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Abstract 

Urushi is a complex natural polymer that has been used to protect and decorate objects for 

many hundreds of years. Urushi is an important material as decorated objects can obtain great 

value and historical worth. A star item of urushi lacquerwares, the Mazarin Chest, property of 

Victoria & Albert (V&A) Museum in London, is famous as one of the finest pieces of 

Japanese lacquerware in the world, dating back to as early as the late 1630s. These urushi 

lacquerwares are often exposed to environments that are detrimental to both their aesthetic 

appeal and structural performance, and restoration and conservation procedures are needed to 

preserve these objects over long periods of time. However, the precise behaviour of urushi 

lacquers is not sufficiently understood to allow accurate prediction of the material response to 

environmental effects or of the effectiveness of any proposed conservation procedure. Thus a 

need exists for a comprehensive understanding of this material and a finite element (FE) 

model to predict the mechanical response to varying environmental conditions. 

The aim of this research was to model the hygro-mechanical effects during the environmental 

ageing process of urushi films by means of FE modelling, which will help to make decisions 

about the environmental conditions required for storage and exhibition. This was achieved by 

a combination of experimental and computational methods. A synthetic thermosetting 

(crosslinked) lacquer, polyurethane (PU), was initially studied to develop the methodology of 

the experimental and numerical studies and to provide a comparison to the natural lacquer.  

Experimental work was carried out to characterise the material behaviour of both materials, 

such as hygroscopic expansion, moisture diffusion kinetics and mechanical behaviour under 

various environmental conditions. Moisture diffusion in the two lacquer films was well 

described by Fick’s law. However, different sorption isotherm models, Flory-Huggins model 

for PU and Guggenheim-Anderson-de-Boer (GAB) model for urushi, were required to model 

the equilibrium sorption of these two materials. The mechanical properties of the lacquer 

films were found to have a complex dependence on environmental conditions. The tensile 

properties of both lacquer films were shown to change significantly after UV ageing. With 

increasing time of ultraviolet (UV) irradiation, Young’s Modulus and tensile strength 

increased dramatically, but the maximum strain decreased. With water absorption, both 

Young’s modulus and tensile strength decreased, and maximum strain increased. The two 

lacquer films were found to behave with a non-linear viscoelasticity, which was highly 
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dependent on environmental conditions. A modified Burger’s model was found to provide a 

good fit to experimental creep data for the PU lacquer well at different stress levels, 

suggesting this is a satisfactory method for characterising PU rheological behaviour. A novel 

modified generalized Kelvin fluid (MGKF) model was found to be a powerful non-linear 

viscoelastic model capable of representing the rheological behaviour of the urushi below the 

yield stress. However, in order to include the post yield behaviour a visco-elastic-plastic 

model is required. 

A hygro-mechanical model of the urushi behaviour based on the MGKF viscoelastic model 

was developed and tested. Through careful determination of the mechanical behaviour the 

constitutive properties of a thin layer of lacquer were determined and used as an input to a FE 

based model of the deformation and stresses that develop in response to changes in the 

environmental conditions. The model was validated using experimental results that showed 

the depth averaged stress in a thin layer deposited on a glass substrate, which allowed insight 

into the time dependent and spatially varying stresses within the layer. It was shown that the 

regions of highest stress were found in areas of highest moisture ingress, emphasising the 

need for control of the environment in which urushi covered artefacts are stored. 

In order to perform a predictive study on the bending behaviour of urushi films with cracks, 

as can be seen in aged lacquers, a model with a grooved urushi film on an aluminium 

substrate was created and subjected to bending loads. The time-dependency of the urushi 

material properties seems to hardly affect the bending behaviour of the model, however, the 

profile of the displacement field around the groove was found to be considerably affected by 

the geometry of the groove. To evaluate the effectiveness of a traditional Japanese 

consolidation method for lacquerware objects, known as urushi-gatame, a strain-based 

progressive damage failure model was used to model the continuum failure in the bi-material 

strip under an increasing bending load. The behaviour of damage initiation and evolution was 

modelled for an unfilled groove, a filled groove with fresh filler and filled groove with UV 

aged filler. From the finite element analysis (FEA) results, the introduction of the filler, as a 

simple mimic of the consolidation method, does enable the strip to sustain a higher bending 

load. However, this effectiveness is weakened as the material is aged, with it behaving 

similar to a groove without any filler. 
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m2 Mass of the specimen at specified time intervals 

Mm  Monolayer moisture content 

M(t) Mass of the total amount of penetrant absorbed at time t 

M (∞) Weight gain at equilibrium 

0tp  Initial average tensile strength 

q  Von Mises equivalent stress 

sij Components of the stress deviator tensor 

t Time 

V Volume fractions 

υ  Molar volume 

α Friction angle 

β Coefficient of hygroscopic expansion 

β’ Parameter of Ducker-Prager model 

σ  Stress 

σB  Tensile strength at break 

σ dev Stress deviator tensor 

σeq  von Mises equivalent stress 

σf In-film stress 

σx Normal stress components in the x directions 

σy Normal stress components in the y directions 

σxy  Shear stress in x-y plane 
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σxx  Longitudinal stress 

σ&   Stress rate 

σ   Yield stress 

τ Retardation time 

τY  Yield stress under pure shear load 

δ Curvature 

ε  Strain 

ε1 Initial elastic strain 

ε2 Transient creep region 

ε3  Secondary creep region 

ε33 Out-of plane strain 

εB  Strain at break 

εc Creep strain 

εd  
Strain of dashpot component 

εh,  Hygroscopic strain 

plε   Equivalent plastic strain 

εs  Strain of spring component 

ε&  Strain rate 

cr
eqε&   Uniaxial equivalent creep strain rate 
c
ijε&  Multi-direction creep strain rate tensor 

dε&   Strain rate of dashpot component 
c
eqε&   Equivalent creep strain rate scalar 

sε&   Strain rate of spring component 
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θ  Temperature 

φ  Density of diffusing material 

χd  Polymer-penetrant interaction index 

ρ  Density 

η  Dashpot constant 
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Acronyms 

2D Two Dimensional  

3D Three Dimensional 

CDM Continuum Damage Mechanics (CDM) 

CHE Coefficient of Hygroscopic Expansion 

DP Degree of Polymerization 

EMC Equilibrium Moisture Concentration 

FE Finite Element 

FEA Finite Element Analysis 

FEM Finite Element Method 

FT-IR/ATR Transform Infrared–Attenuated Total Reflectance  

HALS Hindered Amine Light Stabiliser  

GAB Guggenheim-Anderson-de-Boer 

MBM Modified Burger’s Model 

MC Moisture Content 

MGKM Modified Generalized Kelvin Model 

PL Purified Urushi  

PU Polyurethane 

PID Proportional with Integral and Derivative 

RH Relative Humidity  

SEM  Scanning Electron Microscopy 

TBC Thermal Barrier Coating 

TPU Thermoplastic Polyurethane 

UV Ultraviolet  
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UVA Ultraviolet A 

UVB Ultraviolet B 

V&A Victoria & Albert 
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Chapter 1 Introduction  

1.1 Overview of Mazarin Chest  

The Mazarin Chest, property of Victoria & Albert Museum (V&A) in London, is famous as 

one of the finest pieces of Japanese lacquerware in the world. The chest, shown in Figure 1-1, 

was manufactured in Kyoto in the late 1630s or early 1640s and has been regarded as a 

precious Japanese national treasure and item of cultural heritage [1]. 

 

 

Figure 1-1: The Mazarin Chest, in V&A Museum in London [2]. 

The chest measures 59 cm high, 101.5 cm wide and 63.9 cm deep, with the name Mazarin 

derived from having once been owned by the Mazarin-La Meilleraye family, whose coat of 

arms is carried on the chest’s French steel key. It is made of black-lacquered wood in a 

European style for export purposes at the time. It is lavishly decorated on both internal and 

external surfaces, with vivid scenes from Japanese traditional tales, including portraits, 

palaces, bridges and other decorative patterns [3]. This wooden masterpiece is a solid 

representation of a wide range of Japanese traditional decoration techniques and the 

outstanding skill of the craftsmen who made the chest. Each detail on this work is of great 

technical and artistic importance for both Japan and the West [4].  

The Mazarin Chest is constructed from straight grain wood and cross grain pinewood. Once 

the wooden structure of the Mazarin Chest was built, numerous foundation layers, consisting 
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of oriental lacquer mixed with other materials such as wheat flour paste and water mixed with 

clay, were applied to the surface of the wooden structure. Finally, the chest was coated with 

multiple layers of coloured lacquer and decorated using a range of traditional Japanese 

techniques [5]. In the years since its manufacture, the Mazarin Chest has suffered from 

different kinds of damage during its storage and display in fluctuating environmental 

conditions, particularly the relative humidity (RH), which is high in Japan compared to 

relative humidity in Europe. It has also been exposed to potentially harmful lighting 

conditions for long periods, and has suffered from previously applied Western coatings that 

were used in an attempt to restore the original appearance and lustre of the lacquer [5]. 

As a result of this exposure to fluctuating environmental conditions, micro-cracks have 

appeared in the lacquer, leading to significant discoloration and fading of the originally 

glossy surface. In addition, there is damage to the wooden structure, in the form of cracks, 

due to the expansion and contraction of the wood. The lacquer film around these cracks has 

lifted and there has been a loss of lacquer coating with extensive loosening and wrinkling of 

adhered decorative elements, including silver and gold foils. There has also been extensive 

lifting of the mother-of-pearl decoration.  

As a consequence of the damage suffered by the Mazarin Chest, it was not stable enough for 

display or transport and is also at risk of further deterioration. Even if it simply remained in 

storage without conservation, access to the chest within the V&A would be severely limited. 

In addition any requests for the loan of this object could not be supported, preventing the 

chest from playing a wider role in the international field of art history. Every loss to the 

original decoration represented a loss of meaning and cultural value of the object and as a 

result, conservation was urgently needed. Therefore, the V&A, with the support of the 

Toshiba Foundation and other charitable bodies, initiated a project to consider the most 

appropriate methodologies for conserving this object for future generations. 

At the point of initiation of this project, the traditionally favoured method for the 

conservation of natural lacquer objects was to apply another layer of lacquer (usually diluted) 

to the damaged surface. This has the effect of filling any holes or micro-cracks. This contrasts 

with the Western approach of preserving the object in its current state. Conservators do not 

know for sure, however, which method is the most effective in minimising the negative long 

term impact of environmental ageing effect [5]. 
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1.2 Mazarin Chest conservation project 

The Mazarin Chest conservation project is a combination of art, historical and scientific 

research. The stated aims of the Mazarin Chest conservation project are to develop a 

comprehensive interdisciplinary methodology for the conservation of Japanese lacquer 

objects held in Japan and Western collections and develop a theoretical framework for the 

collaborative conservation treatment of the V&A Mazarin Chest and similar lacquer objects 

in Japan and in the West.  

The Mazarin Chest conservation project consists of a network of partnerships of universities 

and specialist institutions with the V&A, which include Loughborough University, the Polish 

Academy of Sciences, Imperial College London and the Dresden Academy of Fine Arts. 

The Institute of Catalysis and Surface Chemistry, within the Polish Academy of Sciences, is 

investigating moisture absorption by wood and lacquer, the dimensional response (swelling 

isotherm) of wood and lacquer due to fluctuations in relative humidity, the rate at which 

moisture moves through each of these materials, and the effects of the moisture distribution 

in the wood and lacquer on cracks, as they respond to fluctuations in relative humidity [6]. 

The Chemistry Department at Imperial College is studying the effect of Western varnishes on 

the Chest’s lacquer. Western varnishes have been applied in an attempt to restore the original 

colour and gloss of the aged lacquer. Unfortunately, they do not replicate the original 

appearance of the urushi lacquer. Further, Western varnishes can damage the original lacquer 

as they age and degrade in turn. The more aged the lacquer surface and the more degraded 

and oxidised the Western coating, the more difficult it is to remove the varnish without 

damaging the original lacquer. The problem of removing degraded Western varnishes from 

oriental lacquer affects a substantial proportion of such objects held in public collections in 

the West. Analysing the interpretation and presentation of Japanese lacquer in Western 

collections, identifying the aesthetic criteria applied to Japanese lacquer in Japan and the 

West, and understanding the cultural belief systems that define conservation ethics in Japan 

and the West will provide a framework for proposing an experimental conservation 

methodology [6]. 

Dresden Academy of Fine Arts in Germany is investigating problems encountered by 

conservators in their working practice when consolidating degraded oriental lacquers. The 

main research strands are [6] identification and characterisation of the typical 
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problems/different types of deterioration/modes of failure of the lacquer layer structure, and 

review of the materials used for consolidation in conservation (i.e. collagen glues, Polyvinyl 

acetates (PVA) glues, acrylics, traditional Japanese consolidation materials). 

The Wolfson School of Mechanical and Manufacturing Engineering at Loughborough 

University is focused on developing an understanding of the basic mechanics of urushi layers. 

The aim of this focus is to understand and be able to predict the effect of ageing on the ability 

of urushi layers to support stresses that are generated through interaction with typical 

environments.  

1.3 Aims and objectives of the Project 

As an important aspect of the scientific research of the Mazarin Chest conservation project, 

this PhD project aims to model the hygro-mechanical effects during the environmental ageing 

process of urushi films by means of finite element (FE) modelling. This will help to make 

decisions about the environmental conditions required for storage and exhibition, and is of 

great significance as a part of the scientific research in the Mazarin Chest Project. To meet 

this aim, the project had objectives to: 

l Experimentally characterise the hygro-mechanical properties of urushi with 

environmental effects,  

l Find or develop appropriate material models that can be used to describe the material 

behaviour under various environmental conditions,  

l Propose and validate an FE model that is able to predict the mechanical response of 

urushi lacquer to varying environmental conditions. 

This work will result in two major advances in this area. First, a material model that can 

describe the non-linear and time-dependent stress-strain behaviour of coating materials under 

changing environmental conditions will be developed for first time. Secondly, a methodology 

on modelling mechanical response to varying environmental conditions will be developed for 

coating material. The research outcomes will support the V&A conservators in making 

informed decisions about conservation treatment options and help understand the material 

behaviour observed during conservation work. 
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1.4 Research methodology and thesis structure 

The methodology of the research has been designed to achieve the specified aim and 

objectives. The experimental programme in this project, investigating the effects of the 

moisture on the urushi film which has been aged under different periods of ultraviolet (UV) 

exposure, is shown schematically in Figure 1-2. Computer simulation, using finite element 

analysis (FEA), was applied in this research and the commercial FE package ABAQUS (v6.9 

and 6.10, Dassault Systems, Providence, RI, USA) was used in all the modelling work. The 

basic modelling methodology is illustrated in Figure 1-3. A FE model was created and 

material properties defined as a function of environmental conditions. A load was then 

applied by means of a varying external humidity. This was implemented in the FE model by 

varying the boundary conditions of the diffusion model as a function of time. 

 

Figure 1-2: Overall framework of experimentation. 
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Figure 1-3: The modelling methodology. 

A brief description of the contents of the remaining chapters of the thesis is given below.  

Chapter 2 gives an introduction to the nature of urushi material as a natural polymer. It 

describes the published literature on urushi, with special emphasis on the effect of the 

environmental conditions (temperature, humidity and exposure to UV radiation) on the 

properties of urushi. A survey of the current literature on various potential material models 

for urushi is also presented in this Chapter. 

Chapter 3 presents the experimental method used to prepare samples and characterise 

material properties. Experimental control techniques are also detailed in this chapter. 

Chapter 4 describes the numerical techniques involved in the project and provides details of 

the FE modelling methods used. The method used to determine model constants is discussed. 

Material Properties Loading Boundary conditions Geometry and mesh 

Finite element analysis  

• Coupled stress-diffusion analysis 
• Failure analysis 
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The geometry, boundary condition, meshing methodology, choice of elements and details of 

material model benchmarking analysis, hygro-mechanical coupled analysis, and 3-point 

bending analysis are presented. 

Chapter 5 presents an investigation of the mechanical and hygroscopic behaviour of a 

commercial PU lacquer film. From experimental result of water absorption and desorption 

tests, the diffusion coefficient and coefficient of hygroscopic expansion were determined. 

The complex dependence of material properties on environmental conditions is discussed 

according to the results of tensile tests at constant displacement rates and creep tests under 

different loads and UV/humidity ageing conditions. On the basis of the viscoelastic behaviour 

observed from the mechanical tests, a material model is proposed to describe the rheology of 

PU lacquer films under various environmental conditions. 

Chapter 6 provides an assessment on the efficiencies of various rheological models in terms 

of their usefulness and feasibility in the FEA of urushi coatings. A modified generalised 

Kelvin model is found to be the best model to describe viscoelastic behaviour of urushi film. 

The environmental effect on the rheology is quantitively analysed based on the parameters 

studied in this model. The dependence of rheological properties on UV ageing of urushi film 

properties is also studied. 

Chapter 7 presents a hygro-mechanical FE model for predicting the humidity-dependent 

mechanical behaviour of urushi films. It also provides a validation of the FE methodology by 

predicting stress evolution of urushi film on a glass substrate experiencing humidity 

fluctuation. The material model is tested by comparing the predicted stress evolution to 

experimental data. 

In Chapter 8, the mechanical response of a grooved urushi/aluminium bi-material strip to a 3-

point bending load is modelled using the FE method, as a reference study of urushi films with 

a notch subjected to a bending load in service. On the basis of this model, the failure 

behaviour of a bi-material strip when subjected to bending loads was modelled by 

introducing a strain-based damage model, with the aim of assessing traditional Japanese 

consolidation methods for lacquerware objects.  

Chapter 9 is the concluding part of this thesis. Key achievements of the research and 

suggestions for future work are presented in this chapter. The publications that have resulted 

from this research are listed after the Acknowledgements.  
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Chapter 2 Literature Review 

The purpose of this literature review is to provide background information on the issues to be 

considered in this project and to emphasise the relevance of the project. This chapter provides 

a review of the mechanical and hygroscopic properties of polymeric coating materials, 

including synthetic and natural (urushi) lacquers, and the effect that environmental factors 

have on the performance of coating materials. This is followed by a description of the various 

material models, including time dependent constitutive models and failure models, which can 

be applied in modelling the mechanical response of urushi subjected to environmental ageing. 

Whilst the review attempts to provide an overview of these areas of research, the emphasis is 

on the materials and methods used in this project. 

2.1 Lacquers 

2.1.1 Introduction 

The term coating is used to describe a material, usually a liquid, that is applied for protective 

or decorative purposes to an underlying substrate, such as wood, metals and ceramics, the 

resulting dry material and the process of the application depending on the context [7]. 

Coatings may be differentiated as being either organic or inorganic. Organic coatings can be 

classified as either architectural coatings (house, wall and ceiling coatings) or industrial 

coatings (appliance, furniture, automobile, coil coatings) [8].  

Coating materials for wood finishes can be made from natural or synthetic resins. Natural 

resins and oils have been used for decorative and protective purposes for centuries. They are 

derived from natural sources such as plants, animals and fossilised remains [9]. The main 

material used in the coating and decoration of the Mazarin Chest is a natural lacquer known 

as urushi, which is characterised by its smooth and glossy surface, its durability and solvent 

resistance. Urushi is a completely natural material, gathered and refined from the sap of the 

urushi (lacquer) tree grown in China, Japan, Korea and eastern Himalayas region, 

scientifically named as Rhus vernicifera and a member of the Anacardiaceae family [10]. 

Urushi does not cure in the same way as other natural resins, which are usually dissolved in a 

solvent. The resulting mixture is applied as a coating and the resin hardens into a solid film as 

the solvent evaporates. On the other hand, urushi cures as a result of a complex internal 

chemical crosslinking and, uniquely, does so only in the presence of high relative humidity. 
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The resulting material is polymerised (like a plastic), it is very hard, glossy and durable, 

resistant to water, acids, scratches, heat and exhibits excellent resistance to weathering 

indoors. These properties of urushi led to it being used as a protective, decorative and 

adhesive material in Japan and other oriental countries since ancient times [10]. Examples 

include surfaces in shrines and temples, wooden bowls (lacquerware) and chests. Many of 

these objects are exhibited in museums in Japan, USA and Europe [11-14]. The deep black 

colour and the beautiful lustre of urushi are also regarded as a symbol of the national beauty 

of Japan. In the Shosoin temple in Japan, a great number of wares coated with urushi have 

been preserved for more than one thousand years without losing their original elegant beauty 

[15].  

The first entirely synthetic coating resin, phenol-formaldehyde, were launched on the market 

in 1907, followed in rapid succession by vinyl resins, urea resins and, from the 1930s 

onwards, alkyd resins, acrylic resins, polyurethane (PU) resins and melamine resins [16]. 

Polyurethanes (PUs) are well known resins used for both commercial and technical 

applications and are conventional coating materials for wood finishing [17]. Obataya et al [18] 

compared the mechanical properties of urushi film and conventional synthetic coatings and 

found that the urushi film is similar to the polyurethane lacquer in terms of its viscoelastic 

properties, suggesting the possibility of polyurethane as a replacement for urushi in some 

cases. 

2.1.2 Urushi 

2.1.2.1 Chemistry of Urushi 

The variety of sap Rhus vernicifera [19-20] is a very common natural product. Commercially 

available sap is a blend collected at different times. The constituent materials are water (20-

30%), urushiol (60-65%) and an acetone-insoluble powder, a mixture of water-insoluble 

glycoprotein (3-5%), water soluble plant gum (6.5-10%) and enzymes (<1%). The plant gum 

contains mono-, oligo- and polysaccharides (5-7%), and the enzymes are laccase, lactase (a 

copper-glycoprotein enzyme having 4 atoms of copper in a molecule), stellacyanin, and 

peroxides. In sap, a water-in-oil type emulsion, a major part of the gum and the enzymes may 

be dissolved in the water phase, and the glycoproteins are in the oil (urushiol) phase [21-23]. 

The main component of the sap of the urushi tree is urushiol, whose chemical structure is 

shown in Figure 2-1 [11-12, 24-26]. 
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R : (CH2)14-CH3 4 wt % 

 : (CH2)7-CH=CH-(CH2)5-CH3 21 wt % 

 : (CH2)7-CH=CH-CH2-CH= CH-(CH2)2 4 wt % 

 : (CH2)7-CH=CH-CH2-CH= CH-CH=CH-CH3 70 wt % 

 other constituent compounds with a C17- side chain 1 wt % 

Figure 2-1: Typical chemical structure and composition of urushiol [10]. 

2.1.2.2 Preparation, application and curing mechanism 

Preparation of the urushi has an important effect on the performance of urushi films. Raw 

urushi sap is a non-stable water-in-oil type emulsion. As a result of the naturally high 

moisture content, the water soluble polysaccharides in the sap can aggregate to form large 

irregular islands during drying [27]. First of all, the sap collected from lacquer trees is stirred 

in a specially designed open vessel at room temperature for about 1.5 hours. Then the 

temperature is increased to about 45°C and kept at this temperature for 2-4 hours to reduce 

the water content to 2%-4%. This is called the kurome process or Sugugome process, with the 

detail a closely guarded commercial secret which differs from manufacturer to manufacturer 

[28]. After the kurome process, the resulting raw lacquer, which is ready for application, 

consists of urushiol oligo-urushiol and dimers (about 5-10%). The raw lacquer is a phenolic 

material and its polymerisation is achieved by means of the catalysis of an enzyme to form a 

very strong crosslinked network structure [21, 28]. The temperature cycle must be carefully 

controlled to keep the enzyme activated enough. Ultimately, the curing of the lacquer is a 

process of enzymatic oxidation.  

The process of stirring and heating the sap, or kurome, results in the evaporation of water, 

polymerisation of urushiol and the reaction of glycoproteins with the urushiol. The 

ingredients of the lacquer are homogenised and polysaccharides are dispersed into the oil 
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phase after the Kurome process. Spherical grains of polymerised urushiol are surrounded by a 

thin wall of polysaccharides, which looks like a very fine core-wall structure. This structure is 

the reason for the outstanding durability of urushi film because the polysaccharide wall 

isolates the urushi-coated surface from oxygen [27, 29-31]. The inner structure of sap and 

Kurome treated urushi is shown in Figure 2-2 

 

Figure 2-2: Schematic illustration of the structure of Kurome-treated lacquer film (a) and that 
of sap film (b) [27]. 

Urushi is applied by painting layer by layer, and some high quality products may need as 

many as 30-40 layers. Also, painting and curing must be done under high relative humidity of 

65-80%. Although there is no acknowledged conclusion on the detailed nature of the curing 

processes, it is normally thought to be long as it is known that the curing is not complete even 

after one month [21]. 

There are 3 common urushi products, which are commercially available; clear, virgin and 

black lacquers, or C, V and B urushi lacquer. Clear lacquers and black lacquers have a lower 

moisture content (MC) of about 3% and a higher degree of polymerisation (DP) due to 

different Kurome treatments. Although clear lacquer results in a dark brownish film, it is 

called clear lacquer according to its Japanese name, suki sugurome urushi, which means clear 

kuromo-treated lacquer. Virgin lacquer is a neat filtered sap which has a high MC of more 

than 20% and low DP [27]. 

2.1.3 Polyurethane lacquer 

Otto Bayer and coworkers at I.G. Ferbenindustri, Germany in 1937 were the first to discover 

PUs [32]. PU is a type of reaction polymer compound, which also include epoxies, 

unsaturated polyesters, and phenolics [33-35]. A urethane linkage is produced by reacting an 
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isocyanate group, -N=C=O, with a hydroxyl (alcohol) group, -OH, as shown in Figure 2-3. 

PU is produced by the polyaddition reaction of a polyisocyanate with a polyalcohol (polyol) 

in the presence of a catalyst and other additives. The formation of PU polymers requires an 

isocyanate with two or more functional groups. One of the most important isocyanates is 1, 6-

hexamethylene diisocyanate (HDI), which is extensively used for weather and abrasion 

resistant coatings and lacquers [33-37]. 

 

Figure 2-3: Generalised reaction to produce a urethane linkage [33]. 

PU lacquers have a clear, durable, water-resistant finish, which seals the pores of the wood 

and provides a very durable finish. PU can be purchased in a high-gloss form or satin form. 

PU dries quickly and is applied like a varnish [38].  

2.2 The effect of environmental conditions on the properties of lacquers 

2.2.1 Introduction  

The use of organic coatings in a variety of conditions such as weather exposure and 

aggressive elements (sunlight, UV exposure, water (humidity), polluting agents and 

temperature) can significantly affect their durability. In the case of wood coating for 

lacquerwares, the Mazarin Chest for example, the main aspects of intent are humidity and UV 

exposure. There has been a small amount of research performed in the last few decades to 

study the effect of humidity and UV exposure on coating behaviour and this will be reported 

here.  

2.2.2 Humidity  

2.2.2.1 Urushi 

Lacquerware is susceptible to damage from exposure to very dry conditions or fluctuating 

humidity. Relative humidity (RH) fluctuation causes the wooden substrate to shrink and 

expand thus causing the urushi to crack to relieve the stress and to lose adherence to the 

substrate. For this reason, cracks most often appear along seams and joints, and usually in the 



 

13 | P a g e  
 

direction of the grain of the underlying wood substrate as there is almost no shrinkage in the 

direction of the wood's grain (lengthwise). If the shrinkage becomes permanent then the 

urushi surface will no longer lie flat [39-40]. In low RH condition, water, an essential part of 

urushi structure is lost and as a result urushi becomes more brittle, less strong and susceptible 

to attack by water and oxygen. If urushi is exposed to cycles of low and high humidity it will 

eventually start to flake off its wooden core. It is important not to let the humidity drop too 

low or fluctuate wildly to keep lacquerware in prime condition [41]. In museums, a constant 

humidity of 50% to 60% is usually recommended during storage, treatment and display. In 

Japan the most valuable pieces of lacquerware are stored in silk bags or wooden boxes and 

brought out only for special occasions. The box serves a number of functions: it keeps the 

item from exposure to light, protects it from structural damage and buffers any changes in 

humidity [41].  

Bratasz et al [42] studied moisture absorption and transport, the resulting dimensional 

response and the related stress fields in materials constituting lacquer furniture. Wood of the 

hinoki-Japanese cypress (Chamaecyparis obtusa) was used in this study, which is similar to 

that used in Mazarin Chest. Ground layers and lacquer surface coatings were investigated. 

Figure 2-4 shows the equilibrium moisture content (EMC), moisture content at equilibrium 

state, for the hinoki wood and specimens of new lacquer, exposed and unexposed historic 

urushi lacquer. The lacquer can be seen to absorb considerable amounts of moisture 

especially at high humidity regions. The EMC increases for historic, naturally-aged material 

due to the formation of an increased amount of polar oxygen-containing adsorption sites. 

Obataya et al [27] studied the water sorption of C and V urushi lacquer films aged over a 

thousand days (shown in Figure 2-5). The EMC of the V urushi film was higher than that of 

the C urushi film over the RH range (10%-90%) tested. Obataya et al [27] found that the 

hygroscopicity of polysaccharides is higher than that of the polymerised urushiol. 

Furthermore, the hygroscopicity of polysaccharides in the V urushi film must be higher than 

that in the C urushi film because the former is held more loosely among the urushiol domains. 

Thus, the higher moisture content of the V urushi film is attributable to the hygroscopicity of 

polysaccharide aggregated during drying. 
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Figure 2-4: Equilibrium moisture content (EMC) for hinoki wood as well as new and aged 
lacquer at 24 °C [42]. 

 

Figure 2-5: Moisture content (MC) at equilibrium of the clear (•), and virgin (■) urushi films 
aged over 1000 days [27]. 

Ogawa et al [10] investigated the effect of water on the mechanical properties of urushi film 

of constant thickness at 25 °C. Curing was achieved through three steps: 60% RH for 4 hours, 
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70% RH for 18 hours, and 80% RH for 24 hours. Tensile stress-strain tests were conducted 

under various degrees of humidity (15%-100%) as shown in Figure 2-6. The relationships 

between tensile properties and humidity are summarised in Figure 2-7. In general, urushi 

films become more flexible after water absorption, leading to an increase in the strain at 

break and a decrease in the elastic modulus, demonstrating that the water serves as a 

plasticiser.  

 

Figure 2-6: Effect of humidity on the tensile stress-strain curves for urushi film [10]. 
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Figure 2-7: Relation between stress-strain properties and RH: (▲) elastic modulus, (■) 
tensile strength, and (●) strain at break [10]. 

The fundamental difference between polymers and other materials resides in the inherent 

rheological or viscoelastic properties [43], which have been reported many times in the 

literature [10, 18, 27, 44-45]. Ogawa et al [10] also investigated changes in the relaxation 

modulus, E(t), of urushi over 100 hours. The stress relaxation tests were conducted using a 

dynamic viscoelastometer at a set temperature and humidity. The testing result shows the 

relaxation modulus of the film decreases with increasing RH. 

It can be seen that urushi film has a tendency to become brittle under dry conditions and 

more ductile under wet conditions. On the other hand, the film can become sticky and soft 

under very high humidity or immersed in water [10]. When lacquerwares are used under 

these conditions, stress builds up between urushi and the substrate, which is usually wood, 

because of different hygroscopic expansion of urushi and substrates. This stress decreases the 

bonding strength between urushi and the substrate, which can be defined as the load required 

to break an adhesive assembly, with failure occurring in or near the plane of the bond. 

As a result of these stresses, urushi will eventually peel off from the substrate. It was 

concluded by Ogawa et al that water is one of the most important influences on the durability 

of lacquerware [46]. 
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2.2.2.2 Polyurethane  

As one of the most useful and flexible commercial classes of polymers, PU has found 

extensive use in numerous commercial applications, such as in plastic products, as a coating 

material, as an adhesive and as a sealant [47]. In wood finishing, PU lacquer is a common 

coating material, extensively used for the protection and decoration of woodware and 

flooring because of its low cost of manufacture, ease of application and barrier properties 

against dirt, moisture, oxygen and chemical pollutants [48].  

Our understanding of PU coating is lacking, however, since a complete rheological 

description has not been achieved, and thus incorporating this material into standard models 

is challenging. There has been a limited amount of research work performed on the 

mechanical properties of PU coatings but no full description of the essential viscoelastic 

nature of the material. Some understanding of the relationship between the macroscopic 

behaviour and the microscopic changes during exposure to fluctuations of relative humidity 

has been developed. For example, Boubakri [49] established that moisture diffusion in similar 

materials was Fickian and that absorption results in the movement of macromolecular chain 

segments, that leads to a reorganisation of the structure and an increase in the free volume. 

Tensile tests were performed on dried and wet samples to study the influence of moisture, 

from which the mechanical properties with moisture effect were quantitively summarised, 

showing a decrease in elastic modulus especially for high deformation values. The evolution 

of the mechanical properties was related to the microscopic observations from the analysis 

using scanning electron microscopy (SEM) technique. 

2.2.3 UV ageing 

2.2.3.1 Urushi  

It is believed that the main cause of fading and loss of gloss in urushi is exposure to UV light 

[40, 50-51]. The surface of the lacquerware fades and becomes dull as the urushi molecular 

structure changes during sustained exposure to UV light. Some black lacquer pieces, for 

example, eventually turn a mottled brown and also lose their sheen. Under magnification, one 

can see that the dull appearance is actually a network of very fine cracks (micro-cracks) that 

have formed on the surface of the lacquerware. The traditional consolidation technique, 

urushi gatame, is based on the impregnation of micro-cracks with diluted urushi. However, 
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once the micro-cracks have formed they can penetrate through the decorative urushi layers 

and into the foundation layers causing further damage by trapping the solvents being used to 

clean the lacquer, leaving the lacquer vulnerable to further damage [50]. Lacquer damaged by 

UV light loses its durability, reduces its normal resistance to water and other solvents, and 

becomes brittle [3, 52]. It is known that the damage increases with the length of exposure and 

the intensity of the illumination [53]. 

Ogawa et al [11] investigated the effect of exposure to fluorescent lamps on the mechanical 

properties of East Asian urushi films. The films were exposed to light under three different 

conditions: uncovered, in an acrylic box, and in a glass box. Hardness was measured and 

tensile tests carried out. They found that the hardness and the elastic modulus increased with 

exposure time, while the tensile strength and the elongation at break decreased with exposure 

time. They concluded that the increased hardness is related to a crosslinking reaction by the 

enzyme laccase over the whole region of the films. Other studies have shown that following 

exposure to UV radiation, the surface of urushi fades and becomes dull as light breaks down 

the molecular structure [50]. 

Hong et al [51] investigated the effect of UV-degradation on the chemistry of urushi, the 

effect of photostabilisation on the physical properties of urushi coating and the effect of 

weathering exposure on urushi. Hindered amine light stabiliser (HALS) and benzotriazole 

UV absorber were added to urushi to improve the weatherbility (resistance to light 

degradation) of the urushi. Three different mixtures were prepared: 1) unstabilised purified 

urushi (PL); 2) PL plus 2% HALS; and 3) PL plus 2% weight benzotriazole UV absorber. 

Each mixture was coated on glass substrate slides, 60 µm thick, and dried for one week at 

room temperature and at 75 ± 5% RH. The samples were exposed for 300 hours at 50 °C to 

continuous irradiation with a UVB–313 lamp. Figure 2-8 shows the Fourier Transform 

Infrared–Attenuated Total Reflectance (FT-IR/ATR) spectra of unexposed and exposed 

purified lacquer films. The effect of weathering exposure is shown in the difference of the 

spectra. The presence of negative and positive intensity bands in the difference spectra can be 

regarded as resulting from the chemical changes due to photo-gradation. The negative 

absorbance in the difference spectrum reflects structures that were formed during the photo-

degradation, and the positive absorbance reflects structures that were lost.  

The difference spectrum is dominated by strong bands near 3500, 2900, 1700, 1650, 1480, 

990 and 730 cm-1. The broad band near 3500 cm-1 was associated with OH stretching in 
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urushiol. The strong bands related to C-H stretching in the urushiol side chain were observed 

near 2900 cm-1. The strong bands near 1650 cm-1 and 990 cm-1 may be related to the C-H out-

of-plane bending in the quinone group and in conjugated triene, respectively. 

Four sets of bands decrease in intensity when the urushi films are exposed to UV light. The 

band near 1480 cm-1 is characteristic of CH2 bending; its observed decrease in intensity is 

partly related to decomposition of urushiol side chains. The weak peak at 730 cm-1 also 

decreased due to degradation of the aromatic substitute of urushiol. In contrast, the very 

strong peak near 1700 cm-1 increased, and was attributed to C=O stretching in the various 

carbonyl functional groups formed by photo-oxidation. These results are consistent with the 

hypothesis that the urushi network degrades mostly in the unsaturated side chains. A small 

number of photosensitive groups had already been formed in urushi film during the photo-

degradation processing. The photolysis of these groups gives rise to carbonyl products. 

Carbonyl absorbance starts increasing immediately for the unstabilised urushi film during 

UV exposure. Figure 2-9 shows the IR carbonyl intensity near 1700 cm-1 [measure of photo-

degradation] as a function of UV exposure time. The rate of increase of carbonyl intensity for 

photostabilised mixtures is lower than that for an unstabilised mixture [51].  

 

Figure 2-8: FT-IR-ATR spectra of urushi film: (a) Original; (b) after 100 hours exposure; (c) 
difference between spectra in A and B [51]. 
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Figure 2-9: Increase in carbonyl intensity with UV exposure time of samples [51]. 

SEM of the surface of urushi are shown in Figure 2-10. The surface of unexposed urushi film 

has small regions 0.1-2 µm diameter, due to polysaccharide particles composed of 

polymerised urushiol and glycoproteins, (Figure 2-2(a)). After exposure to UV light, Figure 

2-10(b), large black regions of 10-80 microns in diameter appear together with small regions 

of 0.1-3 µm diameter. The large black regions may form due to deterioration of the 

polysaccharide walls and polymerised urushiol. After exposure to UV light, the small regions 

become larger and more numerous [51].  
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(a) 

 
(b) 

Figure 2-10: SEM of (a) lacquer film unexposed to UV light and (b) lacquer film exposed to 
UV light for 100 h [51]. 

In case of urushi containing 2% weight HALS, photo-degradation is significantly inhibited as 

shown in Figure 2-11. 

  

Polysaccharide 

particles 
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Figure 2-11: SEM of urushi film containing 2% wt HALS exposed to UV light for 100 hours 
[51]. 

To confirm this result they also measured the weight loss of urushi film during photo-

degradation as shown in Figure 2-12. All urushi films lost weight as a result of photo-

degradation. This may be due to evaporation of water in the film. The same result was 

obtained by Toyoshima [41], where urushi film lost weight as a result of photo-degradation 

with UV explosure. 

 

Figure 2-12: Weight loss of lacquer film with exposure time [51]. 

Polysaccharide 

particles 
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FT-IR/ATR results from accelerated UV weathering tests showed that the addition of 2 wt% 

HALS into on urushi formulation enhanced photostabilisation up to three times, which was 

supported by the results of weight loss measurements and SEM analysis [51]. 

2.2.3.2 Polyurethane 

The effect of UV-ageing on the mechanical properties of thermoplastic polyurethane (TPU) 

was studied by Boubakri et al [54]. Mechanical properties, elastic modulus and stress at 200% 

strain, initially decreased and then increased progressively with UV exposure revealing an 

increase in crosslink density due to the formation of crosslink structure caused by UV 

exposure. On the other hand, the wear resistance of the material surface decreased and this 

degradation became more important with UV exposure time. Finally, a competition between 

chain scission and crosslinking mechanisms was discerned in this study. The changes in the 

mechanical properties of coating materials correlate to changes in their microstructure, which 

has been found from FT-IR spectra [17]. The absorption of UV induces the degradation of 

PU and photooxidation of the CH2 groups. Rosu [17] suggested that a photooxidation 

mechanism was initiated during UV exposure. A related study by Carrasco [55] on high 

density polyethylene exposed to UV irradiation developed a methodology for establishing the 

rheology. They measured Young’s modulus, tensile strength and rupture strain as functions of 

irradiation time under room humidity and temperature. They concluded that the majority of 

the structural and molecular reorganisation occurs during the initial period of irradiation (< 

60 days) whereas the chemical changes dominated for irradiation time > 60 days. These 

structural variations and chemical changes coincide with the evolution of mechanical 

properties due to UV irradiation, and may suggest different mechanical rheologies at different 

ageing times. As part of a comparison with urushi [45, 56], Obataya et al [18] examined the 

mechanical properties of a PU lacquer at 25℃ and 60% RH and found that the mechanical 

properties of urushi lacquer films were very similar to those of the PU lacquer films. An 

artificial ageing of PU was performed by Skaja et al [57], where they exposed samples to 

cycles of UV irradiation, observing an increasing tensile modulus. 
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2.3 The Mazarin Chest  

2.3.1 The structure of Lacquerware objects 

Structurally, lacquerware objects are composed of substrate, foundation, coating and 

decoration. While wood is the most commonly used substrate material for lacquer objects, 

there are two kinds of foundation. One type, which can be kokuso (mixture of urushi, sawdust 

and hemp fibres), nonokise or kamikise (adhering of hemp cloth or paper, respectively, to the 

substrate) is used to reinforce the substrate. The other type, which can be jinoko (coarse 

powdered earth), tonoko (fine powdered earth) or gofun (calcium carbonate), is used to 

smooth the surface of the substrate. Urushi, wheat flour paste or animal glue is used in 

making these foundations [3]. Normally several layers of foundation are applied. Over the 

foundation, several thin layers of urushi are applied. After each layer, the substrate is cured in 

a chamber with a relative humidity of 70-80% at 20-25 °C. The surface of urushi is polished 

with hard and then soft charcoals, with water or oil, then sap is rubbed into the polished 

surface and cured to obtain a high gloss and durable coating surface. Coating-curing-

polishing-rubbing-curing is repeated 10-20 times to obtain a lacquerware finish ready for 

decoration. This process is called Roiro Siage. There are various types of decoration applied 

to lacquerware objects, the most widely used being [3]: 

• Hiramakie (flat sprinkled picture). 

• Takamakie (raised sprinkled picture). 

• Raden (mother-of-pearl) and hyomon (metal foil) inlay. 

2.3.2 Nature of damage in Mazarin Chest 

In the years since the Mazarin Chest was made, it has suffered significant damage due to 

fluctuations in RH and exposure to light. The following section summarises the different 

types of damage [50]. 

2.3.2.1 Structural damage 

Expansion and contraction of the wooden substrate of the lid, in response to fluctuations in 

RH, has led to: 
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• Shrinkage across the centre of the lid, preventing the lid from closing. This warps it 

approximately 4 mm out of its original position. 

• Movement of the metal catch of the lock inwards. 

• Hairline splits along the corner joints as show in Figure 2-13. 

• Cracks are found in parts where the lid and the body join, along parts where the board 

and frame of the lid join and also on the reverse side of the lid [50, 58]. 

 

Figure 2-13: Detail of the right corner of the lid showing: (a) Stress fracture of the lacquer 
along the cleated joint line with associated loss and tenting (up to 3 mm high) of lacquer and 

decoration; (b) Exposed foundation layers in the inner square gold foil and losses of gold 
squares, silver and mother of pearl [42]. 

2.3.2.2 Urushi damage 

As a result of structural damage mentioned before, urushi surface and foundation layers 

around the cracks are poorly adhered (Figure 2-13) and there are losses of urushi in 

approximately ten places, ranging in size from 1×1 mm to 10×15 mm. Additionally, exposure 

to light has caused photo-degradation of urushi with loss of lustre as micro-cracks have 

formed on the surface of the urushi, as shown in Figure 2-14. Previous applications of black 

Western natural resin coating to urushi surface, in an attempt to restore its shine, resulted in 

changing the original decorative scheme from the original silver makie. Also, the black 

varnish layer has been lost from some areas, leaving the original partially visible in many 

areas [59]. 
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(a) 

 

(b) 

Figure 2-14: SEM image showing the surface of (a) freshly made urushi and (b) Mazarin 
Chest surface [59]. 
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2.3.2.3 Decoration damage 

Passive abrasive cleaning combined with photo-degradation of the urushi coating has 

disfigured some areas of the black background and has exposed parts of the foundation 

(shitaji) layers (Figure 2-15(a)). Polishing of the silver decoration and the applied elements in 

the past has resulted in loss of detail (e.g. tsukegaki decoration on the silver hyomon), damage 

to adjacent lacquer, and loss of poorly adhered decorative silver foil (Figure 2-15(b)). All 

silver decorative elements are tarnished. There is extensive lifting and wrinkling of gold and 

silver foil decoration (Figure 2-15(b, c)). There is also extensive lifting of the mother-of-pearl 

decoration (Figure 2-15(d)) where the shell is broken and has been lost in five places [5]. 

  

(a) (b) 

  

(c) (d) 

Figure 2-15: Examples of decoration damage: (a) Loss of facial detail as a result of corrosion 
and cleaning; (b) lifting and losses of silver and gold foil decoration; (c) wrinkling of gold 

foil decoration; (d) poor adhesion and lifting of silver decoration and mother-of-pearl 
stringing [5]. 
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2.3.3 Record of past storage and display 

It is likely that the Mazarin Chest has been on display for long periods since it was acquired 

by the V&A in 1882. For example, it was on continuous display at the V&A since the early 

1960s. From 1986 to 1998 the Mazarin Chest was displayed in the Toshiba Gallery of Art 

and Design located at the V&A, under light levels of 80 lux and UV levels of less than 5 

µW/lumen [5]. The RH in the Toshiba Gallery ranges from 38% to 53% (15% annual 

variation). In October 1998 the Chest was rotated off display and into an acrylic box as 

shown in Figure 2-16, located at the V&A main storage repository in Olympia, London. The 

stores are dark and unlit except when museum staffs visit. The annual RH in storage ranges 

from 35% to 54% (19% annual variation) as shown in Figure 2-17 [5]. 

 

Figure 2-16: Acrylic box for storage and conservation treatment, located at the V&A main 
storage repository in Olympia, London [5]. 
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Figure 2-17: The RH variation in the storage April 2002 – March 2003 [5]. 

2.4 Modelling mechanical-diffusion interaction  

2.4.1 Introduction  

The process of moisture absorption and subsequent dimensional change lead to hygroscopic 

stress evolution when the dimensional change is restrained in a coating/substrate structure. 

This is a cause of concern in conservation of urushi lacquerware because it can result in 

significant damage [60]. Also, environmentally affected material properties during ageing 

add to the problem. As a general rule, the change of moisture content is considered to greatly 

affect the adhesiveness of coatings. When water transportation occurs between coating films 

and the environment, the films will swell or shrink. Porous substrate materials, such as wood, 

react similarly as water is absorbed, but to a different degree. Consequently, the differential 

hygroscopic expansion of coating and substrate results in stress at the interface [46]. This has 

been discussed in a range of literature on different applications of polymeric materials, such 

as electronic packaging [61], high-temperature adhesives [62] and organic coatings [46, 63-

64]. 

Recently Elmahdy et al. [56] were able to measure the stresses in a thin layer of urushi as it 

responded to changes in moisture. They considered the behaviour of a layer of urushi 

deposited on to a small disc which was then placed within a chamber with controlled 

temperature and humidity. This sample was then subjected to a rapid change in 

environmental humidity and the curvature induced in the sample measured and related to the 
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stress developed in the urushi layer. The measurements were performed using phase shifting 

interferometry, a powerful technique for measuring small whole field displacements 

developed in a range of complex materials, such as composites [65], biological [66], 

foodstuffs [67-68] and polymers [69]. In this case, Elmahdy et al [56] measured the out-of-

plane displacements and through an extension of Stoney’s equation [70-71], observed the 

evolution of stresses as moisture was removed and the material responded. This experiment 

presented an ideal system for validating any proposed model, since the observed behaviour 

will depend upon the precise details of the constitutive relationships for hygroscopic transport 

and response, the rheology and their coupling. 

Perera and Nguyen [63] examined the role of hygroscopic compressive stress in the failure of 

coating/metal systems. The stress was measured with an apparatus that monitored the 

deflection of a coated steel substrate induced by the stress. The determination of this 

deflection and the knowledge of the elastic properties of the substrate permit this calculation 

of the stress. 

2.4.2 A general model  

Mechanical-diffusion interaction of coating material in situ can be studied using a simple 

coating/substrate bi-material structure [46, 63, 72-73]. Many authors have used this 

‘curvature method’, probably the oldest method for measuring internal stress of coatings and 

the wide applicability and accuracy of this approach has shown it to be very powerful [70, 

74-79]. For a given coating/substrate system, the curvature method provides the internal 

stress, σf, as a function of curvature, δ, (Eq. (2-1)),  

 ( )f fσ δ= , (2-1) 
although there are various forms in terms of different hypothesis [70, 80-81]. 

When used for protective purposes, a thin layer of lacquer is usually cured on the surface of a 

substrate, usually wood. The resultant stress developed in the coating is then a result of 

competition between the response to environmental changes (due to, for example, thermal 

expansion, hygroscopic expansion or volume and material property changes owing to ageing) 

and the constraints of the substrate (which itself might deform in some manner) as shown in 

Figure 2-18. In equilibrium, the spatial variation of stresses in a thin layer can be 

approximated as [82] 
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where σx and σy are normal stress components in the x and y directions respectively and σxy is 

the shear stress. 

 

Figure 2-18: Deflection of an initially flat substrate due to film shrinkage. 

 In order to close the equations, constitutive relations that connect the strain to the stress must 

be prescribed. These can be quite general, and in the case of polymeric materials, often time 

dependent, such that the stress is given by  

  ( ,  / )f d dtσ ε ε= , (2-4) 
where the exact functional relationship needs to be determined. Polymeric materials are 

usually able to absorb moisture, and will change dimensions accordingly. In this case the 

hygroscopic strain developed as a function of this moisture ingress is given by 

 h Cε β= , (2-5) 
where εh, β and C are the hygroscopic strain, coefficient of hygroscopic expansion and 

moisture concentration, respectively [83], where β needs to be determined experimentally. 

Finally, the boundary conditions that constrain the system need to be specified and these are 

problem specific. 
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Since the moisture can directly affect the strain in the material, a stress analysis will need to 

be coupled with a model of the moisture absorption and diffusion. In general, diffusion is 

described by a combination of a continuity equation [84] 

 0f
t
ϕ∂

+ ∇ ⋅ =
∂

, (2-6) 

where φ, f, t and   are the density of diffusing material, flux, time and divergence, 

respectively, and a diffusive constitutive law  

 [ ]D
t
ϕ

ϕ
∂

= ∇ ⋅ ⋅∇
∂

, (2-7) 

where D is the diffusion coefficient. 

It can be seen, therefore, that in order to develop a model for the development of stresses in 

urushi that are a consequence of environmental changes, a hygro-mechanical definition of 

material, which is literaturally surveyed in the following sections, is required.  

2.4.3 Modelling diffusion behaviour 

Water transportation in organic coatings is after considered to occur via diffusion according 

to Fick’s law [85-89]. Fick’s first law is based on the hypothesis that the rate of transfer of a 

diffusing substance through a unit area of a section is proportional to the concentration 

gradient measured normal to the section. Fick’s first law of diffusion in one dimension is 

given by 

 
CF D
x

∂
= −

∂
, (2-8) 

where F is the rate of transfer per unit area, C is the concentration of diffusing substance, x is 

the space coordinate measured normal to the section and D is the diffusion coefficient. This 

constitutive relation can then be combined with conservation of mass to derive Fick’s second 

law: 

 
2

2

C CD
t x

∂ ∂
=

∂ ∂
. (2-9) 

Defining C(t) and C(∞) as the concentration at time t and the concentration at saturation, 

respectively, the solution to Eq. (2-9) for the case of a plane sheet with a thickness of 2l in the 

region x (–l < x < l) is given by [90] 
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. 

(2-10) 

Eq. (2-10) can be integrated with respect to x to determine the total mass of the diffusing 

substance at any time using [90]: 

 
 

(2-11) 

where M(t) indicates the mass of the total amount of penetrant absorbed at time t and M(∞) is 

the mass at saturation. 

2.4.4 Models of absorption isotherm  

A number of absorption isotherm models have been proposed in the literature. Henry’s law 

[91-92] proposes that the weight gain of different materials at equilibrium is linearly related 

to water activities (relative humidity), i.e.  

 ( )
100
RHM a  ∞ =  

 
, (2-12) 

where the M(∞) is the mass of weight gain at saturation, and a is a constant.  

An improvement on Henry’s law is the Flory-Huggins model [93-94], which takes into 

account the large difference in size between the polymer and penetrant molecules and 

interactions between the two. The Flory-Huggins [95-97] model is described mathematically 

as 

 2ln ln 1 d
d d p d p

p

a V V Vυ
χ

υ

 
= + − +  

 
, (2-13) 

where the subscripts ‘d’ and ‘p’ refer to the diluent and polymer respectively, V is volume 

fraction, υ is molar volume, a is diluent activity and χd is a polymer-penetrant interaction 

term. As the molar volume of the polymer is generally much greater than that of the penetrant, 

Eq. (2-13) can be simplified to 

 2ln lnd d p d pa V V Vχ= + + . (2-14) 

The moisture content obtained from experiments is mass fraction, therefore Eq. (2-14) needs 

to be converted using 
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where ρ is density. Eq. (2-14) is then written as 
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. (2-17) 

The absorption isotherm for the diffusion of water in organic materials is also commonly 

modelled using the Guggenheim-Anderson-de-Boer (GAB) equation： 

 ( )
(1 )(1 )

m w

w w w

M ACaM
Aa Aa ACa

∞ =
− − +

, (2-18) 

where ( )M ∞  is the weight gain, wa is water activity, which is equal to RH/100, mM  is the 

monolayer moisture content, and A and C are constants related to the heat of sorption [98-99]. 

2.4.5 Hygroscopic expansion 

To quantify the swelling behaviour of absorbent material, a material property called the 

coefficient of hygroscopic expansion (CHE) is introduced to determine the strain distribution 

for a given change of moisture distribution.  

Dimensional change is considered to be the most important consequence of moisture sorption 

by the wood and lacquer in lacquerware [42]. The swelling behaviour of urushi lacquer film 

as a function of moisture content was determined by Bratasz et al. [42]. The urushi film 

samples were categorised into two groups, urushi samples exposed to light and those 

sheltered from light. It was found that both exposed and unexposed samples undergo a 

considerable dimensional response (up to 1.6% strain for exposed samples and 1% strain for 

unexposed samples) to the absorption of moisture when the film experiences changes in 

humidity, especially in high humidity conditions. 
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2.4.6 Mechanical characterisation of coating materials  

It has been observed that many polymers have time dependent elastic and plastic responses to 

loading [100]. As a natural polymeric material, urushi film has been reported to behave 

viscoelastically [10, 18, 27], but to date no reliable mechanical-diffusion, time dependent 

material model has been applied and validated for urushi [46] despite temporal effects being 

reported as a major cause of damage to urushi films [40, 101]. As a result, obtaining an 

appropriate material model for characterising the mechanical properties is of great 

importance prior to modelling the mechanical response of urushi film to changes in relative 

humidity. 

2.4.6.1 Phenomenological mechanical models  

The classical linear modelling approach is to consider that mechanical behaviour can be 

represented by a combination of simple mechanical components (springs, dashpots, sliders) 

connected in parallel and in series. In linear viscoelasticity, materials are represented by 

combinations of Hookean springs (Figure 2-19(a)), which provide the elastic restorative force 

component, and Newtonian dashpots (Figure 2-19(b)), which provide the viscous damping 

components. Various mechanical analogues of these mechanical models are summarised in 

many polymer texts [43, 102-106].  

 

Figure 2-19: Basic elements: Hookean springs (a) and Newtonian dashpots (b). 
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For a Hookean spring, strain is proportional to the stress as given by Hooke’s law, expressed 

as 

 Eσ ε= . (2-19) 
For a Newtonian dashpot, stress is proportional to strain rate, which can be expressed as  

 σ ηε= & .  (2-20) 
There are 3 basic models that are commonly used to represent linear viscoelastic properties of 

a polymeric material using springs and dashpots. These are the Maxwell model, the Kelvin 

model and the standard linear solid model (Figure 2-20(a-c)) [107].  

 

 

Figure 2-20: Single one-dimensional models of viscoelasticity [107].  
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2.4.6.1.1 Maxwell model 

For a Maxwell model, with a spring and a dashpot in series, the total strain is given by 

 s dε ε ε= + , (2-21) 
where s and d refer to spring and dashpot respectively. 

Differentiating Eq.(2-21) with respect to time, we can obtain 

 s d E
σ σ

ε ε ε
η

= + = +
&& & &  (2-22) 

and 

 σ λσ ηε+ = && , (2-23) 
where 

 Eλ η=  (2-24) 

For a creep process whereσ is a constant, the constitutive equation becomes 

 
d
dt
ε σ

η
= . (2-25) 

which indicates that the strain changes linearly over time. This rarely observed in creep 

experiments except for secondary creep for some materials, suggesting that the Maxwell 

model is unsuitable for describing creep process [108]. 

 

For a stress relaxation process, where strain is a constant, i.e.  

 0d
dt
ε

= , (2-26) 

the constitutive equation can be written as  

 
1 0d
E dt

σ σ
η

+ = . (2-27) 

Integrating this equation with respect to time, we can obtain,  

 / /( ) Et t
o ot e eη τσ ε ε− −= = , (2-28) 
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and relaxation modulus  

 /( ) tE t Ee τ−= , (2-29) 
where  

 / Eτ η=  (2-30) 
and τ is called retardation time.  

The creep and relaxation responses of Maxwell model are presented in Figure 2-21: 

 

Figure 2-21: (a) Creep and (b) stress relaxation response of the Maxwell model. 

2.4.6.1.2 The Kelvin model 

Kelvin model is built up of a spring and a dashpot in parallel as shown in Figure 2-20(b). For 

a creep process, the stress is given by 

 
dE
dt
ε

σ ε η= + . (2-31) 

Integrating with respect of time, the constitutive equation we obtain is, 

 ( ) 1 expo Et t
E

σ
ε

η
  −

= −  
  

, (2-32) 

where σ0 is creep stress. 

The creep compliance J(t) is given by 

σ 

ε σ 
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1( ) 1 exp EJ t t
E η

  −
= −  

  
. (2-33) 

For stress relaxation, where ε is a constant, the constitutive equation becomes,  

 Eσ ε= . (2-34) 
There is no time-dependent stress relaxation for a Kelvin unit according to Eq. (2-34). 

The creep and relaxation responses of a Kelvin model, according to constitutive Eq. (2-32) 

and Eq. (2-34), are illustrated in Figure 2-22. 

 

Figure 2-22: Creep according to Kelvin model. 

2.4.6.1.3 Standard Linear Solid (SLS) model 

One can construct a 3-element model made up of a linear spring in series with a Kelvin 

model. This is known as the standard linear solid model. 

The response of a Kelvin model and linear spring can be expressed as 

 1 1Eσ ε= , (2-35) 
and  

 2 2K KEσ ε η ε= + & . (2-36) 

where ε1 is the strain of the spring E1 and εK is the strain of the Kelvin model in series with 

the spring E1.  

Using Laplace transformation, Eq. (2-36) can be transformed to  
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 1 2 2 1 2 1 2( )E E E E Eσ η σ ε η ε+ + = + && . (2-37) 
For a creep phase, the constitutive equation is then  

 ( )/ /0
2

1

( ) 1 t tt e eλ λε
ε λ ξ

ξ
− − = − +  , (2-38) 

where, 

 1 2
1

2 1

 E
E E

η
ξ =

+
 (2-39) 

 2
2

2 1E E
η

ξ =
+

 (2-40) 

 2

2E
ηλ =  (2-41) 

and ε0 is the initial strain when the SLS model is subject to an abrupt stress σ0. 

According to this constitutive equation, the model starts to creep at  

 0
0

1E
σ

ε = , (2-42) 

and the strain asymptotically approaches,  

 0( )
E
σ

ε ε∞
∞

= ∞ = , (2-43) 

where  

 2 1

2 1

E EE
E E∞ =

+
. (2-44) 

For a relaxation process, we have 

 ( ) '' //
0 0( ) 1

ttt E e e
λλσ ε σ

−−
∞= − + , (2-45) 

where 

 ' 2

2 1E E
η

λ =
+

 (2-46) 

This indicates the stress asymptotically approaches 

 0( )
E
ε

σ σ∞
∞

= ∞ = . (2-47) 
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The creep and relaxation response of a SLS model is presented in Figure 2-23. 

 

Figure 2-23: Creep (a) and relaxation (b) curves for SLS model. 

2.4.6.1.4 Burger’s model 

One of the most widely used mechanical viscoelastic models is Burger’s model due to its 

simplicity in structure and capability of representing different stages of creep [109-110]. As 

shown in Figure 2-24, it is composed of a Maxwell and a Kelvin unit connected in series, 

Burger’s model is able to capture all the components of a creep curve with a Maxwell spring 

defining instantaneous elastic strain ε1, a Kelvin unit defining transient strain ε2 and a 

Maxwell dashpot defining steady strain ε3. The creep behaviour of Burger’s model can be 

finally obtained following the similar procedures as previously given for Maxwell and Kelvin 

elements [111-113]. The creep function for Burger’s model is: 

 1 2 3
1 2 1

1 1 1 expc
t t

E E
ε ε ε ε σ

τ η
  −  = + + = + − +   

   
, (2-48) 

where  

 2 2Eτ η= . (2-49) 
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Figure 2-24: Creep response for Burger’s model and its mechanical analogue. 

2.4.6.1.5 Generalised models 

Most polymers have a spectrum of retardation times due to the multiplicity of their structural 

units and the complexity of molecular movements. Therefore it is often found that having a 

single Maxwell or Kelvin element in a viscoelastic model is not sufficient to represent the 

mechanical behaviour of polymeric materials. Generalised models are proposed to deal with 

this situation [43, 102]. There are two types of generalised mechanical model of particular 

interest, generalised Maxwell model and generalised Kelvin model.  

It is possible to construct several Maxwell models in parallel with a linear spring (Figure 

2-25).  
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Figure 2-25: A generalised Maxwell model. 

The total strain and stress of the generalised Maxwell model are,  

 iε ε=  (2-50) 
and  

 
1

N

i
i

σ σ
=

= ∑ . (2-51) 

In a generalised Maxwell model, it is not assumed that the total stress is shared equally by 

every element. By analogy with Eq. (2-23),  

 1 1( ) ( ) ( )i i t i it t E dε ε λ σ− −= = +& & . (2-52) 
The total stress is the sum of the stress in each element, 

 1 1

1
( ) ( ) ( )

N

i t i
i

t E d tσ λ ε− −

=

= +∑ & , (2-53) 

where i i iEλ η=  and /t td d d=  subsequently, the relaxation modulus function can be 

expressed as [108] 

 
1

( ) exp( )
N

i
i

E t E t λ
=

= −∑ . (2-54) 
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Figure 2-26: A generalised Kelvin model. 

Figure 2-26 shows a generalised Kelvin model built up by connecting a number of Kelvin 

elements in series. In this model, the stress in each element is the same. With reference to Eq. 

(2-22),  

 ( ) (1 ) ( )i t i it E d tσ λ ε= +  (2-55) 
and  

 1 1

1
( ) ( ) (1 )

i

N

t i
i

t t E dε σ λ− −

=

= +∑  (2-56) 

where, i i iEλ η=  and the creep function of the generalised Kelvin model can be written as 

[108] 

 
1

1( ) 1 exp
N

i

i i

EJ t t
E η=

  −
= −  

  
∑ . (2-57) 

Phenomenological models for describing plastic or viscoplastic properties of materials can be 

described by introducing a slider element which is a rigid body until a yield stress is reached 

[111, 114-116]. An example of this approach, is with the mechanical analogue shown in 

Figure 2-27, has been adopted in the stress analysis of adhesive joints [116]. However, the 

word ‘plastic’ is best used to denote a type of mechanical behaviour associated with 

unrecovered deformation or flow and is misleading when used in a generic way to refer to 

polymers in general [43]. As a result, some researchers consider a viscoelastic solid or fluid 

model to represent mechanical behaviour of polymers with or without recoverable 

deformation [117-119]. The difference between a solid model and a fluid model in their 
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construction is that the former has a dashpot in series (e.g. Burger’s model in Figure 2-24) 

while the latter does not.  

 
Figure 2-27: A five-parameter viscoelastic-viscoplastic model. 

2.4.6.2 Yield criteria and generalised plasticity models 

The stress-strain curves of polymers often indicate elastic and plastic regions, although they 

may be not as distinct as in a typical metal. This behaviour results in the introduction of a 

yield stress criteria, which is the measured stress level that separates the elastic and plastic 

behaviour of the material, and is usually obtained from uniaxial tests in laboratory, even 

though stresses in a structure are multi-axial. To determine a material’s yield stress, various 

theoretical criteria have been suggested for illustrating the yield behaviour of polymers under 

multi-axial stress conditions. These include the von Mises yield criterion, the Tresca yield 

criterion, the Mohr-Coulomb criterion and the Ducker-Prager criterion. It is worth noting here 

that the material this literature review focuses on is assumed to be isotropic (uniform 

properties in all directions). 

In continuum plasticity theory the onset and direction of non-recoverable (inelastic) strains 

for an isotropic, non-porous material is defined by introducing a yield surface, through a yield 

function, FY, given by 

 ( , , ) 0,YF f Hασ θ= =  (2-58) 
where σ  is yield stress, θ is temperature and Hα are a set of hardening parameters to define 

the hardening behaviour. The subscript α is introduced simply to indicate that there may be 

several hardening parameters. When the material is flowing inelastically, at FY > 0, the 

inelastic part of the deformation is defined by a flow rule which can be written as  
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 pl gd dε λ
σ
∂

=
∂

, (2-59) 

where g  is the flow potential, plε  is the equivalent plastic strain and dλ is a scalar defining 

the equivalent plastic strain increment which is determined in a different way for time 

dependent and time independent material models [120-121]. 

The von Mises yield criterion [121], sometimes called the second deviatoric stress invariant 

(J2) flow theory or J2-plasticity, was developed for metals but can also be used for some 

polymeric materials. The von Mises yield function is given by 

 0 ( , )pl
YF q σ ε θ= −  (2-60) 

where q is the von Mises equivalent stress, a scalar stress value that can be obtained from the 

stress tensor and is defined to predict yielding in materials. 0σ is the material uniaxial tensile 

stress corresponding to the equivalent plastic strain εpl
 . The von Mises equivalent stress is 

defined as  

 ( ) ( ) ( )2 2 2
1 2 2 3 1 3

2
33

2 2eq ij jiJ s s
σ σ σ σ σ σ

σ
− + − + −

= = = , (2-61) 

where sij are the components of the stress deviator tensor σdev. 

According to the definition of the von Mises yield criterion, the von-Mises stress is only a 

function of the deviatoric stress (seen in Eq. (2-61)). As a result, von Mises plasticity model 

is not able to capture the commonly observed polymeric hydrostatic stress sensitivity of 

yielding. A more advanced model, the Drucker-Prager plasticity model, which is 

hydrostatically dependent and accounts for hydrostatic sensitivity, has been proposed for 

polymers [120, 122-123]. It is an isotropic elasto-plastic model based on a yield function  

 ( )Y YF f σ τ= −  (2-62) 
with the pressure-dependent equivalent stress 

 1 2( )f I Jσ α= + . (2-63) 
σ and τY in Eq. (2-62) are the stress tensor and yield stress under pure shear load, respectively. 

I1 and J2 in Eq. (2-63) are the first invariant and second deviatoric invariant of the stress 

tensor. α is the friction angle, a parameter that controls the influence of the pressure on the 

yield limit. 

Drucker-Prager models have been popular historically in the geotechnical engineering field 

[81, 124-125]. However, more recently they have also been found to be useful for the 
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modelling of some polymeric materials [120, 126-127], especially for capturing hydrostatic 

stress sensitivity [120, 127].  

Extensions of the original Drucker-Prager model are commonly used [125] which offering 

differently shaped yield surfaces in the meridional plane, p-q plane (hydrostatic stress p and 

von-Mises stress q plane), including a linear form, a hyperbolic form and a general exponent 

form (shown in Figure 2-28).  

The yield function of a linear form of Ducker-Prager model is defined as: 

 tanYF t p dβ ′= − − , (2-64) 
where β’ and d are material parameters. t is a measurement of the degree of the deviation of 

deviatoric stress and defined as:  

 
3

1 11 1
2
q rt

k k q

   = + − +   
    

, (2-65) 

where k is a material parameter that may depend on temperature, and other predefined fields. 

The value of r/q is 1 in uniaxial tension and -1 in uniaxial compression. 

The hyperbolic form is defined as  

 2 2 '
0 tanF l q p dβ= + − − , (2-66) 

where d’is the d in a hyperbolic form l0 is defined as: 

 ' '
0 00

tantl d p dβ= − − . (2-67) 

and where '

0
d is the initial value of d’ and 

0tp  is the initial average tensile strength. 

The exponent form of Drucker-Prager model is defined as: 

 b
Y tF aq p p= − −  (2-68) 

where a and b are material constant parameter, pt is a hardening parameter. 
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Figure 2-28: Yield criteria in the meridional plane in a linear (a), hyperbolic (b) and a 
exponent (c) form of Drucker-Prager. 

The Drucker-Prager model has a significant advantage over the von-Mises model by 

introducing hydrostatic sensitivity. However, neither of these two models is able to capture 

the strain rate dependency of polymeric materials. To overcome this shortage, these two 

models have been extended to include rate-dependent plasticity by introducing a rate-

dependent yield strength (σ0 and pt) in the material model in a number of ways, including 

simple analytical expressions for the yield functions in terms of rate or the specification of a 

series of hardening curves for various plastic strain rates [120]. 

In materials science, creep is the tendency of a solid material to slowly move or deform 

permanently under the influence of stresses. It occurs as a result of long term exposure to 

high levels of stress that are below the yield strength of the material. Creep is more severe in 

materials that are subjected to heat for long periods, and near to their melting point. Since 
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these processes tend to soften the material they counteract the strain hardening produced by 

plastic deformation. Creep behaviour resembles viscoelasticity since the resulting strain at 

constant applied stress is a function of time. However, in contrast with solid viscoelastic 

behaviour, permanent deformation remains following creep. As a result, creep behaviour in 

some texts, especially for metal creep, is also frequently known as viscoplasticity [128-129].  

2.4.6.3 Other advanced models  

The classical phenomenological viscoelastic models are linear models and do not represent 

the behaviour of most polymeric materials very well. Efforts have been put into modifying 

these linear models to make them able to represent polymeric nonlinear viscoelastic 

behaviour [44-45, 111, 118, 130]. This modification can be achieved either by specifying 

stress-dependent model parameters, such as mechanical constants [118] and retardation times 

[130], or by multiplying constitutive functions by a stress dependent function [44-45, 111]. 

These modified viscoelastic models manage to represent nonlinear viscoelasticity, but fail to 

capture elastic-plastic behaviour. One of the best viscoelastoplastic models to date is 

Schapery’s macroscopic model based on thermodynamically consistent theory [131]. It has 

been successfully applied in modelling non-linear viscoelastic viscoplastic behaviour of 

synthetic fibres by Chailleux and Davies [132] and FEA of adhesively bonded composite 

joints by Roy and Reddy [133]. Schapery’s model provides good rate-dependency, allows 

full recovery and non-recoverable deformation. 

An advanced form of viscoplastic modelling is the overstress model or unified theory model. 

The main difference between classical and unified plasticity theory is that classical theory 

defines plastic behaviour using a yield surface. However unified theories generally generate 

inelastic strains at all times without using a yield surface, and as a result unified theories 

resemble power law creep [120, 134]. More general unified theory models that can produce 

time-dependent recovery have been proposed based on different inelastic flow laws [135-

138]. These models have been shown to fit experimental data reasonably well at the expense 

of the requirement of a large number of model parameters. 

2.5 Failure in coatings 

In order to achieve an efficient design of a coating system and conservation of 

coating/substrate structure, e.g. lacquer ware, the stress, deformation mechanisms and failure 
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modes of the coating needs to be well known. The failure mode of a coating/substrate 

structure can be categorised mainly into two types: coating-substrate interface failure and in-

film failure (entirely within the coating). The prediction of failure in a coating/substrate 

structure is of great importance in the design and conservation of coating/substrate 

applications. Several approaches have been developed to model joint failure and have 

achieved different degrees of success [139-150]. These approaches can be classified as the 

strength of materials method [139-140, 142, 144, 146-147, 150-151], the fracture mechanics 

method [141, 145, 149, 151] and the continuum damage modelling method [148]. 

2.5.1 Strength of materials methods 

This method is based on the strength of the materials, in which the stress or strain distribution 

in a coating/substrate structure is examined, and the structure is assumed to fail when the 

predicted stress or strain field exceeds a critical value. Some of the most popular strength of 

material methods is reviewed below. 

2.5.1.1 Maximum stress criteria 

The maximum stress criterion is commonly used in industry and is one of the most instinctive 

starting points for strength prediction in coating applications. The method involves 

determination of the maximum stress in the coating layer and failure is assumed when the 

stress at any point within the layer exceeds a critical value of stress. This approach allows for 

the varying stress distributions in the coating layer and the stresses are usually determined by 

non-linear FEA or closed form analysis. FEA methods are preferred because they are able to 

account for large displacement rotations that occur in some joints under load. This approach 

has been applied to thermal barrier coating (TBC) applications with considerable success 

[142, 144]. Agrawal et al [146] proposed a methodology to measure the in-situ ultimate shear 

strength of coating material on a substrate, and used this to create a tensile-film-cracking 

model for the interfacial failure prediction of a TiN coating/ AISI 304 stainless steel structure 

[139]. 

2.5.1.2 Maximum strain criteria 

The maximum strain criterion predicts that failure occurs in the multiaxial state of stress 

when the maximum principal normal strain becomes equal to or exceeds the maximum 

normal strain at the time of failure in a simple uniaxial stress test, using a specimen of the 
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same material [152]. This theory has been adopted to study the structural environment as a 

factor affecting coating failure of a typical aircraft coating system [150]. 

2.5.2 Fracture mechanics 

The fracture mechanics approach assumes that all materials contain flaws and that failure is 

by the propagation of flaws of a critical size. Fracture mechanics has been widely used to 

predict crack growth, fracture and failure in coating/substrate system [141, 145, 149, 151] 

and bi-material strip structures [153]. The main concepts of fracture mechanics are the energy 

balance method pioneered by Griffith [154] and the stress intensity factor concept developed 

by Irwin [155]. One of the fundamental principles of fracture mechanics is that the critical 

strain energy release rate, Gc (or Jc for non-linear fracture) and the critical stress intensity 

factor, KC, are material properties. Although the stress-intensity approach is widely used for 

the analysis of metals, it is more complicated to apply in adhesion and coating contexts, 

where constraint effects of the adherend on the adhesive layer make it difficult to define the 

stress distribution around the crack tip. Therefore, G, is frequently used as the governing 

fracture parameter in the analysis of bonded joints in preference to K. 

2.5.3 Continuum damage modelling 

The development of micro-structural damage in engineering materials can be effectively 

modelled using Continuum Damage Mechanics (CDM) [156]. CDM introduces a field 

variable to represent the damage in a continuum sense. This concept has been used to model 

the initiation and growth of cracks. Using the framework of CDM, processes of failure 

evolution at the microscopic level are introduced into mesoscopic considerations [148, 157]. 

This approach has also been applied to the failure prediction of a TBC structure, in which it 

was found that the homogenous CDM model was invalid due to material instability. Thus, a 

sensitivity analysis was performed to identify a criterion to determine the validity of the 

homogenous CDM model. It was found that there exists a critical value of damage state 

variable beyond which the material becomes unstable [142]. 

2.6 Summary 

It is clear that the behaviour of the two coating materials considered in this research is 

complex and highly influenced by water transportation and UV exposure. Urushi and PU are 

typical viscoelastic materials with significant changes in their mechanical behaviour when 
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subjected to changes in moisture content and UV illumination. Literature on neither 

environmentally influenced mechanical properties nor material models for both materials are 

sufficient at present due to lack of research on these two materials. In order to formulate a 

predictive mechanical model for urushi and PU that includes constitutive relations, a 

comprehensive analysis of the response of the coatings to changes in environmental 

conditions is still required in order to determine the precise nature of the relationship between 

stress, strain, moisture content and thermal and UV conditioning. Moreover, as the ultimate 

cause for the formation of surface micro-cracks is the surface stress [42, 56], detailed 

measurements of the dependence of film stress with environmental conditions are required. 
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Chapter 3 Experimental Methods 

3.1 Introduction 

Before any predictive model can be applied, material properties must be obtained, usually by 

means of experiment. In some cases the material model to be used is known beforehand, in 

which case it is a fairly straightforward procedure to carry out the required experimental tests 

to determine the material constants. In other cases, such as with urushi, it is necessary to 

carry out initial experiments to characterise the behaviour of the material over the range of 

conditions to be modelled. An appropriate material law can then be selected (or developed if 

such a law doesn’t exist) and further tests carried out to determine the required material 

constants. This chapter describes the methods, equipment and procedures used during the 

experimental programme carried out in this research. A number of investigations were 

undertaken to generate the following material properties for the PU lacquer and urushi film: 

• Coefficient of hygroscopic expansion; 

• Diffusion coefficient; 

• Absorption isotherm. 

• Time-dependent mechanical properties. 

Other material properties were derived from data available in the literature. 

3.2 Control of environment 

The material properties of PU lacquer and urushi films have a complex dependence on 

environmental conditions according to the surveyed literature discussed in Chapter 2. Also, 

sample preparation of PU lacquer and urushi requires specified environmental conditions. In 

this context, a precise control of environmental conditions is a prerequisite to both the design 

and performance of any experimental work in this project. The three main factors in defining 

environmental conditions are solar radiation (mainly UV irradiation), temperature, and water 

(moisture), which are all controlled during the experimental work in this project.  
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3.2.1 Humidity control 

3.2.1.1 Salt solution method 

The humidity inside sealed containers can be controlled by saturated salt solution inside [158-

160]. Table 3-1 shows saturated salt solutions and the relative humidities they can maintain 

inside a sealed container under 23±2℃ with error of fluctuation during one day. 

Table 3-1: Relative humidities maintained by different salt solutions on saturation inside a 
container [158]. 

MgCl2 K2CO3 NaBr NaCl KCl K2S 

33.8±0.8% RH 43.2±0.6% RH 58.0±1.2% RH 75.0±0.9% RH 85..0±1.2% RH 95±1.8% RH 

 

3.2.1.2 Dynamic control method 

Saturated salt solutions can be used to be able help maintain a specific relative humidity, 

however, they require a sealed container with solution inside, which is difficult to attach to 

testing devices (e.g. tensile testers) and cannot generate a dynamic varying relative humidity, 

if required. To overcome these limitations, a dynamic control method was used, as shown in 

Figure 3-1. The RH in the chamber can be controlled by changing the moisture content of a 

stream of air blown through the chamber. The air moisture content can be increased by using 

a humidifier which consists of a small fan forcing air through a wet pad. The humidifier is 

connected to a Humidity Controller which switches off the humidifier each time the RH 

exceeds the desired RH value and switches on the cooler when the RH moves below the 

desired RH value. With this configuration, the tolerance in the RH was found to be less than 

± 1%. 
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Figure 3-1: Schematic illustration of the chambers (manufactured in Wolfson School, 
Loughborough University. UK. This is only an illustration to demonstrate the mechanism the 

control system, with location of components differs in terms of where a chamber is used). 

3.2.2 Temperature control  

In the V&A Museum, or any other environment where urushi lacquerwares are in service or 

for display, the temperature normally does not vary significantly. As a result, the temperature 

is considered to be a constant value and is maintained at a constant level that is similar to the 

in-situ temperature in this project. The temperature controlling system has three main 

components: 

1- Input:  

The input is a platinum thermo-couple (PT100) to measure the temperature inside the 

chamber.  

2- Controller: 

The controller in Figure 3-2 monitors the input from the PT100 and compares it with the 

setting point or the desired temperature setting. As required, it increases the temperature by 

switching on the heating element. It is provided with an on/off and proportional with integral 

and derivative (PID) control, where PID is used when precise control is required. 

3- Output: 

RH sensor 

RH controller 

Chamber 

Humidifier Humidified air 
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The output is the part of the controller that is used for turning the heating element on and off. 

The output inside the controller is a Solid State Relay.  

 

 

Figure 3-2: Temperature controller. 

This approach allowed ones to control RH and temperature to within ±1% RH and ±1℃, 

respectively.  

Using this dynamic temperature controlling technique, the environmental chamber shown in 

Figure 3-1 can be extended to achieve a dynamic combined environmental control in both 

temperature and humidity, as shown in Figure 3-3. 

 
Figure 3-3: Schematic illustration of the controlled environment chamber used to cure urushi 

thin films and to maintain a constant environment during testing. 
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3.2.3 UV exposure 

In order to produce films that were UV aged a subset of the samples were exposed to UV 

radiation. The UV radiation exposure history of the Mazarin Chest is unknown and therefore 

any attempt to try to replicate its accumulated ageing will be flawed, Hence rather than 

replicate the damage to the lacquer exactly, It was attempted to produce damage of a more 

general kind to understand the broad changes in behaviour that occur during UV ageing. To 

induce UV damage, a Q-Sun environmental test chamber (Q-SUN Xe-1 manufactured by Q-

Lab Corporation, Cleveland, Ohio USA.), equipped with a Xenon arc source, into which the 

film was exposed to 340 nm, 0.7 W.m-2 UV radiation for 400 hours. The only clear data on 

the exposure of the chest to light is that during the period between 1986 to 1998 it was 

displayed at the Toshiba Gallery in the V&A, London, where the illuminance was 80 lux, 

with UV levels less than 5 µW.lumen-1, resulting in an energy density of 0.0004 W.m-2. 

Considering 52 weeks per year, 5 days per week and 8 hours per day display, this results in a 

total UV exposure of about 36 kJ.m-2 [5]. As a comparison, one can estimate the average 

(accounting for seasonal and daily variations) exposure to 340 nm UV radiation due to 

sunlight as 0.08 W.m-2. In order to place the tests into context, It can be calculated that the 

test protocol is equivalent to an average daylight exposure of 0.4 years or an exposure within 

the Toshiba gallery of 80 years (assuming 80 lux at 340 nm, though the exposure at this 

wavelength is likely to be much lower in reality) [5]. The same technique and equipment 

were applied to artificially age the PU lacquer samples to study the effect of UV exposure on 

material behaviour through mechanical tests for PU film samples. 

3.3 Sample preparation 

3.3.1 PU lacquer  

The material studied was a thermoplastic PU lacquer, No.8 gloss PU lacquer, manufactured 

by John Myland Ltd, London, UK. It is a one component wood finish lacquer. The samples 

were made by applying 50-100 grams of lacquer resin onto a glass substrate with a dimension 

of 260×260 mm2, which had been surface treated by acetone for better adhesion and placed 

on a level plane. After curing at room conditions (50±5% RH and 23±2°C) for 48 hours, the 

dry sample was peeled off and put into a fan oven with a setting temperature of 40°C for 2 

weeks of further curing, then stored in a desiccator at room temperature. 
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3.3.2 Urushi 

The preparation of urushi samples involved several stages, each with the end point in mind of 

producing consistent thin layers. The stages are as follows: 

1. Filtration. 

2. Mixing. 

3. Glass substrate preparation. 

4. Coating. 

5. Curing. 

In the following sections these processes are described in detail.  

3.3.2.1 Filtration 

The urushi lacquer used in this study was Kijiro urushi, product of Wantanabe Syoten Co., 

Tokyo, Japan. As urushi is a natural product, it can often contain unwanted objects and 

particles. The first stage, therefore, in urushi preparation is filtering to eliminate all 

impurities. Urushi was filtered, following the traditional Japanese filtration process of using 

Rayon sheets, by wrapping and twisting it as shown in Figure 3-4, repeating seven times with 

three Rayon sheets each time. 

 

Figure 3-4: Traditional Japanese filtration method. 
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3.3.2.2 Mixing process 

Raw urushi is a non-stable water-in-oil type emulsion. The water soluble polysaccharides in 

the raw urushi can often aggregate during drying [161] and therefore, the urushi was mixed 

and homogenised for about 3 minutes to avoid aggregate formation. Gentle manual mixing is 

required to avoid bubble production. 

3.3.2.3 Glass substrate 

In order to measure depth averaged stresses using the curvature measurement method, it is 

necessary to deposit layers of known thickness on to a substrate. Dr Adel Elmahdy obtained 

these urushi-substrate samples by casting a small amount of urushi on to a BK-7 glass 

substrate of thickness 190±5 µm and 22 mm in diameter. Prior to applying urushi, the glass 

substrate was tested by Dr Elmahdy to find a substrate with minimum bending. The test was 

performed using phase shifting interferometry [5]. 

3.3.2.4 Coating process 

Generally, in lacquerware artefacts, plastic or wooden spatulas are used to spread a thin layer 

of urushi over a wooden object. It is found that it was difficult to obtain a homogenously thin 

layer of urushi on a small size glass substrate in a controlled fashion using this technique and 

opted to use the more reliable spin coating technique instead [162]. The details of 

incorporating this technique into coating process were presented in Dr Elmahdy’s thesis [5]. 

3.3.2.5 Curing process 

As urushi cures only in the presence of air and high relative humidity, a controlled humidity 

chamber was constructed for curing purposes (Figure 3-3). The appropriate RH was 

maintained at a constant level in the chamber using equipment described in section 3.2. 

Urushi films with a thickness of around 20 μm were obtained by spin coating at 3000 rpm for 

90 s at room temperature, using a spin coater built by Dr Elmahdy. The back surface of the 

glass substrate was coated with nickel chromate in a vacuum deposition chamber before 

coating. Immediately after spin coating, the films were cured at 75±1% RH. For films with a 

thickness of around 20 µm, it takes at least 3 days for them to fully cure [5]. The film 

thickness was measured by focusing a microscope (BX-60 Olympus with 50x objective) on 
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the glass/air and the urushi/air interfaces and measuring the distance required to refocus. The 

manufactured films had a thickness of 21 μm±2 μm. 

3.4 Measurement of hygroscopic properties 

The hygroscopic behaviour of coatings are quantitatively characterised by measuring material 

constants such as diffusion coefficient, coefficient of hygroscopic expansion and absorption 

isotherm. The mathematical treatments and experimental techniques used to obtain these 

constants will be summarised in the following sections. 

3.4.1 Measurement of diffusion coefficient  

3.4.1.1 PU lacquer 

Water absorption and desorption tests were performed under 6 humidities, using the salt 

solutions listed in Table 3-1, for the measurement of the cyclic water absorption/desorption 

behaviour of the PU lacquer samples. Eighteen samples, measuring 200×20×0.32 mm3 were 

used in the experiments. Samples with a thickness of 0.44 mm were also manufactured, to 

investigate the effect of thickness on the diffusion coefficient. Before the first cycle of 

absorption, the samples were stored in a desiccator with a RH of 5.6% until the weight 

change was less than 0.1% per week. Six 2-litre flasks with hooks on their stoppers were used 

to store and moisten PU lacquer film samples which were hooked onto the stoppers to avoid 

immersion in the salt solutions in the flasks. During the experiment the weight of samples 

was measured at regular intervals using an electronic balance with a resolution of 0.1 mg, and 

their percentage increase or decrease rate in weight obtained from 

 2 1

1

( ) 100m mM t
m
−

= ×  (3-1) 

where m1 is the mass of the specimen after drying and m2 is the mass of the specimen at 

specified time intervals. In this experiment, 3 repeat samples were used for each test. The 

average values of the 3 tests were then used to plot the diffusion curve.  

3.4.1.2 Urushi 

The rate of moisture absorption was characterised by gravimetric tests in which the mass of a 

sample was monitored as a function of time following a change in RH. A digital balance 

HA180 (A&D Instruments Ltd) with a precision of 0.1 mg was used for all the weight 
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measurements. Three samples of dimensions 70 mm×50 mm were prepared with a thickness 

of 0.06-0.08 mm. Samples were allowed to reach a uniform moisture distribution by storing 

them in a curing chamber at 30% RH until the weight change was less than 0.1% per week. 

After that the samples’ environment was changed to 40%, 50% and then to 60% RH, where 

each humidity was maintained for 16 hours and the samples’ mass was measured every 30 

min. Finally, the samples were dried at 100°C for 27 hours to remove the moisture, and the 

dry weight obtained.  

3.4.2 Measurement of hygroscopic expansion 

3.4.2.1 PU lacquer  

The coefficient of hygroscopic expansion (CHE), β, is defined as Eq. 14:  

 
L

L M
β

∆
=

∆
 (3-2) 

where L is the length of a workpiece having a uniform hygroscopic strain, ∆L is linear 

deformation due to a change in moisture and ∆M is absorbed/released moisture. β determines 

the swelling behaviour of a material as a function of M. The expansion of the PU lacquer 

samples due to the uptake of moisture was measured. The samples were marked at regular 

intervals along their length, photographed and then subjected to a change of environmental 

humidity. The change in spacing was then determined by the taking of a second photograph 

and position measurement. The strain can then be determined from a plot of ∆xi (the change 

in position of the ith mark) against xi (the position of its mark). An example of determining 

hygroscopic strain of a PU lacquer film sample from the gradient of this plot is shown in 

Figure 3-5. 
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Figure 3-5: Plot of ∆x against xi., for measurement of hygroscopic strain of a dry PU lacquer 
film sample after saturation under 95% RH. 

3.4.2.2 Urushi 

To obtain the coefficient of hygroscopic expansion for urushi film, Samples with lateral 

dimensions of 120×10 mm2 were manufactured. These were then stored in a desiccator until 

the weight change was less than 0.1% per week. The dry samples were marked using a 0.5 

mm marker pen and photographed, after which they were placed into sealed containers with a 

range of relative humidities, controlled by the salt solutions presented in Table 3-1. Once 

saturation had been achieved (2 days after conditioned to make sure complete saturation), the 

sample was photographed once again and the change in the sample dimensions measured. 

The measurement repeated three times for each humidify condition, and the average value of 

extension ratios was used to calculate hygroscopic strain. This was repeated for a number of 

relative humidities to identify any variance in β with moisture content. 

3.4.3 Measurement of absorption isotherm 

The absorption isotherm was measured from observing relationships between equilibrium 

weight gain due to moisture uptake and relative humidity. This was obtained from the 

hygroscopic tests for measuring the coefficient of hygroscopic expansion. The absorption 

isotherm was modelled by fitting several absorption isotherm models to the experimental data 

for the third cycle of absorption data.  
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3.5 Mechanical properties characterisation 

As PU and urushi coatings are known to show viscoelastic behaviour (Chapter 2), the 

experimental test programme needed to include an investigation of time and rate dependent 

deformation under load. Effective tests for investigating this include isochronous stress-strain 

tests, creep tests (time dependent deformation under constant load), recovery tests (time 

dependent recovery of deformation on removal of load) and relaxation tests (time dependent 

relaxation of stress under constant displacement). To investigate the time dependent 

mechanical behaviour of PU lacquer and urushi coatings, constant displacement rate tensile 

tests, creep tensile tests and recovery tests were performed for both materials. The 

temperature was maintained at 23±2°C for all the tests. 

3.5.1 PU Lacquer 

In order to study viscoelastic behaviour and determine a constitutive model for the PU 

lacquer, uniaxial tensile tests at various displacement rates and constant load (creep) tests 

were performed. The PU lacquer samples for the mechanical tests were 0.3 mm thick, 10mm 

wide and 80mm long. These sets of samples were prepared: fresh samples, UV aged samples 

and moisture conditioned samples. The UV aged samples were aged using a Q-sun Xenon 

test chamber (Q-SUN Xe-1 manufactured by Q-Lab Corporation, Cleveland, Ohio, USA.), 

with UV irradiation (λ=340nm) with an intensity of 0.7 W/m2 for 2, 4, and 8 days. The 

samples for moisture conditioning were stored in humidity controlled flasks until saturation. 

The constant displacement rate tests and creep tests for the UV aged samples were carried out 

on with an Instron universal testing machine 5569 with a 5kN load cell. The constant loading 

displacement rate tests under controlled RH were performed on a Hounsfield desktop tensile 

machine and the creep tests under different RH were performed using a purpose-built creep 

rig installed in a humidity controlled chamber. In the creep tests, up to 4 stress levels were 

performed to study the effect of environmental changes on the viscoelastic behaviour of PU 

lacquer films. Young’s modulus was evaluated by taking stress-strain behaviour of the 

samples linear up to 0.2% strain.  

3.5.2 Urushi 

A series of mechanical tests were performed to identify the characteristic rheological 

properties of the urushi, including constant displacement rate, creep and recovery tests at 
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different relative humidities. Urushi film samples were prepared using the methodology 

described in Section 3.3 and for these tests, cut into rectangular strips 60×5 mm2 in size. The 

thickness of each strip was measured using a Mitutoyo digital micrometer, accurate to 1 μm, 

and found to take values be between 60 and 100 μm. The mechanical tests were performed 

using an Instron universal testing machine 5569 with a 100 N load cell at three relative 

humidities of 30%, 50% and 75% RH. Prior to each test, the films were kept for 1 week 

under constant RH (30%, 50% and 75%) to ensure that equilibrium had been reached. The 

gauge length of urushi samples between grips of the tester was 5 mm for all the tests. The 

displacement of the load cell of the tester was measured by a displacement sensor in the tester 

to measure how much a sample was stretched. Meanwhile, mechanical tests for urushi 

samples with various durations of UV exposure were also performed, with a constant 

humidity of 50% RH. For a given RH and duration of UV exposure, samples were tested at 

displacement rates of 0.002 mm/min, 0.02 mm/min and 0.2 mm/min which correspond to 

initial strain rates of 1.3 × 10-6 s-1, 1.3 × 10-5 s-1 and 1.3 × 10-4 s-1. These displacement rates 

were chosen to be relatively low to reflect the long timescales of straining likely to be 

experienced by urushi films in-service. The force and displacement values are recorded 

during the test and these data are converted to stress (σ ) and stain (ε). In creep tests, up to 4 

stress levels were performed to study the effect of environmentally changes on the 

viscoelastic behaviour of PU lacquer films. Young’s modulus was evaluated by fitting a 

linear relationship to the stress-strain behaviour of the samples up to 0.2% strain. 

3.6 Summary  

The hygroscopic and mechanical properties of the materials used in this research, were 

experimentally determined for use in analytical and numerical models. The bulk PU and 

urushi samples were prepared and dried in a desiccator as the initial condition for 

experimental work involving different environmental conditions. The moisture diffusion 

behaviour of the PU lacquer and urushi film was studied using a gravimetric method. The 

absorption isotherm and coefficient of hygroscopic expansion of both materials were 

determined through swelling tests. Material rheology, with the influence of environmental 

conditions, was studied by standard mechanical tests. This experimental work provided a 

comprehensive hygro-UV-mechanical definition of PU and urushi lacquers that is essential 

for the predictive methodology proposed in future chapters. 
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Chapter 4 Computational Methodology 

4.1 Introduction  

Experimental observations from the coating material tests provide a phenomenological 

description of material behaviour. However, in order to obtain a quantitative hygro-UV-

mechanical definition of the materials and define material properties in a numerical 

modelling scheme, mathematical constitutive models need to be fitted to material behaviour. 

These can then be used in a predictive model of the mechanical response of the coating 

subjected to variations of environmental conditions and loading using the FEA technique. In 

this work the FE Analysis was implemented in ABAQUS (v6.9 and 6.10, Dassault Systems, 

Providence, RI, USA), This chapter gives an overview of the computational methods used in 

this thesis, including curve fitting techniques, the finite element method (FEM) and its 

computational scheme in ABAQUS, and a user defined material technique. Specific analysis 

details, which are only related to a particular model, are further explained in relevant chapters. 

4.2 Finite element methods 

Very limited work on numerical modelling of the mechanical response of coating materials 

due to variations in the environmental conditions has been carried out using the FEM. In this 

work the commercially available FE code ABAQUS was used for the numerical analysis. The 

geometric model development, problem setup and meshing of two dimensional (2D) and 

three dimensional (3D) joints was carried out using ABAQUS/CAE, the pre and post-

processor for ABAQUS. A consistent system of units based on N, mm and hours was used. 

This section details the modelling methodology, boundary conditions, meshing methods, 

element choice and software specific options used during model development and analysis. 

4.2.1 Model geometry, boundary conditions and loading 

4.2.1.1 Modelling the tensile test 

Tensile tests, including constant load and displacement rate tests, can be easily modelled in 

commercial FEA software package. The geometry and boundary conditions of urushi 

samples for the tensile tests, which were mentioned in Chapter 3, can be represented by a 2D 

model, as shown in Figure 4-1. To model the urushi samples subjected to constant 

displacement rates, models with the dimensions specified in Chapter 3 were completely 



 

66 | P a g e  
 

constrained on the left side leaving the sample stretched from the right side with a specified 

ramped displacement and step time. The modelling of tensile creep tests was achieved by 

replacing the ramped displacement with a stepped load. To avoid convergence problems, it is 

worth noting that a small time step followed by long time step is advised to be used initially 

and this is increased automatically by the FEA code as convergence allows [163]. 

 

Figure 4-1: Model geometry, boundary condition and loading for FE analysis on tensile tests 
of urushi samples. 

4.2.1.2 Modelling the bi-material stress measurement experiment 

The response of Japanese lacquer to varying environmental conditions was investigated by 

examining the deflection of a glass substrate coated with a thin film of urushi subjected to 

changes of humidity. This deflection, measured using phase-shifting interferometry, was then 

used to determine the two in-plane hygral stress components. Results were compared for two 

sample conditioning regimes—subjected to intense UV ageing and no ageing—each at a 

range of relative humidity (RH) steps. The sample structure and dimensions are shown in 

Figure 4-2, where it can be seen that an urushi film of approximately 0.02mm thicknesses is 

deposited on a glass substrate of approximately 0.2mm thickness and 22mm radius. On 

exposure to varying humidities, the urushi film absorbs or desorbs moisture, resulting in 

hygroscopic expansion or contraction, respectively. Moisture absorption, and hence 

hygroscopic expansion, of the glass is assumed to be negligible and, therefore, the glass will 

provide a constraint against the hygroscopic expansion or contraction of the urushi film, 

creating varying hygroscopic stresses. This mechanism has been modelled using an FE model 

of the experiments in ABAQUS. The solution domain is shown in Figure 4-2, where the 

axisymmetry of the problem has enabled simplification of the disc system used in the 

25 mm 

5 mm 
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experiments. The boundary conditions were such that the lower edge of the disc is only free 

to displace in the x direction, as shown in Figure 4-2. The moisture boundary conditions were 

constant moisture content at the upper surface to represent the environmental RH and zero 

flux at the interface between the lacquer and the substrate. Initially the right hand side 

boundary was allowed to be permeable under the same conditions as the upper surface, but 

the ratio of depth to breadth was found to be sufficiently small that radial fluxes were 

insignificant and as a consequence all the numerical experiments discussed in this paper were 

performed with an impermeable sidewall. 

 

Figure 4-2: Simplified geometry and boundary conditions for the bi-material film samples. 

4.2.1.3 Modelling bending behaviour  

Over 4 centuries of fluctuating environmental conditions have led to the formation of micro-

cracks on the main urushi-covered surfaces in the Mazarin Chest. The traditional Japanese 

consolidation method of lacquerware objects, known as urushi-gatame, consists of applying a 

diluted layer of fresh urushi to the damaged (aged) surface in order to fill any micro-cracks 

and restore its original gloss [164]. It is unknown, however, whether this procedure is 

effective in arresting crack propagation in the long term or whether it would accelerate 

damage mechanisms leading to propagation of pre-existing micro-cracks. This poses a 

dilemma to Western museum conservators, whose approach to conservation is based on 

minimum impact on the art piece, as opposed to their Japanese counterparts, who apply the 

traditional methods used in the creation of the art piece to bring it back to its original 

appearance, even if this means adding or removing substantial parts of it. In order to assess 
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the effect of the traditional Japanese urushi gatame consolidation, a virtual experiment was 

designed to measure displacement fields around a controlled groove (representing a crack) on 

an aged urushi film before and after the consolidation procedure. The basic idea, illustrated in 

Figure 4-3, is to predict the displacement field across a crack (or ‘v’ groove) in the plane of 

the film surface when the substrate expands and strains the film and to study the effectiveness 

of this consolidation in the prevention of crack initiation. Making use of the results of 

material characterisation and a validated modelling methodology, the bending behaviour of 

urushi/aluminium bi-layer strip samples with different shape of notch in the middle, the 

samples with and without this consolidation and the samples with fresh and aged urushi for 

consolidation were studied through FE analysis. The model geometry, boundary conditions 

and loading for FE analysis on bending tests for a simple ‘v’ groove notched 

urushi/aluminium samples are shown in Figure 4-3. 
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Figure 4-3: Model geometry, boundary condition and loading for FE analysis on bending 
tests for notched urushi/aluminium samples. 

This FE model can be simplified significantly by taking advantage of the symmetry of the bi-

layer strips. Symmetry can only be considered for use in FEA models if the loading, original 

and deflected shapes are symmetrical and for the bi-layer strips, planes of symmetry exist on 

both transverse axes. This is exploited for 2D models as shown in Figure 4-4, resulting in a 

model half the size of the original geometry and a simplified Model geometry, boundary 

condition and loading for FE analysis, as shown in Figure 4-5. 
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Figure 4-4: Planar symmetry used to simplify the bi-material strip model. 

 

Figure 4-5: Simplified model geometry, boundary conditions and loading for FE analysis on 
bending tests for notched urushi/aluminium samples. 

4.2.2 Element choice and meshing 

Accurate results from the FEM depend on the choice of element, the number of elements 

used and where the nodes are located. After creating the geometry within the pre-processor, 

an FE mesh was applied to it. Several factors were considered when meshing the models 

created in this work, such as element type, mesh density, geometric and material non-linearity. 
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The choice of elements is crucial to not only the stress/strain results obtained from an 

analysis, but the deformed shape as well. 

4.2.2.1 Element choice 

The ABAQUS element library provides a complete geometric modelling capability. The 

selection of element types was based on consideration of the samples response under various 

loads. In this project, the urushi bulk samples were stretched by tensile loading, with non-

linear deformation observed, bi-layer disc samples were subjected to a hygro-mechanical load 

resulting in a bending deformation and the bi-layer strip samples experienced 3-point bending, 

causing a failure if the load was sufficient.  

Continuum or solid elements, among the different element families (shell elements, beam 

elements, rigid elements, membrane elements and so on), can be used to model the widest 

variety of components. Conceptually, continuum elements simply model small blocks of 

material in a component. Since they may be connected to other elements on any of their faces, 

continuum elements, like bricks in a building or tiles in a mosaic, can be used to build models 

of nearly any shape, subjected to nearly any loading. ABAQUS has a solid element that can 

be used in coupled temperature-displacement analysis, which can be used for modelling 

hygro-mechanical interaction in this project.  

In this PhD project, 2 dimensional elements were adopted in order to achieve a reduction in 

computational cost for the bi-layer model. 2D elements can be quadrilateral or triangular. 

There are three classes that are used most commonly as shown in Figure 4-6. Plane strain 

elements, normally used to model thick structures, assume that the out-of-plane strain, ε33, is 

zero. Plane stress elements, suitable for modelling thin structures, assume that the out-of 

plane stress, σ33 is zero. Axisymmetric elements are suitable for analyzing structures with 

axisymmetric geometry subjected to axisymmetric loading [165]. 
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Figure 4-6: Plane strain, plane stress, and axisymmetric elements. 

4.2.2.2 Meshing methodology 

Meshing the urushi bulk sample is simple thanks to its standard rectangular shape and 

homogenous material properties. Meshing the bi-layer disc sample used for the stress 

measurement tests and a bi-layer strip sample for the bending tests is more challenging owing 

to the presence of very thin urushi layer compared to the overall dimensions of the substrates. 

The addition of a groove and urushi filling as consolidation in the bending tests further 

complicates the meshing requirements. The meshing strategy was adopted after considering 

the geometric factors. 

Two methodologies were considered to mesh the bi-layer samples. The first method was to 

use a continuous mesh, which transitioned from a fine mesh to a course mesh while 

maintaining mesh continuity by sharing nodes between elements. This method required 

partitioning of the joint geometry in multiple regions and mesh seeding regions based on the 

required mesh density. The second method was to use dissimilar meshes in the urushi layer 

and the substrates and to join them using tie constraints. Tie constraints make the 

translational and rotational motion, as well as all other active degrees of freedom, equal for 

nodes on the two sides of the tie constraint. The first method required more pre-processing 

time than the second method. However, the use of tie constraints involves solution of contact 
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algorithms during the simulation that increases the computational time and resource 

requirement for an analysis. Thus, the first method was used to develop all the meshes. 

A number of meshing methods were available in ABAQUS and each geometric region was 

meshed based on an appropriate meshing method. In the case of modelling the mechanical 

test for an urushi bulk sample, the rectangular samples were simply meshed with a structured 

mesh, which provided a mesh of rectangular shaped elements, as shown in Figure 4-7. For 

modelling the stress measurement experiment using a bi-layer disc urushi/glass sample, the 

rectangular layers of the urushi and the substrate layers were both meshed with a structured 

mesh, which provided a mesh of rectangular shaped elements (seen in Figure 4-8). However, 

for considerations of the much smaller thickness of the urushi layer than that of the substrate 

layer, the section of the urushi layer has a higher density of mesh than that of the substrate 

layer to avoid excessive computational requirements and achieve adequate accuracy of the 

analysis in the interesting section, the urushi layer. In the case of modelling the bending 

behaviour of the urushi/substrate strip shown in Figure 4-9, the sections of urushi and 

substrate layers were given different mesh density. The area near the notch is meshed using a 

fine mesh due to a gradient of stresses and strains in this area.  

 

  

Figure 4-7: Mesh of a bulk sample of rectangular urushi film. 
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Figure 4-8: Overall and detailed mesh of the bi-layer disc sample used in the stress 
measurement experiment. 

 

Figure 4-9: Overall and detailed mesh of the bi-layer strip sample used in bending tests. 

Urushi/substrate bi-layer structures are difficult to mesh, mainly because of the previously 

mentioned small thickness of the urushi layer compared to the substrate layer and the 

existence of stress concentrations in the notch area in modelling the bending of the notched 
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bi-layer strip. To achieve adequate accuracy and computational economy, a convergence 

study with different mesh densities was performed. A series for models of each modelling 

case were analysed with various mesh densities, element types and element formulation in 

order to reduce numerical errors and determine the best compromise between solution times 

and accuracy. 

4.2.3 Thermal and diffusion analysis 

ABAQUS provides a capability for both thermal and diffusive analysis. However, only 

thermal analysis can be coupled with mechanical analysis for the purpose of modelling 

thermo-mechanical interactions. To model the hygro-mechancial interaction of the bi-layer 

structure, moisture diffusion analysis was carried out by using the analogy between heat 

transfer and diffusion equations. The boundary conditions for modelling time dependent 

diffusion were implemented in the FE models by following this analogy between thermal and 

moisture diffusion. Temperature dependent moisture diffusion was achieved by including 

temperature dependent moisture properties. The analogy is illustrated in Table 4-1. 

Table 4-1: Analogy between Fickian moisture diffusion and heat transfer. 

Properties Moisture diffusion Heat Transfer 

Field variable Normalised Moisture concentration C/Csat  Temperature 

Density 1 Density 

Conductivity D×Csat Conductivity 

Specific Heat Csat Specific Heat 

 
where Csat is the saturated moisture concentration, and D is the diffusion coefficient. In the 

samples with glass substrates, moisture diffusion through the substrate was assumed to be 

negligible. 

Determination of hygroscopic stresses due to moisture diffusion was carried out using 

sequentially coupled hygro-mechanical analysis. In the sequentially coupled analysis, an 

uncoupled transient hygroscopic analysis was carried out to determine the moisture 

concentration distribution and the results were used as the input to a mechanical analysis to 

determine the hygroscopic stresses. Identical FE meshes were used for mechanical and 

diffusion analysis to maintain mesh compatibility for transfer of results between analyses. 
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4.3 Implementation of user defined material models 

ABAQUS provides an extensive library of constitutive models to cope with different 

materials and analyses. However, if the proposed constitutive model is not available, 

ABAQUS provides a powerful function which implements user defined material models via a 

user subroutine, named user material (UMAT).  

This function, UMAT, acts as an interface between ABAQUS and user defined material 

behaviour, and can be used for any procedure involving mechanical behaviour. At the start of 

a computational increment for an integration point, the ABAQUS main program passes the 

initial value of variables to the corresponding variables in the UMAT subroutine. The UMAT 

subroutine updates the stress tensors and state values, which are then passed back to the 

ABAQUS main program for the next increment. To illustrate this cooperative process of 

UMAT and ABAQUS, the computational flow of a creep analysis at a given integration point 

is shown in Figure 4-10. 
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Figure 4-10: Flow chart of cooperative computation between UMAT and ABAQUS main 
program. 

At equilibrium time tn，ABAQUS Provides: 
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FORTRAN is used for coding the UMAT subroutine and ABAQUS 6.9 requires Intel Visual 

FORTRAN 9.0 and Microsoft Visual Studio .NET 2005 for compilation of the code. A 

detailed description of the compilation of the user subroutine and its implementation is given 

in Chapter 7.  

4.4 Summary 

The computational methodology involved in this research was discussed in this chapter. The 

methods adopted in the development of FE models were discussed. Geometries for 2D 

models were selected and appropriate simplifications of the model geometries were 

performed in terms of the models’ symmetry. To discretise the geometries, continuous 

meshes were used, with considerations of element type, mesh density, geometric and material 

non-linearity. Hygro-mechanical analysis was introduced using a sequentially coupled 

method. In order to implement non-standard material models, a UMAT subroutine technique 

was introduced which then cooperates with the ABAQUS main program.  
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Chapter 5 Characterisation of PU Lacquer Film 

5.1 Introduction 

Urushi lacquer is expensive and difficult to apply. Hence, it is useful to investigate a 

synthetic lacquer as a comparison to the urushi and as a cost effective substitute for the 

development of experimental techniques and models [18]. As a result, a PU lacquer was 

selected as the synthetic lacquer material as it has been found to have similar material 

properties to urushi [18]. PU lacquer is a complex synthetic polymer. The mechanical 

properties of PU lacquers are influenced by the in-service environment, which may affect 

their function as protective coatings. To date, limited research work has been published on 

the mechanical properties of PU lacquer films under environmental ageing conditions. This 

chapter presents an investigation of the mechanical and hygroscopic behaviour of a 

commercial PU lacquer film. By means of water absorption and desorption tests, the 

diffusion coefficient and coefficient of hygroscopic expansion were determined. Tensile tests 

at constant displacement rates and creep tests under various UV/humidity ageing conditions 

were used to investigate the dependence of material properties on environmental conditions. 

A modified Burger’s model with environment dependent parameters is introduced to model 

the mechanical behaviour of the PU lacquer in typical service conditions.  

5.2 Material characterisation 

5.2.1 Hygroscopic expansion 

Figure 5-1 shows the hygroscopic strain from the hygroscopic expansion tests as a function of 

the moisture content. It can be seen that the data fit a straight line, indicating a moisture 

independent coefficient of hygroscopic expansion (CHE). The CHE was evaluated from the 

slope of the best first order fit, giving a value of 0.0025 (wt %)-1, which is of the same 

magnitude with CHE of a similar material [166].  
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Figure 5-1: Hygroscopic strain for saturated PU samples as a function of moisture content. 

5.2.2 Moisture sorption equilibrium and kinetics 

Relationships between equilibrium weight gain due to moisture uptake and relative humidity 

were investigated by fitting several absorption isotherm models to the experimental data of 

the third cycle of absorption data. The third cycle was chosen because the equilibrium weight 

gain was found to reach a constant value after 3 cycles of absorption and desorption. Figure 

5-2 shows the curve fitting of the two different absorption models, Henry’s law and the 

Flory-Huggins model.  

It is evident from Figure 5-2 that Henry’s law fails to interpret the relationship between 

experimental data of equilibrium weight gain and relative humidity. This indicates a 

concentration dependent interaction of water molecules with the polymer chains, which is not 

allowed by Henry’s law and potentially leads to a concentration dependent diffusion 

coefficient [98, 167]. The upward curvature of the sorption isotherm curve seen in Figure 5-2 

is sometimes attributed to swelling of the polymer which may cause increased exposure of 

sites for preferential water sorption or the cluster formation of water molecules inside the 

polymer [168]. This behaviour is found to be satisfactorily modelled by Flory-Huggins model 

according to the curve fit result shown in Figure 5-2. 

 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 0.5 1 1.5 2 2.5 3

H
yg

ro
sc

op
ic

 S
tr

ai
n

Moisture Content(wt%)



 

81 | P a g e  
 

 

 

Figure 5-2: Equilibrium weight gain as a function of relative humidity and comparison with 
the fitted results for two absorption models. 

In Figure 5-3 and Figure 5-4 the average percentages of water gain/loss from the first cycle of 

absorption and desorption (sample thickness, 0.32mm) are plotted as a function of /t l , in 

which t is the time of absorption/desorption and l is the half thickness of samples in 

millimetres. As described in Chapter 2, a Fickian diffusion behaviour was assumed and fitted 

to the experimental data using a nonlinear regression technique [169]. The good fit, 

quantified by the R2 value of greater than 0.98 for the fits of Fickian diffusion model to all 

experimental data, suggests that Fickian behaviour is dominant. The experimental data 

showed good repeatability with an average standard deviation of 0.13% at each data point of 

moisture content. The diffusion coefficients obtained for both absorption and desorption at 

each relative humidity are presented in Table 5-1. Typical diffusion curves are plotted in 

Figure 5-5 for 3 cycles of absorption and desorption between dry conditions and 85% RH. 
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Figure 5-3: Moisture absorption curves for 0.32 mm thick PU lacquer films at different RH 
during the first cycle. Symbols are used to represent the experiment data points and the solid 

line the fitted Fickian diffusion model. 

 

Figure 5-4: Moisture desorption curves for 0.32 mm thick PU lacquer films moistened at 
different RH during the first cycle. Symbols are used to represent the experiment data points 

and the solid line the fitted Fickian diffusion model. 
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Table 5-1: Diffusion coefficients and moisture content of samples during 3 cycles of 
absorption-desorption test. 

 Relative Humidity (%) Moisture Content (%) 

Diffusion coefficient for 

absorption 

(10-7 mm2/sec) 

Diffusion coefficient for 

desorption 

(10-7 mm2/sec) 

1st cycle 

33.8 0.424±0.037 4.692 6.721 

43.2 0.580±0.049 6.021 8.257 

58.0 0.892±0.021 3.785 4.263 

75.0 1.598±0.069 3.296 5.215 

85.0 1.820±0.043 4.368 5.258 

95.0 2.514±0.078 4.81 6.365 

2nd cycle 

33.8 0.432±0.023 5.928 6.125 

43.2 0.639±0.054 6.919 6.592 

58.0 0.915±0.058 7.239 7.128 

75.0 1.639±0.047 4.988 6.878 

85.0 1.833±0.098 6.215 5.248 

95.0 2.602±0.103 5.875 5.398 

3rd cycle 

33.8 0.445±0.035 4.958 5.892 

43.2 0.577±0.082 6.021 6.987 

58.0 0.896±0.051 6.958 7.121 

75.0 1.563±0.073 5.122 5.539 

85.0 1.856±0.119 7.444 7.147 

95.0 2.569±0.090 5.323 6.378 
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Figure 5-5: Normalised moisture absorption and desorption curves for 0.32 mm thick PU 
lacquer samples conditioned at 85% RH. 

From Figure 5-5, and Table 5-1, which shows the extracted diffusion coefficients, it can be 

seen that the rate of the first absorption (and desorption) is lower than subsequent cycles, but 

that the second and third cycles differ little. The similar behaviour has been identified for a 

single part epoxide adhesive, FM73-M [170]. This may be due to changes in the structure of 
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chemical binding of water, swelling and micro cracking take place during absorption while 

desorption is dominated by the release of free water, resulting in a shorter time for desorption 

to reach equilibrium [171-172].  

5.2.3 Stress-strain plots 

Tensile stress-strain curves under a constant displacement rate of 1 mm/min were obtained 

for PU samples previously exposed to UV irradiation. Figure 5-6 shows tensile stress-strain 

curves from these tests for different periods of irradiation. It can be seen from this figure that 

as exposure to UV radiation increases the elastic region of the stress-strain curve and 

Young’s modulus and failure stress significantly increase (Table 5-2). This indicates that UV 

ageing greatly increases the stiffness and strength of PU lacquer films, however, a 

corresponding decrease in the strain to rupture is also observed. The toughness, which is a 

measure of the energy material can absorb before rupture, also decreases with time of UV 

irradiation. The results indicate that PU lacquer films tend to become increasingly strong but 

brittle on exposure to UV irradiation.  

 

Figure 5-6: Stress-strain curves from tensile tests on PU samples after various periods of UV 
irradiation. 
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Table 5-2: Mechanical properties of PU films (obtained from the results of tensile tests with 
loading displacement speed of 1 mm/min for saturated samples under 45% RH, 25 °C) as a 

function of UV irradiation time.  

Irradiation time (days) Young’s modulus 

(MPa) 

Tensile Strength 

(MPa) 

Rupture strain 

(%) 

0 684.3±66.2 18.8±3.2 16.4±3.6 

2 868.1±49.5 25.3±2.7 11.2±4.7 

4 1018±54.3 28.2±3.1 9.8±2.2 

8 1300±108 31.0±4.5 8.3±1.9 

 

Stress-strain curves from tensile tests on samples conditioned to saturation at different RH are 

shown in Figure 5-7. Saturated moisture content, tensile strength, and rupture strain are listed 

in Table 5-3. It is seen that the strain at rupture increases and the Young’s modulus decreases 

with increasing moisture content of samples, which indicates that the PU molecular chains 

become more flexible with more moisture uptake, with the absorbed moisture serving as a 

plasticiser [49]. Plasticisers are utilised to reduces the entanglement and bonding between 

molecules, therefore increases their volume and mobility and improve the workability and 

flexibility of plastics due to the modification of the free volume of polymer resulting from the 

water absorption [49, 173-174], often at the sacrifice of strength and stiffness.  
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Figure 5-7: Stress-strain curves from tensile tests on non-UV aged samples at different 
relative humidities at a loading displacement speed of 1 mm/min. 

Table 5-3: Mechanical properties of fresh PU lacquer films (obtained from the results of 
tensile tests with loading displacement speed of 1 mm/min for saturated samples under 25 °C, 

and different RH) as a function of moisture content. 

Relative humidity 

(%) 

Moisture content 

(%) 

Young’s modulus 

(MPa) 

Tensile Strength 

(MPa) 

Rupture strain 

(%) 

9.2% 0.05±0.02 1542±152.8 35.4±3.3 11.1±3.8 

58% 0.78±0.08 587.3±48.7 24.2±3.5 24.9±7.1 

75% 1.29±0.11 341.1±33.6 23.6±5.5 32.5±11.2 

95.2% 2.62±0.23 195.3±29.8 16.4±4.7 33.4±9.3 

It was also seen that the stress-strain curves showed a strong dependency on the loading rate, 

which is a typical mechanical property of polymers. Figures 5-8 and 5-9 show that for a 

specific environmental condition both non-aged and UV-aged PU samples have higher 

Young’s modulus and lower strain to failure at higher loading rates. UV exposure is also 

found to make PU film stronger through the comparison of the figures 5-8 and 5-9. It seems 

that UV-ageing involves additional crosslinking to give a more highly ordered structure. This 

crosslinking is accompanied by an increase of stability which can enhance the material 

strength [54]. The obtained results are in good agreement with those reported in several 

papers [175-177]. Subocz et al. [176] have shown that the long-term action of UV mainly 
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consisted of additional crosslinking to form new supramolecular structures with higher 

ordering. In the same context, Claude et al. [175] have recently concluded that the formation 

of a crosslinked structure can be considered to explain the increase of the Young’s modulus 

of the UV-exposed polymer. 

 

 

Figure 5-8: Stress-strain curves of tensile tests on non-aged PU lacquer film samples at 
saturation under 75% RH under different displacement rates. 
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Figure 5-9: Stress-strain curves of tensile tests on 2-day aged PU lacquer film samples under 
room conditions at different displacement rates. 

5.2.4 Creep tests 

Creep tests under room humidity and temperature were performed in order to characterise the 

general viscoelastic behaviour of the PU samples. Figure 5-10 shows tensile creep curves of 

non-aged PU lacquer at different stresses, indicating the highly time-dependent strain of a 

typical viscoelastic material. The curves show the initial instantaneous strain, followed by 

primary and secondary creep. 
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Figure 5-10: Tensile creep curves of non-aged PU lacquer under 5, 8, 10, and 12 MPa. 

Secondary creep rates ( 3ε& ) were determined from Figure 5-10 by a linear fit to the data in the 

secondary creep region. 3ε&  was then plotted against stress for different periods of UV 

irradiation, as shown in Figure 5-11. It can be seen that 3ε& increases with stress and decreases 

with UV ageing, indicating that UV ageing significantly improves the creep resistance of the 

PU lacquer. Figure 5-12 shows isochronous stress-strain plots constructed from the creep 

tests for non-aged samples. It can be seen in this figure that UV ageing makes the PU more 

brittle, however, it can also be seen that there is a non-linear relationship between the 

isochronous stress and strain, which means that a non-linear viscoelastic model is needed to 

accurately model the rheology, as discussed in the Section 5.3.  
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Figure 5-11: Secondary creep rate ( 3ε& ) as a function of stress for non-aged and UV-aged PU 
lacquer films (symbols indicates duration of UV exposure). 

 

Figure 5-12: Isochronous stress-strain curves for non-aged samples. 
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model is proposed to model this material behaviour as it can capture all these features of the 

creep process, as described in Chapter 2. As a result, it is used to model the mechanical 

behaviour of the PU lacquer film on the basis of the viscoelastic behaviour from the 

experimental results. 

As seen, from Figure 5-12, a non-linear viscoelastic model is required for the PU lacquer, 

hence, the application of a modified Burger’s’ model is proposed in which the creep strain is 

given by [111] 

 
1

( ) 1 exp
m n

total
tt t

E
σ σ σ

ε
µ λ τ

   −    = + + −           
 (5-1) 

where m and n are indices representing the non-linearity of the Maxwell dashpot and Kelvin 

unit, whilst the Maxwell spring remains linear. The procedure for determining the parameters 

of this model from the experimental data is as follows. First the instantaneous elastic strain 

was obtained directly from the experimental data, enabling E1 to be determined, and 

subtracted from the total strain to obtain the total creep strain. The remaining terms of Eq. (5-

1) were then fitted to the experimental creep data to determine the parameters, μ, λ, τ, m and n. 

The parameters of this model were obtained by fitting the model to experimental data using a 

non-linear regression analysis using a simplex search algorithm [178] in Matlab (R2007b, 

The MathWorks, Inc. Massachusetts, U.S.A.). The values of these terms for the various 

ageing conditions investigated are presented in  

Table 5-4 and Table 5-5.  

 

Table 5-4: Parameters of modified Burger’s model under different UV ageing conditions 
under 50% RH. 

Days of UV 

ageing 
μ λ τ(s) m n R2 

0 82.54 4806 162.3 5.712 0.767 0.999 

2 1435 1374 144.8 2.627 1.062 0.997 

4 1058 9877 140.1 2.961 0.801 0.993 

8 953.1 615.6 130.9 3.203 1.474 0.996 
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Table 5-5: Parameters of modified Burger’s model under different humidity ageing 
conditions 

Moisture content (%) μ λ τ(s) m n R2 

0.88 123.9 59.9 191.1 4.2 1.9 0.987 

1.35 867.1 21.0 254.3 2.1 1.9 0.975 

2.77 28048 23.8 239.5 1.2 1.7 0.992 

Figure 5-13 shows typical fits of this model to the experimental data. It can be observed that 

the fits are good, and the square of the correlation coefficient (R2) for all curve fits is greater 

than 0.97. 

 

 
(a) Non-aged/50% RH 

Figure 5-13: Experimental data (dots in the figures) and fitted results (solid lines in 
the figures and using modified Burger’s model) of creep tests on PU lacquer films 
under different environmental conditions: (a) Non-aged/50% RH, (b) 8-day UV 

aged/50% RH (To be continued in Page 94) 
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(b) 8-day UV aged/50% RH 

 

 
(c) Non-aged/95% RH 

Figure 5-13: Experimental data (dots in the figures) and fitted results (solid lines in the 
figures and using modified Burger’s model) of creep tests on PU lacquer films under different 

environmental conditions: (c) Non-aged/95% RH (continuing from Page 93).  
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The multiplicity of parameters from fitting the modified Burger’s model to the creep data 

makes it difficult to quantify the effect of ageing on the material behaviour. To facilitate our 

understanding, we calculate three stress-dependent functions from pairs of parameters, given 

by  

 1 1

m

m

µ
η

σ −≡  (5-2) 

 2 1

n

nE λ
σ −≡  (5-3) 

 2 1

n

n

τλ
η

σ −≡
.
 (5-4) 

 

The dependence of the instantaneous strain response on UV ageing and moisture content is 

illustrated by Figure 5-14. This shows that the application of UV irradiation increases the 

instantaneous stiffness of the material, but increasing the relative humidity has the opposite 

effect. The Kelvin unit parameters E2 and η2 and the permanent viscous flow parameter η1 

characterise the transient and secondary creep behaviour. Changes to η1, E2 and η2 with 

variation in environmental conditions are shown in Figure 5-15. In general, we find that all 

these parameters respond in a similar way in that they increase with UV ageing and decrease 

with water absorption. 
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Figure 5-14: Changes of E1 with different environmental conditions. 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 5-15: Effect of UV ageing (days of UV exposure in (a-c)) and RH (moisture content in 
(d-f)) on viscoelastic constants of modified Burger’s model for PU lacquer. 
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5.4 Conclusions  

Water transport in between PU lacquer films can be well described by Fick’s law, and Flory-

Huggins model can be used to represent the sorption isotherm of PU lacquer film. 

Mechanical properties of PU lacquer films have a complex dependence on environmental 

conditions. The tensile properties of the PU lacquer were shown to differ significantly after 

UV ageing. With increasing time of UV irradiation, Young’s Modulus and tensile strength 

increase dramatically, but the maximum strain decreases. With water absorption, both 

Young’s modulus and tensile strength are decreased, but the material tends to sustain more 

strain. PU lacquer film was also found to behave with a non-linear viscoelasticity, which is 

highly dependent on environmental conditions. A modified Burger’s model was found to fit 

the experimental data well for different stress levels suggesting this is a satisfactory method 

for characterising PU rheological behaviour. 
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Chapter 6 Experimental Investigation and Material 

Modelling of Fresh and UV aged Urushi 

6.1 Introduction 

As reviewed in Chapter 2, urushi is a complex natural polymer that has been used to protect 

and decorate objects for many hundreds of years. It is an important material as decorated 

objects can obtain great value and historical worth. These objects are often exposed to 

environments that are detrimental to both their aesthetic appeal and structural performance 

and restoration and conservation procedures are needed to preserve these objects over long 

periods of time. The conservation work requires a detailed understanding of the material 

properties of the urushi lacquer film. However, urushi exhibits complex viscoelastic 

behaviour under load that has not been fully characterised to date. This chapter presents the 

sample preparation technique and experimental data from a comprehensive mechanical 

testing programme for urushi film. The viscoelastic response was investigated by tests at 

various displacement rates and creep and recovery tests. In the study on the material 

behaviour of PU lacquer, it was found that the modified Burger’s model could successfully 

model the viscoelastic behaviour. However, to be confident enough to propose an appropriate 

model for describing urushi material behaviour and modelling its mechanical response to 

varying environmental conditions, a number of constitutive models were evaluated. The 

models were implemented in the commercial FEA software ABAQUS, offering the potential 

to accurately model the urushi behaviour in a complex structure. 

In this chapter a comprehensive investigation to determine the rheology and mechanical 

behaviour of urushi is presented. The results of a series of rheological experiments designed 

first to establish the broad rheology of the material and then to characterise it, are described. 

The results from fresh urushi are compared with samples that have been subjected to UV 

exposure. Various constitutive models are fitted to the data with their advantages and 

disadvantages assessed. 

6.2 Experimental results and analysis of data for fresh urushi 

Experimental data from the mechanical tests on fresh urushi samples is presented in this 

section. The usefulness of different models in modelling the behaviour of urushi film under 
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various types of loading, including constant displacement rate tensile tests data, creep and 

recovery, is assessed using the FE code ABAQUS 6.10. As a general method in this section, 

proposed constitutive models were fitted to the creep experimental data to determine model 

parameters using a non-linear regression algorithm. These models were then implemented in 

ABAQUS to predict the experimental constant tensile displacement rate behaviour in order to 

assess their applicability. 

6.2.1 The time dependent mechanical behaviour of fresh urushi 

The general behaviour of urushi under tensile and creep loading condition was first examined. 

Figure 6-1 shows tensile stress (σ) - strain (ε) plots for fresh urushi samples at different 

displacement rates. To give an indication of the material properties, elastic properties were 

estimated from the curves and are listed in Table 6-1. It can be seen that, in general, the 

material stiffness increases with rate of testing, most likely due to viscous effects, a typical 

mechanical behaviour of polymeric materials [94]. Also, the ultimate strength increases and 

ductility decreases with rate of testing. It can be seen that there is little or no strain hardening 

at any loading rate.  

 
Figure 6-1: Stress-strain curves of tensile tests on fresh urushi lacquer film samples at 

different loading rates at 50% RH and 25°C. 
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Table 6-1: Tensile elastic modulus (E), tensile strength at break (σB), and strain at break (εB) 
for fresh urushi samples at different loading rates. 

Loading rate (mm/min) E(MPa) σB (MPa) εB(%) 

0.002 1686 35.23 10.56 

0.02 1936 40.00 9.61 

0.2 2148 47.55 6.48 

Typical creep and recovery behaviour for fresh urushi can be seen in Figure 6-2. On 

application of the load there is an instantaneous elastic strain response       . This is followed 

by a phase of decreasing strain rate, known as the primary or transient creep region        and 

then a period of approximately constant strain rate, the secondary or steady state creep region       . On removal of the load there is elastic recovery       , followed by a region of decreasing 

strain rate,       . Finally, an unrecoverable strain is left after point E. Similar behaviour is seen 

at all loads, with greater strains and strain rates seen at the higher loads. 

 

Obviously, a material model is required that can demonstrate all the features observed in the 

experimental tests. Using the creep behaviour results, it is possible to determine the rheology 

of the material, and to characterise its response as a function of the degree of ageing. A 

number of different rheological models were investigated for comparison. These are 

described in the following sections. 
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Figure 6-2: A typical tensile creep-recovery curve of fresh urushi film (17.5 MPa) at 50% RH 

and 25 °C. 

 

6.2.2 Plasticity models 

A rate dependent plasticity model, von Mises plasticity model, was initially used to describe 

the rheology. Other yield criteria, such as the Drucker-Prager yield criterion, normally require 

tests in more stress states, such as compression and shear, in order to define all the model 

parameters. However, these tests are very difficult to perform with urushi film, due to the 

small thickness of the bulk samples (≤ 0.1 mm) and, hence, only the von Mises yield criterion 

was investigated in this study. Some commercial FEA codes, such as ABAQUS, provide 

plasticity models with rate-dependent options by enabling the specification of a series of 

hardening curves for various plastic strain rates, in order to enhance stress analysis for 

elastic-plastic rate-dependent materials.  

 

The tensile stress-strain response of fresh urushi film at three different loading rates was 

presented in Figure 6-1. The material model requires stress-plastic strain data under different 

constant plastic strain rates, which is not directly available from the experimental data. Yu et 

al [120] introduced a manipulation of experimental raw data to extract the stress-plastic strain 

response under different plastic strain rates. The required constitutive data were obtained and 

used to define a rate-dependent elasto-plastic FE model by defining hardening curves through 
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the direct entry of test data. In order to assess the applicability of this model, a FE analysis 

was performed, with the detailed information on the model presented in Chapter 4 to model 

the mechanical response of the fresh urushi tested at various displacement rates.  

 

Figure 6-3 shows a comparison of the tensile experimental constant displacement rate data 

with predictions using the FE analysis with rate-dependent von Mises elasto-plastic model. It 

can be seen that the fitted results agree very well with the experimental data. 

 

 
Figure 6-3: A comparison of tensile experimental constant displacement rate data (EXPT) for 

fresh urushi film under with FE predictions (VM) using constant plastic strain rate data in 
rate-dependent von-Mises elasto-plastic model. 

The rate-dependent von Mises model was also used to simulate the creep and recovery tests. 

The predicted result did not agree satisfactorily with the experimental creep data because 

stresses in the creep tests were significantly lower than the maximum stress in the constant 

displacement tests, and in the rate dependent von Mises model time dependent plastic flow 

does not occur inside the yield surface and is not significant at low stress levels. However, for 

viscoelastic polymers, time dependent strain occurs under any load. The von Mises plasticity 

model is unable to model the time dependent recovery response as the strain rate is zero when 

the load is removed. 
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6.2.3 Power law creep model 

Power law creep models have been found to be useful for empirically characterising the 

rheological behaviour of many polymers [112, 120, 179]. In this case, the strain rate is 

considered to be related to the stress through a simple power law relationship, and often this 

is sufficient to capture the main features of the rheology. The uniaxial equivalent creep strain 

rate is defined as 

 cr n m
eq Aq tε =&  (6-1) 

where cr
eqε& is the uniaxial equivalent creep strain rate, q is the von Mises equivalent stress and t 

is the total time. A, n and m are material parameters determined from creep test data [8].  

The power law creep model was used to model the constant tensile displacement rate data 

and creep-recovery data in order to investigate its general usefulness. Before implementing 

the power law creep model in the FE code, the optimised set of model parameters, A, m and n 

in Eq. (6-1), need to be determined. To achieve this, a least square regression of Eq. (6-1) to 

the creep experimental data was performed using a non-linear regression analysis based on 

the Nelder-Mead algorithm, also called simplex search algorithm, in Matlab. The resulting 

parameters are listed in  

Table 6-2.  

 

Table 6-2: Optimised parameters of power law creep model for fresh urushi film (stress in 
MPa and time in seconds) 

A m n 

3.62X10-8 -0.5714 2.2568 

The predicted creep and recovery plots using the optimised parameters of the power law 

creep model for fresh urushi film are shown in Figure 6-4, together with the corresponding 

experimental data. It can be seen that there is satisfactory agreement between the model and 

the experimental data for the creep phase, however, the power law creep model cannot model 

the time dependent element of the recovery phase as it can be seen from Eq. (6-1) that the 

strain rate is zero when the load is removed. 
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Figure 6-4: A comparison of creep and recovery data (EXPT) for fresh urushi film with FE 
predictions (PL) using the power law creep model. 

As a further investigation, the power law creep model was used to predict the constant 

displacement rate tensile test results. Figure 6-5 shows the comparison between the predicted 

and experimental results using the parameters given in  

Table 6-2. Reasonable agreement was achieved for low strains, but at high strain, the 

predicted stresses diverge strongly from the experimental observations. This discrepancy is 

because the creep law parameters were determined from creep tests at relatively low stress 

(≤24 MPa), as indicated in Figure 6-4, whereas the experimental stress-strain plots show a 

yield point between 30 and 50 MPa. This behaviour is not captured by the creep-law model 

and the poor fit of the model at high strains illustrates the dangers of extrapolation beyond the 

range of data used to determine parameters. In most real applications the strains in urushi 

films are small (< 1%) as they are associated with environmental changes and long term 

ageing effects [11]. This makes the power law creep model defined here of potential use. 

However, the inability to predict realistic recovery is a clear drawback if variable loading is 

experienced.  
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Figure 6-5: A comparison of tensile experimental constant displacement rate data (EXPT) for 

fresh urushi film with FE predictions (PL) using a power law creep model. 

6.2.4 Mechanical models  

An alternative to the largely empirical approach of the power law model is to consider that 

mechanical behaviour can be represented by a combination of simple mechanical components 

(spring, dashpot, sliders) connected in parallel and in series. In linear viscoelasticity, 

materials are represented by combinations of Hookean springs, which provide the elastic 

restorative force component, and Newtonian dashpots, which provide the viscous damping 

components. Variants of these models include the standard linear solid model, Prony series 

models, Burger’s fluid and the generalised Kelvin fluid. These models will be investigated as 

a basis for describing the rheological behaviour of urushi. 

6.2.4.1 Standard linear solid and Maxwell Prony series models 

The standard linear model, shown in Figure 2-20 (c), is constructed from a linear spring in 

parallel with a Maxwell unit (which is a linear dashpot and a linear spring in series). A more 

realistic extension to this is the Maxwell Prony series model, shown in Figure 2-25, which 

introduces a series of Maxwell units with different relaxation times in parallel with a spring 

element. In this model, GR(t) is the shear stress relaxation modulus and G∞ and G0 are defined 

as: 
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 lim ( )Rt
G G t∞ →∞

=  (6-2) 

 

and 

 0 (0)RG G=  (6-3) 
 

A dimensionless relaxation modulus can then be defined as: 

 
0

( )( ) R
R

G tg t
G

=  (6-4) 

The normalised shear stress relaxation modulus is represented in the Maxwell Prony series 

model by a series expansion given by 

 /

1
( ) 1 1 i

n
t

R i
i

g t g e τ−

=

 = − − ∑  (6-5) 

where g is the volumetric modulus, Ki, or deviatoric modulus Gi. The standard linear solid is 

a special case of the Maxwell Prony series model in which n=1 in Eq. (6-5). In ABAQUS, the 

creep experimental data was used to determine the material parameters iG , iK and iτ  used to 

define the viscoelastic properties of the material with a wide spectrum of retardation time.  

 

In ABAQUS, the Prony series model parameters can be defined in one of four ways: direct 

specification of the Prony series parameters, inclusion of creep test data, inclusion of 

relaxation test data, or inclusion of frequency-dependent data obtained from sinusoidal 

oscillation experiments. To assess the capability of the standard linear solid model to 

characterise the viscoelastic behaviour of fresh urushi films, the normalised experimental 

creep compliance data was used in the ABAQUS MATERIAL PROPERTIES module, with 

setting the series number n=1, to determine the optimum model parameters. The resultant 

parameters were used in FE models of the creep and recovery tests. A comparison of the 

predicted and experimental data can be seen in Figure 6-6. 
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Figure 6-6: Experimental (EXPT) and predicted (SLS) creep and recovery data for fresh 

urushi film samples using standard linear solid model. 

Figure 6-6 shows the advantage of the standard linear solid over both the power law creep 

model and rate-dependent von Mises plastic model in predicting the time-dependent recovery 

behaviour. However, the prediction of recovery is still unsatisfactory compared with the 

experimental data. This is because the standard linear solid unit, without a dashpot in series, 

will recover completely after removal of the creep load, whereas the experimental data 

appears to indicate a component of unrecovered creep strain. Moreover, the model does not 

describe the creep behaviour as well as the power law creep model. This is because a single 

Maxwell unit is not sufficient to describe the time-dependent behaviour, owing to the single 

dashpot used to represent the relaxation behaviour. In most polymers, including urushi, 

molecular segments will be of various lengths resulting in a distribution of relaxation times 

[113, 180]. This can be better represented by the Maxwell Prony series model. 

Using the same experimental data but setting the maximum number of terms in the Prony 

series to 13, instead of 1 for the standard linear solid model, the predicted creep and recovery 

strains were predicted and compared with the experimental data. It can be seen by comparing 

Figure 6-6 to Figure 6-7 that a much better agreement of predicted results with experimental 

data has been achieved by increasing the number of Maxwell units in the Prony series model. 

This model also shows some effectiveness in modelling the time dependent recovery 

behaviour, although it is still the case that in time all the creep strain will be recovered. In 
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order to further assess the general usefulness of the Prony series model, it was used to predict 

the constant displacement rate data, with the results shown in Figure 6-8. It can be seen that 

the correlation between experimental and predicted data is poor at high strains, for the same 

reasons discussed for the power law creep model. 

 
Figure 6-7: Experimental (EXPT) and predicted (PS) creep and recovery data for fresh urushi 

film samples using Maxwell Prony series model. 
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Figure 6-8: A comparison of tensile experimental constant displacement rate data (EXPT) for 

fresh urushi film with FE predictions (PS) using Maxwell Prony series model. 

6.2.4.2 Burger’s Model 

An alternative to the Prony series is to tailor the combinations of mechanical elements to suit 

the rheological characteristics of the material. A widely used model for viscoelastic materials 

is the Burger’s fluid, which has an advantage over the Maxwell Prony series model in 

predicting unrecoverable deformation. This model is able to capture all the features of the 

experimentally observed creep-recovery curve reasonably well. The instantaneous elastic 

strain is defined as ε1 (using a Maxwell spring), the transient strain as ε2 (using a Kelvin unit) 

and the steady state strain ε3 (using a Maxwell dashpot). The dashpot in series enables the 

model to represent irreversible creep strain, unlike the standard linear solid and Maxwell 

Prony series models. Mathematically, creep and recovery in the Burger’s fluid can be 

represented by: 

 1 2 3
0 0 1

1 1 1 expc
t t

E E
ε ε ε ε σ

η τ
  −  = + + = + + −   

   
 , (t0≤t<t1) (6-6) 
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   −   = + = + −    
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 , (t≥t1) (6-7) 
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 1

1

E
τ

η
=  (6-8) 

 

and t is time during creep when t<t1 and time during recovery when t≥t1, and t1 is the time at 

which the load is removed. 

 

All the rheological models discussed so far have only contained linear elements and, hence, 

are only capable of representing linear viscoelasticity. However, isochronous stress-strain 

plots constructed from the experimental creep data are non-linear, as shown in Figure 6-9, 

indicating a non-linear viscoelastic model may be needed to accurately characterise the 

urushi material behaviour over a range of loads. The Burger’s fluid can be modified to 

represent non-linear viscoelasticity, such that [111]: 

 
0

( ) 1 exp
m n
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tt t

E
σ σ σ

ε
µ λ τ

   −    = + + −           
, (t0≤t<t1) (6-9) 
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, (t≥t1) (6-10) 

 

where σ is the stress during creep or recovery and σ0 is the stress during recovery. It can be 

seen from Eqs. (6-9) and (6-10) that a linear elastic component is still assumed but a power 

law is used to represent non-linearity in the transient and steady state creep components, with 

m and n being the power law exponents. 

 

To facilitate obtaining the six rheological coefficients in Eqs. (6-9) and (6-10) from the 

experimental data, the results were analysed in the following way. First, the instantaneous 

elastic strain was obtained directly from the experimental data in each test, and subsequently 

subtracted from the total strain to obtain the creep strain. Then a least square regression was 

performed using Matlab on the experimental data using Eqs. (6-9) and (6-10) to obtain the 

remaining five parameters: μ, λ, τ, m and n, which are given in  

Table 6-3. 

 

The results of fitting the modified Burger’s model (MBM) to the creep-recovery data for the 

fresh urushi films are shown in Figure 6-10. One can see that the model is able to capture the 

creep deformation, although the agreement is less than that seen with the Maxwell Prony 

series model. However, the recovery is predicted far more accurately with the MBM. This 
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model is not standard in the FE code, ABAQUS, and hence was incorporated via a user sub-

routine. Comparison of the experimental constant displacement rate data with that predicted 

using the MBM is shown in Figure 6-11. The agreement is better than with the Maxwell 

Prony series model, although still not satisfactory at high strain because the test data used to 

define the modified Burger’s model is mainly from low strain levels. 

 

Table 6-3: Optimised parameters of modified Burger’s creep and recovery model for fresh 
urushi film. 

 E0 μ λ τ(s) m n 

Creep 
2177±6.5% 

2143.35 1742.74 1252.66 3.46 1.32 

Recovery 2036.68 10654.23 3430.08 3.55 0.91 

 

  
Figure 6-9: Isochronous stress-strain curves for fresh urushi film. 
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Figure 6-10: Experimental (EXPT)and predicted (MBM) creep and recovery data for fresh 

urushi film samples using modified Burger’s model. 

 

Figure 6-11: A comparison of tensile experimental constant displacement rate data (EXPT) 
for fresh urushi film with FE predictions (MBM) using modified Burger’s model. 
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6.2.4.3 Modified generalised Kelvin fluid model 

To overcome the limitations of both the Prony series model and modified Burger’s model, a 

new model, which combines the two models to improve their descriptions of creep and 

recovery in urushi lacquers, is proposed. The Burger’s model is first extended by adding 

further Kelvin units in series to create a generalised Kelvin fluid, as shown in Figure 6-12 

[14].  

 

 

 
Figure 6-12: Modification of Burger’s model to form a generalised Kelvin fluid model. 

In order to capture the weak non-linear viscoelasticity of the urushi lacquer, the Kelvin units 

and dashpots are defined as non-linear through the introduction of the stress power law, in a 

manner similar to that used to create the modified Burger’s model. The creep and recovery 

equations of a modified generalised Kelvin fluid (MGKF) model can then be written as:  
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and 
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∑ , (t≥t1). (6-12) 

where μ, λ, τi(i≥1), m and n can be determined using a simplex search algorithm as that 

described in Chapter 4. It was found that good agreement was found with the experimental 

date for this model with N = 2 and that for N > 3 no significant further improvement was 

obtained. The parameters for the MGKF model were obtained by fitting the model to the 

experimental data as discussed previously. The parameters obtained using this procedure are 

E1 

η1 
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presented in Table 6-4. From Figure 6-13, it can be seen that this method achieves good 

agreement with the experimental creep and recovery data. 

 

Table 6-4: Optimised parameters of modified generalised Kelvin fluid creep and recovery 
model for fresh urushi film. 

 E0 μ λ τ1(s) m n τ2 (s) 

Creep 
2177±6.5% 

8009.94 3400.10 531.90 2.70 1.25 10000.31 

Recovery 776.56 1746.59 835.26 4.63 1.29 20394.72 

 

 
Figure 6-13: Experimental (EXPT) and predicted (MGKF) creep and recovery data for fresh 

urushi film samples using modified generalised Kelvin fluid model. 

The general effectiveness of the MGKF model was assessed by modelling the constant 

displacement rate data, and the results are shown in Figure 6-14. It can be seen that the model 

predicts the experimental data well at low strains.  

0

0.5

1

1.5

2

2.5

0 20000 40000 60000 80000 100000

ε(
%

)

t(s)

10.5MPa(EXPT)
17.5MPa(EXPT)
21MPa(EXPT)
24.5MPa(EXPT)
10.5MPa(MGKF)
17.5MPa(MGKF)
21MPa(MGKF)
24.5MPa(MGKF)



 

116 | P a g e  
 

 
Figure 6-14: A comparison of tensile experimental constant displacement rate data (EXPT) 

for fresh urushi film with FE predictions (MGKF) using modified Kelvin fluid model. 

As noted in previous sections, the parameters for the power law creep model, Prony series 

model, modified Burger’s model and modified generalised Kelvin fluid model are determined 

using creep strain data up to approximately 2.5%, which is below the apparent yield point in 

the experimental stress-strain plots. As a result, a better comparison of the various models in 

predicting constant displacement rate behaviour may be gained by only comparing the 

models with the experimental strain data up to approximately 2.5%, as shown in Figure 6-15. 

It can be seen in this figure that the Maxwell Prony series model performs the worst while the 

MBM and MGKF models provide good fits to the data. If a rheological model is required to 

represent deformation above the yield point then a visco-elastic-plastic model should be used. 

This can be created by putting a friction plate element in series with a viscoelastic model. 
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(a) (b) 

(c) (d) 

Figure 6-15: Comparison of various models in predicting constant tensile displacement rate 
behaviour of fresh urushi film, (a) The power law creep model, (b) the Maxwell Prony series 

model, (c) the modified Burger’s model, (d) the modified generalised Kelvin fluid model.  

6.3 Effect of ageing under ultra-violet illumination 

Figure 6-16 shows tensile stress-strain curves for urushi samples after different durations of 

UV exposure, using a displacement rate of 0.002 mm/min. Tensile strength, elastic modulus 

and fracture strain were determined from the curves and are listed in Table 6-5. It can be seen 

from Figure 6-16 that as the exposure to UV radiation increases the elastic region of the 

stress-strain curve is extended but the plastic region is greatly reduced. From Table 6-5 it can 

be seen that elastic modulus increases from 1686 MPa to 2139 MPa after 400 hours of UV 

radiation, which indicates that UV ageing increases the stiffness of urushi films. However, 

the deformation at rupture, or the maximum strain that urushi films can sustain, strongly 

decreases from 10.56% to 2.82% after 400 hours ageing. The results indicate that urushi 

films tend to become stiffer and stronger but more brittle with UV ageing which is in good 
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agreement with testing results of UV-aged PU films and those reported in several papers 

[175-177]. The possible explanations are formation of a crosslinked structure additional 

crosslinking to form new supramolecular structures with higher ordering [175-176]. 

 

Figure 6-16: Stress-strain curves from tensile tests at 0.002 mm/min on urushi film samples 
after different durations of UV irradiation.  

Table 6-5: Tensile elastic modulus (E), tensile strength at break (σB) and elongation at break 
(εB) for urushi film samples after different durations of UV exposure and fresh from constant 

displacement rate tests at 0.002 mm/min 

UV exposure (hours) E(MPa) σB (MPa) εB(%) 

Fresh/(0.002mm/min) 1686 35.23 10.56 

100-hour aged/(0.002mm/min) 1736 40.24 3.95 

400-hour aged/(0.002mm/min) 2139 40.55 2.82 

 

To study the UV-ageing effect on the viscoelastic properties of the urushi lacquer film, the 

MGKF model was fitted to the experimental creep and recovery data from samples after 

various durations of UV radiation, as shown in Figure 6-17 and Figure 6-18, with fitting 

parameters presented in Table 6-6. It can be seen that the model is capable of representing the 

UV aged material as well as the fresh urushi. The parameters η0, ηi and Ei (i≥1) can be 

calculated to analyse the physical meaning of these parameters on the mechanical 

components in Figure 6-12. The conversion of η0, ηi and Ei (i≥1) from μ, λ, τ1, τ2, m and n are 
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expressed in the following equations, which can be regarded as a generalised form of Eqs. (5-

2), (5-3) and (5-4) in the modified Burger’s model for PU, as described in Chapter 5: 

 

 0 1

m

m

µ
η

σ −=  (6-13) 

 
1

n

i nE λ
σ −= , (i≥1) (6-14) 

 
1

n
i

i n

τ λ
η

σ −=  , (i≥1). (6-15) 

The parameters η0, ηi and Ei (i≥1) for different UV ageing conditions are plotted as a function 

of stress in Figure 6-19. As we can see, there is a strong dependence of the parameters on the 

UV ageing. It can be seen that both the spring stiffness and dashpot damping coefficient tend 

to increase with UV ageing, which is consistent with the general observation of increasing 

stiffness and reduced viscosity following ageing. 

 

Figure 6-17: Experimental (EXPT) and predicted (MGKF) creep and recovery data for 100-
hour aged urushi film samples using modified generalised Kelvin fluid model. 
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Figure 6-18: Experimental (EXPT) and predicted (MGKF) creep and recovery data for 400-
hour UV aged urushi film samples using modified generalised Kelvin fluid model. 

 

Table 6-6: Parameters derived from a modified generalised Kelvin fluid creep and recovery 
model for urushi film conditioned at 50% RH after different periods of UV exposure. 

UV exposure (hr)  E0 μ λ τ1(s) m n τ2 (s) 

0 
Creep 

2177±4.7% 
8010 3400 532 2.70 1.25 10000 

Recovery 776 1747 835 4.63 1.29 20395 

100 
Creep 

2193±6.5% 
15979 1211 906 2.55 1.59 10320 

Recovery 2362 2013 667 3.66 1.26 30164 

400 
Creep 

2227±4.7% 
849 832 847 4.63 1.74 10744 

Recovery 263 408 762 7.33 1.91 27732 
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(a) (b) 

(c) (d) 

Figure 6-19: Effect of UV ageing on viscoelastic constants of modified generalised Kelvin 

fluid model for urushi film. 

6.4 Summary and conclusions  

Fresh urushi film has been subjected to extensive mechanical testing, comprising constant 

displacement rate tests at various rates and creep and recovery tests. The urushi lacquer film 

was found to be a nonlinear viscoelastic material at low stress levels with an apparent yield 

stress. A rate dependent von Mises plasticity model was capable of accurately modelling the 

full visco-elastic-plastic stress-strain behaviour under constant displacement rate testing but 

was less successful at modelling the creep behaviour and could not model time dependent 

recovery. A power law creep model was more successful at predicting creep only, but was 

also incapable of modelling the time dependent recovery. Mechanical analogue models are 

capable of describing various types of behaviour and a number of these were assessed. The 

most successful was the proposed modified generalised Kelvin fluid model, which was also 

capable of modelling UV aged urushi behaviour by using UV ageing time dependent material 
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constants. The MGKF is a powerful non-linear viscoelastic model capable of representing a 

wide range of behaviour below the material yield stress. However, in order to include the post 

yield behaviour a visco-elastic-plastic model is required, or the rate dependent von Mises 

model can be used. Quantitative analysis based on mechanical tests on samples after different 

durations of UV ageing show the mechanical properties of urushi film to be highly dependent 

on the duration of UV radiation.  
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Chapter 7 Modelling the Mechanical Response of Urushi 

Lacquer Subjected to Varying Relative Humidity 

7.1 Introduction 

Relative humidity is an important factor that contributes to the damage of urushi film in 

service (Chapter 2). When considering the conservation of such an object under varying 

relative humidity, questions arise regarding the suitability of treatments, and surprisingly 

there has been little scientific exploration of this to date. A need arises, therefore, to explore 

the material properties, the environmental conditions, their interaction and the consequences 

for the conservation of important cultural objects.  

The modelling of urushi behaviour has been limited. Ogawa and Kamei [46] used FEM to 

explore the effect of moisture on fracture properties, but limited themselves to an assumption 

of elastic material properties. Viscoelasticity is not only non-negligible, but the viscoelastic 

behaviour is strongly affected by both moisture content and UV ageing [42, 44-45, 56]. As a 

result, it is of great interest to develop a hygro-mechanical model of urushi using a 

phenomenological description of viscoelasticity. The material and mechanical properties need 

to be measured as a function of the relative humidity (RH) and the relationship between RH 

and moisture content needs to be determined. These properties serve as inputs to a FE based 

model which can be tested against experimental measurements of the depth averaged stresses 

in a thin layer of urushi deposited on a substrate and exposed to changes in the environmental 

conditions [5].  

In this chapter, the experimental results used to identify the relevant constitutive relationships 

will be discussed. Using as a basis the general model for modelling mechanical-diffusion 

interaction introduced in Chapter 2, a solution for the model will be obtained and the results 

will be used to validate the predictions against the results of Elmahdy et al. [56].  
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7.2 Material properties 

7.2.1 Identification of the material rheology 

A series of mechanical tests was performed to identify the characteristic rheological 

properties including constant displacement rate, and creep and recovery tests at different 

relative humidities.  

Uniaxial loading at constant deformation rate (0.002 mm/min) for urushi samples saturated 

under different relative humidities was performed (Figure 7-1) to obtain estimates of the 

tensile strength, elastic modulus and fracture strain (Table 7-1). These results show that as the 

humidity is increased, the elastic region and modulus reduce and the fracture strain increases, 

consistent with the ingressed moisture acting as a plasticiser [49, 170]. Creep and recovery 

tests were performed at a range of humidities and constant stresses (30%, 50%, 60% and 70% 

of their tensile strength at break (Table 7-1)) by applying a constant load and recording the 

subsequent deformation as a function of time. After 12 hours, the load was removed and a 12 

hour recovery observed. The symbols in Figure 7-3 (a-c) show the observed behaviour for 

different humidities. The behaviour is typical for a viscoelastic response: a rapid increase in 

strain, followed by a reduction in strain rate to a constant, but non-zero value, and an 

instantaneous recovery followed by a relaxation to an asymptotic, non-zero strain.  

 
Figure 7-1: Stress-strain curves from tensile tests performed at 0.002 mm/min on urushi film 

samples after saturation at different relative humidities (shown in legend). 
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Table 7-1: Tensile elastic modulus (E), tensile strength at break (σB) and strain at break (εB) 
for urushi film samples after saturation at different relative humidities from constant 

displacement rate tests at 0.002 mm/min. 

RH E (MPa) σB (MPa) εB (%) 

30% RH/(0.002mm/min) 2298.2 46.6 5.8 

50% RH/(0.002mm/min) 1736.4 35.2 10.4 

75% RH/(0.002mm/min) 1356.8 29.7 14.8 

 

 

(a) 

Figure 7-2: Experimental (EXPT) and predicted (MGKF) creep and recovery data for urushi 
film samples saturated under 30, 50 and 75% RH, (a), (b) and (c) respectively, at a range of 

constant stresses (shown in legend) (To be continued in Page 125). 
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(b) 

 

(c) 

Figure 7-3: Experimental (EXPT) and predicted (MGKF) creep and recovery data for urushi 
film samples saturated under 30, 50 and 75% RH, (a), (b) and (c) respectively, at a range of 

constant stresses (shown in legend) (Continnuing from Page 126). 

The previous analysis of fresh and UV aged urushi (Chapter 6) showed that it can be 

modelled using a modified generalised Kelvin fluid (MGKF) model composed of non-linear 
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in Eqs. (6-13)-(6-15) are plotted as functions of stress and RH in Figure 7-4. These were 

obtained from the parameters which were determined by curve fitting to the MGKF model, as 

shown in Table 7-2. It can be seen from Figure 7-4 that, firstly, the magnitude of all the 

parameters decreases as the stress is increased. Secondly in each case, the magnitude of all 

the parameters decreases as the relative humidity increases, indicating that as moisture is 

absorbed there is a tendency for the resistance to deformation to reduce. 

 

(a) (b) 

(c) (d) 

Figure 7-4: Effect of RH on the viscoelastic coefficients of the modified generalised Kelvin 
fluid model for urushi films (Eqs. (6-13)-(6-15) at different RH (shown in legend). 
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Table 7-2: Parameters derived from a modified generalised Kelvin fluid creep and recovery 
model for fresh urushi film conditioned at various RH. 

RH  E0 μ λ τ1(s) m n τ2(s) 

30% 
Creep 

2256±4.7% 
8947 4157 500 2.71 1.28 9876 

Recovery 5303 491 724 3.15 2.05 10081 

50% 
Creep 

2177±6.5% 
8010 3400 531 2.70 1.25 10000 

Recovery 776 1747 835 4.63 1.29 20394 

75% 
Creep 

1711±6.1% 
8488 3487 820 2.56 1.13 10204 

Recovery 117471 567 906 1.82 1.67 16934 

 

7.2.2 Coefficient of hygroscopic expansion 

The coefficient of hygroscopic expansion was found to be a constant with a value 

β = 0.0027 (wt %)-1. This is in consistency with the value measured by previous work in 

terms of the magnitude [46].  

 

Figure 7-5: The measured hygroscopic strain of saturated samples as a function of moisture 
content, with error bars showing standard deviation. 
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7.2.3 Diffusion 

The diffusion coefficient was measured using the method described in Chapter 3. The 

symbols in Figure 7-6 show the moisture content as a function of time for urushi film for 

various changes of RH. The main features that can be seen are that the moisture gain 

increases with relative humidity and that the experimental data fits well to Fickian diffusion 

[90]. This suggests that an analysis of the data can be performed to extract the diffusion 

coefficient, D, using the equations of Fickian diffusive transport. The solution of Fick’s law, 

Eq. (2-11) is used to perform a curve fitting to the experimental data, shown by the solid line 

in Figure 7-6. A satisfactory agreement was found and D for different relative humidities is 

given in Table 7-3. The values of D measured at different humidities match the magnitude of 

the D reported in literatures ([46]) 

The absorption isotherm of water was modelled using the Guggenheim-Anderson-de-Boer 

(GAB) equation. Figure 7-7 shows a fit of the GAB model (Eq. (2-18)) to the experimental 

data, demonstrating good agreement (Table 7-4). GAB is commonly used for multi-layer 

sorption, hence its use here since urushi is built up through successive layering. This shape 

absorption isotherm is also reported in other urushi literatures [27, 46] 

 

 

Figure 7-6: Moisture uptake of urushi samples as a result of a step change in relative 
humidity from 30% to 40%, 40% to 50% and 50% to 60%. 
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Table 7-3: Diffusion coefficient at different relative humidities. 

RH 40% 50% 60% 

D (m2/s) 2.26×10-13 1.78×10-13 2.02×10-13 

 

Figure 7-7: Equilibrium weight gain, M(∞), as a function of relative humidity. The dashed 
line represents a fit of Eq.(2-18) to the experimental results (symbols), with error bars 

showing standard deviation. 

Table 7-4: Parameters of GAB function for modelling relationship between equilibrium 
weight gain (M(∞)) and relative humidity for urushi films. 

Mm
 A C 

0.0113 0.811 2.84 

 

7.3 Model solution and results 

A FE model of the experiments by Elmahdy et al. [56] was created using ABAQUS. Detailed 

information on the FE pre-processer and solver can be found in Chapter 4. In order to 

develop a three dimensional model, the rheological model described by Eq. (6-11) was 

extended to multidimensional stress space. In this case, the multi-direction creep strain rate, 
c
ijε& , was determined using an associated flow law [181]: 
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where c
eqε&  is a scalar value representing an equivalent creep strain rate, g is the flow potential 

which can be related to an equivalent stress function, and i and j represent directions of the 

stress tensor. The equivalent creep strain rate at any time can then be calculated through a 

creep constitutive equation, the parameters of which can determined through curve fitting to 

uniaxial creep tensile test data. In this case a flow law based on the von Mises equivalent 

stress was used and Eq. (7-1) can then be written as  

 
3
2

ijc c
ij eq

eq

s
ε ε

σ
=& & . (7-2) 

This was implemented in ABAQUS using a UMAT. 

Apart from UMAT for urushi, the rest of material properties for both urushi and glass 

assigned in FE modelling are listed in Table 7-5. 

Table 7-5: Material properties of urushi and glass. 

 Fresh urushi Glass 

Elastic modulus 

2256 MPa 30% RH 

80000 MPa 2177 MPa 50% RH 

1711 MPa 75% RH 

Poisson’s ratio 0.29 0.3 

Diffusion coefficient (m2/s) 2.02 0 

Expansion coefficient 0.0027 (wt %)-1 0 

 

The boundary conditions in the bi-material disc model were such that the lower edge of the 

disc is only free to displace in a direction that is perpendicular to the disc’s axis of symmetry. 

The moisture boundary conditions were constant moisture content at the upper surface 

determined using Eq. (2-18) for the set environmental RH and zero flux at the interface 

between the lacquer and the substrate. Initially the right hand boundary was allowed to be 

permeable under the same conditions as the upper surface, but the ratio of depth to breadth 

was found to be sufficiently small that radial fluxes were insignificant and as a consequence 

all the numerical experiments discussed in this paper were performed with an impermeable 

sidewall. The values of the material properties were all specified from the experimentally 

determined parameters discussed in Section 2 of this Chapter, and the boundary conditions 

were specified to replicate the experimental conditions for the bi-layer disc. 
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Figure 7-8(a-c) shows the variation in the longitudinal stress, σxx, with time for the middle 

point of the coating layer through thickness of bi-material samples exposed to three different 

conditions: changing the relative humidity from 75% RH to 30% RH, 36% RH and 42% RH 

respectively. The plotted points indicate the experimental results and the error bars indicate 

the standard error in the measurement. The initial behaviour of the urushi film following a 

reduction in humidity is a hygroscopic shrinkage, which is constrained by the substrate, 

resulting in a tensile in-plane stress developing in the film. It can be seen from Figure 7-8(a) 

that the stress increases rapidly in the first few minutes, reaching a maximum value of 

approximately 11 MPa after approximately 8000s. After this time, there is a gradual 

reduction in the stress. A second effect of the desorption of the moisture is that the 

viscoelastic properties of the urushi film change, as discussed in last section, and this effect 

was also included in the model by having moisture dependent properties in the mechanical 

analysis. Following the initial increase in film stress, there is a gradual reduction of the stress, 

which can be attributed to the relaxation of the material that arises as a result of its 

viscoelastic nature. The solid lines in Figure 7-8 indicate the results from the semi-coupled 

hygro-stress model with the measured constitutive parameters discussed in last section. It can 

be seen that there is a close correspondence between the model predictions and the 

experimental results, with the model results lying within the bounds of the experimental error 

at all times. In particular, it can be seen that the model captures the rapid increase in depth-

averaged stress during the early ingress phase, and accurately predicts the relaxation of the 

material at longer times. The good agreement between model and experiment suggests that 

the proposed hygro-mechanical model and the viscoelastic constitutive model provide a good 

phenomenological description of the observed behaviour, presenting a platform on which 

descriptions of models for the conservation of urushi can be built.  
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(a) 

 

 
(b) 

Figure 7-7: Comparison of experimental (symbols) and predicted (solid line) depth averaged 
stress as a function of conditioning time ((Experimental data in figures are provided by Dr 

Elmahdy, and the error was calculated based on a uncertainty analysis [5]).) when a bi-
material sample saturated under 75% RH was placed into a chamber with humidity of (a) 

30% RH, (b) 36% RH and (c) 42% RH (to be continued in Page 134) 
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(c) 

Figure 7-8: Comparison of experimental (symbols) and predicted (solid line) depth averaged 
stress as a function of conditioning time (Experimental data in figures are provided by Dr 

Elmahdy, and the error was calculated based on a uncertainty analysis [5]) when a bi-material 
sample saturated under 75% RH was placed into a chamber with humidity of (a) 30% RH, (b) 

36% RH and (c) 42% RH (continuing from Page 133). 
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Having validated the method, it is interesting to examine the development of stresses as a 

function of depth. In Figure 7-9 (a) the evolution of the moisture concentration (normalised 

values on a basis of saturated concentration under 100% RH calculated using solved GAB 

model parameters in Table 7-4), through the urushi film thickness over time after the RH is 

reduced from 75% to 30% is shown. It can be seen that shortly after the change in RH, e.g. at 

67 s, the change in moisture concentration is localised to the region near to the upper surface 

and the moisture concentration gradient near to the substrate is zero, suggesting that a 

gradient in stress should be expected. Indeed, from the calculated stresses at the 

corresponding times, as shown in Figure 7-9b, it can be seen that at short times the 

hygroscopic stresses are limited to the area to the surface. As the experiment proceeds, the 

moisture concentration gradient reduces and as the moisture approaches a constant as a 

function of depth, an almost uniform longitudinal stress is reached, although it is noted that 

the peak stress is largest at short times. This is clarified in Figure 7-10 which shows that 

although at short times the peak stress, occurring near to the upper surface, is significantly 

larger than the mean stress, that after a period of less than 30 minutes the range of stresses 

becomes small. It is also shown in Figure 7-10 that the maximum stress, occurring near to the 

upper surface during the first 60 minutes, is less than the depth averaged stress. This is 

because of the stress relaxation effect due to the viscoelasticity of the urushi, causing a 

decreased stress near to the surface.  
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(a) 

 
(b) 

Figure 7-9: Distributions of (a) normalised moisture concentration, C, and (b) longitudinal 
stress (σxx) as a function of depth, y, where y = 0 is the urushi-substrate interface and the 

urushi upper surface is at y = 0.02, under the boundary conditions shown in Figure 4-2 with 
the moisture variation from 75% to 30% RH. 
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Figure 7-10: Comparison of depth averaged stress, σxx(avg), and maximum stresses, σxx(max), in 
longitudinal direction. 

The model also allows the effects of a slowly cycling moisture content to be predicted, which 

is likely to be of interest since museum stored artifacts are not always stored in constant 

environmental conditions [42]. Figure 7-11 shows a time dependent relative humidity profile 

that varies between 70 and 30% RH with a period of 24h. The model predicts a time 

dependent depth averaged stress profile that oscillates in phase with the moisture variation, 

but with a decaying envelope attributable to the viscoelasticity, as shown in Figure 7-11 

interestingly. Periods of compression can be seen after the first cycle as shown in Figure 7-12, 

which may cause in-film buckling after delamination. This indicates that further work should 

be done on the response of the material to dynamic loads and on the modes of failure in the 

material to study the damage initiation and propagation due to the dynamic loads caused by 

varying environmental conditions. 
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Figure 7-11: Changes of normalised moisture content of urushi film at surface when a sample 
experiences a sinusoidally varying humidity during 48 hours, with a peak to peak RH of 75 to 

30%. 

 

 

Figure 7-12: Stress evolution of urushi film when a bi-material sample saturated under 75% 
RH experiences a sinusoidally varying humidity during 48 hours, with a peak to peak RH of 

75 to 30%. 
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7.4 Summary 

A hygro-mechanical FE model of urushi behaviour based on a moisture dependent 

viscoelastic phenomenology has been developed and tested. Through careful determination of 

the mechanical behaviour the constitutive properties of a thin layer of lacquer were 

determined and used as an input to a FE based model of the deformation and stresses that 

develop in response to changes in the environmental conditions. The model was validated 

using experimental results that show the depth averaged stress in a thin layer of urushi 

deposited on a glass substrate. The model was used to gain insight into the time dependent 

and spatially varying stresses within the layer. These showed that the regions of highest stress 

were to found in areas of highest moisture transport, emphasising the need to control the 

environment in which urushi coated artefacts are stored. 
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Chapter 8 Modelling Mechanical Effects of Traditional 

Japanese Consolidation on Aged Urushi Films 

8.1 Introduction  

Over 4 centuries of fluctuating environmental conditions have led to the formation of micro-

cracks in the main urushi-covered surfaces of the Mazarin Chest. The traditional Japanese 

consolidation method of lacquerware objects, known as urushi-gatame, consists of applying a 

diluted layer of fresh urushi to the damaged (aged) surface in order to fill any micro-cracks 

and restore its original gloss [182]. It is unknown, however, whether this procedure is 

effective in arresting crack propagation in the long term or whether it would accelerate 

damage mechanisms leading to the propagation of pre-existing micro-cracks. This poses a 

dilemma to Western museum curators and restorers, whose approach to conservation is based 

on minimum impact on the art piece, as opposed to their Japanese counterparts, who would 

apply the traditional methods used in the creation of the art piece to bring it back to its 

original appearance, even if this means adding or removing substantial parts of it [42]. In 

fracture mechanics, engineers are interested in the stress field near the crack tip and whether a 

failure criterion, such as the fracture toughness is exceeded. By determining the stress or 

strain fields around a crack on a plane along which the crack propagates they can evaluate the 

stress intensity factors, from which the maximum stress can be estimated. Some experimental 

work has been carried out to study mechanical effects of traditional Japanese consolidation 

on aged urushi films [183]. It managed to measure the displacement field across a crack (or 

‘v’ groove) in the plane of the film surface. However, it has been found to be difficult to 

measure the displacement field at the crack tip with current techniques due to the extremely 

small localised dimension. In order to assess the effect of the traditional Japanese urushi 

gatame consolidation, an FEA model of the consolidation procedure was developed to 

evaluate the response of the consolidated film to changes in relative humidity. This model 

introduces an urushi/aluminium strip to mimic the previous experimental study [5]. This 

chapter initially studies the mechanical response of this bi-material structure to a bending 

load with consideration of the shape of the notch. The failure behaviour of the bi-material 

structure is modelled with the introduction of a maximum strain failure criterion to study the 

effectiveness of the traditional Japanese urushi gatame consolidation which is being used by 

conservators at the V&A Museum, London.  
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8.2 Mechanical response of grooved bi-material sample to bending load 

8.2.1 Modelling bending behaviour 

In Elmahdy et al.’s experiment [183], the aluminium substrates were mounted on a three-

point-bending loading rig to strain the urushi film in a controlled and repeatable way. This 

was replicated in the FEA model. Detailed information on model geometry, mesh and 

boundary conditions is given in Chapter 4. The bi-layer model was initially subjected to a 

0.08 mm displacement in the middle of the aluminium surface in a direction towards the 

urushi layer, in order to introduce bending of the structure. The displacement and stress fields 

around a crack (or ‘v’ groove), initially 0.05 mm in depth and 0.06 mm in width, in the plane 

of the film surface was studied after application of the deflection. The geometry of the crack 

is shown in Figure 8-1. As an initial study on mechanical response of this bi-material 

structure to a bending load, the material behaviour in this analysis was assumed to be time 

independent. The time-dependent behaviour will be studied in the next section. 

 

Figure 8-1: Simplified geometry of a grooved urushi/aluminium bi-material sample for FE 
analysis. 

The time independent material properties assigned for urushi and aluminium are listed in the  
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Table 8-1: Material properties of urushi and aluminium 

 Urushi Aluminium 

Elastic Modulus, E (MPa) 2148 Fresh 65000 

2214 100-hour-UV aged/50% RH 

2289 400-hour-UV aged/50% RH 

Poisson’s ratio, υ 0.29 0.33 

Longitudinal displacement profiles around the groove were obtained from FEA and presented 

in Figure 8-2 for the nodes in path           in Figure 8-1. As shown in Figure 8-2, an anomaly in 

the displacement profile is visible in the vicinity of the groove, showing there is a 

discontinuity at the edge of the groove.  

 

Figure 8-2: Displacement field profile around a groove (w=0.06, d=0.05, B and D indicate 
the points between which there is a negative slope). 

8.2.2 Time dependent behaviour 

The Time dependent bending behaviour of the grooved urushi/aluminium bi-material 

structure, which occurs as a result of the viscoelasticity of urushi film (Chapters 6 and 7), was 

studied by performing a similar FEA to that discussed in the previous section but holding the 

bending load for various periods and substituting to elastic material model used for the urushi 

in the previous model with the MGKF viscoelastic model. The longitudinal displacement 

along path           for the time dependent model is shown in Figure 8-3 for different periods of 
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time. It can be seen that the effect of holding time is small but some creep can be observed at 

the edge of the groove. It can be seen from this study that the mechanical response of this bi-

material structure to a bending load is little affected by time, hence, the material properties of 

the urushi in this chapter are assumed to be time independent, if not specified otherwise. 

 

 

 

Figure 8-3: Displacement profile around groove in urushi/aluminium bi-material sample 
subjected to different periods of bending load.  
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8.2.3 Pile-up and sink-in effect 

In the work of Elmahdy [5], the ‘v’ groove was created in the middle of the urushi film using 

a sharp blade [183]. It was difficult, due to the lack of understanding in response of urushi to 

cutting process, to determine the exact shape of the groove caused by this cutting process 

presenting difficulties when building the geometric model in FEA. In this analysis, therefore, 

two possible extremes of the surface profiles caused by the cutting process were considered. 

Pile-ups and sink-ins have been frequently reported in the literature for thin films [184-185], 

and present a possibility for exploring the range of possible behaviour. As a result, it was 

proposed to examine the limits of these conditions and compare displacements fields for 

these extremes of behaviour. Figure 8-4 illustrates pile-up and sink-in, showing the difference 

between a process which conserves material and one that removes all the material. 

 

  
(a) (b) 

Figure 8-4: Pile-up (a) and sink-in (b). 

An FE analysis was performed to study the displacement field around a 0.02 mm deep groove, 

with pile-up or sink-in caused by cutting the groove, for the same urushi/aluminium bi-

material structure model explored in Section 8.2.1. The geometries of the pile-up and the 

sink-in were estimated using spline curves on a basis of the given geometry (width, height 

and depth of the groove). A comparison of the displacement fields around the two grooves 

can be seen in Figure 8-5. Here a significant difference in behaviour can be seen with the 

displacement field for pile-up and sink-in. This suggests that the discontinuity at the edge of 

the groove is enhanced by the presence of piled up regions surrounding the cut, whereas sink-

in reduces this discontinuity. 

Sink-in Pile-up 
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Figure 8-5: Profiles of longitudinal displacement for grooved urushi/aluminium bi-material 
strips with pile-up and sink-in. 

8.2.4 Depth effect 

The effect of groove depth on the displacement field around a groove was studied by 

analysing models of the grooved bi-material urushi/aluminium strip, with a constant groove 

width (0.03mm) and various depths, without pile-up and sink-in. The profiles of longitudinal 

displacement around the grooves are shown in Figure 8-6. It can be seen that the groove 

caused an increase in the longitudinal strain around the groove region with increasing groove 

depth. As a distance from the groove, the longitudinal strain is insensitive to groove depth, 

however, the deeper the groove, the greater distance over which the groove has an effect. 
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Figure 8-6: Profiles of longitudinal displacement around grooves with a width of 0.03 mm 
and different depths. 

8.2.5 Width effect 

The effect of groove width on the displacement field around a groove was studied by 

performing an analysis using a grooved bi-material urushi/aluminium strip model with a 

groove of a depth of 0.03mm but with varying width and no pile-up or sink-in. The profiles 

of the longitudinal displacement around the grooves of the grooved bi-material strips are 

shown in Figure 8-7. It can be seen that the longitudinal displacement in the region of the 

groove increases with groove width, as does the area over which the groove has an effect. 

However, the longitudinal displacement fields tend to have the same slope at distance from 

the groove [186]. 
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Figure 8-7: Profiles of longitudinal displacement around grooves with a depth of 0.03 mm 
and different widths. 

8.2.6 Height effect 

The effect of height of pile-up on the profiles of longitudinal displacement was studied by 

performing an analysis of the grooved bi-material urushi/aluminium strip model with 

different heights of pile-up, H (Figure 8-8). The pile-ups were made to have the same groove 

cross-sectional area to replicate a situation with no material loss. All the grooves had the 

same width and depth (0.08 mm wide and 0.03 mm deep), with an example shown in Figure 

8-8. The profiles of displacement around the groove with different H are shown in Figure 8-9. 

It can be seen that the discontinuity at the edge of the groove increases with pile-up height. 

This suggests that a combination of pile-up and groove depth control the magnitude of the 

discontinuity in the displacement field at the edge of the groove. 

These studies have shown that the displacement and, hence, strain and stress fields around a 

scratch or crack in an urushi coating are highly dependent on the geometry of the “groove”. 

A detailed knowledge of groove geometry is therefore required to accurately model the effect 

of the groove on coating performance. 
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Figure 8-8: Pile-up of a groove with a height of H. 

 

Figure 8-9: Profiles of longitudinal displacement field around a groove with different height 
of pile-up (H). 

8.3 Failure behaviour and consolidation 

The failure behaviour of a grooved urushi/aluminium bi-material strip subjected to bending 

load and the effectiveness of the traditional Japanese urushi gatame consolidation was also 

studied. A strain-based failure model was adopted using the FEA package ABAQUS, which 

can not only predict the strength, but also the damage initiation and propagation for both in-

film and interfacial damage. This strain-based cohesive failure model is a simple and 
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bonded joints [187]. The only parameter required in this method is the moisture dependent 

critical failure strain.  

8.3.1 Predictive modelling using the strain-based failure model  

The grooved urushi/aluminium bi-material strip shown in Figure 8-1 was considered first to 

study the bending failure behaviour using a strain-based failure model. To avoid a stress 

concentration due to a singular geometry, a small fillet was created at the bottom of the 

groove as shown in Figure 8-10. A 2-D FE model of an urushi/aluminium bi-material strip 

was created with the same geometry as that shown in Figure 4-5. A rate-independent elastic-

plastic model with material properties determined from experimental results (constant 

displacement rate tensile tests of fresh urushi film at 0.2 mm/min), was adopted to define the 

material behaviour of the urushi film. The raw stress-strain data was treated by an Abaqus 

plug-in software, EP Calibrate, to obtain plastic strain-stress data which is used to input into 

Abaqus MATERIAL PROPERTIES module. A material damage model was defined with the 

failure plastic strain as a damage initiation parameter and zero fracture energy as a damage 

evolution parameter. This means the material response followed the non-linear constitutive 

response until the equivalent plastic strain (corresponding to Mises equivalent stress) reached 

a critical value to fail at any element integration point. It is worth noting that this failure 

model can only be used in conjunction with von Mises yielding and ABAQUS Explicit [165]. 

The explicit analysis was applied with a mass scaling factor of 1000 to reduce computational 

time and prevent dynamic instability. Non-linear geometric behaviour was also introduced 

into the modelling as large deformations were observed in this analysis. 

 

Figure 8-10: Fillet used to avoid singularity at the bottom of the groove. 

ABAQUS supports real time elimination of failed elements and assign a STATUS value to 

the element (0 for failure and 1 for no failure). It also outputs and records the results after 

each load increment, which makes it possible to study the evolution of damage in the model 
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with increasing load. Figure 8-11 shows the predicted damage initiation and evolution around 

the groove of an urushi/aluminium bi-material strip during application of the bending load at 

deflections of 1.2 mm, 1.35 mm and 1.5 mm. The failed elements are shown in white 

indicating zero stress. It can be seen that damage initiates around the bottom of the groove, 

propagates first along the thickness direction, down to the interface of the bi-material strip, 

and interfacial failure initiates when the deflection reaches 1.5 mm, extending mainly along 

the interface to both ends, as shown in Figure 8-12.  

   
(a) 

  
(b) 

  
(c) 

Figure 8-11: Predictive damage around the groove of a urushi/aluminium bi-material strip 
under a bending load with a deflection of (a) 1.2 mm, (b) 1.35 mm, and (c) 1.5 mm (von 

Mises stress contour with blank elements indicating failure). 
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Figure 8-12: Predictive interfacial failure of an urushi/aluminium bi-material strip subjected 
to a bending load with a deflection of 1.5 mm (von Mises stress contour). 

8.3.2 Predictive evaluation of consolidation  

To evaluate the effectiveness of the traditional Japanese urushi-gatame consolidation method 

of lacquerware objects, the consolidated film was modelled by filling a grooved 

urushi/aluminium bi-material strip with urushi filler, marked in red as shown in Figure 8-13. 

Ageing was simulated by filling the groove with urushi with different UV-aged properties. 

Material properties of fresh, 100 hour-aged and 400 hours aged urushi films were assigned to 

the filler, The urushi film that is to be consolidated, i.e. all the urushi coating except the filler, 

is 400 hours aged as it is usually aged urushi lacquerwares that require consolidation. 

1.5mm 
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Figure 8-13: Modelling consolidated bi-material sample with urushi filler.  

In order to study the damage initiation and propagation of the bi-layer filled with fresh urushi 

filler, the model shown in Figure 8-13 was subjected to a series of increasing bending 

deflections. The results from these analysis show that the damage in the filled bi-material 

model with fresh urushi filler, as shown in Figure 8-14, initiates when the deflection reaches 

4 mm. It can be seen that the damage mainly occurs in the aged urushi film, which is easy to 

be understood as fresh urushi is able to sustain more strain than aged urushi (Section 6.2). It 

can also be seen that on the first appearance of damage, the damage is actually very 

comprehensive including both in-film and interfacial damage. However, the load which is 

required to achieve this damage is much higher than for the unfilled strips, in other words, the 

structure is consolidated by filling the groove using urushi.  
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(a) Around the filled groove 

 

(b) At the end of the delamination 

Figure 8-14: Damage in the grooved bi-material model filled with fresh urushi (von Mises 
stress contour) occurs when the deflection reaches 4 mm. 

The effect of UV ageing of urushi fillers on the damage of the bi-material strip was studied 

by performing the same analysis but changing the material properties of the red section in 

Figure 8-13 from fresh to 400-hour aged urushi. The damage was found to initiate when the 

deflection reached 1.65 mm. With similarity to the bi-material strip with fresh filler, the 

structure damages comprehensively including in-film and interfacial failure. However, in this 

case there is much greater damage in the filler material.  

4 mm 
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(a) Around the filled groove 

 

(b) At the end of the delamination 

 

Figure 8-15: Damage in the grooved bi-material model filled with 400 hour UV aged urushi 
(Mises stress contour) occurs when the deflection is 1.65 mm. 

 

A quantitative analysis of the damage behaviour of both in-film and interfacial damage was 

performed. To compare the effectiveness of the consolidation methods, crack depth, dc is 

introduced and defined as the vertical distance from the bottom of the groove towards the 

1.65mm 
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interface, with a maximum value of 0.03 meaning a through-depth crack. Figure 8-16 shows 

dc as a function of the deflection. It can be seen that the unfilled strips are predicted to start 

cracking at a relatively low bending load, followed by a rapid evolution with increasing load. 

The introduction of the filler enabled the strip to sustain more bending load, with the fresh 

filler being more effective than the aged filler. Interfacial damage occurs once the bending 

load reaches a critical deflection, which is greater for filled strips than unfilled. Interfacial 

damage is studied by introducing a quantity ld, delamination length, defined as the length of 

delamination from the central line to the end of the delamination. It can be seen from Figure 

8-17 that initiation of interfacial damage is dependent on the filler material, but that after 

initiation, the delamination length is dependent on the deflection but not the filler material. 

 

Figure 8-16: Predicted crack depth for grooved urushi coatings with fresh and UV aged fillers.  
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Figure 8-17: Predicted length of delamination of for bi-material strips with fresh and UV 
aged fillers. 

The FE modelling above was also performed on an assignment of 100-hour-UV aged 

material properties to the filler to study the UV ageing effect to the effectiveness of the 

consolidation. The critical deflections of the bi-material samples subjected to a bending load 

are plotted as a function of duration of UV ageing of the filler urushi as shown in Figure 8-18. 

As expected, with the UV ageing of filler urushi, the filled bi-material strip appears to sustain 

less and less bending load due to the filler becoming more and more brittle (Chapter 6). 
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Figure 8-18: The critical deflections of bi-material strips subjected to a bending load as a 
function of duration of UV ageing of the filler urushi. 

8.4 Summary 

In order to perform a predictive study on the bending behaviour of urushi films with a crack 

(or scratch), a model with a grooved urushi film on an aluminium substrate was created and 

subjected to bending loads. The time-dependency of the urushi material properties seems to 

have little effect on the bending behaviour of the model when using a midpoint deflection of 

0.08mm. The profile of the displacement field around the groove was found to be 

considerably affected by the geometry of the groove.  

To evaluate the effectiveness of a traditional Japanese consolidation method of lacquerware 

objects, known as urushi-gatame, a strain-based progressive damage failure model was used 

to model continuum failure in the bi-material strip under an increasing bending load. The 

behaviour of damage initiation and evolution was modelled for an unfilled strip, and a filled 

strip with fresh filler and UV aged filler. From the FEA results, the introduction of the fillers, 

as a simple mimic of the consolidation method, does enable the strip to sustain a higher 

bending load. However, this effectiveness is weakened as the material is aged, with it then 

behaving quite similarly to a groove without any filler.  
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Chapter 9 Conclusions and future work  
The research work presented in this thesis has made a useful and original contribution to the 

characterisation and modelling of the mechanical response of urushi coatings to varying 

environmental conditions, UV ageing and mechanical damage. The conclusions from the 

research and suggestions for future work are summarised in the following two sections. 

9.1 Conclusions  

The main conclusions of this research are as follows: 

1. Moisture transport in both PU lacquer and urushi is found to follow Fick’s law. 

However, the absorption isotherms of PU and urushi are best described by Flory-

Huggins and GAB models, respectively.  

2. Both PU and urushi lacquer films undergo a considerable dimensional change on the 

water absorption, which causes hygroscopic stresses to develop when considering a 

coating/substrate bi-material structure. 

3. The mechanical properties of both urushi and PU lacquer films have a complex 

dependence on environmental conditions, including UV irradiation and relative 

humidity.  

4. PU lacquer films behave with a non-linear viscoelasticity, which is highly dependent 

on environmental conditions. A modified Burger’s model was found to fit the 

experimental data with satisfactory agreement at different stress levels, suggesting 

this is a suitable model for characterising PU rheological behaviour. 

5. In the case of urushi films, the most successful material model is the proposed 

modified generalised Kelvin fluid model, which is capable of modelling urushi 

behaviour under various environmental ageing conditions by using specific material 

constants that represent the environmental ageing effects. 

6. A method of modelling the environmental ageing behaviour of urushi film using FEA, 

introduced in this thesis, provides a powerful and generally applicable method of 

predicting the ageing behaviour of urushi film under variable environmental 

conditions. It is envisaged that the method could also be extended to the evaluation of 

the effects of various conservation and repair procedures. 
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7. The proposed FEA method, together with the MGKF model implemented through a 

user defined subroutine, is able to satisfactorily model the hygro-UV-mechanical 

response of urushi coated structures to varying environmental conditions. 

8. The traditional Japanese consolidation method of lacquerware objects is considered, 

through the proposed and validated FE model, to be an effective way of consolidating 

the Mazarin Chest, or at least reducing the risk of further damage, however, the effect 

decreases as the filler material ages. 

  

9.2 Future Work 

Future experimental work is required to validate of the predicted results from modelling the 

bending behaviour of grooved urushi/substrate bi-material strips. A controlled and repeatable 

technique is required to cut the urushi film for a specified crack (or groove), and a reliable 

measurement setup needs to be designed and calibrate to accurately obtain the displacement 

field around a groove in an urushi/substrate bi-material sample.  

It would be interesting to study further, by means of the proposed FEA technique, the 

conditions, dynamic loading caused by varying environmental conditions under which the 

Mazarin Chest was stored, that initiate and propagate micro-cracking in East Asian lacquer 

surfaces. A more complex model than the current bi-material strip would be needed that 

would represent the layered structure of real lacquerware and indicate the effect of moisture 

absorption in the wooden substrate.  

More detailed experimental work would be useful to further study the failure behaviour of 

urushi film in service, both in-film and interfacial, by adopting more advanced failure models. 

For example, it would be of great interest to study whether the interfacial and in-film failure 

behaves with different characteristics and can be distinguished in the failure modelling, in 

order to perform a more convincing predictive investigation on the effectiveness of traditional 

Japanese consolidation method of lacquer ware objects.  

It would also be of great interest to apply the developed model to a full scale and 3-D 

application for the sake of validity. This would however require a lot of computer power.  
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