，VG，RKG，ROG
COMMON／BLO2／CONS．PI

COMMON/BLO6/COEF, NCOEF, III COMMON/BLO15/XL日, YLa

YLK=
DO $75 \mathrm{~J}=1, \mathrm{NCOEF}$
YLK=YLK+COEF(J)*XLK**(J
CONTINUE
ONTINUE
ROTAC=R \rightarrow R
ROTAC $=R$
XL
YLK
C
YLø $=$ YLK

RETU

SUBROUTINE VIJK (SCE1,SCE2,SCE3,VJ1,VJ2,VJ3,VI1,VI2,VI3) IMPLICIT DOUBLE PRECISION(A-H,O-Z)
c
VK1 $=$ SCE 1
VK2=SCE 2
c
vJ2=1.
VJ $2=1$.
VJ $1=-(\mathrm{VJ} 2 * V K 2) / \mathrm{VK1}$
VJ $3=9$.
VJ=DSQRT(VJ1**2+VJ2**2+VJ3**2)
VJ1 $=\mathrm{VJ1/VJ}$
$\mathrm{VJ} 3=\mathrm{VJ} 3 / \mathrm{VJ}$
c
VIE1.
VI2=-(VI1*VJ1)/VJ2
VI 3=-(VI1*VK1+VI2*VK2)/VK3
$\mathrm{VI}=\mathrm{DSQRT}(\mathrm{VI} 1 * * 2+\mathrm{VI} 2 * * 2+\mathrm{VI} 3 * * 2$)
VI $1=$ VII/VI
VI $2=V I 2 / V I$
VI $3=V I 3 / V I$
c
RETURN
END
C
C
c
C
C

C *END*END*END*END*END*END*END*END*END*END*END*END*END*

APPENDIX 2

Computer geometric simulation of drill point showing the effect of flute design and cylindrical grinding parameters on drill point design (refer to Chapter 4).

Flute - Grindingconventional cylindrical

$$
\begin{array}{ll}
\mathrm{RO}=7.00 & \mathrm{DOg}=25.00 \\
\mathrm{Web}=1.80 & \mathrm{Ug}=90.00 \\
\mathrm{HO}=27.50 & \mathrm{Exg}=2.50 \\
\mathrm{Rk}=59.00 & \text { Rkg }=59.00
\end{array}
$$

[Refer to previous page: varying Ro]

Flute - conventional	Grinding- cylindrical
$R 0=6.00$	$\mathrm{DOg}=26.00$
Web $=$.50
$\mathrm{HO}=27.50$	$\mathrm{Exg}=90.00$
$\mathrm{Rk}=59.00$	Rkg $=59.00$

Flute - conventional	Grinding- cylindrical
$R 0=6.00$	$\mathrm{DOg}=26.00$
$\mathrm{Web}^{2}=2.50$	$\mathrm{Ug}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{Exg}=2.50$
$\mathrm{Rk}=59.00$	Rkg $=59.00$

Flute - Grindingconventional cylindrical
$R 0=6.00$
$\mathrm{DOg}=26.00$
Web= 1.80
$\mathrm{HO}=10.00$
$R k=59.00$
$\mathrm{Ug}=90.00$
Exg= 2.50
Rkg= 59.00

Flute - Grindingconventional cylindrical

$$
\begin{array}{ll}
\mathrm{RO}=6.00 & \mathrm{DOg}=26.00 \\
\mathrm{Web}=1.80 & \mathrm{Ug}=90.00 \\
\mathrm{HO}=40.00 & \mathrm{E} \times \mathrm{g}=2.50 \\
\mathrm{Rk}=59.00 & \text { Rkg }=59.00
\end{array}
$$

[Refer to previous page: varying HO]

Flute - Grindingconventional cylindrical
$R 0=6.00$
Web $=1.80$
$H O=27.50$
Rk $=48.00$
$D 0 g=26.00$
$\mathrm{Ug}=90.00$
Exg= 2.50
Rkg $=48.00$

Computer geometric simulation of drill point

Flute - Grindingconventional cylindrical

$$
\begin{array}{ll}
R O=6.00 & \mathrm{DOg}=26.00 \\
\mathrm{Web}=1.80 & U \mathrm{G}=90.00 \\
H 0=27.50 & \text { Exg }=2.50 \\
\mathrm{Rk}=68.00 & \text { Rkg }=68.00
\end{array}
$$

[Refer to previous page: varying Rk and Rkg]

Flute - Grindingconventional cylindrical

$$
\begin{array}{ll}
\mathrm{RO}=6.00 & \mathrm{DO} \mathrm{~g}=20.00 \\
\mathrm{Web}=1.80 & \mathrm{Ug}_{\mathrm{g}}=90.00 \\
\mathrm{HO}=27.50 & \text { Exg }=2.50 \\
\mathrm{Rk}=59.00 & \text { Rkg }=59.00
\end{array}
$$

$$
\begin{array}{ll}
\text { Flute } \\
\text { conventional } & \text { Grinding- } \\
\text { cylindrical }
\end{array}
$$

[Refer to previous page: varying DOg]

Flute - conventional	Grinding- cylindrical
$R O=6.00$	$\mathrm{DOg}=26.00$
Web= 1.80	$\cup g=50.00$
$H O=27.50$	Exg= 2.50
$R k=59.00$	$R k g=59.00$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Flute }- \\
\text { conventional }
\end{array} & \begin{array}{l}
\text { Grinding- } \\
\text { cylindrical }
\end{array} \\
R O=6.00 & \mathrm{DOg}=26.00 \\
\mathrm{RO}=1.80 & U \mathrm{~g}=95.00 \\
\mathrm{HO}=27.50 & \text { Exg= } 2.50 \\
R \mathrm{Kk}=59.00 & R \mathrm{~kg}=59.00
\end{array}
$$

[Refer to previous page: varying Vg]

Flute - Grindingconventional cylindrical

$R O=6.00$	$\mathrm{DOg}=26.00$
$W_{\mathrm{Eb}}=1.80$	$\mathrm{Ug}_{\mathrm{g}}=90.00$
$\mathrm{HO}=27.50$	$\mathrm{ExG}=2.00$
$\mathrm{Rk}=59.00$	$R \mathrm{~kg}=59.00$

Computer geometric simulation of drill point

$$
\begin{array}{ll}
\begin{array}{l}
\text { Flute } \\
\text { conventional }
\end{array} & \begin{array}{l}
\text { Grinding- } \\
\text { cylindrical }
\end{array} \\
R 0=6.00 & \mathrm{DOg}=26.00 \\
\text { Web }=1.80 & \mathrm{Ug}=90.00 \\
\mathrm{HO}=27.50 & \text { Exg }=3.50 \\
\text { Rk }=59.00 & \text { Rkg }=59.00
\end{array}
$$

[Refer to previous page: varying Exg]

APPENDIX 3

Computer plots of normal rake angle against radial distance showing the effect of flute design and cylindrical grinding parameters on the rake angle variation (refer to Chapter 4).

APPENDIX 4

Computer plots of normal clearance angle against radial distance showing the effect of flute design and cylindrical grinding parameters on clearance angle variation (refer to Chapter 4).

[Refer to Appendix 2: varying RO]

[Refer to Appendix 2: varying Web]

[Refer to Appendix 2: varying HO]

[Refer to Appendix 2: varying Rk and Rkg]

[Refer to Appendix 2: varying DOg]

[Refer to Appendix 2: varying Vg]

APPENDIX 5

Computer plots of inclination angle against radial distance showing the effect of flute design and cylindrical grinding parameters on inclination angle variation (refer to Chapter 4).

[Refer to Appendix 2: varying RO]

[Refer to Appendix 2: varying Meb]

[Refer to Appendix 2: varying HO]

[Refer to Appendix 2: varying Rk and Rkg]

[Refer to Appendix 2: varying DOg]

[Refer to Appendix 2: varying Exg]

APPENDIX 6

Computer program for non-conventional (and conventional) flute generation.

General flute design according to the cutting angles along the drill lip (refer to Chapter 5). This FORTRAN program uses subroutines from GINO and NAG libraries which are not listed here.

```
OOO
```



```
NON-CONVENTIONAL (AND CONVENTIONAL)
FLUTE GENERATION
GENERAL FLUTE DESIGN ACCORDING TO THE
CUTTING ANGLES ALONG THE DRILL TO 
DESIGNED,DEVELOPED AND IMPLEMENTED BY
MANUEL DOS SANTOS PAIS
```



```
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
REAL RGP，RON
REAL XEEL（200），YEEL（200），XAXIS，YAXIS，XCOR，YCOR
REAL XCIRE（200），YCIRE（200），XCIRD（20日），YCIRD（20日）
REAL XCHIG（20日），YCHIG（200），2CHIG（2日Q）
REAL XFLU（200），YFLU（20日），XS（200），YS（200）
REAL XSTG（290），YSTG（206），ZSTG（20ן）
REAL DINCC（20日），WEDGE（20日），RSINC（200）
DIMENSION XCHI2（200），YCHI2（200）
DIMENSION RU（7），T1PR（200），T2PR（200），STEPXY（7），WW（4ø0）
DIMENSION WS（3，7），REAU（260），REAUX（206）
DIMENSION VAR（3）
DIMENSION DF2（3）
DIMENSION RE（4），C12（4），C21（7）
DIMENSION RE（4），STEPMX（4），W（120）
DIMENSION FJJAC 4,4 ）
DIMENSION GAMAA（20®）， \(\operatorname{SMON}(4), V(4,4), \operatorname{IW}(1)\), WEO（120）
DIMENSION RADI（200），T211（200），GAMAE（200）
DIMENSION ETACHA（200），RCA（200），
EXTERNAL DERIV2，GRIN，MONIT RESID
COMMON／BLOØ／XFLU，YFLU，CWEDGE，RCA，ETACHA，XSTG，YSTG，ZSTG
COMMON／BLOI／NPOINT，MAXCAL，T1PR，T2PR，NLOOP
COMMON／BLO2／DFDX，DFDY，DFDZ，CE1，CE2，CE3
COMMON／BLO3／PA，REVAB，VG，RKG，EXG
COMMON／BLO4／SNVG，CSVG，SNKOI，CSKOI
COMMON／BLO5／SENETA，CSGAMA，VVCV，SGAMAE，GEMEA，SGAMA
COMMON／BLO6／DINCC，GAMAA，CLEAA，GAMAE，ETAA，VVCA
COMMON／BLOT／RADI，T211，SSS
COMMN BLOB／C，WEB，RGG，IWRITE，PI
COMMON／BLO11／DIDS 20
COMMON／BLO12／BAFTOL
COMMON／BLO14／XCE YCE
COMMON／BLO14／XCE，YCE，ZCE，XCORN，YCORN，ZCORN，ZXøY
СОММОN／BLO2の／XSTA，YS
СомMON／BLO21／XS，YSSTØ，ZST0，RC＠
COMMON／BLO21／XS，YS
```

C READING DATA
FORMAT（＇READ RG，WEB，HQ，EXG，VG，RKG，RดG＇／
§＇FOR DRILL BODY AND POINT ARCHITECTURE＇） READ（1，＊）RO，WEB，HO，EXG，VG，RKG，RGG WRITE（1，71）
FORMAT（／＇READ NUMBER OF POINTS ON THE LIP＇ READ（1，）NPOINT

PI＝3． 14159265
CONS $=3.141593 / 180$.
C
Hモ＝ H Ø＊ CONS
SVG＝DCOS（VG＊CONS
SNVG＝DSIN（VG＊CONS）

C CONVENTIONAL PROFILE－FOR COMPARISON
DO 9147 NS $=1$ ，NLOOP
RSTAN＝R日－FLOAT（NS－1）＊（RD－WEB／2．）／（NLOOP－1）
N2R $=\mathrm{WEB} / 2 . / \mathrm{RSTAN}$
IF（W2R．GE．1．）GO TO 79
PHST＝DATAN（W2R／DSQRT（1，－W2R＊＊2））＋DSQRT（RSTAN＊＊2－
S（WEB／2．）＊＊2）＊DSIN（H曰）／DCOS（Hด）／RG＊CSKOI／SNKOI
PHST＝PI／2．
$79 \quad \mathrm{PHST}=\mathrm{PI} / 2$.
XST
YST＝－RSTAN＊DSIN（PHST）
XS（NS）$=\mathrm{XST}$
$\mathrm{YS}(\mathrm{NS})=\mathrm{YST}$
9147 CONTINUE

YCE＝－WEB／2．
XCE＝DSQRT（RG＊＊2－YCE＊＊2）
AXX $=$ CSVG＊＊ $2+($ CSKOI＊＊ 2$) *($ SNVG＊＊2 $)$
BYY＝SNVG＊＊2＋CSVG＊＊2＊（CSKOI＊＊2）
c
PO2lこ（－2．＊SNKOI＊CSKOI＊SNVG）＊XCE
POZ2＝（－2＊SNKOI＊CSKOI＊CSVG）＊YCE
POZ $3=(-2, * E X G * C S V G+2, * 20 * S N K O I * C S K O I * S N V G) * X C E$
POZ $4=(2 . *$ EXG＊SNVG +2 ．＊2g＊SNKOI＊CSKOI＊CSVG）＊YCE
POZ $5=$ EXG＊＊2－（2，＊RøG）＊＊2＋Z日＊＊2＊SNKOI＊＊2
POZ $6=-2$ ．${ }^{2}$ Zg＊SNKOI＊＊2
OOZA＝SNKOI＊＊2

POZ1日 $=(-\mathrm{POZB}+D S O R T($ POZB＊＊2－4．＊POZA＊POZC））$/ 2 . /$ POZA $\mathrm{POZ} \mathrm{2} \mathrm{\theta=}$
$\mathrm{ZCE}=\mathrm{POZ} 2 \theta$ C OUTER CORNER
C OUTER CORNER
C $=$
$\mathrm{POX}=\mathrm{XCE}$
$\mathrm{POY}=\mathrm{YCE}$
$\mathrm{POY}=\mathrm{YCE}$
$\mathrm{POZ}=\mathrm{ZCE}$
$\mathrm{POZ}=2 \mathrm{CE}$
$\mathrm{POZA}=\mathrm{SNKOI} * * 2$
$\mathrm{POZB}=\mathrm{POZ} 6$
$\mathrm{POZC}=\mathrm{POZ} 5$
POZ $10=(-$ POZB＋DSQRT（POZB＊＊2－4．＊POZA＊POZC））／2．／POZA
POZ 2 $0=(-\mathrm{POZB}-$ DSORT（POZB＊＊2－4．＊POZA＊POZC））$/ 2 . /$ POZA
C CHISEL POINT－DEAD CENTRE

ZX日Yの＝POZ 20
WRITE（ 1,406 ）ZXøYG
406 FORMAT（／／，2XGYロ＝＇，F1の．3／／）
FFL＝－2．＊SNKOI＊CSKOI＊CSVG
HFL＝2．＊SNKOI＊CSKOI＊CSVG＊ZG＋2．＊EXG＊SNVG
$\mathrm{CFL}=\mathrm{SNKOI} * * 2$
EFL $=-2$＊SNKOI＊C

C
$\mathrm{CU1}=2, *(\mathrm{FFL} * 2 X G Y 0+\mathrm{HFL}) *(2, * \mathrm{CFL} * 2 X G Y Q+\mathrm{FLI})$ CU3＝0． 0
CU＝DSQRT（CU1＊＊2＋CU2＊＊2
$\mathrm{Cul}=\mathrm{Cul} / \mathrm{cu}$
$\mathrm{CU} 2=\mathrm{Cu} 2 / \mathrm{Cu}$
c
PHCHI＝－DATAN（DSORT（1．－CU1＊＊2）／CU1）
PHCHIG＝PHCHI／CONS
C CHISEL CORNER［ APROXIMATION ］
＝－
YCORN＝YCE
XCORN＝WEB／2．＊DCOS（PHCHI）／DSIN（PHCHI）
C POZl＝（－2．＊SNKOI＊CSKOI＊SNVG）＊XCORN
$\mathrm{POZ21} 2=(-2, * S N K O I * C S K O I * C S V G) * Y C O R N$
POZ $3=(-2 . * E X G * C S V G+2 . * Z g * S N K O I * C S K O I * S N V G) * X C O R N$
 POZ $5=E X G * * 2-(2 . * R G G) * * 2+Z \theta * * 2 * S N K O I * 2$
POZ6＝－2．＊Z®＊SNKOI＊＊2
$\mathrm{POZB}=\mathrm{POZ} 1+\mathrm{POZ} 2+\mathrm{POZ} 6$
POZC $=A X X * X C O R N * * 2+B Y Y * Y C O R N * * 2+C X Y * Y C O R N * X C O R N+P O Z 3+$ SPOZ4＋POZ 5
$\mathrm{POZ1日}=(-\mathrm{POZB}+\mathrm{DSORT}(\mathrm{POZB} * * 2-4 . * \mathrm{POZA} * \mathrm{POZC})) / 2 \cdot / \mathrm{POZA}$
$\mathrm{POZ2日=}$
$\mathrm{ZCORN}=\mathrm{POZ} 2 \boxminus$

IF（POZ10．LT．POZ20）ZCORN＝POZ10 $2 \mathrm{~EB}=2 \mathrm{CORN}$
CHEM＝ZCE
C $======= \pm= \pm= \pm \times=$
DO $5 I=1$ ，NLOOP
ZCHI＝ZCORN－FLOAT $(I-1) /$ FLOAT $(N L O O P-1) *(Z C O R N-2 X \sigma Y ด)$
C CALL GRIN（ZCHI，Z $\emptyset, A X X, B Y Y, C X Y, D D X, E Y, F F)$
C $\mathrm{CHIl}=\mathrm{BYY}+(\mathrm{EY} / \mathrm{DDX}) * * 2 * \mathrm{AXX}-\mathrm{AXX}-\mathrm{EY} / \mathrm{DDX} * \mathrm{CXY}$
$\mathrm{NCHI}=1$
IF（－FF／CHII ．GE．Ø．ø）GO TO $4 \varnothing 8$
WRITE $(1,410) \mathrm{NCHI}$
410 FORMAT（／／NCHI＝＇，I4／／）
GO TO 465
YCHI2（I）＝＋DSQRT（－FF／CHI1）
XCHI2（I）＝－YCHI2（I）＊EY／DDX
XCHIG（I）＝DABS（XCHI2（I））
YCHIG（I）＝－DABS（YCHI2（I））
5 CONTINUE
C INITIAL CONDITIONS TO THE PROFILE TO BE FOUND

$\mathbf{S S = 0 . 0}$
$\mathrm{XST}=\mathrm{XCE}$
$\mathrm{YST}=\mathrm{YCE}$
YST $=\mathrm{YCE}$
$\mathrm{ZST}=\mathrm{ZCE}$
C READING WEDGE ANGLE
WRITE（1，75）
FORMAT（＇READ CWEDGE＇）
READ（1，＊）CWEDGE
WRITE（1，70）
FORMAT（＇READ TO A GUESS STARTING COEFFICIENTS TO＇／
S＇INCLINATION ANGLE LAW AND STEP＇）
$\operatorname{READ}(1 ; *) \mathrm{Cl2}(1), \mathrm{Cl2}(2), \mathrm{Cl2}(3), \mathrm{Cl} 2(4), \mathrm{STEP}$
WRITE 1 1，74）
FORMAT（＇READ MAXCAL，IFAIL，IWRITE＇）
READ（1，＊）MAXCAL，IFAIL，IWRITE
$(1,76)$
FORMAT（＇READ BAFTOL，XTOL，ETA，IPRINT＇）
READ（ 1 ，＊）BAFTOL，XTOL，ETA，IPRINT
WRITE（1，77）
FORMAT（＇／CONVENTIONAL FLUTE INSTEAD ？＇）
READ（1，＊）ISTINS
C PARAMETERS TO SUBROUT EO4FCF

M4F＝4
$\mathrm{N} 4 \mathrm{~F}=4$
$\mathrm{LJ}=4$
$\mathrm{LV}=4$
$L I W=1$
$L W=129$

PHIl＝DATAN（YST／XST）
PHI＝PHIl－ZST／R日＊DSIN（H®）／DCOS（HØ）
XSTG（1）＝XST
YSTG（1）＝YST
WRITE（1，113）
113 FORMAT（／＇CALLING E04FCF＇／）
CALL Eの4FCF（M4F，N4F，RESID，MONIT，IPRINT，MAXCAL，ETA，XTOL， SSTEP，C12，FE，RE，FJAC，LJ，SMON，V，LV，NITER，NF，IW，LIW，WEG，LW， SIFAIL）
c
CALL EXIT
$\stackrel{C}{C}$

```
C
```


SUBROUTINE RESID（IFLAG，M4F，N4F，Cl2，RE，IW，LIW，WEG，LiN）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
EXTERNAL DERIV2
REAL XCIRE（2बの），YCIRE（2のब），XCIRD（2の日），YCIRD（20б）
REAL XEEL（2の日），YEEL（20日），XAXIS，YAXIS
REAL XSTG（20a）；YG（20 $), 2 S G(200)$
REAL XCHI（20日）YFLU（20日）XS（200）Ys（2ag）
REAL XERIG（29aj）RRG（29a），GAMI（2の9）（2a6）
REAL DINCC（209）WEDGE（290）RSINC（200）
REAL GAMAA（2の日），CLEAA（2の日），GAMAE（20日）
DIMENSION EIX（1gの，5），FEAT（190．4），THETA（5，4），B（4），AM（5，5）
DIMENSION SOLU（4），C（1ge，5）．IPIV（5），WK1（5，5），WK2（1бø）
DIMENSION WKS2（4），WKS1（32），SIGSQ（4）
DIMENSION XIMMSD（206），YNMSD（206），ZNMSD（200）
DIMENSION PHU（20日），SENOEE（20日）
DIMENSION CCE1（290），CCE2（206），CCE3（206）
DIMENSION A $(3,3)$ ，DCOOR（3）
DIMENSION XSTGD（2の日），YSTGD（20日）， 2 STGD（20日）
DIMENSION XNRAD（296），YNRAD（206），ZNRAD（26の）
DIMENSION XFLUD（2の日），YFLUD（29の）
DIMENSION XCHI2（2बg），YCHI2（2の日）
DIMENSION REAU（2øø），REAUX（20®）
DIMENSION IW（1），WEの（126），WS $(3,7)$
DIMENSION VAR（3）
DIMENSION DF2（3），C12（4），T1PR（20日），T2PR（200）
DIMENSION RE（4），STEPMX（3），W（120），DDIS（20ø）
DIMENSION SSS（2aの）
DIMENSION GAMN（2बの），GCD（20б），AKCD（20日），HCD（2बa）
DIMENSION ETACHA（2g日），RCA（2G日），GEMEA（2ø日）
COMMON／BLOの／XFLU，YFLU，CWEDGE，RCA，ETACHA，XSTG，YSTG，ZSTG

COMMON／BLOI／NPOINT，MAXCAL，TIPR ．T2PR，NLOO
COMMON／BLO2／DFDX，DFDY，DFD2，CE1，CE2，CE3
OMMON／BLO3／PA，REVAB，VG，RKG，EXG
OMMON／BLOS／SNV，CSVG，SNKOI，CSKOI
SGAMAE GEMEA，SGAMA
OMMON／BLOL GCC，GAMAA，CLEAA，GAMAE，ETAA，VVCA
COMMON／BLO7／RADI，T211，SSS
OMMON／BLOB／HØ，CONS，RØ，WEB，RØG，IWRITE，PI
COMMON／BLOL1／DIDS，ZG
COMMON／BLO14／XCE，YCE，ZCE ，XCORN，YCORN，ZCORN，ZXOYO COMMON／BLOL5／ISTINS，J
COMMON／BLO16／RPACE，PHPA，YPACE1
COMMON／BLOI7／COEA，COEB
COMMON／BLOL8／RGCHIP，HOCHIP，A
COMMON／BLO19／RSTAR，PHSTAR，ZSTAR，XSTROT，YSTROT，ZSTROT
COMMON／BLO2日／XSTG，YSTG，ZSTG，RCE
c
CS IS THE LENGTH ALONG THE CUTTING EDGE
C FROM THE OUTER CORNER
$\operatorname{VARX}=X C E$
$\operatorname{VAR}(1)=9.9$
$\operatorname{VAR}(1)=9.9$
$\operatorname{VAR}(2)=\mathrm{YCE}$
$\operatorname{VAR}(3)=\mathrm{ZCE}$
DVARX＝（XCE－XCORN）／FLOAT（NPOINT－2）

BAF $=3$

FAUL＝6
WRITE（1，114）
DO $40 \mathrm{~J}=1$ ，NPOINT
IF（J．GE．2）GO TO 42
VARXI＝XCE
VARX2＝VARX1＋DVARX
GO TO 43
ARXI＝XCE－FLOAT（J－3）＊DVARX
RXI－DVARX
TOL＝BAFTOL
CALL D日2BAF（VARX1，VARX2，NBAF，VAR，TOL，DERIV2，
c

SWS，IFAUL）
SS＝VAR（1）
XST＝VARX2
ST＝VAR（2）
2ST＝VAR（3）
PHIl＝DATAN（YST／XST）
PHU（J）＝PHII
UUl＝－DSIN（PHI1）
$\mathrm{UU} 2=+\mathrm{DCOS}$（PHII）
リU3ロの． 0
R $=\mathrm{DSORT}(X S T * * 2+Y S T * * 2)$
$\mathrm{VV}=2 . \mathrm{P}^{\mathrm{P}} \mathrm{F}_{\mathrm{RR}}$
COTH＝Rø＊DCOS（Hø）／DSIN（Hの）／RR
SENOI＝C12（1）＊（RR／R6）＊＊2＋C12（2）＊RR／Rg＋C12（3）＋C12（4）／RR
IF（ISTINS ．EO．1）SENOI＝NEB／2．／RR＊SNKOI
SENOEE（J）＝SENOI
$\operatorname{CCE1}(J)=\operatorname{CE1}$
$\operatorname{CCE} 2(J)=\operatorname{CE} 2$
$\operatorname{CCE} 3(J)=\operatorname{CE} 3$

VECTOR NORMAL TO THE MACHINED SURFACE
XNMS $=+\mathrm{UU} 2 *$ CE 3
ZNMS $=-$ CE1＊UU $2+U U 1$＊CE
SU＝DSQRT（XNMS＊＊2＋YNMS＊＊2＋ZNMS＊＊2）
DFD＝DSQRT（DFDX＊＊2＋DFDY＊＊2＋DFDZ＊＊2）
CSCLEA $=(X N M S * D F D X+Y N M S * D F D Y+Z N M S * D F D Z) / S U / D F D$ TGCLEA＝DSQRT（1．－CSCLEA＊＊2）／CSCLEA
CLEAR＝DATAN（TGCLEA）／CONS

XNMS $=-$ XNMS

YNMS $=-$ YNMS
ZNMS $=-$ ZNMS
XNMSD（ J ）$=$ XNMS
YNMSD（ J ）＝YNMS
ZNMSD $(\mathrm{J})=$ ZNMS
c
SALPHA＝DABS（ZNMS／SU）
CALPHA＝DSQRT（1．－SALPHA＊＊2）
C $=$
C RAKE ANGLE COMPUTATION
$196 \operatorname{COTH}=\mathrm{R}$ の＊DCOS（Hの）／DSIN（Hの）／RR
VVCOTH＝DSQRT（UU1＊＊2＋UU2＊＊2＋COTH＊＊2）
C
VECTOR NORMAL TO RAKE FACE
XNRA $=\mathrm{UU} 2{ }^{*} \mathrm{CE} 3-\mathrm{CE} 2 *$ COTH
YNRA＝CE1＊COTH－UU1＊CE3
ZNRA＝UU1＊CE2－UU2＊CE1
XYZN＝DSQRT（XNRA＊＊2＋YNRA＊＊2＋ZNRA＊＊2

XNRA $=X N R A / X Y Z N$
YNRA＝YNRA／XYZN
ZNRA $=2 N R A / X Y Z N$
MNRAD（J）＝XNRA
NNRAD（J）＝2NRA
COSGN＝（ - XNRA＊CE $2+$ YNRA＊CE1）／DSORT（CE2＊＊2＋CE1＊＊2）
GAMNN $=$ DATAN（DSORT（1．－COSGN＊＊2）／COSGN）
IF（XNRA ．NE．． 9 ）GO TO 3300
WRITE（1，3313）
3313 FORMAT（＇XNRA IS NUL＇）
330 AR2=DSQRT(XNRA**2/(XNRA**2+YNRA**2))
AR1=-AR2-YNRA/XNRA
BRI=XST/RR
$\mathrm{BR} 2=\mathrm{YST} / \mathrm{RR}$
CSBETA=AR1*BR1 + AR2*BR2
SNBETA=DSORT (1.-CSBETA**2)
BETA=DATAN (SNBETA/CSBETA)
SIGN1=XNRA*XST+YNRA*YST
SIGN2=DABS (SIGN1)
IF(SIGN2 .NE. Ø.) GO TO $3 ø ø 1$
WRITE(1, 30ø3)
$3 \varnothing 01$ SIGN＝SIGN1／SIGN2
BETA $=$ SIGN＊DABS（BETA）
TGBETA＝DSIN（BETA）／DCOS（BETA）
TGETA $=S A L P H A * T G T E T A+T G B E T A * C A L P H A$
TGGAMA＝DSORT（1．－SENOI＊＊2）＊TGETA
CSGAMA $=(1 .+$ TGGAMA＊＊2）＊＊（－1．
GAMA＝DATAN（TGGAMA）／CONS
SGAMA $=D S$ IN（GAMA＊CONS）
PHI1＝DATAN（YST／XST）
PHI＝PHII－ZST／R
XFLUT＝RR＊DCOS（PHI）
YFLUT＝RR＊DSIN（PHI）
XFLUD（J）＝XFLUT
c
XFLU（J）$=$ XFLUT
YFLU（J）＝YFLUT
IF（SENOI ．LTT．1．）GO TO 4311
WRITE（1，4316）
FORMAT（＇SENOI ．GE．1．＇）
CALL EXIT
C
4311
TINC＝SENOI／DSQRT（1．－SENOI＊＊2） DINC＝DATAN（TINC）
DINCl＝DINC／CONS
IF（J．NE．2）GO TO 117
XSTG＝XST
YST $0=Y S T$
ZST0＝ZST
c
117 RRG（J）＝RR
RSINC（J）＝SENOT＊RR
XSTG（J）$=\times S T$
XSTG
YSTG $(J)=X S T$
ZSTG（J）＝2ST
XSTGD（J）$=X S$
$\operatorname{XSTGD}(\mathrm{J})=X S T$
$\mathrm{YSTGD}(\mathrm{J})=\mathrm{YST}$

ZSTGD（J）＝ZST
SSS（J）＝SS－SSS（2）
DINCC（J）＝DINC1
GAMAA $(J)=G A M A$
GAMN（ J ）＝GAMNN／CONS
$\operatorname{CLEAA}(J)=$ CLEAR
$\operatorname{GAMAA}(1)=\operatorname{GAMAA}(2)$
WEDGE（J）＝9ø．－GAMA－CLEAR
HCD（J）＝HC／CONS
DDIS（J）＝DIDS＊CON
$\operatorname{GAMIE}=(\operatorname{SIN}(\operatorname{DINCC}(J) * \operatorname{CONS})) * * 2+(\operatorname{COS}(\operatorname{DINCC}(J) * \operatorname{CONS})) * * 2 *$
SIN（GAMAA（J）＊CONS）
GAMI（J）＝ATAN（GAMIE／SQRT（1．－GAMIE））／CONS
$\operatorname{REAUX}(1)=\varnothing .0$
REAU（J）＝DABS（9a．－CWEDGE－GAMAA（J）－CLEAA（J））
IF（J ．EO．1）GO TO 4a
$\operatorname{REAUX}(J)=\operatorname{REAUX}(J-1)+\operatorname{REAU}(J) * \operatorname{DVARX}$
WRITE（1，115）
15 FORMAT（／＇LOOP 40 FINISHED＇／）
$\operatorname{SSS}(2)=9$ ．
$\operatorname{RE}(1)=\operatorname{REAU}(2)$
$\operatorname{RE}(2)=(\mathrm{YSTGD}(\mathrm{NPOINT})+\mathrm{WEB} / 2$.
$\operatorname{RE}(3)=$ REAUX（NPOINT－3）／DVARX／FLOAT（NPOINT－3）
$\operatorname{RE}(4)=\operatorname{REAU}(\mathrm{NPOINT}-3)$
c
IF（IWRITE ．EQ．9）GO TO 492
946 WRITE（ 1,940 ）
$\operatorname{READ}(1, *)$ IGRA
IF（IGRA．EQ． 1$)$ GO TO 935
READ（1，＊）SEPARA
c TABLES
SECTION AND COORDINATES TO NEW DESIGN FLUTE WRITE（1，80）
 §＇ Z ＇，3X，＇XFLU＇，3X＇＇YFLU＇／／／）
DO $41 \mathrm{~J}=2$ ，NPOINT
WRITE（1，92）RADI（J），SSS（J），XSTG（J），YSTG（J），ZSTG（J）
FORMAT（IGE7．2）
CONTINUE
C CONTINUE
C ANGLES ALONG LIP
WRITE（1，204） FORMAT（／／／3X，＇RADI＇，3X，＇INC＇，3X，＇GAMA＇，3X，
c
\＄＇GAMN＇，3X，＇GAMI＇，3X，＇CLEA＇，3X，＇WEDG＇／／／）
WRITE（1，205）（RADI（I），DINCC（I），GAMAA（I），GAMN（I） SGAMI（I），CLEAA（I），WEDGE（I），I口1，NPOINT）

205 FORMAT（7F7．2）
READ（1，＊）SEPARA
C
C FINAL PARAMETERS TO INCLINATION ANGLE LAW WRITE（1，921）C12（1），C12（2）．C12（3）
921 FORMAT（／／／6x，＇C12（i）＝＇．F8．4，3x，＇C12（2）＝＇，F8．4，3X，／ \＄＇Cl2（3）＝＇，2F8．4）
NOW ，PLOTS
69 WRITE（1，60）GRAPHICS ？$/ / /$ ）
$\operatorname{FORMAT}(/ / 1$ GRAD $1, *)$ IGRAF
IF（IGRAF ．EQ．G）CALL EXIT
935 CONTINUE
C $\operatorname{WRITE}(1,142)$
142 FORMAT（／＇T401ø（1），C1051N（2）OR SE281（3）？＇／） READ（1，＊）IDEVIC
WRITE（1，232）
232 FORMAT（＇CHISEL EDGE ？＇）
READ（1，＊）ICHIS
IF（ICHIS ．EQ．ह）GO TO 112
C CHISEL EDGE COMPUTATION
DO $5 \mathrm{I}=1$ ，NLOOP
CHIaZCORN－FLOAT（I－1）／FLOAT（NLOOP－1）＊（ZCORN－ZX日Yロ ）
ZCHIG（I）＝ZCHI
C CALL GRIN（ZCHI，AXX，BYY，CXY，DDX，EY，FF）
C CHI $=\mathrm{BYY}+(E Y / D D X) * * 2 * A X X-A X X-E Y / D D X * C X Y$
RADIC $=-\mathrm{FF} / \mathrm{CHI} 1$
ff（RADIC ．GE．g）GO TO 233
WRITE（1．231）
231 FORMAT（／RADIC＜θ＇
CALL EXIT
233 YCHI2（I）＝＋DSQRT（RADIC1）
C $\quad \mathrm{XCHI} 2(\mathrm{I})=-\mathrm{YCHI} 2(\mathrm{I}) * E Y / D D X$
$\mathrm{XCHIG}(I)=\operatorname{DABS}(\mathrm{XCHI} 2(I))$
YCHIG（I）＝－DABS（YCHI2（I））
CONTINUE
RITE（1，101）
101 FORMAT（／＇CHISEL EDGE COMPUTED＇／）
continue
$R \emptyset P=R B+1$.
IR $g=R G P$ ．

IRG＝2＊IR
c
C COMPUTING FLUTE HEEI
WRITE（1，200）

FORMAT(/'READ ANGLE FOR HEEL')
READ (1, *)ANGCLE
$\operatorname{YEEL}(1)=$ RD*SIN(ATAN(YFLU(2)/XFLU(2))-PI+ANGCLE*CONS)
$\operatorname{XEEL}(1)=R 0 * \operatorname{COS}(\operatorname{ATAN}(\operatorname{YFLU}(2) / \operatorname{XFLU}(2))-\mathrm{PI}+\operatorname{ANGCLE} * C O N S)$
RCORN $=$ DSORT $(X C O R N * * 2+Y C O R N * 2)$
PHICO=ZCORN/RCORN*DSIN(Hб)/DCOS (Hб)
PHICOR=DATAN (YCORN/XCORN)-PHICO
YCOR=RCORN*SIN (PHICOR)
XCOR=RCORN* COS (PHICOR)
AEEL=(YEEL (1)-YCOR)/(XEEL $(1)-X C O R) * * 2$
BEEL=-2, *AEEL*XCOR
$\operatorname{CEEL}=\mathrm{YEEL}(1)-\mathrm{AEEL} *\left(\operatorname{XEEL}(1) * * 2-2 . * \operatorname{XCOR}^{*} \operatorname{XEEL}(1)\right)$
DO $201 \quad I=1$, NLOOP
$\operatorname{XEEL}(I)=\operatorname{XEEL}(1)+$ FLOAT $(I-1) / F L O A T(N L O O P-1) *(X C O R$
$\$-\operatorname{XEEL}(1)+1$.
YEEL(I)=AEEL*XEEL(I)**2+BEEL*XEEL(I)+CEEL
YCIRE(I)=YEEL(1)+FLOAT (I-1)/FLOAT (NLOOP-1)
\$*(1.-YEEL(1))
$\operatorname{YCIRD}(I)=\operatorname{YFLU}(2)+\operatorname{FLOAT}(I-1) / F L O A T(N L O O P-1) *(1,-Y F L U(2))$
$\operatorname{XCIRD}(I)=\operatorname{SQRT}(R G * * 2-Y C I R D(I) * * 2)$
CONTINUE
NPOINT=NPOINT-1
WRITE (1.215)
215 FORMAT(/'FLUTE CROSS SECTION ?*)
READ (1,*)IFLUSE
IF (IFLUSE .EO. O)GO TO 216
GO TO (262.143,144), IDEVIC
CALL T4010
XAXIS
158.
XAXIS $=158$.
YAXIS $=128$.
GO TO 44
CALL CIG5IN
XAXIS $=20 . * R \theta P$
YAXIS $=20 . * R g P$
GO TO $44{ }^{\text {Y }}$
CALL SE28
XAXIS $=2$ 2.*R日F
XAXIS $=20 . * R G P$
YAXIS $=2 \theta . * R G P$
44 CALL PICCLE
CALL WINDOW(2)
CALL AXIPOS ($0,130,100 .$, XAXIS,1)
CALL AXIPOS ($0,130.100 .$, YAXIS, 2)
CALL AXISCA (2, IRØ, R@N, RØP,1)
CALL AXISCA(1,IRO,RgN,RgP,2)
CALL AXIDRA $(2,1,1)$
CALL AXIDRA ($-2,-1,2$)
CALL GRAPOL (XFLU (2), YFLU(2), NPOINT)
CALL GRAPOL (XEEL, YEEL, NLOOP)
CALL GRACUR (XCIRE, YCIRE, NLOOP)
CALL GRACUR (XCIRD, YCIRD, NLOOP)

CALL DASHED ($-2,6,3 ., 1$.
CALL GRAPOL (XS, YS, NLOOP)
CALL BROKEN (a)
CALL GRAMOV (XCOR, YCOR)
CALL CHASIZ $(6 ., 6$.
CALL SYMBOL (5)
CALL CHAMOD
CALL GRAMOV(9.,0.)
CALL CHAMOD
WRITE (1,206)XCOR, YCOR
FORMAT(2F10.3)
IR $=1 R 0 / 2$
READ (1,*)SEPARA
RITE 1,217)
FORMAT(/'INCLINATION ANGLE PLOTTING?')
(INCAD INCANG
F(INGNG . EQ. ©) GO TO 218

RøP=IR
RøN $=-$ R $\emptyset P$
GO TO (207, 2б8, 209) , IDEVIC

CALL T4010
XAXIS $=158$.
YAXIS $=128$.
GO TO 210
Call Clo51N
XAXIS $=150$.
YAXIS $=150$.
GO TO 219
CALL SE281
XAXIS $=180$.
YAXIS $=110$.
CALL PICCLE
CALL WINDOW (2)
ALI AXIPOS (0,50.,50., XAXIS,1)
CALL AXIPOS ($0,50,50 \ldots$ YAXIS, 2)
CALL AXISCA(2,IR@, ©.,R@P, 1)
CALL AXIDRA $(2,1,1)$
CALL AXIDRA $(-2,-1,2)$
CALL GRACUR(RRG(2), DINCC(2),NPOINT)
CALL AXISCA(1,6.b.,6.,2)
CALL GRACUR(RRG(2), RSINC(2), NPOINT)
CALL AXIPOS $(0,35 ., 46 ., Y A X I S, 2)$
CALL AXISCA(1,6,0.,6.,2)
CALL AXIDRA (-2, -1,2)
CALl chamod
READ (1,*)SEPARA
WRITE(1, 22g)
FORMAT(/'WEDGE PLOTTINGANGLE $7^{\prime \prime}$)

READ（1，＊）IWED

IF（IWED ．EQ．g）GO TO 219
C
R （ $\mathrm{P}=\mathrm{R} 0+1$ ．
IR $\sigma=$ RGP
$R \oslash P=I R \varnothing$
R ON $=-\mathrm{R}$ ®P
GO TO（211，212，213），IDEVIC
C
CALL T4018
YAXIS $=128$ ．
GO TO 214
212 CALL CIE51N
CALL CIS＝150．
YAXIS＝159．
GO TO 214
213 CALL SE281
XAXIS＝18日．
YAXIS＝129．
214 CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ $9,50 . .5 \pi$. XAXIS， 1 ）
CALL AXIPOS（0，50．，50．，YAXIS， 2 ）
CALL AXISCA（2，IRg，日．，RgP，1）
CALL AXISCA（1，8，40．，86．，2）
CALL AXIDRA $(2,1,1)$
CALL AXIDRA（ $-2,-1,2$ ）
CALL GRACUR（RRG（2），WEDGE（2），NPOINT）
CALL CHAMOD
219 CONTINUE READ（1，＊）SEPARA WRITE（1，224）
224 FORMAT（＇EfFECTIVE RAKE PLOTTING ？＇） READ（1，＊）IRAKE
IF（IRAKE ．EQ．6）GO TO 223
$\mathrm{R} \emptyset \mathrm{P}=\mathrm{RG} \mathrm{G}+1$.
$I R G=R G P$
$R g P=I R g$
R RN $=-R \square P$
CALL SE281
CALL HICCLE
CALL AXIPOS（O．
CALL AXIPOS（ 0,5 ． 5 ，8日．，18月．，1）
CALL AXIPOS $\left(9,50,80 \ldots 135\right.$, A $\left.^{2}\right)$
CALL AXISCA $(2,16,-46 ., 40 ., 2$
CALL AXISCA AXIDRA $(2,16,1)$
CALL AXIDRA $(-2,1,1,2)$
CALL GRACUR（RRG（2），GAMAA（2），NPOINT） CALL CHAMOD

READ（1，＊）SEPARA
223 WRITE（1，221）
221 FORMAT（／＇MORE PLOTS ？＇
READ（1，＊）IPLOT
C
C plotting drill lip
IF（IPLOT ．EQ．1）GO TO 222
IF（IDEVIC．EQ．2）GO TO 45
CALL T4日16
GO TO 46
45 CALL C1851N
CALL WINDOW（2）
CALL AXIPOS（ $\theta, 100 \ldots 20 \ldots 206 \ldots 1$ ）
CALL AXIPOS（ 0,1 ，1日月．，20．，150．，2）
ALLL AXISCA $(2,20,-19,16.1)$
CALL AXISCA $(2,15,-3$
CALL AXIDRA $(-2,-1,2)$
CALL GRACUR（XSTG（2），ZSTG（2），NPOINT）
CALL GRACUR（XCHIG，ZCHIG，NLOOP）
CALL CHAMOD
READ（1，＊）SEPARA

CONTINUE
ETUR
c
$\mathrm{c}=$
SUBROUTINE DERIV2（XVAR，VAR，DF2）
＝$=$＝
MPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION VAR（3）
DIMENSION DF2（3），Cl2（4），VERUF（2日の），C21（7）
DIMENSION ZX（200），ZY（200），2Z（200），SSS（200）
COMMON／BLO2／DFDX，DFDY，DFDZ，CE1，CE2，CE3
COMMON／BLO3／PA ，REVAB，VG，RKG，EXG
COMMON／BLO4／SNVG，CSVG，SNKOI，CSKOI
COMMON／BLO8／H日，CONS，R 0 ，WEB，RØG，IWRITE ，PI
COMMON／BLO1の／C12，C21
COMMON／BLOI1／DIDS，Z®
COMMON／BLOL5／ISTINS，J
XST＝XVAR
YST＝VAR（2）
C
R＝DSTR（2）＊（2） IF（DABS（SENOI）．LT．1．）GO TO $23 \varnothing$
WRITE（1，231）
231

PHI l＝DATAN（YST／XST）
UUl＝－DSIN（PHII）
UU $2=+$ DCOS $(\mathrm{PHII}$
UU3＝0． 0
IF（UU1 ．NE． $0 . \sigma$ ．AND．RR ．NE．©．0）GO TO 1789
WRITE（1，1791）
FORMAT（：UUI
UU1 O
OR
R IS NUL＇
CALL EXIT
c
c
CALL GRIN（ZST，Z $\boldsymbol{Z}, \mathrm{AXX}, \mathrm{BYY}, \mathrm{CXY}, \mathrm{DDX}, \mathrm{EY}, \mathrm{FF})$
DFDX＝2．＊XST＊AXX＋YST＊CXY＋DDX
DFDY $=2 . * Y S T * B Y Y+C X Y * X S T+E Y$ \＄＊CSKOI＊CSVG）＋SNKOI＊＊2＊2．＊（zST－Zの）

F（UU1 ．NE．．D）GO TO 7654
WRITE $(1,7656)$
CALL EXIT
COICEI＝SENOI／UU1
CO2CE1＝－UU2／UU1
CO1CE3 $=-($ DFDX＊SENOI $) /(D F D Z * U U 1)$
CO2CE3＝（DFDX＊UU2）／（DFDZ＊UU1）－DFDY／DFDZ
COTH－RQ＊DCOS（Hの）／DSIN（H0）／RR
$\mathrm{ACE} 2=1 .+\mathrm{CO2CEl} * * 2+\mathrm{CO} 2 \mathrm{CE} 3 * * 2$
BCE2－2．（COICE1
PADIC5＝BCE2＊＊2－4＊ACE2＊CCCE2
IF（RADIC5．GE．A．ब）GO TO 185
WRITE（1，187）RADIC5
FORMAT（＇（187）RADIC5 IS NEGATIVE $=$＇，F12．6）
CONTINUE
IF（ACE2 ．NE．．σ ）GO TO 4100
WRITE（1，40日9）
FORMAT（＇ACE2 IS NUL＇）
CALL EXIT
CE2－（－BCE2－DSQRT（RADIC5））／（2．＊ACE2）
CE1＝CO1CE1＋CO2CE1＊CE2
CE3 $=$ CO1CE3 + CO2CE3＊CE2
DF $2(1)=-1 . / C E 1$
$\mathrm{DF} 2(2)=\mathrm{CE} 2 / \mathrm{CE} 1$
IF（J．EQ．1）DF2（1）＝－DF2（1）

RETURN

C

IMPLICIT DOUBLE PRECISION（A－H，O－Z）
OMMON／BLO3／PA，REVAB，VG，RKG，EXG
COMMON／BLO4／SNVG，CSVG，SNKOI，CSKOI
COMMON／BLOB／HE，CONS，Rg，WEB，RAG，IWRITE，PI

AXX＝CSVG＊＊2＋（CSKOI＊＊2）＊（SNVG＊＊2）
BYY＝SNVG＊＊2＋CSVG＊＊2＊（CSKOI＊＊2）
CXY $=-2,{ }^{*}$ SNVG＊CSVG +2 ＊＊（CSKOI $\left.* * 2\right)$＊SNVG＊CSVG DDX $=-2 . * E X G$＊CSVG－2．＊$(Z-Z \theta) * S N K O I * C S K O I * S N V G$ YF＝EXG＊＊2－（2＊ROG）＊＊2＋（（z－Z日）＊＊2）＊SNKOI＊＊2
RETURN
$\stackrel{C}{C}$

SUBROUTINE MONIT(
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Cl2(4), RE(4), FJAC(4, 4), SMON(4), IN(1), WEG(120)
$\mathrm{FE}=\mathrm{RE}(1) * * 2+\mathrm{RE}(2) * * 2+\mathrm{RE}(3) * * 2+\mathrm{RE}(4) * * 2$
WRITE(1, 26)NITER,FE
FORMAT ('AFTER',I4,' ITERATIONS', $2 X, ' T H E ~ S U M ~ O F ~ S Q . ~ I S ' ~$
FORMAT (AFTER', I4
WRITE (1, 22)(Cl2(I), I=1,4)
WRITE(1, 22)(Cl2(I), $\mathrm{I}=1,4$)
FORMAT
RETU
c
c
c
C *END*END*END*END*END*END*END*END*END*END*END*END*END*
END

APPENDIX 7

Wear loss at points 2, 3, 4 and 5 (outer corner) along the drill lips for both tested drilling conditions. For point 1 refer to Chapter 6.

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 2 of each drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 3 of eacti drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 3 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 4 of each drill lip

Wear loss at point 5-outer corner - of each drill lip

Wear loss at point 5 - outer corner - of each drill lip

Wear loss at point 5 - outer corner - of each drill lip

Wear loss at point 5 - outer corner - of each drill lip

Wear loss at point 5 - outer corner - of each drill lip

Wear loss at point 5 - outer corner - of each drill lip

Wear loss at point 5 - outer corner - of each drill lip

APPENDIX 8

Computer program for chip geometric simulation with any flute shape and any set of cylindrical grinding conditions providing for chip flow angle prediction, cutting ratio prediction and other chip related variables (refer to Chapter 8).

This FORTRAN program uses subroutines from GINO and NAG libraries which are not listed here.


```
    CHIP SIMULATION FOR
    ANY SET OF CYLINDRICAL GRINDING
    CONDITIONS AND ANY FLUTE SHAPE
```

PROGRAM DESIGNED，DEVELOPED AND IMPLEMENTED BY MANUEL DOS SANTOS PAIS

SUBROUTINES FROM GINO AND NAG LIBRARIES ARE USED

IHPLICIT DOUBLE PRECISION（A－H，O－Z）
REAL ETARIG（19D），SSS（109），CEL（100）
REAL XAXIS，YAXIS，ROP．
REAL XPACG（106），YPACG（100），ZPACG（106），RSTO（106）
REAL XI（100），Y1（109），YIN（100），Y1A（190），X1A（190）
REAL TIMEU（1gの），TIWI（160），TIMAU（1gの）
REAL XFLU（10の），YFLU（10の），XCHIG（10日），YCHIG（10日），ZCHIG（10日）
REAL RAKE（10日），ANSAI（190），AINC（190），ANSI（100）
REAL RADI（10の），XLG（1gの），YLG（19の）
REAL XSTG（100），YSTG（100），ZSTG（190），RSNI（190），DL（109）
REAL DVSNI（100），ADVSNI（199）
REAL XHEELG（10g），YHEELG（100），ZHEELG（190），XEELG（1ø0）
DIMENSION YEELG（100）
REAL VCSIET（19の），SVCSIE（1gの），VVSIIN（1日月），SVVSII（1日の）
REAL XRIGG（100），YRIGG（190），ZRIGG（190），ZRIGGD（190）
REAL VERIG（1の日），RCAG（1ag），T1PR（19日），T2PR（10日），VVCA（1ø0）
DIMENSION A（3，3），DCOOR（3），CAAR（3），EIX（4）
DIMENSION VERIF（100）
Dimen
DIMENSION GAMN（190），GCD（190），AKCD（100），HCD（190）
DIMENSION RRN（10g），T211（100），ETAA（16g）
DIMENSION RCA（10ø），GEMEA（10日）
DIMENSION XCHI2（109），YCHI2（100）
DIMENSION ZSTGD（1の日），XSTGD（190），YSTGD（1月0）
dimension rchise（190），ChIXA（100）
DIMENSION DER（14），EREST（14），COEF（20）
DIMENSION XMSU（10日），YMSU（100），ZMSU（100）
DIMENSION XL（100），YL（100），DERIV（190），RELIEF（100）
DIMENSION RSTFL（40），PHSTFL（4 0 ），COFL（40），XHSTFL（40）
DIMENSION YHSTFL（40）
DIMENSION CCE1（190），CCE2（100），CCE3（100），CCE3P（190）
DIMENSION DIDL（1øの），VVD（igø）
DIMENSION ZTGHG（1の日），HEUR（1g0），ETAS（100），WIETA（100）

DIMENSION CORN（3），RE（8），RU（3），WED（120）
DIMENSION FJAC（8，8），SMON（8），V（8，8），IW（1）
10a），YEELGD（19ठ）
DIMENSION XCHID（1日G），YCHID（10日），ZCHID（10日），VCHIP（1פ0）
COMMON BLO1／Rg RGG VEB HO PKG
COMMON／BLO2／CONS，RCAM，EXG，VG
COMMON／BLO3／ALPHA，CSVG，SNVG．CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／Z．Zø，ZHH
COMMON／BLO5／S，NPOINT，NLAAP，ISEC
COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
COMMON／BLO7／XCLE，YCLE，IFL，IHILST，PHIIL2
COMMON／BLOB／XFLUEE，YFLUEE，DMAR，XSTEEL，YSTEEL，DPHEEL，YEEL
COMMON／BLOIの／CUTRAT，DINC，RAK，FRIC
COMMON／BLO11／COFL，NSTFLI
COMMON／BLO12／RSE，PHSE，DSEC，SCE1，SCE 2 ，SCE 3
COMMON／BLO13／XSEC，YSEC，ZSEC，ZMSEC
COMMON／BLO14／RPACE，PHPA，ZPACEI
COMMON／BLO15／XLG，YLO
COMMMON／BLOI6／COEA，COEB，COEC，COED
COMMON／BLO17／XEELA，YEELA，2WEB
COMMON／BLOIO／XHEELD YUERID ZHEELD
COMMON／BLO2 $9 /$ XHEELD，YHEELD，ZHEELD
COMMON／BLO21／ZEB，XEB，YEB，XEM，YEM，ZEM
COMMON／BLO22／R曰CHIP，HøCHIP，A
COMMON／BLO23／RSTAR，PHSTAR，ZSTAR，XSTROT，YSTROT，ZSTROT
COMMON／BLO24／PA ，PI ，RC＠，RC1
COMMON／BLO25／XSTGD，YSTGD，ZSTGD
COMMON／BLO26／RRN
COMMON／BLO27／XNRAD，YNRAD，ZNRAD
COMMON／BLO28／XPACE，YPACE，ZPACE
EXTERNAL FAN，FEEL，FIIL，FIN，FLANK，FON，FOUTCR，FPACE，FUN
EXTERNAL FUNSEC，GPACE，GRIN，MONAT，MONIT，MONUT，RESAD，RESID
EXTERNAL RESUD，ROTAC
C DATA READING
WRITE（1，704）
Rg WEB Hס AND RO－DRILL PARAMETERS＇ （1，＊）Rg，WEB，Hø，RO

FORMAT（／＇GRINDING PARAMETERS＇）
READ（1，＊）EXG，vg，RKG，KMG WRITE（1，19）
FORMAT（＇READ S＝1．FOR NON－CONV．DRILL＇／
§＇READ ALSO NPOINT＇）
READ（1，＊）S，NPOINT
C READ FROM FILE
READ（5，＊）NP
WRITE（1，11）
FORMAT（＇READ NCOEF＇）
READ（1，＊）NCOE
RSTAN1＝1E－4

IF（S ．EQ．． 9 ）RSTAN $1=W E B / 2 .+1 . E-6$
RSTAN $2=R{ }^{2}+1$ ．
HBASE＝1E－5
NCHI＝NPOINT
ZCLE1＝2．
2CLE2＝1．2＊Rの
c
$\operatorname{READ}(1, *)$ RPM，RPI
$\mathrm{PI}=3.14159265$
CONS＝P1／18日．
H $0=\mathrm{H} \varnothing$＊CONS
C
CSVG＝DCOS（VG＊CONS $)$
SNVG＝DSIN（VG＊CONS）
CSKOI＝DCOS（RKG＊CONS）
SNKOI＝DSIN（RKG＊CONS
CSKOU $=$ DCOS（RO＊CONS）
SNKOU＝DSIN（RO＊CONS）
$\mathrm{DIG}=\mathrm{DSQRT}((2, * \mathrm{RgG}) * * 2-(\mathrm{EXG} * * 2$
8004 WRITE（ 1,8004 ）FOR THE COMPUTATION THE CHISEL CORNER＇）
Baga WRITE（1，89の日）
FORMAT（＇IPRINT／（－1）－NO CALL／（1）－EACH ITERATIØN＇／ $\varsigma^{\prime}(\sigma)$－FINAL ITERATION＇）
READ（1，＊）IPRINT
FTOL＝1．E－7
C CHISEL CORNER－STARTING POINT
CORN（1）＝WEB／2．
$\operatorname{CORN}(2)=-$ WEB $/ 2$
$\operatorname{CORN}(3)=1$
WRITE（1：8002）
8002 FORMAT（＇READ STEP FOR CHISEL CORNER CALCULATION＇） MAXCAL＝1 ${ }^{\circ}$ ga
C
VRITE（1，8の日5）
FORMAT（／＇SELECT POINT STEP FOR PRINTING＇）
READ（ $1,{ }^{*}$ ）NSALTO
WRITE（1，7910）
7010 FORMAT（＇ANGULAR DIFFERENCE MARGIN／HEEL＇）
READ（1，＊）DPHEEL
DPHEEL＝DPHEEL＊CONS
WRITE（1，8の日g）
8009
C
7015 WRITE（\};?915) FORMAT(\% OPEN HEEL ?')
$\operatorname{READ}(1, *)$ IHILST

C
734
c

EPS1＝1
EPS $1=1 \cdot E-7$
EPVI $=1 . E-7$
EPV＝1．E－7
IFAIL＝ 9
IF（S ．NE．1．）GO TO 15
DO $264 \quad I=1, N P$
READ（5，＊）XL（I），YL（I）
CONTINUE
WRITE（1，206）（XL（I），YL（I），I＝1，NP）
FORMAT（2F10．4）
CALL E日2ACF（XL，YL，NP，COEF，NCOEF，REF）
$\mathrm{XL} 1=\mathrm{R} 0 / 2$ ．
$\mathrm{XL} 2=\mathrm{R} \boldsymbol{6}+.1$
CALL Cg5ACF（XL1，XL2，EPS，EPV，ROTAC，XLK，IFAIL）
PHL®＝DATAN（YLの／XL®）
PHLA＝DATAN（（－WEB／2．／RG）／DSQRT（1．－（WEB／2．／R $) * * 2))$
POX＝DSORT（RG＊＊2－（WEB／2．）＊＊2）
PHLR＝PGZ／Rg＊DSIN（HO
PHLBA日G

DO 610 I＝1，NP
$\mathrm{XL}(\mathrm{I})=\mathrm{XL}(\mathrm{I}) * \mathrm{DCOS}(S \operatorname{ISANG})+\mathrm{YL}(\mathrm{I}) * \mathrm{DSIN}(\mathrm{SISANG})$ YL（I）$=-X L(I) * D S I N(S I S A N G)+Y L(I) * D C O S(S I S A N G)$ XLG（I）$=$ XL（I）
YLG（I）$=$ YL（ I
610 CONTINUE
SISAN＝SISANG／CONS
WRITE（1，207）SISAN
FORMAT（／，SISANG＝＊，F8．2／
WRITE（1，208）（XL（I），YL（I），I＝1，NP）
208 FORMAT（2F10．4）
600 CONTINUE
C NON－CONV．FLUTE SECTION
CALL E日2ACF（XL，YL，NP，COEF，NCOEF，REF）
C
15
$M=3$
$\mathrm{~N}=3$
$\mathrm{N}=3$
$\mathrm{~L} V=3$
$\mathrm{LV}=3$
$\mathrm{LJ}=3$
$L W=120$
LIW＝1
ETA＝． 5
IF（S ．EQ．1．）GO TO 8 O11
C DETERMINING THE CHISEL CORNER

8011 CALL Eg4FCP（M，N，RESUD，MONUT，IPRINT，MAXCAL，ETA，XTOL，STEP， SCORN，FU，RU，FJAC，LJ，SMON，V，LV，NITER，NF，IW，LIW，WEG，LW，IFAIL）
Coll continue
C DETERMINING THE OUTER CORNER
PGX＝DSQRT（Rの＊＊2－（WEB／2．）＊＊2
$\mathrm{P} \theta \mathrm{Y}=-\mathrm{WEB} / 2$ ．
PEZ $=$ PGX＊CSKOI／SNKOI
$Z O U T=P 0 Z$
XCORN＝CORN（1）
YCORN＝CORN（2）
2CORN＝CORN（3）
ZOUT1＝PGZ－2．
CALL CG5ACF（ZOUT1，ZOUT2，EPS，EPV，FOUTCR，ZOUT，IFAIL） CALL $=\mathrm{ZCORN}$ ZEM＝ZOUT
C COMPUTING LIP AND FLUTE SURFACE
DO $5 \mathrm{I}=1$ ，NPOINT．
III＝I
Z＝ZOUT－FLOAT（I－1）＊（ZOUT－ZCORN）／FLOAT（NPOINT－1）
38 ALPHA＝Z／Rの＊DSIN（Hの）／DCOS（Hの
ZSTG（I）＝Z
ZSTGD（I）$=$ Z
IF（S ．EQ．1．）GO TO 36
CALL COSACF（RSTAN1，RSTAN2，EPS，EPV，FUN，RSTAN，IFAIL）
GO TO 32
30 CALL CO5ACF（RSTAN1，RSTAN2，EPS，EPV，FAN，XST，IFAIL）
YST＝9．
DO $75 \mathrm{~J}=1$ ，NCOEF
（J）＊XST＊＊（J－1）
CONTINUE
$32 \quad \mathrm{~W} 2 \mathrm{R}=\mathrm{WEB} / 2 . / \mathrm{RSTAN}$
PHST＝－（DATAN（W2R／DSQRT（1．－W2R＊＊2））+ DSQRT（RSTAN＊＊2－（WEB／2．）＊＊2
＊DSIN（Hの）／DCOS（HO）／R日＊CSKOU／SNKOU）
XFLU（I）$=$ RSTAN＊DCOS（PHST）
YFLU（I）＝RSTAN＊DSIN（PHST）
$\operatorname{XFLUD}(\mathrm{I})=$ RSTAN＊DCOS（PHST）
IF（I ．EQ．1）XFLUEE＝RSTAN＊DCOS（PHST
IF（I EQ．1）YFLUEE＝RSTAN＊DSIN（PHST）
PHST＝PHST＋ALPHA
XST＝RSTAN＊DCOS（PHST）
YST＝RSTAN＊DSIN（PHST）
XSTG（I）＝XST
XSTGD（I）＝XS
$\operatorname{YSTGD}(I)=Y S T$
$\operatorname{RRN}(I)=$ RSTAN
RADI（I）＝RSTAN
RADI（I） 36
RSTAN＝DSQRT（XST＊＊2＋YST＊＊2）
XFLU（I） XST
$\operatorname{FLLU}(I)=Y S T$
XFLUD（I）aXS
YFLUD（I）＝YST
IF（I ．EQ．1）XFLUEEEXST
IF（I ．EQ．1）YFLUEEEYST
RRN（I）＝RSTAN
RADI（I）＝RSTAN
PHST＝DATAN（YST／XST）
PHST＝PHST＋ALPHA
XSTI＝RSTAN＊DCOS（PHST）
STI＝RSTAN＊DSIN（PHST）
XSTG（I）＝XST1
STG（I）＝YST？
YSTGD（I）＝YST1
XSTEXST1
XSTEXST1
continue
CALL GRIN（Z，ZØ，AXX，BYY，CXY，DDX，EY，FF）
c VEC
DFDX＝2．＊XST＊AXX＋YST＊CXY＋DDX
DFDY $=2$ ．＊YST ${ }^{*} B Y Y+C X Y * X S T+E Y$
DFDZ $=\mathrm{XST} *\left(-2\right.$. SNKOI $\left.^{*} \mathrm{CSKOI} * S N V G\right)+Y S T *(-2 . * S N K O I$
\＄＊CSKOI＊CSVG）＋SNKOI＊＊2＊2．＊（z－Zも）
DF＝DSORT（DFDX＊＊2＋DFDY＊＊2＋DFDZ＊＊2）
$D F D X=D F D X / D F$
$D F D Y=D F D Y / D F$
IF（DEDX．GT．
（GT．ø．ø）GO TO 46
DFDX＝－DFDX
DFDY
DFDZ
$=-D F D Z$
C VECTOR ON THE FLANK AND NORMAL TO RADIUS
c POINTING IN VELOCITY DIRECTION
$40 \quad \mathrm{URI}=\mathrm{DCOS}(\mathrm{PHST}$
UR2＝DSIN（PHST）
UR $3=0$ ． 9
XFLNR＝1．
YFLNR＝－UR1／UR2＊XFLNR
ZFLNR＝（－XFLNR＊DFDX－YFLNR＊DFDY）／DFDZ
FLNR＝DSQRT（XFLNR＊＊2＋YFLNR＊＊2＋ZFLNR＊＊2）
XFLNR $=$ XFLNR／FLNR
YFLNR＝YFLNR／FLNR
ZFLNR＝ZFLNR／FLNR 9 ）TO 160
XFLNR $=-X F L N R$

ZFLNR $=-2$ FLNR
C VECTOR TANGENT TO THE FLUTE AT $Z=2 S T G D(I)$
c POINTING OUT
NDER＝1
NDER＝1
IF（S ．EQ．1．）GO TO 130
CALL DO4AAF（RSTAN，NDER，HBASE，DER，EREST，FON，IFAIL）
DYDXN＝DSIN（PHST）／DCOS（PHST）＋RSTAN＊DER（1）
DYDXD＝1．－RSTAN＊DER（1）＊DSIN（PHST）／DCOS（PHST）
DYDX＝DYDXIJ／DYDXD
GO TO 140
XST XFLU（I）
YST $=$ YFLLU（I）
CALL DEAAAF（XST，NDER，HBASE，DER，EREST，FIN，IFAIL） DYDX＝DER（1）
140 DYDXE＝DATAN（DYDX
XTG＝DCOS（DYDXE）
YTG＝DSIN（DYDXE）
ZTG＝の．曰
$\operatorname{DERIV}(I)=$ DYDXE／CONS
IF（XTG．GT．日．の）GO TO 120
$\mathrm{XTG}=-X T G$
$\mathrm{YTG}=-Y T G$
C VECTOR TANGENT TO THE HELIX POINTING UPWARDS
C ALSO HELIX ANGLE
129 XTGH＝－DSIN（PHST）
$\mathrm{YTGH}=\mathrm{DCOS}(\mathrm{PHST})$
COTH＝R $/$／RSTAN＊DCOS（H 8 ）／DSIN（ $\mathrm{H} \varnothing$ ）
XYC＝DSQRT（XTGH＊＊2＋YTGH＊＊2＋COTH＊＊2）
XTGH $=$ XTGH $/ X Y C$
$\mathrm{YTGH}=\mathrm{YTGH} / \mathrm{XYC}$
ZTGH＝COTH／XYC
C
ZTGH1＝DSQRT（1．－ZTGH＊＊2）
zTGHG（I）＝DATAN（ ZTGH1／ZTGH）／CONS
C VECTOR NORMAL TO RAKE FACE
C POINTING UPWARDS
XNRA $=$ YTG＊ZTGH
YNRA $=-X T G$ ZTGH
ZNRA $=X T G * Y T G H-X T G H * Y T G$
$X Y Z N=D S Q R T$（XNRA＊＊2＋YNRA＊＊2＋ZNRA＊＊2）
XNRA＝XNRA／XYZN
ZNRA $=$ YNRA $/ X Y Z N$

45
FORMAT（／＇NORMAL TO RAKE
XNRAD（I）＝XNRA
YNRAD（I）$=$ YNRA
ZNRAD $(I)=$ ZNRA
C VECTOR TANGENT TO THE LIP
C POINTING TO THE OUTER CORNER
CEI $=$ YNRA＊DFDZ－ZNRA＊DFDY
CE2＝ZNRA＊DFDX－XNRA＊DFDZ
CE3＝XNRA＊DFDY－YNRA＊DFDX

CEE＝DSQRT（CE1＊＊2＋CE2＊＊2＋CE3＊＊2）

CE1＝CE1／CEE
CE3 $=$ CE $3 /$ CEE
C
$\operatorname{CCE} 1(\mathrm{I})=\mathrm{CE} 1$
$\operatorname{CCE} 2(\mathrm{I})=\mathrm{CE} 2$
$\operatorname{CCE} 3(\mathrm{I})=\mathrm{CE}$
CE3A＝DSORT（1．－CE3＊＊2
CCE3P（I）＝DATAN（CE3A／CE3）／CONS
IF（CE1 ．LT．Ø．©）CALL EXIT
C VECTOR ON THE RAKE FACE，NORMAL TO THE CUTTING EDGE
C POINTING IN THE VELOCITY DIRECTION
XTRA＝1．
CZTRA1 $=($ ZNRA＊CE2－YNRA＊CE3）／（ZNRA＊CE2）
CZTRA2 $=($ YNRA＊XTRA＊CE1－XNRA＊XTRA＊CE2）／（CE2＊ZNRA）
ZTRA＝CZTRA2／CZTRA1
ZTRA $=$ CZTRA2／CZTRA1
YTRA
（ $-\mathrm{ZTRA*CE3-XTRA*CE1)} / \mathrm{CE} 2$
TRA $=$ DSORT（XTRA＊＊ $2+Y T R A * * 2+Z T R A * * 2$ ）
XTRA $=X T R A / T R A$
TRRA＝ZTRA／TRA
IF（YTRA．GT．日．日）GO TO 55
XTRA $=-$ XTRA
YTRA $=-Y T R A$
YTRA $=-$ YTRA
ZTRA $=-Z T R A$
C ANGLE BETWEEN THE TANGENT TO THE HELIX AND THE
C NORMAL TO THE CUTTING EDGE ON THE RAKE FACE
AFLOL＝XTGH＊XTRA＋YTGH＊YTRA＋2TGH＊ZTRA
AFLO2＝DSQRT（1．－AFLO1＊＊2）
HENR（I）＝DATAN（AFLO2／AFLOI）／CONS
C VECTOR ON THE FLANK POINT，NORMAL TO THE CUTTING EDGE
C POINTING IN THE VELOCITY DIRECTION
XTFLA＝1．
CZFLAI＝（DFDZ＊CE2－DFDY＊CE3）／（DFDZ＊CE2）
CZFLA $2=$（DFDY＊XTFLA＊CE1－DFDX＊XTFLA＊CE2）／（CE2＊DEDZ）
ZTFLA＝CZFLA2／CZFLA1
TFLA $=(-2 T F L A * C E 3-X T F L A * C E 1) / C E 2$
FLA＝DSQRT（XTFLA＊＊2＋YTFLA＊＊2＋ZTFLA＊＊2）
XTFLA $=X$ TFLA $/$ FLA
YTFLA $=$ YTFLA／FLA
IF（YTFLA．GT．ด．$)$ ）GO TO 60
XTFLA $=-X T F L A$
YTFLLA $=-\times$ TFLA
YTFLA $=-Y T F L A$
ZTFLA $=-Z T F L A$
VECTOR NORMAL TO THE MACHINED SURFACE
c POINTING UPWARDS
60 VVI $=-2 . *$ PI＊RPM／60．＊RSTAN＊DSIN（PHST
VV2 $=+2 . *$ PI＊RPM／60．＊RSTAN＊DCOS（PHST）
VV3＝25．4／RPI＊RPM／60．
VV＝DSQRT（VV1＊＊2＋VV2＊＊2＋VV3＊＊2）
VVD（I）＝VV
VVl＝VVI／VV
$\mathrm{VV} 2=\mathrm{VV} 2 / \mathrm{VV}$
VV3 $=v v 3 / v v$
XNMSU $=-\mathrm{VV} 2 * \mathrm{CE} 3+\mathrm{VV} 3 * \mathrm{CE} 2$
YNMSU $=-V V 3 *$ CE1 $+V V 1$ * CE
(XNMSU**2+
+YNMSU**2+ZNMSU**2
XNMSU=XNMSU/SU
ZNMSU=ZNMSU/SU

XMSU (I)=XNMSU

MMSU(I)aYNMSU
c
TIMEU (I) $=.5 / \mathrm{RPI} * 25.4^{*} \mathrm{CE} 3 \mathrm{~A}$
TIMAU (I) $=.5 / \mathrm{RPI} * 25.4 *$ ZNMSU
C VECTOR ON THE MACHINED SURFACE, NORMAL TO THE CUTTING EDGE C POINTING IN THE VELOCITY DIRECTION

XTMSU=1.
CZMSUl $=($ ZNMSU*CE2-YNMSU*CE3 $) /(2 N M S U * C E 2)$
CZMSU2=(YNMSU*XTMSU*CE1-XTMSU*XNMSU*CE2)/(CE2*ZNMSU 2TMSU=CZMSU2/CZMSU1
YTMSU $=\left(-\right.$ ZTMSU* * CE3-XTMSU*CE1) $/$ CE2
TMSU=DSQRT (XTMSU**2+YTMSU**2+ZTMSU**2)
XTMSU=XTMSU/TMSU
YTMSU=YTMSU/TMSU
IF(YTMSU .GT. a.g)GO TO 2 g
XTMSU=-XTMSU
YTMSU=-YTMSU
ZTMSU $=-2$ TMS
C VECTOR NORMAL TO CUTTING EDGE AND VELOCITY
C POINTING UPWARDS
20 UU1=-DSIN (PHST)
$\mathrm{UU} 2=\mathrm{DCOS}$ (PHST)
XVCE=1
YVCE (UU1/UU2*XVCE
2VCE=(-CE1*XVCE-CE2*YVCE)/CE3
VCE=DSQRT (XVCE**2+YVCE**2+ZVCE**2)
YVCE $=Y V C E / V C E$
YVCE=YVCE/VCE
IF (ZVCE.GT. 9.0)GO TO 110
XVCE $=-X V C E$
YVCE=-YVCE
ZVCE $=-$ ZVCE
C
10 XNMSU1=-UU2*CE3+UU3*CE2
YNMSU1=-UU3*CE1+UU1*CE3
2 MMSU1 $=-\mathrm{UU} 1 * \mathrm{CE} 2+\mathrm{UU} 2 * \mathrm{CE1}$
SUl=DSQRT (XNMSU1**2+YNMSU1**2+ZNMSU1**2)
XNMSUI=XNMSU1/SUl
ZNMSUl=ZNMSU1/SU1

C VECTOR ON THE MACHINED SURFACE
C NORMAL TO
XTSU $=1$.
TU1=XTSU*XNMSU1 *UU2-XTSU *UU1 *YNMSU1
TU2=YNMSU1*UU3-ZNMSUI*UU2
TSU=CTU1/CTU2
YTSU=-(XTSU*XNMSU1+ZTSU*ZNMSU1)/YNMSU1
CTU3-DSQRT (XTSU**2+YTSU**2+ZTSU**2)
XTSU=XTSU/CTU3
TSU=YTSU/CTU3
F(ZTSU .GT. ©.0) GO TO 111
XTSU $=-\times T S U$
YTSU $=$ YTSU
ZTSU $=-\mathrm{ZTSU}$
C INCLINATION ANGLE
COSI=UU1*CE1 $+\mathrm{UU} 2 * \mathrm{CE2}$
SINI
SINI=DSQRT (1.-COSI**2
AIN=DATAN (SINI/COSI)
AIN=PI/2.-AIN
C NORMAL RAKE ANCIE
COSRA=XVCE*XTRA+YVCE*YTRA+ZVCE*ZTRA
SINRA $=\mathrm{DSQRT}(1 .-\mathrm{COSRA} * 2$)
SIGN $1=X V C E * X N R A+Y V C E * Y N R A+Z V C E * Z N R A$
SIGN2=DABS (SIGNI)
SIGN=SIGN1/SIGN2
RAK=DATAN (SINRA/COSRA)
RAK=SIGN*RAK
RAKE (I)=RAK/CONS
8067 ETA=DATAN(1./(DCOS(RAK)+DSIN(RAK))*DSIN(AIN)/DCOS(AIN)
8069 ETAS (I)=ETA/CONS
RSN=RSTAN*DSIN(AIN)
RSNI (I)=RSN
IF (I EQ. 1) GO TO 498
DL $(I)=0$.
DL(I) $=\operatorname{DSORT}((X S T G D(I)-X S T G D(I-1)) * * 2+(Y S T G D(I)-Y S T G D(I-1)$
) $\left.{ }^{*} 2+(Z \operatorname{STGD}(I)-Z S T G D(I-1)) * * 2\right)$
SSS (I)=SS
RESO=RSTAN
C $\quad \mathrm{UP}=\mathrm{I}$
5 CONTINUE
DO 714 I=1,NPOINT
CEL (I) $=$ SSS (NPOINT-I+1)
714 CONTINUE
C CHIP COMPUTATION

C READ CHIP AXIS TO A GUESS
119

WRITE (1,119)
FORMAT ('READ XES, YEB, XEM, YEM, RC1 ')
READ (1,*)XEB,YEB, XEM, YEM, YEM

798 WRITE (1.799)
769 FORMAT(/'READ CHIP LEAD AND CHIP DIAMETER')
FEADAT *)PA RCG
NLOOI= 1 FIX (FLOAT (NPOINT) /3.)
$\operatorname{EIX}(1)=X E B$
$\operatorname{EIX}(1)=X E B$
$\operatorname{EIX}(2)=Y E B$
$\operatorname{EIX}(3)=X E M$
$\operatorname{EIX}(4)=Y E M$
$\mathrm{M}=8$
$\mathrm{N}=4$
$\mathrm{L} \mathrm{J}=8$
$\mathrm{LV}=4$
LIN=1
LW $=120$
IFAIL= \varnothing
MAXCAL=1000
WRITE (1,817)
FORMAT(/'READ IPRANT, STEP, XTOL AND ETA'/) READ (1, *) IPRANT, STEP, XTOL, ETA
C CALL EO4FCF(M,N, RESAD, MONAT, IPRANT, MAXCAL, ETA, XTOL, STEP,
§EIX, FE, RE, FJAC, LJ, SMON, V, LV, NITER, HF, IW, LIW, WE 0, LW, IFAIL)
819 FORMAT(/'XEB=',F10.5/'YEB=',F10.5/' $\mathrm{ZEB}=$ ',F10.5/'XEM=',
\$F10.5/'YEM=',F1日.5/'ZEM=',F16.5/)
816 DO $810 \mathrm{I}=1$,NPOINT
SENOI=DSIN(AINC (I)*CONS
CEl=CCE1(I)
CE2=CCE2 (I)
CE3=CCE3(I)
XST=XSTGD(I)
YST=YSTGD(I)
ZST=ZSTGD(I)
PHI $1=$ DATAN(YST/XST)
YNRA $=-$ XNRAD (I)
ZNRA $=-$ ZNRAD (I)
XNMSU=XMSU (I)
YNMSUnYMSU (I
ZNMSU=ZMSU (I)
C COMPUTATION FOR CHIP VELOCITY

$A A A=(X E M-X E B) / D B M$
$\mathrm{BBB}=(\mathrm{YEM}-\mathrm{YEB}) / \mathrm{DBM}$
CCC=(ZEM-ZEB)/DBM
REVAB=3.
WAA $=2.0$ * ${ }^{\text {PI }}$ *REVAB
$\mathrm{V} 1=$ REVAB* PA
$\mathrm{ABC} 1=\mathrm{BBB} *$ (2ST-ZEM) $-\mathrm{CCC} *$ (YST-YEM)
$A B C 2=C C C *(X S T-X E M)-A A A *(Z S T-Z E M)$ $A B C 3=A A A *(Y S T-Y E M)-B B B^{*}(X S T-X E M)$
$V C 1=A A A^{*} V 1+W A A * A B C l$
$\mathrm{VC} 2=\mathrm{BBB}^{*} \mathrm{~V} 1+\mathrm{WAA} * A B C 2$
$\mathrm{VC} 3=\mathrm{CCC}^{*} \mathrm{~V} 1+\mathrm{WAA} \mathrm{ABC}^{2}$
$V C=\operatorname{DSQRT}(V C 1 * * 2+V C 2 * * 2+V C 3 * * 2)$
VClavC1/vC
$\mathrm{VC} 2=\mathrm{VC} 2 / \mathrm{VC}$
$\mathrm{VC} 3=\mathrm{VC} 3 / \mathrm{VC}$
VV=2.*PI*RRN(I)
vVCVave/vv
IF(ABCl .NE. 日.D) GO TO 9148
WRITE (1,9149)
9149 FORMAT('
CALL EXIT
IS
NUL ${ }^{\prime}$)
DING CHIP RADIUS AT EACH POINT OF THE LIP
9148 ZEXEAC $=-\mathrm{ABC3} / \mathrm{ABC} 1$ *AAA +CCC
c
IF(YEXEAB.NE. 0.0) GO TO 9151
WRITE(1,9152)
FORMAT('YEXEAB IS NUL')
9152 FARMAT EXIT
9151 ZEYEXE=2EXEAC*ABC2/YEXEAB/ABC1-ABC3/ABC1
ZEZEYE $=1,+2$ EYEXE $* * 2+($ ZEXEAC $/$ YEXEAB $) * * 2$
CONSTA= (XEB-XST) *ZEYEXE- $\mathrm{YEB}-\mathrm{YST}$) * ZEXEAC/YEXEAB
\$+(2EB-ZST)
IF(ZEZEYE .NE. Ø. ஏ) GO TO 9153
WRITE(1,9154)
FORMAT ('ZEZEYE IS NUL')
FORMAT (ZEZEYE
IS NUL')
CALL EXIT
9153 VN3=-CONSTA/ZEZEYE
VN $2=-\mathrm{ZEXEAC} / \mathrm{YEXEAB} * V N 3$
VN1=2EYEXE*VN3
RC=DSQRT (VN 1 **2+VN2**2+VN3**2)
IF (I .EQ. 1) RGCHIP=RC
COSK=AAA
AKC=DATAN (SENK/COSK)
ABTV=AAA* (XEB-XST)
ABTV=AAA* $(\mathrm{XEB}-X S T)+\mathrm{BBB} *(\mathrm{YEB}-\mathrm{YST})+\mathrm{CCC} *(\mathrm{ZEB}-\mathrm{ZST})$
CETV=CE1* (XST-XEB)+CE2*(YST-YEB) $\mathrm{CE} 3 *(Z S T-Z E B)$
CECOSU $=$ COSK*CECOSI -ABTV
PARDA $=($ AAA $* \mathrm{CECOSU}+\mathrm{XEB}-\mathrm{CE} 1 * \mathrm{CECOSI}-X S T)$
PARDB= (BBB* $\mathrm{CECOSU} \mathrm{Y} \mathrm{YEB}-\mathrm{CE} 2 * \mathrm{CECOSI}-\mathrm{YST}$)

PARD $=$ PARDA** 2
PARD2=PARDB**2
PARD3=PARDC**2
$\mathrm{BCCE} 1=\mathrm{BBB} * \mathrm{CE} 3-\mathrm{CCC} \mathrm{CE}^{2}$
BCCE $2=\mathrm{CCC} * \mathrm{CE1-AAA*CE3}$
BCCE $3=A A A^{*} C E 2-B B B^{*} C E 1$
SIGNM=PARDA*BCCE1+PARDB*BCCE2+PARDC*BCCE3
SIGNO=SIGNN/SIGNM
GC=DSORT (PARD1 +PARD2+PARD3)
C COMPUTATION FOR CHIP FLOW ANGLE
PUTATION FOR CHIP FLOW
HC $=$ DATAN $(2 . * P I * R C / P A)$

IF (I .EQ. 1) HøCHIP=HC
SETACH=GC*SIGNO/RC*DSIN(HC)*SENK+COSK*DCOS(HC)
CETACH DSQRT(1.-SETACH**2)
ETACH=SETACH/CETACH
C ETACH=DATAN(TETACH)/CONS
SENETA $=\mathrm{VC} 1 * \mathrm{CE} 1+\mathrm{VC} 2 * \mathrm{CE} 2+\mathrm{VC} 3 * \mathrm{CE} 3$
COSETA $=$ DSQRT (1.-SENETA**2)
TGETA=SENETA/COSETA
ETA=DATAN (TGETA)/CONS
T2A $=D C O S(A I N C(I) * C O N S) / V V C V / C O S E T A$
T211(I)=1./T2A
C T211(I) IS T1/T2
T1PR(I)=ZNMSU/RPI*25.4
$\mathrm{VT1I}=\operatorname{DCOS}(\mathrm{AINC}(I) * \operatorname{CONS}) * V V * T 1 P R(I)$
VT $2 \mathrm{E}=\mathrm{CETACH} * \mathrm{VC}$
T2PR(I)=VTII/VT2E
UUl=-DSIN(PHI
$102=+D$
sGAMAE
SGAMAE=UU1*VC1+UU2*VC2
CGAMAE=DSQRT(1,-SGAMAE**2)
TGGAME=SGAMAE/CGAMAE
SGAMA=DSIN (RAKE (I)*CONS)
SINGEM=SENOI*SENETA+DSORT(1.-SENOI**2)*COSETA*SGAMA COSGEM=DSQRT (1.-SINGEM**2)
GEME \approx DATAN(SINGEM/COSGEM)/CONS
VERIF1 $=$ VCl
VERIF2
VCIRA
VERIF2=VC2*YNRA
c
COSV=VERIF1+VERIF2+VERIF3
VER=DATAN (DSORT(I. -COSV**2)/COSV)
VER=DATAN(DSQRT 1 (- -COS
IF (VERI .GT. 90.)VERI=VERI-180.
$\operatorname{VERIF}(I)=V E R I$
$\operatorname{GCD}(\mathrm{I})=\mathrm{GC}$
$\operatorname{AKCD}(I)=A K C / C O N S$
$\operatorname{GEMEA}(\mathrm{I})=\operatorname{GEME}$
$\mathrm{HCD}(\mathrm{I})=\mathrm{HC} / \mathrm{CONS}$
$\operatorname{ETARIG}(\mathrm{I})=\mathrm{ETACH}$
c
$\operatorname{ETAA}(I)=E T A$
RCA $(\mathrm{I})=\mathrm{RC}$
$\operatorname{RCAG}(I)=R C$
GAMAE (I) =GAME
VVCA $(I)=V V C V$
810
continue
treL=1
DO $7351=1$, NPOINT

T2PR(I)=T211(I)/T211(IREL)
TlPR(I) =VVCA(I)/VVCA(IREI)
735 CONTINUE
C
WRITING IN FILE
IF (IFILE .EQ. ஏ) GO TO 732 NNPP $=1 \varnothing$

WRITE(IFILE, 733) (NNPP, XSTG(I), YSTG(I), ZSTG(I), RCA(I),
$\$ I=1$, NPOINT, 3)
TRITE(1,1744)
FORMAT ('FILE WRITTEN')
CONTINUE
WRITE(1,793)
FORMAT(/'TABLES FOR CHIP ?')
$\operatorname{READ}(1, *)$ IT
IF(TTE(EQ. 6) GO TO 796
FORMAT(//130X
FORMAT(///3DX, 'CHIP')
FORMAT(///3X,' RR ', 3X,'GAME'. 3 X, ' ETA', 3X, 'ETAC', 3X

DO 141 JNal, NPOINT, NSALTO
WRITE(1,923)RRN(JN), GAMAE(JN), ETAA(JN), ETARIG(JN),
\$TIPR(JN), RCA(JN), HCD(JN), GEMEA(JN), VERIF(JN)
FORMAT (9F7.2)
CONTINUE
READ (1 , *) SEPARA
WRITE(1,952)
FORMAT(////3X,' RRN', 3X,' T21', 3X,'T1PR', 3X,'T2PR', 3X,
\$'AKCD', 3X, 'GCDD'///)
DO $1441 \mathrm{~J}=1$, NPOINT, NSALTO
WRITE (1,959) RRN(J), T211(J),T1PR(J),T2PR(J), AKCD (J.), GCD(J)
59 CONTINUE
READ (1, *) SEPARA
WRITE(1, 711)
FORMAT(/'MORE TABLES ?')
READ (1,*)ITA 798
IF(ITA.NE. g) GO TO 798
706 WRITE (1,707)
767 FORMAT(/'CHIP FLON ANGLE VS INC. ANG(1), EDGE LENG.(2)'/
S'NONE (\varnothing)')
IF(IEI .EQ. ब) GO TO 2631
IRG=RG+2
R 0 P=IR \varnothing
CALL SE281
CALL PICCLE
CALL WINDOW(2)
CALL AXIPOS(9,40..50.,135.,1)

```
    GO TO (715,716),IEI
    CALL AXISCA(2,12,0.,60..1)
    GO TO }71
```



```
717 CONTINUE 
    CALL AXIDRA(2,1,1)
    CALL AXIDRA(-2,-1,2)
C GO TO(718,719),IEI
718 CALL GRACUR (AINC, ETARIG,NPOINT)
    CALL GRAMOV (O.,G.)
    CALLL GRAMOV BROKEN(1)
    CALL GRALIN(AINC(NPOINT),AINC(NPOINT))
    CALL CHAMOD
719 CO TO 72Ø (CAL GRACUR(CEL, ETARIG,NPOINT)
    CALL GRACUR(CE
    CALL GRACUR(CEL, AINC, NPOINT)
    CALL GRACUR(CEL,AINC,NPOINT)
CONTINUE
    READ(1,*)SEPARA
    WRITE(1,71日)
710 FORMAT(/'MORE GRAPHS ?')
    READ(1,*)IGR
    IF(IGR .NE. 日) GO TO 7@8
C
2931 WRITE(1.2032)
2f32 FORMAT(////SECTIONS ON A ROTATING PLANE FOR INTERF ?')
    FORMAT(///'SECT
    IF(ISEPAR .EQ. 0) GO TO lag
107 CONTINUE
712 FORMAT(/'CHANGE CHIP DATA ?')
    READ(1,*)ICH
    IF(ICH.NE, g) GO TO 7ब8
    2033 FORMAT('READ ROTATION OF THE PLANE ')
    READ(1,*)ROT
    PHPACl=-45.*CONS
    PHPAC2=89.9*CONS
C EPS=1E-8
    EPV=1E-8
    IFAIL=\emptyset
c COORDINATES TRANSFORMATION
C
C TRANSFORMATION MATRIX
    A(1,3)=AAA
    A(2,3)=BBB
A(3,3)=CCC
C A(2,2)=1.
    00 TO 720
    CONTINUE
EPS=1E-8
```

$A(1,2)=-A(2,3) * A(2,2) / A(1,3)$
$A(3,2)=.6$
$A T=\operatorname{DSQRT}(1 .+A(1,2) * * 2+A(3,2) * * 2)$
$A(1,2)=A(1,2) / A T$
$A(2,2)=A(2,2) / A T$
$A(3,2)=A(3,2) / A T$
$A(1,1)=1$.
$A(2,1)=-A(1,1) * A(1,2) / A(2,2)$
$A(3,1)=-(A(1,1) * A(1,3)+A(2,1) * A(2,3)) / A(3,3)$
$\operatorname{ATT}=\operatorname{DSQRT}(A(1,1) * * 2+A(2,1) * * 2+A(3,1) * * 2)$
$A(1,1)=A(1,1) / A T T T$
$A(2,1)=A(2,1) / A T T$
c
$\operatorname{DCOOR}(1)=X S T G D(1)-X E B$
$\operatorname{DCOOR}(1)=\operatorname{XSTGD}(1)-\operatorname{XEB}$
$\operatorname{DCOOR}(2)=Y \operatorname{STGD}(1)-\mathrm{YEB}$
XSTAR=. 8
YSTAR=. 0
ZSTAR=. \varnothing
DO $102 \mathrm{~K}=1.3$
XSTAR $=X S T A R+A(K, 1) * \operatorname{DCOOR}(K)$
YSTAR $=Y S T A R+A(K, 2) * D C O O R(K)$
ZSTAR $=Z S T A R+A(K, 3)$ © $\operatorname{DCOOR}(K)$
CONTINUE

IF (XSTAR .EQ. . \varnothing.AND. YSTAR .LT. . G$) \mathrm{PHSTAR}=-\mathrm{PI} / 2$.
IF (XSTAR .EQ. . \varnothing) GO TO YSTA
PHSTAR=DATAN (YSTAR/XSTAR)
IF (PHSTAR .LT. . O .AND. YSTAR . GT. .) PHSTAR=PI+PHSTAR

PHROT=PHSTAR+ROT*CONS
XROT=RGCHIP*DCOS (PHROT)
YROT=RGCHIP*DSIN (PHROT)
2ROT=2STAR+(PHROT-PHSTAR)*RØCHIP*DCOS (HबCHIP)/DSIN(HӨCHIP)
$\operatorname{CAAR}(1)=X R O T$
$\operatorname{CAAR}(2)=Y R O T$
XOUTR=ø
YOUTR=0.
YOUTR=6.
DO $1 \quad 1=1,3$
XOUTR $=\operatorname{XOUTR}+A(1, I) * C A A R(I)$

YOUTR＝YOUTR $+A(2, I) * C A A R(I)$

ZOUTR $=$ ZOUTR $+A(3, I) * \operatorname{CAAR}(I)$

XOUTR $=$ XOUTR $R+$ XEB
YOUTR＝YOUTR $\mathrm{P}+\mathrm{YEB}$
ZOUTR＝YOUTR + ZEB

COEA＝BBE＊（ZOUTR－ZEM）－CCC＊（YOUTR－YEM） COEB $=C C C *$（XOUTR－XEM）－AAA＊（ZOUTR－ZEM $)$ COEC＝AAA＊（YOUTR－YEM）－BBB＊（XOUTR－XEM）

DO $2034 \mathrm{I}=1$ ，NPOINT
DCOOR（1）＝XSTGD（I）－XEB
DCOOR（2）＝YSTGD（I）－YEB
$\operatorname{DCOOR}(3)=Z S T G D(I)-Z E B$
XSTAR＝．\square
YSTAR＝． 0
ZSTAR＝． 0
DO $826 \mathrm{~K}=1,3$
XSTAR $=X S T A R+A(K, 1) * \operatorname{DCOOR}(K)$
YSTAR $=$ YSTAR + A $(K, 2)$＊DCOOR（K）
STAR＝2ST
${ }_{C}^{826}$
CONTINUE

IF（XSTAR ．EQ．． 0 ）GO TO 827
c
HSTAR＝DATAN（YSTAR／XSTAR）
IF（PHSTAR ．LT．．σ ．AND．YSTAR ．GT．．И）PHSTAR＝PI＋PHSTAR
IF（PHSTAR ．GT．．\varnothing ．AND．YSTAR ．LT，．O）PHSTAR $=-(P I-P H S T A R)$
RSTAR＝DSQRT（XSTAR＊＊2＋YSTAR＊＊2）
DZ $=$（PHROT - PHSTAR）＊RøCHIP＊DCOS（HøCHIP）／DSIN（HøCHIP）
ZSTAR $=Z S T A R+D Z$
ZRIGG（I）$=$ ZSTAR
RPACE $=\operatorname{DSORT}(X S T G D(I) * * 2+Y S T G D(I) * * 2) ~$
RPACE $=$ DSQRT（XSTGD（I）＊＊2＋YSTGD
PHPA $=$ DATAN $(Y S T G D(I) / X S T G D(I))$
PHPA＝DATAN（YSTG
ZPACEI＝ZSTGD（I）
CALL CGSACF（PHPAC1，PHPAC2，EPS，EPV，GPACE，PHPACE，IFAIL）
DCOOR（1） XP PACE－XEB
DCOOR（1）＝XPACE－XEB
DCOOR $(2)=Y$ YACE $-Y E B ~$
DCOOR $(3)=Z$ PACE－ZEB
XSTAR $=. \emptyset$
YSTAR＝．
YS
ZSTAR＝． 0
DO $828 \mathrm{~K}=1,3$
XSTAR $=X S T A R+A(K, 1) * \operatorname{DCOOR}(K)$
YSTAR＝YSTAR + A $(K, 2)$＊DCOOR (K)
ZSTAR $=$ ZSTAR + A $(K, 3) * \operatorname{DCOOR}(K)$
CONTINUE
RSTO（ I ）$=$ RSTOR

IF（I GT． 1 ．AND．RSTO（I）．GT．RSTO（I－1））RSTO（I）＝－RSTO（I）
XPACG（I）＝XSTAR
YPACG $(I)=$ YSTAR
2034
IF（IROT ．EQ．1）GO TO 737
109 WRITE（1，940）
FORMAT（＇IF GRAPHICS ONLY，READ 1＇）
$\operatorname{READ}(1, *)$ IGRA
IF（IGRA ．EQ．1）GO TO 935
C TABLES
807 FORMAT（3X，＇SS＇，3X，＇X＇，3X，＇Y •，3X，＇ 2 ＇，3X，＇XFLU＇， \＄ $3 \mathrm{X}, \mathrm{YFLU'}, 3 \mathrm{X}$, ＇INC＇， 3 X, ＇RAKE＇， 3 X, ＇GAMN＇， 3 X, ＇ETAL＇／／／） DO $41 \mathrm{~J}=1$ ，NPOINT
READ（1，＊）SEPARA
WRITE（1．92）SSS（J），XSTG（J），YSTG（J），ZSTG（J），XFLU（J），YFLU（J）， SAINC（J），RAKE（J），GAMN（J），ETAS（J）
FORMAT（10F7．2）
CONTINUE
WRITE（i 722 ）
WRITE（1，722）
FORMAT（／／3X，＇XNRA＇，3X，＇YNRA＇，3X，＇ZNRA＇／／）
DO 723 I＝1，NPOINT
AXNRA $=\operatorname{ATAN}(\operatorname{SQRT}(1,-\operatorname{XNRAD}(I) * * 2) / X N R A D(I)) / C O N S$
AYNRA＝ATAN（SQRT（I．－YNRAD（I）＊＊2）／YNRAD（I））／CONS
AZNRA＝ATAN（SQRT（1．－ZNRAD（I）＊＊2）／ZNRAD（I））／CONS
WRITE（1， 724 ）AXNRA，AYNRA，AZNRA
CONTINUE
FORMAT（3F7．2）
WRITE（1，806）
FORMAT（／／＇GRAPHICS FOR CHIP $\mathrm{P}^{\prime} / /$ ）
READ（1，＊）IGRAF
IF（IGRAF ．EQ．O）GO TO 815
935 CONTINUE
C GRAPHICS
C＝
FORMAT（／＇VERIF X SSS ？＇）
$\operatorname{READ}(1, *)$ IVER
IF（IVER ．NE．1）GO TO 79の2
$R \oslash P=1.2 * R \varnothing$
IR $0=R$ R
RøP＝IRø
XAXIS＝129
CALL SE281
CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ $0,50.120 .110 ., 1$ ）
CALL AXIPOS（0，5日．，176．．10日．，2）
CALL AXISCA $(2$, IRg， $9 ., 45, .1)$
CALL AXISCA $2,16,-40 ., 40 . .2)$

CALL AXIDRA $(2,1,1)$
CALL AXIDRA $(-2,-1,2)$
CALL GRACUR（CEL，VERIG，NPOINT）
CALL CHAMOD
READ（ 1 ；＊）SEPARA
7062 WRITE（1．865）
FORMAT（ $/$＇CHIP INTERFERENCE ？$/ 1)$
READ（1，＊TNTE
IF（INTE EO．Ø）GO TO 112

FORMAT（／＇READ XFACT AND YFACT＇）
READ（1，＊）XFACT，YFACT
XAXIS＝XFACT＊15日．
YAXIS＝YFACT＊150．

IRG＝RGP

CALL SE281
CALL PICCLE
CALL WINDOW（2）
CALL AXIPOS（ $0,40 ., 50 .$, XAXIS， 1 ）
CALL AXIPOS（ $0,49 ., 50 ., Y A X I S, 2)$
CALL AXISCA $(2,10,0,10 ., 2)$
DO NOT PLOT AXES
CALL AXIDRA $(2,1,1)$
CALL AXIDRA $(2,1,1)$
CALI
737 CONTINUE
Change pen colour
CALL PENSEL（1，．2，4）
CALL GRAPOL（RSTO（1），ZPACG（1），NPOINT）
CALL GRACUR（CEL，ZPACG，NPOINT）
CALL DASHED（1，3．，2．，0．）
CALL PENSEL（ $2,2,2,4$
DO $738 \mathrm{I}=1$ ，NPOINT
ZRIGGD（I）＝ZPACG（I）+5 ．＊（ZRIGG（I）ZZPACG（I））
CONTINUE
CALL GRAPOL（RCAG（1），ZRIGG（1），NPOINT）
CALL GRACUR（CEL，ZRIGG，NPOINT）
CALL DASHED（2，6．，3．，．5）
CALL GRAMOV（9．．9．）
CALL BROKEN（ 9 ）
CALL CHAMOD
READ（1，＊）SEPARA
WRITE（1，196）
106 FORMAT（／＇MORE ROTATING SECTIONS ？＇／）

c

303 DO 50日 $\mathrm{I}=1$ ，NPOINT
NCHI $2=2 *$ NCHI
ZCHI＝ZCORN－FLOAT（I－1）／FLOAT（NCHI－1）＊（ZCORN－ZCHI日） $\mathrm{zCHIG}(\mathrm{I})=\mathrm{ZCHI}$
$\mathrm{ZCHID}(\mathrm{I})=\mathrm{ZCHI}$
CALL GRIN（ZCHI，Zб，AXX，BYY，CXY，DDXX，EY，FF）
CHI $1=B Y Y+(E Y / D D X) * * 2 * A X X-E Y / D D X * C X Y$
YCHI 2 （I）$=+D S Q R T$（－FF／CHII）
XCHI2（I）$=-\mathrm{YCHI} 2(\mathrm{I}) * E Y / D D X$
XCHIG（I）＝DABS（XCHI2（I））
XCHID（I）＝DABS（XCHI2（I））
YCHID（I）＝－DABS（YCHI2（I））
AMOD $=$ DSORT $($（XCHI $2(I)) * * 2+(Y C H I 2(I)) * * 2)$
IF（AMOD ．EQ．Ө．）AMOD＝1E－8
XCHIXA $=\mathrm{XCHI} 2(\mathrm{I}) /$ AMOD
YCHIXA $=\mathrm{YCHI} 2(\mathrm{I}) /$ AMOD
CIXA $=\mathrm{XCHIXA}$
IF（CIXA ．EQ．日．）CIXA＝1E－8
SIXA＝DSQRT（1．－CIXA＊＊2）
TIXA＝SIXA／CIXA
CHIXA（I）＝DATAN（TIXA）／CONS +18 日．
$\operatorname{RCHISE}(I)=D S O R T((X C H I D(I)) * * 2+Y C H I D(I) * * 2)$
RCHISE（NCHI＋I）＝RCHISE（I）
FORMAT（／＇RELATIVE CUTTING RATIO ？＇ READ（1，＊）IRELC

Rgア＝Rの＋1．
IR $\begin{aligned} & \text {＝RgP }\end{aligned}$
R $\varnothing \mathrm{P}=\mathrm{IR} \mathrm{R}$
CALL SE281
CALL WINDOW（2）
CALL AXIPOS（0，40．，100．，130．，1）
CALL AXIPOS（0．40．，100．，120．， 2
CALL AXISCA（2，1RG， ．，R日P，1）
CALL AXISCA（2，20，2，1．2，2）
CALL AXIDRA（2，1，1）
CALL GRACUR（RADI，TIPR，NPOINT）
CALL DASHED $(2,4 ., 2 ., 5)$
CALL GRACUR（RADI，T2PR，NPOINT）
CALL BROKEN（ G$)$
CALL BR
CALL CHAMOD

CONTINUE
WRITE（1，1965）

1965 FORMAT（＇LOOP 500 FINISHED＇）
C HEEL CORNER ELEVATION
PHIILI＝DATAN（YSTGD（1）／XSTGD（1））
IFL＝1
XCLE $=R G * D C O S(P H I I L I)$
YCLE＝Rg＊DSIN（PHIILI）
c
ZHHzZCLE
ZCLEEE＝ZCLE
396 CONTINUE
CONTINUE
IF（IHILST ．EQ．1）GO TO 7814
IF（S ．EQ．1．）GO TO 7012
NSTFLU＝49
DO $7613 \mathrm{~J}=1$ ，NSTFLU
RSTFL（J）＝WEB／2．＋FLOAT（J－1）／FLOAT（NSTFLU－1）＊WEB
W2R＝WEB／2．／RSTFL（J）
TF（RSTFL（J）．LE．WEB／2．）GO TO 7820
PHSTFL（J）＝DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSQRT（RSTFL（J）
 GO To 7021
$7920 \operatorname{PHSTFL}(J)=P I / 2$
$7921 \operatorname{XHSTFL}(\mathrm{~J})=\operatorname{RSTFL}(\mathrm{J}) * \operatorname{DCOS}(\operatorname{PHSTFL}(\mathrm{~J}))$
$\operatorname{YHSTFL}(J)=R S T F L(J) * D S I N(P H S T F L(J))$
7613 CONTINUE
7033 FORMAT（＇READ NO．COEF．TO POLY．STAN＇）
READ（1，＊）NSTFLI
CALL EG2ACF（XHSTFL，YHSTEL，NSTFLU，COFL，NSTFLI，REFL）
1012 DO 7000 I $=1$ ，NPOINT
Z＝ZCLEEE－FLOAT（I－1）＊（ZCLEEE－ZCORN）／FLOAT（NPOINT－1）
ALPHA＝2／Rの＊DSIN（H0）／DCOS（H0）
III＝I
IF（I ．NE．1）GO TO 14
RHEELI $=-3$
RHEEL $2=$ R
14 CALL COSACF（RHEEL1，RHEEL2，EPS1，EPV1，FEEL，XEEL，IFAIL） RHEELI＝XEEL－．
YHEELG（I）＝XSTE
YHEELG（I）＝YSTEEL
$\operatorname{YHEELG}(I)=\mathrm{YSTEEL}$
$\mathrm{XHEELD}(\mathrm{I})=\mathrm{XS}$
$\operatorname{YHEELD}(\mathrm{I})=\mathrm{YSTEEL}$
XEELG（I）＝XEEL
YEELG（I）＝YEEL
$\operatorname{XEELGD}(\mathrm{I})=\mathrm{XEEL}$ YEELGD（I）＝YEEL
7000 CONTINUE
GO TO 7022
C
7014
DO $7016 \mathrm{I}=1$ ，NPOINT III＝I

Z＝2CLEEE－FLOAT（I－1）＊（ZCLEEE－ZCORN）／FLOAT（NPOINT－1）
ALPHA $=2 / \mathrm{R} \varnothing$＊DSIN（ $\mathrm{H} \varnothing$ ）／DCOS（ $\mathrm{H} \varnothing$ ）
ALPHA＝2／RE＊DSIN（HQ）／DCO
IF（I ．NE．1）GO TO 7017
RHEEL $1=.8 *$ R $\overline{1}$
RHEEL2＝1．1＊Rg
7017 CALL CG5ACF（RHEEL1，RHEEL2，EPS1，EPV1，FIIL，RHEEL，IFAIL） RHEELI $=.8$＊RHEEL
RHEEL2＝1．2＊RHEEL
IF（RHEELI ．LT．WEB／2．）RHEEL1＝WEB／2．
XHEELG（I）＝XSTEEL
YHEELG（I）＝YSTEEL
ZHEELG（I）$=2$
XHEELD（I）＝XSTEEL
YHEELD（I）＝YSTEEL
YEELG（I）＝YEELA
XEELGD（I）＝XEEL
YEELGD（I）＝YEELA
7016 CONTINUE
7022 CONTINUE
READ（1，＊）SEPARA
ALPHA＝ZOUT／Rg＊DSIN（Hの）／DCOS（Hб）
PHC $=$ DATAN $\mathrm{YCQ} / \mathrm{XC}$（ $)$
$\mathrm{pHC}=\mathrm{PHC}$ C + ALPHA
RXYCG＝DSQRT（XCg＊＊2＋YCO＊＊2）
2EM＝ZOUT
XEM＝RXYCO＊DCOS（PHC）
YEM＝RXYCE＊DSIN（PHC）
XC
YC ＝
$=\mathrm{XEM}$
YEM
GO TO 7944

CALL EXIT
END

FUNCTION FAN（XST
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（2 6 ）
COMMON／BLO1／RE，R日G，WEB，HO，RKG
COMMON／BLO2／CONS，RCAM，EXG，VG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI ，SNKOI，CSKOU，SNKOU
， zH
COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
IF（IYN ．EQ．1）WRITE（1，71）III
FORMAT（5X，14，＇TH STEP IN COURSE（FUNCTION FAN）＇）

FUNCTION FEEL（XEEL）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20），COEEL（3），COFL（40）
COMMON／BLO2／CONS RCAM EXG VG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／z，za，zHH
COMMON／BLO5／S，NPOINT，NLAAP，ISEC
COMMON／BLO6／COEF，NCOEF，ITI，IYN，IYO
COMMON／BLO8／XFLUEE，YFLUEE，DMAR，XSTEEL，YSTEEL，DPHEEL，YEEL COMMON／BLOII／COFL，NSTFLI
$\mathrm{PI}=3.14159265$
IF（IYO．EQ．1）WRITE（1，71）III
1 FORMAT（5X，14，＇TH STEP IN COURSE（FUNCTION FEEL）＇）
CALL GRIN（Z，Z $\mathrm{Z}, \mathrm{AXX}, \mathrm{BYY}, \mathrm{CXY}, \mathrm{DDX}, \mathrm{EY}, \mathrm{FF}$ ）
C
YEELDV＝COEF（2）
IF（S ．NE．1．）YEELDV＝9．
XEEL1＝$=$ ．
YEEL1＝WEB／2．
$\operatorname{IF}(\mathrm{S} . \mathrm{EQ}$ ．1．）YEELI＝－COEF（1）
XEEL2＝－YFLUEE
YEEL2＝XFLUEE
PHEEL＝DATAN（YEEL2／XEEL2）
PHITL＝PHEEL＋DPHEEL
XEEL2＝DSORT（XEEL2＊＊2＋YEEL2＊＊2）＊DCOS（PHIIL
YEEL2＝DSORT（XEEL2＊＊2＋YEEL2＊＊2）＊DSIN（PHIIL
COEEL（1） $\operatorname{ZYEEL} 1$
COEEL（2）＝YEELDV
$\operatorname{COEEL}(3)=($ YEEL 2－XEEL2＊COEEL（2）－COEEL（1））／XEEL2＊＊2
IF（XEEL．GE．．$)$ GO TO 1

XEELL＝－XEEL

DO $6 \mathrm{~J}=1$ ，NSTFLI
YEEL＝YEEL＋COFL（J）＊XEELL＊＊（J－1
CONTINUE
PHST＝DATAN（YEELL／XEELL）＋PI
PHST＝DATAN（YEELL／XEELL）+ PI
GO TO 2
XEELL＝－XEEL
DO $7 \mathrm{~J}=1$ ，NCOEF
YEEL＝YEEL $+\operatorname{COEF}(J) * X E E L L * *(J-1)$
CONTINUE
YEELL $=+$ YEEL
PHST＝DATAN（YEELL／XEELL）＋PI
YEEL＝－YEEL
GO TO 2
YEEL＝COEEL（1）$+\operatorname{COEEL}(2) * \operatorname{XEEL}+\operatorname{COEEL}(3) * X E E L * * 2$
PHST＝DATAN（YEEL／XEEL）
2 RSTAN＊DSQRT（XEEL＊＊2＋YEEL＊＊2）
PHST $=$ PHST + ALPHA
XSTl＝RSTAN＊DCOS（PHST）
YST1＝RSTAN＊DSIN（PHST）
XSTEEL＝XST1

FEEL＝AXX＊XST1＊＊2＋BYY＊YST1＊＊2＋CXY＊XST1＊YST1＋DDX＊XST1 \＄＋EY＊YSTl＋FF

RETUR

END

FUNCTION FIIL（RHEEL）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20），COEEL（3），COFL（40）
COMMON／BLO1／Rø，RøG，WEB，H曰，RKG
COMMON／BLO2／CONS，RCAM，EXG，VG
COMMON／BLOB／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／2，26，ZHH
MMON／BLOS／C，NPOINT，NLAAP，ISEC
COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
COMMON／BLO8／XFLUEE，YFLUEE，DMAR，XSTEEL，YSTEEL，DPHEEL，YEEL
COMMON／BLOII／COFL，NSTFLI
COMMON／BLO17／XEELA，YEELA，ZWEB
PI＝3．14159265
CALL GRIN（Z，ZØ，AXX，BYY，CXY，DDX，EY，FF）
W2R＝WEB／2．／RHEEL
IF（RHEEL ．LE．WEB／2．）GO TO 1
ANG＝DATAN（W2R／DSQRT（1．－W2R＊＊2）
PHST＝ANG＋DSQRT（RHEEL＊＊2－（WEB／2．）＊＊2）＊DSIN（H日）／DCOS（Hの）／Rg \＄＊CSKOU／SNKOU

IF（ 2 ．LT． ZWEB ）PHST＝PI－PHST
GO TO 2
PHST＝PI／2．
XEELA $=$ RHEEL＊DCOS（PHST）
YEELA＝RHEEL＊DSIN（PHST）
PHST $=$ PHST＋ALPHA
YSTl＝RHEEL＊DSIN（PHST）
YSI R
XSTEEL＝XST1

FIIL＝AXX＊XST1＊＊2＋BYY＊YST1＊＊2＋CXY＊XST1＊YST1＋DDX＊XST1 \＄＋EY＊YST1＋FF

RETUR

END
FUNCTION FIN（XST
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20）
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
YST＝0． 0
DO $150 \mathrm{~J}=1$ ，NCOEF
YST＝YST＋COEF（J）＊XST＊＊（J－1）
CONTINUE
PHST＝DATAN（YST／XST）
RSTAN $=\mathrm{DSQRT}(X S T * * 2+Y S T * * 2)$
PHST $=$ PHST + ALPHA
XSTI＝RSTAN＊DCOS（PHST）
YST1＝RSTAN＊DSIN（PHST）
FIN $=$ YSTI
C
C

RETURN

END

FUNCTION FLANK（ZCLE）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20）
COMMON／BLOI／RG，RGG，WEB，Hø，RKC
COMMON／BLO2／CONS，RCAM，EXG，VG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI ，SNKOI，CSKOU，SNKOU COMMON／BLO4／2，ZQ，ZHH
COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
COMMON／BLO8／XFLUEE，YFLUEE，DMAR，XSTEEL，YSTEEL，DPHEEL，YEEL

IF（IHILST ．NE． 1 ）GO TO 2
W2R＝WEB／2．／Re
PHIIL＝DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSORT（Rg＊＊2－（WEB／2．）＊＊2）
\＄＊DSIN（H0）／DCOS（H0）／R日＊CSKOU／SNKOU
ALPHA＝2CLE／Rの＊DSIN（HG）／DCOS（Hg）
XCLE＝RO＊DCALPHA
YCLE＝RG＊DSIN（PHST）
PHIIL2＝DATAN（YCLE／XCLE）
Z＝ZCLE
CALL GRIN（Z，Z $\boldsymbol{Z}, \mathrm{AXX}, \mathrm{BYY}, \mathrm{CXY}, \mathrm{DDX}, \mathrm{EY}, \mathrm{FF})$
FLANK＝AXX＊XCLE＊＊2＋BYY＊YCLE＊＊2＋CXY＊XCLE＊YCLE＋DDX＊XCLE \＄＋EY＊YCLE＋FF

RETUR

END
FUNCTION FON（RSTAN）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
COMMON／BLOI／Rg，R曰G，WEB，Hø，RKG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
W2R＝WEB／2．／RSTAN
PHST＝－（DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSQRT（RSTAN＊＊2－（WEB／2．）＊＊2） S＊DSIN（Hø）／DCOS（Hø）／RG＊CSKOU／SNKOU） FON $=$ PHST＋ALPHA

RETURN

END
FUNCTION FOUTCR（ZOUT）
IMPLICIT DOUBLE PRECISION（A－H，O－Z
COMMON／BLOI／Rの，RGG，WEB，H日，RKG
COMMON／BLO2／CONS，RCAM，EXG，VG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU
COMMON／BLO4／Z，2G，ZHH
COMMON／BLOS／S，NPOINT，NLAAP，ISEC
COMMON／BLO21／XOUT，YOUT
ALPHA＝ZOUT／Rの＊DSIN（Hの）／DCOS（Hの）
W2R＝WEB／2．／R
（W2R／DSORT（1，－W2R＊＊2））＋DSORT（RG＊＊2－（WEB／2，）＊＊2）
DDST
XST＝Rの＊DCOS（PHST
YST＝RØ＊DSIN（PHST）

L ．NE．1）GO TO 1
XEEL2＝－YFLUEE
YEEL2＝DSQRT（R0＊＊2－XEEL2＊＊2）
PHELCDATAN（YEEL2／XEEL2）
PHIIL＝PHEEL＋DPHEEL

CALL GRIN（ZOUT，Z日，AXX，BYY，CXY，DDX，EY，FF）
（OUTCR＝AXX＊XST＊＊2＋BYY＊YST＊＊2＋CXY＊XST＊YST＋DDX＊XST ＋EY＊YST＋FF

RETURN

c

TMPL ICIT DOUBLE PRECISION(A-H, $0-2$)
COMMON/BLO14/RPACE, PHPA, ZPACEI
C YPACE=RPACE*DSIN (PHPACE+PHPA)
FPACE=YPACE-YPACE 1

RETURN

END

FUNCTION FUN(RSTAN)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NPOINT
COMMON/BLO1/RQ, RGG, WEB, HO, RKG
COMMON/BLO2/CONS, RCAM, EXG, VG
COMMON/BLOB/ALPHA, CSVG, SNVG, CSKOI, SNKOI, CSKOU, SNKOU
COMMON/BLO4/z, Za, ZHH
c
W2R=WEB/2./RSTAN
PHST $=-($ DATAN $(W 2 R / D S Q R T(1 .-W 2 R * * 2))+D S Q R T(R S T A N * * 2-$
S(WEB/2.)**2)*DSIN(Hø)/DCOS(HØ)/Rg*CSKOU/SNKOU)
PHST=PHST+ALPHA
XST=RSTAN*DCOS(PHST)
YST=RSTAN*DSIN(PHST)
C
C
CALL GRIN (Z, $20, A X X, B Y Y, C X Y, D D X, E Y, F F)$
 \$ +EY *YST T +FF
c

RETURN

END

FUNCTION GPACE (PHPACE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON/BLO1/RG, RGG, WEB, H月, RKG
COMMON/BLO14/RPACE, PHPA, ZPACE1
COMMON/BLO16/COEA, COEB, COEC, COED
C
ZPACE=PHPACE*R0*DCOS(H0)/DSIN(Hø)+ZPACE
YPACE=RPACE*DSIN(PHPACE+PHPA)
GPACE $=$ COEA* $X P A C E+C O E B * Y P A C E+C O E C * Z P A C E+C O E D$
C

RETURN

END

SUBROUTINE GRIN($\mathrm{Z}, \mathrm{Z} \emptyset, A X X, B Y Y, C X Y, D D X, E Y, F F)$

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/BLOI/R0, RGG, WEB, H0, RKG
COMMON/BLO3/ALPHA, CSVG, SNVG,CSKOI, SNKOI, CSKOU, SNKOU

SUBROUTINE MONAT (M, N, EIX, RE, FJAC, LJC, SMON, IGR, NITER, NF, IN,
LIW, WED, LW)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)

$\mathrm{FE}=\mathrm{RE}(1) * * 2+\operatorname{RE}(2) * * 2+\operatorname{RE}(3) * * 2+\operatorname{RE}(4) * * 2+\operatorname{RE}(5) * * 2+\operatorname{RE}(6) * * 2$ $+\operatorname{RE}(7) * * 2+\operatorname{RE}(8) * * 2$
FORMAT('AFTER',I4.' ITERATIONS', 2 X, 'THE SUM OF SQ. IS'

FORMAT('AT THE POINT',F1g. 4

RETURN

 SUBROUTINE MONIT (M,N, CORN, RE, FJAC, LJC, SMON, IGR, NITER,
SNF, IW,LIW, WEO,LW)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION CORN(3), RE(3), FJAC(3, 3), SMON(3), IW(1), WEQ (120)
$\mathrm{FE}=\mathrm{RE}(1) * * 2+\mathrm{RE}(2) * * 2+\mathrm{RE}(3) * * 2$
WRITE(1, 29)NITER, FE
FORMAT('AFTER',I4,' ITERATIONS', 2 X, 'THE SUM OF SQ. IS'
,F9.3)
(CORMAT, 22) (CORN (I), $\mathrm{I}=1, \mathrm{~N}$)
FORMAT('AT THE POINT',FI日.4)
RETUR
C
C

SUBROUTINE MONUT (M,N,CORN,RU,FJAC,LJC, SMON, IGR,NITER,
SNF,IW,LIW,WEA, LW)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION CORN(3),RU(3), FJAC(3.3), SMON(3), IW (1), WEO(128)
$F U=R U(1) * * 2+R U(2) * * 2+R U(3) * * 2$
WRITE (1, 29)NITER,FU
FORMAT('AFTER', I4,' ITERATIONS', 2 X, 'THE SUM OF SQ. IS. \$.F9.3)
$\operatorname{WRITE}(1,22)(C O R N(I), I=1, N)$

FORMAT（＇AT THE POINT＇，F10．4）

END
C

SUBROUTINE RESAD（IFLAG，M，N，EIX，RE，
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION XSTGD（19の），YSTGD（1बө），ZSTGD（10日）
DIMENSION XNRAD（100），YNRAD（100），ZNRAD（10日）
DIMENSION RRN（19日），RCA（1GA）
DIMENON
COMMON／BLOS／S，NPOINT，NLAA，ISEC
COMMON／BLO21／ZEA，XI，YEB，XEM，YEM，ZEM
СОMMON／BLO25／YSTGD YSTGD
COMMON／BLO26／RRN
COMMON／BLO27／XNRAD，YNRAD，ZNRAD
NLOO1＝IFIX（NPOINT／3）
NLOO $3=4$
NLOO2 $=2$＊NLOO1
$\mathrm{XEB}=\mathrm{EIX}(1)$
YEB＝EIX（2）
XEM＝EIX（3）
YEM＝EIX（4）
Do $1 J=1,5$
GO TO（19，11，12，13，15），J
$\mathrm{I}=1$
$\mathrm{I}=\mathrm{NLOOO}$
GO TO 14
$\mathrm{I}=\mathrm{NLOO} 2$
$I=$ NLOO2
GO TO 14
GO TO 14
$I=N P O I N T$
GO TO 14
$\mathrm{I}=\mathrm{NLOO} 3$
4 CONTINUE
C
DBM＝DSQRT（（XEM－XEB）＊＊2＋（YEM－YEB）＊＊2＋（ZEM－ZEB）＊＊2） AAA $=$（XEM－XEB）$/$ DBM BBB＝（YEM－YEB）／DBM
CCC＝（ZEM－ZEB）／DBM
c
REVAB $=3$ ．
WAA $=2 . \sigma$＊PI＊REVAB
$\mathrm{Vl}=\mathrm{REVAB} * \mathrm{PA}$
$\mathrm{ABCl}=\mathrm{BBB} *(Z S T G D(I)-Z E M)-C C C *(Y S T G D(I)-Y E M)$ ABC2 $2=C C C *(X S T G D(I)-X E M)-A A A *(Z S T G D(I)-Z E M)$ ABC $3=A A A^{*}$（YSTGD（I）－YEM）－BBB＊（XSTGD（I）－XEM）
C
$V C 2=B B B * V 1+W A A * A B C$
$V C 3=C C C * V 1+W A A * A B C$

VC＝DSQRT（VC1＊＊2＋VC2＊＊2＋VC3＊＊2）
$\mathrm{VCl}=\mathrm{VCl} / \mathrm{vC}$
$\mathrm{VC} 2=\mathrm{VC} 2 / \mathrm{VC}$
$\mathrm{VC3}=\mathrm{VC3} / \mathrm{Vc}$
IF（ABCl ．NE．9．a）GO TO 9148
WRITE（1，9149）
FORMAT（＇
CALL EXIT
9148
ZEXEAC＝－ABC3／ABC1＊AAA $+C C C$
YEXEAB $=-\mathrm{ABC} 2 / \mathrm{ABC} 1 * A A A+B B B$
IF（YEXEAB ．NE．g．g）GO TO 9151
9152 FORMAT：＇
FORMAT EXIT
9151 ZEYEXE＝ZEXEAC＊ABC2／YEXEAB／ABC1－ABC3／ABC
ZEZEYE＝1．$+\mathrm{ZEYEXE} * * 2+(Z E X E A C / Y E X E A B) * * 2$ CONSTA $=(X E B-X S T G D(I)) *$ ZEYEXE－（YEB－YSTGD（I））
§＊ZEXEAC／YEXEAB＋（ZEB－ZSTGD（I））
IF（ZEZEYE ．NE． $0 . \sigma)$ GO TO 915
WRITE（1，9154）
FORMAT（＇ZEZEYE IS NUL＇）
CALL EXIT
9153 VN3＝－CONSTA／ZEZEYE
VN2＝－ZEXEAC／YEXEAB＊VN3
VN $1=$ ZEYEXE＊VN 3
RCA（I）＝DSQRT（VN1＊＊2＋VN2＊＊2＋VN3＊＊2）
VERIFI＝VC1＊XNRAD（I）
VERIF2＝VC2＊YNRAD（I）
VERIF3－VEIFI ZNRAD（I）
COSV＝VERIF1＋VERIF2＋VERIF3
VER＝DATAN（DSORT（1．－COSV＊＊2）／COSV）
IF（VERI GT PI
IF（VERI GT．PI／2．）VERI＝VERI－PI
CONTINUE
$\operatorname{RE}(1)=\operatorname{RCA}(1)-\mathrm{RC}$
$\operatorname{RE}(2)=\operatorname{VERIF}(1)$
RE（3）＝VERIF（NLOOI
$\operatorname{RE}(4)=\operatorname{VERIF}(\mathrm{NLOO2})$
$\operatorname{RE}(5)=V E R I F(N P O I N T)$
RE（6）－VERIF（NLOO 3
RE（7）＝VERIF（NLOO2）
$\operatorname{RE}(8)=\mathrm{RCA}(\mathrm{NPO}$ INT $)-\mathrm{RCl}$

END

SUBROUTINE RESID（IFLAG，M，N，CORN，RE IW，LIW，WEG，LW）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
IMENSION RE（3），CORN（3），IW（1），WE0（120）
COMMON／BLO2／CONS，RCAM，EXG，VG

COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO4／Z，2G，2HH
$\mathrm{PI}=3.14159265$
$\mathrm{XCORN}=\mathrm{CORN}(1)$
YCORN $=$ CORN（2）
ZCORN＝CORN（3）
c
RSTAN＝DSQRT（XCORN＊＊2＋YCORN＊＊2）
ALPHA＝ZCORN／RD＊DSIN（HB）／DCOS（Hの）
IF（RSTAN ．LE．WEB／2．）GO TO 1
W2R $=$ wEB $/ 2$ ．／RSTAN
PHST＝－（DATAN（W2R／DSQRT（1．－W2R＊＊2））＋DSORT（RSTAN＊＊2－
S（WEB／2．）＊＊2）＊DSIN（Hळ）／DCOS（H $(\mathrm{H}) / \mathrm{R} \sigma$ © CSKOU／SNKOU）
GO TO 2
PHST $=-\mathrm{PI} / 2$ ．
PHSTXY $=-$ DATAN（YCORN／XCORN）
CALL GRIN（ZCORN，Z 0, AXX，BYY，CXY，DDX，EY，FF）
RE（1）＝AXX＊XCORN＊＊2＋BYY＊YCORN＊＊2＋CXY＊XCORN＊YCORN＋DDX＊XCORN ＋EY＊YCORN＋FF
RE（2）＝AXX＊XCORN＊＊2＋BYY＊YCORN＊＊2＋CXY＊XCORN＊YCORN－DDX＊XCORN S－EY＊YCORN＋FF
RE $(3)=$ PHST + PHSTXY + ALPHA
C
RETURN
END

SUBROUTINE RESUD（IFLAG，M，N，CORN，RU，IW，LIW，WEG，LW） IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20），RU（3），CORN（3），IW（1），NEO（120）
COMMON／BLOI／RG，RøG，WEB，HO，RKG
COMMON／BLO1／RG，RGG，WEB，HG，RKG
COMMON／BLO3／ALPHA，CSVG，SNVG，CSKOI，SNKOI，CSKOU，SNKOU COMMON／BLO4／Z， 29 ，ZHH
COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
XCORN $=\operatorname{CORN}(1)$
YCORN＝CORN（2）
ZCORN＝CORN（3）
－RSTAN＝DSQRT（XCORN＊＊2＋YCORN＊＊2）
PHSTXY＝－DATAN（YCORN／XCORN）
PHSTXY＝－DATAN（YCORN／XCORN）
ALPHA $=$ ZCORN $/$ RのADS IN（H0）$/ D C O S$（Hの）
PHST $=-\mathrm{PH} 5 \mathrm{~T} X Y-A L P H A$
XST1 $=$ RSTAN ${ }^{\text {D DCOS }}$（PHST
YSTI＝RSTAN＊DSIN（PHST）
YST＝g．0
DO $70 \mathrm{~J}=1$ ，NCOEF
YST＝YST＋COEF（J）＊XSTI＊＊（J－1）
$\mathrm{RU}(1)=\mathrm{AXX} * \mathrm{XCORN} * * 2+\mathrm{BYY} * \mathrm{YCORN} * * 2+C X Y * X C O R N * Y C O R N+D D X * X C O R N$ \＄＋EY＊YCORN＋FF
RU（2）＝AXX＊XCORN＊＊2＋BYY＊YCORN＊＊2＋CXY＊XCORN＊YCORN－DDX＊XCORN $-E Y * Y C O R N+F F$

RETURN

END

FUNCTION ROTAC（XLK）
IMPLICIT DOUBLE PRECISION（A－H，O－Z）
DIMENSION COEF（20）
COMMON／BLOI／RØ，RØG，WEB ，HØ，RKG
COMMON／BLO6／COEF，NCOEF，III，IYN，IYO
COMMON／BLO15／XLø，YL \varnothing
YLK $=$ g．
DO $75 \mathrm{~J}=1$ ，NCOEF
YLK $=\mathrm{YLK}+\operatorname{COEF}(J) * X L K * *(J-1)$
CONTINUE
R＝DSORT（XLK＊＊2＋YLK＊＊2）
ROTAC＝R－R g
XLの＝XLK
YL $\boldsymbol{\sigma}=\mathrm{YLK}$
RETURN
END
c
c＊END＊END＊END＊END＊END＊END＊END＊END＊END＊END＊END＊END＊END＊

