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Abstract

This thesis discusses mathematical optimization techniques for waveform

design in cognitive radars. These techniques have been designed with an

increasing level of sophistication, starting from a bistatic model (i.e. two

transmitters and a single receiver) and ending with a cognitive network (i.e.

multiple transmitting and multiple receiving radars). The environment un-

der investigation always features strong signal-dependent clutter and noise.

All algorithms are based on an iterative waveform-filter optimization. The

waveform optimization is based on convex optimization techniques and the

exploitation of initial radar waveforms characterized by desired auto and

cross-correlation properties. Finally, robust optimization techniques are in-

troduced to account for the assumptions made by cognitive radars on certain

second order statistics such as the covariance matrix of the clutter.

More specifically, initial optimization techniques were proposed for the

case of bistatic radars. By maximizing the signal to interference and noise

ratio (SINR) under certain constraints on the transmitted signals, it was

possible to iteratively optimize both the orthogonal transmission waveforms

and the receiver filter. Subsequently, the above work was extended to a

convex optimization framework for a waveform design technique for bistatic

radars where both radars transmit and receive to detect targets. The method

exploited prior knowledge of the environment to maximize the accumulated

target return signal power while keeping the disturbance power to unity at

both radar receivers.

The thesis further proposes convex optimization based waveform designs



for multiple input multiple output (MIMO) based cognitive radars. All

radars within the system are able to both transmit and receive signals for

detecting targets. The proposed model investigated two complementary

optimization techniques. The first one aims at optimizing the signal to

interference and noise ratio (SINR) of a specific radar while keeping the SINR

of the remaining radars at desired levels. The second approach optimizes

the SINR of all radars using a max-min optimization criterion.

To account for possible mismatches between actual parameters and es-

timated ones, this thesis includes robust optimization techniques. Initially,

the multistatic, signal-dependent model was tested against existing worst-

case and probabilistic methods. These methods appeared to be over con-

servative and generic for the considered signal-dependent clutter scenario.

Therefore a new approach was derived where uncertainty was assumed dir-

ectly on the radar cross-section and Doppler parameters of the clutters.

Approximations based on Taylor series were invoked to make the optimiz-

ation problem convex and subsequently determine robust waveforms with

specific SINR outage constraints.

Finally, this thesis introduces robust optimization techniques for

through-the-wall radars. These are also cognitive but rely on different op-

timization techniques than the ones previously discussed. By noticing the

similarities between the minimum variance distortionless response (MVDR)

problem and the matched-illumination one, this thesis introduces robust

optimization techniques that consider uncertainty on environment-related

parameters.

Various performance analyses demonstrate the effectiveness of all the

above algorithms in providing a significant increase in SINR in an environ-

ment affected by very strong clutter and noise.



Statement of Originality

The contributions of this thesis mainly pertains the development of math-

ematical optimization techniques for cognitive radars. Specifically, various

waveform optimization techniques based on convex optimization methods

were developed. Additionally, in order to accommodate practical issues and

uncertainties such as the availability of precise information of clutter para-

meters, robust optimization techniques have also been proposed for cognitive

radars. The novelty of the contributions is supported by the following inter-

national journal and conference publications:

� In Chapter 4, a waveform optimization technique for bistatic cognitive

radars has been proposed. This model is new to literature for the case

of cognitive radars. The proposed technique works for the scenario of

single receiving radar under signal-dependent clutter. The results of

this work has been published in [2].

� The novelty introduced in Chapter 5 concerns three different wave-

form optimization techniques for two different multistatic radars mod-

els with centralized cognition. The first optimization criteria aims at

maximizing the accumulated target return signal power while keeping

the total disturbance power to unity. This model is suitable for small

networks (possibly bistatic) with no specific target requirements. The

second optimization criteria maximizes the signal power at a desired

radar while keeping the SINR of all other radars at satisfactory level.

This feature makes this algorithm suitable for applications where a



radar finds itself in a particularly advantageous position and it can also

be used to counteract blockage effects. The third technique optimizes

the SINR of all radar receivers equally and can be used for distributed

surveillance in environments characterized by similar channels. The

latter model is based on a max-min SINR criterion. Also, these last

two optimization methods have been extended to an M number of

radars. These works were published in [3] and [4].

� In Chapter 6, novel robust optimization techniques for a cognitive

radar network have been proposed. The first two techniques employ

traditional worst-case optimization and probabilistic (stochastic) op-

timization, respectively. These techniques, although well known to

the literature, were not previously employed in the discussed scenario.

Both methods are used for robust radar waveform design in the pres-

ence of uncertainty on the clutter-plus-noise covariance matrix. The

third technique considers a completely novel approach where uncer-

tainty is assumed directly on the radar cross-section and the Doppler

of the clutter rather than on the clutter-plus-noise covariance mat-

rix. The latter is solved using Taylor approximations and stochastic

optimization. This work was published in [1].

� Chapter 7 introduces robust optimization techniques for a through-

the-wall radar. The novelty introduced in this work is to apply robust

minimum variance distortionless response (MVDR) optimization tech-

niques to matched-illumination techniques. This work is ready for

submission as a conference paper.



Jounal Paper

1. G. Rossetti, S. Lambotharan, ”Robust Optimization Techniques for

Cognitive Radar Networks,” IEEE Access, Early Access Paper, Dec.

2017.

Conference Papers

2. G. Rossetti, A. Deligiannis, S. Lambotharan, ”Waveform Design and

Receiver Filter Optimization for Multistatic Cognitive Radar,” 2016

IEEE Radar Conference (RadarConf), Washington DC, USA, 2016,

pp. 1-5.

3. G. Rossetti, S. Lambotharan, ”Waveform Optimization Techniques

for Bi-Static Cognitive Radars,” 2016 IEEE 12th International Col-

loquium on Signal Processing and Its Applications (CSPA), Malacca,

Malaysia, 2016, pp. 115 - 118.

4. G. Rossetti, S. Lambotharan, ”Coordinated Waveform Design and Re-

ceiver Filter Optimization for Cognitive Radar Networks,” 2016 IEEE

Sensor Array and Multichannel Signal Processing Workshop (SAM),

Rio de Janeiro, Brazil, 2016, pp. 1-5.

5. G.Rossetti, S. Lambotharan, ”Robust Matched-Illumination for

Through-the-Wall Radar,” to be submitted to an appropriate inter-

national conference.



Acknowledgements

I would like to thank Professor Sangarapillai Lambotharan for guiding

me throughout my PhD. His advice and deep expertise have been funda-

mental to develop my research skills and my knowledge in the field of signal

processing.

I would also like to thank Loughborough University and the EPSRC

for providing me with the studentship and a beautiful campus filled with

opportunities.

And a big thank you goes to my friends and colleagues Tasos, Anastasia,

Kostas, Tien, Ben, Ye, Bokamoso, Ramadan and everyone else who is or has

been part of the Signal Processing and Networks Research Group.

Moreover, this experience would not have been the same without my

friends. Frazer, Lorraine and Anna. All my yogis, both my lovely SPY

colleagues and my students, that warm my heart every time they take flight

in their crows.

Distant in space but not in the heart, Christina and Sarika.

But mostly, thank you to my dear friend Eirini. Best flatmate I could

have wished for and, most importantly, the best friend. She was there for

weekend trips, funny Halloween costumes and evening movies. But she was

also there to take endless pictures for my yoga plans and to support me with

chocolate and kind words whenever I needed.

Patrick. I feel so lucky and grateful that this journey lead me to you.

Simply, thank you.



Contents

1 Introduction 1

1.1 Basic Radar Principles . . . . . . . . . . . . . . . . . . . . . 2

1.2 Tools for Waveform Analysis . . . . . . . . . . . . . . . . . . 4

1.2.0.1 Matched Filter . . . . . . . . . . . . . . . . 4

1.2.0.2 Ambiguity Function . . . . . . . . . . . . . 5

1.3 MVDR Beamformers . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Radar Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.0.3 Constant-Frequency Pulse . . . . . . . . . . 7

1.4.0.4 Linear Frequency-Modulated Pulse . . . . . 8

1.4.0.5 Coherent Train of Identical Unmodulated

Pulses . . . . . . . . . . . . . . . . . . . . . 8

1.4.0.6 Phase-Coded Pulses and Barker Codes . . . 9

1.4.1 Waveforms for MIMO Radars . . . . . . . . . . . . . 9

1.5 Cognitive Radars . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Review 19

2.1 Overview on Cognitive Radars . . . . . . . . . . . . . . . . . 20

2.2 Tracking with Cognitive Radars . . . . . . . . . . . . . . . . 22

i



2.3 Waveform Design for Cognitive Radars . . . . . . . . . . . . 23

2.3.1 Ambiguity Function Shaping . . . . . . . . . . . . . . 24

2.3.2 Waveform Design for (Cognitive) MIMO Radars . . . 25

2.4 Robust Optimization Techniques . . . . . . . . . . . . . . . 30

2.4.1 Robust MVDR Optimization Techniques . . . . . . . 32

2.5 Matched-Illumination Techniques . . . . . . . . . . . . . . . 36

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Convex Optimization 40

3.1 Fundamental Convex Definitions . . . . . . . . . . . . . . . . 41

3.1.1 Affine Sets . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Convex Cones . . . . . . . . . . . . . . . . . . . . . . 42

3.1.4 Positive Semidefinite Cones . . . . . . . . . . . . . . 43

3.1.5 Examples on Sets and Cones . . . . . . . . . . . . . . 44

3.1.6 Convex Functions . . . . . . . . . . . . . . . . . . . . 44

3.1.6.1 First-Order Conditions . . . . . . . . . . . . 45

3.1.6.2 Second-Order Conditions . . . . . . . . . . 46

3.1.7 Examples on Convex Functions . . . . . . . . . . . . 46

3.2 Canonical Optimization Problems . . . . . . . . . . . . . . . 47

3.2.1 Linear Programming (LP) . . . . . . . . . . . . . . . 47

3.2.2 Quadratic Programming (QP) . . . . . . . . . . . . . 47

3.2.3 Quadratically Constrained Quadratic Program (QCQP) 48

3.2.4 Second-Order Cone Programming . . . . . . . . . . . 49

3.2.5 Semidefinite Programming (SDP) . . . . . . . . . . . 49

3.3 Lagrangian Multipliers . . . . . . . . . . . . . . . . . . . . . 50

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii



4 Waveform Design for Bistatic Radars 52

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Statistical Characterization of the Clutter . . . . . . 56

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Receiver Filter Optimization . . . . . . . . . . . . . . 59

4.2.2 Orthogonal Codes Optimization . . . . . . . . . . . . 61

4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Waveform Optimization Techniques for Coordinated Net-

works 72

5.1 System Model and Working Principles . . . . . . . . . . . . 74

5.1.1 Receive Filter Optimization . . . . . . . . . . . . . . 76

5.1.2 Orthogonal Codes Optimization . . . . . . . . . . . . 77

5.2 Waveform Optimization Techniques based on Accumulated

Power Maximization . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Orthogonal Codes Optimization . . . . . . . . . . . . 81

5.2.2 Performance Analysis . . . . . . . . . . . . . . . . . . 82

5.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Waveform Optimization Techniques for a Cognitive Radar

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Selective Optimization . . . . . . . . . . . . . . . . . 86

5.3.2 Max-Min Optimization . . . . . . . . . . . . . . . . . 89

5.3.3 Performance Analysis . . . . . . . . . . . . . . . . . . 89

5.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

iii



6 Robust Optimization Techniques 96

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Worst-Case Optimization Techniques . . . . . . . . . . . . . 99

6.3 Stochastic Optimization Techniques . . . . . . . . . . . . . . 101

6.4 Clutter-Specific Stochastic Optimization . . . . . . . . . . . 104

6.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 Performance Analysis of Worst-Case Optimization

Techniques . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.2 Performance Analysis of Stochastic Optimization

Techniques . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.3 Performance Analysis of Clutter-Specific Stochastic

Optimization . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Robust Matched-Illumination for Through-the-Wall Radar 124

7.1 Through-the-Wall Radar Problem formulation . . . . . . . . 125

7.2 Robust Optimization Techniques . . . . . . . . . . . . . . . 127

7.2.1 Uncertainty Ellipsoid Optimization . . . . . . . . . . 130

7.2.1.1 The Schur Complement . . . . . . . . . . . 131

7.2.2 Norm-Bound Vector Optimization . . . . . . . . . . . 132

7.3 Performance Analysis of Robust Optimization Techniques for

a Multistatic Through-the-Wall Radar System . . . . . . . . 134

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusions 138

8.0.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 143

iv



List of Figures

1.1 Autocorrelation function of a 13-element Barker code. As it

can be seen, there is one single peak at zero time lag. . . . . 10

1.2 Auto-ambiguity function (AAF) and cross-ambiguity func-

tion (CAF) of two nearly orthogonal waveforms s1 and s2

developed in [1]. They present very narrow autocorrelation

peaks and small sidelobes proving their resolution in both

range (τ) and Doppler (ν) domains. Furthermore, their cross-

ambiguity function shows no significant interference between

the two waveforms. . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Block diagram of cognitive radar viewed as a dynamic closed-

loop feedback system as described in [2]. . . . . . . . . . . . 13

1.4 Graphic representation of a convex function (left-hand side)

and non-convex function (right-hand side) . . . . . . . . . . 15

3.1 Representation of an affine set C. As it can be seen, the line

through any two distinct points in C, lies in C. In other

words, for any x1,x2 ∈ C and θ ∈ R, θx1 + (1 − θ)x2 ∈ C.

Values of θ between 0 and 1 correspond to the line segment

between x1 and x2. . . . . . . . . . . . . . . . . . . . . . . . 42

v



3.2 Representation of a convex and a non-convex set. A hexagon

which includes its boundary (to the left) is a convex set: every

point in the set can be seen by every point along an unob-

structed straight path between them. The shape to the right

is a non-convex set. As it can be clearly seen from the im-

age, the line segment between the two points in the set is not

entirely contained in the set. . . . . . . . . . . . . . . . . . . 43

3.3 Graph of a convex function. As it can be seen, the line seg-

ment (i.e. the chord) between (x, f(x)) and (y, f(y)) lies

above the graph of f . This is true for any two points. . . . . 45

3.4 Geometrical interpretation of a first-order condition. If f is

convex and differentiable, then f(y) ≥ f(x) +∇f(x)H(y−x)

for all x,y ∈ domf . If f was non-convex, the first order

derivative would at some point intersect the function. . . . . 45

4.1 Geometry of the bistatic system. The radar at the center of

the area under investigation is the reference radar, or Radar-

1. The star identifies the target’s position within the range-

azimuth bins. The other radar identifies Radar-2. . . . . . . 54

4.2 SINR evolution for δ = [0.2 0.5 1]. . . . . . . . . . . . . . . 69

4.3 Auto-ambiguity and cross-ambiguity functions for the op-

timized waveform estimated with δ = 0.2. As it can be

noted, the very narrow peaks of the AAF prove that excellent

auto-correlation properties were maintained by the optimized

waveform. The flat CAF proved excellent rejection to inter-

ference between the two signals. . . . . . . . . . . . . . . . . 71

vi



4.4 Auto-ambiguity and cross-ambiguity functions for the optim-

ized waveform estimated with for δ = 0.5. As it can be noted,

the narrow peaks of the AAF prove that good auto-correlation

properties were maintained by the optimized waveform. The

fairly flat CAF proved acceptable rejection to interference

between the two signals. . . . . . . . . . . . . . . . . . . . . 71

4.5 Auto-ambiguity and cross-ambiguity functions for the optim-

ized waveform estimated with for δ = 1. As it can be noted,

the very wide sidelobes of the AAF show that for a big value

of δ, the auto-correlation properties of the initial waveform

were not maintained by the optimized waveform. The CAF

also presents a peak, showing how δ = 1 causes interference

between the two signals. . . . . . . . . . . . . . . . . . . . . 71

5.1 Geometry of the multistatic system. The radar at the center

of the area under investigation is the reference radar. The

star identifies the target’s position within the range-azimuth

bins. The other radars identify possible positions of other

radars within the system. . . . . . . . . . . . . . . . . . . . . 74

5.2 Performance analysis for accumulated power maximiza-

tion techniques: SINR evolution of both radars for δ =

[0.1 0.25 0.5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



5.3 Performance analysis for accumulated power maximization

techniques: auto-ambiguity and cross-ambiguity functions for

δ = 0.1. The small δ value does not allow the waveforms to

diverge from the initial waveform with ideal autocorrelation

and cross-correlation properties. The estimated waveforms

present very narrow autocorrelation peaks, proving their res-

olution in both range (τ) and Doppler (ν) domains. Their

cross-correlation function shows no significant interference

between the two waveforms. . . . . . . . . . . . . . . . . . . 84

5.4 Performance analysis for accumulated power maximization

techniques: auto-ambiguity and cross-ambiguity functions for

δ = 0.25. The moderate δ value does not allow the waveforms

to excessively diverge from the initial waveform with ideal

autocorrelation and cross-correlation properties. The estim-

ated waveforms still present narrow autocorrelation peaks.

Their cross-correlation function shows only partial interfer-

ence between the two waveforms. . . . . . . . . . . . . . . . 84

5.5 Performance analysis for accumulated power maximization

techniques: auto-ambiguity and cross-ambiguity functions for

δ = 0.5. The high δ value allows the waveforms to signific-

antly diverge from the initial waveform with ideal autocorrel-

ation and cross-correlation properties. The estimated wave-

forms do not present narrow autocorrelation peaks and their

cross-correlation function shows interference between the two

waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



5.6 Selective optimization: achievable SINR1 versus minimum

SINR2. As it can be seen, a lower goal SINR2 can push up

the achievable values of SINR1 whereas a high goal SINR2

will exhaust all the degrees of freedom for Radar-1 to optim-

ize its SINR. This proves the effectiveness of the algorithm in

allowing a specific radar to obtain desired SINR values. . . . 91

5.7 Max-min optimization: SINR evolution of both Radar-1 and

Radar-2. As it can be seen, the initial SINR (i.e. before

the optimizing iterations) is -1.87dB. This corresponds to

the SINR achieved with the initial waveform and the cor-

responding optimum receiver filter. However, as the iteration

progresses, the SINR is increased (step by step) to 3.15dB.

This SINR value corresponds to the optimum waveform and

receiver filter. In the max-min optimization, as by design

specifications, the SINR values are almost equal for the two

radars, i.e. 3.07dB and 3.15dB. . . . . . . . . . . . . . . . . 92

5.8 Auto-ambiguity function (AAF) and cross-ambiguity function

(CAF) after max-min optimization techniques. The estim-

ated waveforms perform better in the environment under in-

vestigation and provide a 5dB SINR increase with respect

to the initial waveforms. As it can be seen in the figures,

the estimated waveforms still present narrow autocorrelation

peaks, proving their resolution in both range (τ) and Doppler

(ν) domains. Furthermore, their cross-correlation function

shows limited interference between the two waveforms. . . . 93

ix



6.1 Worst-case robust optimization. The required SINRgoal of

2dB is achieved every time with robust optimization tech-

niques. The SINRgoal is not always achieved for the non-

robust case, with the transparent area marking values below

2dB. As expected, the results are over-conservative for the

worst-case optimization techniques, i.e. >> 2dB. . . . . . . . 113

6.2 Stochastic optimization, SINR of at least 2dB to be achieved

70% of the time. Required SINRgoal achieved 70.2% of times

with stochastic optimization. Required SINRgoal achieved

50.5% without robust optimization. The values not achieving

the target are displayed with transparent colours. . . . . . . 114

6.3 Stochastic optimization, SINR of at least 2dB to be achieved

80% of the time. Required SINRgoal achieved 79.8% of times

with stochastic optimization. Required SINRgoal achieved

49.7% without robust optimization. The values not achieving

the target are displayed with transparent colours. . . . . . . 115

6.4 Stochastic optimization, SINR of at least 2dB to be achieved

90% of the time. Required SINRgoal achieved 89.5% of times

with stochastic optimization. Required SINRgoal achieved

49.6% without robust optimization. The values not achieving

the target are displayed with transparent colours. . . . . . . 115

x



6.5 The SINR goal of 2dB was required to be achieved 70% of the

time. Comparison between non-robust optimization, ordinary

stochastic optimization and the clutter-specific optimization

proposed in this work. The required SINRgoal of 2 dB was

achieved 69.8% of times with clutter-specific stochastic optim-

ization. The required SINRgoal was achieved 6.6% of the time

with the more generic stochastic optimization method and

1.3% with non-robust optimization. The values not achieving

the target are displayed with transparent colours. . . . . . . 118

6.6 The SINR goal of 2dB was required to be achieved 80% of the

time. Comparison between non-robust optimization, ordinary

stochastic optimization and the clutter-specific optimization

proposed in this work. The required SINRgoal of 2 dB was

achieved 79.4% of times with clutter-specific stochastic optim-

ization. The required SINRgoal was achieved 7.0% of the time

with the more generic stochastic optimization method and

0.7% with non-robust optimization. The values not achieving

the target are displayed with transparent colours. . . . . . . 119

6.7 The SINR goal of 2dB was required to be achieved 90% of the

time. Comparison between non-robust optimization, ordinary

stochastic optimization and the clutter-specific optimization

proposed in this work. The required SINRgoal of 2 dB was

achieved 87.5% of times with clutter-specific stochastic optim-

ization. The required SINRgoal was achieved 6.5% of the time

with the more generic stochastic optimization method and

0.4% with non-robust optimization. The values not achieving

the target are displayed with transparent colours. . . . . . . 120

xi



6.8 Achieved SINR of Radar-1 obtained through clutter specific

optimization technique for different realization of the clutter

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 Simulation results for Robust Uncertainty Ellipsoid Optim-

ization. The histograms show how, for a 10% error in the

estimation of q, robust optimization techniques can improve

the SINR by 1.25dB. . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Simulation results for robust uncertainty ellipsoid optimiza-

tion as the error percentage is increased. The plot shows how

the bigger the error in the estimation of q, the more it is ne-

cessary to implement robust optimization techniques. For in-

stance, estimation errors in the order of 80% can be improved

by almost 11dB by implementing robust optimization tech-

niques. The blue line identifies the optimal SINR obtained

with no estimation errors on q. . . . . . . . . . . . . . . . . 136

7.3 Simulation results for norm-bound vector optimization. The

histograms show how, for a 10% error in the estimation of

q, robust optimization techniques can improve the SINR by

1.25dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xii



7.4 Simulation results for norm-bound vector optimization as the

error percentage is increased. The plot shows how the bigger

the error in the estimation of q, the more it is necessary to

implement robust optimization techniques. As in the previous

case, estimation errors in the order of 80% can be improved

by almost 11dB by implementing robust optimization tech-

niques. The blue line identifies the optimal SINR obtained

with no estimation errors on q. . . . . . . . . . . . . . . . . 137

xiii



List of Tables

4.1 Outline of the optimization method from a simulation-

oriented perspective. t indicates the iteration number. . . . . 60

4.2 Comparison between statistical characterization and modeled

observations for δ = [0.2 0.5 1]. . . . . . . . . . . . . . . . . 68

5.1 Simulation parameters for performance analysis for accumu-

lated power maximization techniques. . . . . . . . . . . . . . 83

5.2 Outline of the optimization method from a simulation-

oriented perspective. feasible is a parameter that is set to

one as long as the SDP provides defined numerical results

and t is the iteration number. . . . . . . . . . . . . . . . . . 87

6.1 Stochastic optimization results. Comparison between the

achievable percentage of a desired SINRgoal with stochastic

waveform optimization techniques and non-robust waveform

optimization techniques. . . . . . . . . . . . . . . . . . . . . 114

xiv



6.2 Results for signal-dependent clutter i.e. for error applied dir-

ectly to the RCS and Doppler of the clutter. Comparison

between the achievable percentage of the desired SINRgoal

by using the proposed optimization that assumes uncertainty

on the clutter parameters directly (row 2), the ordinary

stochastic optimization (row 3) and non-robust optimization

(row 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xv



List of Acronyms

AAF Auto-Ambiguity Function

AF Ambiguity Function

AWG Arbitrary Waveform Generator

BTT Bayesian Target Tracker

CAF Cross-Ambiguity Function

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CRB Cramér-Rao Bound

CRN Cognitive Radar Network

CS Compressive Sensing

CS-MIMO Compressive Sensing Multiple Input Multiple Output

DMRS Distributed Multiple-Radar System

DOA Direction-of-Arrival

DS Direct Sequence

FPGA Field Programmable Gate Array

i.i.d. Independent and Identically Distributed

KA Knowledge-Aided

KB Knowledge-Based

LFM Linear Frequency Modulated

LP Linear Program

xvi



LS Least Squares

MI Matched-Illumination

MIMO Multiple-Input Multiple-Output

MMSE Minimum Mean Square Error

MVDR Minimum Variance Distortionless Response

NP Nondeterministic in Polynomial (time)

QCQP Quadratically Constrained Quadratic Program

QP Quadratic Program

RCS Radar Cross-Section

RF Radio Frequency

RSA Radar Scene Analyzer

SDP Semidefinite Programming

SINR Signal to Interference Noise Ratio

SLA Sense-Learn-Adapt

SNR Signal to Noise Ratio

SOCP Second Order Cone Program

STR Separated Transmit Receive

TOA Time-of-Arrival

TRS Target Radar Signature

TWRI Through-the-Wall Radar Imaging

ULA Uniform Linear Array

UWB Ultra-Wideband

WCR Wideband Cognitive Radar

xvii



List of Symbols

Note: bold lowercase and bold uppercase letters represent vectors and

matrices respectively.

⊙
Hadamard product

(·)∗ conjugate operator

(·)T transpose operator

(·)H Hermitian operator

CN (µ, σ2) complex normal distribution (mean µ, variance σ2)

E[·] statistical expectation operator

diag(A) diagonal of matrix A

domf domain of function f

blkdiag(A) block diagonalization operator on matrix A

L(·) Lagrangian function

Pr(·) probability operator

tr(A) trace of matrix A

rank(A) rank of matrix A

� (or �) generalized matrix inequality

‖x‖ Euclidean norm of vector x

‖X‖F Frobenius norm of matrix X

Aj,i,br Subscript: signal transmitted by Radar-j, scattered

by range-azimuth bin br, received at Radar-i

xviii



xix



Chapter 1

Introduction

An overview on topics that are propaedeutic towards a full understanding of

the research presented in this thesis is hereby provided. At first, the main

principles on which radar systems are based (i.e. concepts such as radar

equation, range resolution and Doppler frequency) are described. Next, some

tools for waveform analysis (such as the matched filter and the ambiguity

function), followed by a brief overview on minimum variance distortionless

response (MVDR) beamformers are introduced. In the subsequent section

the pros and cons of the most widely used radar waveforms such as the

constant-frequency pulse, the linear frequency-modulated pulse, a train of

pulses and phase-coded pulses are described. Furthermore, a thorough out-

line on cognitive radars is presented. Lastly, a brief overview on convex

optimization techniques is provided followed by an outline of the remaining

chapters.

1
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1.1 Basic Radar Principles

The term radar finds its roots in the acronym of the expression RAdio De-

tection And Ranging. These systems work by exploiting the information

contained in electromagnetic waves that propagate and reflect in a targeted

environment. Radars can be used to evaluate distances, detect and track

moving targets and create images. Being more specific, the principle is that

a transmitter sends out a radio signal, which will scatter off any surface

that it encounters and a small amount of energy is scattered back to a radio

receiver, which is usually located near the transmitter. After amplification

in the receiver, the signals are processed to sort out the required echoes

from the the clutter [3]. The well known radar equation quantifies the pro-

cess that connects the transmitted wave, the free space propagation, the

incidence with the target and the received wave:

Pr =
PtGtGrλ

2

(4π)3R4
σ (1.1)

The received power Pr is defined by three main features:

� The characteristics of the system (through the transmitted power Pt,

the antenna features at the transmitter Gt and at the receiver Gr and

the wavelength λ);

� Distance R between satellite and target (4π accounts for free space

attenuation);

� Target properties represented by the radar cross-section (RCS) σ.

In fact, it is thanks to this dependence with R that the radar is able to

evaluate the range distance of a target. By measuring the time τa after
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which the signal reached the receiver, the range R can be calculated as:

R =
cτa
2

where c is the velocity of propagation, which is usually approximated with

the speed of light. The problem is nevertheless not as straightforward since

the pulse duration of the signal needs to be taken into account. The range

resolution tells us how far apart two targets have to be before we can see

that there are indeed two targets rather than a single large one [3]. The

range resolution can also be called range bin which is a widely used term

when considering target localization and tracking.

The targets contribution is accounted for in the radar equation by the radar

cross-section σ. This is a complex coefficient that defines the scattering be-

havior of the target. It is defined as a measure of the power that a target

scatters in a given direction when illuminated by an incident wave, normal-

ized to the power density of the incident wave at the target. The normaliz-

ation is necessary in order to remove the effects of the distance radar-target

and the effects of the transmitter power level [4].

Another very important parameter in radar systems is the Doppler fre-

quency. This is the change in the frequency of the radio signal caused by

the motion of the target and it is equal to:

fD =
2υr
λ

where υr is the radial component of the target speed towards the radar and

λ is the wavelength of the radio signal [3].

When talking about surveillance radars (i.e. radars that deal with local-

ization and tracking activities such as air traffic control radars or air-borne
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radar defence systems) another very important aspect that needs to be men-

tioned is clutter. This term is used to identify all the unwanted echoes that

originate from elements in the environment under investigation: these are

not targets but nevertheless contribute to the received signal. This additive

disturbance cannot be confused with thermal noise which, for all practical

radars, can be considered to be white [3].

1.2 Tools for Waveform Analysis

In order to design and analyze radar waveforms, a matched filter and an

ambiguity function are necessary implementations.

1.2.0.1 Matched Filter

The filter used in radar to measure the delay of a returned known signal is

usually the matched filter. The matched filter h(t) concentrates the entire

energy of the signal into an output peak at a predetermined additional delay

t0:

h(t) = Ks∗(t0 − t)

where K is an arbitrary constant and s∗ the conjugate of the transmitted

waveform. The peak of the output of the matched filter is a function of the

signal’s energy and the output before and after the peak are strongly affected

by the waveform. As previously mentioned, the pulse duration also needs

to be taken into account and if the output level of the peak of the matched

filter remains high over an extended delay, there will be an uncertainty as to

which is the true delay. This would obviously be an undesired problem [5].

When considering a surveillance scenario, it is very likely to deal with signals

that have been reflected by moving targets and that are therefore affected by
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a Doppler frequency shift. Without exact knowledge of the Doppler shift,

the radar receiver cannot modify its matched receiver to the new carrier

frequency exactly and mismatch occurs. The response of a matched filter

therefore needs to be studied in two dimensions: delay τ and Doppler ν.

The tool for that is the ambiguity function.

1.2.0.2 Ambiguity Function

The ambiguity function (AF) represents the time response of a filter matched

to a given finite energy signal when the signal is received with a delay τ and

a Doppler shift ν relative to the nominal values expected by the filter. The

definition provided by [5] is:

|χ(τ, ν)| =
∣∣∣∣ ∫ ∞
−∞

u(t)u∗(t+ τ) exp(j2πνt)dt

∣∣∣∣
The three main AF properties are:

� Has a maximum (normalized to 1) in (0,0);

� Has constant volume (i.e. if we attempt to squeeze the AF to a narrow

peak at the origin, the peak cannot exceed the value of 1 and the

volume squeezed out of the peak must reappear somewhere else);

� It is symmetric with respect to the origin.

The AF has been derived (and thereafter widely used) as a tool to character-

ize the resolution performance of waveforms (in [6], [7] and many others) but,

as it will be described in the following chapters, it has also been implemented

in order to design waveforms with desired features (see for example [8], [9]).
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1.3 MVDR Beamformers

In radar applications, array signal processing regards antenna elements that

respond to incident electromagnetic waves. The requirement is to detect

the source responsible for radiating the electromagnetic waves, estimate the

angle of arrival of the waves, and extract information about the source [10].

In this scenario, beamforming has the purpose of distinguishing between the

spatial properties of signal and noise. The beamformer has to satisfy two

requirements:

� steering capability, whereby the target signal is protected;

� cancelation of interference, so that the output signal-to-noise ratio is

maximized [10].

On method of satisfying these requirements is to minimize the variance (i.e.,

the average power) of the beamformer output, subject to the constraint that

the M × 1 weight vector w satisfies the condition:

wHp(θ) = 1 with θ = θt, (1.2)

where p(θ) = [1, e−jθ, . . . , e−j(M−1)θ] is the M × 1 steering vector and H

denotes the Hermitian transposition and θt is the direction of the target. In

Chapter 7, we will consider a similar model:

wHv(θ) = 1 with θ = θt, (1.3)

where v(θt) = αts � p(θt) is the target’s contribution and αt is the radar

cross-section of the target, s is the signal and � identifies the Hadamard

product.
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The optimization problem of minimizing the variance of the interference

and noise at the output of the adaptive beamformer while ensuring the

distortionless response of the beamformer towards the direction of the target

can be written as [11]:

min
w

wH R w

s.t. wHv(θt) = 1,
(1.4)

where R is the covariance matrix of the interference plus jammer and noise.

The standard minimum variance distortionless response (MVDR) beam-

forming problem finds a solution in the following optimized value:

wMVDR =
R−1v(θt)

vH(θt)R
−1v(θt)

.

The ability of an MVDR beamformer to reject interferers depends on the

number of the antennae M the array has available. As a matter of fact,

the MVDR has (M − 2) degrees of freedom to steer a beam towards the

direction of the signal of interest or to place (M − 2) nulls to cancel (M − 2)

independent interferences.

1.4 Radar Signals

The commonly known radar signals can be subdivided into four categories.

1.4.0.3 Constant-Frequency Pulse

A constant-frequency pulse is a single, unmodulated pulse:

uCFP(t) =
1√
T

rect

(
t

T

)
,
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where rect(·) identifies the rectangular function. Due to its inefficient band-

width occupation, the constant-frequency pulse provides poor performance

in terms of both range and Doppler resolution. As a matter of fact, at zero-

Doppler, the ambiguity function shows a triangular shape and, at zero-delay,

it is the absolute value of a cardinal sine function [5].

1.4.0.4 Linear Frequency-Modulated Pulse

Linear frequency-modulated (LFM) pulse is a very popular pulse compres-

sion method, also known as Chirp. The complex envelope of an LFM pulse

is given by:

uLFM(t) =
1√
T

rect

(
t

T

)
exp(jπkt2)

Adding LFM increases the bandwidth and thus improves the range resolution

of the signal by a factor equal to the time-bandwidth product. However the

improved delay resolution of LFM comes with a penalty: delay-Doppler

coupling (expressed by a diagonal ridge that will be seen in the ambiguity

function.)

1.4.0.5 Coherent Train of Identical Unmodulated Pulses

This waveform is a coherent pulse train of identical, unmodulated pulses:

uT(t) =
1√
T

N∑
n=1

uCFP[t− (n− 1)Tr]

where uCFP identifies a constant-frequency pulse, N is the number of

identical pulses and Tr is the pulse repetition interval. The significant ad-

vantage of such waveform design is that the delay resolution is controlled by

the pulse duration T , while the Doppler resolution is controlled by the total

signal length NTr. On the other hand, Doppler and delay ambiguities are
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tied so a tradeoff still needs to be accepted [5].

1.4.0.6 Phase-Coded Pulses and Barker Codes

Phase-coded pulses are a single pulse of duration T which has been divided

into M bits of identical duration tb = T/M. Each bit is then assigned (i.e.

coded) with a different phase value. The complex envelope of the phase-

coded pulse is given by:

uPC(t) =
1√
T

M∑
m=1

umrect

[
t− (m− 1)tb

tb

]

where um = exp(jφm) and the set of M phases

[
φ1, φ2, . . . φm

]
is the

phase code associated with uPC(t). The advantage of this coding technique

is that it lowers the main lobe width. In order to find a code with good res-

olution properties, it is sufficient to calculate the auto-correlation function

of the code at integer multiples of the bit duration which is a more manage-

able problem than optimizing directly the ambiguity function. Probably the

most famous family of phase codes is Barker codes. Originally, these were

designed as sets of M binary phases yielding a peak-to-peak sidelobe ratio

of M . An example of autocorrelation function of a 13-element Barker code

can be seen in Figure 1.1.

1.4.1 Waveforms for MIMO Radars

In a MIMO radar, Nt antennas transmit Nt different waveforms simultan-

eously. These waveforms propagate in the environment, are reflected by

the target and other scattering objects and are then received by Nr receive

antennas. Each receiver is connected to a bank of filters, with one filter

tuned to each of the transmitted waveforms [12]. These filters aim at can-
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Figure 1.1: Autocorrelation function of a 13-element Barker code. As it can
be seen, there is one single peak at zero time lag.

celing all waveforms that are not of interest to a specific radar. In order for

this to work, perfectly orthogonal waveforms should be used. In practice,

however, such waveforms do not exist and must be approximated. This in

turn has prompted new research into the area of waveform design, with par-

ticular emphasis on minimizing waveform cross-correlation levels as well as

autocorrelation sidelobe levels [12].

A work of particular interest, that has been implemented in the proposed

work, is that of Clemente et al. [1]. In this paper the authors show how to ob-

tain nearly orthogonal codes by modulating common minimum peak sidelobe

waveforms with fractional Fourier transforms. As it can be seen in Figure

1.2, the resulting codes are characterized by very good autocorrelation and

cross-correlation properties. The initial waveforms that have been selected

are Barker 13, Frank 16, P4 25 (which are all phase-coded pulses) and Cos-

tas 7 (which are non-linearly frequency-modulated pulses). These are all

well known radar waveforms with very good autocorrelation properties that

have been designed for a single transmitting radar. By applying fractional

Fourier transform to them, they will obtain the necessary combination of
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(c) CAF of s1, s2

Figure 1.2: Auto-ambiguity function (AAF) and cross-ambiguity function
(CAF) of two nearly orthogonal waveforms s1 and s2 developed in [1]. They
present very narrow autocorrelation peaks and small sidelobes proving their
resolution in both range (τ) and Doppler (ν) domains. Furthermore, their
cross-ambiguity function shows no significant interference between the two
waveforms.
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characteristics (i.e. good range resolution as well as orthogonality), making

these codes ideal for MIMO applications. In order to deal with waveform

diversity in a MIMO scenario, the authors in [13] subdivided the ambiguity

function into an auto-ambiguity function (AAF) for each implemented signal

and cross-ambiguity functions (CAF) between signals.

1.5 Cognitive Radars

Cognitive radars were first theorized in 2006 by Haykin [2], who was inspired

by neurobiology and the success rate of target capture for echo-locating bats.

They are characterized by three main aspects:

� Intelligent signal processing, achieved through the interactions of the

radar with the surrounding environment (i.e. perception);

� Feedback from the receiver to the transmitter (i.e. intelligence);

� Preservation of the information content of radar returns (i.e. memory).

This feature makes cognitive radars ideal candidates for target tracking

which can be realized thanks to a Bayesian approach.

The inception of radars that mimic neuronal computations was justified

by the increasing complexity of modern high performance radar challenges

(e.g. targets embedded in complex clutter, competing background target

settings, RF interference and so on) [14]. The block diagram in Figure 1.3

depicts the cognitive cycle which establishes the operating principles of such

radars. The cycle begins with the transmitter illuminating the environment

(left-hand side). The radar returns produced by the environment are fed

at the receiver (right-hand side) into two functional blocks: the radar-scene

analyzer and the Bayesian target-tracker (for those applications that require
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Figure 1.3: Block diagram of cognitive radar viewed as a dynamic closed-
loop feedback system as described in [2].

such processing). The tracker makes decisions in light of information on

the environment provided by the radar-scene analyzer. The transmitter, in

turn, illuminates the environment in light of the decisions made on possible

targets, which are fed back to it by the receiver. The cycle is then repeated

over and over again [2]. The radar-scene analysis builds on two sources of

information: radar returns and prior knowledge of the environment. In a

surveillance scenario the interference is typically dominated by clutter and

cognitive radars are very well suited to discern these unwanted echoes since

possessing information on both the clutter acting alone (prior knowledge of

the environment) and the clutter plus target (through the received signal).

Summarizing the characteristics that distinguish cognitive radars and

that are of interest towards the research topic of this thesis are:

� Joint optimization of receiver and transmitter according to known in-

formation on the environment;

� Good clutter rejection capabilities.
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1.6 Convex Optimization

In order to build a cognitive engine, advanced mathematical tools such as

convex optimization, machine learning, random matrix theory and so on

should be explored [15]. Convex optimization can be exploited to support

waveform optimization ( [15], [16], [17] and many others) as well as beam-

forming ( [11]).

A mathematical optimization problem has the form:

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

where:

� Optimization variable: x = (x1, x2, . . . , xn);

� Objective function: f0 : Rn → R;

� Constraint functions: fi : Rn → R;

� Limits or bounds of the constraints: b1, . . . , bm

A convex optimization problem is one in which the objective function is

convex and in which the constraints are convex sets. A function is convex if

it satisfies the inequality [18]:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

Graphically, this can be represented as depicted in Figure 1.4. This implies

that for a convex function if a local minimum exists, then the local minimum

is also the global minimum. This is a very important piece of information
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Figure 1.4: Graphic representation of a convex function (left-hand side) and
non-convex function (right-hand side)

when dealing with optimization problems. In a convex optimization prob-

lem, the constraints are convex sets. A set C is convex if the line segment

between any two points in C lies in C. It needs to be noted that this section

has the aim of introducing the reader in an informal but accessible way to

the main concept behind convex optimization. Due to the importance of

this topic, the formal definitions of convex sets and convex functions will be

introduced in Chapter 3.

1.7 Outline of the Thesis

The main problem discussed within this thesis, is the development of math-

ematical optimization techniques for waveform design in cognitive radars.

These techniques have been designed with an increasing level of sophist-

ication, starting from a bistatic model (i.e. two transmitters and a single

receiver) and ending with a cognitive network (i.e. multiple transmitting

and multiple receiving radars, one of which acting as centralized control-

ler). The environment under investigation always features strong signal-

dependent clutter and noise. All algorithms are based on iteratively optimiz-

ing the transmitted nearly-orthogonal waveforms and the receiver filter. The
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waveform optimization techniques are based on convex optimization tech-

niques and on the exploitation of initial radar waveforms characterized by

desired auto and cross-correlation properties. Finally, robust optimization

techniques are introduced to account for the assumptions made by cognit-

ive radars on certain second order statistics such as the covariance matrix

of the clutter. Indeed, an error on the assumed statistics can significantly

deteriorate the SINR, leading to a reduced target interception performance.

The main contributions within this thesis are therefore the various wave-

form optimization techniques that have been developed for increasingly com-

plex environments and scenarios.

More specifically, Chapter 2 discusses the relevant literature review. This

includes two sections regarding a general overview on cognitive radars and

tracking. Section 2.3 introduces waveform optimization techniques for cog-

nitive radars. This is further subdivided into a discussion on the import-

ance of the ambiguity function, waveform design for multiple-input multiple-

output (MIMO) radars, and the available literature review on cognitive

radars specifically. Section 2.4 outlines several contributions on robust op-

timization techniques, including methods developed specifically for beam-

formers. The following section discusses matched-illumination techniques.

Finally, some concluding remarks will be provided.

Chapter 3 discusses convex optimization techniques. This is an overview

of a rather general nature but it introduces the reader to optimization defin-

itions and techniques that are fundamental towards a thorough understand-

ing of this work. More specifically, Section 3.1 introduces a series of defin-

itions, including affine and convex sets, cones and convex functions. Some

practical examples are also provided. Furthermore, Section 3.2 discusses

canonical optimization problems including linear programming, quadratic
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programming and semidefinite programming.

Chapter 4 describes a methodology for waveform optimization for bistatic

radars. The reader will be introduced to the system model under investiga-

tion, followed by the formulation of the iterative problem both in terms of

filter optimization and waveform optimization. Finally, the performance of

such algorithm will be analyzed and some conclusions will drawn. It needs to

be noted how this chapter introduces the fundamental building block of all

research discussed within this thesis. Concepts that could be rather confus-

ing for the general case of M radars are here discussed for a bistatic model,

making this chapter propaedeutic towards a thorough understanding of the

subsequently discussed research.

Chapter 5 discusses waveform optimization techniques for coordinated

networks. At first the radar system model is described alongside with a

description of the main concepts behind the receiver filter optimization as

well as the orthogonal waveform optimization methodology. The chapter is

then divided into two main sections describing the different proposed iter-

ative system optimization techniques. Section 5.2 discusses an optimization

technique based on the accumulated power return. Section 5.3 introduces

iterative methods suitable for a cognitive network. This section is further

subdivided into Sub-Section 5.3.1, concerning selective optimization tech-

niques and Sub-Section 5.3.2 regarding max-min optimization techniques.

Both main sections include a performance analysis and some conclusions.

Chapter 6 introduces the reader to robust optimization techniques. The

first section discusses worst-case optimization techniques and it is followed by

a section on stochastic optimization. Section 6.4 introduces the novel topic

of clutter-specific robust optimization techniques. The following section in-

cludes a thorough performance analysis of the three different methods as well
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as comparisons between them. Finally, a concluding section is provided.

Chapter 7 presents robust matched-illumination techniques for through-

the-wall radars. Initially an overview of the through-the-wall problem for-

mulation is provided. This is followed by a section containing two proposed

optimization techniques well suited for such environment. Furthermore, a

performance analysis is outlined and followed by some conclusions.

Finally, Chapter 8 provides general conclusions and possible further de-

velopments for the work discussed within this thesis.



Chapter 2

Literature Review

In this chapter, the contents of the state of the art literature regarding cog-

nitive radars are summarized. At first a general overview on the topic is

presented, followed by a specific section on tracking. The latter isn’t of

direct interest towards the research discussed within this thesis but is a

very important aspect of cognitive radars. In the main section, a detailed

analysis on waveform design is provided. This is further arranged into two

main categories: waveform design through ambiguity function shaping and

waveform design for (cognitive) MIMO radars (i.e. with orthogonality con-

straints). It needs to be noted that the literature on cognitive radars is

still developing so some of the papers discussed in this section do not regard

cognitive radars specifically. Furthermore, a description about robust optim-

ization techniques will be provided as well as one on matched-illumination

techniques. Finally, some concluding remarks will be provided.

19
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2.1 Overview on Cognitive Radars

In recent years cognitive radars have become an active field of research and

many different aspects related to this topic have been discussed throughout

the years. This Section has the aim of introducing the reader to the main

concepts behind cognitive radars.

Some works provide a description of the system’s features. The work in [2]

is the first to theorize cognitive radars. This was followed in 2012 by an

updated view on cognitive dynamic systems (radar, control and radio) [19].

This is also the case of [14] where a cognitive fully adaptive radar system is

described. According to Guerci et al., cognition should be implemented via a

sense-learn-adapt (SLA) approach. In order to “sense”, transmit and receive

functions are jointly optimized to enhance performance but they should also

be utilized to enhance channel estimation. In order to “learn”, there is a

combination of novel sensing, knowledge-aided processing and expert sys-

tems techniques (rule based reasoning): such combined system essentially

replicates the decision process of a human subject matter expert. Finally, in

order to “adapt”, a radar must select a spatio-temporal transmit and receive

strategy and constantly incorporate more sophisticated techniques as they

become available. To fully exploit cognition, a MIMO probing approach is

introduced as a learning aid for signal-dependent channel effects.

Another very important system feature that has been discussed is the pos-

sibility of implementing more radars. A cognitive radar network (CRN) [20]

is a system that incorporates several radars working together in a cooper-

ative manner with the goal of realizing a remote-sensing capability far in

excess of what the radar components are capable of achieving individually.

To this end, the system incorporates a central base station to perform the
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fusion of individual radar outputs. A CRN can operate in two modes: in a

distributed cognitive network the individual radar components as well as the

central base station are all cognitive whereas in a central cognitive network

cognition is confined to a central base station. Some works refer to CRN as

MIMO Cognitive Radars [21].

The work in [22] proposes a way to optimize scheduling and power alloc-

ation in a cognitive radar network aimed at multiple target tracking. The

main idea around this paper is that to reduce the very high complexity of

an adaptive system including multiple radars and multiple targets, a hybrid

Bayesian filter and a posterior Cramér-Rao bound (CRB) should be imple-

mented to partition the state space into smaller subspaces and subsequently

find a suitable subset of antennae (and their transmit power) to be employed

in each tracking interval.

Some works concentrate on the clutter problem. An example can be

found in [23]. The objective of the method described in [23] is to provide

useful information to the Bayesian target tracker (BTT) on the target-plus-

clutter and clutter-alone data. A method based on the bivariate empirical

mode decomposition (a data-driven time series analysis tool especially suited

for non-linear, non-stationary data) is addressed to facilitate radar scene

analysis for cognitive radars. The method exploits prior knowledge of the

environment or, more specifically, on coherent sea clutter returns.

Many papers have been written on the topic of target tracking for cognit-

ive radars, examples are [24] and [25]. This is a consequence of the fact that

having prior and posterior probability information makes cognitive radars

ideal candidates for target tracking through a Bayesian target tracker. A

brief review of a couple of particularly interesting works is provided in the

next section.
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Waveform design is also of great interest in an adaptive system such as

cognitive radars. This can be performed through ambiguity function shap-

ing [8] and [9], by imposing similarity constraints on the code [26], by apply-

ing matched-illumination (MI) techniques on a target with known impulse

responses [27], [28], and in many other ways. Several papers exploit convex

optimization techniques for waveform optimization. Examples are [17], [21]

and [15].

More specifically, in [17] the author develops a way to obtain a trade-off

between competing design criteria: maximize the output SNR for a particu-

lar target impulse response and the mutual information between the received

signal and a Gaussian ensemble of targets. In addition, constraints on the

transmitted spectrum can be implemented. Haykin shows how the problem

can be transformed into a convex optimization problem in the autocorrela-

tion of the waveform. In order to make such algorithm feasible, the presence

of a radar scene analyzer (RSA) was necessary.

2.2 Tracking with Cognitive Radars

As mentioned above, having prior and posterior probability information

makes cognitive radars the ideal candidates for Bayesian target tracking.

Due to this reason, tracking could be one of the natural further develop-

ments of the topics discussed within this thesis and will therefore be shortly

outlined below.

Tracking has been implemented in cognitive radars right from the very

start [2] and it has then evolved into many different ideas. Particularly re-

lated to the topics discussed within this thesis, are the works in [24] and [29].

These papers develop the problem of adaptive beamsteering for search-and-
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track applications within a cognitive radar network. The aim of the analyzed

platform is that of calculating two position parameters and two velocity

parameters (both radial and tangential). The channel’s resolution cells are

represented so that each one contains the probability of a target being ab-

sent or present. In order to create such probabilistic representation of the

radar channel, two radars are cooperating. These are positioned in a way

that allows the system to never be blind towards neither azimuth nor range.

In order to optimize the placement of the beam, the entropy of the channel

has been calculated for every cell. Assumptions are made about which cells

are more likely to see new targets. In addition to this searching strategy,

a Kalman filter has been implemented to track the targets. Decisions on

prioritizing searching or tracking activities are made according to the values

of the beam-position entropy and tracked-target entropy.

This work is of particular interest towards this research due to similarities

in the implemented systems: in both cases two separated radars are used

and beamsteering is a key feature in the implementation of the algorithm.

2.3 Waveform Design for Cognitive Radars

The main contributions discussed within this thesis focus on waveform

design. In the following subsection, further details will be given on state-

of-the-art waveform optimization techniques. Due to the fact that cognitive

radars are a rather new topic, not all of the papers that are described in the

following section regard cognitive radars specifically, but all are important

towards a general understanding of waveform techniques for radar applica-

tions.
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2.3.1 Ambiguity Function Shaping

As described in Section 1.2, the ambiguity function (AF) was first introduced

to characterize the local and global resolution properties of time-delay and

Doppler for narrowband waveforms. The AF can therefore be used as a

powerful tool to evaluate the properties of waveforms and this is how it has

been utilised within this thesis. Nonetheless, the AF can also be used to

directly design waveforms with desired features. This aspect has not been

investigated within this thesis but it would be a point of extreme interest

for further developments as it would allow to avoid the use of a known

initial waveform to establish and maintain good auto and cross-correlation

properties of the waveforms.

Originally, the AF was intended towards a single radar (i.e. single wave-

form) scenario. The advent of MIMO radars made it necessary to extend

the initial idea to larger classes of waveforms and radar systems. In [30]

San Antonio et al. extended the idea of waveform Ambiguity Functions to

MIMO radars. MIMO Ambiguity Functions are developed so that they can

simultaneously characterize the effects of array geometry and transmitted

waveforms on resolution performance. The result is a function of range,

Doppler and azimuth angle. This cube of data is not of immediate inter-

pretation.

The work in [31] elaborates on the previously discussed work [30] and derives

some mathematical properties of the MIMO AF. Additionally, Chen et al.

implement an optimization technique using frequency-hopping waveforms

based on the optimization of the MIMO ambiguity function. Summariz-

ing their algorithm, they impose a structure on the pulses (i.e. the general

definition of frequency-hopping pulses) and design the parameters (i.e. the

frequency-hopping code) by selecting a cost function which puts penalties
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on the peak values of the AF which are not at zero-range and imposing a

constraint which will guarantee the orthogonality of the final waveforms.

A similar work can be found in [32] which also describes an algorithm for

adaptively designing orthogonal frequency-hopping waveforms according to

the position of the target. The radar implemented in this work is a colocated

uniform linear array (ULA) with separated transmit/receive (STR) capab-

ilities. The proposed algorithm is feasible due to the fact that for a bistatic

radar, geometry factors play an important role in the shape of the ambiguity

function as the system configuration is varied: the closer the target to the

baseline, the poorer the resolution performance the radar will be able to

obtain: when the target is on the baseline neither one of the two radars will

be able to provide any additional information as they will both only “see”

along the range axis.

More interestingly, Aubry et al. worked on ambiguity function shaping for

cognitive radar via complex quadratic optimization [8]. They devise an

algorithm which, exploiting prior knowledge of the environment (e.g. geo-

graphic information system, meteorological data, clutter models and so on),

locates the range-doppler bins where strong unwanted returns are foreseen

and, consequently, transmit a waveform whose ambiguity function exhibits

low values in those interfering bins.

2.3.2 Waveform Design for (Cognitive) MIMO Radars

In a cognitive radar network (CRN), several radars could work together

in a cooperative manner [20] combining the benefits of both cognition and

diversity offered by MIMO radars. These radar systems employ multiple

transmit waveforms and have the ability to jointly process signals received

at multiple receiver antennae [33]. Distributed radars provide potential ad-



Chapter 2. Literature Review 26

vantages such as enlarging coverage areas, improving detection performance

and many others [34]. The disadvantages of such radar networks are the

interference among radar transceivers, the requirement of precise location

information of sensing nodes, synchronization and the need for data fu-

sion [34].

From a waveform design point of view, the disadvantages of MIMO radars

imply that there is a strong requirement to develop orthogonal or nearly-

orthogonal waveforms. All contributions within this thesis consider nearly-

orthogonal waveforms.

Furthermore, in recent years many works considered both cognitive

radars and MIMO systems however, unlike this thesis, not much work has

been carried out about the added value of merging these two concepts. This

subsection provides an overview of the relevant techniques that can be found

within literature.

Optimization of waveform lies at the heart of radar design. Various cri-

teria have been used for waveform design. For example, one of the earlier

works [35] considered mutual information for waveform design. Further de-

velopments of this concept can be found in [36] and [37], where the mu-

tual information between subsequent radar returns is used as a figure of

merit for ultra-wideband waveform optimization. In [38] maximization of

mutual information between the target impulse response and the received

echoes is used to improve the target detection and feature extraction per-

formance. The works in [21] and [39] are aimed at sequentially designing a

desired waveform by minimizing the Bayesian Cramér-Rao bound [40] under

some constraints such as constant-modulus and peak-to-average-power ra-

tio for the transmit beamforming. Finally, [34] provides a methodology for

the design of a family of frequency-selective orthonormal wavelets. Within
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the context of cognition, matched-illumination has been proposed in [41]

and [28]. A comprehensive outline of signal to noise ratio SNR-based and

matched-illumination-based waveform design techniques has been proposed

in [41] for both known and stochastic targets, in a monostatic radar scen-

ario. Furthermore, the work in [42] proposes an optimal waveform design

method and a fast hierarchical optimization method to optimize a wideband

cognitive radar (WCR) waveform for joint target radar signature (TRS) es-

timation and target detection. In this work the authors reflect on the fact

that cognitive radars strongly rely on prior knowledge of the surrounding

environment. This is viewed as long-term memory, and it can be used in

transmit waveform design for a relative long time. In contrast, the target

radar signature of the wideband radar is target-radar orientation sensitive

and it varies alongside with the relative motion between the radar and the

target. In this case, the TRS estimation update is needed as a feedback.

Otherwise, the mismatch between the outdated and the actual TRS may

degrade the radar performance significantly, i.e., detection and tracking per-

formance degradation resulting from output signal to clutter plus noise ratio

(SCNR) loss. Hence, in the waveform design, the TRS estimation perform-

ance should also be considered for the case of wideband cognitive radars,

which is a key difference between WCR waveform design and the traditional

one.

Huleihel et al. propose in [21] two different methods to iteratively estim-

ate desired waveforms. The first method consists in minimizing the CRB of

the estimation performance. This can be solved with convex optimization

techniques. It is computationally fast but for low SNRs and/or number of

observations, large errors can occur. The second method consists in minimiz-

ing the Reuven-Messer bound of the estimation performance. This problem
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is non-convex and was solved with the steepest descent method (due to this

design choice, the solution depends on the initialization of the covariance

matrix). This method is computationally more complex but obtained better

results than the first waveform design method. In order to solve this prob-

lem, the paper assumes both range and Doppler information on the target

as known. The Reuven-Messer bound, although less used or known than the

Cramér-Rao bound, is also one of the minimal available bounds on the mean

square error (MSE) and is therefore used in order to predict the best achiev-

able performance of an estimator for a given observation model [43], [44].

The majority of works on waveform design for MIMO radars though do

not specifically regard cognitive radars. The work in [45] proposes a set

of nearly orthogonal waveforms based on de-ramping of linear frequency

modulated (LFM) pulses for MIMO systems. The de-ramping processing

technique is a frequency-domain method of range measurement that is used

for compression of LFM signals: an incoming signal is mixed with a replica

of the transmitted chirp. As soon as both inputs have the same rate of fre-

quency change, the output frequencies are constant tones. The input signals

are linear, so there is a mapping of time offset onto frequency offset. In other

words, targets at different ranges give echoes on different beat frequencies.

Two interesting examples can be found in communication systems. The

authors in [46] and [47] describe a method for modifying Walsh-Hadamard

sequences to achieve correlation properties suited for asynchronous direct

sequence (DS) code division multiple access (CDMA) applications. Walsh-

Hadamard codes are easy to generate and orthogonal, but only in the case of

perfect synchronization. As a matter of fact, the cross-correlation between

two Walsh-Hadamard sequences can rise considerably in magnitude if there

is a non-zero delay shift between them. In order to solve this problem, the
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authors suggest the use of orthogonal polyphase spreading sequences. An-

other work that implements Walsh-Hadamard sequences is the previously

mentioned [13]. Here the authors code each of the transmitted LFM wave-

forms with a Hadamard sequence to obtain orthogonality.

In [15] the authors developed and demonstrated for the first time an

ultrawideband (UWB) MIMO cognitive radar. In fact, the experiment scen-

ario comprises a computing engine (a computer running the Matlab code), a

field programmable gate array (FPGA) transmitter and a digital phosphor

oscilloscope receiver with corresponding radio frequency (RF) components

(two transmission antennae and two receiving). A narrowband interference

is generated by an arbitrary waveform generator (AWG).

The signal-processing problem discussed therein is of a dual nature: at

first the (single or multiple) target’s position needs to be estimated. Sub-

sequently, both the waveform and the receiver filter are optimized with con-

vex optimization techniques. The problem is formulated as a quadratically

constrained quadratic program (QCQP) that is then relaxed into a semidef-

inite programming (SDP) problem. More specifically, for the estimation of

target locations in two-dimensional space, the estimation algorithm is based

on multilateration. The equations for both single target localization and

multiple targets localizations are derived. Since these are both based on

time of arrivals (TOA), it is of primarily importance for this implement-

ation to design waveforms with very good auto-correlation properties. In

fact, while designing the optimization problem, the authors impose both a

maximization of the correlation peak and a constraint on the correlation

sidelobes. The other constraints imposed by the optimization problem are

good cross-correlation properties (given the MIMO nature of the system), a

constraint on the energy of both the transmitter waveform and the receiving
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filter and noise suppression.

Also of great importance are the works [16], and [48]. These are quite

similar to one another and are the initial building block of the research dis-

cussed within this thesis. In these studies the authors consider the problem

of cognitive transmit signal and receiver filter design for a point-like target

embedded in a highly reverberating environment (i.e. the clutter is con-

sidered to be signal-dependent and quite strong: as a matter of fact they

assume to have 100 different sources of clutter for each range ring). The

optimization procedure devised by the authors of [16] consists of iteratively

optimizing both the transmit signal and receiver filter. They use the SINR

as objective function of the optimization and impose two constraints on the

waveform. The first one is to ensure finite energy. The second one is to

ensure that the optimized waveform does not deviate significantly from an

initial waveform that has certain desired characteristics (they chose Barker

20). In this research the authors of [16] implement a monostatic radar and

assume to have knowledge of the environment through national land cover

data combined with RCS clutter models for the terrain types declared by

the digital terrain map. The optimization problem, which is originally non-

convex, can be modified into a semidefinite programming (SDP) problem

thanks to the work developed in [49]. In order to evaluate the perform-

ance of the estimated waveform, a key role has been given to the ambiguity

function.

2.4 Robust Optimization Techniques

Cognitive radars heavily rely on previous knowledge. The clutter environ-

ment is determined by prior information such as previous radar measure-
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ments, land cover databases or by using estimates based on training signals.

However, it is difficult to obtain an exact description of the clutter. There-

fore, radar waveform design should take into account uncertainties associ-

ated with environmental parameters. Traditionally, this can be done in two

ways: with worst-case optimization techniques [50–52] and with stochastic

optimization techniques [53].

This thesis implements both traditional worst-case and stochastic op-

timization techniques and additionally introduces a completely novel robust

optimization technique for radars in signal-dependent clutter (as described

in Chapter 6). This section introduces the reader to a more thorough un-

derstanding of the state-of-the-art techniques within this field.

An interesting example of robust radar waveform in the presence of

signal-dependent interference can be found in [54]. This work deals with

the robust iterative optimization of the transmit signal and receive filter

bank for the case of a monostatic radar and assumes unknown Doppler shift

of the target. In this work the worst-case SINR at the output of the filter

bank is used as a figure of merit for the optimization. A suitable iterat-

ive reformulation of the initial non-convex max-min problem, monotonically

improves the worst-case SINR. In [55], an algorithm for robust waveform

design of wideband cognitive radar for extended target detection was de-

veloped. The work proposes a max-min approach to design the waveform

by considering the worst-case SINR over the uncertainty region (which was

bound by a Frobenius norm). This was then re-formulated into a convex

optimization problem. Furthermore, in [56] a robust method for jamming

power allocation strategy for MIMO radar based on minimum mean square

error (MMSE) and mutual information is presented. The robustness was

introduced when the target, environment or waveform information were not
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perfectly known. The worst case performance was optimized considering

two different cases of uncertainty. Due to the fairly recent introduction of

cognitive radars, not many works can be found on robust techniques aimed

at optimizing them specifically.

2.4.1 Robust MVDR Optimization Techniques

In literature, robust optimization techniques have been extensively de-

veloped for the case of MVDR beamformers. By noticing the similarit-

ies between the MVDR beamformer problem and the matched-illumination

problem for through-the-wall radars, such techniques have been used in

Chapter 7 for cognitive radars. This subsection introduces the reader to

an overview of the available techniques.

In [57] Stoica et al. propose robust optimization techniques for capon

beamforming. The authors model the uncertainty on the steering vector

of the signal-of-interest as belonging to an uncertainty ellipsoid. This way

they were able to directly obtain a robust estimate of the power of the

signal of interest without any intermediate calculation of the weight vector.

In [58] the authors propose robust adaptive beamforming using worst-case

performance optimization via second-order cone programming. The authors

assume the steering vector distortions to be bounded by some known

constant. This work was then further developed in [59], where a good

overview on robust adaptive beamforming using worst-case performance

optimization was provided. The method used in the second paper is

diagonal loading. The key idea behind traditional diagonal loading is to

regularize the solution for the weight vector by adding quadratic penalty

term to the objective function. In this work, Gershman et al. propose to

introduce uncertainty sets and optimize the worst-case performance. This
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leads to a “distortionless response constraint” which, for all mismatched

steering vectors, guarantees that the array response is not smaller than one.

The work in [60] shows how a natural extension of the Capon beamformer

to the case of uncertain steering vectors, also belongs to the class of diagonal

loading and that the amount of diagonal loading necessary can be precisely

calculated based on the uncertainty set of the steering vector.

In [61], an extension of minimum variance beamforming that explicitly takes

into account variation or uncertainty in the array response is presented.

The uncertainty is modeled via an ellipsoid. The robust weight selection

was cast as a SOCP that can be solved efficiently using Lagrange multiplier

techniques. It was proven that, if the ellipsoid reduces to a single point, the

method coincides with Capon’s method. Particular detail is given in [61]

about ellipsoidal modeling and anisotropic uncertainty.

In [38] an improved approach to the worst-case robust adaptive beamform-

ing for general-rank signal models is proposed. The method works by taking

into account the positive semidefinite constraint for the mismatched signal

covariance matrix. The problem is solved iteratively by using semidefinite

programming.

In [62] an overview of previous robust beamforming techniques can be

found. These include diagonal loading, the eigenspace-based beamformer

method and covariance matrix reconstruction. Subsequently the authors

in [62] propose a method based on the analysis of the direction of arrival

(DOA) matrix structure for the case of uniform linear array.

In [63] robust MVDR beamforming techniques are proposed for a colocated

MIMO radar in the presence of powerful jamming signals. A method

was designed for known jammers in the sector of interest by imposing a

distortionless response towards the direction of interest while placing nulls
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in the directions of the jammers. A second method concerned unknown

in-sector jammers and/or out-of-sector interfering sources. Both problems

were solved by using convex optimization techniques.

Furthermore, in the last couple of years the following works have been

published with additional developments. In [64], a robust MIMO radar

waveform design is proposed. The aim is to improve the worst-case

estimation accuracy in the presence of clutter by exploiting the Cramér-Rao

bound of the angle of arrival. To tackle the resultant NP-hard problem,

a new diagonal loading based iterative method is developed to design the

waveform covariance matrix for improving the worst-case accuracy. Each

step is formulated as a convex optimization problem, and hence can be

solved efficiently. An optimal solution to the initial issue is obtained via the

least squares (LS) fitting of the solution acquired by the iterative algorithm.

In [65], Aubry et al. propose a constrained design of radar Doppler filters

by considering the output SINR as performance measure. To account for

possible mismatches between the design and the operative conditions, some

specific uncertainty sets have been associated with both the target Doppler

frequency and the interference covariance matrix and introduced as con-

straints of the optimization problem. Additionally, a constraint on the filter

sidelobe response is enforced to control the amount of interference energy

produced by targets lying in the same range cell as the target of interest. The

problem, initially formulated as a constrained non-convex max-min optim-

ization problem, is then solved with a polynomial-time technique exploiting

the representation of non-negative trigonometric polynomials via linear mat-

rix inequalities, the spectral factorization theorem, and the duality theory.

In [66], the joint robust design of the transmit waveform and filtering struc-
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ture for a polarimetric radar is proposed. In this work the worst case signal-

to-interference plus noise ratio (SINR) is considered as the figure of merit to

optimize under both a similarity and an energy constraint on the transmit

signal. The developed procedure is of an iterative nature.

In [67], a robust design method is proposed to optimize a compressive sensing

multiple-input multiple-output (CS-MIMO) radar system in the presence of

clutter. One of the drawbacks of MIMO radars is high computational com-

plexity of signal processing due to the large amount of received data from

all receive antennas. To cope with this problem, compressive sensing (CS)

techniques can be exploited to reduce the amount of received data using a

measurement matrix. In their work, Shahbazi et al. propose to consider

uncertainty on this measurement matrix. A maxmin optimization problem

was devised to maximize the worst-case signal-to-clutter-plus-noise ratio.

Some works also developed robust stochastic techniques rather than

worst-case ones. An example is [68] where robust transmit beamforming

techniques for multi-user MIMO systems are developed through a probab-

ilistic constraint approach. The suggested method maximizes the average

signal power while keeping the leakage power below an acceptable level. The

probabilistic constraint is transformed to a deterministic convex one through

the application of the Markov inequality.

In probability theory Markov’s Inequality gives an upper bound for the prob-

ability that a non-negative function of a random variable is greater than or

equal to some positive constant:

Pr(X ≥ a) ≤ E{X}
a

, (2.1)

where Pr indicates the probability operator, X is a non-negative random
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variable, a > 0 is a constant, and E indicates the expected value.

In [69] a joint robust transmit/receive adaptive beamforming for MIMO

radar based on probability-constrained optimization approach is developed

in case of both complex Gaussian and arbitrary distributed mismatches. The

complex Gaussian probability is transformed into a deterministic constraint

thanks to the cumulative distribution function (CDF). This is a distribution

giving the probability that a random variable is less than given values. For

the case of arbitrary distribution, the authors transform the probabilistic

constraint thanks to the Chebyshev inequality. This states that for any

zero-mean random variable τ with variance σ2
τ and positive real number α:

Pr{|τ | ≥ α} ≤ σ2
τ

α2
. (2.2)

The thus formulated probability-constrained robust beamforming problem

is initially non-convex and NP-hard. However, the authors reformulate its

cost function into a bi-quadratic function while splitting the probability

constraint into transmit and receive parts. Subsequently, a block coordinate

descent method based on second-order cone programming is developed to

address the problem.

2.5 Matched-Illumination Techniques

A technique that utilizes a priori information is matched-illumination (MI) as

it exploits known information about the properties and characteristics of the

target to improve target detection and classification. It is very important to

not confuse matched-illumination with mutual information techniques. The

latter, also abbreviated as MI within the literature, is a probability theory

tool and it is a measure of the mutual dependence between the two random
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variables.

Matched-illumination techniques have been considered within this thesis

in Chapter 7. These have been introduced to provide the reader with a

different example of cognitive radar and the way that robust techniques can

improve its performance. This section outlines the available literature on

the topic.

MI is a rather new concept and it has been proposed in only a limited

amount of works. The work in [28] discusses matched-illumination waveform

design for a multistatic through-the-wall radar system where the target is

assumed to be stationary and with a known impulse-response and inspired

the work in Chapter 7. Furthermore, a comprehensive outline of SNR-based

and matched-illumination-based waveform design techniques has been pro-

posed in [41] for both known and stochastic targets, in a monostatic radar

scenario. In addition the problem of matched waveform design in signal-

dependent interference is extensively addressed within.

In [70], the impact of wall-target interaction on matched-illumination wave-

forms for through-the-wall radar imaging is examined via finite-difference

time-domain simulation. In this work the authors are mainly concerned

about how matched-illumination theory depends on the a priori knowledge

of the target and environment. Usually, an assumption of minimal inter-

action between target and wall is made for most waveform design tech-

niques. The target return from this matched-illumination waveform design

is called primary-wave target response. The target return from a matched-

illumination waveform determined by including all wave physics is called

fullwave target response. In their work the authors consider returns from

various wall–target scenarios as a function of the target-to-wall separation

in order to examine the effectiveness of the primary-wave target response
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in the matched-illumination implementation. The primary-wave target re-

sponse is shown to effectively maximize the SINR in through-wall radar

applications where the wall–target interaction is minor. The ability of the

primary-wave target response to maximize the SINR can be degraded by

relatively minor errors in the wall-target transfer function caused by the

incomplete wall-target physics inherent to the scheme. In such cases, the

resulting matched-illumination waveform spectrum was generally character-

ized by narrowband energy concentrated at suboptimal frequencies.

In [71], ambiguity functions are obtained for a radar using matched-

illumination transmit signals for the detection of range-spread targets in the

presence of clutter. The transmit signals are adapted to target and interfer-

ence spectra and are filtered optimally in the receiver; they are designed to

maximize SINR power ratios at the receiver’s output. The authors proved

that ambiguity functions resulting from using optimal MI constant envelope

waveforms demonstrate superior resolution characteristics compared to the

classic linear frequency-modulated (LFM) signals employing optimal pulse

compression.

2.6 Conclusions

In recent years cognitive radars have become an active field of research.

Their sense-learn-adapt approach makes them an invaluable tool for effective

target detection and tracking in complex environments. Waveform design

is a key aspect of any signal processing optimization for radar applications.

Signals that feature excellent auto and cross-correlation properties are of

particular importance in MIMO systems. Furthermore, due to the fact that

cognitive radars strongly rely on prior knowledge, which is not available
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precisely, it is of paramount importance to implement robust optimization

techniques. However, unlike the case of robust beamforming techniques, still

not many works have been carried out on cognitive radars specifically. This

thesis therefore introduces and further develops concepts and techniques

that haven’t been fully exploited for cognitive radars.



Chapter 3

Convex Optimization

The use of optimization methods is of paramount importance for signal

processing applications. Amongst the different available techniques, convex

optimization is a computational tool of central importance in engineering,

thanks to its ability to solve very large, practical problems reliably and

efficiently in polynomial time [72].

Convex optimization techniques are based on the minimization of a con-

vex objective function subject to convex constraints. In this context, a local

optimum is also a global optimum [73]. This makes it a very powerful tool

to solve optimization problems and several numerical algorithms have been

developed to solve such problems efficiently. Examples of available Matlab

toolboxes are CVX Software for Disciplined Convex Programming [74], Se-

DuMi [75] and Yalmip [76]. This makes such optimization techniques even

more attractive for many engineering applications.

Majority of optimization problems are not originally in convex form. It is

therefore of primary importance to gain the skills and knowledge necessary

to recognize which problems could be reformulated in convex form.

In the following chapter the basic optimization concepts, frameworks and

40
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tools that are most relevant towards the understanding of this thesis will be

outlined. The first section includes the definitions of convex sets and convex

functions. The second section outlines some canonical optimization prob-

lems such as linear programming, quadratic programming, second order cone

programming and semidefinite programming. The third section introduces

Lagrangian multipliers. Finally, a concluding summary will be provided.

3.1 Fundamental Convex Definitions

In order to recognize convex optimization problems, it is of great importance

to gain knowledge on basic concepts and models such as affine and convex

sets, cones and functions.

3.1.1 Affine Sets

A set C ⊆ Rn is affine if the line through any two distinct points in C lies

in C, i.e. for any x1,x2 ∈ C and θ ∈ R, it is true that θx1 + (1− θ)x2 ∈ C.

In other words, C contains the linear combination of any two points in C,

provided the coefficients in the linear combination sum to one [18]. This can

be well understood by looking at Figure 3.1. Generalizing to more than two

points:

A point in the form θx1 + · · ·+ θkxk, where θ1 + · · ·+ θk = 1 is

referred to as an affine combination of the points x1, . . . ,xk. An

affine set contains every affine combination of its points [18].

Every affine set is also convex.
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Figure 3.1: Representation of an affine set C. As it can be seen, the line
through any two distinct points in C, lies in C. In other words, for any
x1,x2 ∈ C and θ ∈ R, θx1 + (1 − θ)x2 ∈ C. Values of θ between 0 and 1
correspond to the line segment between x1 and x2.

3.1.2 Convex Sets

A set C is convex if the line segment between any two points in C lies in

C, i.e. if for any x1,x2 ∈ C and any θ with 0 ≤ θ ≤ 1, it is true that

θx1 + (1− θ)x2 ∈ C. Generalizing to more than two points:

A point in the form θx1 + · · ·+ θkxk, where θ1 + · · ·+ θk = 1 and

θi ≥ 0 with i = 1, . . . , k is referred to as a convex combination

of the points x1, . . . ,xk. A convex combination of points can be

thought of as a weighted average of the points. A set if convex

if every point in the set can be seen by every other point, along

an unobstructed straight path between them [18].

This fact can be well appreciated by looking at Figure 3.2. A convex combin-

ation can be generalized to include infinite sums, integrals and probability

distributions.

3.1.3 Convex Cones

A set C is called a cone, or nonnegative homogeneous, if for every x ∈ C

and θ ≥ 0, it is true that θx ∈ C. A set C is a convex cone if it is convex
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Figure 3.2: Representation of a convex and a non-convex set. A hexagon
which includes its boundary (to the left) is a convex set: every point in the
set can be seen by every point along an unobstructed straight path between
them. The shape to the right is a non-convex set. As it can be clearly seen
from the image, the line segment between the two points in the set is not
entirely contained in the set.

and a cone, which means that for any x1,x2 ∈ C and θ1, θ2 ≥ 0, it is true

that θ1x1 + θ2x2 ∈ C. Generalizing to more than two points:

A point in the form θx1 + · · · + θkxk with θi ≥ 0 with i =

1, . . . , k is refereed to as a conic combination of the points

x1, . . . ,xk. If xi are in a convex cone C, then every conic com-

bination of xi is in C. Conversely, a set C is a convex cone if and

only if it contains all conic combinations of its elements [18].

3.1.4 Positive Semidefinite Cones

The convex cone Sn+ should be defined as a set of symmetric positive semi-

definite matrices:

Sn+ = {X ∈ Sn|X � 0}

If θ1, θ2 ≥ 0 and A,B ∈ Sn+, then θ1A + θ2B ∈ Sn+. As a matter of fact,

from the definition of semidefiniteness, for any x ∈ Rn:

xH(θ1A + θ2B)x = θ1x
HAx + θ2x

HBx ≥ 0, (3.1)
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if A � 0, B � 0 and θ1, θ2 ≥ 0. For instance, a positive semidefinite cone in

S2 is:

X =

x y

y z

 ∈ S2
+ (3.2)

with x ≥ 0, z ≥ 0 and xz ≥ y2.

3.1.5 Examples on Sets and Cones

A few practical examples are as follows:

� The empty set, a single point, a line and the whole space Rn are affine;

� A line segment is convex.

A convex set is more restrictive than an affine set since it also includes the

condition that θi ≥ 0 with i = 1, . . . , k. Other sets are hyperplanes and

halfspaces, Euclidean balls and ellipsoids, norm balls and norm cones and

polyhedra. For further details on these sets, the reader can refer to [18], [72]

and [73].

3.1.6 Convex Functions

A function f : Rn → R is convex if domf is a convex set and if for all x,

y ∈ domf , and θ with 0 ≤ θ ≤ 1, it is true that:

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), (3.3)

where domf denotes the domain of function f . Geometrically, this inequal-

ity means that the line segment between (x, f(x)) and (y, f(y)) lies above

the graph of f . This can be well appreciated by looking at Figure 3.3.

f is concave if −f is convex [18].
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Figure 3.3: Graph of a convex function. As it can be seen, the line segment
(i.e. the chord) between (x, f(x)) and (y, f(y)) lies above the graph of f .
This is true for any two points.

Figure 3.4: Geometrical interpretation of a first-order condition. If f is
convex and differentiable, then f(y) ≥ f(x) +∇f(x)H(y− x) for all x,y ∈
domf . If f was non-convex, the first order derivative would at some point
intersect the function.

For an affine function there is equality in Equation (3.3). An affine function

is both convex and affine.

3.1.6.1 First-Order Conditions

If f is differentiable (i.e. its gradient ∇f exists at each point in domf),

then f is convex if and only if domf is convex and:

f(y) ≥ f(x) +∇f(x)H(y− x), (3.4)

holds for all x,y ∈ domf [18] This can be easily understood by looking at

the geometrical interpretation in Figure 3.4.
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3.1.6.2 Second-Order Conditions

If f is twice differentiable (i.e. its Hessian or second derivative ∇2f exists

at each point in domf), then f is convex if and only if domf is convex and

its Hessian is positive semidefinite for all x ∈ domf :

∇f(x)2f(x) � 0. (3.5)

A clear example of this is a quadratic function f : Rn → R with domf =

Rn:

f(x) = xHPx + qHx + r, (3.6)

with P ∈ Sn, q ∈ Rn, and r ∈ R.

f is convex if and only if P � 0 and concave if and only if P � 0 (and

strictly convex if P � 0 [18].

3.1.7 Examples on Convex Functions

Examples of convex functions on R are:

� Exponential function, exp(ax) is convex on R, for any a ∈ R;

� Power function, xa is convex on R++ when a ≥ 1 or a ≤ 0 and concave

for 0 ≤ a ≤ 1;

� Logarithm.

Examples of convex functions on Rn are:

� Norms;

� Max-functions, f(x) = max{x1, . . . ,xn};

� Geometric mean.
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3.2 Canonical Optimization Problems

In this section some fundamental optimization problems are described. Solu-

tion codes and toolboxes are available for these categories of optimization

problems. Thus, if any problem at hand can be cast into one of these forms,

then it can be solved efficiently. There are several techniques that can be

used to reformulate problems in standard form (e.g. change of variables,

eliminating or introducing equality constraints and so on). However, these

methods are outside the scope of this introductory chapter. The reader can

refer to [18] or [72] for further details.

3.2.1 Linear Programming (LP)

When the objective and constraint functions are all affine, the problem is

called a linear program (LP). A general linear program has the form:

minimize cHx + d

subject to Gx � h

Ax = b,

(3.7)

where G ∈ Rm×n and A ∈ Rp×n [18].

3.2.2 Quadratic Programming (QP)

A convex optimization problem is called quadratic program (QP) if the

objective function is (convex) quadratic, and the constraint functions are
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affine. This can be expressed in the form:

minimize 1
2
xTPx + qTx + r

subject to Gx � h

Ax = b

(3.8)

where P ∈ Sn+ and G ∈ Rm×n, and A ∈ Rp×n [18].

In a quadratic program the aim is to minimize a convex quadratic function

over a polyhedron (i.e. the feasible affine set).

3.2.3 Quadratically Constrained Quadratic Program

(QCQP)

A convex optimization problem is called a quadratically constrained quad-

ratic program (QCQP) if the objective as well as the inequality constraint

functions are (convex) quadratic. This can be represented in the form [18]:

minimize 1
2
xTP0x + qT0 x + r0

subject to 1
2
xTPix + qTi x + ri ≤ 0, i = 1, . . . ,m

Ax = b

(3.9)

where Pi ∈ Sn+, i = 1, . . . ,m. This type of problem can be relaxed in a

semidefinite programming problem (SDP).
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3.2.4 Second-Order Cone Programming

A second-order cone program (SOCP) is a convex optimization problem in

the form:

minimize fTx

subject to ‖Aix + bi‖2 ≤ cTi x + di, i = 1, . . . ,m

Fx = g

(3.10)

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, and F ∈ Rp×n. A

constraint in the form:

‖Ax + b‖2 ≤ cTx + d

is defined as a second-order cone constraint.

3.2.5 Semidefinite Programming (SDP)

In semidefinite programming, one minimizes a linear function subject to

the constraint that an affine combination of symmetric matrices is positive

semidefinite. Such a constraint is nonlinear and non-smooth, but convex,

so semidefinite programs are convex optimization problems. Semidefinite

programming unifies several standard problems (i.e. linear and quadratic

programming) and finds many applications in engineering and combinatorial

optimization [77]. These are in the form:

minimize cTx

subject to x1F1 + · · ·+ xnFn + G � 0

Ax = b
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where G,F1, . . . ,Fn ∈ Sk, and A ∈ Rp×n. A standard form SDP has linear

equality constraints and a matrix non-negativity constraint on the variable

X [18]:

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0,

where C,A1, . . . ,Ap ∈ Sn, and A ∈ Rp×n.

3.3 Lagrangian Multipliers

Lagrangian multipliers are a way to solve a system of equations or inequal-

ities within an optimization problem by writing the objective function and

constrains as a series of weighted sums. Suppose the optimization problem

at hand is in the form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

(3.11)

with variable x ∈ Rn. Then the associated Lagrangian L can be defined as:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (3.12)

where:

� λi is the Lagrange multiplier associated with the ith inequality con-

straint fi(x) ≤ 0;

� νi is the Lagrange multiplier associated with the ith equality (affine)

constraint hi(x) = 0.
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The Lagrange dual function is the minimum value of the Lagrangian over

x. Since the dual function is the pointwise infimum of a family of affine

functions it is concave, even when the initial optimization problem (3.11) is

not convex [18].

3.4 Conclusions

In this chapter various convex optimization definitions and problems have

been outlined. These are all of fundamental relevance in order to fully under-

stand the problems and equations developed within this thesis. Furthermore,

they are of a general importance towards many engineering problems since

they can be solved efficiently and with freely available toolboxes.



Chapter 4

Waveform Design for Bistatic

Radars

The following analysis, inspired by [16] and [48], develops the design of trans-

mit signals and receiver filter for the case of a bistatic cognitive radar. The

environment is that of signal-dependent clutter and the figure of merit that

is used is the SINR at the receiver filter. In order to estimate the transmis-

sion codes, a similarity constraint is imposed. This method is well estab-

lished in the literature and examples can be [78] and [26]. However, thanks

to the introduction of bistatic features to the model, the work discussed

within this chapter has been published in [79]. It needs to be noted that

this chapter introduces the reader to the main concepts of the multistatic

cognitive model and sets itself at the foundation of a progressively more

sophisticated framework that will peak in Chapter 6 with the development

of robust optimization techniques for a cognitive radar network.

This chapter is organized as follows. In Section 4.1 the system model is

described and the equations characterizing both the observations and their

statistics is presented. In Section 4.2 the problem is formulated. More
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specifically, the figure of merit is explained alongside with the needed con-

straints. Specific sub-sections describe the receiver filter optimization and

subsequent optimization of the orthogonal codes. In Section 4.3 the per-

formance of the proposed algorithm is analyzed. Finally, some conclusions

are provided.

4.1 System Model

A bistatic cognitive radar system where each radar transmits a coherent

burst of N pulses is considered.

s1 = [s1(1), s1(2), . . . s1(N)]T ∈ CN ,

s2 = [s2(1), s2(2), . . . s2(N)]T ∈ CN ,

denote the two radar codes, on which unit norm is imposed: ‖s1‖ = 1, and

‖s2‖ = 1. Also, in order to avoid unwanted correlation between the two

signals, s1 and s2 are assumed to be orthogonal to each other: sH
1 s2 = 0.

In the considered model, both radars transmit but only Radar-1 receives

and processes the signals. Hence Radar-1, which is the central radar where

cognition is confined, determines the most appropriate waveforms for the

subsequent transmission and instructs the second radar as appropriately

through a local backbone communication network. In this model, depicted

in Figure 4.1, the radars scan an area of Nc ≤ N range bins (for a range

unambiguous scenario Nc = 1 needs to be selected), each of them subdivided

into L azimuth bins. The subscript (r, i) will be used to identify a specific

range-azimuth bin.
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Figure 4.1: Geometry of the bistatic system. The radar at the center of
the area under investigation is the reference radar, or Radar-1. The star
identifies the target’s position within the range-azimuth bins. The other
radar identifies Radar-2.

4.1.1 Observations

The column-vector xT = [xT (1), xT (2), . . . xT (N)]T ∈ CN encloses the signals

scattered by the target and received by Radar-1 and can be written as:

xT = α1,T s1 � p(ν1,dT ) + α2,T s2 � p(ν2,dT ) + c + n (4.1)

where α1,T is the complex parameter that accounts for the propagation and

backscattering effects of the channel Radar-1-Target-Radar-1 and α2,T ac-

counts for channel Radar-2-Target-Radar-1. Since only Radar-1 acts as re-

ceiver, the destination has been omitted from the notation. In the event of

a formula of a more general nature, that equally holds for both radars, the

subscript “rdr” will be used.

p(ν1,dT ) = [1, ej2πν1,dT , . . . ej2π(N−1)ν1,dT ]T ,
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is the temporal steering vector accounting for the propagation effects from

Radar-1, and:

p(ν2,dT ) = [1, ej2πν2,dT , . . . ej2π(N−1)ν2,dT ]T ,

is the temporal steering vector accounting for the propagation effects from

Radar-2. ν1,dT and ν2,dT are the normalized target Doppler frequencies seen

by the two radars, c is the received clutter (hence at Radar-1) and n the

received noise. The clutter vector c is modeled as the superposition of

the returns coming from different uncorrelated scatterers within the various

range-azimuth bins from both Radar-1 and Radar-2 and it can be written

as: c = c1 + c2, that is:

c =
Nc−1∑
r=0

L−1∑
i=0

αc1(r, i)Jrq1

+
Nc−1∑
r=0

L−1∑
i=0

αc2(r, i)Jrq2,

(4.2)

where q1 = s1 � p(νd1,(r,i)), q2 = s2 � p(νd2,(r,i)), αc1 is the reflectivity para-

meter associated with clutter as seen by Radar-1 and αc2 is the reflectivity

parameter associated with clutter as seen by Radar-2. Also:

Jr(l,m) =


0 if l −m 6= r

1 if l −m = r

(l,m) ∈ {1, . . . N} (4.3)

denotes the time-shift matrix that accounts for range position of the bins

with respect to Radar-1. A similar matrix Jr̃ will be used to account for the

range position with respect to Radar-2. n is a zero-mean white Gaussian

noise and is therefore characterized by: E[n] = 0 and E[nnH ] = σ2
nI, with

σ2
n being its noise variance.
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4.1.2 Statistical Characterization of the Clutter

The statistical characterization of the clutter vector c is analyzed hereafter.

The scatterers are assumed to be uncorrelated. Each scatterer illuminated

by Radar-1 is characterized by a variance equal to σ2
c1,(r,i) = E[|αc1,(r,i)|2],

whereas Radar-2 sees a variance equal to σ2
c2,(r,i) = E[|αc2,(r,i)|2]. The expec-

ted value of their complex amplitude is assumed to be zero E[αc,rdr,(r,i)] = 0

and their normalized Doppler frequency is denoted as uniformly distributed

around the mean doppler frequencies ν̄d1,(r,i) and ν̄d2,(r,i) :

νdrdr,(r,i) ∼ U(ν̄drdr,(r,i) −
εrdr,(r,i)

2
, ν̄drdr,(r,i) +

εrdr,(r,i)

2
)

where the subscript “rdr” identifies the radar under investigation (i.e.

rdr = 1, 2), εrdr,(r,i) accounts for the uncertainty of the clutter Doppler.

As a consequence, E[c] = 0 and:

Ψc = E[c1c
H
1 ] + E[c1c

H
2 ] + E[c2c

H
1 ] + E[c2c

H
2 ] (4.4)

The clutter statistics coming from a single radar can be expressed as:

E[c1c
H
1 ] = σ2

c1JrΓ(s1(r, i))JTr

E[c2c
H
2 ] = σ2

c2Jr̃Γ(s2(r, i))JTr̃

where:

Γ(srdr(r, i)) = diag{srdr}Φ
ν̄dc,rdr,(r,i)
εrdr,(r,i) diag{srdr}H (4.5)

and:

Φ
ν̄drdr,(r,i)
εrdr,(r,i) (l,m) = ej2πν̄drdr(l−m)

sin[πεrdr(l −m)]

[πεrdr(l −m)]
(4.6)
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where (l,m) indicates a matrix element.

Unlike the case in [16], a bistatic radar has cross-correlation terms as dis-

cussed below:

E[c1c
H
2 ] = αc1α

∗
c2JrΓ(s1(r, i), s2(r, i))JHr̃ (4.7)

where:

Γ(s1(r, i), s2(r, i)) = E[(s1 � p(ν1,(r,i)))(s2 � p(ν2,(r,i)))]
H

= diag{s1}E[p(ν1,(r,i))p(ν2,(r,i))
H ]diag{sH2 }

= diag{s1}Φ
ν̄d(r,i)
cross,ε(r,i)diag{sH2 }.

(4.8)

Considering that:

p(ν1,(r,i))p(ν2,(r,i))
H =



1

e(j2πν1,(r,i)(1))

...

e(j2πν1,(r,i)(N−1))


[
1 e(−j2πν2,(r,i)(1)) . . . e(−j2πν2,(r,i)(N−1))

]
,

(4.9)

follows that:

Φ
ν̄d(r,i)
cross,ε(r,i)(l,m) = E[ej2π(ν1,(r,i)+θ1)(l−1)ej2π(ν2,(r,i)+θ2)(m−1)]

= ej2πν1,(r,i)(l−1)e−j2πν2,(r,i)(m−1) sin[πε(r,i)(l − 1)]

[πε(r,i)(l − 1)]

sin[πε(r,i)(m− 1)]

[πε(r,i)(m− 1)]
,

(4.10)

where θ1 and θ2 are the Doppler integration variables. These cross-term

statistics proved to be very close to zero and have therefore been ignored.
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The final clutter statistics as a function of the transmitted signals result

therefore:

Ψc(s1, s2) = E[c1c
H
1 ] + E[c2c

H
2 ]

=
Nc−1∑
r=0

L−1∑
i=0

(σ2
c,1JrΓ(s1(r, i))JTr + σ2

c,2Jr̃Γ(s2(r, i))JTr̃ )
(4.11)

4.2 Problem Formulation

The analysis under discussion covers the design of two mutually orthogonal

signals and corresponding receiver filter that maximize the SINR under some

constraint on the shape of the codes.

Renaming for simplicity q1 = [s1�p(νd1,T )] and q2 = [s2�p(νd2,T )] and

assuming that the received signal x is processed by a filter w, the SINR at

the output results:

SINR =
|α1,T |2|wHq1|2 + |α2,T |2|wHq2|2

wHΨc(s1, s2)w + σ2
n‖w‖2

(4.12)

It is relevant to point out how the clutter energy depends both on the receiver

filter w and the transmitted signals s1 and s2 through Ψc(s1, s2). This

observation represents the main difference between a signal-dependent and

a signal-independent environment where the output clutter energy is only a

function of w [16].

The constraints on the codes can be subdivided into three categories:

� Mutual orthogonality: sH1 s2 = 0;

� Transmission of finite energy: ‖srdr‖2 = 1;

� Similarity constraint: ‖srdr − s0,rdr‖2 ≤ δ where the parameter δ de-

termines the similarity extent and s0,rdr is an initial code which will be
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chosen according to desired properties.

All of the aforementioned requirements and optimization choices lead to the

following initial problem:

max
s,w

|α1,T |2|wHq1|2+|α2,T |2|wHq2|2
wHΨc(s1,s2)w+σ2

n‖w‖2

s.t. sH1 s2 = 0

‖s1‖2 = 1

‖s2‖2 = 1

‖s1 − s0,1‖2 ≤ δ

‖s2 − s0,2‖2 ≤ δ

(4.13)

The above optimization problem is non-convex (the objective function is a

non-convex function and ‖srdr‖2 = 1 defines non-convex sets). The idea is

to iteratively optimize the SINR. Specifically, starting from a receiver filter

w(t−1) at step (t − 1), where t indicates the iteration number, the code

searches for the admissible radar codes s
(t)
1 and s

(t)
2 maximizing the SINR

corresponding to the receiver filter w(t−1). Whenever the s
(n)
rdr are found,

the code searches for the adaptive filter w(t) which maximizes the SINR

corresponding to the radar codes s
(t)
rdr, and so on, as presented in [16] for the

case of monostatic radar. The outline of such optimization can be found in

Table 4.1.

4.2.1 Receiver Filter Optimization

The first step consists of determining the receiver filter for the given pair of

radar waveforms. The cost function in Equation (4.12) can be written as:

wHAw

wHBw
, (4.14)
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Initialization:

� Select initial radar codes s0,rdr with desired properties;

� Input range-azimuth parameters (Nc, L);

� Input target parameters (σ2
1,T , σ2

2,T , νd1,T and νd2,T );

� Input clutter parameters (σ2
c1, σ2

c2, ν̄d1 , ν̄d2 and εrdr);

� Input the noise variance (σ2
n);

� Estimate initial receiver filter w(0) at step t = 0
by using initial waveforms s0,rdr;

� Estimate initial SINR by using w(0) and s0,rdr;

� Initialize SINR(t− 1) and ζ appropriately;

while |SINR(t− 1)− SINR(t)| > ζ

� Waveform optimization (convex optimization technicques);

� Filter optimization (estimated with new, optimized waveform);

� Optimized SINR calculation.

end

The procedure is completed providing the output: s1,final, s2,final, wfinal.

Table 4.1: Outline of the optimization method from a simulation-oriented
perspective. t indicates the iteration number.
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where:

A = |α1,T |2q1q
H

1 + |α2,T |2q2q
H

2 ,

and:

B = Ψc(s1, s2) + σ2
nI.

The optimum receiver filter w can now be obtained as the generalized ei-

genvector corresponding to the largest generalized eigenvalue of the matrix

pair (A,B).

4.2.2 Orthogonal Codes Optimization

The second step consists in the optimization of the radar codes. To start

with, since the algorithm has now knowledge about w but not on the codes

that need to be transmitted, the clutter statistics must be rewritten as a

function of the optimized filter. Unifying, for convenience, the vectors and

matrices of both radars the following equivalences can be obtained:

wu =

[
σc1w σc2w

]T

su =

[
s1 s2

]T

s0,u =

[
s0,1 s0,2

]T

Jr,u =

Jr 0

0 Jr̃



Φ
ν̄d(r,i)
ε(r,i),u =

Φ
ν̄d1,(r,i)
ε1,(r,i) 0

0 Φ
ν̄d2,(r,i)
ε2,(r,i)





Chapter 4. Waveform Design for Bistatic Radars 62

Γ(su) = diag(su)Φ
ν̄d(r,i)
ε(r,i),udiag(su)H

With this notation, the clutter energy as a function of the transmitted code

can be rewritten as:

wH
u Ψc(su)wu =

Nc−1∑
r=0

L−1∑
i=0

(wH
u Jr,uΓ(su)JTr,uwu)

=
Nc−1∑
r=0

L−1∑
i=0

(wH
u Jr,udiag(su)Φ

ν̄d(r,i)
ε(r,i),udiag(su)HJTr,uwu)

=
Nc−1∑
r=0

L−1∑
i=0

(sTu diag{J−r,uw∗u}Φ
ν̄d(r,i)
ε(r,i),udiag{J−r,uwu}s∗u)

(4.15)

Naming now:

Θc(wu) =
Nc−1∑
r=0

L−1∑
i=0

(diag{J−r,uw∗u}Φ
ν̄d(r,i)
ε(r,i),udiag{J−r,uwu})

the following equivalence can be obtained:

wH
u Ψc(su)wu = sTu Θc(wu)s∗u

and by labeling:

ru =

 α1,T (w∗ � p(νd1,T )

α2,T (w∗ � p(νd2,T )

 (4.16)
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the initial optimization problem can be rewritten as:

max
su

|sTu ru|2

sTu Θc1 (w
(n−1)
u )s∗u+σ2

n‖w
(n−1)
u ‖2

s.t. sH1 s2 = 0

‖s1‖2 = 1

‖s2‖2 = 1

‖s1 − s0,1‖2 ≤ δ

‖s2 − s0,2‖2 ≤ δ

(4.17)

This is a fractional quadratic problem and, in order to solve it, the guidelines

in [16] and [49] should be used. Indicating with:

S = r∗ur
H
u

M = Θc1(w
(t−1)
u ) + σ2

n‖w(t−1)
u ‖2I

s1 =

[
IN 0N

]s1

s2

 = m1su

s2 =

[
0N IN

]s1

s2

 = m2su



Chapter 4. Waveform Design for Bistatic Radars 64

the optimization problem in Equation (4.17) can be therefore re-written as:

max
su,p

tr


S 0

0 0


sus

H
u sup

∗

sHu p |p|2




tr


M 0

0 0


sus

H
u sup

∗

sHu p |p|2




s.t. tr


mH

1 m2 0

0 0


sus

H
u sup

∗

sHu p |p|2


 = 0,

tr


mH

1 m1 0

0 0


sus

H
u sup

∗

sHu p |p|2


 = 1,

tr


mH

2 m2 0

0 0


sus

H
u sup

∗

sHu p |p|2


 = 1,

tr


 I −s0,u

−sH0,u ‖s0,u‖2 − δ


sus

H
u sup

∗

sHu p |p|2


 ≤ 0,

tr


0 0

0 1


sus

H
u sup

∗

sHu p |p|2


 = 1,

su ∈ CN and p ∈ C.

(4.18)
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By dropping the rank-one constraint the optimization problem (4.18) can

be relaxed into the semidefinite programming (SDP) problem:

max
W

tr(Q−1W)

tr(Q0W)

s.t. tr(Q1W) = 0

tr(Q2W) = 1

tr(Q3W) = 1

tr(Q4W) ≤ 0

tr(Q5W) = 1

W � 0

(4.19)

where W and the Qi matrices are defined as follows:

Q−1 =

S 0

0 0



Q0 =

M 0

0 0



Q1 =

mH
1 m2 0

0 0



Q2 =

mH
1 m1 0

0 0



Q3 =

mH
2 m2 0

0 0


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Q4 =

 I −s0,u

−sH0,u ‖s0,u‖2 − δ



Q5 =

0 0

0 1


As shown in [49] the fractional SDP problem (4.19) can be solved thanks to

the Charnes-Cooper variable transformation. Thanks to this device, one can

replace a linear fractional program with at most two straightforward linear

programs that differ from each other by only a change of sign in the objective

function and in the constraint, and thus achieve a global optimal solution

of the linear fractional program by solving at most two linear programs.

Defining now the transformed variable as X = uW where u ≥ 0 complies

with tr(Q0uW) = 1. The following SDP problem can be derived:

max
X,u

tr(Q−1X)

s.t. tr(Q0X) = 1

tr(Q1X) = 0

tr(Q2X) = u

tr(Q3X) = u

tr(Q4X) ≤ 0

tr(Q5X) = u

X � 0, u ≥ 0

(4.20)

If (X?, u?) solves (4.20), then X?
/u? solves (4.19). Once an optimal solution

X? is obtained, its rank needs to be checked. If the rank of X? equals to

one, the solution is a global optimal solution and it can be easily obtained
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through the eigen-decomposition:

X? = x?(x?)H

where x? =

x?

p?

. The output results in s? = y?/p?. If the rank of X? is

higher than one, the randomization method needs to be applied in order to

obtain a rank one solution [80]. In this case, the eigenvectors corresponding

to significant eigenvalues of X? will be extracted and various linear combin-

ations of these eigenvectors will be constructed using random combinations,

and the best combination that maximizes the utility of (4.20) will be chosen.

4.3 Performance Analysis

In order to evaluate the performance of the proposed algorithm, a Matlab

code was implemented. The initial signals s0,1 and s0,1 of length N = 64

are as developed in [1]. As it can be seen by referring back to Figure 1.2,

these waveforms are characterized by very good auto-correlation and cross-

correlation properties. This necessary combination of characteristics grants

good range resolution while maintaining orthogonality, making these codes

ideal for MIMO applications.

In the proposed scenario there is homogeneous range-azimuth clutter.

The number of range rings that interfere with the range-azimuth bin of

interest is Nc = 7 and the number of azimuth cells in each ring is L = 50.

As for the parameters, the noise variance was set to σ2
n = 0.1, and the

variance of the radar cross-section to σ2
1 = 0.18 and σ2

2 = 0.20. The mean

Doppler frequencies are ν̄d1,(r,i) = ν̄d1,(r,i) = 0.1 and ε1,(r,i) = ε2,(r,i) = 0.4.

The exit for the iterative condition on the SINR was set to ζ = 10−3.
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δ SINRstart(dB) SINRend(dB) SINRth(dB)

0.2 3.9767 13.9188 13.8201
0.5 4.2019 20.0441 20.6110
1 4.8592 24.4945 25.0226

Table 4.2: Comparison between statistical characterization and modeled
observations for δ = [0.2 0.5 1].

For solving the SDP problem, the CVX Software for Disciplined Convex

Programming toolbox in [74] was used.

In order to evaluate the performance of the proposed analysis, a needed

comparison between the statistical characterization and the modeled obser-

vations was carried out. Monte Carlo experiments were therefore imple-

mented using 1000 random realizations of RCS, noise and Doppler frequen-

cies, the obtained SINR was subsequently averaged and compared to the

estimated one. This has been done for various values of δ. As shown in

Table 4.2, the results prove the correctness of the model. The convergence

of SINR against iteration number was also observed for different values of

δ =

[
0.2 0.5 1

]
. By looking at Figure 4.2, it can be noted how to higher

values of δ correspond bigger values of the achievable SINR. These gains are

a consequence of the fact that bigger values of δ make the feasible set of

the optimization problem become larger and larger [16]. Nevertheless, these

increased gains are just potential values as in real conditions smaller SINR

are to be expected due to an increasing divergence from the initial assump-

tions. As a matter of fact, by increasing δ a deterioration in both the auto-

ambiguity and cross-ambiguity functions can be observed. This consequence

can be appreciated by looking at Figures 4.3, 4.4 and 4.5. The ambiguity

function is a very useful used tool that enables the estimation of the per-

formance of a radar waveform’s resolution. Due to the fact that the model
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Figure 4.2: SINR evolution for δ = [0.2 0.5 1].

under discussion is of a bistatic nature, the AF has been split into two auto-

ambiguity functions (AAF) for the evaluation of the resolution properties of

s1 and s2 and a cross-ambiguity function (CAF) for the evaluation of their

orthogonality features. Results show how for small values of δ, very narrow

peaks of the AAF can be obtained, proving that excellent auto-correlation

properties were maintained by the optimized waveform. Furthermore, a flat

CAF was obtained, proving excellent rejection to interference between the

two signals. As the value of δ increased, though, the features of the optim-

ized waveform proved to be sub-optimal: very wide sidelobes in the AAF as

well as a peak within the CAF, showed how the waveform optimized with

δ = 1 does not have ideal properties.
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4.4 Conclusions

This chapter discussed a cognitive optimization framework for the design

of transmit orthogonal signals and receiver filter in a signal-dependent clut-

ter environment for a bistatic radar. Initially, a description of the signal-

dependent clutter model was provided, followed by considerations on the

cross-interference terms caused by the non-orthogonality between clutter

terms originating from different radar signals. Consequently, the main op-

timization problem that maximizes the SINR under some constraints on the

codes was proposed. The constraints were mutual orthogonality, transmis-

sion of finite energy and similarity to waveforms with desired characterist-

ics. In order to solve this problem, an iterative algorithm that optimizes

the transmitted waveform and the receiver filter was suggested. Simulation

results showed how, by selecting parameters accurately, this optimization

technique has the advantage of enhancing the SINR at the receiver filter

while maintaining a narrow peak in the auto-ambiguity functions and a flat

cross-ambiguity function.
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Figure 4.3: Auto-ambiguity and cross-ambiguity functions for the optimized
waveform estimated with δ = 0.2. As it can be noted, the very narrow peaks
of the AAF prove that excellent auto-correlation properties were maintained
by the optimized waveform. The flat CAF proved excellent rejection to
interference between the two signals.
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Figure 4.4: Auto-ambiguity and cross-ambiguity functions for the optimized
waveform estimated with for δ = 0.5. As it can be noted, the narrow peaks
of the AAF prove that good auto-correlation properties were maintained by
the optimized waveform. The fairly flat CAF proved acceptable rejection to
interference between the two signals.
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Figure 4.5: Auto-ambiguity and cross-ambiguity functions for the optim-
ized waveform estimated with for δ = 1. As it can be noted, the very wide
sidelobes of the AAF show that for a big value of δ, the auto-correlation
properties of the initial waveform were not maintained by the optimized
waveform. The CAF also presents a peak, showing how δ = 1 causes inter-
ference between the two signals.



Chapter 5

Waveform Optimization

Techniques for Coordinated

Networks

In the following chapter different waveform optimization techniques for

coordinated cognitive networks will be presented. Three different optimiza-

tion techniques have been developed. The first one aims at maximizing the

accumulated target return signal power while keeping the total disturbance

power to unity. This model is suitable for small networks with no specific

target requirements. The other two optimization techniques are of a

more sophisticated nature. The first one maximizes the signal power at

a desired radar while keeping the SINR of all other radars at satisfactory

level. This feature makes this algorithm suitable for applications where a

radar finds itself in a particularly advantageous position and it can also

be used to counteract blockage effects. The second technique optimizes all

SINR equally and can be used for distributed surveillance in environments

characterized by similar channels. This last model differs from the first

72
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one since all SINRs are treated separately and the optimization technique

is of a max-min nature. Also, these last two optimization methods have

been extended to the case of M radars whereas the first one (although

easily extendable) considers the basic case of two radars. This model was

not included in the previous chapter because in this case both radars have

receiving capabilities. All waveform optimization techniques hereby invest-

igated are of an iterative nature and based on quadratically constrained

quadratic program (QCQP) and semidefinite programming (SDP) convex

optimization techniques. Thanks to the novelties introduced, the described

work has been published in [81] and [82].

This chapter is organized as follows. Section 5.1 describes the basics of

the considered model as well as the description of the receiver filter optimiz-

ation and the generalities about the orthogonal codes optimization. Section

5.2 describes the waveform optimization designed for a two-radar system

where both radars are equipped with receiving capabilities. This waveform

optimization based on maximizing the accumulated radar returns is presen-

ted alongside with its performance analysis and some conclusions. In Section

5.3, waveform optimization techniques for a cognitive radar network are pro-

posed. This work was developed for the general case of M transmitting and

receiving radars. The section is further divided between a selective optimiz-

ation technique, a max-min optimization technique, a performance analysis

section and some concluding remarks. Finally, in Section 5.4, some con-

clusions on the topic of waveform optimization techniques for coordinated

networks are drawn.
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Figure 5.1: Geometry of the multistatic system. The radar at the center of
the area under investigation is the reference radar. The star identifies the
target’s position within the range-azimuth bins. The other radars identify
possible positions of other radars within the system.

5.1 System Model and Working Principles

This chapter discusses a radar network with centralized cognition. In this

model the M radars transmit M mutually orthogonal signals. Thanks to

optimized receiver filters, all radars can detect the propagated signals and

send the acquired data to a processor. The processor performs the joint

optimization algorithm, determines the most appropriate M waveforms for

the subsequent transmissions of the radars and instructs them accordingly

through a local backbone communication network.

The signal of length N transmitted by the generic Radar-i can be denoted as

s(i) =

[
s(i)(1) s(i)(2) . . . s(i)(N)

]T
with i = 1, 2, . . .M . In the considered

model, depicted in Figure 5.1, the radars scan an area of Nc range bins, each

of them subdivided into L azimuth bins. The index br is used to denote the

range delay. The radar at the center of the area under investigation is the

reference radar. The star identifies the target’s position within the range-

azimuth bins. This is assumed to be known. The other radars identify

possible positions of other radars within the system. A Radar-i with i = 1



Chapter 5. Waveform Optimization Techniques for Coordinated Networks 75

has been selected to act as a reference radar for the other radars towards the

estimation of the position of the target. To account for the range position

of the bins with respect to Radar-1, the time-shift matrix Jj,i,br described

in [16], where Radar-j is the transmitting radar, Radar-i is the receiving

radar and br is the relative range delay. Radar-1 has therefore a zero-shift

with respect to the position of the target and the corresponding time-shift

matrix is J(1,1,0). On the other hand, the matrix J(j,i,br) with i 6= 1 accounts

for the delays of the signals originating from the other radars. The signal

received by the generic Radar-i can be represented by the column-vector x(i).

This encloses the signals sent by every radar and subsequently scattered by

the target as follows:

x(i) =
M∑
j=1

(
αT,(j,i)J(j,i,br)

(
s(j) � p(νT,(j,i))

))
+ c(i) + n, (5.1)

where αT,(j,i) is the complex parameter that accounts for the propaga-

tion and backscattering effects of the channel experienced by the

waveform sent by Radar-j and received by Radar-i, p(νT,(j,i)) =[
1 ej2πνT,(j,i) . . . ej2π(N−1)νT,(j,i)

]T

is the temporal Doppler steering vec-

tor as defined in [16] and νT,(j,i) is the normalized target Doppler frequency

for the channel. The target parameter, as seen by each radar, will be charac-

terized by the variance σ2
T,(j,i) = E[|αT,(j,i)|2] and mean E[αT,(j,i)] = 0. This

corresponds to the radar cross-section of the target. Similarly, for each illu-

minated clutter scatterer σ2
c,(j,i,br)

= E[|αc,(j,i,br)|2] and E[αc,(j,i,br)] = 0, where

the subscript (j, i, br) marks the signal transmitted by Radar-j, scattered by

the range-azimuth bin br and subsequently received at Radar-i. Also, the

normalized Doppler frequency of the clutter is uniformly distributed between

ν̄c,(j,i,br) − ε and ν̄c,(j,i,br) + ε.
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As in the previous chapter, the clutter is considered to be signal-dependent.

The instantaneous received clutter component as seen by Radar-i is c(i) and

its covariance matrix (as defined in Subsection 4.1.2) is Ψc,(i) = E[c(i)c
H

(i)].

The noise n is considered to be a zero-mean white Gaussian noise charac-

terized by E[n] = 0 and E[nnH] = σ2
nI.

The proposed optimization is of an iterative nature where the receiver

filter and the waveforms are designed alternatively by optimizing the SINR.

The main structure is the same as the one described in the previous chapter

and the reader can refer to Table 4.1 if needed. Starting from a given receiver

filter w(i)(t − 1) at iteration (t − 1), the admissible radar codes s(i)(t) that

maximize the SINR subject to various constraints need to be estimated.

When the waveforms are determined, the new adaptive receiver filter w(i)(t)

which maximizes the SINR corresponding to the waveforms s(i)(t) can be

estimated. A set of known waveforms with desired auto-correlation and

cross-correlation properties will be utilized for initialization purposes.

5.1.1 Receive Filter Optimization

The first step consists of determining the receiver filter for a given set of

radar waveforms. The SINR at Radar-i can be written as:

SINR(i) =

∣∣∣wH

(i)

M∑
j=1

(
σT,(j,i)J(j,i,br)

(
s(j) � p(νT,(j,i))

))∣∣∣2
wH

(i)

( M∑
j=1

Ψc,(j) + σ2
nI
)
w(i)

,
wH

(i)A(i)w(i)

wH

(i)B(i)w(i)

.

(5.2)

The optimum receiver filter vectors w(i) are obtained as the generalized

eigenvector corresponding to the largest generalized eigenvalue of the matrix
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pair (A(i),B(i)).

5.1.2 Orthogonal Codes Optimization

The second step consists of optimizing the radar waveforms. The proposed

algorithm requires the following constraints on the codes:

� All waveforms should be aimed at being mutually orthogonal or nearly

orthogonal: −% ≤ JT

(j,i,br)s
H

(i)J(j,i,br)s(j) ≤ %, where % is a positive value

very close to zero and i 6= j;

� All radars need to transmit finite energy (here assumed to be one):

‖s(i)‖2 = 1;

� In order to maintain good auto-correlation and cross-correlation prop-

erties, the estimated waveform s(i) cannot diverge more than a spe-

cific amount from an initial waveform with desired features s0,(i), i.e.

‖s(i) − s0,(i)‖2 ≤ δ.

The equations can now be reformulated in order to develop convex optimiz-

ation techniques. The power of the desired signal component of the received

signal at the i-th radar is written in terms of the transmitted waveforms

as [82]:

M∑
j=1

∣∣∣sH

(j)

(
σT,(j,i)J(j,i,br)

(
w(i) � p(νT,(j,i))

))∣∣∣2 = tr(sHR(i)s), (5.3)

where the received signal component is written as:

R(i) = blkdiag(R(1,i),R(2,i), . . . ,R(M,i)),

where blkdiag is defined as the operator for block diagonalization, and where:

R(j,i) = E[r(j,i)r
H

(j,i)],

r(j,i) = αT,(j,i)J(j,i,br)(w(i) � p(νT,(j,i))),
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and:

s =

[
sT

(1) . . . sT

(i) . . . sT

(M)

]T

,

w =

[
wT

(1) . . . wT

(i) . . . wT

(M)

]T

.

Similarly, the power of the clutter returns at the i-th radar can be calculated

as:

wH

(i)

( M∑
j=1

Ψc,(j,i)

)
w(i),

where, as previously mentioned, Ψc,(j,i) is the covariance matrix of the clut-

ter. Extending the work in [16] to the case of multiple radars, the received

interference power can also be written as:

wH

(i)

( M∑
j=1

Ψc,(j,i)

)
w(i) = wH

(i)(Ψc,(i))w(i) = sH(Θ∗c,(i))s,

where:

Θc,(i) = blkdiag(Θc,(1,i),Θc,(2,i), . . . ,Θc,(M,i)).

It is important to note that Ψc,(i) is a function of the waveforms transmitted

by all radars s, and Θc,(i) is a function of the receiver filter w(i). Both

notations will be used as appropriate for quantifying the interference at the

receiver of the radar. The denominator of the SINR(i) can therefore be

rewritten as:

tr

(
sH

(
Θ∗c,(i) +

σ2
n

M
‖w(i)‖2I

)
s

)
= tr

(
sHZ(i)s

)
. (5.4)

Subsequently, the optimization function as well as the constraints needed for

the convex optimization problem can be derived. By following the guidelines

provided for the single radar scenario in [16], the numerator and denominator
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of SINR(i) can be reorganized in the form tr(QnR,(i)X) and tr(QdR,(i)X),

where:

QnR,(i) =

R(i) 0

0 0

 ,

QdR,(i) =

Z(i) 0

0 0

 ,

X =

ssH su∗

sHu |u|2

 ,

where u is a variable needed for the homogenized QCQP optimization.

The orthogonality constraint can be written as tr(Qorth,(j,i)X) ≤ % and

tr(Qorth,(j,i)X) ≥ −%, where:

Qorth,(j,i) =

mT

(i)J
T

(j,i,br)J(j,i,br)m(j) 0

0 0

 ,

m(i) =

[
0N(1) . . . IN(i) . . . 0N(k) . . . 0N(M)

]
,

where m(i) is a vector matrix of size NN ×M that contains all zeros for the

exception of an N×N identity matrix at matrix position i, with i = 1 . . .M .

The unit norm constraint at the i-th radar is written as:

tr(Qpw,(i)X) = 1, where Qpw,(i) =

mH

(i)m(i) 0

0 0

 .
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The constraint on the deviation of the waveform from an initial waveform

can be written as tr(Qinit,(i)X) ≤ 0, where:

Qinit,(i) =

 mH

(i)m(i) −mH

(i)m(i)s0

−sH
0 mH

(i)m(i) sH
0 mH

(i)m(i)s0 − δ

 .

Furthermore, the Charnes-Cooper variable transformation will be used sim-

ilarly to the work in [49]:

QCC =

0 0

0 1

 .

From this starting point, different optimization problems can be formulated.

5.2 Waveform Optimization Techniques

based on Accumulated Power Maximiz-

ation

This method aims at maximizing the accumulated target return signal

power. This model, although easily extendable, is suitable for small net-

works with no specific target requirements. Due to this reason, the following

section considers the case of two radars.

At first, two known codes with desired auto-correlation and cross-

correlation properties that grant good range resolution while maintaining

orthogonality between the two radars needs to be considered for initializa-

tion purposes. Exploiting these codes, the receiver filters can be calculated

using generalized eigenvalue decomposition. Thanks to the receiver filter,
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the received signal strength can be estimated as well as the received inter-

ference plus noise power. The SINR values calculated in Formulas (5.5)

and (5.6) allow the determination of the codes with convex optimization

techniques [18].

SINR1 =
σ2

11,T |w1(s1 � p(ν11,T ))|2 + σ2
21,T |w1(s2 � p(ν21,T ))|2

wH
1 Φc1w1 + σ2

n‖w1‖2

=
wH

1

(
σ2

11,T |s1 � p(ν11,T )|2 + σ2
21,T |s2 � p(ν21,T )|2

)
w1

wH
1

(
Φc1 + σ2

n

)
w1

(5.5)

and

SINR2 =
σ2

22,T |w2(s2 � p(ν22,T ))|2 + σ2
12,T |w2(s1 � p(ν12,T ))|2

wH
2 Φc2w2 + σ2

n‖w2‖2

=
wH

2

(
σ2

22,T |s2 � p(ν22,T )|2 + σ2
12,T |s1 � p(ν12,T )|2

)
w2

wH
2

(
Φc2 + σ2

n

)
w2

(5.6)

5.2.1 Orthogonal Codes Optimization

The optimization of the orthogonal codes is based on the maximization of

the accumulated target return signal powers while keeping the disturbance

power at both the radar receivers to unity.

max Spw,1 + Spw,2

s.t. INpw,1 + INpw,2 = 1

sH
1 Jr̃s2 = 0

‖s1‖2 = 1

‖s2‖2 = 1

‖s1 − s0,1‖2 ≤ δ

‖s2 − s0,2‖2 ≤ δ

(5.7)
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where the accumulated signal power at Radar-1 and Radar-2 is:

Spw,1 + Spw,2 =sT

1 (α11|w∗1 � p11|2)s1 + sT

2 (α21|w∗1 � p21|2)s2+

sT

2 (α22|w∗2 � p22|2)s2 + sT

1 (α12|w∗2 � p12|2)s1

(5.8)

and the sum of clutter and noise power at both receivers is:

INpw,1 + INpw,2 = sT

1Θc,11s1 + sT

2Θc,21s2 + sT

2Θc,22s2 + sT

1Θc,12s1 + 2σ2
n

(5.9)

where Θc,ij accounts for the disturbance occurred due to clutter in the trans-

mission of the waveform from radar j to radar i [8]. The optimization in

(5.7) can be solved using SDP with rank relaxation.

5.2.2 Performance Analysis

In order to evaluate the performance of the proposed algorithm, a simu-

lation has been carried out with the parameters as outlined in Table 5.1.

The initial waveforms s0,1 and s0,2 are again fractional Fourier waveforms

as developed in [83] and are characterized by very good auto-correlation

and cross-correlation properties. These features allow good range resolu-

tion while maintaining orthogonality between the two radar waveforms. For

solving the SDP problem, the CVX Matlab Software for Disciplined Convex

Programming [74] has been used.

More specifically, the simulation tested the SINR evolution for both radars

for different values of δ (δ = [0.1 0.25 0.5]). Once the optimization was

complete, the auto-ambiguity and cross-ambiguity functions were plotted.

As it can be seen in Figure 5.2, despite some minor oscillations due to

the combined optimization of the two radars, the SINR converges. Simil-
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Variable Description Value

Nc Range Bins 7
L Azimuth Bins 50
σ2
n Noise Variance 0.1
σ2

11,T Target RCS from R1 to R1 1.0671

σ2
21,T Target RCS from R2 to R1 1.1630

σ2
22,T Target RCS from R2 to R2 1.0717

σ2
12,T Target RCS from R1 to R2 0.8793

σ2
11,c Clutter RCS from R1 to R1 0.2227

σ2
21,c Clutter RCS from R2 to R1 0.2417

σ2
22,c Clutter RCS from R2 to R2 0.1856

σ2
12,c Clutter RCS from R1 to R2 0.1944

ν11,T Target Doppler from R1 to R1 0.4467
ν21,T Target Doppler from R2 to R1 0.3669
ν22,T Target Doppler from R2 to R2 0.3993
ν12,T Target Doppler from R1 to R2 0.3652
ν̄c Mean Clutter Doppler 0.01
ε Clutter Doppler Uncertainty 0.4
ξ Cycle Entering Condition 10−3

N Signal Length 64

Table 5.1: Simulation parameters for performance analysis for accumulated
power maximization techniques.
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Figure 5.2: Performance analysis for accumulated power maximization tech-
niques: SINR evolution of both radars for δ = [0.1 0.25 0.5].
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Figure 5.3: Performance analysis for accumulated power maximization tech-
niques: auto-ambiguity and cross-ambiguity functions for δ = 0.1. The small
δ value does not allow the waveforms to diverge from the initial waveform
with ideal autocorrelation and cross-correlation properties. The estimated
waveforms present very narrow autocorrelation peaks, proving their resol-
ution in both range (τ) and Doppler (ν) domains. Their cross-correlation
function shows no significant interference between the two waveforms.
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Figure 5.4: Performance analysis for accumulated power maximization tech-
niques: auto-ambiguity and cross-ambiguity functions for δ = 0.25. The
moderate δ value does not allow the waveforms to excessively diverge from
the initial waveform with ideal autocorrelation and cross-correlation prop-
erties. The estimated waveforms still present narrow autocorrelation peaks.
Their cross-correlation function shows only partial interference between the
two waveforms.
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Figure 5.5: Performance analysis for accumulated power maximization tech-
niques: auto-ambiguity and cross-ambiguity functions for δ = 0.5. The
high δ value allows the waveforms to significantly diverge from the initial
waveform with ideal autocorrelation and cross-correlation properties. The
estimated waveforms do not present narrow autocorrelation peaks and their
cross-correlation function shows interference between the two waveforms.
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arly to the previous chapter, higher values of δ provide better SINR results.

These gains are a consequence of the fact that bigger values of δ increase the

feasibility set of the problem. Unlike the previous case, both radar have re-

ceiving capabilities and therefore in Figure 5.2 two SINR values can be seen

for each value of δ. It needs to be reminded that, despite the apparently

better results, bigger values of δ imply an increasing divergence from the

initial assumptions, making these values only potential results rather than

SINR that can be expected in reality. This fact can be well appreciated by

looking at the deterioration in both the auto-ambiguity and cross-ambiguity

functions in Figures 5.3, 5.4 and 5.5. It is clear from these results that the

optimization goal is to enhance the SINR of the radars while keeping the δ

value to an acceptable level.

5.2.3 Conclusions

This method provided satisfactory results in terms of SINR improvement

for the joint optimization of both radars. Being rather generic, it does not

allow freedom for specific choices such as imposing desired SINR values.

However, due to its simple nature, this method requires less iterations than

the subsequently discussed methods, making it efficient in terms of run time.

5.3 Waveform Optimization Techniques for a

Cognitive Radar Network

The two waveform optimization methods described in this section are more

sophisticated than the one described in Section 5.2. First of all, they can

be applied to any number of radars and secondly, since they have specific
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SINR requirements, the optimizations also have an “inner loop” so that the

SINRmin can be iteratively optimized until it reaches the SINRtarget. This

aspect makes these methods ideal for systems with specific requirements or

complicated environments but less applicable to systems with more stringent

time efficiency requests.

5.3.1 Selective Optimization

Suppose that the goal SINR for all radars except Radar-i is SINRgoal. It

is unlikely to achieve this value at the first iteration, as the initial wave-

forms and the receiver filters are not optimized enough to meet the goal.

As the SINRs of the radars are expected to improve at every iteration, the

algorithm should start by setting a small goal SINR, namely SINRmin, for

the first iteration. As the iterations of the inner loop progress, this minimum

goal is to be increased by a small constant amount ∆step until the problem

is infeasible or SINRmin reaches SINRgoal. The outline of this iterative op-

timization is described in Table 5.2. At each iteration, the waveforms are

obtained using the following optimization problem:

max
X

tr(QnR,(i)X)

s.t. tr(QdR,(i)X) = 1

tr(QnR,(j)X)− SINRmintr(QdR,(j)X) ≥ 0 ∀j, j 6= i

tr(Qorth,(j,i)X) ≥ −%u ∀i, j, j 6= i

tr(Qorth,(j,i)X) ≤ %u ∀i, j, j 6= i

tr(Qpw,(i)X) = u ∀i

tr(Qinit,(i)X) ≤ 0 ∀i

tr(QCCX) = u

X � 0, u ≥ 0

(5.10)
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Initialization:

� Parameter Initialization:

– SINRiteration = 0;

– step is set;

– SINRgoal is set;

� Known waveform s(0) with desired features.

while |SINR1(t− 1)− SINR1(t)| > ζ

� Filter Optimization: as described in (5.2);

� Waveform Optimization: SINRmin = SINRiteration;



while (feasible & SINRmin ≤ SINRgoal)

perform cvx with SINRmin = SINRiteration as described in (5.10);
if feasible = 0
s = s(t− 1)
else
SINRiteration = SINRiteration + step.
end

end

SINRiteration = SINRiteration − step.

end

Table 5.2: Outline of the optimization method from a simulation-oriented
perspective. feasible is a parameter that is set to one as long as the SDP
provides defined numerical results and t is the iteration number.
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Once the waveforms are obtained in this inner loop iteration process, the

code goes back to the outer loop and the receiver filter is optimized as de-

scribed in Section 5.1.1, the SINRmin is increased of the value ∆step and the

optimization in (5.10) is repeated until feasible. It needs to be noted that

a problem that becomes infeasible in the inner loop for a specific SINRmin

might provide again valid results after the filter optimization is performed

in the outer loop. The specific steps involved in the optimization are sum-

marized as follows:

1. Initialize the minimum SINR that the Radar-j need to achieve:

SINRmin = 0;

2. while (the SDP provides defined numerical results and SINRmin ≤

SINRgoal):

2.1) Solve the SDP problem in (5.10) with the current value of

SINRmin;

2.2) Check if the variables assumed undefined numerical results:

� If YES: Reassign to the waveform the same value it had at

the previous cycle;

� If NO: Increase the value of SINRmin of a desired constant

∆step and go back to step 2.
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5.3.2 Max-Min Optimization

The second optimization technique is based on iteratively increasing the

value of SINRmin at all radars until the problem becomes unfeasible:

min z

s.t. tr(QnR,(i)X)− SINRmintr(QdR,(i)X) ≥ 0 ∀i

tr(Qorth,(i,j)X) ≥ −%u ∀i, j, j 6= i

tr(Qorth,(i,j)X) ≤ %u ∀i, j, j 6= i

tr(Qpw,(i)X) = u ∀i

tr(Qinit,(i)X) ≤ 0 ∀i

tr(QCCX) = u

X � 0, u ≥ 0, z ≥ 0

(5.11)

The only difference between the optimizations in (5.10) and (5.11) is that

instead of maximizing the SINR of Radar-i, all radar SINRs are maximized

equally. Otherwise, the optimization procedure remains as described for

(5.10): a number of iterations in both the inner and outer loops is required

so that the transmitted waveforms and receiver filters are optimized together

by a controlled increase of SINRmin. Due to the strong similarities in the

method, the process will not be further specified and the reader should refer

to Table 5.2 and to the step-by-step description in the previous Section 5.3.1.

5.3.3 Performance Analysis

To evaluate the performance of the proposed algorithms, both optimiza-

tion techniques have been tested for the case of two radars (M = 2). The

initial waveforms s0,1 and s0,2 are fractional Fourier waveforms of length

N = 64 as developed in [83]. These initial waveforms provide very good
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auto-correlation and cross-correlation properties (refer back to Figure 1.2)

granting therefore good range resolution while maintaining orthogonality

between the two radar waveforms. The number of range rings that in-

terfere with the range-azimuth bin of interest is Nc = 7. The number of

azimuth cells in each ring is L = 50. As for the parameters of the target,

these are generated randomly for each simulation and generated in line with

the RCS clutter models in [16]. The various radar cross-sections generated

during this simulation are σ2
11,T = 1.0671, σ2

21,T = 1.1630, σ2
22,T = 1.0717

and σ2
12,T = 0.8793. The target doppler values are set to ν11,T = 0.4467,

ν21,T = 0.3669, ν22,T = 0.3993 and ν12,T = 0.3652. The clutter power in each

bin is σ2
11,c = 0.2227, σ2

21,c = 0.2417, σ2
22,c = 0.1856, σ2

12,c = 0.1944. The

noise variance was set to σ2
n = 0.1, the mean doppler frequency to ν̄c = 0.01

and its uncertainty to ε = 0.4. Finally, the maximum deviation to the initial

waveform was set to δ = 0.1 and the orthogonality threshold to % = 0.05.

For solving the SDP problem, the CVX Matlab Software for Disciplined

Convex Programming [74] was again used. In the simulation, both the se-

lective optimization as well as the max-min optimization are tested. In both

cases the SINRmin is increased iteratively by a step of value ∆step = 0.1.

Initially, the selective optimization has been tested. Radar-1 was selected

as privileged radar (i.e. the one for which the SINR will be maximized as

objective function of the optimization problem). Radar-2 needs to achieve

a specific SINR goal. In order to prove the validity of the algorithm, the

achievable SINR1 value at Radar-1 for a set of goal SINR at Radar-2 ranging

from 1dB to 5dB has been estimated. More specifically, the SINR2 achieved

at the end of the ∆step-incrementing process has been plotted against the

SINR1 obtained at the end of the iterative process. As seen in Figure 5.6, a

lower goal SINR2 can push up the achievable values of SINR1 whereas a high
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Figure 5.6: Selective optimization: achievable SINR1 versus minimum
SINR2. As it can be seen, a lower goal SINR2 can push up the achiev-
able values of SINR1 whereas a high goal SINR2 will exhaust all the degrees
of freedom for Radar-1 to optimize its SINR. This proves the effectiveness
of the algorithm in allowing a specific radar to obtain desired SINR values.

goal SINR2 will exhaust all the degrees of freedom for Radar-1 to optimize

its SINR. This proves the effectiveness of the algorithm in allowing a specific

radar to obtain desired SINR values.

In order to test the max-min optimization, the SINR evolution during the

iterations of the optimization process for both radars has been estimated

and plotted. As seen in Figure 5.7, the initial SINR before the iteration

starts is -1.87dB. This corresponds to the SINR achieved with the initial

waveform and the corresponding optimum receiver filter. However, as the

iteration progresses, the SINR is increased to 3.15dB. This SINR value cor-

responds to the optimum waveform and receiver filter. In the first optim-

ization scheme, Radar-1 achieves an SINR of 5.37dB for an SINR value of

1.14dB for Radar-2. In the max-min optimization case, the SINR values

are almost equal, i.e. 3.07dB and 3.15dB, as requested by the optimization.

Despite this significant SINR increase, by comparing the AAF and CAF
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Figure 5.7: Max-min optimization: SINR evolution of both Radar-1 and
Radar-2. As it can be seen, the initial SINR (i.e. before the optimizing
iterations) is -1.87dB. This corresponds to the SINR achieved with the initial
waveform and the corresponding optimum receiver filter. However, as the
iteration progresses, the SINR is increased (step by step) to 3.15dB. This
SINR value corresponds to the optimum waveform and receiver filter. In
the max-min optimization, as by design specifications, the SINR values are
almost equal for the two radars, i.e. 3.07dB and 3.15dB.
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(a) AAF of s1
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(b) AAF of s2
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(c) CAF of s1, s2

Figure 5.8: Auto-ambiguity function (AAF) and cross-ambiguity function
(CAF) after max-min optimization techniques. The estimated waveforms
perform better in the environment under investigation and provide a 5dB
SINR increase with respect to the initial waveforms. As it can be seen in the
figures, the estimated waveforms still present narrow autocorrelation peaks,
proving their resolution in both range (τ) and Doppler (ν) domains. Fur-
thermore, their cross-correlation function shows limited interference between
the two waveforms.

of the initial waveforms (please refer back to Figure 1.2 if needed) and the

AAF and CAF of the optimized waveforms in Figure 5.8, it can be noted

how the auto-correlation and cross-correlation functions still maintain the

desired characteristics.

These results show how an adaptable optimization process can be designed.

This flexibility, used in combination with the knowledge of the environment

inherent of cognitive radars can provide great advantages: radars with bad

channels could be set to very low goal SINR values so that the optimization

process could focus on better channels whereas radars in uniform environ-

ments could be optimized equally.

5.3.4 Conclusions

In this section two waveform design methods have been proposed. The first

one optimizes the signal strength at a desired radar while keeping the SINR

of the remaining radars at an acceptable level. The second one optimizes
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the SINR of all radars equally. The derived formulations of the signal’s

strength as well as the interference and noise power for the case of mul-

tiple radars with both transmission and reception capabilities proved to be

effective in a simulated environment. The developed methods allow great

flexibility in terms of SINR maximization as they can be utilized both for

application that require uniformity and for those that need to maximize the

signal strength at a specific radar. These methods, that exploit features of

both cognition and MIMO radars, have great potential for applications in

complex environments.

5.4 Conclusions

This chapter discussed different waveform optimization techniques for cog-

nitive radar networks. The three proposed methods have peculiarities that

make them ideal for different scenarios and therefore constitute a rather

comprehensive framework for cognitive radar techniques.

In Section 5.2 a basic method aimed at maximizing the accumulated tar-

get return signal power was introduced. This method is applicable to small

networks with no specific target requirements. Simulation results proved

how this method is effective in terms of SINR improvement and number of

iterations. On the other hand, it does not allow any design freedom (i.e.

target SINR requirements).

In Section 5.3 two different optimization techniques have been proposed.

Both optimizations can be applied to any number of radars and allow the

user to impose desired SINR requirements. These methods are ideal for

systems with specific targets or complicated environments but, due to the

fact that they require an additional inner loop, they are less applicable to
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systems with more stringent time efficiency requests. More specifically, the

first algorithm optimizes the signal strength at a desired radar while keeping

the SINR of the remaining radars at an acceptable level. The second one

optimizes the SINR of all radars equally. Both proved to be effective in

terms of SINR improvement.



Chapter 6

Robust Optimization

Techniques

In this chapter, various robust optimization techniques for coordinated cog-

nitive radar networks are presented. In a traditional adaptive array setting,

the interference plus noise covariance matrix is not known a priori and needs

to be estimated thanks to a training signal. Estimation of the covariance

matrix would normally require that the signal component reflected on a

target is absent during the estimation of the statistical parameters of the

interference and noise. If this was not the case, the system would incur in a

signal cancelation phenomenon which would lead to severely degraded per-

formance. Additionally, mismatches may occur because of a limited number

of data snapshots that are used to estimate the covariance matrix, envir-

onmental nonstationarities (such as rapid motion of the interferers), signal

location errors, antenna motion and/or vibration and so on. As a result,

such techniques can become severely degraded in scenarios when the ex-

ploited assumptions on the environment, antenna array and/or sources are

wrong or inaccurate [84]. In the case of cognitive radars, it is also possible to

96
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estimate the covariance matrix thanks to a priori information such as previ-

ous radar experiences or access to land cover databases. Nevertheless, errors

in the available information will result in significant optimization errors. As

a consequence, it is of primary importance to ensure that the waveform op-

timization techniques described in Chapter 5 are robust against uncertainty

on the covariance matrix or on other parameters.

In this work three different robust optimization techniques will be pro-

posed. The first two techniques employ traditional worst-case optimization

and probabilistic (stochastic) optimization, respectively. Both methods are

used for robust radar waveform design in the presence of uncertainty on the

clutter-plus-noise covariance matrix. The third technique considers a novel

approach where uncertainty is assumed directly on the radar cross-section

and the Doppler of the clutter rather than on the clutter-plus-noise covari-

ance matrix. The latter is solved using Taylor approximations and stochastic

optimization. This work was published in [85].

The present chapter is organized as follows. At first an introduction on

the topic of robust and stochastic optimization techniques is presented. In

Section 6.2, the mathematics for the worst-case performance optimization

techniques is presented, followed by the description in Section 6.3 of the

equations necessary for stochastic optimization techniques. Section 6.4 in-

troduces a novel approach for clutter-specific stochastic optimization for the

case of signal-dependent clutter. The final two sections provide the simula-

tion results of the three methods and some comparison between the different

techniques, followed by concluding remarks.
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6.1 Introduction

In cognitive radars second order statistics are assumed to be known thanks

to external databases or previous experiences. Methods for the estimation of

the required covariance matrices through training sequences are also avail-

able (an example could be the work in [86]). In practical scenarios, though,

these values may not be correct and the performance degradation may be-

come even more pronounced because the optimization techniques are based

on the assumption of an accurate knowledge of the array response to the

desired signal. Moreover, these methods often use quite restrictive assump-

tions on the environment and interferences, for example they assume that

the received array data are stationary and/or that the interferers can be

described using a low-rank model.

The sequential filter-waveform design optimization described in the model in

the optimization problem in (5.10) defined in Section 5.3.1 assumes perfect

knowledge of the second order statistics of both the signal-dependent clut-

ter and the additive noise. This scenario is not always practically feasible

or realistic, especially in a non-stationary case where the interfering sources

move rapidly and the system may not be able to adapt fast enough to com-

pensate for this motion. It is therefore important to take into account the

mismatch between actual and presumed values of the covariance matrix.

In order to tackle the problem of optimization affected by parameter un-

certainty, two main approaches can be undertaken. The first one is robust

or worst-case optimization and the second one is stochastic optimization.

In the first technique the uncertainty model is deterministic and set-based

whereas in the latter case the uncertainty has a probabilistic description.

Both robust methods were applied to the selective optimization described in
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Section 5.3.1.

6.2 Worst-Case Optimization Techniques

In this section a worst-case robust optimization technique that assumes un-

certainty in the clutter plus noise covariance matrix is outlined. In a worst-

case robust optimization model the decision maker constructs a solution that

is feasible for any realization of the uncertainty in a given set. This formu-

lation is inherently that of a max-min problem and is the most rigorous

approach to account for the mismatch [87].

This work is based on the optimization of the SINR at Radar-i whilst satis-

fying a specific SINRgoal for all Radar-j with j 6= i. However, in the presence

of an error on the estimate of the clutter plus noise covariance matrix, it will

not always be possible to achieve the desired SINRgoal due to the mismatch

between the real covariance matrix and the assumed covariance matrix for

the clutter plus noise. In order to describe the robust approach, the estim-

ate of the covariance matrix QdR,(j) in the optimization problem in (5.10) is

assumed to have an error as follows:

Z̃(i) = Z(i) + ∆β,

where, with reference to Equation (5.4), Z(i) is the presumed interference

plus noise covariance matrix and Z̃(i) denotes its actual value. The subscript

β in the error matrix ∆β indicates that the mismatch between the expected

and received covariance matrix is bounded through the constant value β in

the Frobenius norm:

||∆β||F ≤ β.
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The denominator of SINRi can be rewritten as:

tr
(
sH(Z(i) + ∆β)s

)
. (6.1)

The robust worst-case optimization problem is consequently formulated as:

max
s

max
||∆β ||F≤β

tr
(
sH(Z(i) + ∆β)s

)
. (6.2)

This can be modified in the following well-known equivalent formulation

thanks to the Lagrangian multipliers method [84], [50]:

max
s

tr
(
sH(Z(i) + βI)s

)
. (6.3)

The final robust waveform optimization problem can be expressed as the

one in (5.10) but modifying the constraint on the Radar-j as:

tr(QnR,(j)X)− SINRmintr(Q̃dR,(j)X) ≥ 0 ∀j, j 6= i, (6.4)

where Q̃dR,i =

Z(i) + βI 0

0 0

.

The final robust waveform optimization problem can be expressed as the con-

vex optimization problem (5.10) by modifying the constraint on the Radar-j
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as:

max
X

tr(QnR,iX)

s.t. tr(QdR,iX) = 1

tr(QnR,jX)− SINRmintr(Q̃dR,jX) ≥ 0 ∀j, j 6= i

tr(Qorth,ijX) ≥ −%u ∀i, j, j 6= i

tr(Qorth,ijX) ≤ %u ∀i, j, j 6= i

tr(Qpw,iX) = u ∀i

tr(Qinit,iX) ≤ 0 ∀i

tr(QCCX) = u

X � 0, u ≥ 0

(6.5)

where Q̃dR,i =

Z̃i 0

0 0

.

The iterative optimization process is the same as described in Chapter 5

and, more specifically, in Table 5.2.

6.3 Stochastic Optimization Techniques

The problem associated with worst-case optimization techniques is that they

result in overly-conservative methods as they aim at satisfying the SINR for

worst-case errors. For this reason, most of the time the achieved SINR is

much greater than the required SINR. By utilizing statistical knowledge of

the error of the covariance matrix, it is possible to achieve robustness against

the uncertainty with a certain outage probability [53]. As the RCS and

Doppler values change randomly, it is more efficient to exploit the statistical

nature of these errors.
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The SINR constraints in the optimization be reformulated as:

P(j) = Pr

(
tr
(
sHR(j)s

)
tr
(
sH
(
Z(j) + E(j)

)
s
) ≥ SINRgoal

)
, (6.6)

with P(j) ≥ p(j), j 6= i. Similarly to Section 6.2, uncertainty should be

considered only at those radars with specific SINR requirements. P(j) defines

the probability that the jth user achieves the required SINRgoal and p(j)

is a preselected threshold value. In (6.6), Pr(·) identifies the probability

operator and E(j) is the error matrix. E(j) is a block diagonal matrix (as

is Z(j)) where each of the inner matrices has been modeled as a Hermitian

matrix whose elements are taken from the distribution CN (0, σ2
e(j)

), where

CN (µ, σ2) identifies a complex normal distribution characterized by a mean

µ and a variance σ2. Naming S = ssH, the variance of tr(E(j)S) can be

therefore calculated as:

E{tr(E(j)S)tr(E(j)S)∗} =
M-1∑
q=0

N∑
l=1

N∑
m=1

σ2
e(j)

S2
l+qM,m+qM

= σ2
e(j)

[tr(S1S
H

1 ) + · · ·+ tr(SMSH

M)]

= Mσ2
e(j)

,

(6.7)

where (l,m) identifies the matrix cell. (6.6) can be reformulated as:

P(j) = Pr
(

tr
(
(Z(j) + E(j))S

)
≤ γ(j)

)
, (6.8)

where:

γ(j) =
tr(R(j)S)

SINRgoal

, and S = ssH.

It is now possible to define the random variable y(j) = tr
(
(Z(j) + E(j))S

)
.

This is a real variable because both Z(j) + E(j) and S are Hermitian and, as
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by Lemma 1 in [53], is assumed to have the probability distribution y(j) ∼

N
(
tr(Z(j)S),Mσ2

e(j)

)
. The probability of achieving the required SINRgoal is

therefore calculated as:

P(j) =

∫ γ(j)

−∞

1√
2πσe(j)

√
M

exp

(
−

(y(j) − µ(j))
2

2σ2
e(j)
M

)
dy, (6.9)

where µ(j) = tr(Z(j)S). Using the error function erf(·) solution of the Gaus-

sian integral, (6.9) can be rewritten as:

P(j) =
1

2
+

1

2
erf

(
γ(j) − µ(j)√
2σe(j)

√
M

)
≥ p(j), (6.10)

hence,

γ(j) − µ(j) ≥ erf−1(2p(j) − 1)
√

2σe(j)
√
M .

Equivalently:

tr(R(j)S)

SINRmin

− tr(Z(j)S) ≥ δe(j) , (6.11)

where

δe(j) = erf−1(2p(j) − 1)
√

2σe(j)
√
M , (6.12)

and ||S|| = ||ssH|| = tr(ssH) = M since s is a vector containing the M radar

waveforms. Writing the condition for stochastic robustness so that it is more

convenient in light of the SDP formulation:

tr(R(j)S)− SINRmintr

((
Z(j) +

δe(j)
tr(S)

)
S

)
≥ 0,

leads to the convex optimization problem constraint:

tr(QnR,(j)X)− SINRmintr(Q̃dR,(j)X) ≥ 0 ∀j, j 6= i, (6.13)
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where Q̃dR,(j) =

Z(j) +
δe(j)
tr(S)

I 0

0 0

, and δej is as described in Equation 6.12.

Therefore the final robust waveform optimization problem in convex form is

again:

max
X,u

tr(QnR,(i)X)

s.t. tr(QdR,(i)X) = 1

tr(QnR,(j)X)− SINRmintr(Q̃dR,(j)X) ≥ 0 ∀j, j 6= i

tr(Qorth,(i,j)X) ≥ −%u ∀i, j, j 6= i

tr(Qorth,(i,j)X) ≤ %u ∀i, j, j 6= i

tr(Qpw,(i)X) = u ∀i

tr(Qinit,(i)X) ≤ 0 ∀i

tr(QCCX) = u

X � 0, u ≥ 0

(6.14)

The iterative optimization process is the same as described in Chapter 5

and, more specifically, in Table 5.2.

6.4 Clutter-Specific Stochastic Optimization

The methods described so far are applicable to uncertainties introduced dir-

ectly to the clutter-plus-noise covariance matrix, hence they are very generic

and over-conservative. In most cases, the covariance matrix will be construc-

ted using the estimates of the underlying parameters of the clutter such as

radar cross-section and Doppler. Hence, in order to prove the validity of the

previous models as well as to investigate new optimization techniques aimed

at guaranteeing enhanced accuracy, a clutter parameter-specific stochastic

optimization is proposed. The clutter covariance matrix is a function of the
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RCS and Doppler of the clutter. Hence in the presence of uncertainty, this

can be expressed for radar i as:

Θc,rob,(i) =
M∑
j=1

B∑
b=0

(
(σ2

c,(j,i,b) + εRCS,(j,i,b))×

diag{JT

(j,i,br)w
∗
(i)}Φε,rob,(j,i,b)diag{JT

(j,i,br)w(i)}
)

,

(6.15)

with i = 1, 2, . . .M and where the matrix accounting for the Doppler shift

is:

Φε,rob,(j,i,b)(l,m) = ej2πν̄(j,i,b)(l−m) sin[π(ε(j,i,b) + εν,(j,i,b))(l −m)]

[π(ε(j,i,b) + εν,(j,i,b))(l −m)]
, (6.16)

and:

� εRCS,(j,i,b) ∼ CN (0, σ2
εRCS,(j,i,b)

) defines the statistics of the uncertainty

on the radar cross-section;

� εν,(j,i,b) ∼ CN (0, σ2
εν,(j,i,b)

) provides the statistics associated to the un-

certainty on the Doppler interval.

For notational convenience the subscript (i) will be hereafter omitted. The

reader will therefore need to keep in mind that all of the following equations

refer to a receiving/transmitting radar (i) even if not directly specified.

In order to develop robust optimization techniques, the elements of the mat-

rix Φε,rob have been expanded using Taylor series as a function of the error
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Θ̃c,rob,(i) =
M∑
j=1

B∑
b=1

σ2
c,(j,i,b)diag{JT

(j,i,br)w
∗
(i)}Φε,(j,i,b)diag{JT

(j,i,br)w(i)} +

M∑
j=1

B∑
b=1

εRCS,(j,i,b)diag{JT

(j,i,br)w
∗
(i)}Φε,(j,i,b)diag{JT

(j,i,br)w(i)} +

M∑
j=1

B∑
b=1

σ2
c,(j,i,b)diag{JT

(j,i,br)w
∗
(i)}Φεν ,(j,i,b)diag{JT

(j,i,br)w(i)} +

M∑
j=1

B∑
b=1

εRCS,(j,i,b)diag{JT

(j,i,br)w
∗
(i)}Φεν ,(j,i,b)diag{JT

(j,i,br)w(i)}

M∑
j=1

B∑
b=1

σ2
c,(j,i,b)diag{JT

(j,i,br)w
∗
(i)}Φo2,(j,i,b)diag{JT

(j,i,br)w(i)} +

M∑
j=1

B∑
b=1

εRCS,(j,i,b)diag{JT

(j,i,br)w
∗
(i)}Φo2,(j,i,b)diag{JT

(j,i,br)w(i)}

= Θc,(i) + ΘεRCS ,(i) + Θεν ,(i) + ΘεRCSεν ,(i) + Θo2,(i) + ΘεRCSo2,(i)

for i = {1, 2, . . .M}
(6.18)

term εν . This results in the following expression:

Φ̃ε,rob(l,m) =ej2πν̄(l−m)

(
sin[πε(l −m)]

[πε(l −m)]
+

1

ε

(
cos[πε(l −m)]− sin[πε(l −m)]

[πε(l −m)]

)
εν+

1

ε2

(
2− (πε(l −m))2

2

sin[πε(l −m)]

[πε(l −m)]
− cos[πε(l −m)]

)
ε2
ν

)
,

(6.17)

where (l,m) identifies the position of the element within the matrix. Substi-

tuting Equation (6.17) into Equation (6.15) leads to Equation (6.18). This

can also be written in the form:

Θ̃c,rob = Θc + ΘεRCS + Θεν + ΘεRCSεν + Θo2 + ΘεRCSo2.
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Some necessary remarks on Equation (6.18):

� The notation ˜ identifies the difference between the original matrix

Θc,rob and the Taylor series-approximated matrix Θ̃c,rob;

� Θc is the error-free clutter covariance matrix;

� ΘεRCS is the covariance matrix carrying the uncertainty on the radar

cross-section of the clutter;

� Θεν is the covariance matrix carrying the uncertainty on the Doppler

of the clutter;

� the expected value of ΘεRCSεν can be assumed to be zero since it con-

tains a multiplication between the two errors which are very small and

uncorrelated;

� the terms Θc and Θo2 will contribute to the mean of Θ̃c,rob;

� the terms ΘεRCS and Θεν will contribute to the variance of Θ̃c,rob;

� the term ΘεRCSo2 will contribute with a mean value to the variance of

ΘεRCS .

In other words, the new clutter covariance matrix can be re-written as the

error-free clutter covariance matrix plus a series of signal-dependant error

matrices. The denominator of the SINR can be therefore written as:

y = tr
(
(Z + Θ∗εRCS + Θ∗εν + Θ∗εRCSo2 + Θ∗o2)S

)
,

where Z = Θ∗c + σ2
nI (please refer to Equation (5.4)). The statistics of y are

derived hereafter.
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The expected value of y is:

µ = E{y} =E{tr
(
(Z + Θ∗εRCS + Θ∗εν + Θ∗εRCSo2 + Θ∗o2)S

)
}

=E{tr
(
(Z + Θ∗o2)S

)
}

=tr(ZS) + tr(Θ̃∗o2S),

(6.19)

where:

Θ̃o2 =
M∑
j=1

B∑
b=1

σ2
c,(j,br)diag{JT

(j,br)w
∗}Φ̃o2,(j,br)diag{JT

(j,br)w}, (6.20)

where, omitting for notational convenience the subscript (j, br):

Φ̃o2(l,m) = E{Φo2(l,m)}

= E
{

1

ε2

(
2− (πε(l −m))2

2

sin[πε(l −m)]

[πε(l −m)]
− cos[πε(l −m)]

)
ε2
ν

}
=

1

ε2

(
2− (πε(l −m))2

2

sin[πε(l −m)]

[πε(l −m)]
− cos[πε(l −m)]

)
σ2
εν .

(6.21)

In the above, the mean of ΘεRCS , Θεν and ΘεRCSo2 goes to zero and

E{ε2
ν} = σ2

εν as consequence of the Gaussian variables being distributed with

εRCS,(j,i,b) ∼ CN (0, σ2
εRCS,(j,i,b)

) and εν,(j,i,b) ∼ CN (0, σ2
εν,(j,i,b)

). The second or-

der statistics of y can be calculated as:

E{y2} = E
{(

tr
(
(Z + Θ∗εRCS + Θ∗εν + Θ∗εRCSo2 + Θ∗o2)S

)
− µ

)2}
= E

{(
tr
(
(Θ∗εRCS + Θ∗εν + Θ∗εRCSo2)S

))2}
.

(6.22)

The statistics of the matrix elements of ΘεRCS and Θεν can be derived as

follows:

ΘεRCS(l,m) ∼ CN
(

0,A2
εRCS

(l,m)σ2
εRCS

)
,
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Θεν (l,m) ∼ CN
(

0,A2
εν (l,m)σ2

εν

)
,

where:

AεRCS =
M∑
j=1

B∑
b=1

diag{JT

(j,br)w
∗}Φε,(j,b)diag{JT

(j,br)w},

Aεν =
M∑
j=1

B∑
b=1

σ2
c,(j,br)diag{JT

(j,br)w
∗}K diag{JT

(j,br)w(i)},

and:

K(l,m) = ej2πν̄(l−m) · 1

ε

(
cos[πε(l −m)]− sin[πε(l −m)]

[πε(l −m)]

)
.

Also,

E{tr((Θ∗εRCS + Θ∗εRCSo2)S)tr((Θε∗RCS
+ Θ∗εRCSo2)S)∗} =

= E{tr(εRCSA∗εRCSS)tr(εRCSA∗εRCSS)∗ + tr(εRCSA∗o2S)tr(εRCSA∗o2S)∗}

= σ2
εRCS

M∑
j=1

B∑
b=1

tr
(

diag{JT

(j,br)w
∗}(Φε,(j,br) + Φ̃o2)× diag{JT

(j,br)w}S
)2

= σ2
εRCS
‖vRCS‖2,

(6.23)

where vRCS is a vector of dimension MB× 1 containing in each element the

value tr
(

diag{JT

(j,br)w
∗}(Φε,(j,b) + Φ̃o2)diag{JT

(j,br)w}S
)2

for a specific radar

j and range-azimuth bin b and

Ao2 =
M∑
j=1

B∑
b=1

diag{JT

(j,br)w
∗}Φ̃o2diag{JT

(j,br)w}.

It needs to be noted that in Equation (6.23) the cross products between

ΘεRCS and ΘεRCSo2 go to zero as they present the multiplication σ2
εRCS
×σ2

εν

which can be approximated to zero. Furthermore, given the fact that the
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two errors are uncorrelated, the expected value would also be zero. The

variance of the uncertainty related to the Doppler can be calculated in the

same way:

E{tr(Θ∗ενS)tr(Θ∗ενS)∗} = E{tr(ενA∗ενS)tr(ενA
∗
ενS)∗}

= σ2
εν

M∑
j=1

B∑
b=1

tr
(

diag{JT

(j,br)w
∗}K(j,b)diag{JT

(j,br)w}S
)2

= σ2
εν‖vν‖

2,

(6.24)

where vν is a vector of dimension MB × 1 containing in each element the

value tr
(

diag{JT

(j,br)w
∗}K(j,b)diag{JT

(j,br)w}S
)2

for a specific radar j and

range-azimuth bin br. In this model the variance depends on the signal

as well as other parameters specifically related to the scenario under invest-

igation. The variance of y is written as:

E{y2} = σ2
εRCS
‖vRCS‖2 + σ2

εν‖vν‖
2

= ‖[σεRCSvRCS;σενvν ]‖2.

(6.25)

Similarly to the case described in Subsection 6.3:

P =

∫ γ

−∞

1√
2π‖vε‖

exp

(
− (y − µ)2

2‖vε‖2

)
dy, (6.26)

where vε = [σεRCSvRCS;σενvν ]. This leads to the second order cone pro-

gramming (SOCP) convex constraint:

tr(R(j)S)

SINRmin

− tr
(
(Z(j) + Θ̃∗(j),o2)S

)
≥ δp(j)‖vε‖, (6.27)

where δp(j) = erf−1(2p(j) − 1)
√

2.
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6.5 Performance Analysis

In order to evaluate the performance of the proposed algorithms, Monte

Carlo simulations for the case of M = 2 radars have been performed. Monte

Carlo simulations use random sampling and statistical modeling to estimate

mathematical functions and mimic the operations of complex systems [88].

It is therefore a valuable tool to test the validity of the statistical model at

hand.

The SINR of the first radar is maximized while requiring the second

radar to achieve a desired SINRgoal. The SINR achieved by the optimiza-

tion for the second radar is investigated for both the robust and non-robust

cases. The initial waveforms s0,1 and s0,2 are again fractional Fourier wave-

forms of length N = 64 as developed in [83]. These waveforms provide very

good auto-correlation and cross-correlation properties (refer to Figure 1.2),

granting therefore good range resolution while maintaining orthogonality

between the two radar waveforms. The scatterers are located in Nc = 4

range rings. The number of azimuth cells in each ring is L = 8. As for the

parameters of the target, the various radar cross-sections are set randomly

to σ2
11,T = 0.5823, σ2

21,T = 0.6036, σ2
22,T = 0.5935 and σ2

12,T = 0.6203. The

target Doppler values are set randomly to ν11,T = 0.0141, ν21,T = 0.0237,

ν22,T = 0.0249 and ν12,T = 0.0044. The clutter power as seen by the radars

is σ2
11,c = σ2

21,c = σ2
22,c = σ2

12,c = 1. The noise variance is set to σ2
n = 0.25

and the Doppler frequency is uniformly distributed around its mean value

of ν̄c = 0.0267 with a spread of ε = 0.02. Finally, the maximum acceptable

deviation to the initial waveform is set to δ = 0.1 and the orthogonality

threshold to % = 0.05. For solving the SDP problem, CVX Matlab Soft-

ware for Disciplined Convex Programming [74] toolbox has been used. The



Chapter 6. Robust Optimization Techniques 112

waveform optimization was solved as described in the optimization prob-

lem in (5.10) and for thorough description of the optimization method the

reader can refer to Chapter 5 and Table 5.2. For all simulations the para-

meters used were ∆step = 0.1, SINRiteration = 0 at the initialization stage

and SINRgoal = 2dB. SINRgoal refers to Radar−2 since SINR1 will be max-

imized in the objective function of the SDP. The number of Monte Carlo

experiments for the simulation results is 10000.

6.5.1 Performance Analysis of Worst-Case Optimiza-

tion Techniques

In order to test the algorithm for worst-case optimization techniques, the

Frobenius norm bound of the error matrix was set to β = 0.18. This β value

corresponds to the 1% of the Frobenius norm of the error-free covariance

matrix of the clutter.

As it can be seen in Figure 6.1, the required SINRgoal of 2dB was over sat-

isfied with robust optimization techniques but the non-robust case achieved

the required SINR of 2dB only half of the times. As expected, the results

are over-conservative for the worst-case optimization techniques since the

achieved SINR is always higher than the required one by a considerable

margin.

The SINR achieved by Radar-1, i.e. the radar whose SINR is maximized,

was equal to SINR1,max = 3.73dB on average.
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Figure 6.1: Worst-case robust optimization. The required SINRgoal of 2dB
is achieved every time with robust optimization techniques. The SINRgoal

is not always achieved for the non-robust case, with the transparent area
marking values below 2dB. As expected, the results are over-conservative
for the worst-case optimization techniques, i.e. >> 2dB.

6.5.2 Performance Analysis of Stochastic Optimiza-

tion Techniques

In order to test the stochastic optimization techniques, the standard devi-

ation of the error was set to σej = 0.01. The value was selected so that
√
Mσej is 4% of the mean of tr(Z(j)S) (please refer to the probability distri-

bution of y(j) in Subsection 6.3). This has been tested for an SINR achieve-

ment rate of 70%, 80% and 90%.

As it can be seen in Figures 6.2, 6.3 and 6.4 respectively, the robust

algorithm provides the desired SINR with the desired percentage. On the

other hand, the non-robust algorithm was able to achieve the desired SINR

of 2dB only about half of the times. The specific values have been provided

in Table 6.1.

The average SINR achieved by Radar-1 was equal to SINR1,max =
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Desired percentage 70% 80% 90%
Obtained percentage with stochastic op-
timization techniques

70.2 79.8 89.5

Obtained percentage without stochastic
optimization techniques

50.5 49.7 49.6

Table 6.1: Stochastic optimization results. Comparison between the achiev-
able percentage of a desired SINRgoal with stochastic waveform optimization
techniques and non-robust waveform optimization techniques.

Figure 6.2: Stochastic optimization, SINR of at least 2dB to be achieved
70% of the time. Required SINRgoal achieved 70.2% of times with stochastic
optimization. Required SINRgoal achieved 50.5% without robust optimiz-
ation. The values not achieving the target are displayed with transparent
colours.
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Figure 6.3: Stochastic optimization, SINR of at least 2dB to be achieved
80% of the time. Required SINRgoal achieved 79.8% of times with stochastic
optimization. Required SINRgoal achieved 49.7% without robust optimiz-
ation. The values not achieving the target are displayed with transparent
colours.

Figure 6.4: Stochastic optimization, SINR of at least 2dB to be achieved
90% of the time. Required SINRgoal achieved 89.5% of times with stochastic
optimization. Required SINRgoal achieved 49.6% without robust optimiz-
ation. The values not achieving the target are displayed with transparent
colours.
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3.76dB.

6.5.3 Performance Analysis of Clutter-Specific

Stochastic Optimization

In order to test the clutter-specific stochastic optimization, the standard

deviation of the error of the RCS of the clutter was set to 20% of the RCS

of the clutter, i.e. σ2
εRCS

= (
σ2
c,(j,i,b)

5
)2. Similarly, the variation of the error on

the Doppler was set to σ2
εν = ( ε

5
)2 i.e. 20% of ε.

The results obtained through the Monte Carlo simulations for clutter-

specific stochastic optimization have been provided in the second row of

Table 6.2 as well as in the green histograms in Figures 6.5, 6.6 and 6.7. As it

can be seen, by using the proposed optimization method, there generally is

a very good match between the desired and the obtained SINR percentages.

However, a 2.5% mismatch occurs for the 90% case. This is a consequence

of the Taylor series approximation of the covariance matrix. Nonetheless,

during this Monte Carlo simulation, the value of 1.99dB was achieved 90%

of the time, showing how this mismatch is actually negligible.

It needs to be noted that uncertainty could have also been considered

on the average of the Doppler ν̄c. The methodology proposed in this work

is still applicable to this case. However, incorporating error to the average

Doppler in Equation (6.16) will lead to additional terms in the covariance

matrix in Equation (6.18). For clarity of the description of the algorithm,

the present work considers uncertainty only on the Doppler spread.

The above results were also compared with non-robust optimization and

with the ordinary stochastic method described in Subsection 6.3.

In order to compare the parameter-specific uncertainty with the
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stochastic method that considers the uncertainty directly on the covariance

matrix of the clutter, the same level of uncertainty needs to be used in both

optimizations. To estimate the variance σ2
e while making sure to maintain an

equivalent level of uncertainty, the following method was employed. Errors

were introduced directly to the clutter parameters as in Equation (6.15)

and the difference between the true covariance matrix and the error-free

covariance matrix was computed as:

Ẽ = Θc,rob −Θc, (6.28)

where Θc,rob and Θc are defined in Equation (6.18). Once Ẽ is obtained,

E{|tr(ẼS|2} is computed using the 10000 Monte Carlo runs, and the equi-

valent variance of the error σ2
e for the ordinary optimization is obtained

using Equation (6.7) as E{|tr(ẼS|2}
M

. It should be noted that Ẽ is a func-

tion of the receiver filter w(i) and the percentage of SINR achievement rate.

Hence the equivalent error terms for the final value of w(i) were computed

as obtained by the proposed stochastic optimizations for each percentage

70%, 80% and 90%. The variance σ2
e thus obtained was then used for the

ordinary stochastic optimization.

The results obtained for non-robust optimization, ordinary stochastic op-

timization and clutter-specific optimization for the case of when the error

is applied directly to the radar cross-section and the Doppler spread, are

depicted in Figures 6.5, 6.6 and 6.7 and summed up in Table 6.2. As it can

be seen, there is a significant difference between the desired and obtained

SINRgoal for the case of ordinary stochastic optimization i.e. obtained by as-

suming that the error is directly applied to the clutter plus noise covariance

matrix. The reason is that the assumption of errors applied directly to the
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Figure 6.5: The SINR goal of 2dB was required to be achieved 70% of the
time. Comparison between non-robust optimization, ordinary stochastic op-
timization and the clutter-specific optimization proposed in this work. The
required SINRgoal of 2 dB was achieved 69.8% of times with clutter-specific
stochastic optimization. The required SINRgoal was achieved 6.6% of the
time with the more generic stochastic optimization method and 1.3% with
non-robust optimization. The values not achieving the target are displayed
with transparent colours.
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Figure 6.6: The SINR goal of 2dB was required to be achieved 80% of the
time. Comparison between non-robust optimization, ordinary stochastic op-
timization and the clutter-specific optimization proposed in this work. The
required SINRgoal of 2 dB was achieved 79.4% of times with clutter-specific
stochastic optimization. The required SINRgoal was achieved 7.0% of the
time with the more generic stochastic optimization method and 0.7% with
non-robust optimization. The values not achieving the target are displayed
with transparent colours.
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Figure 6.7: The SINR goal of 2dB was required to be achieved 90% of the
time. Comparison between non-robust optimization, ordinary stochastic op-
timization and the clutter-specific optimization proposed in this work. The
required SINRgoal of 2 dB was achieved 87.5% of times with clutter-specific
stochastic optimization. The required SINRgoal was achieved 6.5% of the
time with the more generic stochastic optimization method and 0.4% with
non-robust optimization. The values not achieving the target are displayed
with transparent colours.
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Figure 6.8: Achieved SINR of Radar-1 obtained through clutter specific
optimization technique for different realization of the clutter parameters.

covariance matrix is not sufficiently accurate to describe the structure of the

error. As a matter of fact, there is almost no difference between the results

obtained with non-robust optimization and with ordinary stochastic optim-

ization, proving how this model is an over-simplification when considering

signal-dependent clutter. It should be noted that only Radar-2 is required

to achieve a specific SINR. But for Radar-1, the aim was to maximize its

achievable SINR. Hence robust formulation is applicable to only Radar-2.

However, since this work assumes various realizations of the clutter para-

meters, the SINR achieved by Radar-1 varied slightly but with a mean value

of 3.78dB, as shown in Figure 6.8. It needs to be noted that, in principle,

the proposed techniques are applicable to more than two radars. However,

in practice, the performance in the presence of more than two radars will be

very limited in the presence of severely cluttered environment. For example,

in our simulation model, the variance of the RCS of the target was selected

randomly around the value of 0.6 whereas the variance of the RCS of the
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Desired percentage 70% 80% 90%
Obtained percentage with clutter-specific
stochastic optimization techniques

69.8 79.4 87.5

Obtained percentage with ordinary
stochastic optimization techniques

6.6 7.0 6.5

Obtained percentage with non-robust optim-
ization techniques

1.3 0.7 0.4

Table 6.2: Results for signal-dependent clutter i.e. for error applied directly
to the RCS and Doppler of the clutter. Comparison between the achievable
percentage of the desired SINRgoal by using the proposed optimization that
assumes uncertainty on the clutter parameters directly (row 2), the ordinary
stochastic optimization (row 3) and non-robust optimization (row 4).

clutter was set to 1. Also, each radar receives signal components from only

two distinct paths (one from each radar), and the clutter returns for each

radar were modeled by considering Nc × L = 32 range-azimuth bins. In

addition, due to the fact that the waveforms cannot be perfectly orthogonal

at various time lacks, adding more than two radars will add more interfer-

ence to the already severely cluttered environment, leading to unrealistically

small SINRgoal values. Furthermore, adding more radars will increase the

computational burden. In addition to these challenges, efficient methods for

obtaining realistic estimates of the uncertainty of the clutter parameters is

also an important research direction.

6.6 Conclusions

The development of robust optimization techniques is of fundamental im-

portance to enhance the SINR in the presence of uncertainty of the envir-

onment. In this chapter the problem of robust waveform design for multi-

static cognitive radars in a signal-dependent clutter environment was de-
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scribed. Assuming uncertainty on the clutter statistics, this work proposed

worst-case robust optimization and stochastic robust optimization methods.

While non-robust optimization methods are unable to achieve the required

SINRgoal, the worst-case robust optimization is always able to achieve this

goal SINR, however, this method is over-conservative as it aims to achieve

the desired SINR for the worst-case clutter statistics. The stochastic ro-

bust optimization is able to achieve the goal SINR with a specified outage

probability in the presence of uncertainty on the clutter covariance mat-

rix. Finally, the proposed algorithm that assumes uncertainty directly on

the clutter parameter is able to achieve the desired probability of SINRgoal

with a small margin error due to Taylor series approximation. However, this

method is able to outperform the ordinary stochastic robust optimization

method significantly due to possible preservation of the structure of the error

matrix.



Chapter 7

Robust Matched-Illumination

for Through-the-Wall Radar

This chapter discusses robust matched-illumination techniques for a

through-the-wall radar. This chapter sets itself apart from the previous

ones since it does not regard waveform optimization techniques specifically.

Furthermore, the mathematical framework on which it is based differs from

the previous chapters. More specifically, this chapter discusses a mono-

static radar in a correlated clutter scenario rather than a multistatic radar

in signal-dependent clutter. The work discussed in this chapter was inspired

by [28]. This chapter fits well within the narrative of this thesis since it dis-

cusses robust optimization techniques for cognitive radars. More specifically,

the first of the two proposed techniques optimizes the target return (i.e. the

vector originated from the convolution between the transmitted signal and

the combined wall-target response) and the second technique optimizes the

receiver filter.

The work in [28] discusses matched-illumination waveform design for a

multistatic through-the-wall radar system where the target is assumed to

124
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be stationary and with a known impulse-response. As mentioned, cognitive

techniques such as matched-illumination techniques, rely on a priori know-

ledge. It is well known, though, that it is difficult to obtain exact a priori

information and that uncertainties in the parameters might severely degrade

the SINR. In order to create reliable systems that are able to tolerate estim-

ation errors, robust optimization techniques need to be implemented.

The novelty introduced in this chapter is to investigate robust optim-

ization techniques usually known for beamforming, to the through-the-wall

radar application, where the uncertainty is placed on the knowledge of the

combined target-wall impulse response.

This chapter is organized as follows. In Section 7.1 the general through-

the-wall problem is presented. In Section 7.2, robust optimization techniques

are discussed. More specifically, the section starts with a short overview on

robust beamforming optimization techniques, propaedeutic for a thorough

understanding of the proposed techniques. Subsequently, Sub-Section 7.2.1

develops a mathematical model for uncertainty ellipsoid-based optimization

and Sub-Section 7.2.2 presents norm-bound vector optimization techniques.

Finally, Section 7.3 presents the performance analysis of the proposed tech-

niques and is followed by conclusions.

7.1 Through-the-Wall Radar Problem for-

mulation

For the case of through-the-wall radar systems, the target return can be

calculated as the convolution between the transmitted signal s(t) of length N

and the combined target-wall impulse response q(t) of duration Nq samples.

In matrix form, this can be written as z = Qs, where z is the received
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target return vector, Q is the combined wall-target convolution matrix of

size Nz ×N with Nz = N +Nq − 1, and s is the transmitted signal vector.

More specifically:



z1

z2

...

zNz


Nz×1

=



q1 0 0 . . . 0

q2 q1 0 . . . 0

...
...

...
. . .

...

qNq qNq−1 . . . . . . q1

0 qNq . . . . . . q2

...
...

0 0 . . . . . . qNq


(Nq+N−1)×N



s1

s2

...

sN


N×1

(7.1)

As a result, the received signal vector can be written as r = z+c+n, where

c is the correlated clutter return and n is the additive noise vector.

After the detection problem in [28] and [89], the receiver filter is calculated

as the matched filter:

bmatch = (Ψc + σ2
nI)−1z, (7.2)

where Ψc is the covariance matrix of the clutter, σ2
n is the noise variance

and I is an identity matrix that has the same dimension as Ψc. The received

signal is then calculated as y = bH
matchr, which leads to the SINR:

SINR =
bH
matchzzHbmatch

bH
match(Ψc + σ2

nI)bmatch
. (7.3)

The objective of the matched-illumination waveform design is to determine

the transmitted signal vector s that maximizes the signal to interference

plus noise ratio at the output of the matched filter. The waveform design
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problem can be formulated as the maximization over z (because z is a linear

transformation of s) of the cost function in Equation (7.3) [28]. By sub-

stituting the value of bmatch from Equation (7.2) into Equation (7.3), the

optimization can be rewritten as:

max
z

zH(Ψc + σ2
nI)−1z, (7.4)

or, equivalently:

max
s

sHQH(Ψc + σ2
nI)−1Qs. (7.5)

The optimal waveform can be estimated as the eigenvector associated with

the largest eigenvalue of the matrix Ω = QH(Ψc + σ2
nI)−1Q.

7.2 Robust Optimization Techniques

The matched-illumination work in [28] assumes to have perfect knowledge

of the combined wall-target convolution matrix Q and on the clutter-plus-

noise covariance matrix Ψc + σ2
nI. In practical scenarios though, neither of

these (particularly Q) is easy to obtain, nor there is any guarantee that its

knowledge will be accurate. Estimation errors will lead to incorrect results.

This work therefore introduces two different robust optimization techniques

that assume uncertainty on the combined wall-target impulse response q. As

a consequence, uncertainty on the convolution matrix Q is also considered

as well as on the received signal component z. Both optimization techniques

were inspired by robust adaptive beamforming optimizations.

In a traditional beamforming problem, there is an array of Nbeam sensors

receiving signals arriving from K directions. Let a(θ0) denote the response

of the array to a plane wave of unit amplitude arriving from direction θ0
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and that a source s(t) is impinging upon the array from angle θ0 [90]. The

vector array output is then:

y(t) = a(θ0)s(t) + c(t) + n(t), (7.6)

where c(t) is the sum of all signals impinging on the array that do not carry

information of interest. The combined sampled beamformer output is then

given by:

rbeam(k) = wHy(k) = wHa(θ0)s(k) + wH(c(k) + n(k)), (7.7)

where w is a vector of weights [90]. The goal is to make the gain of the

received signal component equal to one wHa(θ0) = 1 and the clutter plus

noise wH(c(k) + n(k)) as small as possible. Naming Rc+n = E{(c(k) +

n(k))(c(k)+n(k))H} the clutter-plus-noise covariance matrix, the traditional

beamforming problem can be written as:

min
w

wH Rc+n w

s.t. wHa(θ) = 1.
(7.8)

In practical applications, Rc+n is replaced by the sample covariance mat-

rix [57].

The solution to the optimization problem can be found thanks to the Lag-

rangian multiplier:

L(w, λ) = wHRc+nw + λ(wHa(θ)− 1), (7.9)
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where λ is the Lagrange multiplier. Calculating the partial derivative of

L(w, λ) with respect to wH, the following result can be obtained:

w =
R−1
c+na(θ)

aH(θ)R−1
c+na(θ)

, (7.10)

where α = 1/aH(θ)R−1
c+na(θ) can be considered a normalization constant, leading

to the result w = αR−1
c+na(θ). Aiming to show the analogy between the

MVDR optimization problem and the one at hand, this excursus will now

go back to the discussion of the through-the-wall radar problem.

The optimization problem obtained by maximizing the cost function in

(7.3) can be reformulated as minimizing the power of the interference plus

noise (denominator) subject to the signal component being equal to one

(numerator):

min
b

bH(Ψc + σ2
nI)b

s.t. bHz = 1.
(7.11)

Remembering how, in practical applications, the clutter plus noise covari-

ance matrix can be replaced by the sample covariance matrix, the above

problem can be reformulated as:

min
b

bH R̂ b

s.t. bHz = 1,
(7.12)

where the sample covariance matrix can be calculated as [58]:

R̂ =
1

Ns

N s∑
ns=1

y(ns)y
H(ns), (7.13)

where Ns is the number of training snapshots. Once in this form, the connec-

tion between the optimization problem in (7.12) and the minimum variance
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distortionless response (MVDR) or Capon beamformer (7.8) is apparent.

The receiver filter can therefore be calculated as [58]:

b = R̂
−1

z, (7.14)

where the normalization constant 1/zHR̂
−1

z has been omitted as it doesn’t

affect the SINR value (appearing at both numerator and denominator).

7.2.1 Uncertainty Ellipsoid Optimization

One possible way to make the problem robust by considering uncertainty on

the signature of the wall-target response, is to assume that z belongs to the

following uncertainty ellipsoid:

[z− z̄]HC−1[z− z̄] ≤ 1, (7.15)

where z̄ and C (a positive semidefinite matrix) are given. Furthermore, for

the purpose of this problem, it can be assumed that C = ε1I.

By following the directions in [57], solving a covariance fitting problem, the

optimization problem in (7.12) can now be reformulated as:

max
σ2,z

σ2

s.t. R̂− σ2zzH ≥ 0

[z− z̄]HC−1[z− z̄] ≤ 1,

(7.16)

where σ2 is the power of the received signal component. Finally, the above

problem can be reformulated in matrix form thanks to the Schur Comple-
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ment (refer to next paragraph) [57]:

min
ρ,z

ρ

s.t.

R̂ z

zH ρ

 ≥ 0

 C (z− z̄)

(z− z̄)H 1

 ≥ 0,

(7.17)

where ρ = 1/σ2. The constraints in the optimization problem (7.17) are now

in the form of linear matrix inequalities, hence this is a semidefinite pro-

gramming problem that can be solved with convex optimization techniques.

The optimized value zopt, obtained by solving the above optimization prob-

lem, can then be substituted in Equation (7.14), to calculate the new filter

bopt and then the new SINR value as:

SINRopt =
|bH
optz|2

bH
opt(Ψc + σ2

nI)bopt
. (7.18)

7.2.1.1 The Schur Complement

The Schur Complement is a way to solve an n×n system of linear equations

by row reduction. Consider the linear system Mz = 0 with a non-singular

leading principal submatrix. Partition M as:

A B

C D

 (7.19)
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suppose A is non-singular and partition z as

x

y

. The linear system Mz = 0

is now equal to the pair of linear systems:

 Ax + By = 0

Cx + Dy = 0
(7.20)

By multiplying the first row of the system by −CA−1 and adding the result

to the second row of the system, the following equation can be obtained:

−Cx−CA−1By + Cx + Dy = (D−CA−1B)y = 0 (7.21)

The matrix (D−CA−1B) is called the Schur complement of M relative to

A [91].

7.2.2 Norm-Bound Vector Optimization

Another way to derive robust techniques for the through the wall radar

detection, is to assume that the distortions on the combined wall-target

impulse response vector z can be bounded by some constant ε2 [58]. In case

of mismatch between the estimated z and the real one, a new vector can be

defined as:

z̄ = z + ∆, (7.22)

where ∆ is an unknown complex vector which describes the effect of the

vector distortions. Also, it is assumed that ∆ is bound by some known

constant ε2 > 0:

‖∆‖ ≤ ε2. (7.23)
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z̄ is one of the possible realizations within the set of all possible real vectors:

A(ε2) , {c | c = z + e, ‖e‖ ≤ ε2}. (7.24)

As a matter of fact, z̄ is the vector within A(ε2) for the case of e = ∆.

Then, following the directions in [58], the optimization problem (7.12) can

be re-written as:

min
b

bHR̂b

s.t. |bHc| ≥ 1 ∀ c ∈ A(ε2).
(7.25)

The constraint in (7.25) can be rewritten by following the instructions in [58]

as:

|bHz + bHe| ≥ 1. (7.26)

Or, equivalently [58]:

bHz ≥ ε2‖b‖+ 1

Im{bHz} = 0,
(7.27)

leading to the following optimization problem:

min
τ,b

τ

s.t. ‖Ub‖ ≤ τ

bHz ≥ ε2‖b‖+ 1

Im{bHz} = 0,

(7.28)

where U is the Cholesky factorization of R̂. Every covariance matrix is

positive semidefinite, and every positive definite matrix can be factored as

UHU where U is called the Cholesky factor of R̂ and it is an upper triangular

matrix with positive diagonal elements. It is then true that:

bHR̂b = ‖Ub‖2.
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The optimization problem in (7.28) is a second order cone programming and

can be solved with convex optimization techniques.

7.3 Performance Analysis of Robust Op-

timization Techniques for a Multistatic

Through-the-Wall Radar System

To estimate the performance of the proposed robust optimization techniques,

Matlab simulations have been performed. q was modeled as a complex

random vector of length Nq = 8 with an amplitude of σq = 1 and the

vector c as correlated clutter with a radar cross-section of σc = 0.7. A noise

variance of σ2
n = 0.1 was selected and the signal length was set to N = 10.

The uncertainty on z was bound by different values of ε2. More specifically,

an error equivalent to 10% of q was considered to obtain the results in

Figures 7.1 and 7.2; and a variable error (ranging from 0% to 100% of q)

was considered to generate Figure 7.2 and 7.4.

The optimal waveform s was initially calculated by following the guidelines

in [28] and estimated R̂ by averaging Ns = 10000 snapshots. For solving the

SDP problem, CVX Matlab Software for Disciplined Convex Programming

[74] has been used.

The simulations for the uncertainty ellipsoid optimization discussed in

Sub-Section 7.2.1 were initially performed. The results for 10000 realizations

of z̄ obtained with a 10% error on the estimation of q, can be found in

Figure 7.1. As it can be seen, utilizing robust optimization techniques the

SINR could be improved by 1.25dB (over 15%). Furthermore, as it can be

seen in Figure 7.2, this improvement becomes more and more significant as
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Figure 7.1: Simulation results for Robust Uncertainty Ellipsoid Optimiza-
tion. The histograms show how, for a 10% error in the estimation of q,
robust optimization techniques can improve the SINR by 1.25dB.

error percentage is increased. This is a logical consequence: the bigger the

error in the estimation of q, the more it is necessary to implement robust

optimization techniques. This improvement is compared against the optimal

SINR obtained with no estimation errors on q (blue line in the figure).

Similarly were also performed the simulations for the norm-bound vector

optimization discussed in sub-section 7.2.2. As it can be seen in both Figures

7.3 and 7.4, the performance for the two optimization techniques is identical.

7.4 Conclusion

In this chapter the problem of robust optimization techniques for through-

the-wall radars relying on matched-illumination techniques has been con-

sidered. Assuming uncertainty on the combined target-wall impulse response

and assuming the clutter covariance matrix is unknown a-priori, two robust
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Figure 7.2: Simulation results for robust uncertainty ellipsoid optimization
as the error percentage is increased. The plot shows how the bigger the
error in the estimation of q, the more it is necessary to implement robust
optimization techniques. For instance, estimation errors in the order of
80% can be improved by almost 11dB by implementing robust optimization
techniques. The blue line identifies the optimal SINR obtained with no
estimation errors on q.
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Figure 7.3: Simulation results for norm-bound vector optimization. The
histograms show how, for a 10% error in the estimation of q, robust optim-
ization techniques can improve the SINR by 1.25dB.
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Figure 7.4: Simulation results for norm-bound vector optimization as the
error percentage is increased. The plot shows how the bigger the error in
the estimation of q, the more it is necessary to implement robust optim-
ization techniques. As in the previous case, estimation errors in the order
of 80% can be improved by almost 11dB by implementing robust optimiza-
tion techniques. The blue line identifies the optimal SINR obtained with no
estimation errors on q.

optimization techniques have been proposed. These were developed by noti-

cing the similarities between the MVDR problem and the one at hand. The

first was based on an uncertainty ellipsoid model and the second on norm-

bound uncertainty. By performing simulations, the validity of both models

was demonstrated in terms of SINR improvement. Furthermore, this work

showed how it is increasingly necessary to implement robust methods as the

uncertainty on the knowledge of the parameters increases.



Chapter 8

Conclusions

In this thesis several mathematical optimization techniques for cognitive

radar systems have been presented. The ensemble of chapters provided a

series of convex optimizations aimed at increasing the SINR of different

radar systems while designing waveforms with desired auto and cross-

correlation properties. All considered systems had signal-dependent clutter

but differentiated themselves according to size and target requirements.

Furthermore, this work included robust optimization techniques. This

aspect proved to be of fundamental importance when dealing with cognitive

radars and possible errors in prior knowledge of the environment. Also, in

order to provide the reader with a further option to implement cognition,

the last chapter introduced robust matched-illumination techniques. All

discussed optimizations proved effective in terms of improved SINR and

waveform characterized by desired features (i.e. narrow beams in the

auto-ambiguity function and flat cross-ambiguity functions).

The thesis started with an introductory chapter providing a general over-

view on radars, waveform analysis, minimum variance distortionless response

138
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(MVDR) beamformers, cognitive radars and convex optimization techniques.

A literature survey was provided in Chapter 2. The main findings were

as follows. The sense-learn-adapt approach of cognitive radars makes them

an invaluable tool for effective target detection and tracking in complex

environments. Waveform design is a key aspect of any signal processing

optimization for radar applications. Signals that feature excellent auto and

cross-correlation properties are of particular importance in MIMO systems.

Furthermore, due to the fact that cognitive radars strongly rely on previous

knowledge, it is of paramount importance to implement robust optimization

techniques. However, unlike the case of robust beamforming techniques,

still not many works have been carried out on cognitive radars, specifically

regarding robust optimization techniques. Hence, the focus of this thesis has

been on robust optimizations techniques.

In Chapter 3, some important convex optimization definitions and prob-

lems were outlined. These were relevant mathematical tools towards a full

understanding of the problems and equations developed in the subsequent

chapters. Furthermore, thanks to their computational efficiency and the

availability of free toolboxes, they are of a great importance towards solving

many engineering problems.

In Chapter 4, the model of a bistatic cognitive radar was introduced by

developing a known monostatic model within the literature. This system

model is the foundational building block of the models introduced in the

subsequent chapters. It provided a progressive description of the discussed

research and was propaedeutic towards a thorough understanding of the

thesis. This chapter also introduced a cognitive optimization framework for

the iterative design of orthogonal signals and receiver filter in a highly rever-

berating environment. The optimization problem was formulated in convex
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form. The aim was to maximize the SINR at the receiving radar under some

constraints on the waveforms. These were mutual orthogonality, transmis-

sion of finite energy and similarity to an initial waveform with optimal auto

and cross-correlation properties. Simulation results showed how, by select-

ing parameters in an accurate way, this optimization technique proved to

be a valuable tool to enhance the SINR at the receiver filter output while

maintaining a narrow peak in the auto-ambiguity functions and a flat cross-

ambiguity function.

In Chapter 5, different waveform optimization techniques for cognitive

radar networks have been presented. The three proposed methods comple-

mented each other and are suitable for different environments and systems.

The first method is applicable to small networks with no specific target re-

quirements and is aimed at maximizing the accumulated target returns of

all radars. Simulation results proved how this method is effective in terms of

SINR improvement and number of iterations. On the other hand, it does not

allow any design freedom (i.e. target SINR requirements). The other two op-

timization techniques can be applied to any number of radars and allow the

user to impose specific SINR requirements. These methods were designed

for systems with specific targets or uneven environments. However, due to

the fact that they require an additional inner loop, they are less applicable

to systems with more stringent time efficiency requests. More specifically,

the first of the two algorithms was based on the optimization of the signal

strength at a desired radar while keeping the SINR of the remaining radars

at an acceptable level. The second one was based on the optimization of the

SINR of all radars equally. Both proved to be effective in terms of SINR

improvement.

In Chapter 6, different robust waveform design techniques were presen-
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ted for multistatic cognitive radars. Assuming uncertainty on the clutter

statistics, the work proposed worst-case robust optimization and stochastic

robust optimization methods. While non-robust optimization methods were

unable to achieve the required SINRgoal, the worst-case robust optimization

was always able to achieve the goal SINR. However, worst-case methods

proved over-conservative. Stochastic robust optimization techniques were

also developed and able to achieve the goal SINR with a specified outage

probability in the presence of uncertainty on the clutter covariance matrix.

Furthermore, an algorithm that assumed uncertainty directly on the clutter

parameter was able to achieve the desired probability of SINRgoal with a

small margin error due to Taylor series approximation. This method was

able to outperform the ordinary stochastic robust optimization method sig-

nificantly due to possible preservation of the structure of the error matrix

for the case of signal-dependent clutter.

Finally, in Chapter 7, the problem of robust optimization techniques

for through-the-wall radars relying on matched-illumination techniques was

discussed. Assuming uncertainty on the combined target-wall impulse re-

sponse and assuming the clutter covariance matrix to be unknown a-priori,

two robust optimization techniques were proposed. These were developed

by noticing the similarities between the minimum variance distortionless re-

sponse (MVDR) problem and the one at hand. The first was based on an

uncertainty ellipsoid model and the second on norm-bound uncertainty. By

performing simulations, the validity of both the models was proved in terms

of SINR improvement. Furthermore, it was shown how it is increasingly ne-

cessary to implement robust techniques as the uncertainty on the knowledge

of the parameters increases.
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8.0.1 Future Work

The works presented in this thesis can be extended towards the following

areas of research.

All of the optimization techniques proposed for cognitive radar networks

can be extended to distributed optimization techniques (as opposed to util-

izing a centralized controller). In this scenario, the individual radars as well

as the central base station are all cognitive. However, distributed optimiza-

tion techniques have the ability to avoid extensive feedback to a centralized

processor and will be able to react to changes in the environment faster than

a centralized scheme. A second option for further developments is to impose

the desired features of the waveform directly in the optimization problem

rather than relying on a previously known waveform. The problem could

therefore be reformulated as the maximization of the cost function (i.e. the

SINR) subject to minimizing both the range-Doppler sidelobes and cross-

correlation peaks in the auto-ambiguity and cross-ambiguity functions.

For the matched illumination work, the proposed model could be exten-

ded to multiple radars. Additionally, an iterative method optimizing the

transmitted waveform and the receiver filter until convergence to optimized

SINR values, could be designed.
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