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ABSTRACT 

The analysis of propagation ~n waveguides is generally based 

upon Maxwell's Equat~ons and y1elds solut1ons 1n the form of sets 

of orthogonal f~elds called character~st1c modes of the wavegU1de. 

If numerous modes are excited simultaneously by a single 

monochromat~c source, the intens1ty d1str1but1on measured w1th1n 

the waveguide w~ll be the coherent superpos~t~on of all the exc~ted 

modal fields. The analys1s of this coherent superpos~t1on ~s 

cumbersome for all but a small number of modes. If the source ~s 

polychromat~c or spat1ally incoherent the increased complex~ty of 

the superpos~t1on procedure, wh~ch must now consider the relat~ve 

coherence of modes, suggests that th~s method ~s ~nappropr~ate. 

An alternat~ve bas~c approach is through the scalar 

representat1on of wave propagation known as the geometr1cal ray theory. 

This theory ~s appl1ed to the propagat~on of polychromat~c light ~n 

stepped refract~ve ~ndex profile, mult~mode, opt~cal wavegu1des. 

The study is based upon observat~ons of cross sect~onal var~at1ons of 

~ntens~ty in waveguides of th~s type which appeared to be more 

appropr1ately analysed ~n terms of the ray theory. It ~s shown that 

the variat~ons ~n intens~ty are caused by microscopic perturbat~ons 

of the waveguide core from a nominally c1rcular cross sect1on and are 

only vis~ble when the waveguide is exc~ted by the polychromat~c or 

spat~ally incoherent source. The dimens~ons and format of the 1ntens~ty 

var~ations are shown to be simply related to the cross sect~onal geometry 

and d~mens~ons of the wavegll1de and this suggests a useful method of 

deter~ning the length dependent var~at1ons of these parameters. 
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STATEMENT OF ORIGINAL WORK 

Cla~ms to or1ginality are made 1n the conclus1ons to certa1n 

chapters, and the follow1ng is a summary of the work descr1bed 1n 

this thes1s which to the best of the author's knowledge 1s or1g1nal. 

1. Preparat1on of s1ngle unmounted f1bres, Sect1on 2.5. 

2. Determination of f1bre orientation and angle of inc1dence, 

Sect1on 2.8. 

S. Entrance aperture d1ffraction, Sect1ons 4.3.1 and 4.3.2. 

4. Ramp refractive index prof1les, Sections 4.4.1. and 4.4.2. 

5. The rema1nder of the thes1s 1s concerned w1th the study of 

the patterns observed 1n optical f1bres and unless otherw1se 

acknowledged, is thought to be original work. 
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CHAPTER 1 

1.1 Introductlon 

(1-5) 
There are a number of books avaLlable contalnLng comprehensLve 

studies of optical wavegULdes and assoclated subJects and only those 

aspects dLrectly related to the SubJect of this thesis are derlved ln 

later chapters. 

The rapld progress now belng made ln research and development of 

optlcal communlcatlons systems lS llable to make any attempt at a 

comprehensive revlew of the fleld Lncomplete ln many aspects. The 

followlng references(G,?) Lndicate general progress ln the most important 

fields. 

The rapld development of optlcal waveguldes Wlth characteristLcs 

prevLously thought unobtalnable suggests that the potentlally most 

useful wavegULdes have yet to be developed. At the begLnnlng of thlS 

work the most favoured contender for commun~cat1ons appl1cat1ons was a 

glass waveguide, of core-cladded constructlon where the core glass has 

a hlgher refractlve Lndex than the claddlng glass. Thls was the form of 

(8) 
waveguide descrLbed by Kao and Hockham ln thelr orlglnal study of the 

potential communLcatLons applLcatLons of optLcal waveguLdes, and has 

receLved by far the most attention both theoretically and experimentally. 

The selection of thLs type of fLbre may have been due Ln part to the 

earller studies of llopkins (9 ) et al and the subsequent vadespread use of 

fLbres of this form for Lmage transfer and remote LllumLnatLon, embodled 

(3-5) 
in the now well-established subJect of 'FLbre OptLcs' • 

A maJor achLevement of the optical communicatLons waveguLde 

manufacturer has been the reductLon of the loss of waveguLdes from the 

lOOOdB/km normally assocLated Wlth 'FLbre Optlcs' applicatLons to the 

nominal 20dB/km now obtalned, sometLmes wLth glass or lLquid fllled 

fibres, but more generally WLth SLllca. Lovrer losses than 20dB/km have 
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{7) 
been obta~ned , but the s~gnif~cance of this f~gure ~s the 2km 

inter-repeater loss of 40 dB wh~ch is the max~mum acceptable for a long 

distance commun~cat~ons appl~cat~on. Any further loss reduct~on enhances 

the potent~al of the waveg~des, and clearly establ~shes the~r place 

in future communLcations networks. The most recent loss fLgure 1s 

quoted in Append~x A. 

The low loss s~l~ca waveg~des are manufactured by the vapour 

depos~t~on method wh~ch in theory allows an arb~tra~ rad~al var~at~on 

of refractive ~ndex. Th~s leads naturally to the product~on of a 

rad~ally parabolic refractive ~ndex waveguide, f~rst developed by the 

{10) 
Japanese us~ng a different manufactur~ng method. Th~s form of 

wavegu~de was called by them 'SelFoc' for self focuss~ng. The 

{11 12) 
attract~on of th~s waveg~de ~s ~ts theoret~cal low modal d~spers~on ' 

as opposed to the length dependent modal d~spers~on of the core cladded 

{13) 
wavegu~de . Low d~spers~on ~s essent~al for d~g~tal commun~cat~ons 

systems to ach~eve h~gh data rates without intersymbol ~nterference. 

The loss o£ an optLcal wavegu1de is associated w1th 1ts mater1al 

absorpt~on,whereas the dispers~on ~s a funct~on of ~ts design. The low 

loss silica fibre with a rad~ally parabol~c ~ndex profile would appear 

to form an optimum comb~nat~on for commun~cat~ons appl~cations. These 

wavegu~des are not yet generally available and the work in th~s thes~s 

is based upon experiments us~ng core-cladded wavegu~des., 

In most phys~cal s~tuat~ons, an understanding of observed 

phenomena may be obta~ned on two intellectual levels. A s~mple approach 

which contains large approximations, but which g~ves a macroscopically 

correct ~nterpretat~on of the observat~ons will provide a useful 

conceptual aid for the derivation of a rigorous analys~s based on the 

fundamental laws of physics. The geometrical ray theory of opt~cs ~s 
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an excellent example of a macroscop~c theory. R~gorous opt~cal theory 

is based upon Maxwell's Equat~ons wh~ch ~n turn are der~ved, though not 

necessar~ly r~gorously, from the fundamental laws of physics. 

The macroscop~c approach is particularly successful for the 

analys~s of opt~cal systems, where the geometr~cal ray theory provides 

suffic~ent analys~s for many appl~cat~ons, especially ~n the des~gn of 

1mag~ng systems. Its success ~s d~rectly related to the rat~o of the 

size of the system components to the wavelength of light. As th~s 

rat~o ~ncreases the effects of the assumpt~ons of the macroscop~c theory 

dimin~sh and the accuracy of the theory ~ncreases. 

The use of the macroscop~c theory for analys~s ~n F~bre Opt~cs 

applicat~ons has been successful where the rigorous analysis of the 

propagat~on of l~ght within single f~bres is not vitally s~gn~f~cant. 

Furthermore the ~ncoherent l~ght or polychromat~c (wh~te) l~ght used 

for ~mag~ng and remote ~llum~nat~on ~s ~ncompat~ble w~th a r~gorous 

analys~s wh~ch cons~ders propagat~on of monochromatic, spat~ally coherent 

waves. A r1gorous analys~s would have to superpose the solut~ons for 

each elementary monochromat~c wave em~tted by the source. According to 

(1) 
Kapany and Burke (Chap. 2, p7) such a procedure ~s 'generally 

unnecessary', "because they (the elementary waves) would have randomly 

related amplitudes and phases and would produce no observable ~nterference 

effects". 

On the bas~s of exper~mental observat~ons descr~bed ~n the next 

sect~on of this chapter, th~s thes~s exam~nes under what cond~t~ons 

observable phenomena are produced by spat~ally incoherent l~ght when ~t 

propagates 1n opt~cal wavegu~des of core cladded construct~on. 

There is considerable interest in the geometr~cal ray ~nterpretat~on 

(14) . 
of waveguide theory as appl~ed to both opt~cal and general wavegu~de 
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problems. 
(1} (2} 

Both Kapany and Marcuse use ray analys1s of slab 

waveguides to 1ntroduce the1r rigorous wavegu1de theory. Gambl1ng(lS} 

(16 17} 
and others ' have used, w1th some success, ray propagation models 

to calculate pulse d1spers1on 1n round core cladded opt1cal wavegu1des. 

However, ray theory 1s not generally used to calculate the intens1ty 

d1str1bution w1th1n a waveguide. Such calculat1ons are reserved for the 

rigorous wavegULde analys1s 1n wh1ch the 1nd1v1dual wavegu1de modes 

present at the po1nt of observat1on are superposed and interfere to 

produce the observed intens1ty distribut1on. The modes present are 

calculated from a knowledge of the source f1elds at the entry port of 

the wavegu1de and determ1nat1on of the characteristic wavegu1de modes 

excited by such f1elds. It w1ll be suggested in Chapter 8 that a 

character1st1c mode of a wavegu1de 1s a complex f1eld conf1gurat1on 

composed of elementary fields wh1ch interfere. The propagat1on of each 

elementary wave may be represented by a s1ngle ray whose propagat1on 

obeys the laws of geometr1cal ray theory. To calculate intens1ty distr1but1ons 

us1ng ray analysis due account must be taken of any foci or caust1cs formed 

where the ray analys1s is 1nappropr1ate and d1ffract1on theory must be 

applied. 

This thes1s examines th1s apparently complex relationsh1p between 

the macroscop1c and r1gorous opt1cal analytical methods as appl1ed to 

optical wavegu1des. 

1.2 Initial Exper1ments 

Th1s sect1on descr1bes the in1t1al exper1ments wh1ch revealed the 

unexpected cross sect1onal var1ations of 1ntens1ty in round core cladded 

opt1cal wavegu1des when exc1ted by a wh1te light source. 



. , 

F1brcs 

L.cm 

Figure la . White light 

illmnination 

o£ fibres . 

u 11..;1 • 

' 
' 

F re 

F1gure lb. Sunlight 1llumination 

o£ fibres. 

Figure 2a . Figure 2b . 

Figure 2. Microphotographs of th0 near field radiation patterns of 

Lhe = SOp diameter fibres illuminaLed as shown in figure 1. 
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The f~rst observation in company w~th other observat~ons of 

class1cal opt1cal phenomena (Newton's solar spectrd) was made WJ.th the 

use of sunl~ght as a source. At the t~me the ends of a 50 cm length 

of commerc~ally ava~lable f~bre bundle* were being prepared for 

exper1mental use 1n loss measurements. The effect1veness of the 

polish~ng process descr~bed ~n Chapter 2 was be~ng exam~ned us~ng a 

~croscop~c observat~on of the pol1shed end of the f1bre bundle wh1lst 

illum~nating the other end of the bundle (already pol1shed} w~th a wh~te 

l~ght source pos~t~oned as shown ~n F1gure la. The ~llum~nated end of 

the bundle was hand held and a chance movement placed the ends of the 

f~bres ~n a bright beam of sunl~ght, F~gure lb. The resultant 

photom1.crograph of the v~ewed end of the bundle ~s shown in F1.gure 2b. 

Thl.s may be compared w1.th Figure 2a wh~ch l.S the photom1crograph 

correspond~ng to illum~nat~on of the bundle as shown in F~gure la. 

In Figure 2a all the f1.bres of the bundle appear to be equally 

~llum1nated and there ~s no observable var1at1on of 1ntensity w~th1n 

each fibre cross sect1on. The only apparent difference between f~bres 

is a varJ.atJ.on 1n d1mensJ.on of the 1llum1nated area wh1ch corresponds 

roughly to the core d1.ameter of each f~bre. Such var~at1ons are to be 

expected as a result of the manufactur1.ng method( 4 PP· 63 } in wh~ch all 

f1.bres are pulled Sl.multaneously from the~r own preforms of core and 

cladd1ng glass. Any var~at1ons 1.n preform d1mens1ons, pull1.ng rates or 

furnace temperatures w~ll result ~n var1at1.ons of f~bre s~ze. 

In Figure 2b marked variat1ons 1n 1ntens1ty are v1s1ble w1tf1n 

the cross sect1.on of certa1.n fibres. The prec~se form of the var1.at~ons 

and their contrast is seen to vary from f~bre to f~bre. Of the 

*Rank Kershaw 11 FIBROFLEX 11
, See AppenC.~-x B for spec1f1cation. 



Tungsten 
Bulb. 

' t , 

-0-
, t' 

Fibres. 

d 

FLgure 3. The experLmental arrangement for LllumLnatLng a fLbre 

bundle WLth whLte lLght. 
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approx1mately 400 f1bres 1n the bundle, 220 f1bres exh1b1ted good 

contrast var1ations, lOO showed poor contrast, the rema~nder show1ng 

no observable var1at1ons of 1ntens1ty w1e11n their cross sect1on. 

Two quest1ons are posed by these observat1ons. vfuat 1s the 

source of the variations of 1ntens1ty and why does the1r contrast or 

VlSlblllty vary from f1bre to f1bre? A l1terature search revealed that 

although wh1te l1ght has been used 1n prev1ous exper1mental 1nvestigat1ons 

. (18 19) of propagat1on 1n opt1cal wavegUldes ' the current observat1ons have 

not been reported elsewhere. 
(20) 

A paper publ1shed dur1ng the course of 

the work independently conf1rmed certain aspects of the exper1mental 

results and also prov1ded a useful 1mpetus for the analyt1cal method 

der1ved for the explanat1on of the observed phenomena. 

To a1d further 1nvestigation, the exper1mental arrangement of 

F1gure lb was replaced by that shown 1n F1gure 3. The sun lS replaced 

by a 15 watt tungsten proJeCtlon bulb pos1t1oned a d1stance d from the 

end of the fibre bundle, such that for d ~ 30 ems approx1mately plane 

polychromat1c waves are 1nc1dent upon the ends of the f1bres. These 

plane waves are 1nc1dent at an ax1al angle e def1ned as the angle between 

the normal n to the wavefront and the long1tud1nal ax1s of the fibres 

and at azimuth angle a. The az1muth angle lS defined as the angle between 

the long1tud1nal plane conta1n1ng the wave normal and an arb1trary f1xed 

iong1tud1nal plane. The normal n of a plane wave co1ncides with the 

d1rection of propagat1on of the wave. 

The f1bre bundle 1s clamped 1n the rotational Inount shown 1n 

detail in F1gure 4. Th1s mount allows 1ndependent var1at1on of e and a 

for a fixed source pos1t1on. The two components of e avallable on the 

rotat1onal mount denoted e x' e add vector1ally to g1ve e. W1th e 
y y 

clamped at o 0 the e and a values requ1red now correspond linearly to e 
X 

and a of the rotat1onal mount although there may be an offset requ1red 



F1gure 4. Deta1l of 

the rotat1onal mount. 
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due to the off ax~s pos~t~on of ~nd~v~dual f~bres w~thin the bundle 

term1nat~on. The method of determ~n~ng the offset requ~red ~s 

cons~dered later. 

Neglect~ng for the time be~ng any off set correct~ons necessary, 

an ind1.cat1.on of any dependence of the "var1at1ons of 1ntens1ty 11 hereafter 

referred to as the patterns, upon 8 or ~ was obta~ned by selecting 

ind~v~dual "good contrast" filires and not~ng the form and v~s~b~l~ty of 

the~r patterns as e and ~ were varied for a g~ven source distance d. 

When d >- 5 ems ~t was found that the form of the patterns had a pronounced 

~dependence and an ~ncreas~ng v~s~b~l~ty for ~ncreas~ng 8 >~hen 8 >- 10°. 

When 8 < 10° no patterns >~ere v~s~ble. When d < 5 ems the patterns 

became generally blurred and for d increasing and greater than 10 ems 

no dependence upon d was observed. These observat~ons agree w~th the 

results of the exper~mental arrangements of Figure l. Figure la corresponds 

to d < 5 ems where the patterns are generally ~ndist~nct whereas ?~gure lb 

0 corresponds to d >> 10 ems and e > 10 , wh~ch ~s an opt~mum v~s~b~l~ty 

condl. t1on. 

Th~s next procedure is designed to test the hypothes~s that the 

patterns are a funct~on of the f~bre bundle term~nat~ons. A s~ngle 

f~bre rad~at~ng good contrast, well def~ned patterns,was selected at the 

view~ng end of the bundle. The patterns together w~th the~r ~ dependence 

were recorded us~ng a v~deo tape recorder as descr~bed ~n Chapter 2. 

The greatest magn~f~cat~on m~croscope obJect~ve ava~lable ( x lOO) was 

used in con]unct1.on w1th the m1croscope overhead 1.llum1.nator to 1llum1.nate 

the end of this s~ngle f~bre only. The crosstalk between th~s f~bre and 

adjacent f~bres was observed to be small by v~ew~ng the second end of the 

bundle through another m~croscope. The terminat~on was removed from the 

second end of the f~bre bundle and th3 protect~ve sleev~ng removed over 

the whole length of the bundle up to w~th~n 2 cm of the other end 

------------------------------------------------------------------------------------ -- ----- -
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term1nation. The s1ngle 1llum1nated f1bre was now 1dent1f1ed by the 

h1gh 1ntens1ty of 1ts rad1at1on f1eld. The free end of this s1ngle 

f1bre was f1xed 1n the rotat1onal mount and the a dependence of the 

patterns was tested as before. Th1s end of the f1bre was a broken end 

and the a dependence test was repeated five times w1th a freshly 

broken end each time. The form and a dependence of the patterns was 

found to be unchanged, although some var1at1ons of v1s1b1lity were 

observed over the f1ve tests. 

Th1s s1ngle f1bre was now broken away from the rema1n1ng end 

term1nat1on and both ends ground and pol1shed us1ng the procedures 

descr1bed 1n Chapter 2 for the preparat1on of unmounted s1ngle f1bres. 

This single fibre now 45 cm 1n length replaced the bundle shown 1n 

Figure 3 and the or1g1nal 8 and a dependence tests were repeated. The 

results for this unmounted f1bre showed no var1at1ons from those obta1ned 

when it was a member of a bundle. This suggests that the end term1nat1on 

and the other f1bres of the bundle play no part 1n the pattern format1on 

process of an 1ndiv1dual f1bre. Th1s result, together w1th the prev1ous 

observation of very weak dependence upon polished flat f1bre ends (from 

the "broken ends" exper1ment), suggests that the format1on of the patterns 

1s primarily a result of propagat1on 1n the f1bre. The var1ab1lity of 

patterns from f1bre to f1bre w1th1n a bundle suggests var1at1ons 1n the 

f1bre character1st1cs 1n add1t1on to the core d1ameter var1at1ons already 

d1scussed. 

An exper1mental 1dent1f1cat1on and study of 1nd1v1dual f1bre 

patterns 1s clearly fac1l1tated by the use of robust f1bre bundles as 

opposed to frag1le s1ngle unmounted f1bres. To conf1rm the equ1valence 

of the bundle mounted f1bre,to the s1ngle unmounted f1bre for observat1on 

o~ patterns d1ffer1ng from those of t~e f1bre prev1ously tested, three 

further f1bres were tested. Each f1bre was selected to show patterns 



Figure Sa . a = 0° Figure 5b. a = 52° 

Figure Se. a Figure sa. a = 230° 

Figure Se. a = 260° 

Figure S. Microphotographs of near field radiation patterns observed 

when a 40 cm length of cladded fibre was illuminated with 

white light at an axi~l angle of incidence of 25° and at 

azimuthal angles a as indicated. 
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of d1fferent forms wh1lst 1n the bundle and each was tested as an 

unmounted f1bre w1th both ends broken at lengths of 20 cm, 30 cm and 

40 cm. No variat1on 1n the results prev1ously establ1shed was obta1ned. 

W1th pr1or knowledge of the theoretical results establ1shed 1n later 

chapters, the f1bre patterns selected for deta1led descr1pt1on here 

appear to have been formed as the result of propagat1on 1n an ellipt1c 

cross sect1on f1bre. S1nce this s1mple perturbat1on of a circular 

cross section 1s a maJor feature of the theoret1cal analys1s of the 

pattern format1ons and illusLrates many of the results ach~eved, it w1ll 

form a useful exper1mental bas1s for the 1ncroduct1on of the rema1nder 

of the thes1s. 

The experimental arrangement of F1gure 3 was used to obta1n the 

photom1crographs shown in F1gure S of the patterns of the selected 

f1bre. The ax1al angle 6 was fixed at 2S0 and the az1muthal angle a 

is ind1cated aga1nst each p1cture of F1gure S. The pronounced dependence 

of the patterns upon the az1muthal angle a 1s clearly demonstrated. 

The patterns are the reg1ons of h1gh or low intens1ty wh1ch appear w1th1n 

the grey background of the f1bre cross sect1on. F1gure Sa has a h1gh 

intens1ty band form1ng a d1ameter, and low 1ntens1ty reg1ons at selected 

az1muthal pos1t1ons and at rad11 r/2 and 3r/4, where r 1s the rad1us of 

the 1llum1nated core. These low and h1gh 1ntens1ty reg1ons become h1gh 

and low intens1ty reg1ons respect1vely at other az1muthal pos1t1ons of 

the source, for example 1n F1gure Sb where the 3r/4 rad1us pattern 1s 

now h1gh intens1ty. The low intensity reg1on correspond1ng to the h1gh 

intens1ty d1ameter band of F1gure Sa 1s the dark region at the centre uf 

the f1bre shown in F1gure Se. 

If straight l1nes are drawn within and along the h1gh 1ntens1ty 

patterns and extended to the c1rcumference of the f1bre core as shown 1n 

Figure 6, simple closed geometr1cal f1gures are obta1ned. The high 

intensity d1ameter pattern (Figure Sa) corresponds to a stra1ght l1ne 



Figure 6a . 

.Figure 6c . 

Figure 7. 

Figure 6b . 

MicrophoLographs of the near field patterns 

observed when a 40 cm. length of single fibre 

was illuminated by white light . 
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(F~gure 6a), the r/2 rad~us pattern (F~gure Se) produces a tr~angle 

(F~gure 6b) and the 3r/4 rad~us patterns (F~gure Sb) produces a square 

(Figure 6c) . The s~mllarity between these closed figures and the 

closed f1gures of the skew ray paths, wh~ch are 1ntroduced 1n Chapter 

5, forms the bas1s of the analys1s of the patterns g~ven ~n Chapter 6. 

The patterns of other f~bres conta~n components s~m~lar in form to 

those of F~gure 5 but which appear ~n d~fferent comb~nat~ons. Th1s 

suggests that the analys~s based upon the closed f~gures may be generally 

appl~cable to f1bres of the core cladded type. 

A hypothes~s wh~ch may be set aga1nst th1s suggest1on 1s that 

the patterns observed are a un1que property of propagat~on ~n core 

cladded f~bres manufdctu1ed by the method used for the production of 

these bundles. To test th~s hypothes~s a 40 cm length of s1ngle core 

cladded f1bre manufactured by a d~fferent process was ground and pol~shed 

at both ends as an unmounted f1bre and tested as before us1ng the 

exper~mental arrangement of F~gure 3. The observat~on of the patterns 

within th1s f~bre, shown ~n F~gure 7 wh~ch appear s~m~lar to those of 

F~gure 5, suggest that th~s hypothes~s may be d~scounted. Apart from 

the obvious d~fference ~n the number of f~bres pulled s~multaneously, 

the manufactur~ng processes of the bundle f1bres and th~s s~ngle f~bre 

d~ffer ~n the product1on of the preform from wh~ch the f~bres are 

pulled. The bundle f~bre preform cons1sts of a glass rod placed ~ns1de 

a glass tube, whereas the s~ngle f~bre preform 1s drawn from two glasses 

using the double cruc1ble method. The double heat~ng requ1red to produce 

the s~ngle f~bre ~s l1kely to cause d~ffus~on of the glasses at the 

core cladd~ng boundary, wh~ch 1n turn may produce a ramp refract~ve 

~ndex profile as opposed to the theoret1cal step prof~le. The 

measurement of the character~st~cs of a ramp profile ~s discussed 1n 

Chapter 4. 
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1.3 Conclus1on 

Th1s study is concerned w1th a prev~ously unreported phenomenon 

wh1ch occurs as the result of propagat1on of wh1te l1ght 1n core cladded 

wavegu1des. The open1ng comments of the chapter suggest that although 

such phenomena may be of l1ttle 1nterest to the "f1bre opt~cs" user, 

they may well be of 1nterest to the opt1cal commun1cat1ons eng1neer. 

The potent1al complex1ty of analys1ng these phenomena has meant 

that each stage of analysis has been accompan1ed by, or preceded by, 

experiment. To avo1d lengthy d1vers1ons 1nto exper1mental detail 1n 

later chapters most of the exper1mental procedures are presented 1n 

the next chapter. 



-12-

CHAPTER 2 

2.1 Introduct~on 

The exper~mental req~rements of th~s study fall ~nto two 

categor~es. The f~rst concerns the preparat~on of f~bre samples. Some 

cons~derable t~me was spent on developing a technique for the prec~s~on 

terminat~on of s~ngle unmounted f~bres and wh~ch ~s the subJect of a 

(21) 
short paper • Th~s techn~que was evolved from the methods developed 

for term~nat~ng f~bre bundles us~ng gelat~ne moulds and the subsequent 

gr~nd~ng and pol~sh~ng of the f~bre ends. The problems of term~nat~ng 

and jo~nt~ng opt~cal wavegu~des has been the subJect of cons~derable 

research and a short rev~ew of current methods ~s 1ncluded. 

The second exper1mental requ1rement concerns the 1llum1nation of 

the f~bre samples and observat1on of the var1ous phenomena descr1bed 1n 

the previous and later chapters. The nom~nal d~ameter of the f~bre 

core is 50 m1cron and the observat1on and measurement of the mLcroscopLc 

phenomena w1th1n th1s d1ameter poses exper~mental d~ff~cult~es w~th 

generally expens1ve solut~ons. In the absence of any su1table 

fac~l1t~es w1thin the department a s~ngle cap1tal expend~ture was made 

at the end of the f~rst year to obta~n equ1pment to undertake the study. 

The l~m1t of the budget was such that novel solut~ons to certa~n 

measurement and observation problems were developed and 1mplemented. 

2.2 Rev1ew of F~bre Preparat~on and Jo~nt~ng Methods 

Th 1 th d (
3

•
4

' f f b e usua me o o term1nat1ng 1 re opt1c components 1s 

to embed the ends of the f~bres ~n a res~n cement wh~ch when cured ~s 

as hard as the glass of the f1bres. This forms a cont~nuous surface 

which may be ground ~nto any des~red contour and then pol1shed us~ng 

(22) 
the proven lens product1on procedures • The opt1cal qual~ty of the 

f1n~shed surface depends to a great extent upon the pol~sh~ng t1me, 

the longer the polish~ng t1me the higher the quality of the surface. 



End !"late 

F~gure 8. The ~mmers~on tank for terffilnat~ng s~ngle f~bres. 
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The usual pol~sh~ng compound ~s ferr~c ox~de or Jewellers rouge. 

Emery powders of d~fferent grades are used ~n the grind~ng process. 

The two processes d~ffer ~n that only the gr~nd~ng stages remove 

mater1al from the surface whereas polish~ng ~s a smooth1ng operat1on, 

hence its t~me dependent effect. The rough start~ng surface ~s 

progress~vely ground ~nto the requ~red contour using ~ncreas~ngly f~ner 

emery powders. The scratch marks made by each grade of emery are removed 

by the follow~ng f~ner grade. The pol~sh~ng process then smooths the 

scratches of the f~nal grade of emery. A more detailed descr~ption of 

the preparat~on of opt~cal components ~s conta~ned in reference 22. 

These procedures may also be used to prepare the ends of s~ngle 

f~bres. The requ~red length of f~bre ~s cemented ~nto a cap~llary tube 

and the convent1onal grind1ng and pol1sh1ng machines are used to produce 

a flat polished surface at each end of the f~bre and tube comb~nat~on. 

In commun~cat~ons appl~cat~ons long lengths of f~bre are used and a 

short length of cap~llary tube ~s then cemented to each end of the fJbre. 

This method has three maJOr d~sadvantages :- the fibre length ~s f~xed, 

the gr~nd~ng and pol~sh~ng procedure ~s labor~ous and the cement~ng of 

a comparatively heavy length of cap~llary tub~ng onto the frag~le f~bre 

greatly ~ncreases the l~kel~hood of accidental breakage of the f~bre 

dur~ng rout~ne handl~ng. 

Early exper~menters us~ng s~ngle f~bres removed the necessity 

for any preparat~on of the ends of the f~bre by using the ~mmers~on 

techn~que shown ~n F~gure 8. The f~tre is broken and the rough end 

placed ~n the channel, butt~ng up to the glass plate wh~ch ~s then 

clearly normal to the f~bre's long~tud~nal ax~s. The channel ~s filled 

with a l~quid match~ng the refract1ve index of the core glass, (for core 

cladded type f~bres). The glass plate now acts as the fibre end and for 

a lossless term~nat~on ~s of the ~ame refract~ve ~ndex as the core glass. 
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The cutt1ng of sheet glass 1s fac1l1tated by the property of 

the glass to shear along a fault l1ne 1nduced by scor1ng the surface 

with a suitably hard po1nt, normally a diamond t1pped tool. An adaptat1on 

(23) 
of th1s procedure 1s used by Gloge et al in a very successful dev1ce 

for shearing s1ngle unmounted f1bres to produce fibre ends of 

unsurpassed opt1cal qual1ty. Th1s 1s the method now used by most 

communications laboratories. 

The methods for term~nat1ng s1ngle f1bres for use 1n commerc1al 

communications systems are generally based upon the embedd1ng techn1que, 

w1th 1nbu1lt al1gnment fac1l1t1es. A typ1cal al1gnment requ1rement 1S 

(24) 
perhaps opt1m1st1cally quoted to be w1th1n 5 m1cron for a lOO m1cron 

diameter f1bre. To pos1t1on and f1x the f1bre w1th1n these l1m1ts us1ng 

an 1n1t1ally l1qu1d cement clearly presents cons1derable eng1neer1ng 

problems. 

(25) 
Dalgle1sh and Lukas report one method , though the successful 

use of the techn1que outs1de of the laboratory 1s doubtful. The 

unreliab1l1ty of plug and socket connect1ons and the d1ff1cult al1gnment 

problems these pose may be s1de stepped by dev1s1ng a method for quas1-

permanent connect1ons between f1bres and components, or the butt jo1n1ng 

of f1bres. The quasi-permanent connect1on would be made as a permanent 

jo1nt, but the methods used would allow the break and remake of the 

JOint w1th the m1n1mum of effort. Such a method requ1res a simple 

(26) 
al1gnment procedure such as that descr1bed by Someda for the butt 

joining of f1bres, and the appl1cat1on of a qu1ck setting cement. Th1s 

procedure w1ll be essential anyway for the emergency piecing of opt1cal 

waveguide cables 1n the event of breakage dur1ng serv1ce. 



Figure 9 . A completed fibre 

bundle termination . 

Figure lOb. The grinding and 

polishing machine. 

A 

Figure lOa . Schematic of the 

grinding and 

polishing muchine . 

Figure lOc . Manual air pistons . 
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An alternat~ve to the cement~ng of the butt (f~bre to f~bre) 

JO~nt ~s to cut the f~bre ends us~ng the shear method, pos~t~on the 

two ends a predeterm~ned d~stance apart and then to fuse the two f~bres 

(27) (28) 
by controlled heating. B~sbee and Dyott report encourag~ng 

results us~ng th~s method. There 1s an interest~ng parallel between 

this method and the braze J01nt1ng of co-ax~al cables. If the term~nal 

and repeater un~ts of the opt1cal commun~cat~on system are prec~s1on 

f~tted w1th f~bre ta~ls dur1ng the manufactur1ng stages, then only butt 

]Oin1ng of these ta~ls to the cables would ~e requ1red ~n the f1eld. 

Most of the J01nt1ng exper1ments descr1bed above have used core 

cladding type f1bres. It ~s not clear whether such procedures w~ll be 

directly appl~cable to the low loss, parabol~c refractive index, s1l~ca 

f1bre descr~bed 1n Chapter 1. 

2.3 Development of F1bre Bundle Prepdrat~on !1ethods 

l~e methods used to prepare the ends of the f1bre bundles used 

in this study d~ffer from the usual method descr1bed ~n Sect1on 2.2 ~n 

deta1l only. The moulds used to conta1n the res1n cement around the end 

of the bundles are 7 mm d~ameter gelat~ne p~ll capsules. The shape of 

these capsules ~s ~deal for clamp~ng ~n the rotat~onal mount of F1gure 4 

for subsequent gr1nd~ng and pol~sh1ng. A completed term1nat1on ~s shown 

in F1gure 9. 

The absence of any ex1st1ng fac1l1t1es encouraged the development 

of the spec~al purpose gr1nd1ng and pol1sh1ng mach1ne shown in Figure 10. 

The follow~ng extract from reference 21 descr1bes 1ts operation w1th 

reference to F1gure lOa. The var1ous grind1ng and pol~shing compounds 

are mounted on alum1n1um plates (A). These plates are f1xed in turn to 

the rotat1ng chuck (B). The chuck is mounted on the p1ston rod of the 

pneumatic cyl1nder (C) via two ball races (D). The motor (M) rotates 

the chuck via the belt dr1ve (E). The plates (A) are thus rotated by 
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the motor (M} and moved along the z axLs by the pneumatLc pLston actLon. 

When the plates are in contact wLth the workpLece, pressure between the 

two may be adJusted by varyLng the aLr pressure Ln the pneumatLc 

cylLnder (C). The motor is a sLngle pole LnductLon motor and LS drLven 

by a varLable frequency supply. Its speed LS varLable between 0 and 3000 

rpm. The aLr supply is obtained from a large manually actuated pLston, 

FLgure lOb, whLch forms a closed system WLth cylLnder (C). 

Coarse grade emery paper LS used for rough grLndLng and fLne 

dLamond paste (as used for the preparatLon of metallurgLcal specLmens} 

provides a rapLd fLnal grLnding compound. When polLshLng LS requLred 

the ferrLc oxLde LS applLed usLng a felt pad mounted on plate (A}. The 

two rough grLndLng and two dLamond grLndLng steps requLred for each 

termLnatLon normally take fLve mLnutes. ThLs tLme Lncludes the tLme 

to make four changes of the (A} plates. The polLshLng tLme depends upon 

the fLnLsh requLred and LS typLcally a further five mLnutes for the 

bundles used Ln thLs study. The resin cement* used LS softer than the 

fLbre glass and the dLamond grLndLng leaves the glass fLbres proud of 

the resLn castLng. The resultant small surface area of the fLbre ends 

alone enJoys enhanced attentLon from the polLshLng pad and thLs may 

account for the surprLsingly short polishing time requLred for the good 

optLcal fLnLsh obtaLned. 

An attempt to use a 7 mLcron grade dLamond paste to Lncrease the 

speed of the rough grLndLng step was found to cause excessLve chLppLng 

of the fibre ends. The fLner grades of paste tend to pLck up partL~leq 

of glass \lhich also cause chLppLng and these pastes have to be frequently 

replaced. However, only minute quantities are requLred and the cost is 

negligible. 

*CIBA-GIEGY, ARALDITE MY753, HARDENER HY956. 



Figure lla . 5~ grade paste 

Figure 1lc . 1~ grade paste . 

Figure 1lb . 3~ grade paste 

Figure 11. Microphotographs of 

fibre bundle terminations 

after grinding with diamond 

grinding pastes of the 

grades shown . 
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The completion of each stage of grinding is ~stablished by 

microscopic observation of the fibre ends . The scratch marks are 

obse rved using overhead illumination and chipping of the fibre is best 

observed by illuminating the opposite end of the bundle , (the experimental 

arrangement of Figure la). The fibres should appear as complete "circles" 

of light and with the scratch marks associated with the previous grade 

of grinding visible over the whole of the fibre er.ds . This is illustrated 

in Figure 11 where the scratch marks for three grades of diamond paste 

arc visible , the middle grade is not normally used . 

2 . 4 Preparation of Single Unmounted Fibres 

At the time the method to be described was developed there was no 

other published method for terminating singl e fibres without permanently 

embedding them in resin compounds , with the accompanying disadvantages 

already discussed . The shearing technique(23 ) has since provided a 

me thod suitable for use in communication fibre laboratories . Unlike the 

shear method, the current ~eL~od is not limited to fibres greater in 

length than the shearing machine (typically 20 cm) , and may also terminaLe 

'1 f'b 'th 1 . df Th 'd' d l'h' h ' (2l) s~ng e ~ res w~ a s op~ng en ace. e gr~n ~ng an po ~s ~ng mac ~ne 

built for preparing fibre bundle terminations is used without modification 

t o prepare the single fibres . 

A set of vice jaws was manufactured from an embedding resin casting , 

cut as shown in Figure l2a . The mould was a gelatine pill capsule as used 

for the bundle terminations. The fibre to be prepared is passed through 

the hole in the base of the jaws and then clamped between the jaws by the 

mounting vice shmm in Fi gure 12b. The mounting vice is secured to the 

r otational mount of Figure 4 and grinding and polishing proceeds as for 

the bundle terminations . A fibre end , after the initial diamond paste 

grinding , is shown in Figure 13a and the curvature of the finished end i s 



7rrm 

r'igure 12a . Vice jaws £or 

holding single £ibres 

during grinding and 

polishing. 

Figure 13a. 

Figure 13c. 

Figure l2b. Vice associated with 

the jaws shown in figure l2a . 

Figure lJb . (Overall 

surface curvature ::: l JJ) 
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demonstrated in F~gure 13b. The fr~nges were obta~ned us~ng a standard 

~nterference m~croscope obJect~ve and a sod~u~ l~ght source. The f~bre 

was adJusted to g~ve the minimum number of fr~nges across the end face. 

The curvature observed is due primar~ly to the pol~sh~ng process because 

as prev~ously d~scussed, the d~amond paste grinding leaves the f~bre 

proud of the softer Jaws and the pol~sh~ng compound tends to round off 

the edges of the f~bre. 

The f~n~shed f~bre JS removed from the Jaws by rel~ev~ng the v~ce 

pressure unt~l the jaws are 'lell open, pushing the f~bre forwards to 

release ~t from the Jaws and then pull1ng 1t out backwards. Any depos1t 

on the end face may be removed by gently swabb~ng the f~bre end w~th 

alcohol. The clamp~ng pressure appl~ed to the f~bre ~s cr~t~cal, 

excess1ve pressure encourages ch1pp1ng of the f1bre dur1ng gr1nd1ng and 

~nsuffic~ent pressure obviously allows the f~bre to sl~de back beneath 

the JaW surface. An ~ndicatlon of the v~ce pressure upon the fibre ~s 

obtained by observ~ng the deformat~on of the Jaws adJacent to the f~bre 

as the jaws are closed. The correct pressure 1s demonstrated 1n F1gure 

13a where the f~bre ~s clamped but there ~s no ~ndentat~on of the Jaws. 

2.5 Preparat~on of Short F~bres 

The observat~on of s~ngle reflect~on caust~cs and entrance aperture 

diffract~on effects as descr~bed ~n Chapters 4 and 5, requires a 

prepared f~bre of < 20r length, where r ~s the rad~us of the f~bre core. 

(20r ~ 0.5 mm for the f~bres used ~n this study). The equ~valence of the 

bundle mounted f~bre to the single un~ounted f~bre for the observat~on 

of the phenomena of maJOr ~nterest, wh~ch was establ~shed 1n Chapter 1, 

suggested that these short lengths could be produced from th~n sl1ces 

taken from a bundle terminat~on. The procedure ~s analogue to the 

m~crotome techn~que used ~n b~ologicaL and botan~cal sect~on m~croscopy. 



Fibre bundle 
slice -~r--C). 

I I 
I 

F1gure 14. Hold1ng dev1ce for short f1bre sample 

preparation. 

Eyepiece Objective. Scaling. 
1mm= 

x15 x90 .S78f 

x15 x45 1.76? 

x15 x20 3.96f 

F1gure 16. Magnificat1on cal1brat1on table • 

. . 



-19-

A th~n sect~on (typ~cally 1 ~~ thickness) ~s sawn from a 

prepared end of a f~bre bundle and us~ng the holding dev~ce shown ~n 

Figure 14, the sawn end ~s hand ground unt~l the sect~on th~ckness 

approaches the requ~red length of f1bre. The sect~on is then d1amond 

ground and pol~shed by holding the sect~on aga~nst the A plates us~ng 

the dev~ce of F~gure 14. The shortest length of f~bre prepared 1n th1s 

manner ~s ~ 12r ~ 0.3 mm. Below th1s length the f~bres tend to be 

pulled out of the res1n compound by the d~amond gr~nd~ng operat1on. 

A s~m~lar procedure for the preparat~on of short fibre spec1mens 

(29) 
has recently been publ1shed 1n connect1on w1th the view1ng of 

refract~ve ~ndex prof~les of f1bres. 

2.6 M1croscop~c Measur1ng and Recording Techn~ques 

All the m~croscop~c observat~ons reported in th~s thes~s, w~th 

the except1on of those made dur~ng f1bre preparat~on, were made us~ng the 

exper1mental arrangement of F~gure 15. The m1croscope system ~s based 

upon an Eal~ng Beck Ep~max m~croscope sub assembly. The Tetraver 

Intermed~ate Un~t allows permanent access to the ~mage by the Polaro~d 

Instrument camera and access e~ther to the b~nocular eyep~ece or the T.V. 

camera~ Relevant 1nformat1on about the eyep1eces and ob]ect1ves 1s g1ven 

~n Table 1. Calculation of the overall magn~f~cat~on of an image 1s 

avo~ded by using the cal~brat~on chart shown ~n F1gure 16 where the 

measured magnif1cat~on of a cal1brat~on grat~cule for each comb~nat~on 

of eyep~ece and ObJeCt~ve used ~n the study 1s g~ven. These f1gures 

apply to measurements on photographs taken w~th the polaroid earner>, but 

the same cal1brat1on system ~s used for the T.V. a~ded measurements 

descr1bed later. 

Focuss~ng 1s performed by mov~ng the obJect carr1er and ~ts 

movement is measured us1ng the d1al gauge pos1t1oned as shown 1n 

Figure 17. A measurement is made w~th reference to the focussed pos1t~on 



Figure 15 . Microscope experimental arrangements . 

Figure 17. Detail of the dial gauge . 
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of the obJeCt and a pos~t~ve movement increases the d~stance between 

the obJect and the obJect~ve lens. 

The T.V. camera fac~l~ty allows proJeCt~on of the ~mage onto a 

T.V. mon~tor wh~ch g~ves a small (2 to 3 t1mes) magnif1cat1on but more 

1mportant allows the superpos~t~on of reference d1agrams upon the 1mage 

to aid the observat1on and measurement of the patterns. An extens1on 

of this facil~ty ~s the use of a V~deo Tape Recorder (VTR) wh1ch also 

allows the record~ng of an aud1o commentary. Th1s perm1ts d1rect compar~son 

of patterns us1ng two mon1tors w1thout the use of expens~ve photograph1c 

records. 

The measurement of 1ntens~ty w1th1n the ~croscop~c 1mage plane ~s 

usually accompl1shed using a m1crophotometer. Th~s cons1sts of a s~ngle 

opt~cal f1bre wh~ch scans the 1mage plane with~n a spec1al eyepiece and 

the f1bre output ~s fed to a photomult~pl~er. The resultant measurement 

is related to the fibres XY pos1t1on 1n the form of a chart record1ng. 

These 1nstruments are expens~ve (>ElOOO) and clearly outs~de the budget 

of th1s proJect. 

However, a T.V. p~cture ~s already a cont~nuously scanned ~ntens1ty 

measurement and by sampling the v1deo waveform at the relevant t1me, the 

1ntensity at any po1nt w~th~n the T.V. p~cture may be obta1ned. Further, 

the construct~on of the T.V. v1deo waveform as a ser1es of X d~rect~on 

scans 1s already 1n the most usual form of scanned intens1ty measurements. 

In the telev1s~on eng~neers language, a suitable 1ntens1ty measur1ng 

scheme will extract and display a s~ngle selected line from the video 

waveform and prov~de a marker on the mon~tor p~cture to show wh~ch l~ne 

has been selected. A further ref1nement WP1Ch w1ll allow po~nt 1ntens1ty 

measurements, ~s a second marker wh1ch g~ves an X pos~tion along the line 

on both the l~ne d1splay and the roon~tor. 
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Figure 18a. The block diagram of the line extractor and marker circuit . 

A - Line Sync Lo A Trigger input 

B - Frame sync to B Trigger input . 

C - A gate out to Delay trigger input. 

Figure 18b. Monitor picture of 

8Q, graticule in ~PlepS. 

Figure l8d. The selected line . 

(the white line in Figure l8b) 

Figure l8c . The £ramP waveform 

showing the selected line. 
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A s~mple system to ach~eve these fac~l~t1es was constructed 

and ~s shown ~n the block d1agram of F1gure 18a. The maJor task of 

extracting the des1red l1ne from the v~deo waveform is v~rtually a 

standard fac1l1ty of the Tektron~x Osc1lloscope and ~s descr1bed in 

the relevant handbook*. A Sync Extractor and L1ne Marker c~rcuit was 

des~gned and bu~lt and ~s descr1bed ~n detail in Append1x C. Th~s 

c~rcu~t prov1des stable frame and line pulses for the tr1gger~ng of the 

Tektron1x delay c~rcuits. The L1ne Marker br1ghtens the selected line 

on the mon1tor (F1gure 18b) w~th a var~able w~dth pulse wh1ch commences 

on receipt of the l~ne Sync pulse. The po~nt marker ~s the end of th1s 

pulse and 1s pos1t1oned along the selected line dependent upon the pulse 

w~dth. A port1on of the selected l1ne waveform (complete l~ne waveform 

shown ~n F~gure l8c) ~s expanded and d1splayed on a second osc~lloscope 

us~ng a var~able delay facil1ty. The resultant calibration waveforM of 

the mon~tor p~cture of F1gure 18b ~s shown 1n F~gure 18d, with the 20 

m~cron markers adJusted to co~nc1de w~th the 1 cm oscilloscope grat1cule 

markers. 

The complexity of the ~ntens1ty ampl~f~cat~on system w~th the 

numerous automat~c ga~n control fac~l~t~es, suggests that compar1sons of 

intensLty may be made only between polnts 1n the same 1mage and no attempt 

1s made to relate these measurements to measurements obta1ned at 

d~fferent t1mes. Th1s does not apply when the ~ntens~ty measurements are 

exper~mentally normal1sed to obta~n pos~t~onal 1nformat~on about the ~mage 

under var~able ~lluminat~ng cond~t1ons, wh~ch obv~ously must occur at 

d~fferent t1mes. The normal1sed procedure ~s d1scussed further ~n 

Chapter 4 ~n connection w~th the measurement of the ramp refractive index 

prof~le of core cladded f~bres. 

*TEKTRONIX OSCILLOSCOPE TYPE 545A 



Pigure 19 . The experimental arrangement for varying t he spatial 

coherence of laser lighL . 

Figure 20. The rotational mount experimental arrangement . 
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2. 7 L1.ght Sources and Illuml.natJ_ng Arrangements 

Th~s sect~on is concerned w~th the exper~mental deta1.ls of the 

1.lluminat1.ng systems used in th1.s study and the1.r analys1.s is deferred 

unt1.l the d1.scuss1.on of the exper1.mental results in later chapters. 

Three sources are used to cover the requ1.red range of coherence 

and bandwidth character1stics. A tungsten filament bulb prov1des a 

polychromat1.c l1.ght source and a sod1.um lamp prov1.des quas1.-monochromat1.c 

l1.ght, both of these sources hav1.ng spat1.ally 1.ncoherent character1.st1.cs. 

A Metrolog1.c Model 920 Hel1.um-Neon laser prov1.des a source of monochromat1.c 

spat1.ally coherent l1ght at a wavelength of .6328 micron. 

The source areas of the tungsten f1.lament and sod1.um lamps are 

adJusted us1.ng d1.aphragms, although the entrance apertures of the f1.bres 

are generally the s1.gn1.f1.cant d1.aphragms 1.n the illum1.nat1.ng system. 

The spat1.al coherence of the laser l1.ght 1.s varied by 1.nsert1ng a 

rotat1.ng ground glass screen 1.n the laser beam. The degree of spat1.al 

coherence of the beam at the entrance aperture of the f1.bres 1.s a funct1.on 

of the d1.vergence of the beam, the character1.st1.c of the screen and the 

d1stances between the var1.ous components. Th1s exper1mental arrangement 

is shown 1n F1gure 19. 

The ma1.n exper1.mental d1.ff1.culty encountered in th1.s study l.S 1.n 

arrang1.ng the f1.bres and the 1.ll~~1.nat1.ng system 1.n a manner wh1.ch allows 

the angles of 1.nc1.dence of the l1.ght, as def1.ned 1.n Chapter 1, to be var1.ed 

1.ndependently wh1.lst s1.multaneously obscrv1.ng the effects of such 

var1.at1.ons on the l1.ght leav1.ng the oppos1.te end of the f1bres. When the 

length of the f1.bres perm1.t the use of the rotat1.onal mount of F1.gure 4, 

the 1.llum1.nat1.ng system, the rotat1.onal mount and the m1.croscope system 

are mounted on a common ax1.s as shown in F1.gure 20. In th1.s case the 

des1.red degrees of freedom are obta1.ned by'v1.rtue of the £lex1.b1.l1.ty of 

the fibre or f1.bre bundle. 



Figure 21 . The swivelling opLicul bench experimental arrangcmenL . 
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The short f1bre spec1mens have e1ther l1m1ted flex1b1l1ty or 

no flexib1l1ty and their pos1t1on1ng lS d1ctated by the requ1rements 

of the m1croscope system. Wlth the f1bres f1xed 1n pos1t1on the 1llum1nat1ng 

system must now be moved w1th1n a sol1d angle centred upon the entrance 

apertures of the flbres. It is not easy to prov1de the bulky 1llum1nat1ng 

systems Wlth both the axial and az1muthal degrees of freedom. A simpler 

solut1on lS to arrange for the f1bres to reta1n a rotat1onal degree of 

freedom, thus giv1ng the az1muth angle adJustment. The ax1al degree of 

freedom lS prov1ded by mount1ng the illum1nat1ng system on the sw1vell1ng 

optical bench as shown 1n F1gure 21. 

The fibre rotat1onal adjustment refers to the rotat1on of the entrance 

end of f1bres, w1th lim1ted flex1b1l1ty, their other ends be1ng f1xed, 

whereas the completely embedded f1bres Wlll rotate at both ends Slmultaneously. 

The rotat1on of the m1croscop1cally v1ewed end may result 1n the 

displacement of the f1bre and at h1gh magn1f1cat1on the f1bre of 1nterest may 

pass out of the fleld of v1ew. The az1muthal adJustment is therefore made 

slowly at low magnificat1on to allow the posit1on of the f1bre to be 

followed, and thls makes the adJUStment cumbersome. There is, however, 

no easy alternat1ve. The prev1ous comments about the offset correct1on 

for the rotat1onal mount of F1gure 4 applyequally to tn1s system and the 

method for determ1n1ng the correction 1s now d1scussed. 

2.8 Determ1nat1on of the Fibre Or1entat1on and Angle of Incidence 

The gr1nd1ng and pol1sh1ng mach1ne descr1bed 1n Section 2.3 produces 

a surface wh1ch lS normal to the opt1cal bench ax1s. To ut1lize th1s 

property for fibre term1nat1ons requ1res a method of al1gn1ng the embedded 

f1bres at the des1red angle to th1s surface pr1or to grind1ng. A 

procedure wh1ch positions the f1bres Wlth their long1tud1nal ax1s parallel 

to the opt1cal b~nch axis 1s suf£1c1cnt s1nce the rotat1onal mount w1ll 

permit the 1nsert1on of a measured off ax1s angle, result1ng in a slop1ng 

end terminat1on. 



Radiating 
light. 

Shadow of 
mask circles. 

Screen circles. 

--
Figure 23. The p~cture observed on the screen of F~gure 22 

when the f~bre bundle ~s correctly pos~t~oned. 
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The procedure developed for th1s purpose uses a well known 

(18) 
property of core cladded f1bres to rad1ate a hollow cone of l1ght 

when illum1nated at a s1ngle angle of 1nc1dence. Th1s property is 

der1ved in Chapter 5. If the rad1ated cone of l1ght 1s proJected onto 

a screen it produces a d1stribut1on of l1ght centred on the extended 

long1tudinal ax1s of the f1bre. When the screen 1s normal to th1s ax1s 

the distribut1on forms an annulus whose mean d1ameter depends upon the 

angle of 1nc1dence and whose w1dth depends upon the d1vergence of the 

rad1at1ng beam. The requ1red procedure 1S thus reduced to erect1ng a 

screen normal to the opt1cal bench ax1s and posit1on1ng the fibre such 

that 1ts rad1ated cone of light produces an annuldr d1str1but1on of l1ght 

on the screene 

The exper1mental arrangement 1s shown 1n F1gure 22 where the s1ngle 

f1bre may be replaced by a f1bre bundle 1f the 1nd1v1dual f1bre axes are 

parallel. Both ends of the bundle are ground nom1nally flat and normal. 

The end to be reground at the measured angle 1s placed 1n the rotat1onal 

mount. The opaque screen S and the transparent mask M are both marked 

w~th a ser1es of concentr~c c1rcles at rad1al 1ncrements of 1 cm. S and 

M are placed w1th the1r centres coax1al w1th the mounted f1bre ends and 

normal to the opt1cal bench ax1s. The other end of the f1bres are 

illuminated by the He-Ne laser at incident angles 6, a. The rad1at1ng 

cone of l1ght passes through the mask M and 1llum1nates the screen s. 

If the f1bre ends are coax1al w1th the screen and mask, the shadows 

of the mask r1ngs w1ll be concentr1c •1th the screen r1ngs. The f1bre 1s 

rotated in the ex, 6y, and a d1rect1ons unt1l the annulus of light 1s also 

concentr1c w1th the screen r1ngs, the concentr1c1ty of the shadow mask 

r1ngs being ma1nta1ned by us1ng the x, y adjustments of the rotat1onal 

mount. The correct alignment s1tuat1on 1s shown 1n F1gure 23. 



Figure 22 . The experimental arrangement for the alignment of fibres. 

Figure 25 . 
0 e,1,_ :: bo 

Figure 2f · 
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No account has been taken of the effects of any exLsting slopes 

on the radLatLng ends of the fibre. These are dLscussed Ln Chapter 5 

where Lt LS shown that the repeated applLcation of thLs alLgnment procedure 

and 1ts assoc1ated gr1nding process w1ll produce a surface wh1ch l.S 

progressLvely nearer to the reqULred normal surface. 

An alternative procedure is to relate the actual angle of 

incLdence of the lLght on the fLbre to the rotatLonal mount readings thus 

takLng account of any slopLng end effects. The axLal angle of LncLdence 

l.S measured us1ng an exper1mental 1nterpretation of the "Black Band" 

(18) 
effect dLfferent from that fLrst reported by Potter . ThLs effect LS 

now more generally known to be the propagatLon of skew rays WLth LncLdent 

angles above the merLdional cut off value, or in waveguLde nomenclature 

(30) 
as leaky modes • These effects are dLscussed Ln more deta1l Ln 

Chapter 5. It 1s sufflcLent here to observe that if light LS launched 

at an axial inc1dent angle er/ 2 g1ven by 

-1 ( 2 
8 r/2 = Sl.n /3 

where ec is the mer1.d1.onal cr1.t1.cal angle, then 1n short lengths of 

f1.bre (<2m) a black hole of rad1.us r/2 appears ln the cross sect1onal 

intensity dlstrl.bUtlon of the f1.bre, (r lS the rad1.us of the f1.bre core). 

An example of thls condit1.on 1.s shown 1.n FLgure 24 where the fLbre LS 

LllurnLnated by He Ne laser at 9r/2 = 40° USLng the exper1.mental 

arrangement of FLgure 20. The dependence of the radius of the black 

hole on the ax1.al angle of Lncidence gLven by equatLon 189 suggests 

that thLs angle may be measured by the appearance of the r/2 radLus hole 

to WLthLn +2°. 

1. 
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2.9 Concluslon 

The technlques descrlbed ln thls chapter for the preparatlon of 

Slngle-flbre or multlple-flbre termlnatlons are capable of produclng 

hlgh quality optlcal surfaces on the ends of the flbres at any deslred 

angle to thelr longltUdlnal axes. Slnce the phenomena of maJor lnterest 

in this thesls are not slgnlflcantly dependent upon the quallty of the 

end termlnatlons, the technlques developed have proved more than 

satlsfactory for use ln thls study. 

The llmlted budget avallable for the purchase of equlpment has 

encouraged the use of novel experlmental arrangements, and the apparent 

simpliclty of the phenomena under lnvestigatlon lS reflected in the 

Slmpllcity of these arrangements. However lt lS well known that slmple 

opt1cal exper1ments requ1re compl1cated analyt1cal techn1ques for the1r 

rlgorous analysls. Thls lS apparent from the contents of the next 

chapter whlch contalns the baslc optlcal theory used in the subsequent 

analysls of the experlments descrlbed ln later chapters. 
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CHAPTER 3 

3.1 Introduct1on 

Th1s chapter 1s 1ntended to prov1de the bas1c theory of opt1cs 

and wave phenomena wh1ch 1s pert1nent to th1s study. The treatment of 

many of the topics 1s necessar1ly brief 1n order to cover the f1eld in 

th1s single chapter. This is cons1dered to be ]ust1f1ed 1n v1ew of the 

. (31-34) 
many ava1lable textbooks cover1ng s1m1lar subJect matter • 

All electromagnet1c waves sat1sfy Maxwell's Equat1ons and th1s 

prov1des a conven1ent start1ng po1nt for the chapter. The character1st1cs 

of opt1cal waves are presented in the sect1ons ent1tled Bandw1dth and 

Coherence, Polar1sat1on, and Intens1ty. The effects produced when waves 

are obstructed by apertures or obstacles are analysed us1ng D1ffract1on 

Theory. The 1nteract1on of reflected or d1ffracted waves w1th themselves 

1s cons1dered in the sect1on on Interference Phenomena. The study of the 

behaviour of waves at d1electr1c 1nterfaces leads to the der1vat1on of 

the 1mportant Fresnel Equations. The der1vation of a scalar wave equat1on 

from Maxwell's equat1on 1s the foundat1on of the geometr1cal ray theory 

of l1ght propagat1on. 

The select1on of certain exper1mental arrangements to 1llustrate 

some of the theory 1n th1s chapter 1s based upon the1r close analogy w1th 

exper1mental arrangements wh1ch ar1se 1n the analys1s of l1ght propagat1ng 

1n the optical f1bres. 

3.2.1 Maxwell's Equat1ons and the Wave Equat1on 

The form of Maxwell's equat1ons used 1n th1s chapter 1s that used 

1n reference 31 wh1ch is spec1f1cally concerned w1th l1ght waves. 

The derivat1on of these equat1ons from the fundamental observat1ons 

of mov~ng charges 1s conta1ned 1n the extens1ve l1terature on 

(35-38) 
Electromagnet1sm and only a statement of the equations is g1ven here. 
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The electr~c vectors are denoted by E, the f~eld ~ntens~ty, 

and D, the displacement. The correspond~ng magnet~c vectors are H, the 

f~eld intens~ty and B the flux dens~ty. The follow~ng four equat~ons 

are Maxwell's equat1ons for l1near 1Sotrop1c med1a 1n the absence of 

currents or charges. 

curlH 
ao 

0 ~ 

at 

curlE + as 
0 ~ 

at 

d~v D ~ o 

d~v B ~ 0 

The operators curl and div are standard vector operators and 
a 
at 

denotes d~fferent~at~on with respect to t~me. Two aux~l~ary equat~ons, 

known as the mater~al equat~ons,relate to the two electr~c vectors and 

the two magnet1c vectors 1n terms of the mater1al constants, £ the 

d~electr~c perm~tt~v~ty and ~ the magnet~c permeab~l~ty. 

D ~ EE 

B ~ ~H 

The energy propagated by an electromagnet~c f~eld ~s measured ~n 

terms of the Poynt~ng vector S wh~ch ~s the power flow dens~ty vector. 

S ~ E X H 

The wave behav~our of electromagnet~c f~elds becomes apparent by 

mod~fy~ng equat~ons (2) and (3) us~ng equat~ons (4) to (7) to form two 

independent wave equat~ons ~n terms of E and H, s~gn~fy~ng that each of 

these field components propagates as a wave. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 



-29-

The wave equat~ons are . 

= £Jl 

£Jl 

These are standard wave equations where the velocity, v, of propagation 

is g1ven by 

-~ 
V = (E:Jl) 

The solut1ons to th1s wave equat1on are many and JUSt two are 

cons1dered here, those for a plane wave and a spher1cal wave. It 1s also 

convenient to 1ntroduce here the notat1on used to represent non-

monochromat1c waves. 

A solut1on to the wave equat1on 

•l V = 
1 

2 
V 

w1ll be of the form V(x,y,z,t) where V may be e1ther the E or H component. 

If r(x,y,z) is a pos1tion vector then V may be represented by 1ts t1me 

dependent component F(t) and space dependent component U(r) 

V(x,y,z,t) = F(t) U(r) 

The space dependent component of the wave will also sat1sfy the 

t1me independent wave equat1on 

= 0 

where k 1s called the wave number and 1s g1ven by 

k = "' V 

The angular frequency, w, 1s related to the frequency, v, of the t1me 

dependent funct1on 

"' V = 
211 

9a. 

9b. 

10. 

11. 

12. 

13. 

14. 

15. 
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Us1ng the exponent1al funct1on the general space dependent component 

may be expressed as 

U(r) R{a(r) e-ig(r)} 

The ampl1tude a(r) and g(r) are both real funct1ons of pos1t1on 

and R denotes the real part of a fw1ct1on. 

A monochromat~c harmon1c wave has a t1me dependence of the form 

F(t) = cos wt 

wh1ch 1n exponent1al form becomes 

F (t) 

A non-monochromat1c wave may be represented as the superpos1t1on 

of monochromat1c waves (using the Four1er Theorem) 

F(t) = R J~ a(w) e-1 (wt-g(w)) 

0 

aw 

where a(w) are the ampl1tudes of the Four1er components and g(w) the1r 

phase funct1on. 

The ampl1tudes and phase funct1ons of the t1me and space co~ponents 

may be comb1ned to g1ve the general form of the wave. 

V(rt) = R [ ( ) -1(wt-g(w,rl) a w,r e 
0 

3.2.2 Wave Solut1ons for the Space Dependent Component 

aw 

A plane wave has a non vary1ng ampl1tude 1n planes perpend1cular 

to its direct1on of propagat1one If r represents the direct1on of 

propagation then a(r) and g(r) of equat1on ~6) may be shown to be 

g(r) = (k.r - 6) a(r) =a 

where k 1s the wave number 1n the d1rect1on f, and 6 1s a phase constant. 

16 0 

17. 

18. 

19. 

20. 

21. 
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A spher~cal wave rad~ates ~sotrop~cally from a po1nt source and thus 

has a propagat~on constant dependent upon lrl where 

and may be shown to have an amplitude dependence of 

i.e. g(r) = (k.lrl- li) a(r) a 
= lrT 

lrl = ./} + 

l 

lrT 

2 
y 

2 
+ z 

It 1s clear that a small sect1on of a spher1cal wave, i.e. x,y << z 

may be represented as a plane wave ~f the var~at1on of amplitude 1s of 

no sign1f1cance. 

3.3 Bandw~dth and Coherence of Opt~cal Waves 

The spectral range of an opt~cal wave ~s represented by the 

22. 

ampl~tudes a(w) of its Four1er components. The term monochromat~c normally 

irnpl1es an 1dealised source whose frequency spectrum cons1sts of a s1ngle 

component. A sod~um lamp em~ts l~ght w~th a narrow spectral w~dth wh1ch, 

for the purpose of th1s thes~s, ~s termed quas~-monochromatic. 

The laser rad~at~on, wh1ch has a much narrower (but f1n1te) spectral 

width than the sod1um l1ght, 1s termed monochromat1c 1n th1s thes1s purely 

to d1st1ngu1sh 1t from sod1um l1ght. The wh1te l1ght source em1ts rad1at1on 

w1th s1gn1f1cant ampl1tudes over a large spectral range compared w1th the 

sodium source spectral range, and 1s termed polychromat1c. 

The spat1al dependence of the ampl1tudes of the Four1er components 

w1th1n the source aperture for each of the three sources 1s negl1g1ble, 

but the1r spat1al phase relationsh1p 1s extremely s1gnificant. A 

monochromatic wave 1mpl1es that the wave has ex1sted for all t~me and there 

w1ll therefore be no changes of phase of the wave w1th t1me. If th1s 1s 

true over the whole of the source aperture, then the phase at one po1nt 

1n the aperture w1ll have a constant phase relat1onsh1p w~th the wave at 

any othGr point. Such a relationsh1p is called spat1al coherence. The 

converse cond1t1on called spat1al 1ncoherence 1mphes a random phase 
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relat1onsh1p between waves at d1fferent po1nts w1th1n the source aperture. 

The absence of both of these cond1t1ons 1s called part1al spat1al 

coherence. 

If the monochromat1c condition is relaxed then the cont1nuous wave 

is truncated 1n t1me to form a wavelet, whose temporal length 1s 1nversely 

proport1onal to the w1dth of the frequency spectrum of the source. (Th1S 

leads to the 1nteresting def1n1t1on of wh1te l1ght as an 1mpulse 1n the 

t~me doma~n). Ind~v1dual wavelets w1ll arrive at a po1nt of observat1on 

at random t1mes and because any opt1cal detection process 1nvolves a long 

integrat1on t1me relative to the length of the wavelets, they w1ll appear 

to have random phase relat1onsh1ps w1th each other. Th1s cond1t1on 1s 

termed temporal 1ncoherence. The corollary must be that temporal coherence 

is observed when the observat1on process has a shorter durat1on than the 

t1me taken for a s1ngle wavelet to pass the po1nt of observat1on. 

These coherence properties are measured and conversely are sign1f1cant 

in 1nterference exper1ments where they affect the VlS1b1l1ty of the 

1nterference fr1nges, and for th1s reason the1r analys1s 1s deferred to 

the section on Interference. 

3.4 Polar1sation 

The def1n1t1on of the Poynt1ng vector, Equat1on 8, spec1f1es that 

the E, H, vectors and the d1rect1on of propagat1on of every y form a r1ght 

handed tr1ad of vectors. Thus for a plane wave propagat1ng 1n the z 

direction the E and H vectors are orthogonal and l1e 1n the xy plan~. 

The E co~ponents of th1s plane wave may be denoted as 

E = al cos(wt- kz + all X 

E = a2 y 
cos(wt- kz + 62) 

E = 0 z 
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The locus of the end of the E vector 

23. 

represents the path taken by the E vector as the f1eld propagates. The 

general case w1ll g1ve an ell1pt1c locus wh1ch may degenerate 1nto a 

stra1ght line or a circle. These represent ell1ptical, linear and 

circular polarisat1on respect1vely and the ell1pt1c and c1rcular loc1 

may be left or r1ght handed. The phase d1fference (o
2 

- o
1

) and the 

relat1ve ampl1tudes (a
1

,a
2

) of the components determ1ne the state of 

polar1sat1on observed at a po1nt 1n the f1eld. 

L1near polar1sat1on 

C1rcular polar1sat1on n 
= 2" (n = _:tl, .:!:_3, .:!:_5) 

all other cond1tions g1ve r1se to ell1pt1c polar1sat1on. 

The signif1cance of the polar1sat1on property of electromagnet1c 

waves appears when cons1der1ng the behav1our of waves at refract1ng or 

reflect1ng interfaces. Any state of polar1sat1on may be cons1dered 1n 

terms of two orthogonal components wh1ch may be arb1trar1ly selected. 

Normally one component 1s selected 1n the plane of 1nc1dence of the wave 

at the 1nterface, mak1ng the second component normal to th1s plane. 

The three sources used 1n th1s study em1t l1ght with no preferred 

state of polar1sat1on, and wh1ch, therefore, exhib1ts any of the poss1ble 

states in random manner. L1ght Wlth th1s character1st1c 1s known as 

natural l1ght and may be represented as a superpos1tion of two beams 

l1nearly polar1sed at r1ght angles to each other. The total 1ntens1ty 

of the beam 1s equally d1v1ded between the two components and the1r f1eld 

components are orthogonal. 
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3.5 IntensLty of Electromagnetic Waves 

(31) 
The intensLty of lLght waves LS def1ned as the tLme average 

of the Poynt1ng Vector. 

I = s = R{~(E x H*)} 

The overbar ind1cates the t1me average over the per1od T, and 

* 1nd1cates a complex conJugate operatLon. A l1nearly polarLsed plane 

wave w1ll have mutually orthogonal E and H components wh1ch may be 

denoted byE , H and wh1ch are related through Maxwell's Equat1ons. 
X y 

jH I y 
= 

Subst1tut1on of equat1on (25) 1nto (24) 

I = R(vf£ E"2 ~ 
1l X 

= R(v,/i[ il2} 
c y 

S1nce absolute values are not required, the 1ntens1ty may be g1ven by 

I 
-2 

= E 

A monochromat1c plane wave may be represented by an E f1eld of 

the fom 

E(r,t) = R(u(r) e ) = ~ u(r) e + u(r)* e -LWt ( -lWt iWt) 

The complex spat1al component u(r) may be expressed 1n terms of 

1ts rectangular cartes1an components 

u 
X 

( ) 1g
1 

(r) = a
1 

r e ( ) 
Lg

2
(r) 

uy = a 2 r e 

where a are the constant ampl1tude terms and g are phase factors of 
J J 

the forw of Equat1on 21. 

24. 

25. 

26a. 

26b. 

27. 

28. 

29. 
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From (28) 

If the t1me averag1ng 1nterval, T, is large compared w1th the 

2rr 1nterval t =-- of the f1rst two terms of Equat1on (30) contr1bute 
w 

zero and 

I = i? = I, u . u* = I, (I ux 12 + I uy 12) 

= 

3.6.1 Interference 

When two monochromat1c plane waves E
1

, E
2 

at the same frequency 

are superposed, the total electr1c f1eld at a po1nt P will be g1ven by 

E 

The 1ntens1ty at th1s po1nt 

where the 1ntens1t1es of the 1nd1v1dual waves, I~2 , are g1ven by 

Equat1on (31) and the term J
12 

1s called the 1nterference term, or the 

mutual 1ntens1ty. 

Let u
1 

(r) and u
2

(r) be the complex ampl1tudes of the two waves 

E
1 

and E
2 

where 

ulx = a
1 

(r) eigl (r) 
u2x = b

1 
(r) e 

1h1 (r) 

u = a 2 (r) 
ly 

e 1g2(r) 
u2y = b

2 
(r) eih2 (r) 

It w1ll be assumed that the phase d1fference between the two waves 15 

the same for each rectangular component and 1s denoted by o. 

30. 

31. 

32. 

33. 

34. 



y 

p(x,y) 

29 

X 

P(o,o) 

Wavefronts. 
{Planes of constant phase.) 

Figure 26. Two plane waves ~ntersect1ng at angle 29. 
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It may be shmm that 

and us~ng Equat~on (31} 

= 21Il I2 cos 6 

The total ~ntens~ty at P is g~ven by Equat~on (33} as 

The dependence of the total ~ntens~ty upon the phase d~fference 

o causes the spat~al fr~nges wh~ch are the character~s~ng feature of 

1nterference phenomena. 

The d~scussion of natural l~ght suggests that ~t may be represented 

by components of the form of Equat~on (34} where a
1 

= a
2

, b
1 

= b
2 

and 

under the assumpt~on that the phase d~fference ~s the same for oath 

l~nearly polar~sed components, Equat~on (37} w~ll apply for fr~nges 

formed w~th natural l~ght. 

When the two beams are of equal intensity, ~.e. a
1 

= b
1

, then the 

total ~ntens~ty ~s g~ven by 

I 
2 0 

4Il cos 2 

Cons~der the case when two plane l~nearly polar~sed monochromat~c 

waves are ~ncl~ned to each other at an angle of 28, such that the planes 

of constant phase ~ntersect as shown ~n F~gure 26. The or1g~n of the 

coord1nate system 1s pos1t~oned at a point of equal phase of the two 

waves. The phase d~fference between the two waves at a po~nt P(x,y} 1s 

given by 

0 = k 2y sin e 

36. 

37. 

38. 

39. 
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and the ~ntens~ty at P, if the two waves are of equal ~ntens~ty I 

I(P) 2 
= 4 I cos (ky s~n 8) 

The maxima of intens~ty w~ll occur at 

nrr y = ,---:-:.;;_ 
k s~ne 

n = 0, 1, 2, ..... . 

and min~ma (zero 1ntens1ty) when 
l 3 

n = 2' 
2 

.•.•• 1n Equat1on 41. 

211 ' Subst1tut1ng k = A where A ~s the wavelength of the waves ~n 

the transmiss~on med~a, the fr~nge spac~ng is g~ven by 

t = 
2 S1n 6 

The fr~nge at P(O,O) ~s def~ned as the zero order fr~nge, wh~ch 

implies that ~t w~ll be a po~nt of max1mum ~ntens~ty ~rrespect~ve of 

the wavelength of the waves. The mth order fringe ~s a distance y = mt 

from the zero order fr~nge. 

If the waves are quas~-monochromat~c, that ~s they have a 

wavelength range ~A wh~ch ~s small compared w~th the mean wavelength A'' 

then the m 
th 

order fr~nge w~ll be displaced in the plane of observat~on 

(the y aX1S) by an 

If 

amount ~ -~A Y - 2s~ne 

A' 
m << ~A 

then ~y ~s negl~g~ble compared w~th mt and the d~fferent wavelength 

fr1nges w1ll be co1nc1dent and the contrast of the fr1nges will be the 

same as for the monochromal1c waves. 

If the monochromat~c wave E
1 

has its optical path length ~ncreased 

by ~L prior to reach~ng the po~nt P(O,O) then the zero order fr~nge w~ll 

move in the y d~rect~on 

yo = 
~L 

2s~ne 

40. 

41. 

42. 

43. 

44. 

45. 
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and the ~ntens~ty at P(O,O) w~ll be max~mum or m~n~mum depend~ng upon 

the value of n as in Equat~on (41) ~n the express~on 

n = 
6L 
A 

The contrast of fr~nges at a po~nt P is measured us~ng a quant~ty 

called v~s~b~l~ty which ~s def~ned as 

IMAX - IMIN 
= 

IMAX + IMIN 

The fr~nge intens~ty g~ven by Equat~on (39) ~s due to the 

46. 

47. 

superpos~t~on of monochromat~c waves wh~ch from the d~scuss~on ~n Sect~on 3.3 

are known to be coherent. Substitut~ng the relevant values of (38) 

into (47) y~elds a value of _ of 1 corresponding to coherent fr~nge 

v~sibility. The absence of any ~nterference fr~nges (IMAX= IMIN) ~mpl~es 

1ncoherence and the correspond1ng value of 3 1s zero. A value of 3 between 

0 and 1 s~gnif~es a part~al coherence cond~tion. 

Consider the fr~nge v~s~b~l~ty at point P(O,O) when the ~llum~nat~on 

~s quas~-monochromat~c and ~L ~s ~ncreased unt~l the order m of the fr~ngc 

at P(O,O) ~s such that (44) becomes 

m ~ 48. 

The different frequency fr~nges w~ll now be sign~f~cantly 

displaced from the centre frequency fr~nge pos~t~on and 2(0,0) w~ll be 

less than 1 and the ~llum~nat~on at th~s po~nt is now part~ally coherent. 

An alternat~ve explanation for this reduct~on in coherence ~s 

obta~ned by cons~der~ng the wavelet representat~on of quas~-monochromat~c 

l~ght. If ~t ~s assumed that the two ~nterfer~ng waves are der~ved from 

the same source, then a part of each wavelet (~n terms of ampl~tude) w~ll 

propaga~e ~n each of the waves. If ~L exceeds the length of the wavelet, 

then the ~ntensity at the po~nt of observat~on w~ll cons~st of the 
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superposJhon of dl.fferent \<avelets whl.ch have random phase relat1.onsh1.ps 

and Wl.ll therefore produce no 1.nterference effects. If ~L l.S less than 

the wavelet length, a part of each wavelet (l.n terms of length) Wl.ll 

overlap and produce 1.nterference frl.nges. 

The wavelet length l.S g1.ven by 

i, 
c 

and l.S known as the coherence length. 

Typical values of the coherence length for the sources used in 

this study are 

i, " 3)1. c 
Whl.te l1.ght source 

~ 3m m. Sod~um Source 

> 30m. Laser 

The wh1.te l1.ght and sodl.um sources may be cons1.dered to be 

composed of an ensemble of small sources each radl.ating l.ncoherently 

but em1.tt1.ng l1.ght w1.th1.n the overall source bandwl.dth. By JUdl.cl.ous 

experimental arrangement, as descr~bed 1n the next sect1on, these 

ensembles of l.ncoherent sources may exhl.bl.t coherent propert1.es. The 
• 

laser however has, as part of l.ts l1.ght generatl.on system, a very 

narrow bandwl.dth optl.cal f1lter. The modus operandum of thl.s fl.lter 

49. 

produces a spatl.ally coherent beam of l1.ght from what may be an ensemble 

of incoherent eml.ssl.ons of radl.ation from the laser gas. The contr1.but1.on 

of the st1.mulated eml.SSl.on process to the coherence properties of the 

(39) 
laser l.S st1.ll under 1.nvest1.gat1.on • The all1.ed problem of the 

enhancement of spatl.al coherence of waves by propagatl.on l.n bounded 

(40,41) 
med1.a (wavegu1.des, cav1.t1.es etc.) has also recel.ved attent1.on • 

A small contr1.but1.on to th1.s last subJect l.S made in Chapter 8. 



Screen. 
A 

Source. 

Q 

Pz 

F~gure 27. The source cr ~llum~nates the two p~nholes P1 ,P2 

and the d~ffracted l~ght contr~butes to the l1ght 

observed at Q. 
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3.6.2 Interference of Non Monochromat1c Waves 

The electr1c f1eld at a po1nt P of a general wave may be 

represented by the complex function V(P,t) where the phys1cal scalar 

wave lS taken as the real part of V(P,t). The 1ntens1ty of the wave 

lS g1ven by 

I (P) = = ~(V (P ,t) V* (P ,t)) 

Cons1der the exper1mental arrangement of F1gure 27, where the 

source a illum1nates two p1nholes P
1

, P
2 

1n the opaque screen A. 

These p1nholes behave as secondary sources and the 1ntens1ty due to the 

superpos1t1on of these secondary waves ~s measured at a po1nt Q, a 

distance s
1

, s
2 

from P
1

, P
2 

respect1vely. 

The t1me taken for the waves to travel from P
1 

and P
2 

to Q are 

t
1

, t 2 respect1vely where 

Denoting the waves at P
1 

and P
2 

by the complex funct1ons, v
1

, 

v
2 

the total wave at Q is g1ven by 

V(Q,t) = 

where K
1 

and K
2 

are propagat1ng coeff1c1ents wh1ch relate L~e wave 

values at the points P
1

, P
2 

to their values at the po1nt Q. These 

coeff1c1ents are d1scussed in the section on d1ffract1on by c1rcular 

apertures, Section 3.7.3. The 1ntens1ty at Q 1s g1ven by 

where R(r12 (T)) 1s the real part of the function 

= 

50. 

51. 

52. 

53. 

54. 

55. 
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The cross correlation functLon r
12

(T) LS called the mutual coherence 

function and defLnes the coherence between waves at poLnts P1 , P2 , 

the wave at P
1 

beLng consLdered a tlme T later than that from P2 • 

When T = 0 

rl2(o) = 

and r
12

(T) LS clearly an lntenslty measurement. It may be normalised 

to give the complex degree of coherence. 

= 

and it may be shown that 

lr
12 

(T) I ~ 1 (Ref. 31, Chapter 10) 

If the complex degree of coherence lS deflned as 

= 

then R{yl2 (T)} h12 <•> I cos <a12 <•> - o) 

where = 

V lS the mean frequency of the light and 

0 = 21TVT 

SettLng 

EquatLon 54 may be wrLtten 

Comparlng Equatlon (63) wLth (37) lt 1s clear that lr12 <•>/ 

determlnes the vislbLlity of the fringes and a12 (T) Wlll gLve the 

56. 

57. 

58. 

59. 

60. 

61. 

62. 



d~ 

R 

y 

, , 

F1gure 28. The l1ght from a s1ngle element of the source a 

contr1butes light to the two po1nts P1 and P2 . 
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d~splacement of the fr~nges. If r
1 

(Q) ~ I
2

(Q) then on subst~tut~on 

of the relevant values of Equat~on (63) ~nto (47) 

When VT << 

3(Q) ~ Jy
12

(T)I 

A2 
hA , y12 (T) will change slowly ~n compar1son w~th 

64. 

the cos o term and this corresponds to the quas1-monochromat1c cond~t1on 

prev1ously cons~dered. As hA 1s 1ncreased, then the dependence upon T 

becomes s1gn1f1cant, wh1ch may be 1nterpreted as the'overlapp1ng of 

fr1nges cond1t1on', but wh1ch now appears as a reduct1on 1n v1s1b111ty 

wh1ch 1s impl~c1t 1n the value of Jy
12

(T) J. 

To calculate the complex degree of coherence y
12 

between the 

po1nts P
1 

and P
2 

illurn~nated by a quas1-monochrornat1c source, shown ~n 

F1gure 28, each element of the source 1s assumed to radiate spher1cal 

waves wh~ch are 1ndependent of any other element. Denot1ng the 

d1sturbances at P
1

, P
2 

due to the radiat~on from element dcrm as Vml (t), 

vm2 (t) total d1sturbances at P
1 

and P
2 

are g1ven by 

~ l: vml(t) 
m 

= 

Us1ng the assurnpt1on that T ~ 0 then from Equat1ons (55),(56) 

~ + 

The 1ndependence cond1t1on between rad1ation from different 

(mfn) elements w1ll give a zero value for the second term of (66). 

th -2TI1Vt 
The rad1at1on from the m element may be denoted A e and, 

m 

1f sml' sm2 are the d1stances from th1s element to ~~e po1nts P1 , P2 , 

then tml' tm2 are g1ven by equat1on (51). us~ng the equat1ons for 

spher1cal waves (22), 

65. 

66. 
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-J.21TV(t-tm1 > 
e 

= A (t-t 
1

) V 2 (t) =A (t-t 2J 
m m sml J m m m 

-J.21TV (t-tm2l 
e 
5

m2 

Sh1ft1ng the t1me orl.gl.n by sett1ng tm2-tml =T ~ 0 in the argument of 

A* 
m 

The term A (t)A*(t) l.S the 1ntens1ty of the element do and so 
m m m 

denotJ.ng by I(s) the source 1ntens1ty per unJ.t area, Equatl.on (69) 

becomes 

Jl2 = L I(s) ds 

where the surface ~ntegral ~s taken over the source surface denoted 

by cr. 

Normall.sl.ng EquatJ.on (70) 

1 L I (s) ds 

lf, as shown 1n F1gure 28, the co-ordl.nates of a typ1cal source 

is the distance between the source plane and the plane contal.nl.ng P1 , 

P
2 

then, us1ng 

p = 
R 

q = 
R 

67. 

68. 

69. 

70. 

71. 

72. 



-44-

and the approximat~ons d~scussed in reference (31) pp 510, 

equat~on (71) becomes 

e~k{p~ + qn) d~dn 

dt;dn 

where 

t= 
- 2 2 2 2 
k{(xl + yl) - (x2 + y2)} 

2R 

VT21T 
and represents the phase d~fference - wh~ch for quas~-monochromat~c 

A 

l~ght may be neglected ~f vT << A. Equat~on (73) ~s the normallsed 

Four~er Transform of the ~ntens~ty funct~on of the source and for a 

circular un1form 1ntens1ty source rad1us p y1elds a solut1on 1n terms 

of Bessel funct~ons of the first k1nd and f~rst order J
1 

{u). 

where -w 21Tp 
u = kp P +q = XR 

When u = 0, i.e. P
1 

and P
2 

are co~nc~dent, y
12 

has the value l 

ind~cating coherence, and as P
1 

and P
2 

are separated y
12 

reduces unt~l 

0.61RA 
at a separat~on of p there ~s complete incoherence, y

12 
= 0. 

At u = 1, y
12 

= 0.88 and th1s ~s taken as a measure of the 

d~ameter d, of the circular area almost coherently ~ll~nated by a 

circular source of rad1us p, radiat1ng 1ncoherent quas1-monochromat1c 

light. 

d = 
O.l6}:R 

p 

Increasing u > l ~ncreases the coherence but the max~mum of y 12 

is 0.14 and is therefore regarded as incoherent. 

73. 

74 0 

75. 

76. 

77. 
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EquatLon (77) expresses the experLmental condLtLons under whLch 

Lnterference frLnges may be observed usLng LnLtLally Lncoherent lLght. 

If it LS requLred that an inLtLally spatLally coherent source (whLch 

LmplLes monochromatLc) be made spatLally Lncoherent, then a suLtable 

method is suggested by the asst~ptLon used Ln connectLon WLth the 

second term of EquatLon (66) . 

If the source a of FLgure 28 LS now consLdered to be 

monochromatLc, then the last term of EquatLon (66) may be expressed, 

usLng EquatLon (34) 

where 

and 

= A ~l 
ml e 

substLtutLng (81) Lnto (79) 

= 

' 

-L2rrvt 
e 

= A gn2 
n2 e 

The spatial coherence of the waves ~s ~mpl~c~t 1n the t1me 

independence of the phase dLfference (gn2 - gml) whLch may gLve a 

non-zero value for EquatLon (78). 

By makLng eLther or both of the arguments of EquatLons (80) 

tLme dependent the phase dLfference and thus the spatLal position of 

the Lnterference frLnges WLll become tLme dependent. By ensurLng that 

the rate of movement of the frLnges exceeds the temporal resolutLon of 

observatLon, then no frLnges wLll be observed and the waves WLll be 

incoherent. The experLmental arrangement for inserting thLs tLme 

78. 

79. 

so. 

81. 



Source 
plcrne. 

Rs 

Screen 
G 

-~-------

Figure 29. D1agrammatic form of the apparatus for vary1ng the 

spat1al coherence of the l1ght from the source plane. 
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dependent phase sh1ft 1s shown 1n F1gure 19 and 1s shown 1n d1agrdmmat1c 

form 1n F1gure 29. 

The ground glass screen G has a spat1al dependent phase characteristic 

which may be character1sed by a unit cell of area de of constant phase 
s 

but wh1ch has a random phase relationsh1p w1th all other cells. The 

laser and assoc1ated opt1cs may be represented as a po1nt source of 

monochromat1c l1ght a d1stance R from the screen G. The cell dcr 1s 
s s 

assumed to be c1rcular of diameter ~ and l1ght from the source pass1ng 
s 

through a s1ngle cell w1ll 1llum1nate a c1rcle of d1ameter 

d 
c 

R ~ 
s 

R 
s 

on the plane parallel to the screen a d1stance R from the source. 

The rotat1on of the screen 1mparts a t1me dependent phase sh1ft 

to the l1ght w1th1n th1s c1rcle. S1nce the phase sh1ft due to the 

ground glass screen will be random, 1t 1s assumed that the l1ght 1n 

82. 

any other c1rcle w1ll be 1ncoherent. Under these cond1t1ons the spat1al 

coherence of the laser l1ght 1s conf1ned to a c1rcle of d1ameter 0, 

wh1ch may be var1ed exper1mentally through the adJustment of R or R. 
s 

The effects of the d1ffract1on of the l1ght by the phase var1at1ons 

of the screen have been neglected 1n th1s s1mple analys1s. 

3.7.1 D1ffract1on 

An electromagnet1c wave occup1es a f1nite volume of space and 

the volume boundary is determ1ned by the po1nts 1n space at which the 

wave components E, H have neglig1ble values. Any attempt to obstruct 

a wave or to confine 1t to w1th1n a smaller volume results 1n the 

perturbat1on of its wave components and produces secondary waves wh1ch 

give r1se to the diffraction effects. 



F~gure 30a. S ~s a wavefront or~g~nat~ng from the po~nt 

source P and X1 s are the var1ables assoc1ated 
0 

with the light from a sect~on Q of the wavefront 

wh~ch contr~butes l~ght to the po~nt P. 

Figure 30b. The Fresnel zone construct~on on the wavefront 

of a po~nt source. 
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The r1gorous deter~nat1on of the secondary waves 1nvolves 

the solut~on of the wave equat~ons subJect to the boundary cond~t~ons 

(31 Ch.ll} 
~mposed on the wave components by the obstruct~ons • It ~s, 

however, suffic1ent for most opt1cal problems to use the Fresnel-Klrchoff 

d~ffraction theory to obta~n a result wh~ch ~s exper~mentally 

~nd~st~ngu~shable from the r~gorous theory. 

The Fresnel-K~rchoff d~ffract~on theory was or~g~nated by Fresnel 

who expla~ned d~ffract~on phenomena 1n terms of the Huygens wavelet 

construct1on and 1nterference. Huygens asserted that each element of a 

wavefront may be regarded as the centre of a secondary d1sturbance wh1ch 

rad1ates spher1cal waves and the wavefront at any later t1me ~s the 

envelope of all such wavelets. Fresnel 1ncluded the effects of the 

mutual ~nterference of the wavelets to pred1ct w1th accuracy the 

d~ffract~on effects produced by s~mple obstruct~ons or apertures placed 

in the path of s~mple waves. 

3.7.2 Huygens-Fresnel D1ffract1on Theory 

Consider a po1nt source of monochromat1c waves at P shown 1n 
0 

F~gure 30a and let S be the 1nstantaneous pos~t1on of the wavefront, 

rad~us r • The d1sturbance at P due to the element dS at Q of the 
0 

wavefront a d1stance s from P is g~ven by 

dU(P} 
~ks 

e 
s 

dS 

where K(xl ~s an incl~nat1on factor descr~b1ng the var1at~on w1th 

angular d~rect1on X of the ampl~tude of the secondary waves orig~nat1ng 

at Q. Fresnel assumed that K(X} 1s max~mum for X = 0 and zero for 

rr 
X = 2 The total d~sturbance at P w1ll be g1ven by 

U(P} = 
iks 

e 
s K(X} dS 

83. 

84. 
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To evaluate Equat~on (84) the wavefront ~s spl~t into Fresnel 

zones z
1

, z
2 

...• as shown ~n F~gure 30b, where the boundary of each 

A 
zone is g~ven by a sphere centred on P w~th rad~i b, b + 2• 

Follow~ng the analys~s of Born & Wolf P(Jl PP· 372 l it 

b + 2A 
2 

~s found 

that the contr~but~ons of adJacent zones to U(P) are approx~mately 

equal ~n magn~tude but of oppos~te s~gn. If all zones are assumed to 

contr~bute to U(P) then 

U(P) 

that ~s only the f~rst and last zones make s~gn~f~cant contr~but~ons, 

the ~ntermed~ate zones cancell~ng each other out. Us~ng the assumpt~on 

of Fresnel that K 
n 

11 
= K(Z) = 0 Equat~on (85) reduces to 

U(P) = 
A eik(r0 +b) 

(r +b) 
0 

Th~s w~ll agree w~th the effects of a spher~cal vmve ~f 

The contr~but~on to U(P) by the Jth zone may be shown to be 

U. (P) 
J 

and Equat~on (86) may be written 

U (P) = J,u
1 

(P). 

A e~k(r0+b) 
K 

J r
0 

+ b 

That is, the total d~sturbance at P ~s equal to one half the ~sturbance 

due to the f~rst zone alone. A s~~lar result w~ll be obta~ned ~f a 

screen w~th a c~rcular aperture ~s placed perpend~cular to P P vnth its 
0 

85. 

86. 

87. 

88. 

89. 

centre on th~s l~ne, such that only half of the f~rst zone ~s unobstructed 

by the screen. Increas~ng the s~ze of the opening unt~l the whole of 
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Figure 31. The c~rcular aperture d~ffraction exper~ment. 
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the f~rst zone ~s uncovered, w~ll g~ve 

U(P} ~ 

and the ~ntensity w~ll be four times that obtained ~f the screen were 

absent. 

If the f~rst two zones are uncovered then U(P} ~ 0 and as more 

zones are uncovered the ~ntens~ty at P w~ll pass through maxima and 

zero values. In the exper~mental arrangement of F~gure 31 a c~rcular 

aperture, rad~us p, is illum~nated by a plane monochromatlc wave, 

wavelength A. The d~stance R along the ax~s at wh~ch the max~ma and 

zero values of ~ntens~ty are observed are g~ven by 

where 

2 
R ~L 

nA 

n~l,3,5 £or maxima 

n = 2, 4, 6 ~~·~· £or zeros 

Equation 91 ~s SubJect to the cond~t~on R >> nA wh2ch ens~es 

that adJacent zones contr~bute equal (and oppos~te} contr2but~ons to 

the total d~sturbance at the point of observat2on. 

The JUSt~f2cat~on for Equat~on (87} ~s obtained from the 

generalisat~on of the Huygens-Fresnel d~ffraction theory due to K~rchoff. 

The K~rchoff d~ffract~on theory also yields the correct form for the 

incl~nat~on factor K(X}. 

3.7.3 Kirchoff's Diffract~on Theory 

Kirchoff's diffract~on theorem expresses the solut2on of the 

wave equat~on at an arb~trary po~nt P ~n the f~eld ~n terms of the value 

of the solut~on and ~ts f~rst der~vat~ons at all po~nts on an arb~trary 

closed surface surrounding the po~nt P. 

90. 

91. 
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F~gure 32. The boundarys of the KJ.rchoff d~ffract~on theorem. 
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U(P) ~ 
4n 

1 
~ks 

(~ ) 
s 

~ks 
e 
s 

dU } 
dn 

dS. 

Equat~on (92) ~s called the K~rchoff d~ffract~on ~ntegral, 
~ks 

where S ~s the closed surface surround~ng po~nt P and the ~ term 
s 

has the same ~nterpretat~on as ~n Equat~on (83). To solve Equat~on 

dU 
(92) requ~res the values of U and dn at all po~nts on the surface S 

where ~ denotes differentiation along the ~nward normal to S. The 

(31) 
K1rchoff 1ntegral equat1on 1s not der1ved here and 1s only used 

to JUSt~fy the Huygens-Fresnel theory which ~s now shown to be a 

spec~al case of the K~rchoff ~ntegral. 

In F1gure 32, a monochromat1c po1nt source P 1lluminates an 
0 

aperture ~n an opaque screen a d~stance r from P and the po~nt of 
0 0 

observat~on P ~s a d~stance s from the screen. The surface of 

~ntegrat~on S cons~sts of the aperture A and the opaque screen surface 

B wh~ch ~s bounded by a port~on C of the surface of a sphere rad~us R 

centred at P. 

dU 
The K~rchoff boundary cond~tions g~ve the values of U and dn 

on these surfaces as, 

On A u ~ 

B u ~ 

c u ~ 

Ae~kro 

r 
0 

dU 
dn 

dU 
dn 

~ 0 

0 

dU Aeikro 
(ik ~ cos(n,r ) ~ -dn r r 0 

0 0 

Aeikro 
where 

r 
0 

is the value of the ~nc~dent f~eld ~n G~e aperture. The 

zero contr~but~on from B ~s due to the opaqueness of the screen and 

the zero contr~bution from the surface c ~s assumed by consider~ng a 

f~n~te propagat~on t~me for the wave before wh~ch the f~eld at ra~us 

R w~ll be zero. 

92. 

93a. 

93b. 

93c. 
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Subst~tut~on of Equat~on (93) ~nto (92) y~elds the Fresnel-

K~rchoff d~ffract~on formula. 

U (P) ~ (cos (n,r ) - cos (n,s)) dS. 
0 

A port~on W of the ~ncident spher~cal wavefront w~th~n the 

aperture may be selected instead of the surface A and for r large, 
0 

the port~on D of the wavefront may be neglected. 

and sett~ng X 

-~ 
U(P) ~ 2A 

n -(r s) in Equat~on (94) 
0 

(l + cos xl 

Then cos(n,r )~l 
0 

dS, 

Compar~son of Equat~on (95) w~th (84) gives for the ~ncl~nat~on 

factor the express~on 

K(xl -~ 

2" (l + cos x> 

which for K(O) reduces to K
1 

-1 
= ~ as given by Equat1on (87) ~ 

The assumpt~on of Fresnel that K(I) ~ 0 is clearly ~ncorrect but the 

larger values of X are not encountered ~n most d1ffract1on problems. 

A simpl~f~ed form of Equat~on (95) ~s used ~n Section 5.5 

to calculate the ~ntens~ty d~str~bution at a caust~c surface. 

94. 

95. 

96. 
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F1gure 33. The 1nterface between med1a of d1fferent 

perro1t1vity showing the reflected and 

transm1tted waves formed by an 1nc1dent wave. 
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3.8 The Fresnel Equat~ons 

The opt~cal theory cons~dered so far in th~s chapter has been 

concerned w1th wave propagat1on 1n homogeneous med1a where the 

mater~al constants are ~ndependent of pos~t~on. A s~mple ~nhomogenous 

med~um conta~ns a step change or a material constants, for example from 

El to E
2 

as shown ~n Figure 33. The magnet~c mater~al constant u ~s 

assumed not to vary s~gn~f~cantly from ~ts free space value uo = 1 for 

the med~a cons~dered in th~s thes~s. 

The derivat~on of the Fresnel equat~ons ~s g~ven ~n most opt~cal 

(31-34) 
theory textbooks and only an outl~ne of the theory and the results 

are given here. The Fresnel equat1ons descr~be the complex ampl~tudes 

of the wave components wh~ch ar~se ~n the two med~a (1, 2) ~n Figure 33 

when a monochromat1c plane wave 1s 1nc1dent upon the 1nterface between 

the two med~a. The der~vat~on of the equat~ons ~s based upon the 

boundary cond1t1ons wh1ch require cont1nuous electr1c f1eld components 

tangent~al to the ~nterface and ~n the absence of currents, a s~milar 

cond~t~on for the tangent~al magnet~c f~eld components. 

Cons~der a plane wave of complex ampl~tude A ~nc~dent upon the 

~nterface from med~um 1 at angle e shown ~n F~gure 33. To sat~sfy the 
~ 

boundary cond~t~ons, two resultant plane waves are postulated, a 

reflected wave of complex ampl~tude R and a trans~tted wave (refracted 

wave) of complex ampl~tude T. Both waves l~e ~n the plane of the ~nc~dent 

wave and make angles w~th the normal at the ~nterface of er and et 

respect~vely. 

By resolv~ng the three waves ~nto the~r xyz components and us~ng 

the con~t~on that at every po~nt on the ~nterface the t~me var~at~on of 

all three waves will be the same, the follow~ng laws of reflection and 



-53-

refract~on may be der~ved. 

Law of reflect~on e 
r 

s~n 

Law of refraction 
s~n 

Where, from Equat~on (9), 

l 
= 

Def~n~ng the refract~ve ~ndex n as 

c 
n = 

V 
then 

c = 

= 11 - e 
~ 

e vl 
~ 

= 
et v2 

c 
= 

where c ~s the velocity of waves ~n free space. 

The law of refract~on may be wr~tten us~ng Equat~ons (98) , (99) QS 

= 

wh~ch ~s the form known as Snell's Law. 

In the sect~on on Polar~sat~on ~t was shown that an arb~trar~ly 

polarised wave may be cons~dered ~n terms of two waves, one l1nearly 

polar~sed parallel to the plane of ~nc~dence, denoted by subscr~pt p, 

and the second l~nearly polarised normal to this plane, denoted by 

subscr~pt n. The f~eld components of each of these waves ~ndependently 

satisf~es the boundary condit~ons and the solut~ons of the b8und~ry 

cond~tion equat~ons g~ves the follow~ng ampl~tudes for the reflected 

and trans~tted waves. 

97. 

98. 

99. 

lOO. 
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2n
1 

cos e. 
T 

J. = A 
p n2 cos e J. + nl cos et p 

2n
1 

cos e. 
T 

J. = A 
n nl cos e + n2 cos et n 

J. 

n2 cos e. - nl cos et J. 
R = A 

p n2 cos e. + nl cos et p J. 

nl cos e - n2 cos et J. 
R = A 

n nl cos 0 + n2 cos e n 
J. t 

If n
2 

> n
1 

then from Equation (lOO), e J.S real for all 8 and FJ.gure 
t . J. 

34a shows the amplJ.tudes of the reflected and refracted waves accordJ.ng 

to Equations (101), (102) for A =A = 1 P n 

When n
1 

> n
2 

then for 

2 
n 

(....!.) 
2 

n2 

and 

Equation (102) may be expressed J.n the form 

R 
p 

= 

R = 
n 

cos e 
J. 

n2 

nl 

A 
p 

= 

A 
n 

1.5 

101. 

102. 

103. 
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a - 1b 
E1ther of the Equat1ons (103) may be expressed 1n the form ~--~ 

a + 1b 

wh1ch 1n polar form becomes 1/6 where TM~% ~ ~-

Then 

IR I ~ 
p lA I p 

and IR I n 

The cond1tion expressed by Equat1on (104) 1s called total 1nternal 

reflect1on and 1nd1cates that the energy of the 1nc1dent wave aiA
2

1 

is totally reflected at the 1nterface of the two d1electr1cs. The 

ampl1tudes of the reflected f1elds for Equat1on (104) are shown 1n 

F1gure 34b where A 
p 
~A 

n 
~ 1 

nl 
and

n2 
1.5 . It may be shown that the 

transm1tted f1eld amplitudes T , T are not zero when total 1nternal 
p n 

reflect1on occurs, but produce an evanescent f1eld whose ampl1tude 

decays rap1dly w1th dlstance from the 1nterface and wh1ch 1n terms of 

a t1me average value propagates no energy away from the 1nterface. 

Since 1n general the parallel and normal components of 1nc1dent 

waves have d1fferent reflect1on and refraction ampl1tudes the state of 

polarisation of the 1nc1dent wave will be changed on reflect1on or 

refract1on. Natural l1ght which 1s 1n1t1ally unpolar1sed will become 

partially polarised after reflect1on or refract1on. 

3.9 Geometr1cal Ray Theory 

The analys1s of the propagation of a plane wave by considerat1on 

of the behav1our of 1ts parallel constant phase loci suggests a simpler 

representat1on 1n which the locus of the tangent to the normal of the 

constant phase loc1 w1ll 1ndicate the path taken by the wave. Th1s 

locus is called a geometr1cal ray and 1ts or1entat1on may be descr1bed 

using the rules of geometry together w1th the laws of reflect1on and 

refraction. 

104. 
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The plane wave may be cons~dered to be composed of small 

elements, where the propagat~on of each element ~s represented by 

~ts own geometr~cal ray, and the energy carr~ed by each element ~s 

assigned to its ray. The ~ntcns~ty of each element after propagat~on 

w~ll depend upon the area of the element at the po~nt of observat~on 

relative to its ~n~t~al area. 

To determine a lim~t to the element s~ze, the solut~on to the 

ti~ffract~on by a c~rcular aperture' problem ~s cons~dered. It ~s clear 

from Sect~on 3.7 that conf~nement of a wave to a small aperture 

produces rap~dly vary~ng amplitudes ~n the ~mmed~ate v~c~n~ty of the 

aperture, but at a cons~derable d~stance from the aperture the ma)or~ty 

of the ~ncident energy ~s conf~ned w~th~n a c~rcular reg~on whose 

d~mens~ons are wavelength dependent. 

If the wavelength of the l~ght ~s perm~tted to fall to zero, 

(31 Ch.3) 
then ~t may be shown that the ~ffract~on effects d~sappear 

and the propagat~on of the l~ght through the aperture ~s due to 

rect~l~near propagat~on only. Th~s g~ves r~se to sharp boundar~es 

between the ~llum~nated and shadow reg~ons and perm~ts the select~on of 

an arb~trar~ly small element w~th~n the ~llum~nated reg~on as the ray 

element. 

Consider a space dependent component of a wave equation solut~on 

of the form 

U(r) ~ R{a(r)eiL(r)ko} 105. 

where a(r) and L(r) are both real funct~on which vary slowly w~th respect 

to the wavelength of the l~ght. 
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Figure 35b. A tube of geometr~cal rays, of var~able cross 

section. 
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The free space wave number 

k 
0 

w 
c 

Substitutlon of Equatlon (105) lnto the tlme lndependent wave equatlon 

ylelds 

2 2 2 
-V L)a- lk (2\ILVa + a\1 L) +V a~ o. 

0 

The mlddle term of the LHS of Equatlon (107) must lndependently 

vanlsh and the last term is negllgible compared Wlth the flrst term 

l 
Slnce k « ~ and A is assumed to be tendlng to zero. 

lfuen the flrst term vanlshes 

2 
n. 

where from Equation (99) 

2 c k2 
n ~ ~ 

w k2 
0 

Equatlon (108) lS known as the elkonal equatlon and Wlll permlt the 

calculatlon of the surfaces of constant phase glven by the scalar 

function 

L(r) ~CONSTANT 

From the openlng comments of thls sectlon the geometrlcal rays 

are the normals to the constant phase surfaces. If the posltlon of 

a polnt P on a ray lS denoted by a position vector r(s) consldered 

as a function of the dlstance s along the ray, see Flgure 3~ then 

the directlon of the ray at polnt P lS glven by the unlt vector u 

dr 
u ~ . 

ds 

106. 

107. 

108. 

109. 

110. 
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The vector, v, perpendicular to the phase front L(P) is glven 

by 
V ; 'V'L· 

V 
A unit vector v = M· 

where lvl ; n. 

and the unlt vector v lS parallel to unlt vector u to glve 

u ; 
'V'L • 

n 

The equatlon of a ray lS thus 

ndr 
ds 

; 'V'L. 

The optlcal path length, ~L, between two polnts P1 ,P
2 

on a 

ray is glven by 

whlch for a homogenous medlum 

~L ; ns. 

and for free space 

~L ; s. 

If a tube of rays enclose a surface area dS on a constant phase 

surface of a wave, intenslty I, then the lntenslty law of geometrlc 

optics states that IdS is constant along the tube of rays. From 

Figure 351> 

; 

Slnce each ray represents a local plane wave, the laws of 

refractlon and reflection Wlll apply dlrectly to the propagation of 

111. 

112. 

113. 

114. 

115. 

116. 

117. 

118. 
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rays across dLelectrLc Lnterfaces. SLmLlarly the dLVLSLons of 

intensity as gLven by the Fresnel EquatLons WLll also apply. 

3.10 Conclus~ons 

The characterLstLcs of lLght waves have been establLshed Ln 

this chapter and Lt has been shown that the path of a plane light wave 

may be represented by a geometrical ray of lLght. In the followLng 

chapters the propagation of lLght Ln optLcal waveguLdes is analysed 

using prLmarLly the geometrLcal ray theory. However, where Lnterference 

or dLffractLon effects are dLscussed WLth reference to rays of light 

it should be understood that the varLous effects are due to the local 

plane waves whose propagatLon paths Ln the waveguLde have been 

represented by geometrical rays. 
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CHAPTER 4 

4.1 Introduct~on 

The pr~nciple features of a geometr~cal ray analysis of l~ght 

propagat~on ~n core cladded type optical wavegu~des are well establ~shed 

0 (3-4) and conta~ned ~n at least two textbooks . The assumpt~ons used ~n 

such an analys~s are exa~ned ~n th~s chapter and a su~table 

representat~on of the wavegu~de ~s establ~shed for use ~n later 

chapters. Th~s representat~on ~s based upon the behav~our of opt~cal 

f~elds at d~electr~c ~nterfaces accord~ng to the Fresnel Equat~ons, 

and the laws of refract~on and reflect~on. 

In add~t~on to cons~derat~on of the propagat~on process, the 

behaviour of l~ght f~elds at the entrance aperture of the wavegu~de ~s 

exa~ned. It ~s shown that the effects of the entrance aperture are 

s~milar to those produced by a d~ffract~ng aperture of s~m~lar 

d1mens1ons to the wavegu1de core placed 1n a med1um of core refract1ve 

index. The effects of the ex~t aperture are generally not s~gn~f~cant 

~n th~s study s~nce the f~elds of ~nterest are w~th~n the aperture, 

(the near f~eld) • 

The chapter concludes by cons~der~ng the v~s~ble effects of a 

ramp refract~ve ~ndex prof~le between the core and cladd~ng mater~als. 

4.2 Geometrical Ray Theory Model of the Core Cladded Wavegu~de 

An ideal~sed core cladded wavegu~de cons~sts of a d~electr~c 

cylindrLcal core, rad1us a, refract1ve 1ndex n1 1nside a d1electr1c 

tube, inner rad1us a, wall th1ckness b, and w1th refract1ve 1ndex n 2 , 

In general n
2 

> n where n ~s the refract~ve ~ndex 
0 0 

of the me~um surround~ng the wavegu~de, for free space n0 = 1. 

~----------------------------------------------------------- -- -



Cladding 

Core 

Figure 36. Long~tud~nal cross sect~on of a cladded 

d1electr1c wavegu1de. 

Po~nt of ~ncidence e 
0 

I 

e .!. (n 2 2)~ I 
Core sin ::: n2 Reflected at n

1 
- n

2 
1nterfc 

0 n
0 

1 

Core sin e > 
0 

.!. (n 2 
n 1 

2)~ 
n2 

.o 
Reflected at n

2 
- n 1.nterfc 

0 

::: .!. (n 2 
n 1 

- n2)~ 
0 

0 

sin e 1 2 n2)~ Core > - (n Rad~ates 
0 n 1 0 

0 

Cladd~ng,entrance s~n e ::: .!. (n 2 - n2)~ Reflected at n 2-n
0 

~nterfac 
0 n 2 0 

aperture 0 

Cladding,entrance e 1 2 - n2)'> s~n > - (n Rad~ates 
0 n 2 0 

aperture 0 

Cladd~ng wall All rays rad~ate 

Table 2. 
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Three d~electr~c interfaces are 1dent1f1ed, n
0

- n
1

, n
0

- n
2

, 

n
1 

- n
2 

and s1nce the 1nc1dent rad1at1on may or1g1nate 1n e1ther 

medLum a total of s~x refract~ng cond~t~ons ex~st. These are ~nd~cated 

~n F~gure 36 ~n wh~ch a merid~onal longitud~nal cross sect~on of the 

f1bre is shown. The n
0 

- n
1 

1nterface accounts for a trans~ss1on loss 

at the entrance and ex~t apertures of the wavegu~de and a refract~on 

of l~ght ~nto and out of the waveg~de core. The n
1 

- n
2 
~nterface 

prov~des a total ~nternal reflect~on condition for l~ght within the 

core and precludes l~ght wh~ch may propagate ~n the core from enter~ng 

the core except through the end apertures. The n
0 

- n
2 

~nterface ~s 

not s~gn~f~cant in the geometr~cal ray theory model of the waveg~de 

although it too prov~des a total ~nternal reflect~on cond~t~on. 

The total 1nternal reflect1on cond1t1on at the n
1 

- n
2 

1nterface 

for rays of hght enter~ng the core through the entrance aperture at 

~nc~dent angle e 1s given by 
0 

1 2 2)'> 
s~n e " (nl n2 0 n 

0 

Rays of l~ght whose ~nc~dent angles exceed the mer~d~onal 

critical angle 8
0

c g~ven by the equal~ty c o ndit~on of Equat~on (119), 

are refracted ~nto the cladd~ng at angle e
2 

where 

The total internal reflect~on cond~t~on at the n
0 

- n
2 

~nterface 

~s g~ven by 

119. 

120. 

121. 
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Rays whlch exceed the equallty condltlon of Equatlon (121) 

are radlated from the wavegulde. Rays Wlth angles wlthln a total 

lnternal reflectlon condltlon will ln theory be reflected unattenuated, 

but ln practice the n
0 

- n2 lnterface has a hlgh reflectlon loss 

because of lts exposure to dlrt and damage ln the free space envlronment. 

The n
1 

- n
2 

lnterface is protected from free space and lS therefore 

assumed to permlt lossless reflectlon. 

Rays of llght entering the claddlng dlrectly from free space, 

through the entrance aperture Wlll suffer total lnternal reflectlon at 

the n2 - n
0 

interface if 

sin 6 ~ ! (n
2 

o n 2 
0 

otherwlse they Wlll radlate. 

Rays lncldent upon the claddlng walls will refract at the 

n
0 

- n
2 

and n
2 

- n
1 

lnterfaces, pass through the core and refract out 

of the wavegUlde through the n
1 

- n
2 

and n
2 

-

radlate. 

n ~nterfaces and thus 
0 

These var~ous ray paths and cond1t1ons are summar1sed 1n Table 

2 and it is clear that only rays Wlthin the merldlonal crltlcal angle 

e 1 1llCldent 1n the core entrance aperture, Wlll propagate unattenuated . oc 

along the wavegulde. Near the entrance aperture other rays may 

contrlbute to the lntenslty Wlthln the core dependlng upon the 

reflection and transmlSSlon coefflclents at the varlous lnterfaces. 

Thls is consldered in the next sectlon. 

It lS proposed to represent thls merldlonal cross sectlon of the 

core of the wavegulde as two plane parallel mirrors, Wlth unlty 

reflectlon coefficients, a dlstance 2a apart Wlth the space between 

122. 
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F~gure 37. Parallel m~rror representat~on of a cladded 

wavegu~de. 
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F~gure 38. Long~tud~nal cross sect~on of cladded dielectric 

waveguide embedded ~n a med~um of refract~ve ~ndex n
3
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them f~lled w~th a lossless med~um of refractive index n
1

. 

The character~st~cs of a typ~cal ray propagat~ng ~n th~s model 

of the core shown ~n F~gure 37 are as follows. The opt~cal path 

length L of a ray w~th ax~al angle e
1 

in the core is g~ven by 

Equat~on (116) as 

L 

The number of reflect~ons made by th~s ray ~n a length i of 

core ~s g~ven by 

The d~rect~on of the ray ~s reversed after each reflection but 

the magn~tude of e
1 

~s constant. It ~s further assumed that no phase 

sh~ft occurs on reflect~on, although th~s ~s r~gorously true only for 

reflect~ons at the cr~t~cal angle. 

4.3.1 Entrance Aperture D~ffract~on 

Consider the exper~mental arrangement shown d~agrammat~cally ~n 

Figure 38 where a short length of wavegu~de (i ~ 12a) ~s embedded ~n 

res~n, refractive ~ndex n
3 

(where n
3 

> n
2

) and pol~shed at both ends. 

A monochromatic po~nt source at P is a dlstance q from the wavegu~de 
0 

aperture and ~t ~s assumed that q >> 2a so that approx~mately plane 

waves are ~nc~dent over the wavegUlde aperture and surround~ng surface. 

The total d~sturbance at a po~nt P w~ll be the summat~on of the 

contr~but~ons from secondary sources on the surface s
1 

the waveguide 

core, s
2 

the cladd~ng and s
3 

the embedd~ng res~n. The maximum axial 

123. 

124. 
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angle e
1

m ~n the core of a contr~but~on to P ~s l~m~ted by the 

condit~on that no reflect~on of the l~ght occurs pr~or to rad~at~on 

from the core. 

From F~gure 38 

For a ray sat~sfy~ng Equat~on (125) to enter the core through 

the cladd~ng it must f~rst exceed the critical angle e
1

c in the core 

g~ven by 

Equating Equat~on (125) and (126) y~elds a ~n~mum value for R 

= 2 -
a 

The max~mum ax~al angle at the core cladd~ng ~nterface of a 

ray from a secondary source on the surface s
2 
contr~but~ng to P at 

~IN ~s given by e2m where 

= 

The transmission factors at this n
2 

- n
1 

~nterface are g~ven 

by subst~tut~ng 9lc and 9
2
m ~nto Equat~on (101). 

= 

125. 

126. 

127. 

128. 

129. 
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for l~nearly polar~sed parallel components of the ray and 

T 2 1/A n - n 

for normal components. 

= 

Subst~tut~on of typ~cal experimental values into Equat~on (127), 

~ ~ 12a,, n
1 

= 1.62, n
2 

= 1.52, y~elds a value RMIN ~ 9a and s~nce 

a 
b ~ S then cos e

2
m ~ 1 also s~n elc ~ 0.35. Subst~tut~on of these 

last two values ~nto Equat~on (129), (130) g~ves a transmiss~on factor 

of ~o for both components of the ray. 

It ~s therefore assumed that no contr~but~on to the d~sturbance 

at P or~g~nates from the surface s
2

. The rad~at~on from the secondary 

sources on s
3 
w~ll have to cross the n

2 
- n

3 
~nterface ~n ad~t~on to 

the n
2 

- n
1 

~nterface ~n order to contr~bute toP. S~nce n
3 

> n
2 

the 

n
3 

- n
2 

interface WLll cause total ~nternal reflect~on of ra~atLon ~f 

~t LS Lnc~dent at less than the crLtical angle. If a ray JUSt exceeds 

th~s cr~t~cal angle Lt WLll appear in the claddLng w~th an incLdence 

angle similar to that g~ven by EquatLon (128) and wLll suffer the same 

transm~ssion loss at the n
1 

- n
2 

~nterface as rays from surface s
2

• 

Rays from surface s
3 

which arr~ve ~n the core wLth ~ncLdent angles 

greater than the core cr~t~cal angle w~ll or~g~nate from the surface 

s
3 

a consLderable dLstance from the P - P
0 

ax~s and ~t is assumed that 

they w~ll have small amplLtudes due to the value of the Lncl~natLon 

factor Y-(X) of secondary sources. 

The ~sturbance at P w~ll therefore be the result of the summat~on 

of the rad~at~on from secondary sources ~n the entrance aperture of the 

core only. ThLs SLtuatLon ar~ses ~n the problem of d~ffraction by a 

circular aperture considered ~n Section 3.7 except that, in this case, 

130. 
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the c~rcular aperture ~s followed by a block of d~electr~c material, 

length£ and refract~ve ~ndex ~1 . 

From the s~mple theory of ~mag~ng by refract~on at s~ngle 

surfaces(33 ch. 282 ) th~s block w~ll have the effect of chang~ng the 

posit~on of the entrance aperture w~th respect to the rad~at~on end 

of the wavegU1de, as shown ~n F~gure 39. The apparent pos1t1on of the 

aperture £' ~s g~ven by 

£' = 

A s~mple exper~ment to test the equ~valence of the entrance 

aperture of the wavegu~de to a c~rcular aperture follOl<ed by a d~electn.c 

block 15 to observe the pos1t1ons of the max1ma and m1n1ma of 1ntens1ty 

on the ax~s of the d~ffract~on pattern of a c~rcular aperture as 

predicted by the Fresnel Zone construct~on. If ~n F~gure 39, R is 
n 

the distance from the rad~at~on end of the gu~de, then from Equat1on (91) 

a maximum of ~ntens~ty w~ll be observed when R sat~sf~es 
n 

£' + R = 
n 

2 
a 
n;>. 

n = 1, 3, 5 

and an adJacent m~n~ma w~ll be observed at R 1 when n+ 

£' + R = 
n+l 

2 
a 

(n+l) A 

The rad~us, a, of the aperture may be determ~ned from these two 

measurements of R, independently of the value of£'. 
n 

Subtract~ng Equat~on (133) from (132) 

131. 

132. 

133. 

134. 
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The exper1mental arrangement of F1gure 21, us1ng the laser as 

a source, was used to test Equat1ons (91) and (134) for var1ous 

comb1nat1ons of pinholes and d1electr1c blocks. The d1ameters of the 

pinholes were measured us1ng the TV measur1ng system, and R values 
n 

obta1ned us1ng the d1al gauge shown in F1gure 17. The d1electr1c 

blocks were bu1lt up to the requ1red th1ckness us1ng microscope slides 

and measured us1ng a m1crometer. The slides were held together w1th a 

th1n layer of 1ndex matching l1qu1d and the p1nhole attached to one 

face of the block. 

4.3.2 Exper1mental Results 

Three p1nholes of nominal d1ameters 25p, SOp, and lOOp were 

illum1nated w1th plane waves from the He-Ne laser source. It was found 

that the nom1nally circular p1nholes were quas1-ell1pt1cal w1th d1a~eters 

along the maJor and m1nor axis as given 1n Table 3. 

Nominal Diameter MaJOr AX1S M1nor Ax1s 
(p) D1.arneter (p} D1ameter (p) 

100 96 88 

50 48 47 

25 26 25 

TABLE 3 

Each measurement made w1th the T.V. a1.ded system l.S corrected 

to the nearest m1cron. The values of R for n ~ 2 to n ~ 5 1n Equation 

(91) were measured for each of these p1nholes to with1n ~2.5p and the 

correspond1ng values of the d1ameters of the apertures are g1ven 1n 

Table 4. 
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Nominal n = 2 n = 3 n = 4 n = s Average 
Dl.ameter D~ameter 

100 9S.l 9S.4 94.6 94.7 94.9 .. .. * so 48.0 48.S 48.0 49.0 48.4 

2S 27.S 26.1 26.1 26.2 26.S 

TABLE 4 

The SO~ d~ameter p~nhole was attached to a block of glass made 

up from one to four ~croscope sl~des each of th~ckness 160~ and of 

refract1ve l.ndex n
1 

l.S24, measured us~ng an Abbe refractometer. 

The values of (t' + R } were measured for n = 2 to n = S as before and 
n 

the correspond1.ng aperture d1ameters were calculated us1ng Equat1ons 

(132} and (133} to g~ve the results shown ~n Table S. 

Number of 1 Calculated d1.ameter for 
Slides n = 2 n = 3 n = 4 n = s Average 

1 160 46.6 47.7 48.2 48.3 47.7 

2 320 47.7 47.7 47.2 47.0 47.4 

3 480 49.6 48.S 48.0 47.7 48.S 

4 640 48.7 48.9 49.2 47.7 48.7 

TABLE S 

Two short lengths of embedded f~bres (t = 310,330~} were prepared 

as described ~n Chapter 2. The core d~ameters of three f~bres from each 

sample were measured us1.ng the T.V. a1.ded measuring system, wh1lst 

~lluminating the f~bres with white l~ght inc~dent ate = 30°, ~n order 
0 

to highl~ght the core cladd~ng ~nterface. The values of R (see Figure 
n 



~ 501J diameter 

pinhole. 

n = 4 

n = 3 

n == 2 

:::: 50\J diameter 

f~bre . 

Figure 40. Microphotographs of the diffraction patterns produced 

by a p~nhole and a single fibre corresponding with the 

results marked with * in Table 6 . 
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39) were measured for n = 2 to n = 5 as before and the value of ~· 

calculated from EquatLon (131) usLng n
1 

= 1.62. The values of 

apparent core dLameters were calculated usLng EquatLons (132), (133) 

for each of the six fLbres and the results are given Ln Table 6. 

l 1' d 
Measured n = 2 n = 3 n = 4 n = 5 

310 192 50.0 43.8 46.9 48.2 50.2 

310 192 48.0 42.0 46.0 46.5 47.7 

310 192 49.0 42.7 45.7 46.1 47.7 

330 203 45.0 40.7 42.5 43.0 44.0 

330 203 46.0 41.6 43.1 43.6 44.6 

45.1. 46.5 .. 
..,. 

330 203 50.0 47.3 48.2 

TABLE 6 

Photomicrographs and LntensLty graphs for the experLmental results 

marked 'ath an asterLsk are shown Ln FLgure 40. 

D1scussion 

The results shown Ln Table 4 suggest that EquatLon (91) LS applLcable 

for the calculatLon of the posLtions along the axis of the null poLnts 

of the dLffractLon patterns of the nomLnally cLrcular apertures. The 

average dLameters of Table 4 are WLthLn ~ 1.1~ of the maJOr axLs dLameters 

of the apertures gLven Ln Table 3. 

The results in Table 5 suggest that EquatLons (132), (133) may be 

used to find the null poLnts of the aperture dLffractLon patterns when the 

aperture LS followed by a block of glass. The average values of the 

dLameters Ln Table 5 are all WLthLn ~.7~ of the average effectLve 

diameter of the aperture gLven Ln Table 4 as 48.4 IDLcron. 
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F~gure 42. Rays ~n a long~tudinal cross sect~on of a ramp refract~ve 

index prof~le wavegu~de. 
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The calculated d~ameters of the f~bres for n = 5 ~n Table 6 

are all w~th~n 1.8~ of the measured values, but at n = 2 the calculated 

values fall by between 2.9 to 6.3~ from the~r values at n = 5. Th~s 

suggests that as the po~nt of observat~on ~s moved away from the 

aperture the effect~ve d~ameter of the aperture ~s reduced. One 

poss~ble mechan~sm wh~ch w~ll ~splay th~s character~st~c ~s a ramp 

refract~ve ~ndex prof~le between the core and cladd1ng glasses, and 

th~s 1s d1scussed 1n the next sect1on. The conclus1ons drawn there from 

the exper1mental results suggest that a var1at~on ~n the effect1ve 

diameter of the core of {3 + 1)~ between the n = 2 and n = 5 po~nts of 

observat~on is poss~ble ~n the fibres used for these exper1ments. Tak~ng 

this result 1nto account when consider1ng the results 1n Table 6 suggests 

that Equat1ons {132), {133) may be appl~ed to the fibre d1ffraction 

pattern to find the ax~s null points. 

4.4.1 Ramp Refract~ve Index Prof~le 

The refract1ve 1ndex prof1le to be cons~dered lS shown ~n F1gure 

41. The refract~ve ~ndex n{r) may be expressed as 

n {r) = nl r li r 
=n 

135. 

n{r) = n2 r ::: r 
max 

136. 

n {r) 
tm 

{r - r ) < = n - r r < r 
1 f1r =n • =n max 

137. 

where f1n = and f1r = r - r 
max IDln 

A stepped refract~ve 1ndex prof~le has f1r = 0 to g~ve a core 

rad~us a, where a = r = r and Equat~ons {135) and {136) correspond 
max nun 

to the core and cladd~ng reg~ons respect~vely. 
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Cons1der a ray of l1ght lncldent on the entrance aperture of 

a waveguide w1th a refract1ve lndex prof1le as shown 1n F1gure 42 and 

where ~~e ray has an axlal 1nc1dent angle e and lnitial poslt1on 
0 

r ~ r , Th1s ray Wlll be totally 1nternally reflected when 1t reaches 
!Dl.n 

a rad1al pos1t1on r, where n(r) satlsf1es the follow1ng equat1on 

2 
Sln e 

0 
= 

1 
2 

n 
0 

2 2 
(n

1 
- n (r)) 

Denotlng th1s value of e
0 

as ec(r) and assum1ng that n0 = 1, 

then on subst1tutlng Equatlon (137) 1nto (138) g1ves 

sin
2 

e (r) 
c 

= 
2n

1 
(lm) (llr) (r-r ) 

m1n 

(llr)
2 

2 2 (lln) (r-r ) 
mln 

Rearranglng Equatlon (139) to make 'r' the subJect g1ves a quadrat1c 

equat~on 1n r whose solution 1s 

(n -
1 

2 - S1n e (r)) 
c 

Flgure 43 shows a graph of Equatlon (140) and lllustrates the 

varlatlon of the core rad1us r as ec lS var1ed for n1 = 1.62, lln = 0.1, 

r = 25~, llr = 2~. If a plane wave 1s lnc1dent on the wavegUlde entrance 

aperture withln a radius r where r ~ r Wlth an axlal angle of 
!Dl.n 

1ncidence e , then neglect1ng any d1vergence of the plane wave due to 
0 

diffraction at the entrance aperture, the radlus of the lllU!Dl.nated 

core reglon Wlll be glven by Equatlon (140) W1th e0 (r) = e
0

• 

For example when S1n e = 0, r = r and sin e = ~12 o ~n o 

(the cr1tical angle of a stepped refract1ve lndex prof1le waveguide) 

r = r • 
max 

138. 

139. 

140. 
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The waves WhLch radLate from the core regLon wLthLn a radLUS 

< r . will have axLal angles of radiatLon equal to the angle of 
mLn 

inc1dence of the plane wave. However, waves wh1ch rad1ate from the 

core reg1on rm'n < r < r w1ll have ax1al angles of rad1at1on 6 (r) , • max r 

which are dependent upon the radLal positLon of the poLnt of radLatLon 

as well as the angle of LncLdence. 

In FLgure 42 the axLal angle e1 of an arbitrary ray of lLght 

withLn the core region r ~ r LS given by 
=n 

sin e 
0 

and at a rad1us r, where r < r 
mLn 

r 
1
the axLal angle of the ray 

max 

becomes el {r} where 

cos e
1 

(r) = 

The radiatLon angle 6 {r} of thLs ray LS gLven by r 

sin e {r} 
r 

SLn 61 {r)
1 

where it LS assumed that the radLus, r, of the poLnt of refraction lLes 

in the range r < r < r 
m1n max 

SubstLtutLng EquatLons {141} and {142} 

into EquatLon {143} and assumLng that n = 1 gLves 
0 

SubstLtuting for n{r} usLng EquatLon {137} and neglectLng the {
6

n}
2 

6r 
2 term Ln the expansLon of n {r}, Equation {144) becomes 

SLn 6r {r} 2 
6n 
6r 

n
1

{r-r ) 
=n 

141. 

142. 

143. 

144. 

145 
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Figure 44. Graph o£ 6 (r) 
r 

against r . 

Figure 45. 

Figure 46 . The ring effect . 

e 
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A graph of Equatlon (145) lS shown in Flgure 44 where 

e ~ 30°, n ~ 1.62, br ~ 2~, bn ~ 0.1 and whlch lllustrates that 
0 l 

the angle 6 (r) varies from e to zero as the radlUS of the point r o 

of the ray lncreases from r to the value glven by Equatlon (140) 
=n 

when e (r) ~ 30°. 
c 

4.4.2 Experlmental Results 

A 30 cm length of flbre bundle was used to lnvestlgate the 

variatlons of the radlus of the lllumlnated core reglon uslng the 

experlmental arrangement of Flgure 20 Wlth a whlte llght source. The 

diameter of the illum~nated core reg~on of selected f1bres was measured 

using the TV-alded measurlng system whllst illllmlnatlng the opposlte 

end of the flbres at varlous angles. At each lncldent angle the oscllloscope 

trace of the radlated lntenslty was normallsed to a selected helght and 

the Wldth of the trace at half thls helght taken as the Wldth of the core 

region. 

The resolutlon of the measurlng system lS llmlted to ~-5~ and 

this prohlblts attempts to measure the refractlve lndex proflles whlch 

appear to have br of the order of 1.5~ or less. However, a measurement 

of the dlameter of the lllumlnated core at incident angles 6 ~ 0° and 
0 

6 ~ 30° lndlcated that br was non zero conflrmlng the exlstence of a 
0 

fin1te w1dth refract1ve 1ndex prof~le, and tests on numerous f1bres 

yielded the average value for br of (l ~ 0.5~). 

Photomicrographs of the radlatlon end of a flbre and photogrQphs 

of the correspondlng lntenslty traces are shown in Flgure 45. The value 

of br for thls flbre ls ~1.2f. 

Equation (145) suggests that lf such a fibre lS lllllmlnated at 

1nc1dent angle e and the rad1at1on f1eld exarn1ned us1ng a ~croscope 
0 
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ObJeCtive W1th an acceptance angle 8 < 8 , a r1ng Of l1ght W111 be 
a o 

observed at a radius r for Wh1Ch 8 (r) < 8 1n Equat1on (145). Th1s r a 

is demonstrated 1n F1gure 46 where e ~ 44° and e ~ 33°. 
o a 

4.5 Conclus1ons 

It 1s thought that the exper1ments to measure the entrance 

aperture d1ffract1on effects are an or1g1nal contr1but1on to the 

exper1mental study of opt1cal wavegu1des. The theoretical model of a 

normally 1nc1dent plane wave of s1gn1f1cant ampl1tude w1th1n the core 

reg1on only, has been cons1dered elsewhere(42 ). Th~t solut1on 1s g1ven 

1n terms of the eff1ciency of exc1tat1on of surface wavegu1de modes. 

The attempts to measure the refract1ve 1ndex prof1le are also 

or1g1nal, although another worker* has pr1vately conf1rmed observat1on 

of the r1ng effect. He suggested that th1s effect was due to d1ffract1on 

at the rad1at1on end of the wavegu1de, s1nce such a r1ng would be 

expected at sharp d1electr1c interfaces due to the format1on of a 

1 d 1 b d 
(3l,Sec.8-9, and Chap.ll) 

cy 1n r1ca oun ary wave 

However, the var1at1on 1n area of the illumlnated core,as the 

angle of incidence of the 1llum1nat1on 1s var1ed, supports the refract1ve 

index prof1le theory. The observat1on of the 1ntens1ty of a cylindr1cal 

boundary wave produced by a glass-a1r interface suggests that, 1f such 

a wave were present, it would be of cons1derably less intens1ty than the 

ring of l1ght actually observed. 

S1nce 1t was not poss1ble to measure the refract1ve 1ndex prof1le, 

the ramp approx1mat1on has been used for simplicity. More appropr1ate 

methods of measur1ng the 1ndex prof1les of optical wavegu1des have 

(29) been reported dur1ng the per1od of th1s research. 

* W.J. Stewart, Plessey Co.Ltd., Private commun1cat1on. 
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CHAPTER 5 

5.1 Introduct1on. 

This chapter conta1ns an extensive study of pr1mar1ly geometr1c 

ray theory phenomena wh1ch may be observed 1n a core cladded d1electr1c 

wavegu1de which 1s assumed to be perfectly stra1ght and c1rcular 1n 

cross sect1on. 

The merid1onal sect1on representat1on of the wavegu1de 1s used 

to generate an equ1valent cyl1nder 1n three d1mens1ons. The concept of 

skew rays and skew ray paths 1s introduced and the meridional ray 1s 

shown to be a l1m1t1ng skew ray. The behav1our of the skew rays at the 

var1ous d1electr1c 1nterfaces 1s exam1ned and the behav1our of the 

wavegu1de as a th1ck lens 1s exper1mentally ver1f1ed. 

The propagat1on of skew rays 1n the wavegu1de core produces 

reflection number dependent caust1cs wh1ch are exam1ned exper1mentally 

and by computer s1mulat1on. The analys1s of the propagat1on of the skew 

rays leads to the der1vat1on of the uniform rad1at1on cone property of 

core cladded wavegU1des used for the al1gnment procedure descr1bed 1n 

Chapter 2. The 'black hole' effect 1s also derived and the effects of 

slop1ng end terminations on the radiat1on cone are exam1ned. 

Although the geometr1c ray theory pred1cts many of the observed 

phenomena the m1croscopic deta1ls are expla1ned by reference to the 

rigorous electromagnetic theory and th1s has been 1ncluded where necessary. 

5.2 General1zed Geometr1c Representat1on of Core Cladded 

D1electr1c Wavegu1des. 

The parallel m1rror rcpresentat1on of a mer1d1onal cross sect1on 

of a core cladded d1electric wavegU1de developed 1n Chapter 4 w1ll form 

a cyl1ndr1cal m1rror surface 1£ 1t 1s cons1dered in three d1mensiona. 



Cross 
section. 

Longitudinal. 
section. 

e. 

FLgure 47. A ray in the longitudinal and cross sectLons of an 

Lnternally reflectLng cylLnder. 

FLgure 48. The path of a ray in the cross section of a cylinder. 
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However, the cond~t~on for total ~nternal reflect~on of rays w~th~n 

the core given by Equat~on (119) only appl~es to mer~d~onal rays ~n 

the cyl~nder. 

A general ray with~n the core ~s character~sed by two angles 

e, ~. as shown ~n F~gure 47. The long~tud~nal sect~on of the core 

conta~n~ng the ray def~nes angle e and the proJection of the ray ~n 

the cross sect~on def~nes angle ~· A general ray wh~ch enters the core 

through the core entrance aperture at ~ncident angle 8 has to sat~sfy 
0 

the cond~t~on 

sin 8 SW ~ :5 
0 

l 

~n order to be totally reflected from the n
1 

- n
2 

~nterface. Clearly 

11 
Equation (146) reduces to the mer~d~onal Equat~on (119) when ~ = 2· 

Rays wh~ch sat~sfy Equat~on (146) but wh~ch have 8 > 8 where 8 
0 oc oc 

is the merid~onal cr~t~cal angle, are called leaky rays because they 

(43) 
are sl~ghtly attenuated on reflect~on . In the short lengths of 

wavegu~de used ~n this study the effects of this attenuat~on are 

negl~g~ble. 

The behav~our of a general ray at the cyl~ndrical d~electric 

~nterfaces ~s s~milar to that descr~bed ~n Chapter 4 except that the 

angle of inc~dence ~s formed from a comb~nat~on of e and ~ as ~n the 

left hand s~de of Equat~on (146). Certa~n rays are ~nvestigated ~n 

the nexL sect~on and ~t ~s suff~cient here to note that only rays wh~ch 

enter the wavegu~de through the core entrance aperture and sat~sfy 

Equat~on (146) are propagated unattenuated ~n the core by the total 

reflect~on process. 

146. 
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The character1st1cs of a general ray propagat1ng 1n the core 

are now cons1dered. S1nce the angle of 1nc1dence 1s preserved 1n 

magn1tude at each reflect1on, the values of 6 and ~ also rema1n constant 

1n magn1tude. 

The optical path length of a general ray 1n a length ~ of 

wavegu1de depends only upon e and 1s g1ven by Equat1on (123). The angle 

$ def1nes the path taken by a ray 1n the cross sect1on of the core as 

shown 1n F1gure 48. 

The pro]ect1on of the path of a ray 1n the cross sect1on between 

adjacent po1nts of reflection forms a chord of a c1rcle of length y c 

where 

2a s1n ~ 

and which subtends an angle at the centre of the c1rcle of 2$. If the 

number of reflect1ons m($1~) of ray (6 1 ~ 1 ) 1n a length, ~. of the core 

is given by 

then the angle $r subtended at the centre of the c1rcle after m 

reflect1ons where m 1s the 1nteger value of m(~1 ~J 1s g1ven by 

If 

where p 1s an 1nteger, then after m reflect1ons and p revolutions, the 

ray path w1ll form a closed f1gure w1th1n the cross sect1on. The 

closed f1gures for p = 1, m = 2, 3, 4 and p = 2 m = 5 are shown 1n 

147. 

148. 

149. 

150. 
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F~gure 49 and may be compared w~th the closed f~gures of F~gure 6 

which were obtained from the in~tial exper~ments descr~bed ~n Chapter 1. 

The general experimental arrangement for exc~t~ng the patterns 

descr~bed ~n Chapter 1 is shown ~n Figure 50. It ~s assumed that the 

source ~llum1nates the core aperture w1th plane waves at ~nc~dent 

angle e and a s1ngle az1muth angle, a, wh1ch for a stra1ght c1rcular 
0 

waveg~de 1s qu1te arb~trary. The core aperture 1s d~v~ded ~nto 

elements of area 6x 6y and the propagat1on of the l1ght ~nc1dent upon 

each element w1ll be represented by a ray whose start1ng pos1t1on ~s 

the centre of the element and has ~nc~dent angles 8 , ~ where 
0 

cos ~ 
X 

a 

If each ray ~s called a skew ray, then all skew rays w1th the 

same value of ~ will follow a si~lar path ~n the core and may be 

cons1dered collect1vely as a skew plane. A skew plane has an area ~n 

the core aperture of 6x. 2a s1n ~ and, for un~form 1nc~dent rad1at1on 

and flux dens~ty D, w1ll represent an 1ntens1ty I(~) where 

I(~) =D. 6x.2a s1n ~ 

The skew ray at the centre (y = 0) of each skew plane w~ll be 

called a skew plane ray, and the propagat1on of the skew plane ~n the 

wavegu1de may be represented by the propagation of ~ts skew plane ray, 

s~nce the skew plane w1ll ma1nta~n a f1xod spatial relat1onsh~p Wlth 

~ts assoc1ated skew plane ray. The two skew plane rays due to +x ~n 

Equat~on (151) are s~~lar but they w~ll propagate down the core in 

oppos1te d1rect1ons. The anticlockwise propagat1on d1rect1on (cos ~ = 

+~) ~s ~ssumed to be pos1t~ve. 
a 

151. 
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F1gure 52a. A long1tud1nal sect1on 

of an embedded, dielectr1 

cyl1ndr1cal lens. 
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The skew planes wh1ch form the closed f1gures descr1bed prev1ously 

w1ll be called stat1onary skew planes and the assoc1ated skew plane ray 

a stat1onary skew plane ray. Before proceed1ng w1th the analys1s of 

the propagat~on of skew plane rays ~n the wavegu~de core, the behav~our 

of l1ght rays 1n a short length of embedded wavegu1de 1s cons1dered. 

The wavegUlde lS 1llum1nated as 1n F1gure 49, but attent1on 1s conf1ned 

to the l1ght wh1ch 1s 1nc1dent upon the cladd1ng ,;all. 

5.3 The D1electr1c Wavegu1de 11 Th1ck Lens" 

It lS well known that a cyl1nder of glass behaves as a th1ck lens{
44

•Ch.
2 

and 1t 1s easy to show that w1th1n the parax1al approx1mat1on 

a d1electr1c cyl1nder refract1ve 1ndex n
1

,rad1us a, 1n a med1um of 

refractive 1ndex n
3 

has a focal length f, as shown in Figure 5la where 

f ~ 
2{n -

1 

The d1electr1c wavegUlde has a cladd1ng dielectr1c, refract1ve 

1ndex n
21

thlckness b, and 1t may be shown that the focal length of th1s 

dev1ce, shown 1n cross sect1on 1n F1gure 5lb, lS g1ven by 

f' = 

where n
3 

is the refract1ve 1ndex of the surround1ng med1a, and n1 > n3 

Figure 52a shows a longitud1nal sect1on and Figure 52b a cross 

section of a short length of wavegu1de embedded 1n a mater1al of 

refractive 1ndex n
3 

and 1lluminated by plane waves at the 1nc1dent 

angle 6
0 

shmm. Rays of l1ght 1nc1dent on the n0 - n 3 interface are 

refracted 1nto the embedding mater1al at incident angle e3 . 

153. 

154. 
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sin e 
0 

Rays of l1ght inc1dent upon the cladd1ng wall w1ll refract 1nto 

the cladd1ng if 

since they w1ll exceed the total 1nternal reflect1on cond1tion at th1s 

interface. 

If e
3 

is such that Equation (156) 1s JUSt sat1sf1ed, the 

perm1ss1ble range of ~ 3 w1ll be small. The refracted rays 1n the cladd1ng 

w1ll have e
2 

~ 0 and w1ll rad1ate from the port1on of the cladd1ng end 

face shown shaded 1n F1gure 52b. This effect 1s demonstrated 

experimentally 1n F1gure 53a wh1ch 1s a photomicrograph of the end of 

a 570 m1cron length of core cladded wavegu1de 1llum1nated w1th wh1te 

l1ght at e 
0 

0 
= 26.5 . 

Increas1ng 6
0 

1ncreases the range of ~ 3 but more 1mportant1 62 

will now be greater than zero and certa1n rays w1ll be refracted into 

the core at angles e
1

, ~ 1 • If 1t 1s assumed that rays w1thin the 

paraxial reg1on of the equ1valent cyl1ndr1cal lens have values of ~l 

for wh1ch sin ~l ~ 1 by comparison with the small values of e11 then the 

refraction of the ~ and 6 components of the angle of incidence at each 

interface may be cons1dered separate!]. Th1s amounts to apply1ng the 

thick lens equat1ons to the cross sect1onal components of the rays and 

the mer1d1onal approx1mat1on to the longitud1nal components. 

Consider the ray components 1n the long1tud1nal section, Figure 

52a, wh~ch have been refracted into the core. Rays near the end of the 

wavegu1de will rad1ate through the n
1 

- n
0 

1nterface and those which 

155. 

156. 
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F~gure 54. Adjacent ske\-1 planes showing the position 

of their intersection after one reflection. 
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meet the core cladd1ng boundary pr1or to rad1at1ng w1ll be refracted 

1nto the cladd1ng at angle e2. 

Rays in the cladd1ng near the end of the wavegu1de w1ll rad1ate 

through the n 2 - n0 1nterface and rays meet1ng the outside cladd1ng 

wall w1ll refract into the embedd1ng med1um at angle e
3

. F1nally the 

rays 1n the embedd1ng med1um w1ll rad1ate through the n
3 

- n
0 

1nterface 

at an angle 6' Where W1th1n the paraxial approx1mat10n 6' 6 
0 0 0 

The cross sect1onal components of all these rays w1ll have been 

SubJected to the focussing propert1es of the wavegu1de. The focuss1ng 

of the ~nc~dent plane wave w~ll be ev~dent 1n the rad1at1on f1eld, 

although the d1ffer1ng angles of radiat1on from the var1ous reg1ons of the 

end of the wavegu1de w1ll present d1fferent aspects of the focussed beam. 

Th1s 1s demonstrated exper1mentally 1n F1gure 53b, wh1ch 1s a 

photom1crograph of the same sample as 1n F1gure 53a but w1th 6 ~ 30.5°. 
0 

The different aspects of the focussed beam are ev1dent 1n the cladd1ng 

and embedding med1um reg1ons. The beam 1s viewed nor~ally 1n the 

cladding reg1on (6
2 

~ 0) and obliquely (6 3 ~ 26°) 1n the embedding 

reg1on. The rad1at1on from the core conta1ns components of the focussed 

beam, wh1ch may be 1dent1f1ed w1th the help of the ray paths shown 1n 

F1gures 52a-b. The rad1at1on f1eld from the core due to light 1ncident 

1n the core entrance aperture 1s also very much 1n ev1dence,1n the form 

of caust1cs, and these are der1ved in the next sect1on. 

5.4 Propagat1on of Skew Planes and Skew Plane Rays 

Cons1der the cross sect1on of a skew plane bounded by chords 

c1 (~), c
1 
(~ + ~p) shown 1n F1gure 54 where the angle subtended at the 

centre of the c1rcle, rad1us a, by the port1on of the c1rcumference 

between the po1nts of reflection p
1 
(~), p

1 
(~ + ~~) is ~p where 

157. 
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The 1ntens1ty of a s1ngle element of area ~x~y of th1s skew 

plane 1s denoted by I(~x~y). After a s1ngle reflect1on the chords 

c1 ($), c
1 

{$ + ~$) form chords c
2

{$), c
2

{$ +~~)and the angles subtended 

at the centre of the c1rcle by the chords c
2

($), c
2

(p + ~$) are g1ven 

by Equation (149) as 2$ and 2($ + ~$) respect1vely. Thus the angle 

subtended at the centre of the c1rcle by the port1on of c1rcumference 

between the new po1nts of reflect1on P2 ($), P2 (~ + ~~) 1s 3~$. As 

shown 1n F1gure 54 the chords c 2 ($), c 2 ($ + ~$) 1ntersect at po1nt F 

which 1s a d1stance, q, along chord c 2 (~) from po1nt P1 (~). Assum1ng 

then 

a 
q = 2 s1n $ 158. 

Consider an element of area between chords c
2

($), c
2

{$ + ~~) 

of dimensions ~uhv a distance, u, from F, where u,v are rectangular 

co-ord1nates w1th their orig1n at F and u co1nc1d1ng w1th c2 (~). 

The element ~v 1s given by 1nspect1on of F1gure 54 as 

= iul 2 ~x 
a s1n ~ 

Invok1ng the conservat1on of intens1ty theorem expressed by 

Equation (118), the 1ntens1ty 1n the element ~u~v 1s g1ven by 

I{~Mv) 

If ~u = ~y and using Equation (159) 

I {~Mv) I(~xf>y) . ~ ~~~ p 

Equation (160) suggests a point of 1nf1nite 1ntens1ty at u = o, 

which 1s called a focus. Th1s apparent failure of the geometric ray 

159. 

160. 
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theory 1s caused by attempt1ng to compress the electromagnetic waves 

1nto zero volume, where the form of the space dependent component of 

the wave equat1on solut1on (Equat1on (105)) used for the der1vat1on 

of the geometr1cal ray theory 1s 1nappl1cable. The assumpt1ons used 

there that a(r) and L(r) vary slowly w1th respect to the wavelength 

of the light are 1ncorrect at a focus and the correct intensity at, 

or near, u = 0 is obta1ned only by us1ng d1ffract1on theory. 

The diffraction pattern at a caust1c, wh1ch 1s the locus of 

foe~ 1s analysed 1n the next sect1on. The parameters of a caust1c 

requ1red for that analys1s are the radius of curvature of the caust1c 

and the pos1t1on of the caustic w1th respect to the reflecting surface. 

The cross sect1onal components of these two parameters are now obta1ned 

for the cylindrical reflecting surface, as a functJon of the number m 

of 1nteger reflect1ons made by the skew plane rays,in1t1ally 1llum1nated 

by a plane wave 1nc1dent at a s1ngle az1muth angle. 

Cons1der f1rst the two stra1ght l1nes shown 1n F1gure 55, where 

po1nts P
1

, P
2 

have co-ord1nates x
1

Y
1

, x
2

Y
2 

respect1vely and the slopes of 

the l1nes are g1ven by T
1

, T
2

, 

where 

The equat1ons def1n1ng the two stra1ght l1nes may be expressed as 

y = 
Xl - (Yl - y)/Tl 

X2 - (Y2 - y) T2 
l6la. y = 

yl - (Xl - x) Tl 

y2 - (X2 - x) T2 

The co-ord1nates x , y of the po1nt S where the two l1nes 
s s 

1ntersect may be found by equat1ng the y and x components of the l1nes. 

16lb. 
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From EquatLon U6lb) 

From EquatLon (l6la) 

= 

p = 

Kl = 

K2 = 

Tl (Y2- X2T2) - T2(Yl- XlTl) 

(Tl - T2) 

(Tl - T2) 

(Yl- XlTl) 

(Y2 - X2T2) 

and substLtute Equations (163) Lnto EquatLons (162) 

K2 - K 1 
X = 

s p 

TlK2 - T2Kl 
ys = p 

In FLgure 56 the LnLtial posLtLon of the skew planes is parallel 

to the y axis. The chords defLnLng the skew plane ~' ~ + ~~ satLsfy 

l62a. 

l62b. 

l63a. 

l63b. 

l63c. 

l64a. 

164b. 

equations of the form of Equations (161), Ln which the subscrLpts l,Z WLll 

denote ~ + ~~. ~ respectLvely. It LS convenLent to def~ne X, Y, T for 

each chord Ln terms of the angle, x, where 

1! 
X = 2- (~ + ~~) 

<x + ~xl= 
1! 

2 

165a. 

165b. 



m 1 m = 2 

m = 3 m = 4 

Figure 57. Photographs of caustics produced by computer 

simulation of rays reflected by circular reflectors . 
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th The values of X, Y, T for the two chords after the m reflect~on 

are 

xlm =a s~n(2m-l)X 

) x2m =a s~n (2m-l) Cx+t.x) ) 166a. 

Ylm = a cos(2m-l)X Y2m = a cos(2m-l) Cx+t.xl 

Tlm 
cos 2mx 167a T2m 

cos 2m(x+t.xl = = 
s~n 2mx s~n 2m(x+t>xl 

1T The term s~n(2m-l) 
2

has been dropped from the ~quat~ons (166) 

and ~s dropped from all subsequent equat~ons except for Equat~on (169), 

since 1t only represents a change of slgn for each lncrement 1n me 

Subst~tut~on of Equations (166), (167) ~nto (163) g~ves 

p 
m 

= 

= 

= 

sin 2m. t>x 
s1n 2mx s~n 2m(x + t.xl 

a s~n(x + t>xl 
s~n 2m(x + t.xl 

Subst~tut~on of Equat1on (168) ~nto (164) and lett~ng t>x ~ 0 

g~ves the co-ordinates x , y of the funct~on f(s) descr1b~ng the 
s s 

th 
pos~tion of the caust~c produced by the m reflect~on of the skew 

planes. 

xs = a(;m(sin 2mx cos xl - cos 2mx s~n xl sin(2m-l)~ 

1 1T 
ys = a(2m(cos 2mx cos xl + sin 2mx s~n xl s~n(2m-1)2 

Figure 57 shows photographs of co~puter s~mulations of rays 

reflected by a c1rcular reflector for m = 1 to m = 4, and where the 

locus of the intersections of the rays forms f(s). 

166b. 

167b. 

168a. 

168b. 

16Sc. 

169a. 

169b. 
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Express1ng f(s) 1n R/n form us1ng Equat1on (169) 

2 
+ y 

s 

ys 
TAN n = 

X 
s 

= 
l 

+ 4m2 
2 

cos X 

l + 2m TAN 2mx TAN X 
TAN 2mx - 2m TAN X 

and from Figure 57 1t 1s seen that f(s) forms sp1rals which or1ginate 

at 

and terminate at 

1T n = (2m+l)2 

n = o , 11 

1T 
(l-2m)-

2 

where n is given for +~ and -~ respect1vely. 

<x = o> 

<x = i> 

The first half revolut1on of each sp1ral forms a card1o1d type 

figure wh1ch 1s 1nverted and reduced in size for each 1ncrement in rn. 

a 
The contract1on of the spiral or1g1n (R = "2m'X = 0) along they ax1s 

is given by 

D 
y 

= 
m 

m+l 

The length R, of the sp1ral at the f1rst cross1ng of the x aX1s is 

found by setting Equat1on (l69b) equal to zero and subst1tut1ng the 

correspond1ng value of x in Equat1on (170a). 

Setting Equation (169b) equal to zero results 1n the Equat1on 

cos(2m+l)X 
cos (2m-l) X 

= 
(2m+l) 
(2m-l) 

l70a. 

l70b. 

171. 

172. 

173. 

174. 
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The solut~on for X when m= 2 ~n Equat~on (174) ~s X ~ 42° 

and subst~tut~on of m= 2, x ~ 42° ~n Equat~on (l70a) g~ves a value 

for R which to a good approx~mat~on ~s g~ven by 

R = a sin X 175. 

1 2 
S~nce the term ---

2 
cos X in Equat~on (170a) rap~dly d~m~nishes 

4m 
with ~ncreas~ng m, Equat~on (175) rap~dly approaches the exact value 

for R for all m and X· The correspond~ng approx~mat~on for Equat~on 

(170b) g~ves 

TAN 11 = 
1 

TAN 2mx 

and the values of X correspond~ng to the f~rst cross~ng of the x ax~s 

by the sp~ral are g~ven by 

1! 
X = 2m 

Subst~tuting Equations (177) into (175) and assum~ng that 

1! 1! sin---2m - 2m 

and the contract~on along the x ax~s ~s g~ven by 

D = 
X 

m 
m+ 1 

in agreement with D . 
y 

Cons~der now the values of 11 and R for the two chords c
1 
(~), 

c
1 
(~ + ~~) of F~gure 54 after m reflect~ons. 

us~ng Equat~ons (179), (170) w~th (165a), 

n(~) = 2m~ (a) R(~) = a cos ~ (b) 

176. 

177. 

178. 

179. 

180. 

(a) R(~+~~) = a(cos~ cos~~-s~n~ s~n ~~)(b) 181. 
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When 2~~ ~ 2n the caust1c formed by these two chords will be 

as shown 1n Figure 58 and the l1ght 1n1t1ally between the chords w1ll 

appear w1th1n the annulus, 1nner rad1us a cos ~ (neglect1ng the 

a sin~ s1n &~term of Equat1on (l8lb)) outer rad1us a. Th1s annulus 

may be cons1dered as be1ng composed of 2m ident1cal sect1ons bounded 

by chords c
0

, c
1

, en (see F1gure 58) where adJacent chords are 

1ncl1ned at an angle 

~ 

to each other and ~ntersect at the~r midpo~nts where they are tangent 

to the caustic. 

Cons1der the sect1on bounded by the chords en' cn+l and cons1der 

an element &u&v of th1s sect1on a d1stance u from the m1dpo1nt of c 
n 

where u,v are rectangular co-ord~nates w~th the~r or1g1n at the m1dpo1nt 

of c and u co1nciding w1th c . 
n n+l 

Assuming M ~ &x as before then 

&v 

a 

~ lul&x 
a s1n~ 

Since there are 2m such elements then, by the conservat1on of 1ntens1ty 

-theorem, the 1ntens1ty of the element &u&v 1s g1ven by 

I (bu&v) 
I(&x&y) 

~ 

2m 
a s1n ~ 

Juj 

where I(&x&y) 1s the 1ntensity of an element of the skew plane ray as 

before (F1gure 54). 

If the or1g1nal skew plane ray of width &x 1s cons1dered as 2m 

skew planes each of w1dth &x/2m, each of these 2m skew planes 

182. 

183. 

184. 
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FJ.gure 59. Photographs of computer sJ.mulatJ.ons of rays reflected 

by cJ.rcular reflectors. 
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corresponds to a s1ngle sect1on of the annulus. The llght w1th1n 

the or1g1nal skew plane ray wh1ch lS in a s1ngle az1muthal d1rect1on, 

parallel to the y aXls, is now un1formly d1str1buted over 2mll~ 

az1muth angles. When 2mll~ = 2n the light of the or1g1nal skew plane 

ray w1ll rad1ate as a complete hollow cone of l1ght. 

Equat1ons (180a,b) represent a sp1ral wh1ch 'w1nds up' as m 

is increased as shown ln F1gure 59 where the sp1rals for +~ only are 

illustrated for m = 20, 4Q 

ln D of 2TI lS g1ven by 

liR = a sin ~ ll~ 

The ~ncrement ~n R for an 1ncrement 

and is the w1dth of the skew plane ray >~hose llght lS un1formly 

distr1buted over 2n az1muth angles. As shown 1n F1gure 59 llR reduces 

as m 1s 1ncreased, and the radlat1on pattern due to a plane wave 

inc1dent on the wavegUlde core entrance aperture rap1dly approaches a 

uniform hollow cone of l1ght. 

If a single skew plane ray, bounded by chords c(~'), c(~'+ll~) 

lS allowed to propagate 1n the core, then when the w1dth of the skew 

plane llx equals the 1ncrement llR g1ven by Equat1on (185), the l1ght of 

the skew plane ray w1ll completely illuminate the annulus, 1nner rad1us 

a cos~·, outer rad1us a. The intens1ty distr1but1on w1th1n the annulus 

lS dom1nated by d1ffract1on effects due to the caust1c as d1scussed 1n 

the next section, but w1th1n the geonetric approx1mat1on, the centre of 

the core w1thin a c1rcle rad1us a cos ~· will rema1n 1n shadow, (1.e. 

black). Furthermore skew plane rays with~~~· w1ll make no 

contributlon to th1s black c1rcle within the core. 

185. 
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-90-

Equat~on (146) suggests a s~mple exper~mental arrangement to 

allow only skew plane rays sat~sfy~ng the cond~t~on $ ~ $' to 

propagate. If the angle of ~nc~dence 6 ~s greater than the mcr~d~onal 
0 

cr~t~cal angle 6 , the values of $ wh~ch sat~sfy Equat~on (146) are 
c 

g~ven by 

cos <P ~ 1 -

2 
s~n e c 

2 
s~n e 

0 

Th~s corresponds to the cond~t~on $ ~ $' ~f 

cos $' = 
s~n e 

1- --=-=-c 
2 

s~n e 
0 

Denot~ng the rad~us of the black c~rcle by x' 

2 
e s~n 

x' 1-
c 

= a 
2 

e s~n 
0 

and rearrang~ng Equat~on (188) to make 6 the subJect 
0 

(~·) 2 
a 

wh~ch on subst~tution of x' = ~ g~ves Equat~on 1. A graph of 

Equat~on (188) ~s g~ven ~n F~gure 60, for 6 = 33°, 34°, 35° and 
c 

from which ~t may be seen that a 2° variat~on ~ne when e = 40°, 
0 0 

6 34° results ~n a var~at~on of x' of 1~ when a = 20~. Th~s ~s 
c 

the bas~s of the conf~dence l~m~ts d~scussed ~n Chapter 2 for the 

determinat~on of e from a measurement of x'. 
0 

186. 

187. 

188. 

189. 
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F~gure 61. The wavefront (ab) and caust~c (a'b') for 

the derivat~on of the d~ffract~on at a 

caustic. 
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5.5 D1ffract1on at a Caust1c Surface 

In F~gure 6~ ab 1s a sect1on of a monochromat1c wave front 

wh1ch from geometr1cal theory forms the caust1c a'b'. The co-ord1nate 

system u,v has 1ts or1g1n at an arb1trary po1nt 0 on the caust1c, 

with v co1nc1d1ng w1th the rad1us of curvature and pos1t1ve v 1n the 

d1rect1on of the centre of curvature of the caust1c at po1nt 0. 

The d1sturbance at P a d1stance v from 0 due to the contr1bution 

from the element Q of the wavefront w1ll be g1ven by Equat1on (83) as 

d (U (P )) 
lkS 

=A e 
s 

dS 

where A 1s the d1sturbance at Q, s 1s the d1stance from P to Q and 

dS represents the element of the wavefront at Q. Follow1ng the 

der1vat1ons of reference(45 pp.l48) s may be expressed as 

where D and e are as shown 1n F1gure 61 and R is the rad1us of 
c 

curvature of the caust1c at po1nt o. 

Following the d1ffract1on theory of Chapter 3, the total 

disturbance at P 1s g1ven by Equat1on (95), wh1ch on subst1tut1on 

of Equat1on (191) and assum1ng K(x) constant becomes 

U(P) 'V I: e 
1 

-lkve- d6 

1 The term - w1ll vary only slowly 1n compar1son w1th the exponent1al 
s 

terms and may be neglected. 

Equat1on (192) may be expressed 

U(P) '"2 J: cos(kve + 
kR 0

3 
_c_) 

6 de 

190. 

192. 

193. 
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and 1ntroduc1ng a new var1able 

kR 
I; = (~)1/3 e,. 

2 

2 
U(P) = 1> (v(2k )1/3) 

R c 

where ~(t) is the A~ry funct~on def~ned as 

1>(t) = ~ f"' Jif 0 

3 
cos <t + /;t) dl;. 

The A1ry funct1on, shown 1n F1gure 62, decays expcnent1ally 

for pos~t~ve argument and osc~llates >nth decreas~ng ampl~tude for 

negat~ve argument. If A represents the electr~c f~eld of the wave 

ab then from Equat~on (27), the ~ntens~ty at P is g~ven by 

I (P) 
2 

~ 2B (2k ) 1/6 1>2 
R 

c 

2 
(v(2k ))1/3 

R 
c 

where from reference 45, B represents the 1ntens1ty from the caust1c 

calculated from geometr~cal ~ay theory and neglect~ng d~ffract~on 

effects. 

The argument t of the A~ry funct~on shown ~n F~gure 62 and 

the spatial var~able v, are related by 

The oscillatory behaviour of ~(t) for negat~ve argument w~ll produce 

intens~ty fr~nges wh~ch are tangent to the caust~c w~th spat~al and 

frequency dependence g~ven by insert~ng the relevant values of R~ and 

t into Equat~on (197). For example, the max~mum value of ~(t), 0.549 

194. 

195. 

196. 

197. 
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~s atta~ned when t = -1.02 and ~f R 
c 

-6 211 
= 25.10 ' l< = =..:.:. ___ 6 

.63.10 

then the correspond~ng pos~t~on of the max~mum of ~ntens~ty ~s 

-6 
v = -0.5.10 . The pos~tive value of vat wh~ch the ~ntens~ty 

1 -6 
I = lO IMAX for the same values of Rc and k,~s v ~ ~0.10 ~nd~cat~ng 

that the shadow boundary ~s d~splaced by 4% from ~ts georoetr~c 

pos~t1.on. 

5.6.1 Exper~mental Invest~gat~on of Caustics 

The experimental arrangement of F~gure 21 was used to ~llum~nate 

the entrance apertures of short lengths of core cladded wavegu~des 

w~th plane waves from e~ther a white l~ght or laser source. The short 

lengths of waveguide were prepared as descr~bed ~n Sect~on 2.5 and 

the measurements and microphotographs of the caust1.cs presented 1.n 

th1.s sect1.on were made WJ..th the m1.croscope focussed on the ex1t end 

of the wavegu~des. 

The d~scuss~on of Sect~on 4.3 suggests that the l~ght ~nc~dent 

upon the entrance aperture of the wavegu~des w~ll suffer d~ffract~on 

s~m1lar to that produced by a c~rcular aperture correspor.d~ng to the 

core cross sect~onal d~mens~ons. The study of d~ffract~on by c~rcular 

apertures conta~ned ~n reference (31} ~nd~cates that after 

d~ffract~on, 85% of the inc~dent l~ght ~s conta~ned w~thin an angular 

w~dth 

"' 0.611-
a 

where a ~s the rad~us of the aperture. 

In the experimental arrangement of F~gure 21, the plane waves 

are ~ncident on the entrance aperture of the wavegu~des at angles 

6 , ~. After d~ffract~on by the entrance aperture 85% of the 
0 
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1nc1dent l1ght w1ll be w1th1n the cone def1ned by the az1muthal 

and ax1al sem1-angles ~~. ~6 respect1vely where 
0 

0.61A 
"' a J 

if the contract1on of the aperture at h1gh ax1al angles of 1nc1dence 

is neglected. 

The az1muthal component of the cone ~~ 1s of the order of 0.5° 

for the values of a and A used 1n these exper1ments and has an 

insign1f1cant effect upon the exper1mental results. The ax1al 

component ~6 represents the d1vergence of the l1ght of a skew plane 
0 

along the path of the skew plane ray. After refract1on 1nto the core 

the cone w1ll have an ax1al sem1-angle ~6 11 centred at angle 611 where 

(assum1ng n = 1) 
0 

sin 61 
1 

6 = s1n 
nl 0 

M 0.61A 
Ml 

0 

omJ. = ::!i 
nl nl a 

Subst1tut1on of (6
1 
~ ~61 ) 1nto Equat1on (148) and assum1ng that 

~61 sin 6
1 

<< cos 6
1 

g1ves 

m($R.) = m+ ~m 

where 
R. tan 6

1 
m = 

2a s1n $ 

~m 
MlR. 

• = 
2a s1n ~ 

The term m given by Equat1on (202) 1nd1cates the posit1on of the 

skew plane ray and hence the position of the skew plane1wh1ch W111 

198. 

199. 

200. 

201. 

202. 

203. 



Skew plane ray. 

Divergence. 

F~gure 63a. A diverg~ng skew plane, m non-~nteger. 

Skew Plane. 

Skew 

F~gure 63b. A diverg~ng skew plane, m an ~nteger. 
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extend a d~stance a s~n ~ from the skew plane ray along the skew 

plane ray path ~n each d~rect~on. The term ~m g~ven by Equation 

(203} ' w~ll be called the divergence factor, ind~cates a 

d~vergence of the l~ght or~g~nally w~th~n the skew plane an 

add~t~onal d~stance along the skew plane ray path of ~ a sin ~· 

Th~s ~s ~llustrated ~n F~gure 63 for m not an ~ntege7 ~ = 0.~ 

It follows from the conservat~on of 1ntens1ty theorem and 

cons~derat~on of Figure 63 that the ~ntens~ty of the skew plane I(~} 

1 
given by Equat~on (152} w~ll be reduced by the factor (l + 2 ~m} 

I I 
and the lost intens~ty appears ~n the 2~m add~t~onal skew planes. 

The caust~cs der~ved ~n Section 5.4 and descr~bed by Equat~ons 

(169a,b} are based upon ~nteger and s~ngle values for m, and ~t was 

also assumed that m ~s independent of~· Accord~ng to Equat~on (201}, 

(202} and (203} m(~~} w~ll, ~n general, be non-~nteger, non s~ngular 

(that ~s ~m ~ 0} and dependent upon ~· The cond~t~ons shown ~n 

Figure 63 suggest that a non-~nteger value for m w~ll result ~n the 

part~al ~llum~nat~on of adJacent caust~cs and that when ~ ~ 0 a total 

of (1 + 2~m} caust~cs w~ll be ~ll~nated. 

To ~nvest~gate the effects of the ~ dependence of m(~~} on 

the caust1c equat1ons it is assumed that m' 1s the value of m for 

0 $ = 90 , l.. e. 

m' = 

Substitut~ng Equatl.on 

m = 

R. tan el 

2a 

(204} l.nto 

m' 
s~n $ 

(202} ' 

m'~e 
1 

~m = 
s~n $ tan el 

(203} 

204. 

205. 

206. 



z 

Figure 64. The axlal separation of the wavefront and 

caustic of Flgure 61. 
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Assum1ng that Equat1on (205) represents integer values and 

subst1tut1ng 1nto Equat1on (180) gives 

Equat1on (207) together 

sp1ral as Equat1on (180) for ~ 

w1th Equat1on 
( X'VO l 

Tf 
"' 2 , but 

~/ s1n~ term of Equat1on (207) w1ll approach 

(l80b) represent the same 

Tf 
for $ + O(X + -zl the 

't (46 Eqn.4.3.74) un1y 

instead of zero as in Equat1on (172) and the sp1rals w1ll now term1nate 

at 

n = 2m' (rad1ans) 

R =a 

Equat1on~(208) represent the hel1cal path of the skew plane
1 

tangent to the core cladd1ng interface1as 1t propagates down the 

wavegU1de as m' ~ncreases. 

S1nce the caust1cs are formed by light wh1ch 1s propagat1ng 

down the wavegu1des there w1ll be an ax1al separat1on between the 

wavefront ab and the caust1c a'b' of f1gure 61. In F1gure 64 th1s 

aXlal separat1on 1s shown as z and the effect1ve rad1us of curvature 
~ 

of the caustic R ' 1s g1ven by 
c 

R' 
c 

= 
R 

c 
s1n e

1 

where e
1 

1s the ax1al angle of the rays forming the caust1c. 

Subst1tut1on of Equat1on (209) and k 
2Tr 

= n1 -r 1nto Equat1on (197) 

g1ves 
V = tF 

*Assuming Re and s << z, i.e. e
1 

small 

207. 

208a 

208b. 

209. 

210. 



m' = 1 m' 2 

Dl 
m' = 3 m' = 4 

a = Whi t:e light. 

m' 1 m' = 2 

m' = 3 m' = 4 
b . Laser light 

Figure 65. Microphotographs of caustics observed in = 50~ diameter 

cladded dielectric waveguides. 
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where 

F = 211. 

and F may be called the fr1nge factor s1nce it scales the A1ry 

function to g1ve the phys1cal fr1nge spacing. 

The other factors which are used to 1nterpret the exper1mental 

results are summar1sed below and expressed 1n terms of known or 

measurable quant1t1es. 
1\" 

The caustics for ~ ~ 2 are of most 1nterest 

and thus the factor m' 1s used as the reflect1on number 1nd1cator 

and w1ll be called the reflect1on number. 

Summary 
R. tan el 

Reflect1on number m' = 
2a 

Skew reflect1on number 
m' 

m = sin ~ 

D1vergence factor llm 
m' 0. 6L\. 

= 
tan el nl a s1.n ~ 

212. 

where Equat1on (212) 1s obta1ned by subst1tut1ng Equat1on (200) 1nto 

(206) . 

5.6.2 Exper1mental Results 

In Figure 65 the caust1cs produced by both wh1te l1ght and laser 

light for m' = 1 to 4 are 1llustrated. The d1ffract1on patterns 

assoc1ated w1th the caust1cs obta1ned w1th laser 1llum1nat1on conta1n 

add1t1onal fr1nges produced partly by the superpos1t1on of the 1nc,dent 

and reflected waves and partly as the result of scattered laser l1ght 

orig1nat1ng from the entrance aperture or from the reflection 1nterfaces. 

These secondary fr1nges tend to obscure the d1ffract1on patterns due to 

the caust1cs. 
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Similar secondary fr~nge systems w~ll be produced by each 

monochromat~c component of the wh~te light source, but s~nce the 

pos~t~on of these fr~nges ~s frequency dependent, the fr~nge systems 

due to d~fferent frequency components w~ll overlap and no fr~nges 

w~ll be vis~ble. This ~s demonstrated ~n F~gure 65a where the 

caust~c for m' = 2 produced by wh~te l~ght conta~ns no secondary 

fringes but only the fr~nges due to the caust~cs or those produced 

by the overlapp~ng of the d~ffract~on patterns of the caust~cs due to 

the~~ skew planes. 

The absence of the secondary fr~nges, when ~ll~nat~ng w~th 

wh~te light may be ~nterpreted as be~ng the result of the ~ncoherence 

of the l~ght at the po~nt of observat~on, as d~scussed in Sect~on 3.6.5. 

Such a statement would appear to be ~ncons~stent w~th the appearance 

of the caust~c d~ffract~on fringes at s~~lar po~nts of observat~on. 

Th~s d~ff~culty is resolved by remember~ng that the coherence 

of a source ~s determ~ned by measur~ng the v~s~b~l~ty of fr~nges 

produced by an opt1cal system wh1ch arranges to superpose at least two 

components of l~ght from the same source. 
(31 

In the laboratory exper~ments 

associated w~th ~nterference the opt~cal system generally produces only a 

single fr~nge system, wh~ch in turn suggests only two poss~ble opt~cal 

paths through the system, from the source to the po~nt of observat~on. 

If the opt~cal system has a mult~pl~c~ty of opt~cal paths from 

the source to the po~nts of observation, as ~s the case for the opt~cal 

waveg~de, then ~t ~s clearly poss~ble for l~ght taking certain of these 

paths to exh~b~t coherent propert~es wh~lst l~ght follow~ng other paths 

may have different~al path lengths exceed~ng the coherence length of 

the source and thus exh~b~t ~ncoherent propert~es. 

Cp. i 

i 



Figure 66 . 

Figure 67a. Figure 67b . 
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The caust1cs are produced by l1ght wh1ch follo>Is almost 1dent1cal 

paths down the wavegu1de. If the d1fference 1n opt1cal path lengths 

1s very much less than the coherence length of wh1te l1ght, the wh1te 

l1ght fr1nges shown 1n F1gure 65a w1ll be produced. 

The fr1nge factor and d1vergence factor for the caust1cs shmvn 

in F1gure 65 are g1ven 1n Table 7 below. 

I F. -b 1m .ro m. £\m 

1 1.15 .017 

2 . 53 .070 

3 .37 .075 

4 .38 .125 

Table 7 
The invers1on and contraction of the caustics and the spac1ng of the 

d1ffract1on fr1nges show good agreement with the theoret1cal values. 

In F1gure 66 the caust1c for m' = 2 produced by wh1te l1ght 1s 

-b 
J.llustrated but now with a fr1nge factor F =I1.10obta1ned by 1ncreas1ng 

the length of wavegutde. If i 1s 1ncreased, then e
1 

1s reduced to 

maintain m' = 2 1n Equat1on (204) and the fr1nge factor wh1ch l.S 

1nversely proport1onal to el l.S l.ncreased. As well as l.ncreasl.ng the 

spac1ng between the fr1nges the increase 1n F perm1ts the appearance 

of d1fferent frequency components of the d1ffract1on fr1nges and 

F1gure 66 has a coloured appearance. 

A further 1ncrease in the length of the wavegu1de 1ncreases F 

and e
1 

approaches zero. Ult1mately when F 1s very large, each fringe 



Figure 68 

Figure 69 . 
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of the d~ffraction pattern for low m' w~ll f~ll the ent~re aperture 

of the wavegu~de, and the d~fferent frequency components w~ll overlap. 

Th~s w~ll produce a un~form wh~te ~ntens~ty d~str~but~on as ~llustrated 

0 
in F~gure 67a where (j_ = I and Q. =frO~ If the same length of wavegu~de 

~s ~llum~nated us~ng the laser source at the same angle of ~nc~dence 

the result~ng ~ntens~ty d~str~but~on ~s shown in F~gure 67b. 

Although ~t ~s d~ff~cult to d~fferent~ate bet~1een them, there 

are two types of interference fr~nges present ~n F~gure 67b. The 

series of concentr~c r1ngs correspond to wavegu1de mode patterns when 

several modes are exc~ted s~multaneously and the larger fr~nges randomly 

d~str~buted over the wavegu~de end face are the ~nterference effects of 

randomly scattered l~ght. 

Concentrat~ng now on white l~ght ~llum~nat~on of the wavegu~des, 

F~g ure 68 shows the caust~cs obta~ned for m = 12 ~n a length of . -~ 
wavegu~de1=2·o,.. wh~ch g~ves 8f/6 The resulting small value of F = 0 S' •o 

gives the fr~nge spac~ng shown ~n F~gure 68 and such a small value for 

F g1ves fringe posit1ons which dre v1rtually 1ndependent of frequency 

to g~ve the wh~te fringe pattern ~llustrated. 

Ma~nta~n~ng the value of e
1 

and ~ncreas~ng the length of the ~1ave-

guide g~ves ~ncreas~ng values for m' and the well def~ned caust~c 

shapes obtained for low m d~sappear as the sp~ral w~nds up, as 

demonstrated ~n F~gure 69. The ~ntens~ty d~stribut~ons shown ~n 

Figure 69 are white and conta~n spat~al var~at~ons of intens~ty s~m~lar 

to those shown in F~gure 5. 

If the waveguides are c~rcular ~n cross sect~on the ~ntens~ty 

d~str~but~ons should be c~rcular syn~etr~c and therefore ~ndependent of 

the az~muth angle of inc~dence of the wh~te light. It was found that 

none of the waveguides tested exhlblted these characterist~cs suggestlng 

that all the 11avegu~des tested were non circular. 



Figure 70. The refract~on of rays through the end face 

of a dielectr1c wavegu1de. 

ey 

Figure 71. The representation of refraction in cartes~an 

co-ord~nates. 
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5. 7 The Effects of Slop1ng Tenmnat1ons 

The rad1at1on of a hello>~ cone of l1ght from an opt1cal wavegu1de 

when exc1ted by a plane wave was d1scussed 1n Sect1on 5.4 The cone of 

light is formed from a plane wave by d1vergence in the az1muthal 

plane as a result of the mult1ple reflect1on process, wh1lst the ax1al 

components of the angles of incidence of the l1ght remain constant. 

The constancy of the ax1al angle of 1nc1dence is assured 1f the 

wavegu1de 1s perfectly stra1ght, w1th end term1nat1ons normal to the 

ax1s of the wavegu1de and any d1vergence due to d1ffract1on neglected. 

The effect of a bend 1n the wavegu1de 1s cons1dered 1n Chapter 7, and 

the result of d1vergence was d1scussed 1n Chapter 2. In th1s sect1on 

the effects on the rad1ated cone of l1ght of a slope at the rad1at1ng 

end face of the waveguide w1ll be cons1dered, assum1ng a stra1ght 

waveguide w1th a normal end face at the entrance aperture. 

If the rad1at1ng end o£ the wavegu1de 1s normal to 1ts 

longitudinal ax1s, then rays of l1ght w1ll refract through the end face 

as shown 1n F1gure 70 where accord1ng to Snell's Law (Equation (lOO)) 

n 
0 

S1n 0 
0 

Equat1on (213) may be expressed in diagrammat1c form as shown 

1n Figure 71. The angles of 1nc1dence 0
1

, and refract1on 6
0

, are each 

resolved along orthogonal components 6 , 6 wh1ch form the axes of a 
X y 

cartesian co-ordinate system. The or1gin of the co-ord1nate system 

(6 = 6 = 0) represents the long1tud1nal ax1s of the wavegu1de wh1ch also 
X y 

forms the normal n to the rad1at1ng surface. 
a 

S1nce the angles 0
1

, 0
0

, are 1ndependent of az1muthal posit1on 

their loc11 are circles of rad1us e
1 

and 6
0 

respect1vely. All rays o£ 

213. 



F1gure 72. A slop1ng end face on a wavegu1de terminat1on. 

F1gure 73. The cartes1an co-ord1nate representat1on of 

refraction at the sloping end face shown in 

Figure 72. 
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lLght whLch are LncLdent and refracted Ln a plane parallel to or Ln a 

merLdLonal plane at an azimuthal angle a are represented by the 

vectors Ln the e ' e plane at angle a as shown Ln FLgure 71. PosLtLve 
X y 

angles are measured clockw1se from the surface normal. 

A flat slopLng end face wLll have a surface normal n at an 
s 

angle ys to the waveguLde axLs, na. The co-ordLnate system may be 

rotated untLl thLS angle lLes solely along eLther the e or e axis. 
X y 

In Figure 72 the slope LS alLgned along the y axLs and Ln FLgure 73 

the slope angle y appears along the 8 aXLS to gLVe the pOSLtLOn Of the 
s y 

normal to the sloping surface ns a dLstance ys along the ay axis from 

the orLgLn n . 
a 

Rays of light wLthLn the waveguLde wLll stLll form angles e 
L 

wLth respect to the normal n and thLs LS represented by the CLrcular 
a 

locus centre na' radLus eL Ln FLgure 73. The angles of LnCLdence els 

WLth respect to the sloping end face are gLven by the length of the 

vector from the poLnt n to the cLrcumference of thLs cLrcular locus. 
s 

and 

From FLgure 73 

= 

=9 l l + 

It wLll be assumed that ys << e1 so that 

2y 
(l + __ s_ sin a)~ 

el 

sin a 

may be expanded usLng the binomial theorem to gLve 

may be neglected, 

214 

215. 



F~gure 74. The def~n~t~on of angles for the refract~on 

of rays at a slop~ng end face. 
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The angle of refractlon 6 lS glven by Snell's Law as 
os 

sin e 
os 

= sin e. lS 

whlch on substltutlon of Equatlon (213) and (215) and assUffilng 

cos (y Sln a) ~ 1 becomes 
s 

Sln e os 
= s1.n e 

0 n 
0 

The locus of 6 is shown ln Flgure 73 where lt has been assumed 
os 

that y << 6 to glve 6 ~ 8 when a= o, n. The centre of symmetry 
0 os 0 

of thls locus, whlch may be called the normal n of the radlatlon 
c 

"cone 11 of llght, Wlll lie on the 6 axlS midway bet,;een the 6 (a = !_) 
y os 2 

and e (a = 3
n) points. 

os 2 

Since 

(6 (a = !.) - y ) > (6 (a 
os 2 s os 

= 3n) + y ) 
2 s 

the cone normal n wlll have an angle o ln the opposlte dlrectlon 
c 

along the e axls to the slope normal and where 
y 

0 = 
e (a 
os 

= n/2) + n (a C7os 
2 

= 3n/2) 
(6 (a 

os 
3n) + y ) 
2 s 

A simpler expresslon for o lS obtalned by conslderlng the 

n 3n 
devlatlon of the refracted rays at azlmuthal angles a = 2' ~ as a 

slope lS lntroduced on the end face. It is convenient to define the 

angles as shown ln Flgure 74 and considerlng the refractlon of the 

3n 
a =~ray, Snell's Law glves 

= no sin(6o 3n- ys) 

2 

216. 

217. 

218. 

219. 
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Expand~ng the s~ne funct~ons ~n Equat~on (219) 

nl 
n (Slll 9

1
cos y

5 
- COS 8

1
s1n y

5
) = 

0 

/ 

(s~n e 0 31T cos 

2 

Ys -cos eo 3ns~n ys) 

2 

and substitut~ng for e
1 

using Equat~on (213) and rearrang~ng g~ves 

s~n 

(e - e 
0 0 

2 

nl 2 2 
-) -s~n e -cos 
n o 

0 

From F~gure 74 (e
0 

- e
0 3

1T) 

2 

= o
3

1T and assum~ng 

2 

so that eo + eo 31T = eo 

2 

equat~on (221) becomes 

2 cos eo s~n 

Assuming that 

= 

o
3 

= TAN y ( 
1T s 

2 
2 

y are small then 
s 

(n1/n ) 
2 

- 1 ) 
( 20 )+1-1 

cos e 
0 

1T 
A s~m~lar calculat~on for the a = 2 ray g~ves 

= 

where 

R = 

= y R 
s 

(n
1
/n ) 

2 
- 1 

(--'::......,..:.
0
---l) + 1) - 1 

2 
cos e 

0 

220. 

221. 

222. 

223. 

224. 

225. 
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Figure 75. The locus of the angle of refract~on 6' at a 
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slop~ng end face. 
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and the cone normal n is offset from the wavegu1de ax1s by an angle 
c 

6 where 

6 = y R 
s 

The sem1-angle of the radiated cone of light, now measured 

with respect to the cone normal n may be denoted by 6' (~') where c os 

• o< and the locus of 6' are shmm 1n F1gure 75. 
os Us1ng the def1n1t1ons 

of angles shown 1n F1gure 7Z,.and the results expressed by Eguat1on 

(224) 

e • (~l = e • 
os 2 os 

and us1ng the assumpt10n that 6 << 6 then from F1gure 75 
0 

e' os 
(0) = e• 

os ( 1f) "' e 
0 

It would appear from the above analysis that a flat slope on 

the rad1at1on end of a wavegu1de w1ll deflect the rad1at1ng cone of 

l1ght by an angle 6 g1ven by Eguat1on (226), 1n a d1rect1on oppos1te 

to the normal of the slope. The sem1 angle and c1rcular symmetry of 

the rad1at1ng cone w1ll be preserved as 1f 1t were refracted through 

a normally term1nated wavegu1de, whose long1tud1nal ax1s co1nc1des 

with the cone normal n 
c 

If the exper1mental procedure described 1n Sect1on 2.13 1s 

followed so that the end of the wave gu1de 1s ground normally to the 

rad1at1on cone normal n , the slop1ng end term1nat1on produced will 
c 

have a slope angle ysl where 

226. 

227. 

228. 

229. 
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and where the subscr1pt 
1 

denotes the f1rst al1gnment and gr1nd1ng 

of this end of the wavegu1de. A second al1gnment and gr1nd1ng w1ll 

produce a slop1ng end term1nat1on at an angle ys
2 

where 

th and the n al1gnment and grinding w1ll produce a slope with angle 

ysn where 

Equat1ons (226) and (229) have been used to subst1tute for 

6 and ysl respect1vely to give th1s equat1on. 

A typ1cal exper1mental value for R 1s g1ven by subst1tut1ng 

nl = 1.62' n = 1 and e = 30° into Equat1on (225) to g1ve R = 0. 779. 
0 0 

If the 1n1t1al slope angle Ys = 10° th1S Wlll be reduced by a factor 

R after each al1gnment and gr1nd1ng procedure to g1ve the slope 

angles shown in Table B. 

n 0 1 2 3 4 5 6 7 8 9 10 

() 

Ysn 10 7.8 6.0 4.7 3.7 2.9 2.2 1.7 1.4 1.0 0.8 

TABLE 8 

A reduct1on in 6 produces a smaller R factor wh1ch Wlll 
0 

reduce the number of gr1nding stages requ1red to produce a g1ven 

slope, but the reduct1on 1n e 1s l1mited by the use of the 
0 

approximation y << e in the analyslc. 
s 0 

230. 

231. 
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5.8 Conclus~ons 

The rad~ation cone, the "black hole" effect and the th~ck 

lens phenomena d~scussed ~n th~s chapter are all well known propert~es 

of d1electr1c opt1cal wavegu1des. However, the util1sat1on of the 

rad1at1on cone to correct slopes on the rad1at1on end of wavegu1des 

and the measurement of ax~al angles of ~nc~dence of l~ght w~th~n 

the wavegu~des us~ng the "black hole" effect do not appear to have 

been suggested prev~ously. 

The caust~cs produced by cyl~ndrical reflectors are not of 

part~cular s~gn~f~cance but the~r analysis prov~des a bas~s for the 

~nvest~gat~on of the more interest~ng caust~cs produced by non-c~rcular 

cross section wavegu1des, for example 1 the ell1pt1cal cross sect1on 

waveguide which ~s d~scussed ~n the next chapter. 



y 

Figure 76. The cross sectlonal path of a ray ln a cylinder. 
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CHAPTER 6 

6.1 Introduct1on 

The exper1mental results of Chapter 5 suggest that the 1n1t1al 

assumpt1ons used there for the analys1s of ray propagat1on 1n the 

wavegu1des are 1ncorrect. It appears that the wavegu1des do not have 

c1rcular cross sect1ons but have asymmetr1es wh1ch have a marked effect 

on the 1ntensity d1str1but1on 1n the wavegu1de cross sect1on. 

In th1s chapter the wavegu1de 1s assumed to have an ell1pt1c 

cross sect1on and the pos1tions and form of the caust1cs for th1s cross 

section are determ1ned by perturb1ng the solut1ons for the c1rcular 

cross sect1on. To ass1st th1s analys1s the caust1c equat1ons for the 

c1rcular cross sect1on are derived by cons1der1ng the skew ray paths 1n 

the cross sect1on 1n terms of angular d1fference equat1ons. 

It 1s shown that under certa1n exper1mental cond1t1ons the 

1ntens1ty d1str1but1on 1n the cross sect1on 1s s1mply related to the 

cross sect1onal d1mens1ons and geometry of the wavegu1de. 

6.2 D1fference Equat1ons for Skew Ray Paths 1n C1rcular Cross 

Sections. 

In Figure 76 the cross sect1onal path 1n a cyl1ndr1cal wavegu1de 

of a skew plane ray ~ is shown, where P denotes the po1nt on the 
n 

circumference at wh1ch the nth reflection occurs. The polar co-ordinates 

of P arz r I P and the path of the ray 1s 1ncl1ned at angle X to r 
n Il. '-'-!1 n n 

prior to reflect1on and angle x' after reflect1on. 
n 

Cons1der a co-ord1nate system u,v with its or1g1n at P and the 
n 

u ax1s co1nc1d1ng w1th r and pos1tive u in the d1rect1on of the centre 
n 

of the c1rcle. If, as shown 1n F1gure 76, a ray 1s 1nc1dent 1n the +u,+v 
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quadrant then adJacent po~nts of reflect~on P, P , P 
2 

... have 
n n+l n+ 

angular separat~ons of ~S in an ant1clockw~se d1rect1on around the 

c1rcle. From F~gure 76 

s~nce the rad~us r of the c~rcle ~s also the normal at the 
n 

c1rcumference, x , x' become the angles of 1nc1dence and reflect1on 
n n 

respect~vely and from the law of reflect~on w~ll be equal ~n magn~tude. 

l.. e. , 

From F~gure 76 

r sin x' n n 

x' n 

s~nce rn and rn+l are both rad~~ of the c~rcle then 

x' n 
= 

Subst~tut~ng Equat~ons (233), (235) and (165a) (ass~ng ~X~ 0) ~nto 

(232) gives 

6S = 2~ n 

After m reflect~ons the angular pos~tion of P w~th respect to 
m 

P ~s g~ven by S where 
n 

S = J ~S.dm 

and, s~nce ~S is ~ndependent of m, the solut1on of Equat~on (237)~s 

• 
S = 2~.m + constant 

and is in agreement w~th Equation (lBOa) 

232. 

233. 

234. 

235. 

237. 

238. 



·y 

P(X.y) 

Figure 77. An ell1pse. 
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If a xay ~s ~nc~dent ~n the +u,-v quadrant then adJacent po~nts 

of reflect~on are spaced at angular separations of ~B but now in a 

clockw~se d~rect~on around the c~rcumference. S~nce both ray direct1ons 

w1ll have paths tangent to the c~rcle rad~us r cos ~ th~s c~rcle forms 

the caust~c for the skew plane ~ ~n agreement w~th Equat~on (180b) • 

6.3 Propert~es of Ell~pses 

The ell~pse shown ~n F~gure 77 ~s def~ned by the Equat~on 

2 
X 
2 + 
a 

2 
y = 
b2 

From Equat~on (239) 

x=~r 

1 

240a. 240b. 

Consider a po1nt P(xy) on the ell1pse whose polar co-ordinates 

~ (47, Pt.l,para.256) 
r!I.are g1.ven by 

ab 
r = 2 2 2 2 ~ 

(b cos ~ + a s1n ~) 

TAN ~ = 'j_ = 
X 

y 

2 
- y 

The centre of curvature of the ellipse at po1nt P(xy) ~s given by x y 

where from reference 48, pp 153 

where Y' - dy -dx, 

243a. Y 
= y + (1 + y' 2) 

y" 

239. 

241. 

242. 

243b. 



-111-

(48 pp. 153 Ex.3) 
Subst1tut1ng Equat1on (240) 1nto (243) g1ves ' ' 

2 b2 
X ~ :::a _ ___;::_ X 3 

4 
a 

244a. y ~ 3 
y 

The angle ~ between the rad1us of curvature at po1nt P and the 

x ax1s as shown 1n F1gure 77 1s g1ven by 

TAN ~ ~ (y - y) 
(x - X) 

Subst1tut1ng Equat1ons (240a) and (243a,b) 1nto (245) g1ves 

TAN 
y 

2 
- y 

Compar1ng Equat1ons (242) and (246) 1t is seen that 

2 
a 

TAN ~ ~ TAN ~ 
b2 

The rad1us of curvature r(xy) at po1nt P(xy) on the ell1pse 

1s given by reference (48 pp. 153) as 

r(xy) ~ 

Substitut1ng for y' and y" gives 

r (x) ~ 

Note that when x ~ 0 

and when x ~ a 

2 
a 

r(O) ~ b 

r(a) ~ 
a 

The last two equat1ons g1ve the vertex rad11 of an ell1pse 

shown 1n reference (49, Equations F4.35). 

244b. 

245. 

246. 

247. 

248. 

249. 

250. 
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F1gure 78. The path of a ray in an ell1pse. 
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6.4.1 Propagat~on of skew plan8 rays ~n ell~pt~cal cross sect~on 

wavegmdes e 

In Flgure 78 the cross sect~onal path ~n an ell~pt~cal cross 

sect~on wavegu~de of an arb~trary skew plane ray is shown where P , 
n 

Xn' X~• rn and an are the same as ~n Figure 76. In add~tlon a , ~ n ~n 

correspond to ~(xy) and ~(xy) respect~vely of F~gure 77 and r ~s the 

rad~us of curvature of the ell~pse and hence also the normal to th8 

ell~pse at the po~nt P 
n 

The angles of ~nc~dence and reflect~on of the skew plane ray at 

P are g~ven by <x - y ) and <x' + y ) respect~vely where 
n n n n n 

and by the law of reflect~on they w~ll be equal ~n magn~tude to g~ve 

x' + 2y n n 

Equat~on (251) may be expressed as 

TAN ~ - TAN a 
n n 

TAN y =TAN(~ - a ) = 
n n n 1 + TAN "f. TAN a 

n n 

Not~ng that ~n = ~ and an = ~ then subst~tuting for ~n ~n 

Equat~on (253) us~ng Equat~on (247) g~ves 

TAN y = 
n 

2 
(~- l) TAN a 
b2 n 

Ass~ng that y ~s small, 
n 

Equat~on (254) becomes 

= 

~ l, and denot~ng 
2 

a 
(--
b2 

l) = h 

251. 

252. 

253. 

254. 

255. 
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The angles X' and X 
1 

are related by Equatlon (234) whlch may 
n n+ 

be expressed ln the form 

~ [sln xn+l) 
2 

s~n x' 
n 

Uslng Equatlon (241) the left hand slde of thls Equatlon becomes 

2 
cos sn+l (l 

2 cos s (1 
n 

2 
a 

Uslng the assumptlon that 
b2 

1 whlch lS dlscussed later ln thls 

Sectlon, the rlght hand Slde of thls Equatlon reduces to 1 thus glvlng 

the condltlon 

~ x' n 

Substitutlng Equatlons (265) and (258) lnto (252) and rearranglng 

glves the dlfference Equatlon 

"'x ~ 

~ h sln 2S 
n 

A second dlfference equatlon lS obtalned by substltuting 

Equatlon (258) lnto (232) to glve 

The values of X for the skew plane rays of most lnterest are 

small, for whlch t;S lS large. To make t;S + 0 as X+ O, t;S lS modlfled 

to AS' where 

t;S' ~ -(t;S + ~l 

~ 

256. 

257. 

258. 

259. 

260. 

261. 
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and S ~s now measured w~th respect to the +x and -x ax1s for alternate 

reflections. 

To solve the difference equat~ons (259}, (261} the follow~ng 

rat~o ~s formed wh~ch ~s then assumed to be ~ndependent of n. Th~s 

assumpt~on 1s just~f1ed 1f X 1 ~ X s1nce the rat1o then appl1es for 
n+ n 

a s~ngle and arb1trary value of n, 

= 
h s1.n 2S 

n 

AssUffil.ng that ~S' + 0 then Equat1.on (262} becomes a d1.fferent1.al 

equation which may be solved by separat~on of the var1ables and 

integration. 

Separat1on of var1.ables g1ves 

and 1.ntegrat1.ng both s1.des g1.ves 

= h - 2" cos 2S + c 

where c is a constant of 1ntegrat1on wh1.ch may be evaluated by 

considering the cond1.t~on S = f 

Subst1tution of S 1T 
= 2 1nto Equat1on (264) g1ves 

h 2 
xm =- + c 

2 

1T 
where xm is the max1.mum value of x wh~ch occurs at S =-

2 

Substitut1.ng for c from Equat1.on (265} into (264} g1ves 

X = 

262. 

263. 

264. 

265. 

266. 



FLgure 79. An ellLpse, showLng rays LncLdent Ln the posLtLve 

quadrant of the u,v co-ordLnate system. 
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wh1ch, as w1ll be shown, adequately descr1bes the behav1our of the 

skew plane rays 1n the ell1pt1c cross sect1on wavegU1de. 

To aSS1St further invest1gat1on of Equat10n (266), xm 1S 

expressed 1n the form 

2 
xm 

and Equat1on (266) becomes 

X = 
2 

- cos Sl 

1f 
Cons1der the point Pn on the ell1pse at S = 2 as shown 1n 

Figure 79 w1th a co-ordinate system u, v w1th 1ts or1g1n at P and w1th 
n 

the +ve u ax1s co1nc1d1ng w1th the normal to the reflect1ng surface 

at P . A skew plane ray ~n the +u, +v quadrant1 1nc1dent on the 
n 

reflect1ng surface at P w1ll have ant1clockw1se 1ncrements 1n S for 
n 

each reflection. If X 1s small, alternate points of reflect1on Pn' 

Pn+2 ' Pn+4 ... w1ll appear in the same quadrant of the ell1pse and have 

reducing values of S. 

If a < 1 then accord1ng to Equat1on (268) , X w1ll be zero when 

-1 S = cos a and the angle of 1nc1dence w1ll be given by subst1tut1ng 

X = 0 1n Equat1on (252) to g1ve 

x' = -2y 
n 

The ray w1ll now be 1nc1dent 1n the +u, -v quadrant, and 

successive reflect1ons w1ll result 1n clockw1se 1ncrements of S and 

the alternate po1nts of reflect1on w1ll have 1ncreas1ng values of s. 
2 

S1nce Equat1on (268) is dependent upon cos S, s1m1lar behav1our w1ll 

1f 
occur for S in the range 2 < S < Tr and w1ll result 1n the skew plane 

-1 
ray path osc1llat1ng about the y ax1s of the ellipse between S = cos a 

-1 
and (Tr - Sl =cos a. 

267. 

268. 

269. 



F~gure BOb F~gure Boa. 

------

F~gure Bl. Two skew planes w~th the same value of o. 
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If a > 1 the ray WLll not change quadrants sLnce X > 0 for 

all ~ values and the resultant ray path will be SLmLlar to that for 

a skew plane ray 1n a c1rcular cross sect1on wavegUlde. Examples 

of computer s1roulated ray paths 1n ell1pt1c cross sect1on wavegu1des 

are shown Ln FLgure 80 where 

a = • 8660 Figure 80a. and a = l. 5 hgure SOb. 

The caust1c shown 1n F1gure SOb lS Slmllar to that for a c1rcular 

cross sectLon except that Lt has been deformed Lnto a quasL-ellLptLcal 

fLgure. The caustLc shown in FLgure 80a. obviously dLffers from the 

circular caustic 1n that the ray paths cross the centre of the ell1pse 

and the resultant caustic LS quasL-hyperbolLc Ln shape. 

Before 

approximatLon 

cons1der1ng the equations for these caust1cs, the 
2 
~ ~ 1 is consLdered. WLth prLor knowledge of the 
b2 

exper1mental results presented later in th1s chapter, the max1mum 

variat1on bett1een maJor and nunor ax1s for the \'laveguides used 1n th1s 

study LS of the order of 2%. ThLs may be expressed by settLng 

then 

and 

a = b + 6 270. 

6 - :;; 0.02 
a 

The correspondLng maxLmum value of h LS .04 whLch gives xm ~ 12° 

for a = 1 whLch in turn permits the small angle approxLmatLon for x 

to be used when a ~ 1. 

In FLgure 81, t1w skew plane rays WLth the same value for a are 

incident at poLnts P
1

, P
2 

on the ellLpse and the poLnts P
1

, P2 have 
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co-ord1nates x
1

, Y
1

, x
2

, Y
2 

respect1vely. The tangents of the rays 

befbrereflection are T
1 

and T
2 

and the express1ons for X, Y, Tare 

obta1ned from F1gure 81 1n terms of the angles x, ~X S ~S and the 

nom1nal rad1us a of the ell1pse. 

xl =a S1n s 

y1 = a cos s 27la. 

T1 = tan(S + X) 

x 2 =a s1n(S + ~S) 

Y2 =a cos(S + ~S) 

T2 = tan(S + ~S +X+ ~X) 

27lb. 

The express1on for T2 conta1ns the term ~X wh1ch may be comb1ned 

w1th ~S us1ng Equat1on (262) to g1ve 

where 

T
2 

= tan(S + X + t ~S) 

t = S1n 2S ) 
2x 

and the assumpt1on that X ~ X has been used and the subscr1pt n n+l n 

dropped. 

Subst1tut1ng Equat1ons (271) , (272) 1nto (163) g1ves 

= 

= 

p = 

-a s1.n X 
cos(S+xl 

-a sln(x+~S(t-1)) 
cos (S+x+ t~S) 

- sin t ~S 

cos(S+x)cos(S+x+t~S) 

Subst1tut1ng Equation (274) 1nto (164) and lett1ng ~S + 0 g1ves 

the express1ons for the co-ord1nates of the caust1c 

X 
s 

= 

= 

1 
a(cosS- T cos(S+x) cos xl 

1 
a(SlnS - T Sln(S+x) cos xl 

272. 

273. 

274. 

275. 



F1gure 82a. A quasi-ell1pt1cal caust1c. 

asymptote. 

F1gure 82b. A quasi-hyperbollc caust1c. 
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and f1nally express1ng Equat1ons (275) in polar co-ordinates us1ng 

Equat1on (l70a) g1ves 

2 
= a (1 + 2 

cos xl 

When t = l(a=b) Equation (276) reduces to the caust1c equat1on 

for rays propagat1ng 1n a c1rcular wavegu1de as g1ven by Equat1on 

(175). Expand1ng the term 

h 
-(l+-sw2S) 

X 

us1ng Equat1on (272) g1ves 

h h
2 

2 
(1 + X sin 2S + 4X2 s1n 2S 

and neglect1ng the last term of the denominator which w1ll be small 

compared to the f1rst two terms Equat1on (277) reduces to -1 wh1ch 

on substitut1on 1nto Equat1on (276) aga1n g1ves Equat1on (175). 

The equat1on for the caust1c shown 1n F1gure BOb is obta1ned 

by subst1tut1ng for X 1n Equat1on (175) us1ng Equat1on (268) assurn1ng 

that a > 1 wh1ch ensures pos1t1ve X for all S. Assurn1ng also that X 

is small so that s1n X = X the equation for the caust1c for a > 1 

becomes 

2 2 2 2 
R = a h(a - cos S) 

The max1mum and rnlnlmum values of R, shown 1n F1gure 82a as 

a , b respect1vely are g1ven by the follow1ng express1ons 
ec ec 

2. 
ec 

b 
ec 

= 

= 

aa rh 

a lh ( 2 
- 1) 

<S = ::_) 
2 

<S = o) 

276. 

277. 

278. 

279a. 

279b. 



F1gure 83a. a ~ 1.01 F1gure 83b. a ~ .99 

F1gure 83. Photographs of computer s1mulat1ons of rays reflected by 

~ ell1pt1cal reflector w1th a ~ 1.05, b ~ 1.0. 
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If Equat~on (278) ~s assumed ~s assumed to approx~mately 

represent an ell~pse for cr > l then the quas~-hyperbol~c f~gure 

given by Equat~on (278) for cr < l may be assumed to be hyperbol~c as 

shown in F~gure 82b. The constants of th~s hyperbola ahc' bhc are g~ven 

by 

-1 
(S~ cos cr) 

The computer s~mulated caust~cs for the skew plane rays w~th cr 

JUSt above and JUSt below un~ty are shown ~n F~gures 83a, 83b 

respect~vely. Ass~ng cr ~ l in Equat~ons (279a) and (280a) then 

w 

where w ~s the cut-off w~dth of the ell~pse and ~s related to the 

d~fference between the vertex rad~i of the ell~pse accord~ng to the 

express1on 

~ 

2 
w 
Sa 

As a numer~cal example cons~der the caust~c (the edge of the 

black hole) at the centre of the wavegu~de cross sect~on shown ~n 

F~gure Se to be that due to skew plane rays w~th cr > l, w ~ 4.Sp and 

a ~ 23p to g~ve ~ ~ .lp. If the m~n~mum measurable value for w ~s lp 

~n a SOp core d~ameter wave~de, the correspond~ng value for ~ is 

.OOSp wh~ch ~s .02% of the radius. 

Th~s order of sens~t~vity to var~at~ons ~n the wavegu~de geometry 

JUSt~f~es the comments made in the ~ntroduction to th~s chapter, that 

the wavegu~des used for the exper~ments exh~b~t asymmetry, s~nce ~t ~s 

unlikely that they are manufactured within a tolerance of .OOSp. 

280a 

280b. 

281. 

282. 



Figure 84. A s1ngle ray of a plane wave 1nc1dent on the 

entrance aperture of an ell1ptic cross 

section wavegU2de. 
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Cons1.der a plane wave 1.nc1.dent upon the entrance aperture of an 

elliptic cross sect1.on wavegu1.de at angles 6 , a, as shown 1.n Figure 
0 

84. The longLtudLnal plane of the waveguLde selected to defLne the 

azimuthal angle a coinc1.des w1th the major ax1.s. 

The skew planes illUIDLnated by thLs plane wave are identLfLed 

by theLr characterLStLc angles x
0

, S
0 

Ln the entrance aperture of the 

waveguLde as shown Ln FLgure 84. SubstLtutLon of x ,S Lnto EquatLon 
0 0 

{268} wLll gLve the value of a for each skew plane, as 

a = 

Skew planes WLth a <1 WLll be called trapped skew planes SLnce 

they oscLllate about the mLnor axLs of the ellLpse to produce the quasi-

hyperbolLc caustLcs. Skew planes WLth a > 1 WLll be called non trappLng 

skew planes. 

In FLgure 84, X , S are related by the expressLon 
0 0 

Cl - s 
0 

and the relatLon between X and S for trapped skew planes LS found by 
0 0 

substLtutLng a < 1 into EquatLon (283} to gLve 

X <I fh sLn S I 
0 0 

Substituting for X Ln EquatLon (285} usLng the right hand sLde 
0 

of Equation (284}, gLves the range of S correspondLng to trapped skew 
0 

planes as 

and the corresponding values for X are obtaLned from EquatLon (284} 
0 

and are 

= 0 when = Cl 

283. 

284. 

285. 

286. 

287. 
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when 

Subst1tut1ng for X , 13 in Equat1on (283) us1ng Equat1ons (287) and 
0 0 

(288) g1ves the range of cr in terms of the az1muth angle of the 

1nc1dent plane wave as 

cos ex < cr < 1 (0 < X < lh S1n 13 ) 
0 0 

The grad1ent of the asymptote to the quas1-hyperbolic caust1c, 

denoted 1n F1gure 82b as 13 1s g1ven by 
eo 

tan 13 eo = = 

wh1ch on subst1tut1on for cr from Equation (289) g1ves the range of the 

cut-off angle 13co 

( ,lh s1n 13 > X > 0) 
0 0 

When a = 0, Equat1on (289) g1ves cr = 1 1nd1cat1ng that no 

trapped skew planes (cr < 1) are 1llum1nated by a plane wave at th1s 

az1muth angle of 1nc1dence. 

The relat1on between X and 13 for non trapped skew planes 1S 
0 0 

found by subst1tut1ng cr > 1 into Equat1on (283) to g1ve 

X > llh S1n 13 I 
0 0 

and the 1nit1al pos1t1ons of these skew planes are g1ven by Equation 

(284) as 

= 

The s1gnificant difference between the trapped and non trapped 

skew plane dependence upon the azimuth angle of 1ncidence a, 1s that 

288. 

289. 

290. 

291. 

292. 

293. 



m = 1 m = 2 

m = 3 m 4 

a o 

m 1 m = 2 

m 3 m 4 

a = n/2 

Figure 85 . Photographs of computer simulation of rays reflected 

by an elliptical reflector , a = 1 . 05 , b = 1.0. 
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only certa1n trapped skew planes are llluminated at each value of a 

(Equatlon (289)) whereas the nontrapped skew planes are lllumlnated 

1ndependently of a. The a dependence of the nontrapped skew planes 

only appears 1n the express1on for the 1n1tial pos1t1on of the skew 

planes, Equat1on (293). 

A mathematlcal descr1pt1on of the caust1cs produced by the 

1nc1dent plane wave as a funct1on of the number of reflectlons lS 

compllcated by the trans1t1on from the quasl hyperbollc caust1cs for 

cr <1 to the quas1 elllptic caust1cs for cr > 1. It has not been poss1ble 

to produce a useful mathemat1cal express1on to descr1be thls process 

and the follow1ng qual1tat1ve descr1pt1on of the caust1cs lS based 

upon the results of computer S1mulat1on of the mult1ple reflect1ons of 

skew planes. 

Figure 85 shows computer Slmulations of the caust1cs produced 

by skew planes reflected by an ell1pt1cal cross sectlon reflector 

(a = 1.05 b = 1.0) for m = 1 to 4 and Wlth az1muthal angles of lncidence 

~ 
a = 0 and 2· Compar1ng these caustics Wlth those for the c1rcular cross 

section reflector shown ln Flgure 57, suggests that the low m caust1cs 

are ~nsens1t1ve to var1at1ons 1n the cross sect1onal geometry of the 

reflector. 

However, as m lS increased the effects of the ell1pt1city and the 

dependence upon the az1muthal angle of 1nc1dence become apparent. In 

Figure 86 the caust1cs for m = 6,7, 10,11 are illustrated for the 

~ ell1pt1cal cross sect1on reflector w1th u = 0, 2· 

The circular reflector caust1cs form the character1st1c spirals 

which ortglnate on they ax1s as given by Equat1on (17l),and w1nd up 

as m lS lncreased. The caust1cs produced 1n the elllptical reflector 



m ~ 4 m 5 

m~ 8 m ~ 9 

m ~ 4 m 5 

m ~ 8 a= /2 m~ 9 

F~gure 86. Photographs of computer s~mulation of rays reflected by 

an elliptical reflector, a ~ 1.05, b ~ 1.0. 
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Origin. -- 1 I 

FLgure 87. A typLcal trapped skew plane caustLc. 



m 4 m = 8 

" = 22.5° 

m = 4 m = 8 

" 

m 4 m = 8 

"= 67.5° 

F1gure 88. Photographs of computer s1mulat1ons of rays reflected 

by an ell1pt1cal reflector, a = 1.05, b = 1.0. 
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when a = 0 form what may be called quas1 ellipt1cal sp1rals wh1ch 

or1g1nate on the x ax1s at x = alh, where this value 1s obta1ned from 

Equat1on (279a) by subst1tut1ng a = 1. These sp1rals correspond to 

the non trapped skew planes, and also 'w1nd up' as m 1s 1ncreased. 

Similar sp1rals are obta1ned for the ell1pt1cal reflector 

~ when a = 2 s1nce nontrapped skew planes are excited 1ndependently of 

the value of a. 
~ 

The trapped skew planes exc1ted when a = 2 form a 

caustic wh1ch or1g1nates on the y ax1s and follous a path of the form 

shown 1n F1gure 87. This caust1c term1nates at the po1nt of orig1n 

of the non trapped skew planes s1nce both these cond1t1ons correspond 

to a = 1. 

The cut off angle S shown 1n F1gure 87 is reduced as m' 1s 
CO 

1ncreased unt1l 1n the l1m1t of large m , Sco = 0 correspond1ng to the 

value of S g1ven by Equat1on (290) when a = 1. The or1gin of the 
CO 

trapped skew plane caustic depends upon the azimuthal angle of 1nc1dence 

~ and for a i 2 also depends upon m . Th1s 1s demonstrated 1n F1gure 88 

3TI ~ W 
where the computer s1mulated caust1cs for~= a-• 4' 8 and m = 6, 10 

are g1ven. When m 1s large the max1mum angle of the caust1c or1g1n is 

g1ven by the upper l1m1t of Equat1on (291) 



Part of the untrapped 
skew plane caustic:.. -+--

y..----..:::,.,.__Part of the 
trapped skew 
plane caustic. 

~----rShadow region. 

Even reflection 
number caustics. 

F1gure 89. The trans1tion from the quas1 hyperbol1c 

caust1c to the quas1 ell1ptical caust1c 

after a small number of reflect1ons. 

Figure 90. The transition caustic after a 

h1gh number of reflect1ons. 

Focal point. 



Figure 91. Figure 92 . 

Figure 93. Figure 94 . 
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6.4.2 Exper1mental Results 

A 5.75 mm length of f1bre bundle was 1llum1nated w1th wh1te l1ght 

0 
at an ax1al angle of 10 to obta1n the caust1c shown 1n F1gure 91. The 

caust1c appears to be s1m1lar to that obta1ned by computer s1mulat1on 

1f shown 1n F1gure 86 where cr = 2' m = 8. In f1gure 91, m ~ 8 and the 

effects of 1ncreas1ng m are shown 1n F1gures 92 and 93 where the angles 

of 1nc1dence are 20° and 30° respect1vely. In F1gure 92, m~ 20 and 

although the caust1c lS st1ll v1sible at the centre of the f1bre, 1ts 

form lS less d1st1nct. In F1gure 93 where m ~ 35 the centre caust1c lS 

1nd1st1nct and th1s result y1elds no useful 1nformat1on about the 

behavLotrr of rays 1n ell1ptic cross sect1on wavegu1des after many 

reflect1ons. 

The behav1our of the caust1c as it changes from a trapped to an 

untrapped mode has a s1gn1flcant feature wh1ch was suggested by the 

observat1on of h1gh 1ntens1ty spots at pos1t1ons close Lo the centre of 

f1bres as shown 1n F1gure 94. F1gure 94 was obta1ned from a 40 cm 

0 
length of f1bre 1lluminated with wh1te l1ght at an ax1al angle of 20 

giv1ng m~ 170. As the caust1c changes from the trapped quas1-hyperbol1c 

form to the untrapped quas1-ell1pt1cal form, the caust1c turns to form 

a tangent to the maJor ax1s of the ell1pse as shown 1n F1gure 89. In 

so do1ng a shadow reg1on 1s formed wh1ch 1s 1llustrated exper1mentally 

1n Figure 91. As the number of reflect1ons 1s 1ncreased the shadow reg1on 

is reduced 1n d1mens1ons unt1l the caust1c turns through an angle of 

270° at a s1ngle po1nt adJacent to the maJor ax1s of the ell1pse. 

Because of the diffract1on wh1ch occurs at a caust1c th1s s1ngle turn1ng 

po1nt appears as a br1ght spot of light and may be cons1dered as the focal 

po1nt of skew rays ,Jith a ~ 1. Its pos1t1gn corresponds to a or ah ec c 

along the maJor axis of the ell1pse, and for rays w1th +~ appears 1n the 

1st and 3rd quadrants for alternate reflections, and 1n the 2nd and 4th 

quadrants for rays launched w1th -~. In the exper1mental result shown 
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in F1gure 94, spots appear 1n the 2nd and 4th quadrants s1multaneously 

because the d1vergence of the rays after 170 reflect1ons results 1n 

numerous components w1th adJacent reflection numbers. 

Further experimental examples of the trapped quas1 hyperbol1c 

caust1cs are shown 1n F1gures S and 7. In each of these photographs the 

form of the caust1c 1s dependent upon the azimuthal angle of 1nc1dence 

and th1s 1s a demonstration of the range of trapped skew planes exc1ted 

by plane waves 1nc1dent at part1cular az1muthal angles. (Equat1ons 287, 

288). In particular when a~ 270.0 as 1n F1gure Se, no quas1 hyperbol1c 

caust1cs are 1n ev1dence, excepting the br1ght spots of the focal po1nts 

of skew planes w1th cr ~ 1. 

There 1s also a shadow reg1on 1n evidence 1n F1gure Se, which 1S 

not suggested by the theory of the untrapped caust1cs, since all the 

untrapped skew planes are exc1ted at all az1muthal angles of 1nc1dence. 

It may be that the cross sect1on of the wavegu1de 1s not exactly ell1pt1cal 

and that the skew planes w1th cr ~ 1 suffer a m1salignment at po1nts 

w1thin the fibres length. Alternat1vely, the bend1ng of the f1bre bundle 

dur1ng the exper1ment may cause the centre shadow effect. These two 

poss1b1l1t1es are cons1dered 1n the follow1ng sect1ons and Chapter 7. 



x, 

Plane 1 fllane 2 

\ 

FLgure 95. The characterLsatLon of rays Ln an optical system. 

x, 

J 

FLgure 96. A thLn lens system. 
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6.5 Representat1on of the Ell1pt1cal Wavegu1de as a Per1od1c 

Sequence of Lensese 

(20) 
Another author has noted the s1m1lar1ty between the theory 

of resonating cav1t1es and the theory of propagation 1n ell1pt1cal 

wavegilldes. He adapted the resonator theory to pred1ct the waveguide 

modes observed when an elliptical dielectr1c wavegu1de 1s 1llum1nated 

by a monochromat~c source at spec1f1c az1muthal angles of lllCldencee 

In th1s sect1on the trapping cond1t1on for skew plane rays w1th 

X 1s der1ved from the geometr1cal theory of resonat1ng cav1t1es, where 

the mult1ple reflect1on of a l1ght ray lS represented by a ray pass1ng 

through a per1od1c lens sequence. 

(50) 
The path of a ray through an opt1cal system is character1sed 

by 1ts d1stance x from the opt1cal axis and its slope x' both measured 

at the 1nput and output planes of the system. In Flgure95 

represents the 1nput quant1t1es measured at plane 1 and x2 , x2 are the 

output quant1t1es measured at plane 2. When a ray has x1 , x2 small and 

-1 
1ts slopes xi, x2, may be equated to the1r angles (xi= TAN xil the 

(31 Sec.4.9. 
rays are sa1d to be conf1ned to the parax1al reg1on of the opt1cal system. 

The output quant1t1es x
2

, x2 of parax1al rays are l1nearly 

related to the1r 1nput quant1t1es and th1s relat1onsh1p may be expressed 

in. the following matr1x form 

A B 
= 

x' 
2 

c D x' 
1 

The values of the matrix ~~~~.known as the ray transfer matr1x,are 

g1ven in reference (50) for var1ous s1mple optical systems. The system 

of interest here is shown 1n F1gure 96 and cons1sts of a th1n lens1 focal 

length £/with the 1nput plane a distance d from the output plane. 

294. 

I 



I 

x~ 

1 

Figure 97. 

2 

' 
' 

' ' 
" 
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Its ray transfer matr~x is g~ven by reference (50) as 

1 d 

1 
f 

d 1-
f 

wh~ch g~ves the follow~ng equat~ons for the output quant~t1es 

x2 = xl + dx' 
1 

xl dx' 
x' x' 1 

= -
2 1 f f 

A set of rays parallel (xi = 0) to the opt1cal ax~s at plane 1 1nth 

var~ous values of x
1 
w~ll have 

x2 = xl 

x' 
xl 

2 f 

at plane 2 to g1ve the ray paths shown 1n F1gure 96. The focal length 

of the system 1s clearly the d~stance from the output plane of the 

system at wh1ch a set of parallel 1nput rays converges to a focus. 

Cons1der a ray parallel to the ax1s of the opt1cal system shown 

in Figure97where S 1s a sect1on of a cylindr1cal reflector, radius a. 

TAN-l x
2
• 

The ray has an angle of 1ncidence at the reflector of and 
2 

the reflected ray crosses the opt~cal ax1s a d1stance -f from plane 2. 

From F~gure 97. 

x' 
2 "' (f-l\f) 

s1n 
TAN-1 0 x x

1 (:-..,---'21 = 
2 a 

295. 

296. 

297. 

298. 

299. 

300. 

301. 



d d d 

----+----+--~---+--4------~----+-~------

System 1. System 2. System n 

Figure 98. A per1od1c lens sequence. 
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-1 
=a(l-cos(TAN x2)) 

Us~ng the small angle approx~mat~ons (s~n 8 ~ 8, TAN 8 ~ 8) 

and neglecting ~f then from Equat~ons (300) and (303) 

f = 

and from Equat~on (301) and (304) 

It appears that rays w~th~n the parax~al regions of the systems 

shown ~n F~gures 96 and 97 w~ll follow si=lar paths ~f the -f of 

F~gure 97 ~s replaced by +f. 

The path of a para~al ray mak~ng N reflect~ons ~n an opt~cal 

system cons1st1ng of concentr1c cyl1ndr1cal reflectors, each of rad1us 

~. may therefore be represented by the path of a parax~al ray pass~ng 

through N success~ve systems of the type shown ~n F~gure 96 as shown ~n 

F~gure 98. 

The relat1onsh1p between the 1nput ray quant1t1es x
0

, 

th 
the ray quantit~es x , x' at the n plane ~s g~ven by 

n n 

X 
n 

x' 
n 

= 

A 

c 

B 

D 

n 
X 

0 

x' 
0 

x• and 
0 

The standard textbook treatment of ray propagat~on ~n lens sequences 

suggests that ~f a beam of rays pass~rg through such a system ~s conf~ned 

to w~thin the paraxial reg~on of the system ax~s, the period~c sequence 

302. 

303. 

304. 

305. 

306. 



Xn 

Part of the 
m=20 caustic. 

Figure 99. A sect~on of the m ~ 20 caust~c shown in 

F~gure 69, to ~llustrate the d~vergence 

of the rays wh~ch form th~s caust~c. 

' 
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1s sa1d to be stable and 1ts matr1x components satisfy the cond1tion 

-1 <~(A+ D) < 1 

Subst1tut1on of the relevant values of matr1x 295 1nto Equat1on 

(307) g1ves 

d 
-l < (1 - 2f) < 1 

wh1ch may be recast 1nto the form 

d 
0 < (1 - 4f) < 1 

The concentr1c reflector system (d 2a) g1ves 

0 

a 
s1nce Equat1on (305) g1ves f = 2 for parax1al rays and this suggests 

that all parax1al rays are stable 1n a concentr1c system. Th1s 1s 

not so because the exact 

to 

xl 

(303) g1ves a value 

and xi g1ve f < ~ 
2" 

a Iff< 2 then 

f 

express~on 

= ~ for 
2 xl 

d 
(1 - 4f) < 0 

for f g1ven by Equat1ons (300) 

= x• = 0 only, 
1 

all other values of 

a and the system is unstable and the rays for wh1ch f < 2 are not 

trapped and w1ll rop1dly d1verge away from the system ax1s. 

The d1vergence of rays with X ~ 0 propagating 1n a concentr1c 

system 1s also predicted by the reflect1on number dependent caust1c 

g1ven by Equat1ons (170a-b). In F1gure 99a sect1on of the caust1c 

shown 1n F1gure 59(number of reflect1ons m= 20) 1s shown together 

w1th the parax1al sections of the reflect1ng surfaces. When m 1s large 

307. 

308. 

309. 

310. 

311. 
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(>10) the caust1c equat1ons may be replaced by the approx1mat1ons given 

by Equat1ons (175) and (176). Assumlng that a ray is tangent to the 

caust1c at 1ts mld po1nt (wh1ch 1s establ1shed by Equat1on (175)), the 

limlt of paraXlal trapped rays shown 1n Flgure99 as x' Wlll be g1ven by 
n 

x' = TAN 2mx 
n 

wh1ch clearly falls to zero as m is 1ncreased, for a f1xed value of X· 

Cons~der now the case when the spac~ng d between the reflectors 

1s reduced by an amount 2~ so that 

d = 2a - 2~ 

To sat1sfy the stab1l1ty cond1t1on the focal length of trapped 

rays must l1e 1n the range 

a - ~ a 
< f < 

2 2 

The loc11 of focus for a cyl1ndr1cal reflector lS g1ven by the 

caust1c Equat1ons (169a-b) w1th m= 1, and by reference to F1gure56 the 

focal length of the reflector will be g1ven by 

f = 

which on subst1tut1on for y us1ng Equat1on (169b) becomes 
s 

f = a(l- ~(COS 2X COS X) - S1n 2X S1n X) 

After algebra1c man1pulat1on ard subst1tut1on for the double 

angles, Equat1on (316) becomes 

f = I cos X - a cos x s1n
2 x + 2a s1n

2 f 

312. 

313. 

314. 

315. 

316. 

317. 
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The focal length of the outer trapped ray ~s g~ven by the lower 

l~mLt of Equat~on (314) wh~ch may be equated to the above express~on 

for f to g~ve an express~on for the l~mLt of trapped rays in terms of 

a 
X· Tak~ng Equat~on (317) as f = 2 cos x(accurate to w~th~n 3% at 

0 X = 10 ) and denot~ng the cut off value of X as X then m 

a a-6 
2 cos xm = --2-

Letting a-A = b where a,b correspond to the constants of the 

ell~pse shown ~n F~gure 77 then from Equat~on (318) 

(w~th 

2 
s~n 

Although th~s express~on shows agreement w~th Equat~on (267) 
2 

a 
c = 1 -- ~ 1) the parax~al lens sequence theory cannot tolerate 

b2 

the cut-off value of x' = ~ wh~ch ~s encountered ~n the analys~s of 
n 2 

ray propagat~on vetween ell~pL~cal reflectors g~ven ~n Sect~on 6.4. 

Th~s ~s demonstrated by calculat~ng the cut-off angle x' us~ng 
n 

the r~gorous express~on for f for the cyl~ndr~cal reflector g~ven by 

Equat~on (317). When ~ = 0.02 Equat~on (319) g~ves x = 12° 
a m 
rr o 

correspond1ng to x~ = 2' whereas the r1gorous analys1s g1ves ~ ~ 6 

to g~ve a correspond~ng value for x' = 25° wh~ch l~es with~n the parax~al 
n 

reg1on. 

However, both theorys demonstrate thatotherskew rays of l~ght 

as well as those w~th X = 0 are trapped when the spac~ng between the 

cyl~ndr~cal reflectors is less than twice the rad~us of curvature. 

This feature of the lens sequence theory is used 1n the next sect1on 

to investigate the poss~bility of rays becoming trapped along low 

order stat~onary skew plane paths other than that cons~dered here. 

318. 

319. 



D 

'i-'=30 

Ray A. 

1"-r-t---\--Ray B 

F~gure 100. Ray paths in a c~rcular cross sect~on reflector. 

F~gure 101. The lens sequence representat~on of ray paths 

in a c~rcular cross sect1on reflector. 
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6.6 H1gher Order Trapp1ng Modes 1n Ell1pt1cal Cross Sect1on 

Wavegu~des 

It has been shown 1n the earl1er sect1ons of th1s chapter that 

the high 1ntens1ty patterns wh1ch appear about a d1ameter of the 

wavegu1des are accounted for by the ell1pt1city of the wavegUldes 

wh1ch causes a trapp1ng cond1tion to occur. The or1g1nal patterns 

described in Chapter l also exh1b1ted variations of 1ntens1ty about other 

stat1onary skew plane paths of a cyl1ndr1cal wavegu1de. 

In th1s section the patterns wh1ch appear 1n pos1t1ons correspond1ng 

0 to the X ~ 30 stat1onary skew plane (p ~ l, m ~ 3,Flgure 49) Wlll be 

analysed under the assumpt1on that the wavegu1de has an ell1pt1cal 

cross sect1on as descr1bed 1n Sect1on 6.4. 

The approx1mat1on used 1n that sect1on that s1n x ~x 11s not 

0 acceptable for X ~ 30 and 1t was also found by computer s1mulat1on that 

the ~ dependent change in X due to the offset centre of curvature of 

the ell1pse (expressed by Equat1on (262)) was of the same order as that 

due to the var1at1ons 1n "rad1us" of the elllpse (Equat1on (256)). 

A ray analys1s s1m1lar to that g1ven 1n Sect1on 6.4 would therefore 

appear to be complex for ~gher order skew planes. A v1sual exam1nat1on 

of the patterns suggests that s1nce l1ttle f1ne deta1l 1s 1n ev1dence the 

lens sequence analysis Wlll prov1de suff1cient 1nformat1on as to the 

cond1tions for the appearance of the h1gher order skew ray patterns. 

Consider f1rst the appl1cat1on of the lens sequence theory to 

the x ~ 30° stat1onary skew ray wha~e path in a c1rcular cross sect1on 

wavegUlde lS shown 1n Figure lOO together Wl th the paths of two other 

skew rays. 0 0 
Ray A has X > 30 and ray B has X < 30 . The correspond1ng 

sequence 1s shown 1n Figure 101 where the spac1ng d between the lenses 



y' 

--~-------------4--------~--~-------xs 

F1gure 102. The or1g1n shift for the der1vat1on of the 

normalised focal length of a c1rcular reflector. 
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~s g~ven by 

d ~ 2a cos 30° 

where a is the nom1nal rad1us of the waveguide core. 

A normal~sed express~on for the focal length of a skew ray 

reflected by a cyl~ndr~cal reflector may be obta~ned from the caust~c 

equat~ons (l69a-b). W~th reference to Figurel02 the or~g~n of the 

co-ord~nate system xs ys of the caust~c equat~ons ~s sh~fted to x
1

Y
1 

and the ax~s turned through an angle of -2x to g~ve new co-ord~nates 

x'y'. By co-ord1nate geometry 

x' 

Substitut1ng for x
1

Y
1 

us1ng Equat1on (l66a) w1th m= 

using Equat~on (l69a-b) also with m ~ l g~ves 

x' = 0 

a 
y' ~- 2 cos X 

l and for x ,y 
s s 

where y' ~snow the focal length f(X) of each skew ray measured along 

its own path. 

The spacing d between the lens of F~gure JOl ~s g~ven by 

Equat~on (320) as 

d 4f(30) 

and skew rays w~th X > 30° show the same divergence away from the 

0 0 0 
X ~ 30 path as do the skew rays with X > 0 away from the X ~ 0 path 

s~nce ne~ther set of rays are able to sat~sfy the stab~l~ty cond~t~o~ 

expressed by Equation (309) • Unfortunately skew rays w~th X < 30~ 

320. 

32la. 

32lb. 

322a. 

322b. 

323. 
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Figure 103. Examples of stationary skew ray lens sequences. 
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have focal lengths wh~ch do sat~sfy th~s stab~l~ty cond~tion and 

should therefore be trapped w~th~n the parax~al reg~on of the X = 30° 

skew ray path, also d~verge away from th~s path. 

Th~s d~ff~culty does not ar~se w~th the X = 0 system of 

lenses s~nce there are obv1ously no rays w~th X < 0°, and it w1ll be 

resolved by only ~nclud~ng,1n each lens sequence representat1on, rays 

with X > xs where Xs ~s the stat~onary skew ray wh~ch forms the ax1s 

of the equ~valent lens sequence. 

The propagat~on of rays in a cyl~ndr~cal wavegu~de may therefore 

be represented by the1r propagat1on through a ser1es of lens sequences 

as shown in F~gure 103, where the range of skew rays ~n~t~ally w1th~n 

each lens sequence,due to an 1nc~dent plane wave,w~ll depend upon the 

number of lens sequences chosen to represent the wavegu~de. 

The values of X for var1ous comb1nat1ons of p, m of equat1ons 
s 

(149)' (150) are shown 1n Table 9 together w~th the range AX of X 

in each lens sequence 1 where ~X 1s g1ven by 

The lens spac1ng for all the lens sequences ~s g1ven by 

d = 4f(X ) 
s s 

and as such the rays w~th~n each system w~ll d~verge from the~r 

respect~ve axes. Th~s ~s the result expected for ray propagat~on 1n 

cyl~ndr~cal wavegu1des. 

If the cross sect~on of the wavegu1de ~s ell~pt1cal, then 1nstead 

of the ~nc~dent angle X of each ray rema1n~ng constant as ~n a c1rcular 

cross sect1on, x w~ll now vary as a funct1on of S. Th1s w1ll alter the 

values of x for each p,m (other than p = 1, m = 2) and poss~bly place 
s 

restr~ct1ons on the or~entat~ons of the closed f~gures. 

324. 
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p = 1 p = 2 p = 3 p = 4 

M 
0 t.xo 0 t.xo 0 t.xo 0 t.xo xs xs xs xs 

2 0 30 

3 30 15 

4 45 9 0 18 

5 54 6 18 12 

6 60 4.3 30 9 0 12.8 

7 64.3 3.2 39 6 12.8 9.7 

8 67.5 2.5 45 5 22.5 7.5 0 10 

9 70 2 so 4 30 6 10 8 

10 72 54 3.3 36 4.9 18 6.5 

11 57.3 2.7 40.9 4.1 24.5 5.5 

12 60 45 3.5 30 4.6 

13 48.5 3 34.6 4 

14 51.5 2.5 38.6 3.4 

15 54 42 3 

16 54 45 3 

17 48 2 

18 so 2.1 ' 

19 52.1 1.9 

20 54 

' 
Table 9. Stat~onary skew plane systems. 
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This 1s demonstrated by cons1dcr1ng the poss1ble or1entat1ons 

of the xs = 0 (P = ~ = 2) closed f1gure (stra1ght l1ne). The ray 

Wlth X = 0 must co1ncide Wlth the normal to the reflect1ng surface 
s 

at each reflect1on po1nt and 1n the ell1pse th1s lS only poss1ble 

1[ 

when ~ = 0 or 2 The spac1ng d between the reflectors when ~ = 0 
0 

lS 

d = 2a 
0 

and the rad1us of curvature r about th1s ax1s lS g1ven by Equation 
0 

(250) as 

r = o a 

The focal length f of the reflectors lS g1ven by Equat1on 
0 

(305) by subst1tut1ng r 1n places of the rad1us a of the c1rcle, 
0 

to g1ve 

f 
0 

= 

Subst1tut1ng f and d 1nto the stab1l1ty cond1t1on, Equation 
0 0 

(309) g1ves 

(1 - < 0 

since a > b, demonstrat1ng that this is a non-stable system, 1n 

agreement w1th the results of the r1gorous theory of Sect1on 6.3. 

1[ 
A s1m1lar procedure for the ax1s at ~ = 

2 
2 

a 
b 

to g1ve a stab1l1ty cond1t1on of 

(1 - > 0 

:::: 2b, 

wh1ch corresponds to the trapp1ng system descr1bed 1n Section 6.3. 

326. 
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F1gure l05a. 

_, 
ton 1; 

F1gure 104. The co-ord1nates 

of three arb1trary 

po1nts on an ell1pse. 
F1gure l05b. The vertical and 

hor1zontal tr1angu 

ray paths. 

J 

f ex,) 

Figure 106. The lens sequence £or the tr1angular closed f1gur<. 
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0 The poss1ble or1entat1ons and stab1l1ty of the X ~ 30 (p = 1, 
s 

m = 3) closed f~gures may be obta1ned us1ng s1~lar arglli~ents. 

Cons1der the three po1nts on the per1phery of the ell1pse shown 1n 

F1gure l~w1th co-ord1nates x
1 

Y
1

, x
2 

Y
2

, x3 Y
3

. The normals to the 

reflect1ng surface at these po1nts have tangents T
1

, T
2

, T
3 

as shown. 

If the three po1nts are JOlned by rays to form a triangle, then the 

normals b1sect the 1nternal angles of the tr1angle. A well known 

theorem states that b1sectors of the 1nternal angles of a tr1angle 

1ntersect at a po1nt wh1ch 1s the centre of the 1nscr1bed c1rcle of the 

tr1angle. 

This theorem, together w1th the express1ons descr1b1ng the 

points of 1ntersect1on of two l1nes, Equations (164a-b), are used 1n 

Appendlx D to show that there are two poss1ble or1entat1ons for each 

of two tr1angular closed f1gures Wlthln the ell1pt1cel cross sect1on. 

The two closed flgures for p = 1 m = 3 are shown 1n F1gure 105 

and the1r var1ables will be denoted by the subscr1pt h for hor1zontal 

(F1gurel05~ and for vert1cal (FlgurelOSb). The second orientat1on 
V 

of each tr1angle follows from the symmetry of the elllpse. 

The lens sequence equ1valent to a s1ngle tr1p round the tr1angular 

path lS shown 1n Flgure 10~ Thls lens sequence may be represented by 

a single ray transfer matr1x lAC BDI where 

A B 1 1 

c D 1 -
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The mult1pl1cat1on of the matr1ces on the right hand s1de of the 

Equat1on 1s s1mpl1f1ed by not1ng that 

329. 330. 

and the subscripts may be s1mpl1f1ed to g1ve 

The mult1pl1cation of the r1ght hand s1de of Equat1on (328) 

g1ves 

3dld3 
2 2 

d3 dld3 
2 

3d3 d3 
1---+-

1 A Bl = ___ f_l __ f_.2------1f--"M""--,.;i---;,----; 

dl+2d3- --+--
fl fl f2 

l 
d3 2dl d3 dl 

1---C D 
f3 fl fl 

-+ 
f3 

3dld3 

flf3 

The stabil1ty condition for rays 1n a sequence of lens systems 

represented by th1s matr1x 1s given by Equation (307) as before and 

where 

Z, (A+ D) 

The co-ordinates x
1

Y
1

, x
2

Y
2 

of each tr1angle may be found by 

using the property that the normal at the po1nt of reflect1on 1s also 

the b1sector of the total angle subtended by the 1nc1dent and 

reflected rays. If x1v 1s the inc1dent angle of a ray at x1v Ylv 

in Figure 1C5bthen 

and 

331. 

332. 

333. 

334. 
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2TANx 
Us1ng the 1dent1ty TAN 2x ~ 

2 
and subst1tut1ng for 

l-2TAN X 
T and x us1ng Lquat1ons (246), (240a) g1ves 

and 

from Equat1on (334) 

from Equat1on 
(333) 

Equat1ng the r1ght hand s1des of Equat1ons (335) and (336) 

gives a quadratJ.c equat1.on 1.n Ylv \'lhose solutJ.on J.S 

2 
-a b 

and XlV may be found by US1ng Equat1on (240a). 

The co-ord1nates Xlh Ylh' x2h Y2h of the hor1zontal tr1angle 

may be found 1n a s11n1lar manner by not1ng that 

and 

A quadrat1c equat1on 1s formed 1n terms of x
1

h and which has 

the solution 2 b2 
b 2a a 2b 

a 
1 + -+ 2 b2 a 

xlh ~ 
(b2 2 - a ) 

and Ylh may be found us1ng Equation (240b). 

335. 

336. 

337. 

338. 

339. 

340. 



Table 10. Stablllty condltlons for statlonary skew plane systems. 

Horlzontal Trlangle 

e. flh f3h dlh d3h '>(A+D) 

LOO .433 • 433 L 732 L 732 -LOO 

LOl .434 .434 L 727 L 740 -1.002 

L02 • 4349 .4350 L 723 l. 749 -1.007 

L03 .4357 .4357 l. 719 l. 758 -1.020 

L04 .4360 .4364 l. 7146 l. 7666 -1.044 

L05 .4375 .4374 l. 7104 l. 775 -1.0298 

L10 .440 .4390 L690 L82 -1.143 

Vertlcal Trlangle 

e £
1

v t
3

v d
1

v d
3

v '> (A+D) 

LOO • 433 .433 l. 732 L 732 -1.00 

LOl .434 .434 l. 745 L 732 -1.003 

1.02 .435 .435 l. 757 L 732 -1.005 

L03 .436 .436 L 770 L 732 -1.006 

1.04 .4365 • 4367 1.7832 L 732 -1.0244 

L05 .4375 .4374 l. 7958 l. 7325 -1.03 

1.10 .4401 .4399 l. 8578 l. 734 -1.132 

Sens1t1v1ty of c1rcular cross sect1on 

f d '>(A+ D) 

.433 l. 732 -1.0 Stable 

.432 l. 732 -1.04 Unstable 

.434 l. 732 -0.959 Stable 

.433 l. 733 -1.010 Unstable 

.433 l. 731 -0.989 Stable 

.433 L 730 0.979 Stable 
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The rad11 of curvature r(x) at each po1nt of reflect1on are g1ven 

by subst1tut1on of X 1nto Equat1on (248) and the focal lengths obta1ned 

by subst1tut1on of r(x) for a 1n Equat1on (305). The lens spac1ngs 

are g1ven by 

34lh. 34lv. 

342h. 

F1nally, the relevant values of f and d may be subst1tuted 

into Equat1on 032) to g1ve the stab1l1ty of each closed f1gure. Table 10 

gives the values of parameters d, f, ~(A+D) for var1ous values of e 

2 
where e = a and b = 1. 

When e = 1, corresponding to a c1rcular cross sect1on wavegUlde, 

the normalized rad1us of curvature and lens spac1ng become 

1.0 

and the stab1l1ty is un1ty. 

Table 10 demonstrates the sens1t1v1ty of the stab1l1ty of th1s 

system to var1at1ons in the rad1us of curvature or lens spac1ng. 

It 1s clear from the results shown in Table 10 that the p = l, 

m = 3 systen1s 1n an ell1pse are unstable, but on the bas1s of the 

sens1tivtty of the e = 1 system, small dev1at1ons of the wavegu1de 

cross sect1on from the ell1pt1cal cross section could produce a stable 

system. Such a stable system would conf1ne rays of l1ght about the 

stat1onary skew ray path and they W1ll form reg1ons of relat1vely h1gh 

1ntens1ty compared to nc1ghbour1ng less stable or unstable systems. 



Figure 107 . Figure 108 . 

Figure l09a. Figure l09b. 

Figure 109c . 
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An example of a stable tr1angular system 1s shown 1n F1gure Se, 

where the orientat1on of the tr1angular pattern of h1gh 1ntensity 

corresponds approx1mately w1th the vert1cal triangle system. An example 

of an unstable tr1angular system 1s shown 1n F1gure Sd, where shadow 

regions appear 1n the hor1zontal tr1angle posit1ons. In F1gure l09c, 

both the vert1cal and horizontal tr1angular systems appear unstable and 

form a hexagon shadow reg1on. Th1s is a result obta1ned from a d1fferent 

f1bre in the same bundle as the f1bre used for F1gure 5. The patterns, 

ev1dent 1n F1gures 107 to 109 were all obta1ned w1th white l1ght 

illum1nat1on of the bundle at an ax1al angle of inc1dence of 25°. 

F1gures 107 and lOB are from two further f1bres from the same bundle as 

that used for Figure 109 and are included here to 1llustrate the var1ety 

of patterns obta1ned from fibres of the same length and under s1m1lar 

1lluminating cond1t1ons. In Figure 107, two trapped skew plane caust1cs 

0 are incl1ned at 60 to each other, suggest1ng that th1s f1bre cross 

section has more than one trapp1ng ax1s and is clearly not ell1pt1cal. 

In F1gure lOB, a stable system corresponding to the p = 2, m= 2, stat1onary 

skew plane (shown 1n Figure 49) appears as a pentagon f1gure of h1gher 

intens1ty than 1ts 1mmed1ate surround1ngs 

The f~bre patterns shown 1n F1gures 109 a, b, c, show a complex 

frequency select1ve trapp1ng system. In F1gure l09a, a ~ 0 and the wh1te 

caustic shown 1n the m1crophotograph has a strong blue colouration. At 

approximately r1ght angles to 1t (that is 1n the position of the 'wh1te' 

caust1c shown in Figure l09c) there 1s a further caust1c w1th red 

colourat1on. When a ~ 90° the two colour~d caust1cs change pos1tion as 

shown 1n Figure l09c, (The Polaro1d photograph1c mater1al used 1n th1s 

study 1s less sens1t1ve to the red end of the spectrum than the blue). 

When a ~ 50° the pattern shown in F1gure l09b 1s obta1ned where the 

pos1tions of the two coloured caust1cs now show as shadow reg1ons. 

The appearances of these patterns are sens1tive to az1muthal angles of 
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1nc1dence to w1th1n 2°. The cross sect1onal geometry wh1ch could form 

th1s system has not been determined. 

6.7 Conclus1ons 

In this chapter the caustics formed ln ell1pt1cal cross sect1on 

wavegu1des have been exam1ned and features of the theory lllustrated by 

exper1mental results. The ma1n conclus1on to be drawn from the exper1mental 

results is that the wavegu1des wh1ch from the1r p = 1, m = 2 caust1cs appear 

to be elllptical 1n cross section also exh1b1t h1gher order caust1cs 

wh1ch are not found in the ell1pt1cal caustic theory. Thus the expected 

result that the wavegu1des are ne1ther c1rcular nor ell1pt1cal is conf1rmed 

and th1s suggests that a different approach to the problem of relat1ng 

the pattern format1on observed w1th1n any g1ven length of wavegu1de1 to 1ts 

cross sect1onal geometry lS required. A poss1ble alternat1ve approach lS 

described 1n Chapter 9. 

However, those fibres wh1ch do exh1b1t features of the ell1pt1cal 

cross sect1on caustic theory may well have cross sect1onal geometr1es 

wh1ch differ from ell1pt1cal by very small amounts 11n which case 1t may be 

that for certa1n purposes a perfectly ell1pt1cal cross sect1on may be 

assumed. A maJor problem encountered in the measurement of the cross 

sect1onal geometr1es using the pattern observat1on method,1s that there 

is no other known method of measuring the wavegu1de d1mensions w1th1n the 

tolerances of d1mensions wh1ch w1ll produce the patterns. It lS therefore 

not poss1ble to assess the accuracy of the results by an 1ndependent 

measurement. 

Because of the many unknown features of propagat1on of l1ght 1n 

the d1electr1c waveguides used for the exper1ments1 further experiments 

were conducted, as descr1bed 1n the following two chapters, in an attempt 

to obtain more informat1on about other features of the wavegu1des wh1ch 

may 1nfluence the format1on of the caustic patterns. 
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CHAPTER 7 

7.1 Introduct~on 

It appears from the results presented 1n Chapter 6 that the 

var1at1ons of 1ntens1ty observed 1n a wavegu1de are pr1mar1ly caused 

by 1ts non-c1rcular cross sect1on. In part1cular the analys1s of l1ght 

propagating 1n an ell1pt1cal cross sect1on wavegu1de has prov1ded 

fairly conclus1ve ev1dence that the var1ations of 1ntens1ty are directly 

related to caust1cs produced w1th1n the wavegu1de cross sect1on. 

It is more d1ff1cult to interpret the var1at1ons of the v1s1b1l1ty 

of the patterns from wavegu1de to wavegu1de in terms of wavegu1de 

geometry, mater1al homogene1ty or other defects. In the analys1s of 

the caust1cs formed in circular or ellipt1cal cross sect1on wavegu1des 

1t was assumed that the wavegu1des were of constant cross sect1on, 

stra1ght, and free of all defects, On th1s bas1s, exper1mental results 

were obta1ned to demonstrate the agreement between the theoret1cal 

pos1t1ons of the caust1cs and the var1at1ons of 1ntens1ty w1th1n the 

wavegu1des. It 1s natural that wavegu1des exh1b1t1ng var1at1ons of 

1ntens1ty wh1ch show the clearest agreement w1th the theoret1cal caust1c 

posit1ons should be presented. 

However, th1s does not mean that the assumpt1ons used 1n the 

caust1c analys1s are appl1cable to the wavegu1des used to demonstrate 

the theory. This can only be shown by exam1n1ng the effects of these 

assumpt1ons on the caust1cs and 1f 1t is found that relaxat1on of the 

assumpt1ons causes observable changes in the caust1c pos1tions then 

these changes can be invest1gated exper1mentally. 

Numerous exper1ments were conducted 1n an attempt to detect such 

var1at1ons 1n the v1sib1l1ty or the form of the patterns observed w1th1n 

a particular wavegu1de as the length of the wavegu1de was var1ed or as 
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the wavegUlde was bent. These exper1ments and the results are descr1bed 

1n this chapter and the behav1our of the skew rays when a wavegu1de 

suffers a sharp bend 1s considered theoret1cally. 

7.2 Length Dependent Var1at1ons 1n Wavegu1de Character1st1cs 

The opt1cal wavegu1des used for the exper1ments may have any or 

all of the follow1ng defects. 

a) Var1at1ons in the cross sect1onal geometry and d1mens1ons 

of the wavegu1de core and/or cladd1ng. 

b) Var1ations 1n the refract1ve 1ndex prof1le. 

c) Randomly posit1oned scatter1ng centres (a1r bubbles etc.) 

The above wavegu1de defects are pr1mar1ly 1ntroduced dur1ng 

manufacture and generally cannot be mod1f1ed afterwards. Two further 

parameters wh1ch may be exper1mentally varied w1th1n l1m1ts are 

d) Bends and tw1sts in the wavegu1des. 

To analyse the effects of (a) - (d) above upon the v1s1b1l1ty 

and form of the caust1c patterns requ1res pr1or knowledge of the 

d1stribution and magn1tude of the defects and th1s 1nformat1on 1s not 

available. However, the following comments may assist 1n deterrran1ng 

the poss1ble effects of each k1nd of defect. 

The factors wh1ch may cause defects (a) and (b) dur1ng 

manufacture (temperature, tens1on, and speed of pull1ng) are l1kely 

to vary slowly w1th respect to the speed of pull1ng of the f1bre. ~t 

would seem l1kely that the f1bres w1ll ma1nta1n the1r geometry and 

d1mens1ons over lengths of at least 1 m when the pull1ng rate 1s 

typ1cally 1 metre per second. 
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If the scatter1ng centres are caused by defects 1n the preforms 

then it 1s l1kely that they too w1ll have a length dependent distr1but1on 

where the d1str1but1on w1ll also vary slowly w1th respect to the pull1ng 

rate. 

Informat1on obtained from the manufacturers of the f1bres 

revealed that although the nom1nal loss of the f1bres 1s quoted as 

1 dB/m, certa1n f1bres may have losses over short lengths (~ lm) 

considerably less than this figure. No explanat1on for th1s was offered 

other than the stat1stical probab1l1ty that a few f1bres Wlll have losses 

,show1ng large var1at1on from the mean. 

These comments suggest that the number of f1bres w1th1n a bundle 

wh1ch w1ll exh1b1t good contrast patterns may depend upon the length of 

the bundle, and the follow1ng exper1ment was conducted to test this 

proposal. A 4m length of f1bre bundle was cut 1nto lengths of 2m, lm, 

0.5m, 0.25m and .125m and each end of these bundles was embedded 1n 

res1n, ground and pol1shed as described 1n Chapter 2. 

Us1ng the experimental arrangement shown 1n F1gure 20 each bundle 

was illurnlnated with plane waves from a wh1te l1ght source. The number 

of fibres w1th1n each bundle exhib1t1ng good contrast, poor contrast 

or no patterns were counted and the results are shown 1n Table 11. 

-------------
F1bre length (m) Number of f1bres w1th 

I 

-~ 
good contrast patterns, poor 

2 2 

1 4 

0.5 30 

0.25 75 

0.125 140 

Table 11. 

contrast patterns 
I 

' 
10 ! 

16 

80 

95 

lOO 
I 
I 

n o patterns~ 

388 

380 

290 

230 

160 I 
----1 
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These results demonstrate a strong correlat~on between the length 

of the f~bre bundles and the number of f~bres w~th~n the bundles 

exh~b~t~ng good contrast patterns. 

To ~nvest~gate further the length dependence of the contrast of 

the patterns of a s~ngle f~bre the follow~ng exper~ment was conducted. 

A lm length of a single f~bre wh~ch exhib~ted a poor contr~st pattern 

was shortened in 1 cm steps down to a length of 0.25 m. There was a 

gradual ~mprovement ~n the contrast of the patterns as the length of 

the fibre was reduced although at a length of 0.25m the patterns were 

st~ll of relatively poor contrast. Sim~lar tests were performed on 

f~ve other s~ngle f~bres and s~~lar gradual changes ~n pattern contrast 

were observed. 

Considerable care was taken to ensure that all the end term~nat~ons 

of the single f~bres were of comparable qual~ty s~nce ~t was found that 

a poor end terminat~on reduced the v~sibil~ty of the patterns. 

These subJect~ve tests y~eld results wh~ch only per~t tentat~ve 

conclusions to be drawn about the length dependence of the contrast of 

the patterns. It would appear that there are no rap~d length dependent 

changes in the wavegu1de geometry s1nce no var1at1ons 1n the form of the 

patterns were observed as the length o£ the f~bres were changed. The 

results o£ the tests reveal no information as to the source of the 

variat~ons ~n the contrast of the patterns although ~t ~s poss~ble that 

the degradat~on of the contrast of the patterns ~s related to random 

scatter~ng of l~ght w~th~n the wavegu~de. 

To invest~gate th~s possib~l~ty an alternat~ve measurement o£ the 

scattering of l~ght w~thin a waveguide ~s requ~red. Other exper~menters 

have measured the ax~al angle dependent d~str~bution o£ the radiated 

cone of l~ght and have attempted to relate this function to the length 
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of the wavegu1de and 1ts temporal d1spers1on. It 1s proposed to use 

a s1rnilar measurement to 1nd1cate the magn1tude of the scatter1ng and 

to relate the results to the contrast of the patterns. 

Although the equ1pment for these experiments was des1gned and 

built, insuff1c1ent t1me prevented the product1on of results. However, 

because of 1ts novel design1 the test equipment and 1ts proposed mode 

of operat1on are descr1bed 1n the next sect1on. 

7.3 Heterodyne Scann1ng System 

A typical exper1mental arrangement for measur1ng the angular 

dlstr1but1on of rad1at1on from a Slngle f1bre or f1bre bundle lS shown 

in F1gure 110. The fibres are 1llum1nated by plane waves from a Whlte 

l1ght or laser source and the1r rad1at1on field 1s scanned w1th a 

photomultlplier to measure the angular distr1but1on of rad1ated l1ght 

for each 1nput angle. The photomult1pl1er provides suff1c1ent ga1n to 

give good angular resolut1on of the radiated f1eld of the wavegu1de. 

S1nce no photomultlpller was ava1lable, a heterodyne detect1on 

system was proposed, f1rstly to 1ncrease the ga1n of the detectlon system 

and secondly to prov1de phase 1nformation for use 1n later exper1ments. 

The system des1gned and constructed is shown ln d1agrammat1c form 1n 

Figure 111. 

A laser beam 1s d1v1ded by the partlally silvered IDlrror Xl and 

the transiDltted beam forms a reference beam whlch passes to the two 

photod1odes v1a the s1lvered mirrors Rl, R2, R4 and the part1ally Sllvered 

mirrors R3, R6 and RlO. The laser beam reflected from m1rror Xl is 

phase modulated by reflect1on from the silvered m1rror X2 wh1ch lS 

attached to the cone of a loudspeaker. Th1s modulated beam passes 
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through the transmLtter arm VLa sLlvered mirrors X3 and X4 and LS 

splLt by the partLally sLlvered mLrror XS. The reflected beam from 

mLrror XS LS passed to photodLode D2 via the silvered IDLrrors X7, X8, 

R7, RS and the partLally sLlvered mirror R6. The transmLtted beam 

from IDLrror XS LllumLnates the waveguLde entrance aperture vLa sLlvered 

IDLrror X6 and the radLatLon fLeld of the waveguLde lS detected by 

photodLode Dl Vla the partlally Sllvered mLrror RlO. To allgn the system 

the wavegulde may be replaced by Sllvered mLrrors X9, XlO, RB, R9 to 

form a path slmllar to that of the reflected beam from mlrror XS to 

photodLode D2. 

Mlrrors X3 to X6 (and XlO) are mounted on the swlvelllng 

transmltter arm and mirrors R2 to R6 (and R9) and the two photodiodes 

are mounted on the sw1vell1ng rcce1ver arm. The two arms are rotated 

by stepper motors Vla worm drlves and the positlon of each arm lS 

measured uslng a potentlometer. The sequence of movements of the two 

arms LS automatlcally controlled such that the recelver arm makes a 

sweep of the wavegulde radiation fleld for each positlon of the 

transm2tter arm. 

The two lLght beams lncident upon photodLode Dl may be represented 

by thelr E field components ERl' EWG where ERl represents the reference 

fleld and EWG represents the waveguide radiatlon fLeld. If lt lS 

assumed that both of these fields have constant phase over the sensltlve 

area of the photodiode, then the output of the photodLode Wlll be 

proportlonal to the lncident LntensLty r
1 

where from Equatlon 03) 

= 

The E flelds ERl' EWG may be represented by 

A cos wt 

EWG = B cos (wt + ~(t) + y(t) +a) 

343. 

344. 

345. 
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where A, B are the ampl~tudes of the f~elds, wt ~s the t~me dependence 

of the opt~cal curr~er, ~(t) ~s the phase modulat~on due to the 

movement of m~rror X2 and y(t) ~s a phase sh~ft due to mechan~cal 

vibrat~ons of the test r~g. The term a represents the phase shift 

~ntroduced by the wavegu~de. 

Subst~tuting equat~ons (344), (345) ~nto (343) g1ves 

+AB cos(2wt + ~(t) +y(t) +a) +AB cos(~(t) + y(t) +a) 346. 

The f1rst three terms of Equat1on (346) vary at or above the 

w 
opt~cal carr1er frequency and the~r t~me average will g1ve a DC 

2rr 

term ~n the output of the photod~ode. The ampl~tude AB of the fourth 

term ~s the requ1red ampl~tude B of the radiat1on f1eld mult~pl1ed by 

the ampl1tude A of the reference field, the latter term form1ng the 

ga1n factor ach1eved by heterodyne detect1on. A deta1led study of the 

system would cons1der the al1gnment requ~rements of the two beams to 

ach1eve the constant phase requ1rement over the sens1t1ve area of the 

photodetector as well as opt1m1sing the rat~o of the ampl1tudes of the 

two beams by vary1ng the s1lver1ng of the m1rrors to g1ve the max1mum 

signal ampl1tude. 

Th1s last reqU2rement may be calculated for the output of the 

second photod1ode 1f 1t 1s assumed that the shape of the beams are 

unaltered by the mult1ple reflect1on process and any d1vergence of the 

beams 1s neglected. Denoting the ampl1tude of the electr1c field of 

the or1ginal laser beam as D and the transmission and reflection 

coeff1cients of the part1ally s1lvered m1rrors as T( ), R( ), 

respect1vely then the ampl1tude C of the modulated reference beam at 
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photod~ode 02 ~s g~ven by 

C = 0 (R (Xl) . R (X5) . T (R6) ) 34 7. 

where ~t ~s assumed that the s~lvered nurrors have R = 1.0. Oenot~ng 

the ampl~tude of the reference beam at photod~ode 02 as E then 

E = D(T(Xl). R(R3). R(R6)) 

and the ampl~tude of the envelope at the output of the photod~ode w~ll 

be proport~onal to CE where 

CE = o2
• TR(Xl). TR(R6). R(X5). R(R3) 

The products of the coeff~c~ents for nurros Xl and R6 are 

maximised when T = R = 0.5 s~nce 

then 

and 

and 

T + R = 1.0 

TR = T (1 - T) 

d(TR) = 1 - 2T 
dT 

d(TR) 
Max~mum of TR occurs when 

dT 

(1 - 2T) 0 

T = 0.5 

0 so that 

348. 

349. 

To ass~st in the ~n~t~al alignment of the system all the part~ally 

s~lvered mirrors were manufactured w~th T = R = 0.5 so that when the 

nurrors XlO, X9, RS, R9 were used ~n place of a wavegu~de, the amplitudes 

of the envelopes in the output$of the two photod~odes are equal. 
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However, s1nce 

AB 
2 

= F.D. TR(Xl). TR(RlO) T(X5) T(R3) 350. 

where F represents the reduct~on ~n ampl~tude due to propagat~on ~n 

a wavegu~de (F = 1 dur~ng al~gnment w~th m~rrors) some compensat~on 

for F << 1 may be obta~ned by mak~ng T > R for ~rrors X5 and R3. 

The ~rrors were manufactured by evaporat~on of al~n~um 

onto glass ~croscope cover sl1des and the R and T coeff1c1ents were 

mon~tored dur~ng depos~t~on us~ng the arrangement shown ~n F~gure 112. 

The reason for the phase modulat~on prov~ded by the loudspeaker 

becomes apparent when the form of the output g~ven by Equat~on (346) 

~s cons~dered ~n the absence of the ~(t) term. The DC contr~but~on of 

the f~rst three terms w~ll be as before but the ampl~tude of the fourth 

term w~ll no11 vary w~th t~me as y(t) var~es. The random nature of y(t) 

(unless the whole system ~s mounted on a v~brat~on free table) would 

requ~re an unacceptably long t~me averag~ng per~od to obta~n an ampl~tude 

measurement and the env1saged mot1on of the rece1ver sw1vel arm dur1ng 

measurement would be ~ntolerable. By ~ntroduc~ng a t~me vary~ng phase 

factor whose per~od w~ll generally be very much shorter than L~at of the 

vibrat~on funct~on y(t), a measurement of the ampl~tude of the envelope 

of ~(t) may be made over a few cycles of ~(t) dur~ng wh~ch per~od y(t) 

will only change the ~nstantaneous phase of the carr~er. 

The E f~elds ~nc~dent upon the photod~ode D2 may be represented by 

ER
2 

= E cos(wt + S + y(t)) 351. 

EmR = C cos(wt + ~(t) + o) 352. 

where ER
2 

is the E field of the reference beam and EmR ~s the E f~eld 



Figure ll3a . The transmitter 

arm assembly . 

l~igure ll3b . The receiver arm 

assembly . 

Figure 114. Printed circuit bourds and control panel 

for the heterodyne scanning rig . 

(Also the sync exLracLor and line marker) 
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of the modulated reference beam. The phase sh~fts S and o are 

arb~trary and assumed to be constant. The output of the photod~ode 

D2 w~ll be proport~onal to the inc~dent ~ntens~ty 1
2 

where 

1
2 

=DC TERM+ CE cos(~(t) + y(t) + S + o) 

Assum~ng that the v~brat~on term y(t) ~s the same for both 

photod~odes, the phase sh~ft a may be extracted from Equat~on (346) 

by compar1ng the phase of the output from Dl w1th that from D2. 

Further exper~mental work ~s requ1red to f1nd the var1at1on 

of the phase sh~ft a as the 1nput or output light field lS scanned, 

353. 

and also to ascertain the val~d1ty of the assumpt1ons about the v1brat1on 

term y(t) and the phase sh~fts Sand o. 

Photographs of the transm1tter and receiver arms are shown in 

F1gure 113. These two components were des1gned for use 1n conJunCtlon 

Wlth a stra~ght f~bre mount wh1ch 1s descr1bed 1n the next sect1on. 

The pr1nted c1rcu~t boards and control un~t des1gned to dr~ve and 

control the sw1vel arms are shown 1n Figure 114. 

7.4 Stra1ght F~bre Mount~ng 

Consideration was g1ven to the problem of mount1ng a length of 

f1bre 1n such a manner that 1ts or1entat1on 1n space could be controlled 

and measured. 

The bas1c problem is illustrated 1n F1gure 115 where the pos1t1on 

of a fibre w1thin a volume will be g~ven by a set of XY co-ord1nate 

values taken at ~ntervals along the Z ax1s. The ffiln~mum s1ze of the 

measurem~nt 1ntervals is determined by the rate of change of the 



F1gure 115. 

Clampin 
blocks. 

Fibre 

The allocation of space for mount1ng fibres. 

f 

Rbre. 

F1gure 116. The exper1mental arrangements for 

measuring the deflect1on of self 

loaded f1bres. 

l (ems) 3.3 2.9 2.7 2.5 2.3 2.2 

f ( ].1 ) 930 550 340 250 50 50 

Table 12. The deflect1ons of self loaded fibres. 
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pos~t~on of the f~bre w~th~n the XY plane as a funct~on of Z, such 

that 

a (Xl 
az or < the requ~red resolut~on of pos~t~on. 

In pract~cal terms the measurement of the pos~t~on of the f~bre 

in space will requ~re the use of a travell~ng m~croscope whose optical 

axis may be either parallel to the X axis for measurements of 

d~splacement ~n the Y d~rection or parallel to the Y ax~s for measur~ng 

X direct~on d~splacements. The short work~ng d~stances of the large 

rnagn~f1cat1on m1croscope ob]ect1ves reqlllred £or such measurements 

means that the unshaded reg~on of the plane XY shown ~n F~gure 115 

would be required for access to the fibre by the m~croscope. Th~s 

leaves only the shaded reg~on ~n which to provide a support~ng structure 

which will also per~t adJUStment of the f~bre pos~t~on to w~th~n the 

requ~red resolution. 

The high tens~le strength ( ReF bl ) of glass f~bres suggests that 

~t may be poss~ble to support a fibre at d1screte ~ntervals along ~ts 

length and st~ll ma1nta~n the deflect1on of the f~bre due to ~ts mm 

we~ght w~th~n the requ~red tolerance in pos~t~on. To measure the 

deflect~on of a f~bre due to ~ts own weight the exper~mental arrangement 

shown ~n F~gure 116 was used. The deflection f of the f~bre was 

measured for each length ~ of overhang~ng f~bre to g~ve the results 

shown ~n Table 12. 

A double fulcrum exper~ment bas2d upon the above results suggested 

that the f~bre pos~t~on could be ma~nta~ned w~th~n ~ts own d1ameter by 

support~ng the f~bre at d~screte intervals along ~ts length, ~f the 

~ntervals ~d not exceed 4 ems for the f~bre under test. 



Figure 117. The strnight fibre mounLing system. 

Figure 118. Detail o£ one o£ the supports o£ the straight £ibre 

mounting system. 



Figure 119. The travelling microscope . 

Figure 120. The heterodyne scanning system in position on the straight 

fibre mount . 
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The f1bre support1ng dev1ce wh1ch was subsequently des1gned and 

bu1lt lS shown 1n F1gure 117 and the deta1l of one of the supports is 

shown 1n F1gure 118. The f1bre lS passed through the holes 1n the 

plates at the end of each support rod, although a better method would 

be to etch a slot 1n each plate to avo1d damag1ng the f1bre end dur1ng 

the thread1ng process. 

A travell1ng m1croscope was bu1lt for use w1th the stra1ght 

f1bre mount and th1s apparatus is shown 1n F1gure 119. The scann1ng 

equipment and/or the ffilcroscope system were also des1gned to fit onto 

the stra1ght f1bre mount and these are shown 1n pos1t1on 1n F1gure 120. 

7.5.1 Propagat1on of Skew Rays 1n C1rcular Cross Sect1on Waveguides 

w1th Large Rad1us Bends. 

It 1s convenient to define the rad1us R of a bend 1n a waveguide 

as 

R = qa 

where a ~s the rad~us of the wavegu1dc core and q 1s an ~rb1trary 

number > lOO for large rad1us bends. 

A sect1on of a wavegu1de w1th a constant rad1us bend 1s shown 

in F1gure 121 where planes land 2 are separated by the dJstance t 

shown, where i 1s the d1stance between adJacent po1nts of reflect1on 

of amerid1onal ray propagating in a stra1ght wavegu1de and lS g1ven by 

i = 2a 
tane

1 

The ax1al angle of the mer1d1onal ray 1s e1 . Plane 2 1s rotated by an 

angle e w1th respect to plane l and the proJectlon of the centre of the 

wavegu1de 1n plane 2 onto plane l is sh1fted by an amount ~ from 1ts 

position in plane l. Using the equat1on g1ven by reference (49 Eq.642) 

354. 

355. 



Plane 2 

l 

R 
Plane, 1. 

e 

Figure 121. A constant rad~us bend wavegu~de. 

Circle. 

Projection of 
cross section 
in plane 2 onto 

I 
plane 2. 

Figure 122. The pro]ect~on of cross sect~ons of bent wavegu~de 

onto a s~ngle cross sect1on. 
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the relat1onsh1p between R, t and 6 lS g1ven by 

Eguat1on (356) forms a quadratic eguat1on in terms of 6, the solut1ons 

6 = R (l .:!:_ (l 

The sens1ble solut1on to Eguat1on (357) lS the negat1ve 

solut1on wh1ch after subst1tut1on of Eguat1ons (354) and (355) and 

us~ng the f~rst two terms ~n the ser1es expans1on of 

becomes 

(l -

2a 
6 = --=-=7-

2 
g tan el 

Assumcng R >> t the angle E is g1ven approx1mately by 

tan E " 
2 

If the wavegu1de cross sect~on 1s assumed to be c1rcular when 

1t 1s proJected onto plane 2', where plane 2' 1s parallel to plane 

1, (See F1gure 122) then the pos1tion of the >Ialls of the wavegu1de 

w111 be d1sp1aced from the1r true pos1t1on by a max1mum of 6' where 

6' " a(1 - cos E) 

356. 

357. 

358. 

359. 

360. 



Figure 123a,b. The long~tud~nal section and the cross sect~ons 

I 

of a bent waveguide at the po1nts of reflect1on 

of an arb1trary ray. 
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Subst~tut~ng for cos £ us~ng Equat~on (359) and assUffilng 

that s~n £ ~ tan £ Equat~on (360) becomes 

2a 
2 2 

q tan el 

1 
s~nce ~· is a factor- t~mes smaller than ~. ~t may be neglected. 

q 

In a r~gorous analys~s of a general ray propagat~ng ~n a bent 

wavegu~de the var~ables of ~nterest would be the ax~al and az~muthal 

angles of ~nc~dence of the ray at each of ~ts reflect~on po~nts. 

The var~at~ons ~n these angles w~ll be a funct~on of the ~n~t~al 

pos1t~on of the ray w1th~n the cross sect1on (Reference 4), and the 

d~stance along the bent waveguide between adJacent reflect~ons. 

In the follow1ng s~mpl1f1ed analys~s, only the var1at~ons 1n 

361. 

the az1muthal angle of ~nc1dence w~ll be calculated us1ng the assumpt~on 

that reflect~ons occur at equal d1stances down the wavegu~de. Thls 

assumpt1on results ~n a constant d~splacement ~ between the cross 

sect~ons of the wavegU1de at adJacent reflect~on po~nts and the 

var1at1ons 1n az1muthal angles of inc1dence may then be calculated by 

cons1der~ng the path of rays 1n c~rcular cross sect~ons w~th centres 

d1splaced by ~. 

In F~gures 123a and 123b the long~tud~nal and cross sect1ons 

of an arb~trary ray propagat~ng 1n a bent cyl1nder are shown. If a 

is the rad~us of the wavegu~de then the following relat1onsh~ps may 

be obta~ned from F~gure 123b. 

:::: sin ~ 
X + - s~n (S - X ) n+l a n n 

362. 

sin Xn+l = sin xn+2 + ~ sin <x + 2x 1 - S ) a n n+ n 
363. 
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By cross subst~tution between Equations (362)-(363) and 

(364)-(365) the follow~ng equat~ons are obta~ned, where X , X 1 , 
n n+ 

Xn+Z are all assumed to be small so that the s~nes may be replaced 

by the angles (~n rad~ans). 

= x - Q.(sin (13 -x ) - s~n (13 -x -2x ) ) n a n n n n n+l 

= 2n + 13 - 4x + Q.a(3 s~n(l3 -x )-s~n(l3 -3x )) n n n n n n 

Equat~on (366) may be expanded and restated ~n the form of a 

d~fference equat~on 

t:.x = X X n - n+2 
21::. 

=-
a 

x cos (13 -2x l n n n 

S~milarly Equat~on (367) g~ves 

21::. = 4 X --n a s~n 13 
n 

It w~ll be ~nstruct~ve to tabulate the correspond~ng d~fference 

equatlons for rays propagatlng in circles and elllpses as dlscussed 

~n Chapter 6, and to compare them w~th Equat~ons (368) and (369) 

above. 

t:.x 1::.13 

CIRCLE 0 4x n 

ELLIPSE 4y 4x -1zy n n n 

Table 13. 

364. 

365. 

366. 

367. 

368. 

369 



-157-

In the above table ~t has been assumed that yn ~ yn+l where 

2S . 
n 

To detect the v~s~ble effects of a bend ~t ~s 

likely that 
2/>, 

the coeff~c~ents -- x, 
a 

2
"' in the d~ffcrence equat~ons 

a 

for offset c~rcles w~ll be at least of the same order as the 

coeff~c~ents wh~ch cause v~s~ble effects ~n an ell~pt~cal cross 

sect1on waveg~de. 

Sett~ng these two sets of coeff~c~ents equal g~ves for the 

/>,X difference equat~on 

h = "' 
and for the />,S d~fference equat~on 

"' 3h = 
a 

Subst~tut~ng for />, using Equat~on (358) g~ves 

2X 
h 

n 
372a. 3h = or 

2 
q tan el 

If el is taken to be 18° so that tan 
2 

2 
2 

q tan el 

e
1 

~ 0.1 and if 

xn ~ 0.2 it is found that the rad~us of bend R wh~ch g~ves coeff~c~ents 

of magn~tudes s~~lar to those for an ell~pt~cal deformat~on of the 

order of 2% (h = .04) ~s 

R = lOOa 

As e
1 

is reduced this bend radius will ~ncrease but the larger values 

of e
1 

are of pr~mary ~nterest because they produce the most vis~ble 

ell~pt~cal caust~cs ~n long lengths (> 10 cm.) of wavegu~de. 

370. 

371. 

372b. 
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7.5.2 Exper~mental Results 

The follow1ng observat1ons were made 1n order to test the 

above propos~t~ons. A 40 cm. length of s~ngle f~bre was ~llum~nated 

1n such a manner as to produce a caust1.c of the type shmvn in 

F~gure Sb Care was taken to ensure that both ends of the f~bre 

were securely f~xed, and a bend was ~nserted about the ~ddle of 

the length of fibre whilst observ~ng the caustic. 

0 
When e

1 
~ 18 no changes were observed ~n the caust~c unt~l 

the rad~us of the bend was of the order of 50a . A reduct~on of e
1 

0 
to 10 produced changes ~n the caust~c when the rad~us of the bend was 

200a No attempt was made to analyse the prec~se nature of the 

changes produced ~n the caust~c by the ~ntroduct~on of the bends and 

so the changes observed are not descr~bed here. 

7.6 Conclus~ons 

Th~s chapter has outl~ned aspects of propagat~on ~n opt~cal 

wavegu~des wh~ch requ~re further study. 

It may be that ~f the v~s~b~l~ty of the caust~cs observed 

with~n the wavegu~des could be related to the scatter~ng which ~s 

occurr~ng, the observat~on of the caust~cs could form a useful 

scattering measurement techn~que. The s~mpl~c~ty of the exper~mental 

arrangements requ1red to v1ew the caust1.cs suggests that such a 

measurement techn~que may f1nd appl1cat1on 1n product1on control 

env1.ronments. 

The heterodyne scann1ng system clearly requ1res more exper~mental 

work before an assessment of 1ts usefulness can be made. The stra1.ght 

fibre mount1ng techn1que may be of use for measur~ng the microbend1ng 

. (51 ) 
which has been suggested may occur ~n opt~cal wavegu1des • 
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~ 
Theoretical stud~es have been made of the effects on s~gnal 

propagat~on of some forms of m~crobending but l~ttle exper~mental 

work has been reported on the measurement of microbend~ng. 

The behav~our of l~ght ~n bent wavegu~des has been stud~eJ5~ 

from the signal d~stortion aspect. A bend ~n a wavegu~de causes 

'mode m1x1ng', wh1ch may be a desirable feature 1n certa1n 

wavegu~de systems ~n order to ~~n~~se pulse distort~on. Further 

study of the v~s~ble effects of bends ~n waveguides may conf~rm the 

accuracy of the mathemat~cal representat~ons of l~ght propagation ~n 

bent wavegu~des. 
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CHAPTER 8 

8.1 Introduct1on 

(3) 
In h1s early work on opt1cal wavegu1des Kapany 1ntroduces a 

wavegu~de character1stic term R where 

R 
2na 2 
-~.- (nl 373. 

and R 1s a funct1on of the phys1cs and geometry of the wavegu1de only. 

Its value 1nd1cates the max1mum number of wavegu1de modes wh1ch may 

propagate 1n the wavegu1de. 

k
(54,55) 

In later wor by other authors th1s term 1s called normal1sed 

frequency and 1s closely related to the arguments of the Bessel funct1ons 

used to descr1be the modal f1eld d1str1but1ons. 

In th1s chapter the wavegu1de character1st1c term 1s der1ved from 

cons1derat1on of the fr1nge system formed by a skewplane wh1ch has 

undergone many reflect1ons. Th1s fr1nge system and that developed for 

the mer1d1onal skew plane are shown to be s1milar to the wavegU1de mode 

patterns of the cladded d1electr1c wavegu1de. 

The trapped skew planes of an elliptical wavegu1de produce fr1nge 

systems wh1ch are shown to be s1m1lar to the fr1nge systems found 1n 

certaln resonant cav1t1es. 

The relat1onsh1p between the v1~bil1ty of caust1cs w1th1n opt1cal 

wavegu1des and the spat1al coherence of the source 1s exam1ned and it is 

found (experimentally) that a spat1ally 1ncoherent monochromat1c source 

produces effects s1m1lar to those produced by a polychromat1c source. 

The f1nal top1c to be cons1dered 1n th1s thes1s 1s the apparent 

1ncrease 1n coherence observed w1th1n the wavegU1de when propagat1on 

occurs at high ax1al angles of inc1dence. The 1ncrease 1n coherence 



p 

Figure 124. The cross sect1on of a waveguide show1ng the four 

skew planes wh1ch contr1bute to the l1ght at point P. 
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LS suggested by the experLmental observatLon of well defLned1 

multLfrequency frLnges when the waveguLde LS LllumLnated by whLte 

light. 

8.2 Interference FrLnges Ln CLrcular D1electr1c l'lavegu1des 

It was shown 1n Chapter 5 that the l1ght 1n1t1ally conta1ned w1th1n 

a s~ngle skew plane w1ll, after many reflect1ons, 1llum1nate an annulus, 

1nner rad1us a cos $, outer rad1us a. It was also shown that the 1nner 

rad1us of the annulus represents the pos1t1on of the caust1c of the rays 

of l1ght lllum1nat1ng the annulus. The d1ffract1on pattern produced by 

the caust1c of the rays forms concentr1c fr1nges 1n the cross sect1on of 

the wavegu1de Wlth d1mens1ons governed by the frlnge factor F. 

Cons1der the rays of llght wh1ch may contr1bute to the d1sturbance 

at po1nt P shown 1n F1gure 124, where P lS a rad1al d1stance r from the 

centre of the wavegu1de and~ cos~)< r <a. If a plane wave at an ax1al 

angle of 1nc1dence e 1llum1nates the entrance aperture of the wavegu1de 
0 

then two skew planes are exc1ted for each value of ~. the pos1t1ve ~ 

skew plane propagates 1n the anticlockw1se d1rect1on and that for -~ 1n 

the clockwLse d1rect1on. Thus at po1nt P there may be four rays of l1ght, 

each tangent to the c1rcle rad1us a cos ~. represent1ng the contr1but1on 

of the~~ skew planes to the dLsturbance at po1nt P. 

The two rays proceed1ng towards the circumference of the 

wavegu1de are 1ncl1ned to each other 1n the cross sect1onal proJeCt10n 

at an angle 2x' where 

SlD X' a cos <1> 
~ 374. 

r 

The project1on of the free space wavelength A onto the cross sect1onal 

plane of the wavegu1de w1ll g1ve an equ1valent wavelength A' where 

375. 



Figure 125 

TEM 00 

TEM 10 

Figure 126 . Low order modes of a 

typical •dser cavity. 

C V ly fr t' l:Y-'C': 

TrapperJ skew 
p.l~ne c:rusltc 

Figure 127 . The relationship between waveguide 

modes dnd resonator cavity modes . 



and 

-162-

Sl.n 8 
0 

If the two rays are cons1.dered as plane waves at the1.r po1.nt of 

1.ntersect1.on they will form an >-nterf~r~nce pattern s1.m1.lar to that 

for the plane waves 1.ntersect1.ng as shown 1.n F1.gure 26. Follow>-ng the 

derivat1.ons g1.ven 1.n Chapter 3 the spac1.ng t between fr1.nges w1.ll be 

g>-ven by Equat1.on (43) by subst1.tuc1.ng for A' from Equat1.on (375) 

and for X' from Equat1.on (374) to g1.ve 

t = 

Since s1.milar interference patterns W>-11 be produced at all 

po1.nts around the c1.rcle,rad1.us r,>-t w>-11 be assumed that a s1.ngle 

cont1.nuous fr1.nge system 1.s formed where the total number of fr1.nges 

formed around the c~rcle rad~us r w1ll be g1ven by L where 

L = 

wh>-ch on subst1.tut1.on for t from Equat1.on (377) g1.ves 

cos <j> 

L • 

Since L l.S now 1.ndependent of the rad1.us the same number of 

fr1.nges w1.ll be formed at all rad1.1. w1.th1.n the annulus. Th1.s sugge<ts 

that the comb1.nat1.on of th1.s 1.nterference pattern and that due to the 

caust1.c diffract1.on pattern w1.ll produce an >-nterference pattern of the 

form shown 1.n F>-gure 125. 

The azimuthal and rad1aJ 1ntens1ty d1str1but1ons shown 1n F1gure 

125 may be denoted by Ia and Ir respectively. Produc1.ng these 1.ntens1.ty 

376. 

377. 

378. 

379. 
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varlatlons Wlll be varlatlons ln electrlc fleld components whlch may 

be denoted as Ea and Er where 

la 380a. 
2 

lr - Er 

The radlal electrlc field Er Wlll be glven by the Alry functlon, 

Equation (197), Wlth v =rand lts assoclated intenslty functlon Wlll 

be glven by Equation (199). 

Wlth prlor knowledge of the form of the modal flelds obtalned 

from a r1gorous analys1s of d1electr1c wavegu1des, 1t 1s assumed that 

the azlmuthal electrlc fleld varlatlons are of the form 

Ea = A Sln (Pa) 

where P is an 1nteger. 

The correspondlng lntensity functlon lS glven by 

-

380b. 

381. 

2 2 2 la = Ea =A Sln (Pal 382. 

and Wlll form a total of 2P frlnges per revolution of a. Slnce 

Equatlon (379) also represents the number of frlnges per revolutlon, 

P and L are related by the expression 

2P = L • 

P may be expressed ln the form 

P = L 
2 

= 

and will have a maxlmum value when cos ~ = 1 and el = elc where elc 

lS the maxlmum value of e
1 

and lS called the merldlonal crltlcal angle. 

383. 

384. 
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Denot1ng the max1mum value of P as P sett1ng cos ~ = 1 
max 

and US1ng Equat1on (127) for 6
10 

then 

p 
max = 

2a11 

A 

This value of P represents half the max1mum number of fr1nges 

wh1ch may be formed at a rad1us r = a 1n the wavegu1de, when the skew 

planes correspond1ng to cos ~ = 1 are 1lluminated at the max1mum ax1al 

angle of ~ncidence, elc· P and R (Equat1on (373) are clearly max 

equivalent. 

In Chapter 2 of Reference ( 2 ) Marcuse shows that a modal f1eld 

of a cladded d1electr1c wavegu1de may be represented by the 

superpos~t~on of four plane waves travelling in d~rect1ons s1m1lar to 

those descr1bed above for a s1ngle skew plane ray. Further the 

( 1 ) 
descr1pt1on of the near f1eld modal patterns g1ven by Kapany for 

the cladded d1electr1c wavegu1de results 1n patterns s1m1lar to that 

shown 1n F1gure (125). These two results suggest that the geometr1cal 

approach to the problem of f1nd1ng the wavegu1de modes of the cladded 

dlelectr1c wavegu1de may produce useful results. 

11 When only mer1d1onal rays are exc1ted (~ = 2), there w1ll be no 

az1muthal fr1nges produced, only rad1al var1at1ons 1n 1ntens1ty, a 

distribut1on wh1ch corresponds to the wavegu1de mode fam1ly called 

HE lm. 

A detailed attempt to der1ve the wavegu1de modes of the cladded 

d1electric wavegu1de us1ng the geometrical approach would have to 

cons1der the effects of the follow1ng assumpt1on wh1ch have been made 

ln der1v1ng the fringe patterns descr1bed earl1er 1n th1s sect1on. 

385. 
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In general there w1ll be a phase sh1ft of f1eld components 

on reflect1on at the core cladd1ng 1nterface. Th1s phase shift w1ll 

depend upon the polar1sat1on of the 1nc1dent f1elds, and may produce 

f1n1te values of f1eld components on both s1des of the 1nterface. 

Hav1ng cons1dered the effects of these phase sh1fts on the fr1nge 

systems, the wavegu1de modes could be determ1ned us1ng the cond1tion 

that a fr1nge system belong1ng to a g1ven mode would have to sat1sfy 

the boundary cond1t1ons at the core cladd1ng 1nterface and also have an 

1ntegral number of fr1nges 1n the az1muthal and rad1al d1rect1ons. 

These cond1t1ons are exactly those descr1bed by Marcuse 1n h1s 

s1mplif1ed approach to the e1genvalue equat1on for the assymetr1c 

d1electric wavegu1de given in reference ( 2 ) . 

8.3 Interference Fr1nges 1n Ell1pt1cal D1electr1c Wavegu1des 

In Sect1on 8.2 1t was shown that 1nterference fr1nges are formed 

parallel and normal to geometr1cal caust1cs, (radial and az1muthal 

var1at1ons of 1ntens1ty respect1vely). S1m1lar fr1nges are observed 

for the trapped skew plane ray caust1cs produced 1n an ell1pt1cal cross 

section waveglllde. 

The d1ffract1on pattern of a trapped skew plane caust1c has a 

fr1nge spac1ng determ1ned by the fr1nge factor as before and the 

fr1nges w1ll be formed parallel to the caust1c. 

It was ment1oned 1n Chapter 6 that the trapped skew 

planes were trapped w1thin a form of resonant cav1ty and 1t 1s therefore 

l1kely that the mode patterns formed 1n resonant cav1t1es w1ll be 

similar to the fringe systems observed w1th1n the wavegu1des. 

The mode patterns formed 1n spherical reflector resonant 

(56 ,57) . 
cav1ties have been extens1vely stud1ed typ1cal low order mode 

patterns are sh01<n in Figure 126. The relationsh1p between the fringe 
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systems formed 1n spher1cal reflector resonant cav1t1es and those 

observed w1th1n a wavegu1de 1s shown diagramat1cally 1n F1gure 127. 

It appears from F1gure 127 that the caust1c fr1nge patterns correspond 

to the normally observed resonant cav1ty mode patterns. There 1s a 

second set of fr1nges formed 1n spher1cal cav1t1es as a result of 

the stand1ng waves set up between the two reflectors. In the 

ellipt1cal wavegu1de both the 'stand1ng wave' and the'mode pattern' 

fr1nge systems are v1s1ble as shown 1n F1gure 133a. 

8.4 Spatial Coherence and Caust1c V1s1b1l1ty 

In Chapter 3 1t was shown that the coherence of a source was 

measured by observing the contrast of 1nterference fr1nges formed by 

the superpos1t1on of l1ght e1ther from d1fferent areas of the source 

(to measure spat1al coherence) or from the same area o£ the source 

but w1th beams of light arr1v1ng at d1fferent t1mes (to measure 

temporal coherence). 

In this section the 1nfluence of the propagat1on of l1ght 1n a 

wavegu1de upon 1ts coherence character1st1cs Wlll be br1efly examined. 

The analysis is based upon exper1mental observat1ons of fr1nge contrast 

and caust1c v1s1b1l1ty under vary1ng coherence 1llUID1nat1ng condltions. 

The major1ty of the 1llustrat1ons of caustics 1n th1s thes1s 

were obtained us1ng a wh1te l1ght source wh1ch as noted in Chapter 3 

has the shortest coherence length of the sources used 1n this study. 

When the caust1c fr1nge factor F 1s small, the d1fferent frequency 

components of the wh1te l1ght source will have max1ma of 1ntens1ty 

close to the geometrical caustic. These components w1ll add 1ncoherently 
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to produce a reg~on of wh~te l~ght of h~gher ~ntens~ty than the 

surround~ng reg~on and wh~ch w~ll approx~mately correspond to the 

pos~t~on of the geometr~cal caust~c. The rema~n~ng mult~frequency 

fr~nges of the caust~c fr~nge pattern w~ll have d~fferent spat~al 

pos~t~ons wh~ch, depend~ng upon the frequency dependence of the fringe 

factor F, may overlap to produce no v~s~ble fringes, (~ncoherent 

~llumlnat~on) or may produce wh1te l1ght fringes as shown in F1gure 65 

(coherent ~llumlnat~on). 

The caust1cs produced 1n c1rcular cross sect1on wavegu1des are 

all c~rcular and adJacent skew planes form adJacent caust~cs. The 

fr~nge patterns assoc~ated w~th each skew plane ray caust~c w~ll be 

s~mLlar and s~nce they are ~mmed~ately adJacent to the~r ne1ghbours 

the fr~nge patterns w~ll overlap and produce nom1nally 'un~form wh~te 

~llumlnat~on' across the cross sect~on of the waveguide. The absence 

of interference fr~nges ~s the exper~mental result wh~ch leads to the 

statements made by Kapany and Burke referred to ~n Chapter 1. 

If a laser source ~s used to ~llUmLnate the wavegu~de w1th plane 

waves then apparently randomly pos1t~oned ~nterference fr~nges are 

d loo. pro uced as shown for example ~n F~gure 128 where e = 
0 

The s~ze 

of the fringes ~s lnversely proportlonal to eo as demonstrated by 

compar1ng the SlZe of the fr~nges shown 1n F1gure 129, where e = 20° 
0 

and the fringes shown ~n F~gure 128. By careful ~nspect1on of these 

1nterference patterns 1t ~s poss1ble to observe 1ncomplete concentr~c 

fr~nges s~mLlar to the rad1al var~at~ons of intens~ty descr~bed ~n 

Sect1on 8.2 The spac~ng of these concentric fringes is also ~nversely 

dependent upon e 
0 

It was found that the visib~lity of these concentr~c fringes 

could be ~mproved ~f the laser was mov2d so that e was oscillated about 
0 

~ts mean value by ~ +2°. Th~s had the effect of mov~ng some of the 
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fr1nges very rap1dly about the cross sect1on of the wavcgu1de wh1ch 

made them d~sappear, leav~ng complete concentr~c fr~nges v~s1ble 

although of lesser contrast than w1th the laser stat1onary. The 

occurrence of th1s phenomenon 1nd1cates that the concentr1c fr1nges 

have a smaller dependence upon G for their pos1t1on than the rema1n1ng 
0 

apparently randomly pos1t1oned fr1nges. 

The fad1ng of the fr1nges descr1bed above may be 1nterpreted as 

a reduct1on 1n coherence of the source, and the techn1que has certa1n 

s1m1lar1t1es w1th speckle pattern 1nterferometry. In speckle pattern 

(58,59) 
1nterferometry the wavelength of the source 1s changed so that 

the superposit1on of random speckle patterns w1ll reveal var1at1ons 1n 

surface geometry of the 1lltmunated object. In these exper1ments the 

axial angle of 1nc1dence of the 1llUID1nat1on 1s var1ed so that random 

fr1nges appear to be 1ncoherent because of the1r rap1dly chang1ng 

pos1t1on and so enhance the v1s1b1l1ty of the concentric fr1nges wh1ch 

move relatively slowly. 

Another method of chang1ng the coherence of a laser source was 

descr1bed 1n Chapter 3, where the spat1al coherence of the laser was 

conf1ned with1n an area whose d1mens1ons are deterffilned by the relat1ve 

pos1t1ons of a rotat1ng ground glass screen and the plane of observat1on. 

Th1s var1able coherence arrangement, shown 1n F1gure 19, was used to 

illum1nate a 40 cm. length of £1bre bundle and where the plane of 

observat1on 1s taken to be the entrance apertures of the f1bres wh1ch 

are then a d1stance R from the laser po1nt source. 

When R << R (where R 1s the distance of the rotating ground 
s s 

glass screen from the laser po1nt source) the 1nterference pattern 

observed at the radiat1on end of the fibres was the same as that obta1ned 

when the £1bres were 1llum1nated w1th a stat1onary laser. However, as 

Rs approached R the fr1nges at the circumference of each f1bre core 
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began to fade leav~ng a uniform ~llllmlnat~on at the wavelength of 

the laser l~ght (red l~ght for the He-Ne laser used here). Th~s 

effect moved progress~vely towards the centre of each f~bre unt~l the 

rotat~ng ground glass screen was w~th~n 1 mm of the entrance apertures 

of the fibres. The ~nterference fr~nges obtained under these cond~t~ons 

are shown ~n F~gure 130a and may be compared w~th those shown ~n 

F~gures 130b and 130c where the ~llum~nat~on ~s at the same angles of 

~nc~dence but with stationary laser l~ght and wh~te l~ght respect~vely. 

It would appear that the ~n~mum spat~al coherence ~lluminat~on 

cond~t~on, R ~ R, results in an intensity d~stribut~on w~th~n the 
s 

wavegu~de cross section after propagat~on ~n 40 cm of wavegu~de s~m~lar 

to that obta1ned w~th wh~te l1ght ~llum~nat~on. 

The rad1al dependence of the fad~ng of the fringes is related 

to the contr1but1on made by each skew plane to the cross sect1onal 

intensity d1str~but1on 1n the wavegu~de as descr~bed 1n Chapter 5. 

It was shown there that after many reflect~ons each skew plane ray w~ll 

1llllmlnate an annulus 1nner rad~us a cos ~ outer radius a. The effects 

of a reduct~on ~n the spat~al coherence of the l~ght within the 

entrance aperture of the wavegu1de w1ll appear f~rst where the l~ght 

Tr 
from skew plane rays furthest apart (1.e. ~ = 2, ~ = 0) 1n the entrance 

aperture super1mpose, wh~ch must be at the circumference of the 

wavegUlde core. The centre of the wavegu~de 1s 1llum~nated only by 

Tr 
the skew plane ray w1th ~ = 2 and s~nce ~t ~s not poss~ble to make the 

light w1th~n th~s s1ngle skew plane 1ncoherent (follow~ng the f1n1te 

volume theory of electromagnet~c waves g~ven ~n Chapter 3) the centre 

of the wavegu~de ~s always coherently ~llum~nated. Th~s propos~t~on 1s 

supported by the presence of interference fr~nges at the centre of the 

wavegu1de as shown 1n F~gures l30c and 133a even though the ~llum~nat1on 

1s wh~te l~ght wh~ch ~s both spat~ally and temporally ~ncoherent (after 

propagation ~n 40 ems of waveguide). 
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8.5 Enhancement of Coherence by Propagat1on 1n Ell1pt1cal 

Wavegu1des 

The short coherence length of wh1te l1ght may be demonstrated 

( 31) 
us1ng a M1chelson 1nterferometer wh1ch 1s shown d1agrammatlcally 

1n Figure 131. The light from the wh1te l1ght source 1s d1v1ded 1n 

ampl1tude by the half s1lvered m1rror Ml and each half of the beam 1s 

totally reflected by m1rrors M2 and M3. The two reflected beams are 

then super1mposed and observed at po1nt P. When the opt1cal d1stances 

Sl and S2 d1ffer by less than the coherence length of the wh1te l1ght 

(~ 3~) a set of fr1nges w1ll appear to be formed at P, the centre fr1nge 

be1ng wh1te and the adJacent fr1nges coloured. 

Cons1der now the exper1mental arrangement shown 1n F1gure 132 

where a 40 cm length of cladded opt1cal wavegu1de, of ell1pt1cal cross 

section, 1s 1llUID1nated by plane waves from a wh1te l1ght source. Wnen 

the angle of incidence 6 of the plane waves is ~24° a set of wh1te fr1nges 
0 

as shown 1n Figure l33a are formed at r1ght angles to the quasi-hyperbol1c 

caust1c as descr1bed 1n Sect1on 8.2 If 6 1s 1ncreased these fr1nges 
0 

fade and reappear when 6 ~ 32° but now with a smaller fr1nge spac1ng, 
0 

as shown 1n F1gure l33b. 

The format1on of fr1nges 1s to be expected when the illum1nat1on 

1s monochromat1c s1nce as suggested 1n Section 8.2, the ell1pt1cal cross 

sect1on forms a resonant cav1ty and these fr1nges are the stand1ng waves 

set up between two reflectors. It 1s surpr1s1ng, however, that fr1nges 

should appear when the illum1nat1on 1s wh1te l1ght, s1nce the d1fference 

1n path length for adJacent reflect1ons of the plane waves rad1at1ng from 

the wavegu1de 1s of the order of 12 m1crons when 6 ~ 24° and 16 m1crons 
0 

when 6 ~ 32°. If 1t is assumed that the plane waves suffer d1ffract1on 
0 

at the entrance aperture as if they were normally 1nc1dent (1n fact they 

W1ll suffer greater d1ffract1on than th1s) then the plane wave w1ll be 



Figure 133a. 

Figure 133b . 
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formed ~nto a cone of l~ght of se~ angle g~ven by Equat~on (198). 

After propagat~on ~n 40 ems of wavegu~de at an ~nc~dent angle of 

0 e ~ 24 • th~s cone w~ll form ~nto approx~mately s~xty beams of l~ght 
0 

super~mposed ~n the rad~at~on aperture to g~ve the 1nterference fr1nges 

observed. The number of beams ~ncreases as 8
0 

is 1ncreased. 

Clearly these fr~nges are not formed by the samG process as 

1n the Michelson interferometer since the d1fference ~n opt1cal d1stance 

from the entrance aperture to the point of superpos1t1on of adJacGnt beams 

exceeds the coherence length of the white l1ght and further the fr1nges 

formed 1n the wavegUlde are all wh1te. A poss1ble explanat1on 1s offered 

~n part by Stre~fer(4 l) 1n his conclud~ng remarks ~n wh~ch he states 

"The methods descr1bed apply to wavegu~des or d~electr~c rods 

which allow a modG descr1pt~on of electromagnet~c wave propagat1on. 

The "mode select1ve" (my 1tal1cs) properties of such systGms could act to 

produce v1rtually complete coherence from ~n1t~ally 1ncohGrent rad1at1on". 

Each monochromat1c component of the wh1te l1ght beam 1s likely to 

be coherent with1n the trapped skew plane caust1c because of the small 

aperture the trapped skew planes present w~th~n the entrance aperttrre 

of the waveguide. The coherence of the l~ght w1th1n a small number of 

skew planes follows from the comments made in the latter part of Sect1on 

8.3 It may be that the mode select1on which occurs 1n the resonant type 

of structure 1n wh1ch the trapped skew planes propagate, results in mode 

patterns wh1ch are 1nsensit1ve to frequency when the illum~nat1on 1s 

incident on the wavegu1de at certa1n angles. Further work 1s requ~red 

to exa~ne these propos1t~ons. 

8.6 Conclusions 

Various phenomena which were observed during the exper1mental 

1nvest~gation of the format1on of caust1cs w1th1n cladded opt1cal 

wavegu~des have been reportGd 1n th1s chapter. The explanat1ons 
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offered for the occurrence of the phenomena are not r~gorous but are 

theor~es wh~ch could form the bas~s for future study. 

Perhaps the most ~nterest~ng top~c for further study ~s an 

~nvest~gat~on of the coherence of the rad~at~on f~eld of the opt~cal 

waveguides under vary~ng spat~al coherence ill~nating condit~ons. It 

may be possible to obta1n 1nformat1on from such measurements about 

scatter~ng w~th~n the waveguides and the effects of bends and ~cro

bend~ng of the waveg~de, and it was for th~s purpose that the heterodyne 

scanning system descr~bed ~n Chapter 7 was bu~lt. 
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CHAPTER 9 

Conclus~ons 

The maJOr obJectLve of the experLmental investLgatLon 

descrLbed Ln thLs thesLs was to fLnd the cause of the 'patterns' 

produced Ln cladded optical waveguLdes under certaLn conditLons of 

LllUIDLnatLon. It has been shown by computer sLmulatLon and analysLs 

of ray propagatLon Ln cladded waveguLdes that the 'patterns' are 

caustics produced by non-circular cross sectLon waveguides. The 

propagation of rays in an elliptLcal cross sectLon waveguLde has 

been studLed Ln detaLl and experLmental results have Lllustrated the 

maLn results of this analysis. 

The dLffractLon at the entrance aperture of a cladded 

waveguLde has been LnvestLgated and experLmental results confLrm that 

the waveguide appears to cause dLffractLon of the LnCLdent lLght 

field as Lf the waveguLde aperture were a sLmple pLnhole. The 

experimental results also suggested a non-stepped refractLve Lndex 

profLle between core and claddLng glasses and this was further 

Lnvestigated. The varLation of Llluminated core dLameter and the 

'ring effect' are both results of a non-stepped refractive index 

profLle but neLther method permits accurate deterroLnatLon of the profLle. 

The thick lens behaviour of a cladded waveguLde was LnvestLgated 

A novel use o£ such a lens 1n an opt1cal commun1cat1ons system was 

(60) 
reported recently where an uncladded fibre was used to Lncrease 

the lLght collectLng property of a small dLameter core waveguide. It 

may be that improvements in the performance of this system can be 

achieved by usLng a cladded waveguLde lens where the refractive LndLces 

of the core and claddLng glasses and that of the surroundLng medLa are 

selected to gLve a cylLndrLcal lens wLth a long focal length. A long 

focal length lens wLll launch lLght Lnto the transiDLsSLon waveguide 
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WLth a small conLcal semL angle and thLs WLll reduce the temporal 

dLspersLon of the transmLtted sLgnal SLnce the dLspersion due to 

the waveguLde geometry LS proportLonal to the axLal angle of LncLdence 

of the l1ght. 

The analys1s of ray propagat1on in CLrcular cross sectLon 

wavegu1des conf1rms the 'un1form cone' property of large d1ameter 

waveguides when they are 1lluminated at a single az1muthal angle of 

1nc1dence. The use of th1s radiatLon cone 1n the al1gnment of 

waveguLdes pr1or to polish1ng has been descr1bed. The effects of a 

sloping (but flat) end face on the radLatLon cone suggested a method 

of progressLvely normal1sing th1s slope when Lt appears at the 

rad1atLon end of the wavegu1de. The ray analys1s also pred1cts the 

'black hole' effect which was used for al1gnment of wavegu1des and 

as a measure of the ax1al angle of propagat1on of lLght withLn the 

waveguLde. 

The use of a visual computer simulat1on of the propagatLon of 

rays has been partLcularly successful when applLed to ray propagat1on 

in ell1ptical cross sectLon systems where the LmagLnatLon LS unable to 

supply the necessary 'mental p1cture' of the transLtlon from trapped 

to non-trapped modes of ray propagatLon. 

The results of the analys1s of higher order stat1onary skew 

plane ray systems w1thin an ellLpt1cal cross section wavegu1de 

suggested that the observed varlatLons of 1ntensity which formed 

triangles, squares and other regular multL-sLded f1gures are produced 

by non-c1rcular, non-ellLptical cross section wavegu1des. Th1s suggests 

that a prec1se determ1nat1on of the cross sectLonal geometry wh1ch 

produces these patterns would require computer simulatLon of ray 

propagation WlthLn a general1sed cross sectLon system. 
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This means that ~nstead of propos~ng spec~f~c cross sect~on 

geometr~es and then conclud~ng from the s~mulat~on which patterns 

are l~kely to occur within real wavegu~des, the patterns observed 

with~n any spec~f~c wavegu~de would be used as the ~nit~al condit~ons 

for the computer s~mulat~on and the cross section of the computer 

program representat~on of the waveg~de w~ll be mod~f~ed unt~l ~t 

too pred~cts a s~milar arrangement of patterns. 

A maJor d~fficulty with such a proposal ~s that there ~s no 

alternat~ve method of measur~ng the waveg~de cross sect~ons w~th~n 

the var1at1ons of dimensions which have been shown may produce patterns. 

There are, however, alternat1ve methods £or measur1ng the 

scatter~ng w~thin optical wavegu~des and th~s suggests that the 

observat~on of patterns may be developed ~nto a method of measur~ng 

scattering and ~crobend~ng ~f the magnitude of these propert~es can 

be shown to be d~rectly related to the v~s~b~l~ty of the caust~c 

patterns. Here ~t ~s assumed that because of the sensitiv~ty of the 

caust~c formation system, all cladded wavegu~des w~ll exh~b~t caust~cs 

related to non-c1rcular cross sect1ons. 

F~nally the observations made in Chapter 8 on the coherence of 

the l~ght propagating ~n the cladded wavegu~des suggests that opt~cal 

waveguides may be a useful exper~mental med~a ~n the study of the 

enhancement of coherence by propagat~on in bounded med~a. Th~s subJect 

is of sign~f~cance ~n the design of laser resonator cavities(Jg). 
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APPENDIX A. 

Loss of Flbre Optlc Cables 

In the paper* 'Deslgn and performance of Optlcal Flbre Cables' 

presented at the Internatlonal Conference on Optlcal Communications 

held in London ln September 1975, T. Nakahara et al descrlbe results 

of transmission loss measurements on cladded flbre cables. The 

mlnlmum loss measurement made by them lS quoted as 1.6 dB/km. 

* Deslgn and performance of optlcal flbre cables, T. Nakahara 
et al, I.E.E. Conference Publlcatlon No. 132, Optlcal Flbre 
Communlcation 1975., pp 81. 
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APPENDIX B. 

The followlng two pages are coples of the manufacturer's 

speciflcatlon for the flbre optlc cable used in the experlments 

descrlbed ln thls thesls. 



Specification No MD 690 

Th1s spec1f1ca!lon 1s ch1efly concerned w1th Glass F1bre Opt1c components and sub-assemblies 
incorporatmg non-coherent F1bre Opt1cs m both solid and flexible form 

1. DIMENSIONS AND TOLERANCES 
D1mens1ons and tolerances Will be spec1f1ed on the drawmg 

2. MECHANICAL QUALITY 
All1tems will be made to our normal standards of engmeenng quality and fm1sh, and w1ll generally 
have a good appearance 

3. OPTICAL QUALITY 

3.1 Light Transmission Th1s will be as 
shown on Graph 1, and w1ll be better than 
the lower lme on th1s graph The shaded 
area shown will be the poss1ble vanat1on of 
the transmiSSIOn and will take account of 
packmg factor, broken f1bres, mterst1t1al 
losses, Fresnel reflections and opt1cal face 
polishmg 

3.2 F1bre Packmg The f1bre packing 
within any opt1cal area Will be better than 
80% and any dark area w1ll be less than 
0 6mm d1a 

3.3 Broken F1bres A small percentage of 
broken fibres are present m most F1bre 
Opt1cs The percentage of broken f1bres IS 
not specified, but w1ll never be so large as to 
prevent the component meeting specifi
cation 3 1 for light transmiSSion. 

3.4 Opt1cal Faces All optical faces will 
be ground and polished to opt1mise the 
light transmiSSion and to ensure that the 
Item meets specification 3 1 for light 
transmiSSion 

3.5 F1bre S1ze Nommal f1bre d1ameter will 
be stated on the drawmg 

3.6 Numerical Aperture This will be 
approximately 0 54 • unless otherwise 
spec1f1ed A typical polar diagram 1s shown 
onGraph2 

'' ' ' 

3.7 Temperature Range In general com
ponents of standard des1gn are capable of 
w1thstandmg temperatures from -20°C to 
+105°C" for long penods Without deteno
ratlon Standard components will withstand 
temperatures outside these limits for shorter 
penods (temperature reqUirements should 
be spec1f1ed 1f outs1de the standard lim1ts 
above) 

3.8 For flexible F1bre Opt1c components 
1t IS suggested that the mm1mum bend 
rad1us IS not exceeded or damage to f1bres 
may occur, and light transmiSSion will be 
reduced The recommended m1mmum 
bendmg rad1us for a flexible F1bre Opt1c un1t 
depends on The Optical Diameter as 
shown m the table below 

Optical D1ameter Bend Rad1us 
1t mm 19 mm 
3 mm 32 mm 
4t mm 64 mm 
6 mm 64 mm 
9 mm 89 mm 

3.9 Spectral TransmiSSion Typical spectral 
transm1ss1on 1s shown on Graph 3 

* F1bre Opt1c components w1th numeflcal apertures 
between 24 and 77 can generally be made specially 
1f requued Also. F1bre OptiC components can 
generally be made spec1ally to Withstand temper
atures between -200°C and +250"C, d reqUired 

" :. ' 



RAPH 1 
RANSMISSION CURVE 

1s graph shows typ1cal percentages of 

ht transmiSSIOn through vanous lengths 
t1bre opt1cs The light transm1ss1on 

11 be m the shaded area on the graph 

RAPH 2 
DLAR DIAGRAM 

1s curve shows a typ1cal d1stnbut1on of 
ht output from a f1bre optiC accordmg to 
• angle to opt1cal ax1s N A 0 54 

RAPH 3 
PECTRAL TRANSMISSION 

s curve shows a typ1cal spectral trans

•SIOn curve for a standard f1bre opt1c lt 
>ws that little transm1ss1on occurs in the 
a-violet region 
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Typrcal Spectral Transmtssmn Curve ( Ftlr 45 cm length of Ftbre) 
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APPENDIX C 

Pulse Extractor and L1ne Markers Circu1t 

The c1rcu1t d1agram 1s shown 1n F1gure Cl. Rl, Cl and Dl form 

the 1nput match1ng circuit. Comparator 1 detects all negat1ve pulses 

and the l1ne pulses are extracted at the output of th1s comparator. 

The l1ne pulses are f1lteredfrom the output of comparator 1 by the 

low pass f1lter R2 and C2. Comparator 2 detects the rema1n1ng frame 

pulses and they are reshaped by the three 'and' gates 7400 and the R3, 

C3 1ntegrator network. The l1ne selected by the delay c1rcu1t of the 

tektronix osc1lloscope prov1des a tr1gger s1gnal on the 'A Gate In' 

line wh1ch together w1th the relevant l1ne tr1gger pulse, wh1ch ind1cates 

the start of the l1ne, tr1gger the monostable 74121 whose output is a 

var1able length pulse. The pulse length is adjustable by VR4 and the 

ampl1tude of the pulse appl1ed to the v1deo s1gnal 1s determ1ned by VR3. 

The selected line 1s 'brightened' by th1s pulse, and the length of the 

pulse determ1nes the d1stance along the l1ne of the 'br1ght up'. 

Video 
out. 

Video c1 

in.--~-1 

Line 
pulses. 

FIGURE Cl. 

t----~Vi deo 
marker. 
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APPENDIX D 

Der~vation of the poss~ble or~entations of the tr1angular closed 

f~gures w~th1n an ell1pse. 

ell1pse. The normal to the ell1pse at each po1nt 1s def1ned by its 

tangent T . In order for the three po1nts to form the apexes of an 
n 

inscribed tr~angle w1th~n the ellipse the normals to the ell1pse at 

the three po~nts must ~ntersect at a single point wh~ch 1s then the 

centre of the ~nscr1bed c1rcle of the tr1angle (s1nce the normals b1sect 

the internal angles of the tr1angle). 

From the theory of caust~c format~on (Chapter 5.4) two stra~ght 

l~nes 1ntersect at a po1nt x, y where 

(K2-Kl) 
X = p (Equation l64.a) Dl 

TlK2-T2Kl 
y = p (Equation l64b) D2 

where K and P are g1ven by equat1ons l63a-b. 
n 

The X co-ord~nate of a po1nt on the ell1pse may be expressed 1n 

terms of ~ts Y co-ord1nate and the constants of the ellipse, where from 

equation 240a 

a b2 - y2 D3 X = n b n 

and from equat1on 246 

y2 

T 
a n D4 = n b b2 - y2 

n 

So K given by Equat1on 163 as n 

K = y -X T DS n n n n 
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may be expressed purely ~n terms of the Y co-ord~nate of the po~nt 

and the ell~pse constants, by subst~tut~ng for X and T from equat~ons 
n n 

D3 and D4 to g~ve 

K 
n 

= y 
n 

(1 - D6 

Tak1ng the three normals in pa1rs, the co-ord~nates x, y of a po~nt of 

~ntersect~on of the three normals will be g~ven by subst~tut1ng for K 
n 

from equat1on D6 ~nto Dl and D2 to g~ve 

X 

y 
= 

= 

(TlY2 - T2Yl) 

(Tl-T2) 

= 

= 
(T3Yl - Tl Y3) 

(T3-Tl) 

Rearrang~ng the three r~ght hand terms of equat~on D7 g1ves 

= 

= 

Subtracting equat~on D9b from D9a g~ves 

D7 

DB 

D9a 

D9b 

D9c 

DlO 

Let both Y
1 

and Y
2 

l1e ~n the hrst quadrant of the ell~pse so that 

Yl, y2' Tl' T2 are all pos~t1ve. 

From equation DlO e~ther Y
1 

:=: 0 or (Tl - T2) = o. If Y = 1 0 

then T1 = 0 and substitut~ng these values into equat~on D9c g~ves 
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= 0 

wh~ch on substitution of equat~on D4 g~ves 

= 

If Y
2 

= Y
3 

the two po~nt are co~ncident and cannot form the apexes of 

a tr~angle. 

Equally if T
1 

- T
2 

= 0 then T
1 

= T
2 

and Y
1 

= Y
2 

and these po~nts 

are also co1nc1dent. 

Let Y
1 

and Y
2 

be in adjacent quadrants of the ell~pse ~.e. 

Y
2 

and T
2 

are negat~ve. 

Subst~tuting Y
2 

= -Y
2 

and T
2 

= -T
2 

~nto equat~on DlO g~ves 

or -T 
2 

If T
1 

= -T
2 

then Y
1 

= -Y
2 

and from the symmetry of the ell~pse the 

two normals pass~ng through po~nts x
1

Y
1

, x
2

Y
2 

where Y
1 

= Y
2 

must 

~ntersect along the X ax~s of the ell~pse, between the two quadrants 

conta~n~ng the points. Since the third po~nt must l~e somewhere ~n 

the oppos~te two quadrants, in order for its normal to ~ntersect also 

along the X axis, its normal and the X ax~s must co~nc~de to g~ve 

Y3 = 0, these three po~nt fo~ng the tr~angle shown ~n F~gure lOSa. 

A similar process, starting with the assumpt~on that Y
1 

and Y
2 

are in adJacent quadrants but now with Y2 pos~t~ve and T
2 
negat~ve, 

g~ves the result 

and T = -T 
1 2 

The normals passing through these two po~nt now ~ntersect along the Y 

axis, aga~n between the two quadrants containing the po~nts, and result 

~n the orientation of the triangle shown in Figure lOSb. 
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APPENDIX E. 

The Computer S1mulation Program 

The program written to s1mulate the propagat1on of rays 1n 

an ell1pt1cal cross sect1on reflect1ng system 1s not descr1bed 1n 

deta1l because of the variations 1n d1splay hardware ava1lable 1n 

different 1nst1tutions. The follow1ng is an outl1ne of the maJor steps 

in the program. 

1. The start1ng pos1t1on of the f1rst ray 1s def1ned together w1th 

the des1red d1rect1on of propagat1on expressed 1n cartes1an 

co-ord1nates. 

2. The 1ncrements 1n the start1ng pos1t1ons of success1ve rays 

1s def1ned. 

3. The start1ng pos1t1on of the f1nal ray of the s1mulat1on 1s 

def1ned. 

4. The number of reflect1ons to be d1splayed and the number of 

reflections that must occur before the d1splayed reflections 

is defined. 

5. Each ray is then incremented 1n the des1red d1rect1on, test1ng 

at each increment to determ1ne if the reflect1ng boundary has 

been reached. When the boundary 1s reached, the normal to the 

reflecting surface 1s calculated, and the d1rection of the 

1nc1dent ray 1s altered 1n accordance with the law of reflect1on. 

The reflection number counter 1s incremented and the ray 1ncremented 

1n 1ts new d1rection until the boundary 1s reached again. 

6. If the reflection number l1es w1th1n the range of those to be 

d1splayed, then each increment of the ray 1s d1splayed. 
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7. Where a large number of reflect1ons occur before the d1splayed 

reflect1on, where the program may run for a long t1me (~ hour 

for the m = 40 caustic shown 1n F1gure 59) a paper tape 1s 

produced of the co-ord1nates of the requ1red reflect1on and 

1s used for d1splay at a later t1me. 

8. The s1mulat1on 1n c1rcular reflectors 1s ach1eved by sett1ng 

the constants of the ell1pse equal. 

9. The program was wr1tten 1n FORTRAN 2 and the s1mulat1on run 

on the Department's Modular One Computer and d1splayed on a 

Tektron1x Storage System 611. 
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Apparatus and techmques 

Figure 2 The gnndmg and pohshmg machme. 

'"" ' \ 

A, alurmmum mountmg plate, B, chuck; C, pneumatic 
piston, D, ball race, E, belt dnve; M, motor 

vanable between 0 and 3000 rpm The arr supply IS obtamed 
from a large manually actuated piston which forms a closed 
system with cylinder (C) 

4 Procedure 
The fibre IS clamped m the VIce Jaws wtth the fibre end 
approximately level with the Jaw face Normal gnndmg and 
pohshmg procedures are used to obtam the final fimsh The 
curvature of the fimshed surface IS demonstrated m figure 3 
The mterference fnnges were obtamed usmg a standard 
mterference microscope obJective and a sodmm hght source 
The fibre was adJUSted to give the mmimum number of 
fnnges across the end face For many experllTlents a h1gh 
optical finish IS not reqUired and a flatter surface IS obtamed 
by the gnndmg process alone Smce the fibre end IS proud of 
the Jaw surface, the pohshmg compound tends to round off 
the edges of the fibre 

S Conclusion 
A techmque IS descnbed which termmates glass optical 
wavegmdes without the necessity of permanent embeddmg m 
a holdmg matenal For many expenments a raw end may be 
prepared in 5 mm, thus allowmg rapid mspect10n of different 
lengths of the same wavegmde 

61S 

Figure 3 Photomicrograph of a 50 1-' diameter cladded 
construction glass fibre showmg mterference frmges across 
the end of the fibre to demonstrate the slope of the end face 

The termmatwn 1s nommally flat and may be at any 
desrred angle to the fibre length Methods of alignment of the 
fibre to give a specific slope have not been discussed and w1ll 
be published later. 
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Abstract A techmque IS descnbed which produces a good 
optical fimsh on the end of an optical wavegurde at any 
requued slope, without permanently embeddmg the 
wavegmde m a holdmg medmm 

1 IntroductiOn 
To investigate the propagation of energy m optical wavegmdes, 
a method of termmatmg these devrces IS reqmred, whtch has 
a preciSIOn compatible with the parameters to be mvesttgated 
A typical glass wavegmde of cladded construction has a 
core of 40 J.Lffi dtameter and a claddmg of 5 p.m thtckness 

The usual method of producmg htgh quality termmatrons 
ts to embed the end of the glass fibre (wavegutde) m a resm 
compound, whtch then allows conventiOnal grmdmg and 
pohshmg machmes to be used 

The maJor drawback of th1s method IS that the length of the 
fibre 1s fixed unless e1ther the fibre IS embedded for the whole 
of 1ts length, or the end IS re-embedded for each change of 
length. 

The tdeal techmque would be to hold the fibre m such a 
manner that It may be ground and polished, and then released 

Thts paper descnbes such a technique. The eqmpment consists 
of a vtce and an aB-purpose grmdmg and pohshmg machme 

2 The vice and vice jaws 
The vtce jaws must be of a matenal whtch gnps the 50 .urn 
d1ameter fibre firmly, but whose hardness IS less than the glass 
of the fibre, so that dunng grmdmg the jaws will a1so be 
ground, but at a greater rate than the fibre end. The jaws are 
manufactured from an embeddmg resm castmg, whtch IS cut 
as shown m figure l(a) The mould IS a 7 mm dtameter gelatme 

(a) 

I b) 

Figure 1 (a) The v1ce Jaws, (b) the mountmg v1ce 

capsule The fibre to be pohshed 1s passed through the hole 
m the base of the jaws and then clamped between the jaws by 
the mountmg vice shown m figure l(b) The clampmg pressure 
must be sufficient to hold the fibre, but not great enough to 
encourage ch1ppmg of the leadmg edge of the fibre by the 
coarser grades of gnndmg The mountmg vice ts secured to 
an adjustable table which IS mounted on an opttcal bench 
Vanous adjustments allow the fibre to be positioned at any 
angle to the gnndmg plane 

3 Grinding and polishing machine 
The optical bench mounted machme IS shown m figure 2 

The varwus gnndmg and pohshmg compounds are mounted 
on alummmm plates (A) These plates are fixed m turn to the 
rotatmg chuck (B) The chuck IS mounted on the piston rod 
of the pneumatiC cyhnder (C) v1a two ball races (D) The 
motor (M) rotates the chuck v1a the belt dnve (E) The plates 
(A) are thus rotated by the motor (M) and moved along the 
Z axiS by the pneumatiC piston actiOn When the plates are 
m contact with the workptece, pressure between the two may 
be adjusted by varymg the air pressure m the pneumatic 
cylinder (C). The motor (M) ts a smgle pole mductton motor 
and IS dnven by a vanable frequency supply Its speed IS 
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