

AN EXPERIMENTAL STUDY OF PROPAGATION IN MULTIMODE OPTICAL WAVEGUIDES USING SPATIALLY INCOHERENT PROBE TECHNIQUES

by

PETER JOHN STEVENS, B.Sc.

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the
award of Doctor of Phılosophy of the Loughborough Unaversity
of Technology, May, 1976

Supervisor : C. Wilson, M.SC., Ph.D. Department of Electronic and Electrical Engineering.
(C) by P.J. Stevens, 1976

The analysis of propagation in waveguides is generally based upon Maxwell's Equations and yıelds solutions in the form of sets of orthogonal fields called characterıstıc modes of the wavegulde. If numerous modes are excited simultaneously by a single monochromatıc source, the intensity distrıbution measured within the waveguide will be the coherent superposition of all the excited modal fields. The analysis of this coherent superposition as cumbersome for all but a small number of modes. If the source is polychromatıc or spatıally incoherent the increased complexıty of the superposition procedure, which must now consider the relative coherence of modes, suggests that this method is inappropriate.

An alternatıve basic approach is through the scalar representation of wave propagation known as the geometrical ray theory. This theory is applied to the propagation of polychromatic light in stepped refractıve ındex profile, multımode, optıcal waveguıdes. The study is based upon observations of cross sectional varıations of intensıty in waveguides of this type which appeared to be more appropriately analysed in terms of the ray theory. It is shown that the variatıons in intensity are caused by microscopic perturbations of the waveguide core from a nominally curcular cross section and are only visıble when the waveguide is excited by the polychromatic or spatially incoherent source. The dimensions and format of the intensity varlations are shown to be simply related to the cross sectional geometry and dimensions of the wavegulde and this suggests a useful method of determining the length dependent variations of these parameters.

STATEMENT OF ORIGINAL WORK

Claıms to originality are made in the conclusions to certain chapters, and the following is a summary of the work described in this thesis which to the best of the author's knowledge is original.

1. Preparation of single unmounted fibres, Section 2.5.
2. Determination of fabre orientation and angle of incıdence, Section 2.8.
3. Entrance aperture diffraction, Sections 4.3.1 and 4.3.2.
4. Ramp refractive index profıles, Sections 4.4.1. and 4.4.2.
5. The remainder of the thesis is concerned with the study of the patterns observed in optical fibres and unless otherwise acknowledged, is thought to be original work.

CONTENTS

PAGE NO.CHAPTER 1. General Introduction and Experımental Basis of
Thesis. 1
1.1 Introduction 1
1.2 Inıtıal Experiments, Description and Results 4
1.3 Conclusions 11
CHAPTER 2. Experımental Procedures 12
2.1 Introduction 12
2.2 Review of Fibre Preparation and Jointing Methods 12
2.3 Development of Fibre Bundle Preparation Methods. 15
2.4 Preparation of Single Unmounted Fibres. 17
2.5 Preparation of Short Fıbres. 18
2.6 Mıcroscopic Measuring and Recording Technıques. 19
2.7 Light Sources and Illumanatıng Arrangements. 22
2.8 Determination of Fibre Orientation and Angle of Incidence. 23
2.9 Conclusions. 26
CHAPTER 3. Basic Optical Theory 27
3.1 Introduction. 27
3.2 .1 Maxwells Equations and the Wave Equation. 27
3.2.2 Wave Solutions for the Space Dependent Component. 30
3.3 Bandwidth and Coherence of Optical Waves. 31
3.4 Polarısation 32
3.5 Intensity of Electromagnetic Waves. 34
3.6.1 Interference. 35
3.6.2 Interference of Non-Monochromatic Waves. 40
3.7.1 D1ffraction Theory. 46
3.7.2 Huygens - Fresnel Diffractıon Theory. 47
3.7.3 Kırchoffs Diffraction Theory. 49
3.8 The Fresnel Equations. 52
3.9 Geometrical Ray Theory. 55
3.10 Conclusions. 59
CHAPTER 4 Meridional Ray Propagation in Core-cladded OpticalWaveguides.60
4.1 Introduction. 60
4.2 Geometrical Ray Theory Model of the Core Cladded Waveguide. 60
4.3.1 Entrance Aperture Diffraction: theory. 63
4.3.2 Experimental Results: Discussion. 67
4.4.1 Ramp Refractive Index Profiles: Theory. 70
4.4.2 Experimental Results. 73
4.5 Conclusions. 74
CHAPTER 5. Skew Ray Propagation in Core Cladded Optical Waveguides. 75
5.1 Introduction. 75
5.2 Generalized Geometric Representation of Core-cladded 75 Optical Waveguides.
5.3 The Dielectric Waveguide "thick lens". 79
5.4 Propagation of Skew Planes and Skew Plane Rays. 81
5.5 Diffraction at a Caustic Surface. 91
5.6.1 Experimental Investigation of Caustics. 93
5.6.2 Experimental Results. 97
5.7 The Effects of Sloping End Terminations. 101
5.8 Conclusions. 107
CHAPIER 6. Propagation in Elliptic Cross Section, Core-cladded Optical Waveguides. 108
6.1 Introduction. 108
6.2 Difference Equations for Skew Ray Paths in Circular Cross Sections. 108
6.3 Properties of Ellipses. 110
6.4.1 Propagation of Skew Plane Rays in Ellıptıcal Cross
Section Waveguides. 112
6.4.2 Experımental Results. 124
6.5 Representation of the Elliptıcal Wavegulde as a Periodic Sequence of Lenses. 126
6.6 Hıgher Order Trapping Modes In Elliptical Cross
Section Waveguides. 132
6.7 Conclusions. 141
CHAPTER 7. Length Dependent Properties of Cladded Optical
Waveguides. 142
7.1 Introduction. 142
7.2 Length Dependent Variations in Wavegulde Characteristics. 143
7.3 Heterodyne Scanning System. 146
7.4 Straight Fibre Mountıng. 151
7.5.1 Propagation of Skew Rays in Circular Cross Section Waveguides with Large Radius Bends. 153
7.5.2 Experımental Results. 158
7.6 Conclusions. 158
CHAPTER 8. Interference Fringes and Coherence. 160
8.1 Introduction, 160
8.2 Interference Fringes in Carcular Dlelectric Waveguides. 161
8.3 Interference Fringes in Ellıptical Dielectric Waveguldes. 165
8.4 Spatial Coherence and Caustic Visıbılıty. 166
8.5 Enhancement of Coherence by Propagation in Elliptical Waveguides. 170
8.6 Conclusions. 171
CHAPTER 9. Conclusions. 173
APPENDICES A. Lowest Loss Figure for Optical Wavegundes. 176
B. Manufacturers Specification for Rank KershawFibroflex.177
APPENDICES C. Detall of Synchronisation Pulse Extractor and Line Marker Circuits. 178
D. Proof of the only possible orientations of the Triangular Closed Figures within the Ellipse. 179
E. The Computer Sımulation Program. 182
ACKNOWLEDGEMENTS
REFERENCES 185

CHAPTER 1

1.1 Introduction

There are a number of books ${ }^{(1-5)}$ available containing comprehensive studies of optical wavegurdes and assoclated subjects and only those aspects directly related to the subject of this thesis are deraved in later chapters.

The rapid progress now being made in research and development of optical communıcations systems is lıable to make any attempt at a comprehensive review of the field incomplete in many aspects. The following references $(6,7)$ indicate general progress in the most important fields.

The rapid development of optical waveguldes with characteristics previously thought unobtainable suggests that the potentially most useful waveguades have yet to be developed. At the beginning of this work the most favoured contender for communications applications was a glass waveguide, of core-cladded construction where the core glass has a higher refractive index than the cladding glass. This was the form of waveguide descrıbed by Kao and Hockham ${ }^{(8)}$ in theır orıgınal study of the potential communications applıcatıons of optıcal waveguides, and has recelved by far the most attention both theoretically and experimentally. The selection of this type of flbre may have been due in part to the earlıer studies of Hopkins ${ }^{(9)}$ et al and the subsequent wadespread use of fabres of this form for image transfer and remote illumination, embodied in the now well-established subject of 'Fibre Optics'(3-5).

A major achlevement of the optical communications waveguide manufacturer has been the reduction of the loss of waveguides from the $1000 \mathrm{~dB} / \mathrm{km}$ normally assoclated with 'Fibre Optıcs' applications to the nominal $20 \mathrm{~dB} / \mathrm{km}$ now obtaıned, sometımes with glass or lıquid filled fibres, but more generally with Silica. Lower losses than $20 \mathrm{~dB} / \mathrm{km}$ have
been obtained ${ }^{(7)}$, but the significance of this figure 15 the 2 km inter-repeater loss of 40 dB whlch is the maxımum acceptable for a long distance communications application. Any further loss reduction enhances the potential of the waveguides, and clearly establıshes their place in future communications networks. The most recent loss figure is quoted in Appendix A.

The low loss silica wavegundes are manufactured by the vapour deposition method which in theory allows an arbitraxy radial variation of refractive index. This leads naturally to the production of a radıally parabolic refractive index waveguide, first developed by the Japanese ${ }^{(10)}$ using a different manufacturing method. This form of waveguide was called by them 'SelFoc' for self focussing. The attraction of this wavegunde 15 its theoretical low modal dispersion ${ }^{(11,12)}$ as opposed to the length dependent modal dispersion of the core cladded waveguide ${ }^{(13)}$. Low dispersion is essential for digital communications systems to achleve hıgh data rates without intersymbol interference.

The loss of an optical waveguide is associated with its material absorption, whereas the dispersion is a function of its design. The low loss silica fibre with a radıally parabolic ındex profile would appear to form an optimum combination for communıcations applıcations. These waveguides are not yet generally available and the work in this thesis is based upon experiments using core-cladded waveguides.

In most physical situations, an understanding of observed phenomena may be obtained on two intellectual levels. A simple approach which contains large approximations, but which gaves a macroscopically correct interpretation of the observations will provide a useful conceptual aid for the derivation of a rigorous analysis based on the fundamental laws of physics. The geometrical ray theory of optics is
an excellent example of a macroscopic theory. Rigorous optical theory is based upon Maxwell's Equations which in turn are derived, though not necessarıly rıgorously, from the fundamental laws of physics.

The macroscoplc approach is particularly successful for the analysis of optical systems, where the geometrical ray theory provides sufficient analysis for many applications, especially in the design of ımaging systems. Its success is directly related to the ratio of the size of the system components to the wavelength of light. As this ratio increases the effects of the assumptions of the macroscopic theory diminish and the accuracy of the theory increases.

The use of the macroscopic theory for analysis in Fibre optics applications has been successful where the rigorous analysis of the propagation of light within single fibres is not vitally signıficant. Furthermore the incoherent light or polychromatic (whate) light used for $1 m a g i n g$ and remote illumination is incompatible with a rigorous analysis which consıders propagation of monochromatic, spatially coherent waves. A ragorous analysis would have to superpose the solutions for each elementary monochromatic wave emıtted by the source. According to Kapany and Burke ${ }^{(1)}$ (Chap. 2, p7) such a procedure is 'generally unnecessary', "because they (the elementary waves) would have randomly related amplitudes and phases and would produce no observable interference effects".

On the basis of experimental observations described in the next section of this chapter, this thesis examines under what conditions observable phenomena are produced by spatially incoherent light when it propagates in optical waveguides of core cladded construction.

There is considerable interest in the geometrical ray interpretation of waveguide theory ${ }^{(14)}$ as applied to both optıcal and general waveguide

Abstract

problems. Both Kapany ${ }^{(1)}$ and Marcuse ${ }^{(2)}$ use ray analysis of slab waveguides to introduce their rigorous wavegulde theory. Gambling (15) and others $(16,17)$ have used, with some success, ray propagation models to calculate pulse dispersion in round core cladded optical waveguades.

However, ray theory is not generally used to calculate the intensity distrabution within a waveguide. Such calculations are reserved for the rigorous wavegunde analysıs $1 n$ which the individual wavegulde modes present at the point of observation are superposed and interfere to produce the observed intensity distribution. The modes present are calculated from a knowledge of the source flelds at the entry port of the waveguide and determination of the characteristic waveguade modes excited by such fields. It wall be suggested in Chapter 8 that a characterıstic mode of a waveguide is a complex field confıguration composed of elementary fields which interfere. The propagation of each elementary wave may be represented by a single ray whose propagation obeys the laws of geometrical ray theory. To calculate intensity distrıbutions using ray analysis due account must be taken of any foci or caustıcs formed where the ray analysis is inappropriate and diffraction theory must be applied.

This thesis examines this apparently complex relationshıp between the macroscopic and rıgorous optical analytical methods as applied to optical waveguides.

1.2 Initial Experıments

Thas section describes the initial experıments which revealed the unexpected cross sectional varlations of intensity in round core cladded optical waveguides when excited by a white light source.
Tungsten
Bulb

$$
4 \mathrm{~cm}
$$

Figure la. White light
illumination
of fibres.

Figure 2a.

Fibres

Figure lb. Sunlight illumination of fibres.

Figure 2b.

Figure 2. Microphotographs of the near field radiation patterns of the $=50 \mu$ diameter fibres illuminated as shown in figure 1.

The first observation in company with other observatıons of classical optical phenomena (Newton's solar spectra) was made with the use of sunlight as a source. At the time the ends of a 50 cm length of commercıally avaılable fıbre bundle* were being prepared for experımental use in loss measurements. The effectiveness of the polishing process described in Chaptex 2 was beang examıned using a microscopic observation of the polished end of the fibre bundle whilst illumanating the other end of the bundle (already polished) with a white light source positioned as shown in Figure la. The illumanated end of the bundle was hand held and a chance movement placed the ends of the fıbres in a bright beam of sunlıght, Figure lb. The resultant photomicrograph of the viewed end of the bundle 15 shown in Figure 2 b . This may be compared wath Figure 2a which is the photomicrograph corresponding to illumination of the bundle as shown in Figure la.

In Figure 2a all the fibres of the bundle appear to be equally ıllumınated and there is no observable varıation of intensity within each fibre cross section. The only apparent difference between fibres is a varıation in dimension of the illuminated area which corresponds roughly to the core diameter of each fibre. Such varıations are to be expected as a result of the manufacturing method (4 pp.63) in which all fibres are pulled simultaneously from their own preforms of core and claddıng glass. Any varıations in preform dimensions, pulling rates or furnace temperatures will result in varıations of fibre size.

In Figure $2 b$ marked variations in intensity are visible witr in the cross section of certain fibres. The precise form of the variations and their contrast is seen to vary from fıbre to fibre. Of the

[^0]Fibres.
Tungsten
Bulb.

Figure 3. The experimental arrangement for illuminating a fibre bundle wath whate light.
approxımately 400 fibres in the bundle, 220 fıbres exhibıted good contrast varıations, 100 showed poor contrast, the remalnder showing no observable varıatıons of intensıty within their cross section.

Two questions are posed by these observations. What is the source of the variations of intensity and why does their contrast or vasıbillty vary from fibre to fibre? A lıterature search revealed that although whate light has been used in prevıous experımental investigations of propagation in optıcal waveguides $(18,19)$ the current observations have not been reported elsewhere. A paper ${ }^{(20)}$ published during the course of the work independently confirmed certain aspects of the experımental results and also provided a useful impetus for the analytical method derıved for the explanation of the observed phenomena.

To ald further investigation, the experımental arrangement of Figure lb was replaced by that shown in Figure 3. The sun is replaced by a 15 watt tungsten projection bulb positioned a distance d from the end of the fibre bundle, such that for $d \geqslant 30 \mathrm{cms}$ approxımately plane polychromatic waves are incldent upon the ends of the fibres. These plane waves are incıdent at an axıal angle θ defined as the angle between the normal $\overline{\mathrm{n}}$ to the wavefront and the longıtudinal axis of the fibres and at azimuth angle α. The azlmuth angle is defined as the angle between the longıtudinal plane containing the wave normal and an arbitrary fixed iongatudınal plane. The normal \bar{n} of a plane wave coıncides with the direction of propagation of the wave.

The fibre bundle is clamped in the rotational mount shown in detail in Figure 4. This mount allows independent varıation of θ and α for a fixed source position. The two components of θ avaılable on the rotational mount denoted θ_{x}, θ_{y} add vectorially to gave θ. With θ_{y} clamped at 0^{0} the θ and α values required now correspond linearly to θ_{x} and α of the rotational mount although there may be an offset required

due to the off axis position of individual fibres within the bundle termanation. The method of determining the offset required is considered later.

Neglecting for the time being any off set corrections necessary, an indication of any dependence of the "varıations of intensity" hereafter referred to as the patterns, upon θ or α was obtained by selecting indivıdual "good contrast" fabres and noting the form and visıbılity of therr patterns as θ and α were varied for a given source distance d. When $d \geqslant 5 \mathrm{cms}$ it was found that the form of the patterns had a pronounced α dependence and an increasing visıbility for increasing θ when $\theta \geqslant 10^{\circ}$. When $\theta<10^{\circ}$ no patterns were visible. When $d<5$ cms the patterns became generally blurred and for d increasing and greater than 10 cms no dependence upon d was observed. These observations agree with the results of the experımental arrangements of Figure 1. Figure la corresponds to $d<5 \mathrm{cms}$ where the patterns are generally indistınct whereas Figure lb corresponds to $d \gg 10 \mathrm{cms}$ and $\theta>10^{\circ}$, which is an optimum visibility condition.

This next procedure is designed to test the hypothesls that the patterns are a function of the fibre bundle terminations. A single fıbre radiating good contrast, well defined patterns, was selected at the viewing end of the bundle. The patterns together with their α dependence were recorded using a video tape recorder as described in Chapter 2. The greatest magnifıcation mıcroscope objectıve avaılable ($\times 100$) was used in conjunction with the microscope overhead illumınator to illuminate the end of this single fibre only. The crosstalk between this fibre and adjacent fıbres was observed to be small by viewing the second end of the bundle through another microscope. The termination was removed from the second end of the fibre bundle and th \equiv protective sleeving removed over the whole length of the bundle up to within 2 cm of the other end
termination. The sangle illuminated fabre was now identified by the high intensity of its radıation field. The free end of this single fabre was fixed an the rotational mount and the α dependence of the patterns was tested as before. This end of the fibre was a broken end and the α dependence test was repeated five times with a freshly broken end each time. The form and α dependence of the patterns was found to be unchanged, although some varlations of visibility were observed over the five tests.

This single fıbre was now broken away from the remaining end termination and both ends ground and polished using the procedures described in Chapter 2 for the preparation of unmounted single fibres. This single fibre now 45 cm in length replaced the bundle shown in Figure 3 and the origanal θ and α dependence tests were repeated. The results for this unmounted fibre showed no varıations from those obtained when it was a member of a bundle. This suggests that the end termination and the other fibres of the bundle play no part in the pattern formation process of an individual fibre. This result, together with the previous observation of very weak dependence upon polished flat fibre ends (from the "broken ends" experiment), suggests that the formation of the patterns is primarily a result of propagation in the fibre. The varıability of patterns from fibre to fibre within a bundle suggests variations in the fibre characterıstics in addıtion to the core diameter varıations already discussed.

An experimental identification and study of individual fibre patterns is clearly facılıtated by the use of robust fibre bundles as opposed to fragile single unmounted fibres. To confirm the equivalence of the bundle mounted fibre to the single unmounted fibre for observation of patterns differing from those of the fibre previously tested, three further fibres were tested. Each fibre was selected to show patterns

Figure 5e. $\alpha=260^{\circ}$

Figure 5. Microphotographs of near field radiation patterns observed when a 40 cm length of cladded fibre was illuminated with white light at an axial angle of incidence of 25° and at azimuthal angles α as indicated.
of dıfferent forms whilst in the bundle and each was tested as an unmounted fabre with both ends broken at lengths of $20 \mathrm{~cm}, 30 \mathrm{~cm}$ and 40 cm . No variation in the results previously establıshed was obtained. With prior knowledge of the theoretical results established in later chapters, the fibre patterns selected for detalled description here appear to have been formed as the result of propagation in an elliptic cross section fibre. Sance this simple perturbation of a circular cross section $1 s$ a major feature of the theoretical analysis of the pattern formations and illustrates many of the results achleved, it will form a useful experımental basis for the incroduction of the remainder of the thesis.

The experimental arrangement of Figure 3 was used to obtain the photomicrographs shown in Figure 5 of the patterns of the selected fıbre. The axıal angle θ was fixed at 25° and the azımuthal angle α is indicated against each pleture of Figure 5. The pronounced dependence of the patterns upon the azamuthal angle α is clearly demonstrated. The patterns are the regions of high or low intensity which appear within the grey background of the fibre cross section. Figure 5a has a high intensity band formang a dlameter, and low intensity regıons at selected azımuthal positions and at radis $r / 2$ and $3 r / 4$, where r is the radius of the illumanated core. These low and high intensity regions become high and low intensity regions respectively at other azımuthal positions of the source, for example in Figure $5 b$ where the $3 x / 4$ radius pattern is now high intensity. The low intensity region corresponding to the hagh intensity diameter band of Figure 5 a is the dark region at the centre of the fibre shown in Figure 5 e.

If straight lines are drawn within and along the hogh antensity patterns and extended to the circumference of the fibre core as shown in Figure 6, simple closed geometrıcal figures are obtained. The high intensity dlameter pattern (Figure 5a) corresponds to a stralght line

Figure 6a.

Figure 6c.

Figure 7. Microphotographs of the near field patterns observed when a 40 cm . length of single fibre was illuminated by white light.
(Figure $6 a$), the $r / 2$ radius pattern (Figure $5 c$) produces a triangle (Figure 6b) and the $3 r / 4$ radius patterns (Figure 5b) produces a square (Figure 6c). The slmılaxity between these closed figures and the closed figures of the skew ray paths, which are introduced in Chapter 5, forms the basis of the analysis of the patterns given in Chapter 6. The patterns of other fibres contain components simılar in form to those of Figure 5 but which appear in different combinations. This suggests that the analysis based upon the closed figures may be generally applicable to fıbres of the core cladded type.

A hypothesis which may be set against this suggestion is that the patterns observed are a unique property of propagation in core cladded fibres manufactured by the method used for the production of these bundles. To test this hypothesis a 40 cm length of single core cladded fibre manufactured by a different process was ground and polished at both ends as an unmounted fibre and tested as before using the experimental arrangement of Figure 3. The observation of the patterns within this fibre, shown in Figure 7 which appear simılar to those of Figure 5, suggest that this hypothesis may be discounted. Apart from the obvious difference in the number of fibres pulled simultaneously, the manufacturing processes of the bundle fibres and thas single fibre differ in the production of the preform from which the fibres are pulled. The bundle fibre preform consists of a glass rod placed inside a glass tube, whereas the single fibre preform is drawn from two glasses using the double crucible method. The double heating required to produce the single fabre is lakely to cause diffusion of the glasses at the core cladding boundary, which in turn may produce a ramp refractive index profile as opposed to the theoretical step profile. The measurement of the characteristics of a ramp profile is discussed in Chapter 4.

This study is concerned with a previously unreported phenomenon which occurs as the result of propagation of white light in core cladded waveguides. The opening comments of the chapter suggest that although such phenomena may be of little interest to the "fibre optics" user, they may well be of interest to the optical communications engineer.

The potential complexity of analysing these phenomena has meant that each stage of analysis has been accompanıed by, or preceded by, experiment. To avold lengthy diversions into experımental detail in later chapters most of the experımental procedures are presented in the next chapter.

CHAPTER 2

Abstract

2.1 Introduction

The experımental requirements of this study fall into two categorıes. The first concerns the preparation of fibre samples. Some considerable tıme was spent on developing a technique for the precision termination of single unmounted fıbres and which is the subject of a short paper ${ }^{(21)}$. This technıque was evolved from the methods developed for terminating fibre bundles using gelatine moulds and the subsequent grinding and polıshing of the fabre ends. The problems of terminating and jointing optical waveguldes has been the subject of considerable research and a short review of current methods is included.

The second experımental requirement concerns the illumınation of the fibre samples and observation of the varıous phenomena described in the previous and later chapters. The nominal dameter of the fibre core is 50 mlcron and the observation and measurement of the microscopic phenomena within this diameter poses experamental difficulties with generally expensive solutions. In the absence of any suitable facılıtıes wathin the department a single capital expenditure was made at the end of the first year to obtain equipment to undertake the study. The limit of the budget was such that novel solutions to certain measurement and observation problems were developed and implemented.

2.2 Review of Fibre Preparation and Jointing Methods
 The usual method ${ }^{(3,4)}$ of terminating fibre optic components is

 to embed the ends of the fibres in a resin cement which when cured is as hard as the glass of the fibres. This forms a continuous surface which may be ground into any desired contour and then polished using the proven lens production procedures ${ }^{(22)}$. The optical quality of the finıshed surface depends to a great extent upon the polishing time, the longer the polishing time the higher the quality of the surface.

Figure 8. The ımmersion tank for terminating sangle fibres.

The usual polishing compound is ferric oxide or jewellers rouge. Emery powders of different grades are used in the grinding process. The two processes differ in that only the grinding stages remove material from the surface whereas polishing is a smoothing operation, hence its time dependent effect. The rough starting surface is progressively ground into the required contour using increasingly finer emery powders. The scratch marks made by each grade of emery are removed by the following finer grade. The polishing process then smooths the scratches of the final grade of emery. A more detailed descrıption of the preparation of optical components is contained in reference 22.

These procedures may also be used to prepare the ends of single fibres. The required length of fibre is cemented into a capıllary tube and the conventional grinding and polıshing machines are used to produce a flat polished surface at each end of the fibre and tube combination. In communications applications long lengths of fibre are used and a short length of capıllary tube is then cemented to each end of the fibre. This method has three major disadvantages :- the fibre length is fixed, the grinding and polishing procedure is laborious and the cementing of a comparatively heavy length of capıllary tubing onto the fragıle fibre greatly increases the likelıhood of accidental breakage of the fibre during routine handilng.

Early experımenters using single fibres removed the necessity for any preparation of the ends of the fibre by using the $1 m m e r s i o n$ technique shown in Figure 8. The fitre is broken and the rough end placed in the channel, butting up to the glass plate which is then clearly normal to the fibre's longatudinal axis. The channel is filled with a lıquid matchang the refractıve index of the core glass, (for core cladded type fibres). The glass plate now acts as the fibre end and for a lossless termination $2 s$ of the same refractive index as the core glass.

The cutting of sheet glass is facilatated by the property of the glass to shear along a fault line induced by scoring the surface with a suitably hard point, normally a diamond tıpped tool. An adaptation of this procedure 1 s used by Gloge et al ${ }^{(23)}$ in a very successful device for shearing single unmounted fibres to produce fibre ends of unsurpassed optıcal qualıty. This is the method now used by most communications laboratories.

The methods for terminating single fıbres for use in commercial communications systems are generally based upon the embedding technique, with inbuilt alıgnment facılıtıes. A typical alıgnment requirement is perhaps optımıstically quoted ${ }^{(24)}$ to be within 5 micron for a 100 micron diameter fibre. To position and fix the fibre withın these limıts using an initially lıquid cement clearly presents considerable engıneering problems.

Dalgleish and Lukas report one method ${ }^{(25)}$, though the successful use of the technique outside of the laboratory is doubtful. The unreliabılıty of plug and socket connections and the difficult alıgnment problems these pose may be side stepped by devising a method for quasipermanent connections between fibres and components, or the butt joinang of fibres. The quasi-permanent connection would be made as a permanent joint, but the methods used would allow the break and remake of the joint with the minimum of effort. Such a method requires a simple alignment procedure such as that described by Someda ${ }^{(26)}$ for the butt joining of flbres, and the applıcatıon of a quick setting cement. This procedure will be essential anyway for the emergency piecing of optical waveguide cables in the event of breakage during service.

Figure 9. A completed fibre bundle termination.

Figure 10b. The grinding and polishing machine.

Figure 10a. Schematic of the grinding and polishing machine.

Figure 10c. Manual air pistons.

An alternative to the cementang of the butt (fibre to fibre) Joint is to cut the fabre ends using the shear method, position the two ends a predetermined distance apart and then to fuse the two fibres by controlled heating. Blsbee ${ }^{(27)}$ and Dyott ${ }^{(28)}$ report encouraging results using this method. There $1 s$ an interesting parallel between this method and the braze jointing of co-axial cables. If the terminal and repeater units of the optical communication system are precision fitted with fibre tails during the manufacturing stages, then only butt Joining of these tails to the cables would be required in the field.

Most of the jointang experıments descrıbed above have used core cladding type fibres. It is not clear whether such procedures will be directly applıcable to the low loss, parabolic refractive index, sillca fıbre described in Chapter 1.

2.3 Development of Fibre Bundle Preparation Methods

The methods used to prepare the ends of the fibre bundles used in this study differ from the usual method descrıbed in Section 2.2 in detall only. The moulds used to contaln the resin cement around the end of the bundles are 7 mm diameter gelatine pill capsules. The shape of these capsules is ideal for clamping in the rotational mount of Figure 4 for subsequent granding and polishing. A completed termination is shown in Figure 9.

The absence of any existing facılıties encouraged the development of the specıai purpose grinding and polıshing machine shown in Figure 10. The following extract from reference 21 describes its operation with reference to Figure 10a. The varıous grinding and polishing compounds are mounted on aluminium plates (A). These plates are fixed in turn to the rotating chuck (B). The chuck is mounted on the piston rod of the pneumatic cylınder (C) via two ball races (D). The motor (M) rotates the chuck via the belt drave (E). The plates (A) are thus rotated by
the motor (M) and moved along the z axis by the pneumatic piston action. When the plates are in contact with the workplece, pressure between the two may be adjusted by varying the alr pressure in the pneumatic cylınder (C). The motor is a single pole induction motor and as draven by a varıable frequency supply. Its speed is varıable between 0 and 3000 rpm. The air supply is obtained from a large manually actuated piston, Figure lob, whach forms a closed system with cylınder (C).

Coarse grade emery paper is used for rough granding and fine diamond paste (as used for the preparation of metallurgical specimens) provides a rapıd final grınding compound. When polishing is required the ferric oxide is applied using a felt pad mounted on plate (A). The two rough grinding and two diamond grinding steps required for each termination normally take fave minutes. This time ancludes the time to make four changes of the (A) plates. The polishing time depends upon the finısh required and as typically a further five mınutes for the bundles used in this study. The resin cement* used is softer than the fıbre glass and the diamond grınding leaves the glass fibres proud of the resin casting. The resultant small surface area of the fibre ends alone enjoys enhanced attention from the polıshing pad and this may account for the surprisingly short polishing time required for the good optical finısh obtained.

An attempt to use a 7 micron grade diamond paste to increase the speed of the rough grinding step was found to cause excessive chipping of the fibre ends. The finer grades of paste tend to pick up particles of glass which also cause chıpping and these pastes have to be frequently replaced. However, only minute quantities are required and the cost is negligible.

Figure lla. 5μ grade paste

Figure llc. I μ grade paste.

Figure llb. 3μ grade paste

Figure 11. Microphotographs of
fibre bundle terminations after grinding with diamond grinding pastes of the grades shown.

The completion of each stage of grinding is established by microscopic observation of the fibre ends. The scratch marks are observed using overhead illumination and chipping of the fibre is best observed by illuminating the opposite end of the bundle, (the experimental arrangement of Figure la). The fibres should appear as complete "circles" of light and with the scratch marks associated with the previous grade of grinding visible over the whole of the fibre ends. This is illustrated in Figure 11 where the scratch marks for three grades of diamond paste are visible, the middle grade is not normally used.

2.4 Preparation of Single Unmounted Fibres

At the time the method to be described was developed there was no other published method for terminating single fibres without permanently embedding them in resin compounds, with the accompanying disadvantages already discussed. The shearing technique ${ }^{(23)}$ has since provided a method suitable for use in communication fibre laboratories. Unlike the shear method, the current method is not limited to fibres greater in length than the shearing machine (typically 20 cm), and may also terminate single fibres with a sloping end face. The grinding and polishing machine built for preparing fibre bundle terminations is used without modification to prepare the single fibres.

A set of vice jaws was manufactured from an embedding resin casting, cut as shown in Figure 12a. The mould was a gelatine pill capsule as used for the bundle terminations. The fibre to be prepared is passed through the hole in the base of the jaws and then clamped between the jaws by the mounting vice shown in Figure 12 b . The mounting vice is secured to the rotational mount of Figure 4 and grinding and polishing proceeds as for the bundle terminations. A fibre end, after the initial diamond paste grinding, is shown in Figure 13 a and the curvature of the finished end is

Figure 12a. Vice jaws for holding single fibres during grinding and polishing.

Figure 13a.

Figure 13 c .

Figure 12b. Vice associated with the jaws shown in figure 12a.

Figure 13b. (Overall
surface curvature $\approx 1 \mu$)
demonstrated in Figure 13b. The fringes were obtained using a standard interference microscope objective and a sodium light source. The fibre was adjusted to give the minimum number of fringes across the end face. The curvature observed is due primarıly to the polıshing process because as previously discussed, the diamond paste grinding leaves the fibre proud of the softer jaws and the polishing compound tends to round off the edges of the fibre.

The finished fibre נs removed from the jaws by relieving the vice pressure until the jaws are rell open, pushing the fabre forwards to release it from the jaws and then pulling it out backwards. Any deposit on the end face may be removed by gently swabbing the fibre end with alcohol. The clamping pressure applied to the fibre is crıtıcal, excessive pressure encourages chipping of the fibre during granding and insufficlent pressure obviously allows the fibre to slide back beneath the jaw surface. An indication of the vice pressure upon the fibre is obtained by observing the deformation of the jaws adjacent to the fibre as the jaws are closed. The correct pressure is denonstrated in Figure 13a where the fibre is clamped but there is no indentation of the Jaws.

Abstract

2.5 Preparation of Short Fibres

The observation of single reflection caustics and entrance aperture diffraction effects as described in Chapters 4 and 5, requires a prepared fibre of < $20 r$ length, where r is the radius of the fibre core. (20r $\simeq 0.5 \mathrm{~mm}$ for the fibres used in this study). The equivalence of the bundle mounted fibre to the single uniounted fibre for the observation of the phenomena of major interest, whıch was establıshed in Chapter l, suggested that these short lengths could be produced from thin slices taken from a bundle termination. The procedure is analogue to the microtome technique used in biological and botanical section microscopy.

Fibre bundle

Figure 14. Holding device for short fibre sample preparation.

Eyepiece	Objectıve.	Saling. $1 \mathrm{~mm}=$
$\times 15$	$\times 90$	$.878 \mu$
$\times 15$	$\times 45$	1.76μ
$\times 15$	$\times 20$	3.96μ

Figure 16. Magnification calıbratıon table.

A thin section (typıcally 1 mm thickness) is sawn from a prepared end of a fibre bundle and using the holding device shown in Figure 14, the sawn end is hand ground until the section thickness approaches the required length of fabre. The section is then diamond ground and polıshed by holding the section against the A plates using the device of Figure 14. The shortest length of fibre prepared in this manner $15 \simeq 12 r \simeq 0.3 \mathrm{~mm}$. Below this length the fibres tend to be pulled out of the resin compound by the diamond grinding operation.

A simılar procedure for the preparation of short fibre specimens has recently been published ${ }^{(29)}$ in connection with the viewing of refractive index profales of fıbres.

2.6 Microscopic Measuring and Recording Techniques

All the microscopic observations reported in this thesıs, with the exception of those made during fibre preparation, were made using the experımental arrangement of Figure 15. The microscope system 15 based upon an Ealıng Beck Epımax mıcroscope sub assembly. The Tetraver Intermediate Unit allows permanent access to the 1 mage by the Polarold Instrument camera and access elther to the binocular eyepiece or the T.V. camera. Relevant information about the eyepıeces and objectıves 15 given in Table 1. Calculation of the overall magnification of an image is avoided by using the calibration chart shown in Figure 16 where the measured magnification of a calıbration graticule for each combination of eyeprece and objective used in the study is given. These figures apply to measurements on photographs taken with the polaroid camera, but the same calıbration system is used for the T.V. alded measurements described later.

Focussing is performed by moving the object carrier and its movement is measured using the dıal gauge positıoned as shown in Figure 17. A measurement is made with reference to the focussed position

Figure 15. Microscope experimental arrangements.

Figure 17. Detail of the dial gauge.
of the object and a positive movement increases the distance between the object and the objective lens.

The T.V. camera facllıty allows projection of the 1 mage onto a T.V. monltor which gives a small (2 to 3 tımes) magnification but more ımportant allows the superposition of reference diagrams upon the 1 mage to aid the observation and measurement of the patterns. An extension of this facilıty is the use of a Vıdeo Tape Recorder (VTR) which also allows the recording of an audio commentary. This permits direct comparison of patterns using two monitors without the use of expensive photographic records.

The measurement of intensity within the microscopic image plane is usually accomplished using a microphotometer. This consists of a single optıcal fibre which scans the 1 mage plane withın a special eyepiece and the fibre output is fed to a photomultiplier. The resultant measurement is related to the fibres $X Y$ position in the form of a chart recording. These instruments are expensive (>E1000) and clearly outside the budget of this project.

However, a T.V. picture $1 s$ already a contınuously scanned intensity measurement and by sampling the video waveform at the relevant time, the intensity at any point within the T.V. pıcture may be obtained. Further, the construction of the T.V. video waveform as a series of X direction scans is already in the most usual form of scanned intensity measurements. In the television engıneers language, a suitable intensıty measuring scheme will extract and display a slngle selected line from the video waveform and provide a marker on the monitor picture to show which line has been selected. A further refinement which wall allow point intensity measurements, is a second marker which gives an X position along the line on both the line display and the monitor.

Figure 18a. The block diagram of the line extractor and marker circuit.
A - Line Sync to A Trigger input
B - Frame sync to B Trigger input.
C - A gate out to Delay trigger input.

Figure 18b. Monitor picture of
80 graticule in 2μ steps.

Figure 18d. The selected line. (the white line in Figure 18b)

Figure 18c. The frame waveform showing the selected line.

A simple system to achleve these facılıties was constructed and $u s$ shown in the block dlagram of Figure 18a. The major task of extracting the desired line from the video waveform is virtually a standard facılıty of the Tektronix Oscılloscope and $1 s$ descrıbed in the relevant handbook*. A Sync Extractor and Line Marker carcuit was designed and built and is described in detail in Appendix C. This circuit provides stable frame and line pulses for the triggering of the Tektronıx delay cırcuits. The Lane Marker brıghtens the selected line on the monitor (Figure l8b) with a varıable width pulse which commences on receipt of the line Sync pulse. The point marker is the end of this pulse and is positioned along the selected line dependent upon the pulse width. A portion of the selected line waveform (complete line waveform shown in Figure 18c) is expanded and displayed on a second oscilloscope usıng a varlable delay facilıty. The resultant calibration waveform of the monitor plcture of Figure l8b is shown in Figure 18d, with the 20 mıcron markers adjusted to colncıde with the 1 cm oscilloscope graticule markers.

The complexity of the intensity ampliflcation system with the numerous automatıc gain control facılıtıes, suggests that comparisons of intensity may be made only between polnts in the same image and no attempt $1 s$ made to relate these measurements to measurements obtained at different times. This does not apply when the intensity measurements are experımentally normalised to obtain positional information about the image under varıable ılluminating condıtions, whıch obvıously must occur at different times. The normallsed procedure is discussed further in Chapter 4 in connection with the measurement of the ramp refractive index profile of core cladded fibres.

Figure 19. The experimental arrangement for varying the spatial coherence of laser light.

Figure 20. The rotational mount experimental arrangement.

This section is concerned with the experımental details of the ılluminating systems used in this study and their analysis is deferred until the discussion of the experimental results in later chapters.

Three sources are used to cover the required range of coherence and bandwidth characteristics. A tungsten filament bulb provides a polychromatic light source and a sodium lamp provides quasi-monochromatic light, both of these sources havıng spataally incoherent characterıstics. A Metrologic Model 920 Helium-Neon laser provides a source of monochromatic spatıally coherent lıght at a wavelength of .6328 micron.

The source areas of the tungsten filament and sodium lamps are adjusted using diaphragms, although the entrance apertures of the fibres are generally the sıgnıfıcant diaphragms in the illumınatıng system.

The spatial coherence of the laser light is varied by unserting a rotating ground glass screen in the laser beam. The degree of spatial coherence of the beam at the entrance aperture of the fibres is a function of the divergence of the beam, the characteristic of the screen and the distances between the varıous components. This experımental arrangement is shown in Figure 19.

The main experimental difficulty encountered in this study is in arranging the fibres and the illuminating system in a manner which allows the angles of incldence of the lıght, as defined in Chapter 1 , to be varied independently whilst simultaneously obscrving the effects of such varlations on the light leavang the opposite end of the fibres. When the length of the fibres permit the use of the rotational mount of Figure 4, the illuminating system, the rotational mount and the microscope system are mounted on a common axis as shown in Figure 20. In this case the desıred degrees of freedom are obtained by"virtue of the flexibillty of the fibre or fibre bundle.

Figure 21. The swivelling optical bench experimental arrangement.

The short fibre specimens have either lamıted flexibility or no flexibility and their positioning is dictated by the requirements of the microscope system. With the fibres fixed in position the illuminating system must now be moved within a solid angle centred upon the entrance apertures of the fibres. It is not easy to provide the bulky 111 umnating systems wath both the axial and azlmuthal degrees of freedom. A simpler solution is to arrange for the fibres to retain a rotational degree of freedom, thus giving the azımuth angle adjustment. The axial degree of freedom is provided by mounting the illuminating system on the swivelling optical bench as shown in Figure 21.

The fibre rotational adjustment refers to the rotation of the entrance end of fibres, with limıted flexıbılıty, their other ends being fixed, whereas the completely embedded fibres will rotate at both ends simultaneously. The rotation of the microscopically viewed end may result in the displacement of the fibre and at hıgh magnifıcation the fibre of interest may pass out of the field of view. The azımuthal adjustment is therefore made slowly at low magnification to allow the position of the fibre to be followed, and this makes the adjustment cumbersome. There is, however, no easy alternative. The prevıous comments about the offset correction for the rotational mount of Figure 4 applyequally to this system and the method for determining the correction is now discussed.
2.8 Determınation of the Fibre Orıentation and Angle of Incidence

The grinding and polıshing machane described in Section 2.3 produces a surface which is normal to the optical bench axis. To utilize this property for fibre terminations requires a method of alıgning the embedded fibres at the desired angle to this surface prior to grinding. A procedure which positions the fibres with their longıtudınal axis parallel to the optical bench axis is sufficient since the rotational mount will permit the insertion of a measured off axis angle, resulting in a sloping end termination.

Figure 23. The plcture observed on the screen of Figure 22 when the fibre bundle is correctly positioned.

The procedure developed for this purpose uses a well known property ${ }^{(18)}$ of core cladded fibres to radiate a hollow cone of light when illuminated at a single angle of incldence. This property is derıved in Chapter 5. If the radıated cone of lught is projected onto a screen it produces a distribution of light centred on the extended longıtudinal axıs of the fibre. When the screen is normal to this axis the distribution forms an annulus whose mean diameter depends upon the angle of incldence and whose wadth depends upon the divergence of the radıating beam. The required procedure is thus reduced to erecting a screen normal to the optical bench axis and positioning the fibre such that its radiated cone of light produces en annular distribution of light on the screen.

The experimental arrangement is shown in Fagure 22 where the single fibre may be replaced by a fibre bundle if the individual fibre axes are parallel. Both ends of the bundle are ground nompnally flat and normal. The end to be reground at the measured angle is placed in the rotational mount. The opaque screen S and the transparent mask M are both marked with a series of concentric circles at radial increments of $1 \mathrm{~cm} . S$ and M are placed with their centres coaxial with the mounted fibre ends and normal to the optical bench axis. The other end of the fibres are illuminated by the $H e-N e$ laser at incident angles θ, α. The radiating cone of light passes through the mask M and illuminates the screen S.

If the fibre ends are coaxial with the screen and mask, the shadows of the mask rangs will be concentric with the screen rangs. The fibre is rotated in the $\theta \mathrm{x}, \theta \mathrm{y}$, and α directions untıl the annulus of light is also concentric with the screen rings, the concentricity of the shadow mask rlngs being maintalned by using the x, y adjustments of the rotational mount. The correct alignment situation is shown an Figure 23.

Figure 22. The experimental arrangement for the alignment of fibres.

Figure 25.

$$
\theta_{\mathrm{r} / 2}=60^{\circ}
$$

Figure 24.

No account has been taken of the effects of any exlsting slopes on the radiating ends of the fibre. These are discussed an Chapter 5 where it is shown that the repeated application of this alignment procedure and its associated grinding process will produce a surface which 15 progressively nearer to the required normal surface.

An alternative procedure is to relate the actual angle of incidence of the light on the fibre to the rotational mount readings thus takıng account of any sloping end effects. The axial angle of incidence is measured usıng an experımental interpretation of the "Black Band" effect different from that first reported by Potter ${ }^{(18)}$. This effect is now more generally known to be the propagation of skew rays wath incıdent angles above the merıdional cut off value, or in waveguide nomenclature as leaky modes ${ }^{(30)}$. These effects are discussed in more detall in Chapter 5. It is sufficient here to observe that if light is launched at an axial incldent angle $\theta_{r / 2}$ given by

$$
\begin{equation*}
\theta_{r / 2}=\sin ^{-1}\left(\frac{2}{\sqrt{3}} \quad \sin \theta_{c}\right) \tag{1.}
\end{equation*}
$$

where θ_{c} is the meridional critical angle, then in short lengths of fibre ($<2 \mathrm{~m}$) a black hole of radıus $r / 2$ appears in the cross sectional intensity distribution of the fibre, (r is the radius of the fibre core). An example of this condition is shown in Figure 24 where the fibre is 111 uminated by He Ne laser at $\theta_{r / 2}=40^{\circ}$ using the experimental arrangement of Figure 20. The dependence of the radius of the black hole on the axial angle of incidence given by equation 189 suggests that this angle may be measured by the appearance of the $r / 2$ radıus hole to wathan $\pm 2^{\circ}$.

The techniques descrıbed in this chapter for the preparation of sıngle-fibre or multıple-fıbre terminatıons are capable of prođucıng high quality optical surfaces on the ends of the fibres at any desired angle to their longitudinal axes. Since the phenomena of major anterest in this thesis are not significantly dependent upon the quallty of the end terminations, the techniques developed have proved more than satısfactory for use in this study.

The limıted budget avallable for the purchase of equipment has encouraged the use of novel experimental arrangements, and the apparent simplicaty of the phenomena under investigation is reflected in the simplicity of these arrangements. However it is well known that simple optucal experıments requare complicated analytical techniques for their rigorous analysis. This is apparent from the contents of the next chapter which contains the basic optical theory used in the subsequent analysis of the experıments described in later chapters.

CHAPTER 3

3.1 Introduction

This chapter is intended to provide the basic theory of optics and wave phenomena which is pertinent to this study. The treatment of many of the topics is necessarily brief in order to cover the fleld in this single chapter. This is consadered to be justified in view of the many available textbooks coverıng sımılar subject matter ${ }^{(31-34)}$.

All electromagnetic waves satisfy Maxwell's Equations and this provides a convenıent starting point for the chapter. The characteristics of optical waves are presented in the sections entrtled Bandwidth and Coherence, Polarısation, and Intensıty. The effects produced when waves are obstructed by apertures or obstacles are analysed using Diffraction Theory. The interaction of reflected or diffracted waves with themselves is considered in the section on Interference Phenomena. The study of the behaviour of waves at dielectrıc anterfaces leads to the derivation of the important Fresnel Equations. The derıvation of a scalar wave equation from Maxwell's equation is the foundation of the geometrical ray theory of light propagation.

The selection of certain experımental arrangements to illustrate some of the theory an this chapter is based upon their close analogy with experimental arrangements which arıse in the analysis of light propagating in the optical fibres.

3.2.1 Maxwell's Equations and the Wave Equation

The form of Maxwell's equations used in this chapter is that used in reference 31 which is specifically concerned with light waves.

The derivation of these equations from the fundamental observations of moving charges is contained in the extensive literature on Electromagnet $\mathrm{sm}^{(35-38)}$ and only a statement of the equations is gaven here.

The electric vectors are denoted by E, the field intensity, and D, the displacement. The corresponding magnetac vectors are H, the field intensity and B the flux density. The following four equations are Maxwell's equatıons for lınear isotropıc medıa in the absence of currents or charges.
$\operatorname{curl} H-\frac{\partial D}{\partial t}=0$
$\operatorname{curl} E+\frac{\partial B}{\partial t}=0$

$$
\begin{aligned}
& \operatorname{dav} D=0 \\
& \operatorname{dav} B=0
\end{aligned}
$$

The wave behaviour of electromagnetic fields becomes apparent by modifying equations (2) and (3) using equations (4) to (7) to form two independent wave equations in terms of E and H, sagnifying that each of these field components propagates as a wave.

The wave equations are :-

$$
\begin{aligned}
& \nabla^{2} E=\varepsilon \mu \frac{\partial^{2} E}{\partial t^{2}} \\
& \nabla^{2} H=\varepsilon \mu \frac{\partial^{2} H}{\partial t^{2}}
\end{aligned}
$$

These are standard wave equations where the velocity, v, of propagation is gaven by

$$
\begin{equation*}
v=(\varepsilon \mu)^{-\frac{1}{2}} \tag{10.}
\end{equation*}
$$

The solutions to this wave equation are many and just two are considered here, those for a plane wave and a spherical wave. It is also convenient to introduce here the notation used to represent nonmonochromatic waves.

A solution to the wave equation

$$
\begin{equation*}
\nabla^{2} v=\frac{1}{v^{2}} \frac{\partial^{2} v}{\partial t^{2}} \tag{11.}
\end{equation*}
$$

will be of the form $V(x, y, z, t)$ where V may be elther the E or H component. If $x(x, y, z)$ is a position vector then V may be represented by ats time dependent component $F(t)$ and space dependent component $U(x)$

$$
V(x, y, z, t)=F(t) U(r)
$$

The space dependent component of the wave will also satısfy the tıme independent wave equation

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) u=0 \tag{13.}
\end{equation*}
$$

where k is called the wave number and is given by

$$
k=\frac{\omega}{v}
$$

The angular frequency, ω, is related to the frequency, v, of the time dependent function

$$
\nu=\frac{\omega}{2 \pi}
$$

Using the exponential function the general space dependent component may be expressed as

$$
\begin{equation*}
U(x)=R\left\{a(x) e^{-i g(r)}\right\} \tag{16.}
\end{equation*}
$$

The amplitude $a(r)$ and $g(r)$ are both real functions of position and R denotes the real part of a function.

A monochromatic harmonic wave has a tame dependence of the form

$$
F(t)=\cos \omega t
$$

which in exponential form becomes

$$
\begin{equation*}
F(t)=R\left\{e^{-1 \omega t}\right\} \tag{18.}
\end{equation*}
$$

A non-monochromatic wave may be represented as the superposition of monochromatıc waves (using the Fourıer Theorem)

$$
\begin{equation*}
F(t)=R \int_{0}^{\infty} a(\omega) e^{-1(\omega t-g(\omega))} \quad \partial \omega \tag{19.}
\end{equation*}
$$

where $a(\omega)$ are the amplitudes of the Fourier components and $g(\omega)$ their phase function.

The amplıtudes and phase functions of the tame and space components may be combined to give the general form of the wave.

$$
\begin{equation*}
\mathrm{V}(x t)=\mathrm{R} \int_{0}^{\infty} a(\omega, r) \mathrm{e}^{-1(\omega t-g(\omega, r))} \quad \partial \omega \tag{20.}
\end{equation*}
$$

3.2.2 Wave Solutions for the Space Dependent Component

A plane wave has a non varying amplıtude in planes perpendicular to its direction of propagation. If $\overline{\mathrm{r}}$ represents the direction of propagation then $a(r)$ and $g(r)$ of equation $@ 6$) may be shown to be

$$
g(r)=(\bar{k} \cdot \bar{r}-\delta) \quad a(r)=a
$$

21.

where $\overline{\mathrm{K}}$ is the wave number in the direction \bar{F}, and δ is a phase constant.

A spherical wave radiates isotropically from a point source and thus has a propagation constant dependent upon $|x|$ where $|x|=\sqrt{x^{2}+y^{2}+z^{2}}$ and may be shown to have an amplitude dependence of $\frac{l}{|r|}$

$$
\text { i.e. } \quad g(x)=(k .|r|-\delta) \quad a(r)=\frac{a}{|r|}
$$

It is clear that a small section of a spherıcal wave, i.e. $x, y \ll z$ may be represented as a plane wave if the varıation of amplitude is of no signıfıcance.

Abstract

3.3 Bandwidth and Coherence of Optical Waves

The spectral range of an optical wave $1 s$ represented by the amplıtudes $a(\omega)$ of its Fourler components. The term monochromatic normally implies an idealised source whose frequency spectrum consists of a single component. A sodium lamp emits light with a narrow spectral width which, for the purpose of this thesis, $1 s$ termed quası-monochromatic.

The laser radiation, which has a much narrower (but finite) spectral width than the sodium light, is termed monochromatic in this thesis purely to distanguish it from sodium light. The white light source emits radiation with significant amplıtudes over a large spectral range compared with the sodium source spectral range, and is termed polychromatic.

The spatial dependence of the amplıtudes of the Fourıer components within the source aperture for each of the three sources is negligible, but their spatıal phase relationshıp is extremely significant. Á monochromatic wave 1 mpl les that the wave has existed for all time and there will therefore be no changes of phase of the wave with tıme. If this is true over the whole of the source aperture, then the phase at one point in the aperture will have a constant phase relationship with the wave at any other point. Such a relationship is called spatıal coherence. The converse condition called spatial incoherence implies a random phase
relationship between waves at different points within the source aperture. The absence of both of these conditions is called partial spatial coherence.

If the monochromatac condition is relaxed then the contınuous wave is truncated in time to form a wavelet, whose temporal length is inversely proportional to the width of the frequency spectrum of the source. (This leads to the interesting definition of white lıght as an impulse in the time domaın). Indıvıdual wavelets wall arrive at a polnt of observation at random tımes and because any optical detection process involves a long integration time relative to the length of the wavelets, they will appear to have random phase relationships with each other. This condition is termed temporal incoherence. The corollary must be that temporal coherence is observed when the observation process has a shorter duration than the tıme taken for a sıngle wavelet to pass the point of observation.

These coherence properties are measured and conversely are signıfıcant in interference experıments where they affect the vasibility of the anterference fringes, and for this reason their analysis is deferred to the section on Interference.

3.4 Polarısation

The definition of the Poynting vector, Equation 8, specifies that the E, H, vectors and the direction of propagation of every y form a right handed triad of vectors. Thus for a plane wave propagating in the z direction the E and H vectors are orthogonal and lie in the $x y$ plane.

The E components of this plane wave may be denoted as

$$
\begin{aligned}
& E_{x}=a_{1} \cos \left(\omega t-k z+\delta_{1}\right) \\
& E_{y}=a_{2} \cos \left(\omega t-k z+\delta_{2}\right) \\
& E_{z}=0
\end{aligned}
$$

The locus of the end of the E vector

$$
E=\sqrt{E_{x}^{2}+E_{y}^{2}}
$$

Abstract

represents the path taken by the E vector as the field propagates. The general case will give an ellıptıc locus which may degenerate into a straıght line or a circle. These represent ellıptical, linear and circular polarisation respectıvely and the elliptıc and cırcular locı may be left or right handed. The phase difference $\left(\delta_{2}-\delta_{1}\right)$ and the relatıve amplıtudes $\left(a_{1}, a_{2}\right)$ of the components determine the state of polarısation observed at a point in the field.

Linear polarisation $$
\left(\delta_{2}-\delta_{1}\right)=n \pi(n=0, \pm 1 \pm 2) \quad a_{1}, a_{2} \text { arbitrary }
$$ $$
\text { Carcular polarısatıon }\left(\delta_{2}-\delta_{1}\right)=\frac{n}{2} \pi(n= \pm 1, \pm 3, \pm 5) \quad a_{1}=a_{2}
$$

all other conditions give rıse to ellıptıc polarısation.

The significance of the polarisation property of electromagnetic waves appears when considering the behaviour of waves at refracting or reflecting interfaces. Any state of polarısation may be considered in terms of two orthogonal components which may be arbitrarily selected. Normally one component is selected in the plane of incldence of the wave at the interface, making the second component normal to this plane.

The three sources used in this study emit light with no preferred state of polarısation, and which, therefore, exhibıts any of the possible states in random manner. Llght with this characterıstic is known as natural light and may be represented as a superposition of two beams linearly polarısed at right angles to each other. The total intensity of the beam is equally divided between the two components and their field components are orthogonal.

3.5 Intensity of Electromagnetic Waves

The intensity of light waves is defined ${ }^{(31)}$ as the time average of the Poynting Vector.

$$
\begin{equation*}
I=\bar{s}=\overline{R\left\{\frac{1}{2}\left(E \times H^{*}\right)\right\}} \tag{24}
\end{equation*}
$$

The overbar indıcates the time average over the perıod T, and

* Indicates a complex conjugate operation. A linearly polarısed plane wave will have mutually orthogonal E and H components which may be denoted by $\mathrm{E}_{\mathrm{x}}, \mathrm{H}_{\mathrm{y}}$ and which are related through Maxwell's Equations.

$$
\left|\mathrm{H}_{\mathrm{y}}\right|=\sqrt{\frac{\varepsilon}{\mu}}\left|\mathrm{E}_{\mathrm{x}}\right|
$$

Substitution of equation (25) into (24)

$$
\begin{array}{rlr}
I & =R\left\{v \sqrt{\frac{\varepsilon}{\mu}} \bar{E}_{x}^{2}\right\} & 26 a . \\
& =R\left(v \sqrt{\frac{\mu}{\varepsilon}} \bar{H}_{y}^{2}\right\} & 26 b .
\end{array}
$$

Since absolute values are not required, the intensity may be given by

$$
\begin{equation*}
I=\bar{E}^{2} \tag{27.}
\end{equation*}
$$

A monochromatic plane wave may be represcnted by an E field of the form

$$
\begin{equation*}
E(x, t)=R\left(u(x) e^{-1 \omega t}\right)=\frac{1}{2}\left(u(x) e^{-I \omega t}+u(x) * e^{i \omega t}\right) \tag{28.}
\end{equation*}
$$

The complex spatial component $u(r)$ may be expressed in terms of its rectangular cartesian components

$$
\begin{equation*}
u_{x}=a_{1}(x) e^{l g_{1}(r)} \quad u_{y}=a_{2}(x) e^{1 g_{2}(r)} \tag{29.}
\end{equation*}
$$

where a_{j} are the constant amplitude terms and g_{j} are phase factors of the form of Equation 21.

From (28)

$$
E^{2}=\frac{3}{4}\left(u^{2} e^{-21 \omega t}+u^{* 2} e^{21 \omega t}+2 u u^{\star}\right)
$$

If the time averaging interval, T, is large compared with the interval $t=\frac{2 \pi}{\omega}$ of the first two terms of Equation (30) contribute zero and

$$
\begin{align*}
I=\bar{E}^{2} & =\frac{1_{2}}{2} u \cdot u^{*}=\frac{1}{2}\left(\left|u_{x}\right|^{2}+\left|u_{y}\right|^{2}\right) \\
& =\frac{b_{2}}{2}\left(a_{1}^{2}+a_{2}^{2}\right) \tag{31.}
\end{align*}
$$

3.6.1 Interference

When two monochromatac plane waves E_{1}, E_{2} at the same frequency are superposed, the total electric field at a point P will be given by

$$
\begin{equation*}
E=E_{1}+E_{2} \tag{32.}
\end{equation*}
$$

The intensity at this point

$$
\begin{aligned}
& I=\bar{E}^{2}=\bar{E}_{1}^{2}+\bar{E}_{2}^{2}+{\overline{2 E_{1}}{ }_{2}} \\
&=I_{1}+I_{2}+J_{12}
\end{aligned}
$$

where the intensities of the individual waves, $I_{1} I_{2}$, are given by Equation (31) and the term J_{12} is called the interference term, or the mutual intensity.

Let $u_{1}(r)$ and $u_{2}(r)$ be the complex amplitudes of the two waves E_{1} and E_{2} where

$$
\begin{array}{ll}
u_{1 x}=a_{1}(r) e^{i g_{1}(r)} & u_{2 x}=b_{1}(r) e^{1 h_{1}(r)} \\
u_{1 y}=a_{2}(r) e^{1 g_{2}(r)} & u_{2 y}=b_{2}(r) e^{i h_{2}(r)}
\end{array}
$$

It will be assumed that the phase difference between the two waves is the same for each rectangular component and is denoted by δ.

(Planes of constant phase.)

Figure 26. Two plane waves intersecting at angle 2θ.

It may be shown that
$J_{12}=\left(a_{1} b_{1}-a_{2} b_{2}\right) \cos \delta$

For light polarısed linearly in the x direction $a_{2}=b_{2}=0$, and using Equation (31)
$J_{12}=a_{1} b_{1} \cos \delta=2 \sqrt{I_{1} I_{2}} \cos \delta$

The total intensıty at P is given by Equation (33) as

$$
\begin{equation*}
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \delta \tag{37.}
\end{equation*}
$$

The dependence of the total intensity upon the phase difference δ causes the spatial frınges which are the characterising feature of interference phenomena.

The discussion of natural light suggests that it may be represented by components of the form of Equation (34) where $a_{1}=a_{2}, b_{1}=b_{2}$ and under the assumption that the phase difference is the same for both linearly polarısed components, Equation (37) will apply for frınges formed with natural light.

When the two beams are of equal intensity, 1.e. $a_{1}=b_{1}$, then the total intensity is given by

$$
I=4 I_{1} \cos ^{2} \frac{\delta}{2}
$$

Consider the case when two plane linearly polarısed monochromatic waves are inclined to each other at an angle of 2θ, such that the planes of constant phase intersect as shown in Figure 26 . The origin of the coordinate system is positioned at a point of equal phase of the two waves. The phase difference between the two waves at a point $P(x, y)$ is given by

$$
\delta=k 2 y \sin \theta
$$

and the intensity at P, if the two waves are of equal intensity I

$$
I(P)=4 I \cos ^{2}(k y \sin \theta)
$$

The maxima of intensity will occur at

$$
\begin{equation*}
\mathrm{y}=\frac{\mathrm{n} \pi}{\mathrm{k} \sin \theta} \quad \mathrm{n}=0,1,2, \ldots \ldots \tag{41.}
\end{equation*}
$$

and minıma (zero intensıty) when $n=\frac{1}{2}, \frac{3}{2} \ldots \ldots$ in Equation 41.
Substituting $k=\frac{2 \pi}{\lambda}$ where λ is the wavelength of the waves in the transmission media, the frınge spacing is gıven by

$$
\begin{equation*}
t=\frac{\lambda}{2 \sin \theta} \tag{42.}
\end{equation*}
$$

The fringe at $P(0,0)$ is defined as the zero order fringe, which implies that it will be a point of maxımum intensıty irrespectıve of the wavelength of the waves. The $\mathrm{m}^{\text {th }}$ order fringe is a distance $\mathrm{y}=\mathrm{mt}$ from the zero order frange.

If the waves are quasi-monochromatic, that $1 s$ they have a wavelength range $\Delta \lambda$ which is small compared with the mean wavelength λ^{\prime}, then the $m^{\text {th }}$ order fringe will be displaced in the plane of observation (the y axis) by an amount $\Delta y=\frac{m \Delta \lambda}{2 \sin \theta}$

If

$$
\begin{equation*}
m \ll \frac{\lambda^{\prime}}{\Delta \lambda} \tag{44}
\end{equation*}
$$

then Δy is negligıble compared with mt and the different wavelength franges wall be colncident and the contrast of the franges will be the same as for the monochromatic waves.

If the monochromatic wave E_{1} has its optical path length increased by ΔL prior to reaching the point $P(0,0)$ then the zero order fringe will move in the y direction

$$
\text { yo }=\frac{\Delta L}{2 \sin \theta}
$$

and the intensity at $\mathrm{P}(0,0)$ wall be maximum or minımum depending upon the value of n as in Equation (41) in the expression

$$
\begin{equation*}
n=\frac{\Delta L}{\lambda} \tag{46.}
\end{equation*}
$$

The contrast of fringes at a point P is measured using a quantity called visıbilıty which is defıned as

$$
\begin{equation*}
E|P|=\frac{I_{\text {MAX }}-I_{\text {MIN }}}{I_{\text {MAX }}+I_{\text {MIN }}} \tag{47.}
\end{equation*}
$$

The fringe intensity given by Equation (39) is due to the superposition of monochromatıc waves which from the discussion in Section 3.3
are known to be coherent. Substituting the relevant values of (38) into (47) yıelds a value of Ξ of 1 corresponding to coherent fringe vasibility. The absence of any interference franges ($I_{\text {MAX }}=I_{\text {MIN }}$) implies Incoherence and the corresponding value of Ξ is zero. A value of Ξ between O and 1 sıgnifies a partial coherence condıtion.

Consider the fringe visibility at point $P(0,0)$ when the illumanation $1 s$ quası-monochromatic and ΔL is increased untıl the order m of the fringe at $P(0,0)$ is such that (44) becomes

$$
\begin{equation*}
m \simeq \frac{\lambda^{\prime}}{\Delta \lambda} \tag{48.}
\end{equation*}
$$

The different frequency fringes will now be signıfıcantly displaced from the centre frequency fringe position and $\Xi(0,0)$ will be less than 1 and the illumination at this point is now partially coherent.

An alternatuve explanation for this reduction in coherence is obtained by considering the wavelet representation of quasi-monochromatic light. If it $1 s$ assumed that the two interfering waves are derıved from the same source, then a part of each wavelet (in terms of amplatude) will propagate in each of the waves. If ΔL exceeds the length of the wavelet, then the intensity at the point of observation will consist of the
superposition of dıfferent wavelets whıch have random phase relationships and will therefore produce no interference effects. If ΔL is less than the wavelet length, a part of each wavelet (in terms of length) wall overlap and produce interference fringes.

The wavelet length is given by

$$
\begin{equation*}
\ell_{c}=\frac{\lambda^{2}}{\Delta \lambda} \tag{49.}
\end{equation*}
$$

and is known as the coherence length.

Typical values of the coherence length for the sources used in this study are

```
\(\ell_{c} \simeq 3 \mu\). Whate light source
    \(\simeq 3 \mathrm{~m} \mathrm{~m}\). Sodium Source
    > 30m. Lasex
```

The white light and sodium sources may be considered to be composed of an ensemble of small sources each radiating incoherently but emıtting light withan the overall source bandwidth. By judicious experimental arrangement, as described in the next section, these ensembles of incoherent sources may exhibit coherent properties. The laser however has, as part of its light generation system, a very narrow bandwidth optical filter. The modus operandum of this filter produces a spatıally coherent beam of light from what may be an ensemble of incoherent emıssions of radıation from the laser gas. The contribution of the stimulated emission process to the coherence properties of the laser 15 still under investıgation (39). The allied problem of the enhancement of spatial coherence of waves by propagation in bounded medıa (waveguıdes, cavıties etc.) has also recelved attention $(40,41)$ A small contribution to this last subject is made in Chapter 8.

Figure 27. The source σ illuminates the two pinholes $\mathrm{P}_{1}, \mathrm{P}_{2}$ and the diffracted light contributes to the light observed at Q.

3.6.2 Interference of Non Monochromatic Waves

The electric field at a point P of a general wave may be
represented by the complex function $V(P, t)$ where the physical scalar wave is taken as the real part of $V(P, t)$. The intensity of the wave is given by

$$
I(P)=R\left\{\overline{V(P, t)}^{2}\right\}=\frac{1}{2}\left(\overline{V(P, t) V^{*}(P, t)}\right)
$$

Consider the experimental arrangement of Figure 27, where the source σ illumınates two pınholes P_{1}, P_{2} in the opaque screen A. These panholes behave as secondary sources and the antensity due to the superposition of these secondary waves is measured at a polnt Q, a distance s_{1}, s_{2} from P_{1}, P_{2} respectively.

The time taken for the waves to travel from P_{1} and P_{2} to Q are t_{1}, t_{2} respectively where

$$
\begin{align*}
& t_{1}=\frac{s_{1}}{v} \quad t_{2}=\frac{s_{2}}{v} \tag{51.}\\
& \left(t_{2}-t_{1}\right)=\tau
\end{align*}
$$

Denoting the waves at P_{1} and P_{2} by the complex functions, V_{1}, V_{2} the total wave at Q is grven by

$$
v(Q, t)=K_{1} v_{1}+K_{2} v_{2}
$$

where K_{1} and K_{2} are propagating coefficients which relate the wave values at the points P_{1}, P_{2} to their values at the point Q. These coefficlents are discussed in the section on diffraction by clrcular apertures, Section 3.7.3. The intensity at Q is given by

$$
I(Q)=\left|K_{1}^{2}\right| I_{1}+\left|K_{2}\right|^{2} I_{2}+2\left|K_{1} K_{2}\right| R\left(\Gamma_{12}(\tau)\right)
$$

where $R\left(\Gamma_{12}(\tau)\right)$ as the real part of the function

$$
\Gamma_{12}(\tau)=\overline{V_{1}(t+\tau) V_{2}^{*}(t)}
$$

The cross correlation function $\Gamma_{12}(\tau)$ is called the mutual coherence function and deflnes the coherence between waves at polnts P_{1}, P_{2}, the wave at P_{1} being considered a time τ later than that from P_{2}. When $\tau=0$

$$
\Gamma_{12}(0)=J_{12}
$$

and $\Gamma_{12}(\tau)$ is clearly an intensity measurement. It may be normalised to give the complex degree of coherence.

$$
\gamma_{12}(\tau)=\frac{\Gamma_{12}(\tau)}{\sqrt{I_{1} I_{2}}}
$$

and it may be shown that

$$
\left|\gamma_{12}(\tau)\right| \leqslant 1 \quad \text { (Ref. 31, Chapter 10) }
$$

If the complex degree of coherence is defined as

$$
\gamma_{12}(\tau)=\left|\gamma_{12}(\tau)\right| e^{i\left(\alpha_{12}(\tau)-2 \pi \bar{\nu} \tau\right)}
$$

then

$$
R\left\{\gamma_{12}(\tau)\right\}=\left|\gamma_{12}(\tau)\right| \cos \left(\alpha_{12}(\tau)-\delta\right)
$$

where

$$
\alpha_{12}(\tau)=\operatorname{ary} \gamma_{12}(\tau)
$$

\bar{v} is the mean frequency of the light and

$$
\begin{equation*}
\delta=2 \pi \bar{v} \tau \tag{61.}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\left|K_{1}^{2}\right| I_{1}=I_{1}(Q) \quad\left|K_{2}^{2}\right| I_{2}=I_{2}(Q) \tag{62.}
\end{equation*}
$$

Equation 54 may be written

$$
\begin{equation*}
I(Q)=I_{1}(Q)+I_{2}(Q)+\sqrt{I_{1}(Q) I_{2}(Q)}\left|\gamma_{12}(\tau)\right| \cos \left(\alpha_{12}(\tau)-\delta\right) \tag{63.}
\end{equation*}
$$

Comparing Equation (63) with (37) it is clear that $\left|\gamma_{12}(\tau)\right|$
determanes the visıbılity of the fringes and $\alpha_{12}(\tau)$ wlll give the

Figure 28. The light from a single element of the source σ contrabutes light to the two poants P_{1} and P_{2}.
displacement of the franges. If $I_{1}(Q)=I_{2}(Q)$ then on substitution of the relevant values of Equation (63) into (47)

$$
\begin{equation*}
\Xi(Q)=\left|\gamma_{12}(\tau)\right| \tag{64.}
\end{equation*}
$$

When $v \tau \ll \frac{\lambda^{2}}{\Delta \lambda}, \gamma_{12}(\tau)$ will change slowly in comparıson with the $\cos \delta$ term and this corresponds to the quasi-monochromatic condition previously considered. As $\Delta \lambda$ is increased, then the dependence upon τ becomes signıficant, which may be interpreted as the 'overlapping of fringes condition', but which now appears as a reduction in visibility which is implicit in the value of $\left|\gamma_{12}(\tau)\right|$.

To calculate the complex degree of coherence γ_{12} between the points P_{1} and P_{2} illuminated by a quasi-monochromatic source, shown in Figure 28, each element of the source 1 s assumed to radiate spherıcal waves which are independent of any other element. Denoting the disturbances at P_{1}, P_{2} due to the radiation from element $d \sigma_{m}$ as $V_{m l}(t)$, $V_{m 2}(t)$ total disturbances at P_{1} and P_{2} are glven by

$$
\begin{equation*}
V_{1}(t)=\sum_{m} V_{m 1}(t) \quad V_{2}(t)=\sum_{m} V_{m 2}(t) \tag{65.}
\end{equation*}
$$

Using the assumption that $\tau \simeq 0$ then from Equations (55), (56)

$$
J_{12}=\overline{V_{1}(t) V_{2}^{*}(t)}=\sum_{m} \overline{V_{m l}(t)} V_{m 2}^{*}(t)+\sum_{m} \overline{V_{m l}(t) V_{n l}^{*}(t)}
$$

66.

The independence condition between radiation from different ($m \neq n$) elements wall give a zero value for the second term of (66). The radiation from the $m^{\text {th }}$ element may be denoted $A_{m} e^{-2 \pi i \bar{v} t}$ and, If $s_{m l}, S_{m 2}$ are the dastances from this element to the points P_{1}, P_{2}, then $t_{m l}, t_{m 2}$ are given by equation (51). Using the equations for spherıcal waves (22),

$$
\begin{equation*}
v_{m l}(t)=A_{m}\left(t-t_{m l}\right) \frac{e^{-12 \pi \bar{v}\left(t-t_{m l}\right)}}{s_{m l}}, V_{m 2}(t)=A_{m}\left(t-t_{m 2}\right) \frac{e^{-12 \pi \bar{v}\left(t-t_{m 2}\right)}}{s_{m 2}} \tag{67.}
\end{equation*}
$$

and $\overline{V_{m 1}(t) V_{m 2}^{*}(t)}=\overline{A_{m}\left(t-t_{m 1}\right) A_{m}^{*}\left(t-t_{m 2}\right)} \frac{e^{12 \pi \bar{v}\left(t_{m 1}-t_{m 2}\right)}}{s_{m l}^{s}{ }_{m 2}}$

Shifting the time origin by setting $t_{m 2}-t_{m l}=\tau \simeq 0$ in the argument of A_{m}^{*}

$$
\begin{equation*}
J_{12}=\sum_{m} \overline{A_{m}(t) A_{m}^{*}(t)} \frac{e^{1 k\left(s_{m l}-s_{m 2}\right)}}{s_{m l} s_{m 2}} \tag{69.}
\end{equation*}
$$

The term $\overline{A_{m}(t) A_{m}^{*}(t)}$ is the intensity of the element $d \sigma_{m}$ and so denoting by $I(s)$ the source intensity per unit area, Equation (69) becomes

$$
J_{12}=\int_{\sigma} I(s) \frac{e^{I k\left(s_{1}-s_{2}\right)}}{s_{1} s_{2}} d s
$$

where the surface integral is taken over the source surface denoted by σ.

Normalising Equation (70)

$$
\gamma_{12}=\frac{1}{\sqrt{I\left(P_{1}\right) I\left(P_{2}\right)}} \int_{0} I(s) \frac{e^{1 k\left(s_{1}-s_{2}\right)}}{s_{I} s_{2}} d s
$$

where $I\left(P_{1}\right), I\left(P_{2}\right)$ are the intensities at P_{1} and P_{2}.

If, as shown in Figure 28, the co-ordinates of a typical source element are (ξ, η), the co-ordinates of $P_{1} P_{2}$ are $\left(x_{1}, Y_{1}\right),\left(x_{2}, y_{2}\right)$ and R is the distance between the source plane and the plane contalning P_{1}, P_{2} then, using

$$
p=\frac{\left(x_{1}-x_{2}\right)}{R}, q=\frac{\left(y_{1}-y_{2}\right)}{R}
$$

and the approximatıons dıscussed in reference (31) pp 510, equation (71) becomes

$$
\begin{equation*}
\gamma_{12}=\frac{e^{i \psi} \iint_{\sigma} I(\xi \eta) e^{1 \vec{k}(p \xi+q \eta)} d \xi d \eta}{\iint_{\sigma} I(\xi \eta) d \xi d \eta} \tag{73.}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\frac{\overline{\mathrm{k}}\left\{\left(\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}\right)-\left(\mathrm{x}_{2}^{2}+\mathrm{y}_{2}^{2}\right)\right\}}{2 \mathrm{R}} \tag{74}
\end{equation*}
$$

and represents the phase difference $\frac{v \tau 2 \pi}{\bar{\lambda}}$ which for quası-monochromatic light may be neglected if $v \tau \ll \bar{\lambda}$. Equation (73) is the normalised Fourler Transform of the intensity function of the source and for a circular unıform intensity source radıus ρ yields a solution in terms of Bessel functions of the first kind and first order $J_{1}(u)$.

$$
\gamma_{12}=\left(\frac{2 J_{1}(u)}{u}\right) e^{1 \psi}
$$

where

$$
\begin{equation*}
u=\bar{k} \rho \sqrt{p^{2}+q^{2}}=\frac{2 \pi \rho}{\overline{\lambda R}} \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \tag{76.}
\end{equation*}
$$

When $u=0$, i.e. P_{1} and P_{2} are coincldent, γ_{12} has the value 1 indicating coherence, and as P_{1} and P_{2} are separated γ_{12} reduces until at a separation of $\frac{0.61 R \bar{\lambda}}{\rho}$ there is complete incoherence, $\gamma_{12}=0$.

At $u=1, \gamma_{12}=0.88$ and this 15 taken as a measure of the diameter d , of the circular area almost coherently illuminated by a circular source of radıus p, radiating incoherent quası-monochromatıc light.

$$
d=\frac{0.16 \bar{\lambda} R}{\rho}
$$

Equation (77) expresses the experimental condıtions under which anterference frınges may be observed using inıtially incoherent light. If it is required that an inıtially spatially coherent source (which implies monochromatic) be made spatially ancoherent, then a suatable method is suggested by the assumption used in connection with the second term of Equation (66).

If the source σ of Figure 28 is now considered to be monochromatic, then the last term of Equation (66) may be expressed, using Equation (34)

$$
\sum V_{m 1}(t) V_{n 2}^{*}(t)=u_{m 1} u_{n 2}^{*}
$$

where

$$
V_{m l}(t)=U_{m l} e^{-12 \pi \bar{v} t}, V_{n 2}=U_{n 2} e^{-12 \pi \bar{\nu} t}
$$

and

$$
U_{m l}=A_{m l} e^{g m l}, U_{n 2}=A_{n 2} e^{g n 2}
$$

substituting (81) into (79)

$$
U_{\mathrm{ml}} U_{\mathrm{n} 2}^{*}=A_{\mathrm{ml}} \cdot A_{\mathrm{n} 2} \cos \left(g_{\mathrm{n} 2}-g_{\mathrm{ml}}\right)
$$

The spatial coherence of the waves is implicit in the time independence of the phase difference $\left(g_{n 2}-g_{m l}\right.$) which may give a non-zero value for Equation (78).

By making either or both of the arguments of Equations (80) tıme dependent the phase dıfference and thus the spatial position of the interference franges will become tıme dependent. By ensurang that the rate of movement of the fringes exceeds the temporal resolution of observation, then no frınges will be observed and the waves will be incoherent. The experımental arrangement for inserting this time

Figure 29. Dıagrammatic form of the apparatus for varying the spatial coherence of the light from the source plane.
dependent phase shıft is shown in Figure 19 and is shown in diagrammatic form in Figure 29.

The ground glass screen G has a spatıal dependent phase characteristic which may be characterısed by a unit cell of area do ${ }_{s}$ of constant phase but which has a random phase relationship with all other cells. The laser and assoclated optıcs may be represented as a polnt source of monochromatic light a distance R_{s} from the screen G. The cell $d \sigma_{s}$ is assumed to be curcular of diameter Δ_{s} and light from the source passing through a single cell will illuminate a circle of diameter

$$
d_{c}=\frac{R \Delta_{S}}{R_{S}}
$$

on the plane parallel to the screen a distance R from the source.

The rotation of the screen imparts a time dependent phase shift to the lıght within this carcle. Sance the phase shaft due to the ground glass screen will be random, it is assumed that the light in any other carcle will be ancoherent. Under these conditions the spataal coherence of the laser light is confined to a curcle of diameter \boldsymbol{a}_{6} which may be varıed experimentally through the adjustment of R_{s} or R. The effects of the diffraction of the light by the phase variations of the screen have been neglected in this simple analysis.

3.7.1 Diffraction

An electromagnetic wave occupıes a finite volume of space and the volume boundary is determined by the points in space at which the wave components E, H have negligable values. Any attempt to obstruct a wave or to confine it to within a smaller volume results in the perturbation of its wave components and produces secondary waves which give rıse to the diffraction effects.

Figure 30a. S is a wavefront origanating from the point source P_{o} and X, s are the varlables assoclated with the light from a section Q of the wavefront which contrabutes light to the point P.

Figure 30b. The Fresnel zone construction on the wavefront of a point source.

The ragorous determanation of the secondary waves involves the solution of the wave equations subject to the boundary conditions amposed on the wave components by the obstructions (31 Ch .11). It is, however, sufficient for most optical problems to use the Fresnel-Kırchoff diffraction theory to obtain a result which is experımentally indistinguishable from the rigorous theory.

The Fresnel-Kırchoff dıffraction theory was orıgınated by Fresnel who explained diffraction phenomena in terms of the Huygens wavelet construction and interference. Huygens asserted that each element of a wavefront may be regarded as the centre of a secondary disturbance which radıates spherıcal waves and the wavefront at any later time is the envelope of all such wavelets. Fresnel ancluded the effects of the mutual interference of the wavelets to predict with accuracy the diffraction effects produced by simple obstructions or apertures placed in the path of simple waves.

3.7.2 Huygens-Fresnel Diffraction Theory

Consider a polnt source of monochromatic waves at p_{o} shown in Figure $30 a$ and let S be the instantaneous position of the wavefront, radıus r_{0}. The disturbance at P due to the element $d S$ at Q of the wavefront a distance s from P is given by
where $K(\chi)$ is an inclination factor describing the variation with angular direction X of the amplitude of the secondary waves originating at Q. Fresnel assumed that $K(X)$ is maximum for $X=0$ and zero for $x=\frac{\pi}{2}$. The total disturbance at P wall be given by

To evaluate Equation (84) the wavefront is splat into Fresnel zones $z_{1}, z_{2} \ldots$ as shown in Figure $30 b$, where the boundary of each zone is gaven by a sphere centred on P with radii $b, b+\frac{\lambda}{2}, b+\frac{2 \lambda}{2}$. Following the analysıs of Born \& Wolf $\mathrm{p}^{(31 \mathrm{pp} .372)}$ it is found that the contributions of adjacent zones to $U(P)$ are approximately equal in magnitude but of opposite sign. If all zones are assumed to contribute to $U(P)$ then

$$
\begin{equation*}
\mathrm{U}(\mathrm{P})=i \lambda\left(K_{1} \pm K_{\mathrm{n}}\right) \frac{A e^{i k\left(x_{0}+b\right)}}{x_{0}+b} \tag{85.}
\end{equation*}
$$

that is only the first and last zones make signifıcant contrıbutions, the intermediate zones cancelling each other out. Using the assumption of Fresnel that $K_{n}=K\left(\frac{\pi}{2}\right)=0$ Equation (85) reduces to

$$
\mathrm{U}(\mathrm{P})=1 \lambda \mathrm{~K}_{1} \frac{\mathrm{~A} e^{i k\left(r_{0}+b\right)}}{\left(r_{0}+b\right)}
$$

This will agree with the effects of a spherical wave if

$$
\begin{equation*}
\mathrm{K}_{1}=-\frac{\mathrm{i}}{\lambda} . \tag{87.}
\end{equation*}
$$

The contrabution to $U(P)$ by the $J^{\text {th }}$ zone may be shown to be

$$
U_{j}(P)=2 \lambda \lambda(-1)^{j+1} k_{j} \frac{A e^{1 k\left(x_{0}+b\right)}}{r_{0}+b}
$$

and Equation (86) may be written

$$
\begin{equation*}
U(P)=\frac{l_{2}}{} U_{1}(P) . \tag{89.}
\end{equation*}
$$

That is, the total disturbance at P is equal to one half the disturbance due to the first zone alone. A similar result will be obtained if a screen with a circular aperture is placed perpendicular to $P_{0} P$ with its centre on this line, such that only half of the first zone is unobstructed by the screen. Increasing the slze of the opening until the whole of

Figure 31. The circular aperture diffraction experıment.
the first zone is uncovered, wall give

$$
U(P)=\frac{2 A e^{l k\left(r_{0}+b\right)}}{r_{0}+b}
$$

and the intensity will be four times that obtained if the screen were absent.

If the first two zones are uncovered then $U(P)=0$ and as more zones are uncovered the intensity at P will pass through maxima and zero values. In the experimental arrangement of Figure 31 a cırcular aperture, radıus ρ, is illumınated by a plane monochromatic wave, wavelength λ. The distance R along the axis at which the maxima and zero values of intensity are observed are given by

$$
\begin{equation*}
R=\frac{\rho^{2}}{n \lambda} \tag{91.}
\end{equation*}
$$

where

$$
\begin{aligned}
& n=1,3,5 \ldots . \text { for maxima } \\
& n=2,4,6 \ldots \text { for zeros }
\end{aligned}
$$

Equation 91 is subject to the condition $R \gg n \lambda$ whach ensures that adjacent zones contribute equal (and opposite) contrıbutions to the total disturbance at the point of observation.

The Justiflcation for Equation (87) is obtained from the generalisation of the Huygens-Fresnel diffraction theory due to Kırchoff. The Kırchoff daffraction theory also yields the correct form for the inclination factor $K(X)$.

3.7.3 Kirchoff's Diffraction Theory

Kirchoff's diffraction theorem expresses the solution of the wave equation at an arbitrary point P in the field in terms of the value of the solution and its first derıvations at all points on an arbitrary closed surface surrounding the point P.

Figure 32. The boundarys of the Kirchoff diffraction theorem.
$U(P)=\frac{1}{4 \pi} \iint_{S}\left\{\frac{U d}{d n}\left(\frac{e^{2 k s}}{s}\right)-\frac{e^{2 k s}}{s} \frac{d U}{d n}\right\} \quad d S$.

Equation (92) is called the Kırchoff diffraction integral, where S is the closed surface surrounding point P and the $\frac{e^{i k s}}{s}$ term has the same interpretation as in Equation (83). To solve Equation (92) requires the values of U and $\frac{d U}{d n}$ at all points on the surface S where $\frac{d}{d n}$ denotes differentiation along the unward normal to S. The Kırchoff integral equation (31) is not derived here and 1 is only used to Justıfy the Huygens-Fresnel theory which is now shown to be a special case of the Kırchoff integral.

In Figure 32 , a monochromatic point source P_{o} illuminates an aperture in an opaque screen a distance r_{0} from P_{o} and the point of observation P is a distance s from the screen. The surface of integration S consists of the aperture A and the opaque screen surface B which is bounded by a portion C of the surface of a sphere radius R centred at P.

The Kırchoff boundary condıtions gave the values of U and $\frac{d U}{d n}$ on these surfaces as,

$$
\text { c } \quad U=\frac{d U}{d n}=0
$$

$$
\begin{aligned}
& \text { On } \quad \mathrm{A}=\frac{A e^{i k r_{0}}}{r_{0}} \quad \frac{d U}{d n}=\frac{A e^{i k r_{0}}}{r_{0}}\left(i k-\frac{1}{r_{0}}\right) \cos \left(n, r_{0}\right) \\
& \text { B } \quad U=\frac{d U}{d n}=0
\end{aligned}
$$

where $\frac{A e^{i k r_{0}}}{r_{0}}$ is the value of the incident field in the apcrture. The zero contribution from B is due to the opaqueness of the screen and the zero contrıbution from the surface C is assumed by considerıng a finite propagation time for the wave before which the field at radius R will be zero.

Substatution of Equation (93) ınto (92) yıelds the FresnelKırchoff diffraction formula.

$$
U(P)=\frac{-1 A}{2 \lambda} \iint_{A} \frac{e^{i k\left(r_{0}+s\right)}}{r_{0} s}\left(\cos \left(n, r_{0}\right)-\cos (n, s)\right) d S
$$

A portion W of the incident spherical wavefront within the aperture may be selected instead of the surface A and for r_{o} large, the portion D of the wavefront may be neglected. Then $\cos \left(n, r_{0}\right)=1$ and setting $X=\pi-\left(r_{0} s\right)$ in Equation (94)

$$
U(P)=\frac{-\lambda}{2 \lambda} \frac{A e^{1 k x_{0}}}{r_{0}} \iint_{W} \frac{e^{1 k s}}{s}(1+\cos x) d S .
$$

Comparıson of Equatıon (95) wıth (84) gives for the inclınation factor the expression

$$
K(x)=\frac{-1}{2 \lambda}(1+\cos x)
$$

which for $K(0)$ reduces to $K_{1}=\frac{-1}{\lambda}$ as given by Equation (87). The assumption of Fresnel that $K\left(\frac{\pi}{2}\right)=0$ is clearly ancorrect but the larger values of X are not encountered in most diffraction problems.

A simplifled form of Equation (95) is used in Section 5.5
to calculate the intensity distrıbution at a caustic surface.

Figure 33. The interface between media of different permatıvity showing the reflected and transmitted waves formed by an incıdent wave.

3.8 The Fresnel Equations

The optıcal theory consıdered so far in thıs chapter has been concerned with wave propagation in homogeneous media where the material constants are independent of position. A simple anhomogenous medium contains a step change of a material constants, for example from ε_{1} to ε_{2} as shown in Figure 33. The magnetic material constant μ is assumed not to vary signıficantly from its free space value $\mu \mathrm{o}=1$ for the media consldered in this thesis.

The derivation of the Fresnel equations is given $2 n$ most optical theory textbooks ${ }^{(31-34)}$ and only an outline of the theory and the results are given here. The Fresnel equations describe the complex amplıtudes of the wave components which arise in the two media (1,2) in Figure 33 when a monochromatic plane wave is incıdent upon the interface between the two media. The derivation of the equations is based upon the boundary conditions which require continuous electric field components tangential to the interface and in the absence of currents, a sımilar condition for the tangential magnetic field components.

Consider a plane wave of complex amplıtude A incident upon the interface from medium 1 at angle θ_{2} shown in Figure 33. To satisfy the boundary conditions, two resultant plane waves are postulated, a reflected wave of complex amplitude R and a transmitted wave (refracted wave) of complex amplıtude T. Both waves lie in the plane of the incident wave and make angles with the normal at the interface of θ_{r} and θ_{t} respectıvel.y.

By resolving the three waves into their xyz components and using the condition that at every point on the interface the time variation of all three waves will be the same, the following laws of reflection and
refraction may be derıved.

$$
\begin{array}{ll}
\text { Law of reflection } & \theta_{r}=\pi-\theta_{1} \\
\text { Law of refraction } & \frac{\sin \theta_{1}}{\sin \theta_{t}}=\frac{v_{1}}{v_{2}} .
\end{array}
$$

Where, from Equation (9),

$$
v_{1}=\frac{1}{\sqrt{\varepsilon_{1} \mu_{1}}} \quad v_{2}=\frac{1}{\sqrt{\varepsilon_{2} \mu_{2}}}
$$

Defining the refractive index n as

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}} \quad \text { then } \quad \mathrm{n}_{1}=\frac{\mathrm{c}}{\mathrm{v}_{1}} \quad \mathrm{n}_{2}=\frac{\mathrm{c}}{\mathrm{v}_{2}} \tag{99.}
\end{equation*}
$$

where c is the velocity of waves in free space.

The law of refraction may be written using Equations (98), (99) as

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{t} \tag{100}
\end{equation*}
$$

which is the form known as Snell's Law.

In the section on Polarisation it was shown that an arbitrarily polarised wave may be consldered in terms of two waves, one linearly polarised parallel to the plane of incıdence, denoted by subscript p, and the second linearly polarised normal to this plane, denoted by subscript n. The fleld components of each of these waves independently satisfies the boundary conditions and the solutions of the boundary condition equations gives the following amplitudes for the reflected and transmitted waves.

Figure 34b. Graphs showing the amplitudes of the reflected waves at a total internal
reflection interface.

Figure 34a. Graphs showing the amplitude of the refracted and reflected waves at a dielectric interface.

$$
\begin{aligned}
& T_{p}=\frac{2 n_{1} \cos \theta_{i}}{n_{2} \cos \theta_{1}+n_{1} \cos \theta_{t}} A_{p} \\
& T_{n}=\frac{2 n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{1}+n_{2} \cos \theta_{t}} A_{n} \\
& R_{p}=\frac{n_{2} \cos \theta_{i}-n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}} A_{p} \\
& R_{n}=\frac{n_{1} \cos \theta_{1}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{1}+n_{2} \cos \theta_{t}} A_{n}
\end{aligned}
$$

If $n_{2}>n_{1}$ then from Equation (100), θ_{t} is real for all θ_{1} and Figure 34a shows the amplitudes of the reflected and refracted waves according to Equations (101), (102) for $A_{p}=A_{n}=1$ and $\frac{n_{2}}{n_{1}}=1.5$.

$$
\text { When } \left.n_{1}>n_{2} \text { then for } \frac{n_{1}^{2}}{n_{2}^{2}}\right) \sin ^{2} \theta_{1}>1, \theta_{t} \text { is imaginary and }
$$

Equation (102) may be expressed in the form

$$
R_{p}=\frac{n_{2}^{2} / n_{1}^{2} \cos \theta_{i}-i \sqrt{\sin ^{2} \theta_{1}-n_{2}^{2} / n_{1}^{2}}}{n_{2}^{2} / n_{1}^{2}} \cos \theta_{1}+1 \sqrt{\sin ^{2} \theta_{1}-n_{2}^{2} / n_{1}^{2}} \quad A_{p}
$$

$$
R_{n}=\frac{\cos \theta_{i}-1 \sqrt{\sin ^{2} \theta_{i}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{1}+1 \sqrt{\sin ^{2} \theta_{1}-n_{2}^{2} / n_{1}^{2}}} \quad . \quad A_{n}
$$

Either of the Equations (103) may be expressed in the form $\frac{a-1 b}{a+1 b}$ which in polar form becomes $1 / \delta$ where TAN $\frac{\delta}{2}=\frac{b}{a}$.

Then

$$
\left|R_{p}\right|=\left|A_{p}\right| \quad \text { and } \quad\left|R_{n}\right|=\left|A_{n}\right|
$$

The condution expressed by Equation (104) is called total internal reflection and indicates that the energy of the incıdent wave $\alpha \overline{\left|A^{2}\right|}$ is totally reflected at the interface of the two dielectrıcs. The amplitudes of the reflected fields for Equation (104) are shown in Figure $34 b$ where $A_{p}=A_{n}=1$ and $\frac{n_{1}}{n_{2}}=1.5$. It may be shown that the transmitted field amplitudes $\mathrm{T}_{\mathrm{p}}, \mathrm{T}_{\mathrm{n}}$ are not zero when total internal reflection occurs, but produce an evanescent field whose amplıtude decays rapidly with distance from the interface and which in terms of a tıme average value propagates no energy away from the interface.

Since in general the parallel and normal components of incident waves have different reflection and refraction amplıtudes the state of polarisation of the incldent wave will be changed on reflection or refraction. Natural light which is inıtially unpolarısed will become partially polarised after reflection or refraction.

3.9 Geometrical Ray Theory

The analysis of the propagation of a plane wave by consideration of the behaviour of its parallel constant phase loci suggests a simpler representation in which the locus of the tangent to the normal of the constant phase loci will indicate the path taken by the wave. This locus is called a geometrical ray and its orıentation may be described using the rules of geometry together with the laws of reflection and refraction.

The plane wave may be considered to be composed of small elements, where the propagation of each element is represented by its own geometrıcal ray, and the energy carried by each element is assigned to its ray. The intensity of each element after propagation will depend upon the area of the element at the point of observation relative to its inntial area.

To determine a limat to the element size, the solution to the 'diffraction by a cırcular aperture' problem is considered. It is clear from Section 3.7 that confinement of a wave to a small aperture produces rapıdly varyıng amplitudes in the $1 m m e d a t e$ vicinity of the aperture, but at a considerable distance from the aperture the majority of the incident energy is confined within a cırcular region whose dimensions are wavelength dependent.

If the wavelength of the light is permatted to fall to zero, then it may be shown (31 Ch .3) that the diffraction effects dusappear and the propagation of the light through the aperture is due to rectilinear propagation only. This gives rise to sharp boundaries between the illuminated and shadow regions and permits the selection of an arbitrarily small element within the illuminated region as the ray element.

Consider a space dependent component of a wave equation solution of the form

$$
\begin{equation*}
U(r)=R\left\{a(r) e^{\left.i L(x) k_{o}\right\}}\right. \tag{105.}
\end{equation*}
$$

where $a(r)$ and $L(r)$ are both real function which vary slowly with respect to the wavelength of the light.

Figure 35a. The relationship between the direction of propagation of the phase front of a wave and a geometracal ray.

Figure 35b. A tube of geometrical rays, of varıable cross section.

The free space wave number

$$
k_{o}=\frac{\omega}{c} .
$$

Substitution of Equation (105) into the time independent wave equation yıelds

$$
k_{o}^{2}\left(\frac{k^{2}}{k_{o}^{2}}-\nabla^{2} L\right) a-1 k_{o}\left(2 \nabla L \nabla a+a \nabla^{2} L\right)+\nabla^{2} a=0
$$

The mlddle term of the LHS of Equation (107) must independently vanısh and the last term is neglıgible compared with the first term since $k \propto \frac{1}{\lambda}$ and λ is assumed to be tending to zero.

When the first term vanishes

$$
\nabla^{2} L=n^{2}
$$

where from Equation (99)

$$
\mathrm{n}^{2}=\frac{\mathrm{c}}{\omega}=\frac{\mathrm{k}^{2}}{\mathrm{k}_{\mathrm{o}}^{2}}
$$

Equation (108) is known as the eikonal equation and will permit the calculation of the surfaces of constant phase given by the scalar function

$$
L(x)=\text { CONSTANT }
$$

From the opening comments of this section the geometrical rays are the normals to the constant phase surfaces. If the position of a point P on a ray 1 s denoted by a position vector $r(s)$ consıdered as a function of the distance s along the ray, see Figure $35 a$ then the direction of the ray at point P is gaven by the unit vector \bar{u}

$$
\bar{u}=\frac{d r}{d s}
$$

The vector, v, perpendicular to the phase front $L(P)$ is given by

$$
\mathrm{v}=\nabla \mathrm{L}
$$

111.

A unit vector $\bar{v}=\frac{v}{|v|}$.
where

$$
|v|=n .
$$

and the unit vector \bar{v} is parallel to unit vector \bar{u} to give

$$
\bar{u}=\frac{\nabla L}{n} .
$$

The equation of a ray is thus

$$
\frac{n d r}{d s}=\nabla L
$$

The optical path length, ΔL, between two points P_{1}, P_{2} on a ray is glven by

$$
\Delta L=\int_{P_{1}}^{P_{2}} n d s=L\left(P_{2}\right)-L\left(P_{1}\right)
$$

which for a homogenous medium

$$
\Delta \mathrm{L}=\mathrm{ns} .
$$

and for free space

$$
\begin{equation*}
\Delta \mathrm{L}=\mathrm{s} . \tag{117.}
\end{equation*}
$$

If a tube of rays enclose a surface area $d S$ on a constant phase surface of a wave, intensity I, then the antensity law of geometric optics states that IdS is constant along the tube of rays. From Figure 35b

$$
I_{1} \mathrm{dS}_{1}=\mathrm{I}_{2} \mathrm{dS}_{2}
$$

Since each ray represents a local plane wave, the laws of refraction and reflection will apply directly to the propagation of
rays across dielectric interfaces. Similarly the divisions of intensity as given by the Fresnel Equations will also apply.
3.10 Conclusions

The characterıstics of light waves have been established in this chapter and it has been shown that the path of a plane light wave may be represented by a geometrical ray of light. In the following chapters the propagation of light in optıcal waveguides is analysed using pramarily the geometrical ray theory. However, where interference or diffraction effects are discussed with reference to rays of light it should be understood that the various effects are due to the local plane waves whose propagation paths in the waveguide have been represented by geometrical rays.

CHAPTER 4

4.1 Introduction

The principle features of a geometrıcal ray analysis of light propagation in core cladded type optical wavegundes are well establıshed and contained in at least two textbooks (3-4). The assumptions used in such an analysis are exammed in this chapter and a suitable representation of the waveguade is establıshed for use an later chapters. This representation is based upon the behaviour of optical fields at dielectric interfaces according to the Fresnel Equations, and the laws of refraction and reflection.

In addition to consideration of the propagation process, the behaviour of light fields at the entrance aperture of the waveguide is examined. It is shown that the effects of the entrance aperture are sımilar to those produced by a diffracting aperture of simılar dimensions to the waveguide core placed in a medium of core refractive index. The effects of the exit aperture are generally not significant in this study since the fields of interest are within the aperture, (the near fıeld).

The chapter concludes by considering the vasible effects of a ramp refractive index profile between the core and cladding materials.

[^1]

Figure 36. Longıtudinal cross section of a cladded dielectric waveguide.

Table 2.

Three dielectric interfaces are identified, $n_{0}-n_{1}, n_{o}-n_{2}$, $n_{1}-n_{2}$ and since the incident radiation may originate in either medium a total of six refracting conditions exist. These are indicated in Figure 36 in which a meridional longitudinal cross section of the fibre is shown. The $n_{0}-n_{1}$ interface accounts for a transmission loss at the entrance and exit apertures of the waveguide and a refraction of light into and out of the waveguide core. The $n_{1}-n_{2}$ interface provides a total internal reflection condition for light within the core and precludes light which may propagate in the core from entering the core except through the end apertures. The $n_{0}-n_{2}$ interface is not significant in the geometrical ray theory model of the wavegurde although it too provides a total internal reflection condition.

The total internal reflection condition at the $\mathrm{n}_{1}-\mathrm{n}_{2}$ interface for rays of light entering the core through the entrance aperture at incident angle θ_{0} is given by

$$
\sin \theta_{0} \leqslant \frac{1}{n_{0}}\left(n_{1}^{2}-n_{2}^{2}\right)^{\frac{1}{2}}
$$

Rays of light whose incident angles exceed the merıdional critical angle $\theta_{o c}$ given by the equality condition of Equation (119), are refracted into the cladding at angle θ_{2} where

$$
\begin{equation*}
\cos \theta_{2}=\frac{1}{n_{2}}\left(n_{1}^{2}-n_{0}^{2} \sin ^{2} \theta_{0}\right)^{\frac{1}{2}} \tag{120.}
\end{equation*}
$$

The total internal reflection condition at the $n_{0}-n_{2}$ interface is gıven by

$$
\cos \theta_{2} \geqslant \frac{n_{0}}{n_{2}}
$$

Rays which exceed the equality condition of Equation (121) are radıated from the waveguide. Rays with angles within a total internal reflection condition will in theory be reflected unattenuated, but in practice the $n_{o}-n_{2}$ interface has a high reflection loss because of its exposure to dirt and damage in the free space environment. The $n_{1}-n_{2}$ interface is protected from free space and is therefore assumed to permit lossless reflection.

Rays of llght entering the cladding directly from free space, through the entrance aperture will suffer total internal reflection at the $n_{2}-n_{0}$ interface if

$$
\begin{equation*}
\sin \theta_{0} \leqslant \frac{1}{n_{0}}\left(n_{2}^{2}-n_{o}^{2}\right)^{\frac{1}{2}} \tag{122.}
\end{equation*}
$$

otherwise they will radıate.

Rays ancident upon the cladding walls will refract at the $n_{0}-n_{2}$ and $n_{2}-n_{1}$ anterfaces, pass through the core and refract out of the waveguide through the $n_{1}-n_{2}$ and $n_{2}-n_{0}$ interfaces and thus radıate.

These varıous ray paths and conditions are summarised in Table 2 and it is clear that only rays within the merıdional critical angle $\theta_{o c}$ incident in the core entrance aperture, will propagate unattenuated along the wavegulde. Near the entrance aperture other rays may contribute to the intensity within the core depending upon the reflection and transmission coefficlents at the varıous interfaces. This is consldered in the next section.

It is proposed to represent this meridional cross section of the core of the wavegulde as two plane parallel mirrors, with unity reflection coefficients, a distance 2 a apart with the space between

Figure 37. Parallel mırror representation of a cladded waveguide.

Figure 38. Longıtudinal cross section of cladded dielectric waveguide embedded in a medium of refractive index n_{3}.
them filled wath a lossless medium of refractive index n_{1}.

The characteristics of a typical ray propagating in this model of the core shown in Figure 37 are as follows. The optical path length L of a ray with axial angle θ_{1} in the core is given by Equation (116) as

$$
L=\frac{n_{1} \ell}{\cos \theta_{1}}
$$

The number of reflections made by this ray in a length ℓ of core is glven by

$$
\begin{equation*}
m_{\ell}=\frac{\ell \tan \theta_{1}}{2 \mathrm{a}} \tag{124.}
\end{equation*}
$$

The direction of the ray is reversed after each reflection but the magnitude of θ_{1} is constant. It is further assumed that no phase shift occurs on reflection, although this $2 s$ ragorously true only for reflections at the critical angle.

4.3.1 Entrance Aperture Diffraction

Consider the experımental arrangement shown dıagrammatıcally in Figure 38 where a short length of waveguide $(\ell \simeq 12 a)$ is embedded in resin, refractive index n_{3} (where $n_{3}>n_{2}$) and polished at both ends. A monochromatic point source at P_{0} is a distance q from the wavegulde aperture and it is assumed that $q \gg 2 a$ so that approximately plane waves are incıdent over the waveguide aperture and surrounding surface.

The total disturbance at a point p will be the summation of the contrabutions from secondary sources on the surface S_{1} the waveguide core, S_{2} the cladding and S_{3} the embedding resin. The maximum axial
angle $\theta_{1 m}$ in the core of a contribution to P is limited by the condition that no reflection of the light occurs prior to radiation from the core.

From Figure 38

$$
\sin \theta_{l m}=\frac{a}{\left((\ell-R)^{2}+a^{2}\right)^{\frac{1}{2}}}
$$

125.

For a ray satisfying Equation (125) to enter the core through the cladding it must first exceed the critical angle $\theta_{1 c}$ in the core gıven by

$$
\sin \theta_{1 c}=\frac{1}{n_{1}}\left(n_{1}^{2}-n_{2}^{2}\right)^{\frac{1}{2}}
$$

Equating Equation (125) and (126) yıelds a mınımum value for R

$$
R_{\text {MIN }}=\ell-\frac{a}{\left\{\left(\frac{n_{1}}{n_{2}}\right)^{2}-1\right\}^{\frac{1}{2}}}
$$

The maxımum axial angle at the core cladding interface of a ray from a secondary source on the surface S_{2} contrıbuting to P at $R_{\text {MIN }}$ is given by $\theta_{2 m}$ where

$$
\cos \theta_{2 \mathrm{~m}}=\frac{R_{M I N}}{\left(\mathrm{R}_{\mathrm{MIN}}^{2}+\mathrm{b}^{2}\right)^{\frac{1}{2}}}
$$

The transmission factors at this $n_{2}-n_{1}$ interface are given by substitutang $\theta_{1 c}$ and $\theta_{2 m}$ into Equation (101).

$$
\begin{equation*}
\mathrm{T}_{\mathrm{P} 2-1} / A_{\mathrm{P}}=\frac{2 n_{2} \sin \theta_{2 m}}{n_{1} \sin \theta_{2 m}+n_{2} \sin \theta_{1 c}} \tag{129.}
\end{equation*}
$$

for linearly polarised parallel components of the ray and

$$
T_{n 2-1} / A_{n}=\frac{2 n_{2} \sin \theta_{2 m}}{n_{2} \sin \theta_{2 m}+n_{1} \sin \theta_{1 c}}
$$

for normal components.

Substıtutıon of typıcal experimental values into Equation (127), $\ell \simeq 12 \mathrm{a}, \mathrm{n}_{1}=1.62, \mathrm{n}_{2}=1.52$, ylelds a value $\mathrm{R}_{\mathrm{MIN}} \simeq 9 \mathrm{a}$ and since $b \simeq \frac{a}{5}$ then $\cos \theta_{2 m} \simeq 1$ also $\sin \theta_{1 c} \simeq 0.35$. Substitution of these last two values anto Equation (129), (130) gives a transmission factor of $\simeq 0$ for both components of the ray.

It is therefore assumed that no contribution to the disturbance at P origanates from the surface S_{2}. The radiation from the secondary sources on S_{3} will have to cross the $n_{2}-n_{3}$ interface in addition to the $n_{2}-n_{1}$ interface in order to contribute to P. Since $n_{3}>n_{2}$ the $n_{3}-n_{2}$ interface will cause total internal reflection of radıation if ıt is ancldent at less than the crıtical angle. If a ray just exceeds this critical angle it will appear in the cladding with an incidence angle similar to that given by Equation (128) and will suffer the same transmıssion loss at the $n_{1}-n_{2}$ interface as rays from surface S_{2}. Rays from surface S_{3} which arrıve in the core wath incıdent angles greater than the core crıtıcal angle will orıgınate from the surface \dot{S}_{3} a considerable distance from the $P-P_{0}$ axis and it is assumed that they will have small amplitudes due to the value of the inclination factor $K(X)$ of secondary sources.

The dasturbance at P will therefore be the result of the summation of the radiation from secondary sources in the entrance aperture of the core only. Thls situation arıses in the problem of diffraction by a circular aperture considered in Section
3.7 except that, in this case,

Figure 39. The displacement of the entrance aperture of cladded wavegulde due to refraction.
the circular aperture is followed by a block of dielectric material, length $\&$ and refractive index $\mathrm{n}_{.1}$.

From the simple theory of lmagang by refraction at single surfaces $(33 \mathrm{ch} .282)$ this block will have the effect of changing the position of the entrance aperture with respect to the radiation end of the waveguide, as shown in Figure 39. The apparent position of the aperture $\ell '$ is given by

$$
\ell^{\prime}=\frac{\ell}{n_{l}}
$$

A sample experiment to test the equivalence of the entrance aperture of the waveguide to a circular aperture followed by a dielectric block is to observe the positions of the maxıma and mınıma of antensity on the axis of the diffraction pattern of a cırcular aperture as predicted by the Fresnel Zone construction. If in Figure $39, R_{n}$ is the distance from the radiation end of the guide, then from Equation (91) a maximum of intensity will be observed when R_{n} satisfies

$$
\ell^{\prime}+R_{n}=\frac{a^{2}}{n \lambda} \quad n=1,3,5
$$

and an adjacent minima will be observed at R_{n+1} when

$$
\ell^{\prime}+R_{n+1}=\frac{a^{2}}{(n+1) \lambda}
$$

The radius, a, of the aperture may be determıned from these two measurements of R_{n}, independently of the value of $\ell '$.

Subtracting Equation (133) from (132)

$$
a=\left\{\left(R_{n}-R_{n+1}\right) n(n+1) \lambda\right\}^{\frac{1}{2}}
$$

The experimental arrangement of Figure 21, using the laser as a source, was used to test Equations (91) and (134) for varıous combinations of pinholes and dielectrıc blocks. The diameters of the pinholes were measured using the $T V$ measuring system, and R_{n} values obtained using the dial gauge shown in Figure 17. The dielectric blocks were built up to the required thlckness using microscope slides and measured using a micrometer. The slides were held together with a thin layer of index matching liquid and the pinhole attached to one face of the block.

4.3.2 Experımental Results

Three pinholes of nominal dıameters $25 \mu, 50 \mu$, and 100μ were illumnated with plane waves from the He-Ne laser source. It was found that the nominally circular panholes were quası-elliptical with diameters along the major and mınor axis as given in Table 3.

Nominal Diameter (μ)	Major Axıs Dlameter ($\mu)$	Mınor Axıs Dlameter (μ)
100	96	88
50	48	47
25	26	25

TABLE 3

Each measurement made with the T.V. aided system is corrected to the nearest micron. The values of R for $n=2$ to $n=5$ in Equation (91) were measured for each of these pinholes to within $\pm 2.5 \mu$ and the corresponding values of the diameters of the apertures are given in Table 4.

Nominal Dlameter	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$	Average Drameter
100	95.1	95.4	94.6	94.7	94.9
50	48.0^{*}	48.5^{*}	48.0	49.0	48.4
25	27.5	26.1	26.1	26.2	26.5

TABLE 4

The 50μ dameter pinhole was attached to a block of glass made up from one to four microscope slides each of thickness 160μ and of refractive index $n_{1}=1.524$, measured using an Abbé refractometer. The values of ($\ell \prime+R_{n}$) were measured for $n=2$ to $n=5$ as before and the corresponding aperture diameters were calculated using Equations (132) and (133) to give the results shown in Table 5.

Number of slides	1	Calculated diameter for$n=2 \quad n=3 \quad n=4 \quad n=5$				Average
1	160	46.6	47.7	48.2	48.3	47.7
2	320	47.7	47.7	47.2	47.0	47.4
3	480	49.6	48.5	48.0	47.7	48.5
4	640	48.7	48.9	49.2	47.7	48.7

TABLE 5

TWo short lengths of embedded flbres ($\ell=310,330 \mu$) were prepared as described in Chapter 2. The core diameters of three fibres from each sample were measured using the T.V. alded measuring system, whilst illuminating the fibres with white light incldent at $\theta_{0}=30^{\circ}$, in order to highlıght the core claddıng interface. The values of R_{n} (see Figure

$\mathrm{n}=3$

Figure 40. Microphotographs of the diffraction patterns produced by a pinhole and a single fibre corresponding with the results marked with * in Table 6.
39) were measured for $n=2$ to $n=5$ as before and the value of ℓ^{\prime} calculated from Equation (i31) using $n_{1}=1.62$. The values of apparent core diameters were calculated using Equations (132), (133) for each of the six fibres and the results are given in Table 6.

1	1^{\prime}	d Measured	$n=2$	$n=3$	$n=4$	$n=5$
310	192	50.0	43.8	46.9	48.2	50.2
310	192	48.0	42.0	46.0	46.5	47.7
310	192	49.0	42.7	45.7	46.1	47.7
330	203	45.0	40.7	42.5	43.0	44.0
330	203	46.0	41.6	43.1	43.6	44.6
330	203	50.0	45.1	46.5	47.3^{*}	48.2

TABLE 6

Photomicrographs and antensity graphs for the experımental results marked with an asterısk are shown in Figure 40.

Discussion

The results shown in Table 4 suggest that Equation (91) is applicable for the calculation of the positions along the axis of the null points of the diffraction patterns of the nominally clrcular apertures. The average diameters of Table 4 are within $\pm 1.1 \mu$ of the major axis diameters of the apertures given in Table 3.

The results in Table 5 suggest that Equations (132), (133) may be used to find the null points of the aperture diffraction patterns when the aperture 15 followed by a block of glass. The average values of the diameters in Table 5 are all within $\pm 0.7 \mu$ of the average effective diameter of the aperture given in Table 4 as 48.4 mıcron.

Figure 41. A Ramp refractıve index profile.

Flgure 43. A Graph of r against

Figure 42. Rays in a longatudinal cross section of a ramp refractive index profile waveguide.

The calculated diameters of the fibres for $n=5$ in Table 6 are all wathin 1.8μ of the measured values, but at $n=2$ the calculated values fall by between 2.9 to 6.3μ from thelr values at $n=5$. This suggests that as the point of observation is moved away from the aperture the effective diameter of the aperture is reduced. One possible mechanısm which will display this characterıstic is a ramp refractive index profile between the core and cladding glasses, and this is discussed in the next section. The conclusions drawn there from the experımental results suggest that a varıation in the effective diameter of the core of $(3 \pm 1) \mu$ between the $n=2$ and $n=5$ points of observation is possible in the fibres used for these experıments. Taking this result into account when considerıng the results an Table 6 suggests that Equatıons (132), (133) may be applıed to the fibre dıffraction pattern to find the axis null points.

4.4.1 Ramp Refractıve Index Profıle

The refractive index profile to be consıdered is shown in Fagure
41. The refractive index $n(x)$ may be expressed as

$$
\begin{array}{ll}
\mathrm{n}(\mathrm{r}) & \mathrm{n}_{1} \\
\mathrm{n}(\mathrm{r}) & \quad \mathrm{n} \leqslant r_{\mathrm{m} 1 \mathrm{n}} \tag{136.}\\
\mathrm{n}(r) & \quad r \geqslant r_{\max } \\
n_{1}-\frac{\Delta \mathrm{n}}{\Delta r}\left(r-r_{\min }\right), & r_{\min }<r<r_{\max }
\end{array}
$$

where

$$
\Delta n=n_{1}-n_{2} \text { and } \Delta r=r_{\max }-r_{\min }
$$

A stepped refractive index profile has $\Delta r=0$ to give a core radius a, where $a=r_{\max }=r_{m ı n}$ and Equatıons (135) and (136) correspond to the core and claddıng regıons respectively.

Consider a ray of light incldent on the entrance aperture of a waveguide with a refractıve index profile as shown in Figure 42 and where the ray has an axıal incıdent angle θ_{0} and initial position $r \leqslant r_{m a n}$. This ray will be totally internally reflected when it reaches a radial position r, where $n(r)$ satisfies the following equation

$$
\sin ^{2} \theta_{0}=\frac{1}{n_{0}^{2}}\left(n_{1}^{2}-n^{2}(x)\right)
$$

Denoting this value of θ_{0} as $\theta_{C}(r)$ and assuming that $n_{0}=1$, then on substituting Equation (137) into (138) gives

$$
\sin ^{2} \theta_{c}(r)=\frac{2 n_{1}(\Delta n)(\Delta r)\left(r-r_{\min }\right)-(\Delta n)^{2}\left(r-r_{\operatorname{mnn}}\right)^{2}}{(\Delta r)^{2}}
$$

Rearrangang Equation (139) to make ' r ' the subject gives a quadratic equation in r whose solution is

$$
\begin{equation*}
r=r_{\min }+\frac{\Delta r}{\Delta n}\left(n_{l}-\sqrt{n_{l}^{2}-\sin ^{2} \theta_{c}(r)}\right) \tag{140.}
\end{equation*}
$$

Figure 43 shows a graph of Equation (140) and illustrates the varıation of the core radius r as θ_{c} is varıed for $n_{1}=1.62, \Delta n=0.1$, $r=25 \mu, \Delta r=2 \mu$. If a plane wave $1 s$ incident on the waveguide entrance aperture within a radius r where $r \leqslant r_{m i n}$ with an axial angle of ancidence θ_{0}, then neglecting any divergence of the plane wave due to diffraction at the entrance aperture, the radus of the illumnated core region wall be glven by Equation (140) with $\theta_{0}(r)=\theta_{0}$.

For example when $\sin \theta_{0}=0, r=r_{m n n}$ and $\sin \theta_{0}=\sqrt{n_{2}-n_{2}^{2}}$ (the critical angle of a stepped refractıve ındex profile waveguide) $r=r_{\text {max }}$.

The waves which radiate from the core region within a radius $<r_{\min }$ will have axıal angles of radiation equal to the angle of incldence of the plane wave. However, waves which raduate from the core region $r_{m i n}<r<r_{\max }$ will have axial angles of radıation $\theta_{r}(r)$, which are dependent upon the radial position of the point of radiation as well as the angle of incidence.

In Figure 42 the axial angle θ_{1} of an arbitrary ray of light within the core region $r \leqslant r_{m a n}$ is given by

$$
\begin{equation*}
\sin \theta_{1}=\frac{n_{0}}{n_{1}} \sin \theta_{0} \tag{141.}
\end{equation*}
$$

and at a radius r, where $r_{\min }<r \quad r_{\max }$ the axial angle of the ray becomes $\theta_{1}(x)$ where

$$
\begin{equation*}
\cos \theta_{1}(r)=\frac{n_{1}}{n(r)} \cos \theta_{1} \tag{142.}
\end{equation*}
$$

The radiation angle $\theta_{r}(r)$ of this ray is given by

$$
\begin{equation*}
\sin \theta_{r}(r)=\frac{n(r)}{n_{0}} \sin \theta_{1}(r) \tag{143.}
\end{equation*}
$$

where it is assumed that the radius, r, of the polnt of refraction lies in the range $r_{\min }<r<r_{\max }$. Substituting Equations (141) and (142) into Equation (143) and assuming that $n_{0}=1$ gaves

$$
\begin{equation*}
\sin \theta_{r}(x)=\sqrt{n(x)^{2}-n_{1}^{2}+\sin ^{2} \theta_{0}} \tag{144.}
\end{equation*}
$$

Substituting for $n(x)$ using Equation (137) and neglecting the $\left(\frac{\Delta n}{\Delta r}\right)^{2}$ term in the expansion of $n^{2}(x)$, Equation (144) becomes

$$
\sin \theta x(x)=\sqrt{\sin ^{2} \theta_{0}-2 \frac{\Delta n}{\Delta r} n_{l}\left(r-r_{\min }\right)}
$$

Figure 46. The ring effect.

Figure 45. $\theta_{0}=0^{\circ}$

$\theta_{0}=30^{\circ}$

A graph of Equation (145) is shown in Figure 44 where $\theta_{0}=30^{\circ}, n_{1}=1.62, \Delta r=2 \mu, \Delta n=0.1$ and which illustrates that the angle $\theta_{r}(x)$ varies from θ_{o} to zero as the radıus of the point of the ray increases from $r_{m i n}$ to the value given by Equation (140) when $\theta_{C}(r)=30^{\circ}$.

4.4.2 Experamental Results

A 30 cm length of fıbre bundle was used to anvestagate the variations of the radıus of the illuminated core region using the experımental arrangement of Figure 20 with a white light source. The diameter of the illuminated core region of selected fibres was measured using the TV-alded measuring system whilst illumınating the opposite end of the fibres at varıous angles. At each incident angle the oscilloscope trace of the radiated intensity was normalised to a selected helght and the width of the trace at half this helght taken as the width of the core region.

The resolution of the measuring system is limited to $\pm .5 \mu$ and this prohibits attempts to measure the refractive index profiles which appear to have Δr of the order of 1.5μ or less. However, a measurement of the diameter of the illuminated core at incident angles $\theta_{0}=0^{\circ}$ and $\theta_{0}=30^{\circ}$ indicated that Δr was non zero confirming the exıstence of a finate width refractive index profile, and tests on numerous fibres yielded the average value for Δr of ($1 \pm 0.5 \mu$).

Photomicrographs of the radlation end of a fıbre and photographs of the corresponding intensaty traces are shown in Figure 45. The value of Δr for this fibre $2 s \simeq 1.2 \mu$.

Equation (145) suggests that if such a fibre $1 s$ illumınated at incldent angle θ_{0} and the radiation fleld examined using a microscope
objective wath an acceptance angle $\theta_{a}<\theta_{0}$, a ring of light will be observed at a radius r for which $\theta_{r}(r)<\theta_{a}$ in Equation (145). This is demonstrated in Figure 46 where $\theta_{o}=44^{\circ}$ and $\theta_{a} \simeq 33^{\circ}$.

4.5 Conclusions

It is thought that the experaments to measure the entrance aperture diffraction effects are an original contribution to the experımental study of optical waveguades. The theoretical model of a normally incıdent plane wave of sagnıfıcant amplıtude within the core region only, has been considered elsewhere ${ }^{(42)}$. That solution is given in terms of the efficiency of excitation of surface waveguide modes.

The attempts to measure the refractive index profile are also orıgınal, although another worker* has privately confirmed observation of the ring effect. He suggested that this effect was due to diffraction at the radiation end of the wavegulde, since such a ring would be expected at sharp dielectric interfaces due to the formation of a cylindrical boundary wave ${ }^{(31, S e c .8-9, ~ a n d ~ C h a p .11) . ~}$

However, the varıation in area of the illuminated core, as the angle of incidence of the illumination ls varıed, supports the refractive index profile theory. The observation of the intensity of a cylindrical boundary wave produced by a glass-air interface suggests that, if such a wave were present, it would be of considerably less intenslty than the ring of light actually observed.

Since it was not possible to measure the refractive index profile, the ramp approxımation has been used for simplicity. More approprıate methods of measurıng the index profıles of optical waveguides have been reported ${ }^{(29)}$ during the period of this research.

* W.J. Stewart, Plessey Co.Ltd., Private communication.

CHAPTER 5

Abstract

5.1 Introductaon.

This chapter contalns an extensive study of prımarıly geometrıc ray theory phenomena which may be observed in a core cladded dielectric waveguide which is assumed to be perfectly straight and cırcular in cross section.

The meridional section representation of the waveguide is used to generate an equivalent cylınder in three dimensions. The concept of skew rays and skew ray paths is introduced and the meridional ray is shown to be a lımating skew ray. The behavıour of the skew rays at the varıous dielectric interfaces is examined and the behaviour of the waveguıde as a thıck lens is experımentally verıfıed.

The propagation of skew rays in the waveguide core produces reflection number dependent caustics which are examıned experımentally and by computer simulation. The analysis of the propagation of the skew rays leads to the derıvation of the uniform radiation cone property of core cladded wavegurdes used for the allgnment procedure described in Chapter 2. The 'black hole' effect is also derived and the effects of sloping end terminations on the radiation cone are examined.

Although the geometric ray theory predicts many of the observed phenomona the macroscopic detalls are explanned by reference to the rigorous electromagnetic theory and this has been included where necessary.

5.2 Generalızed Geometric Representation of Core Cladded
 Dielectric Waveguides.

The parallel mirror representation of a meridional cross section of a core cladded dielectric waveguide developed in Chapter 4 will form a cylindrical mırror surface if it is considered in three dimensions.

Cross
 section.
 Longitudinal. section.

Figure 47. A ray in the longitudinal and cross sections of an internally reflectang cylinder.

Fagure 48. The path of a ray in the cross section of a cylinder.

However, the condition for total internal reflection of rays within the core given by Equation (119) only applies to merıdional rays in the cylinder.

A general ray within the core is characterised by two angles θ, ϕ, as shown in Figure 47. The longitudinal section of the core containing the ray defanes angle θ and the projection of the ray in the cross section defines angle ϕ. A general ray which enters the core through the core entrance aperture at incident angle θ_{0} has to satisfy the condition

$$
\begin{equation*}
\sin \theta_{o} \sin \phi \leqslant \frac{1}{n_{0}}\left(n_{1}^{2}-n_{2}^{2}\right)^{\frac{1}{2}} \tag{146}
\end{equation*}
$$

In order to be totally reflected from the $n_{1}-n_{2}$ interface. Clearly Equation (146) reduces to the meridional Equation (119) when $\phi=\frac{\pi}{2}$. Rays which satisfy Equation (146) but which have $\theta_{0}>\theta_{o c}$ where $\theta_{o c}$ is the meridional critical angle, are called leaky rays because they are slightly attenuated on reflection ${ }^{(43)}$. In the short lengths of wavegunde used in this study the effects of this attenuation are neglıgable.

The behaviour of a general ray at the cylındrical dielectric interfaces $1 s$ sımilar to that described in Chapter 4 except that the angle of incldence is formed from a combination of θ and ϕ as in the left hand side of Equation (146). Certain rays are investigated in the next section and it is sufficient here to note that only rays which enter the waveguide through the core entrance aperture and satasfy Equation (146) are propagated unattenuated in the core by the total reflection process.

The characteristics of a general ray propagating in the core are now considered. Since the angle of incidence is preserved in magnitude at each reflection, the values of θ and ϕ also remain constant in magnitude.

The optical path length of a general ray in a length ℓ of waveguide depends only upon θ and is given by Equation (123). The angle ϕ defines the path taken by a ray in the cross section of the core as shown in Figure 48.

The projection of the path of a ray in the cross section between adjacent polnts of reflection forms a chord of a circle of length Y_{c} where

$$
y_{c}=2 a \sin \phi
$$

and which subtends an angle at the centre of the carcle of 2ϕ. If the number of reflections $m\left(\phi_{l} \ell\right)$ of ray $\left(\theta_{1} \phi_{1}\right)$ in a length, ℓ, of the core is given by

$$
m\left(\phi_{1} \ell\right)=\frac{\ell \tan \theta_{1}}{2 a \sin \phi_{1}}
$$

then the angle ϕ_{I} subtended at the centre of the curcle after \bar{m} reflections where $\overline{\mathrm{m}}$ is the integer value of $\mathrm{m}\left(\phi_{1} \ell\right)$ is given by

$$
\phi_{\mathrm{T}}=2 \overline{\mathrm{~m}} \phi_{1}^{0}
$$

If

$$
\phi_{\mathrm{T}}=\mathrm{p} 360^{\circ}
$$

where p is an integer, then after \bar{m} reflections and p revolutions, the ray path will form a closed figure within the cross section. The closed figures for $p=1, \bar{m}=2,3,4$ and $p=2 \bar{m}=5$ are shown in

$\mathrm{p}=1 . \quad \mathrm{m}=2$.

$$
p=1 . \quad m=4
$$

$\mathrm{p}=1 . \quad \mathrm{m}=3$.

$\mathrm{p}=2 . \quad \mathrm{m}=5$.

Figure 49. Examples of closed skew ray figures.

Figure 50. The excitation of a skew plane ray.

Figure 49 and may be compared with the closed figures of Figure 6 which were obtained from the inıtial experıments descrıbed in Chapter 1.

The general experimental arrangement for exciting the patterns descrabed in Chapter 1 is shown in Figure 50. It is assumed that the source $1 l l u m n a t e s$ the core aperture with plane waves at incident angle θ_{0} and a single azımuth angle, α, which for a straight circular waveguide is quite arbitrary. The core aperture is divided into elements of area $\Delta x \Delta y$ and the propagation of the light incident upon each element will be represented by a ray whose starting position is the centre of the element and has incident angles θ_{0}, ϕ where

$$
\cos \phi=\frac{x}{a}
$$

The skew ray at the centre $(y=0)$ of each skew plane will be called a skew plane ray, and the propagation of the skew plane in the waveguide may be represented by the propagation of sts skew plane ray, since the skew plane will maintain a fixod spatial relationship with lts associated skew plane ray. The two skew plane rays due to $\pm x$ in Equation (151) are sımılar but they will propagate down the core in opposite directions. The anticlockwise propagation direction (cos $\phi=$ $\frac{+\mathrm{x}}{\mathrm{a}}$ is assumed to be positive.

Figurc 5la. A cross section
of a cylindrıcal
lens.

Figure 5lb. A cross section of cladded dıelectrıc cylindrıcal lens.

Figure 52b. A cross section of an embedded dielectric cylindracal

Figure 52a. A longitudinal section of an embedded, dielectri cylındracal lens.

1 ens.

The skew planes which form the closed figures described previously wall be called statıonary skew planes and the assocıated skew plane ray a stationary skew plane ray. Before proceeding with the analysis of the propagation of skew plane rays in the waveguide core, the behaviour of light rays in a short length of embedded waveguide $1 s$ consıdered. The waveguide is illumınated as in Figure 49, but attention is confined to the light which 1 s incıdent upon the cladding wall.

5.3 The Dielectric Waveguide "Thick Lens"

It is well known that a cylander of glass behaves as a thick lens $(44, \mathrm{Ch} .2$
and it is easy to show that wathin the paraxial approximation
a dielectric cylinder refractive index n_{1}, radıus a, in a medium of refractive index n_{3} has a focal length f, as shown in Figure $51 a$ where

$$
f=\frac{n_{1} a}{2\left(n_{1}-n_{3}\right)}
$$

153.

The dielectric waveguıde has a claddıng dielectric, refractive andex n_{21} thickness b, and it may be shown that the focal length of this device, shown in cross section in Figure 5lb, is given by

$$
f^{\prime}=\frac{n_{1} n_{2} a}{2 n_{3}\left(n_{1}-n_{2}\right)-n_{1}\left(\frac{n_{3}}{n_{2}}-1\right)}
$$

where n_{3} is the refractive andex of the surrounding media, and $n_{1}>n_{3}$ $>\mathrm{n}_{2}$.

Figure 52a shows a longitudinal sectıon and Figure 52b a cross section of a short length of waveguide embedded in a material of refractive index n_{3} and illuminated by plane waves at the incident angle θ_{0} shown. Rays of light incident on the $n_{0}-n_{3}$ interface are refracted into the embedding materıal at incident angle θ_{3}.
where

$$
\sin \theta_{3}=\frac{n_{0}}{n_{3}} \sin \theta_{0}
$$

Rays of light incident upon the cladding wall will refract into the cladding if

$$
\begin{equation*}
\sin \theta_{3} \sin \phi_{3}>\frac{1}{n_{3}}\left(n_{3}^{2}-n_{2}^{2}\right)^{\frac{1}{2}} \tag{156.}
\end{equation*}
$$

since they will exceed the total internal reflection condition at this interface.

If θ_{3} is such that Equation (156) 1s Just satısfied, the permissible range of ϕ_{3} will be small. The refracted rays in the cladding will have $\theta_{2} \simeq 0$ and will radıate from the portion of the cladding end face shown shaded in Figure 52b. This effect is demonstrated experimentally in Figure 53a which is a photomicrograph of the end of a 570 macron length of core cladded waveguide $11 l u m n n a t e d$ with white light at $\theta_{0}=26.5^{\circ}$.

Increasing θ_{0} increases the range of ϕ_{3} but more important, θ_{2} will now be greater than zero and certaln rays will be refracted into the core at angles θ_{1}, ϕ_{1}. If it $1 s$ assumed that rays within the paraxial region of the equivalent cylindrical lens have values of ϕ_{1} for which $\sin \phi_{1} \simeq 1$ by comparison with the small values of θ_{1}, then the refraction of the ϕ and θ components of the angle of incidence at each interface may be considered separatell. This amounts to applyıng the thick lens equations to the cross sectional components of the rays and the meridional approximation to the longitudinal components.

Consider the ray components in the longitudinal section, Figure 52a, which have been refracted into the core. Rays near the end of the wavegulde will radlate through the $n_{1}-n_{0}$ interface and those which

Figure 53a.

Figure 53b.

Figure 54. Adjacent skew planes showing the position of their intersection after one reflection.
meet the core cladding boundary prior to radiating will be refracted anto the cladding at angle θ_{2}.

Rays in the cladding near the end of the waveguide will radlate through the $n_{2}-n_{0}$ interface and rays meeting the outside cladding wall will refract into the embedding medium at angle θ_{3}. Finally the rays in the embedding medium will radiate through the $n_{3}-n_{o}$ interface at an angle θ_{0}^{\prime} where within the paraxial approximation $\theta_{0}^{\prime}=\theta_{0}^{\circ}$

The cross sectional components of all these rays will have been subjected to the focussing propertles of the wavegulde. The focussing of the incldent plane wave will be evident in the radiation field, although the differing angles of radiation from the various regions of the end of the waveguide will present different aspects of the focussed beam. This is demonstrated experımentally in Figure 53b, which is a photomicrograph of the same sample as in Figure 53 a but with $\theta_{0}=30.5^{\circ}$. The different aspects of the focussed beam are evident in the cladding and embedding medıum regions. The beam is viewed normally in the cladding region $\left(\theta_{2} \simeq 0\right)$ and obliquely $\left(\theta_{3} \simeq 26^{\circ}\right)$ in the embedding region. The radiation from the core contains components of the focussed beam, which may be identified with the help of the ray paths shown in Figures 52a-b. The radiation fleld from the core due to light incident in the core entrance aperture is also very much in evidence, in the form of caustics, and these are derived in the next section.

5.4 Fropagation of Skew Planes and Skew Plane Rays

Consider the cross section of a skew plane bounded by chords $c_{1}(\phi), c_{1}(\phi+\Delta \phi)$ shown in Figure 54 where the angle subtended at the centre of the circle, radius a, by the portion of the circumference between the points of reflection $p_{1}(\phi), p_{1}(\phi+\Delta \phi)$ is $\Delta \phi$ where

$$
\Delta \phi \simeq \frac{\Delta x}{a}
$$

The intensity of a single element of area $\Delta x \Delta y$ of this skew plane is denoted by $I(\Delta x \Delta y)$. After a single reflection the chords $c_{1}(\phi), c_{1}(\phi+\Delta \phi)$ form chords $c_{2}(\phi), c_{2}(\phi+\Delta \phi)$ and the angles subtended at the centre of the curcle by the chords $c_{2}(\phi), c_{2}(\phi+\Delta \phi)$ are given by Equation (149) as 2ϕ and $2(\phi+\Delta \phi)$ respectively. Thus the angle subtended at the centre of the curcle by the portion of carcumference between the new points of reflection $\mathrm{P}_{2}(\phi), \mathrm{P}_{2}(\phi+\Delta \phi)$ is $3 \Delta \phi$. As shown in Figure 54 the chords $c_{2}(\phi), c_{2}(\phi+\Delta \phi)$ antersect at point F which is a distance, q, along chord $c_{2}(\phi)$ from point $P_{1}(\phi)$. Assuming that the triangles $\left(P_{1}(\phi), \mathrm{FP}_{1}(\phi+\Delta \phi)\right),\left(P_{2}(\phi), \mathrm{FP}_{2}(\phi+\Delta \phi)\right)$ are simılar then

$$
q=\frac{a}{2} \sin \phi
$$

$$
\text { Consider an element of area between chords } c_{2}(\phi), c_{2}(\phi+\Delta \phi)
$$

of dimensions $\Delta u \Delta v$ a distance, u, from F, where u, v are rectangular co-ordinates with their origin at F and u colnciding with $c_{2}(\phi)$.

The element Δv is given by anspection of Figure 54 as

$$
\Delta v=\frac{|u| 2 \Delta x}{a \sin \phi}
$$

Invoking the conservation of intensity theorem expressed by Equation (ll8), the intensity in the element $\Delta u \Delta v$ is given by

$$
I(\Delta u \Delta v)=I(\Delta x \Delta y) \cdot \frac{\Delta x \Delta y}{\Delta u \Delta v}
$$

If $\quad \Delta u=\Delta y$ and using Equation (159)

$$
\begin{equation*}
I(\Delta u \Delta v)=I(\Delta x \Delta y) \cdot \frac{a \sin \phi}{2|u|} \tag{160.}
\end{equation*}
$$

Equation (160) suggests a point of infinite intensity at $u=0$, which 15 called a focus. This apparent failure of the geometric ray

Figure 55. The intersection of two straight lines.

Figure 56. The intersection of skew planes.
theory is caused by attempting to compress the electromagnetic waves anto zero volume, where the form of the space dependent component of the wave equation solution (Equation (105)) used for the derivation of the geometrical ray theory is inapplicable. The assumptions used there that $a(r)$ and $L(r)$ vary slowly with respect to the wavelength of the light are incorrect at a focus and the correct intensity at, or near, $u=0$ is obtained only by using diffraction theory.

The diffraction pattern at a caustıc, which is the locus of foci, is analysed in the next section. The parameters of a caustic required for that analysis are the radius of curvature of the caustic and the position of the caustic whth respect to the reflecting surface. The cross sectional components of these two parameters are now obtained for the cylindrical reflecting surface, as a function of the number m of integer reflections made by the skew plane rays, initially illumanated by a plane wave incldent at a single azımuth angle.

Consıder first the two straıght lines shown in Figure 55, where points P_{1}, P_{2} have co-ordinates $X_{1} Y_{1}, X_{2} Y_{2}$ respectively and the slopes of the lines are glven by $\mathrm{T}_{1}, \mathrm{~T}_{2}$,
where

$$
T_{1}=\tan \theta_{1}, T_{2}=\tan \theta_{2}
$$

The equations defining the two stralght lines may be expressed as

$$
y=\begin{align*}
& x_{1}-\left(Y_{1}-y\right) / T_{1} \tag{16lb.}\\
& X_{2}-\left(Y_{2}-y\right) T_{2}
\end{aligned} \quad \text { l6la. } \quad y=\begin{aligned}
& Y_{1}-\left(X_{1}-x\right) T_{1} \\
& Y_{2}-\left(X_{2}-x\right) T_{2}
\end{align*}
$$

The co-ordinates X_{S}, y_{S} of the point S where the two lines antersect may be found by equating the y and x components of the lines.

From Equatıon (161b)

$$
\begin{equation*}
x_{s}=\frac{\left(Y_{2}-X_{2} T_{2}\right)-\left(Y_{1}-X_{1} T_{1}\right)}{\left(T_{1}-T_{2}\right)} \tag{162a.}
\end{equation*}
$$

From Equation (16la)

$$
y_{s}=\frac{T_{1}\left(Y_{2}-X_{2} T_{2}\right)-T_{2}\left(Y_{1}-X_{1} T_{1}\right)}{\left(T_{1}-T_{2}\right)}
$$

Let

$$
\begin{aligned}
\mathrm{P} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \\
\mathrm{K}_{1} & =\left(\mathrm{Y}_{1}-\mathrm{X}_{1} \mathrm{~T}_{1}\right) \\
\mathrm{K}_{2} & =\left(\mathrm{Y}_{2}-\mathrm{X}_{2} \mathrm{~T}_{2}\right)
\end{aligned}
$$

and substitute Equations (163) Into Equatıons (162)

$$
\begin{aligned}
x_{s} & =\frac{K_{2}-K_{1}}{P} \\
y_{s} & =\frac{T_{1} K_{2}-T_{2} K_{1}}{P}
\end{aligned}
$$

In Figure 56 the initial position of the skew planes is parallel to the y axis. The chords defining the skew plane $\phi, \phi+\Delta \phi$ satasfy equations of the form of Equations (161), in which the subscripts 1,2 will denote $\phi+\Delta \phi, \phi$ respectively. It is convenient to define X, Y, T for each chord in terms of the angle, x, where

$$
\begin{align*}
X & =\frac{\pi}{2}-(\phi+\Delta \phi) \tag{165a.}\\
(X+\Delta X) & =\frac{\pi}{2}-\phi
\end{align*}
$$

165b.

Figure 57. Photographs of caustics produced by computer simulation of rays reflected by circular reflectors.

The values of X, Y, T for the two chords after the $m^{\text {th }}$ reflection are

$$
\left.\left.\begin{array}{rlrl}
x_{l m} & =a \sin (2 m-1) x \\
x_{1 m} & =a \cos (2 m-1) x
\end{array}\right\} \begin{array}{rl}
x_{2 m} & =a \sin (2 m-1)(x+\Delta x) \\
166 a . & Y_{2 m}
\end{array}\right)=a \cos (2 m-1)(\chi+\Delta x) \quad 166 b
$$

The term $\sin (2 m-1) \frac{\pi}{2}$ has been dropped from the Equations (166) and is dropped from all subsequent equations except for Equation (169), since it only represents a change of sign for each increment in m.

Substitution of Equations (166), (167) into (163) gaves

$$
\begin{align*}
p_{m} & =\frac{\sin 2 m \cdot \Delta x}{\sin 2 m x \sin 2 m(x+\Delta x)} \\
K_{1 m} & =\frac{a \sin x}{\sin 2 m x} \tag{168b.}\\
K_{2 m} & =\frac{a \sin (x+\Delta x)}{\sin 2 m(x+\Delta x)}
\end{align*}
$$

$$
168 a
$$

163c.

Substitution of Equation (168) into (164) and letting $\Delta x \rightarrow 0$ gaves the co-ordinates X_{s}, Y_{S} of the function $f(s)$ describing the position of the caustic produced by the $m^{\text {th }}$ reflection of the skew planes.

$$
\begin{aligned}
& x_{s}=a\left(\frac{1}{2 m}(\sin 2 m x \cos x)-\cos 2 m x \sin x\right) \sin (2 m-1) \frac{\pi}{2} \\
& y_{S}=a\left(\frac{1}{2 m}(\cos 2 m x \cos x)+\sin 2 m x \sin x\right) \sin (2 m-1) \frac{\pi}{2} \quad 169 b
\end{aligned}
$$

Figure 57 shows photographs of computer simulations of rays reflected by a circular reflector for $m=1$ to $m=4$, and where the locus of the intersections of the rays forms $f(s)$.

$$
R=\sqrt{x_{s}^{2}+y_{s}^{2}}=a \sqrt{\sin ^{2} x+\frac{1}{4 m^{2}} \cos ^{2} x}
$$

170a.

170b.
171.
and terminate at

$$
R=a \quad \eta=0, \pi \quad\left(x=\frac{\pi}{2}\right)
$$

where η is given for $+\phi$ and $-\phi$ respectuvely.

The first half revolution of each spiral forms a cardiold type figure which is inverted and reduced in size for each increment in in. The contraction of the spiral orıgin ($R=\frac{a}{2} m^{\prime} X=0$) along the y axis is given by

$$
\mathrm{D}_{\mathrm{y}}=\frac{\mathrm{m}}{\mathrm{~m}+1}
$$

The length R, of the spiral at the first crossing of the x axis is found by setting Equation (169b) equal to zero and substituting the corresponding value of X in Equation (170a).

Setting Equation (169b) equal to zero results in the Equation

$$
\frac{\cos (2 m+1) x}{\cos (2 m-1) x}=\frac{(2 m+1)}{(2 m-1)}
$$

The solution for X when $m=2$ in Equation (174) is $X \simeq 42^{\circ}$ and substitution of $m=2, X \simeq 42^{\circ}$ in Equation (170a) gives a value for R which to a good approximation is glven by

$$
R=a \sin \chi
$$

Since the term $\frac{1}{4 m^{2}} \cos ^{2} x$ in Equation (170a) rapıdiy dimanishes with increasing m, Equation (175) rapıdly approaches the exact value for R for all m and X. The corresponding approximation for Equation (170b) gıves

$$
\begin{equation*}
\operatorname{TAN} \eta=\frac{1}{\operatorname{TAN} 2 \mathrm{mX}} \tag{176.}
\end{equation*}
$$

and the values of X corresponding to the first crossing of the x axis by the spıral are gıven by

$$
x=\frac{\pi}{2 m}
$$

Substituting Equations (177) into (175) and assuming that $\sin \frac{\pi}{2 m} \simeq \frac{\pi}{2 m}$
gives

$$
\mathrm{R}=\frac{\mathrm{a} \pi}{2 \mathrm{~m}}
$$

and the contraction along the x axis is given by

$$
D_{x}=\frac{m}{m+1}
$$

in agreement with D_{y}.

Consıder now the values of η and R for the two chords $c_{1}(\phi)$, $c_{1}(\phi+\Delta \phi)$ of Figure 54 after m reflections.

Using Equations (179), (170) with (165a),
$n(\phi)=2 m \phi$
(a)
$R(\phi)=a \cos \phi$
(b)
180.
$\eta(\phi+\Delta \phi)=2 m \phi+2 m \Delta \phi \quad$ (a) $\quad R(\phi+\Delta \phi)=a(\cos \phi \cos \Delta \phi-\sin \phi \sin \Delta \phi)(b) 181$.

Figure 58. The position of the caustic formed when $m \phi=\pi$.

When $2 m \Delta \phi=2 \pi$ the caustic formed by these two chords will be as shown in Figure 58 and the light inıtially between the chords wall appear within the annulus, inner radıus a cos ϕ (neglecting the $a \sin \phi \sin \Delta \phi$ term of Equation (181b)) outer radıus a. This annulus may be considered as being composed of 2 m identical sections bounded by chords $c_{0}, c_{1}, \ldots . c_{n}$ (see Figure 58) where adjacent chords are inclined at an angle

$$
\begin{equation*}
\Delta^{\prime} \phi=\frac{\Delta \phi}{\sin \phi} \tag{182.}
\end{equation*}
$$

to each other and intersect at their midpoints where they are tangent to the caustic.

Consider the section bounded by the chords c_{n}, c_{n+1} and consider an element $\Delta u \Delta v$ of this section a distance u from the midpoint of c_{n} where u, v are rectangular co-ordinates with their origin at the midpoint of c_{n} and u colnciding with c_{n+1}

Assuming $\Delta \phi=\frac{\Delta x}{a}$ as before then

$$
\begin{equation*}
\Delta v=\frac{|u| \Delta x}{a \sin \phi} \tag{183.}
\end{equation*}
$$

Since there are 2 m such elements then, by the conservation of intensity theorem, the intensity of the element $\Delta u \Delta v$ is given by

$$
I(\Delta u \Delta v)=\frac{I(\Delta x \Delta y)}{2 m} \cdot \frac{a \sin \phi}{|u|}
$$

where $I(\Delta x \Delta y)$ is the intensity of an element of the skew plane ray as before (Figure 54).

If the orıginal skew plane ray of width Δx is consıdered as $2 m$ skew planes each of wadth $\Delta x / 2 m$, each of these $2 m$ skew planes

Figure 59. Photographs of computer simulations of rays reflected by circular reflectors.
corresponds to a single section of the annulus. The light within the orıgınal skew plane ray whıch is in a single azamuthal dırection, parallel to the y axıs, is now unıformly distrıbuted over $2 \mathrm{~m} \Delta \phi$ azımuth angles. When $2 m \Delta \phi=2 \pi$ the light of the orıganal skew plane ray will radiate as a complete hollow cone of light.

Equations (180a,b) represent a spiral which 'winds up' as m is increased as shown in Figure 59 where the spirals for $+\phi$ only are illustrated for $m=20,40$ The ancrement in R for an increment in η of 2π is gaven by

$$
\Delta \mathrm{R}=\mathrm{a} \sin \phi \Delta \phi
$$

and is the wadth of the skew plane ray whose light is uniformly distrıbuted over 2π azımuth angles. As shown in Figure $59 \Delta R$ reduces as m ıs increased, and the radıation pattern due to a plane wave incident on the wavegulde core entrance aperture rapidly approaches a uniform hollow cone of light.

If a single skew plane ray, bounded by chords $c\left(\phi^{\prime}\right), c\left(\phi^{\prime}+\Delta \phi\right)$ is allowed to propagate in the core, then when the width of the skew plane Δx equals the increment ΔR given by Equation (185), the light of the skew plane ray will completely illuminate the annulus, anner radius a $\cos \phi^{\prime}$, outer radıus a. The intensity distrıbution withın the annulus is domınated by diffraction effects due to the caustic as duscussed in the next section, but wathan the geonetric approximation, the centre of the core within a cırcle radıus a $\cos \phi^{\prime}$ will remain in shadow, (ı.e. black). Furthermore skew plane rays with $\phi \leqslant \phi^{\prime}$ wall make no contribution to this black cırcle within the core.

Equation (146) suggests a simple experımental arrangement to allow only skew plane rays satisfyang the condition $\phi \leqslant \phi^{\prime}$ to propagate. If the angle of incidence θ_{0} is greater than the meridional critical angle θ_{c}, the values of ϕ which satisfy Equation (146) are gaven by

$$
\cos \phi \geqslant \sqrt{1-\frac{\sin ^{2} \theta_{c}}{\sin ^{2} \theta_{o}}}
$$

This corresponds to the condition $\phi \leqslant \phi^{\prime}$ if

$$
\cos \phi^{\prime}=\sqrt{1-\frac{\sin ^{2} \theta_{c}}{\sin ^{2} \theta_{0}}}
$$

Denoting the radius of the black clrcle by x^{\prime}

$$
x^{\prime}=a \sqrt{1-\frac{\sin ^{2} \theta_{c}}{\sin ^{2} \theta_{0}}}
$$

and rearranging Equation (188) to make θ_{0} the subject

$$
\sin \theta_{0}=\sin \theta_{c} \sqrt{1-\left(\frac{x^{\prime}}{a}\right)^{2}}
$$

which on substitution of $x^{\prime}=\frac{a}{2}$ gives Equation 1. A graph of Equation (188) is given in Figure 60, for $\theta_{c}=33^{\circ}, 34^{\circ}, 35^{\circ}$ and from which it may be seen that a 2° variation in θ_{0} when $\theta_{0} \simeq 40^{\circ}$, $\theta_{c}=34^{\circ}$ results in a variation of x^{\prime} of 1μ when $a=20 \mu$. This is the basis of the confidence limits discussed in Chapter 2 for the determination of θ_{0} from a measurement of x '.

Figure 61. The wavefront ($a b$) and caustic ($a^{\prime} b^{\prime}$) for the derivation of the diffraction at a caustic.

5.5 Diffraction at a Caustic Surface

In Figure 61, ab is a section of a monochromatic wave front whach from geometrical theory forms the caustic a'b'. The co-ordinate system u, v has its origan at an arbitrary point O on the caustic, with v colnciding with the radius of curvature and positive v in the direction of the centre of curvature of the caustic at polnt 0 .

The dasturbance at P a distance v from O due to the contrabution from the element Q of the wavefront whll be glven by Equation (83) as

$$
d(U(P))=A \frac{e}{s}^{I k s} d S
$$

where A is the disturbance at Q, s is the distance from P to Q and dS represents the element of the wavefront at Q. Following the derıvations of reference (45 pp.148) s may be expressed as

$$
\begin{equation*}
s \simeq D-v \theta-\frac{1}{6} R_{c} \theta^{3} \tag{191.}
\end{equation*}
$$

where D and θ are as shown in Figure 61 and R_{c} is the radius of curvature of the caustic at point 0 .

Following the daffraction theory of Chapter 3, the total disturbance at P is given by Equation (95), which on substitution of Equation (191) and assuming $K(\chi)$ constant becomes

$$
U(P) \sim \int_{-\infty}^{+\infty} e^{-\lambda k v \theta-1 \frac{k R_{c} \theta^{3}}{6}} d \theta
$$

The term $\frac{l}{s}$ will vary only slowly in comparison with the exponential terms and may be neglected.

Equation (192) may be expressed

$$
\begin{equation*}
u(\mathrm{P}) \sim 2 \int_{0}^{\infty} \cos \left(k v \theta+\frac{k R_{c} \theta^{3}}{6}\right) d \theta \tag{193.}
\end{equation*}
$$

Figure 62. The Airy function.
and introducing a new variable

$$
\begin{aligned}
\xi & =\left(\frac{k R_{c}}{2}\right)^{1 / 3} \theta, \\
U(P) & =\Phi\left(v\left(\frac{2 k^{2}}{R_{c}}\right)^{1 / 3}\right)
\end{aligned}
$$

where $\Phi(t)$ is the Alry function defined as

$$
\Phi(t)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \cos \left(\frac{\xi^{3}}{3}+\xi t\right) d \xi
$$

The Alry function, shown in Figure 62, decays exponentially for positive argument and oscillates with decreasing amplitude for negative argument. If A represents the electric field of the wave $a b$ then from Equation (27), the intensity at P is given by

$$
I(P) \simeq|U(P)|^{2} \simeq 2 B\left(\frac{2 k^{2}}{R_{c}}\right)^{1 / 6} \Phi^{2}\left(v\left(\frac{2 k^{2}}{R_{c}}\right)\right)^{1 / 3}
$$

where from reference $45, \mathrm{~B}$ represents the intensity from the caustic calculated from geometrical ray theory and neglecting diffraction effects.

The argument t of the Airy function shown in Figure 62 and the spatial varıable v, are related by

$$
\begin{equation*}
\mathrm{v}=\mathrm{t}\left(\frac{\mathrm{R}_{\mathrm{c}}}{2 \mathrm{k}^{2}}\right)^{1 / 3} \tag{197.}
\end{equation*}
$$

The oscillatory behaviour of $\Phi(t)$ for negatıve argument will produce intensity fringes which are tangent to the caustic with spatial and frequency dependence given by inserting the relevant values of $R_{c} k$ and t into Equation (197). For example, the maxımum value of $\Phi(t), 0.549$

15 attained when $t=-1.02$ and $1 f R_{c}=25.10^{-6}, k=\frac{2 \pi}{.63 .10^{-6}}$
then the corresponding position of the maximum of intensity is $v=-0.5 \cdot 10^{-6}$. The positive value of v at whach the intensity $I=\frac{1}{10} I_{M A X}$ for the same values of R_{C} and $k, 15 v \simeq 1,0.10^{-6}$ indicating that the shadow boundary is displaced by 4\% from its geometric position.

5.6.1 Experimental Investigation of Caustics

The experimental arrangement of Figure 21 was used to illumanate the entrance apertures of short lengths of core cladded waveguades wath plane waves from elther a white light or laser source. The short lengths of waveguide were prepared as described in Section 2.5 and the measurements and microphotographs of the caustics presented in this section were made with the microscope focussed on the exit end of the wavegurdes.

The discussion of Section 4.3 suggests that the light incident upon the entrance aperture of the waveguides will suffer diffraction simılar to that produced by a circular aperture corresporing to the core cross sectional dimensions. The study of diffraction by circular apertures contained in reference (31) indicates that after diffraction, 85\% of the incident light is contained within an angular wadth

$$
\sim \frac{0.61 \lambda}{a}
$$

where a is the radius of the aperture.

In the experimental arrangement of Figure 21 , the plane waves are incident on the entrance aperture of the waveguides at angles θ_{0}, α. After diffraction by the entrance aperture 85% of the
incıdent light will be within the cone defined by the azımuthal and axial semı-angles $\Delta \alpha, \Delta \theta_{o}$ respectavely where

$$
\Delta \alpha \sim \Delta \theta_{0} \sim \frac{0.61 \lambda}{a},
$$

if the contraction of the aperture at hıgh axıal angles of incidence is neglected.

The azamuthal component of the cone $\Delta \alpha$ is of the order of 0.5° for the values of a and λ used in these experıments and has an insignıfıcant effect upon the experımental results. The axıal component $\Delta \theta_{0}$ represents the divergence of the laght of a skew plane along the path of the skew plane ray. After refraction into the core the cone will have an axıal semı-angle $\Delta \theta_{1}$, centred at angle θ_{1}, where (assuming $\mathrm{n}_{0}=1$)

$$
\begin{align*}
& \sin \theta_{1}=\frac{1}{n_{1}} \sin \theta_{0} \tag{199.}\\
& \Delta \theta_{1}=\frac{\Delta \theta_{0}}{n_{1}} \simeq \frac{0.61 \lambda}{n_{1} a} \tag{200}
\end{align*}
$$

Substitution of $\left(\theta_{1} \pm \Delta \theta_{1}\right)$ into Equation (148) and assuming that $\Delta \theta_{1} \sin \theta_{1} \ll \cos \theta_{1}$ glves

$$
m(\phi \ell)=m \pm \Delta m
$$

where

$$
\begin{aligned}
& \mathrm{m}=\frac{\ell \tan \theta_{1}}{2 \mathrm{a} \sin \phi} \\
& \Delta \mathrm{~m}=\frac{\Delta \theta_{1} \ell}{2 \mathrm{a} \sin \phi}
\end{aligned}
$$

The term m given by Equation (202) andicates the position of the skew plane ray and hence the position of the skew plane, which will

Skew plane ray.

Figure 63a. A diverging skew plane, m non-integer.

Figure 63b. A diverging skew plane, m an anteger.
extend a distance a sin ϕ from the skew plane ray along the skew plane ray path in each direction. The term Δm given by Equation (203), will be called the divergence factor, indicates a divergence of the light originally within the skew plane an additional distance along the skew plane ray path of $\Delta \mathrm{m} a \sin \phi$. This is illustrated in Figure 63 for m not an integer, $\Delta m=0.5$, Figure 63a, and man integer, $\Delta \mathrm{m}=1$, Figure 63b.

It follows from the conservation of intensity theorem and consideration of figure 63 that the intensity of the skew plane $I(\phi)$ given by Equation (152) will be reduced by the factor $\frac{1}{(1+2 \Delta \mathrm{~m})}$ and the'lost' intensıty appears in the $2 \Delta \mathrm{~m}$ addıtıonal skew planes.

The caustacs derıved in Section 5.4 and described by Equations (169a,b) are based upon integer and sıngle values for m, and it was also assumed that m is independent of ϕ. According to Equation (201), (202) and (203) $\mathrm{m}(\phi \ell)$ will, $2 n$ general, be non-integer, non singular (that is $\Delta \mathrm{m} \neq 0$) and dependent upon ϕ. The conditions shown in Figure 63 suggest that a non-integer value for m will result in the partial illumination of adjacent caustics and that when $\Delta m \neq O$ a total of ($1+2 \Delta \mathrm{~m}$) caustıcs will be $1 l l u m n$ nated.

To ınvestigate the effects of the ϕ dependence of $m(\phi \ell)$ on the caustic equations it is assumed that m^{\prime} as the value of m for $\phi=90^{\circ}$, i.e.

$$
\mathrm{m}^{\prime}=\frac{\ell \tan \theta_{1}}{2 \mathrm{a}}
$$

Substituting Equation (204) into (202), (203)

$$
\begin{aligned}
m & =\frac{m^{\prime}}{\sin \phi} \\
\Delta m & =\frac{m^{\prime} \Delta \theta_{1}}{\sin \phi \tan \theta_{1}}
\end{aligned}
$$

Figure 64. The axıal separation of the wavefront and caustic of Fıgure 61.

Assuming that Equation (205) represents integer values and substituting into Equation (180) gives

$$
n(\phi)=\frac{2 m^{\prime} \phi}{\sin \phi}
$$

207.

Equation (207) together with Equation (180b) represent the same spiral as Equation (180) for $\phi \sim \frac{\pi}{2}{ }^{\left(\chi^{\sim}\right)}$, but for $\phi \rightarrow O\left(\chi \rightarrow \frac{\pi}{2}\right)$ the $\phi / \sin \phi$ term of Equation (207) will approach unity (46 Eqn.4.3.74) instead of zero as in Equation (172) and the spirals will now terminate at

$$
\begin{aligned}
& \eta=2 \mathrm{~m}^{\prime} \quad \text { (radıans) } \\
& \mathrm{R}=\mathrm{a}
\end{aligned}
$$

Equations (208) represent the helical path of the skew plane, tangent to the core cladding interface, as $2 t$ propagates down the wavegulde as m^{\prime} increases.

Since the caustics are formed by light which is propagating down the waveguides there wall be an axial separation between the wavefront $a b$ and the caustic $a ' b$ ' of figure 61. In Figure 64 this axlal separation $1 s$ shown as z and the effective radius of curvature of the caustic R_{C}^{\prime} is glven by

$$
R_{c}^{\prime}=\frac{R_{c}}{\sin \theta_{l}}
$$

209.

where θ_{1} is the axial angle of the rays forming the caustic.

$$
\text { Substitution of Equation (209) and } k=n_{1} \frac{2 \pi}{\lambda} \text { into Equation (197) }
$$ gives

$$
\mathrm{v}=\mathrm{tF}
$$

b. Laser light

Figure 65. Microphotographs of caustics observed in $\approx 50 \mu$ diameter cladded dielectric waveguides.
where

$$
F=\left(\frac{R_{c} \lambda^{2}}{\sin \theta_{1} 2\left(n_{1} 2 \pi\right)^{2}}\right)^{1 / 3}
$$

and F may be called the frange factor since it scales the Alry
function to glve the physlcal frange spacing.

The other factors which are used to interpret the experamental results are summarised below and expressed in terms of known or measurable quantities. The caustics for $\phi \sim \frac{\pi}{2}$ are of most interest and thus the factor m^{\prime} is used as the reflection number inducator and will be called the reflection number.

Summary
Reflection number

$$
\mathrm{m}^{\prime}=\frac{\ell \tan \theta_{1}}{2 \mathrm{a}}
$$

Skew reflection number

$$
m=\frac{m^{\prime}}{\sin \phi}
$$

Divergence factor

$$
\Delta m=\frac{m^{\prime} 0.61 \lambda}{n_{1} a \sin \phi \tan \theta_{1}}
$$

where Equation (212) 15 obtained by substituting Equation (200) into (206).

5.6.2 Experımental Results

In Figure 65 the caustıcs produced by both white light and laser light for $m^{\prime}=1$ to 4 are illustrated. The diffraction patterns assoclated with the caustics obtalned with laser illumination contain addational franges produced partly by the superposition of the ancudent and reflected waves and partly as the result of scattered laser light originating from the entrance aperture or from the reflection interfaces. These secondary fringes tend to obscure the diffraction patterns due to the caustics.

Similar secondary frange systems wall be produced by each monochromatic component of the white light source, but since the position of these frınges is frequency dependent, the fringe systems due to different frequency components wall overlap and no fringes will be visible. This is demonstrated in Figure 65a where the caustic for $m^{\prime}=2$ produced by white light contains no secondary fringes but only the franges due to the caustics or those produced by the overlapping of the diffraction patterns of the caustics due to the $\pm \phi$ skew planes.

The absence of the secondary frınges, when $1 l l u m ı n a t ı n g$ with white light may be anterpreted as being the result of the incoherence of the light at the point of observation, as discussed in Section 3.6.5. Such a statement would appear to be anconsıstent with the appearance of the caustic diffraction fringes at similar polnts of observation.

This difficulty is resolved by remembering that the coherence of a source $1 s$ determined by measuring the visıbility of fringes produced by an optical system which arranges to superpose at least two components of light from the same source. In the laboratory experiments associated with interference the optical system generally produces only a single frange system, which in turn suggests only two possible optical paths through the system, from the source to the point of observation.

If the optical system has a multiplicity of optical paths from the source to the points of observation, as is the case for the optical waveguide, then it is clearly possible for light taking certain of these paths to exhibit coherent properties whilst light following other paths may have differential path lengths exceeding the coherence length of the source and thus exhibit incoherent properties.

Figure 66.

Figure 67a.

Figure 67b.

The caustics are produced by light which follows almost identical paths down the waveguide. If the difference in optical path lengths $1 s$ very much less than the coherence length of white llght, the white light fringes shown in Figure 65a will be produced.

The fringe factor and divergence factor for the caustıcs shown in Figure 65 are given in Table 7 below.

$1 \mathrm{~m}^{\prime}$	$\mathrm{F} \cdot 10^{-6} \mathrm{~m}$.	$\Delta \mathrm{m}$
1	1.15	.017
2	.53	.070
3	.37	.075
4	.38	.125

Table 7.

The inversion and contraction of the caustics and the spacing of the diffraction frınges show good agreement with the theoretical values.

In Figure 66 the caustic for $m^{\prime}=2$ produced by white light is -6 1llustrated but now with a frange factor $F=17.10^{\circ}$ obtained by increasing the length of waveguide. If ℓ is increased, then θ_{1} is reduced to maintain $\mathrm{m}^{\prime}=2$ in Equation (2O4) and the frınge factor which is inversely proportional to θ_{1} is increased. As well as increasing the spacing between the fringes the increase in F permits the appearance of different frequency components of the diffraction fringes and Figure 66 has a coloured appearance.

A further ancrease in the length of the waveguide increases F and θ_{1} approaches zero. Ultimately when F is very large, each fringe

Figure 68

Figure 69.
of the diffraction pattern for low m^{\prime} will fill the entire aperture of the waveguide, and the different frequency components will overlap. Thıs will produce a uniform white intensity distribution as illustrated in Figure 67a where $\theta=1^{\circ}$ and $\ell=4.0 \mathrm{~cm}$ If the same length of wavegurde is illuminated using the laser source at the same angle of incidence the resulting intensity distribution is shown in Figure 67b.

Although it is difficult to differentiate between them, there are two types of interference fringes present in Figure 67b. The series of concentric rıngs correspond to waveguade mode patterns when several modes are excited simultaneously and the larger frınges randomly distributed over the waveguide end face are the interference effects of randomly scattered light.

Concentrating now on white light illumination of the waveguides, Fig ure 68 shows the caustics obtained for $m=12$ in a length of waveguide $l=2 \cdot 0_{\text {mm }}$. which gives $\theta_{1}=16^{\circ}$ The resulting small value of $F=0510^{-6}$ gives the frınge spacing shown in Figure 68 and such a small value for F gaves fringe positions which are vırtually andependent of frequency to glve the white fringe pattern illustrated.

Maintaining the value of θ_{1} and increasing the length of the waveguide glves lncreasing values for m^{\prime} and the well defined caustic shapes obtained for low m dısappear as the spıral winds up, as demonstrated in Figure 69. The intensity distributions shown in Figure 69 are white and contain spatial varıations of intensity simılar to those shown in Figure 5.

If the waveguides are circular in cross section the intensity distributions should be circular symmetric and therefore independent of the azımuth angle of incldence of the white light. It was found that none of the waveguides tested exhıbıted these characteristics suggesting that all the waveguides tested were non circular.

Figure 70. The refraction of rays through the end face of a dielectric wavegurde.

Figure 71. The representation of refraction in cartessan co-ordinates.

The radiation of a hollow cone of light from an optical waveguide when excited by a plane wave was discussed in Section 5.4 The cone of light is formed from a plane wave by divergence in the azımuthal plane as a result of the multiple reflection process, whilst the axial components of the angles of incidence of the light remain constant.

The constancy of the axial angle of incidence is assured if the waveguide $1 s$ perfectly stralght, with end terminations normal to the axls of the waveguide and any divergence due to diffraction neglected. The effect of a bend in the waveguide is considered in Chapter 7, and the result of dıvergence was discussed in Chapter 2 . In this section the effects on the radiated cone of light of a slope at the radiating end face of the waveguide wall be considered, assuming a straight waveguide with a normal end face at the entrance aperture.

If the radiating end of the waveguide is normal to its longitudinal axis, then rays of light will refract through the end face as shown in Figure 70 where according to Snell's Law (Equation (100))

$$
n_{1} \sin \theta_{1}=n_{0} \sin \theta_{0}
$$

Equation (213) may be expressed in diagrammatic form as shown In Figure 71. The angles of incidence θ_{1}, and refraction θ_{0}, are each resolved along orthogonal components θ_{x}, θ_{y} which form the axes of a cartesian co-ordinate system. The orıgin of the co-ordınate system $\left(\theta_{x}=\theta_{y}=0\right)$ represents the longıtudinal axıs of the wavegulde which also forms the normal n_{a} to the radiating surface.

Since the angles θ_{1}, θ_{0}, are andependent of azimuthal position their locli are circles of radius θ_{1} and θ_{0} respectively. All rays of

Figure 72. A slopıng end face on a wavegulde termination.

Figure 73. The cartesian co-ordinate representation of refraction at the sloping end face shown in Figure 72.
light whach are incıdent and refracted in a plane parallel to or in a mexidional plane at an azimuthal angle α are represented by the vectors in the θ_{x}, θ_{y} plane at angle α as shown in Figure 71. Positive angles are measured clockwise from the surface normal.

A flat sloping end face will have a surface normal \bar{n}_{s} at an angle γ_{s} to the waveguide axis, \bar{n}_{a}. The co-ordinate system may be rotated untıl this angle lies solely along elther the θ_{x} or θ_{y} axis. In Figure 72 the slope is allgned along the Y axis and in Figure 73 the slope angle γ_{S} appears along the θ_{Y} axis to glve the position of the normal to the sloping surface \bar{n}_{s} a distance γ_{s} along the θ_{y} axis from the origin \bar{n}_{a}.

Rays of light within the waveguide wall stıll form angles θ_{1} with respect to the normal \bar{n}_{a} and this is represented by the circular locus centre \bar{n}_{a}, radıus θ_{1} in Figure 73. The angles of incidence $\theta_{1 s}$ with respect to the sloping end face are given by the length of the vector from the point \vec{n}_{s} to the circumference of this circular locus.

From Figure 73

$$
\begin{aligned}
\theta_{1 s} & =\sqrt{\left(\theta_{1} \sin \alpha+\gamma_{s}\right)^{2}+\left(\theta_{1} \cos \alpha\right)^{2}} \\
& =\theta_{1} \sqrt{1+\left(\frac{\gamma_{s}}{\theta_{1}}\right)^{2}+\frac{2 \gamma_{s}}{\theta_{1}} \sin \alpha}
\end{aligned}
$$

It wall be assumed that $\gamma_{S} \ll \theta_{1}$ so that $\left(\frac{\gamma_{S}}{\theta_{1}}\right)^{2}$ may be neglected, and

$$
\left(1+\frac{2 \gamma_{s}}{\theta_{1}} \sin \alpha\right)^{\frac{1}{2}}
$$

may be expanded using the binomial theorem to give

$$
\theta_{1 s}=\theta_{1}+\gamma_{s} \sin \alpha
$$

Figure 74. The definition of angles for the refraction of rays at a sloping end face.

The angle of refraction $\theta_{o s}$ is given by Snell's Law as

$$
\sin \theta_{o s}=\frac{n_{1}}{n_{0}} \sin \theta_{i s}
$$

which on substitution of Equation (213) and (215) and assuming $\cos \left(\gamma_{s} \sin \alpha\right) \sim 1$ becomes

$$
\sin \theta_{o s}=\sin \theta_{0}+\frac{n_{1}}{n_{0}} \gamma_{s} \cos \theta_{1} \sin \alpha
$$

The locus of $\theta_{o s}$ is shown in Figure 73 where it has been assumed that $\gamma \ll \theta_{0}$ to give $\theta_{o s} \simeq \theta_{0}$ when $\alpha=0, \pi$. The centre of symmetry of this locus, which may be called the normal \bar{n}_{c} of the radiation "cone" of llght, wlll lie on the θ_{y} axıs midway between the $\theta_{o s}\left(\alpha=\frac{\pi}{2}\right)$ and $\theta_{O S}\left(\alpha=\frac{3 \pi}{2}\right)$ points.

Since

$$
\left(\theta_{o s}\left(\alpha=\frac{\pi}{2}\right)-\gamma_{s}\right)>\left(\theta_{o s}\left(\alpha=\frac{3 \pi}{2}\right)+\gamma_{s}\right)
$$

the cone normal \bar{n}_{c} will have an angle δ in the opposite direction along the θ_{y} axis to the slope normal and where

$$
\delta=\frac{\theta_{\mathrm{OS}}(\alpha=\pi / 2)+\theta_{\mathrm{OS}}(\alpha=3 \pi / 2)}{2}-\left(\theta_{\mathrm{OS}}\left(\alpha=\frac{3 \pi}{2}\right)+\gamma_{\mathrm{S}}\right)
$$

A simpler expression for δ is obtained by consıdering the deviation of the refracted rays at azımuthal angles $\alpha=\frac{\pi}{2}, \frac{3 \pi}{2}$ as a slope is introduced on the end face. It is convenient to define the angles as shown in Figure 74 and considering the refraction of the $\alpha=\frac{3 \pi}{2}$ ray, Snell's Law gives

$$
n_{1} \sin \left(\theta_{1}-\gamma_{s}\right)=n_{0} \sin \left(\theta_{0} \frac{3 \pi}{2}-\gamma_{s}\right)
$$

Expanding the sine functions in Equation (219)
$\frac{n_{1}}{n_{0}}\left(\sin \theta_{1} \cos \gamma_{s}-\cos \theta_{1} \sin \gamma_{s}\right)=\left(\sin \theta_{0} \frac{3 \pi}{2} \cos \gamma_{s}-\cos \theta_{0} \frac{3 \pi}{2} \sin \gamma_{s}\right) \quad 220$.
and substituting for θ_{1} using Equation (213) and rearranging gives
$2 \cos \frac{\left(\theta_{0}+\theta_{0} 3 \pi / 2\right.}{2} \sin \frac{\left(\theta_{0}-\theta_{0} 3 \pi / 2\right.}{2}=\operatorname{TAN} \gamma_{S}\left(\sqrt{\left(\frac{n_{1}}{n_{0}}\right)^{2}-\sin ^{2} \theta_{0}-\cos \theta_{0} 3 \pi / 2}\right)$

From Figure $74\left(\theta_{0}-\theta_{0} \frac{3 \pi}{2}\right)=\delta_{\frac{3 \pi}{2}}$ and assuming $\delta_{\frac{3 \pi}{2}} \ll \theta_{0}$
so that $\theta_{0}+\theta_{0 \frac{3 \pi}{2}} \simeq \theta_{0}$ equation (221) becomes
$2 \cos \theta_{0} \sin \frac{\delta_{\frac{3 \pi}{2}}}{2}=\tan \gamma_{s}\left(\sqrt{\left.\left(\frac{n}{n_{0}}\right)^{2}-\sin ^{2} \theta_{0}-\cos \theta_{0}\right)}\right.$

Assuming that $\delta_{\frac{3 \pi}{2}}$ and γ_{s} are small then

$$
\delta_{\frac{3 \pi}{2}}=\gamma_{s}\left(\sqrt{\left(\frac{\left(n_{1} / n_{o}\right)^{2}-1}{\cos ^{2} \theta_{0}}\right)+1}\right)-1
$$

A similar calculation for the $\alpha=\frac{\pi}{2}$ ray gives

$$
\delta_{\pi / 2}=\delta_{\frac{3 \pi}{2}}=\gamma_{S} R
$$

where

$$
R=\sqrt{\left.\left(\frac{\left(n_{1} / n_{0}\right)^{2}-1}{\cos ^{2} \theta_{0}}\right)+1\right)-1}
$$

Figure 75. The locus of the angle of refraction $\theta_{\text {os }}^{\prime}$ at a sloping end face.
and the cone normal \bar{n}_{c} is offset from the waveguade axis by an angle δ where

$$
\delta=\gamma_{S} R
$$

The semr-angle of the radiated cone of light, now measured with respect to the cone normal $\overline{\mathrm{n}}_{\mathrm{c}}$ may be denoted by θ^{\prime} os ${ }^{(} \alpha^{\prime}$) where α^{\prime} and the locus of $\theta_{\text {os }}^{\prime}$ are shown in Figure 75. Using the definitions of angles shown in Flgure 74 and the results expressed by Equation (224)

$$
\begin{equation*}
\theta_{\text {os }}^{\prime}\left(\frac{\pi}{2}\right)=\theta_{\text {os }}^{\prime}\left(\frac{3 \pi}{2}\right) \simeq \theta_{0} \tag{227.}
\end{equation*}
$$

and using the assumption that $\delta \ll \theta_{0}$ then from Figure 75

$$
\begin{equation*}
\theta_{\text {os }}^{\prime}(0)=\theta_{\text {os }}^{\prime}(\pi) \simeq \theta_{\text {o }} \tag{228}
\end{equation*}
$$

It would appear from the above analysis that a flat slope on the radiation end of a waveguide wall deflect the radiating cone of light by an angle δ given by Equation (226), in a direction opposite to the normal of the slope. The sem angle and circular symmetry of the radlating cone will be preserved as if it were refracted through a normally terminated wavegulde, whose longıtudinal axıs colncıdes with the cone normal \bar{n}_{c}.

If the experimental procedure described in Section 2.8 is followed so that the end of the wave guide is ground normally to the radiation cone normal \bar{n}_{c}, the sloping end termination produced will have a slope angle $\gamma_{\text {sl }}$ where

$$
\gamma_{\text {sl }}=\delta
$$

and where the subscript ${ }_{1}$ denotes the first alıgnment and grinding of this end of the waveguide. A second alignment and grinding will produce a sloping end termination at an angle $\gamma_{s 2}$ where

$$
\begin{equation*}
\gamma_{\mathrm{s} 2}=R \gamma_{\mathrm{s} 1} \tag{230.}
\end{equation*}
$$

and the $n^{\text {th }}$ allgnment and grinding wall produce a slope with angle $\gamma_{\text {sn }}$ where

$$
\begin{equation*}
\gamma_{\mathrm{sn}}=\mathrm{R}^{\mathrm{n}} \gamma_{\mathrm{s}} \tag{231.}
\end{equation*}
$$

Equations (226) and (229) have been used to substıtute for δ and $\gamma_{\text {sl }}$ respectively to give this equation.

A typıcal experımental value for R as gaven by substıtuting $n_{1}=1.62, n_{0}=1$ and $\theta_{0}=30^{\circ}$ into Equation (225) to give $R=0.779$. If the initial slope angle $\gamma_{s}=10^{\circ}$ this will be reduced by a factor R after each alıgnment and grinding procedure to give the slope angles shown in Table 8.

n	0	1	2	3	4	5	6	7	8	9	10
γ_{sn}^{0}	10	7.8	6.0	4.7	3.7	2.9	2.2	1.7	1.4	1.0	0.8

TABLE 8

A reduction in θ_{0} produces a smaller R factor which will reduce the number of grinding stages required to produce a given slope, but the reduction in θ_{0} is limited by the use of the approximation $\gamma_{S} \ll \theta_{0}$ in the analysic.

Abstract

5.8 Conclusions

The radiation cone, the "black hole" effect and the thick lens phenomena discussed in this chaptex are all well known properties of dielectric optacal wavegundes. However, the utilusation of the radlation cone to correct slopes on the radlation end of waveguides and the measurement of axıal angles of ancidence of light wathan the wavegundes using the "black hole" effect do not appear to have been suggested prevıously.

The caustics produced by cylindrical reflectors are not of particular significance but their analysis provides a basis for the investigation of the more interesting caustics produced by non-circular cross section waveguides, for example, the elluptical cross section waveguide which is discussed in the next chapter.

Figure 76. The cross sectional path of a ray in a cylinder.

CHAPTER 6

6.1 Introduction

The experımental results of Chapter 5 suggest that the inıtial assumptions used there for the analysis of ray propagation in the waveguides are incorrect. It appears that the waveguides do not have cırcular cross sections but have asymmetrıes which have a marked effect on the intensity distribution $2 n$ the waveguide cross section.

In this chapter the waveguide is assumed to have an elliptic cross section and the positions and form of the caustics for this cross section are determined by perturbing the solutions for the circular cross sectıon. To assist this analysıs the caustic equations for the carcular cross section are derived by considering the skew ray paths in the cross section in terms of angular difference equations.

It is shown that under certain experımental conditions the intensity distribution in the cross section is simply related to the cross sectional dimensions and geometry of the waveguide.

6.2 Difference Equations for Skew Ray Paths in Circular Cross
 Sections.

In Figure 76 the cross sectional path in a cylindrical waveguide of a skew plane ray ϕ is shown, where P_{n} denotes the point on the circumference at which the $n^{\text {th }}$ reflection occurs. The polar co-ordinates of P_{n} are r_{n} / \mathcal{B}_{n} and the path of the ray is inclined at angle X_{n} to r_{n} prior to reflection and angle X_{n}^{\prime} after reflection.

Consider a co-ordinate system u, v with its origin at P_{n} and the u axis colnciding with r_{n} and positive u in the direction of the centre of the circle. If, as shown in Figure 76 , a ray is incident in the $+u,+v$
quadrant then adjacent points of reflection $P_{n}, P_{n+1}, P_{n+2} \cdots$ have angular separations of $\Delta \beta$ in an anticlockwise direction around the curcle. From Figure 76

$$
\begin{equation*}
\Delta \beta=\beta_{n+1}-\beta_{n}=\left(\frac{\pi}{2}-\chi_{n}^{\prime}\right)+\left(\frac{\pi}{2}-\chi_{n+1}\right) \tag{232.}
\end{equation*}
$$

Since the radius r_{n} of the circle is also the normal at the circumference, X_{n}, X_{n}^{\prime} become the angles of incidence and reflection respectively and from the law of reflection will be equal in magnitude. 1.e.,

$$
x_{n}=x_{n}^{\prime}
$$

From Figure 76

$$
r_{n} \sin X_{n}^{\prime}=r_{n+1} \sin X_{n+1}
$$

Since r_{n} and r_{n+1} are both radil of the curcle then

$$
x_{n}^{\prime}=x_{n+1}
$$

Substituting Equations (233), (235) and (165a) (assuming $\Delta x \rightarrow 0$) into (232) gives

$$
\Delta \beta=2 \phi_{n}
$$

After m reflections the angular position of P_{m} with respect to P_{n} is gaven by β where

$$
\beta=\int \Delta \beta \cdot d m
$$

and, sance $\Delta \beta$ is independent of m, the solution of Equation (237) is

$$
\beta=2 \phi \cdot m+\text { constant }
$$

Figure 77. An ellıpse.

If a ray is incident in the $+u,-v$ quadrant then adjacent points of reflection are spaced at angular separations of $\Delta \beta$ but now in a clockwise direction around the circumference. Since both ray directions will have paths tangent to the circle radıus $r \cos \phi$ thas circle forms the caustic for the skew plane ϕ in agreement with Equation (180b).

6.3 Properties of Ellıpses

The ellipse shown in Figure 77 is defined by the Equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

From Equation (239)
$x=\frac{a}{b} \sqrt{b^{2}-y^{2}} \quad 240 a . \quad y=\frac{b}{a} \sqrt{a^{2}-x^{2}} \quad 240 b$.

Consider a polnt $P(x y)$ on the ellupse whose polar co-ordinates r里are given by (47, Pt.l, para. 256)
$r=\frac{a b}{\left(b^{2} \cos ^{2} \phi+a^{2} \sin ^{2} \phi\right)^{3 / 2}}$
$\operatorname{TAN} \phi=\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{b}}{\mathrm{a}} \frac{\mathrm{y}}{\sqrt{\mathrm{b}^{2}-\mathrm{y}^{2}}}$

The centre of curvature of the ellipse at point $P(x y)$ is given by $\bar{x} \bar{y}$ where from reference 48, pp 153

$$
\bar{x}=x-\frac{y^{\prime}\left(1+y^{\prime 2}\right)}{y^{\prime \prime}} \quad \text { 243a. } \quad \bar{y}=y+\frac{\left(1+y^{\prime 2}\right)}{y^{\prime \prime}}
$$

where

$$
y^{\prime}=\frac{d y}{d x}, \quad y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}
$$

Substituting Equation (240) into (243) gives (48, pp. 153,Ex.3)

$$
\bar{x}=\frac{a^{2}-b^{2}}{a^{4}} x^{3} \quad 244 a . \quad \bar{y}=\frac{b^{2}-a^{2}}{b^{4}} y^{3}
$$

The angle $\bar{\phi}$ between the radius of curvature at point P and the x axis as shown in Figure 77 is given by

$$
\operatorname{TAN} \bar{\phi}=\frac{(y-\bar{y})}{(x-\bar{x})}
$$

Substıtutıng Equations (240a) and (243a,b) ınto (245) gives

$$
\operatorname{TAN} \bar{\phi}=\frac{a}{b} \frac{y}{\sqrt{b^{2}-y^{2}}}
$$

Comparıng Equations (242) and (246) it is seen that

$$
\operatorname{TAN} \bar{\phi}=\frac{a^{2}}{b^{2}} \operatorname{TAN} \phi
$$

The radius of curvature $\bar{r}(x y)$ at polnt $P(x y)$ on the ellıpse 1 s given by reference (48 pp .153) as

$$
\bar{r}(x y)={\left.\frac{\left(1+y^{\prime}\right.}{}\right)^{3 / 2}}_{y^{\prime \prime}}
$$

Substituting for y^{\prime} and $y^{\prime \prime}$ gives

$$
\bar{x}(x)=\frac{\left(x^{2}\left(b^{2}-a^{2}\right)+a^{4}\right)^{3 / 2}}{a^{4} b}
$$

248.

Note that when $x=0$

$$
\bar{x}(0)=\frac{a^{2}}{b}
$$

and when $\mathrm{x}=\mathrm{a}$

$$
\begin{equation*}
\bar{r}(a)=\frac{b^{2}}{a} \tag{250.}
\end{equation*}
$$

The last two equations give the vertex radil of an ellipse shown in reference (49, Equations F4.35).

Figure 78. The path of a ray in an ellipse.

6.4.1 Propagation of skew plane rays in ellıptıcal cross section

 waveguldes.In Figure 78 the cross sectional path in an elliptical cross section waveguide of an arbitrary skew plane ray is shown where P_{n}, $X_{n}, X_{n}^{\prime}, r_{n}$ and β_{n} are the same as in Figure 76. In addition $\beta_{n}, \bar{\phi}_{n}$ correspond to $\phi(x y)$ and $\bar{\phi}(x y)$ respectively of Figure 77 and $\bar{r} 1 s$ the raduus of curvature of the ellıpse and hence also the normal to the ellipse at the point P_{n}.

The angles of incidence and reflection of the skew plane ray at P_{n} are given by $\left(x_{n}-\gamma_{n}\right)$ and $\left(\chi_{n}^{\prime}+\gamma_{n}\right)$ respectively where

$$
\begin{equation*}
\gamma_{n}=\bar{\phi}_{n}-\beta_{n} \tag{251.}
\end{equation*}
$$

and by the law of reflection they will be equal in magnitude to give

$$
\begin{equation*}
\chi_{n}=\chi_{n}^{\prime}+2 \gamma_{n} \tag{252.}
\end{equation*}
$$

Equation (251) may be expressed as

$$
\begin{equation*}
\operatorname{TAN} \gamma_{n}=\operatorname{TAN}\left(\bar{\phi}_{n}-\beta_{n}\right)=\frac{\operatorname{TAN} \bar{\phi}_{n}-\operatorname{TAN} \beta_{n}}{1+\operatorname{TAN} \bar{\phi}_{n} \operatorname{TAN} \beta_{n}} \tag{253.}
\end{equation*}
$$

Noting that $\bar{\phi}_{n}=\bar{\phi}$ and $\beta_{n}=\phi$ then substituting for $\bar{\phi}_{n}$ an Equation (253) using Equation (247) gıves

$$
\begin{equation*}
\operatorname{TAN} \gamma_{n}=\frac{\left(\frac{a^{2}}{b^{2}}-1\right) \operatorname{TAN} \beta_{n}}{1+\frac{a^{2}}{b^{2}} \operatorname{TAN}^{2} \beta_{n}} \tag{254}
\end{equation*}
$$

Assuming that γ_{n} is small, $\frac{a^{2}}{b^{2}} \simeq 1$, and denoting $\left(\frac{a^{2}}{b^{2}}-1\right)=h$ Equation (254) becomes

$$
\gamma_{n}=\frac{h}{2} \sin 2 \beta_{n}
$$

The angles X_{n}^{\prime} and X_{n+1} are related by Equation (234) which may be expressed in the form

$$
\left(\frac{r_{n}}{r_{n+1}}\right)^{2}=\left(\frac{\sin x_{n+1}}{\sin x_{n}^{\prime}}\right)^{2}
$$

Using Equation (241) the left hand side of this Equation becomes

$$
\left(\frac{r_{n}}{r_{n+1}}\right)^{2}=\frac{\cos ^{2} \beta_{n+1}\left(1+\frac{a^{2}}{b^{2}} \operatorname{TAN}^{2} \beta_{n+1}\right)}{\cos ^{2} \beta_{n}\left(1+\frac{a^{2}}{b^{2}} \operatorname{TAN}^{2} \beta_{n}\right)}
$$

Using the assumption that $\frac{a^{2}}{b^{2}} \simeq 1$ which is discussed later in this Section, the right hand side of this Equation reduces to I thus giving the condition

$$
\begin{equation*}
x_{n+1}=x_{n}^{\prime} \tag{258.}
\end{equation*}
$$

Substituting Equations (265) and (258) into (252) and rearranging gives the difference Equation

$$
\begin{aligned}
\Delta x & =x_{n}-x_{n+1} \\
& =h \sin 2 \beta_{n}
\end{aligned}
$$

A second difference equation is obtained by substatuting Equation (258) into (232) to give

$$
\Delta \beta=\pi-2 x_{n+1}
$$

The values of x for the skew plane rays of most interest are small, for which $\Delta \beta$ is large. To make $\Delta \beta \rightarrow 0$ as $\chi \rightarrow 0, \Delta \beta$ is modified to $\Delta \beta^{\prime}$ where

$$
\begin{aligned}
\Delta \beta^{\prime} & =-(\Delta \beta+\pi) \\
& =2 \chi_{n+1}
\end{aligned}
$$

and β is now measured with respect to the $+x$ and $-x$ axis for alternate reflections.

To solve the difference equations (259), (261) the following ratio 15 formed which $2 s$ then assumed to be independent of n. This assumption is justified if $\chi_{n+1} \simeq X_{n}$ since the ratio then applies for a single and arbitrary value of n.

$$
\frac{\Delta x}{\Delta \beta^{\prime}}=\frac{h \sin 2 \beta_{n}}{2 x_{n+1}}
$$

Assuming that $\Delta \beta^{\prime} \rightarrow$ O then Equation (262) becomes a differential equation which may be solved by separation of the varıables and integration.

Separation of varıables gives

$$
\int 2 x d x=\int h \sin 2 \beta d \beta
$$

and integrating both sides gives

$$
\chi^{2}=-\frac{h}{2} \cos 2 \beta+c
$$

where c is a constant of integration which may be evaluated by considering the condition $\beta=\frac{\pi}{2}$.

Substatution of $\beta=\frac{\pi}{2}$ into Equation (264) gaves

$$
x^{2}=\frac{h}{2}+c
$$

where χ^{m} is the maximum value of X which occurs at $\beta=\frac{\pi}{2}$.

Substituting for c from Equation (265) into (264) gives

$$
x=\sqrt{x^{2}-h \cos ^{2} \beta}
$$

Figure 79. An ellipse, showing rays incıdent in the positive quadrant of the u, v co-ordınate system.
whıch, as wall be shown, adequately describes the behavıour of the skew plane rays in the elliptic cross section waveguide.

To assist further investigation of Equation (266), xm is expressed in the form

$$
\begin{equation*}
\mathrm{xm}^{2}=\sigma^{2} \mathrm{~h} \tag{267.}
\end{equation*}
$$

and Equation (266) becomes

$$
x=\sqrt{h\left(\sigma^{2}-\cos ^{2} \beta\right)}
$$

Consider the point P_{n} on the ellipse at $\beta=\frac{\pi}{2}$ as shown in Figure 79 wath a co-ordinate system u, v with ats orıgin at P_{n} and with the tve u axis colnciding with the normal to the reflecting surface at P_{n}. A skew plane ray in the $+u,+v$ quadrant, incident on the reflecting surface at P_{n} will have anticlockwise increments in β for each reflection. If X is small, alternate points of reflection P_{n}, $P_{n+2}, P_{n+4} \ldots$ will appear in the same quadrant of the ellipse and have reducing values of β.

If $\sigma<1$ then according to Equation (268), X will be zero when $\beta=\cos ^{-1} \sigma$ and the angle of incidence will be given by substituting $x=0$ in Equation (252) to give

$$
\chi^{\prime}=-2 \gamma_{n}
$$

The ray will now be incıdent in the +u , -v quadrant, and successive reflections will result in clockwise increments of β and the alternate points of reflection will have increasing values of β. Since Equation (268) is dependent upon $\cos ^{2} \beta$, sımılar behaviour will occur for β in the range $\frac{\pi}{2}<\beta<\pi$ and will result in the skew plane ray path oscillatang about the y axıs of the ellipse between $\beta=\cos ^{-1} \sigma$ and $(\pi-\beta)=\cos ^{-1} \sigma$.

Figure 81. Two skew planes with the same value of σ.

If $\sigma>1$ the ray will not change quadrants since $X>0$ for all β values and the resultant ray path will be slmılar to that for a skew plane ray in a cırcular cross section waveguıde. Examples of computer simulated ray paths in elliptic cross section waveguides are shown in Figure 80 where
$\sigma=.8660$ Figure 80a. and $\sigma=1.5$ Figure $80 b$.

The caustic shown in Figure $80 b$ is similar to that for a circular cross section except that it has been deformed into a quasi-elliptical figure. The caustic shown in Figure 80a. obviously differs from the circular caustic in that the ray paths cross the centre of the ellipse and the resultant caustic is quasl-hyperbolic in shape.

Before considerıng the equations for these caustics, the approximation $\frac{a^{2}}{b^{2}} \simeq 1$ is consıdered. With prior knowledge of the experımental results presented later in this chapter, the maximum variation between major and manor axis for the waveguides used in this study is of the order of 2%. This may be expressed by setting

$$
a=b+\Delta
$$

then

$$
\frac{\Delta}{a} \leqslant 0.02
$$

and

$$
1<\frac{a^{2}}{b^{2}}<1.04
$$

The corresponding maxımum value oi h is .04 which gives χ m $\sim 12^{\circ}$ for $\sigma=1$ which in turn permits the small angle approximation for X to be used when $\sigma \leqslant 1$.

In Figure 81, two skew plane rays with the same value for σ are incident at polnts P_{1}, P_{2} on the ellipse and the points P_{1}, P_{2} have
co-ordinates $X_{1}, Y_{1}, X_{2}, Y_{2}$ respectively. The tangents of the rays before reflection are T_{1} and T_{2} and the expressions for X, Y, T are obtained from Figure 81 in terms of the angles $\chi, \Delta \chi \beta \Delta \beta$ and the nomınal radıus a of the ellıpse.

The expression for T_{2} contains the term ΔX which may be combined wath $\Delta \beta$ using Equation (262) to gave

$$
T_{2}=\tan (\beta+\chi+t \Delta \beta)
$$

where

$$
t=\left(l+\frac{h \sin 2 \beta}{2 X}\right)
$$

and the assumption that $\chi_{n+1} \simeq \chi_{n}$ has been used and the subscript n dropped.

Substıtutıng Equations (271), (272) ınto (163) gıves

$$
\begin{aligned}
& K_{1}=\frac{-a \sin \chi}{\cos (\beta+\chi)} \\
& K_{2}=\frac{-a \sin (\chi+\Delta \beta(t-1))}{\cos (\beta+\chi+t \Delta \beta)}
\end{aligned}
$$

$$
\mathbf{P}=\frac{-\sin t \Delta \beta}{\cos (\beta+\chi) \cos (\beta+\chi+t \Delta \beta)}
$$

Substıtutıng Equation (274) into (164) and lettıng $\Delta \beta \rightarrow 0$ gives
the expressions for the co-ordinates of the caustic

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{S}}=a\left(\cos \beta-\frac{1}{\mathrm{~T}} \cos (\beta+\alpha) \cos \alpha\right) \\
& \mathbf{y}_{\mathbf{S}}=a\left(\sin \beta-\frac{1}{\mathrm{~T}} \sin (\beta+\alpha) \cos \alpha\right)
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=a \sin \beta \quad X_{2}=a \sin (\beta+\Delta \beta) \\
& Y_{1}=a \cos \beta \quad \text { 27la. } \quad Y_{2}=a \cos (\beta+\Delta \beta) \quad \text { 271b. } \\
& T_{1}=\tan (\beta+\chi) \quad T_{2}=\tan (\beta+\Delta \beta+\chi+\Delta \chi)
\end{aligned}
$$

Figure 82a. A quasi-ellıptıcal caustıc.

Flgure 82b. A quasi-hyperbolic caustic.
and finally expressing Equations (275) in polar co-ordinates using Equation (l70a) gaves

$$
\begin{aligned}
R^{2} & =x_{s}^{2}+y_{s}^{2} \\
& =a^{2}\left(1+\left(\frac{1-2 t}{t^{2}}\right) \cos ^{2} x\right)
\end{aligned}
$$

When $t=l(a=b)$ Equation (276) reduces to the caustic equation for rays propagating in a circular waveguide as given by Equation (175). Expanding the term $\left(\frac{1-2 t}{t^{2}}\right)$ using Equation (272) gives

$$
\left(\frac{1-2 t}{t^{2}}\right)=\frac{-\left(1+\frac{h}{\chi} \sin 2 \beta\right)}{\left(1+\frac{h}{x} \sin 2 \beta+\frac{h^{2}}{4 \chi^{2}} \sin ^{2} 2 \beta\right.}
$$

and neglecting the last term of the denominator which will be small compared to the first two terms Equation (277) reduces to -1 which on substitutıon into Equatıon (276) again gıves Equatıon (175).

The equation for the caustic shown in Figure $80 b$ is obtained by substituting for χ in Equation (175) using Equation (268) assuming that $\sigma>1$ which ensures positive X for all β. Assuming also that X is small so that $\sin x \simeq x$ the equation for the caustic for $\sigma>1$ becomes

$$
R^{2}=a^{2} h\left(\sigma^{2}-\cos ^{2} \beta\right)
$$

The maximum and manimum values of R, shown in Figure 82a as $a_{e c}, b_{e c}$ respectively are given by the following expressions

$$
\begin{array}{ll}
\hat{a}_{e c}=a \sigma \sqrt{h} & \left(\beta=\frac{\pi}{2}\right) \\
b_{e c}=a \sqrt{h}(2-1) & (\beta=0)
\end{array}
$$

Figure 83. Photographs of computer simulations of rays reflected by an ellıptıcal reflector with $a=1.05, b=1.0$.

If Equation (278) is assumed is assumed to approximately represent an ellipse for $\sigma>1$ then the quası-hyperbolıc figure given by Equatıon (278) for $\sigma<1$ may be assumed to be hyperbolic as shown in Flgure 82b. The constants of this hyperbola $a_{h c}, b_{h c}$ are given by

$$
\begin{array}{ll}
a_{h c}=a \sigma \sqrt{\mathrm{~h}} & \left(\beta=\frac{\pi}{2}\right) \\
b_{h c}=a \sqrt{h}\left(1-\sigma^{2}\right) & \left(\beta=\cos ^{-1} \sigma\right)
\end{array}
$$

The computer simulated caustacs for the skew plane rays with σ Just above and Just below unity are shown in Figures 83a, 83b respectively. Assuming $\sigma \simeq 1$ in Equations (279a) and (280a) then

$$
\mathrm{w}=2 \mathrm{a}_{\mathrm{eh}}=2 \mathrm{a}_{\mathrm{hc}}
$$

where w is the cut-off width of the ellipse and is related to the difference between the vertex radii of the ellıpse according to the expression

$$
\Delta=\frac{w^{2}}{8 a}
$$

As a numerical example consider the caustic (the edge of the black hole) at the centre of the wavegurde cross section shown in Figure $5 e$ to be that due to skew plane rays with $\sigma>1, w \simeq 4.5 \mu$ and $a=23 \mu$ to give $\Delta \sim .1 \mu$. If the mınımum measurable value for w is 1μ in a 50μ core diameter wavegulde, the corresponding value for Δ is $.005 \mu$ which $2 s .02 \%$ of the radius.

This order of sensıtıvity to varıations in the waveguide geometry Justifles the comments made in the introduction to this chapter, that the waveguides used for the experiments exhibit asymmetry, since it is unlikely that they are manufactured within a tolerance of . 005μ.

Figure 84. A single ray of a plane wave incident on the entrance aperture of an elliptic cross section waveguade.

Consıder a plane wave incıdent upon the entrance aperture of an elliptic cross sectıon waveguide at angles θ_{0}, α, as shown in Figure 84. The longıtudinal plane of the waveguide selected to define the azimuthal angle α coincides with the major axıs.

The skew planes illumınated by this plane wave are identıfied by their characterıstic angles χ_{0}, β_{0} in the entrance aperture of the waveguide as shown in Figure 84. Substitution of X_{o}, β_{o} into Equation (268) w 111 give the value of o for each skew plane, as

$$
\begin{equation*}
\sigma=\sqrt{\frac{x_{o}^{2}}{h}+\cos ^{2} \beta_{o}} \tag{283.}
\end{equation*}
$$

Skew planes with $\sigma<1$ will be called trapped skew planes since they oscillate about the minor axis of the ellıpse to produce the quasihyperbolic caustics. Skew planes with $\sigma>1$ will be called non trapping skew planes.

In Figure 84, X_{0}, β_{0} are related by the expression

$$
x_{0}=\alpha-\beta_{0}
$$

and the relation between χ_{0} and β_{0} for trapped skew planes is found by substituting $\sigma<1$ into Equation (283) to give

$$
x_{0}<\left|\sqrt{h} \sin \beta_{0}\right|
$$

Substituting for X_{0} in Equation (285) using the right hand side of Equation (284), gives the range of β_{0} corresponding to trapped skew planes as

$$
\beta_{0}=\alpha \pm \sqrt{n} \sin \beta_{0}
$$

and the corresponding values for χ_{o} are obtained from Equation (284) and are

$$
x_{0}=0 \quad \text { when } \quad \beta_{0}=\alpha
$$

$$
x_{0}=\overline{+} \sqrt{h} \sin \beta_{0} \quad \text { when } \quad \beta_{0}=\alpha \pm \sqrt{h} \sin \beta_{0}
$$

Substituting for X_{0}, β_{0} in Equation (283) using Equations (287) and (288) glves the range of σ in terms of the azamuth angle of the incldent plane wave as

$$
\cos \alpha<\sigma<1 \quad\left(0<\chi_{0}<\sqrt{\mathrm{h}} \sin \beta_{0}\right)
$$

The gradient of the asymptote to the quası-hyperbolic caustic, denoted in Figure $82 b$ as $\beta_{c o}$ is given by

$$
\tan \beta_{c o}=\frac{b_{h c}}{a_{h c}}=\frac{\sqrt{l}-\sigma^{2}}{\sigma}
$$

which on substitution for σ from Equation (289) gives the range of the cut-off angle $\beta_{c o}$

$$
0 \leqslant \beta_{c o} \leqslant \alpha \quad\left(\sqrt{h} \sin \beta_{0}>{x_{0}}_{0}>0\right)
$$

When $\alpha=0$, Equation (289) gives $\sigma=1$ indıcating that no trapped skew planes ($\sigma<1$) are illumınated by a plane wave at this azimuth angle of incidence.

The relation between χ_{0} and β_{o} for non trapped skew planes is found by substituting $\sigma>1$ into Equation (283) to give

$$
x_{0}>\left|\sqrt{h} \sin \beta_{0}\right|
$$

and the initial positions of these skew planes are glven by Equation (284) as

$$
\beta_{0}=\alpha \pm \chi_{0}
$$

The slgnificant difference between the trapped and non trapped skew plane dependence upon the azimuth angle of ancidence α, 1 s that

$\alpha=0$

$m=1$
$m=3$

$m=2$

$m=4$
$\alpha=\pi / 2$
Figure 85. Photographs of computer simulation of rays reflected by an elliptical reflector, $\mathrm{a}=1.05, \mathrm{~b}=1.0$.
only certain trapped skew planes are illuminated at each value of α (Equation (289)) whereas the nontrapped skew planes are illuminated independently of α. The α dependence of the nontrapped skew planes only appears in the expression for the inıtial position of the skew planes, Equation (293).

A mathematical description of the caustics produced by the incident plane wave as a function of the number of reflections is complicated by the transition from the quasi hyperbolic caustics for $\sigma<1$ to the quasi ellıptic caustics for $\sigma>1$. It has not been possible to produce a useful mathematical expression to describe this process and the following qualıtatıve description of the caustics is based upon the results of computer simulation of the multiple reflections of skew planes.

Figure 85 shows computer simulations of the caustics produced by skew planes reflected by an elliptical cross section reflector $(\mathrm{a}=1.05 \mathrm{~b}=1.0)$ for $\mathrm{m}=1$ to 4 and wath azımuthal angles of incidence $\alpha=0$ and $\frac{\pi}{2}$. Comparing these caustics with those for the carcular cross section reflector shown in Figure 57 , suggests that the low m caustics are insensitıve to varıations in the cross sectional geometry of the reflector.

However, as m is increased the effects of the ellıptlcity and the dependence upon the azımuthal angle of incldence become apparent. In Figure 86 the caustacs for $m=6,7,10,11$ are illustrated for the elliptical cross section reflector with $a=0, \frac{\pi}{2}$.

[^2]
$\alpha=0$

$m=4$

$\mathrm{m}=8$
$\alpha=/ 2$

$\mathrm{m}=5$

$m=9$

Figure 86. Photographs of computer simulation of rays reflected by an elliptical reflector, $\mathrm{a}=1.05, \mathrm{~b}=1.0$.

Figure 87. A typıcal trapped skew plane caustic.

Figure 88. Photographs of computer simulations of rays reflected by an ellıptıcal reflector, $a=1.05, b=1.0$.
when $\alpha=0$ form what may be called quasi elliptıcal spırals which originate on the x axis at $x=a \sqrt{h}$, where this value is obtained from Equation (279a) by substıtuting $\sigma=1$. These spirals correspond to the non trapped skew planes, and also 'wind up' as m is uncreased.

Similar spırals are obtained for the elliptıcal reflector when $\alpha=\frac{\pi}{2}$ since nontrapped skew planes are excited independently of the value of α. The trapped skew planes excited when $\alpha=\frac{\pi}{2}$ form a caustic which oraginates on the y axis and follows a path of the form shown in Figure 87. This caustic termanates at the point of origin of the non trapped skew planes since both these conditions correspond to $\sigma=1$.

The cut off angle $\beta_{c o}$ shown in Figure 87 is reduced as m^{\prime} is increased untal in the limit of large $m, \beta_{c o}=0$ corresponding to the value of $\beta_{c o}$ given by Equation (290) when $\sigma=1$. The orıgin of the trapped skew plane caustic depends upon the azimuthal angle of incldence and for $\alpha \neq \frac{\pi}{2}$ also depends upon m. This is demonstrated in Figure 88 where the computer simulated caustics for $\alpha=\frac{3 \pi}{8}, \frac{\pi}{4}, \frac{\pi}{8}$ and $\mathrm{m}=6,10$ are given. When m is large the maximum angle of the caustic origin is given by the upper limit of Equation (291)

Part of the untrapped skew plane caustic.

Even reflection

number caustics.

Part of the trapped skew plane caustic.
Shadow region.

Figure 89. The transıtion from the quasi hyperbolic caustic to the quasi ellıptical caustic after a small number of reflections.

Figure 90. The transition caustic after a high number of reflections.

Figure 91.

Figure 93.

Figure 92.

Figure 94.

6.4.2 Experimental Results

A 5.75 mm length of fibre bunale was illuminated with white light at an axial angle of 10° to obtain the caustic shown in Figure 91. The caustic appears to be similar to that obtained by computer simulation shown in Figure 86 where $\alpha=\frac{\pi}{2}, m=8$. In figure $91, \mathrm{~m} \simeq 8$ and the effects of increasing m are shown in Figures 92 and 93 where the angles of incldence are 20° and 30° respectively. In Figure $92, \mathrm{~m} \simeq 20$ and although the caustic is still visible at the centre of the fibre, ats form is less distinct. In Figure 93 where $m \simeq 35$ the centre caustic is indistinct and this result yields no useful information about the behavıour of rays in ellıptic cross section waveguıdes after many reflections.

The behaviour of the caustıc as it changes from a trapped to an untrapped mode has a significant feature which was suggested by the observation of high intensity spots at positions close to the centre of fibres as shown in Figure 94. Figure 94 was obtalned from a 40 cm length of fibre illuminated with white light at an axial angle of 20° givang $m=170$. As the caustıc changes from the trapped quası-hyperbolıc form to the untrapped quası-elliptical form, the caustic turns to form a tangent to the major axis of the ellipse as shown in Figure 89. In so dolng a shadow region $1 s$ formed whıch $2 s$ illustrated experımentally 2n Figure 91. As the number of reflections is increased the shadow region is reduced in dimensions until the caustic turns through an angle of 270° at a single point adjacent to the major axıs of the ellipse. Because of the diffraction which occurs at a caustic this single turning point appears as a bright spot of light and may be considered as the focal point of skew rays with $\sigma \simeq$ l. Its position corresponds to a_{ec} or a_{hc} along the major axis of the ellıpse, and for rays with $+\phi$ appears in the lst and 3 rd quadrants for alternate reflections, and $1 n$ the $2 n d$ and 4 th quadrants for rays launched wath $-\phi$. In the experımental result shown
in Figure 94, spots appear in the 2nd and 4th quadrants simultaneously because the divergence of the rays after 170 reflections results in numerous components wath adjacent reflection numbers.

Further experimental examples of the trapped quasi hyperbolic caustics are shown in Figures 5 and 7. In each of these photographs the form of the caustic is dependent upon the azimuthal angle of incldence and this $1 s$ a demonstration of the range of trapped skew planes excited by plane waves ıncıdent at partıcular azımuthal angles. (Equations 287, 288). In particular when $\alpha \simeq 270.0$ as in Figure 5e, no quasi hyperbolic caustics are in evidence, excepting the bright spots of the focal points of skew planes wath $\sigma \simeq 1$.

There is also a shadow region in evidence in Figure 5e, which is not suggested by the theory of the untrapped caustics, since all the untrapped skew planes are excited at all azımuthal angles of incidence. It may be that the cross section of the waveguide is not exactly elliptical and that the skew planes with $\sigma \simeq 1$ suffer a misalignment at points within the fibres length. Alternatively, the bending of the fibre bundle during the experiment may cause the centre shadow effect. These two possibilities are considered in the following sections and Chapter 7.

Figure 95. The characterisation of rays in an optical system.

Fıgure 96. A thin lens system.

6.5 Representation of the Elliptical Waveguide as a Periodic

Sequence of Lenses.
Another author ${ }^{(20)}$ has noted the similarity between the theory of resonating cavities and the theory of propagation in elliptical waveguides. He adapted the resonator theory to predict the waveguide modes observed when an elliptical dielectric waveguide $2 s$ ıllumnnated by a monochromatic source at specific azimuthal angles of incidence.

In this section the trapping condition for skew plane rays with X is derived from the geometrical theory of resonating cavities, where the multiple reflection of a light ray is represented by a ray passing through a periodic lens sequence.

The path of a ray through an optical system is characterised by its distance x from the optical axis and its slope x ' both measured at the input and output planes of the system. In Figure $95 \mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}$ represents the input quantities measured at plane l and x_{2}, x_{2}^{\prime} are the output quantities measured at plane 2 . When a ray has x_{1}, x_{2} small and Its slopes $x_{1}^{\prime}, x_{2}^{\prime}$, may be equated to the ar angles ($x_{1}^{\prime}=\operatorname{TAN}^{-1} x_{1}^{\prime}$) the
(31 Sec.4.9. rays are said to be confined to the paraxial region of the optical system.

The output quantities x_{2}, x_{2}^{\prime} of paraxial rays are linearly related to their input quantities and this relationship may be expressed in the following matrix form

$$
\left|\begin{array}{l}
x_{2} \\
x_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|\left|\begin{array}{c}
x_{1} \\
x_{1}^{\prime}
\end{array}\right|
$$

The values of the matrix $\left|\begin{array}{cc}\mathrm{AB}\end{array}\right|$, known as the ray transfer matrix, are given in reference (50) for various simple optical systems. The system of interest here is shown in Figure 96 and consists of a thin lens, focal length $⿷$ with the input plane a distance d from the output plane.

Figure 97.

Its ray transfer matrıx is gıven by reference (50) as

$$
\left|\begin{array}{cc}
1 & d \\
-\frac{l}{f} & 1-\frac{d}{f}
\end{array}\right|
$$

which gives the following equations for the output quantities

$$
\begin{aligned}
& x_{2}=x_{1}+d x_{1}^{\prime} \\
& x_{2}^{\prime}=x_{1}^{\prime}-\frac{x_{1}}{f}-\frac{d x_{1}^{\prime}}{f}
\end{aligned}
$$

A set of rays parallel $\left(x_{1}^{\prime}=0\right)$ to the optical axis at plane 1 with varlous values of x_{1} wlll have

$$
\begin{array}{ll}
x_{2}=x_{1} & 298 . \\
x_{2}^{\prime}=-\frac{x_{1}}{f} & 299 .
\end{array}
$$

at plane 2 to give the ray paths shown in Figure 96. The focal length of the system is clearly the distance from the output plane of the system at which a set of parallel input rays converges to a focus.

Consider a ray parallel to the axis of the optical system shown in Figure 97 where S is a section of a cylindrical reflector, radius a. The ray has an angle of incidence at the reflector of $\frac{\operatorname{TAN}^{-1} x_{2}^{\prime}}{2}$ and the reflected ray crosses the optical axis a distance -f from plane 2. From Figure 97.

$$
\begin{aligned}
& x_{2}^{\prime} \sim \frac{x_{2}}{(f-\Delta f)} \\
& \sin \left(\frac{\operatorname{TAN}^{-1} x_{2}^{\prime}}{2}\right)=\frac{x_{1}}{a}
\end{aligned}
$$

Figure 98. A perıodic lens sequence.

$$
\Delta f=a\left(1-\cos \left(\operatorname{TAN}^{-1} x_{2}^{\prime}\right)\right)
$$

$$
x_{1}=x_{2}
$$

Using the small angle approximations $(\sin \theta \sim \theta, \operatorname{TAN} \theta \sim \theta)$ and neglecting Δf then from Equations (300) and (303)

$$
f=\frac{x_{1}}{x_{2}^{\prime}}
$$

and from Equation (301) and (304)

$$
\mathrm{f}=\frac{\mathrm{a}}{2}
$$

It appears that rays within the paraxıal regions of the systems shown in Figures 96 and 97 will follow simılar paths if the -f of Figure 97 is replaced by $+f$.

The path of a paraxial ray making N reflections in an optical system consisting of concentric cylındrıcal reflectors, each of radius a, may therefore be represented by the path of a paraxial ray passing through N successive systems of the type shown in Figure 96 as shown in Figure 98.

The relationship between the input ray quantities x_{0}, x_{0}^{\prime} and the ray quantities x_{n}, x_{n}^{\prime} at the $n{ }^{\text {th }}$ plane $1 s$ gaven by

$$
\left|\begin{array}{c}
x_{n} \\
x_{n}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
A & B \\
c & D
\end{array}\right|^{n}\left|\begin{array}{c}
x_{0} \\
x_{0}^{\prime}
\end{array}\right|
$$

The standard textbook treatment of ray propagation in lens sequences suggests that if a beam of rays passirg through such a system is confined to within the paraxial regıon of the system axis, the periodic sequence

Figure 99. A section of the $m=20$ caustic shown in Figure 69, to illustrate the divergence of the rays which form this caustic.
is said to be stable and its matrix components satisfy the condition

$$
-1<\frac{1}{2}(A+D)<1
$$

Substatution of the relevant values of matrix 295 into Equation (307) gaves

$$
-1<\left(1-\frac{d}{2 f}\right)<1
$$

308.

which may be recast into the form

$$
\begin{equation*}
0<\left(1-\frac{d}{4 f}\right)<1 \tag{309.}
\end{equation*}
$$

The concentric reflector system $(d=2 a)$ gives

$$
\left(1-\frac{d}{4 \mathrm{f}}\right)=0
$$

sınce Equation (305) gıves $f=\frac{a}{2}$ for paraxıal rays and this suggests that all paraxial rays are stable in a concentric system. This is not so because the exact expression for f given by Equations (300) to (303) gives a value $f=\frac{a}{2}$ for $x_{1}=x_{1}^{\prime}=0$ only, all other values of x_{1} and x_{1} gave $f<\frac{a}{2}$.

If $f<\frac{a}{2}$ then

$$
\begin{equation*}
\left(1-\frac{d}{4 f}\right)<0 \tag{311.}
\end{equation*}
$$

and the system is unstable and the rays for which $\mathrm{f}<\frac{\mathrm{a}}{2}$ are not trapped and will rapidly diverge away from the system axis.

The divergence of rays with $X>0$ propagating in a concentric system 1 s also predicted by the reflection number dependent caustic given by Equations (170a-b). In Figure 99 a section of the caustic shown in Figure 59 (number of reflections $m=20$) is shown together with the paraxial sections of the reflecting surfaces. When m is large
(>10) the caustic equatıons may be replaced by the approximations given by Equations (175) and (176). Assuming that a ray is tangent to the caustic at its mad point (which is established by Equation (175)), the limıt of paraxıal trapped rays shown in Figure 99 as x_{n}^{\prime} will be given by

$$
\begin{equation*}
x_{n}^{\prime}=\operatorname{TAN} 2 m X \tag{312.}
\end{equation*}
$$

which clearly falls to zero as m is increased, for a fixed value of χ.

Consider now the case when the spacing d between the reflectors is reduced by an amount 2Δ so that

$$
a=2 a-2 \Delta
$$

To satısfy the stability condition the focal length of trapped rays must lie in the range

$$
\frac{a-\Delta}{2}<f<\frac{a}{2}
$$

The locıl of focus for a cylundrical reflector is gaven by the caustic Equations ($169 \mathrm{a}-\mathrm{b}$) with $\mathrm{m}=1$, and by reference to Figure 56 the focal length of the reflector will be glven by

$$
\begin{equation*}
f=a-y_{s} \tag{315.}
\end{equation*}
$$

which on substitution for Y_{s} using Equation (169b) becomes

$$
f=a\left(1-\frac{1}{2}(\cos 2 x \cos x)-\sin 2 x \sin x\right)
$$

After algebraic manipulation ard substitution for the double angles, Equation (316) becomes

$$
f=\frac{a}{2} \cos x-a \cos x \sin ^{2} x+2 a \sin ^{2} \frac{x}{2}
$$

The focal length of the outer trapped ray is gaven by the lower limit of Equation (314) which may be equated to the above expression for f to glve an expression for the lumt of trapped rays in terms of X. Taking Equation (317) as $\mathrm{f}=\frac{\mathrm{a}}{2} \cos \mathrm{X}$ (accurate to within 3% at $X=10^{\circ}$) and denoting the cut off value of X as X_{m} then

$$
\begin{equation*}
\frac{a}{2} \cos X_{m}=\frac{a-\Delta}{2} \tag{318.}
\end{equation*}
$$

Letting $a-\Delta=b$ where a, b correspond to the constants of the ellapse shown in Flgure 77 then from Equation (318)

$$
\sin ^{2} x_{m}=\frac{a^{2}}{b^{2}} h
$$

Although this expression shows agreement with Equation (267) (with $\sigma=1 \frac{a^{2}}{b^{2}} \simeq 1$) the paraxial lens sequence theory cannot tolerate the cut-off value of $x_{n}^{\prime}=\frac{\pi}{2}$ which is encountered in the analysis of ray propagation vetween elliptical reflectors given in Section 6.4.

This is demonstrated by calculating the cut-off angle x_{n}^{\prime} using the ragorous expression for f for the cylindrical reflector given by Equation (317). When $\frac{\Delta}{\mathrm{a}}=0.02$ Equation (319) gives $\mathrm{x}_{\mathrm{m}}=12^{\circ}$ corresponding to $x_{n}^{\prime}=\frac{\pi}{2}$, whereas the ragorous analysis gaves $X_{m} \sim 6^{\circ}$ to give a corresponding value for $x_{n}^{\prime}=25^{\circ}$ which lies within the paraxial region.

However, both theorys demonstrate that other skew rays of light as well as those whth $X=0$ are trapped when the spacang between the cylindrıcal reflectors is less than twice the radius of curvature. This feature of the lens sequence theory is used in the next section to investigate the possability of rays becoming trapped along low order stationary skew plane paths other than that considered here.

Figure 100. Ray paths in a circular cross section reflector.

Figure 101. The lens sequence representation of ray paths in a circular cross section reflector.

6.6 Hıgher Order Trapping Modes in Ellıptıcal Cross Section Waveguldes

It has been shown in the earlier sections of this chapter that the high intensity patterns which appear about a diameter of the waveguldes are accounted for by the ellıptıcity of the waveguides which causes a trapping condition to occur. The orıganal patterns described in Chapter 1 also exhıbıted variations of intensaty about other stationary skew plane paths of a cylindrıcal waveguide.

In this section the patterns which appear in positions corresponding to the $x=30^{\circ}$ statıonary skew plane $(p=1, m=3$. Figure 49) wall be analysed under the assumption that the waveguide has an elliptical cross section as described in Section 6.4.

The approximation used in that section that $\sin X \simeq \chi, 1 s$ not acceptable for $\chi=30^{\circ}$ and it was also found by computer simulation that the β dependent change in X due to the offset centre of curvature of the ellipse (expressed by Equation (262)) was of the same order as that due to the variations in "radius" of the ellıpse (Equation (256)).

A ray analysis sımılar to that given in Section 6.4 would therefore appear to be complex for hıgher order skew planes. A visual examınation of the patterns suggests that sance little fine detail is in evadence the lens sequence analysis will provide sufficient information as to the condıtions for the appearance of the higher order skew ray patterns.

Consider first the application of the lens sequence theory to the $X=30^{\circ}$ statıonary skew ray whose path in a circular cross section waveguide is shown in Figure 100 together with the paths of two other skew rays. Ray A has $X>30^{\circ}$ and ray B has $X<30^{\circ}$. The corresponding sequence is shown in Figure 101 where the spacing d between the lenses

Figure 102. The origan shift for the derivation of the normalised focal length of a circular reflector.
is gaven by

$$
\mathrm{d}=2 \mathrm{a} \cos 30^{\circ}
$$

where a is the nominal radius of the waveguide core.

A normalised expression for the focal length of a skew ray reflected by a cylindrical reflector may be obtained from the caustic equations (169a-b). With reference to Figure 102 the origin of the co-ordinate system $X_{s} Y_{s}$ of the caustic equations is shıfted to $X_{1} Y_{1}$ and the axıs turned through an angle of -2χ to give new co-ordanates $x^{\prime} y^{\prime}$. By co-ordinate geometry

$$
\begin{aligned}
& x^{\prime}=\left(x_{s}-x_{1}\right) \cos 2 x-\left(y_{s}-y_{1}\right) \sin 2 \chi \\
& y^{\prime}=\left(y_{s}-y_{1}\right) \cos 2 x+\left(x_{s}-x_{1}\right) \sin 2 x
\end{aligned}
$$

Substituting for $X_{1} Y_{1}$ using Equation (166a) with $m=1$ and for x_{s}, y_{s} using Equation (169a-b) also with $m=1$ gives

$$
x^{\prime}=0
$$

$$
y^{\prime}=-\frac{a}{2} \cos x
$$

where y^{\prime} is now the focal length $f(X)$ of each skew ray measured along its own path.

The spacing d between the lens of Figure $1011 s$ given by Equation (320) as
$d=4 f(30)$
323.
and skew rays with $X>30^{\circ}$ show the same divergence away from the $x=30^{\circ}$ path as do the skew rays with $X>0^{\circ}$ away from the $X=0^{\circ}$ path since neither set of rays are able to satisfy the stability condition expressed by Equation (309). Unfortunately skew rays wath $x<30^{\circ}$,

Figure 103. Examples of stationary skew ray lens sequences.
have focal lengths which do satısfy thas stabllıty condition and should therefore be trapped within the paraxial region of the $\chi=30^{\circ}$ skew ray path, also dıverge away from this path.

This difficulty does not arise with the $X=0$ system of lenses since there are obviously no rays with $X<0^{\circ}$, and it wall be resolved by only including, in each lens sequence representation, rays with $\chi>X_{S}$ where X_{S} is the statıonary skew ray which forms the axis of the equavalent lens sequence.

The propagation of rays in a cylindrical waveguide may therefore be represented by their propagation through a series of lens sequences as shown in Figure 103, where the range of skew rays inıtially within each lens sequence, due to an incident plane wave, will depend upon the number of lens sequences chosen to represent the waveguide.

The values of X_{s} for varıous combinations of p, \bar{m} of equations (149), (150) are shown in Table 9 together with the range Δx of X in each lens sequence, where ΔX is given by

$$
\Delta x=X_{S}(p, \bar{m})-X_{S}(p, \bar{m}+l)
$$

The lens spacıng for all the lens sequences is glven by

$$
\begin{equation*}
d_{s}=4 f\left(x_{s}\right) \tag{325.}
\end{equation*}
$$

and as such the rays withan each system will diverge from their respective axes. This is the result expected for ray propagation in cylındrical waveguıdes.

If the cross section of the waveguide is ellıptical, then instead of the incident angle X of each ray remaining constant as in a circular cross section, X will now vary as a function of β. This will alter the values of X_{S} for each p, \bar{m} (other than $p=1, m=2$) and possibly place restrictions on the orientations of the closed figures.

M	$p=1$		$p=2$		$\mathrm{p}=3$		$p=4$	
	$x_{s}{ }^{\circ}$	Δx°	$\chi_{s}{ }^{\circ}$	Δx°	$\chi_{\text {s }}{ }^{\circ}$	Δx°	$x_{5}{ }^{\circ}$	$\Delta \chi^{\circ}$
2	0	30						
3	30	15						
4	45	9	o	18				
5	54	6	18	12				
6	60	4.3	30	9	0	12.8		
7	64.3	3.2	39	6	12.8	9.7		
8	67.5	2.5	45	5	22.5	7.5	-	10
9	70	2	50	4	30	6	10	8
10	72		54	3.3	36	4.9	18	6.5
11			57.3	2.7	40.9	4.1	24.5	5.5
12			60		45	3.5	30	4.6
13					48.5	3	34.6	4
14					51.5	2.5	38.6	3.4
15					54		42	3
16					54		45	3
17							48	2
18							50	2.1
19							52.1	1.9
20							54	

Table 9. Statıonary skew plane systems.

This is demonstrated by considerang the possible orientations of the $X_{S}=O(P=1, \bar{m}=2)$ closed fagure (straight line). The ray with $X_{s}=0$ must conncide with the normal to the reflecting surface at each reflection point and in the ellipse this is only possible when $\beta=0$ or $\frac{\pi}{2}$. The spacing d_{0} between the reflectors when $\beta=0$ 15

$$
a_{0}=2 a
$$

and the radius of curvature \bar{r}_{0} about thas axis is given by Equation (250) as

$$
\begin{equation*}
\bar{r}_{0}=\frac{b^{2}}{a} \tag{327.}
\end{equation*}
$$

The focal length f_{0} of the reflectors is given by Equation (305) by substıtuting \bar{r}_{0} in places of the radius a of the circle, to give

$$
f_{o}=\frac{b^{2}}{2 a}
$$

Substituting f_{o} and d_{o} anto the stability condıtion, Equation (309) gıves

$$
\left(1-\frac{a^{2}}{b^{2}}\right)<0
$$

since $a>b$, demonstrating that this is a non-stable system, in agreement with the results of the ragorous theory of Section 6.3.

A sımilar procedure for the axis at $\beta=\frac{\pi}{2}$ gives $d_{\pi / 2}=2 b$, $\bar{r}_{\pi / 2}=\frac{a^{2}}{b}$ to give a stability condition of

$$
\left(1-\frac{b^{2}}{a^{2}}\right)>0
$$

which corresponds to the trapping system descrıbed in Section 6.3.

Figure 104. The co-ordinates
of three arbıtrary
points on an ellıpse.

Figure l05a.

Figure 105b. The vertical and horızontal trıangu ray paths.

Figure 106. The lens sequence for the trıangular closed figure.

The possible orientations and stability of the $X_{s} \sim 30^{\circ}(p=1$, $m=3$) closed figures may be obtained using similar arguments. Consider the three polnts on the periphery of the ellapse shown in Figure 104 with co-ordinates $X_{1} Y_{1}, X_{2} Y_{2}, X_{3} Y_{3}$. The normals to the reflecting surface at these points have tangents $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ as shown. If the three points are jolned by rays to form a triangle, then the normals bisect the internal angles of the triangle. A well known theorem states that bisectors of the internal angles of a triangle intersect at a point which is the centre of the inscribed circle of the trıangle.

This theorem, together with the expressions describing the points of intersection of two lines, Equations (164a-b), are used in Appendix D to show that there are two possible orientations for each of two triangular closed figures within the ellipticel cross section.

The two closed figures for $p=1 \vec{m}=3$ are shown in Figure 105 and their varıables will be denoted by the subscrıpt h for horızontal (Figure 105a) and for vertical (Figure l05b). The second orientation of each triangle follows from the symmetry of the ellipse.

The lens sequence equivalent to a single trip round the triangular path is shown in Figure 106. This lens sequence may be represented by a single ray transfer matrix $\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|$ where

$$
\left|\begin{array}{cc}
A & B \\
C & D
\end{array}\right|=\left|\begin{array}{cc}
1 & d_{1} \\
\frac{1}{f\left(X_{1}\right)} & 1-\frac{d_{1}}{f\left(X_{1}\right)}
\end{array}\right|\left|\begin{array}{cc}
1 & d_{2} \\
-\frac{1}{f\left(X_{2}\right)} 1-\frac{d_{2}}{f\left(X_{2}\right)}
\end{array}\right|\left|\begin{array}{cc}
1 & d_{3} \\
-\frac{1}{f\left(X_{3}\right)} & 1-\frac{d_{3}}{f\left(X_{3}\right)}
\end{array}\right|
$$

The multiplication of the matrices on the right hand side of the Equation is simplified by noting that

$$
f\left(X_{1}\right)=f\left(X_{2}\right) \equiv f_{1} \quad 329 . \quad d_{2}=d_{3}
$$

and the subscripts may be simplified to give

$$
f\left(X_{3}\right) \equiv f_{3}
$$

The multiplication of the raght hand side of Equation (328)
gives

$$
\left|\begin{array}{ll}
A & B \\
C & D_{1}
\end{array}\right| \begin{array}{l|l}
1-\frac{3 d_{3}}{f_{1}}+\frac{d_{3}^{2}}{f_{1}^{2}} \\
-\frac{1}{f_{3}}-\frac{2}{f_{1}}+\frac{3 d_{3}}{f_{1} f_{3}}+\frac{d_{3}}{f_{1}^{2}}-\frac{d_{3}^{2}}{f_{1}^{2} f_{3}}
\end{array}\left|\begin{array}{l}
\left.1-\frac{3 d_{3}-\frac{2 d_{3}}{f_{1}}-\frac{d_{1}^{2}}{f_{1}}-\frac{d_{1}}{f_{1}}+\frac{d_{1}}{f_{1}}-\frac{d_{3}^{2}}{f_{1}}-\frac{d_{1}}{f_{3}}+\frac{3 d_{1} d_{3}}{f_{1} f_{3}}}{} \right\rvert\, \\
+\frac{d_{1} d_{3}}{f_{1}^{2}}+\frac{d_{3}^{2}}{f_{1} f_{3}}-\frac{d_{1} d_{3}^{2}}{f_{1}^{2} f_{3}}
\end{array}\right|
$$

The stabillty condition for rays in a sequence of lens systems represented by this matrıx $2 s$ given by Equation (307) as before and where
$\frac{1}{2}(A+D)=\left(1-\frac{\left(f_{1}+2 f_{3}\right)\left(2 d_{3}+d_{1}\right)-d_{3}\left(3 d_{1}+d_{3}\right)}{2 f_{1} f_{3}}+\frac{d_{3}\left(f_{3} d_{1}+f_{3} d_{3}-d_{1} d_{3}\right)}{2 f_{1}^{2} f_{3}}\right)$

The co-ordinates $X_{1} Y_{1}, X_{2} Y_{2}$ of each triangle may be found by using the property that the normal at the point of reflection is also the bisector of the total angle subtended by the ancıdent and reflected rays. If $X_{l v}$ is the incident angle of a ray at $X_{l v} Y_{l v}$ in Figure lo5bthen

$$
\begin{equation*}
\operatorname{TAN} x_{l v}=T_{1 v} \tag{333.}
\end{equation*}
$$

and

$$
\operatorname{TAN} 2 X_{l v}=\frac{Y_{l v}+b}{X_{l v}}
$$

Using the identity TAN $2 x=\frac{2 T A N x}{1-2 \operatorname{TAN}^{2} x}$ and substituting for T and x using Lquations (246), (240a) gıves

$$
\text { TAN } 2 X_{1 v}=\frac{b\left(Y_{1 v^{-b}}\right)}{a \sqrt{b^{2}-Y_{1 v}^{2}}} \quad \text { from Equation (334) }
$$

and

$$
\text { TAN } 2 \chi_{l v}=\frac{2 a Y_{l v} b\left(b^{2}-y_{l v}^{2}\right)}{\sqrt{b^{2}-y_{l v}^{2}}\left(b^{2}\left(b^{2}-Y_{l v}^{2}\right)-a^{2} Y_{l v}^{2}\right)} \text { from Equatıon }
$$

Equatıng the raght hand sides of Equations (335) and (336) gives a quadratic equation in $Y_{1 v}$ whose solution is

$$
Y_{l v}=\frac{-a^{2} b \pm a b^{2} \sqrt{\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-1}}{\left(a^{2}-b^{2}\right)}
$$

and $X_{l v}$ may be found by using Equation (240a).

The co-ordinates $X_{1 h} Y_{1 h}, X_{2 h} Y_{2 h}$ of the horızontal triangle may be found in a simılar manner by noting that

$$
\operatorname{TAN} X_{1 h}=\frac{1}{T_{1 h}}
$$

and

$$
\operatorname{TAN} 2 x_{1 h}=\frac{a+x_{1 h}}{Y_{1 h}}
$$

A quadratic equation is formed in terms of $X_{l h}$ and which has the solution

$$
\begin{equation*}
x_{l h}=\frac{b^{2} a \pm a^{2} b \sqrt{\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-1}}{\left(b^{2}-a^{2}\right)} \tag{340.}
\end{equation*}
$$

and $Y_{\text {lh }}$ may be found using Equation (240b).

Table 10. Stabılıty conditions for stationary skew plane systems.
Horızontal Triangle

e.	$f_{1} h$	$f_{3} h$	$d_{1} h$	$d_{3} h$	$\frac{1}{2}(A+D)$
1.00	.433	.433	1.732	1.732	-1.00
1.01	.434	.434	1.727	1.740	-1.002
1.02	.4349	.4350	1.723	1.749	-1.007
1.03	.4357	.4357	1.719	1.758	-1.020
1.05	.4360	.4364	1.7146	1.7666	-1.044
1.10	.440	.4374	1.7104	1.775	-1.0298

Vertical Triangle

e	$\mathrm{f}_{1} \mathrm{v}$	$f_{3} v$	$\mathrm{~d}_{1} v$	$\alpha_{3} v$	$\frac{1}{2}(\mathrm{~A}+\mathrm{D})$
1.00	.433	.433	1.732	1.732	-1.00
1.01	.434	.434	1.745	1.732	-1.003
1.02	.435	.435	1.757	1.732	-1.005
1.03	.436	.436	1.770	1.732	-1.006
1.04	.4365	.4367	1.7832	1.732	-1.0244
1.10	.4375	.4374	1.7958	1.7325	-1.03

Sensitivity of circular cross section

f	d	$\frac{1}{2}(\mathrm{~A}+\mathrm{D})$	
.433	1.732	-1.0	Stable
.432	1.732	-1.04	Unstable
.434	1.732	-0.959	Stable
.433	1.733	-1.010	Unstable
.433	1.731	-0.989	Stable
.433	1.730	0.979	Stable

The radil of curvature $\bar{r}(x)$ at each point of reflection are given by substitution of X into Equation (248) and the focal lengths obtained by substitution of $\bar{r}(x)$ for a in Equation (305). The lens spacings are given by

$$
\begin{array}{lll}
d_{l h}=2 Y_{l h} & 341 h . & d_{l v}=2 x_{l v} \\
d_{3 h}=\sqrt{Y_{l h}^{2}+\left(a+x_{l h}\right)^{2}} & 342 h . & d_{3 v}=\sqrt{x_{l v}^{2}+\left(b+Y_{l v}\right)^{2}} 342 v .
\end{array}
$$

Finally, the relevant values of f and d may be substituted into Equation (332) to gıve the stabılıty of each closed figure. Table 10 gives the values of parameters $d, f, \frac{b_{2}}{2}(A+D)$ for varıous values of e where $e=a^{2}$ and $b=1$.

When $\mathrm{e}=1$, corresponding to a carcular cross section waveguide, the normalized radius of curvature and lens spacing become

$$
\bar{r}_{1}=\bar{r}_{3}=1.0 \quad d_{1}=a_{3}=\sqrt{3}
$$

and the stabllıty is unity.

Table 10 demonstrates the sensıtıvity of the stability of this system to variations in the radius of curvature or lens spacing.

It is clear from the results shown in Table 10 that the $p=1$, $\bar{m}=3$ systems an an ellıpse are unstable, but on the basis of the sensıtivity of the $e=1$ system, small deviations of the waveguade cross section from the ellıptıcal cross section could produce a stable system. Such a stable system would confine rays of light about the stationary skew ray path and they will form regıons of relatıvely high antensity compared to neaghbouring less stable or unstable systems.

Figure 107.

Figure 109a.

Figure 109 c .

An example of a stable triangular system is shown in Figure 5c, where the orientation of the traangular pattern of high intensity corresponds approximately with the vertical triangle system. An example of an unstable triangular system is shown in Figure 5d, where shadow regions appear in the horızontal triangle positions. In Figure 109c, both the vertical and horizontal triangular systems appear unstable and form a hexagon shadow region. This is a result obtalned from a dıfferent fibre in the same bundle as the fabre used for Figure 5. The patterns, evident in Figures 107 to 109 were all obtaıned with white lıght illumınation of the bundle at an axıal angle of incıdence of 25°. Figures 107 and 108 are from two further fibres from the same bundle as that used for Figure 109 and are included here to illustrate the varıety of patterns obtained from fibres of the same length and under simılar ılluminating condıtions. In Figure 107, two trapped skew plane caustıcs are inclined at 60° to each other, suggesting that this fibre cross section has more than one trapping axis and is clearly not elliptical. In Figure 108, a stable system corresponding to the $p=2$, $m=2$, stationary skew plane (shown in Figure 49) appears as a pentagon figure of higher intensity than its immediate surroundings

The fabre patterns shown in Figures $109 \mathrm{a}, \mathrm{b}, \mathrm{c}$, show a complex frequency selectıve trapping system. In Figure 109a, $\alpha \simeq 0$ and the whate caustic shown in the microphotograph has a strong blue colouration. At approximately rıght angles to $1 t$ (that is in the position of the 'white' caustic shown in Figure 109c) there 15 a further caustic with red colouration. When $\alpha \simeq 90^{\circ}$ the two coloured caustics change position as shown in Figure 109c. (The Polarold photographic material used in this study is less sensitive to the red end of the spectrum than the blued. When $\alpha \simeq 50^{\circ}$ the pattern shown in Figure lo9b is obtained where the positions of the two coloured caustics now show as shadow regions. The appearances of these patterns are sensitive to azimuthal angles of
incidence to wathin 2°. The cross sectional geometry which could form this system has not been determined.

Abstract

6.7 Conclusions

In this chapter the caustics formed in elliptical cross section waveguides have been examined and features of the theory illustrated by experımental results. The main conclusion to be drawn from the experimental results is that the waveguides which from their $p=1, m=2$ caustics appear to be ellıptical in cross section also exhıbıt higher order caustlcs which are not found in the elliptlcal caustic theory. Thus the expected result that the waveguldes are nelther circular nor elliptical is confirmed and thas suggests that a different approach to the problem of relating the pattern formation observed within any given length of waveguade, to $2 t s$ cross sectional geometry is required. A possible alternative approach is described in Chapter 9.

However, those fibres which do exhıbıt features of the ellıptical cross section caustic theory may well have cross sectional geometries which differ from ellıptical by very small amounts 1 in which case it may be that for certain purposes a perfectly elliptical cross section may be assumed. A major problem encountered in the measurement of the cross sectional geometries using the pattern observation method,is that there is no other known method of measuring the wavegulde dimensions wathin the tolerances of dimensions which will produce the patterns. It is therefore not possible to assess the accuracy of the results by an independent measurement.

Because of the many unknown features of propagation of light in the dielectric waveguides used for the experıments, further experiments were conducted, as described in the following two chapters, in an attempt to obtain more information about other features of the waveguides which may influence the formation of the caustic patterns.

CHAPTER 7

7.1 Introduction

It appears from the results presented in Chapter 6 that the varıations of intensity observed in a waveguıde are prımarıly caused by its non-cırcular cross section. In particular the analysis of light propagating in an elliptıcal cross section waveguide has provided fairly conclusive evidence that the varıations of intensity are directly related to caustics produced within the waveguide cross section.

It is more difficult to interpret the varıations of the visıbility of the patterns from wavegurde to wavegurde in terms of wavegurde geometry, material homogeneity or other defects. In the analysis of the caustıcs formed in circular or elliptıcal cross section waveguides it was assumed that the waveguides were of constant cross section, straıght, and free of all defects, On this basıs, experımental results were obtained to demonstrate the agreement between the theoretacal positions of the caustics and the variations of intensity within the waveguides. It $1 s$ natural that waveguides exhıbıtıng varıations of intensity which show the clearest agreement with the theoretical caustic positions should be presented.

However, this does not mean that the assumptions used in the caustic analysis are applicable to the waveguides used to demonstrate the theory. This can only be shown by examining the effects of these assumptions on the caustics and if it is found that relaxation of the assumptions causes observable changes in the caustic positions then these changes can be investıgated experımentally.

Numerous experıments were conducted in an attempt to detect such varıations in the visibilıty or the form of the patterns observed within a particular waveguide as the length of the waveguide was varied or as
the waveguide was bent. These experıments and the results are descrabed in this chapter and the behavıour of the skew rays when a wavegulde suffers a sharp bend is considered theoretically.

7.2 Length Dependent Varıations in Waveguide Characteristics

The optical waveguides used for the experiments may have any or all of the following defects.
a) Variations in the cross sectional geometry and dimensions of the waveguide core and/or claddıng.
b) Variations in the refractive index profile.
c) Randomly positıoned scatterıng centres (aır bubbles etc.)

The above waveguide defects are prımarıly introduced during manufacture and generally cannot be modifled afterwards. Two further parameters which may be experımentally varied within limıts are
d) Bends and twasts in the wavegurdes.

To analyse the effects of (a) - (d) above upon the visibility and form of the caustic patterns requires prıor knowledge of the distribution and magnitude of the defects and this information is not available. However, the following comments may assist in determining the possible effects of each kind of defect.

The factors which may cause defects (a) and (b) durang manufacture (temperature, tension, and speed of pulling) are likely to vary slowly with respect to the speed of pulling of the fibre. it would seem likely that the fibres will maintain their geometry and dimensions ovex lengths of at least 1 m when the pulling rate is typucally 1 metre per second.

If the scattering centres are caused by defects in the preforms then it is likely that they too will have a length dependent distribution where the distrabution will also vary slowly with respect to the pulling rate.

Information obtained from the manufacturers of the fibres revealed that although the nomanal loss of the fibres is quoted as $1 \mathrm{~dB} / \mathrm{m}$, certain fabres may have losses over short lengths ($\simeq \mathrm{lm}$) considerably less than this figure. No explanation for this was offered other than the statistical probabılıty that a few fibres will have losses . showing large variation from the mean.

These comments suggest that the number of fibres within a bundle which will exhıbit good contrast patterns may depend upon the length of the bundle, and the following experıment was conducted to test this proposal. A 4m length of fıbre bundle was cut into lengths of 2 m , lm, $0.5 \mathrm{~m}, 0.25 \mathrm{~m}$ and .125 m and each end of these bundles was embedded in resin, ground and polished as described in Chapter 2.

Using the experimental arrangement shown in Figure 20 each bundle was illuminated with plane waves from a white lıght source. The number of fibres within each bundle exhibıtıng good contrast, poor contrast or no patterns were counted and the results are shown in Table 11.

Fibre length (m)	Number of fibres wath		
	good contrast patterns,	poor contrast patterns	patte
2	2	10	388
1	4	16	380
0.5	30	80	290
0.25	75	95	230
0.125	140	100	160

Table 11.

These results demonstrate a strong correlation between the length of the fibre bundles and the number of fibres wathin the bundles exhibiting good contrast patterns.

To investigate further the length dependence of the contrast of the patterns of a single fibre the following experıment was conducted. A lm length of a single fıbre which exhibıted a poor contrast pattern was shortened in 1 cm steps down to a length of 0.25 m . There was a gradual improvement in the contrast of the patterns as the length of the fibre was reduced although at a length of 0.25 m the patterns were stıll of relatively poor contrast. Similar tests were performed on flve other single fibres and simılar gradual changes in pattern contrast were observed.

Considerable care was taken to ensure that all the end terminations of the single fabres were of comparable quallty sance it was found that a poor end termination reduced the visibillty of the patterns.

These subjective tests yield results which only permit tentative conclusions to be drawn about the length dependence of the contrast of the patterns. It would appear that there are no rapid length dependent changes in the wavegulde geometry since no variations in the form of the patterns were observed as the length of the fibres were changed. The results of the tests reveal no information as to the source of the variations in the contrast of the patterns although it is possible that the degradation of the contrast of the patterns is related to random scattering of light within the waveguide.

To investigate this possibilıty an alternative measurement of the scattering of lıght within a waveguide is required. Other experımenters have measured the axıal angle dependent distrıbution of the radiated cone of llght and have attempted to relate this function to the length

Fibres.
Figure 110. A typıcal arrangement for
Figure 112. The experimental the measurement of the radiation field of fıbres. arrangement for measurement of T coefficients of

Figure 111. The diagramatic representation of the heterodyne scanning system.
of the waveguide and its temporal dispersion. It is proposed to use a similar measurement to indicate the magnitude of the scattering and to relate the results to the contrast of the patterns.

Although the equipment for these experiments was designed and built, insufficlent tıme prevented the productıon of results. However, because of ats novel design, the test equipment and its proposed mode of operation are described in the next section.

7.3 Heterodyne Scanning System

A typical experımental arrangement for measurıng the angular distribution of radiation from a single fibre or fibre bundle is shown in Figure llo. The fibres are illuminated by plane waves from a white light or laser source and their radiation field is scanned with a photomultiplier to measure the angular distribution of radiated light for each input angle. The photomultiplier provides sufficient gain to give good angular resolution of the radiated field of the waveguide.

Since no photomultıplier was avallable, a heterodyne detection system was proposed, firstly to increase the gain of the detection system and secondly to provide phase information for use in later experıments. The system designed and constructed is shown in diagramatic form in Figure 111.

A laser beam is divaded by the partially silvered mırror Xl and the transmitted beam forms a reference beam which passes to the two photodıodes vıa the sılvered mirrors Rl, R2, R4 and the partıally sılvered mirrors R3, R6 and R10. The laser beam reflected from marror Xl is phase modulated by reflection from the silvered mirror X 2 which 1 s attached to the cone of a loudspeaker. This modulated beam passes
through the transmıtter arm via sılvered mirrors $X 3$ and $X 4$ and $1 s$ split by the partially silvered mirror X 5 . The reflected beam from mirror X 5 is passed to photodiode D2 via the silvered mirrors $\mathrm{X} 7, \mathrm{X} 8$, R7, R5 and the partally salvered mirror R6. The transmıtted beam from marror $X 5$ illumnates the waveguide entrance aperture vaa silvered marror $X 6$ and the radiation faeld of the waveguide $1 s$ detected by photodiode Dl via the partally silvered mırror Rlo. To alıgn the system the waveguade may be replaced by sılvered mirrors $\mathrm{X} 9, \mathrm{X} 10, \mathrm{R} 8, \mathrm{R} 9$ to form a path sımılar to that of the reflected beam from mırror X 5 to photodiode D2.

Marrors X 3 to X 6 (and XlO) are mounted on the swivellang transmitter arm and mirrors R2 to R6 (and R9) and the two photodiodes are mounted on the swivelling recelver arm. The two arms are rotated by stepper motors via worm drıves and the position of each arm is measured using a potentiometer. The sequence of movements of the two arms is automatically controlled such that the recelver arm makes a sweep of the waveguade radiation fleld for each position of the transmitter arm.

The two light beams incident upon photodiode $D l$ may be represented by their E field components $E_{R 1}, E_{W G}$ where $E_{R 1}$ represents the reference field and $E_{W G}$ represents the waveguide radiation field. If it is assumed that both of these fields have constant phase over the sensitive area of the photodiode, then the output of the photodiode wall be proportional to the incident intensıty I_{1} where from Equation (33)

$$
\begin{equation*}
I_{1}=\left({\overline{E_{R 1}}+E_{W G}}^{2}\right. \tag{343.}
\end{equation*}
$$

The E fields $E_{R l}, E_{W G}$ may be represented by

$$
\begin{aligned}
& E_{R 1}=A \cos \omega t \\
& E_{W G}=B \cos (\omega t+\phi(t)+\gamma(t)+\alpha)
\end{aligned}
$$

$$
344
$$

where A, B are the amplitudes of the fields, ωt is the time dependence of the optical carrıer, $\phi(t)$ is the phase modulation due to the movement of mirror $X 2$ and $\gamma(t)$ is a phase shıft due to mechanical vibrations of the test rıg. The term α represents the phase shift introduced by the waveguide.

Substıtuting equatıons (344), (345) ınto (343) gıves

$$
I_{1}=\overline{A^{2} \cos ^{2}} \omega t+\overline{B^{2} \cos ^{2}(\omega t+\phi(t)+\gamma(t)+\alpha)}
$$

$$
+\overline{A B \cos (2 \omega t+\phi(t)+\gamma(t)+\alpha)}+\overline{A B \cos (\phi(t)+\gamma(t)+\alpha)}
$$

The first three terms of Equation (346) vary at or above the optical carrier frequency $\frac{\omega}{2 \pi}$ and their time average will give a $D C$ term in the output of the photodiode. The amplatude $A B$ of the fourth term is the required amplitude B of the radiation field multiplied by the amplitude A of the reference field, the latter term forming the gain factor achleved by heterodyne detection. A detalled study of the system would consider the allgnment requirements of the two beams to achleve the constant phase requirement over the sensitive area of the photodetector as well as optimising the ratio of the amplitudes of the two beams by varying the silverıng of the mirrors to give the maximum signal amplıtude.

This last requirement may be calculated for the output of the second photodiode if it is assumed that the shape of the beams are unaltered by the multiple reflection process and any divergence of the beams is neglected. Denoting the amplitude of the electric field of the orıginal laser beam as D and the transmission and reflection coefficients of the partıally silvered mırrors as $T(), R()$, respectively then the amplitude C of the modulated reference beam at
photodiode D2 1 s given by

$$
C=D(R(X 1) \cdot R(X 5) \cdot T(R 6))
$$

where it is assumed that the silvered mirrors have $R=1.0$. Denoting the amplıtude of the reference beam at photodiode D2 as E then

$$
E=D(T(X 1) \cdot R(R 3) \cdot R(R 6))
$$

and the amplitude of the envelope at the output of the photodiode will be proportional to CE where

$$
C E=D^{2} \cdot T R(X 1) \cdot T R(R 6) \cdot R(X 5) \cdot R(R 3)
$$

The products of the coefficients for mirros X1 and R6 are maximised when $T=R=0.5$ sunce

```
                                    \(T+R=1.0\)
then \(T R=T(1-T)\)
and
    \(\frac{d(T R)}{d T}=1-2 T\)
    Maxımum of \(T R\) occurs when \(\frac{d(T R)}{d T}=0\) so that
    \((1-2 T)=0\)
and
        \(T=0.5\)
```

To assist in the inıtial alignment of the system all the partially sllvered mirrors were manufactured with $T=R=0.5$ so that when the mirrors Xl0, $\mathrm{X9} 9 \mathrm{R} 8, \mathrm{R} 9$ were used in place of a wavegurde, the amplitudes of the envelopes in the outputs of the two photodiodes are equal.

However, since

$$
A B=F \cdot D^{2} \cdot T R(X 1) \cdot T R(R 10) T(X 5) T(R 3)
$$

where F represents the reduction in amplitude due to propagation in a waveguide ($F=1$ during alıgnment with mirrors) some compensation for $F \ll 1$ may be obtalned by making $T>R$ for marrors $X 5$ and $R 3$.

The mirrors were manufactured by evaporation of alumanıum onto glass microscope cover slides and the R and T coefficients were monitored during deposition using the arrangement shown in Figure 112.

The reason for the phase modulation provided by the loudspeaker becomes apparent when the form of the output gaven by Equation (346) is considered in the absence of the $\phi(t)$ term. The DC contribution of the first three terms wall be as before but the amplitude of the fourth term will now vary with time as $\gamma(t)$ varıes. The random nature of $\gamma(t)$ (unless the whole system is mounted on a vibration free table) would require an unacceptably long time averaging period to obtain an amplitude measurement and the envisaged motion of the recesver swivel arm during measurement would be intolerable. By introducing a time varying phase factor whose perlod wall generally be very much shorter than that of the vibration function $\gamma(t)$, a measurement of the amplitude of the envelope of $\phi(t)$ may be made over a few cycles of $\phi(t)$ during which period $\gamma(t)$ will only change the instantaneous phase of the carrıer.

The E fields incident upon the photodıode $D 2$ may be represented by

$$
\begin{align*}
& E_{R 2}=E \cos (\omega t+\beta+\gamma(t)) \tag{351.}\\
& E_{m R}=C \cos (\omega t+\phi(t)+\delta) \tag{352.}
\end{align*}
$$

where $E_{R 2}$ is the E field of the reference beam and $E_{m R}$ is the E fleld

Figure ll3a. The transmitter arm assembly.

Figure 113 b . The receiver arm assembly.

Figure 114. Printed circuit boards and control panel for the heterodyne scanning rig.
(Also the sync extractor and line marker)
of the modulated reference beam. The phase shifts β and δ are arbitrary and assumed to be constant. The output of the photodiode D2 will be proportional to the incldent intensity I_{2} where

$$
\begin{equation*}
I_{2}=D C \operatorname{TERM}+C E \cos (\phi(t)+\gamma(t)+\beta+\delta) \tag{353.}
\end{equation*}
$$

Assuming that the vibration term $\gamma(t)$ is the same for both photodiodes, the phase shıft α may be extracted from Equation (346) by comparing the phase of the output from D1 wath that from D2.

Further experımental work is requared to find the varıation of the phase shıft α as the input or output light field is scanned, and also to ascertain the valıdıty of the assumptions about the vibration term $\gamma(\mathrm{t})$ and the phase shifts β and δ.

Photographs of the transmitter and receiver arms are shown in Figure 113. These two components were designed for use in conjunction with a stralght fabre mount winch is described in the next section. The printed circuit boards and control unit designed to drive and control the swivel arms are shown in Figure 114.

7.4 Straight Fibre Mounting
 Consideration was gaven to the problem of mounting a length of fibre in such a manner that its orientation in space could be controlled and measured.

The basic problem is illustrated in Figure 115 where the position of a fibre within a volume will be given by a set of $X Y$ co-ordinate values taken at antervals along the Z axis. The minımum size of the measuremrnt intervals is determined by the rate of change of the

Figure 115. The allocation of space for mounting fibres.

Fibre.

Figure 116. The experimental arrangements for measuring the deflection of self
loaded fibres.

1 (cms)	3.3	2.9	2.7	2.5	2.3	2.2
$f(\mu)$	930	550	340	250	50	50

Table 12. The deflections of self loaded fibres.
position of the fibre within the $X Y$ plane as a function of Z, such that

$$
\frac{\partial(X)}{\partial Z} \text { or } \frac{\partial(Y)}{\partial Z}<\text { the required resolution of position. }
$$

In practical terms the measurement of the position of the fibre in space will require the use of a travelling macroscope whose optical axis may be either parallel to the X axis for measurements of displacement in the Y durection or parallel to the Y axis for measuring x directıon dısplacements. The short working dıstances of the large magnification microscope objectives required for such measurements means that the unshaded region of the plane $X Y$ shown in Figure 115 would be required for access to the fibre by the microscope. This leaves only the shaded region in which to provide a supporting structure which will also permit adjustment of the fibre position to wathin the required resolution.

The high tensile strength (Ref 61) of glass fibres suggests that It may be possible to support a fibre at discrete intervals along its length and still maintain the deflection of the fabre due to ats own welght within the required tolerance in position. To measure the deflection of a fibre due to $1 t s$ own weight the experımental arrangement shown in Fagure 116 was used. The deflection f of the fibre was measured for each length ℓ of overhangang fibre to give the results shown in Table 12.

A double fulcrum expermment based upon the above results suggested that the fibre position could be malntained within its own diameter by supporting the fibre at discrete intervals along its length, if the intervals dad not exceed 4 cms for the fıbre under test.

Figure 117. The straight fibre mounting system.

Figure 118. Detail of one of the supports of the straight fibre mounting system.

Figure 119. The travelling microscope.

Figure 120. The heterodyne scanning system in position on the straight fibre mount.

The fibre supporting device which was subsequently designed and built is shown in Figure 117 and the detail of one of the supports is shown in Figure 118. The fibre is passed through the holes in the plates at the end of each support rod, although a better method would be to etch a slot in each plate to avold damaging the fibre end during the threading process.

A travelling macroscope was built for use with the straight fibre mount and this apparatus is shown in Figure 119. The scannang equipment and/or the mıcroscope system were also desugned to fit onto the straight fibre mount and these are shown in position in Figure 120.

7.5.1 Propagatıon of Skew Rays in Circular Cross Section Waveguides wıth Large Radius Bends.

It $2 s$ convenient to define the radus R of a bend in a waveguide as

$$
R=q a
$$

where a us the radıus of the wavegulde core and q is an arbitrary number >100 for large radıus bends.

A section of a waveguide with a constant radius bend is shown in Fagure 121 where planes 1 and 2 are separated by the dustance ℓ shown, where ℓ is the distance between adjacent points of reflection of ameridıonal ray propagating in a stralght waveguide and $1 s$ given by

$$
\ell=\frac{2 a}{\tan \theta_{1}}
$$

The axıal angle of the merıdional ray $15 \theta_{1}$. Plane 2 is rotated by an angle ε with respect to plane 1 and the projection of the centre of the waveguide in plane 2 onto plane 1 is shafted by an amount Δ from its position in plane 1. Using the equatıon given by reference (49 Eq. 642)

Figure 122. The projection of cross sections of bent wavegurde onto a single cross section.
the relationshıp between R, ℓ and $\Delta 1 s$ given by

$$
\mathrm{R}=\frac{\Delta}{2}+\frac{\ell^{2}}{2 \Delta}
$$

Equation (356) forms a quadratic equation in terms of Δ, the solutions of which are

$$
\begin{equation*}
\Delta=R\left(1 \pm\left(1-\frac{\ell^{2}}{R^{2}}\right)^{\frac{1}{2}}\right) \tag{357.}
\end{equation*}
$$

The sensable solution to Equation (357) is the negative solution which after substitution of Equations (354) and (355) and using the first two terms in the series expansion of

$$
\left(1-\frac{\ell^{2}}{R^{2}}\right)^{\frac{1}{2}}
$$

becomes

$$
\Delta=\frac{2 \mathrm{a}}{q \tan ^{2} \theta_{1}}
$$

Assuming $R \gg \ell$ the angle ε is given approxımately by

$$
\tan \varepsilon \simeq \frac{2}{q \tan \theta_{1}}
$$

If the waveguide cross section is assumed to be circular when 1t 15 projected onto plane 2^{\prime}, where plane $2^{\prime \prime}$ is parallel to plane 1, (See Figure 122) then the position of the walls of the waveguade will be displaced from their true position by a maximum of Δ^{\prime} where

$$
\Delta^{\prime} \simeq a(1-\cos \varepsilon)
$$

Figure $123 \mathrm{a}, \mathrm{b}$. The longatudinal section and the cross sections of a bent waveguide at the polnts of reflection of an arbitrary ray.

Substituting for $\cos \varepsilon$ using Equation (359) and assuming that $\sin \varepsilon \simeq \tan \varepsilon$ Equation (360) becomes

$$
\Delta^{\prime} \simeq \frac{2 \mathrm{a}}{\mathrm{q}^{2} \tan ^{2} \theta_{1}}
$$

Sunce Δ^{\prime} is a factor $\frac{l}{q}$ tumes smaller than Δ, it may be neglected.

In a rigorous analysis of a general ray propagating in a bent waveguide the varıables of interest would be the axial and azımuthal angles of incidence of the ray at each of its reflection points. The varıations in these angles will be a function of the inıtial position of the ray within the cross section (Reference 4), and the distance along the bent waveguide between adjacent reflections.

In the following simplified analysis, only the variations in the azımuthal angle of incidence wall be calculated using the assumption that reflections occur at equal distances down the wavegulde. This assumption results in a constant displacement Δ between the cross sections of the waveguide at adjacent reflection points and the varıatıons in azımuthal angles of incıdence may then be calculated by considering the path of rays in circular cross sections with centres dısplaced by Δ.

In Figures $123 a$ and $123 b$ the longitudinal and cross sections of an arbitrary ray propagating in a bent cylınder are shown. If a is the radius of the waveguide then the following relationshıps may be obtained from Figure 123b.

$$
\begin{align*}
& \sin x_{n}=\sin x_{n+1}+\frac{\Delta}{a} \sin \left(\beta_{n}-x_{n}\right) \\
& \sin x_{n+1}=\sin x_{n+2}+\frac{\Lambda}{a} \sin \left(x_{n}+2 x_{n+1}-\beta_{n}\right) \tag{363.}
\end{align*}
$$

$$
\begin{align*}
& \beta_{n+1}=\pi+\beta_{n}-x_{n}-x_{n+1} \\
& \beta_{n+2}=2 \pi+\beta_{n}-x_{n}-2 x_{n+1}-x_{n+2}
\end{align*}
$$

By cross substatution between Equations (362)-(363) and (364)-(365) the following equations are obtained, where x_{n}, x_{n+1}, x_{n+2} are all assumed to be small so that the sines may be replaced by the angles (in radıans).

$$
\begin{aligned}
& x_{n+2}=x_{n}-\frac{\Delta}{a}\left(\sin \left(\beta_{n}-x_{n}\right)-\sin \left(\beta_{n}-x_{n}-2 x_{n+1}\right)\right) \\
& \beta_{n+2}=2 \pi+\beta_{n}-4 x_{n}+\frac{\Delta}{a}\left(3 \sin \left(\beta_{n}-x_{n}\right)-\sin \left(\beta_{n}-3 x_{n}\right)\right)
\end{aligned}
$$

Equation (366) may be expanded and restated in the form of a difference equation

$$
\Delta x=x_{n}-x_{n+2}=\frac{2 \Delta}{a} \quad x_{n} \cos \left(\beta_{n}-2 x_{n}\right)
$$

Sımilarly Equatıon (367) gıves

$$
\begin{equation*}
\Delta \beta=\beta_{n} \quad \beta_{n+2}=4 X_{n}-\frac{2 \Delta}{a} \sin \beta_{n} \tag{369}
\end{equation*}
$$

It will be anstructıve to tabulate the corresponding difference equations for rays propagatıng in circles and ellıpses as dıscussed in Chapter 6, and to compare them with Equations (368) and (369) above.

	Δx	$\Delta \beta$
CIRCLE	0	$4 x_{n}$
ELLIPSE	$4 \gamma_{n}$	$4 \chi_{n}{ }^{-12 \gamma_{n}}$

Table 13.

In the above table it has been assumed that $\gamma_{n} \simeq \gamma_{n+1}$ where $\gamma_{n}=\frac{h}{2} \sin 2 \beta_{n}$. To detect the visible effects of a bend it is likely that the coefficlents $\frac{2 \Delta}{a} x, \frac{2 \Delta}{a}$ in the difference equations for offset circles wall be at least of the same order as the coefficients which cause visible effects in an elliptical cross section waveguıde.

Setting these two sets of coefficients equal gives for the ΔX difference equation

$$
\begin{equation*}
\mathrm{h}=\frac{\Delta}{\mathrm{a}} \mathrm{x}_{\mathrm{n}} \tag{370.}
\end{equation*}
$$

and for the $\Delta \beta$ difference equation

$$
3 h=\frac{\Delta}{a}
$$

Substatuting for Δ using Equation (358) gives

$$
h=\frac{2 x_{n}}{q \tan ^{2} \theta_{1}} \quad 372 a . \text { or } \quad 3 h=\frac{2}{q \tan ^{2} \theta_{1}}
$$

If θ_{1} is taken to be 18° so that $\tan ^{2} \theta_{1} \simeq 0.1$ and if $X_{n} \simeq 0.2$ it is found that the radius of bend R which gives coefficients of magnıtudes sımılar to those for an ellıptical deformation of the order of $2 \%(h=.04)$ is

$$
R=100 a
$$

As θ_{1} is reduced this bend radius will increase but the larger values of θ_{1} are of primary interest because they produce the most visıble ellıptical caustics in long lengths (> 10 cm.) of wavegurde.

Abstract

7.5.2 Experımental Results

The following observations were made in order to test the above propositions. A 40 cm . length of single fibre was ılluminated in such a manner as to produce a caustic of the type shown in Figure 5b . Care was taken to ensure that both ends of the fibre were securely fixed, and a bend was unserted about the middle of the length of fibre whilst observing the caustic.

When $\theta_{1} \simeq 18^{\circ}$ no changes were observed in the caustic until the radıus of the bend was of the order of $50 a$. A reduction of θ_{1} to 10° produced changes in the caustic when the radius of the bend was 200a . No attempt was made to analyse the precıse nature of the changes produced in the caustic by the introduction of the bends and so the changes observed are not described here.

7.6 Conclusions
 This chapter has outlined aspects of propagation in optical waveguades which requare further study.

It may be that if the vasıbilaty of the caustics observed within the waveguides could be related to the scattering which is occurring, the observation of the caustics could form a useful scattering measurement technıque. The simplicıty of the experımental arrangements required to view the caustics suggests that such a measurement technique may find application in production control environments.

The heterodyne scanning system clearly requires more experimental work before an assessment of its usefulness can be made. The straight fibre mountıng technıque may be of use for measuring the microbending which has been suggested may occur in optıcal waveguides (51).

Abstract

Theoretical studies have been made of the effects on signal propagation of some forms of mıcrobending but little experimental work has been reported on the measurement of microbending.

The behaviour of light an bent waveguides has been studied ${ }^{(53)}$ from the signal distortion aspect. A bend in a waveguide causes 'mode mixing', which may be a desirable feature in certain waveguade systems in order to mınımıse pulse distortion. Further study of the visıble effects of bends an waveguides may confirm the accuracy of the mathematical representatıons of light propagation in bent waveguides.

CHAPTER 8

8.1 Introduction

In his early work on optical waveguides Kapany ${ }^{(3)}$ introduces a waveguıde characterıstic term R where

$$
\begin{equation*}
\mathrm{R}=\frac{2 \pi \mathrm{a}}{\lambda}\left(\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{2}\right)^{\frac{1}{2}} \tag{373.}
\end{equation*}
$$

and R is a function of the physics and geometry of the wavegurde only. Its value indicates the maximum number of waveguıde modes which may propagate in the wavegulde.

In later work ${ }^{(54,55)}$ by other authors this term is called normalised frequency and is closely related to the arguments of the Bessel functions used to describe the modal fıeld dıstrıbutions.

In this chapter the waveguide characterıstic term is derived from consıderation of the frınge system formed by a skewplane which has undergone many reflections. This fringe system and that developed for the merıdıonal skew plane are shown to be similar to the waveguide mode patterns of the cladded dielectric waveguıde.

The trapped skew planes of an elliptical waveguide produce frange systems whach are shown to be simılar to the fringe systems found in certain resonant cavities.

The relationshıp between the visibility of caustics within optacal waveguldes and the spatalal coherence of the source $1 s$ examined and it is found (experimentally) that a spatially incoherent monochromatic source produces effects simılar to those produced by a polychromatic source.

The final topic to be considered in this thesis is the apparent increase in coherence observed within the waveguide when propagation occurs at high axial angles of incldence. The increase in coherence

Figure 124. The cross section of a waveguide showing the four skew planes which contribute to the light at point P.
ıs suggested by the experımental observation of well defined, multifrequency fringes when the waveguade is allumnated by whate light.

8.2 Interference Franges in Circular Dielectric Waveguides

It was shown in Chapter 5 that the light inltially contained within a single skew plane wıll, after many reflections, illuminate an annulus, ınner radıus a $\cos \phi$, outer radıus a. It was also shown that the ınner radius of the annulus represents the position of the caustic of the rays of light 1 llumnating the annulus. The diffraction pattern produced by the caustic of the rays forms concentric fringes in the cross section of the waveguide wath dimensions governed by the fringe factor F.

Consider the rays of light which may contribute to the disturbance at point P shown in Figure 124 , where P is a radial distance r from the centre of the waveguide and $(a \cos \phi)<r<a$. If a plane wave at an axial angle of incidence θ_{o} illumanates the entrance aperture of the waveguide then two skew planes are excited for each value of ϕ, the positive ϕ skew plane propagates in the anticlockwise dırection and that for $-\phi$ in the clockwise direction. Thus at point P there may be four rays of light, each tangent to the circle radius $a \cos \phi$, representing the contribution of the $\pm \phi$ skew planes to the disturbance at point P.

The two rays proceeding towards the circumference of the waveguide are inclined to each other in the cross sectional projection at an angle $2 \chi^{\prime}$ where

$$
\sin x^{\prime}=\frac{a \cos \phi}{r}
$$

The projection of the free space wavelength λ onto the cross sectional plane of the waveguide will give an equivalent wavelength λ^{\prime} where

$$
\lambda^{\prime}=\frac{\lambda}{n_{1} \sin \theta_{1}}
$$

Figure 125

TEM 00

TEM 10

Figure 126. Low order modes of a typical laser cavity.

Waveguide tringes

Figure 127. The relationship between waveguide modes and resonator cavity modes.
and

$$
\sin \theta_{1}=\frac{n_{o}}{n_{1}} \sin \theta_{0}
$$

376.

If the two rays are considered as plane waves at their point of intersection they will form an interference pattern simılar to that for the plane waves intersecting as shown in Figure 26. Following the derivatıons gaven in Chapter 3 the spacing t between franges will be given by Equation (43) by substitutang for λ ' from Equation (375) and for X^{\prime} from Equation (374) to give

$$
t=\frac{\lambda r}{2 \sin \theta_{1} a \cos \phi n_{1}}
$$

Since sımilar interference patterns wall be produced at all polnts around the circle, radius r,it will be assumed that a single contanuous frange system is formed where the total number of franges formed around the circle radius r wall be glven by L where

$$
L=\frac{2 \pi r}{t}
$$

which on substitution for t from Equation (377) gives

379.

Since L is now independent of the radius the same number of franges will be formed at all radil wathin the annulus. This suggerts that the combination of thas anterference pattern and that due to the caustac diffraction pattern will produce an interference pattern of the form shown in Figure 125.

The azimuthal and radial intensity distributions shown in Figure 125 may be denoted by $I \alpha$ and $I r$ respectively. Producing these intensity
varıations will be variations in electric field components which may be denoted as $\mathrm{E} \alpha$ and Er where

$$
I \alpha=\overline{E \alpha^{2}} \quad 380 a . \quad I r-\overline{E r^{2}} \quad 380 \mathrm{~b}
$$

The radial electric field Er wall be gaven by the Aıry function, Equation (197), with $v=r$ and its associated intensity function will be glven by Equation (199).

Wath prior knowledge of the form of the modal flelds obtained from a rıgorous analysis of dielectric waveguides, it is assumed that the azamuthal electrac field variations are of the form

$$
E \alpha=A \sin (P \alpha)
$$

where P is an integer.
The correspondang antensity function is given by

$$
I \alpha=\overline{E \alpha^{2}}=\overline{A^{2} \sin ^{2}(P \alpha)}
$$

and wall form a total of $2 P$ franges per revolution of α. Sance Equation (379) also represents the number of franges per revolution, P and L are related by the expression

$$
2 P=L
$$

P may be expressed in the form

$$
P=\frac{L}{2}=\frac{2 a \pi \sin \theta_{1} \cos \phi}{\lambda}
$$

and will have a maxımum value when $\cos \phi=1$ and $\theta_{1}=\theta_{1 c}$ where $\theta_{1 c}$ is the maxımum value of θ_{1} and is called the meridional critical angle.

Denoting the maximum value of P as $P_{\text {max }}$ setting $\cos \phi=1$ and using Equation (127) for ${ }^{1}{ }_{1 c}$ then

$$
\begin{equation*}
P_{\max }=\frac{2 a \pi}{\lambda}\left(n_{1}^{2}-n_{2}^{2}\right)^{\frac{3}{2}} \tag{385.}
\end{equation*}
$$

This value of P represents half the maxımum number of franges which may be formed at a radius $x=a \ln$ the waveguide, when the skew planes correspondıng to $\cos \phi=1$ are $1 l l u m i n a t e d$ at the maxımum axıal angle of incidence, $\theta_{1 c} \cdot P_{\max }$ and R (Equation (373) are clearly equivalent.

In Chapter 2 of Reference (2) Marcuse shows that a modal field of a cladded dielectric waveguide may be represented by the superposition of four plane waves travelling in directions simılar to those described above for a single skew plane ray. Further the description of the near fleld modal patterns given by Kapany (1) for the cladded dielectric waveguide results in patterns simılar to that shown in Figure (125). These two results suggest that the geometrical approach to the problem of findang the wavegulde modes of the cladded dıelectrıc waveguide may produce useful results.

When only meridional rays are excited $\left(\phi=\frac{\pi}{2}\right)$, there will be no azımuthal frınges produced, only radıal varıations in intensıty, a distribution which corresponds to the waveguide mode famly called HE 1 m .

A detailed attempt to derıve the wavegurde modes of the cladded drelectric waveguide using the geometrical approach would have to consider the effects of the following assumption which have been made in deriving the fringe patterns described earlier in this section.

In general there will be a phase shıft of field components on reflection at the core cladding interface. This phase shift will depend upon the polarısation of the incıdent flelds, and may produce finite values of field components on both sides of the interface. Having consldered the effects of these phase shifts on the fringe systems, the waveguade modes could be determined using the condition that a frange system belongang to a given mode would have to satısfy the boundary conditions at the core cladding interface and also have an integral number of frınges in the azımuthal and radial dırections. These conditions are exactly those described by Marcuse in his sımplified approach to the elgenvalue equation for the assymetric dielectric waveguide given in reference (2).

```
8.3 Interference Frınges in Elliptical Dielectric Waveguides
    In Section 8.2 1t was shown that interference franges are formed
parallel and normal to geometrıcal caustıcs, (radial and azımuthal
varıations of intensıty respectıvely). Sımılar frınges are observed
for the trapped skew plane ray caustics produced in an elliptical cross
section wavegulde.
```

The diffraction pattern of a trapped skew plane caustic has a fringe spacing determined by the frange factor as before and the fringes will be formed parallel to the caustic.

It was mentioned in Chapter 6 that the trapped skew planes were trapped within a form of resonant cavıty and it is therefore lıkely that the mode patterns formed in resonant cavities will be similar to the fringe systems observed wathan the waveguides.

The mode patterns formed in spherical reflector resonant cavıties have been extensıvely studıed $(56,57)$ typical low order mode patterns are shown in Figure 126. The relationshlp between the fringe
systems formed in spherical reflector resonant cavaties and those observed within a waveguıde ıs shown diagramatically in Figure 127. It appears from Figure 127 that the caustic fringe patterns correspond to the normally observed resonant cavity mode patterns. There $1 s$ a second set of frınges formed in spherical cavitıes as a result of the standing waves set up between the two reflectors. In the elliptical waveguide both the 'standing wave' and the 'mode pattern' fringe systems are visible as shown in Figure l33a.
> 8.4 Spatial Coherence and Caustic Visıbılity

> In Chapter 3 it was shown that the coherence of a source was measured by observing the contrast of interference franges formed by the superposition of light elther from different areas of the source (to measure spatial coherence) or from the same area of the source but with beams of light arrıving at different tımes (to measure temporal coherence).

In this section the influence of the propagation of light in a waveguide upon its coherence characterıstics will be brıefly examined. The analysis is based upon experımental observations of fringe contrast and caustic visibillty under varyang coherence illuminating conditions.

The majorıty of the $1 l l u s t r a t i o n s$ of caustics in this thesis were obtained using a white light source which as noted in Chapter 3 has the shortest coherence length of the sources used in this study. When the caustic fringe factor F is small, the different frequency components of the white light source will have maxima of intensity close to the geometrical caustic. These components wall add incoherently

Figure 128.

Figure 130a.

Figure 130c.

Figure 129.

Figure 130b.
to produce a region of white light of higher intensity than the surrounding region and which wall approximately correspond to the position of the geometrical caustıc. The remaining multifrequency frınges of the caustıc frınge pattern wıll have different spatal positions which, depending upon the frequency dependence of the fringe factor F, may overlap to produce no vasıble fringes, (uncoherent allumanation) or may produce white light fringes as shown in Figure 65 (coherent illumınation).

The caustics produced in circular cross section waveguides are all curcular and adjacent skew planes form adjacent caustics. The fringe patterns associated wath each skew plane ray caustic will be sımılar and since they are ammediately adjacent to their nelghbours the fringe patterns wall overlap and produce nominally 'uniform white illumination' across the cross section of the waveguide. The absence of interference frınges is the experımental result whıch leads to the statements made by Kapany and Burke referred to in Chapter 1.

If a laser source is used to illumınate the waveguıde with plane waves then apparently randomly positioned interference fringes are produced as shown for example in Figure 128 where $\theta_{0}=10^{\circ}$. The size of the fringes is inversely proportional to θ_{o} as demonstrated by comparing the size of the fringes shown in Figure 129 , where $\theta_{0}=20^{\circ}$ and the fringes shown in Figure 128. By careful inspection of these interference patterns it $1 s$ possible to observe incomplete concentric fringes simılar to the radial varıations of intensity described in Section 8.2 The spacıng of these concentric fringes is also inversely dependent upon θ_{0}.

It was found that the visibılity of these concentrıc fringes could be improved if the laser was moved so that θ_{0} was oscillated about ats mean value by $\approx \pm 2^{\circ}$. This had the effect of moving some of the
fringes very rapıdly about the cross section of the waveguide whach made them disappear, leaving complete concentrıc fringes visıble although of lesser contrast than with the laser stationary. The occurrence of this phenomenon indicates that the concentric fringes have a smaller dependence upon θ_{0} for their position than the remaining apparently randomly positioned fringes.

The fading of the fringes descrabed above may be interpreted as a reduction in coherence of the source, and the technique has certain simılarities with speckle pattern interferometry. In speckle pattern interferometry $(58,59)$ the wavelength of the source is changed so that the superposition of random speckle patterns will reveal varıations in surface geometry of the illumanated object. In these experiments the axial angle of incidence of the illumanation is varıed so that random frınges appear to be incoherent because of their rapidly changing position and so enhance the visıbılıty of the concentric fringes which move relatively slowly.

Another method of changing the coherence of a laser source was described in Chapter 3, where the spatial coherence of the laser was confined withın an area whose dımensions are determined by the relative positions of a rotating ground glass screen and the plane of observation. This varıable coherence arrangement, shown in Figure 19, was used to illuminate a 40 cm . length of fibre bundle and where the plane of observation is taken to be the entrance apertures of the fibres which are then a distance R from the laser polnt source.

When $R_{S} \ll R_{\text {(where }} R_{S}$ is the distance of the rotating ground glass screen from the laser point source) the interference pattern observed at the radiation end of the fibres was the same as that obtaned when the fibres were illuminated with a statıonary laser. However, as R_{S} approached R the fringes at the circumference of each fibre core
began to fade leaving a uniform ollumination at the wavelength of the laser light (red light for the He-Ne laser used here). This effect moved progressively towards the centre of each fibre until the rotating ground glass screen was within 1 mm of the entrance apertures of the fibres. The interference frınges obtained under these conditions are shown in Figure $130 a$ and may be compared with those shown in Figures $130 b$ and 130 c where the illumination 1 s at the same angles of incıdence but with stationary laser light and white light respectively.

It would appear that the minımum spatial coherence illumination condition, $R_{s} \simeq R$, results in an intensity distribution wathin the waveguide cross section after propagation $3 n 40 \mathrm{~cm}$ of waveguide sımılar to that obtained with white light illumination.

The radıal dependence of the fading of the fringes is related to the contribution made by each skew plane to the cross sectional intensity distribution in the waveguide as descrabed an Chapter 5. It was shown there that after many reflections each skew plane ray will illumnate an annulus ınner radıus a $\cos \phi$ outer radius a. The effects of a reduction in the spatial coherence of the light within the entrance aperture of the wavegulde will appear first where the light from skew plane rays furthest apart (1.e. $\phi=\frac{\pi}{2}, \phi=0$) in the entrance aperture superımpose, which must be at the circumference of the waveguide core. The centre of the waveguide is illumanated only by the skew plane ray with $\phi=\frac{\pi}{2}$ and since it is not possible to make the light wathin thas single skew plane ancoherent (following the finite volume theory of electromagnetic waves given in Chapter 3) the centre of the waveguide is always coherently illuminated. This proposition is supported by the presence of interference fringes at the centre of the wavegulde as shown in Figures $130 c$ and $133 a$ even though the illumination ıs white light which is both spatially and temporally incoherent (after propagation in 40 cms of waveguide).

Figure 131. A diagram of the Mıchelson interferometer.

Figure 132. Interference in a dielectric cladded wavegurde.

8.5 Enhancement of Coherence by Propagation in Elliptical
 Waveguides

The short coherence length of white light may be demonstrated using a Mıchelson interferometer ${ }^{(31)}$ which is shown diagrammatically in Figure 131. The light from the white light source 15 divided in amplitude by the half silvered mırror M1 and each half of the beam is totally reflected by mırrors M2 and M3. The two reflected beams are then superimposed and observed at point P. When the optical distances Sl and S2 dıffer by less than the coherence length of the white light ($\simeq 3 \mu$) a set of frınges will appear to be formed at P, the centre frınge being white and the adjacent fringes coloured.

Consider now the experımental arrangement shown in Figure 132 where a 40 cm length of cladded optıcal wavegurde, of ellıptıcal cross section, is illumınated by plane waves from a white light source. When the angle of incidence θ_{0} of the plane waves is $\simeq 24^{\circ}$ a set of white fringes as shown in Figure 133a are formed at rıght angles to the quasi-hyperbolic caustic as described in Section 8.2 If θ_{0} is increased these fringes fade and reappear when $\theta_{0} \simeq 32^{\circ}$ but now with a smaller frange spacing, as shown in Figure 133b.

The formation of fringes is to be expected when the illumination 1s monochromatac since as suggested in Section 8.2, the elliptıcal cross section forms a resonant cavity and these frınges are the standıng waves set up between two reflectors. It is surprising, however, that fringes should appear when the illumination is white light, since the difference in path length for adjacent reflections of the plane waves radıatıng from the waveguide is of the order of 12 microns when $\theta_{0} \simeq 24^{\circ}$ and 16 microns when $\theta_{0} \simeq 32^{\circ}$. If it is assumed that the plane waves suffer diffraction at the entrance aperture as if they were normally incıdent (an fact they wall suffer greater diffraction than this) then the plane wave will be

Figure 133a.

Figure 133b.
formed into a cone of light of semı angle given by Equation (198). After propagation in 40 cms of wavegulde at an incident angle of $\theta_{0} \simeq 24^{\circ}$, this cone will form into approximately sixty beams of light superimposed in the radiation aperture to give the interference fringes observed. The number of beams increases as θ_{0} is increased.

Clearly these franges are not formed by the same process as in the Michelson interferometer since the difference in optical distance from the entrance aperture to the point of superposition of adjacent beams exceeds the coherence length of the white laght and further the franges formed in the waveguide are all white. A possible explanation is offered in part by Streıfer ${ }^{(41)}$ in his concluding remarks in which he states "The methods described apply to waveguides or dielectric rods which allow a mode description of electromagnetic wave propagation. The "mode selectıve" (my ıtallcs) properties of such systems could act to produce virtually complete coherence from initially incoherent radiation".

Each monochromatic component of the white light beam is likely to be coherent within the trapped skew plane caustac because of the small aperture the trapped skew planes present within the entrance aperture of the waveguide. The coherence of the laght within a small number of skew planes follows from the comments made in the latter part of Section 8.3 It may be that the mode selection which occurs in the resonant type of structure in whach the trapped skew planes propagate, results in mode patterns which are insensitive to frequency when the illumination is incident on the waveguide at certaln angles. Further work is required to examıne these propositions.
8.6 Conclusions

Various phenomena which were observed during the experımental investigation of the formation of caustics within cladded optical waveguides have been reported in this chapter. The explanations
offered for the occurrence of the phenomena are not rigorous but are theories which could form the basıs for future study.

Perhaps the most interesting topic for further study is an anvestigation of the coherence of the radiation field of the optical waveguides under varyıng spatıal coherence illumınating conditıons. It may be possible to obtain information from such measurements about scattering within the waveguides and the effects of bends and microbending of the waveguide, and it was for this purpose that the heterodyne scanning system described in Chapter 7 was buılt.

CHAPTER 9

Conclusions

The major objective of the experımental investigation described in this thesis was to find the cause of the 'patterns' produced in cladded optical waveguides under certann conditions of allumnation. It has been shown by computer sımulation and analysis of ray propagation in cladded waveguides that the 'patterns' are caustics produced by non-circular cross section waveguides. The propagation of rays in an elliptıcal cross section waveguide has been studied in detail and experimental results have illustrated the mann results of this analysis.

The diffraction at the entrance aperture of a cladded waveguide has been investagated and experimental results confirm that the waveguide appears to cause diffraction of the incıdent light field as if the waveguide aperture were a simple pinhole. The experimental results also suggested a non-stepped refractive index profile between core and cladding glasses and this was further investigated. The varlation of slluminated core dameter and the 'ring effect' are both results of a non-stepped refractive index profile but neither method permits accurate determination of the profile.

The thick lens behaviour of a cladded waveguıde was ınvestıgated A novel use of such a lens in an optical communications system was reported recently ${ }^{(60)}$ where an uncladded fibre was used to increase the light collecting property of a small dlameter core waveguide. It may be that improvements in the performance of this system can be achieved by using a cladded waveguide lens where the refractive indices of the core and cladding glasses and that of the surrounding media are selected to give a cylindrical lens with a long focal length. A long focal length lens will launch light anto the transmission waveguide
with a small conical semi angle and this will reduce the temporal dispersion of the transmitted signal since the dispersion due to the waveguide geometry is proportional to the axıal angle of incıdence of the light.

Abstract

The analysis of ray propagation in circular cross section waveguldes confirms the 'uniform cone' property of large diameter incıdence. The use of this radiation cone in the alıgnment of waveguides prıor to polishang has been descrıbed. The effects of a sloping (but flat) end face on the radiatıon cone suggested a method of progressively normallsing this slope when it appears at the radıation end of the wavegurde. The ray analysis also predıcts the 'black hole' effect which was used for allgnment of waveguides and as a measure of the axial angle of propagation of light within the waveguide.

Abstract

The use of a visual computer simulation of the propagation of rays has been partıcularly successful when applied to ray propagation in ellıptical cross section systems where the 1 magınation is unable to supply the necessary 'mental plcture' of the transition from trapped to non-trapped modes of ray propagation.

The results of the analysis of higher order stationary skew plane ray systems wıthin an ellıptıcal cross section waveguıde suggested that the observed varıations of intensity which formed triangles, squares and other regular multi-sided figures are produced by non-cırcular, non-ellıptical cross section waveguıdes. This suggests that a precise determınation of the cross sectional geometry which produces these patterns would require computer simulation of ray propagation within a generalısed cross section system.

This means that instead of proposing speciflc cross section geometries and then concluding from the sımulation which patterns are lıkely to occur within real waveguides, the patterns observed within any specıfıc wavegurde would be used as the initial conditions for the computer simulation and the cross section of the computer program representation of the waveguide will be modified untıl $1 t$ too predicts a sımilar arrangement of patterns.

A major difficulty with such a proposal is that there is no alternative method of measuring the waveguide cross sections within the varıations of dimensions which have been shown may produce patterns.

There are, however, alternatıve methods for measuring the scatterıng wathin optical waveguldes and this suggests that the observation of patterns may be developed into a method of measuring scattering and microbending if the magnitude of these propertıes can be shown to be directly related to the visibılity of the caustic patterns. Here it $1 s$ assumed that because of the sensitivity of the caustıc formation system, all cladded waveguides will exhıbıt caustics related to non-cırcular cross sections.

Finally the observations made in Chapter 8 on the coherence of the light propagating in the cladded waveguides suggests that optical waveguides may be a useful experimental media in the study of the enhancement of coherence by propagation in bounded media. This subject is of signıfıcance in the design of laser resonator cavities ${ }^{(39)}$.

APPENDIX A.

Loss of Fibre Optic Cables

In the paper* 'Design and performance of Optical Fibre Cables' presented at the International Conference on Optical Communications held in London in September 1975, T. Nakahara et al descrabe results of transmission loss measurements on cladded fibre cables. The minimum loss measurement made by them is quoted as $1.6 \mathrm{~dB} / \mathrm{km}$.

[^3]
APPENDIX B.

The following two pages are coples of the manufacturer's specification for the fibre optic cable used in the experiments described in this thesis.

Specification No MD 690

This specification is chiefly concerned with Glass Fibre Optic components and sub-assemblies incorporatıng non-coherent Fibre Optics in both solid and flexible form

1. DIMENSIONS AND TOLERANCES

Dimensions and tolerances will be specified on the drawing

2. MECHANICAL QUALITY

All items will be made to our normal standards of engineering quality and finish, and will gencrally have a good appearance

3. OPTICAL QUALITY

3.1 Light Transmission This will be as shown on Graph 1, and will be better than the lower line on this graph The shaded area shown will be the possible variation of the transmission and will take account of packing factor, broken fibres, interstitial losses, Fresnel reflections and optical face polishing
3.2 Fibre Packing The fibre packing within any optical area will be better than 80% and any dark area will be less than 06 mm dia
3.3 Broken Fibres A small percentage of broken fibres are present in most Fibre Optics The percentage of broken fibres is not specified, but will never be so large as to prevent the component meeting specification 31 for light transmission.
3.4 Optical Faces All optical faces will be ground and polished to optımise the light transmission and to ensure that the Item meets specification 31 for light transmission
3.5 Fibre Size Nominal fibre diameter will be stated on the drawing
3.6 Numerical Aperture This will be approximately 054^{*} unless otherwise specified A typical polar diagram is shown on Graph 2
3.7 Temperature Range In general components of standard design are capable of withstanding temperatures from $-20^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. for long periods without deterioration Standard components will withstand temperatures outside these limits for shorter periods (temperature requirements should be specified if outside the standard limits above)
3.8 For flexible Fibre Optic components it is suggested that the minimum bend radius is not exceeded or damage to fibres may occur, and light transmission will be reduced The recommended minımum bending radius for a flexible Fibre Optıc unit depends on The Optical Diameter as shown in the table below

Optical Diameter	Bend Radıus
$1 \frac{1}{2} \mathrm{~mm}$	19 mm
3 mm	32 mm
$4 \frac{1}{2} \mathrm{~mm}$	64 mm
6 mm	64 mm
9 mm	89 mm

3.9 Spectral Transmission Typical spectral transmission is shown on Graph 3

[^4]
RAPH 1

RANSMISSION CURVE
is graph shows typical percentages of ht transmission through various lengths fibre optics the light transmission Il be in the shaded area on the graph

RAPH 2
 OLAR DIAGRAM

is curve shows a typical distribution of ht output from a fibre optic according to angle to optical axis NA 054

RAPH 3

PECTRAL TRANSMISSION

s curve shows a typical spectral transsion curve for a standard fibre optic It ows that little transmission occurs in the a-violet region

APPENDIX C

Pulse Extractor and Line Markers Circuit

The circuit diagram is shown in Figure $\mathrm{Cl} . \mathrm{Rl}, \mathrm{Cl}$ and Dl form the $2 n p u t$ matchıng circuit. Comparator 1 detects all negatıve pulses and the line pulses are extracted at the output of this comparator. The line pulses are filteredfrom the output of comparator 1 by the low pass filter $R 2$ and C2. Comparator 2 detects the remaining frame pulses and they are reshaped by the three 'and' gates 7400 and the R3, C3 integrator network. The line selected by the delay carcuit of the tektronix oscılloscope provides a trigger signal on the 'A Gate In' line which together with the relevant line trigger pulse, which indıcates the start of the line, trigger the monostable 74121 whose output is a varıable length pulse. The pulse length is adjustable by VR4 and the amplıtude of the pulse applied to the video signal is determined by VR3. The selected line is 'brightened' by this pulse, and the length of the pulse determınes the distance along the line of the 'bright up'.

FIGURE C1.

APPENDIX D

Derıvation of the possible orıentations of the triangular closed figures within an ellipse.

Consader three points $\left(X_{1} Y_{1}, X_{2} Y_{2}, X_{3} Y_{3}\right)$ on the perıphery of an ellipse. The normal to the ellıpse at each point is defined by its tangent T_{n}. In order for the three points to form the apexes of an inscribed trangle wathin the ellipse the normals to the ellapse at the three points must antersect at a single point which $1 s$ then the centre of the inscribed carcle of the triangle (since the normals bisect the internal angles of the trıangle).

From the theory of caustic formation (Chapter 5.4) two stralght lines intersect at a point \bar{x}, \bar{y} where

$$
\begin{array}{ll}
\bar{x}=\frac{\left(K_{2}-K_{1}\right)}{p} & \text { (Equation 164a) } \\
\bar{y}=\frac{T_{1} K_{2}-T_{2} K_{1}}{P} & \text { (Equation 164b) }
\end{array}
$$

where K_{n} and P are given by equations $163 \mathrm{a}-\mathrm{b}$.

The X co-ordinate of a point on the ellıpse may be expressed in terms of its Y co-ordinate and the constants of the ellipse, where from equation $240 a$

$$
\begin{equation*}
x_{n}=\frac{a}{b} \quad b^{2}-y_{n}^{2} \tag{D3}
\end{equation*}
$$

and from equation 246

$$
\begin{equation*}
T_{n}=\frac{a}{b} \frac{Y_{n}^{2}}{b^{2}-Y_{n}^{2}} \tag{D4}
\end{equation*}
$$

So K_{n} given by Equatıon 163 as

$$
\begin{equation*}
K_{n}=y_{n}-x_{n} T_{n} \tag{D5}
\end{equation*}
$$

may be expressed purely in terms of the Y co-ordinate of the point and the ellipse constants, by substituting for X_{n} and T_{n} from equations D3 and D4 to give

$$
\begin{equation*}
K_{n}=y_{n}\left(l-\frac{a^{2}}{b^{2}}\right) \tag{D6}
\end{equation*}
$$

Taking the three normals in pairs, the co-ordinates \bar{x}, \bar{y} of a poant of intersection of the three normals will be given by substituting for K_{n} from equation D6 into D1 and D2 to give

$$
\frac{\bar{x}}{\left(I-\frac{a}{b^{2}}\right)}=\frac{\left(Y_{2}-Y_{1}\right)}{\left(T_{1}-T_{2}\right)}=\frac{\left(Y_{3}-Y_{2}\right)}{\left(T_{2}-T_{3}\right)}=\frac{\left(Y_{1}-Y_{3}\right)}{\left(T_{3}-T_{1}\right)} \quad \text { D7 }
$$

$$
\frac{\bar{y}}{\left(1-\frac{a}{b}\right)}=\frac{\left(T_{1} Y_{2}-T_{2} Y_{1}\right)}{\left(T_{1}-T_{2}\right)}=\frac{\left(T_{2} Y_{3}-T_{3} Y_{2}\right)}{\left(T_{2}-T_{3}\right)}=\frac{\left(T_{3} Y_{1}-T_{1} Y_{3}\right)}{\left(T_{3}-T_{1}\right)} \quad \text { D8 }
$$

Rearranging the three right hand terms of equation D7 gives

$$
\left.\begin{array}{rl}
T_{2}\left(Y_{2}-Y_{1}\right)+Y_{2}\left(T_{1}-T_{2}\right) & = \\
T_{1}\left(Y_{2}-Y_{1}\right) & = \\
T_{1}\left(Y_{2}-Y_{1}\right)+Y_{1}\left(T_{1}-T_{2}\right) & \text { D9a }
\end{array}\right\} \begin{aligned}
T_{3}\left(Y_{2}-Y_{1}\right)+Y_{3}\left(T_{1}-T_{2}\right) & \text { D9b }
\end{aligned}
$$

Subtracting equation D9b from D9a glves

$$
Y_{1}\left(T_{1}-T_{2}\right)=0
$$

Dlo

Let both Y_{1} and Y_{2} lie in the first quadrant of the ellipse so that $Y_{1}, Y_{2}, T_{1}, T_{2}$ are all positive.

From equation DlO either $\mathrm{Y}_{1}=0$ or $\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)=0$. If $\mathrm{Y}_{1}=0$ then $T_{1}=0$ and substituting these values into equation D9c gives

$$
T_{3} Y_{2}-Y_{3} T_{2}=0
$$

which on substitution of equation D4 gives

$$
Y_{2}=Y_{3}
$$

If $Y_{2}=Y_{3}$ the two point are colncident and cannot form the apexes of a triangle.

Equally if $T_{1}-T_{2}=0$ then $T_{1}=T_{2}$ and $Y_{1}=Y_{2}$ and these polnts are also colncldent.

Let Y_{1} and Y_{2} be in adjacent quadrants of the ellipse $1 . e$. Y_{2} and T_{2} are negative.

Substatuting $Y_{2}=-Y_{2}$ and $T_{2}=-T_{2}$ into equation Dlo gaves

$$
Y_{1}=0 \quad \text { or } \quad T_{1}=-T_{2}
$$

If $T_{1}=-T_{2}$ then $Y_{1}=-Y_{2}$ and from the symmetry of the ellipse the two normals passing through points $X_{1} Y_{1}, X_{2} Y_{2}$ where $Y_{1}=Y_{2}$ must antersect along the X axis of the ellipse, between the two quadrants containing the points. Since the third point must lie somewhere in the opposate two quadrants, in order for its normal to antersect also along the X axis, its normal and the X axıs must colncide to glve $Y_{3}=0$, these three point forming the triangle shown in Figure 105a.

A similar process, starting with the assumption that Y_{1} and Y_{2} are in adjacent quadrants but now with Y_{2} posıtıve and T_{2} negatıve, glves the result

$$
Y_{1}=Y_{2} \quad \text { and } \quad T_{1}=-T_{2}
$$

The normals passing through these two point now intersect along the Y axis, again between the two quadrants containing the polnts, and result In the orientation of the triangle shown in Figure 105b.

APPENDIX E.

The Computer Simulation Program

The program written to simulate the propagation of rays in an elliptical cross section reflecting system is not described in detall because of the variations in display hardware avallable in different anstıtutions. The following is an outlıne of the major steps in the program.

1. The starting position of the first ray is defined together with the desired direction of propagation expressed in cartesian co-ordinates.
2. The increments in the starting positions of successive rays is defined.
3. The starting position of the final ray of the simulation is defined.
4. The number of reflections to be displayed and the number of reflections that must occur before the displayed reflections is defined.
5. Each ray is then incremented in the desired direction, testing at each increment to determıne if the reflecting boundary has been reached. When the boundary is reached, the normal to the reflecting surface is calculated, and the durection of the incident ray is altered in accordance with the law of reflection. The reflection number counter is incremented and the ray incremented in its new direction until the boundary is reached again.
6. If the reflection number lles whthan the range of those to be displayed, then each increment of the ray is displayed.
7. Where a large number of reflections occur before the displayed reflection, where the program may run for a long tame ($\frac{1}{2}$ hour for the $m=40$ caustic shown in Figure 59) a paper tape is produced of the co-ordinates of the required reflection and is used for display at a later time.
8. The simulation in circular reflectors is achieved by setting the constants of the ellıpse equal.
9. The program was written in FORTRAN 2 and the simulation run on the Department's Modular One Computer and displayed on a Tektronlx Storage System 6ll.

ACKNOWLEDGEMENTS

The author washes to express his gratitude to the following members of the Department for their varıous contributions, elther to the research work or in the production of this thesis.

To Dr. C. Wilson for his constant guidance and encouragement throughout the period of this research.

To Professor J.W.R. Griffiths for permitting the research to be carried out in the Department and for providing the equipment descrıbed in the thesis.

To the members of the Mechanıcal Workshop for the construction of the majorıty of the mechanıcal devices described in the thesis.

To Mr. P. Atkınson for his assistance in the production of the photographs in the thesis.

To Mrs. S. Peach for typing the thesis and labelling the diagrams and photographs.

The author also wishes to thank the Sclence Research Councll for the award of a Studentship for the duration of the research project.

Finally the author wishes to record his gratıtude to members of the various industrial research departments who have provided both material and ıdeas. In partıcular he wishes to thank Mr. M. Ramsay of S.T.L. (Harlow) and his staff, and Mr. W. Stewart of Plessey (Towcester).

REFERENCES

1. KAPANY, N.S. \& BURKE, J.J. 'Optical Waveguıdes', Academıc Press, 1972.
2. MARCUSE, D. 'Theory of Dlelectrlc Optical Waveguides', Academic Press, 1974.
3. KAPANY, N.S. 'Fıbre Optıcs, Prıncıples and Applıcatıons', Academıc Press, 1967.
4. ALLAN, W.B. 'Fibre Optics, Theory and Practice', Plenum Press, 1973.
5. TIEDEKEN, R. 'Fibre Optıcs and its Applications', Focal Press 1972.
6. RAMSAY, M.M. 'Fibre Optical Communications within the United Kangdom', Opto-electronics 5 (1973) p 261-274.
7. SUNAK, H.R.D. 'Advances in Fibre-Optical Communicatıon Systems', Electronics \& Power, Vol. 19, 29th November, 1973, p 528-532.
8. KAO, K.C. \& HOCKHAM, G.A. 'DıelectrıC-Fibre Surface Waveguıdes for Optical Frequencıes, Proc. TEE, Vol. 113, No. 7, July 1966,p 1151-1158.
9. HOPKINS, H.H. \& KAPANY, N.S. ' Transparent Fibres for the Transmission of Optıcal Images', Opt. Acta., Vol. 1, No. 4, Feb. 1955.
10. UCHIDA, T. et al, 'A Light Focussing Fibre Guide', IEEE Conference on Laser Engineering and Applications, Washıngton D.C. 1969.
11. KAWAKAMI, S. \& NISHIZAWA, T. 'An Optıcal Waveguide with the Optımum Distribution of the Refractive Index with reference to Waveform Distortion', IEEE Trans. MTT-16, 1969, p 814-818.
12. GLOGE, D. \& CHINNOCK, E.L.'Study of Pulse Distortion in Selfoc Fıbres', Electronics Letters, Vol.8, No. 21, 1972, p 526-527.
13. DAKIN, J.P. et al 'Theory of Dispersion in Lossless Multimode Optıcal Fibres', Optıcs Communıcatıons, Vol.17, No. 1, 1973, p 1-5. MAURER, S.J. \& FELSEN, L.B. 'Ray Optıcal Technıques for Guided Waves', Proc. IEEE, Vol.55, No. 10, 1967, p 1718-1729.
14. GAMBLING et al 'Propagation Model for Multamode Optical Fibre Waveguide', Electronics Letters, Vol. 8, No. 10, 1972, p 260-263.
15. BOUILLIE, R. \& ANDREWS, J.R. 'Measurement of Broadening of Pulses in Glass Fibres', Electronics Letters, Vol. 8, No.12, 1972, p 309-310.
16. SODHA, M.S., CHAKRAVARTI, A.K. \& GAUTAMA, G.D. 'Propagation of Optıcal Pulses through Cladded Fibres : Modıfıed Theory', Applıed Optics, Vol. 12, No. 10, 1973, p 2482-2485.
17. POTTER, R.J. 'Transmıssion Properties of Optical Fıbres', J. Opt. Soc. Am., Vol.51, No.10, 1961, p 1079-1089.
18. BROWN, R.G. \& DERICK, B.N. 'Plastic Fibre Optics. /3 Off Axis Transmission Characterıstıcs', Applıed Optıcs, Vol.8, No. 2, 1969, p 437-442.
19. STEWART, W.J. 'Asymmetries in Optical Fibres', Optics Communications, Vol. 9, No.1, 1973, p 98-102.
20. WILSON, C. \& STEVENS, P.J.'Polıshing Technıque for Optıcal Waveguide Termınations', Journal of Physics E., Vol.7, 1974, p 614-615.
21. FRANKE, G 'The Production of Optical Parts', Chapter 8 of Advanced Optical Technıques, edited by A.C.S. Van Heel, North Holland Publishing Co., 1967.
22. GLOGE, D. et al 'Optıcal Fıbre end Preparation for Low Loss Splices', B.S.T.J., Vol.52, No. 9, 1973, p 1579-1588.
23. DAKAS, M.L. \& BRIDGER, A. 'Plug-in Fibre to Fibre Coupler', Electronics Letters, Vol.10, No.14, 1974, p 280-281.
24. DALGLEISH, J.F. \& LUKAS, H.H. 'Optical-Fibre Connector', Electronics Letters, Vol.11, No. 1, 1975, p 24-26.
25. SOMEDA, C.G. 'Simple Low-Ioss Joints between Single Mode Optacal Fibres', B.S.T.J., Vol. 52, No. 4, 1973, p 583-596.
26. BISBEE, D.L. 'Optıcal Fıbre Jolnıng Technıque', B.S.T.J., Vol.50, No. 10, 1971, p 3153-3158.
27. DYOTT, R.B., STERN, J.R. \& STEWART, J.H. 'Fusion Junctions for glass fibre waveguides', Electronıcs Letters, Vol. 8, No.ll, 1972, p 290-292.
28. BURRUS, C.A. \& STANDLEY, R.D. 'Vıewing Refractive - Index Profiles and Small Scale Inhomogenelties in Glass Optical Fibres: Some Technıques', Applıed Optıcs, Vol.13, No.10, 1974, p 2365-2369.
29. SNYDER, A.W., MITCHELL, D.J. \& PASK, C. 'Failure of Geometric Optics for the Analysis of Cırcular Optıcal Fibres', J.Opt.Soc. Am., Vol.64, No.5, 1974, p 608-614. 1972.
30. STRONG, J. 'Concepts of Classical Optıcs', W.H. Freeman \& Co., 1958.
31. BROWN, E.B. 'Modern Optics', Reınhold Publıshing Corporation 1965.
32. 'The Services Textbook of Radio'. Volume 5 'Transmission and Propagation' E.v.D. GLAZIER \& H.R.L. LAMONT, H.M. Stationery Office, 1958.
33. NUSSBAUM, A. 'Electromagnetic Theory for Engineers and Scientists', Prentice Hall Inc. 1965.
34. BLEANEY, B.I. \& BLEANEY, B. 'Electrıcıty and Magnetısm', Clarendon Press, Oxford 1965.
35. ALLEN, L., GATEHOUSE, S. \& JONES, D.G.C. 'Enhancement of Spatıal Coherence during Lıght Propagation in Bounded Medıa', Optics Communications, Vol. 4, No.2, 1971, p 168-171.
36. WOLF, E. 'Spatial Coherence of Resonant Modes in a Maser Interferometer' Physıcs Letters, Vol. 3, No. 4, 1963, p 166-168.
37. STREIFER, W. 'Spatial Coherence in Perıodıc Systems', J.Opt.Soc. Am., Vol.56, No. 11, 1966, p 1481-1489.
38. SNYDER, A.W. 'Surface Waveguide Modes along a Semi-infinıte Dlelectric Fıbre Excited by a Plane Wave', J. Opt. Soc. Am., Vol. 56, No. 5, 1966, p 601-606.
39. SNYDER, A.W., MITCHELL, D.J. 'Leaky Rays on Cırcular Optıcal Fibres', J. Opt. Soc. Am., Vol. 64, No. 5, 1974, p 599-607.
40. LONGHURST, R.S. 'Geometrıcal and Physical Optıcs', Longmans, Green and Co.Ltd., 2nd Edıtion 1967.
41. LANDAU, L.D. \& LIFSHITZ, E.M. 'The Classical Theory of Fields', Pergamon Press, Third Englısh Edition 1971.
42. ABRAMOWITZ, M. \& STEGUN, I.A. 'Handbook of Mathematıcal Functions' Dover Publications Inc., 1965.
43. LONEY, S.L. 'The Elements of Co-ordınate Geometry', Macmıllan \& Co. Ltd., London 1947 Edıtıon.
44. EDWARDS, J. 'Differentaal Calculus for Begınners', Macmıllan \& Co.Itd., London 1945.
45. GIECK, K. 'A Collection of Technical Formulae', Englısh Translation by F. Catty, Helıbronn 1967. (West Germany).
46. KOGELNIK, H. \& LI, T. 'Laser Beams and Resonators', Applied Optıcs, Vol. 5, No. 10, 1966, p 1550-1566.
47. MARCUSE, D. 'Coupled Mode Theory of Round Optıcal Fıbres', B.S.T.J., Vol. 52, No. 6, 1976, p 817.
48. WOOLRIDGE, A.B. 'The Reduction of Microbending Losses by Coating Optical Fibres', Paper presented at the Colloquium on Optical Fibre Waveguides at Queen Mary College, London, 8th January, 1976.
49. GAMBLING, W.A. et al 'Gigahertz Bandwadths in Multımode Laquid Core Optıcal Fıbre Waveguıdes', Optic Comm., Vol. 6, No. 4, 1972.
50. SNYDER, A.W. 'Asymptotac Expressions for Elgenfunctions and Eigenvalues of a Dielectrıc or Optıcal Wavegurde', IEEE Trans. MTT-17, p ll30-1138, December 1969.
51. GLOGE, D. 'Weakly Guıding Fıbres', App. Optıcs, Vol. 10, 1971, p 2252-2258.
52. YARIV, A. 'Quantum Electronıcs', John Wiley \& Sons, Inc. 1967.
53. MAITLAND, A. 'Laser Physics', North Holland Publıshing Co. 1969.
54. LEENDERTZ, J.A. 'Interferometric Displacement Measurement on Scattering Surfaces using Speckle Effect', Jnl. Physics E., Vol. 3, p 214-218, 1970.
55. ASAKURA, T. et al 'Measurement of Spatial Coherence using Speckle Patterns', Optica Acta, 1972, Vol 19, No. 4, p 273-290.
56. DAKIN, J.P. 'Glass Fibre Lenses for Increased Launching Efficiency into Fibre Optıc Waveguıdes', Paper presented at the Colloquium at Queen Mary College in January, 1976.
57. ALLEN, W.B. Reference 4, p 51.

Figure 2 The grinding and polishing machine. A , aluminum mountıng plate, B , chuck; C , pneumatic piston, D, ball race, E, belt drive; M, motor
variable between 0 and 3000 rpm The arr supply is obtained from a large manually actuated piston which forms a closed system with cylinder (C)

4 Procedure

The fibre is clamped in the vice jaws with the fibre end approximately level with the jaw face Normal grinding and polishing procedures are used to obtain the final finısh The curvature of the finished surface is demonstrated in figure 3 The interference fringes were obtained using a standard interference mocroscope objective and a sodium light source The fibre was adjusted to give the minımum number of fringes across the end face For many experıments a high optical finish is not required and a flatter surface is obtained by the grinding process alone Since the fibre end is proud of the jaw surface, the polishing compound tends to round off the edges of the fibre

5 Conclusion

A technique is described which terminates glass optical waveguides without the necessity of permanent embedding in a holding material For many experıments a raw end may be prepared in 5 min , thus allowing rapid inspection of different lengths of the same wavegurde

Figure 3 Photomicrograph of a 50μ diameter cladded construction glass fibre showing interference fringes across the end of the fibre to demonstrate the slope of the end face

The termination is nominally flat and may be at any desired angle to the fibre length Methods of alignment of the fibre to give a specific slope have not been discussed and will be published later.

Journal of Physics E•Scientific Instruments 1974 Volume 7 Printed in Great Britain © 1974

This paper describes such a technique. The equipment consists of a vice and an all-purpose grinding and polishing machine

2 The vice and vice jaws

The vice jaws must be of a material which grips the $50 \mu \mathrm{~m}$ diameter fibre firmly, but whose hardness is less than the glass of the fibre, so that during grinding the jaws will also be ground, but at a greater rate than the fibre end. The jaws are manufactured from an embedding resin casting, which is cut as shown in figure 1(a) The mould is a 7 mm diameter gelatine

(a)

(b)

Figure 1 (a) The vice jaws, (b) the mounting vice
capsule The fibre to be polished is passed through the hole in the base of the jaws and then clamped between the jaws by the mounting vice shown in figure $1(b)$ The clamping pressure must be sufficient to hold the fibre, but not great enough to encourage chipping of the leading edge of the fibre by the coarser grades of grinding The mounting vice is secured to an adjustable table which is mounted on an optical bench Various adjustments allow the fibre to be positioned at any angle to the grindıng plane

3 Grinding and polishing machine

The optical bench mounted machine is shown in figure 2
The various grinding and polishing compounds are mounted on aluminium plates (A) These plates are fixed in turn to the rotating chuck (B) The chuck is mounted on the piston rod of the pneumatic cylinder (C) via two ball races (D) The motor (M) rotates the chuck via the belt drive (E) The plates (A) are thus rotated by the motor (M) and moved along the Z axis by the pneumatic piston action When the plates are in contact with the workprece, pressure between the two may be adjusted by varying the air pressure in the pneumatic cylinder (C). The motor (M) is a single pole induction motor and is driven by a variable frequency supply Its speed is

[^0]: *Rank Kershaw "FIBROFIEX", See Appenc.x B for specıfıcation.

[^1]: 4.2 Geometrical Ray Theory Model of the Core Cladded Wavegurde

 An idealised core cladded waveguide consists of a dielectric cylindr scal core, radıus a, refractıve \quad ndex n_{1} inside a dıelectrıc tube, inner radıus a, wall thickness b, and with refractive index n_{2}, where $n_{2}<n_{1}$. In general $n_{2}>n_{0}$ where n_{0} is the refractive index of the medıum surrounding the wavegulde, for free space $n_{0}=1$.

[^2]: The circular reflector caustıcs form the characterıstic spirals which orıganate on the y axis as given by Equation (171), and wind up as m is increased. The caustics produced in the elliptical reflector

[^3]: * Design and performance of optıcal fıbre cables, T. Nakahara et al, I.E.E. Conference Publıcation No. 132, Optical Fibre Communlcation 1975., pp 81.

[^4]: * Fibre Optic components with numerical apertures between 24 and 77 can generally be made spectally If requred Also. Fibre Optic components can generally be made specially to withstand temperatures between $-200^{\circ} \mathrm{C}$ and $+250^{\circ} \mathrm{C}$, if required

