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ABSTRACT
The work presented in this thesis is.concerned with the design
of discrete coded waveforﬁs for improsing range resolutien and elutter
performence of radar systems. This approach to signal design offers
many advantages in terms of waveform shaping and digital implementation
of processors. Assuning a matched'filter receiver, the bulk of the
work is concentrated on studying the autocorrelation function properties

of these waveforms, which are directly related to the range resolution.

The main objective is to synthesize.pulse trains subject to a
fixed amplitude constraint, Whose autocorrelation sidelobes are as low
as possible. Constant amplitude Wavefofms are attractive for a number.
‘of reasons; the principal one being the optimum utilization of

transmitter power.

Pulse train signals can be synthesized directly by factorizing
the spectrum of specified autocorrelation functions., The pro?lems‘which
arise if the autocorrelation function is only given in magnitude are

" considered and a design method is presented. For some applications,
esﬁecially digieal implementation, the design objective may be to
approximate the response characteristics of a givep analogue waveform.
It is shown that wvirtually all the desired properties of analogue

- signals can be retained if the sampling interval is chosen pfoperly.

In addition various suggestions for reducing the range sidelobes of fhe

autocorrelation function are discussed.

an attempt is made to solve the signal design problem using
numerical optimization methods thae incorporate the fixed amplitude
constraint., In particular, a censtrained optimization technique is
developed for synthesizing sinary sequences Qith good autocorrelation

function properties. Moreover, the problem of designing pairs of



phase coded pulse trains with low autocorrelation sidelobes and small

mutual crosscorrelation is considered.

In the case of impulse~eguivalent sequences known as Huffman
codgs, a synthesis method based on uniform pulse trains is shown to
yield sequences with good enexgy efficiency. Furthermore, a new
approach to the signal design problem using Huffman codes and

parameter variational techniques is presented.

Although the range sidelobes can be reduced quite effectively
by numerical methods, for somg applications they might still be too
large. Thus optimum sidelobe reduction filters, which minimize the
detection loss subjectlto a set of sidelobe constraints, are derived

by mismatching the receiver filter.

Finally, in the case where significant target velocity is
encountered, it becomes necessary to consider not only the range but
also the velocity resolution properties of the transmitted waveform.
Thig is done for the wvariocus types of pulse trains usiné the standard

range-doppler ambiguity description of Woodward.
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CHAPTER 1

- INTRODUCT ION-

l}l . Background

| Radar is a teéhnique for remote sensing using radio waves. Its
basic purpose is to detect the presence of a target of interest and to
provide information concerning the target's location, mo£ion, size and
other parémeﬁers. The prﬁblem of target detection is adcompliéhed in a
typical radaf System (Fig. 1.1) by traﬁsmitting a radio signal and
detecting the waveform reflected by the target in the pfesence of
unavoidable system ncise and reflections from undesired scatterers
(clutter). If a return signal éf adequate strength is received, it is
further analysed to determine the target's'range, velocity and so forth.
This process is known as parametef estimation. The range of the target is
determined by measuring the delay of the'retﬁrn signal. &imilarly, the
velocity of fhe_target can be estimated, neglecting higher order effects,
by measuriﬁg the shift in éarrier frequency (dopplerrshift) of the recelived
waveform. FPFurthermore, the transmitted signal can be cérefully chosen
and generated so as to optimise its capability for extracting the

desired information about the target.

Target detectien and parameter estimation are difficult practical
problems, particularly for small targets at great distances.i In principle,
however, both problems are simple when only a single target is present.
Target resolution, which ﬁay be defined as the capabilitylof a radar
system to recognise a particular target in the‘presence of qthérs, is one

' 1,2
of the most important but alsc most demanding tasks™ '".

For high performance radar systems these tasks become increasingly
complex., This explains the continuing effort being directed towards

improving the rescolution capabilities of modern radars. Some improvements

are still being made in the components which affect radar performance;




Transmitter

Recelver

' Target
(delay T, doppler v)

—0

Thermal noise

Fig. i.l A typidal radar system.



for example, receivers with low noise figures, transmitters.with higher
output power, and antennas with more gaih. Further impfovement can be
obtained by means of elaborate signal_processiné schemes, In recent
years a considerable amount of‘work has been done in digital processing
fo£ radar. The technical problems imposed by modern radar systems are
those of processing {real-time) a la#ge number of data and tﬁe requirement
of complex signal processing operations. These problems can only be
solved reliably by the use of digital techniﬁues, although in some cases

modern optical processing schemes can offer an alternative.

The cholce of a suitable transmit waveform is an importanf problem
in rédar design., This is so because the waveform controls resolution and
clutter performance and also bears heavily on the system cost. As
compactness, cheapness and computaticnal speed of digitél microcircuits
contihué to increase their use in signal processing applications becomes
- more practical. - In particular, the advent of sclid-state antenna arrays
has its impéct on radar system designers in two principgl ways. First,
peak-power limitations of solid-state arrayleléments have necessitated
the use of waveforms with long durations in order to achieve the required
signal energy over a desired range. The required Stability and
reproducibility of such signals can only be satisfied reli;bly by
"~ digital signal generation and processing. Secondly, the ability to
switch the beam of solid-state arrays at high‘speeds gives the radar a
malti~function capability, thus requiring the flexibilit§ to enable a
variety of waveforms to be employed3. These regquirements have made
digital signal processing with its inherent adaptability an attractive

alternative to analogue processing.

Theoretical studies which provide the basis for technical advances
have not, so far, solved the general signal design problem. The

knowledge of the properties of pulse trains, a class of signals particularly




well suited to digital processing, is therefore of increasing practical

importance.

An early suggestion for using discrete coded waveforms in radar

" appeared in a paper by Siébert4 treating the general éroblems of radar.
Siebert noted that certain binary coded waveforms cffered substantial
improvement in range and wvelocity resolution. However, it was shown
that in order to obtain these improvements, it would be necessary to
employ long feriodic binary sequendes'known as'pseudo—random sequences5
Later, Lerner6.suggested that the.periodic sequencé could be modiﬁied to
form‘an aperiodic signal and yet retain the nearly optimum resolution
property of the waveform. The use of aperiodic signals allows the
éonstrucﬁion of passive matched filter receivers. At about this time the
- 'signal aesign problem was approached in a slightly different way.
Assuming a matched filter feceiver, the range resolution capability (in
the absence of doppler shift) waé found to be directly related to the
autocorrelation function of the transmitted waveform. Therefore, the
approaéh consisted of attempting to design éperiodic binary segquences
hqvihg oﬁtimum'autocorrelatioﬁ propertiesT_g. These sequences were

called 'optimum finite code groups' or Barker sequences.

S8ince these early evaluations a number of authors have made

valuable contributions in the field of waveform designlq_ls. An

interesting analytical method for generating binary codes was reported
by Boehmerlo using Number Theory. Another gquite different approach to the
problem is discussed in a paper by Vakmanll and Varakinlz. The authors

suggest a synthesis procedure on the basis of spectral theory and the

method of staticnary phase.

Heimilierls, Frank17 and _Zadoffl8 have shown that there are other
suitable codes if the restriction of 0°-180° phase shifting is removedlg.

In the case of Frank codesl7,.higher order poly-phase coded words can



be generated by coding each sub-pulse into one of M phases. Huffman20

considered the problem of designing amplitude and phase modulated pﬁlse
trains.' Helhas shown that finite-length signals with nearly ideal
autocorrelation functions can be generated. 'Thié property, however, is
écﬂieved at the expense of amplitude modulation which results in increased
system complexity and lower energy uﬁilization at the transmitter{
Nevertheless, tﬁe additional expensé of encoding and decﬁding of amplitude
and/or phase modulated waveforms may be jﬁstified for radars that must
cope with land clutter or operate in a densthafget enyironment. However,
the use‘of amplitude modulated pulse trains is precluded in mest high

power applications due to the inevitable loss in energy efficiency.

In spite of considerable efforﬁ that has been devoted to the problem
‘'of designing waveforms with high range resolution there seems to be a lack
of signal design techniques and theory. B&All present methods tend to
contain.an element of trial and error and, moreover;'rely'on the skill
and ingenuity of the designér. In short, the study of phe properties of
pulse trains does not appear to have progressed much beyond an understanding
of the types described above, The currently accepted belief that there
is no ideal waveform is not surprising considering the various different
tasks modern radar systems have to perform. on thé other hand, the
‘inability to find an ideal waveform is not.an excuse for failure to search
for locally optimum waveforms forrs;}ecific radar applications and

environments.

The effert in this thesis is directed towards the improvement of
a factor which constitutes a fundamental limitation to radar performance;
. namely the transmitted Wavefofm. Although the ways in which the
transmitted sigﬁal affects the system perférmance are well understoodZI,
there seems to be no obvious solution to fhe problem of designing energy
efficient pulse trains‘for high resolution radars, Therefore, the werk

presented in this thesis is concerned primarily with the study and



development of design methods for improving the range resolution capability
of pulse trains. The pﬁlse sequences discussed later, begides representing
an interésting mathematical area, are also of practical significance in

related fields such as digital communication and navigation.

The main objective in this work is to consider optimum finite-
length pulse_trains subjecf to an amplitude constraint, that is the
amplitude of each sub-pulsé of the transmittted signal is con;tant. This
reduces the waveform design problem to an optimum selection of.the phase
modulating function only. The constant amplitude constraint of the sub-
pulses is attractive for a number of reasons; the pulses are convenient
to gate, ana when clipped are distorted less ﬁhan amplitude ﬁodulated
signals, reduction of system complexity and probably the most important of

all, the transmitter power is most efficiently utilized.

1.2  oOutline of Investigation

This thesis is concerned with a number of'differént'aspects‘of the
puise train design problem for radar systems. As a basis for later work,
the principles'of waveform and processor design are outlined in Chapter

2. This is carried out aséuming matched filtering and digital signal

~generation and processing.

-

In Chapter 3 the important problem of synthesizing pulse trains
from autocorrelation functions, which are specified at discrete points in

rhase and magnitude or in magnitude only, is tackled.

The resoluﬁion properties of pulse trains aéproximating FM type
signals are studied in Chapter 4. This approach to code generation is
perhaps more one of ana;ysis'rather than that of design. The work
includes wvarious suggestions of reducing the range sidelobes of the

autocorrelation function. ) ' K

o




In Chépter 5 the signal design preoblem is approached via numerical .
optimization techniques. This is done by minimizing an appropriately
definedlperformance measure reflecting the resolution capability of a
signal. The optimizatiog problem is formulated so as to incorporate a.
fixéd amplitude constraint which arises from practical radar‘
considerations. It was. necessary, however,'to consider first the performance
of the.different non~linegr optimization algorithms when applied to functions
éf medium to high dimenéionality. .For fhis purpose four favoured algorithms

are selected and briefly described.

_Chapter 6 pPresents the relative merits of the four non-linear
algorithms described in the preceeding chapter. The most efficient
opﬁimization method was then applied to generate phase modulated pulse
trains of wvarious léngths. This chapter also treats a new method of
designing binary sequences using constrained optimization technigques.
Moreover, the properties of_paifs of phase coded sequenges having low

autocorrelation sidelobes and small mutual crosscorrelation are studied.

Much of the material included deals with purely phase coded sequenées.
For certain applications, however, the use of amplitude modulation can
.provide a useful means of improving range resolution and clutter rejection.
Chapter 7 presents the results of the sYntﬁesis of energy efficient
amplitude and phase modulated pulse trains. In connection with Huffman
cédes a new approach to the signal synthesis problem using parameter

variational techniques is developed.

Chapter 8 stands apart somewhat from the othexr chapters in that it
is concerned with sidelcbe reduction techniques using mismatched fiitérs.
The central problem in mismatched filtering is to consider the trade-off
. possibilities between resolution and degradation in signal detectability.
finally,Chapter 9 considers the combined range and wvelocity resolution
propefties of the‘synthesized pulse trains. This is done using the standard

21
range-doppler ambiguity function of Woodward .




CHAPTER 2

SIGNAL PROCESSING CONCEPTS AND WAVEFORM DESIGN

2.1 Introduction

‘This chapter includes some of the general principles of waveform
and processor design. The choice of the transmit waveform and of the

, ' - : . ' . 4
receiver configuration involves in general two separable design problems .

"The waveform must be chosen to optimize performance in some total

environment, e.g. clutter, dense-target environment, etc. However,

there is no universal waveform which would meet all‘the requireménts

for any arbitrary environmental coﬁditions. The design of the radar
processor (hardware) is.somewhat éeparable, since thefe are generally

a numberlof ways to implement a near optimum receiver for a given waveform.

Coét, complexity and reliability are usually the bounds on processor

- design rather than physical realizability.

The complexity of a signal processing system depeﬁds on the
complezity of each elementary operation the systgm has to §erform and
on their number. Tﬁis in turn depends on the number of input and output
channels. For modern high resolution radars the complexity of the signal -
processing system and the amount of data to_be handled easily reaches -
critical limits. However, this thesis will be restrictéd to studying
the coded waveforms as modulating functions. The wvarious possibilities
of modulating a carrier with these functions and the ways and means of

implementing processors will not be considered here.

Thié chapter also introduces the waveform design problem.with the
now standard range-doppler ambiguity fungtion description of Wdodwardgl.
The ambiguity function discussion will only contain a summary of the
results pertinent to the descriptions of the specific waveforms. The
bﬁlk of the work will be concentrated on the study of the zéro doppler
crOSS*éection of the ambiguity function, since the particular concern

is the range resolution capability of a signal. Detailed descriptions




of the general properties of various wavéformrclasses and their

ambiguity functions can be found in many 6xcellént referencaszz-zs.

The general description of the ambiguity functions is, despite
their wide study, not without its limitations. While with modern
computers it is not difficult to derive thé ambiguity function for a
particular waveforﬁ, it is general;y nét possible to derive a specific
waveform, starting with a given ambiguity function., Moreover, a
thorough and bounded desqription of the target and clutter environment

is required for a unique selection of the appropriate waveform.

2.2 Representation of Pulse Trains

Pulse trains are waveforms particularly well suited to digital
-processing. In general, these waveforms can be regarded as a finite
number of contiguous. coherent carrier pulses_(sub—pulses) each
modulated in amplitude, phase an@ frequency. Analytically this class

of signals can be expressed in the form

u‘t) = g é{ﬁ) rect(ﬁ/T—n} cos{2n(fc + £f(n)it + ¢(ﬁ)} _ ., (2.1)
n=o
where T = pulse duration
| fc = carrier frequency
a(n) = amplitude of nth pulse
$(n) = phase of nfh pulse
£f(n) = frequency deviation of nth pulse

and rect(t/T) denotes Woodward's rect function shown in Fig. 2.1 and
defined as
o, |t] s 22

rect(t/T) =
0 ; elsewhere

It is noted that for a given carrier frequency, fc’ and sub-

pulse duration, T, the signal is completely specified by the ordered

(2.2)



rect (t/T)
1 .

-T/2 0 T/2

tri (t/T)

1

Fig. 2.1 Rect and tri functions.

Fig. 2.2 Amplitude and phase
modulated pulse train.



éequences {a(n)}, {6 )}, {f(n)}-

as follows :

fh

Growp I  : {¢(m)} = {f(n)} = Q,‘{a(n) = 1,0}

Group II {f(n)} 0

|
Pulse trains can be conveniently divided into three basic groups,
Group III : {a(n) = 1,0} HApnit =0

The sub-class of pulse trains considered here belong to Group II and are
referred to as amplitude and phase modulated (a.m.ph.m.) pulse train527.

A typical waveform of this typé is shown in Fig. 2.2..

Althbugh this thesis is not concerned with the various methods
of generating a.m.ph.m. pulse trains, a few words seem appropriate at

.this point.

In digital signal generation the'generator presents a saﬁpléd and
gquantized signal at the output that can be used either for amplitude,
phase or frequenéy modulation of a carrier signal. Therefore, a digital =

signal generator is in general a time-clocked unit capable of furnishing ‘

'a'sequence of digital data which are utilized to reconstruct, by
filtering or modulation or both, the output signal. In most radar

applications phase modulation, and particularly digital phase modulatibn,

ig the most attractive modulation ﬁethod. In the case of phase'

modulation the signal can be reconstructed by either of the two methods _
shown in Fig. 2.3. The digital phase sample generator produces samples }
as binary numberé_which are converted into cos ¢{n) and sin ¢(n)} and thus

into samples of sr(t) and si{t) {see Eq. (2.5)). Altérnatively,the

binary number can be used to digitally phase modulate a carrier signal
in a digital phase modulator,

-



digital phase ¢ (n) | phase sin ¢ (n) _ Lowpass 53 (£)
sample - : b/A | -filter phase modulated
~generator sin : -
‘ ocutput
lqok—up tables uit)
*
phase cos ¢{n} : Lowpass
| n/a fil
-clock / tlter
cos
cos 27f t sin 27f t
< c
o ) , phase modulated
digital phase ¢ {n) digital phase ' bandpass output
sample modulator filter ult)
. generator :

clock

Fig. 2.3 Phase modulation of a carrier signal.
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2.2.1 Complex Envelope and Bandpass Filtering

Since a.m.ph.m. pulse trains are of the 'bandpass' type their

theory can be simplified'by the use of the complex envelepe representation28_30.
"The bandpass signal represented by Eg. (2.1) ean be expressed as

u(t) = Re {s(t) exp §2nf t)} _ (2.3)
where s(t) is the complex envelcpe of u(t) and is given by*

N .
s(t) = I aln) rect(t/T-n) exp{(j¢(n)) (2.4)
: n=o

As seen from a comparison with Eq. (2.1), the real signal envelope is
the absolute value of s(t). Thus the bandpass signal u(t) is completely
described by a knowledge of its carrier frequency, fc' and its low
frequency complex envelope s{t). In terms of real and imaginary parts
of s(t}, the bandpass signal u(t} is giwven by

ult) = sr(t) cos2nfct - si(t) 51n2ﬂfct {2.5)
where

s(t) = sr(t) + 3 si(_t)

The low_paes signais sr(t) and.si(t) are ealled ﬁhe in-phase and

quadrature components, respectively, of the bandpass signal. Froﬁ the
foregoing it is evident that the complex envelope s(t} is ie@ependent
of the carrier frequency, fc. Therefore, it is suffieient to consider

the complex envelope as the transmitted signal and to ignore the carrier

term exp(j2nfct);

The great advantage of complex signal representation is that

operations such as linear bandpass filtering. (convolution) can be

o

*As presented here the waveform is not normalised, i.e. I |s(t)| at # 1.
In order to accomplish normalization it is necessary to ﬁultiply (2.4)
N oo -172 ' n
by a factor (T L a" (n)} . Without affecting the general discussion
. o .
to follow and in most subsequent work this factor has been omitted for

convenience.




expressed directly in terms of the complex envelope. In other words,

bandpass filtering of a signal can be treated simply in terms of complex
. 27,28 » . . . :

lowpass signals . This filtering operation and how it can be

implemented in terms of real lowpass filters is shown in Fig. 2.4.

The case of particular concern is the situation when a pulse train is

applied to a filter whose impulse response is itself a pulse'train with

the same carrier frequency, fc, and the same individual sub-pulse

duration, T.

Consider the discrete coded waveform, consisting of (N+l) pulses
representing the impulse responsé of a linear filter as an ordered set

of complex numbers
{h(n)} = (h(0), h(l), ...., h{N)) | - (2.6)

In signal processing terminology such a seqguence is often
referred to éé a time series. Alterﬁatively the saqUencé {g(n)}
with values h(n) = h{nT) can also be visualized as being generated by
sampling the complex envelope h(t) of the correspondiné continuous
waveform every T seconds. Although sequences do not always arise from
s%mpling analogue waveforms, for convenience h(n) will often be referred
to as the nth sample of the sequence. In addition h(n} will. also be

used as a shorthand notation for the seguence {hin)}.

The magnitude of the complex number h(n) represents the amplltude
of the nth pulse while the angle of h(n) specifies its phase. The
complex envelope of the filter impulse response y(t) can easily be
_ obtained by convolving tﬁe time series of Eq. {2.6) with Weoodward's

rect function.

N

T hi{n)§(t-nT) * rect(t/r)
n=o

N .

b h(nlfw § (1-nT) rect [ (t-7)/T ] dr
n=Q -0 .
N .
L h(n) rect(t/T-n) T (2.7)
n=o

y{td

y{t)



uz(t) h(t) uz(t) = ul(t) * h(t)
Sl(t) complex envelope SQ(t) = Sl(t) *yle)
complex envelope yit)
U2(f) = H(f} Ul(f)
S,(£) =% T'(f) 8, (£)

cos 2Tf t
o)

u, (t)

Input Bandpass filter Output
\
\

sin 2cht : equivalent lowpass sin 2cht
filter

Fig. 2.4 Baseband filtering.
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where * indicates the convolution operaticn.
The Fourier transform (FT) of Eq. {(2.7) can now be found by
using the familiar rules of transform theory.
s(t-T) —a——— S(£f) exp (-j27£LT)
rect (t/T) ~+——m 'I'sinc(f'l‘)

-where — _ 8inmfT
sinc (£T)= HET

The spectrum of the complex envelope y(t) is therefore

N
Tsin{£T)I h(n) exp (-j2nfnT)
n=o

T (£)

ox

r(f)

Tsinc( £TIH(f)

The term Tsinc(fI)denctes the spectrum of the function rect (£/T). It
is evident that the spectrum H(f) ié indepen&ent of the form of a
single sub-pulse. However; it is periodic with a périod of I/T and
it represents the spectrum of the coded sequence h(n) as illustrated
in Fig. 2.5. The relationship between the FT's of an analogué signal
and its sampléd versioh is thus given by

o
H(E) = I H_(£+n/T)

=—00

where

It

Ha(f) J h{t) exp(-j2nft) dt

-]

I h(nT) exp(-j2r£nT) .

n=-—c

H{f)

The above relationship essentially formulates the time domain sampling
theorem which states that a continuous function of time whose spectrum
is limited to the band {(+W/2) is completely defined by time domain

samples taken at intervals of 1/W. ' :




Fig. 2.5 Effect of time domain sampling on

bandlimited signal.
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Similarly the input signal, having (M+1) pulses is represented

. by a(n). The complex envelope e(t) of the cutput signal has a FT

which is, according to standard transform rules of linear filtering,

the product 6f the FT's of the complex envelopes of the input waveform

andl the filter impulse response scaled by a factor 1/2. Thus,

M ' . N .
B =120 T am) e 30Ty 5 pmy &3P 22 ginctem
n=o n=o
.M N ~32%E (n+k) T, 2 '
=1/2{ £ I a(n) hik) e n Th T sinc%fT)-
n=o k=0
M+N . .
=1/2{ & cim) equﬂfmT} T2 sinc%fT)
' M=o
" where i
’ k
ctk) = Z a{n) h{k-n)

=0
k =0,1,2,....,(NM)

The complex envelope of the output signal eft) is given by the inverse

FT (IFT) of Eq. (2.10). Using the relationship

Tzsinc%fT) —_+———— = T tri(t/T)

. leads to

M+N
- e(t) =T/2 I c{m) tri(t/T-m)
m=0

The function tri(t/T) is shown in Fig. 2.1 and is defined as

1= el | s T
tri(t/T) = ' _
o] ; elsewhere

At non-integer multiples of the sub-pulse duration, T, the

_ cbmplex envelope of the ocutput waveform is given by linear

interpolation between adjacent values. The output number sequence ¢ (m)

thus specifies, except for a constant scale factor, the output waveform

(2.10)

(2.11)

(2.12)
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at regular sampling instants T.

The main conclusion froﬁ the foregoing is that complex envelope
representation of pulse trains simplifies the discrete linear filtering
process which can be regarded merely as a multiplication of polynomials.
In addition only the spectrum of the codea sequences need be considered

to specify the waveform at integer multiples of T.

2.2.2 The z - Transform

It has been shéWn in the previous sectioﬁ that the FT can be used
“to describe the frequency properties of pulseltrains. Another compact
notation for the FT of such signals is the 2 - transform (ZT)Bl._ The

ZT is also a very cosvenient method of representing .a signal by a set

. of poles and zeros in the complex z-plane. This is Quite similar to

Laplace transform techniques used for analogue systems which can be

represented by poles and zeros in the complex s-plane.

The ZT of an arbitrary number sequence, a(n), is simply a

polyncmial in powers of z_l, given by

A(Zj = a(0) + a(l) z-l e a (N) z_N
A(z) = I a(n) z (2.13)
n=o :

where z is usually expressed in the polar form z = exp(sT). In general

the frequency variable z has both real and imaginary parts. Thus if

s =g + j2uf

The variable z is often referred to as a 'shift' operator, since
exp(-j27fT) implies a time delay of T seconds while exp (j2nfT) represents

a time advance of T seconds.
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If the ZT, A(z), is evaluated on the unit circle in the.z-plane

‘(]z| = 1), the spectrum of the time series a(n) is obtained.
. N )
aflz) =A(f) = I a(n) exp(~j2wfnT) (2.14)
(Jz|=1) n=o '

It’is noted that the spectrum A{f) is a continuous function in fregquency.
In practice, however, the séectrum of discrete time series is usually
evaluated using digital computers. This means.thet the spectrum A(f) -
can only be estimated at discrete points in £ which is generally
referred to as discrete Fourier transform (bET). Although the spectrum
can only be estimated at suitably chosen intervals in £, it can be

shown that for_time limited or periodic signals such a discrete
representation of the underlying continuous functicn does not result in

- any loss of essential information3l. This is sometimes refetred to as

" the frequency sampling theorem.

Using the DFT, Eg. (2.14) can now be rewritten as a finite-length

sequence

N
I ain) e

n=o

A (k) ~j2mkn/ (N+1) - | (2.15)

k=0,1,2,....,N

Thus the frequency spacing between successive harﬁonics is 1/(N+1)T
' and the frequency of the kth harmonic ié therefere k/ {(N+L1}T. Ie can be
Seen f:om Eg. (2.15) that the sequence A(k) is periodic with a pericd
of (N+1); i.e. A(O) = A(N+1), A(l) = A(N+2), etc. Similarly the inverse
transform (IDFT) of Eq. (2.15) can be written as

N .

1/(N+1) I A(k) e

j2mkn/ (N+1) o . (2.16)
k=0 '

a(n)

n=~0,1,2,....,N
where the multiplying factor 1/{N+l) has been included for convenience.
Alternatively the above equations can be expressed in matrix form

a=1/(N+l) ¥* A | (2.17)
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where the (N+1)-element column vectors 2 and A are given by

col (a(0),a(l),e...,ad))

o
1

n

A = col (A(0),A(L),....,A(N))

The {N+1)x(N+1l) matrix Y* is the conjugate of the DFT matrix Y given

+ -

by

2 N

L vy ey

Y = . .
- . 2

where y = exp{-j2n/(N+1).).
Eg. (2.17) is the IDFT and its inverse (DFT) is therefore given by

A=Ya

It is noted that the DFT matrix Y has the property

Y Y* =(N+a)T o

where I is the identity matrix.

Although, in principle, the DFT can be evaluated using.Eq.(Z.lS)
or Eg. (2.19) in practice the fast Fourier transform (FFT) algorithm

is used32'33.

From the foregoing it is clear that-a.finite-duration sequence
can be expressed exactly by samples of its ZT. Moreovér, the pefiodic
sequence obtained by sampling the 2T at (N+l) equally spaced points on
the unit circle (|z[=1) in the complex z-plane is identical to the DFT.
The sequence corresponding to ﬁhese frequency samples is a periodically
repeated version of the original sequehce, such that if (N+1). samples
of the ZT are used no 'overiapping‘ or 'aliasing' occurs. Thus, in
general, a finite-duration seguence is reﬁresented as one period of a

periodic segquence,

{2.18)

(2.19)
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In addition it has been shown that the ZT of a pulse.train is
simply a power sgries of z-hl in which the coefficients of.the various
terms are equal to the corresponding samples. When a waveform is
expressed in this form, it is possible to regenerate the number
sequence merely by inspection; a number having the index n is simply

the coefficient of z“n in the Z7T.

The linear filtering operation of Eg. (2.10) can now be rewritten
using the shorthand notation of the ZT. If the sequence c{n) represents
the convolution of the two sequences a{n) and h(n), then the ZT of c(n)
is the product of the ZT's of a(n) and h(n), i.e. if

n .
£ a(k) hin-k)
k=0 :

c(n)

n=0,1,2,...., N+M)
then

C(z)

Alz) B(z) o (2.20)

This can easily be shown considering the following expressions,

‘ N+M n o
c(z) = T {Z a(k) hin-k)} z "~
' n=0 k=o '
interchanging the order of summation yields
M N-k . -n
Ci(z) = £ a(k) £  hink) =z
k=0 n=
letting m = n-k leads to
Mo N cm K
C(z) = I ak}{ I h(m z "}z
=0 m=Q
hence
C(z) = A(z) H(z)

However, if the DPFT is used to evaluate Eq. (2.10), the sequences af(n)
and h{n) have to be modified. =~ Taking the straightforward DFT of

finite-duration sequences and then inverse transforming the products

_ of their spectra is equivalent to circulérly convolving the periodic
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sequences created from the given sequences. To cbtain the linear
convolution both a(n) and h{n) must be (N+M+l)-point sequences. This
is achieved by appending the appropriéte number of zeros to both a(n)

and h(n), i.e.
M zeros

—A—,
(a(0),af{l},.e..,a(N),0,0,....0)

N 2zeros
(h(0),k(1),....,h(M),0,0,....0)

The (N+M+1l)-point DFT of a{n) and hi{n) is then taken, multiplied, and

inverse transformed to obtain the correct segquence cin).

The ZT, a familiar analytical technique in modern control and
sampled data systems, thus proVides an excellent tool for studies of
' digital systems and signals such ‘as pulse trains. Therefore, throughout

this work use is made of the ZT representation whenever possible.

2.3 Optimum Processing of Radar Signals

The transformations and interference effects to which a radar
éignal is subjected during its path from the transmitter to the
receiver will now be analysed using Fig. 2.6. It is assuméd that the
signal,‘although generated digitally, is analogue filtered prior to
Vtransmission. The transmitted signal s(t) firsﬁ passes through a
time-invariant processgr, which accounts for the unknown round trip
amplitude attenuation a,_time delay 1, doppler shift v, and phase shift
é of the signal. Such a treatment of the transmitted signal assumes a
point target (no range'extent). This is a convenient assumption in

“analysing system performance.

In order to avoid continual repetition seﬁeral general assumptions
are made for subsequen; discussions of radar signal processing techniques.
(i) Point targets are assumed.

(1i) .Target acceleration is negligible, i.e.

@
a << A/Tg



transmission
path

o s{t-t)e

J(2mv (t-T)+8)

" putput

digital analogue transmitter ‘[time-invariant
signal filter - and = DProcessoxy
generator antenna I
| I
s (nT) s (t) e ——
F—
—__'.-U- .
f digital
: receiver analogue ' g-h
+ ‘ - filter . A/D - mgtc ed
filter
(279 (t-1)+8)
noise w(t) and as(t—t)ej + wit) + ¢lt) J (2mv (nT-7) +6)

clutter cft)

s(nT-T)e

Fig. 2.6 Block diagram of signal model,

+ w(nT)} + c(nT)
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where a is the target acceleration, A is the cérrier wavelength.,
and TS is the sigﬁal duration.

(iii) Mismatch of the envelope of the received signal and the
‘transmitted waveform due td high relative velocities ig
negligible, i.e, |

2vr/c << I/WTs

where v, is the radial target velocity relative to the radar,
‘c is the velocity of light, and W is the signal bandwidth.
{(iv) All signalsg aré narrow band, |
W << £
o]

where fc'is the carrier fregquency.

Since radar returns are always immersed in noise and interference

. from all kinds of objects illuminated by the antenna beam, the receiver

must be cptimised in some manner. Additive interference introduced by
a large number of independent target-like reflections such as cbmposite
returns from an extended scattering region containing terrain, rain,

seawaves etc., is usually called clutter.

The return signal, immefsed in e¢lutter and neoise, is now analogue
filtered, digitized and processed. Three approaches have been used to
derive optimum processors for radar signals,4'21’34

‘(i) Signal/noise ratio criterion (SNR}

{ii) Likelihood ratio criterion

(iii) Inverse probability criterion
Any of these criteria lead to the matched filter receiver, provided the
signal is corrupted only by additive white Gaussian noise. Moreover,
Woodwardzl has showh that this type of receiver also preserves all the
infqrmation in the radar return. Eyen in éituations where matched

filter processing is not optimum, for example when interference from

clutter is significant (coloured noise), matched filters usually provide



a reasohable compromise between system performance and complexity35.

On the other hand, matched filter processing may be used simply because |
|

information about the target environment to design more optimum processors ‘

is not available. The problem of target resoclution and cptimum ‘

detection for a sgpecified clutter environment has been studied by a

P o 36-39°
number of authors and will not be of prime concern here .

Therefore, unless otherwise specified a matched filter receiver is

assumed.

2.3.1 Digital Matched Filter

The characteristicé of the matched filtef tMF) can be designated
by either a frequency response funcﬁion or a time response function, each
~ being re}ated to the other by a FT operation. In the frequency domain
the MF transfer function.H(f), iz the complex conjugate function of the

spectrum of the signal that is to be processed, except for an arbitrary

scale factor and a linear phase shift.

H(E) = a S*(£) exp(-32nET,) ' - (2.21)

where S* (f) denotes the complex conjugate spectrum of the input signal
s(t}. The scaie éactof a and the linear phase shift exp(—jZﬂde) do
not affect the signal-to-noise ratio (SNR) and maf therefore be ignored.
Thus,
H(E) = S*(£)  (2.22)
In the time domain the corresponding relationship is cbtained by taking
the IFT of Eg. {2.22). This leads to the result that the impulse
"response of a MP is the mirror image of thé complex conjugate of the

transmitted signal s(t), and the general relationship is given by

li

h{t) o s*(Td-t)
or simply

hit) s¥*(-t)

|




However, in a digital radar receiver, the received waveform is

sampled every T seconds., Thus the impulse response of the digital
MF is given by the sequeﬁce |
h{nT} = s*{-nT)
or* simply
h(n) = s*{-n) : . (2.24)
So far it has been assumed that the spectrum of the reflécted signal
is completely known. However, even for the simplest.case of.a single
‘point_target, the return signal contains two unknown parameters; doppler
shift v and time delay 1. In general the spectrum of the feceived-
signal is of the form
s{f) = Sc(f—v) exp(—j2ﬁft - 0) (2.25)
where So(f) denotes the spectrum of the transmitted signal. Therefore,
' for matéhed conditions, a receiver with_the frequency characteristic,

(neglecting a constant phase term and amplitude factor)
H(f) = S;(f—v) exp(j2nfr + 0) (2.26)

is requiréd for optimum detection. It is clear that for statibnary or
slowly moving targets {vzo) a receiver matched to the transmitted
wéveform is optimal*. However, since the doppler frequency depends

on the range rate of tﬁe target and is not known beforehand, optimum
reception of signals reflected from moﬁing targets cannot be aécomplished
by only one matched filter. &n optimum receiver in this case requires

a bank of matched filters with incremented freguencies, AQ, of tﬁe
doppler shift v in the expected domain. This is illustrated in block

diagram form in Fig. 2.7. The output of the matched filter bank is

*In the present context 'stationary' means that the duration of the
signal is too short for the effects of target motion to be noticeable.
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usually applied to a square law or envelope detector and compared
with a common threshold. If any of the outputs crosses the threshold

a signal is deemed detected, and from the corresponding delay and

~ doppler shift the target's range and velocity are estimated.

The response of the digital MF to an input signal reflected
from a target, at range r and radial velocity Vo is cobtained by

conveolving the filter impulse response with the input signal.

o0

t {snr-t) e

n=-w

~j2nwv {nT-T}

¥ (t,v) + wi{nT)} s* (- {mT-nT))

e~j2nv(mT~ri -321VnT

0
I s{{ntm}T-1) e

n=—o

s* (nT)

co

+ I wil{n+tm)T) s*{(nT)

n=-—«

where : ' :
T = 2r/c and v =(2vr/dfc

fCA= carrier frequency,c = velocity of light

The noise w(mT) is assumed to be a_Gaussian random variabkle with zero

mean and variance 02. Furthermore, w(mT) and w(kT}, for any integer

-k # m, are uncorrelated and therefore statistically independent.

Eq. (2.27) can be simplified by ignoring the non-essential phase

factor, exp{~j2nv{mT~1)), and by letting Wh-1=1, Thus,

o

¥(thv) = ¥ s(nT+r) s*(nT) e + T w{(n+m)T)s* (nT)

=—co . M-t

-j27vnT

Although the input signal and the impulse response are discrete, it is
noted that the function in Eq. {2.28) depends on the two continuous

variables T and v.

‘Since the radar detector at the output of the MF usually removes

the phase information, the function of interest is generally

«

{(2.27)

(2.28)
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v |? = |2 s@mos @m e 2T 2, g w({n+m)T) s* (nT) | 2

=00 : o ’ rn=-co
+ cross-products

The first term in the equation above is the signal term resulting

only from the target reflection

|X('r.-v)|2 =] I s(nT+1)s*(nT) o"327VnT 2.

n=-co
The function lx(T,v)lz is commonly referrea to as the ambiguity
function*. - The investigaﬁion of the ambiguity function has béen a
field of extenéive study since its introduction by Wcodwardzl; The
origin of the ambiguity function (r=0, v=0) may be thought of as the
output of the matched filter tuned in time delay and frequency shift
‘to ghe signal reflected from the target (point source) of interest.
For zero relative doppler shifﬁ,.lx(‘r,o)l2 represents the squared
magnitude of the autocorrelation function (ACF) of the transmitted
signal; This is the filter response to reflections at a different
range but at the same doppler as the target. Similarly,|x(o,§)|2 is

the response to reflections at the same range as the target but with

other doppler shifts. Another property which reflects the fundamental -

constraint of radar signal design 'is the total volume under the ambiguity

function. It is shown below that this volume is independent of the.
shape of the transmitted waveform.

/2T 5
vV = ‘ |xtt,v) }© dat av

-® =1/2T

*In the llterature the terms x(T, v),[x(t v)| and |x(1, v)[ are often
used synonymously as ambiguity function. :

(2.29)

(2.30)

(2.31)



Substituting Eq. (2.30) into Egqg. (2.31) and integrating first with

.respect to v

oo [+

v= 31 I J S (nT+T)s* (mT+7) s (M) s* (nT).

== [l=—c
. ~

sin 7 {n-m)

T (n-m) dat

Integrating with respect to T and noting that the autocorrelation of

the signai is given by
r {{n-m)T} =-r s* { (n-m)T+1) s (1) dt
-—)

leads to

@« =

V= £ £ s*@T)s@r) r((n-mT) 2 Tn-m

== Jns=—c0 T‘I_T (n-m)
since
"1 sin T {n-m} - 0 m#n
T m{n-m) 1 m =
T n
1 ® ' 2 1
V=5r(e) I |saT) | = S xlo) E
n=.-oo
12 : ' L
vV = T E | . _ (2.?2)

where E denctes the signal energy.

Hence the volume under the amﬁiguity function depends only on
the total signal energy. This implies thaﬁ any reduction of ambiguity
anywhere in the (t,v)-plane will cause it.to appear elsewhere. Eq.({2.32)
is particularly important in clutter énd multiple target environments.
The radar signal design problem can be coqsidered, therefore, as a
process of rearranging the‘uhdeéired portions of the ambiguiﬁy function
{range and doppler ambiguity away from the origin} into a.region of

little importance.



The second term in Eg. (2.29) is due to the white noise.

The computation of the mean noise power is simplified by noting that
the noise power is an unéorrelated zeio mean, random Gauésian variable.
Thus the expected value of the variOué crgss—products in BEq, (2.29)

are zero, Hence, the mean-square noise power at the output of the MF

is given by

IN(r,u}I2 =E{ I Z‘ w{nT) s*{nT+t) w*{(mT} s (mT+T)
: me=—0e N=—%0o
e—jva(n—m}T}

z b E{w(nT)'w*(mT)s*(nT+T) s (mT+1)

Matece  I)=—00

x e—jZﬂv(n—m)T}r

-]

IN(T,v)]z = I z rw(nT,mT) S* (AT+T) s (WT+1)

m::-—oa Il 0]

e—32wv(n-m)T

where
rw(nT,IﬁT) = E{w(nD) w*@T)} = 0268 ((n-m)T)
hence
Fewl2 =6 ¢ |sum|? =c?®E = N_E - (2.33)
n:-w :

Thus for a given signal energy, the mean-square noise power at the

output of the optimum receiver is a constant over the (1,v)-plane.

8o far it has been implied that the two variables T and v are
continuous. However, from practical considerations only signals of
finite duration can be processed. It is therefore assumed that the

received signal duration is (N+1)T and that the delay T and doppler

shift v are expressed as integer multiples of the sampling period T




and fundamental frequency 1/(N+1)T, respectively. With these notations

Eg. (2.30) can now be written as

. N-|x| N
Ix(k,ﬂ.)l2 = I  s{n+k) s*(n) e JZﬂQn/(N+l)|2
n=o0 '

KoL =0, +1, 42, «u.., AN (2.34)

In subsequent chapters attention will be focﬁsed on tﬁe case
for slowly moving.or stationary targets. 1In other words, fhe relative
doppler spread of the targets is assumed to be negligible (¥=0). The
output of the MF for zero doppler is the ACF of the transmitted signal

and is given by

N- || ‘
rk) = L s (ntk} s*(n) _ (2.35)
n=o0 e -
k =

=0, #l, 42,...., N

An alternative way of representing the autocorrelation sequence r (k)
above is to use the 2T technique described in Sectien 2.2.2. Thus,

the ZT of Eg. (2.35) is given by

1 N

Foreee +T(0) 2+ uunn

R(z) = r{-N) + r(-N+l) z

-2N+1 2N
z

eeee + T(N-1) + riN)z

1 N

(S*(N) + s*(N-1) 2z © + ..... + s*(0) z )

1 N

x (s(0) + s(1) Z 4 ... + s(N) z )

‘z_N_(s*(O) +8*¥(1) Z + ... + s*(N) zN)

f

x (s(0) +s(1) 25+ ... 45N 2 )

N

CR(z) =z S*(1/z) S(z) | _ (2.36)



The coefficients of R(z) are labelled with index values running from
-N to N. The kth coefficient of the c¢omplex envelope of the ACF at

a time shift is given by Eg. (2.35)

From the foregoing it is clear that R{z}) is an even function

which has the property of complex conjugate symmetry, that is

r(-n) = r*(n) _ _ | (2.37)

The main response peak r(o) given by
- , _
r(e) = I |stn)|° = E ' ) ' (2.38)
n=o
is always real and represents the energy contained in the sequence,

Moreover, it can easily be shown that
r{o) 2 Jrtn)| =n=0,1,2, ..., N

The MF for Qiscréte coded waveforms could be implemeﬁted using
a tapped delay.line as shown in Fig. 2.8. It is assumed that the input
is at the RF cérrier {oxr IF) and that each delay element is an integral’
number of wavelengths. In:addition the sub-pulse matched filter mast
also be centered at that frequéncy4o. Such a processor filters the
input signal directly as a bﬁndpass signal. However, for long sequences
(N+1 > 31) the bandwidtﬁ of the delay line presents a practical problem
in that its N cascaded stages must have an ovérall bandwidth > 1/T, -
éhe reciprocal of the sub-pulse duration. Tﬁerefore it is often
preferable t§ process signals at baseband (zero IF or homedyne receiver)

particularly when digital implementation is regquired.

In a typical digital processor the delay lines are replaced by
digital memories, Fig. 2.10. In this configuration the RF or IF signals
are heterodyned to zero carrier frequency with a single-sideband or

quadrature mixer whose two video outputs represent the in-phase, I,
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and quadrature, Q, components of the signal (Sec. 2.2.1); It ié

.even possible to add minor doppler shifts (if knowh) to the local
oscillator: (LO) to prevent degradation of the matched filter output.
The baéeband signals are then low pass filtered, sampled and converted
to‘digital form at high speed. The digital matched filtering operation
can be capried out uéing a digital tapped delay line (tfansverSal _
filter) as shown in Fig. 2.10,o0r by the high speed pipeline FFT method4l_43
shown in Fig. 2.9. However, in most radar applications the FFT
realization of the filter is more desirabie. Thié is pérticularly‘

the case for signals with a large time-bandwidth product,‘sincé FFT

methods tend to be more efficient at performing convoluticn operatiohs.

0 2,3.2 Pulse Compressioﬁ Radar

It has been shown fha#, regafdless of the signal shape, the MF
produces one global maximum output value which is equal to the signal
energy. Because of this concentratién of the entire signal energy its
detection against a white noise background is enhanced. In addition,.
to achieve high accuracy and resolution of radar measurements,.it is
required that the maximum in the MF output be as narrow as possible.
Since the sharpness of the MF outpuf signal (autoqorfelation function)
is inversely proportional to the ¥.m.s. signal bandwidth, compression
of the received signal into a narrow spike can be accomplished provided
the signal has a large bandwidth. Thus the essence of pulse compressiocn
radar systems is to provide this large bandwidth without degrading

raday performance in other respects such as range resolution.

An obvious way to achieve a large bandwidth is simply to reduce
the duration of the transmitted pulse. However, since target
detectability and measurement precision depends on the signal energy,

the transmitted power must be increased proportionally, to keep the
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energy constant. Unfortunately, the peak power limitations of
transmitters sets a lower limit on the pulse duration. Therefore,
the need for a large bandwidth must be met by modulating the pulse

rather than reducing the pulse duration.

In principle any of the three basic tfpes of modulation could
.be used to increase the signal bandwidth, namely; amplltude (aM) ,
phase (PM) and frequency (FM) modulation. (Here, PM is considered as
a general type of modulation where the phase of the signal is variéd).
AM modulation, howeﬁer, is generally not desirable for use with radar .
waveforms due to its inherent disadvantages. First, it is an inefficient
way of increasing the signal bandwidth, in that the function actually
applied to the mbdulators must be wide-band. Secondly, as already
'_pointedlout, transmitter tubes operate most efficiently under constant
amplituae conditions. Thirdly, it is expensive and difficult to achieve
good amplitude linearity throughout the radar system over the entire
dynamic range of intefest. Therefore, AM modulation is of interest as
a means to improve system performaﬁce, rather than as d primary method
ofrachieving large signal bandwidth. The case of quantized FM will not
bé considered here as, due to complexity in freduency synthesizing it

is less practical, except in a few cases, than PM.

As implied by the term pulse compression the objective of the

~ receiver fiiter is to compress the received long pulse having a_time
duration of TS seconds and a bandwidth of W hertz into a short pulse of
duration 1/W, to allow recognition of élosely spaced targets. The
ratio of the duration of the long pulse to that of the short pulse is

called the compression ratio. Thus the compréssion ratio is given by

om, = TS/(1/W) =

(2.39)



-30-

which is equal to the time-bandwidth product of the waveform. In

a digital system the signal duratién 'I'S is equal to (N+1)T, where T
is fhe sampling interval and (N+l) is the number of samples.
Furthefmore, if the sampling process is éarried out at the Nyquist

rate T = 1/W, then
m = (N+1)T W = N+l , {2.40)

that is, the compression ratio or time-bandwidth product is equal to

the total number of samples.

The main conclusion from the foregoing is that in all cases
where the transmitted signal spectrum is substantially widened by
modulation, recompression of signals can be accomplished during

- reception.

2.3.3 Range Resolution in a Matched Filter Radar

The estimation of target resolution performance is probaﬁly the
most'difficult problem to solve in modern high perforﬁanée radar systems.
In some cases the interfering objects may themselves be targets of
interest, whereas in others they may-be urndesirable scatterers
introducing a type of necise,known as clutter, into .the system. As
mentioned in Section.2.3.l the optimum receiver for maximum resolutioﬁ
is not necessaiily a MF. In practice, however, the typical target
_éituation is too-complex and not enough prior information is available
to implement anything but a MF receiver or an approximation. Fof good
target resolution,‘it has thus been necessary to retain a MF Processoxr

but to optimize the signal waveform so as to reduce the mutual

interference (self-clutter) between targets.
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‘ : The ways in which the transmitted waveform limits the radar

; . . . ; 21
‘ performance in white noise are well known ~. Three parameters are

of prime importance. These are the bandwidth W, the time duration

(1)

(i1)

{(iii)

Ts, and the total signal energy E. Specifically:

Range resclution for a Mf receiver and stationary
targets is determined by the spectrum envelope of
the signal. For a given‘gpectral shape, range.
resclution is proportional to 1/W. Therefore,
good range resolution is achieved with a spectrum

for which the total occupied frequency band is large.

Making use of the time-frequency duality, velocity
resolution (radial) for targets having the same

range is determined by the time structure or envelape

_ of the signal. For a given envelope, velocity

resolution is proportional to l/TS. Hence low
velocity ambiguity requires a waveform that occupies,

with Significant energy, a large total time interval.

Target detectability is determined by the ratio of
received signal energy to received noise power (SNR}.
For given system parameters, signal detectability,

and thus range, can only be improved by increasing

" the transmitted energy.

Therefore, it is desirable to transmit a waveform which has both a

rectangular envelcope as well as a rectangular spectrum.

In order to appreciate the resolution problem consider two

stationary targets slightly-separated in range. Neglecting an amplitude

attenuation factor the combined received signal is of the form

s{nT) = sp(nT-fo) + so(nT-ré-T}

(2.41)
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where
so(nT) = transmitted waveform
T, = position of first target
T = target separation

To be able to distinguish the two target returns it is necessary to
select a suitable waveform so(nT). A measure of distinguishability,
given by the sum of the square difference of the two signals,‘can be

expressed as

[

2 : 2
e = I [so(nT - ro) - s(@oT - 7_ - )|

===

@«

e = g .{[s(nT—to)|2+|s(nT—To—T)|2f2Re [s(ar-1.) s*mT-1_-1)]}

n=-co
The first two terms represent the signal energy E and are therefore
constants. The last term is recognized as the ACF, r(t). For the two
. signal returns to be as different as possible it is reguired to

" maximize the equation above, that is

max e = {E - Re { r({1) |} ' (2.42)

Hence, in a MF radar the optimum waveform to use Qould be che whose
receiver response; or ACF, has an envelope consisting of a sihglé spike
"at t = O of a width smaller than the spreading of the targets in range
(delay). However, in practice suéh waveforms cannot usually be realized.
Actual waveforms have ACF's whose envelopes show one or more of the
properties indicated in Fig. 2.1l. _Basiéally there are three types of
MF responses; a single lobe {a}, a narrow main lobe accompanied by
relatively large sidelobes, (b}, and a single lobe surrounded by a
noise-like, low-level response spread out in time (¢). Each one of

these response types presents its own resolution problems. Suppose the
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MF ocutput consists of'a‘singlé lobe {a). 1If tﬁe separation of the
tafgets is.larger than the width of the lobe there will be no problem

in resolving thém. Howevér, for closély spaced targets fhe fesépnses
overlap-and tﬁe envelope of the combined output will depend on the

phdse relationship of the echoes, Eig. 2.12. Thus, in the region of
“overlap,target resolutionris diffiéult to achieve. Therefore, to
distinguish two or more targets their returns must be separated by

at least the half power (3dB) response width. 'A different type of
resolution difficulty is caused by the MF response shown in Fig. 2.1l (b).
Although the.main lobe may be sufficiently small to meet thé‘required
.target resolution, target returné separated at‘multiples of ATd are
completely masked. Problems of yet a different nature are introduced

by the response of type (¢). Again the main lobe may be narrow enough_
.for the desired close target resolution., However, for targets with
widelf varying cross—seétibps it still may not be possibie to diétinguish
them, The pedestal-like extension of thé response due to a strong
target may have an amplitude strong enoﬁgh to obscure the main response
peak of weaker targets. This effect . is aggravated particularly in a
multiple-targe£ environment where the combined sidelobes from many

returns may build up to a level that even relatively strong targets can

no longer be recognized.

) As shown by Woodward21 the MF receiver utilizes the full
infdrmation available frém the return signal. The width éf the.main
response lobe can be regarded as é measure of uncertainty about the
exact target range, ﬁhile the spread of the responée introduces
ambiguitf of the target location. Both effects, although'conceptuaily

‘different, are lumped together in a figure of merit known as the time

 res0lution constantzl;



Fig. 2.11 Forms of range ambiguities.
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Jmlr(T)Isz

AT ='
|z (o) |2

'The resolution problem has been discussed here in a purely
qualitative manner. Analytical treatments of the resolution in
parameters can be found in many excellent radar book522’23'26'44.
Nevertheless, the preceeding discussicn allows the general formulation
of the requirements which have to be met for target resolution. First,
the output signal to ﬁhite noise ratio must be large enough for
reliable detection. Secohdly, the target of inﬁerest must be
separated sufficiently from any other target of comparable or larger
cross-section to prevent overlap of the main fesponse lobes, Thirdiy,

the combined interference from other targets must not be so strong as

.to mask the target return of interest.

Interference from other targets due to responsé sidelobes acts
like clutter caused by undesired scatterers. However, the term
clutter implies that the interference causing reflectofs are so dense
that they cannot be resolved. The type of clutter due to sidelobes is
Often called self-clutter to distinguish it from the effect of

undesired objects.

In summary, the resolution performance of a radar thus depends
fiot only on the width of the main response lobe but also on the low-
level response surrounding the main peak. In the published literature
resolution is often referred to as the 3dB points of the main response
lobe. In the present context, however, target resolﬁtion means the

ability to recognize a target in the presence of others.

{(2.43)
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CHAPTER 3

SYNTHESIS OF PULSE TRAINS FROM SPECIFIED AUTOCORRELATION FUNCTIONS

3.1

Introduction

The problem of synthesizing signals which realise the desired

autocorrelation function {ACF) can be divided into a number of

interrelated problems, each of which has an independent practical

significance. The separate problems could be formulated as follows44:

(1)

(ii)

(iii)

(iv}

Determine the class of functions which are realizable
ACF's for arbitrary signals.

Determine‘the sub-class of ACF's for various signal
structures such as discrete coded waveforms.,
Synthesis of signéls whose ACF is a close
approximation to the désired ACF not belonging to the
class of realizable functions, |

Synthesié of signals {(pulse traiﬁs) which satisfy a
given set of requirements, e.g., range resolution,

energy utilization, etc.

So far, a comprehensive analytical treatment of these problems and their

solution has not been formulated.

For example, a simple criterion for

determining the realizability of an ACF has not yét been found.

To appreciate the nature of the problem arising here consider

the ACF

co

r(t) = L

=00

s (nT+T) s*(nT)

or its egquivalent expression

where |S(f)]2

w/2

r(t) = ej2ﬂfT

Is(£)| 2 ag

-W/2
is the power spectrum of the signal s{nT) and is

assumed to be bandlimited. In other words S(f) is zero outside some

range (-W/2,W/2). Stfictly speaking the requirement for a finite

(3.1) ‘

(3.2)



bandwidth W is incompatible with a finite-duration signal, However,
an approximation to the finite spectrum condition can be reached if
a major portion of the signal energy is concentrated within a specified

'frequency band.

From Eq. (3.2} it can be seén that thé ACF and the power spectrum
form a Fourier transform pair. Hence it follows that for r?T) to be
a realizable ACF its spectrum, R{f), must be real and non-negative.
Even if the given ACF ié realizable the synthesis problem cannot be
solved uniquely. Since the phase informétion\is lqét in the powér‘
spectrum, it is not possible to determine Sff) itself which is necessary'
to find s{(nT). Therefore, all signals whose spectra differ only in

phase will have the same ACF. Thus the synthesis problem may be

- divided into the foilowing-two stepsﬁ

l; The power spectrum |S(f)|2 is deﬁerminea from the
given ACF. - (It is assumed that the ACF is realizable,
i.e., R(f) =FT {r(t}} 3 0, if not R(f) is replaced
by |R(£}]). |

2. From the.determined power spectrum one signal having
such a spectrum_is derived by assigning ah arbitrary

phase function O(f), i.e., s(nT) = IFT {|S(f)|exp(i0(£))},

For digital applications, however, only finite-length sequences can be
processed. The next section will, therefore, be devoted to the

problem of factorizing the power spectrum using ZT techniques.

3.2 Synthesis of Pulse Trains if the ACF is known in Magnitude

and Phase
If the ACF is'given in phase and magnitude'at discrete points

its 2ZT can be written as (Eg. (2.36))

/ R(z) = z“N S(z} 8*(1l/=2)
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As mentioned previously the ZT provides a convenient method to
represent a signal in the form of its zero pattern which is obtained
by factorizing its polynomial in z. In factorized form the equivalent
representation of a polynomial §(z) of order N in powers of z-l can
be'written as

N . o

S(z) =s{(0) T (1 - z,/2) (3.3
i ‘

i=1 o

where.zi'are the zeros of S(z), i.e. S(zi) =0, 1= 1,2,...;,N.

Similarly, S*(1/z) can be represented as

| N - |
S*(1/z) =s*(0] NI (1 - z =%} (3.4}
i=1 * '
N N ‘ N
= g*¥(0) (~1) (I ZI) i (z—l/zI)
i= i=1
: N
g*(1/z) = s*(N) 1 (z—l/z;)
i=1
Hence
N )
R{z) = s{0) s*(N) I (l-Zi/Z)(Z-l/Z;)
i=1

where the unessential delay factor 2N has been neglected. Since R{z)
essentially represents a power spectrum the above equation can be

regarded as the factorized power spectrum45.

The equivalent expressions above allow the study of pulse trains
using their zero patterns in the complex z-plane. The conditions

s(0) # 0, and s{N) # 0, are clearly equivalent to
s{o}) #0 and S*{0) £ 0

It is easy to verify that if So(z) denotes the pqunomial
So(z)'=:th S*(1/z)

. then

(s°2)° = 5(2) S (3.5)
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and

(s(z) P(z))° = 58%2) P%(z) , (3.6)
In.addition it follows from Eq. (3.3) and Eg. (3.4) that for [zl =1
stz = |s*(1/2)) 3.7

Moreover, if a polynomial S(z) of degree N has Py zeros inside the
unit circle, |z| = 1 (counting multiples), p, on the unit circle and
Py zeros outside, where pl+p2+p3 = N, it is referred to as of the
type (pl,pz,p3). Since it has been assumed that S(O) # 0, it is
¢clear that zj is a zero of.S(z) if l/z§ is a zero of s*(1/z). The
Zeros zj and l/zg'have thg same angle in the z-plane but reciprocal
magnitudes as indicated in Fig. 3.1. It is clear that S(z) is of the

type (pl,pz,p3) if 8*(1/z) is of type (p3,p2,pl).

The cléss of polynomials, é, for which P(z) and P*(l/z) have
the same set of zeros are known as self-inversive polynomials46. It
is apparent that a polynomial P{z) is self-inversive ifrits zéros
are symmetfic with respect to inversion on the unit circle. From the

‘foregoing it should be clear that:

(1) A self-inversive polynomial of degree N is of type
(p,N-2p,p) for p 3 O. |

{(ii} Since the polynomial R{z} consists of the product
of the two factors S{z} and S§*{1l/z) it is of type
(pl+P3'2p2'pl+p3)' where 2(pl+pé+p3) = 2N,
Consequently, R(z} is self-inversive and ifs zZeros

must occur in reciprocal conjugate pairs.

Thus for a finite pulse train to be an ACF it has to satisfy
condition (ii). The design technique for pulse trains from a given

realizable ACF can now be summarized as follows:

1. . Factorization of the ZT polynomial which represents

the ACF.



z~-plane
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Fig. 3.1 {a) Factorized ACF of ll-element Barker &ode

(b) Resulting sequence when choosing the zero

pattern 1,2,3,;..,10.
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2. Selection of a suitable zerc pattern to cbtain the

signal after multiplication.

This synthesis method is not unique in that a whole family of pulse
trains having the same ACF usuallyAexists. For example, an ACF
poiynomial R(z} of oxder 2N has exactly 2N zeros.‘ Half of these
zeros belong to S{z) while the other half belongs to S*{1l/z). Hence
there are 2N possible zero patterns and thus 2N pulse trains having

the same ACF (see Chapter 7).

The design procedure is probably best illustrated by an example.
Conéider the 1ll-element Barker code* whose ACF has the ZT representation

R(z) = —l—2-2—2“49z_6—z_8+llz*lo—z-12-2-14_2"16_2_18-2_20

- This polynomial is now factorized on a digital computer using a
.standard root-finding algorithm. The.resulting zeros are given in
Fig. 3.1(a). All the zeros occur in réciprocal conjugate pairs. In
addition as a consequence of the coefficients of R(z) being real; all
complex zeros must odéur in:conjugate pairs. The selectipn of the
zeros for S(z)rand multiplYing them out completes the design procedure.
The resulting sequence choosing the zeros labelléd as 1,2,3,....,10 is
shown in Fig. 3.1(b). More detailed information on the'selection and
structure of zero patterns and how they affect the conmplex erivelope of
the resulting pulse train is presented in Chapter 7 when dealing with

Huffman codes.

*The ll-element Barker code is given by (1,1,1,-1,-1,-1,1,-1,-1,1,-1}



.3.3 Synthesis of Pulse Trains if only the Magnitude of the ACF

is known

In the previous séction the maénitude and phase of thé ACF at
discrete points was required to find a solution toithe synthesis
preblem. ngever, from practical considerations only the magnitude
of the function is usually known, since the phase does not affect the
accuracy and_resolution of -the range measuremehts. In this section the
‘design procedure is extended to the case where oﬁly the magnitude of a
realizable ACF is given at discrete points; Thé basic underlying idea
of the method presented here is due to'Vakman44and is also implied by

Voelcker47 in a different context.

Before proceeding further it is necessary to recall the

convolution theorem derived from basic Fourier transform theory

r(t) * rt(-t) - |R(O|? | o (3.8)

lr(t) |> = R(£) * R*(-£) | _ (3.9)

The above relationships show the duality between the ACF of the

spectrum R(£f) and the ACF of the time signal r(t). As r(t) is assumed
tb be bandlimited it can be represented by its Nyguist samples. However,
due to the convoiution process in the frequency domain the squared
envelope, ,r(t)]z, will have twice the bandwidth of r(t)zg.‘ In other
words, if Ir(t)]2 ié sampled at the Nyquist raté, r(t) is sampled at
éwice that rate. Hencé it is assumed that the squared envelope of the

ACF is known at integer multiples of T/2 = T'.

Since |r(t)]2 is of finite Quration it is completely defined by
frequency domain samples taken at interwvals 1/T'. Such a signal has a

finite Fourier representation of N terms

N-1 .
m(t) = |r(t)[2 = I C(k) exp(j2mkt/T ) (3.10)
k=o :
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where 'I‘S is the duration of the signal and N = WTS.

" The samples of the envelope are thus given by
N-1 '

It
o~

mi{n/W) C(k) exp{j2nkn/N)

k=oc

' n=0,1,2,....,(8-1)

By substituting the symbol z for exp(j2wt/TS) the finite Fourier

series can be rewritten as a polynomial in powers of z

Im(z) = C(0) + C(l) =z + ...; + C(N—l)zN_l
) N-1 -
m(z) = £ C(k) x
: k=0

This transformation can be regarded as the dual of the 2T discussed

in Chapter 2.

Consider now the polynomial of order L representing the ACF,

r{t)

£(z) = R(O) + R(1) Z + +vus + R(L) 2~

Clearly, for r(z) to be realizable all R{n) must be real and non-
negative (R(n) = 0), since the coefficients of the polynomial are
the power spectral samples. The squared modulus of r(t), |r(t)]2

can thus be represented as a polynomial multiplication

m(z) = (R(O) + R(1) z + .... + R(L) z°) x

(R*(L) + R*(L-1) 2z + .... + R¥(0) zL)

miz) = zL(R(O) + R{L)z + .... +R(L)2L)(R*(O) + R*(l)z’l+....+R*(L)z'L)

m(z) = zL r{z) x*(1/z)

ﬁhere the coefficients of m{z) are given by

L-| k]
I R(n) R(n+k)
n=o

ck)

k =0,1,....,%L

(3.11)

(3.13)

(3.14)

(3.12)
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Since r(z) is a pelynomial with real coefficients
L .
m(z) = z. r(z) r(l/z)

Thus the operation of convolution in the freguency domain reduces to
a multiplication of two polynomials. This clearly reflects the

duality of time and frequency as pointed out earlier.

Since m(z) has the form of an ACF it is possible to proceed in
a similar'mannef to that described in Section 3.1 in order to find the
poweyx spectral.components R{n) giveﬁ m({z). The properties of m(z)
are fevealed by‘studying the zeros in the complex z-plane. The
coefficients.of m(z) specify #he ACF of the spectrum of r(z). Its.2L
zeros must therefore cccur in reciprocal conjugéte péirs. In
addition, since all coefficients are real (and iq particular non-
.negative) they all occur in complex conjugate pairs. Thus if Zj is a
zero of m(z), then z;, l/zg and l/zj aléo.must be zeros of m(z). This
relationship is illustrated in Fig. 3.1(a). Consequently, if m(z)
is to represent a realizable powér spéctrum ACF the foll&wing conditioﬂé
must be.satisfied:

| (i) m{z) is finite and its zeros occur in complex
conjugate reciprecal pairs.
(ii) The cpefficients, R{n), of r(z) must be real and

non-negative.
If these conditions are met then at least one and in general a whole

set of ACF's having the same magnitude can be found,

The steps in the design procedure can be summarized and probably

best illustrated by using the 7-element Barker code as an example¥,

*The 7-element Barker code is (l,l,l,fl,—l,l,-l)
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- Given the samples of |r(t)[, where r(t) is assumed

" to be bandlinmited and sampled at twice the Nyquist

rate, Eig.l3.2(a), one éomputes the DFT of the

sequence |r(kT')|2, i.e.

-nFT'{(}r(o)]2,]x(T'}|2,....]r<13T')lz,lr(13r'>|?.,q1r(m')|2)}

This gives, except for a scale factor, the (2L+1)
Pourier coefficients of the periodically repeated

équare envelope of the ACF,‘Fig. 3.2(b).

Factorize the polynomial whose coefficients are these
Pourier components. The 2L roots should cccur in

reciprocal complex conjugate pairs, Fig. 3.2(c).

Select L roots from each reciprocal conjugate pair
and its conjugate. Now, multiply out to obtain a set
of (L+l) Fourier coefficients which aré, neglécting

a scale factor, the DFT 6f the'sampies of r(t).

Verify that r(t) is indeed an ACF. This is done simply
by making suré that the coefficients ébtained ar;'all
real and hon—negativé. If the test fails, select a |
new zero pattern and repeat the precedure from step 3,
until a realizable ACF is obtained, Fig. 3.2(d).

From the L roots only L/2 can be chosen.indepeﬁdently,
since the zeros must be selected in complex:conjugéte
pairs., Hence, there are in general 2]:'/2 possigle Zero

patterns. However, not all zerc combinations will

result in realizable ApF's.‘ The zeros'chosen in this

case are labelled 1,2,....,13, Fig. 3.2(c).

The fihal stage of the synthesis procedure is to take

the IDFT of the Fourier coefficients to obtain the
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Sampled vélues of r(t), fig. 3.2(e). Once the ACF;'
has been found in magnitude and phasé, it is then
straightforward to synthesize a pulse train which
realizés this ACF by following the procedure outlined

in Section 3.2.

3;4 Summary

| The design proceaure optlined in this chapter may appear to
solve the synthesis problem satisfactorily. Hoﬁever, in practice this
solution has limited applications for the following reasons. In the
first place,Aan exact solution can oﬁly be found in those cases where
the given ACF is realizable,‘that is, thére must exist a signal whicﬁi

if correlated with its conjugate time reverse, produces that ACF. In

‘many practical cases only the gross features of the ACF are known.

Usually when a signal is to be synthesized very little is known about
the sought aftér ACF. 1In general only ﬁhe.following requirements
éhould be met. First, to improve the accuracy and resolution qf the
range measurements, the mainlobe of the ACF must be as narrow‘as
possible. Seééndly, to increase the multiple-target ?esolution
capability, the function must have low sidelobes.. In most éases more
detaiied information about the ACF is not gvailable.. Hence, the given
ACF's usually turn out to be non-realizable, i.e., their spectra do

not satisfy the condition (3.2). It becomes necessary, therefore, to

replace the spectrum R(f) by its magnitude |R(f)| which is a non-

negative function and thus to seek an approximation to the desired ACF.
For example, the ideal ACF from the wviewpoint of range resolution
consists of a single narrow spike which is not realizable with a finite.

pulse train.

Additional difficulties of computational nature are encountered

in the task of factorising the polynomial to obtain its zeros. The



present NAGF* library rqot-fiﬁding algorithm of the Loughborough
University computer cen£re run on an ICL 1904A digital computer

‘ can handle polynomials of orders uyp to about one.hundred. Another
difficﬁlty ig to compute the coefficients of a polynomial'from its
zZeros. Sﬁandard methods usually give excessive error accumulation
.with polynomials of orders greater than about 40. A method which is

to some extent free of that difficulty has been suggested by Ackroyd48.

Although the difficulty in factorizing a polynomial can be
aveided in the case of Huffman sequenceszo (Chapter 7), the problem
of selecﬁing a zero pattern in order to obtain a pulse train with
spécified properties st;ll remains. The relationship between the
zeros and the ccefficients of a pblynomial are given by a set of non-

~ linear equations (Eé. (f.ll), Chapﬁer 7). For a given set of zeros
it is difficult, if not impossible in practice, to solve this set of

equations for any arbitrary constraints on the coefficients.

The shortcomings of this design method seriously limit its
application from the practical point of view. Subsequently, an

essentially different approach will be considered in the next chapter.

*Nottingham Algorithm Group
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CHAPTER 4

DISCRETE PHASE APPROXIMATION TO FM SIGNALS

4.1 Introduction

IWith rédar signél processing becoming more and more digital it
will become increasipgly attractive to consider phase modulated pulse
train approximatipns‘of continuocus FM signals, such as linear and non-
linear FM. Therefore, in this chapter attention wi;l be concentrated

on the application of the design proceddres'used for continuous FM

waveforms to pulse trains.

The problem of designing a long-duration, rectangular FM signal

having an arbitrary ACF has been solved by Key et al49. Later Fowleso

extended the theory for the non-rectangular case. However, as pointed

_out earlier, the rectangular envelope of the transmitted signal offers a

‘nunber of advantages.

*

The application of the principle of stationary phase (Appendix A)

- to the class of FM signals with large time-bandwidth product has shown

that a non-llnear FM modulating function can control the form of the

spectrum amplltude and thus the time response at the matched filtex

4 . . . . .
output 9'50. Especially for applications where the transmitted signal

envelope must be essentially rectangular the FM modulating function can

. be used to control the range sidelobes. This peimits the receiver

amplitude response to be matched directly to the transmitted waveform,
thus eliminating receiver mismatch loss associated with range sidelobe

reduction techniques (Chapter 8).

The effect of spectrum shaping is illustrated in Fig. 4.1. ' The

two spectra curves representing the fourth power of the spectrum are

- assumed to have equal area. The resulting total ambiguity A is,

therefore, in both cases the same, since



Fig. 4.1 Effect of spectral shaping

on the ACF,
|
bt o
/_.'—-—
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Fig. 4.2 Approximation to a continuous

phase function,
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L= -] - .
A = J |r(t)|2 ar . . ' (4.1)
-0 . .
can be exbressed using Parseval's theorem as

W/2 4 | .
A= J |s(e)|” ag (4.2)
-W/2 .

The spectrum with the energy shifted away from thé origin will give rise
to range ambiguities of the disqonnected type. On the other hand, a
gspectrum whose energy is conééntrated about the origin results in
sidélobes close to the main‘response peak. This is cbnfirmed by the
Fourier transform theory where sharp edges of the spectrum produce

large time sidelobes.

4.2 The Method of Stationary Phase appiied to FM Signals

In general the problem of designing a FM signal of a given
envelope shape to have a specified ACF requires the solution of

ej 8 (£)

s,.() sty e $8 (4.3)

wbere Sm(fJ = [S(f)[ and sm(t) = ‘s(t)!.

ﬁith the two moduli functions Sﬁ(f) and sm(t) specified, it is necessary
to fina gxpressions for ¢(t) and B(f) in terms of‘the\giveﬁ guantities
to satisfy the Fourier transform relationship. However, it is not
generally possible to find a solution {or a reaSOnable close
approximation) if the t@o moduli functions are specified. Unfortunately,
a concise set of necessary and sufficient conditions which have to be
met by the moduli of a Fourier pair, has so far not been formulated.
Nevertheless, Fowle50 has shown that when the time-bandwidth product is

sufficiently large (>>1) approximate Fourier pairs with the independently

"specified moduli can be constructed.
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The unusual type of integral equation implied in Eq. (4.3)
may be approximated using the method of staticnary phase (Appendix A}.
This technique provides a parametric expression for the spectrum of

a ™M signalso.

s = en? '™ exply-aneg +48) 41/4))
TGN |
s (8) = 2m? s @/em@ph® - (4.4)
m I . :
where

a2 o)

¥ = 5
at

The stationary point is given where

d
EE{ p(t) - 2wft} =0
$'(E) ~ 21f =0 (4.5)
The value of t satisfying BEg. (4.5) is denoted by £. At this point it
is perhaps of interest to note that the stationary phase method yields
only those frequency components of the spectrum which coincide with
the instantaneous ffequency-of the signal for its duration. This
dependence of the spectrum on the phase function and its derivatives
is indicated in Eg. (4.4). As shown by Fowle50 this relationship can
be rewritten in the form
- : | - |
= : 4.6
J’ s, (§) 4g J Spn) dn | . (4.6) |

- -0

The ébove'equétion'eStablishes the relationship between the instantaneous

frequency, f, and the envelope function sm(g),'with time t.
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Carrying out the integration in Eg. {4.6) leads to

P(t) = Q(£f)

where P(t), Q(f) are indefinite ihtegrals of si(g } and S;(n)
respectively (assuming P(-») = Q(-«) = 0}. The sclution of Eq.

for f is symbolized as
-1
f=9"{p(t)}
Substituting Eq. (4.8) into qu {(4.5) vyields

o' (t) = 21 9 H{p(t)}

Thus

7¢(t) = 2T J Q_l{P(t)} at + ¢, .

where Cl is the constant of integration.

'.Eq.l(4.9) makes it possible to synthesize FM signals having any given

power spectrum.

(4.7)

A similar relationship can be shown to exist for §(f}, which

leads directly to the result that the group delay function 6'(f) and

. . . s 5
the instantaneous frequency ¢'(t} are approximate inverse functions

The design procedure for large time-bandwidth product FM signals

' can thus be summarized as follows:

¥

1. Given a power spectrum |S(f)|2 the integration in Eq. (4.6)

is performed, assuming a rectangular envelope (sm(t)'= 1),

to find Q(f) =t

2. The function Q(f) = t is inverted to cbtain
-1
$'(t) = 27 Q " (t)

This is done quite easily on a digital computer.

'3, " Integration of ¢'(t) leads to the sought after phase ~

modulation function.

(4.7}

(4.8)

(4.9)
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The relationships above were obtained using the stationary
phase principle and are thus approximate. For a rigorous formulation,

the problem requires the solution of the integral equation

S(f) =

To/2
J sm(t) exp{j (¢ (t) - 2nft)}at

~Tg/2

for the unknown phase function ¢ (t) or the instantaneous frequenéy
$'{t) with the spectrum magnitude [S(f)[and the enveiope sm(t) given.
Moreover, the approximation of the stationary phase‘method is.suited
only for signals having a steep, monoﬁone FM law, because it does not
consider the 'edge effects' associated with ﬁhe signal fronts.
However, within its limitations:this method has proved very useful in

designing analogue FM waveforms.

Discrete phase coded waveforms on thé other hand cannot be
found directlﬁ with the help of the method of statidnary phase,
Eq. (4.4}, since disconﬁinuities of the phase modulating function
leads to several points of stationary phase. However, it is anticipated
that approximating the continuous phase function ¢(£) with plecewise
constant segments of equal duration will result in phase mddulated
pﬁlse trains having wvirtually 511 the desired propeities of FM signals.
The process of approximation is illustrated in Fig.'4.2. Each sub-pulse
of the pulse train is at the same carrier frequency. That would not be
the case if the phése function ¢(t) is approximated by stra{ght line
éegments. Since phase shifts of a multiple of 27 are not effective,
the stepped phase function of Fig. 4.2 can be replaced with its
modulo-21 version as indicated. - This method of approximation can also
be visua;ized as being a sampling process of the complex envelope of
a purely phase modulated énalogue siénal. Consequently, the study of
such pulse traihs and their‘ability to improve - target resolutipn‘is

the main objective in the following sections of this chapter.

(4.10)



-51-

4.3 Discrete Phase Approximation to Linear FM Signals

The linear FM (LFM) or 'chirp' waveform is probably the principal

type of signal transmitted by a radar or sonar system. The LFM waveform

is derived from Eqg. (4.4) by assuming a rectangular power spectrum,

Thé main advantage in using such wéveforms lies in their ease of
generation énd insensitivity to small doppler shifts. The descriptionr
. and propefties of analogue chirp techniques are well documented in the

literature and will not be repeated here22’25’51.

In general the complex envelope of a LFM signal can be expressed

as
‘ 2
s{t) =explj pt"/2)
where
U= 2HW/TS
W= f2 - f1 = frequency change during sweep
'I‘S = time duration of sweep

As implied by the term LFM, the instantaneous frequency is swept linearly
from fl at t = 0, to a maximumm value of f2 at t = Ts. The complex

envelope can be written in terms of the pulse compression ratio (time-

bandwidth product), m,

. 2
s{t) = exp(jm(Wt) /mc)
If the waveform is sampled at uniform time intervals of T seconds
, 2
s (nT) = exp (jw{WnT) /mc)

and with

m = NTW

s{nT) = exp (j'fTWTnz/N)

]

n = 0,1'21003-, (N-l)

The total phase change over the signal duration is

A = TWT (N-1) 2/N

(4.11)

(4.12)



Furthermore, if T is set equal to the Nyquist rate, then

T

1

1/w
and

exp (310 2/N) ) ' | ‘ (4.13)

s {nT)

Siﬁce each segmentjis coded into one of N possible phases, these
sequences are sometimes referred to as polyphase codes. In particular
the sequences whose phase follows a quadrat;c progression dell be
called quadratic phase (QP) codes. .An interesting property of QP codes
| 52

is their periodic ACF which is zero .for all non-zero timé~1ags,

provided the sequenée is coded as in Eq. (4.13) if N is even and is modified

to
s (nT} = exp(jmn(n+l)/N) . o | {(4.14)
- for N odd.
| Higher order polyphase codeé with zero circular ACF (k#0) hafe
been described by Frank, Zadoff and Heimillerl6_18. The length N of

such codes, however, is restricted to perfect squares. While the QP
sequences and Frank codes have ideal cyclic autocorrelation, they do

not have, of course, perfect aperiodic autocorrelation.

Another property of practical importance is the simple generation
of OP pulse trains if the sequence length is chosen properly. This

can be demonstrated by expanding the expression n2/N as

. 2 _ -
n {N =q + ql(%) + un/N
where |
g=0,1,2,00cnr..
ql =0Qorl
t = remainder
n
since
: -1 , g odd
exp (Jq7) =
1 , g even
and

exp({jn/2) =3
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the QP code can also be written as
1, . ,
s(nT) = (+) (or j) exp(Jﬂan/N)

The.nuﬁber of different samples to be generated is thus a function
qf'the number of diétinct remainders of nz/N. Roy and Lowenschu5553
have shown that for.a proéer Ehoice of N the number of different
samples cén be kept very small indeed. For example for N = 16 only
three different values must be génerated, exp({jn/16), expl(in/4) and._l.
Incidentally, this property has also been exploited in the Blustein

algorithm which computes the DFT using a chirp filter54.

4.3.1 Properties of the Compressed Pulse Train

The exact expression for the ACF can be obtained by substituting

Eq. (4.12) into Egq. (3.1)

N-1-k , 2 2
C(kT) = 1 ej'nW’I‘/N(n - (n+k) ™)
n=
. 2, N-1-k .
- ejﬂWTk /ﬂ ;e J2mWInk/N
n=o

k=¢0¢,1,2,....,N-1)

The summation in the last expression is of the form of a geometric

progression and can be written in closed form. By rewriting the sum

term as
N-1-k n
b r
n=o
where
r= e—ijWTk/N

it is recognized that the series containing a total of (N~k) terms has

a sum of”’

LK)

T T - 1

\
S
(4.15)
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Therefore :
—jﬂWTkz/N e-J2ﬂWTk(N—k) -1
- r(kT) =e -j2rWTk/N
e 3 . -1
.= é—jHWTk2/N e—jﬂWTk(N-k}/N e-jﬂWTk(N—k)/N _ ejnWTk(N-k)/N
_-ITWTR/N LITWTK/N __JTWTK/N

_ e_jnWTng-l)/N sin [nWTk(N—k)/N] (4.16)

r (kT) - sin (TWTk/N)
- |
Since only the magnitude of the ACF is of interest
_ sin [ #WTk (1-k/N)|
lremy | = sin (TWIk/N)
If T is equal to the Nygquist sampling rate, i.e. WT = 1, Eq. (4.16)
becomes
_ sin [ﬂk(l—k/Nﬂ
|z xT)| = Sim (/) (4.17)

Because r(kT) exhibits complex conjugate symmetry with respeét to

kfo, it is sufficient to consider only positive time lags; The nature
of the function (Eg. {4.17)), in the vicinity of g=0 has the form of

a sinc function with a peak value of N. Because of the periodicity
of the expression this characteristic will be repeated at intervals
1/N. For even length sequences the function is symmetrical with
respect to N/2. The effect of the term (1-k/N) can be explained,

considering that

|sin { nk(l—k/N)]ll = [sin(nkz/n)[

Thus it modulates the frequency of the ripples in a 'chirp-like'

fashion (Fig. 4.3).
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Whenever a seguence is used as a modulating function it is

-always of interest to consider its spectrum. Since the power spectrum

contains the relevant information, it is sufficient to consider the
amplitﬁde speétrum only. For convenience the spectrum is assumed to
be’zero outside some rahge {O,W} (analytical signal). This is no
restriction, since any bandiimited signal can be broughtlinto this

form by a suitable frequency translation.

The magnituae of the ACF, amplitude spectrum and group delay
function are displayed in Fig. 4.3 for a QP sequence of length N = 128
when sampled at the Ny@uist rate, Wr=l. All graphs were plotted using
straight line interpolation beﬁwaen.adjacent samples; The spectrum -

was computed by evaluating Eg. (2.15) using the FFT algorithm32’33.

_The group delay function defined as

lQ.n

8 (£)

n

(g ==
Tg(f) 2w ad
was calculated wifh the help of the expression (Appendix B)

N-1 p N-1 _
T (F) =Re {T( % n sz /L sin)z ™}
g n=o ' n=o

The above equation can be evaluated using DFT techniques

DFT (lst moment of s(n))
DFT (s (n))

rg(n/N’I')' = Re {T

In the computations, T was assigned the value of unity so as to normalize
the scales of the resulting graphs. 1In éadition Ig(f) is plotted only

over that frequency range where the spectrum is significant.

The figures show quite clearly the LFM type properties. The sinc
effect can be observed near the mainlobe and at time shifts where k is

approximately NT. The maximum sidelobes, however, are smaller than the

(4.18)

(4.19)






(g) _

Fig. 4.3 (a) ACF, (b) amplitude spectrum and -
_ {c) group delay of a 128-element QP
code for WT = 1,
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-13dB achieved with analogue LFM waveforms, Fig. 4.4. The peak
sidelobe can be calculated using the sinc approximation for small
time lags. Thus for k << NT

. 2
]r(kT)] . k sin k" /N

ﬂkz/N

The first maximum occurs where

k = YE/Z
hence
max lr(kT)I = -ﬂéi = 0.45 N
X #o . T . .

Using the exact expression a more precise value can be obtained
numerically; which turned out to be 0.48 ¥N. The two main sidelobe
.bands occur at time shifts where k = VE?E- and k = (N+Q§7§3
respectively. This property of increased sidelobes towards the énd

of the matched filter response is quite different from the analogue
waveform where the sidelobes decrease uniformly with increasing time
shift. However, the overall properties of the analogué LFM signal

is preserved. - This is reflected in ﬁhe familiar Fresnel ripples of the

spectrum and the linear group delay (Appendix A).

The characteristics of the QP bulse trains when sampled at a
lower or faster rate than the Nyquist rate (undér or over-sampling)
éfe depicted in Fig. 4.5 to 4.7. These graphs reveal some interesting
properties. First, if sampled at the Nyguist rate (WT=1l), the ACF
consists of a sharp narrow spike with low residue sidelobes. Secondly,
if WT < 1, over-sampling occurs and sidelobes near the main peak appear.
This is not surprising, since increésed sampling rate implies a c¢loser
approximation to the analogue FM signal whose maximum sidelobes are

immediately adjacent to the mainlobe, as shown in Fig. 4.4.  In othar
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Fig..4.4 ACF of a LFM signal.




1.0 ()| (a)
WT = 0.5
1
0.5 |
' '/—13dB
0 ——=1 128T
1.0 |
[s()
0.5 |
0
— wf "1/T
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words, the sampling points do not miss these large sidelobes as is the

case. for WI=l. Thirdly, for under-sampling WI > 1, the aliased

versiéns of the ACF will produce éignificant range ambiguity at time '
shifts-k=N/WT from the compressed pﬁlse, i.e. for wWr=2, k=N/2 as illustrated
in'Fig. 4.7. The cause of the spurious response peaks caﬁ probably be

best explained by recalling the relationship between the sbéctra of

.

an analogue waveform and its sampled version, Eq; {2.9) '
|
|

o0

H(f) = I H_(£1/T)

n:-m
Hence the ambiguity function of a pulse train is periodic in the
frequency direction with period 1/T. .

o0

x{t,v} = L xa(f,v+n/T) . (4.20)

Ij=—w

This is illustrated in Fig. 4.8 for a QP signal with its typical

diagonal ridge structure of the émbiguity function (see Chapter 9).

Another properity of interest is the sidelobe energy ratio defined
as .
: _ N-1 9 9 ' o
E.= I [rk)|“/|r)] | . , (4.21)
k=1 .

In a dense uncorrelated target environment ES serves as a measure for

the self-clutter interference. This quantity is related to Woodward's
range resolution constant, (Eq. (2.43) as
\

AT = 1 + 2E
s

- In Fig. 4.9 the ratio ES and max ]r(k)f are plotted as functions of the

' off steadily with increasing N,

k
sequence length, N. It is noted that the sidelobe energy is falling
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Fig. 4.8 Effect of sampling on the ambiguity function,
{a) and (b): (¢} peak response as a function
of doppler shift v.
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So far it has been shown that spurious response peaks can be
avoided provided the wavefo;m is sampléd at the Nyquist rate. The
resulting sequences have low sidelobes and low sidelobe energy and
thus aie suitable in a multiple-target environment. However, there
may be specific cases where WT is made slightiy greater than one, to
attain somewhat better rangé resclution. By comparison of Fig; 4.6
with Fig. 4.3 it can be seen that a small increase in WT tends to
reduce the sidelcobes ciose to the mainlobe at the expense of aﬁ increase
towards the end of the respénsé. The remainder:of this section, however,

will be limited to the discussion of QP sequences where WI=l.

From the graphs it is avident that‘the sidelobe structure
consists mainly of two 'humps' referred to as sidelobe bands (Fig. 4.3).
' The duration of the‘bands is approximately 2(/N - /N/2). ‘These
sidelobe bands are produced by the pronounced Fresnel ripple of the
amplitude spectrum shown in Fig. 4.3. The ripple spectrﬁm is a function
of the compression ratiec WTS and can be thought of as a combination of
a slowly varying function multiplied with a high osciliatory component
over fhe bandwidth l/T22'51. The sidelobe bands can thus be regarded
as being'similaf to those of amplitude modulation but with time and
frequency interchanged. Since the two major bands occur at k = ﬁ@ﬁf
and k * N - 1575, it can be assumed that the ripple spéctrﬁm consiéts

largely of two sinusoidal components at frequencies v2/N and 1/(N - Vﬁ/Z)

and their cross-mcodulation products.

The important properties of QP pulse trains may now be

summarized as follows:

(i) If sampled at the Nyqﬁist rate QP cedes have virtually all
the properties of LFM signals. Their ACF consists of a

single spike with low level sidelobes.




<50~
(ii) The codes have zero periodic ACF's for k # O.

(iii) PFor WT < 1, large close-in sidelches appear, whereas for WI > 1

spurious response peaks occur further away from the mainlobe.

(iv) The major sidelobes bccur in two bands approximately centred
at time-shifts k = /ﬁ?? and k = (N - Jﬁ?f) respectively, The
width.oflthe bands is about 2 (YN - ﬁ§7§ . Mqreover, for
sequences of even length N, the sidelobe structure is

symmetrical with respect to k = N/2.

(V)l, The maximum sidelobes. increase approximately as 0.5 /N and

the energy ratio Es < 5% for N > 40.

{vi) Relative simple generation of such pulse trains with a

suitable choice of N.

Hence 0P seqﬁences have good range resoclution properties which make
them suitable for a dense-taxget environment. For example, the peak
rangé sidelobe for N = 128 is -27.5 dB down on the main response and the

r.m.s;_sidelobes are about -36.6 4B down,

4.3.2 An Iterative Method for Reducing the Ripple Spectrum

In the preceeding section it was cbserved that the sidelobe bands

are caused by the ripples in the Fresnel spectrum which was obtained

using the stationary phase method. This method, however, does not
consider the 'edge' effects associated with the waveform fronts. Sharp
leading and trailing edges, as well as any sharp discontinuities in

general, give rise to spectrum ripples of appreciable magnitude. - A

reduction of the ripple spectrum, therefore, would subsequently result

in a reduction of the time sidelobes of the ACF.



-60-

A method considering the 'edge' effects was proposed by
_Vakman44 in connection with narrow beam antenna design. To illustrate
-tﬁe application of this ﬁethod to the.signal design probiem consider
the signal 6btained by the stationary phase technique as an initial
approximation to the deéired signal whose power spectrum P(f) and

envelope']so(nT)I are specified. Thus

s (nT) = é (nT) ej¢o(nT)
o o

and

s_(6) = [s )] 1% ()

= T

FT {s_(n Y1
The Fourier transform is evaluated numerically using the FFT algorithm.
"If the conditions for application of the stationary phase are satisfied,
then ISo{f)|2 will be a reasonable approximation to the given power
spectrum P(f). It is noted that the signal envelope ao(nT) coincides
with the specified amplitude function. In attempting to synthesize a
gignal having a given power spectrum P(f), the spectrum

Sl(f) ='{P(f)}5 ejao(f)

retaining the initial phase function eo(f), is taken as the next

approximation. Hence, the first corrected signal is given by

(nT)

s,(0T) = a, (a7) eI = IFT{s (£))

Here the given power spectrum is realized exactly. However, the

envelopelal(nT) will differ from the specified envelope ao(nT). The

ngxt step, thérefore, is to take ao(nT) and assigning the phase ¢1(nT)
~to it, i.e. |

5,(nT) = a (aT) o9y (nT)




" The spectrum corresponding to this signal

_ 36, (£)
85,(6) = |s,(£)]| "1
differs in magnitude fromr{P(f)}%. However, in many cases these

differences are smaller than for the initial approximation. This

procedure can be repeated iteratively and in general

- 3%, _
si(nT) = ao{nT) e” "i-1

{nT)

Unfortunately, this method of successive approximations dees not converge

to an optimal sclution. This is so because a spectrum with a finite

bandwidth cannot be realized by a signal of finite duration. Nevertheless,
.this technique has been successfully applied in some antenna design
_ problems. However, for pulse train waveforms such an approximation

‘procedure might not yield any improvement, because of their discrete

nature. Moreover, it can be shown using the stationary phase principle
that the envelope |s(nT)] decreases as 1/nT near the edges. But the
envelope of the pﬁlse trains considered here is constant, and
furthermore, only a finite number of samples are taken. Natufally, such

a-truncation of the time series will always introduce spectrum ripples

- and thus range sidelocbes.

The method of éﬁccessive approximation to a rectangular spectrum
was programmed on a digital computer., The results are shown below in
Table 4.1. As expected the method did not converge. In general the
Peak sidelobe level oscillated between a maximum and minimum value and
in most cases no significant.improvement was observed. However, the
éidelobe energy ratio usually decreased to about two thirds of its

original value.



Code length

Initial values

‘Final values

N max [z} | E_(%) max [roa| | B (%)
16 1.85 6.31 1.44 3.48
20 2.18 5.76 2.18 5.75
25 2.46 4.75 1.63 2.41
30 2,62 5.57 2.46 | 4.94
35 2.82 4.42 1.43 2.32
40 3.08 3.94 2.78 3.38
45 3.26 3;76 2.69 2.68
50 3.40 3.74 2.13 1.99
55 3.51° 3.62 3.24 3.24
60 3.73 3.50 2.57 2.54
64 3.88 13.29 2.11 1.27
70 ' 4.05 3.16 3.57 2.58 |
75 4.17 2.99 3.27 2.06
80 4.26 2,87 - 2.72 1.62
85 4.42 2.78 '3.31 1.77
'90 4.57 2.74 4.24 2.23
95 4,71 2.73 3.54. 1.64
100 4.83 2.61 3.05 1.51

Table 4.1 8Sidelcbe reduction by spectrum

approximation.




Although some improvement in sidelobe and energy performance

is observed this technique fails to reduce the Fresnel ripples
substantially. Therefore, if sequences with very low sidelcbes are

requiréd such a method does not solve the problem.

4.3.3 Tapering the Pulse Train

Another method to reduce the Fresnel ripples is to taper the
edges of the pulse train. Such a tapering function is shown in
Fig. 4.10, using a cosine taper over 1/10 of each end of the signal

length. The shaping function can be expressed analytically as

2 .
cos (Sﬁt/Ts) ; —TS/Z <t g —4TS/10

L)

-4TS/lO £ tsg 4Ts/10

u.I.(t)'= 1

COSZ(Sﬂt/TS)

Ll

4TS/10 g tg Ts/2

In general the frequency spectrum of this type of tapering funcﬁion
L 55 '

is given by

sin ([(2p-1) /25w £T ) (ZNP/TS)z cos (T_/4p)
ﬂ2p—l)/2gnf

u_{f,p) =
T (2np/TS)2_- (27f) 2

When p=5 the spectrum of Eg. (4.22) is obtained.

The effects of such a tapering on the spectrum magnitude of the

QP code and its ACF are shown in Fig. 4.11 for a code of length N = 128,

-

The figures clearly éhow the removal.of the high frequency
ripple component and thus the more distant sidelobes. However,the
sﬁoothing of the spectrum is obtained at phe expense of an increase of
the sidelobes near the main peak. This may be of little c&ncern in
applications‘where the targets are separated by more than the sidelcbe

duration. &n additional penalty is the reduction in energy efficiency

(4.23)
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Fig. 4.10 Shaping function and its spectrum.
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Fig. 4.11 Effect of tapering the edges of the pulse
train on the ACF (2), and amplitude

spectrum (b),
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which is about —0ﬂ7 dB for p=5 and N=64 and N=128 respectively. 1In
practice the.tapering function could be appfoximated by simply increasing
the rise time of the transmitted waveform.. Moreover,‘for a‘;ow powér
radar ﬁhe loss in traﬁsmitfed energy can be kept relatively small so

it'does not seriously affect the detection capability.

Unfortunately, this method of improving the’range resolution is
not applicable to most high power radar systems. There the tapering
function cannot be controlled without a serious. loss in output power;
Anoﬁher approach to reduce the range sidelobes which does not Suffér

P

from this drawback is to modify only the phase of the individual sub-

4

pulses.

' 4.3.4 sidelobe Reduction by Phase Correction . - ’

To achieve very_low sidelcbes (below'-30 dB) thé stationary’
phase méthod is not'adequate,-becguse it does not account for the gquasi-
oscillatory nature of the actual spéctrum. Additional ripples are
introduced by a quantiiea approximation of the LFM law; If a small
loss in transmitted power is acceptablé, tapering of the edges of the
puise trainhasbunshmmto‘be a useful means for reducing the more distant
sidelobes. However, in many applications this apﬁroach is not
desirable. It should be possible to achieve gimilar effects by modifying

the phase function only.
Introducing a phase correction term £{t) the complex envelope of
the transmitted waveform can be written as
s(t) = s_(t) exp(j e(£)) | (4.24)
where so(t) is the original signal.

The phase term e(t) could be any arbitrary function, provided it has

the effect of reducing the sidelobes. To study how the ACF is affected



by such a phase perturbation, assume that e(t) is a sinusoidal function

inen by
e(t) = € sin{2nft + $) -  (4.25)
where
€ = peak rhase correction
£ = frequency of phase correction
$ = arbitrary phase

Expanding exp(j e(t}) in Bessel functions of the first kind

(Appendix C) leads to

eje(t) = I Jk(s) ejk(2wft+¢)

k==t

For Bessel function of integral order the follewing relationships

-exXist
. |
3 -e) = DX a3 e) . - (2.26)
I (€)= (1% g ¢ | (4.27)
-ke - '—) ke} ' . b

Thué_

S(t) =s (t) § g () elk(2nit+d) (4.28)

0 ks k

The BACF of the sampled sigmal can now be written as

o -] .
x(r) = & s{@oF) s*(aT+r) = I s, (nT) 5*(nT+T)ej[€(nT)'E(nT+Tﬂ
N=—x =0 ©
£ = I I s aDsyamd, ()3, (e)ed CTE[KoInTAT ] 4 GeR)e)(4.29

n=-w k=-wm f=—w

Now let ¢ be small (e g 0.4 radians) so that the following approximations

can be made

Jo(a) = 1
and - Jk(sJ = g for x =z 2




Hence
_C ' 3 (27 EnT+$)
r(r)‘— ni_m so(nT) s;(nT+T} {Jo(s) + Jl(e) e

e-j(2nfnT+¢) -3 (2T£{nT+1) + ¢)

+ 3 () }x {3_(e) +3 (e) e

1

+ J_l(s) ej{Zﬂf(nT+T) + ¢)}

Neglecting higher order terms of the form Ji(s} and using property
(4.27) the above expressions can be simplified to
o0

r('c) = I s (nT)s* (nT-H) {J +J J

eéj(zwf(ﬁT+T) + 4)
l .

0

ej(2w;(nT+r) + $) ej(27rfnT + ¢) _ I3

_ =j(27EnT + ¢)}
1 ol e ‘

-3 3

+
o 1 qu

It is recognized that
@0

= *
xo(r,f) z so(nT) so(nT+r) e

==

F{2TE(nT+1))

is the ambiguity function of the signal, hence

- 12 -3¢ _fy o
r(t) = Jg ro(r) + Jo J. e Xo(i, £) .JO J

1

1 eJd} Xo(Trf)

. ~J (2N ET-9) . . j2rfr-9) _
+J Jl e XO(T,f) Jo Jl e xo{r, £)

Substituting the approximate values for Jo(e) and Jl(a) leads to

e TR 3¢
rit) = ro(r) + 5 {xo(r, f) e xo(r,f) e’ "}
£ -j(2nfT-¢) _ _ey o3 (2WET-9)
+ 3 {xo(r,f) e xo(;, fle }
: . j (wE1~ —EO
x(D) =r_(0) + ¢ sin(rEn {x (-0 e "7

. T
- X, (T/£) e 3 mft_q’-f) }
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The effect of a sinusoidal phase correction can be visualized as
adding phase shifted cross-sections of the ambiguity surface to the

ACF.

The property of cancellatioﬁ and reinforcement of the range
siéelobes is inhergnt in Eq. (4.30)L Pepending upon the value of g,
the péak value of the phasé perturbating function and the_pﬁase ¢, it
is possible uwnder certain conditions to obtain various patterns of éidelobe

cancellation.

For QP sequences the range-doppler ambiguity has a diagonal
ridge structure, Fig. 4.8(a). The equation of the ridge in the delay-
dopplér plane for integral time lags of T is given by (see also Chapter
9)

v = k/NT
The magnitude of the ambiguity funption aleong tﬁe ridge reduces to
(Fig. 4.8(c))
Ixtk,v)} = (1 - Jx|/N) N | . (4.31)
Therefore, for any given cross-section y(k,v) the major coﬁtribution
whén added to the ACF occurs at a time shift where k = VwNT. Thus the’
ith sidelobe is given by

s 2 Ll ‘
-j{mi /N—¢-§9 sin{wiz/N) {4.32)

r(i} = ro(i) - exo(i,i/NT}e

With a proper choice of € and ¢, the ith time sidelobe could be

completely cancelled, i.e. r(i) = 0.

The énalysis of the elementary case of one single siﬁusoiAal
correction function can be extended to more complex functions. The
analytical approach.is shown belQW for two or more sinusoids. This is
not a rigorous restriction, sihce other functions could always be

expanded into a Fourier series.




For two sinusoidal functions Eq. (4.24) becomes

j(e,sin(25€ £ + $;) + €,5in(2ME,t % §,)) (4.33)

Cs(t) = so(t) e 2

hence

k==~ f==c k‘ 172

s(nT) = so(nT).{ 5 T T (e.)T (ez)ej(ZH[(kfl+2f2)nT]+k¢l+ 2¢2)}

The following approximations can be made, provided that €L = &y £ 0.4 radians
Jo(el) = Jo(ez) = 1
Jl(el) = Eannd Jl(52)2'62/2

Jk(el) Jk(ez) = Q0 k_a 2

After some tedious but straightforward manipulations, again neglecting

2 22

nigher order terms of the form 3Lr T30 JoJi’ etc.,the ACF is given by

rit) = ro(?) " elsin(ﬂflt){xo(r'_fl)ej(ﬂflr-¢l~ﬁ/2)

_ =3 (nE, T-¢,-7/2)
XO(T,fl) e it }

L | ¥ £, T-¢p,=1/2
+ EZSLn(wfjﬂ{xo(r,-f2) I 2T.¢2 m/ )‘

_ -j{nt 1F¢ -n/2
Xo(TeE,) & 2'7%2 j (4.34

or in condensed form
ri{t) = ro(r) f xl(r.fl,¢l) +.x2(1,f2,¢2) - (4.35)

where

j(ﬂfnra¢n—ﬂ/2)

| xh(T'fn’¢n) = ensin(ﬂfnr){xo(I;—fn) e

-X, (Tr£)) e'j(“fn1'¢n"“f2)} _ (4.36)
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For m sinusocidal compeonents Eg. (4.35) can thus be written as

m

n=1

(D) = r (1) 4 DX (L) | (4.37)

.

Neglecting higher order terms and satisfying the conditions € g 0.4

radians, each individual sinusoidal term can be treated independently.

Each component produces a pailr of cross-sections of the ambiguity response

that are added to the ACF. This is indicated in Fig. 4.12 for two terms

with amplitudes €, = €y = 0.2 and freguencies fl = 32/NT and f£. = 96/NT.

i 2

The contributioﬁ to the ACF can clearly be seen on the graph at time
shifts X = 32T and kX = 96T. Even if the condition h £ 0.4 radians

is not met, the single terms can be treated more or less individually

- in this case, because of the ridge—like'ambiguity surface.

The property of reinforcement and cancellation has been used to

reduce the sidelobes close to the main response peak. This is
‘illustrated in Fig. 4.13 when choosing a phase correction function of

- the form

9

e(nT) = I eicos(wainT)
i=1

It is noted that the cancellation of the close~in sidelobes has been
achieved without otherwise affecting the overall ACF. However, it is
not possible to reduce the sidelobe bands near the end of the MF
response (k = NT), using this technique. The major reasen for this is
that the ambiguity function along the ridge decreases rapidly, Eg.(4.31)

for increasing time shifts.

The analysis éf the.effects of phase correction eon the ACF is
in many ways similar to the paired echc pﬁenomenonzz. However, in
paired echo analysis the effects due to phase and amplitude mismatch
(distortion} of the Mf are eiamined, while here the fransmitted

waveform and the filter are assumed to be perfectly matched.




— £ 1.0 [r(T)I

/T _
' ridge of ambiguity functig
;%- phase correction:
£ e — e ——— —— — Lo '

? ' | ' ! e{nT} = € cos(2ﬂflnT)
1 + 82 cos(2ﬁf2nT)
| fl = 36/NT

0.5 —
: £, = 96/NT

o R T R
o i
fl-——-ﬂ-— e - — |
! '/;r—lédB ,
_ ~21dE\N;———W

32T 64T 96T : 1287
J——

-

Fig. 4.12 Effects of the phase correction function on the

ACF of a QP code.
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Two‘methodslof controlling the range ambiguities of a QP
waveform have been described. One method, by tapering the edges of
the transmitted signal, removes the high frequency ripplé'component
of the-Fresnel spectrum. The close-in sidelobes, however,.coula
Vnét be reduced. In addition a penalty in the signal energy efficiency
has to be paid. The second method; modifying the phase fuﬁction, does
not suffer from a loss in detection performance and thus is applicable
to high power radars. The best results using this method are obtained
for LFM type waveforms because of the ridge-like structure of tﬁe
fange—doppler ambiguity function. However, there.is no reason why
this method could not be applied successfully to other waveforms.. It
has been shown that in the case oleP codes only the close-in sidelobes
can be controlled efficientiyh Thus the two methods diffef in that one
basically controls the more distant sidelobes and the other the

ambiguities close te the mainlobe.

Unfortunately, LFM type signals are not universally desirable
waveforms. Therefore, in the next section another technigue to control

the range ambiguities is discussed.

4.4 Discrete Phase Approximation to Non-linear FM Signals

As pointed ocut by Fowleso, the stationary phése analysis gives
the phase modulatién function for any specified power spectrum and
signal envelcpe of sufficient time-bandwidth product.i The aﬁvantage
of a non-rectangular spectrum is that it allows control of the sidelobes,
without loss in SNR, which might étherwise be achieved by mismatching
(see Chaptex 8). However, an undesirable side-effect associated_wiﬁh
spectral shaping is the widening of the mainlobe. The reason for ﬁhe
broadening of‘the main response is determined intuitively from the

Fourier transform reciprocity relationship. When the spectral shape




D

|
. -

=70- _ }
|

is made.narrower, the time domain waveform becomés broader and vice
versa. Hence, in general, the resulpant MF outputlwaveform will be
Sroadef for non-linear FM than for the LFM case. 'Since the property
of these waveforms is basically retained when approximated by

discrete phase steps, this is also true for the resulting pulse trains.
Nevertheless,a system designer may feel that it is worthwhile to
accept a hiéher sidelocbe levei near the compressed,pulsé tolgive a
lower level furthex away from the main response peak. On the . other
hand, a non-linear FM type waveform may simply be used becausg a LM

signal is not appropriate.

The weighting of the spectrum can be done in many different

ways. It is difficult to define an optimum spectral shaping function

- if the trade-~off possibilities of the particular application are not

[

known. A class of signals having a rectangular envelope and a

generalized power spectrum is defined as -

|UH(f,n,c)|2 = A_{c + (1-c) ey - | (4.38)
where
H?(f/W) = any.functioﬁ of interest, O £ f.s W
c = pedéstal function
'An = constant

A special form of the above power spectrum is given by

2 ' n
|v o (Em,0) " =2 {e+ (1~e) cos™ (£/m)} } (4.39)
The frequency shaped compressed pulse then hecomes
W 2 j2unfr
r(t) = J lu_ _(£,n,0)]° & as C (4.40)
cos . : .

0
Using Eq. (4.8) and assuming a constant'signal envelope of duration

NT, the group delay functions tg(f,n,c) are obtained by direct
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integration for various values of n and ¢. For zero pedestal (c=0),

these functions are given by

1

NT/2{ 1 + sin(m{£-W/2)/W) }

=]
It

1 'rg(f,l,o)

i

n=2 rg(f,z,o) NT{1/2 + (£-W/2)/W + 1/2% sin{zw(féw/z)/w]

1

=
Il

3 14(£,3,00 =N/2 O+ 4 [sin (1 (£-W/2) /W) (cos” (v (£-w/2) /W) +2)]3
It is noted that for c = l.the LFM type signals are obtained. These

group delay functions are shown in Fig. 4.14. The constant An is

obtained by evaluating Tg(f,n,c) at one of its end points. Group

delays for ¢ # 0 are found in analogous manner. Inverting these

functions and performing a second integration, which is easily carried
~out on a digital computer, the discrete phése moaulation functions are

obtained.

The ACF's, amplitude spectra and group delays of discrete coded
waveforms whose spectra approximate Eq. {4.39) are shown in Fig. 4.15
to 4.17 for WT = 1 and ¢ = Q. The influence of the sampling period T

on the shape of the MF response is illustrated in Fig. 4.18..

In general two effects can be observed. First, spectrum tapering
results in a widening of the mainlobe. This effect depends on the
tapering function, but usually extends about 2to 3 sampling-intervals.
The far away sidelobes (k > N/4) are smaller in magnitude tﬁan for the
'QP sequences. Secondly, as in the LFM case, if WT < 1 a further
reduction in.sidelobe level ié observed at the expense of an increase
of the close-in ambiguities. For WT > 1, the aliased_versions of the
ACF will produce spurious respoﬁse peaks. The range.ambiguities,
however,‘are ﬁot s0 Pronﬁunced as in the LFM case, because the ridge-
like étructure is partly destroyed by the non-quadratic phase law

(Chapter 9).
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To reduce the mainlobe widening effect one can use Eg. (4,39)
to obtain a group delay function for c #.O. The distinguishing
feature between this weighting function and the cosiné function is
that tﬁe amplitude of the spectrum at its edges is not zero. In the

analogue case, for example, a cosine-squared spectrum for a value of

i

¢ = 0.08 approximates the familiar Taylor weighted spectrum22.

The ACP's and spectra for n = 2 and a pedestal of ¢ = 0.08 and

(¢}
1]

0.5 are shown in Fig. 4.19 and Fig. 4.20.

For small Valﬁeé of clc = 0.1) there is little difference from
a pﬁreiy cosinusoidal taper with no pédestal. On the other hand, for
0.8 < ¢ < 1.0 one approaches the LFM case; In betwéen these values
there is a whole range of non-linear FM type pﬁlse trains each of

which contains to some extent the LFM component.

Ancther interesting property of such pulse trains is their
zero pattern which is obtained by factorizing the corresponding ZT
polynomial. Similar to the QP signals, Fig. 4.21, the.zerqs tend to
lie on a spiral with approximately half the zeros inside and the other
half outside the unit circle. This is illustrated in Fig. 4.22 for a
pulse train with n=2,c¢ =.0 and N = 64. It is Eonjectured'that these
types of zerc patterns are common to all pulse trains whose spectra are
weighted smootﬁly in a cosinusoidal fashion because of.their'relatively

large LFM content.

4.5 Summary
The stationary phase principle is a useful method for desigrning
continuous signals having a steep monotonic FM law. This requirement

precludes the synthesis of pulse trains directly using this method. In

addition such an analysis is only approximate in that it does not include

the edge effects associated with the signal. This causes Fresnel
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Fig. 4.19 Effects of the pedestal function ¢ on the -
‘ACF (a), and amplitude spectrum (b).



1/27 . £ 1/7
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ripples which in turn result in range ambiguities. However, it has
been_shown that in brinciple all the desired properties of the FM
waveférms can be retained by.a disc;ete phase approximation, provided
sampiing occurs at the Nyquist rate, i.e. T =.1/W. For values other
tﬁan the Nyquist rate range ambiguities will appear either far or close

to the mainlobe depending whether T2 1/W,

Apart from introducing periodicity in the freguency domain a
quantization pfocgss of this nature produces an additional high
Qscil}atory ripple component in the spectrum, thué causing sideloﬁe~
bands at time shifts where k = NT to appear.  Since uniform pulse trains
have at least one sidelobe of unit magnitude at time shifts +(N-1)T,

there will always be a ripple component of the form 2cos (2m£(N-1)T)

: superimposed on the power spectrum. That ripple component can be

réduced by tapering the edgés of the pulse train. .In practice this

could be done by simply increasing the rise time of the transmitted
signal, thus minimizing system complexity. Since tape;ing of the time
waveform does not result in é reduction of the effective signal bandwidth,
no-main peak widening of the ACF is observéd. However, the remaininé
range ambiguity is now coﬁcentrated adjacent to the compressed pulse,
which may or may not lead to resolution problems.. Moreover, fﬁr high
powef radars such an approach to reduce range sidelobes is not readily
available because of its inevitable loss in SNE. Therefore, another
method that perturbed only the phase of the sigﬁal has been investigated.
With this method it is posgible to effectively reduce the sidelobe-band
close to the mainlobe, whilst otherwise the overall ACF is little

affectgd.

For the discrete non-linear FM case it has been shown that the
range ambiguities can be controlled to some extent., The method of

weighting the power specprum'suffers, however, from the mainlcbe
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widening effect because of the resulting reduction in signal
Eandwidth. This could seriously affect radar resolution performance
if closely spaced targets with widely varying cross-sections are
expectéd. In some cases the pulse widening effect can be reduéed by
sémpling at a slightly lower rate than the Nyquist rate, i.e.

WT = 1.2 to 1.5. Nevertheless, for many applications this method
offers an alternative to the system designer, particularly in cases
when LFM type signals.are not desirable. Although thé phase shifts
for the discrete non-linear FM case will have arbitrary values in
general, one can subdiviae the phase interval of 27 into M increments
and select the one closest to the actual value of the phase step.
Naturally such a quanti;ation would give rise to an additional increasé

of the overall sidelobes (see Chapter 6, Section 6.3.1}.

At this point it is perhaps of interest to note that discrete
-phase approximation could also be applied to discrete frequency wave-
forms. For example,Frank polyphase.coclftesl7 can be regarded as such an
approximation to discrete frequency codes. In additioﬁ the pulse trains
discussed here yield a more flexible means of waveform generation as
compared to analogue techniques. .For example, it is possible to
'scramble' the ordering of the sub-pulses to eliﬁinate the LFM

ambiguity in the delay-doppler plane.

The variations possible with phase coded pulse trains are almost
infinite in that the phase, frequency, and time of the transmission
of each segment can be varied. Thus these waveforms are compatible

with the multi-function requirement of modern radar systems.

The design procedure outlined in this chapter seems to be
satisfactory from the practical viewpoint. Unfortunately, methods
. based on the stationary phase principle are limited to a class of

signals whose phase functions vary smoothly with time. Signals with
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noise-like properties such as binary waveforms cannot be syﬁthesized
using this method. In addition if very low range sidelobes are required
the stationary phase method is not adequate and the sequences obtained
using fﬁis technique may be regarded merely as a first order

approximation.

In subsequent chapters an essentiAlly different method of
synthesizing discrete coded signals with desired autocorrelation
'properties is described.' The method is based on numerical optimization
techniques. Such an approach has a number of advantages. First, no
restriction on the class of admissible phase functions is necessary.
This allows the synthesis of waveforms with noise-~like properties.
Secondly, no information of the signal's phase structure is usuvally
. required. Thirdly, these methods are fléxible in a sense that:it is
possible to control particular sidelobes or sidelobe regions. In
general, numerical methods operate in an iterative manner to find the
optimum phase functions and are not wifhout their disadvantages; For
example, the sequences are found in a completely automatic fashion and
in many cases little or no insight is-gained from the analytical

viewpcint.,

However, before proceeding to the formulation of the synthesis
problem using optimizatidn techniques some of the basic principles

used when dealing with numerical algorithms are pointed out.




-76-

CHAPTER 5

THE OPTIMIZATION PROBLEM

5.1 Introduction

The methods available for optimization may be conveniently divided
into two distinctly different categories which are classified as analytical

and numerical, respectively.

Analytical methods usually employ the mathematical theory of calculus
and variational methods. These techniques are well suited to relatively
simple functions with a small number of wvariables, but are not able to

handle highly non-linear functions of large dimensionality.

Numerical meﬁhods employ, in general, a branch in the field of
numerical mathematics known as programming.methods. Recent developments
~in this field are reflecting the rapid_growth in computing capacities
offered by modern digitél computefs. Thé major areas of mathematical
programming embrace linear programming, dynamic programming and various

types of non-linear programming.

In analyticai meéhods the optimum solution is found exactly through
the solution.of a set of equations expressing the conditions for optimality.
In the numerical methods, on the other hand, near 6ptimal design is sought
in an iterative manner. BAn initial 'guess' 1is used as a starting point
for a systematic search for increasingly better.designs. The search is
terminated when certain criteria are satisfied which ensﬁre that the current

solution is sufficiently close to the true optimum.

While analytical methods require complete mathematical formulation
of ﬁhe function to be minimized, numerical methods can minimize functions

whose -structure is unknown but is being explored step by step.

During the last decade there has been a rapid development in

programming methods as well as in the application of sﬁch methods to desigh

- .
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problems. The bulk of the research has been concentrated in the area
of linear programming. The contributicns have been of such a magnitude
that most linear problems c¢an be solveds6 {Fig. 5.1). Non-linear programming,

Y
on the other hand, deals with the optimization of non-linear functions

suﬁject to linear and/or non-linear constraints. No general method exists
to solve non-linear problems in the sense that the simplex algorithm
exists to solve prcblems in which all the functionslare linea;. Many
strategies have been suggésted, but more algorithms have been proposed
than have been successfully applied. Thus the range of applicability‘of
existing non-linear programming algorithmé is limited. Thié explains the
continuing effort to improve known methods or to invent new ones.
Therefore, to some extent;-non-linear programming_still'remains an

experimental field of research.

In the area of signal design and related topics it is anticipated

that the improvements in numerical algorithms, together with the high

speed operations offered by modern computers, will attract increasing

attention in years to come.

5,2 Fundamentals of Optimization

The discrete nature of pulse trains éompliéates their synthesis
considerablf. No crdinary methods can be used in an attempt, to design
such sequences unless a discrete phase approximation to apnalogue signals
is made. As shown in the'previéus chapter the method based on the
stationary phase principle results in relatively large sidelobes (> - 30 dB)
and, moreover, limits the class of admissible waveforms. Instead of
synthesizing pulse trains from a‘given power spectrum one can try to find
the a&tual signal‘itseif which, if not ideal, has at least a satisfactory
approximation to the deéired ACF. 1In gene?al, approximatién is essential,
since the specified ACF is rarely_realizable for a given set of constraints

on the signal waveform. After an initial solution has been cobtained it is

¥
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éompared with the required MF response. The result of the comparison is
the approximation error and the objective is to reduce that error by
modifying the initial solution. It should be noted thét such a successive
approxiﬁation procedure has alllthe essential properties for automatic
control; namely the comparison of actual and desired performance and a

feedback path to reduce the approximation error.

Before presenting the optimization technigues used on the class of
signal design problems considered here it is necessary to state the design

problem in a suitable form.

5.2.1 PFormulation of the Synthesis Problem

The most important steps in the design procedure may be outlined,

with reference to Fig. 5.2, as follows.

First, at the outset the designer should have a clear understanding
of the functions to be performed by the signal. This step includes an
evaluation of the specific radar tasks such as multiple-target resolution.

capability, transmitter power limitations, etc.

Next, the principal waveform type has to be selec;ed. Here the
designer has to decide whether to use signéls of Growp I, II, or III
{Chapter 2). The signal under consideration may be characterized by méans
o; a set of design variables in amplitude, Ianl, phase, ¢n, and frequency
fn. It is often convenient to replace ordered sequences by vectors to

permit the notation of linear vector spaces. Thus

T

z=(la], la s e lagle o, prveeby g rEorf ety )

: T ey
where x is the design vector and (:}" denotes transposition.

The next step is the'mathematical formulation of the system.

This is expressed as a set of equations

hj(_&) =0 j=lr2:---rﬂ'

(5.1)
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In most practical cases there are restrictions on the permissible values

of the design variables which may be written in the form
g, (x) %0 i=1,2,0..,m° (5.3)

These constraints exclude undesirable solutions for a particular

application.

All solutions which simultanééusly satisfy Eq. (5.2) and Eg. (5.3)
coxrespond to acceptable or feasible designsf The-size of the feasible
region or solution space will, of course, depend on the constraints and
the system behaviour.. It is even possible that the solution space is
empty for a particﬁlar sét of constraints. In this case it beccmes

necessary to relax the conditions-above,

At this point a criterion or objective function must be adopted to
determine when the 'best' solution is arrived at:for a given degree of
complexity. There are several alternative ways to define a measure of
best Eerformance. For example one may choose to minimize the sum of the
squares of the errors, the absolute error, tﬁe sum of the absolute errors,
and so forth. The choice of any of these criteria is usually dependent
on many factors, the principal ones being the tasks_the system has to
perforn. In fact if the optimiéation technique is‘adequate, the performancé
index will completely determine the finai system. In the present case the
criterion may be written as a scalar functidp, F(x), of the design variables

X. In general F(x) will be a non-linear function in X.

At this stage a method to search for the optimum solution remains
to be chosen. Several technigues exist for minimizing non-linear functiqns
soﬁe of which will be described subsequently. ﬁaving-found the optimum
solution the designer must, of course, himself undertake the final

judgement of the solution obtained.
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The signals for the class of design problems considered here are

the a.m.ph.m, pulse trains given by

N-1
s{t) = ¥ a rect{t/T - n) . . ‘ {(5.4)
n=o = :

The function of interest is the sampled square magnitude of the MF
response
N-1-k

| x a
n=o

Jri)? (5.5)

2
n a;+kl

f

k. O;lro-.-'(N_l)

The aim is to f£ind the design vector x = {]g_} Q)T which minimizes
the objective function or performance index*
N-3 2 2
Fix) = 2 H|r)|" - |[2K)]|% _ ' (5.6)
k=0 .
where (k) is the desired ACF and f£(.) is a suitable function of

interest. For most practical applications the signal will be subjected

to the constraints
la) =1 n=0,1,2,. ... (N-1) (5.7)

Eq. (5.6) and the above conditions represent a constraihed non-linear
optimization problem. It should be noted that minimization of the real
valued function F(x} in general involves 2N real variables; namely,

the hnl and the ¢n, subject to certain constraints. It is possible,
however, to transform the above constrained problem into an unconstrained'
minimization.problem. In this case the design vector X can be written as

T

X = ([aol,‘[al[,.....,[aN_l],¢0,¢i,....,¢N_l) (5.8).

* Also known as error criterion or cost function.



The objective is to minimize

min F(E) = F(Iaol',[al|,...,]aN;lIl‘bofq)lr--.-;fﬁN_l) {(5.9)
x e &
Subject to
|a | = 1 n=0,l;—---;(N"'l) )
n
hencé
F(i) = F(l"l""'l'¢o'¢l““’¢N—l) = F(¢O'¢l""'¢N-l) : (5.10)

In other words the minimization of F(x) in. the feasible domain reduces

to the unconstrained problem

min F($) ¢ e BN o (5.11)

¢

where EN denotes the N-dimensional space . of real column vectors.

The soluticn is accomplished by finding [r(k)|2 in terms of the
phase vector ¢.

o | = [roee|® (5.12)

The error criterion F(Q) can now be derived for certain forms of

£(*), such as £ = (lr[2 - ]?[2)2, or £ = ||r|2 - ]% 2 . Here the case

of the mean-square optimization is considered. Thus,

£={|]% - |2|%? | (5.13)_

The objective function F($) then becomes

N-1 - _ .
F(p) = L '{[r(k,g)]?' -_|’1%(k)|2}2 \ : (5.14)
k=0 ‘

The first terms of a multi-dimensional Taylor series expansion of

F{$) are given by

Fip + Ap) = F(p) + vF Ap + 1/2;3@T HAD + oo (5.15)

where

1

B = cOl (A revrenrrbby ) - (5.16)



VF = col (3F/39 ,....,8F/39 )

is the error gradient vector. The symmetric NxN matrix H

(—BZF/3¢§..T...32F/3¢03¢N_l
voor) T = =

329/3¢N_1a¢0 ..... 3°F/34°.

L

contains the second partial derivatives of F(¢) and is called the
Hessian matrix. For F{¢) to be a minimum at_ﬁ, the following

conditions have to be satisfied

VF@ =0

5
and the Hessian matrix H must be positive definite 7

Thus,
_ . - N-1 2 a.12:2
3/3¢ {F(9)} = 8/0¢; I {|xtk,g)|” - [2)[T}" =0

k=o
is= Olll"'l(N—l)
Expanding the abcve‘equation, by squaring, leads to

N- 4 N1 ) , N-1 w
3/3¢;{ T |22 2 [E0) x|+ 2 (Jr e, [T} =0
k=0 k=o k=0

1

which is egual to
N-1 2 2 N1 2 2

g |%asee |r | - T lrek,9)|%0/0, [ri,p)|C =0
k=0 k=0

i=0,1,....,(N-1)

To solve Eq. (5.21) the two terms [r(k,gplz and (a/a¢i)|r(k,9)|2

need to be expressed explicitly.
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The expression Ir(k,gglz is simply given by

N-1-k , . N-lk 5

12 ' - : : .
Jrk,9) " = { z cos (9, = dptdt + 1 2 sin(9,=0 )} | (5.22)

The partial derivatives are readily obtained

N-1-k
2 .
(a/a¢i) lr(kfi’l = 2{ nio sin(g, - ¢,,,) [coste; - ¢, . - cos(¢i_k-¢i)]
N-1-k '
- cos(d, - ¢ ) [sin(e; - ¢,,,) - sint¢, - ¢)]}
n=o . :

3/2%; (k. 9)

2 .
= 2|r(k,£)l Re{ W 1 (5.23)
It can be seen that ,r(k,i)[z is independent of ¢ for k = O and
k = N-1. Moreover, one phase variable can be chosen arbitrarily,
- for example ¢0 = 0, since only the relative difference (¢n - ¢n+k)
is of importance.
These expressions can now be substituted into Eg. (5.21) to
produce a set of non-linear variational equations.
-1 ' 3/3¢, rik,9)
2 2 - T
o207 |rk,9) ] Rel EETTOR
k=0 !
N-1 4 8/8¢i rik,$)
- ¢ |rx,$)|” ref w} = 0 (5.24)
k=0 ’ _ :
i = 1,2;-..,N—l-
For practical cases the desired ACF, r(k), is usually set eguél to
zero for k¥ # O.. The condition for optimality thus reduces to
N-1 2 . 3/8¢i rik,$) : .
k Re{—F——F— =0 ©. {5.25)
L | £ (ki) |” Ref r(X,9) }7 B
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The above development describes the general synthesis problem for

phase modulated pulse trains.

‘In principle, the optimal solution could be found by solving the set
of non-linear equations (5.25) for the unknown variables ¢ employing
numerical techniques.' For any reasconable complex problem, however, this
straightforward approach is, unfortunately, unsound for numerical analysis.
In additién the solution of the complicated functional relationship
(Eq. 5;25) is equivalent in complexity to the optimization problem itself
{Eq. 5.11), Therefore, it may be argued that an attempt to minimize the
criterion F($) directly usiné non-linear - optimization methods might be a
more practical approach. However, for direct minimization a slight
modification of the performancé index is suggested. This modification

should reflect the multiple-target resolution requirements.

For pulse compression sequences twWwo characteristics are of

particular concern (Chapter 2). One is the total sidelobe energy given

by

C U N-1 5 .

E,= I x| ~ (5.26)

k=1
In a dense-target environment the self-clutter power at the MF output
is proportional to this quantity. (Since the autocorrelation is an
even function, only one half is considered, i.e. the actual sidelcbe energy
would be twice the value given here). BAnother property of interest is
the peak sidelove level, maxlr(k)l, which represents a source of mutual
k

interference that can chscure weaker targets, Therefore, it is required
to minimize a suitable measure which incorporates these characteristics.
Naturally, any such measure is to some extent arbitrary, but in general

will be of the form F(Ir(k)‘). Again specifying the desired ACF as

being zero (k # 0), the objective function may be redefined as
N-1 e
F ($) = & wik) |r(x,4)]| (5.27)
P k=1 : '
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where p 2 1 and w(k) 2 O. The weighting sequence w(k) allows control

of the sidelobe structure of the resulting ACF. A good compromise is to

set w(k) = 1 for all k; if no, or little, prior information about the

-radar environment is known.

The minimization of Fp(gj is often referred to as the least pth
. .. 58-60 . ' o
approximation . The error gradient of this type of objective
function is given by
N-1

F =
@) = I

Re{p|r ,0) |P7% r* (k, ) Ve (k,$)}
k=1 :

2 £ p £ w; even integexr

Provided the derivatives Vr(k,¢} are available, a suitable gradient

method could be used to minimize Fp(g).

Incidentally certain optimization problems can only satisfactorily
be described using several error criteria., A suitable overall performance

index could then consist of a linear combination of functions of the form

(5.27), i.e.

_ (1)L (2) (3)
Fo=a) P 4 d, BT 4+ B0+

where the Ai—weighting factors would be given values according to the

importance of F(l), F(z),

o o ... etc. (See Chapter 6, Section 6.5).

5.2.2 Properties of the Performance Index Fp(x)
For a rigorcus formulation, the synthesis problem requires the
solution of

E , k=0

r{k,x) = 0 , k=+1, +2,..,.,+(N-2)
1l , k=+(N-1)
subject te
|a =1 1’1=O,1',.-.,(N—l)

(5.28)

(5.29)



where E is the energy of the sequence given by

= I |af® = [aff | (5.30)
n=o : |

'Thq above conditions form a set of (N-1) non~linear eguations in the

unknowns (¢l,-¢2,....;, ). As was pointed out previously one of the

q)N--l

unknowns ¢n can be chosen arbitrdrily, i.e, ¢ It is not

o = ¥N-1°
possible to solve this system of equations by ordinary methods.

Thérefore, a formulation which is equivalent to the solution of Eg.(5.29)

has been adopted in the form of the constrained minimization problem

. N-1
mnF_(x) = I [r@,x][P | (5.31)
X P k=1 '
subject to
r{o,x) = E
Ia l = 1 for all n
n

which is equivalent to the unconstrained minimization problem, min Fé(ﬁ).
Clearly, any sclution satisfying Eq. (5.29} will minimize Fp(gg._

If there are no constraints on the admigsible valges for lanl, it can

‘be shown (Chapter 7) that there exist 2N-l possible solutions. Hence,
for the unconstrained case the objective fugction fp{g) has at least

N1 relative minima with a value of unity. In addition if X = (IQJ.Q)T

is a vector that minimizes Fp(g?, then X given by

x, = (al. ¢ + 89"

where

A¢n :ra + nB n = 0,1'2,.--; (N-lJ

and a,B are arbitrary constants, alsc minimizes Fp(i)' This means that
the performance index is invariant to an arbitrary constant (o) or linear
{B) phase shift, since

e r(e,x,) = Al ricx) | (5.32).
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Hence

lrtezp| = letax)| , - (5.33)

The iﬁtroductibn of the constraints |§J = 1, reduces the solution
space drastically. The size of ﬁhe domain of convergence deéends, of
course, upén.the systgm of gquations. -In general this size is inversely.
related to the degree and number of equatiéns. While for twoc simultaneous
second order equations almost any initial estimate will lead to one of
the roots, iﬁ may be very difficult to obtain an initial eséimaté from
which the it;ration converges for a larger number of equatioﬁs, In factf
no solution for (N-1) > 3 that satisfies Eg. (5.29) exactly is known so
far. This suggests that the domain of convergence for the constrained set
.of equations is either very small indeed or even zero (Chapter 7).

Ahofher difficulty in finding a solution ié the addifionlof a multitude

of local minima due to the constraints. Therefore,‘any attempt to find

the global minimum would require an extensive search procedure.

|
|
1
In this sense, therefore, FP(EQ has an infinite number of minima. :
At this point the value of p remains to be chosen. It should be
noted that for p = 2 minimization of
N-1
F@ = ¢ |lrx,9)]|? . (5.34)
P ‘ k=1 .
rgsulﬁs in minimizing the sidelobe energy E_ . However, for p = 2 and |
' ' |
sequence lengths N > 20 the measure reacts weakly to large peak values, |
while for large p it will not respond to the energy criterion, since
for well-behaved functions
N-1
lim { I

e, ) PP = max lra,p)| 000 (5.35)
pre k=l k

/p

The measures (Fp)l are called Chebyshev or uniform norms
because of the consequences of Eg. (5.35). Minimization with respect

to (Fp)l/p‘for large p is often referred to as minimax approximationsg.
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In othér words, the least pth approximation tends to the minimax
approximation as p + ®. Hence as suggested by Eq; {5.35). a Chebyshey
solution could be approached in principle, by successively minimizing
Fp each time incrementing the index p, i.e. p = 2,4,6,... etc.“In most
cas;s acceptable minimax approximationscan be obtained with relatively

moderate values of p (p = 10).

It is not clear which characterizes the 'goodness' bf é seqﬁencg
ﬁore fully, the ﬁaximuﬁ'peak vaiue‘or the energy.éritérion.' Therafore,
for short sequences (N < 20) p = 2 should be adequate, while for‘lénger
sequences a larger value for p, for example, p = 4 has the desirable

‘effect of reducing large single sidelobe peaks.

At this point a word about the significance of the welghting
function w(k) (Eg. (5.27)) and the index p is appropriate. Generally
speaking.theif purpose is.to emphasize large errors. Howeveé{ the use
of a weighting function to achieve this would require priorx knowledge
where these large errors occﬁr. Consegquently, a Weigﬁting function may
be uséd as a means to emphasizé certain sidelcbe regions, but it is a

poor approach for enhancing single large errors.

For p = 2 there exists an equivalent formulation of the critexion

-

Fz(g)-in the frequency domain. Using Parseval's theorem Eg. (5.34) can

be written as

N-1 ) 1/27 , s
Eorx, ) |° = T/z[ ([s¢e)|© - 7 atf

k=1 ~1/2T
where the power spectrum |S(f)|2 is given by

. N-1

s =n+2 £ |etk,0] costamskr + a)
k=1 -
and _
o - tan_l { Im [r(kr@]}

K _Re [r(k,9)]" .

(5.36)

{5.37)
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The power spectrum consists of a constant term N and a ripple spectrum.
Thus, minimal sidelobe énergy is equivalent to requiring minimum energy

in the ripple components of the spectrum.

It might also be of interest to note that the performance index
defined by Eq. (5.34) is known as the class of kp—measures. For p=21
these measures define a norm which has found apﬁlications in the theory

6
of estimation and smoothing l.

Minimizatién of Fp(gg requires computational methods. An important
sfep in any optimization procedure is the choice of alsuitable algorithm.
Unfortunately, for problems of high dimensionality very little information
on the relative performance of the algorithms.for unconstrained

- optimization is available. Because of the lack of published data,
consideration needs to be given initially to the efficiency and limitations
of minimization algorifhms. The remaining sections of this chapter are,
therefore, concerned with the selection and bfief documenation of four

favoured algorithms which are later used in a comparative study.

5.3 Unconstrained Non-linear Programming Methods

ﬂon—linear optimization methods can be classified as:

(i) Methods that‘use derivatives, kpown as gradient type
méthods. |

.(ii) Methods that do not use derivatives, commonly known . as

direct search methods.

However, such a classification is not clear cut, because some techniques
evaluate the derivatives using difference schemes or minimize in the direction

of a gradient by search methods.
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The number of variables in the signal design problem cohsidered
here is equal to the seguence length N. In most radar applications
- seguence lengths of N 2 30 up to as large as a few hundred may be.
desirabie. Hence, onlf algorithms that can handle functiogs of high
.diménsionality.can be employed. This requirement precludes most of the
'dérivative type methods. Consequently, four currently favoured seéréh
algorithms (no derivatives required) are considered and briefly described

in the following sections of this chapter.

5.3.1  Unconstrained Minimization without using Derivatives

In derivative-free methods the directions of minimization are
generally‘determined solely-from;successive evaluatioﬁs of the cbjective
.function. As a rule, in solving unconstrained non-linear programming
érobiems, gradient and second derivative methods converge faster than
direct search methods. ‘However, the difficﬁlty encountered with these
methods is that in problems'with a'modesfly large number of variables it
is laborious (large amount of computer time) or often impossible to provide
apalyfical functions for the derivatives, Although, in priﬁciple,
evaluation of the derivatives by difference schemes'cén be substituted
for the analytical derivatives, the numerical error introduced can impair
ﬂ").e use of such substitutions. In any case direct search methods do not.
‘require regularity and continuity of the cbhjective function énd the
éiistence of derivatives. Because of these difficulties direct search
méthodé have been derived that, although slower to execute for simple
problems, in practice may préve more satisfactory from the users viewpoint

than derivative methods.

. Many of the search type algorithms require a one-dimensional search

along a line in N-space as part of their overall strategy. The methods of

locating a minimum of a function of one variable . will, therefore be the

discussion of the next section.




~so that it minimises F(x + U

know an initial uncertainty interval, or 'bracket', Ax
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5.3.2  Efficient Unidimensional Searches

The problem to be considered here is that of finding a local

minimum of the function F(x) of n variables x = (xl, Kyseenes xn}T.

Nearly all search methods are based on the iteration

LoD ) ) (k)

(k)

where s

(k)

is the direction of search. The parameter § is chosen

(k) (k) g}k)), i.e. 3F/3p = O. The location

(k) _(k)

- of the minimum along the line p s {liriear search) is equivalent

' to minimizing a function of only one variable. Excellent descriptions

of the linear search problem are given by Box et a162, PoWell63 and

Wilde64.. To apply these one-dimensional search technigques one needs to

{o)

; which contains
the minimum of F(x) . In addition F(x) must be unimodal in that interval.

There are a number of different methods of reducing the initial bracket,

(o) (M) 62,63

Ax . to a final interwval, Ax . A few remarks conceining two

technigues which are to be used in Powell's search algorithm68, seem

appropriate.

The first search is based on dividing an interval into two segments,

. P, and Fz;,a technique known in ancient times as 'golden sectien'. The

1

ratio of the whole interval to the larger segment is equal to the ratio

of the larger segment to the smaller, i.e.

Fl + F2 =1
F2/1 = Fl/F2
hence
. _'Fz
F, =¥,
Fp = (3 - ¥5)/2 = 0.38
F2'= (S - 1}/2 = 0,68

The two segments Fl, F2 are also known as Fibonacci fraction357.
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The initial bracket on the minimum of F({x) is obtained by a
series of increasingly larger steps in the independent variable x.
The next bracket, for the_kth cycle is then computed each time dividing -
the interval containing the minimum according to Eq. (S.39)_until the minimum

is located within a specified accuracy.

Other methods of unidimensional minimization locate a point near
the minimum By extrapolatién and interpolatién. Thé attraction ofrthese
technigques is that polynomial interpolation converges rapidly (at least
quadratically) in the vicinity of the minimum, while the golden section
search is only linearly converggnt. In the Coggin-Powell seérchs7 for
example, a gquadratic approximation is carried out using the first three
points obtained in the direction of_search. The minimum of the guadratic
function is then determined. This is continued at sﬁitably Ehosen points

until the minimum of F(x) is located.

These types of linear search algorithms are well suited to

implementation on a digital computer.

5.4  Direct Search Methcds

Conceptually the simplest method is that of alternating direcfions
in which n searches are made along coordinate directions until tﬁe minimﬁm
is reached. This process, however, ﬁurns out to be highly o;cillatory
and usually fails EP converge if there are interactions between the variables.
That is, if terms involving prcducts of the variables occur in tﬁe
objective function. Therefore, this method cannot be recommended unless

the interactions are insignificant.

cut of a number of available search techniques, four methods have
‘been chosen which seem suitable for the signal design problem considered
here. The first three are pure search methods that do not require

derivatives. The fourth technique described is of the hybrid type and
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although the derivatives are not required analytically, they are assumed

to exist and are evaluated using difference schemes.

The chosen algorithms are well documented in the contemporary

56,5 : )
L 7. To aveid unnecessary repetition only two of the search

literature
metheds, which were found to be most efficient (Chapter 6), will be

described in some detail.

5.4.i Pattern Search Method

The pattern search (PAT) method is a logically simple strategy of
search that is completely described by Hooke and Jeeves65. The algorithm
consists of two major phases; an 'exploratory search' around the base
point and a 'pattern search’' in the desired.direction for minimization.
The fiow diagram of the algorithm is shown in Fig. 5,3 and may be

described briefly as follows:

{o)

1. & starting point x (initial gquess) and an initial step

size AE(O) must be provided.

2. Exploratory search. Various moves from the base point

in the directicn of the coordinate axes are conducted.

(o)

To be specific each variable X, is changed in rotation,

one at a time, i.e., xé;) = xéo) + Axio).' If F(x) is

reduced, the new reference value is adopted. If the

increment fails to improve F(x), xio) is changed to

xfl) _ x(o)

5 5 - Ax£°) and the value of the objective function

is compared as before. If F(x) is not reduced by either

increment iﬂxio), x;o)

. (o)
variable xi+l

is left unchanged and a new

is perturbed.

3. Success? If the best value found for F(x) during the
exploratdry search is better than its value at the last

base point, a new base poiﬁt ~is established. Otherwise




Start

L

Evaluate F(x) at the
{0)

initial base point X

Perform exploratory

search from base point

Is exploratory search

a success 7

No rYes
Can step size No Set new base point
be reduced?
Yes 1
i Perform pattern move
Reduce step
‘size Stop
y
’ Yes Is pattern move a
success?
No

Save last base point

Fig. 5.3 Flow diagram of pattern search (PAT) algorithm,



It can be

step size

—g4-

the last base point remains.

The new base point is stored and a pattern move is
conducted in the directicn of the difference between
the o0ld and the new base point values. This is done in
a series of accelerating steés as iong as F(x) isl

decreased by each pattern move.

The pattern move fails to improve F(X). The last base
point is restored and.the indepenaent.variab;es-are set
to the values corresponding to the last base point. The
functional value becomes the initial referéncé for
testing the individual moves of the foilowing exploratory

search (step 2).

Pattern and exploratory search fail to decrease the
cbjective function. 1If the step sizes for all independent

variables are at their minima, the search is completed.
The step size is reduced and another exploratory search

is performed by restarting at stép 2.

seen that the final termination of the search is made when the

is sufficiently small to ensure that the optimum has been

closely approximated, However, the step size must be kept zbove the

practical

limits imposed by round off errors.

5.4.2 Flexible Polyhedron Search

BAnother method often used and well suited for implementation is

given by Nelder and Mead66. The method is'besed on the simplex algorithm

which is well documented in the literature

57,67
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This method operates by evaluating the objective function F(x)
at points in E" (E" is the n-dimensional Euclidean space) located at
the vertices of a simplex. Morecver, the techniques described by

Nelder and Mead permits the simplex to alter in shape and thus is often

‘reférred to as flexible polyhedron rather than simplex method.

Thg Neider and Mead (NM) algorithm minimizes a function of n
variables using (n+l) vertices of a flexible polyhedron'in En. Each
vertex can be defined as a vector zi, i.= 1,2,...,n+1l. The vertex which
yields the highest value of F(x) is projected through the centre of
gravity {centreoid)} of the remaining vertices.‘ Improved values of the |
cbhjective function are obtained by successively replacing the point with the
largest value of F(x) by bettér points until the minimum of F(x) is

P

reached.

Neldexr and Mead suggested terminating the search when the following
condition is satisfied

n+1,

- 1 (k) (k), 127 % |
e [ =7 iil (PG - Flx )] | (5.40)

vhere € is a small arbitrary number and F(E;k)), F(Eét;) are the values

of the objective function at the ith vertex and the centroid respectively

on the kth stage of the search.

5.4.3 Powell's Search Method

6
The algorithm proposed by Powell 8 is one of the currently
favoured techniques. The method’locates a minimum of a function F{(x)

of several variables by successive unidimensional searches from an

initial peint x(k). In general Powell's method on the kth stage employs

~o
{k)

n linear independent search directions. The search is initiated at x

k)

and tﬁe transition tc a point n is given by
b .
) m-1
T A BV ‘ - (5.41)
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are taken to

AFk)
i

0
" The initial search directions s( ), s(o), ceaes s(o)
=1 2 -n

be parallel to the coordinate axes of E”. The parameters are

determined sequentially by unidimensional searches such that for the

() 5, k) (0

ith parameter F(gb é ) is a minimum.After minimizing F(x) in

each of the n directions a test is usually made to ascertain linear
independence of the search directions. The search is terminated if the

change in the objective function or in each independent wvariable is

less than the required accuracy €.

It should be noted that this search technique is also knowh as

the method of conjugate directions.

5.5 Sums of Squares Method
The problem considered here ig the solutioen of a system of non-
linear equations

fi(xl,x2,....,xn) =0,1i=1,2,...,n

by minimizing a function of the form

I ) 2

1/2 ¥ {f,(x)}
. I -
i=]

F(x)

I

or simply

1/2 ££ = 172 || £

F(x)

I

where g? is the row vector (£, (x), £,(x),.....f (x)).

In the classical Newton iteration the gradient of F(x) is reguired
T
glx) = VF(x) = J(x)" £(x)

where J(x) is the matrix of the first derivatives of £ (Jacobian) with

Ty = 35, (x)/8x

{5.42)
{5.43)
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If the Jacebian is non-singular at the solution and if F(x) is twice

differentiable, it is easy to show that the Hessian is given by

R Vg rawT I

(U =]

m@=v%gﬁ=
-4

whexe

2 .2
{v F}ij = 3 F/axiaxj

It is interesting to note that the computation of the Jaccbian J(ﬁj

not only furnishes the gradient VF, but also part of-VzF.-

At the point where F(x) is a minimum, denoted by (x + &}, the
conditions

VF(x + 8) =0

are satisfied. A common strategy is to approximate Eq. (5.45) by the

first two terms of the Taylor series in § about x

VF(x) + V2 F(x) § = O

Furthermore, the least sgquares method works on the assumption that the

term

n 2
I F_(x) V7 £, (x)
. i i
i=1l

can be ignored, thus

J(3<_)T J{x) § = -VF(x)

and hence

1

~-@ 0t s

[=23

1.7

T .- . . N
{(J° J) "J is known as the generalized inverse of J

u

+
The matrix J
and is an extension of the concept of an inverse for matrices which are

singular or rectangularﬁg. If rank (J) = n is satisfied in Eg. {(5.48),

the Algorithm reduces to the Newton method

§ ==t £

(5.45)

{5.46)

{5.47)

(5.48)

{5.49]
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In general the least sguares methods are based on the iteration

LD G ) (k)

x)

~ where § solves a linear system of eguations of the form
A(k] é-(k) - dVF(E}k)) _ , (5.50)
and.A(k) is a (nxn)} square matrix characteristic of the method. The

parameter u{k) is usually rhosen in such a way as to ensure that
(k+
rx®) < p®).

Unfortunately the solution of Eq. (5.48) is not as straightforward
as it might appear. In many practical cases the Jacobian J is ill-
conditioned or even singular (rank {J) < n). An attempt to cover these

cases has been made by Levenber971 and Marquard72 by intreducing a

positive parameter A into the initial least squares formulation of Eq. (5.48).

5.5.1 Powell's Least Squares Method

68,70 s
""" is based on a compromise

Powell's sums of squares technique
betwéen the Newton-Raphson algorithm and the method of steepest descent.
This algorithm, unlike earlier methods, does not search along a line in

the space of the variables x. Instead of a linear search, the functions

£(x) are calculated for only one value of x on each iteration.

A major drawback of the Newton method is that the value of the
‘objective function is guaranteed to be iﬁproved on each cyéle only if the
Hessian matrix H(x) of the 6bjective function is positive definite57.

{A matrix is positive définite if and on}y if all the eigenvalues are
-positive}. éor strictly convex func&ions H(x) is positive definite, but
for general functions the Newton methbd may lead to search directions
diverging from the mipimum of F(x). Therefore, to obtainrthe corréction
vector § (Eg. (5.48));‘Mérquard and Levenbergn'72

of

|
|
suggested the solution




n n
DI+ g, T} s L, £ (5.51)

i=1,2,...,n

where I is the unit matrix and X is a parameter. It is noted that the

characteristic matrix A (Eg. (5.50)) in this case is given by

A=+ 3 (%) J(x)

For sufficiently large'l it can be shown that the criterion for success

F(x + 8) < F(x) | (5.52)

is satisfied. Moreover, if the term AI overwhelms J?J, the minimization

approaches the steepest descent search.

i

The Powell least squares algorithm (POS) is initiated by providing
an estimate x of the minimum of F(x), and also an approximation to the

Jacobién matrix J, which is obtained by calculating

Iy = afk(g)/axj = {fk(xl,xz,....,xj + g, xj+l,...,xn)}(e

Furthermore, the matrix Jdl, a matrix Q of n directions in the space of |

the variables and a step length A are required.

The calculation of the correction vector 8 is carried out by
predicting both, the Newton correction g and the steepest descent
direction.g

q = -t (x) £(x)

g = -1 (x) £(x

!

Because of the good convergence properties of the Newton iteration it
would be desirable to let § = g, provided the norm ng|< A. The purpose
of A is to limit the size of §. If flall> A, § is set equal to a positive

multiple of the gradient g such that ”Q“ = A. However, if neither of
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the inequalities is satisfied, § is assigned a value which is a linear
combination of g and g. ?he value of A is reduced if F(§:+ 83 ZIF(E)-
However, A cannot become smaller than some pre-assigned small quantity,
€, which ensures an adequate Jacobian approximation. The algorithm
inciudes an.additional‘feature to increase A if the inequality (5.52)
is satisfied. In general, however, A is bounded by a ﬁinimum and

maximum value.

The POS algorithm uses an . Updating procedure for the matrices -

J and J_l. The revision formulae are given by

SUrL) _ oG) .(5 N Tk a (5.53)
where ] |
K= £x+8) - £
and _ _ :
@ S gL By e @ R 6T e K 6T 0 B (5.54)
Speéial steps are taken to avoid the situation where {§?(J-l}(k)5) is

Zero.

The POS élgorithm includes a device to maintain.sufficient 'linear
independence' in the directions d§. Powell defines the vector § to be
independent of a set of directions (gi,gz.....,gn)-if the anéle between
$ and some vector.in the space spanned by the directions is not less than
thirty degrees. The algofithm therefore ensures.that fér most iterations

Q}k—2n+l} g}k) span the full space

po ey

{(k » 2n}, the directiens éfk—Zn)’
of the_variables, where §}k) is the corregtion vector on the kth iteration.
This is accomplished by a matrix § whose columns are the n orthogonal

vectors (gl,g ,...,gn) and a vector Q_Which is used to store the history

of the previous iterations.
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The calculation of an iteration. of the POS algorithm can now be

summarized, with respect to Fig. 5.4, in the following major steps:

1. Initialize the iteration by calculating the gradient

g and the Newton correction g to obtain §, where ngﬂ < A,

2. If Q_is sufficiently independent, the functions f(x + q)

.are computed and A is revised.

3. If é_is linearly dependent, it is set.to some pre-
assigned value. The functions £ﬁ§_+ §) are calculated '
and after revision of J the iteration is continued from

step l.

4. If F(x + 8) < F(x), x is replaced by (x + §), otherwise

the old value remains,

5, If ”§J|< e, the search is continued from step 3. Otherwise
the Jacobian is updated and a new iteration is startéd by

going back to step 1.

Powell sﬁggested termination of the search when either of the

conditicons is satisfied:

(1) F(x) g €y where ¢. specifies the accuracy of the solution.

1
(1) If (n+4) iterations fail to improve the function F(ﬁ).

(1ii) 1If [[§]] < ¢ and further iterations do not decrease F(x).

(iv) If a stationary value of F(x) is predicted, i.e. VF(x) = O.
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CHAPTER 6

SYNTHESIS OF UNIFORM SEQUENCES USING NUMERICAL OPTIMIZATION TECHNIQUES

6.1 Introduction

The resolution performance of linear and non—linear FM typé'.
seduencesr(Chapter 4)_may be quite satisfacfory for a number of_different-
applications. However, a better cluttér rejectign can be cbtained by
reduéing the éidelobes eﬁen further using numefical means. The application
of unconstfained minimization algorithms to thé éequence desigﬁ pr&blem
raises the question as fo which ofrthe cuxreﬁtly favoured methods
described in the preceding chapter is most suitable.‘ Most of the
unconstrained search méfhods work wéll for problemé with a small number
of variables. Unfdrtunately, very little information.ébout the relative
efficiency of.variOus algo?ithms,'when applied to fuﬂctions of medium to
-high dimensiohality, is available at present.  In signal design problems
the dimensionality of the objective function is usually large.(N > 30).

In addition in this particularrcaSE trigonémetric equations bécqme vefy
.ill—conditioned (highly non—linear, multimedal and oscillatory) as the
number of variables increases. It is therefore essential to consider
first the efficiency of the various ﬁinimization methods described
previously so AS not to sériously limit the feasible number of variables

that can be handled and thus to restrict the sequence length.

) This chapter also shows that optimization techniques can be
useful in the synthesis of bina;y phase‘coded'signals. This'class of
waveform Has the advantage that simple and efficieﬁt decoders can be
built. 1In addifion the possibility of designing pairs of phase coded
sequences with low ACF sidelcbes and,sm;ll crosscorrelation is

investigated. The use of such sequences in time-division multiple-

access (TDMA) systems is of wide interest.



6.2  Basis for Comparison of Numerical Algorithms

Before evaluating the relative effectiveness of the various

. algorithms, some remarks concerning the coding and the criteria to use

in the evaluation of the effectiveness are appropriate.
’ The programs used in the investigation were:

(i) The pattern search method of Hook and Jeeves, hereafter termed

PAT.

(ii) Powell's linear search method employing two different uni-
dimensional searches, the golden section and the Coggin-~

Powell search, hereafter termed POG and POC respectively.

{iii)} The simplex method of Nelder and Mead, hereafter termed NM.

- (iv) Powell's sum of squares method termed POS.

The programs- used were,las far as possible, definite versions of each
a;gorithm described in Chapter 5. The searches POC, POG and NM were
coded as given by HimmélblauST. Algorithm POS uses.the program published
by Powell70, and PAT was written from the fldw diagram, Fig. 5.3. ALl
algorithms were coded in Fortran IV and run on the ICL 1904A computer
system at L.U.T. The experimental evaluation of the algorithms has

been done by minimizing F4(9) (Eg. 5.34)) of wvarying dimensionality

and for different termination criteria.

The perfbrmance of each algorithm depends in practice on the
values of certain preset parameters such as the initial‘step size,
starting point, accuracy required as well as the precisé ;oding.
Computing time and location of the minimum in particular are very

sensitive to these factors and to the termination criteria.

The criteria considered in the assessment of the uncenstrained
algorithms are:
(1 Number of function evaluations

(ii) Computation time to termination (for a specified accuracy)
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In order to compare the performance of the various methods, under
conditions as nearly identical as possible, they were used to solve

a set of signal design problens, starting each problem with the séme
initial conditions. However, since the course of computation varied
wiéh each method, it was impossible to terminate the calculations at
"the same point; the accuracy of the final soluticn varied from method
to method., The degree of precision usually'depeﬁded on the terminationl
criterion. Eor POG, POC and PAT the termiﬁation criterion £ was chosen

to be a_fractional change in F4($):

k+1 k
r, 0 - r ")
£ £ ) (6.1)
Fog )
For the NM algorithm the iteration was terminated when
: N+1 '
1 (k) k), 12 %
es { §F iE RACTREPILE AN R (6.2)
whereas the POS algorithm was terminated when either the norm of the
correction vector |[§|| was smaller than a specified small number e
aﬁd/or a stationéry value of F4(Q) was predicted, i.e.
ja] <«
or
v F4($) = 0 _ (6.3)

The number of function evaluaﬁions of 34(9) to reach a certain
precision is in itself a not too satisfactory measure of efficiency for
algorithms having widely differing strategies. Consequently, a second
‘criteriop, the computaticn time to execute an algorithm, is ;lternatively
cited as a measure of the effectiveness of a method. Although the
computﬁtion time is not necessarily the best criterion, because the

measured time depends on-the tYpe of computer and the method of coding
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of the algorithm, it often has to serve, in lieu of a better measure.

6.2.1 Evaluation of Non-~linear Progrémming Methods

The performance of the non-linear unconstrained optimization
algorithms is summarized in Table 6.1 to 6.5 where the following

notations have been adopted:

N = number of variables (sequence length)

M = total number of function evaluations
ITR = number of iterations
€ = termination criterion
Fl ‘= initial value of F4(g)
F, = final value of F4(Q)
.S = peak sidelobe level of ACF, maxlr(k)[
max X
' ' 2 N1 2, ,.2
E_(3) = sidelobe energy ratio in %; E_(8) = 107 (2 [x(x) {9 /B
- k=1 o
Rc = mean convergence rate, 1/M (Fl - Fz)
T(mil) = execution time in millunits (1 millunit = 0.5 seconds)

For the POS algorithm the number of function evaluations to set up the
Jacobian matrix J were disregarded. All algorithms were initiated at

the point
2, :
¢i =71 /N 1 = 0,1,2.....,(N—l)

and the initial gtep size, except for POS, was chosen to be d.l. The
selection of the parameters & and A for POS is gquite cr;tical_in view

of the effectiveness of the methed. In éarticular £ mpst be so small
that for [§] < e, fk(i_+ §), k =1,2,....,N is nearly a linear function
of 6. The parémeter A is usually set to a genercus estimate of the

distance of the solution from the initial guess. Using the Euclidean

metric the distance between i_and ﬁ is




N € M TR| Fl' | F, 8 ax Es(é) R, T {mil}

5 | o.1 35| 1 2.292 1.866 { 1.00L | 9.194 | 0.007 2
10| o.1 206 | 3| 18.751 4.862 | 1.054 | 6.060 | 0.055 23
15 | 0.1 202 | 3 | 42.632 9,158 | 1.174 | 4.197 | 0.093 64
15 | 0.05 531 | -6 - 7.289 | 1.099 | 3.919 | 0.059 | 104
15 | o.01 508 [ 7 - 7.062 | 1.090 | 3.898 | 0.054 | 115
15 | o.co5 | 658 ] 8 - 6.994 | 1.083 | 3.886. | 0.050 | 124
15 | o.o0L § 894 | 12 - 6.906 | 1.065 | 3.842 | 0.038 | 163
20 | o.1 133 | 1 | so.855 | s2.049 | 1.842 | 6.151 | o.139 71
25 | 0.1 616 | 4 | 141.409 | 19.281 | 1.383 | 2.892 | 0.167 319
3 { 0.1 362 | 2 }|216.681 | 121.378 | 2.269 | 4.815 | 0.195 307
30 | 0.05 362 | 2 - 121.378 | 2.269 | 4.815 | 0.195 307
30 | o.o1 |1e6l6 |11 - 68.945 | 1.906 | 4.098 | 0.074 | 1026
30 | 0.005 [ 3471 | 25 - 51.847 | 1.590 | 3.727 | 0.046 | 2146
40 | o.1 264 | 1 |435.491 { 251.918 | 2.523 | 4.299 | 0.430 | 498
50 | 0.1 2007 | 7 }752.342 | s57.130 | 1.336 | 1.821 | 0.314 | 3489

Table 6.1 Performance of POC élgorithm.



Es(%)

N € M ITR Fl P e R, T(mil)
5t o.1 49 | 1 2.292 1.924 | 1.000} 9.407 | 0.005 3
10 | 0.1 253 | 3 | 18.751 4.802 | 1.049 | s5.861 | 0.048 26
i5 { o.1 426 | 4 | 42,632} 10.192 | 1.172 | 4.316 } 0.067 88
15 1 0.05 495 | 5 - 9.221 | 1.153 | 4.288 .062 97
15 | o.oL 996 | 13 - 7.008 | 1.0a1 | 3.898 | 0.034 184
15 | 0.005 | 1039 | 14 - 6.996 | 1.042 | 3.873| 0.033 [ 104
15 | ©0.001 | 1326 | 19 - 6.918 | 1.057 | 3.817| 0.026 | 245
20 | o.1 160 | 1 | so0.855 | 51.395 | 1.911 | 6.024 | 0.133 74
25 | 0.1 711 { 4 [141.409 { 22.895 | 1.491 | 2.865 | 0.248 | 355
30 | 0.1 237 | 1 |216.601 138.557 2.301 | 4.847 245 | 223
30 | o.05 366 | 2 - 126.968 | 2.274 | 4.8421 0.199 | 292
30 | o.on | 3300 |27 - 55,499 | 1.637 | 3.923 | 0.048 | 2024
30 | 0.005 | 3590 [ 30 - 54.250 | 1.643 | 3.858 | 0.044 | 2243
40 0.1 330 | 1 }435.491 | 249.315 | 2.577 | 4.254 .404 540
50 | o.1 1943 | 7 [752.341 | 97.162 {1.788 | 2.123( o0.313 { 3341

Table 6.2 Performance of POG algorithm.



N € M ITR Fl F2 smax E, (%} }:{C T(mil)
5 | 0.1 11 1] 2.292 2.171 | 1.000 | 11.005 {0.004 1
‘10| 0.1 | 258 72| 18.751 5.102 | 1.030 | 6.104 |0.053 25
15 | o.1 490 | 147{ 42.632.1 9.017 | 1.250 | 5.541 |o.068 93
15 | o.o5 | sog | 180f -  8.418 | 1.219 | 4.167 [0.057 | 113
15 | 0.0l 701 | 209] - 8.319 | 1.163 | 4.172 |o.040 | 133
15 | o0.005 | 723 | 215] - 8.312 | 1.154 | 4.191 {0.047 [ 136
15 | o.o0l | 2839} 857} - 7.222 | 1.069 | 3.930 {o.012 | 533
20 | o.1 736 | 222| s0.855 | 46.765 | 1.765 | 6.263 |0.086 | 230
25 | o.1 1206 | 370|141.409 | 23.197 | 1.543 | 2.953 |o.008 | ss9
3 | o.1 965 | 202]216.681 | 125.488 | 2.238 | 4.995 |0.094 | 623
30 | 0.05 | 1504 | 488| - | 120.252 [ 2.281 | 4.872 [0.060 [ 1027
30 | o.or {3143 | 973 - 116.329 | 2.315 | 5.085 [0.032 | 2020
30 | 0.005 | 3295 |1018] - 116.273 | 2.314 | 5.055 |0.030 | 2122
40 0.1 2176 6761435.491 202.082 2.522 4.011 |0.107 2393

Table 6.3 Performance of NM algorithm.




N M Fy F S E_(%) R, T (mil)
5 36 2.292 1.795 | 1.000 | 9.331 | o0.014 2
10 | 126 18.751 2.809 | 1.050 | 6.0a5 | 0,111 | 18
15 | 115 42.632 8.537 [ 1.240 | 4.120 | 0.296 34
80 80.855 52.526 | 2.000 | 5.947 [ 0.354 37
269. 141.409 18.444 1.48(_) . 2.537 0.457 205
92 216.681 | 134.628 | 2.380 | 5.093 | o0.892 94
281 | 435.491 209.542 | 2.509 | 3.961 | o.808 s84
729 752. 342 73.702 | 1.644 | 2.076 0.931 | 2017
671 | 1162.701 | 294.119 | 2.384 | 2.758 | 1.204 | 2360

Table 6.4 Performance of POS algorithm,

{c¢ = 0.001L, A = 3.0)




N £ M ITR| F, F, Spax | Ee(®) R, T(mil)
5 0.1 53 5 2.292 1.793 | 1.00 [ 9.186 | 0.009 1
5 § 0.0l 741 7 - 1.793 | 1.000 ) 9.165 | 0.007 2

10 | 0.1 134 7 18.751 4.677 | 1.058 | 5.867 | 0.105 6

10} o.01 200 | 10 - 4.664 { 1.043 | 5.856 | 0.070 8

15 0.1 197 7 42.632 8.522 ] 1.195 | 4.198 | 0.173 12

15 0.05 286 | 10 - 7.579 | 1.177 4.055 | 0.123 | 16

15 0.01 503 | 17 - 7.016 | 1.086 | 3.939 | 0.071 28

15 0.005 592 | 20 - 6.935 | 1,067 | 3.880 ] 0.060 31

15 0.001 | 754 | 25 - 6.909 | 1.066 | 3.861 | 0.047 39

20 | 0.1 179 5 | 80.855 46.062 | 1.833 | 6.327 | 0.194 15

20 | o.0lL 585 | 15 - 41.517 | 1.687 | 6.301 | 0.070 10

25 0.1 358 141.409 17.648 | 1.434 | 2.730 [ 0.346 34

30 | 0. 316 216.681 | 115.619 | 2.288 | 4.778 | 0.320 36

30 { o.05 |- 378 7 - 112.359 | 2.240 | 4.827 | 0.276 43

30 0.0l 1508 | 27 ~ 79.614 | 1.819 | 4.740 | 0.091 159

30 { 0.005 | 2846 | 50 ~ 50.300 } 1.530 ] 3.785 | 0.058 295

30 0.001 | 3136 | s5 - 50.015 | 1.503 { 3.791 | 0.053 326

40 | o.1 420 ] 6 | 435.491 | 188.575 } 2.421 | 3.941 | 0.588 64

40 | 0.01 2782 § 37 -~ 82.997 | 1.792 | 3.092 | 0.127 | 369

50 0.1 1072 | 12 752.341 55.366 | 1.538 | 1.795 | 0.650 190

50 { 0.01 | 2573 | 27 - 47.571 }1.479 | 1.698 | 0.274 421

1059 | 10 [1162.701 | 244.701 | 2.068 | 2.697 | 0.867 228
4671 | 41 - 93.575 | 1.962 | 1.855 | 0.229 908
1365 | 11 {1701.352 | 351.538 | 2.508 | 2.616 | 0.989 340
5358 | 40 - 142.404 | 1.782 | 1.809 | 0.291 | lL204
1700 | 12 12363.900 | 274.297 | 2.138 | 1.910 | 1.229 482
4111 | 27 - 231.327 | 1.984 | 1.825 | 0.519 | 1063
1249 8 13163.479 | 972.081 | 3.320 | 2.697 | 1.755 408
7793 | 45 - 199.688 | 1.722 | 1.446 | 0.382 | 2253
2506 | 14 |4088.136 | 333.660 | 2.158 | 1.509 | 1.498 | 874

Table 6.5 Performance of PAT algorithm.
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N-1

agd) =11 @4, - 3% | (6.4)

i=p

Preliminary trials have shown that ¢ = 0.001 and A = 3.0 give
consistently good results for a variety of problems with different

dimensionality.

The investigations have shown that PAT was the kest, and the other
methods, exclusive of the POS and NM algo;ithms, Were.of roughly  the
game effectiveness. Qﬁite obviously accurate minimization along each
search direction for the umivariate search type algorithms can be
expensive in function evaluations. The results in Table 6.1 and Table

6.2 show that a high accuracy is not required in most cases, and thus

computing time can be kept low. A value of the termination criterion

£ = O;Ol to 0.005 usually suffices. For example with values of e = 0.01

and N = 15 the minimumm obtained with POC is 7.062 while for g = O;OOl

if is 6.906. The effect of such a small decrease in the objective
function on the sidelcobe levels and sidelobe energy is negligible. To .
ohtain a significant improvement in sidelobe performancé the reduction
of F4(g) must be at least of the order of 20% to 30% (see for example
N'= 30). However, if the accuracy is too low failure to obtain function

decreases can occur.

The golden section univariate search is clearly less reliable in
that ﬁhe weak search along a line until a minimum is bracketed frequently
fails to terminate in a reasonable number of iterations. Fig. 6.1
shows the number of function evaluations required to optimize F, (¢)
for N = 15 and various degrees of precision. If the evaluation of the
objective function takes any $ignificant amount of time, then the PAT

search is preferable,
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Fig. 6.1 Number of function evaluations to

minimise F, {($) for N = 15.
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Attempts to compare quite different algorithms on the basis of

the number of functional evaluations can be less satisfactory and is often

misleading. Consequently, times to execute a particular problem rather
than the number of function evaluations has been selected as being the
single most suitable measure of effectiveﬁess. The execution times,
measured in millunits (1 millunit = O.SISéconds), were determined on

an ICL 1904A digital computer and a subset of the results are shown in
Fig. 6.2. It can be seen.that the linear search algorithms POG, POC

and the NM method perform similarly and that PAT is clearly superior.

It is important to inguire into how these techniques behave as
the dimensionality of the objective function increases. To keep the

computation time within reasonable limits the tests were carried out in

most cases with ¢ = 0.1 and are shown in Fig. 6.3 and Fig. 6.4. The

unidimensional searches POG, POC and NM were.not tested for N > 40
because of excessi§e computation time. As various test problems were
solved it became increasingly apparent that the NM method was the most
inefficient, even for problems of moderate dimensionaliﬁy and accuracy.
Figr 6.3 shows that all methods tested perform well for preoblems with a
sﬁall nunber cof Variébles (N 5.15)' However, the 1inea; search, and in
particular the NM algorithm, clearly become less competitive as N
increases. This is characteristic for séarch methods which locate a
minimum by conducting N linear searches along a line which regquires a
large number of function evaluations. Tables 6.1 to 6.5 demonstrate
that although the number of function evaluations for POG, POC ahd PAT

are of the same order, the PAT method is superior in execution time.

-This is basically due to the fact that for an éxploratory search in the

“direction of the coordinate axes the ACF need not be recalculated but

can be updated for each individual variable change ¢il) = ¢(0) + A¢£D)

according to
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a_(1-k) [af(i) - ax(i)] +[a) (1) - a (D] ap(i+k); i-k 3 0,14k g

Ar(k)=q[a; 1) - a (i) ] a¥(i+k) ; i-k < 0,i+k £

L ao(i-k) [aI(i) - a;(i)] ' ; i-k = O,itk >

1
exp (] ¢£_))

]

where ao(i) = exp (] ¢;O)) and al(i)

Unfortunately, a similar time-saving rule cannot be found for
algorithms that éearch along a line which is not necessaril& parallel
to the coordinate axes. Althoﬁgh it is possible to use FFT methods to
compute the ACF or éven to optimize in the frequency deomain by mini-
mizing an objective function of the form

N-1 ‘ 2
F ()= I [|stn,9)|° - N|P
n=0
where ]S(n,$)|2 aré the power spectrum samples of the sequence s(n),
it was found that such an approéch does not offer an increase in
computational speed for sequences of length N < 200, Moreover, since
the objective is to design sequences having small ACF sidelobes, it is

preferable to work in the time domain rather than the frequency domain.

The Figures 6.3 and 6.4 can provide only qualitative evidence
concerping the effectiveness of the respective algérithmsthen aéplied
to higher dimensiocnal probléms. However, it is evident that PAT is
distinctly superior to all other.méthods considered. The POS algorithm
performs reasonably well if the initial parameters are chosen carefully
(occasional premature termination occurred; see for example Fig. 6.5).
In no case, however, wés it superioxr to thé PAT method. In additioh

computer storage can be a serious limitation on the feasible dimension-

N

N

N

{6.5

(6.6)
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ality of the objective function for POS. In comparing the two variants
of linear seaxch POG and POC, it is seen that they behave almost
identically. The NM method on the other hand is an unsuitable strategy

for this type of application.

Examination of the results presented so far can give only a
fragmentary picture of the relative effectiveness of the algorithms,

because of the different search strategies and texrmination criteria.

To reduce the mass of data that can be produced by solving test problems,
. the objective function F4(g) versus the, number of function evaluations

is plotted in Fig. 6.5. BSuch figures provide an empirical measure of

the rate of convergence of the respective algorithms. A figure of

merit representing the mean convergence rate Rc was chosen to be

)

R, =1/M (F - F,

where M iz the total number of function evaluations and Fl, F_ the

2

initial and final values of Fq(jﬁ.

The algorithms show a rapid reduction of the objective function
in the first féw iterations followed by a relatively slow convergence
te the minimum.l This is not surprising in view of the multimodal and
ili—cond£tioned character of transcendental equations {a different

search direction-has to be employed at almost every iteration).

The resulﬁs.of this study should not be used as a deéisive
comparison of the variocus unconstrained minimization methods. Howeyer,
the following general conclusions seem to be appropriate in view of
the.results obtained. The PAT algorithm presents the most consistent
and efficient behaviour amoﬁg the group of techniques investigated.

If a reasonably good estimate of the initiél parameters is available

POS is a good second best in effectiveness. The performance of the

algorithm may thus be classified in gualitative terms as
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{i) PAT superior

|
|
|
|
|
|
|
| (i1} POS good
|
| (iii) PoG,POC fair

{(iv} NM not suitable

Consequently, the PAT method has been selected for the subsequent

sequence synthesis problems as the most suitable algorithm.’

6.3 Uniform Complex Pulse Trains

In-ﬁiew'cf the discussion in the pfevious section the PAT
algorithm was used to sjnthesize uniform (constant amplitude) complex
codes73. Table 6.6 shows the properties'of the best codes of various
lengths so far obtained by the use of numerical minimization. The
-phases of the elements of thé initial codes were chosen‘randomly, except
for the codes of length 9, 16, 25, 36, 64, 81, and 100, where the
corresponding Frank code was ﬁsed as the initial code. A value of 4
was used for p, except in the céses of codes of length é'to 11, where

a value of 2 was used. For comparison Table 6.6 also shows the

properties of other known ccdes.

It is of interest to find that uniform complex cddes with largest
sidelobe unity exist up to a length of at least 18*. Even for much
larger lengths( codes exist with peak sidelobe values less than 2. For
egample the peak sidelobe of the sequence of length N = 100 is only
1.44 or -37 dB. (A subset of these codes is given in Appendix E). It
is also of some interest to note that numerical optimization yields a .
significant improvement in both peak sidelobe and sidelobe energy
performance on the Frank codes of the lengths given here. It is also

possible to improve on the performance of the Barker codes. The energy

*A code of length 19 was found later using the method described in
Chapter 7.




Table 6.6 Autocorrelation sidelobes of codes obtained by numerical
{G) Golomb and Scholtz,
(D) Develet and (F) Frank

optimization where;
(s) Scheltz, (C) Carley,

(B) Barker,

Code Peak sidelobe Energy ratio
length ' |
N max ’r(k)[ ES(%)
k
prior new prior new
4 (B) 1.00 1.00 12.50 9.38
5 (B) 1.00 1.00 8.00 8.01
6 .:(G) 1.00 1.00 '13.89 13.89
7 (B) 1.00 1.00 6.13 3.32
8 (G) 1.00 1.00 7.81 4.32
9 {(G) 1.00 1.00 2.41 1.32
10 {G) 1.00 1.00 8.64 4.70
1.00 4.14 2.69
1.00 6.25 4.71
1.00 3.55 2.87
1.00 5.61 3.76
1.00 3.11 2.38
1.00 4.73 3.17
1.00 3.32
1.00 3.16
1.08 3.34
1.14 3,12
1.28 3.12
1.20 2.61
1.17 4.42 2,22
1.39 3.49
1.50 3.80
1.31 . 3.27
1.69 4.32
1.66 3.82
1.46 3.86 2.66
1.58 3.46
1.84 4,33
1.93 4.63
1.83 3.28
1.49 3.10 1.62
1.67 2.80 1.43
1.89 2.37 1.59
1.86 2.20 1.44

[ ———
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ratio for longer sequences ranges from 1.5% to 4.5% which gives r.m.s.

sidelobes of tﬁe order of O.lZﬁE to 0.21ﬁ5 *,

A typical ACF and zero pattern of a uniform complex codé when
the initial phase is chosen in a gquadratic fashion is depicted in Fig.
6.6. The uniformity of the residues‘clearly snows the ability of the
24—measﬁre to reduce single large spikes. If the index p.in the Qp-norm
is increased one departs furthe; and further away from the mean-sguare
approximation and approaches the minimax or Chebyshev solution for
sufficiently iarge_p’(p = 10). This is illustrated in Fig. 6.7.

Hence a value p = 4 seems to be a reasonable compromise between self-

clutter rejection and peak sidelobe suppression.

In all cases no convergence problems were experienced. However,
due to the multimodal character of the objective function the located
extremum is most likely a local minimum. There is no method to side~

step this problem other than to begin the search at several different

random starting points and to select the best minimum, -

6.3.1 Effects of Phase Quantization on the ACF

In general the phase elements of uniform complex'codes may havé
a continuum of.values. From practical considerations, however, cne
could subdivide the phase interval 27 into M increments and select the
ﬁultiple of 27/M which is closest to the actual value of the phase step.
The resulting phasé error or 'quantization‘noise' will, of course,

increase the overall sidelobe level of the ACF. .

* The r.m.s. sidelobe is calculated as; r.m.s. sidelobe = {ESN2/(N—1}}%
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Ari estimate of the guantization noise of such a polyphase

~ approximation can be obtained by considering the expression

' N-1
€ = X Ir

®) - x, 00|
ke=— (N-1)

1
where rl(k) and rz(k) denote the ACF's of the actual sequence, sl(n),

and its quantized version, Sz(nJ, respectively;

Using Parseval's theorem the above expression can be written in

its eguivalent form

W2
e2 = 1w J ts )% - |s,0 % ar

-W/2

Expanding‘the expression in the braqkets yieldé

2 w2 : 2
e“ = 1w J {(Js; @] + [s,® ) (s )] - [s,000 0} af

-W/2
For signals with good ACF's the approximation ISl(f)|2 = N holds
reasonably well. Moreogver, the quantized signal, sz(n), should differ

very little from sl(n), i.e.
|s,(&}] = {s (0] = A

Consequently, it is the difference term in Eq., (6.9) which is of
importance. Substituting the above approximations into Eg. (6.9)
leads to

9 W/ 2 '

e® = 8N/ J W - {s, (£)] {s,(£1]) af
~W/2 :

After applying the inequality

jeunfk?T

W/ 2 W/2
J, Sy (£) s§(f) e as | g j ]SL(f)l |s, ()| at
-W/2 " -W/2 :

{6.7)

(6.8)

(6.9)

{6.10)
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which is equivalent to .
N-1-x]| : w2 o :
|z, | = | io s ) sim-k) ] 5 1/w J |s ()]s, ()] ag (6.12)
7 ~W/2
k =0, +1,.....,%(N-1)

yvields

52 € 8N (N - max Irlz(k)l) ' . {(6.13)

x ‘

A particular value of interest is obtained for zero time shift by

letting k = O in (6.13)
e2 ¢ 8N (N- |z, (0 |) o (6.14)

Hence the mean-square error or quantization noise of two ACF's depends
on the crosscorrelation of the actual and quantized signal for zero

time shift.

If the phase coded signals sl(n) and sz(n} are given by

sl(n) = ej¢(n) : ‘ (6.15)
and ézin) = ej(¢(n) * 4 (n)) {6.16)
where A$(n) is the phase quantization error, the crosscorrelation for
k = 0 is according to (6.12)
N-1
- -JA¢ (n)
|z @] = |t e 6.17)

=0

For small values of A¢(n) (A¢2(n) << 6) ﬁhe exponential expression can
be approximated reasonbly well by the first few terms of a Taylor
series

eIM L 2wy - 380 ()

Substituting this approximation into Eq. (6{17) yields

: N-1 -
x| =] B {@ - %" ) - 344(n)}
n=o
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- ., mm
[r12(0)| ={[ Z (1-%¢ @mN]"+[ =
- n=o n=o

86 (n) ] 23

The second term in Eg. (6.18) is certainly greater or equal to zero.
Thus,
: N-1 2

|z, @) % T (1 - a7 )]

n=o
If now A$ denotes the maximum phase quantization error, Eg. (6.19)
becomes

N-1

e, @] > = -4 a8%)
n=0

Dividing the phase interval 27 into M increments gives
A$ = T/M '

- Hence

' . 1T2

ECIER ¢! T ol )

CombininglEq. {6.14) with Eg. (6.21) leads to

e—:2 g 41r2 N2/M2 ® A0 N2/M2

USing the above relationship it is possible to determine the order of
the polyphase approximation for a given quantization noise 52. For

example, if €2 should not exceed ©.01 N2 a value of

M3 (4000)JE = 64

or A$ = 2.5° is required. The degradation of the ACF due to this type
- of quantization error is indicated in Fig. 6.6(a) for a maximum phase

error of 5° (M = 36).

6.4  Binary Coded Pulse Trains

3 relatively large group of'signals which have received special
attention are certain binary sequences (Group 11, Chapter 2), Such

signals have been extensively considered for improving ambiguity and

(6.18)

{6.19)

{6.20)

(6.21)

(6.22)
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resolution in radar and for seolving special problems in the field of

communication55'7'8'l4.

The attractive feature of binary coding is that a number of
simple, efficient, and flexible decoders can be built (a pair of shift
registers can be used as a tapped delay line pulse-compressor). The

aperiodic ACF of a N element binary sequence c(n) can be written as

N-1-k
rik) = £ c{n) c(n+k)
‘ n=o
where c¢(n) = +1 n=20,,,2,....,N~1"

A class of binary sequences whose ACF's satisfy the conditions

N ifk =o

r(k) 0 if N-k is even

+1  if N-k is odd

are called Barker sequences or perfect‘wordss. Barker sequences exist
for iength N =2,3,4,5,7,11,13. Turyn9 has shown that.there are no
other binary sequences with this property for 13 < N g 6,084 and that
i£ is unlikely any will exceed 6,084. fThe limitation to a maximum
length of 13 is a serious one in radar detection. Consequently,
considerable effort has been devoted to the problem of finding longer
?inary sequences which, if not optimum, are at least satisfactory for

a given application6'10’11’14.

It is well known that by-choosing a large number of elements
c(n) randomly, sequences whose r.m.s. sidelcocbe levels are of the order
A éan be found. However, it can be éxpected that in the statistical
synthesis a large number of sidelobes will exceed YN. It will be
shown that by proper choice of the sequence both average and peak

sidelobe can be held at a lower value and thus yield a better range

{(6.23)

(6.23)
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resolution and clutter rejection. However, nothing is knoﬁn about

how small the maximum'peak sidelobe might be in the best‘cases. At
present there is apparently nc solution, otherx than an exhaustive
search, to this general problem and.good binary sequences which approach

the Barker codes have been found only by trial and error.

The major difficulty in synthesizing binary sequences is the
discrete natﬁre of the amplitude and phase. In forﬁulating ﬁhe synthesis
‘problem using optimization techniques an additional set of constraints
'has’ to be included. Thus the minimization problem which is equivalent

to solving the system on non-linear Eq's. (6.23) may be written as

min F_(¢) b eE -  (6.25)
p . .
(]
subject to b, = O,m 1L =0,1,.00. ,N-1

Consequently; the major objective in subsequent sections will be to
describe the various ways of obtaining binary coded waveforms using
numerical methods, to study their properties, and to consider where

they are suitabkle.

6.4.1 Synthesis Using Element Complementation

Probably the most obvious method of synthesizing binarxy sequences
is to choose a number of sequences, perhaps at random, and to observe
their ACF's. This method can be improved significantly by'adppting a
search strategy which, startiﬁg from an initial code, produces a succession
of progressively better codes. This involves minimization of a measure
of the sidelobes such as that §iven by Eg. (6.25} over a set of discrete
pbints in multi-dimensional space. To be more specific, the problem is
N

to minimize a function of N discrete variables over a set, $, of 2

peints in N-dimensional space. Any attempt to ccmpute all possible




functional values becomes unfeasible, even for moderately large

N (N > 20), as 2N increases exponentially. Hence, the search will have
Eo be restricted to a subset $S; of S$(S1 C S). In addition the iterative.
method must take the discrete nafure of the variables into account

and, moreover, must be economical with respect to the volume of

computations.

A simple search strategy is to take the current sequence, changing

one of its elements to either +1 or -1, and to evaluate the ACF. If

the measure of the sidelobes is reduced the modification is retained

and the new cede is subjected to further modifications. This is done
iteratively until changes of the elements do not vield a further
reduction in the objective function. Such a method was proposed by
' 11 ' . 74 .
Vakman and later adopted by Indiresan and referred to as the element

complementation technique.

Vakman suggested choosing the initial starting sequences to be

of the form

T (n—l)2 W,
| c¢(n) = sgn {cos(i- (1) Zﬂ} _ | (6.26)
1 X =20
where sgn x =
' -1l x <O

It can be shown that these sequences, referred to as Vakman codes, are
binary approximations to a LFM waveform. Such codes have an estimated
r.m.s. sidelobe of vN. In addition odd length Vakman codes satisfy

the reflection condition*

M) 4 ) = (D7 (D

5 5 n) ‘ (6.27)

o

It is easy to verify that sequences which satisfy this condition also

*Another type of code which also satisfies (6.27) will be discussed in
Chapter 7. .
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satisfy r(k) = O for (N-k) even, since the terms in r{k) cancel in
pairs (first and last, etc.) A typical example of a Vakman code ACF

of length N = 101 is shown in Fig. 6.8.

A search program based on the element complementation method
. was written in Fortran to find sequences with minimum sidelobe peaks.

The initial starting points were:

(i) Vakman code

{(ii} randomly chosen seguence

In addition the seguences were also tested to see if cyclic shifts
would improve the objective function. It is apparent from Eq. (6.23)
that maxlr(k)l cannot change by more than two units when the initial

' bit is moved one place, the length of the sequence remaining fixed.

In the binary case the updating of the ACF (Eg. (6.5)) after

each element change reduces to

-~

~2c(m)[c(m+k) + c(m—k)] m-k > O and m#k § N-1

Ar(k) = —2¢(m) c {m+k) m-k < 0 and mtk g N-1 (6.28)

~

~2¢{m) c(m-k). m-k > O and mtk > N-1

-

where c(m) is the old value of the mth element, A similar expression
which economises computation time can be obtained for the cyclic shifts,
since such an cperation results in'merely remo#ing and adding bits of

the sequence.

Table 6.7 shows the binary sequences obtained when optimizing

Vakman codes with respect to the criteria
tleoo |2, xlrta|?, tlrao )4, ke |?
k k k k ' ‘

For comparison purposes the signals obtained by Vakman are also given

together with the sidelobe energy ratio Es‘ (Some of the sequences are

appended).
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Code :

Lengﬁg///e// FUNCTIONALS ‘
N zlrx) ] zk|r (k) |2 )z oo |? zx|x () |2 |

max ES (%) (V) Smax Smax ES (%) Smax EE‘; (%) (V) Smax Smax ES (%)

13 1 3.55 1 1 3.55 1 3.55 1 1 3.55
19 3 | 13.57 3 5 |19.11 3 |11.35 3 3 | 13.57
23 3 | 11.15 3 3 |11.15 3 |11.15 4 3 | 11.15
31 9 | 11.55 9 5 [12.38 4 |16.50 4 6 | 21L.54
37 5 9.78 5 5 |10.08 5 |11.25 5 5 | 11.25
41 5 6.90 5 12 }17.13 5 |15.94 6 6 | 15.71
43 5 | 13.25 6 7 112.39 5 |16.27 5 6 | 15.80
47 | 4 8.28 7 8 |10.46 5 |14.26 4 7 | 14.80
53 6 | 10.18 6 9 |14.88 5 | 12.31 5 7 | 13.46
59 7 1 11.52 9 9 ]10.60 8 |16.23 8. 8 | 21.06
61 7 9.62 7 9 }13.06 6 | 10.37 7 8 | 10.18

63 7 8.64 7 7 8.64 7 8.64 7 7 8.64
67 8 9.91 7 8 |10.54 7 | 15.26 7 7 {1 15.44
71 9 8.86 7 11 §13.31 9 |12.51 9 7 1 12.52
73 8 | 11.03 8 8 |12.76 7 | 11.33 7 9 | 14.71
79 8 | 11.39 7 12 | 11.97 8 | 16.65 8 9 | 14.73
91 9 | 13.83 10 15 |16.19 9 | 15.28 9
93 | 13 8.11 13 9 |10.52 g8 |10.05 8
95 9 | 12.04 9 17 | 13.91 8 |13.28 8
95 | 10 | 14.03 9 13 |15.18 9 |19.11 10
99 | 13 | 10.05 13 19 | 15.36 9 | 10.86 9

1ol 9 | 10.64 '8 15 | 15.27 g l15.82 9

103 | 13 | 11.49 11 15 | 13.49 9 | 15.45 9

105 | 13 | 10.77 13 16 | 16.33 9 | 13.68 9

107 | 13 9.82 11 13 }13.29 g [12.27 9

109 | 11 { 10.76 13 15 }12.54 9 |15.30 9

111 | 10 | 10.56°| 13 11 | 13.89 9 |14.53 10

113 9 9.02 9 11 9.24 9 |14.31 9

115 | 10 | 10.71 10 18 | 12.86 9 | 11.86 g

117 | 10 | 10.36 11 13 | 12.29] 12 | 13.03 12

119 9 | 12.82 11 15 [ 12.62 9 {13.80 10

121 9 | 11.80 12 12 {13.22] 10 | 13.82 11

123 | 11 § 11.77 14 17 | 14.52| 10 | 14.49 10

125 | 11 | 13.24 11 16 [ 10.92 7 110.25 7

251 | 19 | 10.93 17 32 |15.08) 13 | 12.19 13

253 | 21 } 10.42 21 28 | 13.78 13 | 13.28 13

255 | 19 | 10.22 {. 16 14 | 12.09 15

257 | 16 | 10.50 | 18 15 | 15.40 15

259 | 17 } 13.17 17 13 | 12.97 13

261 | 27 9.37 27 15 {12.54 15

299 | 18 | 11.27 18 17 |16.25|. 17

300 | 18 9.97 19 18 | 11.40 16

303 f 21 | 10.40 23 16 |13.76 15

305 | 17 9.74 19 16 | 13.62 16

503 § 25 1 10.79 27 22 t13.28| 22

511 ) 25 { 11.32 28 22 114.39 23

513 | 23 9.14 25 21 [14.04 21

Table 6.7 Binary sequences obtained with Vakman code
as initial starting point, (V) indicates

best Vakman seguences.
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Having found a good sequence it is often helpful to femove or
to adjoln bitsto reducg the sidelobes even further. In the worst case
- such changes may increase the sidelobe level by an amount equal to the
number of insertions or removals. The search covered a chbgen range
of.initial sequence length and codes of everﬁ length were tested starting
from a specified minimum up to a length exceeding the minimum by a fixed
émount (at present 32 bits); Fig. 6.9 shows the variation in thé
maximum sidelobe for successively adding ox removing bits, It can be
seen that a number oflsequences of Qarious lengths exist which have the

same maximum sidelcbe level.

In some cases better codes than those cbtained by Vakman have
’been found. As expected minimization 6f a 24—measure yvields better
results particularly for large compression codes. The energy ratio ES
varies betwéen 10% and '16% of the mainlobe energy, which givés ar.m.s,
sidelobe of approximately 0.3 /N to 0.4 VE:. As mentioned previously‘a
non-negative weighting of the objective function enables control of the
sidelobe distribution along the delay axes of the ACF. A designer may
feel that it ié worthwhile reducing the sidelobes which are further away
from the main peak, at the expense of an'increase in the close-in sidelobes,
by minimiziﬁg a functional of the form

N-1

F £k [ra)|? (6.29)
P k=1

This is illustrated in Fig. 6.10.

On the other hand, when a binary sequence is used for resolving .
closely spaced targets or observing missilés in the presence of tank
fragments.or decoys for example, it is desirable to have low residues
near the'mainlobe. However, ambiguities cén be tolerated in rénge.if
they are sufficiently distant from the expected target positioﬁ. In this

situation a welghting function of the form
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wi{k) =N - k

or o f1, kxgN
wik)

1
0O , N, <k gN-1

where Nl denotes the desired clear region, could‘be used. For example
sequences of length N > 200 whose ﬁainlobe—to—sidelobe ratio is 200:1

- or 46 dB witﬁin 10 segmeht length of the main peak Qere foundl Thus
with a proper choice of the weighting function it is possible to obtain
sequences with clear regipns. Howéver, an increase in the maximum and
average sidelcbe levels is usua;ly cobserved. In addition, to obtain

this degree of discrimination the decoder must be highly linear and have

a large dynamic range.

An extensive computer seaxch has shown that starting with a
randomly chosen initial.sequence instead of a Vakﬁan code cah give
appreciably better results. Table 6.8 shows that binary sequences with
lower sidelobe peaks than £hose obtained by Vakman were found. The r.m.s.
level is about 0.4 YN and max ]r(k)l ranges from 0.6 VN to /N but
génerally does not exceed j% as illustrated in Fig. 6.9. A typical ACF

of such a sequence is depicted in Fig. 6.11.

It has been observed that there are a number of good binary
sequences which have the lowest sidelobe known for a given length. 1In

general, however, they will differ in sidelobe energy performance.

The element complementation method requires a computation time
which increases almost linearly with the code length N, In most cases
the optimum was found in about 3 to 4 iterations*. On an ICL 1904A

digital computer good binary sequences of length as large as N = 900

*An iteration consists of complementing the N bits of the sequence
plus N cyclic shifts.



iode Functional : er(k)l4 Best Vakman
ength X sequence
N max|x (k) | E (%)  max|x (k) |
X k
13 1 3.55 1
19 3 11.36 3
23 3 11.91 '3
31 4 10.72 4
37 4 11.83 5
41 4 i2.61 (2]
43 5 12.17 5 .
47 4 . 8.28 5
53 6 15.88 5
59 6 14.62 8
61 6 10.91 7
63 6 11.96 7
67 6 12.77 7
71 6 9,26 7
73 7 13.51 8
79 7 12.99 8
91 7. 16.15 9
93 7 15.52 8
95 8 13.60 8
97 8 13.52 10
99 8 15.89 9
101 8 13.16 9
103 8 14,58 9
105 7 13.61 9
107 8 12.90 9
109 o 12.40 9
111 9 14.34 10
113 9 12.88 9
115 8 14.65 9
117 8 14.83 12
119 9 15.62 10
121 9 15.46 11
123 9 11.72 10
125 9 15.83 7
251 14 14.41 13
253 15 14.92 13
255 14 14.44 15
257 15 14.76 15
259 13 14.66 13
299 15 15.09 17

Table 6.8 Best binary sequences cobtained with random

initial starting point.
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were found in less than 30 minutes. On a time~sharing computer a
search program of this kind runs at low priority very cheaply, since

both input and output data are extremely small.

\

The element complementation method} although simple and efficient,
is not without its disadvantages. First, no local explorations of the
function to be.minimized can be obtained. Secondly, one has little or
no control over the rate of convergence. Therefore, a method which, to

some extent, overcomes these difficulties will now be described.

6.4.2 A New Technique of Synthesizing Binary Sequences

Because of the lack of suitable methods for solving non-linear
equations with integer variables it is necessary té accept formulations
in coﬁtinuous vériables with 'rounding off' the resulting solution or,
alternatively, to adopt a search strategy of the type described previously.
Although this may be satisfactory for problems with small dimensions, it
may lead to results quite distant from the optimum if the number of
vafiables increases, Therefore, a new approach to the éroblem, using

s . ' . . 75
non-linear integer programming, is suggested .

In-recent years a large number of programming methods for solving
linear integerxr probiems have been'propdsed by ﬁany authors76'77. However,
in the field of non-linear integer preogramming little progress seems to
have been made. An interesting approach to this problem, utilizing
penalty-functions,Awas suggeéted by Giswvold and Moe78. Here the possibility

of using penalty-function techniques to synthesize binary sequences with

low sidelobes is investigated.

-

The minimization of a measure of the sidelobes such as

.~ N-1 N-1-k : 4 .
F, = L | Z c(n) c(n+k)] ' ‘ _ (6. 30)
4 .
k=1 n=o

‘sﬁbject to the constraints

cln) = +1 " n=0,1,2,....,81
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can be regarded as a non-linear constrained optimization problem.
By making the variable substitutions
cos x = c(n)
Eq. (6.30) can be written as
" N-1 N-1-k

4
Fyx) = I | 2 cos x .cos xn+k] :
k=1 n=o ‘

b4 = O,Tr n=0,l,2,...-,(N—l)

The optimﬁm realizable épproximation to the desired ACF of Eq. (6.24)
is given by the set of phases {xn} that minimize the cost functicnal
F4(§) subjecf to the conditions (6.32). Thé essential idea of the
penalty-function approach is to transform the cohstrained non-linear
 prob1em into a sequénce of unconstrained problems by adding the functions
of the constraints to the objective function and deleting the‘;onstraints
as such. Formally this can bé written as

i}

Ios; H| h, (x)]

Minimize: P(x,s) = P (x) +

.

1

where P(x,s) is a generalized augmented function, S > O are weighting
factors, and H [hi(g)] is a function of the equality constraints

hi(ﬁ). A typical choice for H| hi(§)]is

2
B[ h, 0] = B

Using this method, the problem represented by Eqls (6.31) and (6.32)

can be transformed into the unconstrained minimization problem

(k}

Minimize: P(x,s ') = F4(§) + (s

()~ o o

The term Q(x) is the discretization penalty-function and s(k) > 0

is a weighting factor. This function has the property
0 if x = Orm

Q(z)' = o
: A>Oifxn'#0.-n

(6.31)

(6.32)

{6.33)

(6.34)

(6.35)

(6.36)
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In principle Q(x) could have any form as long as it is continuous and ‘

the requirement (6.36) is met. A suitable criterion seems to be

: N-1
Q(x) = L (sin2 xn)Y ' : (6.37)
n=o '

where v 2 1.

The factor y.allows for shaping the penalty-fﬁnction, while the

amplitude is controlled by the weighting coefficient s(k).

k), . o
) is now minimized for a sequence

(k)

of decreasing values of weighting factors s s such that, for k » =,

" The augmented function P(Efs(

(k)

min{P(x,s " ')} - min{F4(§)}- | A . , {6.38)

and Qx) -~ o ‘ - (6.39)

In cother words, the effects of the constraints in the augmented

function P(E,s(k)

) on the value of the function is gradually diminished
as the search cbntinues, and completely removed at the limit, so.that
the value of the augmentéd function converges to the same value as
F4(§) and the extremum of.P(E) is the same as that of F4(§). In
practice the required number of cycles is rgther small, i.e. kmax is

between ten and twenty.

(o)

The choice of the initial s,s , the method of reduéing s,

and the choice of Q(x) all have considerable influence on the effectiveness

{o)

of the method. If s is too smail, the initial minimization will drive

X to the minimum of F4(§) itself, a point unlikely to be the constrained

minimun (path CF, Fig. 6.12). On the other hand, if s'©

is too large
the search tends to converge prematurely in the first few stages to
some non-optimal sélution such as that illﬁstrated in Fig. 6.12 (CbR).

The seguence Qf'{s(k)} has been chosen according to the method suggested

by Fiacco and McCormick79.




- Path CDA s(O)Atdo large

- Path CEB 's(O) moderate

Path CF s(?) too small

Fig., 6.12 Influence of weighting parameter

o - .
s( ) on the path of optimization

'(A,B local minima),
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g (ktl), k)

/
(0)'

where ¢ = 4 and s C o= 1

=1/c

The advantage of this method is that in principle any of the well
' (k)

known search algorithms can be used to minimize P (X,s ). However,
the study described in Section 6.1 has shown that pattern search
techniques are particularly suitable for this type of application,

Such a search algorithm was written in Fortran and the flow diagram

is given in Fig. 6.13.

In deciding upon a convergence qriterion for the constrained
equations, account must be taken of the magniﬁudes of tﬁe quantities
being dealt with. Thérefore, the search was terminated when the sum
of the squares of the violated equality constraiﬁts'was less than some

small positive number g, i.e.

Q(x) < e

Preliminary investigations have shown that a value of 0.05 N for ¢

appeared to be adegquate,

The binary sequences obtained, starting with an initial set of

phases

2
2_111'_!__ ’ = -1
xn 2 (N-1) n 0,1,2,....,N-1

are given in Table 6.9.

A comparison of the results with known better codes 10,80

{Table 6.9) indicate that the proposed method gives satisfactory
results. In addition this methéd has a nurber of advantages over other
design techniques. First, no exhaustive and thus time-consuming sea¥ch
procédure is required. For example, sequences of length N = 100 were

obtained in less than 5 min on an ICL 1904A computer. This is
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Code

Penalty-function Improved penalty- Best known

length method functicn method signal

N maxlr(k)] Es(%) max!r(k)| Es(%) maxlr(k)l
| ‘ k ' k

13 1 3.55 1 3.55 1%
17 3 13.84 2 11.07 2%
19 3 15.79 2 10.25 2
21 3 12.25 3 12.25 2%
23 3 11.91 3 15.69 3*
25 4 10.89 4 10.24 2%
27 3 '8.37 3 8.37 3%
3 3 6.97 3 6.97 3%
33 4 12.49 4 11.02 3%
35 4 10.53 4 10.53 3*
37 4 10.67 4 10.08 3*
41 4 14.52 4 6.66 4
47 5 11.54 4 8.29 4

53 6 14.88 5 10.89 5
61 6 10.80 5 12.20 5
67 6 11.43 6 11.43 5
71 6 11.80 6 11.80 5
79 7 9.53 7 8.76 6
91 7 12.38 7 12.38
97 8 13.05 8 13.05

101 8 11.94 7 10.29

113 8 9.15 8 9.15

121 9 12.68 8 9.54-

128 10 9 11,33

_ Table 6.9 Binary sequences obtained using

penalty-function techniques.

(*minimum possible sidelobe found by

exhaustive searchaol
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considerably-less than the time required using the method presented

by Boehmerlo, but is compgrable in efficiency with the elgment
complementation technigue. An additional increase in efficiency can

e achieved . by limiting the number of moves at é given penalty lewvel.

It has been found that when the number of fuhction evaluations exceeds
30xN to hOxN, only small changes in the Variabies are made. Even though
convergence has not been reached, the variables are closé enough to
their final values to move on to the next penalty level. Owing to the
increased efficiency relatively long sequences éan be handléd in a
reasonable computation time. Another advantage is that no prior information
of the structure of the function to be minimized is required. However,
~Sin¢e the function is multimodal, the search procedure most likely

converges to a local extremum.

The problem of premature convergeﬁce to a 'false optimum' can be
tackled by ei£hér beginning the search at several different random
starting pointé or evén better, to initialize a recovery procedure.
Such a procedure is based on the observation that a reduction of the

(k)

will cause the minimum point to move away

{(k}

penalty welghting factor s
‘from the constraint boundary. If the reduction of s is large enough,
this will cause the search procedure to converge to a different (local)

minimum.

6.4.3 Improved Penalty-Function Method

Although the minimization of P(z,s(k)) seems promising in view
of the results obtained, the methed is not without its disadvantages;

(k))h5 becomes. very large as the search progresses.

the weighting factor (s
This causes the function that is minimized to be very sensitive to
variable changes. Particularly in cases where the objective function

is ill-conditioned (deep narrow valleys) difficulties arise beacause the

location of the minimum usually requires a large number of steps.

—_.—,,_,,,,,,,_,, o
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An improved penalty-function method which to some extent
overcomes this problem was suggested by Powellal. Powell's modified
augmented function can be written in the general form

m

2 2
i Si(hi(f)-+ vi) ] {6.40)

Minimize: P(x,s,v) = Fp(g) +
: 1

1

where (s ,....,sm) are the usual penalty weighting factors and

1'52
(vl, vz,....,vm) are an additional set of parameters. The main
difference between Eq. (6.33) and Eg. (6.40) is the introduction of

the parameters v. Because of these parameters it is usually satisfactory

to use moderate values of g.

The method is based on the fact that if the values of the
variables x which minimize P(x,s,v) are g(s,v), then E(s,v} is a

-solution to the constrained problem:
Minimize: F () B | (6.41)

subject to

2 2, . :
hi(x) =n} [ E(s,0)] i=1,2,u0..,m
This implies that values of the parameters S,v can be found such that
2 . N .
ni[Ew] =0 i=1,2,.000,m (6.42)

Eq. (6.42) represents a system of non-linear equations which, in
\érinciple have to be solved for the unknown parameters v for fixed
values of s. The solution of this set of equations could turn out to
be difficult and time-~consuming. Fortﬁnately, it can be shown81 that
if the factors s; are sufficiently large an iterative adjustment such
as

L)k

2 k
¢ o s n? (m]

L =1,2,...,m (6.43)

is adequate. In addition by choosing the sequence'{si} sufficiently"
large the iteration (6.43) can be made to have linear convergence at

as fast a rate as is required.
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now be formulated as

k) (k)

Minimize: P(x,s WV ) = F4(§) + s(k) {p0) % u(k)}2

(6.44)

Thé new augmented function is now minimized applying Eq. (6.43) for
(k) {k}

a fized value of s ', unless c = Q(x) either fails to cdnverge or
converges to zero too slowly. In this case s(k) is increased in order
to improve the rate of cbnvergencé. A flow diagfam of the algorithm

is shown in Fig. 6.14. The search process is.started with tﬁe initial

(o) (o) = 0, and c(o? = K, where K is some positive

parameters s =1, v
number exceeding Q(x). The correction (6.43) is applied if the

required convergence

C(k) {k-1)

=1/a ¢
is obtained, otherwise the value of s(k} is increased by a factor B.

(k}v(k)

Powell suggested increasing s(k).so that s remains unchanged.

"This seems reasonable because at the optimum solution;the final wvalue

g (%) v(k)

of is independent of the parameters.

The sequences obtained using the modified penalty~function method
for for v = 1 and starting with the same initial set of.phaseé {xn} as
before are given in Table 6.2, The codes indicated by (*) are known
to be-the‘best possibleeo. A typical ACF of a binary sequence of

iéngth N = 1ol is depicted in Fig. 6.15.

As mentioned previously the new meﬁhod is less sensitive to
changes in the variables as the constraints are approached. Consequently,
sequences with better sidelobe and sidelcbe energy performance were
found in many cases. Moreover, the ability to increase s(k) cCan
achieve linear convergence at a rate given by (6.43) which makes the

modified algorithm c¢learly superior in efficiency to other design

technigues. A factor of o = 1/4 and B = 4 was chosen in this case but

|
|
Using the medified method the binary signal design problem can
|
|
|
|
|
|
|
|
|
|
|



Yes

Enter

.V
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_ it is possible to obtain faster convergence if desired. However,
increasing the rate of convergence seems to make the unconstrained

minimization prcblem more difficult (premature termination) and in

practice the best choice of the factors a, B must be determined experimentally.

At this point it is of interest to note that penalty—function
techniqﬁes can easily be modified to synthesize polyphase codes, i.e.
umiform complex codes whose phases are integer multiples of a basic

phase angle X = 2% /M.

Initial trials to find good &6-phase codes using a quantization
penalty~-function
N-1 2
Q(x) = & sin (ng/2) _ ' {6.45)

n=o

where M = 6 are shown in Table. 6.10.

Non-linear integer programming is a research area which has, so
far, received very little attention. However, the results of this study
" are wvery encouraging and show that penalty-function techniques provide

a useful tool in tackling problems with integer variables.

6.4.4 Other Binary Sequences

The performaﬁce of a binary sequence can be improved significantly
using numerical techniques. The attainable energy ratios and beak
sidelobes are of the order of 20% and Vﬁ-respectively. The still
relatively large ;esidues might bé the limiting factor for particular
applications such as precision trackers. One approach to try and
improve the.range resolution and yet to maintain the binary nature of
the sequence is to introduce zeros, that is by setting a number of
elements in the sequence equal to 2ero. The resulting sequence can be_
regarded as having thrEe'possibLe levels, namely +l or O, and is

sometimes referred to as interrupted binary sequence or ternary code.




Code length ‘Peak éidelobe Energy ratio
: mzx]r(k)l 'Es(%)
15 1.73 8.00
16 1.73 7.81
17 1.73 6.57
18 1.73 7.72
19 2.00 8.03
20 - 1.73 7.25

21 2.00 7.94
22 2.00 6.82
23 2.00 4.35
24 2.00 8.16
25 12.00 6.72
26 2.00 6.21
27 2.65 7.41
28 2.65 8.42
29 3.46 9.99
30 3.00 8.78

Table 6.10 Six~phase codes obtained using

penalty-function techniques.
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The inevitable loss in transmitted signal energy aésociated
with ternary codes can be kept small provided that ﬁhe number of zeros,
L, is small compared to the code length N. For L = 0.1 N, a reduction
of 0.4 aB in SNR is obtained. If L is large (L = 3N/4) the code
becomes éne;gy inefficieﬁt and approaches the staggered pulse_train
properties22. Hence the performance of ternary codes is somewhere

between these two extremes, depending on the number of zeros, L.

The queéfion which arises now is how much can the performance
of a code be improved by allowing the segquence elements to take on
values +1,0? For an estimation of the r.m.s. sidelobe level consider
a ran&om sequence c{n) whose elements can assume the wvalues -1, 0, +1,
with probabilities p(-1), p(0), p(l). It is reasonable to assume a

symmetric probability distribution, that is

pl-1) =p{l) =w . B
and . p(0) = 1-2w
The ACF is given by
) N-1-k -
r(k) = I c¢(n) cin+k) (6.46)

L N=Q . : (

The elements c(n) are independent random variables. Making the

substitution_Nk = N-k, Eq. (6.46) can be written as
o N - :

a(n) - C ’ (6.47)
o ‘

rik) =
n

/e I

where g(n) = c¢(n)} ¢{ntk) is a randem variable taking on values -1, O,
1, with probabilities w, 1-2w, w. Each g{n) is independent (k # O)
with zero mean and variance 02 = 2w. The probability distribution of

'

the sum of two random variables is the convolution of their individual

distribution. Having Nk terms in {6.47) this operation has to be
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performed Nk times. For Nk reasonably large the central limit theorem

44 S . . : '
applies . The distribution will be Gaussian with zero mean and

X 2 . . . - ,
variance qk, where oi is simply the sum of the variances 02, that is

&i = Nk 02 = 2ka
= 2w{N-k)
and | Pr(¥(k)) = (2/% 02}5 e—r(k)z/zci
where : 0y = (2wN)%

The r.m.s. value of the kth sidelcbe is

_ _ X
o = 9 (1 - k/N)

It is clear that the r.m.s. value Gecreases with distance from the
‘main peak.

o] = 00 for k small

J2w  for k. large (k < (N-1))

14

I

F@r the strictly bipolér‘case‘w % 1/2 and o, = Vi, which is the
familiar result. To obtain small r.m.s. sidelobe values Eg. (6.48)
indicates that w should be-small. However, the smaller w the grgater
the loss in transmitted signal energy. For w = 1/4 the decrease in
SNR is ekpected to be abcut 3 dB. The r.m.s. sidelobe on the cther
hand will be reduced to 0.7 vN. This is not so significantly better
in comparison to VN for thé strictly binary case'and‘in general to
ocbtain low sidelobes one mﬁst be prepared to introduce more than N/2
zeros. However, it is shown that with a proper choice of thé Zero
positions some imprévement in peak sidelobé is obtained Qith little

loss in energy performance.

{6.48)

{6.49)
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The problem is to find the optimum zero positions which yield

the maximum reduction in sidelobe energy and sidelobe level. The

search procedure can be carried out in a similar manner as described

in Section 6.4.1 by a simple modification of the basic element

complementation method.

A subset of the results is given in Table 6.11 for a relatively
small.number of zeros. In many cases the peak sidelobe is reduced by
three units while suffering a loss in SNR of less than 1 dB. For
further imprdvements more zeros have to be introduced at the expense

6f the energy performance of the code.

An interesting feature of ternaxry codes is their use in a

. 2 '
mltiplex pulse~compression system8 . &Xf one of the zero elements of

a ternary code, C, is changed to +i or -1, resulting in the segquences
C+ and C_ respectively, it can easily be seen from Eg. (6.46) that the

coherent summation of their individnal ACF's is given by

rC(K) = X &C (k) + x,

(k}}
+ -

: : L . .
For a ternary code with L zeros, 2 sequences with this property can

be found.

Another techniquerto reduce the time sidelcbes of a finite-
length binary sequence has been reported by Golay83. Golay has found
binary sequences‘of length 2" which have the property that the sum of
their individual ACF is Zero, except at zero time shift, Thus, if two
complementary éodes can be transmitted simultaheously and their matched

output added vectorially (for zero doppler shift), there will be no

residues.

In practice, however, a problem exists with this approach in a

clutter environment. If the two transmitted codes are separated in

(6.50)



Code Binary sedquence Ternary sequence
length .
N maxlr(k)l E (%) L maxlr(k)l E (%) loss (dB)
k . s k ) s
19 3 11.36 | 1 2 7.72 | -0.24
23 3 11.15 | 3 2 6.00 ~0.61
31" 4 16.55 | 2 3 10.46 ~0.29
37 5 11.25 | 2 3 8.25 -0.24
A 6 16.66 | 5 3 9,57 ~0.57
43 5 16.28 | 6 3 6.94 -0.77
47 5 14.26 | 8 3 3.94 -0.81
53 5 12.32 | 4 4 9.00 ~0.34
59 8 16.23 | 8 4 11.34 ~0.63
61 7 13.81 | 6 4 8.49 -0.45
63 7 8.64 2 5 9.03 -0.14
67 6 14.44 | 3 5 12.65 -0.20
101 9 15.82 | 9 6 11.32 -0.41
103 9 15.45 | 1o 6 9.74 -0.44
105 9 13.68 | 10 5 9.14 -0.44
107 9 12.27 7 6 10.20 -0.29
119 9 13.80 | 7 7 10.01 -0.30
121 10 13.82 | 6 7 12.26 -0.26
125 7 10.25 | 5 6 6.67 | -0.25
251 13 10.10 | 9 11 8.64 -0.29°

Table 6.11 Performance of ternary sequences

(L denotes number of zero elements),
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frequency, there will be decorrelation of the clutter echoes and little
cancellation. 1If the codes are separated in time and the clutter is
extensive, the sidelobes will be temporally or spatially decorrelated.

- Therefore, the primary use of this technique would be to prevent the

time sidelcbes of a large target (or large point clutter) from obscuring

a smaller target. An interesting application of complementary codes is
in long-range demonstration radars (LRDR) where the objective is to

detect very slowly moving targets such as cars, humans, enemy soldiers,

- etec. in large amounts of ground clutter31.

This class of signals and their relationship to other types of

, ' . 4
codes have been further investigated by several author58 ’85. In

. 84 . . , ;
particular Welty described a simple recursive method to synthesize a
‘whole family of (Zn-l) complementary sequénces, using orthogonal codes,

Welty has shown that max,:(k)] of such codes cannot exceed an upper
‘ k
-1 . N . ]
bound giwven by 2", Ancther interesting property found while studying

" these codes was that all complementary sequences of equal length N = 2"

seem to have the same sidelobe energy, that is
N-1
n

T [r,(k)]2 = const. i=0,1,2,...,2-1
k=1 © :

{6.51)

where the subscript, i, indicates the ith complementary code. Unfortunately,

no mathematical proof has yet been formulated, but for a large number of

codes this has been verified by computer experiments.

Fig. 6.16 illustrates the ACF of a complementary code of length '
N = 128, It is noted that for (N-k) even, r(k) = O, Moreover, the
- sidelobe energy of this type of sequence was found to be of the order

of 0.25 N2.
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Fig., 6.16 ACF of 128-element complementary code,




-133-

This tyée of sequence could be used as an initial starting
point in the element complementation search algorithm. However, if
the structure of the code is violated, the number of residues will
be equal to 2(N¥l) = 2N, Hence, it is expected that the r.m,s. sidelobe

level will decrease by Y2 to approximately 0.35/N.

6.5 Uniform Sequences with Low Autocorrelation Sidelobes and

Small Crosscoxrelation

Much attentiqn has been paid by many authors fo the ;onstruction
of binary sequences having ACF's as small as possible away from the
coincidence peak. However, little is known about sequences with small
crosscorrelation. Such sequences have many practical applications.
.For example, théy may be used as address codes in a time-division
multiple—-access {TDMA) system, where information from several data

. . 86
sources is to be transmitted over a channel .

It has been.shOWn that for most good binary sequences of lengﬁh
N (N > 13), the atfainable sidelobe levels are approximately ¢¥N. The
mutual crosscorfeiation peaks, however, of sequences of the same length
tend to be ﬁuch larger and aie usurally in the order of 2/ to 3/N.
Consequently, the objective in this section is to‘find pairs of binary
(6r éomplex) sequences‘of length N with autocorrelation sidelobes and

crosscorrelation peak values both of approximately M.

6.5fl Statement of the Problem

The more complicated problem of finding a pair of uniform pulse-
compression codes which besides having small sidelobes also have sma;l
crosscorrelation, can be approached using optimization techniquesa7.
.The ACF and crbsscorrélation of two arbitfary sequences of lengﬁh N

are given by
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N-1-]x}
r, k) = L a(n}a* (n+k})
. nso
N-1-|k|
r,(k) = I  b(n)b*(n+k)
n=0
| N-1- k|
x5k} = Z a (n)b* (ntk)
n=Q

where k = 0,41, +2,....,+{8-1)

In the binary case, sequences which result in the best possible

autocorrelation and crosscorrelation must sétisfy the conditions

o] ; N=k is even

rl{k), rz(k), r (k) =

12 +1  ; N-k is odd

k#fo ko
The above conditions form a system of 2(N-1) non-linear equations in
the unknowns af{l), af2),....,a{N-1}) and b(l), b(2),....,b(N-l) (one
of the unknowns.of each sequence can be chosen arbitrarily, i.e.,
a{o) = b{0) = 1}). It will be shown later that it is impossible to
gatisfy {6.55) simpltaneously, except for the ;wo trivial cases N = 1,2.
Again an approximate solution to this set cf equations is sought using

numerical methods.

As mentioned previously one of the most important steps iﬁ the
optimization of any design or process is the choice of the optimization
criterion. Fo; pulse compression seguences the properties of concern
are the total sidelobe energy and the peak sidelcbe, For a set of
sequences, however, an additional iméortant criterion is the peak
magnitude and energy of their mutual crosscorrelaticn function. This

may be of concern in satellite communication systems such as TDMA where

the problem of unigue word synchronization requires sequences which not

(6.52)

(6.53)

(6.545

{6.55)




only have good autccorrelation properties, but also should have as

little crosscorrelation as possible86.

Therefore, what is reqﬁired is the ﬁinimizétion of a suitable

' measure which characterizes the 'goodness' of a pair of sequenées.

Any such measure is to some extent arbitrary but in general will be of
the form F(|r(k)]). For any particular pair of sequences the performance

index for each individual correlation function is defined as

N-1 4 _
F,o= & | o) : B (6.56)
k=1 _
N-1 .
F, .= I |r,(0)] (6.57)
_ k=1 _
‘and
N-1 | 4 ‘
F., = ., (k) _ (6.58)
120wy 22 .

Again only one half of the ACF is considered, since it is an even function.

The optimum sequences a(n) and b(n} are determined from the
conditions

F/ +F, = min and F,, = min : | - (6.59)

This can be accomplished by minimizing a linear combination of the

performance indices

min F = F,; +F, + )‘Flz _ (6.60)

where A 2 0 is a weighting parameter. The problem of minimizing F is
one of minimizing a function of 2{(N-1) discrete variables, which can

: 2(N-1) : ‘ oy g
assume only two values +1, over a set of 2 points. In addition a
train of values of weighting parameters are required. If A is large,
minimization results in sequences with good crosscorrelation but poor

autocorrelation. For small A(A < 1), sequences with optimum ACF's are

obtained.
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"The choice for the best value of A depends on the specific
application as well as the knowledge of the behaviour of the functiohal
F, including thg interactions betﬁeen the performance indices.
vaiously, Fl and Fz.are independent of each other. This is, however,

not the case for F12'

6.5.2 Bounds on the Crosscorrelation Enerqy

When minimizing a functional F of thé form given by (6.60)

there are ce;tain limits on the possible reduction in sidelobe and
c:osscorrelation energy and their peak values. The crosscorrelation
eﬁeréy can be estimated by considering a simple but probably not so well
known relationship (Appendix D).

N-1 | N-1

z |r12(k)|2 = I ox (k) ri(k)

== (N-1) k== (-1)
_This is a remarkable result sincde it means that the total energy of
the crosscorrelatien function is equal to the sum of the product of the
inaividual ACF's, For low autocorrelation sidelobes the right side of

(6.61) is approximately NZ, hence

C ON-1
E = z Ir
12 -1

2 . .2
PO I

Using Eq. (6.61) it is easy to verify that binary sequences satisfying

the ideal conditions (6.55) do not exist for N > 2,
The. total sidelobe and crosscorrelation enerqgy is defined as
N-1

7 f]r |2 + Ir.(k}lz} + zl le. ) ]2
k=1 L 2, o k=—{N-1) 12

1

n
=
T4
2]
+
[£3]

(6.61)

(6.62)

(6.63)
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A lower bound on Et is cbtained by examining the expression

N-1
a- = I Ir
k=- (-1)

=

2
LK)+ oy (e}
expanding di and using (6.6l) leads to

- 2 2 2
al = Al |+ |, ]+ 2fe, k)7
k=-(N-1)  © 2 127

Since rl(O) = r2(0) = N, one obtains

; N1 2
B, = N°+ I jr (k) + x|
k=l =

hence, E,L 2N
Similarly, an upper bound for-Et and E12 can be derived by expanding

N-1

3 = 5 |z, ) - r, k) |2
2 1 . 2
k=- (N-1) -
which leads to
E <.N2 + B, + E
12 ° 1 2
Thus E £ N2 + 2(B, + E.)
A t ¥ 1 72

It can be shown using Eq. (6.64) that the minimum value of Et is

obtained for complementary sequences. Hence,

2
Et = N
and since El = - E2
a2
El2 = N 2El

It has been shown that the r.m.s. sidelobe levels of good binary

sequenqes are about O.4/§: i.e. El = E2 = 0.15N2. Using Egq. (6.62)

and substituting these values into Eg. (6.63), it is to be expected



-For complex codes these quantities are; E, = E, = 0,25 N
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that E_ will be a reasbnably constant quantity of approximately

E, = 1.3 N° | (6.68)

and for uniform complex codes

%

B, = 1.06 N2 | . (6.69)

Hence, minimizaticon of the performance index F results merely in a
redistribution of the total energy Et' This indicates that improved
crosscorrelation properties are obtained only at the expense ofran
increase in autocorrelation sidelobe level. For a given form of the
functional'F the enexrgy distribution will depend on the weighting
parameter A. For many applications it is desirable to distribute the

energy Et evenly between the individual correlation functions. Hence,
E, +E,_ = E (6.70)

=z 0.3 N2, and with respect to Eq. (6.68), E12 = 0.7 Nz.
' 2

where El = E2
1 2 and

B, = 0.56 N2. Such an energy distribution can be achieved by

12

minimizing an equally weighted performance criterion of the form

N-1 s A N-1 s |
F= I {jry |+ |0 s I r,0m0] (6.71)
k=1 k=-(N-1)

6.5.3 An Estimate of a Bound for the Minimum Peak Crosscorrelation

Value

-The crosscorrelation for the evenly distributed binary case is

2

0.7 N”. To minimize the max[rl2(k)|_the best solution would be for all
: k

the values of rlz(k) to be of equal magnitude, say, m. Then

[}

2 : . ' .
| n = Elz/(ZN—l) . . | (6.72)
However, the magnitudes of rlztk) cannot all be the same and will be

distributed at integer values between a minimum and maximum peak value
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" (#m), in some manner. By assuming different probability distributions

for the values of rlz(k), bounds for the maximum value of m can be.
establishedga. Assuming a uniform distribution* rlz(k) will have
equal probability Pr(rlz(k}) of having any level between +4m and -m,

where

P [r, ] =1/(m1) (6.73)
Hence, .
|
N-1 2 m 5
B, = L orj,k) = @u-1) X x], (OP [, (k)]
=~ {N-1) r.,(kj=-m
_ 12 |
m 2
= 2(2N-1)/(2M+1) % s, (k)
r.. (k)=o *°
12 ‘
B, = (2N-1) (m+lim/3 = 2Nm2/3 '
thus |
m = (3E /2'N)15 ' (6.74)
12
Substituting ElZ from Eq. (6.70) an approximate estimate of
min (max|x,  (k)|) is obtained
e 12
m o= N

For complex codes, however, it should be possible to approach the

bound (6.72), since these codes have a much wider degree of coding

freedom.

*Strictly speaking the crosscorrelation values rl2(k) tend to have

a normal distribution for very large sequences. However, a uniform

probability distribution may be an adequate assumption to obtain a

first order estimate of min(maxlrlztk) 1A :
k

(6.75)
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6.5.4 Results of the Synthesis

The element complementation and pattern search methods were
used to minimize F in the binary and complex case respectively. .(It
should‘be noted that the number of variables are néw doubled}. There
aré; howevé;, a:number of ways of applying the optimization procedure.
One_approéch is fifét.to change all the elements of seQuence a(nj,

keepiﬁg b(n)'fixed, that is minimization of

N-1 N-1

4
r=c + 3 e+ = |r ol . (6.76)
_ b 1 12 , .
k=1 k=-(N-1)
is carried out, where
N-1
\ 4
c, = & |r k)|
b k=1 2

is now a constant term. The next step is to repeat the process for
sequence b(n} while a{n) remain unchanged, i.e.
N-1 N-1

4 - a -
F=Cc + £ |r,&]| + I |£,,0)] (6.77)
a 1 2" — (N-1) 12 | _

This is done iterativeiy until the (local) minimum is reached.

An extensive computer search was carried oﬁt using the elemeﬁt
complementation technigque f§r A =0 and A =-l. ~The search was started
with a_randomly chosen pair of binary sequences, Some of the results
are summarized in Table 6.12 for various wvalues of N, where eyr €5
and e_, are the normalized energy ratios given by

12
2 2
10 El,2/N

il

€1,2

2 2
°1p T 107 B/

For A = 0 on the r.m,s. and peak values of the autocorrelation sidelobes
‘are around 0.4/N and Vﬁ'respgctively. These values correspond to those

obtained in Section 6.4.1. It should be noted that the crosscorrelation




Seguence Peak sidelobe Peak cross- Energy ratio (%)
length correlation
N maxlrl(k)l max|r2(k)] maxlrlz(k)] el e, e12
k k k
3 3 8 - 11.36 11.36 104.99
3 3 9 21.15. | 11.91 88.28
4 4 10 16.15 10.72 97.29
5 4 10 11.25 11.83 97.37
5 5 13 15.94 11.66 97.14
6 5 13 18.88 12,17 108.11
7 6 24 11.32 15.88 104.41
8 6 18 16.23 14.62 102.82
6. 7 18 10.37 12.63 108.60
7 6 20 8.64 13.98 104.69
7 6 18 19.00 11.96 102.27
8 7 21 13.66 13.89 96.47
8 8 .19 16.65 13.51 93.88
10 7 18 16.19 16.15 97.08
8 8 24 12.28 16.26 100.42
11 8 22 12.57 14.49 98.59
9 9 24 16.69 13.75 101.64
10 9 24 14.79 13.70 97.12
10 9 - 26 14.70 12.44 104.98
3 4 5 21.33 25.76 67.31
g5 - 5 6 24.01 24.76 77.69
4 5 7 16.55 24.87 86.47
7 7 8 27.03 30.83 70.78
7 6 9 26.89 29.74 61.45
6 7 9 21.47 21.90 77.61
10 9 - 9 32.54 - | 28.98 67.25
10 8 11 25.54 24.27 70.07
9 10 10 29.72 28.86 66.57
10 9 10 31.12 26.68 70.32
9 9 1l 25.24 27.47 74.83
10 11 11 129.50 27.17 67.95
9 9 12 20.56 | 23.89 76.77
10 12 13 24.36 29.09 67.47
11 12 13 25.46 25.37 71.28
g 12 15 26.72 30.13 71.45
9 13 14 16.69 24.46 78.57
14 13 15 23.45 29.95 72.21
14 12 14 27.59 29.37 72.06

numerical optimization,

Table 6.12 Correlation properties obtained using
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energy for this case is approximately N2, which confirms the assumption
derived from Eq.‘(6.62). The results)in Tablé 6.12 show quite clearly
that sequences having optimum ACF do not give smallest crosscorrelation
values and thus appear to be correlated, even though these sequences

wefe obtained using different source logic. In general one would expect
peak values about twice the maximum autocorrelation sidelobes since the |
number of different crosscorrelation levels is ordinarily twice the number
of autocorrelation levels. Table 6.12 also shows good agreement with the
sought after energy distribution when a-measure given by (6.71) is
minimized. .Moreover, the crosscorrelation peak values have decreaséd
considerably to approximately 1.3 #ﬁ'as compared to 2 ¥N to 3 VN for

A = 0. However, as expected, this improvement is achiéved at the expense
of an increase of the maximum autocorrelation sidelobes which are, except
for small values of N, usually of the samé order. The uniform character
of the sidelobes and crésscorrelaticn vélues reflects the equal

weighting of.the performance indices. The r.m.s. value of the sidelobes
and crosscorrelation is about O.GVE; assﬁming average energies of 0.3'N2
and 0.7 N2 respectively*. In Fig.;G;l? a fepreseﬁtative graph of two
séQuenpes of length N = 101 and'the magnitude of their correlation
functions is shown. In all cases the minimum crosscorrelation peak
values obtained have been found to be greater than the minimum bound

estimated using Bg. {6.75) as shown in Fig. 6.19.

The results for the uniform complex codes are given in Table 6.13.

. Again the autocorrelation and crosscorrelation peak values are of the

same order (= 0.8/N) and the r.m.s. values are approximately 0.5/ to
0.6YN. It is noted that there is not a great difference betweén the r.m.s.
and peak values which indicates that the residues are very uniform in

magnitude. This is illustrated in Fig. 6.18 for a pair of complex

*The r.m.s. value for the one-sides autocorrelation sidelobes is given by

®, (N-1))¥, while for the crosscorrelation it is (Elz/(zn-l))”.

¥
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of length N = 101;
{a) maxlrl(k)i = -21 dB
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k

(c) mix|r12(k)l = -18 aB



e I
N maxlrl(k)l max,rz(k)l maxlrlz(k)l e e, @5
X K L x

A=1
9 1.627 | 2.327 2.560 18.17 | 27.76 61,06
11 2.199 2.446 2.418 24.31 | 28.78. | 55.78
15 2.865 2.678 2.925 25.49 | 22.78 | 57.43
17 2.763 2.952 3.082 21.93 | 25.67 58.26°
19 3.37% . | 3.001 3.1385 21.74 | 22.75 61.69
20 3.120 3.251 3.381 24.12 | 23.66 57.01
21 3.086 3.481 3.375 23.91 | 23.60 58.69
23 3.300 | 3.472 3.535 24.14 | 22.19 58.68
25 3.280 3.925 3.869 23.19 | 25.47 58. 34
27 3.441 3.498 4.047 22.08 | 23.88 60. 66
29 3.725 3.611 4.039 24.58 | 22.64 57.28
30 3.893 3.804 4.008 23.17 | 23.17 60.71
31 3.580 3.612 4.367 19.59 | 22.70 | 62.92
34 3.953 4.409 4,477 23.60 | 25.08 56.56
35 4.531 4.480 5.146 22.97 | 23.51 62.07
a1 4.565 4.873 5.125 20.40 { 26.12 | 59.50
43 4.732 4.900 '5.814 21.56 | 24.05 61.29
47 5.388 .| 7.821 6.652 22.20 | 33.11 59.03

Table 6.13 Optimum correlation functions obtained

for uniform complex codes.
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6.18 Correlation functions of two uniform

complex codes of length N = 47;
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sequences of length N = 47

It was observed that the computer program converged in most
cases in one or two iterations (six to ten in the complex case) and

optimum binary sequences were found for N as large as 250 in less than

20 min using an ICL 1904A digital computer.

It has been shown that binary sequences whose largeét autocorrelation
sidelobes and crosscorrelation do not exceed unity do not exist fﬁr
length.N_> 2. It can easily be vérified thaﬁ this also holds fof uniform
complex codes for N > 3. However, adopting a numerical optimization
techniéue it is possible to find sequences which are satisfactory for

most practical applications. With a proper choice of the A-weighting

parameter, a significant improvement of the crosscorrelation peak value

can be achieved at the expense of only a relatively small increase in

peak sidelobe level. Seguences with near uniform residues of approximately
1.3 /N in the binary and 0.8/N in the complex case have been obtained.

it has been shown that minimization merely results in a redistribution of
theAenergies contained in both the autécorrelation and crosscorrelation
functions. Moreover, assuming a uniform probability distribution of

the crosscorrelation values a lower bound on the peak'vélue has been

estimated.

The synthesis method presented here has been restricted to pairs

" of uniform sequences. A more general problem would, therefore, aim at

finding not just pairs, but finite sets of binary or complex codes

having good autocorrelation and crosscorrelation properties.
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6.6 Summary

In this chapter the application of numerical methqu to the
design of phase coded pulse trains has been investigated. The cbjective
was to study the range resolution and clutter rejectibn performance of
thése discrete coded waveforms. Sequences which optimize the ﬁorrelation
properties, defined by suitabie cost functionals, were.considered.
Without pribr information about the radar environment the choice of
such a measure of 'hest' ié to some extent arbitrary. It has been shown
that minimizing an 24-measure of the residues has the desirgbleleffect
of reducing the peak sidelcbes as well as the sidelobe energy. However,
such a measure is high;y non-linear and multimodal and at present there

is no criterion to tell whether the obtained extremum is a global minimum.

It is difficult if not iméossible'to predict how various numerical
algorithms perform when applied té this fype of objective function.
While there are a number of efficientoptimization techniques for problems
lwith small dimensionality (N < 15) not many seem to be able to handle
functions with a large number of variables (N > 50). A study of the
efficiency of several different algorithms has shown that pattern search

techniques are particularly suitable for this type of application.

It was found that uniform complex codes with largest sidelobe not
exceeding unity (Barker code property) exist up to a length of at least
N = 18. Even for a much larger length, N = 100, it is possible to find

sequences with peak sidelobes less than two.

The designrof binafy sequences was approached by tranéforming the
synthesis problem into a sequence of unconstrained minimization problems
using penalty-function technigues. This method of haﬁdling disérete
variable problems looks very epcouraging in the light of the results
obtainéd. Sequences whose sidelobe performance is equal or only

marginally inferior than that of the best known binary codes were found.
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A comparison of various phase c¢oded waveforms is illustrated in Fig.

6.20.

An improved penalty-function method has been described which has
certain advantages such as less sensitivity to parameter variations during
‘the search process as well as direct control of the rate of convergence,
The lafter is-important for large scale problems. This ﬁethod has also

been found useful in designing poly-phase coded sequences.

Finally, pairs of phaée coded sequences having low autoéorrelation
sidelobes and small mutual crosscorrelation.have been designed. These
sequences are particuarly useful in spread spectrum multiple-access
systems. It has been shown, however, that imprdﬁed crosscorrelation
properties can only be obtained at the expense of an increase in the

auntocorrelation sidelobes.

Although numerical.meﬁhods have proved to be successful they are
not without their weaknesses. From the theoretical poipt of vieﬁ the most
serioué objectipn is that the results are ndt unique. Thus for a given
design objective, the sequence to which the procedure converges ié
dependent on the initial choice of the starting sequence. In some cases
a vector with a quadratic phase (QP) could be a goﬁd iﬁitial choice,
whilst in others the uncoded vector may serve as a suitable starting
point., Thus, for each individual application the initial vector would
have torbe chosen judiciously. Furthermore, whén very large pulse trains
with hundreds or thousands of pulses are required difficulties of a
computational nature arise. These difficulties.can ke overcome to some
extent by trying to generate.longer seguences by combining.short oneslsf

Unfortunately, the ACF's of good short sequences do not reveal any

pattern which would suggest a plausible rule for their construction.
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.Although various technigues to obtain combination codes existls, no

one has yet found a construction method which diminishes maxlr(k)l.
Other problems such as the numbex of phase quantization lewvels necessary
to achievelthe desired performance of uniform complex coaes and the
poésibility of real-time adaption must be considered for each case

individually.

Optimization, which forms an integral part of system design, is

made possible by proper use of algorithms and computers, Keeping

-Hamming's mott089 that 'the purpose of bomputing is.insight not numbers'

in mind, the problem should be formulated and an optimization method
selected in such a manner that the results will give information bevond

mere numerical wvalues of the best attainable design wvector.
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CHAPTER 7

AMPLITUDE AND PHASE MODULATED PULSE TRAINS

7.1 Introduction

Most modern high performance rédafs use travelling-wave tube
amélifiers to cobtain coherent transmission. As pointed out previously
these tubes work most efficiently under constant amplitude conditions.
Moreover,lgood amplitude modulation {AM) is difficult {and very expensive)
to achieve with thesé devices. Therefore only purely phase modulated
pulse trains have been considered so far. Howéver, with tﬂe emergence
of solid-state microwave sources efforts are being made.to replace the.
relatively large and expenéive vacuum devices by low power solid-state
eléments and the waveguide elements by planar circuits., #With these new
components the size and costs are reduced and a number of commercial

applications become feasible.

The contribution of solid-state devices has also been significant
in areas where performance was previously inadequate. For example, it is
ﬁugh easier to use any form of modulation with solid-state components;
Althoﬁgh AM is not.an efficient methed to provide_the large time-bandwidth
_requiréd for good radar performance, it does provide a means of improving
the resolution capability. Consequently, this chafter treats the problem
of finding energy efficient amplitude and phase modulated {(a.m.ph.m)

pulse trains.

7.2 Huffman Sequences
20 | ‘
Huffman © has shown that it is possible to derive sequences a{n)

of any arbitrary length (N+l) whose ACF's have the property

. E i k=o0
N-|k| |
rik) = I a(n) a*(ntk) = < O p k) £ o - (7.1)
n=o0
r® ; [k =N

where E is the energy of the seguence.
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This ACF is zero for all time shifts except for the unavoidable
end sidelobes. Without loss of generality the end sidelcobes r{N}) can
be set to unity. Using the familiar ZT notation, the ACF of a Huffman

code reduces to

Ri{z) = Z_N Af{z) A*(1/z)
=1+Ez V4N ‘ (7.2)
N ~ N "
where Alz) = Z  a(n) = n = afe) I {(1-z2 zi)
n=o i=1

. : 2
For a pulse train A(z) to have the property (7.1) Huffman ° showed
that the roots zZ of A{z) must lie at egual ahgular intervals (21/N)
in the complex z-plane on either of two origin centered circles whose

radii are given by

€72 + [®/2)% - 1] HN

>
Il

%}l/N

1/% = (8/2 - [@®/2)7 - 1]

{7.3)

Since thefpolynomial A(z).has N roots, there are 2N possible root

patterhs and thus 2N Huffman codes with the same ACF that can be derived
for a given energy E and sequence length {(N+1) . Although some inefficiency
in the use of transmitter power may be acceptable in order to obtain

the impulse-l;ke property (7.1), it.wduld certainly be wésteful not to

seek the most efficient sequence for an app;ication. A figure of merit

for the energy diStribution of a sequence is the energy ratio defined by

o =E/{0N+ 1) mx [am [} ¢ 1 ‘ (7.4)
n

The maximum value of p is attained for purely phase modulated pulse
trains such as binary segquences. . The energy ratioc depends on two
independent variables; namely, the total energy.E of the coded waveform

and the magnitude of the largest coefficient of A(z), denoted by
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‘ max [a(n)[. By referring to Egq. (7.3} it can be easily verified that
n

the energy E is given by

N N |

E=X + X : (7.5)

and thus is a function of the radius X only. The maximun amplitude
max [a(n)], however, depends on the particular choice of the N zeros
n i
for A{z) as well as the radius. (A general expression for the coefficients
of a polynomial in terms of its zeros is given by Eg. (7.11)).

Unfortunately, a mathematical method has not been found which leads,

without trial and error, to the most efficient Huffman code.

. The design of a Huffman sequence in general requires the choice
of the code length (N+1), the circle :adius X and the zero pattern for
which the magnitude sequence Ia(n)l is most uniformly distributed.

.This, however, remains an unsolved problem. Direct evaluation of all

2N possible root patterns, for a given radius X and N, is not feasible
if N is 1axge (N » 20). This remains so even if account is_taken of the
zero patterns formed from others by rotation in the z-plane thrqugh an
anéle ¢ or by cher transformations for which the energy ratio is
invariantgo. A general trial and error procedure is to choose a root
pattern, perhaps at random, and to compute the sequence for a succession
of values for the radius X. ' Other methods devoted to this problem have
been suggested by Ackroydgl. An alternative approach for deéigning
efficient Huffman codes is to use a 'good' but non-Huffman code to
suggest a zero patterﬁ for. the Huffman sequence. A good code in this
context is simply an energy efficient seqﬁence, preferably p = 1, whose
ACF has low sidelobes. For.example the‘uniform complex sequences

described in Chapters 4 and 6 are such codes.

The optimum choice of the radius and hence the energy E does not
appear to be a great problem since the constraint Ia(O) a*(N)I = 1 and

the desired uniformity of the amplitudes, i.e. |a(0)| =|a(L)]| = ....
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- |a($)| implies E ¢ (N+l). Thus using E = (N + 1) as an initial
value, computer search techniques can provide an optimum radius X for
any given zero pattern. However, the tolerable peak-to-sidelche ratio
sets a lower limit to the minimum valﬁe of X that can be used. Usiné
Eq.- (7.2) this raﬁio is given by |

B/lrm] = @+ xx"

A convenient way of representing a.zero pattern is by its binary
equivalent (b(0), b(l), ...., b{(N}} obtained as follows.- Starting at
-an arbitrary point on the unit circle, for example where arg(z)l= 0,
and proceeding counter-clockwise, a root 6f Az} ié reéresented by
a+ 1 if it occurs on the circle with fadius X, and by -1, if it occurs
on the circle with radius 1/X. For example,the zero pattern of A(z)
shown in Fig. 7.1 has the biﬁary representation (-1,1,1,-1,-1,-1,-1,-1,
l,—l,-l,l,l,lfl,l). Thus, eXCept'for an arbitrary constant, a Huffman
sequence is completely.defined by its radius X and the bihary seguence
b(n). It can be eésily veiified using Eq. (7.2) that with ]a(O) a*(N)[

=1 and Ia(N)/a(O)[ = lzlzz.......z , the relationship between A{(z)

N

and the binary representation becomes

N
I {(1-
i=1

X-%?b(i)
i

Alz) z—l Xb(i) ej21Ti/NJ

As noted earlier the O,m phase regquirement may restricﬁ the‘ACF
of a sequence that could otherwise be achieved. Ccnverself, it is
conjectured that real Huffman codes will not result in the optimum
amplitude distributicn. Hence, it is.to be expected that the zero
patterns thét lead to complex codes will probably provide superior
'energy ratios, since the elements of these codes have essentially two
degrees of freedom; namely, the amplitude ana phase. Fig. 7.1 shows

the zero pattern which results from_factorization of the corresponding

z-transform of the uniform complex code of length N + 1 = 17. This

(7.86)

{(7.7)
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Fig. 7.1 Zero patterns of l7-element uniform complex

- code (g) and corresponding Huffman code (O),




pattern is similar to a Huffman type pattern in that only relatively small

changes in the root positions are required to transform it into a Huffman
code zero pattern. Hopefully such a modification will cause little

reduction in the energy efficiency of the resulting Huffman code. '

A subset of the resﬁlts using this méthod 18 displayed in
Table 7.1. (Some energy efficient Huffman codes zre. listed. in Appendix
E). Given the zero pattern the codeé were comparéd under two distinct
criteria; The'first criterion is the energy ratio p and the second is a

normalized mean-square error defined by

A 4,2 -
: {latn)] -~ (B/(v+1)) 7} (7.8)
n=o :

m
. b
el f o

Althouch this scheme may be acceptable for deéigning Huf fman

" codes of moderately large lengths (N+1 = 100}, two major difficulties

arise for longer sequerices, The first difficulty is the computational'
one of factorizing polynomiais of degrees larger than 100*, The second
problem is that with increasing sequence length the zero patterns of

the uniform complex codes depart guite considerably from that bf a Huffman
type pattern. It is therefore né longer possible to make énly relatively
small changes in the zero positions. Consequentiy_other methods for
designing efficient Huffman sequences must be sought. As mentioned
previously Ackroyd introduéed an interesting technique, using the
stationary phase principle, which is applicable for an arbitrary length

sequence.

Another method which-immediately comes to mind is a random
selection of the zero pattern. In fact Huffman suggested that in order

to maximize the energy ratio p, the roots should be chosen in a random

*at present standard root-finding algorithms can handle polynomials
of degrees up to 100.




Sequence Energy Nean~square Radius
length efficiency error
| N+1 P € X
5 0,842 0.046 1.420
6 0.584 0.158 1.360
T 0.750 0.052 1,510
8 0.585 0.067 1.290
9 0.942 0.001 1.304
10 0.617 0.048 1.360
11 0.579 0.047 1.325
12 0.509 0.14% 1.450
13 0.546 0.098 1.180
14 0.629 0.068 1.200
15 0. 681 0.053 1.190
16 0.505 0.074 1.160
17 0.595% 0.077 1.160
18 0.552 0.094 1.160
19 0.465 0.125 1.230
20 0.503 0.072 1.140
21 0.433 0.105 1.120
) 0.53%0 0.099 1.140
23 0.460 0.103 1.153
25 0. 606 0.054 1.199
27 - 0.405 0.129 1.110
31 0.479 0.074 1.101
35 0.323 0.173 1.075
41 0.347 0.102 1.132
45 0.469 . 0.098 1,110
51 0.378 0.130 1,157
25 0.3%23 0.173 1,147
61 0.359 0.118 1.116
65 0.3%68 0.134 1.127
T 0.449 0.149 1.148
75 0.378 0.161 1.140
81  0.376 0.159 1.117
85 0.273% ° 0.381 1.099
91 0.332 0.174 - 1.046
95 0.178 0.186 1,050
100 0.196 0.180 1.068

Table 7.1 Codes which maximize p.
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fashion with approximately‘half the zeros on each éircle. He then
conjectufed fﬁrther that the optimum energy ratio should be proportional
to (N+l)"%. In general correlation properties are used to judge the .
randomness of a seguence, that is a sequence is uncorreiated with
itéelf, i.e. random,if its ACF has uniformly low sidelobes. Hence,

the optimum binary segquences derived in Chapter 6 could be used as
desirablergenerating patterns. A cbmparison of the maximum enéégy
ratios obtained for Huffman codes derived from zero patterns of different_
phase coded sequences is showﬁ in Fig. 7.2. It is evident that for the
sequencé length given here linear FM type zéro patterns (see Fig. 4.19)
tend to give more efficiént Huffman codes. However, in both cases p

seems to approach a certain limit (p = 2.3/¢ﬁ-for linear FM type zero
patterns, and p = 1.8/¢ﬁ.for random root selection) as (N+1)} increases.
Moreover, the errcr e tends to approach tlie same limit. These results

clearly support the conjecture made by Huffman. However, to predict

any asymptotic behaviour more data would be needed.

7.3 A New Approach-to-the Signal Design Problem using Parameter

Variational Technigues.

Generally speaking the design of pulse trains whoée ACF's satisfy
the condition {7.1) subject to constraints reguires the solgtion of a set
of highly non-linear equations. A c¢losed form colution is only known
fér Huffman sequences. However, there exists the problem of selecting
a zero pattern which results in the most energy efficient pulse train.
"All known Huffman sequences of length (N+1) > 3 are amplitude and phase
modulated and thus to achieve the impulse-like property {7.1) a reduction
in power utilization has to be acceptedi Even for the optimum solutions
(for a given zero pattern) there i§ a considerable loss in signal energy
{p = 2.3//§:i3. It is believed that there are no uniform Huffman ccdes

(i.e. |a(n)| =1 for all n) for (N+1) > 3, but their nonexistence has
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not yet been proved mathematically. However, it is possible to state

two necessary conditions for uniform Huffman codes. One follows

directly from Eqg. (7.3) which defines the c¢ircle radius

N N+1 N+l 2 1/N

= | —— -+ - 1
X =) }
since E = N+1. The radius approaches unity as N increases since

limx = lim 1Y o

N ~» N0 :
In addition uniform Huffman codes, if they exist, must be of odd length.
This can be easily verified by conéidering the relationship between

the zeros zi and the coefficients of the polynomial A(z)

Z) o+ 2, t eeee.. +ozg = all}/a(o)

z.2_ +z.2_. + . +%\I-—]_ZN =a(2‘)/a(0)

- " L4
- .
-

' PR £ Sy
212223 ceee 24 + ... Zy-itl PN T {-1)" a(i)*a(0)}
2 z. = -1V am)/a0)
175 eeiZy < a O
or in condensed form
'Z 2.2,2 z, = (-l)i'a(i)/a(O)
‘ 1273 °**" 74 _

(1=1,2, ..., N-1, N)

Since all the zeros are of the form
_ 1 o s
z, = (X or x) exp j{2mi/N)

and with the conditions |a(n)| = 1 for all n, it follows that
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Eqg. (7.12) can only be satisfied if half of the N roots lie on either
cirele in the z-plane. Therefore N must be an even number. In other

words, if uniform Huffman codes exist they must be of odd length.

The loss in signal energy of Huffman codes is mainly attributed
to the fact that all except the end sidelobes are suppressed. In most
applications a complete suppression of the residues is not reqﬁired,
pfovided they can be kept to a specified low lével. Therefore, if the
condition (7.1) can be relaxed it is expectéd that there might be a‘

substantial increase in pulse train energy efficiency.

The procedure for synthesizing pulse trains with a specified

(realizable) ACF has been treated in Chapter 3. However, even if it is

possible to find a suitable factorization of the AGQF, it seems impossible

in practice to determine whether the resulting polynomial will have all

its coefficients of unit'magnitude.

In Chapter 6 an attempt has been made to solve the system of
eéuations {7.1) subject to amplitude constraints by minimizing a lp—
measure of the response sidelobes. Because of the highly multi-modal
character of thelobjective function {constraints introduce additicnal
e;trema, see for example Fig. 6.9), the effectiveness of such an approach
depends largely on the initial estimate of the solution. In the séarch
for a solution of the constrained problem it is therefore desirable to
develop a method which is to some extent independent of the need for a
‘good' starting point. Consequentiyh a new approach to the signél design
problem, using parameter variational techniques, is considered. The |

method is based on the idea described by Freudenstein and Rothgz.

(7.12)
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7.3.1 The Method in General

The problem considered here is to find a solution to the set of

non~-linear equations
fj(§) =0 i=1,2,.....,n ' _ - {7.13)

where x is a n-dimensional column vector of the independent variables
and the functions fj(z) are of the form

m

fj(f) = iil.aji vji (x) N | '  ' _ (7.14)

where the aji's are parameters.

Introducing a set of param.eters'sji a new system of equations, yj(f}

belonging to the same family, can be derived from (7.14) such that
(0) (O}

o :
vy, (x)= & By v..(x),3=12,...,n {7.15)

; 3 (0) _
where in general Bji O # uji

With a suitable choice of the parameters in conjunction with a particular
set of values 3;2) say, it is possible to find analytically one or-more
solutions of (7.15). Therefore, these derived equations may be any

set, belonging to the same class, with at least one known solution,
denoted by 5}0). The Eg.'s (7.15) are now deformed into the Eq.'s

(7.14) in a finite number of small increments in the parameters Bji such

that _ P .
k), _ = (k) s |
Yj (x) = Bji Vji(E)' k=1,2,3,...,M {(7.16)
i=1
with
v @ = £
‘and
g _ g0 o~ 9
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As the Bji take on different values, the zeros of Yék)(i) =0 will

move in x-space. Differentiating (7.15) with respect to one of the

parameters, Bji,.the above deformation may be described in matrix

notation as

J 3/3 Bji(i) + 3/9 Bji(zj =0 3 =1,2,....n _ (7.17}
i=1,2,...,m
where J is the Jacobian matrixz (Chapter 5) with the elements

Jrs = ayr(ﬁ)/axs, and y° denotes the row vector (Yl(E)' yz(g),....

yn{gg), "Solving Eq. (7.17) for B/BBji(gp

- 1
8/38j1(§) = -J a/aaji(g) {7.18)

Hence, it can be seen that the task of tracing §,frbm 5}0) to x(M) is

——

equivalent to the solution of (nxm) first order differential equations

(0) o (0

in the interwval 8ji < Bji § Bji i J=1,2,...yn; 1 =1,2,...,m and
. s s (0) (0)
subject to the initial conditions x and sji .

The straightforward way to obtain the desired solution is the
approach suggested by Eq. (7.18). Alternatively a method which
utlizes any of the available search techniques (see Chapter 5) is by

solving the M sets of equations as follows. The known solution

ygo)(z) = 0 is used as an initial estimate for the iteratiwve solution

J
of y;l}(g) = Q. This solution in turn is then used as an initial

(2)

approximation of the root of yj (x) = 0, and so forth, until the

(M}

solution yj (x) = £,(x) is obtained. Hence, simultaneous tracing of

X, such that y;k)(g) = O is always satisfied will, subject to conditions
discussed below, yield a zero of {(7.13). In other words, instead of
solving the original set of Eq.'s (7.14), one starts with a different
set of equations (same function of x but different parameters), whosé

solution is known. A succession of searches is then performed, each

time incrementing the parameters, until the correct equations and theirx
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solution is found.

(k)

The obvious choice in tracing a zero from yj (x} =0 to
{(k+1) . . . .
yj {(x) = 0 is the generalized Newton-Raphscon iteration (see Chapter
5).
. n _l . .
Ax = - L T, v.(x) s=1,2,...,n {7.19)
Sog=l S3T3 T | - :

Thus at each stage two different increments are performed. One is
the usual change in the independént variables x and the other is the

change in the parameters Bji'

The condition for convergence is obvicusly |J| # 0 (no singularities)
and, moreover, convergence at each step, i.e. the deformation step size

must be suited to the radius of convergence of the iteration technique

(0

employed. Furthermore, it is required that the functions Yj (x) are
such that:
‘ - ,
: ‘ (O (0) :
i At,x) = I .o+ {a,, - BLL)E/MME v, (x 7.20
@ vyl = 2By * (e - By /MY vy ) B (7.20)

is continuous in the interval © £ t £ M. Note that for convenience
the discrete increments k/M have been substituted by the continuous variable

t/M.

{ii) The zeros of {7.20) denoted by Z{t)} are continucus in the same

interval O £ £ £ M. o ) _ _ (7.21)

The condition for a continuous function of the roots, Z(t), is
illustrated in Fig. 7.3 for a single equation f(x) = O. Sincé the root
Zl(o) does not continuously approach Z(M), the method fails. However,
a choice of 23(0) would succeed. It is also noted that if the Newton
iteration, or any other iteration method, would be applied to f(x) for

X < A, the method would certainly fail to locate a root of f{x).



| £0x) '

Y(O)

y(2)

{x)=0

most iteratiwve methods will
{fail to locate Z{M}) for X < A

(x}=0

N

z,(0) Z,(0) z, (1) z3()‘ Z,(1) Z2N - Z(&

Fig. 7.3 The continuity of the roots Z{t) is violated if
the parameter perturbation procedure is started
from Zl(o) or zz(o), however a start from Z3(O)

will converge to Z (M),
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7.3.2 Application of the Methed to the Signal Design Problem

The parameter variation method is now applied to find a solution

of
N-1
F (@)= [ck,gf =0
P k=1
where _
: N-k
rk,¢) = L exp(i[¢(n) - ¢n+k)]) ’
: n=o

By the introduction of a set of real parameters B{n), n = 0,1,2,...,N

a new system of equations is derived

N-k
rik,9,8) = I B(n) Blntk) exp(J[$p(n) - $(n+k)])
n=o
and
N-1
F_(,8) = & |r(,¢.8]" =0

where p = 4.

From ﬁhe foregoing it should be evident that in general there is no
formal way of introducing the parameters. However, it has been shown in
the preceeding'section that Huffman codes satisfy Eq. (7.25). Since
there are ZN Huffman sequenceé for a given.length‘(N+l),2N roots of

(7.25) can be established. Thus, if the sequence a(n) denotes a Huffman

Acoﬁe, a choice of the parameters E}O) and the initial phase wvector 9}0)
such that
89 @) = latm |
and ¢(O}(n) = arg[a(n)] n=0,1,...,ﬁ

will furnish a solution of (7.25). It is noted that if the parameters
are introduced as indicated above, the r(k,¢,B) still represent

essentially an ACF.

- (7.23)

(7.24)

(7.25)

(7.26) ‘
|
\
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Thé parameter variation method was coded in Fortran and applied
to a number of Huffman codes with high energy efficiency. The tracing
of a root from the kth to the (k+l)th deformed system of equations was
carried out using the modified Newton-Raphson iteration (Powell's sums
of 'squares method, Chapter 5}, and ;he efficient pattern search technique.
Both methods failed to locate a root of the objéctive function at
successive increments because the given set of equaticns (7.24} do not
satisfy the sufficiency conditions (7.21), This can easily be seen by
considering a given Huffman code A(z) with optimum energy ratio popt
for a specified zero Pattern. Evidently e#ery solution which satisfies
(7.25) exactly must be of the Huffman type. If the coefficient magnitudes
|a(n)] of A(z) are incremented b§ A(n) and if the resulting sequence
la'(ﬁ)l should satisfy (7.25), the zero pattern of its z-transform,
A'(z}, must be of the Huffman type. However, the zeros of a polynomial
are continucous functions of‘its &oefficients {Eg. (7.11)). Consequently,
since A(n) can be any arbitrary sméll value, the zeros of A'(é) and A{z)

must be very close. 1t can be shown that the variation -of the ith zero

of A'(z) is approximately given by93

N
-n
Azi = - Ci I Aln) z;
n=o
where
z; = (z - z;)/A(2)
Z=Zi

Since the zero pattern of A’ (z) must be of the Huffman type, if.the
iteration is to converge to a root of (7.25), it follows that its zeros
can only move radially (ignoring a possible conétant phase shift), as
indicated in Fig. 7.4(b). Incrementing the coefficients of A(z) must,
howgver, always‘increase the energy ratic p, hence p' > pop£ which is
not possiblée, Hence, the roots of the objective function (7.25)

- cannot be continuous functions of the parameters b(n). This conclusion

(7.27)
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Fig. 7.5 ACF of l7-element quasi-Huffman code.
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¢could alsc have been drawn directly from the observation that the
solution set of (7.1) is discrete (2 possible solutions). Fig. 7.4 (b)
shows the actual locus of the zeros,.starting with a l7-element Huffman

code.

In addition the convergence of least =squares and Newton methods
is limited to regions for which the condition rank {(J}) = N is satisfied;
As.pointed out in Section 5.5 the Jacobian J becomes very ill-conditioned
for trigonometric functions when the number of variables increases.
Hence, singularities (]Jl = 0) in the (¢,B)-space are very likely to be
encountered. In principle various schemes exist to overcome the problem
of a vanishing Jacobhian. Foi eiample,the increments in the parameters
can be made selectively unequal until the value of J is greater than
some predetermined minimum. Another approach is to restaft the procedure
with a different set of’équations. However, none of these methods can
guarantee coﬁvergence_for the simple reason that there might.be no
solution to the problem. "Morecver, in practice it is usually not known
a priori whether a given set of equations satisfy the cénditions for
convergence, since the knowledge of £ﬁesélconditions implies the

-knowledge of the solution itself.

Since the iterations do not converge to an exact solution, 2(N-1)
additional sidelobes will, in general, be introduced. However, the peak
magnitude of these additional residues can be képt to a specified low
value q, and the iteration may be stopped as soon as this wvalue is
exceeded by one or more of tﬁe sidelcbes as shown in Fig. 7.5. The
improvement in energy and error performance and the increase in sidelocbe
level for successive increments in the parameters starting from g = 0

{Huffman case) is illustrated in Fig. 7.6, .
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Fig. 7.6 Energy, error and sidelcbe performance at
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Fig. 7.7 Envelope of quasi-Huffman code of length
N+1s=17.
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In all cases a considerable increase in power utilization is
obtained, Fig. 7.8, even.for moderate valués of g (g £ 1). For example
the l17-element sequence depicted in Fig. 7.7 shows an increase in
pulse tfain energy efficiency of 24% for q £ 0.5. This is Significant'
because the energy of the added timg'sidelobes is'only 0.9% of the
mainloﬁe energy with a maximum value of the g time sidelobes equal to

- 30dB.

.Although no precise formulation for the design of Huffman-
sequences can be made, the following remarks may serve as a éuide line
to their synthesis. It is well known that if the zeros of a‘polynomial
A(z) are all within the unit circle the polynomial is called minimum
delay, and its enerqgy is concentrated towardé the beginning.
Conversely, the maximum delay polynomial has all its zeros outside the
unit circle and consequently its energy is concentrated to@ards the
end. Therefore, when half of the zeros lie on either circle, the
envelope of the pulse train tends to be relatively symmetric about the
mid-pulse. Moreover, the energy ratio p is very sensitive to the radius
X. In Fig. 7.9, p is plotted as a function of X for a 17-element sequence.
It can be seen that for this particular zerec pattern (Fig. 7.1), ¢
péaks quite sharply around the value where E = N+l. It is also noted.that
the maximum energy ratioc does not correspond to the minimum errcr. The
resulting magnitude of the complex envelope of the pulse train for the
optimum radius Xp(0pt) is depicted in Fig. 7.10. 1In addition it was
observed that for relatively large X (X > Xpbp;)) with half the zeros
inside the unit circle, the energy ténds to be concentrated in the‘
centre of the pulse train. As X approaches unity, the energy becomes

more concentrated at the extremes of the pulse train.
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7.4 Bessel Sequences

A different class of a.m.ph.m. pulse trains having low ACF
sidelobes can be generated using Bessel functions. The nth order
Bessel functions, Jn[x), of the first kind and of argument x are

defined as the Fourier coefficients of the function

s(0) = o~Jx sin 8
The function S(B) is periodic with a period of 2r. Making the variable

transformation 8 = 2%f/W, the FT relationship

0

3 'Jn(x) § (t-nT)<> S (21£/W)

n.-.—..—oo

can be written as

W2 ., _
CJ_(x) = 1/W o~ (x sin 2nf/W-2mnt/w)
4 B —w/2
and
L) e . .
S{F) = e % sin 2rf/W _ e o J2rnf/w
N=-—co

b~

:Théréfore, for any given argﬁment %, the mth element of a Bessel code
is gimply the mth order Bessel function of the first kind, Jm(x). The
Bessel functiong can thus be regarded as being generated by §ampling
the complex.envelope'of a bandlimited continuous signal at the Nyquist
rate 1/T = W. With this notation Eq. (7.29) has a ZT given by
0
8{z) = & Jn(x) z 0
n=-
Since S(f) has the property of complex cénjugate symmetry, the
coefficients Jn(x) are all real. Moreover, Béssel functions of

integral order satisfy the relationships

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)
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J_(-x) (-1)" dn(x) | (7.33)

and

J_ ) = -1 J_(x) | | (7.34)

Incidentally, it may be noted that the relationship (7.34) is the
- reflection condition (Eq. (6.27}} discussed in Section 6.4.1 which

causes the ACF to be zero for odd time shifts.
The ACF of the sequence Jn(x) (x fixed) is by definition

(Eq. (2.35))

r{k) (x) (7.35)

il
1

*
Jn(X) Jn+k

i
o]
| +
'_l
-+
[

k

Substituting Eq. (7.30) into the above expression results in

> 5T -j2mnfT '
Srfk) =T K Jn+k(x) J s*(f) e. df
In=—w . :
-%T
changing the order of integration gives |
LT e . . 1
- -j2unfT _, |
r (k) T ni_mJn+k(X) e s ﬁ#) df
—HT
letting m = n+tk
‘ LT .
rk) =T j Is(e)|? I2TRET 4
-4T _
AT {1, x=o0
=1 | &I*™ET 4¢ = (sin km)/kn = (7.36)
-7 ¢ -, otherwise

Hence the ACF consists of a single spike of unit magnitude at k = O.

From Eg. (7.35) it follows immediately that

r(0) =E = 3 ‘J2(x) =J (x) +2 L Jz(x) =1
. n o] n
n=-—owo n=1
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Although the summation in Eg. (7.33) is infinite, the number of
Bessel functions with signifiéant magnitude is limited to a finite
number, The magnitude of.each term dépends on the argumént x (in

FM x is‘known as the modulation index]} and, moreover, the number of
_ significant terms increases with x. The gquestion now arises of just
how many terms are important. For é given argument, xo, a typical
high-order (n >> 1) Bessel function, Jn(x), is essentially zero for
n - 2) > xo (Appendix C}. Hence, truncation with Jn+2(n) as thé‘
highest-order significant factor encompasses most of the significant
components. The.sequénce lehgth N of a Bessei che for a given argument
X, is therefore given.by

N=2(x +2)+1
o .

In Fig. 7.11 the number of significant terms, disregarding higher;order
Bessel functions of magnitude less than 0,02, is plotted as a function
of the argument x. _Proﬁided the condition (7.34) is not violated such

a truﬁéation will only introduce ACF sidelobes for even time shifts.
Moreover, it has been found that the magnitude of the sidelobes is not
greater than about -35 dB for the sequence lengths shown in‘Fig. 7.11.

A typical Bessel code of length N = 61 and its ACF is shown in Fig. 7.12

and Fig. 7.13 respectively.

The energy efficiency p and the mean-square error e of this type
of pulse Erain is shown in Fig. 7.14 as a function of the geqﬁence length
N. Comparing Fig. 7.2 with Fig. 7.14 it can be seen'fhat for relatively
short length sequences (N < 31}, Huffman codes are <learly superior in
energy performance. This is not'surprisiﬁg, since complex sequences
have essentially 2N degrees of freedom (amplitude and phase can be coded
independently) whereas Bessel codes have only N degrees. However, for
larger lengths (N > 31) the difference in efficiency p and error ¢ is
marginai, which suggests that_the use of complex ﬁuffman éodeé for these

lengths does not provide any significant advantage in energy efficiency.
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Ancother interesting property of Bessel codes is their zero pattern

which is obtained by factorizing Eg. (7.32). A typical zero pattern is
shown in Fig. 7.15. A distinguishing feature of Bessel code zero
patterns is the 'horse-shoe' appearance of their rcot loci as compared

to the zeros of QP codes which tend to lie on a spiral (see Fig. 4.19}.

Alternatively, Bessel codes could provide aﬁ initial starting
sequénce in the désign of uniférm or guasi-uniform complex codes using
the parameter variational technigque described in the pieceeding section.
For example, Fig. 7.16 shows the roct locus of the zeros when.a-Bessel
code of length N = 21 was used. The resulting uniform complex code

had a peak sidelobe level of 1.03 or -26 dB.

7.5 Summary

In some circumstances the use of pulse trains, othexr than purely
phase moduiated cnes, may be precluded due to the expense incurred in
providing AM. However, the additional expensé of encoding and decéding
in amﬁlitude and phase may be justified for radars that must cope with

land clutter or operate in a dense~target environment.

The very low sidelobes that can be achieved with.a.m.ph.m. pulse
trains such as Huffman codes (g = 0J, quasi—Huffmah codes (g £ 1), or
Bessel codes make their use particularly attractive in systems requiring
a large dynamic range. Moreover, the excellent self-clutter rejection
performance is obtained without sacrificing clpse—target separability
{(no, mainlobe Widening). This property 1s, however, achieved at‘the
expense of a significant reduction in power utilization at the
transmitter. In addition it has been shown that complex Huffman codes

and Bessel codes of lengths N > 31 are comparable in energy efficiency

p and mean-square error c. Since Bessel codes are real (phase is O or m),

this implies that for longexr sequences (N > 31) the phase modulator

“may be replaced by a switching phase inverter without any significant

loss in energy performance.
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~165-

The loss in enerqy efficiency of Huffman and Bessel codes is
mainly attributed to the high degres of sidelobe suppression. In
most applications a complete suppression of the sidelobes is not
réqui;ed, provided £hey can be kept to a specified low level.

Consequently, a method which trades sidelobe performance against

- enexgy efficiency has been developed using parameter variational

techniques.

Although the reduction in sidelobe levels can be achieved by
other means to be considered in the next chapter, this method of
tackling the signal design problem has soime useful advantages. First,

the algorithm provides a starting point which may lead to improved

. numerical methods for a number_of related signal or filter design

problems. Secondly, with a suitable choice of g and the parameters
b(n}, sequences with high energy efficiency and discriminatibn ratio can
bhe obtained. MbreOVer, the algorithm is iess sensitive to the initial
starting point and, therefore,.genefally pefforms better when appiied to
multimodal objective functions. In many cases the best‘uniform complex
codes (Section 6.3) were cobtained in only one computer run whilst other
methods required a number of runs, each time starting at a different
initial point. For example, an additional complex seguence having ﬁhe
Barker code property (all sidelobes g 1} was found for N+l = 19
(gppendix'E). However, the requirement for a succession of solutions of

the M sets of equations may result in excessive computer time for large

dimensional problems.
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CHAPTER 38

SIDELOBE REDUCTION FILTERS

8.1 Introduction

In a dense-target environmenﬁ or in situations where there are
lafée undesired scatterers (point clutter), it is often desirable to
reduce the time sidelobes of phase coaed sequences to.a prescribed low
level. In principle, there is no difference between the problems of
resolving a target in the inferference frbm other targets and the
detection of a target in qlutter. In_previous.chapters the reduction of
the range sidelcbes of the compressed pulse has been of.much concern in
the application of matched filter technigues to radar systems. in faét
the mutual interference between targets or selfnélutter impdées rather
fundamental limitations on resolutioﬁ performance, So far, the reduction
of the range sidelobes has been approached via waveform design. However,
the aftainable sidelobe levels for phase coded pulse trains might be
inadequate for specific: applications. Although iﬁ is possiblelto.use

A.m.ph.m. pulse trains such as Huffman codes to obtain the desired degreé

of discrimination, in most high power radar systems this method is not

readily available. Thus, the designer has to resort to other sidelobe

reduction techniques.

In principle sidelobe reduction can be achieved by either
(1) amplitude~ or phase-weighting in the frequency domain, or,

(ii) amplitude- or phaSe?weighting in the time domain.

The weighting may be accomplished at the transmitter or receiver or at
both. Furthermore, the shaping can be performed at the RF, IF, or video

stages.

Sidelobe suppression in the frequency domain regquires the design

of a filter such that the spectrum of the filtered waveform has a linear

phase-frequency relationship and that the spectrum magnitude be proportional
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to one of the many available weighting functions such as Taylor or
Chebyshev22 (see also Chapter 4). The répid advance of digital hardwére,
aloﬁg.with the pipeline FFT configuration, does permit practical
realization of the required transfer function as depicted in Fig. 2.9.
However, since the objective here is to design a filter for specified
sidelobe levels it is preferable to work in the time domain rather than

the freguency domain.

amplitude weighting may be introduced into.a pulse-compression
system either entirely at the receiver; entirely at the.transmitter, or
at both simultaneously. Equal'weighting at both the transmitter and
receiver is equivalent to altering the transmitted waveform; In this

case the system is still considered as matched. However, it can be shown

that in the peak power limited case, the SNR which assumes weighting at

the receiver alone is greater or equal to the SNR which assumes matched
weighting at the transmitter and receiverBS. An ad@itiohal reason for
unilateral weighting at the receiver is dué to the advantage of operating
the transmitter at its peak power limit (ﬁo expensive aﬁplitude modﬁlators
required). Furthermore, amplitude weighting scolely at the receiver can
be maintained conveniently, due to the accessibility of the components

and the low power lé&els involved. For these reasons it is henceforth

assumed that weighting is performed solely at the receiver at the expense

of a lower SNR.

f

A convenient way of weighting is at the IF stage in the tiﬁe domain.
Most of the sidelobe reduction techniques which have been proposed depend
on cascading a weighting filter (tapped delay line) after the MF or by
providing a suitable band shaping nefworkgs. However, instead of placing
a sidelobe reduction filter after the MF it is prcobably more straightforward
to design a mismatched filter (MMF) under some conditions of optimality.

The amount of mismatch from the matched conditions is usually characterized

by the loss factor Ls' given by
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_ SNR (weighted)
s SNR {(matched)

For an input sequénce afn) of length (N+l) and a filter weighting sequence

h{n) of length [M+1l), L, becomes

M 2
| T h) a(i-n)|

L = =2 < 1 (8.1)

N . M
T ‘a(n)[2 b Ih(n)l2
n=o n=o

where j » N denotes the time delay for which the output is maximum. (It
is assumed that (M+1l) 2 (N+l)). The basis for Eg. (8.1) is that for
coherent summation signal components add as voltage levels while noise

components add as power levels,

The problem in selecting an appropriate weighting function for
a pulse-compression system is to find out which finite spectrum shape

can produce the desired waveform under some criterion of optimization.

8.2 Inverse Filters

The reduction of the sidelobe interference can be accomplished
through the use of inverse or deconvolution filters. These filters
(equalizers) have been of much concern in removing intersymboi
iﬁterference in communications and they are aléo of interest in spectrum
analysis. The ideal inverse, hin}, of a code sequence, a(n)}, is defined
as

afn) * n{n) = §(n-m) : ' , ' (8.2)

where §{n}) is the Kronecker delta function. 1In terms of the ZT, the

inverse relationship is given by

A(z) H(z) =z @ ' (8.3)
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Solving for the unknown filter transfer function, H{z), leads to.

H(z) = 2 %/A(z)

The factor z representing a delay of mT seconds is immaterial for

the' present discussion and may be ignored. Hence,

(32 T (327ET,

1

) = 1/A

It can be seen from the above expression that the ideal inverse
filter and the filter matched to A(z) differ only in their gain

characteristics, the phase being identical.

The problem of sclving Eq. {8.2) or Eg. (8.3) iz equivalent to
solving a Fredholm integral equation of the first kind*. The inherent
Aifficulty in solving this type of equation is that the convolution
operator way not have an inverse, let alone a bounded inversggG.

This leads, in general, to non-unique, widely oscillating unstable
 solutions and the success in solving Eg. (8.3) to a close approximation

will depend largely on the properties of A(z).

If A(z) has all its zeros inside the unit circle in the z-plane
{minimum delay}, the inverse filter,_H(z), ié stab;e and can be
realized either by a recursive filter, Fig. 8.1, or it can be closely
approximated by a transversal filter, Fig. 8.2, However, it has been
shown in the preceeding chapter that sequences with high enefgy
efficiency must have approximately half of their zeros inside and half
outside the unit circle. The inverse filter will thus have poles
outside the unit circle and consequently will be unstable. Hence

H{z) will not be physically realizablé for the input signals of interest.

* In general the linear integral equation may be written as
h
hix) £x} + j Kix,y) £{y) dy = g{x), asx£hb

: a

For h{x) = O the equation is of the first kind.

(8.4)

{8.5)
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Fig. 8.2 Transversal digital filter appréximating l/Amin {z).
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In order that the filter can be realized, some approximation must be
~made to accomplish inverse filtering. Instead of the exact inverse,

a solution is sought such that

a(m) * h(n) = g(n-m) | (8.6)

where g{n) is the output signal specified to be narrow peaked. It is
shown below that under certain conditions, and provided m is large
enough, a good approximation to é(n-m) can be obtained which is physically

realizable.

filter is to factorize A({z) into its minimum delay and maximum delay

i i . i d
polynomlals, denoted by Amin‘z) and Amax(z) respectively (It is assume
that no zeros are of unit magnitude). The minimum delay part of the
"inverse filter l/Amih(z) can be readily realized, since all its zeros

are inside the unit circle. The maximum deiay factor

S
-n
—— [}
/A (2) =1/ T a'(n) 2z (8.7)
n=o0 :
caﬁ be expanded into a convergent serles in positive powers of z by
long division of
s, ° n, -1 s 2 . n
1/a (z) =2"{ % a'(s-n) z) ~ 2z I h'{n) =z (8.8)
max .
n=o ‘ n=o
. . - (mts) :
If the series is truncated after the mth term and delayed by = .
an approximate realizable transfer function delayed by (n+s)T seconds
is obtained. Hence for reascnably large m
- {m+
A(z) H(z) = z~ &) (8.9)

|
\
One approach which can be taken to obtain a physically realizable
Although in principle the minimum delay part l/Amin(z) can be realized ‘

by a recursive (feedback) filter it is not normally used because of

the risk of instability. Therefore, the inverse filter is composed
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of two cascaded transversél filters each of which is truncated at a
suitable point. This approximation will cause efrors preceeding the
main pulse, due to the truncation of l/Amax(z), and errors trailing
the main pulse, due to truncation of l/Amin(z). It can be shown that
an inverse filter with a total of (M+l) taps give rise to truncation

errors of approximately the same order when

‘ M- :
(Izlmax) "= (l/lzlmin)r

where lz| . is the smallest root > 1, and |z] _., 1s the largest root
_ min max :

< 1. However, to obtain the smallest error for a given number of taps

it is necessary to try different combinations of the individual filter

length, (M+l-r), and, (r+l), respectiwvely.

As an examplé, consider the l7-element uniform complex code
{Takle 8.1}, whose zexo pattern is given in Fig. 8.3, as the input
sequence. Cascaaing ﬁwo-24—ta§ ﬁransversal filters corresponding to
tfuncated versions of l/Amin(z) and l/Amax(z), ;espectively, results in
an inverse filter whose zeros are shown in Fig. 8.4, Table 8.1 gives
the weighting sequence of the inverse filters of lengths 31, 39, and
47. The peak sidelobe level and the decrease in SNR of these filters is
given in Table 8.2. It is of interest to note that for a given input
sequence there exists an optimum number of filter tap gains for a minimum
loss in signal detectability. For example, the filter of length 47 in
Table 8.2 is clearly superior in both sidelobe and detection performance
as compared to the filter of length 39. Fig. 8.5 shows the normalizéd
response of the inverse filter of length 47 with, for comparison, the
matched filter responsé. Since some.of the zeros of the ZT of the inpuﬁ
sequence A(z) are relatively close to the unit circle (Fig. 8.1), large

truncation errors occur (-15 dB) for filters of length (M+l} <« 39.

" This method of designing an inverse filter requires the factorization

of A(z} which becomes increasingly onerous as the sequence length exceeds
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Fig. 8.3 Zero pattexrn of 17-element input sequence.
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filter
M+l = 47




Input sequence

Inverse filters of length

of length
N+l = 17 M+l = 31 M+l = 39 M4+L = 47

Refa(n)] | Im[atn]| Re[h(n) | Im[n(n)] | Re[h(a)] | Im{n(n] | Re[h(n)] | Im[h(n)]
0.216 0.110 ~0.008 -0.053 0.061 0.015 ~0.060 -0.005
0,227 0.085 0.144 0.057 -0.052 0.004 -0.049 -0.000
-0.158 0.184 0.007 0.019 -0.051 ~0.085 0.010 0.011
-0.166 0.177 -0.123 0.000 -0.039 -0.054 -0.011 -0.023
-0.048 -0.238 | 0.007 -0.099 0.012 ~-0.015 0.025 -0.012
0.243 0.002 -0.021 -0.062 0.092 .| -0.026 -0.0l4 -0.013
0.186 -0.155 0.098 0.005 -0.019 -0.059 -0.008 -0.062 .
-0.204 -0.131 0.244 0.147 ~0.024 -0.036 -0.028 0.009
0.242 -0.017 0.047 -0.209 ~0.030 -0.023 | -0.015 -0.008
0.215 -0.113 0.232 -0.090 -0.039 0.025 0.057 -0.032
0,038 ~0.240 -0.232 0.036 0.037 -0.014 -0.008 -0.059
-0.120 -0.211 0.134 -0.147 - 0.206 0.142 -0.017 -0.044
0.169 0.174 -0.127 0.234 0.048 ~0,210 0.031 -0.026
-0.240 -0.037 0.031 0.197 0.225 -0.097 -0.031 | 0.019
0.227 0.085 0.239 0.149 -0.223 0.029 0.041 -0.011
0.031 0.241 . 0.289 0.018 0.144 -0.149 D.211 0.148
0.188 -0.153 -0.206 0.111 -0.121 0.247 0.051 -0.213
- 0.212 0.214 0.036 0.208 0.221 -0.099

0.194 -0.019 0.249 0.150 -0.223 0.032

-0.055 0.284 0.286 0.018 0.144 -0.150

~-0.095 -0.131 -0.208 0.117 -0.122 0.243

-0.198 -0.213 0.217 0.209 0.037 0.205

0.256 -0.061 | 0.193 -0.022 0.246 0.147

0.138 -0.129 -0.061 0.281 0.284 0.019

-0.025 0.078 ~0.092 -0.129 | -0.205 0.115

0.028 -0.001 -0.204 -0.210 0.217 0.209

-0.012 0.010 0.259 -0.064 0.193 -0.023

0.004 0.021 0.149 -0.122 -0.056 0.278

-0.048 -0.071 ~0.020 0.057 -0.094 -0.132

~0.064 -0.062 0.026 -0.013 | -0.203 ~0.209

-0.067 0.027 ~0.028 0.014 0.261 -0.059

0.004 0.021 0.154 -0.126

-0.040 -0.,066 -0.019 0.056

-0.070 ~-0.036 0.027 -0.013

~0.029° 0.004 -0.028 0.013

0.019 0.008 -0.001 0.024

-0.035 —-0.034 -0.042 -0.046

0.031 0.036 -0.050 -0.034

0.005 -0.013 -0.019 0.010

0.012 -0.,009

-0.021 -0.021

0.002 0.018

0.000 0.004

-0.018 0.029

0.023 0.006

-0.023 -0.013

0.034

~0.008

Table 8.1 Weighting sequenées of inverse -

filters.




Length of Detecticn Sidelobe . Peak

filter loss - energy sidelobe

sequence
M+1 Ls(dB) Es(dB) Smax(dB)
27 ~0.825 -7.642 ' -14.790
29 ~0.493 -10.664 -15.040
31 ~0.548 -11.326 | -14.951
39 ~0.416 -16.437 -21.111
47 ~0.338 | -24.983 -30.485
49 ~0. 346 -22.811 -30.012
55 ~0.352 | 220611 . -27.652
63 -0.341 . ~26.642 ' -32,680
71 -0.335 -33.613 ~39.451
79 -0.334 -39.232 -45.721

Table 8.2 Performance of inverse filters,

Ls(dB) 10 1og(Ls),

E_(dB) = 10 log ( I lemPrlg) |,

n
n#j

Spax(d8) = 20 log (max|gm)|/[g(5)]),
n#j

(Input sequence l7-element uniform

complex code (Table 8.1))
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‘a hundred. In addition if one or more roots of A(z) lie close to or
on the ﬁnit circle, that is the magnitgde of any root-zj lies in the

range 0.9 < ]zj| < 1,1 (Fig. 8.1), an adequate inverse filter cannot
be achieved in a reasonable number_of taps. (In fact if one of the

roots lies on the unit circle the ideal inverse filter will have an

unbounded mean-square response to white noise}. It can be seen from
Eq. (7.10) that the zeros of the signals of interest tend to cluster
around the unit circle as N increases, Fig. 4.19 and Fig. 6.6(b).

Consequently, this method should only be applied to sequences where the

zaeros are well removed from the unit circle.

Another but similar approach of obtaining an approximate inverse

filter follows from the Fourier transform relationship Eq. (8.5)

A(f) H(D) =1

The spectrum'A(f} is evaluated by computing the DFT of the sequence

al{n) which has been augmented with a suitable number of K zeros, i.e.
K

DFT {{af0), al(l),....,a(N),0,0,...0)} = (2(0) ,A(L),. ..., A(N+K))

The reciprocal of the resulting Fourier coefficients, A{n), that is;
(l/A(O),l/A(l),....,l/A(N+K)j, where care is taken so as not to divide
by zero, represent the sampled values of the transfer functiqn of the
inverse filter. By taking the IDFT, an aliased version of.ﬁhe ideal

inverse filter sequence is obtained.

Inverse filters desiéned‘by either df these two methods described
above result in a truncated or folded version of the ideal physically
non-realizable weighting sequence. However, it is often required to
achieve the best degree of sidelocbe ;uppression for a given filter
length. This can be accomplished through the use of the more scphisticated

optimization techniques described subsequently.
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8.3 Unconstrained Optimum Sidelobe Reduction Filters

The problem of finding the (M+l) unknown filter coefficients,
h(n), for a given input segquence, a(n), of length (N+l) and for a
specified output sequence, d(n), requires the solution of the set of

(M4N+1) linear equations.

M .
daik) = Z hin) a(k-n)
' n=o
K = 0,1,2400.., (MHN)

where for convenience the energy of the input sequence is normalized
to unity

N 2 :
E = Ilam|® = 1
n=o

" Since there'are moré equations than unknowns no exact solution exists.
Consequently, it is reguired to reiax the notion Qf é_solﬁtion for such
an overdetermined problem. Thus, a solution is sought which is of the

 form

a(n) * hin) = di{n) + (n) = g(n)

where e{n) denotes an error or residue sequence representing the
difference between the actual output g{n) and the desired output d(n).
It is often convenient to represent linear systems of equations in

compact matrix notation. The above equations may thus be written as

Ah

i
Jor

e

and . E =

el

- g

where h, d, g, and ¢ represent the column vectors

h = col (h(0),h(l),....,h(M))

d = col (a(0),a(1),....,d(M))
. g = col (g(0),g(l),....,g(MN))

g =col (e(0),e{l),....,e(MIN))

(8.10)

(8.11)

(8.12)

(8.13)
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| and A is a (M#+N+1l) x (M+1l) matrix whose ith column is given by !

o i-1 ' M+1-1
‘ ey ———
_A = col (0:0;¢ce.,0,2(0),2(1);0v00eraf{N),0,...,0) (8.14)

i-1

i=1,2,....,M+1

The problem of finding the best approximation is to select a filter

weighting sequence h(n) such that a functional F(|e(n)|} defined on
Chapter 5 the optimization problem may be formulated as
M-+N

min F_ = L |€(n)lp P
P n=o

Y
=
[os]
b
(%]

For p = 2 the classical minimum mean-squaxe error criterion is

\
\
\
the erxror seguence s(n{ is minimized., Adopting the Ep-nqrm from ‘
\
\
obtained,

M+N 5 . 2
min F, = I lem|® =ge =g- 4 (8.16)
n=o
where € denotes the complex conjugate transpose of g.
The formulation of the problem in a least sguare sense has the great

advantage that with the proper interpretation all the results of linear

vector space theory become available,

Deconvolution filters designed on the minimum mean-square criterion
. C 45,97 . .
and rescolution of seismic data . However, little attention seems to
have been payed to using these filters for sidelobe suppression in radar
9 . . : | | |
systems 8. A brief description of a slightly more general development.

have been widely used in the theory of prediction, spectral smoothing, ‘
of the minimum mean-square error filter is given below. ‘




vectors {Ai}‘it.must iie in the (M+l)-dimensional subspace spanned by these
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8.3.1 Minimum Mean-Square Filter

The formulation of the least‘squares approximation problem in
complex vector spaces (Hermitean vec;or spaces) is basically the same
as in Eucledian vector spaces. However, it should be noted that the
scélar product of two vectors E_and 93 in a Hermitean vector space
satisfies the relationship

(a,b) = (b,a)*

Minimizing the quadratic form F2 is equivalent to minimizing
“g.- gjlwhich is the length of the error vector g¢. The vector may be
represented as a point in n-dimensional Bermitean vector space, and
its length is the distance of this point from the origin. Fur;hermore;

it can be seen from Eq. (8.14) that the (M+l) column vectors {Ai} are

linearly independent. Hence, the (M#N+1) x (M+l) matrix A is of rank |

{M+1). Since the output vector g is a linear combination of the (Mt+1)

vectors. Using the projection theoremgg, ngfis minimum when g_is the
orthogonal projection of 4 onto the {(M+1)-dimensional sﬁbspace.
Therefore, the inner product of the (M+l) rows of A and the error wvector

£ must be zero

|
!
e = R(g-4 = X@h-4d) = o |
Xah = X4 |
| |
-1l ' .

h = Ea"Xa (8.17)
|
and ‘
g = a@&mtXa ' (8.18)

1 :
The matxiz (X A)”" X is known as the generalized inverse (Chapter 5) |
and A (X A)_l-l X is the projection matrix of the columns of A, The solution |

of Eq. (8.13) can be regarded as the discrete equivalent of the Wiener

Hopf equation encountered in prediction and smoothing97. -
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m .
The (M+1l) x {M+l) square matrix R = A A has the elements

M+N : .
{rR.} = I alnk) a*(n-i)
: n=op

=0,1,...,M

|8
|

k=0,1,...,M

which are the autocorrelation coefficients r(i-k) of the input
sequence a(n). The positive definite matrix R is Hermitean, that is
R =R, since r(k) = rf(—k). Furthermore, all the elements on any

diagonal of the autocorrelation matrix are equal and thus Ris a

of R T, 43,

Similarly the column vector ¢ = K 4d having the elements
M+n
.ek) = T d(n) a*{n-k)
n=9 ‘
k=0,1,....,M

represents the crosscorrelation between the input segquence and the

desired output sequence.

The desired ocutput d may be specified as the ideal seguence

consisting of a single unit spike delayed by jT seconds denoted as

3j M+N-3
~ A ) - A N
gj = col (0,0;¢..,0,1,0,....,0,0)}

In this case the crosscorrelation vector ¢ becomes simply
c = A d., = col (K.)
- =J J

To obtain the optimum least square filter, the weighting sequence h(n)
must be determined for each delay JT in the range from O to (M+N)T.
However, it can be shown that for minimum delay input sequences the

spike position j should be chosen to be zero while for maximum delay

(8.19)

Téplitz matrix. This property can be exploited to simplify the calculation -

(8.20)

(8.21)

(8.22)
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inputs the least energy error occurs when j = {MitN). Consequently,
for mixed delay inputs the spike position has to be chosen at some

intermediate time delay. Moreover, for input sequences with good

" autocorrelation properties the diagonal elements of the matrix R become

dominant. Therefore, it can be argued that the value for j should be

between N and M.

From Eq. (8.12) and for sufficiently small values of‘”gjz the 2T of the

output seguence becomes
Alz) H(z) = G{z) = 2 7
The solution of Eg. (8.17) provides the filter coefficients which minimize

the mean-square error. This criterion is, however, not necessarily equal

to the sidelobe energy ratio

- MHN -
e = I |s@|®/ ls]?
n=0
n#i

which represents the signal-to-clutter ratio and is a better measure of

'the resolution capability (see Eq. (5.26)}. In a dense uncorrelated

target environment, the self-clutter power at the filter output is
proportional to Es. However, it can be easily wverified that the

mismatched filter designed to minimize “Eﬂz subject to the cbhstraint

letn| =1 -

also minimizes Es. Thus the filter ceefficients h{n) obtained by solving
Eq. {8.17) should be multiplied by a factor 1/g{(j), to adjust the (j+l)th

component of g to unity.

The minimum eriot energy for the optimum solution of Eg. (8.17)

denoted by ﬁ_is given by
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it

lel® .. = fa- _g_n?.

ko
o
+
Qe
IQ

a-4g-

0
e

Substituting the expressions

&

Eafi=Ka=¢
and
A
Ah=g
leads to
lel . =da-%h
For d = d,
- =
. 2 '
el _; _v3
o min hiand

A .
Therefore, h has the same phase as ¢ and since

c = K d, = col (K.)
- - J

A
h will have the same phase as the MF for N § j € M. Using the above

expressions the mismatch loss Ls becomes

a2l & a7t %2

T »~2 A2 3
L, = [la; b /7 |la]° = -
s J ”(K A) Y H2

8.3.2 Filter Design Examples

The advantage of using a minimum mean-square error cfiterion
(p = 2), is that a unigue solution for the optimum filter coefficients

can be found by sclving a set of linear equations

BFZ/Bh*(i) =0 i=0,1,2,...,M

If the design objective is to minimize the self-clutter power, such a

filter is optimum. However, in situations where the peak sidelobes

(8. 25)

(8.26)

(8.27)
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introduce target masking problems a performance measure with.p > 2 is
preferable. Moreover, in many cases a minimax or'Chebyshey éolution
(p > =)

min F = |g] | _ S (8.2
subject to | |

lg - al < el

méy be desired.: Near minimax solutions can be achieved using the least
lp-approximation by-successively minimizing the objective function, Fp'
for increasing valueg of the index p, i.e. p = 2,4,6,...,etc. {Chaptér
5). However, unless special precautioné are taken to avoid ill-
conditioning, the use of values greater than about ten for p is not

practical.
For p > 2 the partial derivatives of the objective function

. MHN - p-2 | _
VFP = I Re{p|e(n)| e (n)Ve* (n)} : {8.29}
n=o
are no longer linear functions in the variables hin). Consequéntly, to
find the optimum filter weighting sequence the cbjective function, Fp,
has to be minimized using non-linear optimization techniques. A method

which has proved to be quite efficient for this task is the pattern search

algorithm (PAT) already available from Chapter 5.

In order to compare the sidelobe reduction filters designed for
p=2,4 it is supposed that the 17-element uniform complex code (Table 8.1}
is applied to the digital filter. In addition, before proceeding with
the optimization procaduré, theré are two variables that must be specified,
ﬂamely, ﬁhe length of the filter weighting sequence, M+l, and the oﬁtput ;
spike location,‘j. Therefore, the first pfoblem to consider is that of
determining the optimum spike position of the output sequence'for a given

filter length. Fig. 8.6 showé a plot of the peak sidelobe and sidelche
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Fig. 8.6 Peak sidelobe and energy performance as a function

of the gpike position j for a MMF of length M+l = 17
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.energy ratio versus the spike position, j, for p = 2 and 4 and a
filter length of Mtl = 17. For either of these two criteria the best
output pulsé location is.for j = 16. The optiﬁum filter coefficients
which yield an output pulse at 16T seconds are given in Table 8.3.
The.range of the coefficients in both cases is of the same order of

magnitude,

In Fig. 8.7Iand Fig. 8.8 the peak sidelobe, the sidelobe energy
and the detection loss are plotted on a decibel scale-as a function of
the filter length for p = 2 and 4. As an example, Table 8.4 presents
the filter weighting sequences of length 32 for the two different .error
criteria. .TheSe filteré have an optiﬁum spike position at 25T seconds
and give peak sidelobe levels of -30.4 dB and -31.5 dB respectively.

Sincé the input sequence has already been optimised with respect to p = 4,
the difference in performance of the MMF's for the two design objectives

is small.

As mentioned previously the lqss in SNR when a MF is replaced by
a MMF is small provided the input signal has good autocorrelation
properties, For example, a MMF of length 32 (Table 8;4) causes a detection
loss of only ©.27 dB. Moreover, for p = 2 the MMF and the MF differ
only in their gain characteristics. For p > 2, however, the filter
weighting sequence hés to be optimized in amplitude and phase. This is
done by alternatively‘minimizing FP with respect to the amplitude and
phase, using the PAT algorithm, until the procedure converges to some

optimum solution,

In summary, mismatching the receiver filter results in a small
loss in SNR of the target return if the transmitted waveform has been
optimized for matched conditions. However, to obtain improvéments of
about 6 aB in peak sidelobe suppression and 8 dB in clutter réjecﬁion

over the MF, it is necessary to use a weidghting sequence which is rcughly




Mismatched filter of length M + 1 = 17

p=2 p=4
Re[ h (n)] In{h (n)] Re{h (n)] In{h(n))
0.212 0.152 0.185 0.142
0.039 ~0.217 0.031 -0.210
0.218 -0.088 0.205 -0.086
~0.223 0.031 ~0.240 1 0.039
1 0.136 -0.155 0.140 -0.159
-0.130 0.245 ~0.131 1 0.241
. 0.030 0.197 0.027 0.200
0.233 0.149 0.232 0.147
0.286 0.020 0.284 0.028
-0.204 0.111 -0.215 0.114
0.219 0.195 0.222 0.179
0.200 ~0.027 0.211 ~0.019
-0.060 0.273 -0.054 0.269
~0.105 ~0.134 ~0.134 ~0.136
~0.197 ~0.212 -0.195 -0.223
0.264 -0.071 0.249 ~0.087
0.165 ~0.124 0.179 -0.093
L, = -0.124 4B L, = ~0.089 4B
E, = -14.047 dB E = ~13.946 AB
#ax = -22.376 dB S, = -24.081 B

Table 8.3 Mismatched filter weighting sequences

for p = 2, 4 and optimum spike

position j = 16,
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Mismatched filter of length M + 1 = 32

p=2 p =4
~ Re[h(n)] Im {h (n)] Re[h (n)} Im{h (n)]
-0.004 -0, 065 0.002 -0.066
-0.029 0.006 ~-0,029 - 0.006
-(.008 -0.009 -0, 009 -0.009
0.053 .-0.032 ‘ 0.044 -0.028
-0.009 -0.055% -0.012 -0.050
-0.117 -0.040 : ~0.015 -0.036
0.027 -0.022 0.018 -0,017
-0.031 0.020 ~0.029 0.024
0.039 ~0.010 0.033 -0.013
0.206 0.145 0.190 0.138
0.047 -0.210 0.042 - -0.204
0.221 -0.098 0.218 ~0.101
-0.225 © 0,033 -0,22%9 0.033
0.146 - =-0,152 0.148 ~0.154
-0.126 0.241 | ~-0.130 0.243
0.036 0.209 0.033 0.213
0.247 0.147 0.246 0.147
0.284 0.021 : 0.283 0.021.
-0.205 0.116 , -0.205 0.113
0.216 0.207 0.215 0.200
0.194 ~0.022 = 0.202 ~0.025
~0,056 0.277 : -0.058 0.281
-0.097 -0.131 N -0.104 ~0.135
~0.202 -0.211 . -0.20L ~0.218
0.261 ~0.062 _ 0.259 -0.067
0.153 -0.125 0.147 -0.120
. -0.019 0.059 -0.019 - 0.065
" 0.027 -0.015 0.033 . ~0.016
~0.033 Q.015 -0.037 0.016
0.002 0.025 0.004 0.025
~0.043 -0.052 -0.048 -0.049
~0.053 -0.030 -0.055 -0.028
Ls = ~0.275 dB LS = <0,266 dB
B = =-20.601 dB. E = =20.027 4B
= -30,408 dB [ = -31.594 a8
max _ max

Table 8.4 Weighting sequence of MMF for p = 2,4

and optimum spiké positioh j=

25,
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twice the length of the input sequence. These improvements can be obtained
at a cost of about 0.3 dB in SNR. If the filter length is made larger

its behaviour approaches that'of an ideal inverse filter. However,
increaséd filter length causes an additional degradation in neoise
performance. It is evident that the aesign of MMF's using 2p~measures

is clearly superior to the approach described in the previous séction

where a 47-tap filter was necessary to achieve the samé sidelobe suppression

(= -30 dB}. as the MMF of length 32 and p = 4.

S8idelobe filters are particularly useful in situations where, for
some reason, the use of an optimum wavefofm and a MF receiver is not
possible. However, in these circﬁmstances the degradation in SNR might
5e quite severe., Nevertheless, it is.conceivable ﬁhat a good compromise
:between improvement in resolution and degradation in detection performénce

can be found.

8.4 Constrained Mismatched Filters

Although the range sidelobeé can be reduced to aﬁ arbitrary low
level wiﬁh a MMF of adeqﬁate iength, the inevitable degradatiaq in
detection performance might be unaéceptable. The noise enhancement is
particularly aggrévated in situations where, for some reason, it is not

possible to transmit a waveform which is suitable for the task.

The reduction in noise performance of MMF's is caused by the
enhancement of the spectrum outskirﬁs. The resulting widening of the
spectfum improves resolution but increases the output noise and thus
degrades the SNR. The two conflicting requirements of achieving the
best SNR and resolution at the outpuﬁ of a MMF can, therefore, not be
met simultanecusly., In any pracﬁicai situation neoise is always present
and it would certainly be unrealistic to neglect the thefmal noise when

considering range sidelobe reduction technigues,
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8.4.1 Design of Mismatched Filters in the Presence of Noise

For a system which is sﬁbjected to noise some performance measure
for the MMF must be introduced which compromises the resolution and
: detectién performance. This is equivalent to applying cone or more
; constraints, reflecting the loss in SNR,.to the filter weighting
| ‘
} - coefficients. In principle, the constrained zp—approximation problem
} may thus belformulated as finding a set of filter coefficients, h{n),

which minimize a quadratic (Hermitean) form

EX

Q=hsh

subject to the conditicn

M+N
F_ = .1 le(n)[P = const.
P n=o
If A denotes an undetermined multiplier, the regquirxed solution may be

obtained by minimizing
min {Fp‘+ A0}

The constrained minimum mean-square criterion, a special case of the
above expression, is given by
F + A

2 Q

Thus

min{ Ah-d@h-d +A0sh}

The solution of the quadratic constrained approximation problem is

furnished by the set of linear'equations.

3/oh*(1){ BR-A)@Ah-a +ARshl}= 0

i=0,1,2,...,M

(8.30)

(8.31)

(6.32)

(8.33)

{8.34)

(8.35)
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which reduces to

|
=2

5/h*(1) (BAAh-dAh-RAd+AhRSh}=0

i=0,1,2,....,M

After some straightforward algebraic steps

|
|
|
|
|
|
Xanh-Xa+rsh=0 | |
|
|
|
|
\

or

neEa+aetia | - (8. 36)

—_—

It is noted that for A = O the generalised least squares solution Eq. (8.17) |

is obtained.

The above expression is quite general in that nothing has as yet

been assumed about the matrix S. Several quantities may be selected for

' ' : - o .96
S, but to be practically useful it must have some a priori plausibility .

it is evident that for this particular application S should reflect the

degradation in SNR or at least should give an indication to what . degree

the system is affected by noise.

8.4.2 Choiée ofIPerformance Measure
| A suitable choice for the guadratic form Q in white gaussian noise . |
could be the detection loss factor LS given by Eq. (8.1). Alternatively,
a criterion which is equivalent to Ls'is the sum of thé sguare depaftures
from matched conditioné ' _ o
M | _ ‘ |
0= 1 [nm) - a*Gen)|? =|ln - az| o (8.37)
n=o
where § » N is the spike position and Er denotes the time reversed and
shifted version of the vector a
3N M
‘Er = col (6767?f??762 ,....ad,GTBTfTTT?ﬁ ' )

aNr3N-1
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As shown below both criteria lead to the same optimality conditions

and the optimum is achieved when h = g;.

The equivalence of the two criteria L, and Q can be established
by differentiating each criterion with respect to the filter coefficients

hin), i.e.

|2 h(n) a(i-n)|?
n

8/8h*(i)(LS) = g3/3h* (i) 3 = 0 ‘
3 {hny| ‘
n .
i= O'l"c‘.’M ‘
which leads to 7 : ' !
{Z hin) a(j-n))* . ‘
. . * {3 q
n - . a é%i?) (8.38)
z |hin)] :
n , o ‘
i=0,1,...,M ‘
It should be noted that the first criterion, Ls, gives a.result whiéh ‘
‘ is independent of the filter gain. The second criterion, however, is ‘
gain dependent. Introducing an arbitrary gain factor a, the partial ‘
derivatives of Q are given by
|
3/8h* (1) (@) = 3/8h*(1) {I |ah(n) - a*(3-m|?}=0 -
n )
a* (§-1i) . . '
= — = . (8. |
o h(1) i O,l,_ M (8.39)

Hence, both criteria lead to the same optimality conditions if o is

set equal to h | S

(Z hin) a(j-n))* - S

n
a = . |

2 |hin)|?
n
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Adopting the latter criterion the original set of Eq.'s (8.13) may
now be written in terms of the difference (h - E;) as the unknown
vector and solved subject‘to the consﬁraint that Ig_f é;"z be a
minimum; It can éasily be verified that in this case S becomes the

identity matrix I, Thus,

" a%
KA+ AD(H-ad) =3~ 232

which leads to

h=@a+an™ dda+aan

It can be seen from the above expression that the MF is approached for

large values of A.

There are several other suitable quantities which could be
chosen for the guadratic form Q. For example; it might be required to
minimize the power of the filtered noise, in which case Q becomes

Vvh

|me

Q:

. . \ ' . 4
where S = V V is the autocorrelation matrix of the input noise samples 5.

Another intefesting interpretation for the matrix § is obtained

from duality considerations in time and frequency.

glt) = J a(t;r) h{t) dr

-0

g(t) =J A(£,t) H(E) aF

-3
Hence the original Eg's. (8.13), repeated here for convenience

Ah=g+g=g

can be written as

= ' = .
A, H=d+e' =g

=
]
[
]

{8.40)

(8.41)

(8.42)
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where the (M+l) x (M+l) square matrix ¥ is the IDFT matrix given by
Eq. (2.18). The column vector H thus represents the (M+l)-point DFT
of h. It follows from the above expréssion that the (M+N+1l) x (M+1)
matrix Af is given by
A_ =AY : : (8.43}

Adopting a quadratic from such as

B H o | (8.44)

[me

Q:

results in a constrained least squares solution for the Fourier
coefficients H(n}

A (8.45)

H= (A_a

Substituting Eg. (8.43}) into Eg. (8.45) leads to

fy 0y Ny
dXay+arB B=YXd
Ny

Eav+a¥imua=Xa
and with

p=y'n \
yields ‘

n=Ea+¥levyhtxa (8.46)‘
Hence ' : _ .

0y -

s=Y¥ltgyl ‘
and since Y-l = Y%, YT =Y

S=YB Y*

The weighting matrix S can thus be regarded as a unitary transformation
(roﬁatipn)of a filtering matrix B, This relationship could be useful
"in applications where the filter coefficients h should have certain 
spectral properties. For example, if clutter interference at low

frequency (ground clutter) is to be suppressed, it could be envisaged

T - . S ) I .__.___J




-187- | | \

using a diagonal matrix B, where the diagonal elements (eigenvalues ‘
of S) can be regarded as the rejection factors at that frequency.

This is illustrated in Fig. 8.9.

8.4.3 Relationship Between the Unconstrained and Constrained

Mismatched Filter

So far the determinationlof A hag not been described. In

" principle, the parameter ) is implicitly determined once a specified
value, e, has been assigned to[[g'F. However, in practice it is usually
necessary to obtain solutions for several values of A. This is doné in

an iterative manner by varying A until a solution is cbtained for which
el =

Since there may be limits to the acceptable loss in SNR; the.iterativé
process should be initiated ﬁy choosing an appropriate value of 2,
keeping in mind that for large values of A (A > 2) the MF is obtained at
" each iteration. Hence, for lérge lfs the filter departs slowly from
"matched conditions.' The rate of departure is controlled by the rate of
decrease of A at each iteration; In Fig. 8.10 the peak sidelobe,
sidelcbe energy and the loss factor are plotted as a function of A for

a MMF of length 32; ' The constrained solution for p > 2 can be cbtained

in a similar manner by minimizing (B.32) using the PAT algorithm.

- A

There exists a simple relationéhip between the solution of the
unconstrained and.constrained mean-square problem denoted by h and gf
respectively. It is clear from linear vector space theory99 that any
vector iying in the subspace spanned bf the (M+l} column vectors {Ai}
can bé expressed as.a linear combination of the orthogonal and linearly

independent eigenvectors e i =0,1,2,....,M of the positive definite




| £ |

Fig. 8.9 Filter transfer function and corresponding

filtering matrix,
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(Filter length M+l = 32),
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ny
matrix A A. Thus

- M
h = goEo + gl El F oiein. F £M EM = 'E gi<gi
i=o
[ ’ 4+ 1 = [
N T L A

, Consequently;

&n+xs)n = oI + A 8) gl e  + .ovn v In,T + 1 8L &

and

%Ah=n

Tt oeveeaeeaa
LS PR T My 2y

o -0

S

. e
where the n, are the eigenvalues of A A.

If S becomes the identity matrix I, then the relationship between the

coefficients g,

lland gi is given by

' =
ny + ) g} n,
or
, .
&= 1% A/ni) &5
Eqg. (8.51) clearly shows the smoothing or filtering effect of the
constraints. Components corresponding to small eigenvalues ni are
greatly suppressed, while components where Ny >> A are practically
unaffected. This supports the previous cbservation (Fig. 8.10) that

the properties of the constrained solution vary slowly with A.

The solution of Eq. {8.36) reﬁuireé matrix multiplication and
inversion operations which could resul£ in-considerable_computational
effort for large dimensional problems (matrix inversions usually require
a compﬁtation time'propottional to (M+l)3). However, a transformation

of the least sgquares problem into the frequency domain in conjunction

(8.47)
(8.48)

(8.49)

(8.50)

(8.51)
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with the FFT algorithm, can offer an increase in computational speed
- and a reduction in computer storage regquirements. In general the

constrained least squares problem is of the form

N : : - :
where § = C C is a Hermitean matrix and u is a vector of interest.

. y A
It can be seen easily that the matrix products AAh and CCh
perform a double convolution, since Ah and Ch represent convolution-
operations. Using the convolution theorem of basic transform theory,

Eg. (8.52) can be written as

{a*(n) A(n) + A.C*(@n) c(m)} H{n) = A*{n) D(n) + A Un)

hence

A*(n) D(n) + A Uln)
lam) |% + Alcwm|?

H(n} =

where A{n), C{(n), DB{(n), U(n) and H(n) now represent the DFT's of the

corresponding vectors (sequences) a(n), ¢{n), d(n), ui(n) and h(n)

respectively. The filter coefficients h(n) are simply given by taking

the IDFT of Eq. (8.53). It should be pointed out, however, that the

sequences have to be augmented with the proper number of zeros to aveid

significant aliasing.

The main advantage of the frequency domain approach is the use

. of FFT methods for computational work and the possibility of computing

filter weighting sequences of large length.

8.5 Summary

If processor complexity is not of overriding concern, the use of

a MMF méy be justified in those cases where improvements in clutter
performance are of significant magnitude. In general, there exists a

trade-off between resolution and detection performance which sets

(8.52)

(8.53)



~190-
practical limits on the sidelobe suppression that can be obtained.
Hoﬁever, the degradation in SNR is usually small if the input
waveform_is optimized forlmatched conditioﬁs. Moreover, és pointed
out by Rihaczek35 the approach of optimum waveform design for a MF
receiver also implicitly solves the problem of waveform design for
. the optimum filter in the presence of clutter. Therefore, whenever
possible it is preferable to transmi; a wider spectrum to aéh}eve the
desired resolutién rather than widening the spectrum of the receiver
filter. In addition to achieve the full benefits of the MMF it is
necessary to reduce the tolerances of the receiver gain andlphase

characteristics. Rummler38

has ‘shown that the r.m.s. of amplitude and
phase erroxrs must be kept within 0.2 dB and 1° respectively to maintain
low sidelbbe levels. In most applications, however, the suppression of
fhe'sidelobes much below 32 @B does not seem practical due to probable

phase errors in the processor, transient effects and the degradation

due to slight target-doppler shifts,
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CHAPTER 9 ' ) |

' COMBINED RANGE AND RANGE RATE RESOLUTION

9.1 Introduction

The principal aim thréughqut this work has been to design
waveforms fér a radar envircnment where the.relaﬁive doppler spread
| ) of the targets is negligible. However, when there is significant doppler
shift, the reflections from a target are no longer replicas of the
transmitted waveform and.the‘MF response in‘time and freguency has to

be considered,

The following brief discussion of combined range and range rate
(dopplex) resolution of a signal is included for completeness, Detalled
analyses of resolution in range and range rate of general types of waveforms

22,23

can be found in many tontemporary books . Moreover, consideration will

only be given to properties pertinent to the types of waveforms described

Although, in principle, the numericai optimization methods developed
to design pulse trains having gocod range resclution can be extended to the
more general caée of range and doppler resolution, the computational effort
invblved for longer sequenées is quite formidable even for modern computers.
For this reason waveform synthesis for range and velocity resolution is
commonly dcne by ﬁrial and judicious use of available information (e.gy.

aﬁbiguity function).

|

\

\

\

\

\

\

\

|

\

|

\

\

\

\

\

|

|

|

in the preceeding chapters. : . | ‘ {
\

\

\

\

\

\

\

It has been shown (Chaptexr 2) that the range resolution froperty of

a signal depends on the shape of its spectrum envelcpe. Based on the time- |
frequency duality it can be argued, therefore, that resolution in range | |
rate depends only on the envelope of the signgl in thg time domain.
Consequently, combined range and velocity reéolution depends on the complete |
waveform structure in time and frequency. Hence signals with good B ‘

resolution in one parameter may perform very poorly when combined resolution |
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in both parameters is required.

For combined resolution in range and veloéity the waveform must
be investigated in terms of the complete MF response in delay and doppler.
Thig generalized response is given by Woodward's ambiguity function (ABF)
which has already been iﬁ£roduced in Chapter é and is repeated here for

convenience

o0

[x(xt,v)] =| £  s@T + ¢) s*(@T) e

n=-cwo

j2mv (nT + T)! (9.1)
It is noted that in the literature the terms x(r,v),lx(r,v)l and

_{x(T,v)lz are often used synonymously for the ABPF.

The ABF plays a central part in the analysis of combined resolution.
This is so because the widthlof the main response peak of the ABF serves
as a measufe for close-target visability in range-dopplex, while the low-
level response and subsidiary spikes give an indication of thé self-clutter
.and target masking problem by mutual interference. Since the volume of
- the ABF over the entire (1,v)-plane is constant, the signal deéign problem
for combined range and velocity resolution may therefore be regarded as
shifting the unavoidable ambiguity (volume) to those parts of the (1,v)-
plape where it causes least interfereﬁce for a given environment and

application.

Some of the general resolution properties of the various types of
pulse trains considered previcusly are discussed subsequently using the

ABF description.

9.2 Ambigquity Function of Pulse Trains

The ambiguity function (ABF) of a QP code given by

. 2 '
s(nT) = epjﬂ(w/?s) (T} ' : (9.2)
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can readily be obtained by substituting Egq. (9.2) into Eg. (2.1)

. : (=] _a 2 W _ |
IX(TJ\’”:' 5 o j{27 ( /Ts)Tn'I‘ 2'1T\)nT}‘ 9.3)
n=-—tw .
For a sequence of length N, (TS = NT'), and time shifts 1 = kT, Eq. (9.3)
becomes
N—l—]k[ ‘ | |
‘1 ~ji2n {(W/N)knT - T
[xkT,vi] =] = e j{2w (w/M)knT - 2rvn }| (9.4)
n=o
The above summation is a geometric progression in n and can be written
in closed form (see Eg. (4.16}),
oy sintn [k - vr] o= lk{) )

lx weron | o= | S e = VI i 9-3)
Furthermore, if T is the Nyquist sampling interval (T=1/W), and if the
doppler shift v is expfessed as multiples of 1/NT, Egq. (9.5) reduces
to

' _ oy osinfrk-2) (@ - x|/

!X(kT’l/NT’] = | sin[r/N (k -4)] | 9.8)

For & = O the zero-doppler cross-section of the ABF is obtained
' 4 osinfmx@ - x| /W] .

hxar,0 | = | Sin(“k/ll)t ] (9.7)

while the zero-délay cross-section is given by letting k = 0
. ) N H L=0
Ix(0, a/nT)| = %2—(%%) =<{ (9.8)
' & ; otherwise

It is noted that the ABF is periodic along the doppler axes with a period

of 1/T.
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Since the effects due to delay and doppler appear as a difference
term, (k - 2) in Eq. (9.8), it is not possible to separate targets
along the line where k = £. This is illustrated in Fig. 9.1(a}.

Along the ridge k = £ in the {7,v)~plane reduces Eg. (9.6} to

as shown in Fig. 9.l(b}.

The diagonal ridge of the ABF of QP codes will almost certainly
intersect extended clutter areas; However, sincé the clutter power
output is proportional to the width of the ridge {(3-dB points} this type
of interférénce is minimized for high compression ratios (tiﬁe—bandwidth

. products). In addition this type of ABF can be advantageous in the

. presence of small doppler shifts since there is little loss in clutter
rejection'as_compared to other codes (see ﬁor éxample Fié. 9.2).
FPurthermore, the relatively slow decrease in the ACF for small doppler
shifts_(Fig. 9.1(b)} may result in considerable hardware savings. However,
a doppler shift will be interpreted as a range error, as illustrated in

Fig. 9.1(a).

Pulse trains whose ACF decreases at a faster rate for small doppler
shifts are the non-linear FM type approximations diséussed in Chapter 4.
It can be seen from Fig. 9.2 to Fig. 9.4 that the ABF's of these waveforms
still basically exhibit the ridge-like structure which suggests a relatively
st;ong range-doppler coupling. However, the linear FM property is more
and more eliminated as the order of the spectrum tapering, n, (Eq.(4,395)

increases.

For certain applications thé inability to resolve targets in range
and velocity along the ?idge'might be unacceptable. In these circumstances
a signal whose ABF approaches that of a single stréng spike {thumbtack) as
shéwn in Fig. 9.5 and Fig. 9.6 might be adequate*.

*It is noted that sequences whose length N is not an integral power of twé}

i.e. N # 2M, have been augmented with a suitable number of zeros for the use
of FFT algorithms.

ke, /e o= (L - {x]/0N A (9.9)
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However, the expense of implementing many doppler channels may be

prohibitive,

The choice of a thumbtack ABF may be justified for high close-
target resaiution in the absence of any prior information of the target
environment, The close—target resolvability is, however, achieved at
the expense of introducing self-clutter. Therefore, if the targét space
is confined fo a narrow region, there is nd reason to spread the volume
of the ABF uniformly over the (T,v)-plane. Moreovér, if visibility of
small targets is of overriding importance, it is_preferable.to choose an
ABF'whose volume is concentrated in strong spikes or a narrow ridge.

Such an ABF trades uniform poor visibility for weak targets {(thumbtack

ABF) against good visibility for most targets and extremely poorx visibility

for some targets.

Fig. 9.7 illustrétesrthe relatively large increase in sidelobe
levels off the delay axes for an optimum binary sequence of length 128.
derived from a fakmanlcode. The.residual diagonal ridges are not
surprising, since the bit polarities of Vakman codes.vary in a quadratic
fashion (see Eg. 6.26). The concentration of the ambiguity along the
ridges could be adﬁantageous in certain clutter environments. However,
reseclution along these ridges is very poor. Fig. 9.6, on the other hand,
shows the ABF of a 128-element binary code derived from.a rahdomly chosen
sequence. It can dlearly be seen that noise-like waveforms;.Fig. 9.5
and Fig. 9.6, are inherently suited to approxiﬁate thumﬁtack ABF's. Iﬁ
general, however, binary sequences are usually better suited to improving

range resolution rather than velocity resolution.

The behaviour of the ABF of uniform complex codes is essentially
no different from that of a binary sequence, Fig. 9.6, if the phase shifts
are chosen randomly. However, if the initial seQuence is a Frank code,

for example, the resulting ABF will have the shape as shown in Fig. 9.8.
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Fig. 9.7 (a) ABF of optimum 128-element binary sequence when
the initial seguence is a Vakman code.

(b} Peak response as a function of doppler shift v.
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Fig. 9.8 (a) ABF of optimum 12i-element uniform complex
code when the initial sequence is a Frank code.

(b) Peak response as a function of doppler shift w.
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Thus. the optimization procedure usually does not destroy the basic

underlying properties of the ABF of the initial waveform.

ABF's of other codes, Fig. 9.9 and Fig. 9.10, show similar
residual ridge~like structures which suggest a certain degree of range-
doppler coupling. This may or may not lead to resolution problems and

will have to be considered for each individual application.

In summary, all of the waveforﬁs discussed in previous chapters
are optimum for some particular clutter enviionﬁent. The different pulse
trains yield a widé varieﬁy of ABF shapes. The cdntourskmay.be of the
diégonal ridge stfucture as for linear FM type signals, or may consist
of a single strong spike surrounded by a low level pedestal for noise-like
. waveforms, ér various combinétions of these basic sfructures. The waveforms
.have different tolerances to doppier shifts, This may be exploited for
hardware savings if ambiguity in the range-doppler coverage can be

tclerated.

Another advantage of discrete coding which has not been mentioned
is the flexibility of eliminating the range-doppler ambiguity of QP codes,’
for example, by simply scrambling the order of the sub-pulses. Moreover,
the variations possible with discrete coded pulse frains are virtually
unlimited in that the.phase, amplitude, frequency and time of transmission
of each sub-pﬁlse can be varied. The resulting multi-function capability
and adaptability to a.particular target environment is clearly one of the

most attractive features of discrete coding.
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CHAPTER 10

DISCUSSION AND CONCLUSIONS

This thesis has reported investigations into discrete coding
technigues for improving range resolution and clutter performance of

radar systems. The waveforms considered in this work, besides representing

" an interesting mathematical area, are also of practical significance in

related fields such as sonar, navigation and communications. The study

is focussed on the properties of the coded waveforms as modulating

functions of a carrier signal, The design of hardware structures of
radar processors has not been considered, since there are generally a
number of ways availlable to implement near optimum receivers for a given

waveform. Cost, complexity and reliability are usually the bounds set

. on processor design rather than physical realizability. These problems

would have to be considered for each application individually.

The waveform design approach using discrete coding offers a Aegree
of flexibility and has many advantages in terms of waveforﬁ shaping and
processor implementation. In general discrete coding of a N-element
pglse train provi&es 3N degrees of coding freedom. The variations possible
with such waveforms is virtually unlimited in that the phasé, amplitude,
frequency énd time of transmission of each sub—pulée can be varied. This
is clearly in contrast to analogue waveforms which depend on one, or
possibly two parameters. The inherent multi-function capability of
discrete coded waveforms is compatible with the requirements of modern
phased array radars. In addition amplitude and phase modulated pulse

trains are particularly well suited to digital implementation.

Throughout tﬁ;s work digital érocessing has been assumed. The
épplication of digital processing techniques to radar becomes more practical
as compactness, cheapness and operational speed of digital micrecircuits
continue to increase. Although modern optical processing techniques
sometimes.provide'an attractivebalternative,’the use of a digital ﬁethod

with its inherent flexibility and reliability offers many advantages.
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To mention but a few, it simplifies pulse éompression and real~time
multi-dimensional ‘analysis of input data in range, doppler, bearing, .

etc. - Furthermore, it also offers considerable advantages in post-

detection and display procéssing. In addition the use of digital

probessors will in many éases reduce future sysﬁem modifications to easy and
inexpensive software changes,.rather than requiring costly hardware
replaéement.. However, the complexity and the amount. of data to he

handled by ﬁodern high performance radar processors can easily reach
critical limits., Current developments in emitter~coupied logic technology
indicate that real-time processing of signals with 40 MHz b%ndwidth seem

attainable.

An attempt has been made in this work to present the results of
various design objectives. The assumption of a matched filter receiver,
underlying most of the work, is not a sefious limitation on phe apgl;cability
of the resulﬁs, since in practice very\little prior information about the
target environment is usually available, Therefore, the inveétigations
were concentrated on the autocorrelation function properties of the various
types of pulse trains considered. The principal aim has been to design
pulse trains,subject to a fixedramplitude constraint, whose autocorrelétion
sidelobes are as low as possible. Fixed amplitude.constraints arise from
practical radar considerations of operating the ftransmitter at its optimum
peak péwer peint. The problem, therefore, was to find particular ﬁhase
codes that lead to suitable resolution prdperties. For some applications,.
especially digital implementation, the design objective may be to
approximate the response characteristics of a given analogue waveform. It
has been shdwn in-Chapter 4 that virtually all the desired properties of
analogue waveforms ¢an be retained if the'sampling interval is chosen

preoperly,

The design methods based on numerical optimization developed in this

thesis have shown that phase coded pulse trains can improve the range
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resolution and clutter rejection performance of a radar system. However,

the full benefits of these codes can only be obtained with increased

-stringency of the transmitter and receiver tolerances. The additional

expense in system complexity may be justified in situations where the
improvements in sidelobe and clutter performance are of significant
magnitude as compared to other waveforms which are simpler to generate and

process.

Signal design wvia optimization techniques is evidently no panacea.
From the theoretical point of view the most sericus objection to
cptimization procedures is that the results are not uwigue. Thus for a
given design objective the sequences to which the process converges is

dependent on the initial choice of the starting sequence. Moreover, the

usefulness of such an approach to signal design depends largely on the

optimization algorithms_avaiiablef1_While there are a number of efficient

optimization techniques for problems with small dimensicnality (N < 15) not

. many seem to be able to handle non-linear functions with a large number

of Qariables (N > 50). 1In particular, there is almost a éomplete lack of
methods for non-linear integer problems. HNevertheless, with the development
of numerical al@orithms and improvements in computing facilities, computer-
aided design techniques will attract increasing at£ention in signal
synthesis problems for a variety of applications. However, the problem
should be formulated‘and an optimization method selected in such a manner
that,the results will give information beyond mere numerical values of the

best attainabkle design vector.

Self-clutter interference intrbduced by inadequacies in the matched
filter response impose rather fundamestal limitations on weak-target
Visihility. Moreover, the resolution probleﬁs caused bf self-clutter and
undesired objects are in principle no different in thaﬁ both impede

resolution in the same manner. If processor complexity is. not of utmost
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concern,‘the use of amplitude and phase modulated pulse trains may proffer
an improved performance; Alternatively, self-clutter suppression méy be
achieved by sidelobe reduction filtexrs. Although mismatching the receiver
filter may be a‘useful means of adopting the waveform to a particular
target environﬁent, it should not be used as a primary methodrto improve
resolution. Hence, the proper approach tolc;utter suppression, éxcept in

a few special cases, is via waveform design and matched filtering.

- In situatiens where the relative dopplef spreadrof the targets
.éannot.be neglected,.the matched filter response has to be investigated in
terms‘of the ambiguity function. In principle, the methods developed
could ke applied té the more general problem of désigning pulse trains
suitable for resolving targets in range and range rate. However, even with
modern computersr tﬁe search for phase codes having good resolution
properties in both range and velocity is so expensivé that it.would have
to be restricted to relatively short sequences (N = 20} and small areas
_ of the range—-doppler plane. For these reasons waveform synthesis for range
and range rate resolution usually consists of a trial aﬁd error procedure

and a judicious use of available information.

In summary, the signal design problem‘has ip general defied solutions
by all means other than exhaustion. 1In partiéular, no concise set of
necessary and sufficient conditions has been formulated by which signals
with specified properties can be synthesized. Signal theory, the basis for.
: maﬁy techniéal advances, is far from being complete and iis further |

development is, therefore, of fundamental importance.

As a final remark, the design methods develbped in this thesis afe
of general interest. -With appropriaté modifications they can be applied
to‘a variety of signal design and fiiteriné problems. Furthermore, it
is hoped that the results of this study may give some insight into the

problems encountered in related areas of signal theory.
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' APPENDIX A

A.l Principle of Staticnary Phase22

The principle of stationary phase is a proposition which hag
found wide application in many branches of electrical engineering and
physics. To arrive at the concept of stationary phase consider the

expression

¢t

I= J s(t) e dat (A.1)

-0

in which s{t) is a slowly varying function of t, while exp{j¢(t)])
goes through a large number of cycles. Under these conditions the
value of the integral (&.1) will be small, since the negative and
positive portions of successive cycles tend to cancel each other.

However, at the stationary value of ¢(t), i.e.

a/at {4(g)} = © | (a.2)

a significant contribution may be made to the value of I in the
neighbourhood of the stationary phase points { which satisfy condition

(A.2). This is illustrated in Fig. A.l.
Near the statiocnary phase point £, the function $(t) can be
represented by the first few terms of a Taylor series
$(E) = $LE) + 1/2 ¢"(E) (& - )2 @.3)

{The linear term is absent due to condition (A.2)).
Therefore the contribution to the integral {(A.l) in the neighbourhood

A is given by

. E+h L. 2
1= s(p) 300 J SJE N (0

. g_d
The term s(£) is assumed to be constant for the integration.
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Fig. A.l Stationary phase criterion,
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Fig. A.2 Sine and cosine Fresnel integrals. '
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Making the variable transformations
' 'n .
coger aa 22 o1y

so that

ar =/ (¢ an

leads to
-4
(Jo" (£) ) /m T2
1= 2/71 [ %Eé)l 1 ¢ (8) j 2" an _ (A.4)

Q

The integration limits may be.afbﬁtrarily extended wiﬁhoutlsubstantially‘
affecting the value of I, since cnly the statiohary points give
significapt contributions. The above Fresnel type integral (see
Section A.2) may thus be approximated by
1 . .
7z exp (3 i_ﬁ/é)

Hence

I 36+ 1/4) | - |
I = s(g) 3" (5] e {A.3)

The plus sign applies when ¢"(£) > O, and the minus sign when ¢"(E) < O.
If Eq. (A.2) has several points of stationary phase, then it.is

‘necessary to take the sum of terms similar to (A.5).

Fresnel Integrals94

The complex Fresnel integral denoted by Z(u) is defined as

u . | 2
ej(ﬂ/Z)x ax (3.5)

Z{u} = cF(u) + j.SF(u} ='Io

7 u T 2 ' s
CF(u) = J cos(E-x ? dx o | (A.7}
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u
M2
SF(u) = Jo sxn(2 x7) dx

These integrals cannot be solved in closed form. The values of CF(u)
and SF(u) are plotted as a function of w in Fig. A.2. It is noted

that for large values of u beoth functions convexge to the walue 0.5,

It can he shown that Fresnel integrals are codd functions of the

variable u, i.e.

Z{u) = -2{(~u)
,CF(U) = —CF(—u)
and SF(u) = ~SF(—u)

Consider now the chirp signal

ejut2 , OgtgT

i

s{t}

8

whexe

=
I

wW/TS
The spectrum of s(t) is given by the Fourier integral

T .
S(f) = J S sty e 32T 4

Q

. 2
- frs ej(ut Zﬁft) at

o .
Completing the sqguare of the exponent yields

.2 Ts 2
i@ Jo éJ(Jﬂh—nf//ﬁ3 at

S(f) =

Changing the variables by defining

In® = ol - e/

. ’ (Y
L) 5
a = Vgy MYy

leads to
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u
[T 1@ J 2 5/ of
e dn

29 u

1
‘ ZTS
L= E N

T

.
V2 { Jﬁi; - £y}

S (£)

1

where

o
Il

1

Yy

Using Eq. {A.6) the spectrum of the linear FM signal 1is given by
T 2
_ s _-3mE)"/u _ ‘
(0 = 53 e [{e,tuy) - cptu))

+ 3{8,(uy) - SF(ul)}] (a.9)
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APPENDIX B

. g
Bessel Functions 4

Bessel functions are of considerable importance in many branches
of science and engineering. For the reader which is unacguainted with
them, some of their fundamental properties and relationships are

listed below.

The nth order Bessel functions, Jn(x), of the first kind and of

argument x are defined as the Fourier coefficients of the function

s(g) = ejx sin 9§

Consequently,

ej(XSlne + nB) a6

. n
1
Jn(x)ln o7 J
n=0,+l,42,.....
Bassel functions behave veiy much like damped sine waves. However,
while all sin and cos waveforms are similar in shape, each different

type of Bessel function has a different shape. Graphs of some Bessel

functions of the first kind are shown in Fig. B.l.

There are certain relations between trigonometric functions and

Bessel functions that are of interest in modulation theory.

cos(xsin 8) = J_(x) + 2[J2(x) cos 20 + J,(x) cos 46 + R

W

sin (xsin 8) 2{Jl(x) sin 9 + J3(x) sin 30 + Js(x) sin 50 +....}

it

cos (xcos 6) Jo(x) - 2{J2(x) cos 26 - J4(x) cos 48

JG(x) cos 66 - Js(x) cos 80 +.....)

sin{xcos 8) 2{Jl(x) cos 6 - J3(x) cos 36 + Js(x) cos .58

- J,{x) cos 78 +.....1
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Fig. B.2 shows Bessel functions of constant argument and variable
order n. The above relationships show that the Bessel functions of
integral order are particularly important in modulation theory. 1In

addition for integral order n, the follewing relations hold

it

n
Jn(—x) (-1 Jn(x)

n
I__x) = 1% J (%)

Another relationship which has been found useful in Chapter 4 is

(=) .
o ¥sin 6 _ & () oIn? 3+ {3 () edd 384

n=-—"=

+J_l (x) e

+ {Jztx) ejze+J_2(x) e—329}+...

Like trigonometric functions Bessel functions can be expanded in

power series. Thus,

& x2 x4
Jn(x) =— {1 - 3 + 4 S S
T2 n!. 27 (ntl) 2«2 (n+1) (n+2}
_1\P <P
+ (=17 x F oiiinanneee }

p! 2°P(atl) (n2) .... (n+p)

Furthermore, for very large values of the argument x, Eq. (B.4)

reduces to

2
Jn(x) = ,f;; cos {x ~ nw/2 - 1/4)

(8.3

(B.4

(B.5
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APPENDIX C

Group Delay Computation of Discrete Seguences
"The group delay ré(f) of an analogue waveform s{t) is
defined as

' 1
Tg(f) = 3 ae (£) /df

where g (f) is the phase of the spectrum of s{t), i.e.

i

§{£f)} arg[s(fﬂ

i

and s(£) = Fr{s(t)]

1]

The spectrum of a discrete waveform s{nT), n = 0,1,2,...,N-1

is according to Eq. (2.14)

: N-1 : ,
S{f) = I s(n) e"JzﬁfnT
n=o
or in Z7T
N-1 .
S{z) = ¥ sin) =z n
n=o

The phase of S(z) is now given by

arg[s(z)] = In {In[s(2)]}

Hence, the group delay Tg(f) is obtained by differéntiating the above

expression with respect to £

-1 '
g (£) = 5 Im { a/af [ mns(z)] ¥
=§—“ Im { 8/dz [1ns(z)] az/af}
__ 1 s'{z)  _ ..
=gy Imigmy 202}

where {') denotes differentiation with respect to z.

From Eg. {C.3)

CNel
. S'{z) =~ I nsin) =z
: n=o

- (n+1)

{C.1)
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N-1

£ ns() z © .
n=o \
N-1

2 stn) z °
n=o o ‘

T (f} = T Real
g

For computational work the FFT can be used to evaluate the above ‘

expression. Hence

FFT {n s(n)}
Frt { s(n)}

Tg(n/NT) = T Real [

which is simply the real part of the DFT of the lst moment of the ‘

sequence s{n), divided by the DFT of s(n). The sampling interval T

is usually set equals to unity for ccnvenience. . ) ‘
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APPENDIX D

Energy Relationship between the Autoccorrelation Function and

. . .- B8
Crosscorrelation Function of Two Segquences

Consider two arbitrary N-element seguences a{n) and b(n).

-

Their ZT's are given by

N-1 . .

Af{z) = T afn) = no ' (p.1)
n=g
N-1

Blz) = 2 b(n) z ° . : (D.2)
n=o

The autocorrelation and crosscorrelation functions of these seguences

are defined as

N-1-[k|
rl(kJ = z a{n) a*{n + k)
. _ n=o
. N-1- %]
r,(k) = I b b*@ +k)
n=0
and
N-1-x|
r. k)= z a{n) b*{n + k)
12
n=o

where k ranges from —(N-1} to (N-1).

The ZT's of the above expressions, neglecting the unessential delay

factor z'N, are according to Eq. (2.36)

h

A(z) A*(1/z)

B(z) B¥(l/z)
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and

R, (2) = Ior ) 2K = A2) B*(1/2)

N-~-1
k=-(N-1)

Similarly,the autocorrelafion function of the sequence rlz(k),
denoted by y(m) is given by
.N—l—lm]

b r.. (k) r*_ (k + m) - . (D.3)
ko= meny 22 12 - .

¥ (m)

m = 0,4L,42,.0eee. 4+ (2N-2)
The ZT of the autocorrelation function, P(m), is simply

2 (N-1) m
¥(z) = z P{m) =z = R..{z) R¥_{(1/z) {(D.4)
-2 (N-1) 12 12

using the properties (3.5) and (3.6) leads to

¥Y(z) = A{z) B*(1/z) A*{l/z) B(z)

i

¥(z) =R, (z) R,(z) | (D.5)

Since the autocorrelation is complex conjugate symmetric with respect
to zero time shift, i.e.
= R*
RZ(Z) R2(l/z)

With the above expression, Eg. (D.5) can be written in the form
= * = * . .
¥(z) Rl(Z) Rz(l/Z) Rl2(z) Rlz(l/z) . (D.6)

Hence, the autocorrelation functioﬁ of the crosscorrelation of the two
sequences, a(n) and b(n), is equal to the crosscorrelation of the
autocorrelation functions of the individuai sequences. Moreover, two
‘polynomials of the same order are equal if they have identical

coefficients, i.e.
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N-1-|n] N-1~|m]
P(m) = Z r. .k} r*_ (k+m) = )X r. {k)
k=~ (N=-1} 12 12 k=-(N-1) 1
In partilcular, for zero time shift (m = 0)
N-1 2 N-1 '
¥(O) = z Ir (k)‘ = z r. (k) r*{k)
k=-(N-1) 12 k=~ (N=1) ! 2

which is the result used in Chapter 6.

(D.7)
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List of Sequences

E.l Uniform Sequencés

Binary Sequences

N
.17
19

21

31

VE)

23

61

11

91

101

4

+ + +

o+ o+ o+ 4
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1,

+ + 4+

+

‘sequence
+ 4+ - +
+ -+ +
- v e
-— e - +
4 -+ =
+ -~ - 4
-+ + +
+_.._ —
-+ -
+ -+ 4
+ - - 4
+ + ¥ -
+ + + 4
+ 4+ -+
U T
+ 4+ + -
- .
+ - 4
+ + +
+ -+ -
+ 4+ + o+
+ + o+

- -+ +
- - -
+ o~ + 4+

+ + + o+




+ 4+ o+ 4+ o+ o+ + 4

+

T+ o+ o+ o+

+ + +

o+ o+ 4+

+

+ 4+

sequence
+ + o+
-+

F - -
+ - +
+ - +
+ 4+ 4+
-~ - +
—- - 4
- -
-+ o+
+ 4+ -
+ -
+ - +
+ - +
- -t
+ + +
- -+
-+ 4
++ o+
+ -

-+ +
+ 4+ -
+ +

+ - +
+ + -
+ - +

+ + o+ o+

I+ o+ 4 0+

+ 4+ o+ o+

+ + + + +

+ + +

+ + +

+ o+ o+ o+

+ o+ 4+ o+

+ + + + + +

-+

+

+ + + o+

+

+ + o+

+

+ o+

+ o+ o+

+ 4+ o+

+ 0+ o+ o+

+

+ + o+



Uniform complex codes

N

13

15

17

18

19

25

31
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1.617

. -0. 173
2,885

0.771
2.713
-2.,980

 ~0.061
~0.784
-0.775

-0.346"

2,082
-0.153
-0.405
-2.741

. 0.000
1.709
3.028

-2.688

2,545
-0.457
1.105
1.505
~2.777

1.825
2,145
-1.828
.1.385
0,145
2.465
0.225

sequence ¢ (n)

-0.433
-1.860

0.248
0.908
-0.655

2.653
-2.522
1.259
-0.250

 -2.408
-0.198
0.140
2.522

-2.928
-2.467

1.305
-2.466

2.825
- -1.137
3.025
-0.135
0.425

-0.055
1.585
1.785
©.745
1,945
2.585

1.622
2.815

-0.768:

-0.717
-0.597
-3.100

-1.021
1.659
1.198

-1.597
1.297
-0.942
0,344

2.134

-0.034
2.675
2,558

1.945
-1.175
-1.337
-2.617
-2,417

-1.217

-0.338
2,265
0.865
4,545

-2,295

-0.376
1,254

-0.378
1.852
-0.500

1.484
-1.177
1.660

0.332
0.228
0.539

~0.570
-0.855
-1.819
~3.142

2.625
~2.177
-~1.497
-2.897

1.505

2.065
1.465
0.382
-1.055
-0.215
-2.868

(radians)

1.
1.

228
162

.803
.091
. 395
470
.185
.029

.568
.301
.593

.802
. 308
.452

.337

.657
.025
.217

.818
.455
.698
.425

2.145

.698



49' 0.
-0.

.133
.075
.275
.075
.258
.160
-3.

-1.

64 0.
' oR

2.

-0.

0.

2.

- 1.

-3.

-0.

0.

-3.

1.

-2.

81 -0.

O.

0.

-2.

2.

-3.

0.

-2.

.116

.160

.1396

414

-0.
.952

.352

-1.

C -2

040
240

003
693

040
120
071
585
920
796
571
022
360
265
062
451
662

440
080
538
094
552
152
200
454

280

894

0.418

~215-

sequence ¢{n)

0.400
-0.160
-2.973
-2.253

0.000

0.698
-1.635
-1.595

1.915
-3.110

0.480
0.200
-2,966
0.720
1.731

-0.611

-2.516
~0.200
-2,716
-1.971
1.691
0.320
2.956

0.160
0.080
1.276

-1.576

-1.974

-1.636
2.334

-0.080
1.556

-2.672
2.294
1.894

~2.374
2.174
1.076

-2.512

0.280
0.080
-2.075
-0.538
2.933
3.030
1.355
3.053
©.800
2,515

0.400
0.000
~2.542
1.971
-2.862
1.345
0.040
2.980
1.491
1.876
0.200
-0.265
1.851

0.360"

¢.080
2.414
-1.018
-0.098
-0.160
-2.054
2.792
-1.614
0.738

.-0.658

0.080
1.814
0.818
0.080
2.912

.0.240
0.698
-1.178
1.178
-0.898
-0.120

-1.138

1.418
~0.022
0.858

0.240
0.280
-2.036
-2,822
-1.371
-2.622

-3.142.

~0.040
~0.545
-0.080
-2.091
-1.011

0.385

0.120
-0.120

3.112°

0.000
0.898
1.654

-0.080

-0.298
0.658

-2.054

2.352
-1.734

- -0.240

-0.498
-0.698
2.454

{radians)

-0.040
1.875
0.280
2.253
1.475

-2.853
2.373

~1.0°8

-1.075

0. 360
1.065
-1.531
-0.771
0.240
~0.145
0.200
2.660
~-3.062
-1.811
2,340
-1.836

0.200
-0.080
-2.432

1.396

2.054

~1.854-

2.134
2.574
-2.992
1.756
-0.040
2.454
-1.596
~-2.334
-1.116
1.676

o ,77%—‘.—_—_“‘_.-—._.“__._._____-—.————#



100

| 0.040
0.440
0.720

-1.680
0.480
0.680

-0.040
2.662

-0.320
0.360
0.040

-2.782
0.280
0.680

-0.560

~2.982

-0.440
0.320
0.120

~2.702

-216-

e
o]
0

-2,

sequence ¢ {n)

.520
.640
.869
353

1.617
1.937
1.405

.617

2,153

-2,
.

-2
-2
-2
O
-1
-1
-0
2

.473
942
000
.433
.073
.165
. 817
977
. 337
.549
.873

0.600
. 320
1.297

- O

. -1.565

2.793

2.593
~2.793

0.349
-1.137
~1.097
0.440
3.062
1.497
1.817
2.033
-1.269
-2.873
-3.033
-0.897

2.365

(radians)
0.640 0.720
0.600 0.600
2.285 -2.891

-0.777 -0.229
-2.473  -1.177
2,633 -1,497
-0.589 l.137
2,073 -2.205
1.857 -2.073
1.497 -2.553
~2.142 0.840
0.240 -2.742
~1.057 2.873
~0.817 1.793
0.509 ~-1.057
~2.873 1.485
2.673 1.537
1.835 1.057
~1.485 -1.993
1.457 0.109




-217-

E.2 - Pairs of Sequences

Binary Sequences (+ =21, = =-1)
, X : '~ sequence
19 I i T i A T T S 2 S
19 R M R i i I S e A
- 23 ' I s T T S S S S T T
23 ' I IR T T S A e .

21 I I R =
—_—- _-—— -4 = -
31 ' T T S e T

53 ' B T T T T . &

5% ' O i I e S s I T |

61 , o I T T T T T S S A i

61 T T T T S T e S S
- — G - = 4 e - - -



13

13

N

91

101

10L

+ +

+ + o+ o+
+ + 4+

+ + +

+

+ o+ o+

+ o+ o+ + o+

+

+ + + +

+ + + + +

T+ o+ o+

+ + + o+

+ + o+

+ + +

gequence

+
+
+
+

I

+ 4+ o+

+ + + +

+ + o+ + o+

+ o+ + o+

v+



Uniform complex codes

11

11

21

21

31

31

1.507
-1.773

1.328
2.760

2.809
-2.003
-2.214

-0.221

2.882

-0.705

0.499
2.940
~2.389
1.444
2.691

3.100
2.891
1.741
0.211
2.742

-1.0924
0.763
-1.873

0.249

-0.350
-2.070
2,034

1.313
1.205
-1.447
1.381
2.522
~3.004

1.262

-219-

sequence ¢ (n)

-l.701
2.409

0.879
-1.388

-1.025

~2.912

0.323
-1.990

-1.250
-0.998
2.335
1.298

1.607

-3.044
-1.585

-0.037

3.133
-2.575
2.548
-2.098
2.579
-2.348

2.661

0.827 -

1.908
-1.828

0.812

2.360

-0.450
-2.470

C=2.107

-2,120

-3.087
-2,229

-0.661
-2.533

-0.402
-1.053

2.993.

-14948

1.157
-1.740
0.543
-1.800

-2.758

-1.136

-2.811
0.996
0.315

-0.871

-0.488
-2.329
2.714
-2.673
1.5%

-0.838

(radians)
-2.704  -0.185
-2.048
~1.750 2,712
-0.456

2.294 0.400
1.699  2.801
1.142 -2.771
1.009 2.827
-2.937 -2.090
2.591  -1.049
0.050  -1,495
~1.495 ~1.343
2.092 1.556
-2.035 -0.590
-1.399 2.498
-1.337  -0.003
1.000  -2.146
-0.170  -1.192
2.499  -0.102
0.307 1.198
-1.074 2.409
-1.622 0.777
-1.620  -1.655
2,151  -2.082
© -1.259 -0.354
1.847 1.622
1.931 2.679
2.234  -2.562



4L

41

47

47

2.256
1.363
-1.824
1.549
0. 300
-0.970
3.033
-0.905
1.651

-0.697
—Oi 069

- 2,021

3.079
2.762
-1.259
~0,235
3.000
1.251

-2.094

0.763
-2.724
-0.101

0.150
~2.170
-2.949
-2.705
-3.133
-1.804

-1.977
=-3.020
2,910
0.841
-0,521
-2.124
0.347
~1.965
-1.221
1.627

-220~

sequence ¢{n)

2.433
-1.775
2.249
-2.547
=2.704
-0.048
1.263

2,438

1.908
-2.127
0.713
0.661
-1.560
-0.072
-1.374
-1.153

1.682
-1.325
~0.735
-1.948

1.779
-1.097

2.012

0.504
-2.797
-2.619

-2.472
2.395
-1.287
0.938

0.473

1.076
-0.111
0.679
2.982
-0.105

-0.559
~-0.836
1.172
-0.255
1.115
0.579

-0,939

1.227

2.714
2.911
0.595
-1.138
-2,512
-0.726
0.025
-2.211

-2,059
-1.737
2.973
2.596
~-1.885
1.179

-2,273

-2,073
1.158

2.297
-1.753
1.734
0.183
0.415

-2.937

1.022
0,773
-2,440

(radians)
0.650 1.338
0.380  -1.041
2.399 0.748
1.657  -1.00L"

-0.423 1.659
-1.321 2.026
~1.938.  2.064
-3.029. 0.351
-1.059 - -0.904
0.647  1.771
-2.652 2.178
1.585 2.521
-1.317 0.297
-1.085 1.999
-2.187 -2.139
-0.778 - 1.450
0.650 2.237
0.231  -2.841
1.650 2.698
2.406 . =-2.052
-2.823  -0.141
0.028  -2.907
-1.338  -2.719
1.305 0.801
-2.220  -1.209
-2.862 2.322
~2.304 2.029
-2.413  -1.271
0.448 0.241
2.749 0.665
3,094  -1.484
3.029 2.600
0.089 2.691
-2.033 2,708



Six-phase codes

N

17

18

19

20

21

22

0.000
-2.054
0.000
-2.054
2.054
0.000

2.054
fl.047

1.047

1.047

0.000

-2.054

2,054

1.047

~ 0.000

-1.047

'~ 0.000

3.142
3.142

3.142

-2.054

-2.054
1.047
0.000

-2.054

-2.054

-221-

sequence ¢ (n}

z.
1.
3.
3.

3.
3.
-1.
3.

0.
1.

047
047
142

142

142
142

047
142

.054
.054
.054
.054

.054
.047
.142
.054

.047
.047

000
047

-1.047

3.
3.
2.
3,

142
142
054
142

1.047

2.054
1.047

-2.054
-2.054
2.054
2,054

3.142
-2.054
1.047
3.142

1.047
3.142
-2.054
-1.047

1.047
1.047
3,142
0.000

-1.047

-1.047
-1.047
0.000

(radians)

2.054 2.054
-1.047 2.054
0.000 _ ~1.047
-2.054  -2.054
'1.047 . -2.054
1.047  -1.047
-2.054  -2.054
1.047  -2.054
-1.047  -1.047

2.054
0.000 1.047
3.142  -2.054
1.047 1.047
3.142 1.047
1.047 2.054
3.142 1.047
1.047  -1.047
-1.047  -1.047
-1.047 0.000
0.000 .142
2.054 0.000
-2.054

-1.047



23

24

25

26

28

30

3.142
0.000
3.142
2.054
-1.047

2.054

- 0.000

3.142
-1.047
2.054

3.142
1.047
-2.054
1.047

1.047

-2.054

1.047
-2.054
1.047
3.142
-1.047

0.000
3.142
0.000
1.047
2.054
2,054
0.000
2.054
-2.054
-1.047
-1.047
3.142

sequence ¢ (n)

3.142
1.047
~2.054
-2,054
3.142

2.054
1.047
-2.054
2,054
0.000

3.142

1.047
1.047
2,054
~2.054

=1.047

3.142
S 1.047

-1.047

2,054

0.000
-1.047
2.054
-2.054
0.Q00
2.054

1.047

-2.054

C.000
3.142
3.142
3.142

2.054
2.054
0.000
0.000
_0.000

2,054
1.047
1.047
-1.047

~2.054 .

2.054
2,054
1.047
-1.047
2.054

-1.047
-2.054
~2.054
3.142
1.047

1.047
0.000

-2,054.

2,054
-2.054
1.047

1.047

-1.047

3.142
0.000

- 1.,047

2.054

(radians)

1.047 0.000
1.047 2.054
2.054 -2.054
3.142 1.047
0.000° 0.000
1.047 2,054
1.047  -2.054
1.047 -2.054
2.054 '
1.047 1.047
3.142 2.054
~2.054 -2,054
1.047 -2.054
0.000  -2.054
0.000 0.000
0.000 2.054
1.047 3.142
1.047 -1.047
0.000 0.000
1.047 2,054
2,054 3.142
1.047  -2.054
-1.047 ~2.054
-2.054 3.142
1.047 2.054
0.000 2.054
-1.047 2.054
3.142 1.047
0.000  -2.054
2.054 1.047



-223-

Non-uniform Seguences

Huf fman codes

N ' sequence af(n) . . ‘

5 _Relafn)] :  1.000 0.716 0.000 0.716  ~1.000
Imfa(n)] : 0.000 . -0.716  -0.512 0.716 0.000
7 Re a(m)] :  1.000 - -0.273  0.775 0.628 0.925
o -0.273  =1.000
Im[a(n)] - 0.000  0.473 -0.620 - 0.537. 0.361 1
-0.473 0.000
9 Refa(n) : 1.000 0.380 0.208  -0.866 0.885
. \
~0.268 0.904 0.380  -1.000
Infa(n)] : 0.000  0.917 0.904 0.486 ~ -0.178
0.956  -0.208  -0.917 0.000
15 Refa(n)] :  1.000 0.505  -0.234  -0.251  -0.939 |
0.687 0.174  -0.782  -0.174 0.687
0.939  -0.251  0.234  0.505 -1.000.
Imfa(n)] : ©0.000 -0.850 -0,430 -1.032  -0.408
0.437  -0.603 0.000  -0.603 = =-0.437
~0.408 1.032  -0.430 0.850 0.000
17 Relata)] : 1.000 -0.811 0.076  0.716 -0.586
0.132 -1.022 0.639 -0.,307 -0.701
=0.692 0.824 0.497 0.429 -0.429
-0.811  -1.000
Imfa(n)] :  0.000 0.389  -0.316 0.215 0.757
-0.522 0.164 0.383 ~0.259 -0.573
-0.129  -0.599  -0.613  -0.353  -0.316
-0.389 0.000
20 Refa(n)] : 1l.000 -0.104  -0.154 0.417 0.697
-0.668 0.616  ~0.168 0.529  -0.310
-0.576  -0.508 0.014 0.774 0.879
0.595  -0.333 0.571  -0.119  -1.140
Imfa(n)] : 0.000 0.816  -0.542  -0.097 0.754
0.963 0.037 © 0.687  -0.368 0.792
0.326 0.578 0.391  -0.596  -0.118 |

0,919 0.541 0.424  -0.930 0.000 |



N

25 Rela(n)] :

Im [a(n)]

45  Ref{a(n)]

Im [a(nl]

55 Rela{n)]

1.
1.
1.
-2.
0.

0.
-1.
-1.

o.

1.

1.
-1.
0.
-1.
-0.
0.
. 260
.573
062

=0,
O.
0.
0.
-1.
=1,
-0.
a.

1.
-1.
6.
7.
- =3,
-2.
4.
4.
-6.
-4,
1.

-224-

bOO
817
855
022
810
000
184
287
419
494

000

283

347
646
218
776

. 000

566

463

591
812
870
355
792
694

000
138
907

530

288
953
089
647
232
271
127

seguence a(n)

0.200
0.002
~1.765
-0.238
1.592

1.516
-1.405
1.384
1.815
0.544

©.108
-0.883
-0.,797
0.255

0.439

-1.512
-1.432
~1.420

1.261

1.507
-0.955
0.182
-1.539
-1.650
0.814
-1.609
1 0.213
0.129

0.110
-0.671
7.635
3.934
1.931
2.227
~1.131
~1.947
0.237
-5.537
3.059

-0.845
1.013
-0.087
0,304

- 1.413

1.363

¢.043

~1.712

-0.968
-0.758

~-1.012
-0.723
-1.735
0.538
-1.426
0.49%0
-1.550
-0.827
1.249

0.988
-1.447
~1.317
0.128
1.387
-0.256
1.530
1.390
~0.663

-2.698
0,454
2,392

-2,321
2.307
‘1.874

4.748

0.084
4.698
~5.173
2.906

-1.510
-1.691
-1.346

-1.405

0. 200

0.741
0.702

1.794

-0.002
-1.516

-1.201
0. 396
1.141

-1.712
0.129

-0.996
0.18?

-0, 144
0.108

Q. 407
-1.380
-1.827
~-0,133

-1.695

-1.200
0.797
1.293

-1.507

- ~-3.414

1.688
-5.477

3.691

-0.514
1.670
0.782
8.976
2.437

-2.455
0.110

-1.699
-1.726

0.963
-0.674
-1.000

~0.045 .
-1.133
~2.043
2.061
0.000

-1.268
0.921
1.756
1.483
0.020

-0.393

10.409
©.599

-1.000

-0.009
0,327
0.584
-1.378
0.840
1.705
-0.409

1.268

0.000

-1.666
4.054
-2.246
3.062
5.750
~-1.078
~0.626
©.,949
-1.393
a.062
-1.000



N

55 Imla(n)] :

65 Rel[a(n)]

Im{a(n)]

©.0C0
-2.454
-1.992
-3.046
2.093
9.016
-3.473
-0.823
-1.559
-3.770
3.003

1.000
-0.578
7.362
0.016
5.487
-4.121

| -0.327

2.548
8.642
-2.529
-1.448
-5.505
1.673

0.000
~3.872
-2.422
-3.863
-1.786

0.921
-4,895

6.664

3.909

4.364

2.629
-2.718

3.573

-225-

sequence af(n)

2.370
-3.174
3.175
5.632

" =3.125
-6.935

1.042
-3.652
- 4,356
-1.070

1.852

0.102
1l.236
8.345
4.916
1,246
3,73
2.656
0.932
-0.271
5.082
3,529
-5.380
3,026

2,470
-3.070
3.068
-1.037
8,812
0.574
6.692
-4.666

-8.335

3.921
1.926

0.277

1.717

1.632
-3.851
7.252
1.300

. 3.523

9.526
3.295
5.318
-0.896
2.114
-1.109

-2.962
0.812
3.838

 4.690
~9.207
-2.440
~1.406

0,025
-3.169
- 6.569

5.420
-3.868

3.129

1.544

-2.488
7.300
3.613
0.882
4.895

-4.906
3.711
6.834

.=-2.587 .
- =3.010

1.868
-1.042

-1.058
-4.177

3.362
~2.237
~1.025

-8.836"

-3.970
-0.270
~5.207

4.109

-2.370

-3.343"

1.410
-1.967
-0.076
5.846
1.672
2.924
2.416
8.054
1.670
1.595
-3.133
0.102

-1.043
-3.773
6.014
5.240
-7.226
-3.160
- 7.591
-2.298
0.976
-6.392
-7.248
3.066
~2.470

~2.415
~4.279
~5.406
5.383
~1.826
7.807
1.746
-9.593
~5.419
3.711
0.000

~2.417
3.711
~4.508
-3.279
4.617
0.201
~1.400
~-3.599
~-1.338

 ~3.940

-3.542
~0. 780
-1.000

-2.890

-4.317

0.670
0.445
7.152
6.587
-3.293
4.516
-6.924
-2.977
~-6.169

. 4.391

C. 000




-226-
N ‘ seguence a{n)
81 Re[a(m)] :  1.000  0.171  -4.026  -4.971  -1.900
' 1.669 3.191 © 4.022 3.868 3.337
17.146  10.452 9.835 3.416  -5.980
-10.636  -8.321  2.933 8.192  -0.688
-0.69%  -0.882 7.124  -9.316 -11.854
4.295 1.791  -4.405  -0.837 1.227
-8.791  -0.148 1.210  -10.407 8.241
-7.533  .=2,319  5.531 ~-11.284 4.444
~7.000  2.999  -2.736  -0.875  -3.465
-2,227 3.440 - -5.883 4.307  -4.372
-1.453 1.789  ~-6.821  10.311  -1.287 ‘
-9.603  13.034 1.897 -12.104 2.231 T
12.599  8.764  0.343  -4.523  -2.404
6.761 11,230 7.435 4.341  -0.032
~4.984  -6.582  -6.376  -6.010  -4.732 |
~1.453 0.848 3.411 4.114 ~ 0.171
-1.000 ' '
Imfatn)] :  0.000 2.858 1.957  -2.422  -5.711
| -5.227  =3.644  -2.443  -0.969  -2.099
~2.560 1.766  8.616  14.207  12.468
4.863  -4.582  -6.831  '3.826  10.898
3.087  -5.364 7.120  11.543  -6.386
-5,043 5,074 3.106  -2.050 5.293
3.814  -7.488  10.163  -2.67L  -4.186
10.781 -10.869  13.373  -6.528 7.876
-6.476  9.717  -6.948 9.225  ~8.461
12,629  -1.948 1.223 4,723  -4.425
7.851  -2,065 = 7.218  6.553 ~10.067
10.781 7.138  -11.017 3.558  14.121
5.168  -5.236  -6.746  -1.600  6.377
7.431  -0.944  -6.200  -8.419  -9.752
-7.743  -3.896  -0.880  0.967 4.028

5.114 4.400  3.176 -0.981 -2.858
0.000 '
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Rela(n)]

Imla(n)]

~-227-

1,000

'~0.516

-0.139
~0.300
~-0.276

- =0.810

0.143
-0.174
-0.942

0.204
-0.955
-0.246
-0.601
-0.443

0.547
-0.320
-0.064

0.350

 =1.000

0.000
0.064
-0.863
~0.055

-0.037 =

0.208
-1.122
~0.126
~0.034
-0.944
'0.304
-0.049
~0.654
1.018
-0.139
0.708
0.455
0.256
0.000

sequence a(n)

0.052
-0.526
0.154
-0.326
-0.289
~0.232
0.497
0.272
0.885
-0.817
0.314
©0.431
-0.599
0.379
0.364
0.113
0.236
0.439

1.178
0.066
-0.654
~0.523
-0.278
~0.635
-0.079
-0.177
-0.363
0.643
~0.013
0.518
0.728
-0.219
~0.565
0.411
0.599
0.160

-0.
-0.
0.
0.
-0.
0.
-0.
-1.
-0.
o.
-0.
0.
0.
-0.
-0.
-0.
0.
0.

-0.
-0,
-0.
0.
0.
-1.
-1.
-0.
-0.
-0.
-1,
0.
a.
0.

619
661
250
011
364
783
197
250
361
900
024
343
659

425

516
062
366
686

.604
.029
.529
.598

896
05
146
010
713
073
062
809
048
492
099
175
183
073

-0.585
-0.796
0.562
0.467
1.103
-0.074
0.888
0.641
0.811
-0.087
-1.025
-0.284
0.013
-0.358
-1.210
-0.019
0.266
0.767

0.158
;0.231
~0.036
-0.011

-0.582

0.624
-0.143
-1.202
-0.599

0.412

0.914

0.128
-1.096

0.861
-0.143

0.533"

0.040
-0.481

~0.420
-0.743
0.081
~0.187
0.778
-1.205
~0.047
0.434
-1.013
0.762
0.151
0.349
~1.149
0.456
~0.987
-0.002
0.205
" 0.052

0.129
-0.775
0.253
0.216
0.587
~0.427
0.840
0.047
0.800
-0.803
-0.221
-0.345
-0.068
0.363
0.579
0. 384
0.140
-1.178



Bessel codes

N

11

13

15

19

21

25

31

-228-

-0.043
-0.260
0.043

0,049
0.066
0.281

-0,053
0.047

0.365

-0.021

0.358

-0.277

0. 246

0.024
-0.348
0. 300
0.348
0.024

©.027

. =0.327

0.145
-0.181
0.305

-0.032
-0, 300
0.073
0.048
-0.073
0,300
0.032

seguence

0.132
0.339

-0,132

~0.397

- 0.132

0,131
0.328
0.391

0.057
-0.115
~0.243

0.130

-0.059
0.158
=0.005
0.339

- -0.062
0.204
-0.245
~0.265
0.215

0.065
-0.230
0.182
-0.223
-0.244
0.270

-0.309
0.486

0.281
-0.066
0.049

-0.261
-0.178
0.261

-0.130

-=0,243

0.115
- 0.057

0.128
1 0.168
~0. 301
0.234

0.125
0.055
-0.090
-0.055
0.125

-0.120
0.045

' -0.195

-0.085
-0.170
0,185

0.486
0.309

~0.430
0. 364

S 0,391
-0.328
0.131

0,246
0.277
G.358
0.021

-0,.234
-0. 301
~0.168
0.128

~0.215
~0.265
0.245
0.204
0.062

0.195
0.170

-0.085

0.195
0.045
0.120

-0.339
0.132

0.364
0.430

_0.365
0.047
0.053

-0.362
0.151
0.362

0.339
0.005
0.158
0.059

0.305
0.181
0.145
0.327
0.027

-0,270
-0.244
0.223
0.182
0.230
0.065



41

61

71

0.036 .
-0.267

~0.199
0.187
~0.170
~0.187
-0.199
0.267
0.036

0.023
-0.197
~0.070

~0.170

0.071
-0.084
0.156
0.084
0.071
0.170
-0.070
0.197
0.023

-0.025
0.183
0.024
0.116
0.092

-0.134
0.104
0.051

“Oa 104 .
-0.134
-0.092

0.116
-0.024
0.183
0.025

-229-

sequence

-0.067
0.236
0.043

-0.111

-0.098
0.001

-0.191
0.234

-0.041
0.227
0.168
0.119

-0.161
0,146
0.015

~0.114

-0.106
0.078
0.060
0.151

0.042
-0.212
-0.128
-0.160

0.065
~0.016

0.084
~0.133
-0.117
-0.103
-0.154
~0.011

0.089

0.142

0.114
-0,123
0.154
-0.135
0.158
0.188
-0.049

0.174°

0.068
~0.223
~0.175

0.042

0.040

0.039
~0.155
~0.136
-0.161
-0.075

0.167

0.105

-0.068

0.214
0.174
0.081
-0.150
0.144
-0.125
-0.060
0.058
0.061

-0.067"

-0.130
0.174
0.102

-0.174

-0.049

-0.188
0.158
0.135
0,154
C.123
O

114

-0.105
0.167
0.075

-0.161
0.136

-0,155

-0.039
0.040

-0.042

~0.175

0.223
0.068

0.102
~0.174
-0.130
0.067
0.061
~0.058
-0.060
0.125
0.144
0.150
0.081
-0.174
0.214
0.068

0.234
0.191
0.001
0.098

~0.111

-0.043
0.236
0.067

0.151
-0.060
0.078
0.106
~-0.114
-0.015
0.146
0.161
0.119
-0.168
0.227
0,041

-0.142
0,084
0.011

-0.154
0,103

-0.117

0.133
0.084
0.016
0.065
0.160
~0.128
0.212
0.042
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|
| ' "N 7 - sequence
| 91 ~0.027 0.044 . -0.067 0.096  ~0.130
0.164  -0.190 0.197  -0.176 - 0.120
~-0.035  ~0.060 0.135  =0.157 0.110
~0,010  -0.096  0.145 - -0.103  -0.0lO
0.116  ~0.131 0.037 0.089  -0.133
0.047 0.087  ~0.127 0.025 0.107
-0.108  ~0.027  ©0.127 ~0.053  ~0.096
0.105  0.045  -0.124 0.004 0.123
~0.040  ~0.113 0.062 ~ ©0.104  ~0.072
~0.101 0.072 0.104  ~0.062  ~0.113
0.040 0.123  -0.004  ~0.124  -0.045
0.105 0.096  ~0.053 ~ ~0.127  ~0.027.
0.108 0.107  ~-0.025 - - -0.127  =0.087
0.047 - 0.133 - 0.089 ~0.037 ~0.131
-0.116  ~0.010 0.103 0.145 0.096
-0.010  -0.110  ~-0.157  ~-0.135  -0.060
0.035 0.120 0.176 0.197 0.190
0.164 0.130 0.096 0.067 0.044
0.027 '
121 0.030  -0.045  0.065  -0.089  0.117
| -0.145 0.167  -0.178 0.169 -0.136
0.079  -0.005  -0.070  -0.125  -0.140
0.105  -0.029  ~0.060 0.121  -0.122
0.057 o.040 - -0.113 0.113 -0.037
-0.066 0.119  -0.079  -0.027 0.109
-0.094  -0.,008  0.102  -0.094  -0.012
0.105  -0.082 = -0.035 0.111  -0.052
-0.071 0.103 0.00L  -0.104 - 0.062
0.069  -0.099  -0.019  0.108 = -0.027
~0.097 0.062 0.077  -0.084  -0.056
0.096 0.039  -0.101  -0.028 0.103
0.025 -0.103 -0.028 0.101 0.039
-0.096 -0.056 0.084 0.077 ~0.062
~0.097 0.027 0.108 0.019  -0.099
-0.069 0.062 0.104 0.001 -0.103
-0.071 0.053 0.111 0.035  -0.082
~0.105  -0.012  0.094 0.102 0.008
-0.094  -0.109  -0.027 0.079 0.119
0.066  -0.037  -0.113. -0.113  -0.040
0.057 - 0.122 0.121 0.060 -0.029
-0.105  -0.140  -0.125  -0.070 0.005
0.079 -~ 0.136 0.169 0.178 0.167
0.145  0.117 0.089 0.065 0.045

o S 03IN o
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