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ABSTRACT 

The work presented in this thesis is concerned with the design 

of discrete coded waveforms for improving range resolution and clutter 

performance of radar systems. This approach to signal design offers 

many advantages in terms of waveform shaping and digital implementation 

of processors. Assuming a matched filter receiver, the bulk of the 

work is concentrated on studying the autocorrelation function properties 

of these waveforms, which are directly related to the range resolution. 

The main objective is to synthesize pulse trains subject to a 

fixed amplitude constraint, whose autocorrelation sidelobes are as low 

as possible. Constant amplitude waveforms are attractive for a number 

of reasons; the principal one being the optimum utilization of 

transmitter power. 

Pulse .train signals can be synthesized directly by factorizing 

the spectrum of specified autocorrelation functions. The problems which 

arise if the autocorrelation function is only given in magnitude are 

considered and a design method is presented. For some applications, 

especially digital implementation, the design objective may be to 

approximate the response characteristics of a given analogue waveform. 

It is shown that virtually all the desired properties of analogue 

signals can be retained if the sampling interval is chosen properly. 

In addition various suggestions for reducing the range sidelobes of the 

autocorrelation function are discussed. 

An attempt is made to solve the signal design problem using 

numerical optimization methods that incorporate the fixed amplitude 

constraint. In particular, a constrained optimization technique is 

developed for synthesizing binary sequences with good autocorrelation 

function properties. Moreover, the problem of designing pairs of 

_j 



~~-----------------~ 

phase coded pulse trains with low autocorrelation sidelobes and small 

mutual crosscorrelation is considered. 

In the case of impulse-equivalent sequences known as Huffman 

codes, a synthesis method based on uniform pulse trains is shown to 

yield sequences with good energy efficiency. Furthermore, a new 

approach to the signal design problem using Huffman codes and 

parameter variational techniques is presented. 

Although the range sidelobes can be reduced quite effectively 

by numerical methods, for some applications they might still be too 

large. Thus optimum sidelobe reduction filters, which minimize the 

detection loss subject to a set of sidelobe constraints, are derived 

by mismatching the receiver filter. 

Finally, .in the case where significant target velocity is 

encountered, it becomes necessary to consider not only the range but 

also the velocity resolution properties of the transmitted waveform. 

This is done for the various types of pulse trains using the standard 

range-doppler ambiguity description of Woodward • 

• 

----------·----



ACKNOWLEDGEMENTS 

The author wishes to thank his supervisor, Dr. J.E. Hudson, 

for his encouragement during the period of research, In addition, 

he would like to thank Dr. M.H. Ackroyd for his genuine interest 

and guidance. Thanks are also given to Professor J.W.R. Griffiths 

for the use of the facilities in the Department of Electronic and 

Electrical Engineering. 

The help the author has indirectly received through 

comments and criticisms of his colleagues and particularly 

Dr. J.P. Highmore, is gratefully acknowledged. Thanks are also 

given to Mrs. S.M. Peach for her excellent typing of the manuscript. 

Finally, the author is grateful to the Department of 

Education of the Kanton Solothurn, Switzerland, for sponsoring 

this project. 



,------------------------------------------------------------------------------------------, 

CHAPTER 

CHAPTER 

CONTENTS 

1 INTRODUCTION 

1.1 Background 

1.2 Outline of Investigation 

2 SIGNAL PROCESSING CONCEPTS AND WAVEFORM DESIGN 

2.1 Introduction 

2.2 Representation of Pulse Trains 

2.2.1 Complex Envelope and Bandpass Filtering 

2.2.2 The z-Transform 

2.3 Optimum Processing of Radar Signals 

2.3.1 Digital Matched Filter 

2.3.2 Pulse Compression Radar 

2.3.3 Range Resolution in a Matched Filter Radar 

1 

1 

5 

7 

7 

8 

CHAPTER 3 SYNTHESIS OF PULSE TRAINS FROM SPECIFIED 

AUTOCORRELATION FUNCTIONS 

10 

14 

18 

20 

28 

30 

35 

3.1 Introduction 

3.2 Synthesis of Pulse Trains if the ACF is known in 

Magnitude and Phase 

3.3 Synthesis of Pulse Trains if only the Magnitude of 

the ACF is known 

35 

36 

40 

3. 4 Summary 44 

CHAPTER 4 DISCRETE PHASE APPROXIMATION TO FM SIGNALS 46 

4.1 Introduction 46 

4.2 The Method of Stationary Phase applied to FM Signals 47 

4.3 Discrete Phase Approximation to Linear FM Signals 51 

4.3.1 Properties of the Compressed Pulse Train 53 

4.3.2 An Iterative Method for Reducing the Ripple Spectrum 59 

4.3.3 Tapering the Pulse Train 62 

4.3.4 Sidelobe Reduction by Phase Correction 63 



4.4 

4.5 

CHAPTER 5 

5.1 

5.2 

5.2.1 

5.2.2 

5.3 

5.3.1 

5.3.2 

5.4 

5.4 .1 

5.4.2 

5.4.3 

5.5 

5.5.1 

CHAPTER 6 

Discrete Phase Approximation to Non-Linear FM Signals 

Summary 

THE OPTIMIZATION PROBLEM 

Introduction 

Fundamentals of Optimization 

Formulation of the Synthesis Problem 

Properties of the Performance Index F (x) p-

Unconstrained Non-linear Programming Methods 

Unconstrained Minimization without using Derivatives 

Efficient Unidimensional Searches 

Direct Search Methods 

Pattern Search Method 

Flexible Polyhedron Search 

Powell's Search Method 

Sums of Squares Method 

Powell's Least Squares Method 

SYNTHESIS OF UNIFORM SEQUENCES USING NUMERICAL 

OPTIMIZATION METHODS 

6.1 Introduction 

6.2 Basis for Comparison of Numerical Algorithms 
V, 

6.2.1 Evaluation of Non-linear Programming Methods 

6.3 Uniform Complex Pulse Trains 

6.3.1 Effects of Phase Quantization on the ACF 

6.4 Binary Coded Pulse Trains 

6.4.1 Synthesis Using Element Complementation 

6.4.2 A New Technique of Synthesizing Binary Sequences 

6.4.3 Improved Penalty-Function Method 

6.4.4 Other Binary Sequences 

6.5 Uniform Sequences with Low Autocorrelation Sidelobes 

and Small Crosscorrelation 

69 

72 

76 

76 

77 

78 

85 

89 

90 

91 

92 

93 

94 

95 

96 

98 

102 

102 

103 

105 

110 

111 

114 

116 

121 

125 

128 

133 



6.5.1 Statement of the Problem 

6.5.2 Bounds on the Crosscorrelation Energy 

6.5.3 An Estimate of a Bound for the Minimum Peak 

Crosscorrelation Value 

6.5.4 Results of Synthesis 

6.6 SU1ll11lary 

CHAPTER 7 AMPLITUDE AND PHASE MODULATED PULSE TRAINS 

7.1 Introduction 

7.2 Huffman Sequences 

7.3 A New Approach to the Signal Design Problem using 

Parameter Variational Techniques 

Page 

133 

136 

138 

140 

143 

146 

146 

146 

151 

7. 3.1 The Method in General 154 

7.3.2 Application of the Method to the Signal Design Problem 157 

7.4 Bessel Sequences . 161 

7.5 summary 164 

CHAPTER 8 SIDELOBE REDU:TION FILTERS 166 

8.1 Introduction 166 

8.2 Inverse Filters 168 

8.3 Unconstrained Optimum Sidelobe Reduction Filters 173 

8.3.1 Minimum Mean-Square Filter 175 

8.3.2 Filter Design Examples 178 

8.4 Constrained Mismatched Filters 181 

8.4.1 Design of Mismatched Filters in the Presence of Noise 182 

8.4.2 Choice of Performance Measure 183 

8.4.3. Relationship Between the Unconstrained and Constrained 

8.5 

Mismatched Filter 

Summary 

187 

189 



CHAPTER 9 

9.1 

9.2 

CHAi?TER 10 

APPENDICES 

A 

B 

c 

D 

E 

REFERENCES 

: 

COMBINED RANGE AND RANGE RATE RESOLUTION 

Introduction 

Ambiguity Function of Pulse Trains 

DISCUSSION AND CONCLUSIONS 

Principle of Stationary Phase 

Bessel Functions 

Group Delay Computation of Discrete Sequences 

Energy Relationship between the Autocorrelation 

Function and Crosscorrelation Function of Two 

Sequences 

List of Sequences 

Page 

191 

191 

192 

197 

201 

205 

207 

209 

212 

231 



a(n), a(nT), 

A (z) 

A (f) 

A(k) 

A 

ABF 

ACF 

AM 

a.m.ph.m. 

C(k) 

DFT 

d(n) 

E{~} 

En 

E s 

E 

f 
c 

F(~) 

F (x) 
p-

FT 

FFT 

g(n) 

h(n) 

H(f) 

IDFT 

IFT 

Im [ ·] 

J(~) 

Jn (x) 

(i) 

LIST OF PRINCIPAL SYMBOLS AND ABBREVIATIONS 

a (n) number sequence, time series, samples of a(t) 

z-transform of a(n) 

spectrum of a(n) 

spectrum samples 

input matrix defined by Eq. (8.14) 

ambiguity function 

autocorrelation function 

amplitude modulation 

amplitude and phase modulated pulse train 

samples of the ACF of the power spectrum 

discrete Fourier transform 

desired filter output sequence 

expected value of {·} 

n-dimensional vector space 

sidelobe energy (ratio) 

energy of time series 

carrier frequency 

performance index, scalar function 

i-measure, performance index 
p 

Fourier transform 

fast Fourier transform 

filter output sequence 

filter weighting sequence 

filter transfer function 

inverse discrete Fourier transform 

inverse Fourier transform 

imaginary part of [ •] 

Jacobian matrix 

·Bessel function of the first kind 



FM 

LFM 

m(t) 

m . 
c 

MF 

MMF 

NM 

maxlr (k) I 
k 

PAT 

POC 

POG 

POS 

PM 

Q 

QP 

r ('t) 

R 

r .m. s. 

rect (t/T) 

s (t) 

SNR 

T (mil) 

(ii) 

frequency modulation 

linear FM 

mismatch loss factor 

squared envelope of ACF 

compression ratio 

matched filter 

mismatched filter 

Nelder and Mead algorithm 

peak sidelobe level 

pattern search algorithm 

Powell-Coggin search algorithm 

Powell-Golden-Section search algorithm 

Powell's sums of squares algorithm 

penalty-function 

phase modulation 

quantization penalty-function 

quadratic form 

quadratic phase code 

autocorrelation function 

autocorrelation matrix 

root-mean-square 

crosscorrelation function 

real part of ( · ] 

rectangular function 

complex signal envelope 

spectrum of s (nT) 

power spectrum of s(nT) 

peak sidelobe level 

signal-to-noise ratio 

·execution time in millunits 

(1 millunit ~ 0.5 seconds) 



.--------------- -------- -------------------- -- -

TDMA 

T 

T 
s 

tri(t/T} 

w 

w(nT) 

X 

X 

y 

z 

ZT 

Greek letters and Symbols 

_a 

0 

0 (t) 

3 

11 

V 

e:· 

e(t) 

e(n) 

V 

V 

p 

'[g (f) 

i 

(iii) 

time-division multiple-access systems 

sampling interval 

signar duration 

triangular function 

bandwidth 

samples of white Gaussian noise 

vector of design variables 

radius of Huffman codes 

DFT matrix 

complex frequency variable 

z-transform 

gain factor 

correction vector 

Kronecker delta function 

partial derivative symbol 

change in variable or vector, step length 

gradient 

arbitrary small positive number 

phase correction function 

error sequence 

eigenvalues of ACF matrix R 

an angle 

phase spectrum 

weighting parameter 

doppler frequency 

parameter vector in penalty algorithm 

energy efficiency_ 

time delay 

_group delay function 

phase vector 



IX(T,V) I 

Tji(T,V) 

Superscripts 

k 

T 

( ) 

* 
Overlays 

"' 
" 

Other signs 

11· 11 

I · I 
{ } 

c 

X 

col ( •) 

li 

* 

(iv) 

ambiguity function 

MF response to received signal 

denotes stages in the minimization ofF(~) 

transpose of a vector 

encloses stage number 

complex conjugate 

complex conjugate transpose of a vector 

vector at minimum, optimum solution 

used to differentiate one constant from another; 

also used as shorthand notation for d/dt. 

magnitude of a vector, the norm 

absolute value of a scalar 

set, sequence 

subset of 

element of 

denotes vector of variables 

column vector 

product operator 

convolution operation 

Fourier transform pair 



-1-

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Radar is a technique for remote sensing using radio waves. Its 

basic purpose is to detect the presence of a target of interest and to 

provide information concerning the target's location, motion, size and 

other parameters. The problem of target detection is accomplished in a 

typical radar system (Fig. 1.1) by transmitting a radio signal and 

detecting the waveform reflected by the target in the presence of 

unavoidable system noise and reflections from undesired scatterers 

(clutter). If a return signal of adequate strength is received, it is 

further analysed to determine the target's range, velocity and so forth. 

This.process is known as parameter estimation. The range of the target is 

determined by measuring the delay of the return signal. Similarly, the 

velocity of the target can be estimated, neglecting higher order effects, 

by measuring the shift in carrier frequency (doppler shift) of the received 

waveform. Furthermore, the transmitted signal can be carefully chosen 

and generated so as to optimise .its capability for extracting the 

desired information about the target. 

Target detection and parameter estimation are difficult practical 

problems, particularly for small targets at great distances. In principle., 

however, both problems are simple when only a single target is present. 

Target resolution, which may be defined as the capability of a radar 

system to recognise a particular target in the presence of others, is one 

of the most important but also most demanding tasks
1

•
2

• 

For high performance radar systems these tasks become increasingly 

complex. This explains the continuing effort being directed towards 

improving the resolution capabilities of modern radars. Some improvements 

are still being made in the components which affect radar performance; 
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Fig. 1.1 A typical radar system. 
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for example, receivers with low noise figures, transmitters with higher 

output power, and antennas with more gain. Further improvement can be 

obtained by means of elaborate signal. processing schemes. In recent 

years a considerable amount of work has been done in digital processing 

for radar. The technical problems imposed by modern radar systems are 

those of processing (real-time) a large number of data and the requirement 

of complex signal processing operations. These problems can only be 

solved reliably by the use of digital techniques, although in some cases. 

modern optical processing schemes can offer an alternative. 

The choice of a suitable transmit waveform is an important problem 

in radar design. This is so because the waveform controls resolution and 

clutter performance and also bears heavily on the system cost. As 

compactness, cheapness and computational speed of digital microci~cuits 

continue to increase their use in signal processing applications becomes 

more practical.· In particular, the advent of solid-state antenna arrays 

has its impact an radar system designers in two principal ways. First, 

peak-power limitations of solid-state array elements have necessitated 

the use of waveforms with long durations in order to achieve the required 

signal energy over a desired range. The required stability and 

reproducibility of such signals can only be satisfied reliably by 

digital signal generation and processing. Secondly, the ability to 

switch the beam of solid-state arrays at high speeds gives the radar a 

multi-function capability, thus requiring the flexibility to enable a 

3 variety of waveforms to be employed • These requirements have made 

digital signal processing with its inherent adaptability an attractive 

alternative to analogue processing. 

Theoretical studies which provide the basis for technical advances 

have not, so far, solved the general signal design problem. The 

knowledge of the properties of pulse trains, a class of signals particularly 
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well suited to digital processing, is therefore of increasing practical 

importance. 

An early suggestion for using discrete coded waveforms in radar 

appeared in a paper by Siebert4 treating the general problems of radar. 

Siebert noted that certain binary coded waveforms offered substantial 

improvement in range and velocity resolution. However, it was shown 

that in order to obtain these improvements, it would be necessary to 

5 
employ long periodic binary sequences known as pseudo-random sequences 

6 Later, Lerner suggested that the periodic sequence could be modified to 

form an aperiodic signal and yet retain the nearly optimum resolution 

property of the waveform. The use of aperiodic signals allows the 

construction of passive matched filter receivers. At about this time the 

signal design problem was approached in a slightly different way. 

Assuming a matched filter receiver, the range resolution capability (in 

the absence of doppler shift) was found to be directly related to the 

autocorrelation function of the transmitted waveform. Therefore, the 

approach consisted of attempting to design aperiodic binary sequences 

. 7-9 having optimum autocorrelation propert~es These sequences were 

called 'optimum finite code groups' or Barker sequences .. 

Since these early evaluations a number of authors have made 

valuable contributions in the field of waveform design1o-15 An 

interesting analytical method for generating binary codes was reported 

10 by Boehmer using Number Theory. Another quite different approach to the 

11 . 12 problem is discussed in a paper by Vakman and varak~n . The authors 

suggest a synthesis procedure on the basis of spectral theory and the 

method of stationary phase. 

Heimiller16 , Frank17 and Zadoff18 have shown that there are other 

suitable codes if the restriction of 0°-180° phase shifting is removed
19

• 

17 
In the case of Frank codes , higher order poly-phase coded words can 
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be generated by coding each sub-pulse into one of M phases. 20 
Huff man 

considered the problem of designing amplitude and phase modulated pulse 

trains. He has shown that finite-length signals with nearly ideal 

autocorrelation functions can be generated. This property, however, is 

achieved at the expense of amplitude modulation which results in increased 

system complexity and lower energy utilization at the transmitter. 

Nevertheless, the additional expense of encoding and decoding of amplitude 

and/o~ phase modulated waveforms may be justified for radars that must 

cope with land clutter or operate in a dense-target environment. However, 

the use of amplitude-modulated pulse trains is precluded in most high 

power applications due to the inevitable loss in energy efficiency. 

In spite of considerable effort that has been devoted to the problem 

of designing waveforms with high range resolution there seems to be a lack 

of signal design techniques and theory. All present methods tend to 

contain an element of trial and error and, moreover, rely on the skill 

and ingenuity of the designer. In short, the study of the properties of 

pulse trains does not appear to have progressed much beyond an understanding 

of the types described above; The currently accepted belief that there 

is no ideal waveform is not surprising considering the various different 

tasks modern radar systems have to perform. On the other hand, the 

·inability to find an ideal waveform is not an excuse for failure to search 

for locally optimum waveforms for specific radar applications and 

environments. 

The effort in this thesis is directed towards the improvement of 

a factor which constitutes a fundamental limitation to radar performance; 

namely the transmitted waveform. Although the ways in which the 

21 
transmitted signal affects the system performance are well understood , 

there seems to be no obvious solution to the problem of designing energy 

efficient pulse trains for high resolution radars. Therefore, the work 

presented in this thesis is concerned primarily with the study and 
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development of design methods for improving the range resolution capability 

of pulse trains. The pulse sequences discussed later, besides representing 

an interesting mathematical area, are also of practical significance in 

related fields such as digital communication and navigation. 

The main objective in this work is to consider optimum finite-

length pulse trains subject to an amplitude constraint, that is the 

amplitude of each sub-pulse of the transmittted signal is constant. This 

reduces the waveform design problem to an optimum selection of the phase 

modulating function only. The constant amplitude constraint of the sub-

pulses is attractive for a number of reasons; the pulses are convenient 

to gate, and when clipped are distorted less than amplitude modulated 

signals, reduction of system complexity and probably the roost important of 

all, the transmitter power is roost efficiently utilized. 

1.2 Outline of Investigation 

This thesis is concerned with a number of different ·aspects of the 

pulse train design problem for radar systems. As a basis for later work, 

the principles of waveform and processor design are outlined in Chapter 

2. This is carried out assuming matched filtering and digital signal 

generation and processing. 

In Chapter 3 the iroportant problem of synthesizing pulse trains 

from autocorrelation functions, which are specified at discrete points in 

phase and magnitude or in magnitude only, is tackled. 

The resolution properties of pulse trains approximating FM type 

signals are studied in Chapter 4. This approach to code generation is 

perhaps more one of analysis rather than that of design. The work 

includes various suggestions of reducing the range sidelobes of the 

autocorrelation function. 

I 

I 

I 

1 
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In Chapter 5 the signal design problem is approached via numerical 

optimization techniques. This is done by minimizing an appropriately 

defined performance measure reflecting the resolution capability of a 

signal. The optimization problem is formulated so as to incorporate a. 

fixed amplitude constraint which arises from practical radar 

considerations. It was necessary, however, to consider first the performance 

of the different non-linear optimization algorithms when applied to functions 

of medium to high dimensionality. For this purpose four favoured algorithms 

are selected and briefly described. 

Chapter 6 presents the relative merits of the four non-linear 

algorithms described in the preceeding chapter. The most efficient 

optimization method was then applied to generate phase modulated pulse 

trains of various lengths. This chapter also treats a new method of 

designing binary sequences using constrained optimization techniques. 

Moreover, the properties of pairs of phase coded sequences having low 

autocorrelation sidelobes and small mutual crosscorrelation are studied. 

Much of the material included deals with purely phase coded sequences. 

For certain applications, however, the use of amplitude modulation can 

provide a useful means of improving range resolution and clutter rejection. 

Chapter 7 presents the results of the synthesis of energy efficient 

amplitude and phase modulated pulse trains. In connection with Huffman 

codes a new approach to the signal synthesis problem using parameter 

variational techniques is developed. 

Chapter 8 stands apart somewhat from the other chapters in that it 

is concerned with sidelobe reduction techniques using mismatched filters. 

The central problem in mismatched filtering is to consider the trade-off 

possibilities between resolution and degradation in signal detectability. 

Finally, chapter 9 considers the combined range and velocity resolution 

properties of the synthesized pulse trains. This is done using the standard 

21 
range-doppler ambiguity function of Woodward • 
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CHAPTER 2 

SIGNAL PROCESSING CONCEPTS AND WAVEFORM DESIGN 

2.1 Introduction 

This chapter includes some of the general principles of waveform 

an~ processor design. The choice of the transmit waveform and of the 

receiver configuration involves in general two separable design problems4 

The waveform must be chosen to optimize performance in some total 

environment, e.g. clutter, dense-target environment, etc. However, 

there is no universal waveform which would meet all the requirements 

for any arbitrary environmental conditions. The design of the radar 

processor (hardware) is somewhat separable, since there are generally 

a number of ways to implement a near optimum receiver for a given waveform. 

Cost, complexity and reliability are usually the bounds on processor 

·design rather than physical realizability. 

The complexity of a signal processing system depends on the 

complexity of each elementary operation the system has to perform and 

on their number. This in turn depends on the number· of input and output 

channels. For modern high resolution radars the complexity of the signal 

processing system and the amount of data to be handled easily reaches 

critical limits. However, this thesis will be restricted to studying 

the coded waveforms as modulating functions. The various possibilities 

of modulating a carrier with these functions and the ways and means of 

implementing processors will not be considered here. 

This chapter also introduces the waveform design problem with the 

now standard range-doppler ambiguity function description of Woodward
21 

The ambiguity function discussion will only contain a summary of the 

results pertinent to the descriptions of the specific waveforms. The 

bulk of the work will be concentrated on the study of the zero doppler 

cross-section of the ambiguity function, since the particular concern 

is the range resolution capability of a signal. Detailed descriptions 
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of the general properties of various waveform classes and their 

22-26 ambiguity functions can be found in many excellent references • 

The general description of the ambiguity functions is, despite 

their wide study, not without its limitations. While with modern 

computers it is not difficult to derive the ambiguity function for a 

~rticular waveform, it is generally not possible to derive a specific 

waveform, starting with a given ambiguity function. Moreover, a 

thorough and bounded description of the target and clutter environment 

is required for a unique selection of the appropriate waveform. 

2.2 Representation of Pulse Trains 

Pulse trains are waveforms particularly well suited to digital 

processing. In general, these waveforms can be regarded as a finite 

number of contiguous coherent carrier pulses (sub-pulses) each 

modulated in amplitude, phase and frequency. Analytically this class 

of signals can be expressed in the form 

N 
u(t) = l: 

n=o 

where 

a(n) rect(t/T-n) cos{2rr(f + f(n))t + ~(n)} c 

T = pulse duration 

f = carrier frequency 
c 

a(n) = amplitude of nth pulse 

<j> (n) = phase of nth pulse 

f(n) = frequency deviation of nth pulse 

and rect(t/T) denotes Woodward's rect function shown in Fig. 2.1 and 

defined as 

= {01 rect(t/T) -
, ltJ fi T/2 

elsewhere 

It is noted that for a given carrier frequency, fc' and sub-

pulse duration, T, the signal is completely specified by the ordered 

(2.1) 

(2. 2) 
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sequences {a(n)}, {~(n)}, {f(n)}. 

Pulse trains can be conveniently divided into three basic groups, 

as follows : 

Group I 

Group II 

Group III 

{~(n)} = {f(n)} = 0, {a(n) = l,O} 

{f(n)} = 0 

{a(n) = 1,0} ,{~(nj} = 0 

The sub-class of pulse trains considered here belong to Group II and are 

referred to as amplitude and phase modulated (a.m.ph.m.) pulse trains
27 

A typical waveform of this type is shown in Fig. 2.2. 

Although this thesis is not concerned with the various methods 

of generating a.m.ph.m. pulse trains, a few words seem appropriate at 

.this point. 

In digital signal generation the generator presents a sampled and 

quantized signal at the output that can be used either for amplitude, 

phase or frequency modulation of a carrier signal. Therefore, a digital 

signal generator is in general a time-clocked unit capable of furnishing 

a sequence of digital data which are utilized to reconstruct, by 

filtering or modulation or both, the output signal. In. most radar 

applications phase modulation, and particularly digital phase modulation, 

is the most attractive modulation method. In the case of phase 

modulation the signal can be reconstructed by either of the two methods 

shown in Fig. 2.3. The digital phase sample generator produces samples 

as binary numbers which are converted into cos $(n) and sin ~(n) and thus 

into samples of s (t) and s. (t) (see Eq. (2.5)). Alternatively the 
r J. 

binary number can be used to digitally phase modulate a carrier signal 

in a digital phase modulator. 
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2.2.1 Complex Envelope and Bandpass Filtering 

Since a.m.ph.m. pulse trains are of the 'bandpass' type their 

. 28-30 
theory can be simplified by the use of the complex envelope representat~on • 

The bandpass signal represented by Eq. (2.1) can be expressed as 

u(t) ; Re {s(t) exp (j21ff t)} 
c 

where s (t) is the complex envelope of u(t) and is given by* 

N 
s (t) ; E a (n) rect(t/T-n) exp (j<j> (n) ) 

n;o 

As seen from a comparison with Eq. (2.1), the real signal envelope is 

the absolute value of s(t). Thus the bandpass signal u(t) is completely 

described by a knowledge of its carrier frequency, f , and its low 
c 

frequency complex envelope s(t). In terms of real and imaginary parts 

of s (t), the bandpass signal u(t) is given by 

u(t) ; s (t) cos21ff t - s. (t) sin21ff t 
r c ~ c 

where 

s(t) ; s (t) + j s. (t) 
r ~ 

The low pass signals s (t) and s. (t) are called the in-phase and 
r ~ 

quadrature components, respectively, of the bandpass signal. From the 

foregoing it is evident that the complex envelope s(t) is independent 

of the carrier frequency, f • Therefore, it is sufficient to consider c 

the complex envelope as the transmitted signal and to ignore the carrier 

term exp(j21ff t). 
c 

The great advantage of complex signal representation is that 

operations such as linear bandpass filtering. (convolution) can be 

00 

*As presented here the waveform is not normalised, i.e. J ls(t) 1
2 

dt # 1. -In order to accomplish normalization it is necessary to multiply (2.4) 
N 

by a factor (T E a 2 (n))-l/2 ·Without affecting the general discussion 
0 

to follow and in most subsequent work this factor has been omitted for 

convenience. 

(2. 3) 

(2. 4) 

(2.5) 
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expressed directly in terms of the complex envelope. In other words, 

bandpass filtering of a signal can be treated simply in terms of complex 

lowpass signals
27

'
28 

This filtering operation and how it can be 

implemented in terms of real lowpass filters is shown in Fig. 2.4. 

The case of particular concern is the situation when a pulse train is 

applied to a filter whose impulse response is itself a pulse train with 

the same carrier frequency, f , and the same individual sub-pulse c . . 

duration, T. 

Consider the discrete coded waveform, consisting of .(N+l) pulses 

representing the impulse response of a linear filter as an ordered set 

of complex numbers 

{h(n)} = (h(O), h(l), •..• , h(N)} (2. 6} 

In signal processing terminology such a sequence is often 

referred to as a time series. Alternatively the sequence {h(n)} 

with values h(n) = h(nT) can also be visualized as being generated by 

sampling the complex envelope h(t) of the corresponding continuous 

waveform every T seconds. Although sequences do not always arise from 

sampling analogue waveforms, for convenience h(n) will often be referred 

to as the nth sample of the sequence. In addition h(n) will. also be 

used as a shorthand notation for the sequence {h(n)}. 

The magnitude of the complex number h(n} represents the amplitude 

of the nth pulse while the angle of h(n} specifies its phase. The 

complex envelope of the filter impulse response y(t} can easily be 

obtained by convolving the time series of Eq. (2.6) with Woodward's 

rect function. 

N 
y (t) = I: h(n)cS(t-nT) * rect(t/T) 

n=o 
N 

h(n)[ <S(r~nT) = I: rect ( (t-·tl/T ) d, 
n=o _., 

N 
y (t) = I: h (n) rect (t/T-n) (2. 7) 

n=o 
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where * indicates the convolution operation. 

The Fourier transform (FT) of Eq. (2.7) can now be found by 

using the familiar rules of transform theory. 

s (t-T) 

rect(t/T) 

·where sine (fT)= 
sinnfT 

7tfT 

S(f) exp (-j27tfT) 

T sinc(fT) 

The spectrum of the complex envelope y(t) is therefore 

or 

N 
f(f) = Tsinc(fT)E h(n) exp (-j2nfnT) 

n"'<> 

f(f) = Tsinc(rT}H(f) 

The term Tsinc(fl')denotes the spectrum of the function rect (t/T). It 

is evident that the spectrum H(f) is independent of the form of a 

single sub-pulse. However, it is periodic with a period of 1/T and 

it represents the spectrum of the coded sequence h(n) as illustrated 

in Fig. 2.5. The relationship between the FT's of an analogue signal 

and its sampled version is thus given by 

"' 
H (f) = ~ H (f 

a 
+ n/T) 

n=-oo 

where 

H (f) = fa> a 
h (t) e><P ( -j 2nft) dt 

"' 
H (f) = ~ h(nT) exp(-j2nfnT) 

n=-oo 

The above relationship essentially formulates the time domain sampling 

theorem which states that a continuous function of time whose spectrum 

is limited to the band (~W/2) is completely defined by time domain 

samples taken at intervals of 1/W. 

(2 0 8) 

(2 0 9) 
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Similarly the input signal, having (M+l) pulses is represented 

by a(n). The complex envelope e(t) of the output signal has a FT 

which is, according. to standard transform rules of linear filtering, 

the product of the FT's of the complex envelopes of the input waveform 

ana the filter impulse response scaled by a factor 1/2. Thus, 

where 

M 
E(f) = 1/2{ l: 

n.:::::o 

a(n) e-j2rrfnT}{ ~ 
n=o 

M 
= 1/2{ l: 

N 
l: a(n) h(k) e-j 2rrf(n+k)T} T2 sinc1fT) 

n=o k=o 

M+N 
e -j2rrfmT} T2 sinc1fT) = 1/2{ z c(m) 

m=o 

k 
c (k) = l: a(n) h (k-n). 

n=o 

k = 0,1,2, •••. , (N+M) 

The complex envelope of the output signal e(t) is given by the inverse 

FT (IFT) of Eq. (2.10). Using the relationship 

leads to 

M+N 
e(t) = T/2 l: c(m) tri(t/T-m) 

m==o 

The function tri(t/T) is shown in Fig. 2.1 and is defined as 

tri(t/T) = {: 
, elsewhere 

At non-integer multiples of the sub-pulse duration, T, the 

complex envelope of the output waveform is given by linear 

interpolation between adjacent values. The output number sequence c(m) 

thus specifies, except for a constant scale factor, the output waveform 

(2 .10) 

(2 .11) 

(2 .12) 
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at regular sampling instants T. 

The main conclusion from the foregoing is that complex envelope 

representation of pulse trains simplifies the discrete linear filtering 

process which can be regarded merely as a multiplication of polynomials. 

In addition only the spectrum of the coded sequences need be cons1dered 

to specify the waveform at integer multiples of T. 

2.2.2 The z - Transform 

It has been shown in the previous section that the FT can be used 

to describe the frequency properties of pulse trains. Another compact 

31 
notation for the FT of such signals is the z - transform (ZT) . The 

ZT is also a very convenient method of representing a signal by a set 

o£ poles and zeros in the complex z-plane. This is quite similar to 

Laplace transform techniques used for analogue systems which can be 

represented by poles and zeros in the complex s-plane. 

The ZT of an arbitrary number sequence, a(n), is simply a 

-1 
polynomial in powers of z , given by 

A(z) = a(O) + a(l) 
-1 

z + ......... 
N 

A(z) E a (n) -n 
= z 

n=o 

+ a (N) 
-N z 

~here z is usually expressed in the polar form z = exp(sT). In general 

the frequency variable z has both real and imaginary parts. Thus if 

s = cr + j27rf 

Z -
- e(cr+j2~rf)T __ crT ) e [ cos (27r£T) + j sin (27rfT) 

The variable z is often referred to as a 'shift' operator, since 

exp(-j27rfT) implies a time delay of T seconds while exp(j2~rfT) represents 

a time advance of T seconds. 

(2 .13) 
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If the ZT, A(z), is evaluated on the unit circle in the z-plane 

(jzj = 1), the spectrum of the time series a(n) is obtained. 

A(z) 1 = A(f) = 
(jzj=l) 

N 
E 

n=o 
a(n) exp(-j2nfnT) 

It is noted that the spectrum A(f) is a continuous function in frequency. 

In practice, however, the spectrum of discrete time series is usually 

evaluated using digital computers. This means that the spectrum A(f) 

can only be estimated at discrete points in f which is generally 

referred to as discrete Fourier transform (DFT). Although the spectrum 

can only be estimated at suitably chosen intervals in f, it can be 

shown that for time limited or periodic signals such a discrete 

representation of the underlying continuous function .does not result in 

any loss of essential information
31

. This is sometimes referred to as 

the frequency sampling theorem. 

Using the DFT, Eq. (2.14) can now be rewritten as a finite-length 

sequence 

N 
( ) 

-J· 2nkn/ (N+l) 
A(k) = E a n e 

n:::o 

k = 0,1,2, ..•• ,N 

Thus the frequency spacing between successive harmonics is 1/(N+l)T. 

and the frequency of the kth harmonic is therefore k/(N+l)T. It can be 

seen from Eq. (2.15) that the sequence A(k) is periodic with a period 

of (N+l); i.e. A(O) = A(N+l), A(l) = A(N+2), etc. Similarly the inverse 

transform (IDFT) of Eq. (2.15) can be written as 

a (n) = 1/ (N+l) 
N 
E 

k=o 

n = O,l,2, •••• ,N 

A(k). ej2nkn/(N+l) 

where the multiplying factor 1/(N+l) has been included for convenience. 

Alternatively the above equations can be expressed in matrix form 

a= 1/(N+l) Y* A 

(2 .14) 

(2 .15) 

(2 .16) 

(2.17) 
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where the (N+l)-element column vectors a and A are given by 

a·=col (a{O),a(l), .... ,a(N)) 

A ~col (A(O) ,A(l), ••.. ,A(N)) 

The (N+l)x(N+l) matrix Y* is the conjugate of the DFT matrix Y given 

by 

1 1 1 1 

1 2 N y y y 

y ~ (2 .18) 

1 
N 2N N2 

y y y 

where y ~ exp (-j211/ (N+l)). 

Eq. (2.17) is the IDFT and its inverse (DFT) is therefore given by 

(2.19) 

It is noted that the DFT matrix Y has the property 

Y Y* = (.N+t}.:l . : 

where I is the identity matrix. 

Although, in principle, the DFT can be evaluated using Eq.(2.15) 

or Eq. (2.19) in practice the fast Fourier transform (FFT) algorithm 

d
32,33 

is use . 

From the foregoing it is clear that a finite-duration sequence 

can be expressed exactly by samples of its ZT. Moreover, the periodic 

sequence obtained by sampling the ZT at (N+l) equally spaced points on 

the unit circle (jzj~l) in the complex z-plane is identical to the DFT. 

The sequence corresponding to these frequency samples is a periodically 

repeated version of the original sequence, such that if (N+l) samples 

of the ZT are used no 'overlapping' or 'aliasing' occurs. Thus, in 

general, a finite-duration sequence is represented as one period of a 

periodic sequence. 
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In addition it has been shown that the ZT of a pulse train is 

simply a power series of z-1 in which the coefficients of the various 

terms are equal to the corresponding samples. When a waveform is 

expressed in this form, it is possible to regenerate the number 

sequence merely by inspection; a number having the index n is simply 

the coefficient of z-n in the ZT. 

The linear filtering operation of Eq. (2.10) can now be rewritten 

using the shorthand notation of the ZT. If the sequence c(n) represents 

the convolution of the two sequences a(n) and h(n), then the ZT of· c(n) 

is the product of the ZT's of a(n) and h(n), i.e. if 

then 

n 
c(n) = E a(k) h(n-k) 

k=o 

n = 0,1,2, •••. , (N+M) 

C(z) = A(z) H(z) 

This can easily be shown considering the following expressions, 

N+M n 
C(z) = E { l: a(k) h(n-k)} z-n. 

h=o k=o 

interchanging the order of summation yields 

M N-k 
C(z) = l: a(k) l: h(n-k). z-n 

k=o n=k 

letting m = n-k leads to 

hence 

C (z) = 
M 

l: a(k){ 
N 
l: 

k=o m=o 

C(z) = A(z) H(z) 

h(m) z-m} -k 
z 

However, if the DFT is used to evaluate Eq. (2.10), the sequences a(n) 

and h(n) have to be modified. Taking the straightforward DFT of 

finite-duration sequences and then inverse transforming the products 

of their spectra is equivalent to circularly convolving the periodic 

(2. 20) 
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sequences created from the given sequences. To obtain the linear 

convolution both a(n) and h(n) must be (N+M+l)-point sequences. This 

is achieved by appending.the appropriate number of zeros.to both a(n) 

and h (n) , i.e. 
M zeros 
~ 

(a(O) ,a(l) , •••• ,a(N) ,o,o, •••. O) 

N zeros 

(h (0) ,h (1), •••. ,h (M) ,0,0, •.•• 0) 

The (N+M+l)-point DFT of a(n) and h(n) is then taken, multiplied, and 

inverse transformed to obtain the correct sequence c(n). 

The ZT, a familiar analytical technique in modern control and 

sampled data systems, thus provides an excellent tool for studies of 

digital systems and signals such·as pulse trains. Therefore, throughout 

this work use is made of the ZT representation whenever possible. 

2. 3 OptimUm Processing of Radar Signals 

The transformations and interference effects to which a radar 

signal is subje·cted during its path from the transmitter to the 

receiver will now be analysed using Fig. 2.6. It is assumed that the 

signal, although generated digitally, is analogue filtered prior to 

transmission. The transmitted signal s(t) first passes through a 

time-invariant processqr, which accounts for the unknown round trip 

amplitude attenuation~, time delay T, doppler shift v, and phase shift 

e of the signal. Such a treatment of the transmitted signal assumes a 

point target (no range extent). This is a convenient assumption in 

analysing system performance. 

In order to avoid continual repetition several general assumptions 

are made for subsequent discussions of radar signal processing techniques. 

(i) Point targets are assumed. 

(ii) Target acceleration is negligible, i.e. 

a « ?<.IT"-
. . s 
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where a is the target acceleration, A is the carrier wavelength, 

and T is the signal duration. 
s 

(iii) Mismatch of the envelope of the received signal and the 

transmitted waveform due to high relative velocities is 

negligible, i.e. 

2v /c « 1/WT 
r s 

where v is the radial target velocity relative to the radar, 
r 

c is the velocity of light, and W is the signal bandwidth. 

(iv) All signals are narrow band, 

w << f 
c 

where f is the carrier frequency. 
c 

Since radar returns are always immersed in noise and interference 

. from all kinds of objects illuminated by the antenna beam, the receiver 

must be optirnised in some manner. Additive interference introduced by 

a large number of independent target-like reflections such as composite 

returns from an extended scattering region containing terrain, rain, 

seawaves etc., is usually called clutter. 

The return signal, immersed in clutter and noise, is now analogue 

filtered, digitized and processed. Three approaches have been used to 

0 0 f d 0 1 4 '21' 34 der1ve opt1murn processors or ra ar s1gna s, 

(i) Signal/noise ratio criterion (SNR) 

(ii) Likelihood ratio criterion 

(iii) Inverse probability criterion 

Any of these criteria lead to the matched filter receiver, provided the 

signal is corrupted only by additive white Gaussian noise. Moreover, 

21 
Woodward has shown that this type of receiver also preserves all the 

information in the ·radar return. Even in situations where matched 

filter processing is not optimum, for example when interference from 

clutter is significant (coloured noise), matched filters usually provide 
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a reasonable compromise between system performance and complexity35 

On the other hand, matched filter processing may be used simply because 

information about the target environment to design more optimum processors 

is not available. The problem of target resolution and optimum 

detection for a specified clutter environment has been studied by a 

. 36-39 number of authors and will not be of pr1me concern here 

Therefore, unless otherwise specified a matched filter receiver is 

assumed. 

2.3.1 Digital Matched Filter 

The characteristics of the matched filter (MF) can be designated 

by either a frequency response function or a time response function, each 

being related to the other by a FT operation. In the frequency domain 

the MF transfer function H(f), is the complex conjugate function of the 

spectrum of the signal that is to be processed, except for an arbitrary 

scale factor and a linear phase shift. 

H(f) =a S*(f) exp(-j2n£Td) 

where S*(f) denotes the complex conjugate spectrum of the input signal 

s(t). The scale factor a and the linear phase shift exp(-j2nfTd) do 

not affect the signal-to-noise ratio (SNR) and may therefore be ignored. 

Thus, 

H(f) = S*(f) 

In the time domain the corresponding relationship is obtained by taking 

the IFT of Eq. (2.22). This leads to the result that the impulse 

response of a MF is the mirror image of the complex conjugate of the 

transmitted signal s(t), and the general relationship is given by 

or simply 

h(t) = a s* (T -t) 
d 

h(t) =s*(-t) 

(2. 21) 

(2.22) 

(2. 23) 
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However, in a digital radar receiver, the received waveform is 

sampled every T seconds. Thus the impulse response of the digital 

MF is given by the sequence 

h(nT) = s*(-nT) 

or· simply 

h(n) = s*(-n) (2.24) 

So far it has been assumed that the spectrum of the reflected signal 

is completely known. However, even for the simplest case of a single 

point target, the return signal contains two unknown parameters, doppler 

shift v and time delay '· In general the spectrum of the received 

signal is of the form 

S(f) = s (f-v) e:xp(-j27rf< - 6) (2.25) 
0 

where s (f) denotes the spectrum of the transmitted signal. Therefore, 
0 

for matched conditions, a receiver with the frequency characteristic, 

(neglecting a constant phase term and amplitude factor) 

H(f) = S*(f-v) e:xp(j2Tif< + 6) 
0 

is required for optimum detection. It is clear that for stationary or 

slowly moving targets (v~o) a receiver matched to the transmitted 

waveform is optimal*. However, since the doppler frequency depends 

on the range rate of the target and is not known beforehand, optimum 

reception of signals reflected from moving targets cannot b~ accomplished 

by only one matched filter. An optimum receiver in this case requires 

a bank of matched filters with incremented frequencies, ~v, of the 

doppler shift v in the expected domain. This is illustrated in block 

diagram form in Fig. 2.7. The output of the matched filter bank is 

*In the present context 'stationary' means that the duration of the 
signal is too short for the effects of target motion to be noticeable. 

(2.26) 
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usually applied to a square law or envelope detector and compared 

with a common threshold. If any of the outputs crosses the threshold 

a signal is deemed detected, and from the corresponding delay and 

doppler shift the target's range and velocity are estimated, 

The response o£ the digital MF to an input signal reflected 

from a target, at range r and radial velocity v , is obtained by 
r 

convolving the filter impulse response with the input signal. 

where 

"' 
~(1,V) = E {s(nT-1) e-j 2wv(nT-1) + w(nT)} s*(-(mT-nT)) 

n=-OQ 

., 
= e-j21fV(mT-1) l: s((n+m)T-1) e-j21fVnT s*(nT) 

1 = 2r/c 

n==-0) 

+ l: w ( (n+m) T) s* (nT) 

and 

n=-c:o 

v = (2v /2;£ r c 

fc.= carrier frequency,c =velocity of light 

The noise w(mT) is assumed to be a Gaussian random variable with zero 

d 
. 2 mean an var~ance o • Furthermore, w(mT) and w(kT), for any integer 

k f m, are uncorrelated and therefore statistically independent. 

Eq. (2.27) can be simplified by ignoring the non-essential phase 

factor, exp(-j2rrv(mT-T)), and by letting mT-T=.'. Thus, 

"" "' 
'l'(t1,v) = l: s(nT+l) s*(nT) e-jZrrvnT + l: w{(n+m)T)s*(nT) 

n=-co m==-oo 

Although the input signal and the impulse response are discrete, it is 

noted that the function in Eq. (2.28) depends on the two continuo~s 

variables T and v. 

Since the radar detector at the output of the MF usually removes 

the phase information, the function of interest is generally 

(2.27) 

(2. 28) 
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"' -j21fvnTI2 s(nT+•ls*(nT) e + w ( (n+m) T) s* (nT) 12 

m=-oo n=-co 

+ cross-products 

The first term in the equation above is the signal term resulting 

only from the target reflection 

"' 
lx<•,vl 1

2 
= I l: 

n=-oo 

-j21fvnTI2 s(nTH)s*(nT) e 

The function lx<•,vl 1
2 

is commonly referred to as the ambiguity 

function*. The investigation of the ambiguity function has been a 

21 field of extensive study since its introduction by woodward . The 

origin of the ambiguity function <•=o, v=o) may be thought of as the 

output of the matched filter tuned in time delay and frequency shift 

to the signal reflected from the target (point source) of interest. 

For zero relative doppler shift, lx<•,ol 1
2 

represents the squared 

magnitude of the autocorrelation function (ACF) of the transmitted 

signal. This is the.filter response to reflections at a different 

range but at the same doppler as the target. Similarly, lx<o,v) 1
2 

is 

the response to reflections at the same range as the target but with 

other doppler shifts. Another property which reflects the fundamental 

constraint of radar signal design is the total volume under the ambiguity 

function. It is shown below that this volume is independent of the 

shape of the transmitted waveform. 

V = 
J

"' Jl/2T 
lx<•,vl t2 

d• dv 

_., -l/2T 

*In the literature the terms x<•,vl I lx<t,V) I and lx<t,V) 1
2 

are often 
used synonymously as ambiguity function. 

(2.29) 

(2. 30) 

(2.31) 
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Substituting Eq. (2.30) into Eq. (2.31) and integrating first with 

respect to v 

CO CO 

V= 
n=-oo In:::-oo 

s(nT+•ls*(mT+•)s(mT) s*(nT) 

X 
sin 11(n-m) 

T11(n-m) 

Integrating with respect to ' and noting that the autocorrelation of 

the signal is given by 

leads to 

since 

V= E E 
n=-oo m=-co 

1 sin 11(n-m) 
T 11 (n-m) 

1 
V=Tr(o) 

CO 

sin 11(n-m) 
s*(nT)s(mT) r((n-m)T) T1!(n-m) 

= {; 

m'/ n 

m= n 

Is (nT) 12 = 
1 T r(o) E 

n=-oo 

where E denotes the signal energy. 

Hence the volume under the ambiguity function depends only on 

the total signal energy. This implies that any reduction o£ ambiguity 

anywhere in the (•,v)-plane will cause it to appear elsewhere. Eq. (2.32) 

is particularly important in clutter and multiple target environments. 

The radar signal design problem can be considered, therefore, as a 

process o£ rearranging the .undesired portions of the ambiguity function 

(range and doppler ambiguity away from the origin) into a region of 

little importance. 

(2 0 32) 
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The second term in Eq. (2.29) is due to the white noise. 

The computation of the mean noise power is simplified by noting that 

the noise power is an uncorrelated zero mean, random Gaussian variable. 

Thus the expected value of the various cross-products in Eq. (2.29) 

are zero. Hence, the mean-square noise power at the output of the MF 

is given by 

where 

hence 

E w(nT) s*(nT+T) w*(mT) s(mT+T) 
m=-oo n=-oo 

X 

E E{w(nT) w*(mT)s*(nT+T) s(mT+T) 
·m==-oo n=-c:o 

m==-eo n =-oo 

X 
e -j 2m> (n-m) T} 

-j2rrv(n-m)T r (nT,mT) s*(nT+T) s(mT+T) e w 

r (nT,mT) ~ E{w(nT) w*(mT)} = a2o((n-m)T) 
w 

2 
~a 

n=-oo 
Is (nT) 12 ~ N 

0 
E 

Thus for a given signal energy, the mean-square noise power at the 

output of the optimum receiver is a constant over the (T,V)-plane. 

So far it has been implied that the two variables T and v are 

continuous. However, from practical considerations only signals of 

finite duration can be processed. It is therefore assumed that the 

received signal duration is (N+l)T and that the delay T and doppler 

shift v are eXPressed as integer multiples of the sampling period T 

(2. 33) 
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and fundamental frequency 1/(N+l)T, respectively. With these notations 

Eq. (2.30) can now be written as 

N-jkj 
= I I: s(n+k) s*(n) e-j2n~n/(N+l) 12 

n=o 

k,~ = O, ~1, ~2, •••• , +N 

In subsequent chapters attention will be focused on the case 

for slowly moving or stationary targets. In other words, the relative 

doppler spread of the targets is assumed to be negligible (v~o). The 

output of the MF for zero doppler is the ACF of the transmitted signal 

and is given by 

N-jkj 
r(k) = I: s(n+k) s*(n) 

n=o 

k = 0, _:: 1, ~2, .... , +N 

An alternative way of representing the autocorrelation sequence r(k) 

above is to use the ZT technique described in Section 2.2.2. Thus, 

the ZT of Eq. (2.35) is given by 

R (z) 
-1 

= r(-N) + r(-N+l) z + .•.• + r(O) 
-N 

z + •.•. 

-2N+l -2N 
•.•• + r(N-1) z + r(N)z 

= (s*(N) + s*(N-1) z-1 + + s*(O) z-N) 

(s (0) + s(l) -1 
X z + •••. + s(N) 

-N z ) 

-N (s* (0) + s*(1) z + + s*(N) ZN) = z 

(s (0) + s (1) -1 
+ •••• + s(N) 

-N 
X z z ) 

R(z) 
-N 

S*(l/z) S (z) = z 

(2. 34) 

(2.35) 

(2. 36) 
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The coefficients of R(z) are labelled with index values running from 

-N to N. The kth coefficient of the complex envelope of the ACF at 

a time shift is given by Eq. (2.35) 

From the foregoing it is clear that R(z) is an even function 

which has the property of complex conjugate symmetry, that is 

r(-n) = r*(n) 

The main response peak r(o) given by 

N 2 
r(o) = E js(n) I = E 

n=o 

is always real and represents the energy contained in the sequence. 

Moreover, it can easily be shown that 

r(o) 0: jr(n)j n==O,l,2, ... ,N 

The MF for discrete coded waveforms could be implemented using 

a tapped delay line as shown in Fig. 2.8. It is assumed that the input 

is at the RF carrier (or IF) and that each delay element is an integral 

number of wavelengths. In addition the sub-pulse matched filter must 

40 
also be centered at that frequency Such a processor filters the 

input signal directly as a bandpass signal. However, for long sequences 

(N+l > 31) the bandwidth of the delay line presents a practical problem 

in that its N cascaded stages must have an overall bandwidth =: 1/T, 

the reciprocal of the sub-pulse duration. Therefore it is often 

preferable to process signals at baseband (zero IF or homodyne receiver) 

particularly when digital implementation is required. 

In a typical digital processor the delay lines are replaced by 

digital memories, Fig. 2.10. In this configuration the RF or IF signals 

are heterodyned to zero carrier frequency with a single-sideband or 

quadrature mixer whose two video outputs represent the in-phase, I, 

(2. 37) 

(2.38) 
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and quadrature, Q, components of the signal (Sec. 2.2.1). It is 

even possible to add minor doppler shifts (if known) to the local 

oscillator· (LO) ~o prevent degradation of the matched filter output. 

The baseband signals are then low pass filtered, sampled and converted 

to'digital form at high speed. The digital matched filtering operation 

can be carried out using a digital tapped delay line (transversal 

) 2 b h h . d . l' h d41-43 filter as shown in Fig. .lO,or y t e 1gh spee p1pe 1ne FFT met o 

shown in Fig. 2.9. However, in most radar applications the FFT 

realization of the filter is more desirable. This is particularly 

the case for signals with a lorgetime-bandwidth product, since FFT 

methods tend to be more efficient at performing convolution operations. 

2.3.2 Pulse Compression Radar 

It has been shown that, regardless of the signal shape, the MF 

produces one global maximum output value which is equal to the signal 

energy. Because of this concentration of the entire signal energy its 

detection against a white noise background is enhanced. In addition, 

to achieve high accuracy and resolution of radar measurements, it is 

required that the maximum in the MF output be as narrow as possible. 

Since the sharpness of the MF output signal (autocorrelation function) 

is inversely proportional to the r.m.s. signal bandwidth, compression 

of the received signal into a narrow spike can be accomplished provided 

the signal has a large bandwidth. Thus the essence of pulse compression 

radar systems is to provide this large bandwidth without degrading 

radar performance in other respects such as range resolution. 

An obvious way to achieve a large bandwidth is simply to reduce 

the duration of the transmitted pulse. However, since target 

detectability and measurement precision depends on the signal energy, 

the transmitted power must be increased proportionally, to keep the 
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energy constant. Unfortunately, the peak power limitations of 

transmitters sets a lower limit on the pulse duration. Therefore, 

the need for a large bandwidth must be met by modulating the pulse 

rather than reducing the pulse duration. 

In principle any of the three basic types of modulation could 

be used to increase the signal bandwidth, namely; amplitude (AM), 

phase (PM) and frequency (FM) modulation. (Here, PM is considered as 

a general type of modulation where the phase of .the signal is varied). 

AM modulation, however, is generally not desirable for use with radar 

waveforms due to its inherent disadvantages. First, it is an inefficient 

way of increasing the signal bandwidth, in that the function actually 

applied to the modulators must be wide-band. Secondly, as already 

· pointed out, transmitter tubes operate most efficiently under constant 

amplitude conditions. Thirdly, it is expensive and difficult to achieve 

good amplitude linearity throughout the radar system over the entire 

dynamic range of interest. Therefore, AM modulation is of interest as 

a means to improve system performance, rather than as a primary method 

of achieving large signal bandwidth. The case of quantized FM will not 

be considered here as, due to complexity in frequency synthesizing it 

is less practical, except in a few cases, than PM: 

As implied by the term pulse compression the objective of the 

receiver filter is to compress the received long pulse having a time 

duration of T seconds and a bandwidth of W hertz into a short pulse of 
s 

duration 1/W, to allow recognition of closely spaced targets. The 

ratio of the duration of the long pulse to that of the short pulse is 

called the compression ratio. Thus the compression ratio is given by 

(2. 39) 
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which is equal to the time-bandwidth product of the waveform. In 

a digital system the signal duration T is equal to (N+l)T, where T 
s 

is the sampling interval and (N+l) is the number of samples. 

Furthermore, if the sampling process is carried out at the Nyquist 

rate T = 1/W, then 

m = (N+l)T W = N+l 
c 

that is, the compression ratio or time-bandwidth product is equal to 

the total number of samples. 

The main conclusion from the foregoing is that in all cases 

where the transmitted signal spectrum is substantially widened by 

modulation, recompression of signals can be accomplished during 

reception. 

2.3.3 Range Resolution in a Matched Filter Radar 

The estimation of target resolution performance is probably the 

most· difficult problem to solve in modern high performance radar systems. 

In some cases the interfering objects may themselves be targets of 

interest, whereas in others they may be undesirable scatterers 

introducing a type of noise,known as clutter,into.the system. As 

mentioned in Section 2.3.1 the optimum receiver for maximum resolution 

is not necessarily a MF. In practice, however, the typical target 

situation is too complex and not enough prior information is available 

to implement anything but a MF receiver or an approximation. For good 

target resolution, it has thus been necessary to retain a MF processor 

but to optimize the signal waveform so as to reduce the mutual 

interference (self-clutter) between targets. 

(2. 40) 
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The ways in which the transmitted waveform limits the radar 

21 
performance in white noise are well known • Three parameters are 

of prime importance. These are the bandwidth W, the time duration 

T , and the total signal energy E. Specifically: 
s 

(i) Range resolution for a MF receiver and stationary 

targets is determined by the spectrum envelope of 

the signal. For a given spectral shape, range. 

resolution is proportional to 1/W. Therefore, 

good range resolution is achieved with a spectrum 

for which the total occupied frequency band is large. 

(ii) Making use of the time-frequency duality, velocity 

resolution (radial) for targets having the same 

range is determined by the time structure or envelope 

of the signal. For a given envelope, velocity 

resolution is proportional to 1/T • Hence low 
s 

velocity ambiguity requires a. waveform that occupies, 

with significant energy, a large total time interval. 

(iii) Target detectability is determined by the ratio of 

received signal energy to received noise power (SNR). 

For given system parameters, signal detectability, 

and thus range, can only be improved by increasing 

the transmitted energy. 

Therefore, it is desirable to transmit a waveform which has both a 

rectangular envelope as well as a rectangular spectrum. 

In order to appreciate the resolution problem consider two 

stationary targets slightly separated in range. Neglecting an amplitude 

attenua~ion factor the combined received signal is of the form 

s(nT) = s (nT-i) + s (nT-T -T) 
0 0 0 0 

(2.41) 
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s (nT) = transmitted waveform 
0 

-r0 = position of first target 

T = target separation 

To be able to distinguish the two target returns it is necessary to 

select a suitable waveforms (nT). A measure of distinguishability, 
0 

given by the sum of the square difference of the two signals, can be 

expressed as 

"" 
E 

2 
= E . I s (nT - T ) - s (nT - T - T) 1

2 
0 0 0 n=-co 

{ I s (nT-T ) 12 +I s (nT--r -T) 12
- 2Re [ s (nT--r ) s * (nT-T -T) ]} 

o· o o o . n=-oo 

The first two terms represent the signal energy E and are therefore 

constants. The last term is recognized as the ACF, r(T). For the two 

signal returns to be as different as possible it is required to 

maximize the equation above, that is 

roax e2 
= {E - Re [ r(-r) ]} 

Hence, in a MF radar the optimum waveform to use would be one whose 

receiver response, or ACF, has an envelope consisting of a single spike 

at T = 0 of a width smaller than the spreading of the targets in range 

(delay). However, in practice such waveforms cannot usually be realized. 

Actual waveforms have ACF's whose envelopes show one or more of the 

properties indicated in Fig. 2.11. Basically there are three types of 

MF responses; a single lobe (a), a narrow main lobe accompanied by 

relatively large sidelobes, (b), and a single lobe surrounded by a 

noise-like, low-level response spread out in time (c). Each one of 

these response types presents its own resolution problems. Suppose the 

(2.42) 
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MF output consists of a single lobe (a). If the separation of the 

targets is larger than the width of the lobe there will be no problem 

in resolving them. However, for closely spaced targets the responses 

overlap and the envelope of the combined output will depend on the 

phase relationship of the echoes, Fig. 2.12. Thus, in the region of 

overlap,target resolution is difficult to achieve. Therefore, to 

distinguish two or more targets their returns must be separated by 

at least the half power (3dB) response width. A different type of 

resolution difficulty is caused by the MF response shown in Fig. 2.11 (b). 

Although the main lobe may be sufficiently small to meet the required 

target resolution, target returns separated at multiples of ~'d are 

completely masked. Problems of yet a different nature are introduced 

by the response of type (c). Again the main lobe may be narrow enough 

for the desired close target resolution. However, for targets with 

widely varying cross-sections it still may not be possible to distinguish 

them. The pedestal-like extension of the response due to a strong 

target may have an amplitude strong enough to obscure the main response 

peak of weaker targets·. This effect is aggravated particularly in a 

multiple-target environment where the combined sidelobes from many 

returns may build up to a level that even relatively strong targets can 

no longer be recognized. 

21 
As shown by Woodward the MF receiver utilizes the full 

information available from the return signal. The width of the. main 

response lobe can be regarded as a measure of uncertainty about the 

exact target range, while the spread of the response introduces 

ambiguity of the target location. Both effects, although conceptually 

different, are lumped together in a figure of merit known as the time 

21 
resolution constant . 
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The resolution problem has been discussed here in a purely 

qualitative manner. Analytical treatments of the resolution in 

22 23 26 44 
parameters can be found in many excellent radar books ' ' ' • 

Nevertheless, the preceeding discussion allows the general formulation 

of the requirements which have to be met for target resolution. First, 

the output signal to white noise ratio must be large .enough for 

reliable detection. Secondly, the target of interest must be 

separated sufficiently from any other target of comparable or larger 

cross-section to prevent overlap of the main response lobes. Thirdly, 

the combined interference from other targets must not be so strong as 

to mask the target return of interest. 

Interference from other targets due to response sidelobes acts 

like clutter caused by undesired scatterers. However, the term 

clutter implies that the interference causing reflectors are so dense 

that they cannot be resolved. The type of clutter due to sidelobes is 

often called self-clutter to distinguish it from the effect of 

undesired objects. 

In summary, the resolution performance of a radar thus depends 

not only on the width of the main response lobe but also on the low-

level response surrounding the main peak. In the published literature 

resolution is often referred to as the 3dB points of the main response 

lobe. In the present context, however, target resolution means the 

ability to recognize a target in the presence of others. 

(2.43) 

'-------~---------------'---------------- -- -- ·-··-----~ 
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CHAPTER 3 

SYNTHESIS OF PULSE TRAINS FROM SPECIFIED AUTOCORRELATION FUNCTIONS 

3.1 Introduction 

The problem of synthesizing signals which realise the desired 

aufocorrelation function {ACF) can be divided into a number of 

interrelated problems, each of which has an independent practical 

significance. The separate problems could be formulated as follows
44

: 

(i) Determine the class of functions which are realizable 

ACF's for arbitrary signals. 

(ii) Determine the sub-class of ACF's for various signal 

structures such as discrete coded waveforms. 

(iii) Synthesis of signals whose ACF is a close 

approximation to the desired ACF not belonging to the 

class of realizable functions. 

(iv) Synthesis of signals (pulse trains) which satisfy a 

given set of requirements, e.g., range resolution, 

energy utilization, etc. 

So far, a comprehensive analytical treatment of these problems and their 

solution has not been formulated. For example, a simple criterion for 

determining the realizability of an ACF has not yet been found. 

To appreciate the nature of the problem arising here consider 

the ACF 

r(T) = E s(nT+T) s*(nT) 
n=-~ 

or its equivalent expression 

J
W/2 

r(t) = js(flj 2 ej 2nfT df 

2 -W/2 
where js(f)j is the power spectrum of the~ signal s(nT) and is 

assumed to be bandlimited. In other words S(f) is zero outside some 

range (-W/2,W/2). Strictly speaking the requirement for a finite 

(3.1) 

~ I 

(3.2) 
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bandwidth w is incompatible with a finite-duration signal. However, 

an approximation to the finite spectrum condition can be reached if 

a major portion of the signal energy is concentrated within a specified 

frequency band. 

From Eq. (3.2) it can be seen that the ACF and the power spectrum 

form a Fourier transform pair. 
I 

Hence it follows that for r(T) to be 

a realizable ACF its spectrum, R(f), must be real and non-negative. 

Even if the given ACF is realizable the synthesis problem cannot be 

solved uniquely. Since the phase information is lost in the power 

spectrum, it is not possible to determine S(f) itself which is necessary 

to find s(nT). Therefore, all signals whose spectra differ only in 

phase will have the same ACF. Thus the synthesis problem may be 

divided into the following two steps: 

1. The power spectrum ls(f) 1
2 

is determined from the 

given ACF. (It is assumed that the ACF is realizable, 

i.e., R(f) =FT {r(T)} >- o, if not R(f) is' replaced 

by IR(flll-

2. From the determined power spectrum one signal having 

such a spectrum is derived by assigning an arbitrary 

phase function 0(f), i.e., s(nT) ; iFT {IS(f) lexp(j6(f))}. 

For digital applications, however, only finite-length sequences can be 

processed. The next section will, therefore, be devoted to the 

problem of factorizing the power spectrum using ZT techniques. 

3.2 Synthesis of Pulse Trains if the ACF is known in Magnitude 

and Phase 

If the ACF is given in phase and magnitude at discrete points 

its ZT can be written as (Eq. (2.36)) 

-N R(z) ; z S(z) S*(l/z) 
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As mentioned previously the ZT provides a convenient method to 

represent a signal in the form of its zero pattern which is obtained 

by factorizing its polynomial in z. In factorized form the equivalent 

-1 
representation of a polynomial S(z) of order N in powers of z can 

be'written as 

N 
S(z) = s(O) 11 

i=l 
(1 - z./z) 

~ 

where z. are the zeros of S(z), i.e. S(z.) = o, i = 1,2, •••• ,N. 
~ ~ 

Similarly, S*(l/z) can be represented as 

Hence 

N 
S*(1/z) = s*(O) 11 

i=l 
(1 - z z~) 

~ 

= s* (O) (-l)N 
N 
11 

i=1 

N 
S*(l/z) = s*(N) 11 

i=1 
(z-1/z~) 

~ 

N 

N 
11 

i=l 
(z-1/z*) 

i 

R(z) = s (0) s* (N) 11 (1-z. /z) (z-1/z~) 
~ ~ i=1 

-N 
where the unessential delay factor z has been neglected. Since R(z) 

essentially represents a power spectrum the above_ equation can be 

45 
regarded as the factorized power spectrum 

The equivalent expressions above allow the study of pulse trains 

using their zero patterns in the complex z-plane. The conditions 

s(O) f o, and s(N) f o, are clearly equivalent to 

S(O) f 0 and S*(O) f 0 

It is easy to verify that if S0 (z) denotes the polynomial 

then 

--------------~------------~----------------------------------

(3. 3) 

(3.4) 

{3. 5) 
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and 

0 0 0 {S{z) P{z)) = s {z) P {z) 

In addition it follows from Eq. {3.3) and Eq. (3.4) that for lzl = 1 

ls(z) I = ls*(l/z) I 

Moreover, if a polynomial S{z) of degree N has p
1 

zeros inside the 

unit circle, lzl = 1 (counting multiples), p 2 on the unit circle and 

p
3 

zeros outside, where p
1

+p
2

+p
3 

= N, it is referred to as of the 

type (p
1

,p
2

,p
3
). Since it has been assumed that S(O) f o, it is 

clear that zj is a zero of S(z) if 1/zj is a zero of S*(l/z). The 

zeros z. and 1/z~ have the same angle in the z-plane but reciprocal 
J J 

magnitudes as indicated in Fig. 3.1. It is clear that S(z) is·of the 

The class of polynomials, P, for which P(z) and P*(l/z) have 

the same set of zeros are known as self-inversive polynomials
46 

It 

is apparent that a polynomial P(z) is self-inversive if its zeros 

are symmetric with respect to inversion on the unit.circle. From the 

foregoing it should be clear that: 

(i) A self-inversive polynomial of degree N is of type 

(p,N-2p,p) for p >- o. 

(ii) Since the polynomial R(z) consists of the product 

of the two factors S{z) and S*{l/z) it is of type 

Consequently, R(z) is self-inversive and its zeros 

must occur in reciprocal conjugate pairs. 

Thus for a finite pulse train to be an ACF it has to satisfy 

condition (ii). The design technique for pulse trains from a given 

realizable ACF can now be summarized as follows: 

1. Factorization of the ZT polynomial which represents 

the ACF. 

{3.6) 

( 3. 7) 
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2. Selection of a suitable zero pattern to obtain the 

signal after multiplication. 

This synthesis method is not unique in that a whole family of pulse 

trains having the same ACF usually exists. For example,an ACF 

polynomial R(z) of order 2N has exactly 2N zeros. Half of these 

zeros belong to S(z) while the other half belongs to S*(l/z). Hence 

N N 
there are 2 possible zero patterns and thus 2 pulse trains having 

the same ACF (see Chapter 7). 

The design procedure is probably best illustrated by an example. 

Consider the 11-element Barker code* whose ACF has the ZT representation 

R(z) 
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 = -1-z -z -z -z +llz -z -z -z -z -z 

This polynomial is now factorized on a digital computer using a 

standard root-finding algorithm. The resulting zeros are given in 

Fig. 3.l(a). All the zeros occur in reciprocal conjugate pairs. In 

addition as a consequence of the coefficients of R(z) being real, all 

complex zeros must occur in conjugate pairs. The selection o£ the 

zeros for S(z) and multiplying them out completes the design procedure. 

The resulting sequence choosing the zeros labelled as 1,2,3, •••• ,10 is 

shown in Fig. 3.l(b). More detailed information on the selection and 

structure of zero patterns and how they affect the complex envelope of 

the resulting pulse train is presented in Chapter 7 when dealing with 

Huffman codes. 

*The 11-element Barker code is given by (1,1,1,-1,-1,-1,1,-1,-1,1,-1) 
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3.3 Synthesis of Pulse Trains if only the Magnitude of the ACF 

is known 

In the previous section the magnitude and phase of the ACF at 

discrete points was required to find a solution to the synthesis 

problem. However, from practical considerations only the magnitude 

of the function is usually known, since the phase does not affect the 

accuracy and resolution of the range measurements. In this section the 

design procedure is extended to the case where only the magnitude of a 

realizable ACF is given at discrete points. The basic underlying idea 

of the method presented here is due to Vakman 
44 

and is also ·implied by 

Voelcker47 in a different context. 

Before proceeding further it is necessary to recall the 

convolution theorem derived from basic Fourier transform theory 

r(t) * r*(-t)- IR(f)l
2 

jr(tll
2

- R(f) *R*(-f) 

The above relationships show the duality between the ACF of the 

spectrum R(f) and the ACF of the time signal r(t). As r(t) is assumed 

to be bandlimited it can be represented by its Nyquist samples. However, 

due to the convolution process in the frequency domain the squared 

envelope, jr(t) J
2

, will have twice the bandwidth of r(tJ
29

• In other 

words, if lr(t) 1
2 

is sampled at the Nyquist rate, r(t) is sampled at 

twice that rate. Hence it is assumed that the squared envelope of the 

ACF is known at integer multiples of T/2 = T'. 

Since lr(t) 1
2 

is of finite duration it is completely defined by 

frequency domain samples taken at intervals 1/T'. Such a signal has a 

finite Fourier representation of N terms 

N-1 
m(t) = lr<tll

2 = E C(k) exp(j2rrkt/Ts) 
k=o 

(3.8) 

(3.9) 

(3.10) 
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where T is the duration of the signal and N = WT • 
s s 

The samples of the envelope are thus given by 

N-1 
m(n/W) = E C(k) exp(j2~kn/N) 

k=o 

n = 0,1,2, •••• , (N-1) 

By substituting the symbol z for exp(j2~t/T ) the finite Fourier 
s 

series can be rewritten as a polynomial in powers of z 

N-1 
m(z) = C(O) + C(l) z + •••. + C(N-l)z 

N-1 
m(z) = E 

k=o 

k 
C(k) z 

This transformation can be regarded as the dual of the ZT discussed 

in Chapter 2. 

Consider now the polynomial of order L representing the ACF, 

r (t) 

L 
r(z) = R(O) + R(l) z + •••• + R(L) z 

Clearly, for r(z) to be realizable all R(n) must be real and non-

negative (R(n) >, 0), since the coefficients of the polynomial are 

the power spectral samples. The squared modulus of r(t), lr(t) 1
2 

can thus be represented as a polynomial multiplication 

m(z) = (R(O) + R(l) z + 
L + R(L) z ) X 

(R*(L) + R*(L-1) z + .... + R*(O) zL) 

m(z) = zL(R(O) + R(l)z + 

m(z) = zL r(z) r*(l/z) 

. 
where the coefficients of m(z) are given by 

L-lkl 
C(k) = E R(n) R(n+k) 

n=o 

k = 0,1, •••• ,:!:_L 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Since r(z) is a polynomial with real coefficients 

L m(z) = z r(z) r(l/z) 

Thus the operation of convolution in the frequency domain reduces to 

a multiplication of two polynomials. This clearly reflects the 

duality of time and frequency as pointed out earlier. 

Since m(z) has the form of an ACF it is possible to proceed in 

a similar manner to that described in Section 3.1 in order to find the 

power spectral components R(n) given m(z). The properties of m(z) 

are revealed by studying the zeros in the complex z-plane. The 

coefficients of m(z) specify the ACF of the spectrum of r (z). Its 2L 

zeros must therefore occur in reciprocal conjugate pairs. In 

addition, since all coefficients are real (and in particular non-

negative) they all occur in complex conjugate pairs. Thus .if zj is a 

zero of m(z), then z~, 1/z~ and 1/z. also must be zeros of m(z). This 
J J J 

relationship is illustrated in Fig. 3.l(a). Consequently, if m(z) 

is to represent a realizable power spectrum ACF the following conditions 

must be satisfied: 

(i) m(z) is finite and its zeros occur in complex 

conjugate reciprocal pairs. 

(ii) The coefficients, R(n), of r(z) must be real and 

non-negative. 

If these conditions are met then at least one and in general a whole 

set of ACF's having the same magnitude can be found. 

The steps in the design procedure can be summarized and probably 

best illustrated by using the 7-element Barker code as an example*. 

*The 7-element Barker code is (1,1,1,-1,-1,1,-1) 
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1. Given the samples of lr(t) 1, where r(t) is assumed 

to be bandlimited and sampled at twice the Nyquist 

rate, Fig. 3.2(a), one computes the DFT of the 

sequence lr(kT') 12 , i.e. 

This gives, except for a scale factor, the (2L+l) 

Fourier coefficients of the periodically repeated 

square envelope of the ACF, Fig. 3.2(b). 

2. Factorize the polynomial whose coefficients are these 

Fourier components. The 2L roots should occur in 

reciprocal complex conjugate pairs, Fig. 3.2(c). 

3. Select L roots from each reciprocal conjugate pair 

and its conjugate. Now, multiply out to obtain a set 

of (L+l) Fourier coefficients which are, neglecting 

a scale factor, the DFT of the samples of r(t). 

Verify that r(t) is indeed an ACF. This is done simply 

by making sure that the coefficients obtained are all 

real and non-negative. If the test fails, select a 

new zero pattern and repeat the precedure from step 3, 

until a realizable ACF is obtained, Fig. 3.2(d). 

From the L roots only L/2 can be chosen independently, 

since the zeros must be selected in complex conjugate 

pairs. Hence, there are in general 2L/2 possible zero 

patterns. However, not all zero combinations will 

result in realizable ACF's. The zeros chosen in this 

case are labelled 1,2, .•.• ,13, Fig. 3.2(c). 

4. The final stage of the synthesis procedure is to take 

the IDFT of the Fourier coefficients to obtain the 
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sampled values of r(t), Fig. 3.2 (e)·. Once the ACF· 

has been found in magnitude and phase, it is then 

straightforward to synthesize a pulse train which 

realizes this ACF by following the procedure outlined 

in section 3.2. 

The design procedure outlined in this chapter may appear to 

solve the synthesis problem satisfactorily. However, in practice this 

solution has limited applications for the following reasons. In the 

first place, an exact solution can only be found in those cases where 

the given ACF is realizable, that is, there must exist a signal which, 

if correlated with its conjugate time reverse, produces that ACF. In 

many practical cases only the gross features of the ACF are known. 

Usually when a signal is to be synthesized very little is known about 

the sought after ACF. In general only the following requirements 

should be met. First, to improve the accuracy and resolution of the 

range measurements, the mainlobe of the ACF must be as narrow as 

possible. Secondly, to increase the multiple-target resolution 

capability, the function must have low sidelobes. In most cases more 

detailed information about the ACF is not available. Hence, the given 

ACF's usually turn out to be non-realizable, i.e., their spectra do 

not satisfy the condition (3.2). It becomes necessary, therefore, to 

replace the spectrum R(f) by its magnitude JR(f) J which is a non­

negative function and thus to seek an approximation to the desired ACF. 

For example, the ideal ACF from the viewpoint of range resolution 

consists of a single narrow spike which is not realizable with a finite 

pulse train. 

Additional difficulties of computational nature are encountered 

in the task of factorising the polynomial to obtain its zeros. The 
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present NAGF* library root-finding algorithm of the Loughborough 

University computer centre run on an ICL 1904A digital computer 

can handle polynomials of orders up to about one hundred. Another 

difficulty is to compute the coefficients of a polynomial from its 

zeros. Standard methods usually give excessive error accumulation 

with polynomials of orders greater than about 40. A method which is 

48 to some extent free of that difficulty has been suggested by Ackroyd 

Although the difficulty in factorizing a polynomial can be 

20 avoided in the case of Huffman sequences (Chapter 7), the problem 

of selecting a zero pattern in order to obtain a pulse train with 

specified properties still remains. The relationship between the 

zeros and the coefficients of a polynomial are given by a set of non-

linear equations (Eq. (7.11), Chapter 7). For a given set of'zeros 

it is difficult, if not impossible in practice, to solve this set of 

equations for any arbitrary constraints on the coefficients. 

The shortcomings of this design method seriously limit its 

application from the practical point of view. Subsequently, an 

essentially different approach will be considered in the next chapter. 

*Nottingham Algorithm Group 
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CHAPTER 4 

DISCRETE PHASE APPROXIMATION TO FM SIGNALS 

4.1 Introduction 

With radar signal processing becoming more and more digital it 

will become increasingly attractive to consider phase modulated pulse 

train approximations of continuous FM signals, such as linear and non-

linear FM. Therefore, in this chapter attention will be concentrated 

on the application of the design procedures used for continuous FM 

waveforms to pulse trains. 

The problem of designing a long-duration, rectangular FM signal 

having an arbitrary ACF has been solved by Key et a1
49

• 
so 

Later Fowle 

extended the theory for the non-rectangular case. However, as pointed 

. out earlier, the rectangular envelope of the transmitted signal offers a 

number of advantages. 

' 
The application of the principle of stationary phase (Appendix A) 

to the class of FM signals wi.th large time-bandwidth product has shown 

that a non-linear FM modulating function can control the form of the 

spectrum amplitude and thus the time response at the matched filter 

49 so ' output ' • Espec~ally for applications where the transmitted signal 

envelope must be essentially rectangular the FM modulating function can 

be used to control the range sidelobes. This permits the receiver 

amplitude response to be matched directly to the transmitted waveform, 

thus eliminating receiver mismatch loss associated with range sidelobe 

reduction techniques (Chapter 8). 

The effect of spectrum shaping is illustrated in Fig. 4.1. The 

two spectra curves representing the fourth power of the spectrum are 

assumed to have equal area. The resulting total ambiguity A is, 

therefore, in both cases the same, since 

I 
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A= J:~ jr(T) 1
2 

dT (4.1) 

can be expressed using Parseval's theorem as 

W/2 
A J js(fl J

4 
df 

= -W/2 

The spectrum with the energy shifted away from the origin will give rise 

to range ambiguities of the disconnected type. On the other hand, a 

spectrum whose energy is concentrated about the origin results in 

' sidelobes close to the main response peak. This is confirmed by the 

Fourier transform theory where sharp edges of the spectrum produce 

large time sidelobes. 

4.2 The Method of Stationary Phase applied to FM Signals 

In general the problem of designing a FM signal of a given 

envelope shape to have a specified ACF requires the solution of 

s (f) ej 6 (f) 
m 

s (t) ej <j> (t) 
m 

where Sm(f) = js(f) /and sm(t) = js(t) J. 

With the two moduli functions S (f) and s (t) specified, it is necessary 
m m 

to find expressions for <j>(t) and 6(f) in terms of the, given quantities 

to satisfy the Fourier transform relationship. However, it is not 

generally possible to find a solution (or a reasonable close 

approximation) if the two moduli functions are specified. Unfortunately, 

a concise set of necessary and sufficient conditions which have to be 

met by the moduli of·a Fourier pair, has so far not been formulated. 

so Nevertheless, Fowle has shown that·when the time-bandwidth product is 

sufficiently large (>>ll approximate Fourier pairs with the independently 

specified moduli can be constructed. 

(4. 2) 

(4. 3) 
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The unusual type of integral equation implied in Eq. (4.3) 

may be approximated using the method of stationary phase (Appendix A). 

This technique provides a parametric expression for the spectrum of 

a FM signal 5° 

~ s (!;;) s (f) " (211) m _ __:::_~ exp{j(-2rrf!; +~(!;;) ~11/4)} 

(jq,"<PIJ~ 

sm (f) " (211) ~ sm<l;;li<Jq," m I l~ 

where 

q," (t) = 
d2 q, (t) 

dt2 

The stationary point is given where 

d 
dt { q,(t) -211ft}= o 

t'(i;) - 211f = 0 

The value of t satisfying Eq. (4.5) is denoted by !;;. At this point it 

is perhaps of interest to note that the stationary phase method yields 

only those frequency components of the spectrum which coincide with 

the instantaneous frequency of the signal for its duration. This 

dependence of the spectrum on the phase function and its derivatives 

is indicated in Eq. (4.4). 
. 50 

As shown by Fowle this relationship can 

be rewritten in the form 

f
f 2 

= s <nl dn m . 
-oo 

The above equation establishes the relationship between the instantaneous 

frequency, f, and the envelope functions (!;);with timet. 
m 

(4. 4) 

(4. 5) 

(4. 6) 
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Carrying out the integration in Eq. (4.6) leads to 

p (t) ; Q (f) 

where P(t), Q(f) are indefinite integrals of s~(~) and S~(n) 

respectively (assuming P(-oo) ; Q(-oo) = 0). The solution of Eq. (4.7) 

for f is symboli~ed as 

Substituting Eq. (4.8) into Eq. (4.5) yields 

$' (t) = 21r Q-l{P (t)} 

Thus 

where c
1 

is the constant of integration. 

. ' . Eq. (4.9) makes it possible to synthesize FM signals having any given 

power spectrum. 

A similar relationship can be shown to exist for 6(f), which 

leads directly to the result that the group delay function e· (f) and 

the instantaneous frequency <P' (t) are approximate inverse functions
50

• 

The design procedure for large time-bandwidth product FM signals 

can thus be summarized as follows: 

1. Given a power spectrum ls(f) 1
2 

the integration in Eq. (4.6) 

is performed, assuming a rectangular envelope (s (t) = 1), 
m 

to find Q(f) = t 

2. The function Q(f) = t is inverted to obtain 

This is done quite easily on a digital computer. 

3. Integration of cp' (t) leads to the sought after phase 

modulation function. 

(4. 7) 

(4. 8) 

(4. 9) 
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The relationships above were obtained using the stationary 

phase principle and are thus approximate. For a rigorous formulation, 

the problem requires the solution of the integral equation 

s (f) 
= I Ts/2 

-Ts/2 
s (t) exp{j(~(t) - 2~ft)}dt 

m 

for the unknown phase function ~(t} or the instantaneous frequency 

~· (t} with the spectrum magnitude [s(fl[ and the envelope s (t) given. 
m 

Moreover, the approximation of the stationary phase method is suited 

only for signals having a steep, monotone FM law, because it does not 

consider the 'edge effects' associated with the signal fronts. 

However, within its limitations this method has proved very useful in 

designing analogue FM waveforms. 

Discrete phase coded waveforms on the other hand cannot be 

found directly with the help of the method of stationary phase, 

Eq. (4.4), since discontinuities of the phase modulating function 

leads to several points of stationary phase. However, it is anticipated 

that approximating the continuous phase function ~(t) with piecewise 

constant segments of equal duration will result in phase modulated 

pulse trains having virtually all the desired properties of FM signals. 

The process of approximation is illustrated in Fig. 4.2. Each sub-pulse 

of the pulse train is at the same carrier frequency. That would not be 

the case if the phase function ~(t} is approximated by straight line 

segments. Since phase shifts of a multiple of 2~ are not effective, 

the stepped phase function of Fig. 4.2 can be replaced with its 

modulo-2rr version as indicated. This method of approximation can also 

be visualized as being a sampling process of the complex envelope of 

a purely phase modulated analogue signal. Consequently, the study of 

such pulse trains and their ability to improve target resolution is 

the main objective in the following sections of this chapter. 

(4 .10) 
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4.3 Discrete Phase Approximation to Linear FM Signals 

The linear FM (LFM) or 'chirp' waveform is probably the principal 

type of signal transmitted by a radar or sonar system. The LFM waveform 

is derived from Eq. (4.4) by assuming a rectangular power spectrum. 

The main advantage in using such waveforms lies in their ease of 

generation and insensitivity to small doppler shifts. The description 

and properties of analogue chirp techniques are well documented in the 

22 25 51 
literature and will not be repeated here ' ' • 

In general the complex envelope of a LFM signal can be expressed 

as 

s (t) = exp (j )1 t
2
/2) 

where 

)I = 211W/T 
s 

w = f2 - fl = frequency change during sweep 

T = time duration of sweep 
s 

As implied by the term LFM, the instantaneous frequency is swept linearly 

from f
1 

at t = 0, to a maximum value of f 2 at t = Ts. The complex 

envelope can be written in terms of the pulse compression ratio (time-

bandwidth product), m 
c 

If the waveform is sampled at uniform time intervals of T seconds 

and with 

s(nT) = exp(jn(WnT)
2
/m) c . 

m = NTW 
c 

s(nT) = exp(jnWTn
2
/N) 

n = 0,1,2, •••• , (N-1) 

The total phase change over the signal duration is 

(4.11) 

(4.12) 
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Furthermore, if T is set equal to the Nyquist rate, then 

T = 1/W 

and 
. . 2 
s(nT) = exp(jnn /N) 

Since each segment is coded into one of N possible phases, these 

sequences are sometimes referred to as polyphase codes. In particular 

the sequences whose phase follows a quadrat~c progression ... will be 

called quadratic phase (QP) codes. An interesting property of QP codes 

is their periodic ACF which is zero for all non-zero time·lags,
52 

' 

(4.13) 

provided the sequence is coded as in Eq. (4.13) if N is even and is modified 

to 

s(nT) = exp(jnn(n+l)/N) 

for N odd. 

Higher order polyphase codes with zero circular ACF (k;-'0) have 

been described by Frank, Zadoff and Heimiller16
-

18
. The length N of 

such codes, however, is restricted to perfect squares. While the QP 

sequences and Frank codes have ideal cyclic autocorrelation, they do 

not have, of course, perfect aperiodic autocorrelation. 

Another property of practical importance is the simple generation 

of QP pulse trains if the sequence length is chosen properly. This 

2 
can be demonstrated by expanding the expression n /N as 

where 

since 

and 

2 . 
n /N = q + q 1 (~) + ~n/N 

q = 0,1,2,. ..... . 

~ 
n 

= 0 or 1 

= remainder 

exp (jqn) --{-11 

exp (jn/2) = j 

q odd 

q even 

(4.14) 



-53-

the QP code can also be written as 

s(nT) = (2:) (or :) exp (j TT Cl /N) 
J n 

The number of different samples to be generated is thus a function 

of.the number of distinct remainders of n 2/N. 53 Ray and Lowenschuss 

have shown that for a proper choice of N the number of different 

samples can be kept very small indeed. For example for N = 16 only 

three different values must be generated, exp(jn/16), exp(jn/4) and 1. 

Incidentally, this property has also been exploited in the Blustein 

algorithm which computes the DFT using a chirp filter 54 . 

4.3.1 Properties of the Compressed Pulse Train 

The exact expression for the ACF can be obtained by substituting 

Eq. (4.12) into Eq. (3.1) 

r(kT) = 
N-1-k 2 2 

jnWT/N (n - (n+k) ) 
l: e 

n=o 

J. WTk2/N N-l-k -j2TTWTnk/N 
=eTT l: e 

n::::o 

k = 0,1,2, .••. , (N-1) 

The summation in the last expression is of the form of a geometric 

progression and can be written in closed form. By rewriting the sum 

term as 

where 

N-1-k 
I: 

n=o 

n 
r 

it is recognized that the series containing a total of (N-k) terms has 

a sum of 

s = 
(N-k) l r -
r - 1 

(4 .15) 
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.-j'ITWTk
2

/N 
= e 
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-j'ITWTk2/N = e 
{ 

-j21tWTk(N-k) 
e -
e-j2'ITWTk/N _ l 

-j'ITWTk(N-k)/N e . 
j'ITWTk/N 

e 

-j'ITWTk(N-k)/N 
e 

-j'ITWTk/N 
e 

r(kT) = e 
-jrrWTk(N-1)/N sin [ rrWTk (N-k) /N] 

sin (rrWTk/N) 

Since only the magnitude of the ACF is of interest 

I r (kT) I = I 
sin [ 1rWTk (1-k/N)] I 

sin(rrWTk/N) 

e 

_ ej'ITWTk(N-k)/N } 

j'ITWTk/N 

If T is equal to the Nyquist sampling rate, i.e. ~~ = 1, Eq. (4.16) 

becomes 

lr(kT) I = I sin [rrk(l-k/N~~ 
sin (rrk/N) 

Because r(kT) exhibits complex conjugate symmetry with respect to 

k=O, it is sufficient to consider only positive time lags. The nature 

of the function (Eq. (4.17)), in the vicinity of k=O has the form of 

a sine function with a peak value of N. Because of the periodicity 

of the expression this characteristic will be repeated at intervals 

1/N. For even length sequences the function is symmetrical with 

respect to N/2. The effect of the term (1-k/N) can be explained, 

considering that 

I sin { 1rk (1-k/N) ] I = I sin (rrk
2 

/N) I 

Thus it modulates the frequency of the ripples in a 'chirp-like' 

fashion (Fig. 4.3). 

(4.16) 

(4.17) 
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Whenever a sequence is used as a modulating function it is 

always of interest to consider its spectrum. Since the power spectrum 

contains the relevant information, it is sufficient to consider the 

amplitude spectrum only. For convenience the spectrum is assumed to 

be" zero outside some range (O,W) (analytical signal). This is no 

restriction, since any bandlimited signal can be brought into this 

form by a suitable frequency translation. 

The magnitude of the ACF, amplitude spectrum and group delay 

function are displayed in Fig. 4.3 for a QP sequence of length N = 128 

when sampled at the Nyquist rate, WT=l. All graphs were plotted using 

straight line interpolation between .adjacent samples. The spectr.um · 

was computed by evaluating Eq. (2.1S) using the FFT algorithm
32

•
33 

.The group delay function defined as 

was calculated with the help o£ the expression (Appendix B) 

'[ (f) 
.g 

N-1 
=Re {T( E 

n=o 

N-1 
n s(n)z-n/ E 

n=o 

-n s(n)z )} 

The above equation can be evaluated using DFT techniques 

1: 
9

(n/NT) = Re {T 
DFT (1st moment of s(n)) 

DFT(s(n)) } 

In the computations, T was assigned the value of unity so as to normalize 

the scales o£ the resulting graphs. In addition 1: (f) is plotted only g 

over that frequency range where the spectrum is significant. 

The figures show quite clearly the LFM type properties. The sine 

effect can be observed near the mainlobe and at time shifts where k is 

approximately NT. The maximUm sidelobes, however, are smaller than the 

(4 .18) 

(4.19) 
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-13dB achieved with analogue LFM waveforms, Fig. 4.4. The peak 

sidelobe can be calculated using the sine approximation for small 

time lags. Thus for k << NT 

jr(kT) J ~ 

The first maximum occurs where 

hence 

max Jr(kT)J 
kfc 1f 

= o. 45 vN 

Using the exact expression a more precise value can be obtained 

numerically, which turned out to be 0.48 rN. The two main side lobe 

bands occur at time shifts where k = IN/2 and k (N-IN/2) 

respectively. This property of increased sidelobes towards the end 

of the matched filter response is quite different from the analogue 

waveform where the sidelobes decrease uniformly with increasing time 

shift. However, the overall properties of the analogue LFM signal 

is preserved. This is reflected in the familiar Fresnel ripples of the 

spectrum and the linear group delay (Appendix A) • 

The characteristics of the QP pulse trains when sampled at a 

lower or faster rate than the Nyquist rate (under or over-sampling) 

are depicted in Fig. 4.5 to 4.7. These graphs reveal some interesting 

properties. First, if sampled at the Nyquist rate (WT=l), the ACF 

consists of a sharp narrow spike with low residue sidelobes. Secondly, 

if WT < 1, over-sampling occurs and sidelobes near the main peak appear. 

This is not surprising, since increased sampling rate implies a closer 

approximation to the analogue FM signal whose maximum sidelobes are 

immediately adjacent to the mainlobe, as shown in Fig. 4.4. In oth2r 
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words, the sampling points do not miss these large sidelobes as is the 

case for WT=l. Thirdly, for under-sampling WT > 1, the aliased 

versions of the ACF will produce significant range ambiguity at time 

shifts k=N/WT from the compressed pulse, i.e. for WT=2, k=N/2 as illustrated 

in"Fig. 4.7. The cause of the spurious response peaks can probably be 

best explained by recalling the relationship between the spectra of 

an analogue waveform and its sampled version, Eq. (2.9) 

00 

H(f) = 

Hence the ambiguity function of a pulse train is periodic in the 

frequency direction with period 1/T. 

x<-r,v) = 
00 

l: x (-i,v+n/T) 
a 

n~oo 

This is illustrated in Fig. 4.8 for a QP signal with its typical 

diagonal ridge structure of the ambiguity function (see Chapter 9). 

as 

Another property of interest is the sidelobe energy ratio defined 

E = 
s 

N-1 
l: lr(kll2/lr<o>l2 

k=l 

In a dense uncorrelated target environment E serves as a measure for 
s 

the self-clutter interference. This quantity is related to Woodward's 

range resolution constant, (Eq. (2.43) as 

1!.-r = 1 + 2E 
s 

In Fig. 4.9 the ratio E and max lr(k) I are plotted as functions of the 
s k 

sequence length, N. It is noted that the .sidelobe energy is falling 

off steadily with increasing N. 

(4 0 20) 

(4.21) 
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So far it has been shown that spurious response peaks can be 

avoided provided the waveform is sampled at the Nyquist rate. The 

resulting sequences have low sidelobes and low sidelobe energy and 

thus are suitable in a multiple-target environment. However, there 

may be specific cases where WT is made slightly greater than one, to 

attain somewhat better range resolution. By comparison of Fig. 4.6 

with Fig. 4.3 it can be seen that a small increase in WT tends to 

reduce the sidelobes close to the mainlobe at the expense of an increase 

towards the end of the response. The remainder. of this section, however, 

will be limited to the discussion of QP sequences where WT=l. 

From the graphs it is avident that the sidelobe structure 

consists mainly of two 'humps' referred to as sidelobe bands (Fig. 4.3) • 

. The duration of the bands is approximately 2 (h/- !ii72l. These 

sidelobe bands are produced by the pronounced Fresnel ripple of the 

amplitude spectrum shown in Fig. 4.3. The ripple spectrum is a function 

of the compression ratio WT and can be thought of as a combination of 
s 

a slowly varying function multiplied with a high oscillatory component 

. I 22,51 over the bandw~dth 1 T • The sidelobe bands can thus be regarded 

as being similar to those of amplitude modulation but with time and 

frequency interchanged. Since the two major bands occur at k ~ IN/2 

and k ~ N - lii72, it can be assumed that the ripple spectrum consists 

largely of two sinusoidal components at frequencies hjN and 1/ (N - IN72l 

and their cross-modulation products. 

The important properties of QP pulse trains may now be 

summarized as follows: 

(i) If sampled at the Nyquist rate QP codes have virtually all 

the properties of LFM signals. Their ACF consists of a 

single spike with low level sidelobes. 
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(ii) The codes have zero periodic ACF's fork I o. 

(iii) For WT < 1, large close-in sidelobes appear, whereas for WT > 1 

spurious response peaks occur further away from the mainlobe. 

(iv) The major sidelobes occur in two bands approximately centred 

at time shifts k = IN/2 and k = (N - IN/2) respectively. The 

width of the bands is about 2 (,IN - IN/2). Moreover, for 

sequences of even length N, the sidelobe structure is 

symmetrical with respect to k = N)2. 

(v) The maximum sidelobes increase approximately as 0.5 hi and 

the energy ratio E < 5% for N > 40. 
s 

(vi) Relative simple generation of such pulse trains with a 

suitable choice of N. 

Hence QP sequences have good range resolution properties which make 

them suitable for a dense-target environment. For example, the peak 

range sidelobe for N = 128 is -27.5 dB down on the main response and the 

r.m.s. sidelobes are about -36.6 dB down. 

4.3.2 An Iterative Method for Reducing the Ripple Spectrum 

In the preceeding section it was observed that the sidelobe bands 

are caused by the ripples in the Fresnel spectrum which was obtained 

using the stationary phase method. This method, however, does not 

consider ·the 'edge' effects associated with the waveform fronts. Sharp 

leading and trailing edges, as well as any sharp discontinuities in 

general, give rise to spec~~um ripples of appreciable magnitude. A 

reduction of the ripple spectrum, therefore, would subsequently result 

in a reduction of the time sidelobes of the ACF. 
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A method considering the 'edge' effects was proposed by 

Vakman44 in connection with narrow beam antenna design. To illustrate 

the application of this method to the signal design problem consider 

the signal obtained by the stationary phase technique as an initial 

approximation to the desired signal whose power spectrum P(f) and 

envelope Is (nT) I are specified. Thus 
0 

and 

s (nT) =a (nT) ej~o(nT) 
0 0 

s (f) 
0 

FT {s (nT)} 
0 

The Fourier transform is evaluated numerically using the FFT algorithm. 

If the conditions for application of the stationary phase are satisfied, 

then Is (f) 1
2 will be a reasonable approximation to the given power 

. 0 . 

spectrum P (f). It is noted that the signal envelope a (nT) coincides 
0 

with the specified amplitude function. In attempting to synthesize a 

signal having a given power spectrum P(f), the spectrum 

retaining the initial phase function e (f), is taken as the.next 
0 

approximation. Hence, the first corrected signal is given by 

Here the given power spectrum is realized exactly. However, the 

envelope a
1 

(nT) will differ from the specified envelope a
0

(nT). The 

next step, therefore, is to take a
0

(nT) and assigning the phase ~l (nT) 

to it, i.e. 

= a (nT) ej~l (nT) 
0 

I 
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The spectrum corresponding to this signal 

differs in magnitude from {P(f)}~. However, in many cases these 

differences are smaller than for the initial·approximation. This 

procedure can be repeated iteratively and in general 

s. (nT) =a (nT) ej~i-1 (nT) 
l. 0 

Unfortunately, this method of successive approximations does not converge 

to an optimal solution. This is so because a spectrum with a finite 

bandwidth cannot be realized by a signal of finite duration. Nevertheless, 

this technique has been successfully applied in some antenna design 

problems. However, for pulse train waveforms such an approximation 

procedure might not yield any improvement, because of their discrete 

nature. Moreover, it can be shown using the stationary phase principle 

that the envelope is(nTJI decreases as 1/nT near the edges. But the 

envelope of the pulse trains considered here is constant, and 

furthermore, only a finite number of samples are taken. Naturally, such 

a· truncation of the time series will always introduce spectrum ripples 

and thus range sidelobes. 

The method of successive approximation to a rectangular spectrum 

was programmed on a digital computer. The results are shown below in 

Table 4.1. As expected the method did not converge. In general the 

peak sidelobe level oscillated between a maximum and minimum value and 

in most cases no significant improvement was observed. However, the 

sidelobe energy ratio usually decreased to about two thirds of its 

original value. 



Code length Initial values Final values 

N 

16 

20 

25 

30 

35 

40 

45 

50 

55 

60 

64 

70 

75 

80 

85 

'90 

95 

lOO 

max I r (k) I E {%) max lr {k) I 
k 

s 
k 

1.85 6.31 1.44 

2.18 5.76 ·2.18 

2.46 4.75 1.63 

2.62 5.57 2.46 

2.82 4.42 1.43 

3.08 3.94 2.78 

3.26 3.70 2.69 

3.40 3.74 2.13 

3.51 3.62 3.24 

3.73 3.50 2.57 

3.88 3.29 2.11 

4.05 3.16 3.57 

4.17 2.99 3.27 

4.26 2.87 2. 72 

4.42 2.78 3.31 

4.57 2. 74 4.24 

4. 71 2. 73 3.54 

4.83 2.61 3.05 

Table 4.1 Sidelobe reduction by spectrum 

approximation. 

E (%) 
s 

3.48 

5.75 

2.41 

4.94 

2.32 

3.38 

2.68 

1.99 

3.24 

2.54 

1.27 

2.58 

2.06 

1.62 

1.77 

2.23 

1.64 

1.51 
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Although some improvement in sidelobe and energy performance 

is observed this technique fails to reduce the Fresnel ripples 

substantially. Therefore, if sequences with very low sidelobes are 

required such a method does not solve the problem. 

4.3.3 Tapering the Pulse Train 

Another method to reduce the Fresnel· ripples is to taper the 

edges of the pulse train. Such a tapering function is shown in 

Fig. 4.10, using a cosine taper over 1/10 of each end of the signal 

length. The shaping function can be expressed analytically as 

cos2 (57rt/T) -Ts/2 :;; t :;; -4T /10 
s s 

~(t) = 1 ; -4T /10 :i t :i 4T /10 s s 

2 4T /10 :;; t :;; T /2 cos (57rt/T ) . s s s 

In general the frequency spectrum of this type of tapering function 

is given by
55 

sin <[(2p-l) /2l¥fT s) 

[(2p-l)/2~7rf 

When p=S the spectrum of Eq. (4.22) is obtained. 

The effects of such a tapering on the spectrum magnitude of the 

QP code and its ACF are shown in Fig. 4.llfor a code of length N = 128. 

The figures clearly show the removal of the high frequency 

ripple component and thus the more distant sidelobes. However,the 

smoothing of the spectrum is obtained at the expense of an increase of 

the sidelobes near the main peak. This may be of little concern in 

applications where the targets are separated by more than the sidelobe 

duration. An additional penalty is the reduction in energy efficiency 

(4.22) 

(4.23) 
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which is about -0.7 dB for p=S and N=64 and N=l28 respectively. In 

practice the.tapering function could be approximated by simply increasing 

the rise time of the transmitted waveform. Moreover, for a low power 

radar the loss in transmitted energy can be kept relatively smail so 

it. does not seriously affect the detection capability. 

Unfortunately, this method of improving the range resolution is 

not applicable to most high power radar systems. There the tapering 

function cannot be controlled without a serious loss in output power. 

Another approach to reduce the range sidelobes which does not suffer 

from this drawback is to modify only the phase of the individual sub-

pulses • 

. 4.3.4 Sidelobe Reduction by Phase Correction 

To achieve very. low sidelobes (below -30 dB) the stationary 

phase method is not adequate, because it does not account for the quasi-

oscillatory nature of the actual spectrum. Additional ripples are 

introduced by a quantized approximation of the LFM law. If a small 

loss in transmitted power is acceptable, tapering of the edges of the 

pulse train has. been.sho~n to be a useful means f0r reducing the more distant 

sidelobes. However, in many applications this approach is not 

desirable. It should be possible to achieve similar effects by modifying 

the phase function only. 

Introducing a phase correction ter1ll c(t) the complex envelope of 

the transmitted waveform can be written as 

s(t) = s (t) exp(j c(t)) 
0 

where s (t) is the original signal. 
0 

The phase term c(t) could be any arbitrary function, provided it has 

the effect of reducing the sidelobes. To study how the ACF is affected 

(4.24) 
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by such a phase perturbation, assume that e(t) is a sinusoidal function 

given by 

e(t) = e sin(2nft + ~) 

where 

e = peak phase correction 

f = frequency of phase correction 

~ = arbitrary phase 

Expanding exp(j e(t)) in Bessel functions of the first kind 

(Appendix C) leads to 

00 

eje(t) = L Jk(e) ejk(2n£t+~) 
k=-oo 

For Bessel function of integral order the following relationships 

·exist 

Thus 

k 
= (-1) Jk (e) 

s (t) = s (t) 
0 

00 

L Jk(£) ejk(2nft+p) 
k=-co 

The ACF of the sampled signal can now be written as 

r(1l = ~ s(nT) s*(nT+1) = L s
0 

(nT) s~ (nT+1)ej [e (nT)-e (nTH l] 
n=-oo 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

00 00 

; so(nT)s~(nT+1)Jk(e)J~(e)ej{2nf[(k-~)nT-~1 J + (k-~)~} 
~=-oo 

(4. 29 
r (1) = E E 

n=-oo k=-co 

Now let e be small (e ~ 0.4 radians) so that the following approximations 

can be made 

and 

J (£) " l 
0 

J 1 (£) " e/2 

Jk (£) " 0 for k ~ 2 



Hence 

J ( ) j (2rrf(nT+1:) + ~)} 
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Neglecting higher order terms of the form J~(£) and using property 

(4.27) the above expressions can be simplffied to 

"" 
r(<) = Z: 

n=-<» 
s (nT)s*(nT+<) {J

2 + J 
0 0 0 0 

J -j(2rrf(nT+<) + ~) 
1 e 

_ J j(2rrf(nT+<) + ~) J ej (2rrfnT + ~) _ J J e-j(21TfnT + ~)} 
o Jl e · + Jo 1 o 1 

It is recognized that 

"" 
s (nT) s* (nT+<) 

j (2rrf (nT+<)) 
e 

0 0 

is the ambiguity function of the signal, hence 

Substituting the approximate values for J
0

(£) and J 1 (£) leads to 

£ +-
2 

r(<) = r (<) + £ 
0 

{x (<,f) 
0 

j (1Tf<-~-2!:.) 
sin (rrf<) {x

0 
(<,-f) e 2 

-j (1Tf<-~-2!:.)} 
-x(<,f)e 2 

0 
(4.30) 
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The effect of a sinusoidal phase correction can be visualized as 

adding phase shifted cross-sections of the ambiguity surface to the 

ACF. 

The property of cancellation and reinforcement of the range 

sidelobes is inherent in Eq. (4.30). Depending upon the value of£, 

the peak value of the phase perturbating function and the phase ~. it 

is possible under certain conditions to obtain various patterns of sidelobe 

cancellati-on. 

For QP sequences the range-doppler ambiguity has a diagonal 

ridge structure, Fig. 4.8(a). The equation of the ridge in the delay-

doppler plane for integral time lags of T is given by (see also Chapter 

9) 

V = k/NT 

The magnitude of the ambiguity function along the ridge reduces to 

(Fig. 4.8(c)) 

lx<k,v> 1 = <1- JkJ/NJ N 

Therefore, for any given cross-section x(k,v) the major contribution 

when added to the ACF occurs at a time shift where k = vNT. Thus the 

ith sidelobe is given by 

r(i) = r (i) -
0 

£X (i,i/NT)e-j(ni2/N-~ ;) 
0 

With a proper choice of £ and ~. the ith time sidelobe could be 

completely cancelled, i.e. r(i) = 0. 

The analysis of the elementary case of one single sinusoidal 

correction function can be extended to more complex functions. The 

analytical approach is shown below for two or more sinusoids. This is 

not a rigorous restriction, since other functions could always be 

expanded into a Fourier series. 

(4.31) 

(4. 32) 
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For two sinusoidal functions Eq. (4.24) becomes 

s (t) = s (t) ej(e:1sin(2nf1t + 4> 1 ) + e: 2sin(2nf2t -1: cp2 JJ 
0 

= s 0 (nT) { k~-., 

(4. 33) 

The following approximations can be made, provided that e: 1 = e: 2 ~ 0.4 radians 

k ~ 2 

After some tedious but straightforward manipulations, again neglecting 

higher order terms of the form J~, J;J~, J0J~, etc.,the ACF is given by 

{ 
j(nf r-~ -n/2) r(r) = r (t) + E sin(nf r) X (r -f )e 1 ~1 

0 l l 0 , 1 

or in condensed form 

where 

= e: sin(nf r)fx (r,-f J 
n n 1 o n 

j(nf r-ep -n/2) 
e n n 

-j(nf r-<j> -n/2)J -x (r ,f ) e n n 
o n 

(4.34 

( 4. 35) 

(4. 36) 
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For m sinusoidal components Eq. (4.35) can thus be written as 

r (<) = r (<) + 
0 

m 
); y (<, f , "' ) 

n=l '"n n n 

Neglecting higher order terms and satisfying the conditions g ~ 0.4 
n 

radians, each individual sinusoidal term can be treated independently. 

(4.37) 

Each component produces a pair of cross-sections of the ambiguity response 

that are added to the ACF. This is indicated in Fig. 4.12 for two terms 

with amplitudes gl = e 2 = 0.2 and frequencies f 1 = 32/NT and f 2 = 96/NT. 

The contribution to the ACF can clearly be seen on the graph at time 

shifts k = 32T and k = 96T. Even if the condition g ~ 0.4 radians 
n 

is not met,. the single terms can be treated more or less individually 

in this case, because of the ridge-like ambiguity surface. 

The property of reinforcement and cancellation has been used to 

reduce the sidelobes close to the main response peak. This is 

illustrated in Fig. 4.13 when choosing a phase correction function of 

the form 

~ 
e(nT) = l: 

i=l 
g.cos(21Tf.nT) 
~ ~ 

It is noted that the cancellation of the close-in sidelobes has been 

achieved without otherwise affecting the overall ACF. However, it is 

not possible to reduce the sidelobe bands near the end of the MF 

response (k ~ NT), using this technique. The major reason for this is 

that the ambiguity function along the ridge decreases rapidly, Eq. (4.31) 

for increasing time shifts. 

The analysis of the effects of phase correction on the ACF is 

. . 22 
in many ways similar to the paired echo phenomenon However, in 

paired echo analysis the effects due to phase and amplitude mismatch 

(distortion) of the MF are examined, while here the transmitted 

waveform·and the filter are assumed to be perfectly matched. 
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Two methods of controlling the range ambiguities of a QP 

waveform have been described. One method, by .tapering the edges of 

' the transmitted signal, removes the high frequency ripple component 

of the Fresncl spectrum. The close-in sidelobes, however, could 

not be reduced. In addition a penalty in the signal energy efficiency 

has to be paid. The second method, modifying the phase function, does 

not suffer from a loss in detection performance and thus is applicable 

to high power radars. The best results using this method are obtained 

for LFM type waveforms because of the ridge-like structure of the 

r·ange-doppler ambiguity function. However, there is no reason why 

this method could not be applied successfully to other waveforms. It 

has been shown that in the case of QP codes only the close-in sidelobes 

can be controlled efficiently.. Thus the two methods differ in that one 

basically controls the more distant sidelobes and the other the 

ambiguities· close to the mainlobe. 

Unfortunately, LFM type signals are not universally desirable 

waveforms. Therefore, in the next section another technique to control 

the range ambiguities is discussed. 

4.4 Discrete Phase Approximation to Non-linear FM Signals 

50 
As pointed out by Fowle , the stationary phase analysis gives 

the phase modulation function for any specified power spectrum and 

signal envelope of sufficient time-bandwidth product. The advantage 

of a non-rectangular spectrum is that it allows control of the sidelobes, 

without loss in SNR, which might otherwise be achieved by mismatching 

(see Chapter 8). However, an undesirable side-effect associated with 

spectral shaping is the widening of the mainlobe. The reason for the 

broadening of the main response is determined intuitively from the 

Fourier transform reciprocity relationship. When the spectral shape 
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is made narrower, the time domain waveform becomes broader and vice 

versa. Hence, in general, the resultant MF output waveform will be 

broader for non-linear FM than for the LFM case. Since the property 

of these waveforms is basically retained when approximated by 

discrete phase steps, this is also true for the resulting pulse trains. 

Nevertheless,a system designer may feel that it is worthwhile to 

accept a higher sidelobe level near the compressed pulse to .give a 

lower level further away from the main response peak. On the other 

hand, a non-linear FM type waveform may simply be used because a LFM 

signal is not appropriate. 

The weighting of the spectrum can be done in many different 

ways. It is difficult to define an optimum spectral shaping function 

if the trade-off possibilities of the particular application are not 

known. A class of signals having a rectangular envelope and a 

generalized power spectrum is defined as 

where 

~ A {c + (l-e) Hn(f/W)} 
n 

Hn(f/W) =any function of interest, 0 ~ f ~ W 

c = pedestal function 

An ~ constant 

A special form of the above power spectrum is given by 

IU (f,n,clj 2 ~A {c + (1-c) cosn(f/W)} 
cos n 

The frequency shaped compressed pulse then becomes 

~ JW ju (f,n,c) 12 ej 2nf• df 
0 cos 

Using Eq. (4.6) and assuming a constant signal envelope of duration 

NT, the group delay functions • (f,n,c) are obtained by direct 
g 

( 4. 38) 

(4. 39) 

( 4. 40) 
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integration for various values of nand c. For zero pedestal (c=O), 

these functions are given by 

n = 1 

n = 2 

n = 3 

It is noted 

group delay 

obtained by 

't (f,l,O) = NT/2 { 1 + sin(n(f-W/2)/W)} 
g 

't
9

(f,2,0) = NT{ 1/2 + (f-W/2)/W + 1/21! sin[2n(f-W/2)/W] 

. 2 
'tg(f,3,0) = NT/2 {1 + 1,(sin(1l(f-W/2)/W) (cos (11(f-W/2)/W)+2)j} 

that for c = 1 the LFM type signals are obtained. These 

functions are shown in Fig. 4.14. The constant A is 
n 

evaluating T (f,n,c) at one of its end points. Group 
g 

delays for c f 0 are found in analogous manner~ Inverting these 

functions and performing a second integration, which is easily carried 

out on a digital computer, the discrete phase modulation functions are 

obtained. 

The ACF's, amplitude spectra and group delays of discrete coded 

waveforms whose spectra approximate Eq. (4.39) are shown in Fig. 4.15 

to 4.17 for WT = 1 and c =.0. The influence of. the sampling period T 

on the shape of the MF response is illustrated in Fig. 4.18. 

In general two effects can be observed. First, spectrum tapering 

results in a widening of the mainlobe. This effect depends on the 

tapering function, but usually extends about 2 to 3 sampling intervals. 

The far away sidelobes (k > N/4) are smaller in magnitude than for the 

QP sequences. Secondly, as in the LFM case, if WT < 1 a further 

reduction in sidelobe level is observed at the expense of an increase 

of the close-in ambiguities. For WT > 1, the aliased versions of the 

ACF will produce spurious response peaks. The range ambiguities, 

however, are not so pronounced as in the LFM case, because the ridge-

like structure is partly destroyed by the non-quadratic phase law 

(Chapter 9). 
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To reduce the mainlobe widening effect one can use Eq. (4.39) 

to obtain a group delay function for c ~ o. The distinguishing 

feature between this weighting function and the cosine function is 

that the amplitude of the spectrum at its edges is not zero. In the 

analogue case, for example, a cosine-squared spectrum for a value of 

22 c = 0.08 approximates the familiar Taylor weighted spectrum 

The ACF's and spectra for n = 2 and a pedestal of c = 0.08 and 

c = 0.5 are shown in Fig. 4.19 and Fig. 4.20. 

For small values of c(c ~ 0.1) there is little difference from 

a purely cosinusoidal taper with no pedestal. On the other hand, for 

0.8 < c < 1.0 one approaches the LFM case. In between these values 

there is a whole range of non-linear FM type pulse trains each of 

which contains to some extent the LFM component. 

Another interesting property of such pulse trains is their 

zero pattern which is obtained by £actorizing the corresponding ZT 

polynomial. Similar to the QP signals, Fig. 4.21, the zeros tend to 

lie on a spiral with approximately half the zeros inside and the other 

half outside the unit circle. This is illustrated in Fig. 4.22 for a 

pulse train with n = 2, c = 0 and N = 64. It is conjectured that these 

types of zero patterns are common to all pulse trains whose spectra are 

weighted smoothly in a cosinusoidal fashion because of their relatively 

large LFM content. 

4.5 Summary 

The stationary phase principle is a useful method for designing 

continuous signals having a steep monotonic FM law. This requirement 

precludes the synthesis of pulse trains directly using this method. In 

addition such an analysis is only approximate in that it does not include 

the edge effects associated with the signal. This causes Fresnel 
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ripples which in turn result in range ambiguities. However, it has 

been shown that in principle all the desired properties of the FM 

waveforms can be retained by a discrete phase approximation, provided 

sampling occurs at the Nyquist rate, i.e. T = 1/W. For values other 

than the Nyquist rate range ambiguities will appear either far or close 

to the mainlobe depending whether T l! 1/W. 

Apart from introducing periodicity in the frequency domain a 

quantization process of this nature produces an additional high 

oscillatory ripple component in the spectrum, thus causing sidelobe­

bands at time shifts where k = NT to appear. Since uniform pulse trains 

have at least one sidelobe of unit magnitude at time shifts ~(N-l)T, 

there will always be a ripple component of the form 2cos(2nf(N-l)T) 

superimposed on the power spectrum. That ripple component can be 

reduced by tapering the edges of the pulse train. In practice this 

could be done by simply increasing the rise time of the transmitted 

signal, thus minimizing system complexity. Since tapering of the time 

waveform does not result in a reduction of the effective signal bandwidth, 

no main peak widening of the ACF is observed. However, the remaining 

range ambiguity is now concentrated adjacent to the compressed pulse, 

which may or may not lead to resolution problems. Moreover, for high 

power radars such an approach to reduce range sidelobes is not readily 

available because of its inevitable loss in SNR. Therefore, another 

method that perturbed only the phase of the signal has been investigated. 

With this method it is possible to effectively reduce the sidelobe-band 

close to the mainlobe, whilst otherwise the overall ACF is little 

affected. 

For the discrete non-linear FM case it has been shown that the 

range ambiguities can be controlled to some extent. The method of 

weighting the power spectrum suffers, however, from the mainlobe 
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widening effect because of the resulting reduction in signal 

bandwidth. This could seriously affect radar resolution performance 

if closely spaced targets with widely varying cross-sections are 

expected. In some cases the pulse widening effect can be reduced by 

sampling at a slightly lower rate than the Nyquist rate, i.e. 

WT = 1.2 to 1.5. Nevertheless, for many applications this method 

offers an alternative to the system designer, particularly in cases 

when LFM type signals are not desirable. Although the phase shifts 

for the discrete non-linear FM case will have arbitrary values in 

general, one can subdivide the phase interval of 2TI into M increments 

and select the one closest to the actual value of the phase step. 

Naturally such a quantization would give rise to an additional increase 

of the overall sidelobes (see Chapter 6, Section 6.3.1}. 

At this point it is perhaps of interest to note that discrete 

phase approximation could also be applied to discrete frequency wave-

forms. 
17 

For example,Frank polyphase codes can be regarded as such an 

approximation to discrete frequency codes. In addition the pulse trains 

discussed here yield a more flexible means of waveform generation as 

compared to analogue techniques. For example
1
it is possible to 

'scramble' the ordering of the sub-pulses to eliminate the LFM 

ambiguity in the delay-doppler plane. 

The variations possible with phase coded pulse trains are almost 

infinite in that the phase, frequency, and time of the transmission 

of each segment can be varied. Thus these waveforms are compatible 

with the multi-function requirement of modern radar systems. 

The design procedure outlined in this chapter seems to be 

satisfactory from the practical viewpoint. Unfortunately, methods 

based on the stationary phase principle are limited to a class of 

signals whose phase functions vary smoothly with time. Signals with 
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noise-like properties such as binary waveforms cannot be synthesized 

using this method. In addition if very low range sidelobes are required 

the stationary phase method is not adequate and the sequences obtained 

using this technique may be regarded merely as a first order 

approximation. 

In subsequent chapters an essentially different method of 

synthesizing discrete coded signals with desired autocorrelation 

properties is described. The method is based on numerical optimization 

techniques. Such an approach has a number of advantages. First, no 

restriction on the class of admissible phase functions is .necessary. 

This allows the synthesis of waveforms with noise-like properties. 

Secondly, no information of the signal's phase structure is usually 

required. Thirdly, these methods are flexible in a sense that it is 

possible to control particular sidelobes or sidelobe regions. In 

general, numerical methods operate in an iterative manner to find the 

optimum phase functions and are not without their disadvantages. For 

example,the sequences are found in a completely automatic fashion and 

in many cases little or no insight is·gained from the analytical 

viewpoint. 

However, before proceeding to the formulation of the synthesis 

problem using optimization techniques some of the basic principles 

used when dealing with numerical algorithms are pointed out. 
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CHAPTER 5 

THE OPTIMIZATION PROBLEM 

5.1 Introduction 

The methods available for optimization may be conveniently divided 

into two distinctly different categories which are classified as analytical 

and numerical, respectively. 

Analytical methods usually employ the mathematical theory of calculus 

and variational methods. These techniques are well suited to relatively 

simple functions with a small number of variables, but are not able to 

handle highly non-linear functions of large dimensionality. 

Numerical methods employ, in general, a branch in the field of 

numerical mathematics known as programming methods. Recent developments 

in this field are reflecting the rapid growth in computing capacities 

offered by modern digital computers. The major areas of mathematical 

programming embrace linear programming, dynamic programming and various 

types of non-linear programming. 

In analytical methods the optimum solution is found exactly through 

the solution of a set of equations expressing the conditions for optimality. 

In the numerical methods, on the other hand, near optimal design is sought 

in an iterative manner. An initial 'guess' is used as a starting point 

for a systematic search for increasingly better designs. The search is 

terminated when certain criteria are satisfied which ensure that the current 

solution is sufficiently close to the true optimum. 

While analytical methods require complete mathematical formulation 

of the function to be minimized, numerical methods can minimize functions 

whose structure is unknown but is being explored step by step. 

During the last decade there has been a rapid development in 

programming methods as well as in the application of such methods to design 
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problems. The bulk of the research has been concentrated in the area 

of linear programming. The contributions have been of such a magnitude 

56 that most linear problems can be solved (Fig. 5.1). Non-linear programming, 

on the other hand, deals with the optimization of non-linear functions 

subject to linear and/or non-linear constraints. No general method exists 

to solve non-linear problems in the sense that the simplex algorithm 

exists to solve problems in which all the functions are linear. Many 

strategies have been suggested, but more algorithms have been proposed 

than have been successfully applied. Thus the range of applicability of 

existing non-linear programming algorithms is limited. This explains the 

continuing effort to improve known methods or to invent new ones. 

Therefore, to some extent, non-linear programming still remains an 

experimental field of research. 

In the area of signal design and related topics it is anticipated 

that the improvements in numerical algorithms, together with the high 

speed operations offered by modern computers, will attract increasing 

attention in years to come. 

5.2 Fundamentals of Optimization 

The discrete nature of pulse trains complicates their synthesis 

considerably. No ordinary methods can be used in an attempt. to design 

such sequences unless a discrete phase approximation to analogue signals 

is made. As shown in the previous chapter the method based on the 

stationary phase principle results in reLatively large sidelobes (> - 30 dB) 

and, moreover, limits the class of admissible waveforms. Instead of 

synthesizing pulse trains from a given power spectrum one can try to find 

the actual signal itself which, if not ideal, has at least a satisfactory 

approximation to the desired ACF. In general, approximation is essential, 

since the specified ACF is rarely realizable for a given set of constraints 

on the signal waveform. After an initial solution has been obtained it is .......... ____________ _ 
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compared with the required MF response. The result of the comparison is 

the approximation error and the objective is to reduce that error by 

modifying the initial solution. It should be noted that such a successive 

approximation procedure has all the essential properties for automatic 

control; namely the comparison of actual and desired performance and a 

feedback path to reduce the approximation error. 

Before presenting the optimization techniques used on the class of 

signal design problems considered here it is necessary to state the design 

problem in a suitable form. 

5.2.1 Formulation of the Synthesis Problem 

The most important steps in the design procedure may be outlined, 

with reference to Fig. 5.2, as follows. 

First, at the outset the designer should have a clear understanding 

of the functions to be performed by the signal. This step includes an 

evaluation of the specific radar tasks such as multiple-target resolution 

capability, transmitter power limitations, etc. 

Next, the principal waveform type has to be selected. Here the 

designer has to decide whether to use signals of Group I, II, or III 

(Chapter 2). The signal under consideration may be characterized by means 

of a set of design variables in amplitude, la I, phase, ~ , and frequency 
n n 

fn. It is often convenient to replace ordered sequences by vectors to 

permit the notation of linear vector spaces. Thus 

(5 .1) 

where xis the design vector and (·)T denotes transposition. 

The next step is the mathematical formulation of the system. 

This is expressed as a set of equations 

j = 1,2, •.• ,1< (5. 2) 
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In most practical cases there are restrictions on the permissible values 

of the design variables which may be written in the form 

g. {x) '-' 0 
].-

i=l,2, ... ,m· 

The~e constraints exclude undesirable solutions for a particular 

application. 

All solutions which simultaneously satisfy Eq. {5.2) and Eq. {5.3) 

correspond to acceptable or feasible designs. The size of the feasible 

region or solution space will, of course, depend on the constraints and 

the system behaviour. It is even possible that the solution space is 

empty for a particular set of constraints. In this case it becomes 

necessary to relax the conditions above. 

At this point a criterion or objective function must be adopted to 

determine when the 'best' solution is arrived at for a given degree of 

complexity. There are several alternative ways to define a measure of 

best performance. For example one may choose to minimize the sum of the 

squares of the errors, the absolute error, the sum of the absolute errors, 

and so forth. The choice of any of these criteria is usually dependent 

on many factors, the principal ones being the tasks the system has to 

{5. 3) 

perform. In fact if the optimization technique is adequate, the performance 

index will completely determine the final system. In the present case the 

c~iterion may be written as a scalar function, F{~), of the design variables 

x. In general F{~) will be a non-linear function in x. 

At this stage a method to search for the optimum solution remains 

to be chosen. Several techniques exist for minimizing non-linear functions 

some of which will be described subsequently. Having found the optimum 

solution the designer must, of course, himself undertake the final 

judgement of the solution obtained. 
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The signals for the class of design problems considered here are 

the a.m.ph.m. pulse trains given by 

N-1 
s(t) = E a rect(t/T- n) 

n n=o 

The function of interest is the sampled square magnitude of the MF 

response 

N-1-k 
E a a* 1

2 
n n+k 

n=o 

k = 0,1, •.•. , (N-1) 

The aim is to find the design vector ~ = q ~ ~ t_) T which minimizes 

the objective function or performance index* 

N-1 
F (~) = E f{ I r (k) I 2 

- I r (k) I 2} 
k=o 

where r(k) is the desired ACF and f(·) is a suitable function of 

interest. For most practical applications the signal will be subjected 

to the constraints 

1 a I = 1 n 
n = 0,1,2, •.•• , (N-1) 

Eq. (5.6) and the above conditions represent a constrained non-linear 

optimization problem. It should be noted that minimization of the real 

valued function F(x) in general involves 2N real variables; namely, 

the ~n I and the ~ n, subject to certain constraints. It is possible, 

however, to transform the above constrained problem into an unconstrained 

minimization problem. In this case the design vector ~ can be written as 

* Also known as error criterion or cost function. 

(50 4) 

(5. 5) 

(50 6) 

(50 7) 

(5.8). 
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The objective is to minimize 

X 

Subject to 

la I = 1 n = 0,1, •••• , (N-1) 
n 

hence 

In other words the minimization ofF(~) in the feasible domain reduces 

to the unconstrained problem 

min F (_t) 

! 

N where E denotes the N-dimensional space of real column vectors. 

The solution is accomplished by finding I r (k) 1
2 in terms of the 

phase vector !· 

The error criterion F(_t) cari now be derived for certain forms of 

of the mean-square optimization is considered. Thus, 

The objective function F(_t) then becomes 

N-1 
F (_t) = l: {I r (k,_t) 12 - I:? (k) 12} 2 

k=o 

The first terms of a multi-dimensional Taylor series expansion of 

F(_t) are given by 

where 

(5. 9) 

(5 .10) 

(5 .11) 

(5 .12) 

(5 .14) 

(5 .15) 

(5 .16) 
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and 

VF ~col (aFjap , ..•• ,aFjap 
1

J 
. o N-

is the error gradient vector. The symmetric NxN matrix H 

2 2 2 a F/ap •••..• a F/ap ap 1 o . o N-

T V(V'F) = H = 

contains the second partial derivatives of F(il and is called the 

Hessian matrix. For F(fl to be a minimum at f• the following 

conditions have to be satisfied 

d h . . b . . d f' . 57 
an t e Hess~an matr~x H must e pos~t~ve e ~n~te . 

Thus, 
N-1 

a;api l: {lr(k,_<£) 12- l~<kl 12}2 ~ o 
k=o 

i ~ 0,1, ••. , (N-1) 

Expanding the above equation, by squaring, leads to 

N-1 N-1 N-1 
a;api{ E l~<kl 14

-2 E lr<kl 1
2

1r<k,il 1
2
+ E <lr<k,fl 1

2
J
2

} ~ o 
k~ k~o k~o 

which is equal to 

N-1 
E lr<kl 1

2
a;aq,ilr<k,il 1

2 

k~ 

N-1 2 2 
l: lr(k,il I a;aq,.lr(k,fl I = o 

k~o ~ 

i ~ 0,1, .... , (N-1) 

To solve Eq. (5.21) the two terms lr(k,fll 2 and (3/opi) lr(k,fll
2 

need to be expressed explicitly. 

(5 .17) 

(5.18) 

(5 .19) 

(5.20) I 

(5. 21) 
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The expression lr(k,fl 12 is simply given by 

lr (k,f) 1
2 N-1-k 

= { l: cos(.p -
n 

N-1-k 
2 .p )}.+{ l: 

n+k sin(<j> -<j> k) }
2 

n n+ 
n==o n=o 

The partial derivatives are readily obtained 

N-1-k 
= 2{ l: sin(.p - .p k) [cos(<j>. - .p. k) - cos(<j>. k-.p.l] n n+ ~ 1 + 1.- 1. 

n::::o 

N-1-k 
l: cos(<j> - .p k) [ sin(<j>. - .p. k) - sin(<j>. k- <j>.)j} n n+ J. 1. + ~- 1 

n=o 

= 2lr(k,fll 
2 

Re{ 
a;a.p. r(k,<j>) 

~ -} 
r (k,fl 

It can be seen that lr(k,fl 12 is independent of i fork= 0 and 

k = N-1. Moreover, one phase variable can be chosen arbitrarily, 

for example .p
0 

= 0, since only the relative difference (<j> - .p k) n n+ 

~s of importance. 

These expressions c·an now be substituted into Eq. (5.21) to 

produce a set of non-linear variational equations. 

N-1 
l: I~ (k) 12 

[ r (k, il 12 
Re { 

a;aq,. r (k,_!) 
~ 

r (k,fl } 
k=o 

N-1 
l: Jr(k,i) 14 Re{ 

k=o 

a;a.p. r(k,<j>) 
~ -
r(k,il } = 0 

i = 1,2, ••. ,N-1 

For practical cases the desired ACF, ~(k), is usually set equal to 

zero fork~ o .. The condition for optimality thus reduces to 

N-1 
l: 

k=l 

. a/a<j>i r (k,i) 

Re{ r (k,fl } = 0 

i= 1,2, .•. ,N-l 

(5.22) 

(5.23) 

(5. 24) 

(5 .25) 
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The above development describes the general synthesis problem for 

phase modulated pulse trains. 

In principle, the optimal solution could be found by solving the set 

of non-linear equations (5.25) for the unknown variables t employing 

numerical techniques. For any reasonable complex problem, however, this 

straightforward approach is, unfortunately, unsound for numerical analysis. 

In addition the solution of the complicated functional relationship 

(Eq. 5.25) is equivalent in complexity to the optimization problem itself 

(Eq. 5.11). Therefore, it may be argued that an attempt to minimize the 

criterion F(i) directly using non-linear optimization methods might be a 

more practical approach. However, for direct minimization a slight 

modification of the performance index is suggested. This modification 

should reflect the multiple-target resolution requirements. 

For pulse compression sequences two characteristics are of 

particular concern (Chapter 2). One is the total sidelobe energy given 

by 
N-1 

Es = E lr(k) 12 
k-1 

In a dense-target environment the self-clutter power at the MF output 

is proportional to this quantity. (Since the autocorrelation is an 

even function, only one half is considered, i.e. the actual sidelobe energy 

would be twice the value given here). Another property of interest is 

the peak sidelove level, maxlr(k) I, which represents a source of mutual 
k 

interference that can obscure weaker targets. Therefore, it is required 

to minimize a suitable measure which incorporates these characteristics. 

Naturally, any such measure is to some extent arbitrary, but in general 

will be of the form F(lr(k) ll. Again specifying the desired ACF as 

being zero (k f 0), the objective function may be redefined as 

N-1 
L w(k) lr(k,i) lP 

k=l 

(5. 26) 

(5.27) 
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where p >, 1 and w(k) >, 0. The weighting sequence w(k) allows control 

of the sidelobe structure of the resulting ACF. A good compromise is to 

set w(k) ~ 1 for all k, if no, or little, prior information about the 

·radar environment is known. 

The minimization of F (~) is often referred to as the least pth 
p-

approximation58-60. The error gradient of this type of objective 

function is given by 

N-1 
E Re(pjr(k,£) \p-

2 
r*(k,1_)Vr(k,1._)} 

k~l 

2 ~ p ~ ro; even integer 

Provided the derivatives Vr(k,£.) are available, a suitable gradient 

method could be used to minimize Fp(1._). 

Incidentally certain optimization problems can only satisfactorily 

be described using several error criteria. A suitable overall performance 

index could. then consist of a linear combination of functions of the form 

(5.27), i.e. 

F ~ A F(l) + A F(2) + A F( 3) lp 2p 3p+ .•••. 

where the >..-weighting factors would be given valu'es according to the 
l. 

importance of F~l), F~2 ), ••• etc. (See Chapter 6, Section ~.5). 

5.2.2 Properties of the Performance Index F (x) p-

For a rigorous formulation, the synthesis problem requires the 

solution of 

E k ~ 0 

r(k,~) ~ 0 k ~ :t_l, :t_2, •• ,. ,:t_(N-2) 

1 k ~ :t_(N-1) 

subject to 
\a \ = 1 n ~ O, 1, •.. , (N-1) 

n 

(5. 28) 1 

(5.29)1 
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where E is the energy of the sequence given by 

E = = 
n=o 

The above conditions form a set of (N-1) non-linear equations in the 

unknowns (o/
1

, o/2 , ..•.• , ~N-l). As was pointed out previously one of the 

unknowns ~n can be chosen arbitrarily, i.e. ~0 = ~N-l. It is not 

possible to solve this system of equations by ordinary methods. 

Therefore, a formulation which is equivalent to the solution of Eq. (5.29) 

has been adopted in the form of the constrained minimization problem 

N-1 
min F (x) = t lr(k,~) lP 

X 
p-

k=l 

subject to 

r(O,~) = E 

la I = 1 for all n 
n 

which is equivalent to the unconstrained minimization problem, min F Cil· 
1 p 

Clearly, any solution satisfying Eq. (5.29) will minimize F (x). 
p-

If there are no constraints on the admissible values for la 1, it can . n 
N-1 be shown (Chapter 7) that there exist 2 possible solutions. Hence, 

for the unconstrained case the objective function F (x) has at least p-

2N-l relative minima with a value of unity. In addition if x = <l~l,ilT 
-<:> 

is a vector that minimizes FP(~), then ~l given by 

where 

ll~ = ex + nil n , n = 0,1,2, .•. , (N-1) 

and cx,!l are arbitrary constants, also minimizes F (x). This means that p-

the performance index is invariant to an arbitrary constant (ex) or linear 

(Ill phase shift, since 

r (k,x ) 
-<:> 

(5. 30) 

• 

(5. 31) 

(5.32). 
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Hence 

= Jr(k,x) I --o 

In this sense, therefore, F (x) has an infinite number of minima. p-

The introduction of the constraints J~J = 1, reduces the solution 

space drastically. The size of the domain of convergence depends, of 

course, upon.the system of equations. In general this size is inversely 

related to the degree and number of equations. While for two simultaneous 

second order equations almost any initial estimate will lead to one of 

the roots, it may be very difficult to obtain an initial estimate from 

which the iteration converges for a larger number of equations. In fact, 

no solution for (N-1) > 3 that satisfies Eq. (5.29) exactly is known so 

far. This suggests that the domain of convergence for the constrained set 

of equations is either very small indeed or even zero (Chapter 7). 

Another difficulty in finding a solution is the addition of a multitude 

of local minima due to the constraints. Therefore, any attempt to find 

the global minimum would require an extensive search procedure. 

At this point the value of p remains to be chosen. It should be 

noted that for p = 2 minimization of 

F (.P_) 
p 

N-1 
= E Jr(k,.P_) JP 

k=l 

results in minimizing the sidelobe energy E • However, for p = 2 and 
s 

sequence lengths N > 20 the measure reacts weakly to large peak values, 

while for large p it will not respond to the energy criterion, since 

for well-behaved functions 

N-1 
lim { E Jr(k,i) JP}l/p = max Jr(k,.P_) J 
p-><». k=l k 

The measures (F )l/p are called Chebyshev or uniform norms 
p 

because of the consequences of Eq. (5.35). Minimization with respect 

( ) l/p f 1 i ft f d . . . t' 59 
to Fp or arge p s o en re erre to as m1n1max approx1ma 1on 

(5.33) 

(5.34) 

(5.35) 
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,In other words, the least pth approximation tends to the minimax 

approximation asp+ oo. Hence as suggested by Eq. (5.35}. a Chebyshey 

solution·could be approached in principle, by successively minimizing 

F each time incrementing the index p, i.e. p = 2,4,6, •.• etc. In most 
P. 

cases acceptable minimax approximationscan be obtained with relatively 

moderate values of p (p ~ 10}. 

It is not clear which characterizes the 'good~ess' of a sequence 

more fully, the maximum peak value or the energy criterion. Therefore, 

for short sequences (N < 20} p = 2 should be adequate, while for longer 

sequences a larger value for p, for example, p = 4 has the desirable 

effect of reducing large single sidelobe peaks. 

At this point a word about the significance of the weighting 

function w(k} (Eq. (5.27}} and the index pis appropriate. Generally 

speaking their purpose is to emphasize large errors. However, the use 

of a weighting function to achieve this would require prior knowledge 

where these large errors occur. Consequently, a weighting func~ion may 

be used as a means to emphasize certain sidelobe regions, but it is a 

poor approach for enhancing single large errors. 

For p = 2 there exists an equivalent formulation of the criterion 

F
2

(j) in the frequency domain. Using Parseval's theorem Eq. '(5.34} can 

be written as 

N-1 
E lr(k,j) 1

2 

k=l 
= J

l/2T 
T/2 

-l/2T 

where the power spectrum ls(f} 1
2 

is given by 

and 

N-1 
ls(f} 1

2 
= N + 2 E lr(k,j.JI cos(2TTfkT+ak} 

k=l 

a = tan-l 
k 

{ Im ( r (k ,.tJ)} 
Re [r(k,j)] 

(50 36} 

(5.37} 
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The power spectrum consists of a constant term N and a ripple spectrum. 

Thus, minimal sidelobe energy is equivalent to requiring minimum energy 

in the ripple components of the spectrum. 

It might also be of interest to note that the performance index 

defined by Eq. (5.34) is known as the class of~ -measures. 
p 

For p >- 1 

these measures define a norm which has found applications in the theory 

of estimation and smoothing
61 

Minimization of F (~) requires computational methods. An important 
p-

step in any optimization procedure is the choice of a suitable algorithm. 

Unfortunately, for problems of high dimensionality very little information 

on the relative performance of the algorithms for unconstrained 

·optimization is available. Because of the lack of published data, 

consideration needs to be given initially to the efficiency and limitations 

of minimization algorithms. The remaining sections of this chapter are, 

therefore, concerned with the selection and brief documenation of four 

favoured algorithms which are later used in a comparative study. 

5.3 Unconstrained Non-linear Programming Methods 

Non-linear optimization methods can be classified as: 

(i) Methods that use derivatives, known as gradient type 

methods. 

(ii) Methods that do not use derivatives, commonly known as 

direct search methods. 

However, such a classification is not clear cut, because some techniques 

evaluate the derivatives using difference schemes or minimize in the direction 

of a gradient by search methods. 
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The number of variables in the signal design problem considered 

here is equal to the sequence length N. In most radar applications 

sequence lengths of N ~ 30 up to as large as a few hundred may be 

desirable. Hence, only algorithms that can handle functions of high 

dimensionality can be employed. This requirement precludes most of the 

derivative type methods. Consequently, four currently favoured search 

algorithms (no derivatives required) are considered and briefly described 

in the following sections of this chapter. 

5.3.1 .unconstrained Minimization without using Derivatives 

In derivative-free methods the directions of minimization are 

generally determined solely from successive evaluations of the objective 

function. As a rule, in solving unconstrained non-linear programming 

problems, gradient and second derivative methods converge faster than 

direct search methods. However, the difficulty encountered with these 

methods is that in problems with a modestly large number of variables it 

is laborious (large amount of computer time) or often impossible to provide 

analytical functions for the derivatives. Although, in principle, 

evaluation of the derivatives by difference schemes can be substituted 

for the analytical derivatives, the numerical error introduced can impair 

the use of such substitutions. In any case direct search methods do not 

require regularity and continuity of the objective function and the 

existence of derivatives. Because of these difficulties direct search 

methods have been derived that, although slower to execute for simple 

problems, in practice may prove more satisfactory from the users viewpoint 

than derivative methods. 

Many of the search type algorithms require a one-dimensional search 

along a line in N-space as part of their overall strategy. The methods of 

locating a minimum of a function of one variable , .\Jtll, therefore be the 

discussion of the next section. 



,-~----------------------------------------------------------------------------------

-91-

5.3.2 .Efficient Unidimensional Searches 

The problem to be considered here is that of finding a local 

T minimum of the function F(~) of n variables x = (x1 , x2 , ..•. , xn) • 

Nearly all search methods are based on the iteration 

(k) 
s 

(k) 
where s is the direction of search. The parameter ~(k) is chosen 

so that it minimises F(~(k) + 

of the minimum along the line 

(k) 
}.1 

(k) 
}.1 

~(kl), i.e. ~F/~l.l = 0. The location 

~(k) (linear search) is equivalent 

to minimizing a function of only one variable. Excellent descriptions 

. 62 63 
of the linear search problem are given by Box et al , Powell and 

Wilde64 • To apply these one-dimensional search techniques one needs to 

(o) 
know an initial uncertainty interval, or 'bracket', 6~ , which contains 

the minimum ofF(~). In addition F(~) must be unimodal in that interval. 

There are a number of different methods of reducing the initial bracket, 

(o) . . 
1 

, (M) 62,63 
11~ , to a f~nal ~nterva , u~ , • A few remarks concerning two 

techniques which are to be used in Powell's search algorithm68 , seem 

appropriate. 

The first search is based on dividing an interval into two segments, 

F
1 

and F2; a technique known in ancient times as 'golden section'. The 

ratio of the whole interval to the larger segment is equal to the ratio 

of the larger segment to the smaller, i.e. 

hence 

2 
Fl = F2 

Fl = (3 - /5)/2 " 0.38 

F2 = (/5- 1)/2 " 0.68 

The two segments F1, F2 are also known as Fibonacci fractions 57. 

(5. 38) 

(5. 39) 
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The initial bracket on the minimum of F(x) is obtained by a 

series of increasingly larger steps in the independent variable x. 

The next bracket, for the kth cycle is then computed each time dividing 

the interval containing the minimum according to Eq. (5.39) until the minimum 

is located within a specified accuracy. 

Other methods of unidimensional minimization locate a point near 

the minimum by extrapolation and interpolation. The attraction of these 

techniques is that polynomial interpolation converges rapidly (at le~st 

quadratically) in the vicinity of the minimum, while the golden section 

search is only linearly convergent. In the Coggin-Powell search57 for 

example, a quadratic approximation is carried out using the first three 

points obtained in the direction of search. The minimum of the quadratic 

function is then determined. This is continued at suitably chosen points 

until the minimum of F(x) is located. 

These types of linear search algorithms are well suited to 

implementation on a digital computer. 

SA Direct Search Methods 

Conceptually the simplest method is that of alternating directions 

in which n searches are made along coordinate directions until the minimum 

is reached. This process, however, turns out to be highly oscillatory 

and usually fails to converge if there are interactions between the variables. -
That is, if terms involving products of the variables occur in the 

objective function. Therefore, this method cannot be recommended unless 

the interactions are insignificant. 

Out of a number of available search techniques, four methods have 

been chosen which seem suitable for the signal design problem considered 

here. The first three are pure search methods that do not require 

derivatives. The fourth technique described is of the hybrid type and 
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although the derivatives are not required analytically, they are assumed 

to exist and are evaluated using difference schemes. 

The chosen algorithms are well documented in the contemporary 

56 57 
lit~rature ' • To avoid unnecessary repetition only two of the search 

methods, which were found to be most efficient (Chapter 6), will be 

described in some detail. 

5.4.1 Pattern Search Method 

The pattern search (PAT) method is a logically simple strategy of 

65 search that is completely described by Hooke and Jeeves • The algorithm 

consists of two major phases; an 'exploratory search' around the base 

point and a 'pattern search' in the desired direction for minimization. 

The flow diagram of the algorithm is shown in Fig. 5.3 and may be 

described briefly as follows: 

l. 
(o) 

A starting point x {initial guess) and an initial step 

size ~x{o) must be provided. 

2. Exploratory search. Various moves from the base point 

in the direction of the coordinate axes are conducted. 

To be specific each variable xio) is changed in rotation, 

. (1} (o) (o) 
one at a time, L.e., x. = x. + ~x. . If F(_x) is L L L 

reduced, the new reference value is adopted. If the 

· f "1 · { ) {o) · h d ~ncrement aL s to 1mprove F ~ , xi Ls c ange to 

x~l) = x~o) - ~xi(o) and the value of the objective function 
L L 

is compared as before. If F{~) is not reduced by either 

. (o) (o) 
Lncrement +~x. , x. is left unchanged and a new 

- L L 

(o) 
variable xi+l is perturbed. 

3. Success? If the best value found for F(~)· during the 

exploratory search.is better than its value at the last 

base point, a new base point is established. Otherwise 



Start 

Evaluate F (~) at the 

initial base point X -
{o) 

Perform exploratory 

search from base point 

Is exploratory search 

a success ? 

No Yes 

~ ~ 
Can step size No Set new base point 

be reduced? 

Yes 

Perform pattern move 
Reduce step 

size Stop 

Yes Is pattern move a - success? 

No 

Save last base point 

Fig. 5.3 Flow diagram of pattern search {PAT) algorithm. 
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the last base point remains. 

4. The new base point is stored and a pattern move is 

conducted in the direction of the difference between 

the old and the new base point values. This is done in 

a series of accelerating steps as long as F(~) is 

decreased by each pattern move. 

5. The pattern move fails to improve F(~). The last base 

point is restored and the independent variables are set 

to the values corresponding to the last base point. The 

functional value becomes the initial reference for 

testing the individual moves of the following exploratory 

search . (step 2) • 

6. Pattern and exploratory search fail to decrease the 

objective function. If the step sizes for all independent 

variables are at their minima, the search is completed. 

7. The step size is reduced and another exploratory search 

is performed by restarting at step 2. 

It can be seen that the final termination of the search is made when the 

step size is sufficiently small to ensure that the· optimum has been 

closely approximated. However, the step·size must be kept above the 

practical limits imposed by round off errors. 

5.4.2 Flexible Polyhedron Search 

Another method often used and well suited for implementation is 

given by Nelder and Mead66 • The method is besed on the simplex algorithm 

which is well documented in the literature
57

•
67

• 
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This method operates by evaluating the objective function F (~) 

at points in En (En is the n-dimensional Euclidean space) located at 

the vertices of a simplex.. Moreover, the techniques described by 

Nelder and Mead permits the simplex to alter in shape and thus is often 

referred to as flexible polyhedron rather than simplex method. 

The Nelder and Mead (NM) algorithm minimizes a function of n 

variables using (n+l) vertices of a flexible polyhedron in En. Each 

vertex can be defined as a vector x., i; 1,2, ••. ,n+l. The vertex which 
-l. 

yields the highest value ofF(~) is projected through the centre of 

gravity (centroid) of the remaining vertices. Improved values of the 

objective function are obtained by successively replacing the point with the 

largest value ofF(~) by better points until the minimum ofF(~) is 

reached. 

Nelder and Mead suggested terminating the search when the following 

condition is satisfied 

l 
e: >- [ n+l 

(k) 
where e: is a small arbitrary number and F (x. · ) , 

-1. 

(k) 
F(x 

2
) are the values 

--n+ 

of the objective function at the ith vertex and the centroid respectively 

on the kth stage of the search. 

5.4.3 Powell's Search Method 

The algorithm proposed by Powe11
68 

is one of the currently 

favoured techniques. The method' locates a minimum of a function F(~) 

of several variables by successive unidimensional searches from an 

initial point x(k). In general Powell's method on the kth stage employs 
-Q 

n linear independent search directions. The search is initiated at ~k) 

and the transition to a point x(k) is given by 
-m 

(k) (k) m-1 
A (k) (k) 

X ; X + E s. 
-m -Q 

i=l i --:J. 
' 

(5. 40) 

(5.41) 
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(0) (0) (0) 
The initial search directions ~l , ~2 , •.•• , ~ are taken to 

n 
be parallel to the coordinate axes of E . The parameters A .<kl are 

~ 

determined sequentially by unidimensional searches such that for the 

ith parameter F(X(k)+Ai(k)s!kl) is a minimum.After minimizing F(_x) in 
--o -~ 

each of the n directions a test is usually made to ascertain linear 

independence of the search directions. The search is terminated if the 

change in the objective function or in each independent variable is 

less than the required accuracy E. 

It should be noted that this search technique is also known as 

the method of conjugate directions. 

5.5 Sums of Squares Method 

The problem considered here is the solution of a system of non-

linear equations 

by minimizing a function of the form 

F(~) 

or simply 

n 
= 1/2 ~ 

i=l 

2 
{f. (x)} 
~-

In the classical Newton iteration the gradient ofF(~ is required 

where J(~) is the matrix of the first derivatives of f (Jacobian) with 

(5. 42) 

(5.43) 

(5. 44) 



I 

I 

I 

I 

If the Jacobian is non-singvlar at the solution and if F(~} is twice 

diffe~entiable, it is easy to show that the Hessian is given by 

H(~ 

where 

2 
{V F} ij 

2 
= a F/dx. Ox. 

l. J 

It is interesting to note that the computation of the Jacobian J(~) 

2 
not only furnishes the gradient VF, but also part of V F. 

At the point where F(~) is a' minimum, denoted by (~ + il, the 

conditions 

V F(~ + il ~ 0 

' are satisfied. A common strategy is to approximate Eq. (5.46) by the 

first two terms of the Taylor series in 6 about x 

Furthermore, the least squares method works on the assumption that the 

term 
n 
E 

i~l 

f. (x) v2 f. (x) 
1- ~-

can be ignored, thus 

T 
J(~) J(~) i ~ -VF(x) 

and hence 

T -1 T i ~ - (J J) J .£(~) 

The matrix J+ ~ (JT J)-lJT is known as the generalized inverse of J 

and is an extension of the concept of an inverse for matrices which are 

singular or rectangular69 . If rank (J) ~ n is satisfied in Eq. (5.48), 

the algorithm reduces to the Newton method 

-1 i = -J £(~) 

........ __________ __ 

(5. 45) 

(5.46) 

(5. 4 7) 

(5. 48) 

(5.49) 
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In general the least squares methods are based on the iteration 

X (k+l) ~ !_ (k) + \1 (k) 0 (k) 

where o(k) solves a linear system of equations of the form 

and A(k) is a (nxn) square matrix characteristic of the method. The 

parameter \J(k) is usually chosen in such a way as to ensure that 

F(!:_ (k+l)) < F (!_ (k)) • 

Unfortunately the solution of Eq. (5.48) is not as str~ightforward 

as it might appear. In many practical cases the Jacobian J is ill-

conditioned or even singular (rank (J) < n). An attempt to cover these 

71 72 
cases has been made by Levenberg and Marquard by introducing a 

(5. 50) 

positive parameter A into the initial least squares formulation of Eq. (5.48). 

5.5.1 Powell's Least Squares Method 

. 68 70 
Powell's sums of squares techn~que ' is based on a compromise 

between the Newton-Raphson algorithm and the method of steepest descent. 

This algorithm, unlike earlier methods, does not search along a line in 

the space of the variables !:.· Instead of a linear search, the functions 

f(!:_) are calculated for only one value of x on each iteration. 

A major drawback of the Newton method is that the value of the 

objective function is guaranteed to be improved on each cycle only if the 

Hessian matrix H(!:_) of the objective function is positive definite57 

(A matrix is positive definite if and only if all the eigenvalues are 

positive). For strictly convex functions H(!:_) is positive definite, but 

for general functions the Newton method may lead to search directions 

diverging from the minimum ofF(!:_). Therefore, to obtain the correction 

7172 
vector o (Eq. (5.48)), Marquard and Levenberg ' suggested the solution 

of 
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i = 1,2, .•• ,n 

whe.re I is the unit matrix and A is a parameter. It is noted that the 

characteristic matrix A (Eq. (5.50)) in this case is given by 

T 
A = AI + J (~) J (~) 

For sufficiently large A it can be shown that the criterion for success 

F (~ + §_) < F (~) 

is satisfied. Moreover, if the term :\I overwhelms JTJ, the minimization 

approaches the steepest descent search. 

The Powell least squares algorithm (POS) is initiated by providing 

an estimate x of the minimum ofF(~), and also an approximation to the 

Jacobian matrix J, which is obtained by calculating 

-1 
Furthermore, the matrix J , a matrix n of n directions in the space of 

the variables and a step length ~ are required. 

The calculation of the correction vector o is carried out by 

predicting both, the Newton correction ~ and the steepest descent 

direction 5! 

Because of the good convergence properties of the Newton iteration it 

would be desirable to let i = 5!• provided the norm 1JSLJI < ~. The purpose 

of ~ is to limit the size of o. If \1~11 > ~. §..is set equal to a positive 

multiple of the gradient 5! such that 11 ill = ~. However, if neither of 

(5. 51) 

(5. 52) 

- ~- - -- - - -----------------
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the inequalities is satisfied, o is assigned a value which is a linear 

combination of~ and~· The value of~ is reduced if F(~ + !l >. F(~). 

However, ~ cannot become smaller than some pre-assigned small quantity, 

e, which ensures an adequate Jacobian approximation. The algorithm 

includes an additional feature to increase b if the inequality (5.52) 

is satisfied. In general, however, b is bounded by a minimum and 

maximum value. 

The POS algorithm uses an .updating procedure for the matrices 

J and J-1. The revision formulae are given by 

where 

K = £(~ + !l - f(x) 

and 

S ' 1 t k t 'd th 't ' h (_'T(J-l) (k)~) · pec~a steps are a en o avo~ e s~ uat~on w ere u ~s 

zero. 

The POS algorithm includes a device to maintain sufficient 'linear 

independence' in the directions !· Powell defines the vector 6 to be 

independent of a set of directions (~1 ,~2 , •..• ,~) if the angle between 

o·and some vector in the space spanned by the directions is not less than 

thirty degrees. The algorithm therefore ensures that for most iterations 

. . (k-2n) (k-2n+l) (k) 
(k > 2n), the d1.rect1.ons ! , ! , ... •! span the full space 

of the variables, where o(k) is the correction vector on the kth iteration. 

This is accomplished by a matrix Q whose columns are the n orthogonal 

vectors (~1 .~2 , •.• ,~) and a vector w which is used to store the history 

of the previous iterations. 

(5.53) 

(5. 54) 
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The calculation of an iteration of the POS algorithm can now be 

summarized, with respect to Fig. 5.4, in the following major steps: 

1. Initialize the iteration by calculating the gradient 

9_ and the Newton correction g_ to obtain §_, where 11 §...I! < IL 

2. If§_ is sufficiently independent, the functions !<~ + §_) 

are computed and b is revised. 

3. If §_ is linearly dependent, it is set to some pre­

assigned value. The functions £(~ + §_) are calculated 

and after revision of J the iteration is continued from 

step l. 

4. If F(~ + ~ < F(~, ~is replaced by (~+§_),otherwise 

the old value remains. 

5. If 11§...11 < £, the search is continued from step 3. Otherwise 

the Jacobian is updated and a new iteration is started by 

going back to step 1. 

Powell suggested termination of the search when either of the 

conditions is satisfied: 

(i) F(~) :; £
1

, where £
1 

specifies the accuracy of the solution. 

(ii) If (n+4) iterations fail to improve the function F(~). 

(iii) If 11§...11 < £ and further iterations do not decrease F(~). 

(iv) If a stationary value ofF(~) is predicted, i.e. VF(~) ~ 0 • 

. -··--·--~---------------------
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CHAPTER 6 

SYNTHESIS OF UNIFORM SEQUENCES USING NUMERICAL OPTIMIZATION TECHNIQUES 

6.1 Introduction 

The resolution performance of linear and non-linear FM type 

sequences (Chapter 4) may be quite satisfactory for a number of different 

applications. However, a better clutter rejection can be obtained by 

reducing the sidelobes even further using numerical means. The application 

of unconstrained minimization algorithms to the sequence design problem 

raises the question as to which of the currently favoured methods 

described in the preceding chapter is most suitable. Most of the 

unconstrained search methods work well for problems with a small number 

of variables. Unfortunately, very little information about the relative 

efficiency of various algorithms, when applied to functions of medium to 

high dimensionality, is available at present. In signal design problems 

the dimensionality of the objective function is usually large (N > 30). 

In addition in this particular case trigonometric equations become very 

ill-conditioned (highly non-linear, multimodal and oscillatory) as the 

number of variables increases. It is therefore essential to consider 

first the efficiency of the various minimization methods described 

previously so as not to seriously limit the feasible number of variables 

that can·be handled and thus to restrict the sequence length. 

This chapter also shows that optimization techniques can be 

useful in the synthesis of binary phase coded signals. This class of 

waveform has the advantage that simple and efficient decoders can be 

built. In addition the possibility of designing pairs of phase coded 

sequences with low ACF sidelobes and. small crosscorrelation is 

investigated. The. use of such sequences in time-division multiple­

access (TDMA) systems is of wide interest. 
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6.2 Basis for Comparison of Numerical Algorithms 

Before evaluating the relative effectiveness of the various 

algorithms, some remarks concerning the coding and the criteria to use 

in the evaluation of the effectiveness are appropriate. 

The programs used in the investigation were: 

(i) The pattern search method of Hook and Jeeves, hereafter termed 

PAT. 

(ii) Powell's linear search method employing two different uni-

dimensional searches, the golden section and the Coggin-

Powell search, hereafter termed POG and POC respectively. 

(iii) The simplex method of Nelder and Mead, hereafter termed NM . 

. (iv) Powell's sum of squares method termed POS. 

The programs· used were, as far as possible, definite versions of each 

algorithm described in Chapter 5. The searches POC, POG and NM were 

coded as given by Himmelblau
57

• Algorithm POS uses the program published 

70 by Powell , and PAT was written from the flow diagram, Fig. 5.3. All 

algorithms were coded in Fortran IV and run on the ICL 1904A computer 

system at L.U.T. The experimental evaluation of the algorithms has 

been done by minimizing F4 (~) (Eq. 5.34)) of varying dimensionality 

and for different termination criteria. 

The performance of each algorithm depends in practice on the 

values of certain preset parameters such as the initial step size, 

starting point, accuracy required as well as the precise coding. 

Computing time and location of the minimum in particular are very 

sensitive to these factors and to the termination criteria. 

The criteria considered in the assessment of the unconstrained 

algorithms are: 

(i) Number of function evaluations 

(ii) Computation time to termination (for a specified accuracy) 
--------·---------- ---- --- -- ------------' 
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In order to compare the performance of the various methods, under 

conditions as nearly identical as possible, they were used to solve 

a set of signal design problems, starting each problem with the same 

initial conditions. However, since the course of computation varied 

with each method, it was impossible to terminate the calculations at 

the same point; the accuracy of the final solution varied from method 

to method. The degree of precision usually depended on the termination 

criterion. For POG, POC and PAT the termination criterion £ was chosen 

to be a fractional change in F
4

(!): 

F4(!(k+l)) - F4(!(k)) 

F 4 (! (k)) 

For the NM algorithm the iteration was terminated when 

{ 
1 

N+l 

N+l 
l: [ F ("' (k))- F (m(k)) }2 }'> 

4 Li 4 -"N+2 
i=l 

whereas the POS algorithm was terminated when either the norm of the 

correction vector 11.£.11 was smaller than a specified small number £ 

and/or a stationary value of F4 (!) w~s predicted, i.e. 

11.£.11 < £ 

or 

The number of function evaluations of F4 (!) to reach a certain 

precision is in itself a not too satisfactory measure of efficiency for 

algorithms having widely differing strategies. Consequently, a second 

criterion, the computation time to execute an algorithm, is alternatively 

cited as a measure of the effectiveness of a method. Although the 

computation time is not necessarily the best criterion, because the 

measured time depends on the type of computer and the method of coding 

(6.1) 

(6. 2) 

(6. 3) 



-105-

of the algorithm, it often has to serve, in lieu of a better measure. 

6.2.1 Evaluation of Non-linear Programming Methods 

The performance of the non-linear unconstrained optimization 

algorithms is summarized in Table 6.1 to 6.5 ·where the following 

notations have been adopted: 

N = number of variables (sequence length) 

M = total number of function evaluations 

ITR = number of iterations 

8 = termination criterion 

Fl = initial value of F4 (fl 

Fz = final. value of F4 (!) 

s = peak sidelobe level of ACF, maxlr(k) I 
roax k N-1 

E (%) = sidelobe energy ratio in %; E (%) = 10
2 ( 1: I r (k) 12) /E2 

s s 
k"'l 

R = mean convergence rate, 1/M (Fl - F ) 
c 2 

T (roil) = execution time in mill units (1 millunit " 0.5 seconds) 

For the POS algorithm the number of function evaluations to set up the 

Jacobian matrix J were disregarded. All algorithms were initiated at 

the point 

i = O,l,Z, ••.• ,(N-1) 

and the initial step size, except for POS, was chosen to be 0.1. The 

selection of the parameters £ and ~ for POS is quite critical in view 

of the effectiveness of the method. In particular £ must be so small 

that for ~~~ < 8, fk(! + ~), k = 1,2, •••• ,N is nearly a linear function 

of 6. The parameter ~ is usually set to a generous estimate of the 

distance of the solution from the initial guess. Using the Euclidean 

• metric the distance between i and 1 is 



N e M ITR F1 F2 s E (%) R T(mil) 
max s c 

5 0.1 35 1 2.292 1.866 1.001 9.194 0.007 2 

10 o.1 206 3 18.751 4.862 1.054 6.060 0.055 23 

15 0.1 292 3 42.632 9.158 1.174 4.197 0.093 64 

15 0.05 531 6 - 7.289 1.099 3.919 . 0.059. 104 

15 0.01 598 7 - 7.062 1.090 3.898 0.054 115 

15 0.005 658 8 - 6.994 1.083 3. 886. 0.050 124 

15 0.001 894 12 - 6.906 1.065 3.842 0.038 163 

20 0.1 133 1 80.855 52.049 1.842 6.151 0.139 71 

25 0.1 616 4 141.409 19.281 1.383 2.892 0.167 319 

30 0.1 362 2 216.681 121. 378 2.269 4.815 0.195 307 

30 0.05 362 2 - 121.378 2.269 4.815 0.195 307 

30 0.01 1616 11 - 88.945 1.906 4.998 0.074 1046 

30 0.005 3471 25 - 51.847 1.590 3. 727 0.046 2146 

40 0.1 264 1 435.491 251.918 2.523 4.299 0.430 498 

50 0.1 2007 7 752.341 57.130 l. 336 1.821 0.314 3489 

Table 6.1 Performance of POC algorithm. 



----------------------------------

N E M ITR F1 F2 s E (%) R T (roil) 
rnax s c 

5 0.1 49 1 2.292 1.924 1.000 9.407 0.005 3 

10 0.1 253 3 18.751 4.802 1.049 5.861 0.048 26 

15 0.1 426 4 42.632 10.192 1.172 4.316 0.067 88 

15 . 0.05 495 5 - 9.221 1.153 4.288 0.062 97 

15 0.01 996 13 - 7.048 1.041 3.898 0.034 184 

15 0.005 1039 14 - 6.996 1.042 3.873 0.033 194 

15 0.001 1:326 19 - 6.918 1.057 3.817 0.026 245 

20 0.1 160 1 80.855 51.395 1.911 6.024 0.133 74 

25 0.1 711 4 141.409 22.895 1.491 2.865 0.148 355 

30 0.1 237 1 216.681 138.557 2.301 4.847 0.245 223 

30 0.05 366 2 - 126.968 2.274 4.842 0.199 292 

30 0.01 3300 27 - 55.499 1.637 3. 923 0.048 2024 

30 0.005 3590 30 - 54.250. 1.643 3.858 0.044 2243 

40 0.1 330 1 435.491 249 0 315 2.577 4.254 0.404 540 

so 0.1 1943 7 752.341 97.162 1. 784 2.123 o. 313 3341 

Table 6.2 Performance of POG algorithm. 

---------



N e: M ITR F1 F2 s E (%) R T(mil) 
max s c 

5 0.1 11 1 2.292 2.171 1.000 11.005 0.004 1 

10 o.1 258 72 18.751 5.102 1.030 6.104 0.053 25 

15 0.1 490 147 42.632 9.017 1.250 5.541 0.068 93 

15 0.05 598 180 - 8.418 1.219 4.167 0.057 113 

15 0.01 701 209 - 8.319 1.163 4.172 0.049 133 

15 0.005 723 215 - 8.312 1.154 4.191 0.047 136 

15 0.001 2839 857 - 7.222 1.069 3.930 0.012 533 

20 0.1 736 222 80.855 46.765 1. 765 6.263 0.046 230 

25 0.1 1206 370 141.409 23.197 1.543 2.953 0.098 559 

30 0.1 965 292 216.681 125.488 2.238 4.995 0.094 623 

30 0.05 1594 488 - 120.252 2.281 4.872 0.060 1027 

30 0.01 3143 973 - 116.329 2.315 5.055 0.032 2020 

30 0.005 3295 1018 - 116.273 2.314 5.055 0.030 2122 

40 0.1 2176 676 435.491 202.082 2.522 4.011 0.107 2393 

Table 6.3 Performance o£ NM algorithm. 



N M F1 F2 s E (%) R T (mi1) max s c 

5 36 2.292 l. 795 1.000 9.331 0.014 2 

10 126 18.751 4.809 1.050 6.045 0.111 18 

15 115 42.632 8.537 1.240 4.120 0.296 34 

20 80 80.855 52.526 2.000 5.947 0.354 37 

25 269 141.409 18.444 1.480 2.537 0.457 205 

30 92 216.681 134.628 2.380 5.093 0.892 94 

40 281 435.491 209.542 2.509 3.961 0.804 484 

50 729 752.342 73.704 1.644 2.076 0.931 2017 

60 671 1162.701 294.119 2.384 2.758 1.294 2560 

Table 6.4 Performance of POS algorithm. 

(e = 0.001, ~ = 3.0) 



N £ M ITR Fl F2 s E (%) R T (mil) 
max s c 

5 0.1 53 5 2. 292 l. 793 1.00 9.186 0.009 1 

5 0.01 74 7 - l. 793 1.000 9.165 0.007 2 

10 0.1 134 7 18.751 4.677 1.058 5.867 0.105 6 

10 0.01 200 lO - 4.664 1.043 5.856 0.070 8 

15 0.1 197 7 42.632 8.522 1.195 4.198 0.173 12 

15 0.05 286 lO - 7.579 1.177 4.055 0.123 16 

15 0.01 503 17 - 7.016 1.086 3.939 0.071 28 

15 0.005 592 20 - 6.935 1.067 3.880 0.060 31 

15 0.001 754 25 - 6.909 1.066 3.861 0.047 39 

20 0.1 179 5 80.855 46.062 1.833 6.327 0.194 15 

20 0.01 585 15 - 41.517 1.687 6.301 0.070 40 

25 0.1 358 8 141.409 17.648 1.434 2.730 0.346 34 

30 0.1 316 6 216.681 115.619 2.288 4.778 0.320 36 

30 0.05 378 7 - 112.359 2.240 4.827 0.276 43 

30 0.01 1508 27 - 79.614 1.819 4.740 0.091 159 

30 0.005 2846 so - 50.300 1.530 3.785 0.058 295 

30 0.001 3136 55 - 50.015 1.503 3.791 0.053 326 

40 0.1 420 6 435.491 188.575 2.421 3.941 0.588 64 

40 0.01 2782 37 - 82.997 l. 792 3.092 0.127 369 

so 0.1 1072 12 752.341 55.366 1.538 1. 795 0.650 190 

50 0.01 2573 27 - 47.571 1.479 1.698 0.274 421 

60 0.1 1059 lO 1162.701 244.701 2.068 2.697 0.867 228 

60 0.01 4671 41 - 93.575 1.962 1.855 0.229 908 

70 0.1 1365 11 1701.352 351.538 2.508 2.616 0.989 340 

70 0.01 5358 40 - 142.404 1.782 1.809 0.291 1204 

80 0.1 1700 12 2363.900 274.297 2.138 1.910 1.229 482 

so 0.01 4111 27 - 231.327 1.984 1.825 0.519 1063 

90 0.1 1249 8 3163.479 972.081 3.320 2.697 1. 755 408 

90 0.01 7793 45 - 199.688 1. 722 1.446 0.382 2253 

100 0.1 2506 14 4088.136 333.660 2.158 1.509 1.498 874 

Table 6.5 Performance of PAT algorithm. 



-106-

(6. 4) 

Preliminary trials have shown that £ ~ 0.001 and ~ ~ 3.0 give 

consistently good results for a variety of problems with different 

dinlensionality. 

The investigations have shown that PAT was the best, and the other 

methods, exclusive of the POS and NM algorithms, were of roughly. the 

same effectiveness. Quite obviously accurate minimization along each 

search direction for the univariate search type algorithms can be 

expensive in function evaluations. The results in Table 6.1 and Table 

6.2 show that a high accuracy is not required in most cases, and thus 

computing time can be kept low. A value of the termination criterion 

£ ~ 0.01 to 0.005 usually suffices. For example with values of £ ~ 0.01 

and N = 15 the minimum obtained with POC is 7.062 while for £ = 0.001 

it is 6.906. The effect of such a small decrease in the objective 

function on the sidelobe levels and sidelobe energy is negligible. To 

obtain a significant improvement in sidelobe performance the. reduction 

of F4 (i) must be at least of the order of 20% to 30% (see for example 

N = 30). However, if the accuracy is too low failure to obtain function 

decreases can occura 

The golden section univariate search is clearly less reliable in 

that the weak search along a line until a minimum is bracketed frequently 

fails to terminate in a reasonable number of iterations. Fig. 6.1 

shows the number of function evaluations required to optimize F4 (i) 

for N = 15 and various degrees of precision. If the evaluation of the 

objective function takes any significant amount of tiro~, then the PAT 

search is preferable. 
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Attempts to compare quite different algorithms on the basis of 

the number of functional evaluations can be less satisfactory and is often 

misleading. Consequently, times to execute a particular problem rather 

than the number of function evaluations has been selected as being the 

single most suitable measure of effectiveness. The execution times, 

measured in millunits (1 millunit" 0.5 seconds), were determined on 

an ICL l904A digital computer and a subset of the results are shown in 

Fig. 6.2. lt can be seen that the linear search algorithms POG, POC 

and the NM method perform similarly and that PAT is clearly superior. 

It is important to inquire into how these techniques behave as 

the dimensionality of the objective function increases. To keep the 

computation time within reasonable limits the tests were carried out in 

.most cases with s ~ 0.1 and are shown in Fig. 6.3 and Fig. 6.4. The 

unidimensional searches POG, POC and NM were not tested for N > 40 

because of excessive computation time. As various test problems were 

solved it became increasingly apparent that the NM method was the most 

inefficient, even for problems.of moderate dimensionality and accuracy. 

Fig. 6.3 shows that all methods tested perform well for problems with a 

small number of variables (N ~ 15). However, the linear search, and in 

particular the NM algorithm, clearly become less competitive as N 

increases. This is characteristic for search methods which locate a 

minimum by conducting N linear searches along a line which requires a 

large number of function evaluations. Tables 6.1 to 6.5 demonstrate 

that although the number of function evaluations for POG, POC and PAT 

are of the same order, the PAT method is superior in execution time. 

·This is basically due to the fact that for an exploratory search in the 

direction of the coordinate axes the ACF need not be recalculated but 

can be updated for each individual variable change ~~l) ~ 
J. 

according to 

~ ~0) + t>~ ~0) 
J. J. 
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i-k < O,i+k ~ N 

a (i-k) [a* (i) - a* (i)] 
0 1 0 

i-k ~ O,i+k > N 

where a (i) ~ exp(j ~.(O)) 
0 ~ 

and ~ exp(j ~.(l)) 
~· 

Unfortunately, a similar time-saving rule cannot be found for 

algorithms that search along a line which is not necessarily parallel 

to the coordinate axes. Although it is possible to use FFT methods to 

compute the ACF or even to optimize in the frequency domain by mini-

mizing an objective function of the form 

F (_2) ~ 
p 

N-1 
l: 

n~o 

2 where js(n,~) j are the power spectrum samples of the sequence s(n), 

it was found that such an approach does not offer an increase in 

computational speed for sequences of length N < 200. Moreover, since 

the objective is to design sequences having small ACF sidelobes, it is 

preferaqle to work in the time domain rather than the frequency domain. 

The Figures 6.3 and 6.4 can provide only qualitative evidence 

concerning the effectiveness of the respective algorithms when applied 

to higher dimensional problems. However, it is evident that PAT is 

distinctly superior to all other methods considered. The POS algorithm 

performs reasonably well if the initial parameters are chosen carefully 

(occasional premature termination occurred; see for example Fig. 6.5). 

In no case, however, was it superior to the PAT method. In addition 

computer storage can be a serious limitation on the feasible dimension-

(6. 5 

(6.6) 
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ality of the objective function for POS. In comparing the two variants 

of linear search POG and POC, it is seen that they behave almost 

identically. The NM method on the other hand is an unsuitable strategy 

for this type of application. 

Examination of the results presented so far can give only a 

fragmentary picture of the relative effectiveness of the algorithms, 

because of the different search strategies and termination criteria. 

To reduce the mass of data that can be produced by solving test problems, 

the objective function F 4 (2) versus the, number of function evaluations 

is plotted in Fig. 6.5. Such figures provide an empirical measure of 

the rate of convergence of the respective algorithms. A figure of 

merit representing the mean convergence rate R was chosen to be c 

where His the total number of function evaluations and F1 , F2 the 

initial and final values of F4 (f). 

The algorithms show a rapid reduction of the objective function 

in the first few iterations followed by a relatively slow convergence 

to the minimum. This is not surprising in view of the multimodal and 

ill-conditioned character of transcendental equations (a different 

search direction has to be employed at almost every iteration). 

The results of this study should not be used as a decisive 

comparison of the various unconstrained minimization methods; However, 

the following general conclusions seem to be appropriate in view of 

the results obtained. The PAT algorithm presents the most consistent 

and efficient behaviour among the group of techniques investigated. 

If a reasonably good estimate of the initial parameters is available 

Pos·is a good second best in effectiveness. The performance of the 

algorithm may thus be classified in qualitative terms as 
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(i) PAT superior 

(ii) POS good 

(iii) POG,POC fair 

(iv) NM not suitable 

Consequently, the PAT method has been selected for the subsequent 

sequence synthesis problems as the most suitable algorithm. 

6.3 Uniform Complex Pulse Trains 

In view of the discussion in the previous section the PAT 

algorithm was used to synthesize uniform (constant amplitude) complex 

73 
codes • Table 6.6 shows the properties of the best codes of various 

lengths so far obtained by the use of numerical minimization. The 

phases of the elements of the initial codes were chosen randomly, except 

for the codes of length 9, 16, 25, 36, 64, 81, and lOO, where the 

corresponding Frank code was used as the initial code. A value of 4 

was usedfor p,·except in the cases of codes of length 4 to 11, where 

a value of 2 was used. For comparison Table 6.6 also shows the 

properties of other known codes. 

It is of interest to find that uniform complex codes with largest 

sidelobe unity exist up to a length of at least 18*. Even for much 

larger lengths, codes exist with peak sidelobe values less than 2. For 

example the peak sidelobe of the sequence of length N = lOO is only 

1.44 or -37 dB. (A subset of these codes is given in Appendix E). It 

is also of some interest to note that numerical optimization yields a , 

significant improvement in both peak sidelobe and sidelobe energy 

performance on the Frank codes of the lengths given here. It is also 

possible to improve on the performance of the Barker codes. The energy 

*A code of length 19 was found later using the method described in 
Chapter 7. 



Table 6.6 Autocorrelation sidelobes of codes obtained by numerical 
optimization where; (B) Barker, (G) Golomb and Scholtz, 
(S) Scholtz, (C) Carley, (D) Develet and (F) Frank 

Code Peak side lobe Energy ratio 

length 

N maxI r(kll E (%) 

k 
s 

prior new prior new 

4 (B) 1.00 1.00 12.50 9.38 

5 (B) 1.00 1.00 8.00 8.01 

6 (G) 1.00 LOO 13.89 13.89 

7 (B) 1.00 1.00 6.13 3.32 

8 (G) 1.00 1.00 7.81 4.32 

9 (G) 1.00 1.00 2.41 1.32 

10 (G) 1.00 1.00 8.64 4.70 

11 (B) LOO 1.00 4.14 2.69 

12 (G) 1.00 1.00 6.25 4. 71 

13 (B) 1.00 1.00 3.55 2.87 

14 (S) 1.00 1.00 5.61 3.76 

15 (C) 1.00 1.00 3.11 2.38 

16 (0) 1.00 1.00 4.73 3.17 

17 1.00 3.32 

18 1.00 3.16 

19 1.08 3.34 

20 1.14 3.12 . 

21 1.28 3.12 

23 1.20 2.61 

25 (F) 1.62 1.17 4.42 2.22 

27 (F) 1.62 1.39 3.49 

29 1.50 3.80 

31 1.31 3.27 

33 1.69 4.32 

35 1.66 3.82 

36 (F) 2.00 1.46 3.86 2.66 

37 1.58 3.46 

39 1.84 4.33 

41 1.93 4.63 

43 1.83 3.28 

49 (F) 2.25 1.49 3.10 1.62 

64 (F) 2.61 1.67 2.80 1.43 

81 (F) 2.88 1.89 2. 37 1.59 

lOO (F) 3.24 1.86 2.20 . 1.44 

''" .. --.- --- -·--- . .. ' ..... --~ ----------- ~ -·· 
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ratio for longer sequences ranges from 1.5% to 4.5% which gives r.m.s. 

sidelobes of the order of 0.12& to o.21m *. 

A typical ACF and zero pattern of a uniform complex code when 

th<i' initial phase is chosen in a quadratic fashlxm is d"picted in Fig. 

6.6. The uniformity of the residues clearly ~aows the ability of the 

i
4

-measure to reduce s~ngle large spikes. If the index p in the i -norm 
p 

is increased one departs further and further away from the mean-square 

approximation and approaches the minimax or Chebyshev solution for 

sufficiently large p (p ~ 10). This is illustrated in Fig. 6.7. 

Hence a value p ~ 4 seems to be a reasonable compromise between self-

clutter rejection and peak sidelobe suppression. 

In all cases no convergence problems were experienced4 However, 

due to the multimodal character of the objective functior. the located 

extremum is most likely a local minimum. There is no method to side-

step this problem other than to begin the search at several different 

random starting points and to select the best minimum. 

6.3.1 Effects of Phase Quantization on the ACF 

In general the phase elements of uniform complex codes may have 

a continuum of values. From practical considerations·, however, one 

could subdivide the phase interval 2n into M increments and select the 

multiple of 2n/M which is closest to the actual value of the phase step. 

The resulting phase error or 'quantization noise' will, of course, 

increase the overall sidelobe level of the ACF. 

* The r.m.s. sidelobe is calculated as; r.m.s. sidelobe 
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An estimate of the quantization noise of such a polyphase 

approximation can be obtained by considering the expression 

= 
N-1 

l: 
k=- (N-1) 

. 2 
lrl (k) - r2 (k) I 

where r
1

(k) and r 2 (k) denote the ACF's of the actual sequence, s 1 (n), 

and its quantized version, s 2 (n), respectively. 

Using Parseval's theorem the above expression can be written in 

its equivalent form 

= 

Expanding the expression in the brackets yields 

2 e = J
W/2 

1/W 

-W/2 

For signals with good ACF's the approximation Js1 (f) J2 ~ N holds 

reasonably well. Moreover, the quantized signal, s 2 (n), should differ 

very little from s 1 (n), i.e. 

Consequently, it is the difference term in Eq. (6.9) which is of 

importance. Substituting the above approximations into Eq. (6.9) 

leads to 

2 
e = I

W/2 
8 N/W 

-W/2 

After applying the inequality 

J
W/2 

Jsl (f) I 
-W/2 

(6. 7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 
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which is equivalent to 

N-1-lkl · 
=I E s 1 (n) s2(n-k) I J

W/2 
~ 1/W 

n=o 
.,-W/2 

k = O, +1, .•..• ,.:!:_(N-1) 

yields 

8 N (N- max lr12 <kl ll 
k 

A particular·value of interest is obtained for zero time shift by 

letting k = 0 in (6.13) 

Hence the mean-square error or quantization noise of two ACF's depends 

on the crosscorrelation of the actual and quantized signal for zero 

time shift. 

and 

If. the phase coded signals s
1 

(n) and s
2

(n) are given by 

sl (n) = eH (n) 

s (n) = ej (~ (n) + &~ (n)) 
2 

where &~(n) is the phase quantization error, the crosscorrelation for 

k = 0 is according to (6.12) 

= 
N-1 I E e-j&~ (n) J 

n=o 

2 
For small values of & rp(n) (ll.~ (n) « 6) the exponential expression can 

be approximated reasonbly well by the first few terms of a Taylor 

series 

-j&~(n) 2 · 
e " 1 - J,:&~ (n) - j&4> (n) 

Substituting this approximation into Eq. (6 .17) yields 

N-1 
lr12 <o)j = E {(1-: ~M2 (n))- jM(n)}J 

n=o 

(6 .12) 

(6 .13) 

(6 .14) 

(6.15) 

(6.16) 

(6.17) 
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N-1 N-1 
lrl2(0) I = { r E (1- l,ll<j>

2
(nJ)]

2 
+ r E ll<j>(n) ]

2
}1, 

n=o 

The second term in Eq. (6.18) is certainly greater or equal to zero. 

Thus, 
N-1 

lrl2 (0) I ::; l: [1 - J,ll<j>2 (n)} 
n=o 

If now ll~ denotes the maximum phase quantization error, Eq. (6.19) 

becomes 
N-1 

lr12 (o) I ::; E (1- J, ll$
2

J 
n=o 

Dividing the phase interval 2rr into M increments gives 

Hence 

ll$ = rr/M 

2 
rr 

- 2M2 

Combining Eq. (6.14) with Eq. (6.21) leads to 

Using the above relationship it is possible to determine the order of 

2 
the polyphase approximation for a given quantization noise E • For 

example, if E
2 

should not exceed 0.01 N
2 

a value of 

M'.: (4000)~ ~ 64 

' 0 or ll<j> = 2.5 is required. The degradation of the ACF due to this type 

of quantization error is indicated in Fig. 6.6(a) for a maximum phase 

error of 5° (M = 36). 

6.4 Binary Coded Pulse Trains 

A relatively large group of signals which have received special 

attention are certain binary sequences (Group 11, Chapter 2). Such 

signals have been extensively considered for improving ambiguity and 

(6.18) 

(6.19) 

(6. 20) 

(6.21) 

(6.22) 
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resolution in radar and for solving special problems in the field of 

communications5 •7 •8 •14 • 

The attractive feature of binary coding is that a number of 

sirople, efficient, and flexible decoders can be built (a pair of shift 

registers can be used as a tapped delay line pulse-compressor). The 

aperiodic ACF of aN element binary sequence c(n) can be written as 

N-1-k 
r(k) = E c(n) c(n+k) 

n;::o 

where c(n) = +1 n = O,l,2, .... ,N-l 

A class of binary sequences whose ACF's satisfy the conditions 

N if k = o 

r (k) = 0 if N-k is even 

+1 if N-k is odd 

8 
are called Barker sequences or perfect words Barker sequences exist 

for length N = 2,3,4,5,7,11,13. 
9 Turyn has shown that there are no 

other binary sequences with this property for 13 < N ~ 6,084 and that 

it is unlikely any will exceed 6,084. The limitation to a maximum 

length of 13 is a serious one in radar detection. Consequently, 

considerable effort has been devoted to the problem of finding longer 

binary sequences which, if not optimum, are at least satisfactory for 

a given application
6

'
10

'
11

'
14 

It is well known that by choosing a large number o£ elements 

c(n) randomly, sequences whose r.m.s. sidelobe levels are of the order 

M can be found. However, it can be. expected that in the statistical 

synthesis a large number of sidelobes will exceed M. It will be 

shown that by proper choice of the sequence both average and peak 

sidelobe can be held at a lower value and thus yield a better range 

(6.23) 

(6. 211) 
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resolution and clutter rejection. However, nothing is known about 

how small the maximum peak sidelobe might be in the best cases. At 

present there is apparently no solution, other than an exhaustive 

search, to this general problem and good binary sequences which approach 

the Barker codes have been found only by trial and error. 

The major difficulty in synthesizing binary sequences is the 

discrete nature of the amplitude and phase. In formulating the synthesis 

problem using optimization techniques an additional set of constraints 

has· to be included. Thus the minimization problem which is·equivalent 

to solving the system on non-linear Eq's. (6.23) may be written as 

subject to 

min F~ p 

~i = O,n i = O,l, .... ,N-1 

Consequently, the major objective in subsequent sections will be to 

describe the various ways of obtaining binary coded waveforms using 

numerical methods, to study their properties, and to consider where 

they are suitable. 

6.4.1 Synthesis Using Element Complementation 

Probably the most obvious method of synthesizing binary sequences 

is to choose a number of sequences, perhaps at random, and to observe 

their ACF's. This method can be improved significantly by adopting a 

(6.25) 

search strategy which, starting from an initial code, produces a succession 

of progressively better codes. This involves minimization of a measure 

of the sidelobes such as that given by Eq. (6.25) over a set of discrete 

points in multi-dimensional space. To be more specific, the problem is 

N to minimize a function of N discrete variables over a set, S, of 2 

points in N-dimensional space. Any attempt to compute all possible 
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functional values becomes unfeasible, even for moderately large 

N 
N (N > 20), as 2 increases exponentially. Hence, the search will have 

to be restricted to a .subset S1 of S (Sl C S). In addition the iterative 

method must take the discrete nature of the variables into account 

and, moreover, must be economical with respect to the volume of 

computations. 

A simple search strategy is to take the current sequence, changing 

one of its elements to either +1 or -1, and to evaluate the ACF. If 

the measure of the sidelobes is reduced the modification is retained 

and the new code is subjected to further modifications. This is done 

iteratively until changes of the elements do not yield a further 

reduction in the objective function. Such a method was proposed by 

. 11 74 
Vakman and later adopted by Indiresan and referred to as the element 

complementation technique. 

Vakman suggested choosing the initial starting sequences to be 

of the form 

where 

c(n) ~ sgn 

8gn x ~ [ 
1 

-1 

X~ 0 

X < 0 

2 
(n-1) 
(N-1) 

7f - -)} 
4 

It can be shown that these sequences, referred to as Vakman codes, are 

binary approximations to a LFM waveform. Such codes have an estimated 

r.m.s. sidelobe of IN. In addition odd length Vakman codes satisfy 

the reflection condition* 

c( (N+l) + n) ~ (-l)n 
2 

c( (N+l) - n) 
2 

It is easy to verify that sequences which satisfy this condition also 

*Another type of code which also satisfies (6.27) will be discussed in 
Chapter 7. 

(6.26) 

(6.27) 
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satisfy r(k) = 0 for (N-k) even, since the terms in r(k) cancel in 

pairs (first and last, etc.) A typical example of a Vakman code ACF 

of length N = 101 is shown in Fig. 6.8. 

A ·search program based on the element Gomplementation method 

was written in Fortran to find sequences with minimum sidelobe peaks. 

The initial starting points were: 

(i) Vakman code 

(ii) randomly chosen sequence 

In addition the sequences were also tested to see if cyclic shifts 

would improve the objective function. It is apparent from Eq. (6.23) 

that maxlr(k) I cannot change by more than two units when the initial 
k 

bit is moved one place, the length of the sequence remaining fixed. 

In the binary case the updating of the ACF (Eq. (6.5)) after 

each element change reduces to 

ro (ml[ 0 '~" + c(m-kl] ; m-k >- 0 and m+k :; N-1 

i\.r(k) = -2c(m) c(m+k) m-k < 0 and m+k :; N-1 

-2c (m) c (m-k) m-k >- 0 and m+k > N-1 

where c(m) is the old value of the mth element. A similar expression 

which economises computation time can be obtained for the cyclic shifts, 

since such an operation results in merely removing and adding bits of 

the sequence. 

Table 6.7 shows the binary sequences obtained when optimizing 

Vakman codes with respect to the criteria 

l: I r (k) 1
2

, l:k I r (k) 1
2

, l: I r (k) \
4

, l:k I r (k) \
4 

k k k k 

For comparison purposes the signals obtained by Vakman are also given 

together with the sidelobe energy ratio Es. (Some of the sequences are 

appended). 

(6.28) 
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Code ,/ 
Length 

FUNCTIONALS 

N 

s 
max 

13 1 
19 3 
23 3 
31 9 
37 5 
41 5 
43 5 
47 4 
53 6 
59 7 
61 7 
63 7 
67 8 
71 9 
73 8 
79 8 
91 9 
93 13 
95 9 
95 10 
99 13 

101 9 
103 13 
105 13 
107 13 
109 11 
111 10 
113 9 
115 10 
117 10 
119 9 
121 9 
123 11 
125 11 
251 19 
253 21 
255 19 
257 16 
259 17 
261 27 
299 18 
301 18 
303 21 
305 17 
503 25 
511 25 
513 23 

E/r(k) /
2 

Ek /r (k) /
2 

E/r(k) /
4 

E (%) (V) S s E (%) s E . (%) (V) S 
s max max s max s max 

3.55 1 1 3.55 1 3.55 1 
13.57 3 5 19.11 3 11.35 3 
11.15 3 3 11.15 3 11.15 4 
11.55 9 5 12.38 4 16.50 4 
9.78 5 5 10.08 5 11.25 5 
6.90 5 12 17.13 5 15.94 6 

13.25 6 7 12.39 5 16.27 5 
8.28 7 8 10.46 5 14.26 4 

10.18 6 9 14.88 5 12.31 5 
11.52 9 9 10.60 8 16.23 8 
9.62 7 9 13.06 6 10.37 7 
8.64 7 7 8.64 7 8.64 7 
9.91 7 8 10.54 7 15.26 7 
8.86 7 11 13.31 9 12.51 9 

11.03 8 8 12.76 7 11.33 7 
11.39 7 12 11.97 8 16.65 8 
13.83 10 15 16.19 9 15.28 9 

8.11 13 9 10.52 8 10.05 8 
12.04 9 17 13.91 8 13.28 8 
14.03 9 13 15.18 9 19.11 10 
10.05 13 19 15.36 9 10.86 9 
10.64 8 15 15.27 9 15.82 9 
11.49 11 15 13.49 9 15.45 9 
10.77 13 16 16.33 9 13.68 9 
9.82 11 13 13.29 9 12.27 9 

10.76 13 15 12.54 9 15.30 9 
10.56 13 11 13.89 9 14.53 10 
9.02 9 11 9.24 9 14.31 9 

10.71 10 18 12.86 9 11.86 9 
10.36 11 13 12.29 12 13.03 12 
12.82 11 15 12.62 9 13.80 10 
11.80 12 12 13.22 10 13.82 11 
11.77 14 17 14.52 10 14.49 10 
13.24 ll 16 10.92 7 10.25 7 
10.93 17 32 15.08 13 12.19 13 
10.42 21 28 13.78 13 13.28 13 
10.22 16 14 12.09 15 
10.50 18 15 15.40 15 
13.17 17 13 12.97 13 
9.37 27 15 12.54 15 

11.27 18 17 16.25 17 
9.97 19 18 11.40 16 

10.40 23 16 13.76 15 
9.74 19 16 13.62 16 

10.79 27 22 13.28 22 
11.32 28 22 14.39 23 
9.14 25 21 14.04 21 

Table 6.7 Binary sequences obtained with Vakman code 

as initial starting point1 (V) indicates 

best Vakman sequences. 

l:k/r(k) /
4 

s E (%) 
max s 

1 3.55 
3 13.57 
3 11.15 
6 21.54 
5 11.25 
6 15.71 
6 15.80 
7 14.80 
7 13.46 
8 21.06 
8 10.18 
7 8.64 
7 15.44 
7 12.52 
9 14.71 
9 14.73 

12 24.21 
ll 13.58 
11 15.95 
13 20.87 
11 15.56 

8 11.90 
11 13.49 

9 14.66 
11 15.84 
11 17.29 
12 16.55 
11 14.79 
13 16.04 
10 13.69 
10 16.15 
12 16.12 
13 18.70 
12 17.22 
20 15.41 
24 16.44 
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Having found a good sequence it is often helpful to remove or 

to adjoinbitsto reduce the sidelobes even further. In the worst case 

such changes may increase the sidelobe level by an amount equal to the 

number of insertions or removals. The search covered a chosen range 

of initial sequence length and codes of every length were tested starting 

from a specified minimum up to a length exceeding the minimum by a fixed 

amount (at present 32 bits). Fig. 6.9 shows the variation in the 

maximum sidelobe for successively adding or removing bits. It can be 

seen that a number of sequences of various lengths exist which have the 

same maximum sidelobe level. 

In some cases better codes than those obtained by Vakman have 

been found. As expected minimization of a ~4-measure yields better 

results particularly for large compression codes. The energy ratio E 
s 

varies between 10% and 16% of the mainlobe energy, which gives a r.m.s. 

sidelobe of approximately 0.3 ~to 0.4 ~. As mentioned previously a 

non-negative weighting of the objective function enables control of the 

sidelobe distribution along the delay axes of the ACF. A designer may 

feel that it is worthwhile reducing the sidelobes which are further away 

from the main peak, at the expense of an increase in the close-in sidelobes, 

by minimizing a functional of the form 

F 
p 

N-1 
= L k jr(k) jP 

k=l 

This is illustrated in Fig. 6.10. 

On the other hand, when a binary sequence is used for resolving 

closely spaced targets or observing missiles in the presence of tank 

fragments or decoys for example, it is desirable to have low residues 

near the mainlobe. However, ambiguities can be tolerated in range if 

they are sufficiently distantfrom the expected target position. In this 

situation a weighting function of the form 

(6.29) 



15 

10 

5 

0 

s max 

10 

0 

A best bin,ary sequence using element 
complementation and random starting 
point 

o best binary sequence using penalty­
function method 

of!> o 

/ ---

A A 

50 lOO 

------------0 --

------~ o. 7 vN 
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w(k) = N - k 

or 

-- {ol w(k) 

where N
1 

denotes the desired clear region, could be used. For example 

sequences of length N > 200 whose mainlobe-to-sidelobe ratio is 200:1 

or 46 dB within 10 segment length of the main peak were found. Thus 

with a proper choice of the weighting function it is possible to obtain 

sequences with clear regions. HoweVer, an increase in the maximum and 

average sidelobe levels is usually observed. In addition, to obtain 

this degree of discrimination the decoder must be highly linear and have 

a large dynamic range. 

An extensive computer search has· shown that starting with a 

randomly chosen initial sequence instead of a Vakman code can give 

appreciably better results. Table 6.8 shows that binary sequences with 

lower sidelobe peaks than those obtained by Vakman were· found. The r.m.s. 

level is about 0.4 IN and max !r(k) I ranges from 0.6 IN to vN but 
k 

generally does not exceed IN as illustrated in Fig. 6.9. A typical ACF 

of such a sequence is depicted in Fig. 6.11. 

It has been observed that there are a number of good binary 

sequences which have the lowest sidelobe known for a given length. In 

~eneral, however, they will differ in sidelobe energy performance. 

The element complementation method requires a computation time 

which increases almost linearly with the code length N. In most cases 

the optimum was found in about 3 to 4 iterations*. On an ICL 1904A 

digital computer good binary sequences of length as large as N = 900 

*An iteration consists of complementing the N bits of the sequence 
plus N cyclic shifts. 



Code Functional: l.: I r (k) 14 Best Vakman 
length k sequence 

N maxlr(k) I E (%) maxlr(k)l 
k 

s k 

13 1 3.55 1 

19 3 11.36 3 

23 3 11.91 3 

31 4 10.72 4 

37 4 11.83 5 

41 4 12.61 6 

43 5 12.17 5 

47 4 . 8.28 5 
a 
0 
'0 

53 6 15.88 5 
a 
Ill 

" 59 6 14.62 8 ii 
61 6 10.91 7 

.... 
" 

63 6 11.96 7 
'0 
Q) 
a 

67 6 12.77 7 
.... 
Ill .... 

71 6 9.26 7 .g 
.... 

73 7 13.51 8 
(/) a 
Q) .... 
u 0 

79 7 12.99 8 

91 7 16.15 9 

a "' ~ 01 a 
Q) .... 
(/) .... 

93 7 15.52 8 
k ;., Ill 

" .... 
95 8 13.60 8 

Ill (/) 

~ .... ..... 
97 8 13.52 10 

.Q 111 .... .... .... 
99 8 15.89 9 

(/) .... 
Q) a 
o:l .... 

101 8 13.16 9 
CO 

0 

103 8 14.58 9. <.0 

105 7 13.61 9 

107 8 12.90 9 

Q) ..... 
{] 
8 

109 9 12.40 9 

111 9 14.34 10 

113 9 12.88 9 

115 8 14.65 9 

117 8 14.83 12 

119 9 15.62 10 

121 9 15.46 11 

123 9 11.72 10 

125 9 15.83 7 
251 14 14.41 13 
253 15 14.92 13 
255 14 14.44 15 
257 15 14.76 15 
259 13 14.66 13 
299 15 15.09 17 
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were found in less than 30 minutes. On a time-sharing computer a 

search program of this kind runs at low priority very cheaply, since 

both input and output data are extremely small. 

The element complementation method, although simple and efficient, 

is not without its disadvantages. First, no local explorations of the 

function to be minimized can be obtained. Secondly, one has little or 

no control over the rate of convergence. Therefore, a method which, to 

some extent, overcomes these difficulties will now be described. 

6.4.2 A New Technique of Synthesizing Binary Sequences 

Because of the lack of suit.able methods for solving non-linear 

equations with integer variables it is necessary to accept formulations 

.in continuous variables with 'rounding off' the resulting solution or, 

alternatively, to adopt a search strategy of the type described previously. 

Although this may be satisfactory for problems with small dimensions, it 

may lead to results quite distant from the optimum if the number of 

variables increases. Therefore, a new approach to the problem, using 

75 
non-linear integer programming, is suggested 

In recent years a large number of programming methods for solving 

76 77 
linear integer problems have been proposed by many authors ' However, 

in the field of non-linear integer programming little progress seems to 

have been made. An interesting approach to this problem, utilizing 

78 penalty-functions, was suggested by Gisvold and Moe . Here the possibility 

of using penalty-function techniques to synthesize binary sequences with 

low sidelobes is investigated. 

The minimization of a measure of the sidelobes such as 

= 
N-1 

l: 
k=l 

N-1-k 
I l: 

n=o 

subject to the constraints 

c (n) = :1:.1 

c (n) c (n+k) 1
4 

n = O,l,2, •••• ,N-l 

(6.30) 
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can be regarded as a non-linear constrained optimization problem. 

By making the variable substitutions 

cos xn = c(n) 

Eq. (6.30) can be written as 

F 4 (~) 
N-1 

= z: 
k=l 

X = 0 1 TI 
n 

N-1-k 
Z: cos xn cos xn+kl

4 

n=o 

n = 0,1,2, •••• , (N-1) 

The optimum realizable approximation to the desired ACF of Eq. (6.24) 

is given by the set of phases {x } that minimize the cost functional 
n 

F4 (~) subject to the conditions (6.32). The essential idea of the 

penalty-function approach is to transform the constrained non-linear 

problem into a sequence of unconstrained problems by adding the functions 

of the constraints to the objective function and deleting the constraints 

as such. Formally this can be written as 

Minimize: = F (x) + 
p-

where P(x,s) is a generalized augmented function, s. > 0 are weighting 
~- L 

factors, and H [ hi(~)] is a function of the equality constraints 

hi(~). A typical choice for H [ hi(~)] is 

2 
= h. (x) 

~-

Using this method, the problem represented by Eq!s (6.31) and (6.32) 

can be transformed into the unconstrained minimization problem 

Minimize: P (~, s (k) ) = F 
4 
(~) + (s (k) ) -~ Q (~) 

The term Q(~) is the discretization penalty-function and s(k) > 0 

is a weighting factor. This function has the property 

= O,n 

(6.31) 

(6. 32) 

(6. 33) 

(6. 34) 

(6. 35) 

(6. 36) 
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In principle Q(~) could have any form as long as it is continuous and 

the requirement (6.36) is met. A suitable criterion seems to be 

= 

where y ': l. 

The factor y. allows for shaping the penalty-function, while the 

amplitude is controlled by the weighting coefficient s(k). 

The augmented function P(~,s(k)) is now minimized for a sequence 

of decreasing values of weighting factors s(k), such that, fork+~, 

min{P (~,s (k))} min{F 
4 
(~)} · 

and + 0 

In other words, the effects of the constraints in the augmented 

(k) 
function P(~,s ) on the value of the function is gradually diminished 

as the search continues, and completely removed at the limit, so that 

the value of the augmented function converges to the same value as 

F4 (~) and the extremum of P(~) is the same as that of F4 (~). In 

practice the required number of cycles is rather small, i.e. k is 
max 

between ten and twenty. 

The choice of the initial s,s(o), the method of reducing s, 

(6. 37) 

( 6. 38) 

(6. 39) 

and the choice of Q(~) all have considerable influence on the effectiveness 

of the method. If s(o) is too small, the.initial minimization will drive 

~to the minimum of F4 (~) itself, a point unlikely to be the constrained 

minimum (path CF, Fig. 6.12). On the other hand, if s(o) is too large 

the search tends to converge prematurely in the first few stages to 

some non-optimal solution such as that illustrated in Fig. 6,12 (CDA). 

. (k) 
The sequence of {s } has been chosen according to the method suggested 

b . d c . k 79 
y F2acco an Me orro2c . 
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Path CDA 
(o) 

.too large s 

·Path CEB s 
(o) moderate 

Path CF s 
(o) 

too small 

Fig. 6.12 Influence of weighting parameter 

(o) 
s on the path of optimization 

(A, B local minima). 
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where c ~ 4 and s(o) = 1 

The advantage of this method is that in principle any of the well 

known search algorithms can be used to minimize P(~,s(k)). However, 

the study described in Section 6.1 has shown that pattern search 

techniques are particularly suitable for this type of application. 

Such a search algorithm was written in Fortran and the flow diagram 

is given in Fig. 6.13. 

In deciding upon a convergence criterion for the constrained 

equations, account must be taken of the magnitudes of the quantities 

being dealt with. Therefore, the search was terminated when the sum 

of the squares of the violated equality constraints was less than some 

small positive number s, i.e. 

Q(~) < £ 

Preliminary investigations have shown that a value of 0.05 N for s 

appeared to be adequate. 

phases 

The binary sequences obtained, starting with an initial set of 

2 nn 
xn = 2(N-l) n = 0,1,2, .... ,N-l 

are given in Table 6.9. 

10 80 
A comparison of the results with known better codes ' 

(Table 6.9) indicate that the proposed method gives satisfactory 

results. In addition this method has a number of advantages over other 

design techniques. First, no exhaustive and thus time-consuming search 

procedure is required. For example, sequences of length N ~ lOO were 

obtained in less than 5 min on an ICL 1904A computer. This is 
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Code 
length 

N 

13 

17 

19 

21 

23 

25 

27 

31 

33 

35 

37 

41 

47 

53 

61 

67 

71 

79 

91 

97 

101 

113 

121 

128 

Penalty-function Improved penalty-
method function method 

maxi r (k) J E (%) maxlr(k) I E (%) 

k 
s k 

s 

1 3.55 1 3.55 

3 13.84 2 11.07 

3 15.79 2 10.25 

3 12.25 3 12.25 

3 11.91 3 15.69 

4 10.89 4 10.24 

3 8.37 3 8.37 

3 6.97 3 6.97 

4 12.49 4 11.02 

4 10.53 4 10.53 

4 10.67 4 10.08 

4 14.52 4 6.66 

5 11.54 4 8.29 

6 14.88 5 10.89 

6 10.80 5 12.20 

6 11.43 6 11.43 

6 11.80 6 11.80 

7 9.53 7 8.76 

7 12.38 7 12.38 

8 13.05 8 13.05 

8 11.94 7 10.29 

8 9.15 8 9.15 

9 12.68 8 9.54 

10 9 11.33 

Table 6.9 Binary sequences obtained using 

penalty-function techniques. 

(*minimum possible sidelobe found by 

exhaustive search 
80

). 

Best known 
signal 

maxlr(k) I 
k 

1* 

2* 

2* 

2* 

3* 

2* 

3* 

3* 

•3* 

3* 

3* 

4 

4 

5 

5 

5 

5 

6 
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considerably less than the time required using the method presented 

10 by Boehmer , but is comparable in efficiency with the element 

complementation technique. An additional increase in efficiency can 

be achieved,by limiting the number of moves at a given penalty level. 

It has been found that when the number of function evaluations exceeds 

30xN to SOxN, only small changes in the variables are made. Even though 

convergence has not.been reached, the variables are close enough to 

their final values to move on to the next penalty level. OWing to the 

increased efficiency relatively long sequences can be handled in a 

reasonable computation time. Another advantage is that no prior information 

of the structure of the function to be minimized is required. However, 

since the function is multimodal, the search procedure most likely 

converges to a local extremum. 

The problem of premature convergence to a 'false optimum' can be 

tackled by either beginning the search at several different random 

starting points or even better, to initialize a recovery procedure. 

Such a procedure is based on the observation that a reduction of the 

penalty weighting factor s(k) will cause the minimum point to move away 

from the constraint boundary. If the reduction of s(k) is large enough, 

this will cause the search procedure to converge to a different (local) 

minimum. 

6.4.3 Improved Penalty-Function Method 

Although the minimization of P(~,s(k)) seems promising in view 

of the results obtained, the method is not without its disadvantages; 

the weighting factor (s(k))-~ becomes very large as the search progresses. 

This causes the function that is minimized to be very sensitive to 

variable changes. Particularly in cases where the objective function 

is ill-conditioned (deep narrow valleys) difficulties arise because the 

location of the minimum usually requires a large number of steps. 
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An improved penalty-function method which to some extent 

81 overcomes this problem was suggested by Powell Powell's modified 

augmented function can be written in the general form 

Miq.imize: F (x) + 
p-

where (s
1

,s
2

, •••• ,sm) are the usual penalty weighting factors and 

(v
1

, v2 , .... ,vm) are an additional set of parameters. The main 

difference between Eq. (6.33) and Eq. (6.40) is the introduction of 

the parameters ~· Because of these parameters it is usually satisfactory 

to use moderate values of s. 

The method is based on the fact that if the values of the 

variables x which minimize P(~,~·~) are f(~,~), then f(~,~) is a 

solution to the constrained problem: 

Minimize: 

subject to 

F (x) 
p-

i::::l,2, .... ,m 

This implies that values of the parameters ~·~ can be found such that 

i=l,2, .... ,m 

Eq. (6.42) represents a system of non-linear equations which, in 

principle have to be solved for the unknown parameters v for fixed 

values of s. The solution of this set of equations could turn out to 

be difficult and time-consuming. 
81 

Fortunately, it can be shown that 

if the factors si are sufficiently large an iterative adjustment such 

as 

is adequate. 

i=l,2, ... ,m 

In addition by choosing the sequence {s.} sufficiently 
~ 

large the iteration (6.43) can be made to have linear convergence at 

as fast a rate as is required. 

(6. 40) 

(6.41) 

(6.42) 

(6. 43) 
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Using the modified method the binary signal design problem can 

now be formulated as 

Minimize: P(~'s (kl,v(k)) __ F () + (kl {Q( l (k)}2 
4 ~ s ~ +v 

The new augmented function is now minimized applying Eq. (6.43) for 

a fixed value of s(k), unless c(k) = Q(~l either fails to converge or 

converges to zero too slowly. 
(k) 

In this case s is increased in order 

to improve the rate of convergence. A flow diagram of the algorithm 

is shown in Fig. 6.14. The search process is started with the initial 

(o) (o) (o) 
parameters s = 1, v = o, and c = K, where K is some positive 

number exceeding Q(~). The correction (6.43) is applied if the 

required convergence 

is obtained, otherwise the value of s(k) is increased by a factors. 

(k) (k) (k) . Powell suggested increasing s so that s v rema~ns unchanged. 

This seems reasonable because at the optimum solution the final value 

of s(k) v(k) is independent of the parameters. 

The sequences obtained using the modified penalty-function method 

for for y = 1 and starting with the same initial s.et of phases {x } as 
n 

before are given in Table 6.9. The codes indicated by (*) are known 

to be the best possible80• A typical ACF of a binary sequence of 

length N = 101 is depicted in Fig. 6.15. 

As mentioned previously the new method is less sensitive to 

changes in the variables as the constraints are approached. Consequently, 

sequences with better sidelobe and sidelobe energy performance were 

found in many cases. Moreover, the ability to increase s(k) can 

achieve linear convergence at a rate given by (6.43) which makes the 

modified algorithm clearly superior in efficiency to other design 

techniques. A factor of a = 1/4 and S = 4 was chosen in this case but 

(6.44) 
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it is possible to obtain faster convergence if desired. However, 

increasing the rate of convergence seems to make the unconstrained 

minimization problem more difficult (premature termination) and in 

practice the best choice of the factors a, S must be determined experimentally. 

At this point it is of interest to note that penalty-function 

techniques can easily be modified to synthesize polyphase codes, i.e. 

uniform complex codes whose phases are integer multiples of a basic 

phase angle x = 2n/M. 
0 

Initial trials to find good 6-phase codes using a quantization 

penalty-function 

Q(~) = 
N-1 
~ sin2 (x M/2) 

n 
n::::o 

where M= 6 are shown in Table 6.10. 

Non-linear integer programming is a research area which has, so 

far, received very little attention. However, the results of this study 

are very encouraging and show that penalty-function techniques provide 

a useful tool in tackling problems with integer variables. 

6.4.4 Other Binary Sequences 

The performance of a binary sequence can be improved significantly 

using numerical techniques. The attainable Bnergy ratios and peak 

sidelobes are of the order of 20% and IN respectively. The still 

relatively large residues might be the limiting factor for particular 

applications such as precision trackers. One approach to try and 

improve the range resolution and yet to maintain the binary nature o£ 

the sequence is to introduce zeros, that is by setting a number of 

elements in the sequence equal to zero. The resulting sequence can be 

regarded as having three possible levels, namely ~1 or o, and is 

sometimes referred to as interrupted binary sequence or ternary code. 

(6.45) 



Code length Peak sidelobe Energy ratio 

N 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
'' 

30 

maxi r (k) I E (%) 

k 
s 

1. 73 8.00 

1. 73 7.81 

1. 73 6.57 

1. 73 7.72 

2.00 8.03 

1. 73 7.25 

2.00 7.94 

2.00 6.82 

2.00 4.35 

2.00 8.16 

2.00 6. 72 

2.00 6.21 

2.65 7.41 

2.65 8.42 

3.46 9.99 

3.00 8.78 

Table 6.10 Six-phase codes.obtained using 

penalty-function techniques. 
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The inevitable loss in transmitted signal energy associated 

with ternary codes can be kept small provided that the number of zeros, 

L, is small compared to the code length N. For L = 0.1 N, a reduction 

of 0.4 dB in SNR is obtained. If L is large (L ~ 3N/4) the code 

becomes energy inefficient and approaches the staggered pulse train 

properties
22 Hence the performance of ternary codes is somewhere 

between these two extremes, depending on the number of zeros,_ L. 

The question which arises now is how much can the performance 

of a code be improved by allowing the sequence elements to take on 

values ~1,0? For an estimation of the r.m.s. sidelobe level consider 

a random sequence c(n) whose elements can assume the values -1, 0, +1, 

with probabilities p(-1), p(O), p(l). It is reasonable to assume a 

symmetric probability distribution, that is 

p(-1} = p(l) = w 

and p(O) = 1-2w 

The ACF is given by 

N-1-k 
r(k) = E c(n) c(n+k) 

n=o 

The elements c(n) are independent random variables. Making the 

substitution Nk = N-k, Eq. (6.46) can be written as 

Nk-1 

r(k) = E q(n) 
n~o 

where q(n) = c(n) c(n+k) is a random variable taking on values -1, O, 

1, with probabilities w, l-2w, w. Each q(n) is independent (k f 0) 

with zero mean and variance cr2 = 2w. · The probability distribution of 

the sum of two random variables is the convolution of their individual 

distribution. Having Nk terms in (6.47) this operation has to be 

(6.46) 

(6.47) 
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performed Nk times. For Nk reasonably large the central limit theorem 

applies44 The distribution will be Gaussian with zero mean and 

. 2 h 2 . . 1 th f th . 2 th . var~ance ak, w ere crk 1s s1mp y e sum o e var1ances o , at 1s 

= 

= 2w(N-k) 

(2/1T (!2) J, 
2 2 

and P (r (k) ) " 
e-r(k) /2crk 

r 0 

where (J = (2wN) 1:. 
0 

The r.m.s. value of the kth sidelobe is 

= (1 - k/N) 1:, 

It is clear that the r.m.s. value decreases with distance from the 

main peak. 

for k small 

for k large (k < (N-1)) 

For the strictly bipolar case w = 1/2 and a = ~. which is the 
0 . 

familiar result. To obtain small r.m.s. sidelobe·values Eq. (6.48) 

indicates that w should be·small. However, the smaller w the greater 

the loss in transmitted signal energy. For w = 1/4 the decrease in 

SNR is expected to be about 3 dB. The r.m.s. sidelobe on the other 

hand will be reduced to 0.7 ~. This is not so significantly better 

in comparison to ~for the strictly binary case· and in general to 

obtain low sidelobes one must be prepared to introduce more than N/2 

zeros. However, it is shown that with a proper choice of the zero 

positions some improvement in peak sidelobe is obtained with little 

loss in energy performance. 

(6. 48) 

(6.49) 
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The problem is to find the optimum zero positions which yield 

the maximum reduction in sidelobe energy and sidelobe level. The 

search procedure can be carried out in a similar manner as described 

in Section 6.4.1 by a simple modification of the basic element 

complernentation method. 

A subset of the results is given in Table 6.11 for a relatively 

small number of zeros. In many cases the peak sidelobe is reduced by 

three units while suffering a loss in SNR of less than l dB. For 

further improvements more zeros have to be introduced at the expense 

of the energy performance of the code. 

An interesting featur.e of ternary codes is their use in a 

82 multiplex pulse-compression system Lf one of the zero elements of 

a ternary code, c, is changed to +1 or -1, resulting in the sequences 

C+ and C respectively, it can easily be seen from Eq. (6.46) that the 

coherent summation of their individual ACF's is given by 

= ~ ~c (k) +re (k)} 
+ 

For a ternary code with L zeros, zL sequences with this property can 

be found. 

Another technique to reduce the time sidelobes of a finite­

length binary sequence has been reported by Golay83 Golay has found 

binary sequences of length 2n which have the property that the sum of 

their individual ACF is zero, except at zero time shift. Thus, if two 

complementary codes can be transmitted simultaneously and their matched 

output added vectorially (for zero doppler shift) , there will be no 

residues. 

In practice, however, a problem exists with this approach in a 

clutter environment. If the two transmitted codes are separated in 

(6. 50} 



Code Binary sequence Ternary sequence 
length 

N maxj r (k) J E (%) L maxjr(k) J E (%) Loss (dB) 
k 

s 
k 

s 

19 3 11.36 1 2 7. 7~ -0.24 

23 3 11.15 3 2 6.00 -0.61 

31 4 16.55 2 3 10.46 -0.29 

37 5 11.25 2 3 8.25 -0.24 

41 6 . 16.66 5 3 9.57 -0.57 

43 5 16.28 6 3 6.94 -o. 77 

47 5 14.26 8 3 3.94 -0.81 

53 5 12.32 4 4 9.00 -0.34 

59 8 16.23 8 4 11.34 -0.63 

61 7 13.81 6 4 8.49 -0.45 

63 7 8.64 2 5 9.03 -0.14 

67 6 14.44 3 5 12.65 -0.20 

101 9 15.82 9 6 11.32 -0.41 

. 103 9 15.45 10 6 9.74 -0.44 

105 9 13.68 10 5 9.14 -0.44 

107 9 12.27 7 6 10.20 -0.29 

119 9 13.80 7 7 10.01 -0.30 

121 10 13.82 6 7 12.26 -0.26 

125 7 10.25 5 6 6 •. 67 -0.25 

251 13 10.10 9 11 8.64 -0.29 

Table 6.11 Performance of ternary sequences 

(L denotes number of zero elements), 
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frequency, there will be decorrelation of the clutter echoes and little 

cancellation. If the codes are separated in time and the clutter is 

extensive, the sidelobes will be temporally or spatially decorrelated. 

Therefore, the primary use of this technique would be to prevent the 

time sidelobes of a large target (or large point clutter) from obscuring 

a smaller target. An interesting application of complementary codes is 

in long-range demonstration radars (LRDR) where the objective. is to 

detect very slowly moving targets such as cars, humans, enemy soldiers, 

31 etc. in large amounts of ground clutter . 

This class of signals and their relationship to other types of 

. 84 85 
codes have been further investigated by several authors ' • In 

84 
particular Welty described a simple recursive method to synthesize a 

n 
whole family of (2 -1) complementary sequences, using orthogonal codes. 

Welty has shown that max/r(k)/ of such codes cannot exceed an upper 
k 

bound given by 2n-l Another interesting property found while studying 

n these codes was that all complementary sequences of equal length N = 2 

seem to have the same sidelobe energy, that is 

N-1 
E /ri (k) /

2 = const. 
k=l 

i = O,l,2, ... ,2n-l (6.51) 

where the subscript, i, indicates the ith complementary code. Unfortunately, 

no mathematical proof has yet been formulated, but for a large number of 

codes this has been verified by computer experiments. 

Fig. 6.16 illustrates the ACF of a complementary code of length 

N = 128. It is noted that for (N-k) even, r(k) = 0, Moreover, the 

sidelobe energy of this type of sequence was found to be of the order 

2 of o. 25 N • 



l.O· 

\r(-r) \ 

0.5 

0 64T 128T 

Fig. 6.16 ACF of 128-element complementary code. 
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This type of sequence could be used as an initial starting 

point in the element complementation search algorithm. However, if 

the structure of the code is violated, the number of residues will 

be equal to 2(N-l) ~ 2N. Hence, it is expected that the r.m.s. sidelobe 

level will decrease by 1:2 to approximately 0.35/JN. 

6.5 Uniform Sequences with Low Autocorrelation Sidelobes and 

Small Crosscorrelation 

Much attention has been paid by many authors to the construction 

of binary sequences having ACF's as small as possible away from the 

coincidence peak. However, little is known about sequences with small 

crosscorrelation. Such sequences have many practical applications. 

For example, they may be used as address codes in a time-division 

multiple-access (TDMA) system, where information from several data 

sources is to be transmitted over a channe1
86

. 

It has been shown that for most good binary sequences of length 

N (N > 13), the attainable sidelobe levels are approximately IN. The 

mutual crosscorrelation peaks, however, of sequences of the same length 

tend to be much larger and are usually in the order of 2/N to 3/N. 

Consequently, the objective in this section is to find pairs of binary 

(or complex) sequences of length N with autocorrelation sidelobes and 

crosscorrelaticn peak values both of approximately IN. 

6.5.1 Statement of the Problem 

The more complicated problem of finding a pair of uniform pulse­

compression codes which besides having small sidelobes also have small 

crosscorrelaticn, can be approached using optimization techniques
87 

The ACF and crcsscorrelation of two arbitrary sequences of length N 

are given by 
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N-1-lkl 
r

1 
(k) ~ E a(n)a*(n+k) 

n=o 

N-1-lkl 
r 2 (k) ~ E b(n)b*(n+k) 

n~o 

N-1-lkl 
r

12
<kl ~ E a(n)b*(n+k) 

n=o 

where k ~ o,~l, ~2, •••• ,~(N-l) 

In the binary case, sequences which result in the best possible 

autocorrelation and cr6sscorrelation must satisfy the conditions 

r
1 

(k), r 2 (k), r 12 (k) 

kfo kfo 

N-k is even 

N-k is odd 

The above conditions form a system of 2(N-l) non-linear equations in 

the unknowns a (1), a (2), •••• ,a (N-1) and b (1), b (2), •••• ,b (N-1) (one 

of the unkno"ms of each sequence can be chosen arbitrarily, i.e., 

a(O) ~ b(O) ~ 1). It will be shown later that it is impossible to 

satisfy (6.55) simultaneously, except for the two trivial cases N = 1,2. 

Again an approximate solution to this set of equations is sought using 

numerical methods. 

As mentioned previously one of the most important steps in the 

optimization of any design or process is the choice of the optimization 

criterion. For pulse compression sequences the properties of concern 

are the total sidelobe energy and the peak sidelobe. For a set of 

sequences, however, an additional important criterion is the peak 

magnitude and energy of their mutual crosscorrelation function. This 

may be of concern in satellite communication systems such as TDMA where 

the problem of unique word synchronization requires sequences which not 

(6.52) 

(6.53) 

(6.54) 

(6. 55) 
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only have good autocorrelation properties, but also should have as 

little crosscorrelation as possible
86

• 

Therefore, what is required is the minimization of a suitable 

measure which characterizes the 'goodness' of a pair of sequences. 

Any such measure is to some extent arbitrary but in general will be of 

the form F(lr(k) ll. For any particular pair of sequences the performance 

index for each individual correlation function is defined as 

N-1 
lrl (k) 14 Fl = l: 

k=l 

N-1 

F2 = l: lr2(kll4 
k=l 

and 
N-1 

[rl2(kll4 Fl2 = l: 
k=- (N-1) 

(6. 56) 

(6.57) 

(6. 58) 

Again only one half of the ACF is considered, since it is an even function. 

The optimum sequences a(n) and b(n) are determined from the 

conditions 

= min and F 
12 

= min (6.59) 

This can be accomplished by minimizing a linear combination of the 

Performance indices 

minF = (6.60) 

where A ~ 0 is a weighting parameter. The problem of minimizing F is 

one of minimizing a function of 2(N-l) discrete variables, which can 

2(N-l) . 
assume only two values ~1, over a set of 2 po~nts. In addition a 

train of values of weighting parameters are required. If A is large, 

minimization results in sequences with good crosscorrelation but poor 

autocorrelation. For small A(A < 1), sequences with optimum ACF's are 

obtained. 

I 
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·The choice for the best value of :>. depends on the specific 

application as well as the knowledge of the behaviour of the functional 

F, including the interactions between the performance indices. 

Obviously, F
1 

and F2 are independent of each other. This is, however, 

not the case for F12 • 

6.5.2 Bounds on the Crosscorrelation Energy 

When minimizing a functional F of the form given by (6.60) 

there are certain limits on the possible reduction in sidelobe and 

crosscorrelation energy and their peak values. The crosscorrelation 

energy can be estimated by considering a simple but probably not so well 

known relationship (Appendix D). 

N-1 
~ 

k=- (N-1) 

N-1 
E 

k=- (N-1) 

This is a remarkable result since it means that the total energy of 

the crosscorrelation function is equal to the sum of the product of the 

individual ACF's, For low autocorrelation sidelobes the right side of 

(6.61) is approximately N2 , hence 

Using Eq. (6.61) it is easy to verify that binary sequences satisfying 

the ideal conditions (6.55) do not exist for N > 2. 

The. total sidelobe and crosscorrelation energy is defined as 

N-'1 
E 

k=l 

(6. 61) 

(6.62) 

(6.63) 
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A lower bound on Et is obtained by examining the expression 

N-1 
= l: lrl(k)+r2(kll2 

k=- (N-1) 

expanding d2 and using (6.61) leads to 
l 

i 
1 

= 

Since r
1

(0) = r
2

(0) = N, one obtains 

hence, 

N-1 
= N2 + l: lr1 (k) + r 2 (k) 12 

k=l 

Similarly, an upper bound for Et and E12 can be derived by expanding 

d2 
N-1 

lrl (k) - r2 (k) 12 = l: 2 k=-(N-1) 

which leads to 

El2 " 
N2 + El + E2 

Thus, 

It can be shown using Eq. (6.64) that the minimum value of Et is 

obtained for complementary sequences. Hence, 

Et = N2 

and since El = E2 

El2 
2 = N - 2E1 

It has been shown that the r.m.s. sidelobe levels of good binary 

sequen~es are about 0.4~, i.e. E1 = E2 ~ O.lSN2 • Using Eq. (6.62) 

and substituting these values into Eq. (6.63), it is to be expected 

(6. 64) 

(6.65) 

(6.66) 

(6.67) 
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that Et will be a reasonably constant quantity of approximately 

and for uniform complex codes 

2 
Et " 1.06 N 

Hence, minimization of the performance index F results merely in a 

redistribution of the total energy Et. This indicates that improved 

crosscorrelation properties are obtained only at the expense of an 

increase in autocorrelation sidelobe level. For a given form of the 

functional F the energy distribution will depend on the weighting 

parameter A. For many applications it is desirable to distribute the 

energy Et evenly between the individual correlation functions. Hence, 

2 2 where E1 ~ E2 "0.3 N , and with respect to Eq, (6,68), E12 " 0.7 N • 

For complex codes these quantities are; E1 = E2 " 0.25 N2 and 

2 E12 " 0.56 N • Such an energy distribution can be achieved by 

minimizing an equally weighted performance criterion of the form 

N-1 
F = E 

k=l 

4 4 N-l 4 
{lrl (k) I + lr2(k) I } + l: lrl2(k) I 

k=-(N-1) 

6.5.3 An Estimate ofaBound for the Minimum Peak Crosscorrelation 

Value 

The crosscorrelation for the evenly distributed binary case is 

0.7 N2 • To minimize the maxlr12 {k) I .the best solution would be for all 
k 

the values of r 12 (k) to be of equal magnitude, say, m. Then 

(6.68) 

(6.69) 

(6. 71) 

2 m = E12/ (2N-l) (6. 72) 

However, the magnitudes of r 12 (k) cannot all be the same and will be 

distributed at integer vaiues between a minimum and maximum peak value 
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(~m), in some manner. By assuming different probability distributions 

for the values of r 12 (k), bounds for the maximum value of m can be 

established88 • Assuming a uniform distribution* r 12 (k) will have 

equal probability Pr(r12 (k)) of having any level between +m and -m, 

where 

Hence, 

= 

= 

El2 = 

thus 

m " 

N-1 
2 

E r 12 (k) = 
k=-(N-1) 

2(2N-l}/(2M+l) 

m 
(2N-l) E 

r12 (k)~-m 

m 
2 

l': 
r 12 (k)=o 

r 12 (k) 

(2N-l) (m+l)m/3 "' 2Nm
2
/3 

Substituting E
12 

from Eq. (6.70) an approximate estimate of 

min(maxir12 <klll is obtained 
k 

m "' IN 

For complex codes, however, it should be possible to approach the 

bound (6.72), since these codes have a much wider degree a£ coding 

freedom. 

*Strictly speaking the crosscorrelation values r 12 (k) tend to have 
a normal distribution for very large sequences. However, a uniform 
probability distribution may be an ade9uate assumption to obtain a 
first order estimate of min (maxi r 12 (k) I). 

k 

(6. 73) 

(6. 74) 

(6.75) 



-140-

6.5.4 Results of the Synthesis 

The element complementation and pattern search methods were 

used to minimize F in the binary and complex case respectively. (It 

should be noted that the number of variables are now doubled). There 

are 1 however, a number of ways of applying the optimization procedure. 

One approach is first to change all the elements of sequence a(n), 

keeping b(n) ·fixed, that is minimization of 

4 N-1 4 
I r 1 (k) I + E I r 12 (k) I 

k=- (N-1) 

is carried out, where 

N-1 
l: 

k=l 

is now a constant term.· The next step is to repeat the process for 

sequence b(n) while a(n) remain unchanged, i.e. 

F = C 
a 

N-1 
+ l: 

1 

N-1 
E I r 12 (k) 14 

- (N-1) 

This is done iteratively until the (local) minimum is reached. 

An extensive computer search was carried out using the element 

complementation technique for A = 0 and A = 1. The search was started 

with a randomly chosen pair of binary sequences. Some of the results 

are summarized in Table 6.12 for various values of N, where e1 , e 2 , 

and e
12 

are the normalized energy ratios given by 

el,2 = 102 El,2/N2 

For A = 0 on the r.m.s. and peak values of the autocorrelation sidelobes 

are around 0.4/N and /N respectively. These values correspond to those 

obtained in Section 6.4.1. It should be noted that the crosscorrelation 

(6. 76) 

(6. 77) 



Sequence 

l-ength 

N 

A. = 0 

19 
23 
31 
37 
41 
43 
53 
59 
61 
63 
67 
73 
79 
91 
93 

101 
103 
107 
109 

A. = 1 

19 
23 
31 
37 
41 
43 
53 
59 
61 
63 
67 
73· 
79 
91 
93 

101 
103 
107 
109 

1 

Peak sidelobe Peak cross- Energy ratio 

correlation 

maxlr1 (kll 
k 

maxlr2 (k) I 
k 

max lr 12 (k) I 
k 

el e2 

3 3 8 11.36 11.36 
3 3 9 11.15 11.91 
4 4 10 16.15 10 .. 72 
5 4 10 11.25 11.83 
5 5 13 15.94 11.66 
6 5 13 18.88 12.17 
7 6 24 11.32 15.88 
8 6 18 16.23 14.62 
6 7 18 10.37 12.63 
7 6 20 8.64 13.98 
7 6 18 19.00 11.96 
8 7 21 13.66 13.89 
8 8 19 16.65 13.51 

10 7 18 16.19 16.15 
8 8 24 12.28 16.26 

11 8 22 12.57 14.49 
9 9 24 16.69 13.75 

10 9 24 14.79 13.70 
10 9 26 14.70 12.44 

3 4 5 21.33 25.76 
5 5 6 24.01 24.76 
4 5 7 16.55 24.87 
7 7 8 27.03 30.83 
7 6 9 26.89 29.74 
6 7 9 21.47 21.90 

10 9 9 32.54 . 28.98 
10 8 11 25.54 24.27 

9 10 10 29.72 28.86 
10 9 10 31.12 26.68 

9 9 11 25.24 27.47 
10 11 11 29.50 27.17 

9 9 12 20.56 23.89 
10 12 13 24.36 29.09 
11 12 13 25.46 25.37 

9 12 15 26.72 30.13 
9 13 14 16.69 24.46 

14 13 15 23.45 29.95 
14 12 14 27.59 29.37 

Table 6.12 Correlation properties obtained using 

numerical optimization. 

(%) 

el2 

104.99 
88.28 
97.29 
97.37 
97.14 

108.11 
104.41 
102.82 
108.60 
104.69 
102.27 

96.47 
93.88 
97.08 

100.42 
98.59 

101.64 
97.12 

104.98 

67.31 
77.69 
86.47 
70.78 
61.45 
77.61 
67.25 
70.07 
66.57 
70.32 
74.83 
67.95 
76.77 
67.47 
71.28 
71.45 
78.57 
72.21 
72.06 
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energy for this case is approximately N2 , which confirms the assumption 

derived from Eq. (6.62). The results in Table 6.12 show quite clearly 

that sequences having optimum ACF do not give smallest crosscorrelation 

values and thus appear to be correlated, even though these sequences 

were obtained using different source logic. In general one would expect 

peak values about twice the maximum autocorrelation sidelobes since the 

number of different crosscorrelation levels is ordinarily twi~e the number 

of autocorrelation levels. Table 6.12 also shows good agreement with the 

sought after energy distribution when a measure given by (6.71) is 

minimized. Moreover, the crosscorrelation peak values have decreased 

considerably to approximately 1~3 IN as compared to 2 IN to 3 IN for 

X = o. However, as expected, this improvement is achieved at the expense 

of an increase of the maximum autocorrelation sidelobes which are, except 

for small values of N, usually of the same order. The uniform character 

of the sidelobes and crosscorrelation values reflects the equal 

weighting of the performance indices. The r.m.s. value of the sidelobes 

and crosscorrelation is about 0.6/N, assuming average energies of 0.3 N
2 

and 0.7 N2 respectively*. In Fig. 6.17 a representative graph of two 

sequences of length N = 101 and the magnitude of their correlation 

functions is shown. In all cases the minimum crosscorrelation peak 

values obtained have been found to be greater than the minimum bound 

estimated using Eq. (6.75) as shown in Fig. 6.19. 

The results for the uniform complex codes are given in Table 6.13. 

Again the autocorrelation and crosscorrelation peak values are of the 

same order <~ o.SIN) and the r.m.s. values are approximately 0.5/N to 

0.6/N. It is noted that there is not a great difference between the r.m.s. 

and peak values which indicates that the residues are very uniform in 

magnitude. This is illustrated in Fig. 6.18 for a pair of complex 

*The r.m.s. value for the one-sides autocorrelation sidelobes is given by 

(E1 , 2/(N-l))~, while for the crosscorrelation it is (E12/(2N-l))~. 



(a) Sequence a(n): 

+ - - + 
+ + - + 
+ + - + 

-
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- + + + 
+ + - -
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+ 
-
+ 
+ 
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- - + + + 
+ - + + -
- + + - + 

+ - + 
- + - + -

- + + 
- + -

+ + 
+ +- - + 

1.0 ' jrl (<) j 

(b) Sequence b (n) : 
1.0 

(e) 

+ - - + - - - + + + 
-+- +--+­

+ + + + - - + - + -
- + + - + - + - + + 
++-+- -+ 
+-+++ ++-
++- +---+ 

+ - + 
+ + + + + 
+ + - + -
+ 

- + + + + 
+ + + 
- + + 

~\fv\) 11 ;i/~;\·~11' ;il\:j' -~d\111~~'1~~'1 

Fig. 6.17 

I 

-lOlT 0 lOlT - '( 

, .. ~~fr;~J~~J\j;,,li;~·Yw.~~~~1 
-lOlT 0 lOlT -

Correlation functions of two binary sequences 

of length N = 101; 
(a) maxlr1 (k) I = -21 dB 

k 
{b) maxlr2 (k) I = -19 dB 

k 
(c) maxlr12 (k) I= -18 dB 

k 



Setquence 
length 

N 

A = 1 

·9 

ll 

15 

17 

19 

20 

21 

23 

25 

27 

29 

30 

31 

34 

35 

41 

43 

47 

Peak sidelobe Peak cross-
Energy ratio (%) correlation 

maxlr1 (k) I 
k 

maxi r 2 (k) I 
k 

maxlr12 tk) I 
k 

el e2 

1.627 2.327 2.560 18.17 27.76 

2.199 2.446 2.418 24.31 28.78. 

2.865 2.678 2.925 25.49 22.78 

2.763 2.952 3.082 21.93 25.67 

3.376 3.001 3.385 21.74 22.75 

3.120 3.251 3.381 24.12 23.66 

3.086 3.481 3.375 23.91 23.60 

3.300 3.472 3.535 24.14 22.19 

3.280 3.925 3.869 23.19 25.47 

3.441 3.498 4.047 22.08 23.88 

3, 725 3.611 4.039 24.58 22.64 

3.893 3.804 4.008 23.17 23.17 

3.580 3.612 4.367 19.59 22.70 

3. 953 4.409 4.477 23.60 25.08 

4.531 4.480 5.146 22.97 23.51 

4.565 4.873 5.125 20.40 26.12 

4. 732 4.900 5.814 21.56 24.05 

5.388 7.821 6.652 22.20 33.11 

Table 6.13 Optimum correlation functions obtained 

for uniform complex codes. 

e3 

61.06 

55.78 

57.43 

58.26 

61.69 

57.01 

58.69 

58.68 

58.34 

60.66 

57.28 

60.71 

62.92 

56.56 

62.07 

59.50 

61.29 

59.03 



(a) 

(b) 

(c) 

Sequence a (n) , (radians): 

-2.094 1.682 -2059 0.650 2.237 1.0 --
o. 763 -1. 325 -l. 737 0.231 -2.841 1 

lr1(<}j 

-2.724 -0.735 2.973 1.650 2.698 

·-0.101 -l. 948 2.596 2.406 -2.052 

0.150 l. 779 -1.885 -2.823 -0.141 

-2.170 -1.097 1.179 0.028 -2.907 

-2.949 2.012 -2.273 -1.338 -2.719 

-2.705 0.504 -2.073 1. 305 0.801 '\JVwvv .1\J\ 
-3.133 -2.797 . 1.158 -2.220 -1.209 I 
-1.804 -2.619 -47T 0 - 47T 

"[ 

Sequence b (n) , (radians) : 
1.0 

-1.977 -2.4 72 2.297 -2.862 2.322 fir2 (T) I 
-3.020 2.395 -1.753-2.304 2.029 

2.910 -1.287 l. 734 -2.413 -1.271 

0.841 0.938 0.183 0.448 0.241 

-o. 521 .0.473 0.415 2.749 0.665 

-2.124 1.076 -2.937 3.094 -1.484 

0.347 -0.111 1.022 3.099 2.600 

-1.965 0.679 0.773 0.089 2.691 
t,r11Y"J"'Y V"'v""v-vV\j"-J\ !\ 
I I·~~ 

-1.22. 2.982 -2.440 -2.033 2. 708 -47T 0 i47T 

1.627 -0.105 ---r 

1. 0 --

!jr12 (T)I 

0 47T 
-T 

Fig. 6.18 Correlation functions of two uniform 

complex codes of length N = 47; 

(a) maxjr1 (k) I = -19dB 
k 

(b) maxjr2 (k) I = -16dB 
k 

(c) maxjr (k) I = -17dB 
k 12 
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Fig. 6.19 Crosscorrelation peak value as a 

function of N. 
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sequences of length N ~ 4 7. 

It was observed that the computer program converged in most 

cases in one or two iterations (six to ten in the complex case) and 

optimum binary sequences were found for N as large as 250 in less than 

20 min using an ICL l904A digital computer. 

It has been shown that binary sequences whose largest autocorrelation 

sidelobes and crosscorrelation do not exceed unity do not exist for 

length N > 2. It can easily be verified that this also holds for uniform 

complex codes for N > 3. However, adopting a numerical optimization 

technique it is possible to find sequences which are satisfactory for 

most practical applications. With a proper choice of the A-weighting 

parameter, a significant improvement of the crosscorrelation peak value 

can be achieved at the expense of only a relatively small increase in 

peak sidelobe level. Sequences with near uniform residues of approximateiy 

1.3 Ji in the binary and o.sJi in the complex case have been obtained. 

It has been shown that minimization merely results in a redistribution of 

the energies contained in both the autocorrelation and crosscorrelation 

functions. Moreover, assuming a uniform probability distribution of 

the crosscorrelation values a lower bound on the peak value has been 

estimated. 

The synthesis method presented here has been restricted to pairs 

of uniform sequences. A more general problem would, therefore, aim at 

finding not just pairs, but finite sets of binary or complex codes 

having.good autocorrelation and crosscorrelation properties. 
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6.6 Summary 

In this chapter the application of numerical methods to the 

design of phase coded pulse trains has been investigated. The objective 

was to study the range resolution and clutter rejection performance of 

these discrete coded waveforms. Sequences which optimize the correlation 

properties, defined by suitable cost functionals, were considered. 

Without prior information about the radar environment the choice of 

such a measure of 'best' is to some extent arbitrary. It has been shown 

that minimizing an ~4-measure of the residues has the desirable effect 

of reducing the peak sidelobes as well as the sidelobe energy. However, 

such a measure is highly non-linear and multimodal and at present there 

is no criterion to tell whether the obtained extremum is a global minimum. 

It is difficult if not impossible to predict how various numerical 

algorithms perform when applied to this type of objective function. 

While there are a number of efficientoptimization techniques for problems 

with small dimensionality (N < 15) not many seem to be able to handle 

functions with a large number of variables (N >50). A study of the 

efficiency of several different algorithms has shown that pattern search 

techniques are particularly suitable for this type of application. 

It was found that uniform complex codes with largest sidelobe not 

exceeding unity (Barker code property) exist up to a length of at least 

N = 18. Even for a much larger length, N ~ lOO, it is possible to find 

sequences with peak sidelobes less than two • 

. The design of binary sequences was approached by transforming the 

synthesis problem into a sequence of·unconstrained minimization problems 

using penalty-function techniques. This method of handling discrete 

variable problems looks very encouraging in the light of the results 

obtained. Sequences whose sidelobe performance is equal or only 

marginally inferior than that of the best known binary codes were found. 
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A comparison of various phase coded waveforms is illustrated in Fig. 

6.20. 

An improved penalty-function method has been described which has 

ce~tain advantages such as less sensitivity to parameter variations during 

the search process as well as direct control of the rate of convergence. 

The latter is important for large scale problems. This method has also 

been found useful in designing poly-phase coded sequences. 

Finally, pairs of phase coded sequences having low autocorrelation 

sidelobes and small mutual crosscorrelation have been designed. These 

sequences are particuarly useful in spread spectrum multiple-access 

systems. It has been shown, however, that improved crosscorrelation 

properties can only be obtained at the expense of an increase in the 

autocorrelation sidelobes. 

Although numerical methods have proved to be successful they are 

not without their weaknesses. From the theoretical point of view the most 

serious objection is that the results are not unique. Thus £or a given 

design objective, the sequence to which the procedure converges is 

dependent on the initial choice of the starting sequence. In some cases 

a vector with a quadratic phase (QP) could be a good initial choice, 

whilst in others the uncoded vector may serve as a suitable starting 

point. Thus, for each individual application the initial vector would 

have to be chosen judiciously. Furthermore, when very large pulse trains 

with hundreds or thousands of pulses are required difficulties of a 

computational nature arise. These difficulties can be overcome to some 

t t b t i t t 1 b rnb • . h 15 ex en y ry ng o genera e onger Sequences y co ~n~ng s ort ones 

Unfortunately, the ACF's of good short sequences do not reveal any 

pattern which would suggest a plausible rule £or their construction. 
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Although various techniques to obtain combination codes exist15 , no 

one has yet found a construction method which diminishes maxlr{k) I· 
k 

Other problems such as the number of phase quantization levels necessary 

to achieve the desired performance of uniform complex codes and the 

possibility of real-time adaption must be considered for each case 

individually. 

Optimization, which forms an integral part of system design, is 

made possible by proper use of algorithms and computers, Keeping 

Hamming's motto
89 

that 'the purpose of computing is insight not numbers' 

in mind, the problem should be formulated and an optimization method 

selected in such a manner that the results will give information beyond 

mere numerical values of the best attainable design vector. 
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CHAPTER 7 

AMPLITUDE AND PHASE MODULATED PULSE TRAINS 

7.1 Introduction 

Most modern high performance radars use travelling-wave tube 

amplifiers to obtain coherent transmission. As pointed out previously 

these tubes work most efficiently under constant amplitude conditions. 

Moreover, good amplitude modulation (AM) is difficult (and very expensive) 

to achieve with these devices. Therefore only purely phase modulated 

pulse trains have been considered so far. However, with the emergence 

of solid-state microwave sources efforts are being made to replace the 

relatively ·large and expensive vacuum devices by low power solid-state 

elements and the waveguide elements by planar circuits. With these new 

components the size and costs are reduced and a number of commercial 

applications become feasible. 

The contribution of solid-state devices has also been significant 

in areas where performance was previously inadequate. For example, it is 

much easier to use any form of modulation with solid-state components. 

Although AM is not an efficient method to provide the large time-bandwidth 

required for good radar performance, it does provide a means of improving 

the resolution capability. Consequently, this chap-ter treats the problem 

of finding energy efficient amplitude and phase modulated (a,m.ph.m) 

pulse trains. 

7.2 Huffman Sequences 

20 
Huffman has shown that it is possible to derive sequences a(n) 

of any arbitrary length (N+l) whose ACF's have the property 

(7 .1) 
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This ACF is zero for all time shifts except for the unavoidable 

end sidelobes, Without loss of generality the end sidelobes r(N) can 

be set to unity. Using the familiar ZT notation, the ACF of a Huffman 

code reduces to 

R(z) 
-N A*(l/z) = z A (z) 

l + E 
-N -2N 

= z + z 

N N 
-1 

where A(z) E a(n) 
-n 

a (o) ll (l - zi) = z = z 
n=o i=l 

20 
For a pulse train A(z) to·have the property (7.1) Huffman showed 

that the roots z. of A(z) must lie at equal angular intervals (2rr/N) 
~ 

in the complex z-plane on either of two origin centered circles whose 

radii are given by 

Since the polynomial A(z) has N roots, there are 2N possible root 

. N 
patterns and thus 2 Huffman codes with the same ACF that can be derived 

for a given energy E and sequence length (N+l). Although some inefficiency 

in the use of transmitter power may be acceptable in order to obtain 

the impulse-like property (7.1), it would certainly be wasteful not to 

seek the most efficient sequence for an application. A figure of merit 

for the energy distribution of a sequence is the energy ratio defined by 

p = E/{(N + 1) max Ja(n) J
2

} ~ 1 
n 

The maximum value of p is attained for purely phase modulated pulse 

trains such as binary sequences. The energy ratio depends on two 

independent variables; namely, the total energy.E of the coded waveform 

and the magnitude of the largest coefficient of A(z), denoted by 

(7.2) 

(7. 3) 

(7.4) 
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max la(n) I· By referring to Eq. (7.3) it can be easily verified that 
n 

the energy E is given by 

N -N 
E =X +X (7.5) 

and thus is a function of the radius X only. The maximum amplitude 

max Ja(n)l, however, depends on the particular choice of theN zeros 
n 

for A(z) as well as the radius. (A general expression for the coefficients 

of a polynomial in terms of its zeros is given by Eq. (7 .11) r. 

Unfortunately, a mathematical method has not been found which leads, 

without trial and error, to the most efficient Huffman code. 

The design of a Huffman sequence in general requires the choice 

of the code length (N+l) , the circle radius X and the zero pattern for 

which the magnitude sequence la(n) I is most uniformly distributed. 

This, however, remains an unsolved problem. Direct evaluation of all 

2N possible root patterns, for a given radius X and N, is not feasible 

if N is large (N > 20). This remains so even if account is taken of the 

zero patterns formed from others by rotation in the z-plane through an 

angle $ or by other transformations for which the energy ratio is 

invariant90 . A general trial and error procedure is to choose a root 

pattern, perhaps at random, and to compute the sequence for a succession 

of values for the radius X. Other methods devoted to this problem have 

91 
been suggested by Ackroyd An alternative approach for designing 

efficient Huffman codes is to use a 'good' but non-Huffman code to 

suggest a zero pattern for. the Huffman sequence. A good code in this 

context is simply an energy efficient sequence, preferably p = 1, whose 

ACF has low sidelobes. For example the uniform complex sequences 

described in Chapters 4 and 6 are such codes. 

The optimum choice of the radius and hence the energy E does not 

appear to be a great problem since the constraint la(O) a*(N) I = 1 and 

the desired uniformity of the amplitudes, i.e. la(O) J ~Ja(l) I ~ •... 
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••• ~ la(N) I implies E ~ (N+l). Thus using E; (N + 1) as an initial 

value, computer search techniques can provide an optimum radius X for 

any given zero pattern. However, the tolerable peak-to-sidelobe ratio 

sets a lower limit to the minimum value of X that can be used. Using 

Eq.· (7. 2) this ratio is given by 

A convenient way of representing a zero pattern is by its binary 

equivalent (b(O), b(l), •••. , b(N)) obtained as follows. Starting at 

an arbitrary point on the unit circle, for example where arg(z) ; o, 

and proceeding counter-clockwise, a root of A(z) is represented by 

a + 1 if it occurs on the circle with radius X, and by -1, if it occurs 

on the circle with radius 1/X. For example, the zero pattern of A(z) 

shown in Fig. 7.1 has the binary representation (-1,1,1,-1,-1,-1,-l,-1, 

1,-1,-1,1,1,1,1,1). Thus, except for an arbitrary constant, a Huffman 

sequence is completely defined by its radius X and the binary sequence 

b(n). It can be easily verified using Eq. (7.2) that with la(O) a*(N) I 
; 1 and la(N)/a(O) j ; jz1z 2 ....... zNj, the relationship between A(z) 

and the binary representation becomes 

A(z) ; 

N 
IT (l _ z -1 xb (i) ej21Ti/NJ 

i;l 

As noted earlier the 0,11 phase requirement may restrict the ACF 

of a sequence that could ot~erwise be achieved. Conversely, it is 

conjectured that real Huffman codes will not result in the optimum 

amplitude distribution. Hence, it is to be expected that the zero 

patterns that lead to complex codes will probably provide superior 

energy ratios, since the elements of these codes have essentially two 

degrees of freedom; namely, the amplitude and phase. Fig. 7.1 shows 

the zero pattern which results from. factorization of the corresponding 

z-transform of the uniform complex code of length N + 1 ; 17. This 

(7.6) 

(7. 7) 
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pattern is similar to a Huffman type pattern in that only relatively small 

changes in the root positions are required .to transform it into a Huffman 

code zero pattern. Hopefully such a modification will cause little 

reduction in the energy efficiency of the resulting Huffman code. 

A subset of the results using this method . is displayed in 

Table 7.1. (Some energy efficient Huffman codes are listed in Appendix 

E). Given the zero pattern the codes were compared under two distinct 

criteria. The first criterion is the energy ratio p and the second is a 

normalized mean-square error defined by 

1 e=­
E 

N 
E {la (n) I - (E/ (N+l)) 1,}

2 

n=o 

Although this scheme may be acceptable for designing Huffman 

codes of moderately large lengths (N+l ~ 100), two major difficulties 

arise for longer sequences. The first difficulty is the computational 

one of factorizing polynomials of degrees larger than lOO*. The second 

problem is that with increasing sequence length the zero patterns of 

the uniform complex codes depart quite considerably from that of a Huffman 

type pattern. It is therefore no longer possible to make only relatively 

small chang'es in the zero positions. Consequently other methods for 

designing efficient Huffman sequences must be sought. As mentioned 

previously Ackroyd introduced an interesting technique, using the 

stationary phase principle, which is applicable for an arbitrary length 

sequence. 

Another method which immediately comes to mind is a random 

selection of the zero pattern. In fact Huffman suggested that in order 

to maximize the energy ratio p, the roots should be chosen in a random 

*At present standard root-finding algorithms can handle polynomials 
of degrees up to 100. 

(7. 8) 



Sequence Energy Mean-square Radius 

length efficiency error 

N+l p e: xo 

5 0.842 0.046 1.420 

6 ' 0.584 0.158 1.360 

7 0.750 0.052 1.310 . 
8 0.585 o. 067 1.290 

9 0-942 0.001 1.304 

10 0.617 0.048 1.360 

11 0-579 0.047 1.325 

12 0.509 0.143 1.450 

13 0.546 0.098 1.180 

14 0.629 0.068 1.200 

15 0.681 0.05 3 1.190 

16 0.505 0.074 1.160 

17 0.595 0.077 1.160 

18 0.552 0.094 1.160 

19 0.465 0.125 1.230 

20 0.503 0.072 1.140 

21 0.433 0.105 1.120 

22 0.530 0.099 1.140 

23 0.460 0.103 1.153 

25 0.606 0.054 1.199 

27 0.405 0.129 1.110 

31 0.479 0.07 4 1.101 

35 0.323 0.173 1.075 

41 0.347 0.102 1.132 

45 o. 469 0.098 1.110 

51 0.378 0.130 1.157 

55 o. 323 0.173 1.147 

61 0.359 0.118 1.116 

65 0.368 0.134 1.127 

71 0.449 0.149 1.148 

75 0.378 0.161 1.140 

81 0.)76 0.159 1.117 

85 0.273 
. 0.381 1.099 

91 o. 332 0.174 1.046 

95 0.178 0.186 1.050 

lOO 0.196 0.180 1.068 

Table 7.1 Codes which maximize p. 
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fashion with approximately half the zeros on each circle. He then 

conjectured further that the optimum energy ratio should be proportional 

to (N+l)-~. In general correlation properties are used to judge the 

randomness of a sequence, that is a sequence is uncorrelated with 

itself, i.e. random,if its ACF has uniformly low sidelobes. Hence, 

the optimum binary sequences derived in Chapter 6 could be used as 

desirable generating patterns. A comparison of the maximum energy 

ratios obtained for Huffman codes derived from zero patterns of different 

phase coded sequences is shown in Fig. 7.2. It is evident that for the 

sequence length given here linear FM type zero patterns (see Fig. 4.19) 

tend to give more efficient Huffman codes. However, in both cases p 

seems to approach a certain limit (p ~ 2.3//N for linear FM type zero 

patterns, and p ~ 1.8/IN for random root selection) as (N+l) increases. 

Moreover, the error £ tends to approach the same limit. These results 

clearly support the conjecture made by Huffman. However, to predict 

any asymptotic behaviour more data would be needed. 

7.3 A New Approach to· the Signal Design Problem using Parameter 

Variational Techniques. 

Generally speaking the design of pulse trains whose ACF's satisfy 

the condition (7.1) subject to constraints requires the solution of a set 

of highly non-linear equations. A closed form colution is only known 

for Huffman sequences. However, there exists the problem of selecting 

a zero pattern which results in the most energy efficient pulse train. 

All known Huffman sequences of length (N+l) > 3 are amplitude and phase 

modulated and thus to achieve the impulse-like property (7.1) a reduction 

in power utilization has to be accepted. Even for the optimum solutions 

(for a given zero pattern) there is a considerable loss in signal energy 

(p ~ 2.3/IN+l). It is believed that there are no uniform Huffman codes 

(i.e. la(n) I = 1 for all n) for (N+l) > 3, but their nonexistence has 
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not yet been proved mathematically. However, it is possible to state 

two necessary conditions for uniform Huffman codes. One follows 

directly from Eq. (7.3) which defines the circle radius 

{
N+l 

X= 2 + 

since E = N+l. The radius approaches unfty as N increases since 

lim X 
N+oo 

= lim 
N-><» 

(N+l) 1/N = 1 

In addition uniform Huffman codes, if they exist, must be of odd length. 

This can be easily verified by considering the relationship between 

the zeros z. and the coefficients of the polynomial A(z) 
~ 

z1 + z
2 

+ • • • • . • + zN = a (1) /a (0) 

Z + + Z ZN = (-l)i a(')*a(O) i • • •. N-i+l ~ 

or in condensed form 

= (-1)
1 

a(i)/a(O) 

(i = 1,2, ••• , N-1, N) 

Since all the zeros are of the form 

zi = (X or~) exp j(2rri/N) 

and with the conditions \a(nl\ = 1 for all n, it follows that 

(7. 9) 

(7.10) 

(7 .11) 
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Eq. (7.12) can only be satisfied if half of the N roots lie on either 

circle in the z-plane. Therefore N must be an even number. In other 

wor'ds, if uniform Huffman codes exist they must be of odd length. 

The loss in signal energy of Huffman codes is mainly attributed 

to the fact that all except the end sidelobes are suppressed. In most 

applications a complete suppression of the residues is not required, 

provided they can be kept to a specified low level. Therefore, if the 

condition (7.1) can be relaxed it is expected that there might be a 

substantial increase in pulse train energy efficiency. 

The procedure for synthesizing pulse trains with a specified 

(realizable) ACF has been treated in Chapter 3. However, even if it is 

possible to find a suitable factorization of the ACF, it seems impossible 

in practice to determine whether the resulting polynomial will have all 

its coefficients of unit magnitude. 

In Chapter 6 an attempt has been made to solve the system of 

equations (7.1) subject to amplitude constraints by minimizing a t -
p 

measure of the response sidelobes. Because of the· highly multi-modal 

character of the objective function (constraints introduce additional 

extrema, see for e~mple Fig. 6.9), the effectiveness of such an approach 

depends largely on the initial estimate of the solution. In the search 

for a solution of the constrained problem it is therefore desirable to 

develop a method which is to some extent independent of the need for a 

'good' starting point. Consequently •· a new approach to the signal design 

problem, using parameter variational techniques, is considered. The 
. . 92 

method is based on the idea described by Freudenstein and Roth • 

(7.12) 
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7.3.1 The Method in General 

The problem considered here is to find a solution to the set of 

non-linear equations 

f. (x) = 0 
J -

j=l,2, ..... ,n 

where x is a n-dimensional column vector of the independent variables 

and the functions f. (x) are of the form 
J -

f. (x) = 
J -

m 
l: 

i=l 
Cl, , V.. (~) 

Jl. Jl. 

where the a .. 's are parameters. 
Jl. 

Introducing a set of parameters S .. a new system of equations, y. (x) 
Jl. J -

belonging to the same family, can be derived from (7.14) such that 

(0) ( ) 
m 

s ~~) y. X = l: v .. (x) ' j = 1,2, ... ,n 
J - .i=l Jl. Jl. -

where in general s~~> ,;. Cl .• 
Jl. Jl. 

With a suitable choice of the parameters in conjunction with a particular 

set of values S~~) say, it is possible to find analytically one or more 
Jl. 

solutions of (7.15). Therefore, these derived equations may be any 

set, belonging to the same class, with at least one known solution' 

(0) 
denoted by~ • The Eq. 's (7.15) are now deformed into the Eq.'s 

(7.14) in a finite number of small increments in the parameters S .. such 
Jl. 

that 

with 

and 

Y ~k) (x) = 
J -

m 
l: 

i=l 
S ~~) V .. (x) 

1 
k = 

Jl. Jl. -

y ~M) (x) = f. (x) 
J - J-

1,2,3, ... ,M 

(7.13) 

(7.14) 

(7.15) 

(7.16) 
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As the S .. take on different values, the zeros of y~k) (x) = o will 
)~ J -

move in ~-space. Differentiating (7.15) with respect to one of the 

parameters, sji' the above deformation may be described in matrix 

notation as 

J a;a s .. (x) +a/as .. (y) = o 
)~ -:- )~ - j = 1,2, ... ,n 

i=l,2, ... ,m 

where J is the Jacobian matrix (Chapter 5) with the elements 

J 
rs 

T 
= ay r (~) /ax

5
, and X. denotes the row vector (y 

1 
(~) , y 

2 
(~) , .•.. 

Solving Eq. (7.17) for 9/as .. (x) 
)~ -

-1 
a;as .. (xJ = -J a;ae .. (y) 

)~- )~-

Hence, it can be seen that the task of tracing~ from ~(O) to x(M) is 

equivalent to the solution of (nxm) first order differential equations 

in the intervals;~) ~ sji ~ s;~>, j 

(0) 
subject to the initial conditions x 

= 1,2, ... ,n; i = 1,2, ... ,m and 

and B ~?). 
)~ 

The straightforward way to obtain the desired solution is the 

approach suggested by Eq. (7.18). Alternatively a method which 

utlizes any of the available search techniques (see Chapter 5) is by 

solving the M sets of equations as follows. The known solution 

y~O) (x) = 0 is used as an initial estimate for the iterative solution 
J -

of y~l) (x) = o. This solution in turn is then used as an initial 
J -

(2) 
approximation of the root of y. (x) = 0, and so forth, until the 

J -

solution y~M) (x) =f. (x) is obtained. Hence, simultaneous tracing of 
J - J -

(k} 
x, such that y, (x) = 0 is always satisfied will, subject to conditions 
- J -

discussed below, yield a ze·ro of (7.13). In other words, instead of 

solving the original set of Eq.'s (7;14), one starts with a different 

set of equations (same function of ~but different parameters), whose 

solution is known. A succession of searches is then performed, each 

time incrementing the parameters, until the correct equations and their 

(7 .17) 

(7.18) 
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solution is found. 

The obvious choice in tracing a zero from y~k) (x) ~ o to 
J -

(k+l) ( ) 
y j " 

5) • 

~ 0 is the generalized Newton-Raphson iteration (see Chapter 

/!,x ~ 
s 

n 
E 

j~l 

-1 
J . y. (x) 

SJ ) -
s = 1,2, ... ,n 

Thus at each stage two different increments are performed. One is 

the usual change in the independent variables x and the other is the 

change in the parameters S ... 
Jl. 

(7.19) 

The condition for convergence is obviously IJI f 0 (no singularities) 

and, moreover, convergence at each step, i.e. the deformation step size 

must be suited to the radius of convergence of the iteration technique 

employed. Furthermore,it is required that the functions y~O) (x) 
J -

such that: 

(i) y. (t,x) ~ 
) -

are 

is continuous in the interval 0 ~ t ~ M. Note that for convenience 

(7 .20) 

the discrete increments k/M have been substituted by the continuous variable 

t/M. 

(ii) The zeros of (7.20) denoted by Z(t) are continuous in the same 

interval 0 ~ t ~ M. 

The condition for a continuous function of the roots, Z(t), is 

illustrated in Fig. 7.3 for a single equation f(x) ~ 0. Since the root 

z1 (0) does not continuously approach Z(M), the method fails. However, 

a choice of z
3 

(0) would succeed. It ·is also noted that if the Newton 

iteration, or any other iteration method, would be applied to f(x) for 

x <A, the method would certainly fail to locate a root of f(x). 

(7. 21) 
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7.3.2 Application of the Method to the Signal Design Problem 

The parameter variation method is now applied to find a solution 

of 

where 

F (_t) ~ 
p 

N-k 

N-1 
l: 

k~l 

r(k,_t) ~ l: exp(j[<j>(n)- <j>(n+kl]l 
n~ 

By the introduction of a set of real parameters S(n), n- O,l,2, ••. ,N 

a new system of equations is derived 

N-k 
r(k,_t,_@) ~ l: S(n) S(n+k) exp(j [<P(n) - <j>(n+kJ]l 

and 

F ("',Sl ~ pL-

where p ~ 4. 

n~ 

N-1 
l: 

k~l 

I r (k,_t,f) lP ~ 0 

From the foregoing it should be evident that in general there is no 

formal way of introducing the parameters. However, it has been shown in 

the preceeding section that Huffman codes satisfy Eq. (7.25). Since 

N N there are 2 Huffman sequences for a given length (N+1),2 roots o£ 

(7.25) can be established. Thus, if the sequence a(n) denotes a Huffman 

code, a choice of the parameters ~(O) and the initial phase vector i(O) 

such that 

s(O) (n) ~ la(n) I 

and <P (O) (n) ~ arg (a (nl] n:;::::O,l, ••• ,N 

will furnish a solution of (7.25). It is noted that if the parameters 

are introduced as indicated above, the r(k,_t,~) still represent 

essentially an ACF. 

(7.22) I 

(7.23)! 

(7.24) 

(7.25) 

(7.26)! 
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The parameter variation method was coded in Fortran and applied 

to a number of Huffman codes with high energy efficiency. The tracing 

of a root from the kth to the (k+l)th deformed system of equations was 

carried out using the modified Newton-Raphson iteration (Powell's sums 

of squares method, Chapter 5), and the efficient pattern search technique. 

Both methods failed to locate a root of the objective function at 

successive increments because the given set of equations (7.24) do not 

satisfy the sufficiency conditions (7.21). This can easily be seen by 

considering a given Huffman code A(z) with. optimum energy ratio p 
op:t 

for a specified zero pattern. Evidently every solution which satisfies 

(7.25) exactly must be of the Huffman type. If the coefficient magnitudes 

la(n) I of A(z) are incremented by ~(n) and if the resulting sequence 

la' (n) I should satisfy (7.25), the zero pattern of its z-transform, 

A' (z), must be of the Huffman type. However, the zeros of a polynomial 

are continuous functions of its coefficients (Eq. (7.11)). Consequently, 

since ~(n) can be any arbitrary small value, the zeros of A' (z) and A(z) 

must be very close. It can be shown that the variation of the ith zero 

of A' (z) is approximately given by
93 

where 

- 1;. 
]. 

N 
E 

n=o 
~ (n} 

1;i = (z - zi)/A(z} Jz=z 
i 

Since the zero pattern of A' (z) must be of the Huffman type, if the 

iteration is to converge to a root of (7.25), it follows that its zeros 

can only move radially (ignoring a possible constant phase shift}, as 

indicated in Fig. 7.4(b}. Incrementing the coefficients of A(z} must, 

however, always increase the energy ratio p, hence p' > p which is 
. · opt 

not possible. Hence, the roots of the objective function (7.25} 

cannot be continuous functions of the parameters b(n). This conclusion 

(7.27) 
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could also have been drawn directly from the observation that the 

solution set of (7.1} is discrete (2N possible solutions}. Fig. 7.4(b} 

shows the actual locus of the zeros, starting with a 17-element Huffman 

code. 

In addition the convergence of least squares and Newton methods 

is limited to regions for which the condition rank (J) = N is satisfied. 

As pointed out in Section 5.5 the Jacobian J becomes very ill~conditioned 

for trigonometric functions when the number of variables increases. 

Hence, singularities (jJj = 0} in the (~,S}-space are very likely to be 

encountered. In principle various schemes exist to overcome the problem 

of a vanishing Jacobian. For example, the increments in the parameters 

can be made selectively unequal until the value of J is greater than 

some predetermined minimum. Another approach is to restart the procedure 

with a different set of equations. However, none of these methods can 

guarantee convergence for the simple reason that there might be no 

solution to the problem. Moreover, in practice it is usually not known 

a priori whether a given set of equations satisfy the conditions for 

convergence, since the knowledge of these conditions implies the 

knowledge of the solution itself. 

Since the iterations do not converge to an exact solution, 2(N-l} 

additional sidelobes will, in general, be introduced. However, the peak 

magnitude of these additional residues can be kept to a specified low 

value q, and the iteration may be stopped as soon as this value is 

exceeded by one or more of the sidelobes as shown in Fig. 7.5. The 

improvement in energy and error performance and the increase in sidelobe 

level for successive increments in the parameters starting from q = 0 

(Huffman case} is illustrated in Fig. 7.6. 
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In all cases a considerable increase in power utilization is 

obtained, Fig. 7.8, even for moderate values of q (q ~ 1). For example 

the 17-element sequence depicted in Fig. 7.7 shows an increase in 

pulse train energy efficiency of 24% for q ~ 0.5. This is significant 

because the energy of the added time sidelobes is only 0.9% o£ the 

mainlobe energy with a maximum value o£ the q time sidelobes equal to 

- 30dB. 

Although no precise formulation for the design of Huffman 

sequences can be made, the following remarks may serve as a guide line 

to their synthesis. It is well known that if the zeros of a polynomial 

A(z) are all within the unit circle the polynomial is called minimum 

delay, and its energy is concentrated towards the beginning. 

Conversely, the maximum delay polynomial has all its zeros outside the 

unit circle and consequently its energy is concentrated towards the 

end. Therefore, when half of the zeros lie on either circle, the 

envelope of the pulse train tends to be relatively symmetric about the 

mid-pulse. Moreover, the energy ratio p is very sensitive to the radius 

X. In Fig. 7.9, pis plotted as a function of X for a 17-element sequence. 

It can be seen that for this particular zero pattern (Fig. 7.1), p 

peaks quite sharply around the value where E ~ N+l·. It is also noted that 

the maximum energy ratio does not correspond to the minimum error. The 

resulting magnitude of the complex envelope of the pulse train for the 

optimum radius X (opt) is depicted in Fig. 7.10. In addition it was 
p 

observed that for relatively large X (X> X i:>pt)) with half the zeros p . 

inside the unit circle, the energy tends to be concentrated in the 

centre of the pulse train. As X approaches unity, the energy becomes 

more concentrated at the extremes of the pulse train • 

• 
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7.4 Bessel Sequences 

A different class of a.m.ph.ro. pulse trains having low ACF 

sidelobes can be generated using Bessel functions. The nth order 

Bessel functions, J (x), of the first kind and of argument x are n . 

defined as the Fourier coefficients of the function94 

s (8) ~ 
-jx sin e 

e 

The function S(8) is periodic with a period of 2n. Making the variable 

transformation 8 ~ 2nf/W, the FT relationship 

"" 
E J (x) o(t-nT)++ S(2nf/W) 

n n==-oo 

can be written as 

r/2 -j(x sin 2nf/W-2nnf/W)df 
J n («) ~ 1/W e 

-W/2 

and 

s (f) = e -jx sin 2nf/W = 
"" 
E J (x) 

n 
e -j2nnf/W 

n=-oo 

Therefore, for any given argument x, the mth element of a Bessel code 

is simply the mth order Bessel function of the first kind, J (x). The 
m 

Bessel functions can thus be regarded as being generated by sampling 

the complex envelope of a bandlimited continuous signal at the Nyquist 

rate 1/T = w. With this notation Eq. (7.29) has a ZT given by 

"" 
s (z) = -n z 

n=-oo 

Since S(f) has the property of complex conjugate symmetry, the 

coefficients J (x) are all real. Moreover, Bessel functions of 
n 

integral order satisfy the relationships 

(7.28) 

(7. 29) 

(7.30) 

( 7. 31) 

( 7. 32) 
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J (-x) 
n· 

= (-1) J (x) 
n n 

and 

J (x) n 
= (-1) J (x) 

-n n 

Incidentally, it may be noted that the relationship (7.34) is the 

reflection condition (Eq. (6.27)) discussed in Section 6.4.1 which 

causes the ACF to be zero for odd time shifts. 

The ACF of the sequence J (x) (x fixed) is by definition 
n 

(Eq. (2.35)) 

r(k) = l: J* (x) J k (x) n n+ n=-oo 

k = o, 2:_1, 2:_2, ••••••• 

Substituting Eq. (7.30) into the above expression results in 

i(k) = T e-j2nnfT df 

changing the order of integration gives 

r (k) 

letting m = n+k 

-- T JJ,T r (k) 

-J,T 

"' 
l: Jn+k(x) e-j2nnfT S*(f) df 

n=-oo 

k = 0 

fi,T '2 kfT 1l ' = T eJ " df = (sin kn) /kn = . 
-J,T 0 , otherwise 

Hence the ACF consists of a single spike of unit magnitude at k = 0. 

From Eq. (7.35) it follows immediately that 

r(O) = E = l: 
n=-oo" n=l 

(7.33) 

(7.34) 

(7.35) 

(7.36) 

(7.37) 
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Although the summation in Eq. (7.35) is infinite, the number of 

Bessel functions with significant magnitude is limited to a finite 

number. The magnitude of each term depends on the argument x (in 

FM xis known as the modulation index) and, moreover, the number of 

significant terms increases with x. The question now arises of just 

how many terms are important. For a given argument, x , a typical 
0 

high-order (n >> 1) Bessel function, Jn(x), is essentially zero for 

(n- 2) > x (Appendix C). Hence, truncation with J 
2

(n) as the 
o n+ 

highest-order significant factor encompasses most of the significant 

components. The sequence length N of a Bessel code for a given argument 

x is therefore given by 
0 

N ~ 2(x + 2) + l 
0 

In Fig. 7.11 the number of significant terms, disregarding higher-order 

Bessel functions of magnitude less than 0.02, is plotted as a function 

of the argument x. Provided the condition (7.34) is not violated such 

a truncation will only introduce ACF sidelobes for even time shifts. 

Moreover, it has been found that the magnitude of the sidelobes is not 

greater than about -35 dB for the sequence lengths shown in Fig. 7.11. 

A typical Bessel code of length N = 61 and its ACF is shown in Fig. 7.12 

and Fig. 7.13 respectively. 

The energy efficiency p and the mean-square error E of this type 

of pulse train is shown in Fig. 7.14 as a function of the sequence length 

N. Comparing Fig. 7.2 with Fig. 7.14 it can be seen that for relatively 

short length sequences (N < 31·), Huffman codes are clearly superior in 

energy performance. This is not surprising, since complex sequences 

have essentially 2N degrees of freedom (amplitude and phase can be coded 

independently) whereas Bessel codes have only N degrees. However, for 

larger lengths (N > 3] the difference in efficiency p and error E is 

marginal, which suggests that the use of complex Huffman codes for these 

lengths does not provide any significant advantage in energy efficiency. 
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Another interesting property of Bessel codes is their zero pattern 

which is obtained by factorizing Eq. (7.32). A typical zero pattern is 

shown in Fig. 7.15. A distinguishing feature of Bessel code zero 

patterns is the 'horse-shoe' appearance of their root loci as compared 

to the zeros of QP codes which tend to lie on a spiral (see Fig. 4.19). 

Alternatively, Bessel codes could provide an initial starting 

sequence in the design of uniform or quasi-uniform complex codes using 

the parameter variational technique described in the preceeding section. 

For example, Fig. 7.16 shows the root locus of the zeros when a Bessel 

code of length N = 21 was used. The resulting uniform complex code 

had a peak sidelobe level of 1.03 or -26 dB. 

7.5 Summary 

In some circumstances the use of pulse trains, other than purely 

phase modulated ones, may be precluded due to the expense incurred in 

providing AM. However, the additional expense of encoding and decoding 

in amplitude and phase may be justified for radars that must cope with 

land clutter or operate in a dense-target environment. 

The very low sidelobes that can be achieved with a.m.ph.m. pulse 

trains such as Huffman codes (q = 0), quasi-Huffman codes (q ~ 1), or 

Bessel codes make their use particularly attractive in systems requiring 

a large dynamic range. Moreover, the excellent self-clutter rejection 

performance is obtained without sacrificing close-target separability 

(no, mainlobe Widening). This property is, however, achieved at the 

expense of a significant reduction in power utilization at the 

transmitter. In addition it has been shown that complex Huffman codes 

and Bessel codes of lengths N > 31 are comparable in energy efficiency 

p and mean-square error e. Since Bessel codes are real (phase is 0 or~), 

this implies that for longer sequences (N > 31) tne phase modulator 

may be replaced by a switching phase inverter without any significant 

loss in energy performance. 
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The loss in energy efficiency of Huffman and Bessel codes is 

mainly attributed to the high degree of sidelobe suppression. In 

most applications a complete suppression of the sidelobes is not 

required, provided they can be kept to a specified low level. 

Consequently, a method which trades sidelobe performance against 

energy efficiency has been developed using parameter variational 

techniques. 

Although the reduction in sidelobe levels can be achieved by 

other means to be considered in the next chapter, this method of 

tackling the signal design problem has some useful advantages. First, 

the algorithm provides a starting point which may lead to improved 

numerical methods for a number of related signal or filter design 

problems. Secondly, with a suitable choice of q and the parameters 

b(n), sequences with high energy efficiency and discrimination ratio can 

be obtained. Moreover, the algorithm is less sensitive to the initial 

starting point and, therefore, generally performs better when applied to 

multimodal objective functions. In many cases the best uniform complex 

codes (Section 6.3) were obtained in only one computer run whilst other 

methods required a number of runs, each time starting at a different 

initial point. For example, an additional complex sequence having the 

Barker code property (all sidelobes ~ 1) was found for N+l = 19 

(Appendix E). However, the requirement for a succession of solutions of 

the M sets of equations may result in excessive computer time for large 

dimensional problems . 

......... ______ __ 
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CHAPTER 8 

SIDELOBE REDUCTION FILTERS 

8.1 Introduction 

In a dense-target environment or in situations where there are 

large undesired scatterers (point clutter), it is often desirable to 

reduce the time sidelobes of phase coded sequences to a prescribed low 

level. In principle, there is no difference between the problems of 

resolving a target in the interference from other targets and the 

detection of a target in clutter. In previous chapters the reduction of 

the range sidelobes of the compressed pulse has been of much concern in 

the application of matched filter techniques to radar systems. In fact 

the mutual interference between targets or self-clutter imposes rather 

fundamental limitations on resolution performance. So far, the reduction 

of the range sidelobes has been approached via waveform design. However, 

the attainable sidelobe levels for phase coded pulse trains might be 

inadequate for specific applications. Although it is possible to use 

a.m.ph.m. pulse trains such as Huffman codes to obtain the desired degree 

of discrimination, in most high power radar systems this method is not 

readily available. Thus, the designer has to resort to other sidelobe 

reduction techniques. 

In principle sidelobe reduction can be achieved by either 

(i) amplitude- or phase-weighting in the frequency domain, or, 

(ii) amplitude- or phase-weighting in the time domain. 

The weighting may be accomplished at the transmitter or receiver or at 

both. Furthermore, the shaping can be performed at the RF, IF, or video 

stages. 

Sidelobe suppression in the frequency domain requires the design 

of a filter such that the spectrum of the filtered waveform has a linear 

phase-frequency relationship and that the spectrum magnitude be proportional 
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to one of the many available weighting functions such as Taylor or 

22 
Chebyshev (see also Chapter 4). The rapid advance of digital hardware, 

along with the pipeline FFT configuration, does permit practical 

realization of the required transfer function as depicted in Fig. 2.9. 

However, since the objective here is to design a filter for specified 

sidelobe levels it is preferable to work in the time domain rather than 

the frequency domain. 

Amplitude weighting may be introduced into a pulse-compression 

system either entirely at the receiver, entirely at the transmitter, or 

at both simultaneously. Equal weighting at both the transmitter and 

receiver is equivalent to altering the transmitted waveform. In this 

case the system is still considered as matched. However, it can be shown 

that in the peak power limited case, the SNR which assumes weighting at 

the receiver alone is greater or equal to the SNR which assumes matched 

weighting at the transmitter and receiver35 
An additional reason for 

unilateral weighting at the receiver is due to the advantage of operating 

the transmitter at its peak power limit (no expensive amplitude modulators 

required). Furthermore, amplitude weighting solely at the receiver can 

be maintained conveniently, due to the accessibility of the components 

and the low power levels involved. For these reas·ons it is henceforth 

assumed that weighting is performed solely at the receiver at the expense 

of a lower SNR. 

A convenient way of weighting is at the IF stage in the time domain. 

Most of the sidelobe reduction techniques which have been proposed depend 

on cascading a weighting filter (tapped delay line) after the MF or by 

. d' . bl b d h . k 95 provL Lng a suLta e an s ap~ng networ However, instead of placing 

a sidelobe reduction filter after the MF it is probably more straightforward 

to design a mismatched filter (MMF) under some conditions of optimality. 

The amount of mismatch from the matched conditions is usually characterized 

by the loss factor Ls' given by 
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SNR (weighted) 
SNR (matched) 

For an input sequence a(n) of length (N+l) and a filter weighting sequence 

h(nJ of length (M+l), L
5 

becomes 

M 
a(j-nl\ 2 

l: h (n) 

L 
n=o 

1 = 
"' s N 

\a(nl\
2 

M 

\h(n} 12 l: l: 
n=o n=o 

where j >, N denotes the time delay for which the output is maximum. (It 

is assumed that (M+l) 3 (N+l)). The basis for Eq. (8.1) is that for 

coherent summation signal components add as voltage levels while noise 

components add as power levels. 

The problem in selecting an appropriate weighting function for 

a pulse-compression system is to find out which finite spectrum shape 

can produce the desired waveform under some criterion of optimization. 

8.2 Inverse Filters 

The reduction of the sidelobe interference can be accomplished 

through the use of inverse or deconvolution filters. These filters 

(equalizers) have been of much concern in removing intersymbol 

interference in communications and they are also of interest in spectrum 

analysis. The ideal inverse, h(n), of a code sequence, a(n), is defined 

as 

(8.1) 

a(n) * h(n) = o(n-m) (8.2) 

where o(n) is the Kronecker delta function. In terms of the ZT, the 

inverse relationship is given by 

A(z) H(z) 
-m = z (8. 3) 
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Solving for the unknown filter transfer function, H(z), leads to 

-m H (z) = z /A (z) 

The factor z-m representing a delay of mT seconds is immaterial for 

the present discussion and may be ignored. Hence, 

It can be seen from the above expression that the ideal inverse 

filter and the filter matched to A(z) differ only in their gain 

characteristics, the phase being identical. 

The problem of solving Eq. (8.2) or Eq. (8.3) is equivalent to 

solving a Fredholm integral equation of the first kind~. The inherent 

difficulty in solving this type of equation is that the convolution 

operator may not have an inverse, let alone a bounded inverse96 . 

This leads, in general, to non-unique, widely oscillating unstable 

solutions and the success in solving Eq. (8.3) to a close approximation 

will depend largely on the properties of A(z). 

If A(z) has all its zeros inside the unit circle in the z-plane 

(minimum delay), the inverse filter, H (z), is stable and can be 

realized either by a recursive filter, Fig. 8.1, or it can be closely 

approximated by a transversal filter, Fig. 8.2. However, it has been 

shown in the preceeding chapter that sequences with high energy 

efficiency must have approximately half of their zeros inside and half 

outside the unit circle. The inverse filter will thus have poles 

outside the unit circle and consequently will be unstable. Hence 

H(z) will not be physically realizable for the input signals of interest. 

* In general the linear integral equation may be written as 

h(x) f(x) + fb K(x,y) f(y) dy = g(x), a~ x ~ b 
a 

For h(x) _ 0 the equation is of the first kind. 

(8. 4) 

(8.5) 
! 
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Fig. 8.1 Recursive digital filter, 1/A . (z). 
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Fig. 8.2 Transversal digital filter approximating 1/A . (z), 
. ~n 

Out u 
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In order that the filter can be realized, some approximation must be 

made to accomplish inverse filtering. Instead of the exact inverse, 

a solution is sought such that 

a(n) * h(n) = g(n-m) (8.6) 

where g(n) is the output signal specified to b~ narrow peaked. It is 

shown below that under certain conditions, and provided m is large 

enough, a good approximation to o(n-m) can be obtained which is physically 

realizable. 

One approach which can be taken to obtain a physically realizable 

filter is to factorize A(z) into its minimum delay and maximum delay 

polynomials, denoted by A . (z) and A (z) respectively. (It is assumed 
mJ.n max 

that no zeros are of unit magnitude). The minimum delay part of the 

inverse filter 1/A . (z) can be readily realized, since all its zeros 
l!ll.n 

are inside the unit circle. The maximum delay factor 

s 
1/A (z) = 1/ E max 

n::::::o 
a' (n) 

-n 
z 

can be expanded into a convergent series in positive powers of z by 

long division of 

n -1 s 
a' (s-n) z ) " z 

m 
l: h'(n)zn 

n=o 

-(m+s) 
If the series. is truncated after the mth term and delayed by z , 

an approximate realizable transfer function delayed by (m+s)T seconds 

is obtained. Hence for reasonably large m 

A(z) H(z) " 
- (m+s) 

z 

Although in principle the minimum delay part 1/A . (z) can be realized mJ.n 

by a recursive (feedback) filter it is not normally used because of 

the risk of instability. Therefore, the inverse filter is composed 

(8.7) 

(8. 8) 

(8. 9) 
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of two cascaded transversal filters each of which is truncated at a 

suitable point. This approximation will cause errors preceeding the 

main pulse, due to the truncation of 1/A (z), and errors trailing 
max 

the main pulse, due to truncation of 1/A . (z). It can be shown that 
llll.n 

an "inverse filter with a total of (M+l) taps give rise to truncation 

errors of approximately the same order when 

where lzl is the smallest root > 1, and lzl is the largest root min max 

< 1. However, to obtain the smallest error for a given number of taps 

it is necessary to try different combinations o£ the individual filter 

length, (M+l-r), and, (r+l), respectively. 

As an example, consider the 17-element uniform complex code 

(Table 8.1), whose zero pattern is given in Fig. 8.3, as. the input 

sequence. Cascading two 24-tap transversal filters corresponding to 

truncated versions of 1/A . (z) and 1/A (z), respectively, results in 
=n max 

an inverse filter whose zeros are shown in Fig. 8.4. Table 8.1 gives 

the weighting sequence of the inverse filters of lengths 31, 39, and 

47. The peak sidelobe level and the decrease in SNR of these filters is 

given in Table 8.2. It is of interest to note that for a given input 

sequence there exists an optimum number of filter tap gains for a minimum 

loss in signal detectability. For example, the filter of length 47 in 

Table 8.2 is clearly superior in both sidelobe and detection performance 

as compared to the filter of length 39. Fig. 8.5 shows the normalized 

response of the inverse filter of length 47 with, for comparison, the 

matched filter response. Since some.of the zeros of the ZT of the input 

sequence A(z) are relatively close to the unit circle (Fig. 8.1), large 

truncation errors occur (-15 dB) for filters of length (M+l) < 39. 

This method of designing an inverse filter requires the factorization 

of A(z) which becomes increasingly onerous as the. sequence length exceeds 
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Input sequence 
of length 
N+l = 17 

Re [a (n)) Im [a (n~ 

0.216 0.110 
0.227 0.085 

-0.158 0.184 
-0.166 0.177 
-0.048 -0.238 

0.243 0.002 
0.186 -0.155 

-0.204 -0.131 
0.242 -0.017 
0.215 -0.113 
0.038 -o. 240 

-0.120 -0.211 
0.169 0.174 

-0.240 -0.037 
0.227 0.085 
0.031 0.241 
0.188 -0.153 

-

Inverse filters of length 

M+l = 31 M+l = 39 M+l = 47 

Re [h (n)) Im[h(n)) Re [h (n)) Im[h(nl] Re[h(n)) 

-0.008 -0.053 0.061 0.015 -0.060 
0.144 0.057 -0.052 0.004 -0.049 
0.007 0.019 -0.051 -0.085 0.010 

-0.123 0.000 -0.039 -0.054 -0.011 
0.007 -0.099 0.012 -0.015 0.025 

-0.021 -0.062 0.092 -0.026 -0.014 
0.098 0.005 -0.019 -0.059 -0.008 
0.244 0.147 -0.024 -0.036 -0.028 
0.047 -0.209 0.030 -0.023 -0.015 
0.232 -0.090 -0.039 0.025 0.057 

-o. 232 0.036 0.037 -0.014 -0.008 
0.134 -0.147 0.206 0.142 -0.017 

-0.127 0.234 0.048 -0.210 0.031 
0.031 0.197 0.225 -0.097 -0.031 
0.239 0.149 -0.223 0.029 0.041 
0.289 0.018 0.144 -0.149 0.211 

-0.206 0.111 -0.121 0.247 0.051 
0.212 0.214 0.036 0.208 0.221 
0.194 -0.019 0.249 0.150 -o. 223 

-0.055 0.284 0.286 0.018 0.144 
-0.095 -0.131 -0.208 0.117 -0. 122 
-0.198 -0.213 0. 217 0.209 0.037 
0.256 -0.061 0.193 -0.022 0. 246 
0.138 -0.129 -0.061 0.281 o. 284 

-0.025 0.078 -0.092 -0.129 -0.205 
0.028 -0.001 -0.204 -0.210 0. 217 

-0.012 0.010 0. 259 -0.064 0.193 
0.004 0.021 0.149 -0.122 -0.056 

-0.048 -0.071 -0.020 0.057 -0.094 
-0.064 -0.062 0.026 -0.013 -0. 203 
-0.067 0.027 -0.028 0.014 o. 261 

0.004 0.021 0.154 
-0.040 -0.066 -0.019 
-0.070 -0.036 0.027 
-0.029 0.004 -0.028 
0.019 0.008 -0.001 

-0.035 -0.034 -0.042 
0.031 0.036 -0.050 
0.005 -0.013 -0.019 

0.012 
-0.021 

0.002 
0.000 

-0.018 
0.023 

-0.023 
-0.008 

Table 8.1 Weighting sequences of inverse · 

filters. 

Im [h (n)] 

-0.005 
-0.000 
0.011 

-0.023 
-0.012 
-0.013 
-0.062 
0.009 

-0.008 
-0.032 
-0.059 
-0.044 
-0.026 
0.019 

-0.011 
0.148 

-o. 213 
-0.099. 
0.032 

-0.150 
0. 243 
0.205 
0.147 
0.019 
0.115 
0.209 

-0.023 
0.278 

-0.132 
-0.209 
-0.059 
-0.126 
0.056 

-0.013 
0.013 
0.024 

-0.046 
-0.034 
0.010 

-0.009 
-0.021 
0.018 
0.004 
0.029 
0.006 

-0.013 
0.034 



Length of 

filter 

sequence 

M+l 

27 

29 

31 

39 

47 

49 

55 

63 

71 

79 

Detection Side lobe Peak 

loss energy sidelobe 

Ls (dB) E (dB) s (dB) s max 

-0.825 -7.642 -14.780 

-0.493 -10.664 -15.040 

-o. 548 -11. 326 -14.951 

-0.416 -16.437 -21.111 
. 

-0.338 -24.983 -30.485 

-o. 346 -22.811 -30.012 

-o. 352 -22.611 -27.652 

-o. 341 -26.642 -32.680 

-0.335 -33.613 -39.451 

-0.334 -39.232 -45.721 

Table 8.2 Performance of inverse filters. 

Es (dB) = 10 log ( l: lg(nJI
2 
/[g(j) 1

2
J, 

s (dB) 
max 

·n 
n;ij 

= 20 log (max [g (n) I I I g ( j l I ) , 
n;ij 

(Input sequence 17-element uniform 

complex code (Table 8.1)) 
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a hundred. In addition if one or more roots of A{z) lie close to or 

on the unit circle,that is the magnitude of any root z. lies in the 
J 

range 0.9 < jzjj < 1.1 (Fig. 8.1), an adequate inverse filter cannot 

be achieved in a reasonable number of taps. {In fact if one of the 

roots lies on the unit circle the ideal inverse filter will have an 

unbounded mean-square response to white noise), It can be seen from 

Eg. {7.10) that the zeros of the signals of interest tend to cluster 

around the unit circle as N increases, Fig. 4.19 and Fig. 6.6{b). 

Consequently, this method should only be applied to sequences where the 

zeros are well removed from the unit circle. 

Another but similar approach of obtaining an approximate inverse 

filter follows from the Fourier transform relationship Eq. {8.5) 

A{f) H{f) = 1 

The spectrum A{f) is evaluated by computing the DFT of the sequence 

a{n) which has been augmented with a suitable number of K zeros, i.e. 
K 
~ 

DFT {(a(O), a{l), .••• ,a{N),O,O, ... O)} = {A{O),A(l), ...• ,A{N+K)) 

The reciprocal of the resulting Fourier coefficients, A(n), that is; 

(1/A{O),l/A(l), .... ,l/A(N+K)), where care is taken so as not to divide 

by zero, represent the sampled values of the transfer function of the 

inverse filter. By taking the IDFT, an aliased version of the ideal 

inverse filter sequence is obtained. 

Inverse filters designed by either of these two methods described 

above result in a truncated or folded version of the ideal physically 

non-realizable weighting sequence. However, it is often required to 

achieve the best degree of sidelobe suppression for a given filter 

length. This can be accomplished through the use of the more sophisticated 

optimization techniques described subsequently. 
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8.3 Unconstrained Optimum Sidelobe Reduction Filters 

The problem of finding the (M+l) unknown filter coefficients, 

h(n), for a given input sequence, a(n), of length (N+l) and for a 

specified output sequence, d(n), requires the solution of the set of 

(M+N+l) linear equations. 

M 
d(k) = l: h(n) a(k-n) (8.10) 

n=o 

k = 0,1,2, ••.. , (M+N) 

where for convenience the energy of the input sequence is normalized 

to unity 

E = 
N 2 
I: ia<n>l = 1 (8.11) 

n=o 

Since there are more equations than unknowns no exact solution exists. 

Consequently, it is required to relax the notion of a solution for such 

an overdetermined problem. Thus, a solution is sought which is of the 

form 

a(n) * h(n) = d(n) + e(n) = g(n) (8.12) 

where e(n) denotes an error or residue sequence representing the 

difference between the actual output g(n) and the desired output d(n). 

It is often convenient to represent linear systems of equations in 

compact matrix notation. The above equations may thus be written as 

A h = d + g (8.13) 

and e=d-£r 

where ~· ~· £r• and £ represent the column vectors 

h = col (h(O) ,h(l), .••. ,h(M)) 

d =col (d(O),d(l), •.•. ,d(M+N)) 

.2. =col (g(O) ,g(l) , •••• ,g(M+N)) 

e: = col (e (0) ,e (1), •.•• ,e (M+N)) 
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and A is a (M+N+l) x (M+l) matrix whose ith column is given by 

i-1 M+l~i 

= col 
~ ~ 

(O,O, •••. ,o,a (O) ,a (1), •••• ,a (N) ,o, ... ,O) 

i = 1,2, •••• ,M+l 

The problem of finding the best approximation is to select a filter 

weighting sequence h(n) such that a functional F(ls(n) ll defined on 

the error sequence e(n) is minimized. Adopting the ~ -norm from 
p 

Chapter 5 the optimization problem may be formulated as 

min F = 
p 

M+N 
1.: Is <nl I p 

n=o 
p :::: 1 

For p = 2 the classical minimum mean-square error criterion is 

obtained. 

M+N 
2 

min F2 = l.: ls(n) I 11.~!. - .9.11 
2 

n=o 

"' where e denotes the complex conjugate transpose of £· 

The formulation of the problem in a least square sense has the great 

advantage that with the proper interpretation all the results of linear 

vector space theory become available. 

Deconvolution filters designed on the minimum mean-square criterion 

have been widely used in the theory of prediction, spectral smoothing, 

d 1 . f . . d 45 '97 an reso ut1on o se~sm1c ata . However, little attention seems to 

have been payed to using these filters for sidelobe suppression in radar 

98 
systems A brief description of a slightly more general development 

of the minimum mean-square error filter is given below. 

(8.14) 

(8.15) 

(8.16) 
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8.3.1 Minimum Mean-Square Filter 

The. formulation of the least squares approximation problem in 

complex vector spaces (Hermitean vector spaces) is basically the same 

as in Eucledian vector spaces. However, it should be noted that the 

scalar product of two vectors a and ~· in a Hermitean vector space 

satisfies the relationship 

Minimizing the quadratic form F2 is equivalent to minimizing 

!I<J.- ~~~which is the length of the error vector £· The vector may be 

represented as a point in n-dimensional Hermitean vector space, and 

its length is the distance of this point from the origin. Furthermore, 

it can be seen from Eq. (8.14) that the (M+l) column vectors {A.} are 1. 

.linearly independent. Hence, the (M+N+l) x (M+l) matrix A is of rank 

(M+l). Since the output vector 'I is a linear combination of the (M+l) 

vectors {Ai} it must lie in the (M+l)-dimensional subspace spanned by these 

vectors. Using the projection theorem
99

, 11£11 is minimum when 'I is the 

orthogonal projection of~ onto the (M+l)-dimensional subspace. 

Therefore, the inner product of the (M+l) rows of A and the error vector 

e must be zero 

and 

'I = 

The matrix (~ A)-l ~is known as the· generalized inverse (Chapter 5) 

d ("' )-l "' . th . t' . f th 1 f an A A A A 1.s e proJeC 1.on matr1.x o . e eo umns o A. The solution 

of Eq. (8.13) can be regarded as the discrete equivalent of the Wiener 

Hopf equation encountered in prediction and smoothing97 

(8.17) 

(8 .18) 
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"' The (M+l) .x (M+l) square matrix R = A A has the elements 

M+N 
E a(n-k) a*(n-i) 

n=o 

i = O,l, ..• ,M 

k = O,l, ... ,M 

which are the autocorrelation coefficients r(i-k) of the input 

sequence a (n). The positive definite matrix R is Hermitean, that is 

~ = R, since r(k) = r*(-k). Furthermore, all the elements on any 

diagonal of the autocorrelation matrix are equal and thus R·is a 

Toplitz matrix. This property can be exploited to simplify the calculation 

-1 45 
of R , 

Similarly the column vector c = ~ £ having the elements 

M+n 
c(k) = E d(n) a*(n-k) 

n=o 
k= 0,1, •••• ,M 

represents the crosscorrelation between the input sequence and the 

desired output sequence. 

The desired output £may be specified as the ideal sequence 

consisting of a single unit spike delayed by jT seconds denoted as 

j M+N-j 
~ 

d. = col (o,o, ••• ,0,1,0, •... ,o,o) 
-J 

In this case the crosscorrelation vector c becomes simply 

"' c =A d. 
-J 

o; 
=col (Aj) 

To obtain the optimum least square filter, the weighting sequence h(n) 

must be determined for each delay jT in the range from 0 to (M+N)T. 

However, it can be shown that for minimum delay input sequences the 

spike position j should be chosen to be zero while for maximum delay 

(8 .19) 

(8.20) 

(8.21) 

(8. 22) 
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inputs the least energy error occurs when j = (M+N). Consequently, 

for mixed delay inputs the spike position has to be chosen at some 

intermediate time delay. Moreover, for input sequences with good 

autocorrelation properties the diagonal elements of the matrix R become 

domlnant. Therefore, it can be argued that the value for j should be 

between N and M. 

From Eq. (8.12) and for sufficiently small values of' II~J 2 
the· ZT of the 

output sequence becomes 

A(z) H(z) = G(z) ~ z -j 

The solution of Eq. (8.17) provides the filter coefficients which minimize 

the mean-square error. This criterion is, however, not necessarily equal 

to the sidelobe energy ratio 

M+N 
E "' l: s n=o 

n;o'j 

which represents the signal-to-clutter ratio and is a better measure of 

the reso1ution capability (see Eq. (5.26)). In a dense uncorrelated 

target environment, the self-clutter power at the filter output is 

proportional to E • 
s 

However, it can be easily verified that the 

mismatched filter designed to minimize ll.d2 subject to the constraint 

I g <j > I = 1 

also minimizes E • Thus the filter coefficients h(n) obtained by solving 
s 

Eq. (8.17) should be multiplied by a factor 1/g(j), to adjust the (j+l)th 

component of ~to unity. 

The minimum error energy for the optimum solution of Eq. (8.17) 

denoted by ~ is given by 

(8.23). 

(8 0 24) 
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Substituting the expressions 

and 

leads to 

'V 'V A 
d d- c h 

For d =d. 
-] 

min 
'V ,.. 

= 1 - c h 

Therefore, h has the same phase as c and since 

'V 
c =A d. = 

-] 

h will have the same phase as the MF for N ~ j ~ M. Using the above 

expressions the mismatch loss L becomes 
s 

8.3.2 Filter Design Examples 

The advantage of using a rr.dnimum mean-square error criterion 

(p = 2), is that a unique solution for the optimum filter coefficients 

can be found by solving a set of linear equations 

i=O,l,2, ... ,M 

If the design objective is to minimize the self-clutter power, such a 

filter is optimum. However, in situations where the peak sidelobes 

(8.25) 

(8.26) 

(8.27) 
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introduce target masking problems a performance measure with p > 2 is 

preferable. Moreover, in many cases a minimax or Chebyshev solution 

(p -> oo) 

min F = 1£1 
subject to 

l:r - !:!.I < lcl 

may be desired. Near minimax solutions can be achieved using the least 

iF-approximation by successively minimizing the objective function, FP, 

for increasing values of the index p, i.e. p = 2,4,6, .•• ,etc. (Chapter 

5). However, unless special precautions are taken to avoid ill-

conditioning, the use of values greater than about ten for p is not 

practical. 

For p > 2 the partial derivatives of the objective function 

VFP = 
M+N 

i: Re{pl£ (n) lp- 2 
£ (n)Ve:* (n)} 

n=o 

are no longer linear functions in the variables h(n). Consequently, to 

find the optimum filter weighting sequence the objective function, F , 
p 

has to be minimized using non-linear optimization techniques. A method 

which has proved to be quite efficient for this task is the pattern search 

algorithm (PAT) already available from Chapter 5. 

In order to compare the sidelobe reduction filters designed for 

p = 2,4 it is supposed that the 17-element uniform complex code (Table 8.1) 

is applied to the digital filter. In addition, before proceeding with 

the optimization procedure, there are two variables that must be specified, 

namely, the length of the filter weighting sequence, M+l, and the output 

spike location, j. Therefore, the first problem to consider is that of 

determining the optimum spike position of the output sequence for a given 

filter length. Fig. 8.6 shows a plot of the peak sidelobe and sidelobe 

(8. 28) 

(8. 29) 
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energy ratio versus the spike position, j, for p = 2 and 4 and a 

filter length of M+l = 17. For either of these two criteria the best 

output pulse location is.for j = 16. The optimum filter coefficients 

which yield an output pulse at 16T seconds are given in Table 8.3. 

The range of the coefficients in both cases is of the same order of 

magnitude. 

In Fig. 8.7 and Fig. 8.8 the peak sidelobe, the sidelobe energy 

and the detection loss are plotted on a decibel scale·as a function of 

the filter length for p = 2 and 4. As an example, Table 8.4 presents 

the filter weighting sequences of length 32 for the two different error 

criteria. These filters have an optimum spike position at 25T seconds 

and give peak sidelobe levels of -30.4 dB and -31.5 dB respectively. 

Since the input sequence has already been optimised with respect to p = 4, 

the difference in performance of the MMF's for the two design objectives 

is small. 

As mentioned previously the loss in SNR when a MF is replaced by 

a MMF is small provided the input signal has good autocorrelation 

properties. For example, a MMF of length 32 (Table 8.4) causes a detection 

loss of only 0.27 dB. Moreover, for p = 2 the MMF and the MF differ 

only in their gain characteristics. For p > 2, however, the filter 

weighting sequence has to be optimized in amplitude and phase. This is 

done by alternatively. minimizing F with respect to the amplitude and 
p 

phase, using the PAT algorithm, until the procedure converges to some 

optimum solution. 

In summary, mismatching the receiver filter results in a small 

loss in SNR of the target return if the transmitted waveform has been 

optimized for matched conditions. However, to obtain improvements of 

about 6 dB in peak sidelobe suppression and 8 dB in clutter rejection 

over the MF, it is necessary to use a weighting sequence which is roughly 



Mismatched filter of length M + 1 = 17 

p = 2 p = 4 

Re[h(n)) Im [h (n)j Re[h(n)] Im[h (n)) 

0.212 

0.039 

0.'218 

-o. 22 3 

0.136 

-0.130 

0.030 

0.233 

0.286 

-o. 204 

0.219 

0.200 

-0.060 

-,0.105 

-0.197 

0.264 

0.165 

L = s 

E = s 

s = 
max 

0.152 0.185 0.142 

-o. 217 0.031 -0.210 

-0.088 0.205 -0.086 . 
0.031 -0.240 0.039 

-0.155 0.140 -0.159 

0.245 -0.131 0.241 

0.197 0.027 0.200 

0.149 0.232 0.147 

0.020 0.284 0.028 

O.lll -0.215 0.114 

0.195 0.222 0.179 

-0.027 0.211 -0.019 

0.273 -0.054 0.269 

-0.134 -0.134 -0.136 

-0.212 -0.195 -0.223 

-0.071 0.249 -0.087 

-0.124 0.179 -0.093 

-0.124 dB L = -0.089 dB s 

-14.047 dB E s = -13.946 dB 

-22.376 dB s = -24.041 dB max 

Table 8.3 Mismatched filter weighting sequences 

for p = 2, 4 and optimum spike 

position j ·= 16. 
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Re(h(nl] 

-0.004 
-0.029 
-0.008 
0.053 

-0.009 
-0.117 
0.027 

-0.031 
0.039 
0.206 
0.047 
0.221 

-0.225 
0.146 

-0.126 
0.036 
0.247 
0.284 

-0.205 
0.216 
0.194 

-0.056 
-0.097 
-0.202 
0.261 
0.153 

-0.019 
0.027 

-0.033 
0.002 

-0.043 
-0.053 

L 
s 

E 
s 

. s 
max 

Mismatched filter of length M + l = 32 

p = 2 p = 4 

Im [h (nl] Re [h (nl) Im (h (nl] 

-0.065 0.002 -0.066 
0.006 -0.029 . 0.006 

-0.009 -0.009 -0.009 
-0.032 0.044 -0.028 
-0.055 -0.012 -0.050 
-0.040 -0.015 -0.036 
-0.022 0.018 -0.017 
0.020 -0.029 0.024 

-0.010 0.033 -0.013 
0.145 0.190 0.138 

-o. 210 0.042 -o. 204 
-0.098 0.218 -0.101 
0.033 -0.229 0.033 

-0.152 0.148 -0.154 
0.241 -0.130 0.243 
0.209 0.033 0.213 
0.147 0.246 0.147 
0.021 0.283 0.021 
0.116 -0.205 0.113 
0.207 0.215 0.200 

-0.022 0.202 -0.025 
0.277 -0.058 0.281 

-0.131 -0.104 -0.135 
-0.211 -o. 201 -0.218 
-0.062 0.259 -0.067 
-0.125 0.147 -0.120 
0.059 -0.019 0.065 

-0.015 0.033 . -0.016 
0.015 -0.037 0.016 
0.025 0.004 0.025 

-0.052 -0.048 -0.049 
-0.030 -0.055 -0.028 

= -0.275 dB L s = -0.266 dB 

= -20.601 dB E = -20.027 dB s 

= -30.408 dB s = -31.594 dB 
max 

. 

Table 8.4 Weighting sequence of MMF for p = 2,4 

and optimum spike position j = 25, 
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twice the length of the input sequence. These improvements can be obtained 

at a cost of about 0.3 dB in SNR. If the filter length is made larger 

its behaviour approaches that of an ideal inverse filter. However, 

increased filter length causes an additional degradation in noise 

performance. It is evident that the design of MMF's using i -measures 
p 

is clearly superior to the approach described in the previous section 

where a 47-tap filter was necessary to achieve the same sidelobe suppression 

(~ -30 dB) as the MMF of length 32 and p = 4. 

Sidelobe filters are particularly useful in situations where, for 

some reason, the use of an optimum waveform and a MF receiver is not 

possible. However, in these circumstances the degradation in SNR might 

be quite severe. ·Nevertheless, it is conceivable that a good compromise 

between improvement in resolution and degradation in detection performance 

can be found. 

8.4 Constrained Mismatched Filters 

Although the range sidelobes can be reduced to an arbitrary low 

level with a MMF of adequate length, the inevitable degradatio~ in 

detection performance might be unacceptable. The noise enhancement is 

particularly aggravated in situations where, for some reason, it is not 

possible to transmit a waveform which is suitable for the task. 

The reduction in noise performance of MMF's is caused by the 

enhancement of the spectrum outskirts. The resulting widening of the 

spectrum improves resolution but increases the output noise and thus 

degrades the SNR. The two conflicting requirements of achieving the 

best SNR and resolution at the output of a MMF can, therefore, not be 

met simultaneously. In any practical situation noise is always present 

and it would certainly be unrealistic to neglect the thermal noise when 

considering range'sidelobe reduction techniques. 
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8.4.1 Design of Mismatched Filters in the Presence of Noise 

For a system which is subjected to noise some performance measure 

for the MMF must be introduced which compromises the resolution and 

detection performance. This is equivalent to applying one or more 

constraints, reflecting'the loss in SNR, to the filter weighting 

coefficients. In principle, the constrained ~ -approximation problem 
p 

may thus be formulated as finding a set of filter coefficients, h(n), 

which minimize a quadratic (Hermitean) form 

subject to the condition 

F 
p 

M+N 
= . L: 

n=o 
= const. 

If A denotes an undetermined multiplier, the required solution may be 

obtained by minimizing 

min {F '+ AQ} 
p 

The constrained minimum mean-square criterion, a special case of the 

above expression, is given by 

Thus 

"' min { (A ~ - ~) (A ~ - d) + A h S h } 

The solution of the quadratic constrained approximation problem is 

furnished by the set of linear equations. 

"' ~/ah* (i) { (A ~ - ~) (A ~ - ~) + A h S ~ } = 0 

i = 0,1,2, ... ,M 

(8.30) 

(8. 31) 

(8.32) 

(8.33) 

(8.34) 

(8. 35) 
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which reduces to 

"'"' "' "' "' a/ah*(i) {!!_A A!!_- E!_ A!!_-!!_ Ad+ A!!_ S !!_} ~ 0 

Aft~r some straightforward algebraic steps 

j;Ah-f<d+ASh=O 

or 

It is noted that for A = 0 the generalised least squares solution Eq. (8.17) 

is obtained. 

The above expression is quite_ general in that nothing has as yet 

.been assumed about the matrix s. Several quantities may be selected for 

s, but to be practically useful it must have some a priori plausibility
96 

It is evident that for this particular application S should reflect the 

degradation in SNR or at least should give an indication to what . degree 

the system is affected by noise. 

8.4.2 Choice of Performance Measure 

A suitable choice for the quadratic form Q in white gaussian noise 

could be ·the detection loss factor L given by Eq; (8.1). Alternatively, 
s 

a criterion which is equivalent to L is the sum of the square departures 
s 

from matched conditions 

M 
Q = l: jh (n) - a* (j-n) 12 = ~~~ - ~; 112 

n:::::o 

where j ~ N is the spike position and a denotes the time reversed and -r 

shifted version of the vector a 

a = col 
-r 

j-N 
~ 

(O,O, .... ,0, 

M-j 
~ 

aN,aN_1 , .... a
0

,o,o, ... ,o) 

I 

I 

I 

I 

I 

I 

(8.36) 1 

(8.37) 
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As shown below both criteria lead to the same optimality conditions 

and the optimum is achieved when h =a*. 
-r 

The equivalence of the two criteria L and Q can be established 
s 

by differentiating each criterion with respect to the filter coefficients 

h(n), i.e. 

/E h(n) a(j-n)/
2 

l 
which leads to 

(E h(n) a(j-n))* 
n 

= 

n 

a* (j-i) 
h (i) 

= 0 

i = O,l, ... ,M 

It should be noted that the first criterion, L , gives a result which s . 

is independent of the filter gain. The second criterion, however, is 

gain dependent. Introducing an arbitrary gain factor a, the partial 

derivatives of Q are given by 

a;ah* (i) (Q) = a;ah* (i) {E I all (n) - a* (j-n) !2 
} = o 

n 

a = a*(j-i) 
h (i) 

i :::; O,l, ... ,M 

Hence, both criteria lead to the same optimality conditions if a is 

set equal to 

a= 

(E h(n) a(j-n))~ 
n 

(8. 38) 

. (8.39) 
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Adopting the latter criterion the original set of Eq.'s (8.13) may 

now be written in terms of the difference (h - a*) as the unknown - -r 

vector and solved subject to the constraint that 1!2.- ~; li2 
be a 

minimum. It can easily be verified that in this case S becomes the 

identity matrix I. Thus, 

"' A I) (!:!_ - a*) "' (A A + = A(d- A a*) -r -r 

which leads to 

h = (1\A+AI)-l "' (A~ + A a*) -r 

It can be seen from the above expression that the MF is approached for 

large values of A.. 

There are several other suitable quantities which could be 

chosen for the quadratic form Q. For example, it might be required to 

minimize the power of the filtered noise, in which case Q becomes 

~ 45 
where S = v V is the autocorrelation matrix of the input noise samples 

Another interesting interpretation for the matrix 5 is obtained 

from duality considerations in time and frequency. 

g (t) = r a(t,T) h (T) dT 

-"' 

g(t) = r A(f,t) H(f) df 

-"' 
Hence the original Eq's. (8.13), repeated here for convenience 

can be written as 

h = Y H 

(8. 40) 

(8. 41) 

(8.42) 
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where the (M+l} x (M+l} square matrix Y is the IDFT matrix given by 

Eq. (2.18}. The column vector H thus represents the (M+l}-point DFT 

of h. It follows from the above expression that the (M+N+l} x (M+l} 

·matrix Af is given by 

A =AY 
f 

Adopting a quadratic from such as 

"' Q = H B H 

results in a constrained least squares solution for the Fourier 

coefficients H(n} 

Substituting Eq. (8. 43} into Eq. (8. 45} leads to 

'V'V '\.'V 
(Y A A Y + A B) H = Y A d 

(f\ A Y + A ~-l B) H = f\ d 

and with 

yields 

Hence 

and since 
-1 T 

y = Y* y = y 
' 

S = Y B Y* 

The weighting matrix S can thus be regarded as a unitary transformation 

(rotatio~of a filtering matrix B. This relationship could be useful 

·in applications where the filter coefficients h should have certain 

spectral properties. For example, if clutter interference at low 

frequency (ground clutter} is to be suppressed, it could be envisaged 

(8.43} 

(8. 44} 

(8. 45} 

(8. 46} 
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using a diagonal matrix B, where the diagonal elements (eigenvalues 

of S) can be regarded as the rejection factors at that frequency. 

This is illustrated in Fig. 8.9. 

8.4,3 Relationship Between the Unconstrained and Constrained 

Mismatched Filter 

So far the determination of A has not been described. In 

principle, the parameter A is implicitly determined once a specified 

value, e, has been assigned to l!~jf. However, in practice it is usually 

necessary to obtain solutions for several values of A. This is done in 

an iterative manner by varying A until a solution is obtained for which 

Since there may be limits to the acceptable loss in SNR, the iterative 

process should be initiated by choosing an appropriate value of A, 

keeping in mind that for large values of A (A > 2) the MP is obtained at 

each iteration. Hence, for large A's the filter departs slowly from 

matched conditions. The rate of departure is controlled by the rate of 

decrease of A at each iteration. In Fig. 8.10 the peak sidelobe, 

sidelobe energy and the loss factor are plotted as a function of A for 

a MMF of length 32. The constrained solution for p > 2 can be obtained 

in a similar manner by minimizing (8.32) using the PAT algorithm. 

There exists a simple relationship between the solution of the 

unconstrained and constrained mean-square problem denoted by h and h' 

respectively. 
99 It is clear from linear vector space theory that any 

vector lying in the subspace spanned by the (M+l) column .vectors {A
1

} 

can be expressed as a linear combination of the orthogonal and linearly 

independent eigenvectors e., i ~ O,l,2, ••.• ,M of the positive definite 
-]. 
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"' matrix A A. Thus 

h = ~~ + <;1 ~l + . . • • • + E;M ~ = 

h' = E;' e + I;' e + 
0 -o 1 -1 • .. • • • • + 

Consequently, 

M 
l: 

i=o 
I;. e. 
~ -~ 

M 
l: 

i=o 
E; ~ e . 

l. -1. 

('J\ A + A S) h' = (!) I + A S) I;' e + .••. + (nMI + A snM• _"., 
0 ' 0 -o ~·· 

and 

"' .where the n. are the eigenvalues of A A. 
J. 

If S becomes the identity matrix I, then the relationship between the 

coefficients ~ i and Si_ is given by 

= 

or 

Eq. (8.51) clearly shows the smoothing or filtering effect of the 

constraints. Components corresponding to small eigenvalues n. are 
J. 

greatly suppressed, while components where n. >> A are practically 
J. 

unaffected. This supports the previous· observation (Fig. 8.10) that 

the properties of the constrained solution vary slowly with A. 

The solution of Eq. (8.36) requires matrix multiplication and 

inversion operations which could result in·considerable computational 

effort for large dimensional problems (matrix inversions usually require 

a computation time proportional to (M+l) 3). However, a transformation 

of the least squares problem into the frequency domain in conjunction 

(8.47) 

(8.48) 

(8.49) 

(8 0 50) 

(8.51) 
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with the FFT algorithm, can offer an increase in computational speed 

and a reduction in computer storage requirements. In general the 

constrained least squares problem is of the form 

"' "' -1 "' h = (A A + A C C) (A 3_ + A ,!:~.) ~8.52) 

"' where S = C C is a Hermitean matrix and u is a vector of interest. 

"' "' It can be seen easily that the matrix products AAh and CCh 

perform a double convolution, since ~ and C~ represent convolution 

operations. Using the convolution theorem of basic transform theory, 

Eq. (8.52) can be written as 

{A*(n) A(n) +A C*(n) C(n)} H(n) = A*(n) D(n) +A U(n) 

hence 

H(n) 
A*(n) D(n) +A U(n) 

= 
jA(n) j

2 
+ AjC(nJ\

2 
(8. 53) 

where A(n), C(n), D(n), U(n) and H(n) now represent the OFT's of the 

corresponding vectors (sequences) a(n), c(n), d(n), u(n) and h(n) 

respectively. The filter coefficients h(n) are simply given by taking 

the IDFT of Eq. (8.53). It should be pointed out, however, that the 

sequences have to be augmented with the proper number of zeros to avoid 

significant aliasing. 

The main advantage of the frequency domain approach is the use 

of FFT methods for computational work and the possibility of computing 

filter weighting sequences of large length. 

8.5 Summary 

If processor complexity is not of overriding concern, the use of 

a MMF may be justified in those cases where improvements in clutter 

performance are of significant magnitude. In general, there exists a 

trade-off between resolution and detection performance which sets 
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practical limits on the sidelobe suppression that can be obtained. 

However, the degradation in SNR is usually small if the input 

waveform is optimized for matched conditions. Moreover, as pointed 

out by Rihaczek35 the approach of optimum waveform design for a MF 

receiver also implicitly solves the problem of waveform design for 

the optimum filter in the presence of clutter. Therefore, whenever 

possible it is preferable to transmit a wider spectrum to achieve the 

desired resolution rather than widening the spectrum of the receiver 

filter. In addition to achieve the full benefits of the MMF it is 

necessary to reduce the tolerances of the receiver gain and phase 

characteristics. Rummler38 has shown that the r.m.s. of amplitude and 

phase errors must be kept within 0.2 dB and 1° respectively to maintain 

low sidelobe levels. In most applications, however, the suppression of 

the sidelobes much below 32 dB does not seem practical due to probable 

phase errors in the processor, transient effects and the degradation 

due to slight target-doppler shifts. 

------------~-
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CHAPTER 9 

COMBINED RANGE AND RANGE RATE RESOLUTION 

9.1 Introduction 

The principal aim throughout this work has been to design 

waveforms for a radar environment where the relative doppler spread 

of the targets is negligible. However, when there is significant doppler 

shift, the reflections from a target are no longer replicas of the 

transmitted waveform and the MF response in time and frequency has to 

be considered. 

The following brief discussion of combined range and range rate 

(doppler) resolution of a signal is included for completeness. Detailed 

analyses of resolution in range and range rate of general types of waveforms 

22 23 
can be found in many contemporary books ' • Moreover, consideration will 

only be given to properties pertinent to the types of waveforms described 

in the preceeding chapters. 

Although, in principle, the numerical optimization methods developed 

to design pulse trains having good range resolution can be extended to the 

more general case of range and doppler resolution, the computational effort 

involved for longer sequences is quite formidable even for modern computers. 

For this reason waveform synthesis for range and velocity resolution is 

commonly done by trial and judicious use of available information (e.g. 

ambiguity function). 

It has been shown (Chapter 2) that the range resolution property of 

a signal depends on the shape of its spectrum envelope. Based on the time-

frequency duality it can be argued, therefore, that resolution in range 

rate depends only on the envelope of the signal in the time domain. 

Consequently, combined range and velocity resolution depends on the complete 

waveform structure in time and frequency. Hence signals with good 

resolution in one parameter may perform very poorly when combined resolution 
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in both parameters is required. 

For combined resolution in range and velocity the waveform must 

be investigated in terms of the complete MF response in delay and doppler. 

This generalized response is given by Woodward's ambiguity function (ABF) 

which has already been introduced in Chapter 2 and is repeated here for 

convenience 

lx(-r,v) I =I l.: 
n::::-oo 

It is noted that in the literature the terms x(-r,vl,lx(-r,v) I and 

Jx(-r,v) j2 are often used synonymously for the ABF. 

The ABF plays a central part in the analysis of combined resolution. 

This is so because the width of the main response peak of the ABF serves 

as a measure for close-target visability in range-doppler, while the low-

level response and subsidiary spikes give an indication of the self-clutter 

and target masking problem by mutual interference. Since the volume of 

the ABF over the entire (-r,v)-plane is constant, the signal design problem 

for combined range and velocity resolution may therefore be regarded as 

shifting the unavoidable ambiguity (volume) to those parts of the (-r,v)-

plane where it causes least interference for a given environment and 

application. 

Some of the general resolution properties of the various types of 

pulse trains considered previously are discussed subsequently using the 

ABF description. 

9.2 Ambiguity Function of Pulse Trains 

The ambiguity function (ABF) of a QP code given by 

( T) 
-j 1f (W/T ) (nT} 2 

s n = e s 

(9.1) 

(9. 2) 
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can readily be obtained by substituting Eq. (9.2) into Eq. (9.1) 

IX(T,V) 1=1 l: 
-j{2rr(W/T )TnT- 2rrvnT}I e s 

n=-t:o 

For a sequence of length N, (T = NT), and time shifts T = kT, Eq. (9. 3) s 

becomes 

lx<kT,v) I 
N-1-lkl 

= I l: 
n=o 

e-j{2rr(W/N)knT- 2rrvnT}I 

The above summation is a geometric progression in n and can be written 

in closed form (see Eq. (4.16)), 

lx (kT,vll = 
sin{rr [ (WT/N)k - vT] (N-!k!)} 

sin{rr(WT/N)k- VT)} 

Furthermore, if T is the Nyquist sampling interval (T=l/W); and if the 

doppler shift v is expressed as multiples of 1/NT, Eq. (9.5) reduces 

to 

lx<kT,t/NTl I = 
sin[rr(k-t) (1- !k!/Nl] I 

sin[rr/N (k -tl] 

For .t = 0 the zero-doppler cross-section of the ABF is obtained 

I (kT Oll =I sin(rr~(l- lki/Nl}l 
X ' . s~n (11k/N) 

while the zero-delay cross-section is given by letting k = 0 

I X (0, i/NT) I I sin (rri) I {N 
= sin(rri/N) = 

0 

.t= 0 

otherwise 

It is noted that the ABF is periodic along the doppler axes with a period 

of 1/T. 

(9. 3) 

(9. 4) 

(9. 5) 

(9. 6) I 

(9. 7) 

(9 .8) 
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Since the effects due to delay and doppler appear as a difference 

term, (k- i) in Eq. (9.6), it is not possible to separate targets 

along the line where k = £. This is illustrated in Fig. 9.l(a). 

Along the ridge k = £ in the (T,v)-plane reduces Eq. (9.6) to 

lx(kT, i/NT)I = (1- iki/N)N (9. 9) 

as shown in Fig. 9.l(b). 

The diagonal ridge of the ABF of QP codes will almost certainly 

intersect extended clutter areas. However, since the clutter power 

output is proportional to the width of the ridge (3-dB points) this type 

of interference is minimized for high compression ratios (time-bandwidth 

products). In addition this type of ABF can be advantageous in the 

presence of small doppler shifts since there is little loss in clutter 

rejection as compared to other codes (see for example Fig. 9.2). 

Furthermore, the relatively slow decrease in the ACF for small doppler 

shifts (Fig. 9.l(b))may result in considerable hardware savings. However, 

a doppler shift will be interpreted as a range error, as illustrated in 

Fig. 9.l(a). 

Pulse trains whose ACF decreases at a faster rate for small doppler 

shifts are the non-linear FM type approximations discussed in Chapter 4. 

It can be seen from Fig. 9.2 to Fig. 9.4 that the ABF's of these waveforms 

still basically exhibit the ridge-like structure which suggests a relatively 

strong range-doppler coupling. However, the linear FM property is more 

and more eliminated as the order of the spectrum tapering, n, (Eq. (4.39)) 

increases. 

For certain applications the inability to resolve targets in range 

and velocity along the ridge might be unacceptable. In these circumstances 

a signal whose ABF approaches that of a single strong spike (thumbtack) as 

shown in Fig. 9.5 and Fig. 9.6 might be adequate*. 

*It is noted that sequences whose 
i.e. N ~ zm, have been augmented 
of FFT algorithms. 

length N is not an integral power of two, 
with a suitable number of zeros for the use 
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However, the expense of implementing many doppler channels may be 

prohibitive. 

The choice of a thumbtack ABF may be justified for high close­

tar.get resolution in the absence of any prior information of the target 

environment. The close-target resolvability is, however, achieved at 

the expense of introducing self-clutter. Therefore, if the target space 

is confined to a narrow region, there is no reason to spread the volume 

of the ABF uniformly over the (-r,v)-plane. Moreover, if visibility of 

small targets is of overriding importance, it is preferable.to choose an 

ABF whose volume is concentrated in strong spikes or a narrow ridge. 

Such an ABF tra~es uniform poor visibility for weak targets (thumbtack 

ABF) against good visibility for most targets and extremely poor visibility 

for some targets. 

Fig. 9. 7 illustrates the relatively large increase in· side lobe 

levels off the delay axes for an optimum binary sequence of length 128 

derived from a Vakman code. The residual diagonal ridges are not 

surprising, since the bit polarities of Vakman codes vary in a quadratic 

fashion (see Eq. 6.26). The concentration .of the ambiguity along the 

ridges could be advantageous in certain clutter environments. However, 

resolution along these ridges is very poor. Fig. 9.6, on the other hand, 

shows the ABF of a 128-element binary code derived from a randomly chosen 

sequence. It can clearly be seen that noise-like waveforms, Fig. 9.5 

and Fig. 9.6, are inherently suited to approximate thumbtack ABF's. In 

general, however, binary sequences are usually better suited to improving 

range resolution rather than velocity resolution. 

The behaviour of the ABF of uniform complex codes is essentially 

no different from that of a binary sequence, Fig. 9.6, if the phase shifts 

are chosen randomly. However, if the initial sequence is a Frank code, 

for example, the resulting ABF will have the shape as shown in Fig. 9.8. 



V 

(a) 

l/2T 

(b) 

1 

i! 

-l/2T 0 l/2T 

Fig. 9.7 (a) ABF of optim~~ 128-element binary sequence when 
the initial sequence is a Vakman code. 

(b) Peak response as a function of doppler shift v. 
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Fig. 9.8 (a) AEF of optimum 121-element uniform complex 
code >~hen the initial sequence is a Frank code. 

(b) Peak response as a function of doppler shift v. 
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Thus. the optimization procedure usually does not destroy the basic 

underlying properties of the ABF of the initial waveform. 

ABF's of other codes, Fig. 9.9 and Fig. 9.10, show similar 

re~idual ridge-like structures which suggest a certain degree of range­

doppler coupling. This may or may not lead to resolution problems and 

will have to be considered for each individual application. 

In summary, all of the waveforms discussed in previous chapters 

are optimum for some particular clutter environment. The different pulse 

trains yield a wide variety of ABF shapes. The contours may be of the 

diagonal ridge structure as for linear FM type signals, or may consist 

of a single strong spike surrounded by a low level pedestal for noise-like 

waveforms, or various combinations of these basic structures. The waveforms 

have different tolerances to doppler shifts. This may be exploited for 

hardware savings if ambiguity in the range-doppler coverage can be 

tolerated. 

Another advantage of discrete coding which has not been· mentioned 

is the flexibility of eliminating the range-doppler ambiguity of QP codes, 

for example, by simply scrambling the order of the sub-pulses. Moreover, 

the variations possible with discrete coded pulse trains are virtually 

unlimited in that the phase, amplitude, frequency and time of transmission 

oj each sub-pulse can be varied. The resulting multi-function capability 

and adaptability to a particular target environment is clearly one of the 

most attractive features of discrete coding. 
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CHAPTER 10 

DISCUSSION AND CONCLUSIONS 

This thesis has reported investigations into discrete coding 

techniques for improving range resolution and clutter performance of 

radar systems. The waveforms considered in this work, besides representing 

an interesting mathematical area, are also of practical significance in 

related fields such as sonar, navigation and communications. The study 

is focussed on the properties of the coded waveforms as modulating 

functions of a carrier signal. The design of hardware structures of 

radar processors has not been considered, since there are generally a 

number of ways available to implement near optimum receivers for a given 

waveform. Cost, complexity and reliability are usually the bounds set 

on processor design rather than physical realizability. These problems 

would have to be considered for each application individually. 

The waveform design approach using discrete coding offers a degree 

of flexibility and has many advantages in terms of waveform shaping and 

processor implementation. In general discrete coding of a N-element 

pulse train provides 3N degrees of coding freedom. The variations possible 

with such waveforms is virtually unlimited in that the phase, amplitude, 

frequency and time of transmission of each sub-pulse can be varied. This 

is clearly in contrast to analogue waveforms which depend on one, or 

possibly two parameters. The inherent multi-function capability of 

discrete coded waveforms is compatible with the requirements of modern 

phased arrayradars. In addition amplitude and phase modulated pulse 

trains are particularly well suited to digital implementation. 

Throughout this work digital processing has been assumed. The 

application of digital processing techniques to radar becomes more practical 

as compactness, cheapness and operational speed of digital microcircuits 

continue to increase. Although modern optical processing techniques 

sometimes provide an attractive alternative,' the use of a digital method 

inherent fl.exibility and reliability offers many advantages. 
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To mention but a few, it simplifies pulse compression and real-time 

multi-dimensional analysis of input data in range, doppler, bearing, 

etc. Furthermore, it also offers considerable advantages in post­

detec.tion and display processing. In addition the use of digital 

processors will in many cases reduce future system modifications to easy and 

inexpensive software changes, rather than requiring costly hardware 

replacement. However, the complexity and the amount of data to be 

handled by modern high performance radar processors can easily reach 

critical limits. Current developments in emitter-coupled logic technology 

indicate that real-time processing of signals with 40 MHz bandwidth seem 

attainable. 

An attempt has been made in this work to present the results of 

various design objectives. The assumption of a matched filter receiver, 

underlying most of the work, is not a serious limitation on the applicability 

of the results, since in practice very little prior information about the 

target environment is usually available. Therefore, the investigations 

were concentrated on the autocorrelation function properties of the various 

types of pulse trains considered. The principal aim has been to design 

pulse trains,subject to a fixed amplitude constraint, whose autocorrelation 

sidelobes are as low as possible. Fixed amplitude constraints arise from 

practical radar considerations of operating the transmitter at its optimum 

peak power point. The problem, therefore, was to find particular phase 

codes that lead to suitable resolution properties. For some applications, 

especially digital implementation, the design objective may be to 

approximate the response characteristics of a given analogue waveform. It 

has been shown in Chapter 4 that virtually all the desired properties of 

analogue waveforms can be retained if the sampling interval is chosen 

properly. 

The design methods based on numerical optimization developed in this 

thesis have shown that phase coded pulse trains can improve the range 

---------------
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resolution and clutter rejection performance of a radar system. However, 

the full benefits of these codes can only be obtained with increased 

stringency of the transmitter .and receiver tolerances. The additional 

expense in system complexity may be justified in situations where the 

improvements in sidelobe and clutter performance are of significant 

magnitude as compared to other waveforms which are simpler to generate and 

process. 

Signal design via optimization techniques is evidently no panacea. 

From the theoretical point of view the most serious objection to 

optimization procedures is that the results are not unique. Thus for a 

given design objective the sequences to which the process converges is 

dependent on the initial choice of the starting sequence. Moreover, the 

usefulness of such an approach to signal design depends largely on the 

optimization algorithms_ available. . While there are a number of efficient 

optimization techniques for problems with small dimensionality (N < 15) not 

many seem to be able to handle non-linear functions with a large number 

of variables (N >50). In particular, there is almost a complete lack of 

methods for non-linear integer problems. Nevertheless, with the development 

of numerical algorithms and improvements in computing facilities, computer­

aided design techniques will attract increasing attention in signal 

synthesis problems for a variety of applications. However, the problem 

Should be formulated and an optimization method selected in such a manner 

that. the results will give information beyond mere numerical values of the 

best attainable design vector. 

Self-clutter interference introduced by inadequacies in the matched 

filter response impose rather fundamental limitations on weak-target 

visibility. Moreover, the resolution problems caused by self-clutter and 

undesired objects are in principle no different in that both impede 

resolution in the same manner; If processor complexity is not of utmost 
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concern, the use of amplitude and phase modulated pulse trains may proffer 

an improved performance. Alternatively, self-clutter suppression may be 

achieved by sidelobe reduction filters. Although mismatching the receiver 

filter may be a useful means of adopting the waveform to a particular 

target environment, it should not be used as a primary method to improve 

resolution. Hence, the proper approach to clutter suppression, except in 

a few special cases, is via waveform design and matched filtering. 

In situations where the relative doppler spread of the targets 

cannot be neglected, the matched filter response has to be investigated in 

terms of the ambiguity function. In principle, the methods developed 

could be applied to the more general problem of designing pulse trains 

suitable for resolving targets in range and range rate. However, even with 

modern computers, the search for phase codes having good resolution 

properties in both range and velocity is so expensive that it would have 

to be restricted to relatively short sequences (N ~ 20) and small areas 

of the range-doppler plane. For these reasons waveform synthesis for range 

and range rate resolution usually consists of a trial and error procedure 

and a judicious use of available information. 

In summary, the signal design problem has in general defied solutions 

by all means other than exhaustion. In particular, no concise set of 

necessary and sufficient conditions has been formulated by which signals 

with specified properties can be synthesized. Signal theory, the basis for 

many technical advances, is far from being complete and its further 

development is, therefore, of fundamental importance. 

As a final remark, the design methods developed in this thesis are 

of general interest. With appropriate modifications they can be applied 

to a variety of signal design and filtering problems. Furthermore, it 

is hoped that the results of this study may give some insight into the 

problems encountered in related areas of signal theory. 
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APPENDIX A 

A.l Principle of Stationary Phase
22 

The principle of stationary phase is a proposition which has 

found wide application in many branches of electrical engineering and 

physics. To arrive at the concept of stationary phase consider the 

expression 

in which s(t) is a slowly varying function oft, while exp(j~(t)) 

goes through a large number of cycles. Under these conditions the 

value of the integral (A.l) will be small, since the negative and 

positive portions of successive cycles tend to cancel each other. 

However, at the stationary value of ~(t), i.e. 

d/dt {~<sl} = o 

a significant contribution may be made to the value of I in the 

neighbourhood of the stationary phase points ~ which satisfy condition 

(A.2). This is illustrated in Fig. A.l. 

Near the stationary phase point S• the function ~(t) can be 

represented by the first few terms of a Taylor series 

(The linear term is absent due to condition (A.2)). 

Therefore the contribution to the integral (A.l) in the neighbourhood 

1:. is given by 

I~ s(~) ej~(~) J~+l:. 
s-t:. 

The term s(s) is assumed to be constant for the integration. 

(A.l) 

(A. 2) 

(A. 3) 
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Making the variable transformations 

and 

so ,that 

leads to 

~) ~2 
2 

'If 2 =2T) 

r'q," (~) ,/lf)-1, 

0 

The integration limits may be arbitrarily extended without substantially 

affecting the value of I, since only the stationary points give 

significant contributions. The above Fresnel type integral (see 

Section A.2) may thus be approximated by 

1 IX exp (j :!:_ lf/4) 

Hence 

The plus sign applies when f' (~) > 0, and the minus sign when q," (!;) < 0. 

If Eq. (A.2) has several points of stationary phase, then it.is 

necessary to take the sum of terms similar to (A.S). 

A.2 

where 

94 Fresnel Integrals 

The complex Fresnel integral denoted by Z(u) is defined as 

j(n/2lx2 
e dx 

=r 0 

'If 2 
COS (2 X ) dx 

(A. 4) 

(A. 5) 

(A.6) 

(A. 7) 
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These integrals cannot be solved in closed form. The values of CF(u) 

and SF(u) are plotted as a function of u in Fig. A.2. It is noted 

that for large values of u both functions converge to the value 0.5. 

It can be shown that Fresnel integrals are odd functions of the 

variable u, i.e. 

z (u) = -z (-u) 

CF (u) = -c (-u) 
F 

and SF(u) = -s (-u) F 

Consider now the chirp signal 

s (t) 
jjlt2 0 ~ t ~ T 

= e s 

where 

The spectrum of s(t) is given by the· Fourier integral 

= J
Ts · 2 ft 

S(f) s(t) e-J rr dt 
0 

= J:s ej(~t2-2rrft) dt 

0 

Completing the square of the exponent yields 

Changing the variables by defining 

1T 2 
- n = 2 

and 

dt =J!;i dn 

leads to 

(A. 8) 



where 

s (f) 

u = -f 
1 
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Pi":. 
u =12{/WT -fy;;f} 

2 s w 

Using Eq. (A.6) the spectrum of the linear FM signal is given by 

s (f) = fT;. lj"fti 

(A. 9) 
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APPENOIX B 

1 
. 94 Besse Funct1ons 

Bessel functions are of considerable importance in many branches 

of science and engineering. For the reader which is unacquainted with 

them, some of their fundamental properties and relationships are 

listed below. 

The nth order Bessel functions, J (x), of the first kind and of n 

argument x are defined as the Fourier coefficients of the function 

S( 6) = ejx sin 6 

Consequently, 

1 J1T J (x) ·=-n 211 
-1! 

ej(xsin6 + n6) de 

Bessel functions behave very much like damped sine waves. However, 

while all sin and cos waveforms are similar in shape, each different 

type of Bessel function has a different shape. Graphs of some.Bessel 

functions of the first kind are shown in Fig. ·a.l. 

There are certain relations between trigonometric functions and 

Bessel functions that are of interest in modulation theory. 

cos{xsin 6) = J
0

{x) + 2(J
2

(x) cos 26 + J 4 {x) cos 46 + ••••• ) 

sin(xsin 6) = 2{J
1

(x) sine+ J 3 (x) srn 36 + J 5 (x) sin 56+ ••.• } 

cos(xcos 6) = J
0

(x) - 2{J2 (x) cos 26- J 4 (x) cos 46 

J 6 {x) cos 66·- J 8 (x) cos 86 + ••••• } 

sin (xcos 6) = 2{J
1 

{x) cos 6 - J 3 (x) cos 36 + J 5 (x) cos .56 

- J 7 (x) cos 76 + ..... } 

(B.l) 

(B. 2) 
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Fig. B.2 shows Bessel functions of constant argument and variable 

order n. The above relationships show that the Bessel functions of 

integral order are particularly important in modulation theory. In 

addition for integral order n, the following relations hold 

J (-x) 
n 

J (X) -n 

= (-l)n J (x) 
n 

n 
= (-1) Jn (x) 

Another relationship which has been found useful in Chapter 4 is 

"' 
ej xsin e jne . a -je 

= E J (x) e = J (x) + {Jl (x) eJ +J_
1 

(x) e } 
n 0 n==-oo 

+ {Jz<x> 
"28 eJ +J _

2 
(x) 

-j2e e }+ .•. 

Like trigonometric functions Bessel functions can be expanded in 

power series. Thus, 

J (x) 
n 

xn 
= -- {1 
·. 2n ' n. 

2 4 
x + ----~x~-----

22 (n+l) 2· 24 (n+l) (n+2) 
+ ••••..• 

(-l)P x2P 
+ 2 + • • • . . • • • • • } 

p! 2 p (n+l) (n+2) •••• (n+p) 

Furthermore, for very large values of the argument x, Eq. (B.4) 

reduces to 

= f2 cos (x - mr/2 - 1f/4) vliX 

(B. 3 

(B. 4 

(B. 5 
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APPENDIX C 

Group Delay Computation of Discrete Sequences 

The group delay 'g(f) of an analogue waveform s(t) is 

defined as 

' (f) ~ l_ d6(f)/df 
g 21f 

where 6(f) is the phase of the spectrum of s(t), i.e. 

and 

e (f) = arg[s (fl] 

S(f) = FT{s(t)j 

The spectrum of a discrete waveform s(nT), n = 0,1,2, .•• ,N-1 

is according to Eq. (2.14) 

or in ZT 

N-1 
S(f) = E s(n) e-j 21rfnT 

n=o 

N-1 
S(z) = 

n=o 
s (n) 

-n 
z 

The phase of S(z) is now given by 

arg(S(z)] = Im {ln[S(z)]} 

Hence, the group delay ' (f) is obtained by differentiating the above 
g 

expression with respect to f 

, (f) - l_ Im { d/df [ lnS (z)] } g - 21f 

= l_ Im { d/dz [ lnS (z)] dz/df} 
2!! 

1 Im { S' (z) 
=- 211 S(z) z(j21fT)} 

where (') denotes differentiation with respect to z. 

From Eq. (C. 3) 

s' (z) 
N-1 . -(n+l) =- E n s(n) z 
n=o 

(C.l) 

(C. 2) 

(C. 3) 



Thus 

T (f) = T Real 
g 
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N-1 
l: n s (n} 

n=o 

-n 
z 

N-1 
l: s (n} 

n=o 

-n z 

For computational work the FFT can be used to evaluate the above 

expression. Hence 

[ 
FFT {n s (n} } J 

T g (n/NT} = T Real :_FFT=-=--"'i{;.._::s.o:(n:.:.)<-};;... 

which is simply the real part of the DFT of the lst moment of the 

sequence s(n}, divided by the DFT of s(n}. The sampling interval T 

is usually set equals to unity for convenience. 

(C. 4} 
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APPENDIX D 

Energy Relationship between the Autocorrelation Function and 

. 88 
Crosscorrelation Function of Two Sequences 

Consider two arbitrary N-element sequences a(n) and b(n). 

Their ZT's are given by 

N-1 
A(z) = E a(n) 

n=o 

N-1 
B(z) = E b(n) 

n=o 

-n z 

-n z 

The autocorrelation and crosscorrelation functions of these sequences 

are defined as 

N-1-JkJ 
r

1 
(k) = ~ a(n) a*(n + k) 

n=o 

N-1-JkJ 
r

2
(k) = ~ b(n) b*(n + k) 

n:::o 

and 
N-1-JkJ 

r
12

(k)= E a(n) b*(n + k) 
n=o 

where k ranges from -(N-1) to (N-1). 

The ZT's of the above expressions, neglecting the unessential delay 

-N factor z , are according to Eq. (2.36) 

N-1 
l: r

1
(k) 

k=- (N-1) 

N-1 
l: r

2 
(k) 

k=-(N-1) 

-k z 

-k z 

= A(z) A*(l/z) 

= B (z) B* (1/z) 

(0.1) 

(D. 2) 



and 

Rl2(z) = 
N-1 

E 
k=- (N-1) 
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-k z = A(z) B*(l/z) 

Similarly,the autocorrelation function of the sequence r 12 (k), 

denoted by ~(m) is given by 

N-1-lml 
~(m) = L r 12 (k) ri2 (k +m) 

k = - (N-1) 

m = 0,:!:_1,.:!:_2, ••••.• ,.:!:_(2N-2) 

The ZT of the autocorrelation function, ~(m), is simply 

2 (N-1) 
'I' (z) = E ~(m) 

m=-2(N-l) 

-m 
z = 

using the properties (3.5) and (3.6) leads to 

'l'(z) = A(z) B*(l/z) A*(l/z) B(z) 

Since the autocorrelation is complex conjugate symmetric with respect 

to zero time shift, i.e. 

With the above expression, Eq. (D.S) can be written in the form 

Hence, the autocorrelation function of the crosscorrelation of the two 

sequences, a(n) and b(n), is equal to the crosscorrelation of the 

autocorrelation functions of the individual sequences. Moreover, two 

polynomials of the same order are equal if they have identical 

coefficients, i.e. 

(D. 3) 

(D. 4) 

(D. 5) 

(D. 6) 



lj!(m) 
N-1-lml 

l: rl2(k) 
k=- (N-1) 
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N-1-lml 
rb (k+m) = l: r 

1 
(k) 

k=- (N-1) 

In particular, for zero time shift (m= O) 

N-1 
l: r 

1 
(k) rz (k) 

k=-(N•l) 

which is the result used in Chapter 6. 

r2 (k+m) 

(D. 7) 
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Appendix E 

List of Sequences 

E~1 Uniform Sequences 

Binary Sequences 

N 

'(+ = 1, - = -1) 

11 

19 

21 

31 

41 

53 

6,1 

11 

91 

101 

+ + 

-+ 

sequence 

+ + + + + +-+--+ 

+ + ++-+ ++ + + + 

+---+++-·-+ --+-+-++++ 

+ 

+ + + +. + + + 

-+-+-++-+ 

+++--++-++ 

- - + + + - + - - + - + + + - - - - + 

+ +'- + + + + + - - + - + -

+ + - -+ - + + + + + + - - + + + + 

+ + + -- + + + - + - + - + + + 

-+ - + + - - + - + 

- + - + + + + - - - + -
+ -+ - + + - + + - + -· - + + - - + 

+ + + + - + + + + + + - + + -
+ 

+' + + + + + + + + + - + + + + 

-+ + - + + + + - -+ + - - + + -
- + + + + - + + - + - - + - - + -
+ + - + -+ - + - + 

+ + + + + + + + + + - + - + -+ - + + + 

- + + -·- - + - - + + + - - + + + 

+ - + + + + + - - + - + 

+ + - - + - + + + + - - - + - - + + 

+ -- + + - + + - + 

+ + + + + + + + + + + - - - + + 

+ + + - - + + + + - + + + - - + 

+ + - - + + - + + - + + + + 

+ - - + - - + - - + + + - + 

+ - + - + - + - + + - + - + - + - + -
+ 



N 

128 

253 
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sequence 

+ + + + + + + + + + + + + - - + 
+ + + + + + + + + + + + 

+ - + + + + + + + + + - + 

+ + + + + - + + - + - + + 

- + + + + - + + + + + + + + 

- + + + + - + - + - - + - + - + - + 

- + - + + 

+ + + + + - + + + + + + + + + + + + 

-++++-+ 

+ + + + + + + + 

+ + + - + + + - - + + 

+ - + + + - - - + + - - + + + + -

+ + + + + + + + + + + 

+ + + - + + - - + + - - + + + + 

- - + + + - + + 

+ + + + - + + 

+ + - + + 
+ + - + 

- + 

+ -

+ + - + + + - + + + - + + 

+ + + - + - + + - + + - + + 

+ + + + + + - + + - + - + -

+- + + + + - + + 

+++++-+ + + + + - - + + - + + 

+ + + +. + + + + + - + + 

+ + + + + - - - - + + - + -

+ - + + + + + + + 

+ + - - - + .+ + + + + + + + 

+ + + + +-++--+-

- - + + + + + + + + + - + - - + 

+ - - + +-+- +- + - + + + + 

+ + + - - + - + + + + - + + 

+ +----+++ - + + + + 

+++--+ + + + + + + + + 

+·­

- + 

+ + - + - + - + + - + - + -

+ + + + + + + + + - + + + + 

+ + + + + + - + - + + + + + + + + 

+ + + + + + + - + + 

- + + + 
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Uniform complex codes 

N sequence <j>(n) (radians) 

13 1.617 -0.433 1.622 -0. 376 1.228 

-0.173 -0.817 2.815 1.254 1.162 

2.885 -1.860 -0.768 

15 o. 771 o. 248 -o. 717 -0.378 -0.803 

2. 713 0.908 -0.597 1.852 2.091 

-2.980 -0.655 -3.100 -0.500 1.395 

17 -0.061 2.653 -1.021 1.484 2.470 

-0.784 -2.522 1.659 -1.177 -1.185 

-0.775 1.259 1.198 1.660 0.029 

-o. 346 -0.250 

18 2.082 -2.408 -1.597 0.332 -2.568 

-0.153 -0.198 1.297 0.228 2. 301 

-0.405 0.140 -0.942 0.539 -1.593 

-2.741 2.522 0.344 

19 o.ooo -2.928 2.134 -0.570 -1.802 

1. 709 -2.467 -0.034 -0.855 1.308 

3.028 1.305 2.675 -1.819 -1.452 

-2.688 -2.466 2.558 -3.142 

25 2.545 2.825 1.945 2.625 -;1..337 

-0.457 -1.137 -1.175 -2.177 -0.937 

1.105 3.025 -1.337 -1.497 -2.657 

1.505 -0.135 -2.617 -:-2.897 0.025 

-2.777 0.425 -2.417 1.505 -2.217 

31 1.825 -0.055 -1.217 2.065 -L818 

2.145 1.585 -0.338 1.465 -0.455 

-1.828 1. 785 2.265 0.382 -2.698 

1.385 o. 745 0.865 -1.055 0.425 

0.145 1.945 4.545 -0.215 2.145 

2.465 2.585 -2.295 -2.868 -1.698 

0.225 
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N sequence </>(n) (radians) 

49 0.040 0.400 0.280 o.·24o -0.040 

-0.240 -0.160 0.080 0.698 1.875 

3.133 -2.973 -2.075 -1.178 0.280 

2.075 -2.253 -0.538 1.178 2.253 

-2.275 0.000 2.933 -0.898 1.475 

-2.075 0.698 3.030 -0.120 -2.853 

1.258 -1.635 1. 355 -1.138 2.373 

0.160 -1.595 3.053 1.418 -1.098 

-3.093 1.915 0.800 -0.022 -1.075 

-1.693 -3.110 2.515 0.858 

64 0.040 0.480 0.400 0.240 0.360 

0.120 0.200 0.000 0.280 1.065 

2.071 -2.966 -2.542 -2.036 -1.531 

-0.585 o. 720 1.971 -2.822 -0.771 

0.920 1. 731 -2.862 -1.371 0.240 

2. 796 -0.611 1.345 -2.622 -Oal45 

1.571 -2.516 0.040 -3.142. 0.200 

-3.022 -0.200 2.980 -0.040 2.660 

-0.360 -2.716 1.491 -0.545 -3.062 

0.265 -1.971 1.876 -0.080 -1.811 

-3.062 1.691 0.200 -2.091 2. 340 

1.451 0.320 -0.265 -1.011 -1.836 

-2.662 2.956 1.851 0.385 

81 -0.440 0.160 0.360 0.120 0.200 

0.080 0.080 0.080 -0.120 -0.080 

0.538 1.276 2.414 3.112. -2.432 

-2.094 -1.576 -1.018 0.000 1.396 

2.552 -1.974 -0.098 0.898 2.054 

-3.152 -1.636 -0.160 1.654 -1.854· 

0.200 2.334 -2.054 -0.080 2.134 

-2.454 -0.080 2.792 -0.298 2.574 

-1.116 1.556 -1.614 0.658 -2.992 

-0.160 -2.672 o. 738 -2.054 1. 756 

-1.196 2.294 -0.658 2.352 -0.040 

-2.414 1.894 0.080 -1.734 2.454 

-0.280 -2.374 1.814 -0.240 -1.596 

-2.952 2.174 0.818 -0.498 -2.334 

2.352 1.076 0.080 -0.698 -1.116 

-1.894 -2.512 2.912 2.454 1.676 

0.418 
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N sequence </> (n) (radians) 

lOO 0.040 0.520 0.600 0.640 o. 720 

0.440 0.640 0.320 0.600 0.600 

o. 720 0.869 1.297 2.285 -2.891 

-1.680 -2.353 -1.565 -0.777 -0.229 

0.480 1.617 2.793 -2.473 -1.177 

0.680 1.937 2.593 -2.633 -1.497 

-0.040 1.405 -2.793 -0.589 1.137 

2.662 -1.617 0. 349 2.073 -2.205 

-0.320 2.153 -1.137 1.857 -2.073 

0.360 2.473 -1.097 1.497 -2.553 

0.040 -2.942 0.440 -2.142 0.840 

-2.782 0.000 3.062 0.240 -2.742 

0.280 -2.433 1.497 -1.057 2.873 

0.680 -2.073 1.817 -0.817 l. 793 

-0.560 -2.165 2.033 0.509 -1.057 

-2.982 0.817 -1.269 -2.873 1.485 

-0.440 -1.977 -2.873 2.673 1.537 

0.320 -1.337 -3.033 1.835 1.057 

0.120 -0.549 -0.897 -1.485 -1.993 

-2.702 2.873 2.365 1.457 0.109 
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E~2 Pairs of Sequences 

Binary Sequences (+ = 1, 

N 

19 + + 

19 + + 

23 + + 

+ +. 

23 + + 

31 + + + 

+ 

31 + 

+ + 

53 + 

+ + 

- + 

53 + + + + 

+ + -
+ 

61 + + + + 

+ + + 

+ 

61 + 

+ 

+ 

- = -1) 

sequence 

+ 

+ + + + + + 

+ 

- + + - + -

+ + - --
+ + + 

+ + - + 

+ + -+ + 

--+ 

+ + + -
+ + + -

+ + 

+ + + + 

- + + -
+ + + 

+ -+ + -
+- + + - + 

+ + - + 

-++ 

+ -· + 

+ - + + + + + + 

+ + + + - + 

+ + + + + + -

+ - -- - + + + + -

+ + ---+ - - + 

- - + 

+ + 

+ - - + 

+ + 

+ + + 

- --
+ + 

+ 

+ + + + 

+ + + 

+ -

+ + + 

- --

+ + + 

+ + 

- + + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ + 

- + + 

+ 

-

+ 

+ 

- + 

+ -
+ -

+ + 

-

+ + 

+ -

+ -



N 

73 

73 

91 

91 

101 

101. 

-'-218-

sequence 

+ + - + + 

+ + + + + 

+ - + + + + 

.... + 

- + + 
+ 

- + + + 
+ + + 

+ + 
+ + + + + + + + 

+ - + - + 

+ + + 

+ + 

+ - + + 

+ + 

+ - + + + 

+ 

- + + 

- - + 

- - + + + + + + + 

+ + - + + 
+ -

+ - + + + 

+ + - -· + + + 

++-+++· 

+ 

+ + + + + 

+ - + 

+ + - - + -

- - + + + + + + + - + + + + + + 

--++++ 

+ + - - + - + + + + + + + - - + -

+++-++++ 

+ + + + 

+ + - + 

- + + + + + 

+ 

+ + 

+ + + + + 

+- -+-+ 

+ + + - + 

+ 

+ -

+ + + 

+ + 

-+++ ++-+++ + + -

+ + + + 

+ 

+ 

+ 

+ - + + 

+ ~ + - + 
+ + + + 

- + + + 

+ + + + + 

+ + + + - + + + + - + + + 

+ 

-++-+++-

- + + + + 

- + + + + + + -

- + + + + + + 

+ + + 

+ + 

- + 

+ + + 

+ - + + 

+ + 

+ + 

+ -

+ 

+ + 

+ 

+ 

+ 

+ + + - + + - - + + 
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Uniform complex codes 

N sequence <j> (n) (radians) 

9 1.507 -1.701 -0.450 -2.704 -0.185 

-1.773 2.409 -2.470 -2.048 

9 1.328 0.879 -2.107 -1.750 2.712 

2.760 -1.388 -2.120 -0.456 

11 2.809 -1.025 -3.087 2.294 0.400 

-2.003 -2.912 -2.229 1.699 2.801 

-2.214 

11 -0.221 o. 323 -0.661 1.142 -2.771 

2.882 -1.990 -2.533 1.009 2.827 

-0.705 

21 0.499 -1.250 -0.402 -2.937 -2.090 

2.940 -0.998 -1.053 2. 591 -1.049 

-2.389 2.335 2.993 0.050 -1.495 

1.444 1.298 -1.948 -1.495 -1.343 

2.691 

21 3.100 1.607 1.157 2.092 1.556 

2.891 -3.044 ;_1. 740 -2.035 -0.590 

1. 741 -1.585 0.543 -1.399 2.498 

0.211 -0.037 '-1. 800 -1.337 -0.003 

2.742 

31 -1.094 3.133 -2.758 1.000 -2.146 

0. 763 -2.575 -1.136 -0.170 -1.192 

-1.873 2.548 -2.811 2.499 -0.102 

0.249 -2.098 0.996 0.307 1.198 

-0.350 2.579 0.315 -1.074 2.409 

-2.070 -2.348 -0.871 -1.622 0.777 

2.034 

31 1.313 2.661 -0.488 -1.620 -1.655 

1.205 0.827 -2.329 2.151 -2.082 

-1.447 1.908 2. 714 -1.259 -0.354 

1.381 -1.828 -2.673 1.847 1.622 

2.522 0.812 1.596 1.931 2.679 

-3.004 2.360 -0.838 2.234 -2.562 

1.262 
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N sequence <j> (n) (radians) 

41 2.256 2.433 -0.559 0.650 l. 338 

1. 363 -1.775 -0.836 0.380 -1.041 

-1.824 2.249 1.172 2.399 0. 748 

1.549 -2.547 -0.255 1.657 -1.001 

0.300 -2.704 1.115 -0.423 1.659 

-o. 97o -0.048 0.579 -1.321 2.026 

3.033 1.263 -0.939 -1.938 2.064 

-0.905 2.438 1.227 -3.029 0.351 

1.651 

41 -0.697 1.908 2.714 -1.059 -0.904 

-0.069 -2.127 2.911 0.647 1.771 

2.021 0.713 0.595 -2.652 2.178 

3.079 0.661 -1.138 1.585 2.521 

2.762 -1.560 -2.512 -1.317 0.297 

-1.259 -0.072 -0.726 -1.085 1.999 

-0.235 -1.374 0.025 -2.187 -2.139 

3.000 -1.153 -2.211 -0.778 1.450 

1.251 

47 -2.094 1.682 -2.059 0.650 2.237 

o. 763 -1.325 -1.737 0.231 -2.841 

-2.724 -o. 735 2.973 1.650 2.698 

-0.101 -1.948 2.596 2.406 -2.052 

0.150 1. 779 -1.885 -2.823 -0.141 

-2.170 -1.097 1.179 0.028 -2.907 

-2.949 2.012 -2.273. -1.338 -2.719 

-2.705 0.504 -2.073 1.305 0.801 

-3.133 -2.797 1.158 -2.220 -1.209 

-1.804 -2.619 

47 -1.977 -2.472 2.297 -2.862 2.322 

-3.020 2.395 -1.753 -2.304 2.029 

2.910 -1.287 1. 734 -2.413 -1.271 

0.841 0.938 0.183 0.448 0.241 

-o. 521 0;473 0.415 2.749 0.665 

-2.124 1.076 -2.937 3.094 -1.484 

0.347 -0.111 1.022 3.099 2.600 

-1.965 0.679 o. 773 0.089 2.691 

-1.221 2.982 -2.440 -2.033 2.708 

1.627 -0.105 
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Six-phase codes 

N sequence q, (n) (radians) 

17 0.000 1.047 1.047 2.054 2.054 

-2.054 1.047 2.054 -1.047 2.054 

0.000 3.142 1.047 0.000 -1.047 

-2.054 3.142 

18 2.054 3.142 . -2.054 -2.054 -2.054 

0.000 3.142 -2.054 1.047 -2.054 

2.054 -1.047 2.054 1.047 -1.047 

-1.047 3.142 2.054 

19 1.047 2.054 3.142 -2.054 -2.054 

1.047 -2.054 -2.054 1.047 -2.054 

0.000 -2.054 1.047 -1.047 -1.047 

-2.054 -2.054 3.142 2.054 

20 2.054 2.054 1.047 0.000 1.047 

1.047 1.047 3.142 3.142 -2.054 

0.000 3.142 -2.054 1.047 1.047 

-1.047 2.054 -1.047 3.142 1.047 

21 0.000 1.047 1.047 1.047 2.054 

3.142 -1.047 1.047 3.142 1.047 

3.142 0.000 3.142 1.047 -1.047 

3.142 1.047 0.000 -1.047 -1.047 

-2.054 

22 -2.054 -1.047 -1.047 -1.047 0.000 

1.047 3.142 -1.047 0.000 3.142 

0.000 3.142 -1.047 2.054" 0.000 

-2.054 2.054 0.000 -1.047 -2.054 

-2.054 3.142 
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N sequence ~(n) (radians) 

23 3.142 3.142 2.054 1.047 0.000 

0.000 1.047 2.054 1.047 2.054 

3.142 -2.054 0.000 2.054 -2.054 

2.054 -2.054 0.000 3.142 1.047 

-1.047 3.142 0.000 

24 2.054 2.054 2.054 o.ooo 0.000 

0.000 1.047 1.047 1.047 2.054 

3.142 -2.054 1.047 1.047 -2.054 

-1.047 2.054 -1.047 1.047 -2.054 

2.054 0.000 -2.054 2.054 

25 3.142 3.142 2.054 1.047 1.047 

1.047 1.047 2.054 3.142 . -2.054 

-2.054 1.047 1.047 -2.054 -2.054 

1.047 2.054 -1.047 1.047 -2.054 

1.047 -2.054 2.054 0.000 -2.054 

26 -2.054 -1.047 -1.047 0.000 0.000 

1.047 3.142 -2.054 0.000 2.054 

-2.054 1.047 -2.054 1.047 3.142 

1.047 -1.047 3.142 1.047 -1.047 

3.142 2.054 1.047 0.000 o.ooo 
-1.047 

28 0.000 0.000 1.047 1.047 2.054 

3.142 -1.047 o.ooo 2.054 3.142 

0.000 2.054 -2.054 1.047 -2.054 

1.047 -2.054 2.054 -1.047 -2.054 

2.054 0.000 -2.054 -2.054 3.142 

2.054 2.054 1.047 

30 0.000 1.047 1.047 1.047 2.054 

2.054 -2.054. -1.047 . 0.000 2.054 

-2.054 0.000 3.142 -1.047 2.054 

-1.047 3.142 0.000 3.142 1.047 

-1.047 3.142 1.047 0.000 -2.054 

3.142 3.142 2.054 2.054 1.047 
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E.3 Non-uniform Sequences 

Huff man codes 

N sequence a(n) 

5 . Re [a (nl] 1.000 0. 716 0.000 0.716 -1.000 

Im[a(nl] 0.000 -0.716 -0.512 0.716 0.000 

7 Re a (nl] 1.000 -0.273 0.775 0.628 0.925 

-o. 273 -'-1.000 

Im(a(nl] 0.000 0.473 -0.620 0.537. 0.361 

-0.473 0.000 

9 Re [a (nl] 1.000 0.380 0.208 -0.866 0.885 

-0.268 0.904 0.380 -l.cxio 

Im [a (nl] 0.000 0.917 0.904 0.486 -0.178 

0.956 -o. 208 -0.917 0.000 

15 Re [a (nl] 1.000 0.505 -0.234 -0.251 -0.939 

0.687 0.174 -0.782 -0.174 0.687 

0.939 -0.251 0.234 0.505 -1.000 

Im [a (nl] 0.000 -0.850 -o, 43o -1.032 -0.408 

0.437 -0.603 0.000 -0.603 -0.437 

-0.408 1.032 -0.430 0.850 0.000 

17 Re [a (nl] 1.000 -0.811 0.076 o. 716 -0.586 

0.132 -1.022 0.639 -0.307 -0.701 

-:0.692 0.824 0.497 0.429 -0.429 

-0.811 -1.000 

Im[a(nl] 0.000 0.389 -0.316 0.215 o. 757 

-0.522 0.164 0.383 -0.259. -0.573 

-0.129 -0.599 -0.613 -0.353 -0.316 

-0.389 0.000 

20 Re(a(nl] 1.000 -0.104 -0.154 0.417 0.697 

-0.668 0.616 -0.168 0.529 -0.310 

-0.576 -0.508 0.014 0.774 0.879 

0.595 -0.333 0.571 -0.119 -1.140 

Im [a (nl] o.ooo 0.816 -0.542 -0.097 o·. 754 

I 

0.963 0.037 0.687 -0.368 0.792 

0.326 0.578 0.391 -0.596 -0.118 I 

-0.919 0.541 0.424 -o. 93o 0.000 



-

I 
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N sequence a(n) 

25 Re[a(n)) 1.000 0.200 -0.845 -1.510 -1.699 

-1.817 0.002 1.013 -1.691 -1.726 

1.855 -1.765 -0.087 -1.346 0.963 

-2.022 -0.238 0.304 -1.405 -0.674 

0.810 1.592 1.413 0.200 -1.000 

Im [a (n)j 0.000 1.516 1.363 o. 741 -0.045 

-1.184 -1.405 0.043 0.702 -1.133 

-1.287 1.384 -1.712 1. 794 -2.043 

0.419 1.815 -0.968 -0.002 2.061 

1.494 0.544 -0.758 -1.516 0.000 

45 Re [a (n)) 1.000 0.108 -1.012 -1.201 -1.269 

-1.283 -0.883 -0.723 0.396 0.921 

0.347 -0.797 -1.735 1.141 1.756 

-1.646 0.255 0.538 -1.712 1.483 

-0.218 0.439 -1.426 0.199 0.020 

o. 776 -1.512 0.490 -0.996 -0. 393 

1.260 -1.432 -1.550 0.182 0.409 

-0.573 -1.420 -0.827 -0.144 0.599 

1.062 1.261 1.249 0.108 -1.000 

Im [a (n)) o.ooo 1.507 0.988 0.407 -0.009 

-0.566 -0.955 -1.447 -1.380 -0.327 

0.463 0.182 -1.317 -1.827 0.584 

0.591 -1.539 0.128 -0.133 -1.378 

0.812 -1.650 1.387 -1.695 0.840 

-1.870 0.814 -0.256 -1.200 1. 705 

-1.355 -1.609 1.530 0. 797 -0.409 

-0.792 0.213 1.390 1.293 1.268 

0.694 0.129 -0.663 -1.507 0.000 

55 Re[a(n)) 1.000 0.110 -2.698 -3.414 -1.666 

-1.138 -0.671 0.454 1.688 4.054 

6.907 7.635 2.392 -5.477 -2.246 

7.530 3.934 -2.321 3.691 3.062 

-3.288 1.931 2.307 -0.514 5.750 

-2.953 2.227 1.874 1.670 -1.078 

4.089 -1.131 4.748 0. 782 -0.626 

4.647 -1.947 0.084 8.976 0.949 

-6.232 0.237 4.698 2.437 -1.393 

-4.271 -5.537 -5.173 -2.455 0.062 

1.127 3.059 2.906 0.110 -1.000 
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N sequence a(n) 

55 Im[a(n)) o.ooo 2.370 1.632 -1.058 -2.415 

-2.454 -3.174 -3.851 -4.177 -4.279 

-1.992 3.175 7.252 3.362 -5.406 

-3.046 5.632 1.300 -2.237 5. 383 

2.093 -3.125 3.523 -1.025 -1.826 

9.016 -6.935 9.526 -8.836 7.807 

-3.473 1.042 3.295 -3.970 1. 746 

-0.823 -3.652 5.318 -o. 270 -9.593 

-1.559 4.356 -0.896 -5.207 -5.419 

-3.770 -1.070 2.114 4.109 3. 711 

3.003 1.852 -1.109 -2.370 0.000 

65 Re [a (n)) 1.000 0.102 -2.962 -3.343 -2.417 

-0.578 1.236 0.812 1.410 3. 711 

7.362 8.345 3.838 -1.967 -4.508 

0.016 4.916 4.690 -0.076 -3.279 

5.487 1.246 -9.207 5.846 4.617 

-4.121 3.731 -2.440 1.672 0.201 

-o. 327 2.656 -1.406 2.924 -1.400 

2.548 0.932 0.025 2.416 -3.599 

8.642 -0.271 -3.169 8.054 -1.338 

-2.529 5.082 6.569 1.670 -3.940 

-1.448 3.529 5.490 1.595 -3.542 

-5.505 -5.380 -3.868 -3.133 -o. 780 

1.673 3.026 3.129 0.102 -1.000 

Im[a (n)) 0.000 2.470 1.544 -1.043 -2.890 

-3.872 -3.070 -2.488 -3.773 -4.317 

-2.422 3.068 7.300 6.014 0.670 

-3.863 -1.037 3.613 5.240 0.445 

-1.786 8.812 0.882 -7.226 7.152 

0.921 0.574 4.895 -3.160 6.587 

-4.895 6.692 -4.906 . 7. 591 -3.293 

6.664 -4.666 3.711 -2.298 4.516 

3.909 -8.335 6.834 0.976 -6.924 

4.364 3.921 -2.587 -6.392 -2.977 

2.629 1.926 -3.010 -7.248 -6.169 

-2.718 0.277 1.868 3.066 4.391 

3.573 l. 717 -1.042 -2.470 o.ooo 
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N sequence a(n) 

81 Re[a(nJ) 1.000 0.171 -4.026 -4.971 -1.900 

1.669 3.191 . 4.022 3.868 3.337 

7.146 10.452 9.835 3.416 -5.980 

-10.636 -8.321 2.933 8.192 -0.688 

-0.699 -0.882 7.124 -9.316 -11.854 

4.295 1. 791 -4.405 -0.837 1.227 

-8.791 -0.148 1.210 -10.407 8.241 

-7.533 -2.319 5. 531 -11.284 4.444 

-7.000 2.999 -2.736 -0.875 -3.465 

-2.227 3.440 -5.883 4.307 -4.372 

-1.453 1. 789 -6.821 10.311 -1.287 

-9.603 13.034 1.897 -12.104 2.231 

12.599 8. 764 0.343 -4.523 -2.404 

6.761 11.230 7.435 4.341 -0.032 

-4.984 -6.582 -6. 376 -6.010 -4.732 

-1.453 0.848 3.411 4.114 0.171 

-1.000 

Im[a(nJ) 0.000 2.858 1.957 -2.422 -5.711 

-5.227 -3.644 -2.443 -o. 969 -2.099 

-2.560 1. 766 8.616 14.297 12.468 

4.863 -4.582 -6.831 3.826 10.898 

3.087 -5.364 7.120 11.543 -6.386 

-5.043 5.074 3.106 -2.050 5.293 

3.814 -7.488 10.163 -2.671 -4.186 

10.781 -10.869 13.373 -6.528 7.876 

-6.476 9.717 -6.948 9.225 -8.461 

12.629 -1.948 1.223 4. 723 -4.425 

7.851 -2.065 7.218 6.553 -10.067 

10.781 7.138 -11.017 3.558 14.121 

5.168 -5.236 -6.746 -1.600 6.377 

7.431 -0.944 -6.200 -8.419 -9. 752 

-7.743 -3.896 -0.880 0.967 4.028 

5.114 4.400 3.176 -0.981 -2.858 

0.000 
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N sequence a (n) 

91 Re [a (n)] 1,000 0.052 -o. 619 -0.585 -0.420 

-0.516 -0.526 -0.661 -0.796 -0.743 

-0.139 0.154 0.250 0.562 0.081 

-0.300 -0.326 0.011 0.467 -0.187 

-0.276 -0.289 -0.364 1.103 o. 778 

-0.810 -0.232 0.783 -0.074 -1.205 

0.143 0.497 -0.197 0.888 -0.047 

-0.174 0.272 -1.250 0.641 0.434 

-0.942 0.885 -0.361 0.811 -1.013 

0.204 -0.817 0.900 -0.087 o. 762 

-0.955 0.314 -0.024 -1.025 0.151 

-0.246 0.431 0.343 -0.284 0.349 

-0.601 -0.599 0.659 0.013 -1.149 

-o. 443 0.379 -0.425 -0.358 0.456 

0.547 0.364 -0.516 -1.210 -0.987 

-0.320 0.113 -0.062 -0.019 -0.002 

-0.064 0.236 0.366 0.266 0.205 

0.350 0.439 0.686 0.767 . 0.052 

-1.000 

Im [a (n)] 0.000 1.178 0.604 0.158 0.129 

0.064 0.066 0.029 -0.231 -0.775 

-0.863 -0.654 -0.529 -0.036 0.253 

-0.055 -0.523 -0.598 -0.011 0.216 

-0.037 -0.278 -0.896 -0.582 0.587 

0.208 -0.635 -o.oos 0.624 -0.427 

-1.122 -0.079 -0.146 -0.143 0.840 

-0.126 -0.177 0.010 -1.202 0.047 

-0.034 -0.363 0. 713 -0.599 0.800 

-0.944 0.643 -1.073 0.412 -0.803 

0.304 -0.013 -1.062 0.914 -0.221 

-0.049 0.518 -0.809 0.128 -0.345 

-0.654 0.728 -0.048 -1.096 -0.068 

1.018 -o. 219 -o;492 0.861 0.363 

-0.139 -0.565 -1.099 -0.143 0.579 

0.708 0.411 0.175 0.533 0.384 

0.455 0.59!1 0.183 0.040 0.140 

0.256 0.160 0.073 -0.481 -1.178 

0.000 
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Besse1 codes 

N sequence 

11 -0.043 0.132 -o. 309 0.486 -0.339 

-0.260 0.339 0.486 0.309 0.132 

0.043 

13 0.049 -0.132 0.281 -0.430 0.364 

0.066 -0.397 -0.066 0. 364 0.430 

0.281 0.132 0.049 

15 -0.053 0.131 -o. 261 0.391 -0. 365 

0.047 0.328 -0.178 -o. 328 0.047 

0.365 0.391 0.261 0.131 0.053 

19 -0.021 0.057 -0.130 0.246 -0.362 

0.358 -0.115 -o. 243 0.277 0.151 

-0.277 -0.243 0.115 0.358 0.362 

0.246 0.130 . 0.057 0.021 

21 0.024 -0.059 0.128 -0.234 0.339 

-0.348 0.158 0.168 -o. 301 0.005 

0.300 ~o.oo5 -o. 301 -0.168 0.158 

0.348 0.339 0.234 0.128 0.059 

0.024 

25 0.027 -0.062 0.125 -o. 215 0.305 

-0.327 0.204 0.055 -0.265 0.181 

0.145 -0.245 -0.090 0.245 0.145 

-0.181 -0.265 -0.055 0.204 0.327 

0.305 0.215 0.125 0.062 0.027 

31 -0.032 0.065 -0.120 0.195 -0.270 

-o. 300 -0.230 0.045 0.170 -0.244 

0.073 0.182 -0.195 -0.085 0.223 

0.048 -0.223 -0.085 0.195 0.182 

-0.073 -0.244 -0.170 0.045 0.230 

0.300 0.270 0.195 0.120 0.065 

0.032 
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N sequence 

41 0.036 -0.067 0.114 -0.174 0.234 

-0.267 0.236 -0.123 -0.049 0.191 

-0.199 0.043 0.154 -0.188 0.001 

0.187 -0.111 -0.135 0.158 0.098 

-0.170 -0.098 0.158 0.135 -0.111 

-0.187 0.001 0.188 0.154 -0.043 

-0.199 -0.191 -0.049 0.123 0.236 

0.267 0.234 0.174 . 0.114 0.067 

0.036 

61 0.023 -0.041 0.068 -0.105 0.151 

-0.197 0.227 -0.223 0.167 -0.060 

-0.070 0.168 -0.175 0.075 0.078 

-0.170 0.119 0.042 -0.161 0.106 

0.071 -0.161 0.040 0.136 -0.114 

-0.084 0.146 0.039 -0.155 -0.015 

0.156 0.015 -0.155 -0.039 0.146 

0.084 -0.114 -0.136 0.040 0.161 

0.071 -0.106 -0.161 -0.042 0.119 

0.170 0.078 -0.075 -0.175 -0.168 

-0.070 0.060 0.167 0.223 0.227 

0.197 0.151 0.105 0.068 0.041 

0.023 

71 -0.025 0.042 -0.068 0.102 -0.142 

0.183 -0.212 0.214 -0.174 0.084 

0.024 -0.128 0.174 -0.130 0.011 

0.116 -0.160 0.081 0.067 -0.154 

0.092 0.065 -0.150 0.061 0.103 

-0.134 -0.016 0.144 -0.058 -0.117 

0.104 0.084 -0.125 -0.060 0.133 

0.051 -0.133 -0.060 0.125 0.084 

-0.104 -0.117 0.058 0.144 0.016 

-0.134 -0.103 0.061 0.150 0.065 

-0.092 -0.154 -0.067 0.081 0.160 

0.116 -0.011 -0.130 -0.174 -0.128 

-0.024 0.089 0.174 0.214 0.212 

0.183 0.142 0.102 0.068 0.042 

0.025 
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N sequence 

91 -0.027 0.044 -0.067 0.096 -0.130 

0.164 -0.190 0.197 -0.176 0.120 

-0.035 -0.060 0.135 -0·.157 0.110 

-0.010 -0.096 0.145 -0.103 -0.010 

0.116 -0.131 0.037 0.089 -0.133 

0.047 0.087 -0.127 0.025 0.107 

-0.108 -0.027 0.127 -0.053 -0.096 

0.105 0.045 -0.124 0.004 0.123 

-0.040 -0.113 0.062 0.104 -o. 012 

-0.101 0.072 0.104 -0.062 -0.113 

0.040 0.123 -0.004 -0.124 -0.045 

0.105 0.096 -0.053 -0.127 -0.027 

0.108 0.107 -0.025 -0.127 -0.087 

0.047 0.133 0.089 -0.037 -0.131 

-0.116 -0.010 0.103 0.145 0.096 

-0.010 -0 •. 110 -0.157 -0.135 -0.060 

0.035 0.120 0.176 0.197 0.190 

0.164 0.130 0.096 0.067 0.044 

0.027 

121 0.030 -0.045 0.065 -0.089 0.117 

-0.145 0.167 -0.178 0.169 -0.136 

0.079 -0.005 -0.070 0.125 -0.140 

0.105 -0.029 -0.060 0.121 -0.122 

0.057 0.040 -0.113 0.113 -0.037 

-0.066 0.119 -0.079 -0.027 0.109 

-0.094 -0.008 0.102 -0.094 -0.012 

0.105 -0.082 -0.035 0.111 -0.052 

-0.071 0.103 0.001 -0.104 0.062 

0.069 -0.099 -0.019 0.108 -0.027 

-0.097 0.062 0.077 -0.084 -0.056 

0.096 0.039 -0.101 -0.028 0.103 

0.025 -0.103 -0.028 0.101 0.039 

-0.096 -0.056 0.084 0.077 -0.062 

-0.097 0.027 0.108 0.019 -0.099 

-0.069 ci.o62 0.104 0.001 -0.103 

-0•071 0.053 0.111 0.035 -0.082 

-0.105 -0.012 0.094 0.102 0.008 

-0.094 -0.109 -0.027 0.079 0.119 

0.066 -0.037 -0.113 -0.113 -0.040 

0.057 0.122 0.121 0.060 -0.029 

-0.105 -0.140 -0.125 -0.070 0.005 
0.079 0.136 0.169 0.178 0.167 
0.145 . 0.117 0.089 0.065 0.045 
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