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Abstract 
 
A novel probabilistic method has been developed for modelling the operation 
of energy storage in electricity systems with significant amounts of wind and 
solar powered generation. This method is based on a spectral analysis of the 
variations of wind speed and solar irradiance together with profiles of 
electrical demand. The method has been embodied in two Matlab computer 
programs: 
 
Wind power only: This program models wind power on any time scale from 
seconds to years, with limited modelling of demand profiles. This program is 
only capable of modelling stand-alone systems, or systems in which the 
electrical demand is replaced by a weak grid connection with limited export 
capacity. 
 
24-hours: This program models wind power, solar PV power and electrical 
demand, including seasonal and diurnal effects of each. However, this 
program only models store cycle times (variations within a time scale) of 24 
hours. This program is capable of modelling local electrical demand at the 
same time as a grid connection with import or export capacity and a backup 
generator. 
 
Each of these programs has been validated by comparing its results with 
those from a time step program, making four Matlab programs in total. All four 
programs calculate the power flows to and from the store, satisfied demand, 
unsatisfied demand and curtailed power. The programs also predict the 
fractions of time that the store spends full, empty, filling or emptying.  
 
The results obtained are promising. Probabilistic program results agree well 
with time step results over a wide range of input data and time scales. The 
probabilistic method needs further refinement, but can be used to perform 
initial modelling and feasibility studies for renewable energy systems. The 
probabilistic method has the advantage that the required input data is less, 
and the computer run time is reduced, compared to the time step method. 
 
 
 
 
 
 
 
 
Keywords: Energy storage, Modelling, Wind power generation, 
Photovoltaics, Stand alone power systems, Interconnected power systems, 
Voltage control, Embedded generation 
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Dedicated to the two billion people who at the start of the twenty-first century 

still lack access to electrical power 

 

1 Introduction 
 

1.1 Background 

Electrical energy, unlike most commodities, cannot be directly stored. It must 

therefore be generated as it is used and electrical power must be continuously 

balanced to match load with generation. In most conventional power systems, 

this is achieved by adjusting the rate of generation. Redundancy in the 

transmission network, together with spinning reserve and standby generating 

capacity accommodate increases or decreases in demand, or a failure of any 

one power station, substation or transmission line (Halliday 1988, Watson, 

Landberg & Halliday 1994).  

 

All electricity systems use some forms of energy storage, including inter-

seasonal energy storage, to accommodate variations in electricity demand. In 

conventional systems this is achieved by storing the fuel used for primary 

generation. This may be in the form of coal, oil, gas, nuclear fissile material, or 

hydroelectric dams with inter-seasonal storage of water. 

 

1.2 Renewable Sources of Energy 

Renewable sources of energy are likely to provide an increasing proportion of 

electrical power generation during the twenty-first century. The change will be 

driven by concerns of fossil fuel resource depletion, fuel supply security, the 

risks and political unpopularity of nuclear power, and above all the threat of 

global warming caused by carbon dioxide from the burning of fossil fuels.  

 

Studies by the Royal Commission on Environmental Pollution (RCEP 2004) 

conclude that the UK and other industrialised countries must reduce their 

emissions of carbon dioxide by 60% by the year 2050 if atmospheric carbon 

dioxide levels are to be stabilised at 550 parts per million and catastrophic 

climate change is to be avoided. At the same time, approximately one third of 
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the world�s population, 2 billion people, still do not have access to electrical 

power or other affordable or adequate energy sources (UNDP, UNDESA & 

WEC 2000). If energy supplies are to be maintained at a comfortable level, 

and poorer countries are to improve their standards of living then carbon 

neutral and low carbon energy sources must be extensively used. All RCEP 

scenarios show a strongly increasing role for renewable energy during the 21st 

century (RCEP 2004). 

 

There is also a growing consensus amongst many geologists that oil reserve 

depletion is likely to cause higher oil prices over the next decade or two 

(ASPO 2005). This will force a move from conventional, �easy� oil to 

unconventional sources such as tar sands, greater use of natural gas in the 

medium term, but eventually to an economy that does not rely on fossil fuels 

at all. Some experts think this will take the form of a �hydrogen economy� 

(Rifkin 2002). 

 

The renewable sources of energy: biomass, water power, solar power, wind 

power and geothermal energy currently form only a small percentage of world 

primary energy supply; 13.8% in the year 2000 (International Energy Agency 

2002). Most of this renewable energy was used in the form of traditional 

biomass for cooking and heating in Africa, Asia and South America. The 

second and third largest renewable energy sources are hydroelectric power 

and geothermal power respectively.  

 

1.3 Intermittent Renewable Sources of Energy 

Two �new � sources of renewable energy, wind (at 0.026%) and solar power 

(at 0.039%) currently supply a tiny fraction of world energy, but have grown 

much more rapidly than other sources between the years 1971 and 2000. 

Wind power has grown at 52.1% and solar power has grown at 32.6% 

(International Energy Agency 2002).  

 

If we assume a continued compound growth rate for each of these sources of 

30%, then their combined share of total energy supply would grow from 

0.065% to 100% by the year 2028! Projected growth rates are uncertain, but 
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these sources are likely to be very significant in the next few decades. 

Biomass energy is limited by the land area available to grow energy crops, 

and by the size of biomass waste streams and agricultural residues. 

Hydroelectric power and geothermal power are limited by the availability of 

suitable sites. Wind and solar power are the only renewable sources that 

could in principle supply all the world�s energy needs.  

 

If wind and solar power are to supply a large proportion of primary energy, 

most of that energy will be captured in the form of electricity by wind turbines, 

photovoltaics and solar thermal electricity, because electricity is such a 

versatile energy form. But unlike biomass and hydroelectric power that can be 

dispatched to supply energy as required, wind power and solar power are 

intermittent and variable. They are only available at the times and in quantities 

that weather conditions permit, but as stated above, electrical energy has to 

be generated as it is used. 

 

Conventional electricity systems can accommodate at least 5% of wind 

powered generation, and probably more, with few adaptations (Milborrow 

2002). The variability of small amounts of wind or solar power can be 

accommodated in the same way as variations in electrical load: by varying the 

electrical generation from fossil fuel generators. If renewable sources are to 

play their part in a 60% reduction in carbon dioxide emissions, the fraction of 

intermittent renewable generation will increase well above 5%. This will 

require a radical new approach to electrical power systems, including novel 

means of storing energy. 

 
1.4 The Value of Energy Storage 

Energy storage may perform many different tasks in an electricity system, on 

many different time-scales (Barton, Infield 2004). Individually, each task has 

some monetary value but an energy store that performed just one task would 

probably not be cost effective. Energy stores that perform two or more 

functions are more likely to be worthwhile. The following study attempts to add 

up the total value of a store, based on all the tasks that a store may perform 

and all the possible revenue streams. It is based on an approach used in a 
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previous technical paper (Bryden, Macfarlane 2000). The resulting equations 

1.1 and  1.2 are not very useful in their present form, but it are a starting point 

for the computer models of this PhD, and a reference or checklist for future 

specific studies of energy systems. 

 

First, here is a list of parameter names and their meanings, just for this 

section of the thesis: 

 

Name         Nomenclature 

Capital costs of fossil fuel generation     CF 

Capital costs of renewable generation     CR 

Capital costs of storage       CS 

Operating costs of fossil fuel generation     OF 

Operating costs of renewable generation    OR 

Operating costs of storage       OS 

Fossil fuel costs        F 

Energy Losses of storage       LS 

Cost of standing reserve (Standby generation),  

excluding fuel costs        SB 

Cost of spinning reserve (Generators held at part power), 

excluding fuel costs        SR 

Cost of governor control (Frequency control),  

excluding fuel costs        GC 

Cost of stops and starts of fossil-fired generation 

(wear and tear and operating)      SS 

Cost of transmission line repair      TR 

Cost of Transmission line investment     TI 

Cost of Transmission losses      TL 

Cost of support during line faults      LF 

Cost of local voltage support      LV 

Cost of reactive power       Q 

Cost of black start        BS 

Electricity used        E 
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Subscript Meaning       Nomenclature 

System with fossil and renewable      FR 

Generation 

System with fossil and renewable      FRS 

Generation and energy storage 

Total amount         T 

 

The net cost of electricity without storage is: 

 

UCFR=(CFFR+CRFR+OFFR+ORFR+FFR+SBFR+SRFR+GCFR+SSFR 

+TRFR+TIFR+LFFR+LVFR+TLFR+QFR+BSFR)/ET    (1.1) 

 

The net cost of electricity with storage is: 

 

UCFRS=(CFFRS+CRFRS+CSFRS+OFFRS+ORFRS+OSFRS+FFRS+LSFRS+SBFRS 

+SRFRS+GCFS+SSFRS+TRFRS+TIFRS +LFFRS+LVFRS+TLFRS+QFRS+BSFRS)/ET  

(1.2) 

 

There are three completely new terms when using storage: the capital costs 

of storage, CS, the operating costs of storage, OS and the electrical losses of 

storage, LS. These obviously add to the cost of electricity. 

 

The total amount of electricity consumed by customers, ET is assumed to 

remain the same when storage is used. For a given amount of renewable 

generation, the costs of that renewable generation, CR and OR are also 

unchanged. All other costs are reduced by the use of storage on the system 

because storage performs the following functions: 

 

1. Energy storage is used for peak-lopping and so reduces the total 

amount of fossil fuelled generation required, and reduces its capital 

cost, CF. The remaining fossil fuelled plant is operated at improved 

load factor. 

2. Less fossil fuelled plant is required (see previous point), and therefore 

operation and maintenance costs, OF are lower. 
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3. More of the renewable energy generated electricity is used and less is 

wasted at times of over-supply. Fossil fuel costs are therefore reduced. 

4. The fossil fuel costs, F are reduced because the merit order of the 

remaining fossil fuelled generation is improved. The energy storage 

tends to replace low merit order, peaking plant, with high fuel costs and 

low capital costs. 

5. The fossil fuel costs, F are further reduced because less plant is 

operated at part power (spinning reserve), held at standby (burning 

some fuel but not generating) or held on governor control (part power, 

continuously changing power output). 

6. Other operation and maintenance costs of standby generation, SB and 

spinning reserve generation, SR are reduced because less of these 

reserves are required. 

7. When energy storage is used for short-term frequency control, less 

fossil fuelled plant needs to be held on governor control. Its wear and 

tear cost is therefore lower. 

8. Energy storage is used to level the load and level the power output 

from renewable sources. The remaining fossil-fuelled plant is therefore 

cycled less. Its wear-and-tear and operating costs due to starting and 

stopping, SS are reduced. 

9. If energy storage is placed at the right locations, it can reduce the total 

amount of electrical energy that is transmitted from one location to 

another, or sometimes just make the transmitted power more constant. 

Here, transmission is taken to include the distribution network. Energy 

storage in the distribution network could be particularly effective in this 

function. The strength and number of transmission lines can be 

reduced without exceeding voltage or thermal limits, and so their 

investment costs, TI, and repair costs, TR can be reduced. 

Alternatively their transmission losses, TL can be reduced. 

10. Energy storage can support local voltage during line faults, and so 

maintain a more reliable supply, reducing costs to consumers and 

electricity companies. 

11. Energy storage can be used to control local line voltage by the timely 

injection or absorption of active and/or reactive power. It can therefore 
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reduce the cost of other equipment used for that purpose, such as 

static VAR compensators. 

12. Energy storage can continuously supply reactive power, Q (using its 

power interface electronics). Reactive power would otherwise have to 

be supplied by synchronous machines or static VAR compensators. 

13. In the event of a major power failure across a large proportion of the 

grid, energy storage may supply enough power to get the large 

generators operating again. This ancillary service is known as black 

start, BS. 

 

The economic value of each of these functions is hard to quantify without a 

computer model of the electricity system. It may never be possible to identify 

each of these values, because each component of an electricity system is 

inter-connected and inter-dependent. A system without energy storage would 

be optimised differently from a system with energy storage, since every 

investment decision affects the economics of every other decision. 

 

However, even a simple analysis (Bryden, Macfarlane 2000) does appear to 

show that renewable sources of generation can work synergistically with 

energy storage. Together they bring a much larger benefit in terms of fossil 

fuel savings and capital cost savings of other generation than either 

renewables or energy storage alone. 

 

1.5 System Modelling 

When a developer designs an electricity system including intermittent 

renewable energy, he or she wants to know how well it will work, its life 

expectancy, its operation and maintenance costs, and will probably want to 

optimise the system for maximum usefulness and minimum cost. The 

developer will therefore need to model the system, initially as a feasibility 

study with only �ball-park� figures for the sizes of components. As a project 

progresses, detailed design studies become necessary. These include 

comparisons of specific equipment options and an optimisation of the control 

strategy. 
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The feasibility study is particularly important in optimising the cost 

effectiveness of the system. Energy storage options always become more 

expensive as the time scale of that storage increases because the energy 

rating of a store increases with the time-scale of charging and discharging 

cycles (Barton, Infield 2004). An optimum system may therefore have a 

relatively small store size in energy capacity terms, and a large renewable 

energy power rating, but only a mathematical model of the system can 

indicate the best balance in component sizes.  

 

Energy systems including wind power, solar power, loads and energy storage 

can be extremely complex to model. Wind speed, solar irradiance and loads 

all vary on all time scales from seconds to years. The state-of-charge of an 

energy store depends on the history of energy supply and demand and its 

own operating characteristics. When a system includes some backup 

generation, for example a diesel generator, or a grid connection or both, the 

modelling becomes even more complex. 

 

This thesis describes a novel, probabilistic method of modelling the behaviour 

of an energy store placed in an electricity grid at the point of supply of wind 

and solar power. Such an energy store would be placed there in order to 

minimise the curtailment of renewable energy at times of surplus and/or 

minimise the unsatisfied electricity demand at times of deficit, because the 

local grid lacks the capacity to absorb excess renewable energy at all times 

and/or to supply load deficits at all times. The modelling is used to answer the 

questions: 

 

How much energy is still curtailed? 

How much electrical demand remains unsatisfied? 

How are these quantities reduced by the presence of the store? 

What fractions of time does the store spend full, empty, filling and emptying? 

In other words, what fraction of time is the store useful, i.e. neither full nor 

empty? 
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There are three principal methods described in technical literature for 

modelling renewable energy systems: time step, Markov chain and 

probabilistic. These methods will be described below, with examples, drawing 

out the strengths and weaknesses of each. Finally, the probabilistic method 

used in this thesis will be described with its strengths and weaknesses. 

 

1.6 Time Step Simulations 

When designing an electricity system, or adding intermittent renewable 

sources to an existing system, a time-step simulation method is usually used 

to model the new system and predict its performance, especially when the 

system includes some form of energy storage. Time-step methods are tried 

and trusted, easy to code and they capture time-dependent effects very well, 

even when the system behaviour has significant daily, weekly or seasonal 

periodicity. They can be as complex as necessary to model all aspects of a 

system. Time-step simulations may always be the best modelling method to 

use at the detailed design stage, especially when devising the control 

software of an energy management control system.  

 

A time-step model would step through a simulation period, e.g. at least one 

year in steps of, for example, one minute, ten minutes or one hour. The time 

step method would calculate the surplus or deficit power in each step, 

calculate the power imported or exported via the grid connection and any 

remaining surplus or deficit sent to or required from the energy store. Given 

an initial state of charge (SOC) of the store, the time step method would 

iterate through the simulation period calculating the state of charge of the 

store. When the store is full, it can no longer absorb any more power and 

when it is empty it can no longer supply any more power. Characteristics of 

the store can be added to the time step model, for example no-load losses, 

round-trip losses and control strategies. The time step model predicts the 

remaining curtailed energy, the remaining unsatisfied demand, and the 

fractions of time that the store spends empty or full and therefore not being 

used. 
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Several very sophisticated modelling tools have been written and used for 

renewable energy in electricity systems. Two of particular interest are Hybrid2 

(Barley, Winn 1996, Iqbal 2003, Mills, Al-Hallaj 2004, Panickar, Islam & Bleijs 

1999, Panickar, Islam & Nayar 1998) and HOMER (Chun Che Fung, 

Rattanongphisat & Nayar 2002, Iqbal 2003, Iqbal 2004).  Hybrid2 is a joint 

project between the University of Massachusetts (UMass) and the U.S. 

National Renewable Energy Laboratory (NREL), and funded by the U.S. 

Department of Energy. HOMER is written by NREL, is available with a free 

licence, and is downloadable from NREL. Both of these programs typically 

model one year of system operation in hourly time steps. They can use either 

real or synthetic weather data. Both programs model DC-connected 

components on a DC bus and AC components on an AC bus, with power 

conversion devices (rectifier and / or inverter) to transfer electricity between 

the two buses. Both also have a sophisticated solar model that estimates the 

beam and diffuse components of solar radiation, and calculates the effect of 

each on a solar panel of a given tilt and azimuthal orientation. 

 

Other time-step simulation programs in the literature include (ARES)-II, 

standing for �Autonomous Renewable Energy Systems� (Celik 2002a, Morgan, 

Marshall & Brinkworth 1997) This program models stand-alone systems and 

predicts battery terminal voltages. Another simulation model is the �National 

Grid Model� of the UK transmission grid (Halliday 1988, Watson, Ter-Gazarian 

1996). 

 

1.6.1 Hybrid2 

Hybrid2�s theory manual is available on-line (Manwell et al. 1998). Hybrid2 is 

a logistical and first-stage design model. It models the long-term performance 

of a system and aids component sizing decisions, but does not model voltage 

control or power quality, or aid the design of individual components. For that, 

a dynamic model would be required. Hybrid2 can model wind power, solar 

power, loads, energy storage devices, AC and DC transmission systems, 

power converters of various kinds, diesel generators, load management 

systems and dump loads. However, hybrid2 can apparently only model stand-

alone systems and mini-grids, not large grids or grid-connected systems. 
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Hybrid2 interpolates between hourly time steps using probabilistic methods, 

but only for loads and wind power, not for solar power. A normal distribution is 

usually used for these short-term variations, unless variations can go mainly 

only in one direction, in which case a Weibull distribution is used. The 

variation of wind speed within an hour is adjusted for the number of turbines in 

a wind farm and their spatial separation. Hybrid2 uses the Von Karman 

spectrum of turbulence for wind speed variations within one hour. Hybrid2 

uses temperature when available to make corrections to air density and PV 

performance. The wind turbine model includes a turbulence model and 

corrections for height above ground level.  Hybrid2 will even fill in gaps in the 

data using a Markov chain method for wind speed data and interpolation of 

clearness index for solar data. Ground reflectance is included in the solar 

model. 

 

1.6.2 HOMER 

A lot of documentation about HOMER is also available on-line, for example: 

(Lambert, Lilienthal 2003) HOMER is primarily an economic optimisation 

model for feasibility studies, to complement Hybrid2. The theory behind 

HOMER is less readily available, but HOMER also uses hourly time steps 

over a period of a year. It accounts for seasonal and diurnal variations in wind 

speed and loads, and can use real data or synthetic data based on its own 

data. HOMER cannot model voltage constraints. However, HOMER is 

available on a free licence and has a very user-friendly graphical user 

interface. 

 

HOMER apparently does no calculations of variations within each hourly time 

step. It merely calculates an �operating reserve�, equivalent to a spinning 

reserve, but applies to small-scale systems that may or may not have any 

spinning generation equipment. This reserve changes over time and is 

calculated as a percentage of the hourly load, wind and solar power flows. 

The default values are 10% of load, 25% of solar power and 50% of wind 

power in each hour. To some extent, HOMER relies on the fact that in 
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practice, solar powered systems always use large battery stores,  backup 

generation or grid connection. 

 

In its solar model, HOMER can construct its own synthetic irradiance data for 

any longitude and latitude based on monthly average irradiances or monthly 

average clearness indices.  

 

1.6.3 Drawbacks of Time-Step Methods 

Time step methods require large amounts of weather and load data. At 

minimum they require a year�s worth of data to model seasonal effects. If the 

time step is one hour, then 8760 values of each input variable are required. 

However, an hourly time step fails to accurately model turbulent variations in 

wind speed, passing clouds and rapid changes in load. For small-scale 

electricity systems consisting, for example, of one wind turbine, one array of 

PV modules and supplying a few households, these short-term variations are 

more significant in percentage terms than in a larger system. In a larger 

system with more sources and loads, especially different types of renewable 

energy or a variety of load patterns, changes in one place or device are 

mitigated by aggregation. 

 

The amount of data required is inversely proportional to the time step. If a 

shorter time step is used, for example of 1 minute, then 12.6 million values 

are required per variable per year. To fully capture the turbulent variations in 

wind speed or transient effects in the load, a one second time step may be 

required. Then 757 million values would be required per variable per year. 

However, weather data is typically measured as hourly averages, and as 10-

minute averages at most. The British Atmospheric Data Centre supplies data 

mainly as hourly averages, (National Environmental Research Council 2004) .  

 

Time step methods can also take a lot of time to calculate. The computer run 

time is also proportional to the number of time steps, and therefore inversely 

proportional to the time step length. With an hourly time step, computer run 

time is quite short, for example HOMER, (Lambert, Lilienthal 2003). But when 
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the time step is one minute or less, a model can take minutes to run, for 

example the time step model created for the study presented in this thesis. 

 

In addition, time step methods may suffer from inaccuracy due to inter-annual 

variability in weather. If the chosen year of weather data is not representative 

of the long-term average, or if there is a significant proportion of years for 

which that data is not representative (e.g. once every 5 years cloud is greater 

or wind speeds are much lower), then the time step model will fail to 

adequately model the performance of a real system. 

 

In some cases, synthetic data can be useful, but the temporal characteristics 

of synthetic data are less likely to be correct. The properties of wind speed 

data from a typical synthetic wind generation algorithm are examined in 

section 2.4.12. Synthetic weather data is often generated using Markov chain 

methods, see below. 

 

1.7 Markov Chain Methods 

A Markov process is one where only the current state of the process can 

influence where it goes next. The process has no memory of the past (Norris 

1997). Ergodic random probabilities also influence the future state. A Markov 

chain is a discretised form of such a process; a system can occupy any one of 

a finite number of states. The probability that the system will change from one 

state, i  to any other state, j  is given by a transition matrix of probabilities, ijP . 

This is a standard mathematical method for modelling stochastic variation 

where the state of a system can be defined by a relatively small number of 

variables, the �state variables�.  

 

Markov chains are often used to generate synthetic wind speed data: (Biga, 

Rosa 1981, Muselli et al. 2001, Poggi et al. 2000) or solar irradiance data: 

(Masters et al. 2000, Torre, Poggi & Louche 2001, Wan-Kai Pang, Forster & 

Troutt 2001). In these cases, there is only one variable, the wind speed or the 

solar irradiance.  
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Sometimes just one Markov chain is used but in other cases two Markov 

chains may be necessary, especially when considering variations over short 

and long time scales in the same data string, for example (Infield et al. 1994). 

In this synthetic wind algorithm, one Markov chain is used to create a series of 

hourly average wind speeds with a Weibull distribution, and another Markov 

chain is used to create a Gaussian distribution of wind speeds within each 

hour period, varying according to localised wind speed turbulence. Such a 

method may be described as a higher order Markov chain (MacDonald, 

Zucchini 1997). 

 

Synthetic data created by Markov chains is often used in time step 

simulations, for example in the HOMER time-step modelling software 

(Lambert, Lilienthal 2003). Some simulations create their own wind power and 

solar PV power data simultaneously in the same model using Markov 

transition matrices, for example (Castro et al. 1996). 

 

At least one attempt has been made to model a whole energy system using a 

Markov method (Frean 1983). The method looks useful at first sight, but to 

model the complexity of a real system with seasonal and diurnal effects would 

be prohibitively difficult. The number of state variables would be large, the 

transition matrices would be very large and their values would be difficult to 

evaluate. 

 

Finally, (Baumgaertner 1995) describes a Markov chain method for predicting 

the likely behaviour of wind and solar power up to one hour ahead in order to 

optimise the decision making of a system controller. 

 

1.8 Probabilistic Methods 

Probabilistic methods can be used either on their own or in conjunction with 

time stepping and Markov chain methods. Simulation models that use time-

step or Markov chain methods often use standard statistical distributions (e.g. 

Weibull, Gaussian and beta distributions) to model variations in solar power, 

wind power and loads, as described below. These probability distributions are 

used to formulate the probabilities within Markov transition matrices (Celik 
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2002b, Celik, Marshall 1998, Infield et al. 1994, Poggi et al. 2000, Wan-Kai 

Pang, Forster & Troutt 2001), and to model the short-term variations within 

each step of a time-step method(Lambert, Lilienthal 2003, Manwell et al. 

1998). 

 

Simulation models that use only probabilistic methods are relatively rare, 

especially when the system includes a significant energy storage component. 

Four are described in section 1.8.5. 

 

1.8.1 Probability Distributions in Wind Speed Modelling  

Distributions of hourly or ten-minute average wind speeds are most commonly 

modelled as two-parameter Weibull distributions, for example (Celik 2002b, 

Celik, Marshall 1998, Chadee, Sharma 2001, Infield et al. 1994, Stevens, 

Smulders 1979, Wan-Kai Pang, Forster & Troutt 2001). In other situations, 

lognormal distributions have been found to provide a good fit to wind speed 

data:(Garcia et al. 1998, Luna, Church 1974, Shaw, McCartney 1985).  

 

Occasionally, a three-parameter Weibull model is used (Van der Auwera, de 

Meyer & Malet 1980). Alternatively, a special case of the Weibull distribution 

is the Rayleigh distribution (a Weibull distribution with a shape factor of 2) 

(Tuller, Brett 1985). This has some physical justification, being derived from a 

bi-variate normal distribution (Hassan, Sykes 1990, Tuller, Brett 1984, Tuller, 

Brett 1985). But when compared with other distributions, the two-parameter 

Weibull distribution most often gives the best fit to wind speed data (Garcia et 

al. 1998, Tuller, Brett 1985). Wind speed modelling in this thesis concentrates 

on the two-parameter Weibull distribution for long-term wind speed variations, 

and on the normal distribution for short-term turbulent variations and for long-

term distribution of longer averages e.g. the distribution of monthly average 

wind speeds. The log-normal distribution is discussed briefly in section 2.6.3.3 

but is not used in the probabilistic method. 

 

1.8.2 Probability Distributions in Solar Irradiance Modelling  

Sometimes, global horizontal irradiance is analysed and modelled directly 

(Akuffo, Brew-Hammond 1993, Giraud, Salameh 2001, Rahman, Khallat & 
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Salameh 1988, Sahin, Sen 1998, Trabea 2000). In most models, the global 

irradiance is normalised by the extra-terrestrial horizontal irradiance, and 

referred to as the clearness or clearness index, KT. The clearness index 

remains more constant with time of day and season, but still varies with solar 

elevation angle. As elevation angle decreases, the atmospheric path length of 

sunlight (the airmass) increases. This reduces the clearness index as 

recognised by many analyses for example (Gonzalez, Calbo 1999, Jurado, 

Caridad & Ruiz 1995, Skartveit, Olseth & Tuft 1998, Suehrcke, McCormick 

1989, Tovar et al. 1999, Tovar et al. 2001, Tovar, Olmo & Alados-Arboledas 

1998). 

 

In addition, the beam fraction of radiation is often distinguished from the 

diffuse and albedo (reflected) fractions in order to predict the energy capture 

of an inclined solar panel, (Babatunde, Aro 1995, Gonzalez, Calbo 1999, 

Gordon, Reddy 1989, Hollands, Huget 1983, Hove 2000, Ideriah 1992, 

Kudish, Ianetz 1996, Lam, Li 1996, Lopez, Rubio & Batles 2000, Skartveit, 

Olseth & Tuft 1998, Suehrcke, McCormick 1989, Tiris, Tiris 1998, Tovar et al. 

1999, Trabea 2000, Ulgen, Hepbasli 2002, Unozawa, Otani & Kurokawa 

2001). 

 

Solar parameters (irradiance, clearness index or other) are often modelled 

using beta distributions: (Graham, Hollands 1990, Mefti, Bouroubi & Adane 

2003, Rahman, Khallat & Salameh 1988, Sahin, Sen 1998, Sulaiman et al. 

1999, Youcef Ettoumi et al. 2002).  In some papers, other distributions have 

been used to model solar parameters, sometimes only after a transformation 

has been applied to the data. A normal distribution has been used by (Aguiar, 

Collares-Pereira 1992a, Aguiar, Collares-Pereira 1992b, Amato et al. 1985, 

Jurado, Caridad & Ruiz 1995, Loutfi, Khtira 1992), a bi-exponential distribution 

by (Ibanez, Beckman & Klein 2002, Ibanez, Rosell & Beckman 2003), a 

Weibull distribution by (Rahman, Khallat & Salameh 1988) and even a shifted 

negative binomial distribution by (Poggi et al. 2000). However, beta 

distributions are the most commonly used and usually give the best fit to the 

data (Rahman, Khallat & Salameh 1988). 
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Beta distributions have the useful property that all the possible values lie 

within a finite range. Thus a beta distribution can represent clearness 

distributions form very overcast skies, to very clear skies and all conditions in 

between, while excluding negative values and improbably high values of 

irradiance. Beta distributions can have a single maximum between the 

minimum and maximum ends of the range, a maximum at one end or the 

other, or maxima at both ends of the distribution at the same time. Therefore 

beta distributions can produce a wide variety of distribution shapes. 

Sometimes, a single beta distribution can represent the whole range. An 

alternative approach is to model the solar parameter as the sum of two beta 

distributions, one for cloudy conditions and another for clear skies, for 

example (Youcef Ettoumi et al. 2002). This reflects the fact that the sky tends 

to be either cloudy or clear, spending relatively little time changing from one 

condition to the other. Solar irradiance therefore often exhibits a bimodal 

character, (Ibanez, Beckman & Klein 2002, Ibanez, Rosell & Beckman 2003, 

Jurado, Caridad & Ruiz 1995, Suehrcke, McCormick 1989, Tovar et al. 1999, 

Tovar, Olmo & Alados-Arboledas 1998). This bimodal nature will be used in 

the probabilistic modelling method presented in this thesis, section 2.7. 

 

1.8.3 Probability Distributions in Load Modelling 

Electricity demand can vary with time of day, day of the week, weather 

conditions, random factors and even with television schedules. As will be 

seen in section 2.4.4, demand from individual consumers varies substantially 

with large step changes as appliances are switched on or off. When demand 

from many consumers is aggregated together, demand follows a mostly 

smooth profile over time, with relatively small differences between one day 

and the same time on another similar day. Electricity distribution companies 

have sophisticated forecasting techniques (Mandal et al. 2004) that predict 

the demand from each type of consumer, for example domestic, commercial 

and industrial.  

 

Electrical demand is often modelled as a deterministic profile over each day 

(Chun Che Fung, Rattanongphisat & Nayar 2002, Giraud, Salameh 2001, 

Habibi 2001, Hove 2000, Lachs, Sutanto 1995, National Grid Company plc 
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2003). Occasionally, models treat demand as a stochastic variable (Yakin 

1984).  

 

Synthetic load data can be created in a similar way to synthetic wind speed 

data (Infield et al. 1994). In this data generator, load has a Gaussian 

distribution within each hour and a Weibull distribution from one hour to the 

next. It would be a simple modification to superimpose this onto a daily profile 

to create synthetic load data for a small group of consumers. The Weibull 

parameter can be given any shape factor, so that the load distribution can be 

as skewed as desired. 

 

1.8.4 Probabilistic Models Within Time Step Models 

As stated above, some time-step models include a probabilistic calculation of 

variations within each time step, for example the variation of demand or wind 

power within each hour (Lambert, Lilienthal 2003, Manwell et al. 1998). This is 

a relatively minor use of probabilistic methods that enables time-step methods 

to use longer time steps and therefore run more quickly with less input data. 

The probabilistic calculation merely determines the size of the spinning 

reserve or �operating reserve� (Lambert, Lilienthal 2003). 

 

The method presented in this thesis goes much further, using only 

probabilistic methods together with seasonal and diurnal profiles. 

 

1.8.5 Purely Probabilistic System Models 

Some previous attempts have been made to use purely probabilistic methods 

for modelling renewable energy (Barton, Infield 2004, Khallat, Rahman 1986, 

Swift-Hook, Ter-Gazarian 1994, Ter-Gazarian, Kagan 1992). However, these 

are very limited in scope. (Swift-Hook, Ter-Gazarian 1994) only examines the 

level of penetration of intermittent renewable energy in an electricity system at 

which energy storage becomes necessary. (Ter-Gazarian, Kagan 1992) only 

presents a very simple model based on 3 times of day, and assumes that the 

renewable generation is never available at the times of maximum electrical 

demand. In (Khallat, Rahman 1986), Khallat and Rahman use probabilistic 

methods to predict the hourly capacity factors of photovoltaic arrays at a given 
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site. However, this method does not help to size the energy store. (Barton, 

Infield 2004) presents a novel method of calculating energy flows to and from 

an energy store, but makes only a crude attempt to size the store.  

 

This thesis will use the methods of that previous paper, (Barton, Infield 2004) 

but extending the method to include an improved calculation of store size and 

a more sophisticated spectral analysis of the intermittency of renewable 

sources. Even the probabilistic method presented in this thesis is not a purely 

probabilistic method, because it uses a time step simulation of load variations 

within a day as part of the calculation of store capacity, section 2.11. This is 

an example of a time step method within a probabilistic method, in contrast to 

a probabilistic method within a time step method.  

 

1.9 The Novel Probabilistic Method Presented in This Thesis 

Henceforth, this novel probabilistic method will be referred to as �the 

probabilistic method�.  

 

The probabilistic method simulates electrical power systems with large 

fractions of intermittent renewable generation and energy storage. It does not 

require any time series of weather data. Instead it uses spectral manipulation 

done on Fourier transforms of time series, probability density functions, and 

average profiles of diurnal and seasonal variations. The input data required is 

considerably reduced, although the computer code is longer and more 

complex than a time-step code. This probabilistic method typically takes less 

computer time to run and is now more practical to run inside an optimisation 

routine. Some loss of accuracy may be apparent because of the necessary 

simplifying assumptions, but it is hoped that the probabilistic method may one 

day provide a fast and practical tool for feasibility studies, early system 

design, and some investment decisions. 

 

A primary input to the probabilistic method is the working time period of the 

store. From this, the method calculates the size of the store using spectral 

methods. The time period can be thought of as a store working time period, or 

a typical time for the store to complete one cycle of charging to full and 
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discharging to empty. In reality, in an electricity grid with variable wind power, 

solar power and loads, the energy store will perform charge and discharge 

cycles on many different time scales, but the calculated store size is a 

weighted average of the energy capacity required to absorb all power 

variations up to and including the chosen time period. 

 

Two versions of the probabilistic method have been written into Matlab 

computer programs: One works on any time scale but models wind power 

only with a constant or simply varying electricity load. This will be referred to 

as the �wind only� program. The second version is currently only written for an 

energy storage period of 24 hours but models variations in wind power, solar 

power and electricity demand. This will be referred to as the �24-hour� 

program.  

 

The probabilistic method steps through all possible types of period, treating 

each period as a statistically independent event. Each period has a different 

combination of average wind power, average solar power and average 

electricity demand. The probabilistic method calculates the same outputs as 

the time step method: the curtailed energy, the unsatisfied demand, and the 

fractions of time that the store spends full, empty, filling and emptying. 

 

1.9.1 An Overview of the Wind-Only Probabilistic Program 

The data flows and calculations performed in the wind only program are 

shown in figures 1.1 and 1.2. 
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Figure 1.1. Page 1 of the data flows and calculations performed in the wind-

only probabilistic computer program 
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Figure 1.2. Page 2 of the data flows and calculations performed in the wind-

only probabilistic computer program 

 

The method is easiest to see for the wind-only version. The wind power 

spectral density, referred to as the spectrum of wind speed variation is filtered 

to predict a variance of period-average wind speeds, for example a variance 

of daily average wind speeds, and also a variance of within-period wind 

speeds, for example the variance of wind speeds within one day for a given 

daily average wind speed. A third filter function predicts the variance in wind 

speed x time over the storage period, a quantity that together with the wind 

turbine power curve is used to calculate the energy capacity of the store. The 

capacity of the store is only calculated in the break-even periods, i.e. those 

when the average wind power is approximately equal to the electricity 

demand plus the store losses, because these are the periods when the store 

is most heavily used and is most likely to float between full and empty. In 

other periods, the store either spends significant fractions of time either full or 

empty, and floating close to one limit or the other. 
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Probability density functions (PDFs) of instantaneous wind speed are 

constructed for each period-average wind speed, and from these PDFs of 

wind power are calculated. In the simple version of the wind-only program, the 

PDF of net power is calculated by simply subtracting a constant electrical 

demand from the wind power. The curtailed energy and unsatisfied demand 

are calculated by integrating over all periods, i.e. all period-average wind 

speed conditions. The fractions of time spent full, empty, filling and emptying 

are calculated using the method described in appendix B. 

 

Another version of the wind-only program has also been written that can be 

run with time-varying demand using 3 different times of day (peak, daytime 

mid-rate and off peak) and two seasons (summer and winter). However, this 

program has to assume that wind speed variations have no periodic 

dependence on time of day or season. This second version of the wind-only 

program assumes that the averaging time scale is at least 24 hours but 

shorter than 6 months. In this case, the PDF of net power is calculated by a 

simple convolution of the wind power PDF with the electrical load PDF. 

 

These two versions of the wind-only program are essentially the same as the 

modelling method used to prepare a previous paper, (Barton, Infield 2004), 

but with a more sophisticated calculation of store capacity. 

 

1.9.2 An Overview of the 24-Hour Probabilistic Program 

The data flows and calculations performed in the 24-hour program are shown 

in figures 1.3 and 1.4. 
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Figure 1.3. Page 1 of the data flows and calculations performed in the 24-hour 

probabilistic computer program 
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Figure 1.4. Page 2 of the data flows and calculations performed in the 24-hour 

probabilistic computer program 

 

The calculations performed in the 24-hour program are qualitatively the same 

as those in the wind-only program, but now including solar power and more 

diurnal and seasonal effects. Fourier Transforms, filter functions and 

constructed PDFs are now also applied to variations in solar power. Electricity 

demand changes with hour of the day, weekday or holiday and month of the 

year. In addition, due to the highly seasonal and diurnal nature of electricity 

demand and especially of solar power, daily and seasonal profiles of wind 

power, solar power and electricity demand are also calculated. In order to 

treat diurnal and seasonal effects correctly and separately from stochastic 

variations, the daily and seasonal spikes are first removed from the spectra of 

wind speed and solar irradiance. In order to simplify the program, electricity 

demand is treated as a purely deterministic, repeating profile, which it is to a 

first approximation. Nevertheless, the complexity has increased significantly 

from the wind-only case: The wind-only program has to step through every 
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period-average wind speed, but the 24-hour program has to step through 

every combination of daily average wind speed, daily average solar power 

and daily electricity demand profile. The PDFs of net power are no longer the 

wind power PDFs with electricity demand subtracted; they are now a 

convolution of wind power PDF, solar power PDF and electricity demand 

PDF. The program has to step through a 7-level nest of for loops, as 

described in section 2.10.3 and shown in fig. 2.74. 

 
1.9.3 Advantages of the Probabilistic Method 

If the number of conditions modelled (computer program loops) is less then 

the number of time steps of the equivalent time step method, then the 

probabilistic method has a good chance of saving computer run time. This 

advantage applies when compared to a time step method with very short time 

steps, for example 1 minute or less, requiring a great number of time steps to 

model a long total period.  

 

The reduced computer run time makes it easier to run the probabilistic 

method inside an optimisation routine and thus optimise the sizes of system 

components during a feasibility study. 

 

The probabilistic method reduces the amount of data that has to be gathered 

and stored before the model can be run.  

 

When a site has insufficient measured wind speed and solar irradiance data, 

the conventional ways to model renewable energy output at that site are by 

using weather data from elsewhere or by using synthetic weather data. 

Weather data from other sites may not have the same average values and 

may not have the same diurnal and seasonal patterns. Synthetic data rarely 

has the same spectral variation, as described in section 2.4.12, and will 

therefore give an incorrect estimate of the variations in power output and an 

incorrect prediction of the performance of an energy store. The probabilistic 

method opens up the possibility of combining an appropriate spectrum of 

stochastic variations with appropriate seasonal and diurnal profiles to give an 
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accurate model of the system operation at the feasibility study stage without 

having to embark on a long data measurement campaign. 

 

1.9.4 Limitations of the Probabilistic Method 

The probabilistic method requires a longer computer program code. The time 

step method can be coded in just a few lines, but the probabilistic method 

requires a long and complex code to integrate the spectra and to construct 

PDFs of wind and solar power. The programming complexity and computer 

run time increase exponentially with the number of different forms of variation 

that are added: wind, solar and variable loads together are much more 

complex than each variable on its own. Each new source of variation adds at 

least one, if not two, more �for� loops into the nest of �for� loops of the 

computer program. As a result of the increased programming complexity, the 

version of probabilistic program presented here that models variable loads, 

solar and wind power can only model energy stores that operate over a time 

scale of 24 hours. In contrast, it was relatively easy to use the probabilistic 

method to model wind power over all and any time scale. Highly seasonal and 

diurnal variations create great programming complexity. Some of the potential 

savings in computer run time are therefore lost. 

 

The probabilistic method is not so easy to validate. In this thesis, the 

probabilistic method is validated by comparison with a time step method. The 

time step method, however, can by validated by hand calculation of a few time 

steps. 

 

The probabilistic method may give less accurate results than the time step 

method, because simplifying assumptions have to be made in the 

construction of the PDFs and in the calculation of times spent full or empty. In 

the time step method, the PDFs are not required since time series of data are 

used. 

 

The probabilistic method as it stands can only calculate the size of an energy 

store and its behaviour by starting with the period of operation (the typical 
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time scale of charge and discharge cycles). It cannot start with a store size 

and predict the period of operation except by iteration. 

 

The probabilistic method requires spectral information and seasonal and 

diurnal data that is not currently available for all locations. These data must 

first be calculated from time series of data measured at a variety of locations. 

 

The 24-hour version of the probabilistic model, as currently written into a 

computer program, would break down if the fraction of time that clouds are 

present in the sky depended significantly on the solar elevation. It would give 

the program difficulty in using the variation in solar power calculated from the 

PSD to predict the fractions of time that passing clouds obscure the sun, and 

therefore the variations in solar power, see section 2.7.5. 

 

The 24-hour version of the model would also break down if there were a 

significant correlation or anti-correlation between solar power and wind power 

beyond seasonal and diurnal variations of each; or a significant stochastic 

variation of electricity demand; or a significant correlation between electricity 

demand and either solar power or wind power, beyond diurnal and seasonal 

effects. In practice, however, the data used In this thesis suggests that such 

significant correlations or stochastic variations in electricity demand do not 

exist in the UK. 

 

1.9.5 Information Used by the Probabilistic Method 

 The following two tables list all the inputs required by each version of the 

method, together with their probable source in a real modelling exercise. The 

tables are based on the computer program listings.  
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Table 1.1 Data Requirements of the Wind-Only Probabilistic Method: 

Data Probable Source of Data 

Maximum charge and discharge 

power capacity of the store 

Chosen and optimised by the 

modeller 

Round-trip efficiency of the store, 

including no-load or parasitic losses 

Depends on the physical 

characteristics or electrochemistry of 

the energy store 

Wind turbine power rating Chosen and optimised by modeller  

Grid import and export power 

capacities 

The local electricity distribution 

network operator (DNO) 

Wind Power Spectral Density (PSD) 

function 

Created by fast Fourier transform 

(FFT) of some representative wind 

speed data from a location with a 

similar climate. Height of seasonal 

and diurnal spikes may be adjusted 

according to local climate, if known. 

Original sampling period of the data 

from which the FFT was run. Needed 

to calculate the Nyquist frequency. 

From the original wind speed time 

series, or from the highest frequency 

of the PSD function 

The store operating period, T, or 

typical charge-discharge cycle time 

that the store is designed for. 

Chosen and optimised by modeller 

The frequency increment of the wind 

PSD 

From the PSD function data 

Site mean wind speed Estimated from topology modelling, 

from a wind atlas or by measure-

correlate-predict using data from a 

nearby weather station 

Wind turbine power curve From potential suppliers, or a generic 

power curve, since most modern 

turbines have very similar power 

curves for a given wind class. 
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Table 1.2 Data Requirements of the 24-Hour Probabilistic Method: 

Data Probable Source of Data 

Latitude and longitude of the 

modelled site, together with time zone 

for predictions of solar power 

From a map of the site or GPS 

measurements 

Maximum charge and discharge 

power capacity of the store 

Chosen and optimised by the 

modeller 

Round-trip efficiency of the store, and 

separately, the no-load or parasitic 

losses of the store 

Depends on the physical 

characteristics or electrochemistry of 

the energy store 

Grid import and export power 

capacities 

The local electricity distribution 

network operator (DNO) 

Original sampling period of the data 

from which the FFT was run. Needed 

to calculate the Nyquist frequency. 

From the original wind speed time 

series, or from the highest frequency 

of the PSD function. 

The store operating period, T, or 

typical charge-discharge cycle time 

that the store is designed for. 

Chosen and optimised by the 

modeller 

Wind turbine power rating Chosen and optimised by modeller  

Solar PV power rating Chosen and optimised by modeller 

Backup or local generator power 

rating 

Chosen and optimised by modeller if 

new, or name-plate rating or 

measured if existing 

Site mean wind speed Estimated from topology modelling, 

from a wind atlas or by measure-

correlate-predict using data from a 

nearby weather station 
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Wind Power Spectral Density (PSD) 

function 

Created by fast Fourier transform 

(FFT) of some representative wind 

speed data from a location with an 

approximately similar climate. Heights 

of seasonal and diurnal spikes are 

irrelevant since seasonal and diurnal 

effects are handled separately. 

Solar Power Spectral Density (PSD) 

function 

Created by fast Fourier transform 

(FFT) of some representative solar 

radiation data from a location with an 

approximately similar climate. Heights 

of seasonal and diurnal spikes are 

irrelevant since seasonal and diurnal 

effects are handled separately. 

Long-term average solar irradiance at 

the site where the solar PSD was 

measured, in order to correctly scale 

the PSD 

Calculated at the same time as the 

solar PSD 

Average wind speeds in each month, 

daytime and at night, to create the 

correct daily and seasonal pattern, 

but not for the average level 

Measured at a site with a very similar 

climate in terms of seasonal patterns 

e.g. monsoon rains, latitude, land 

mass size and proximity to a coast 

Average solar radiation in each 

month, from which the program 

calculates the fraction of time that the 

weather is sunny, and the total solar 

irradiance at the modelled site 

Measured at a site with a very similar 

climate in terms of seasonal patterns 

e.g. monsoon rains, latitude, land 

mass size and proximity to a coast 
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Sunny and cloudy attenuation factors 

and scale factors. These determine 

how much solar radiation is absorbed 

or reflected by the atmosphere at a 

given solar elevation angle, when 

weather is sunny and when it is 

cloudy. 

Sunny and cloudy attenuation factors 

are calculated from solar radiation 

data at a location with similar levels of 

airborne pollution and dust, from 

positions of peaks in graphs of 

clearness index PDF. Sunny scale 

factor is also calculated from 

positions of sunny peaks, but cloudy 

scale factor is calculated to give the 

correct total variance in solar 

irradiance as calculated from the 

integration of the whole solar PSD 

function including seasonal and 

diurnal spikes. 

Average electrical loads for each hour 

of the day, weekday or weekend (or 

holiday), for each month of the year 

From DNO or national grid data 

measured at a location with similar 

culture, climate and latitude and 

scaled to the size of the local 

network. 

A calendar of a typical year to tell the 

program which days are weekdays 

and which are weekend or holidays 

From any location with a similar 

culture in terms of weekly cycle and 

holidays. 

The frequency increment of the wind 

PSD 

From the PSD function data 

Wind turbine power curve From potential suppliers, or a generic 

power curve, since most modern 

turbines have very similar power 

curves for a given wind class. 

 

More work is required to determine which of the above input parameters are 

almost universal (making the probabilistic method very useful and easier to 

use) and which ones change significantly from location to location, making the 

probabilistic method more problematic. 
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1.9.6 Spectral Methods 

Spectral methods are familiar to engineers in the field of signal processing, 

vibration analysis, communication systems, control theory and others. The 

effect of electronic circuits and systems of mechanical inertia, springs and 

dampers can be understood in terms of their spectral response, as low-pass 

filters or high-pass filters for example. Any signal or data stream can be 

represented in the frequency domain by a spectrum, a power spectral density 

(PSD), calculated by applying a Fourier Transform to the signal. One well 

known spectrum has been constructed in this way from series of wind speed 

data; that is Van Der Hoven�s spectrum measured at Brookhaven National 

Laboratory and first published in 1957 (Van Der Hoven, I. 1957). This work 

has been referenced and presented in several subsequent books, for example 

(Hassan, Sykes 1990, Spera 1994) and is shown here in fig. 1.5.  
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Figure 1.5 The spectrum of horizontal wind speed at Brookhaven National 

Laboratory, as published in (Van Der Hoven, I. 1957) 

 

To the knowledge of the author, this and other wind speed power spectra 

have previously been used for illustrative purposes but rarely for quantitative 

calculations. Two rare examples are (Bossanyi, Anderson 1984, Infield 1990). 
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The probabilistic method presented in this thesis uses power spectra of 

horizontal wind speed and global solar irradiance to calculate the variation of 

wind power and solar power within a period, and the probability distribution 

functions of period-averaged power. The probabilistic method also uses 

power spectra to calculate the required size of an energy store, as described 

in sections 2.5.5 and 2.11. 

 

1.9.6.1 Power Spectral Density and Variance 

In this thesis, it is assumed that the area under the PSD curves (autospectral 

density function), created using a Fast Fourier Transform, represent the 

variance of the time series from which they were created. The justification for 

this is taken from (Bendat, Piersol 1993) pages 48, 51, 52 and 55, reproduced 

below for reference. First, the total area under the curve is the mean square 

value of the time series, i.e. the variance of the data plus the square of the 

mean of the data. The autocorrelation at zero time interval is given by: 

 

( ) ( ) 222

0

0 XXXXXXX dffGR µσψ +=== ∫
∞

    (1.3) 

Where XXR  is the autocorrelation function 

 XXG  is the one-sided spectral density function 

 2
Xψ  is the mean square value of the data 

 σ  is the standard deviation of the data 

 µ  is the mean value of the data 

 

Secondly, the mean value of the data appears in the spectral density as a 

delta function at 0=f  with an area of 2
Xµ . Therefore, if the variation at zero 

frequency is excluded from any integration of the spectrum, as it has been in 

the probabilistic method, then the area under the remaining spectrum must 

represent only the variance, 2
Xσ . 
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Finally, all relationships and properties of spectra developed from continuous 

spectra apply equally well to Fourier Transforms, by the Wiener-Khinchin 

relationship. Therefore, excluding the first (zero frequency) term, the 

integrated area under a Fourier Transform is also equal to the variance of the 

time series. 

 

Of course, when a Fourier Transform spectrum has been calculated from one 

time series, for example a wind speed time series with a mean on 5.1m/s, and 

the computer model is of a site with an average wind of 8m/s, then the 

spectrum must be multiplied by the square of the ratio of mean wind speeds, 

e.g. (8 / 5.1)2 in order to maintain a constant ratio of standard deviation to 

mean. 

 

1.9.6.2 Why Only Variance and Not Higher Order Moments of Variation? 

The probabilistic method uses the variances calculated from the PSDs, and 

combines variances by addition. Higher order moments of variation, for 

example skewness and kurtosis, may convey additional information but would 

be very difficult to manipulate and are not available from the PSDs. In the 

model, variances are added, assuming that the added variables are randomly 

and independently distributed, for example random variations of wind power 

and solar power are assumed to be independent of each other. In any case, 

higher order moments are not required. When needed, PDFs have been 

constructed from the calculated mean and variance, adding in knowledge 

about the characteristics of the system. For example, wind speed distributions 

are constructed knowing that wind speeds follow a Weibull or normal 

distribution; PDFs of solar irradiance are constructed from the solar elevation 

in each hour of the day combined with the mean and variance of solar 

irradiation within a given day, knowing that solar radiation exhibits a bimodal 

distribution, either sunny or cloudy, and can never take values less then zero. 

 

1.9.7 Assumptions of the Probabilistic Method 

The probabilistic method makes the following assumptions: 

1. Wind speed distributions are modelled either as Weibull or normal 

distributions. When the standard deviation is large compared to the 
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mean, a Weibull distribution is used, up to a maximum Weibull shape 

factor of 3.0. Otherwise, for smaller standard deviations, a normal 

distribution is used. 

2. Solar radiation follows a bivalent distribution for a given solar elevation 

angle: The sky is either sunny or cloudy, with a unique value of 

radiation for each state, for a given solar elevation. 

3. The numerically integrated area under a PSD created from a FFT is 

equal to the variance of the parameter used to calculate the FFT, with 

the exception of the first term in the PSD which is equal to the square 

of the mean value. 

4.  Wind power and solar power variations ore independent of each other 

and of electricity demand, except for diurnal and seasonal variations of 

each. 

5. The central limit theorem is applied to calculate the means and 

standard deviations of net power from the means and standard 

deviations of each independent variable: stochastic wind power 

variations, stochastic solar power variations, diurnal and seasonal 

variations. The central limit theorem is also invoked as a reason for 

using average profiles of electricity consumption and ignoring minute-

to-minute variations in electrical demand from individual households. 

6. The standard deviations of wind speed variations within a given time 

period are assumed to be proportional to the average wind speed over 

that time period. This is an extension of the concept of turbulence 

intensity to all time scales. 

7. Solar power is assumed to be proportional to global horizontal 

irradiance and proportional to rated power of the PV device. The PV 

would produce its rated power at 1000 Watts per square metre of 

global irradiance. Average PV power output would be increased by 

tilting the PV module towards the equator, but PV power output would 

be reduced by heating of the modules. It is assumed that these two 

effects will approximately cancel in predicting total PV power output. 

The effects of inclination and module temperature are therefore 

ignored. 
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8. The energy store can effectively cope with all power variations up to a 

certain length of time, that is the store operating time or typical charge-

discharge cycle time, T, but cannot accommodate longer-term 

variations. 

9. The fraction of time that the weather is sunny (the �sunny fraction� 

parameter) is independent of solar elevation angle. However, some 

variation in month-to-month average sunny fractions is permitted 

provided there is no overall correlation with solar elevation angle over 

the whole year. 

10. Solar radiation is absorbed or reflected by the earth�s atmosphere 

according to linear attenuation coefficients, one for sunny conditions 

and another for cloudy conditions: The solar radiation on the earth�s 

surface is inversely proportional to the exponent of the thickness of 

atmosphere through which it travels. 

11.  Within a given month, the daily average sunny fractions, are 

distributed according to a beta distribution. 

12. The size of the local electricity load and its distribution network is 

appropriate to a village, a region within a town, or larger. It is large 

enough to accommodate at least one large modern wind turbine, and is 

large enough that short-term variations in demand from individual 

consumers is aggregated out. 

13. The size of the electricity system is small enough that it can be 

modelled as occupying just one time zone and that weather effects on 

wind and solar power are not completely aggregated out. 

14. In the program written to embody the 24-hour version of the 

probabilistic method, a typical UK calendar year has been used. 

15. An energy store is treated as a bin into which energy is put and from 

which energy is drawn some time later. Nothing is known or assumed 

about the physics or chemistry of the energy store. The only 

parameters used by the model are the round-trip electrical efficiency, 

the parasitic loss, the power ratings of charging or discharging the 

store, and the typical cycle time, T of the store. The store is like a low-

pass filter, smoothing out all variations in power up to the typical cycle 

time, but no further. Otherwise the probabilistic method (and its time-
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step validation) treat the store as a �black box�. These assumptions 

about the store are re-examined in more detail in section 2.9.2. 

16. The electricity demand is assumed to be completely predictable; it is a 

direct function of time of day, weekday or holiday, and month and is 

assumed to have very similar daily profiles to the total national 

electricity demand: in thesis to the UK national grid electricity demand. 

17. The inefficiency loss of the store (due to its finite efficiency) is 

accounted as energy enters the store, not as it leaves. 

18. Within any store time period, T, the level of backup generation 

employed, grid import power or grid export power is assumed to be 

constant. This makes the 24-hour version of the method easier to code. 

19. The 24-hour program has to assume that the typical cycle time, T is 

exactly 24 hours. The simple version of the wind-only program can use 

any store time scale, but the second version of the wind-only program 

can only model time scales of between 24 hours and 6 months. 

20.  In a period, T in which average supply exceeds demand plus system 

losses, the store spends some time filling, some time emptying and 

some time full but no time empty. Conversely, in a period in which 

average supply is less than demand plus losses, the store spends 

some time filling, some time emptying and some time empty but no 

time full. The probabilistic method uses these assumptions together 

with the calculated PDFs of wind and solar power, and some further 

assumptions to predict the total fractions of time spent full, empty, filling 

and emptying. For a full explanation, see appendix B. 

21.  The store control strategy number 2 assumes perfect weather 

forecasting over the operating period of the store. Strategies 1 and 3 

do not require any knowledge of future weather but merely respond to 

variations in supply and demand of electricity.  
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1.9.8 Programming Tools 

Both the probabilistic and time-step programs presented in this thesis were 

written in Matlab. Matlab is specifically designed to manipulate matrices, using 

very concise syntax (implied �for� loops), and runs quickly on matrices. Its 

special functions are also very useful, e.g. the fast Fourier transform (fft). 
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2 Methodology 
 
2.1 Introduction to the Methodology  

This Chapter describes in detail the probabilistic method developed for 

modelling hybrid electricity systems with significant fractions of wind and/or 

solar power. The philosophy of the method is to start with a time period, T, 

that is the characteristic period of an energy store. The energy store 

smoothes out fluctuations in energy supply and demand on short time scales, 

up to this period, T but is not able to smooth out fluctuations on longer time 

scales. 

 

The primary input data are the power spectral density (PSD) functions 

representing the time varying renewable energy inputs: the power spectrum of 

wind speed variation, for example Van Der Hoven�s spectrum (Van Der 

Hoven, I. 1957) and an analogous spectrum of solar irradiance variations, 

together with diurnal and seasonal profiles of wind speed, solar global 

irradiance and electricity demand. These spectra and profiles are prepared 

from real measured data, and may be modified by knowledge of the system to 

be modelled, but the original time series data itself is not used by the 

probabilistic method. Thus a significant reduction in input data is achieved 

compared to time-step methods. 

 

Since there are so few such hybrid electricity systems in existence, and none 

with the same wind and solar climate or electricity demand as the measured 

data used in this study, the probabilistic method has been validated using a 

time-step model. The weather data was measured at a different location, 

about 100 miles away from the electricity demand data, and over a different 

period of time. Nevertheless, the time-step model uses the original measured 

wind speed data, solar irradiance data and electricity demand data with 

suitable adjustments for average wind speed and seasonal alignment. 
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Section 2.2 describes the sources of data, the times and locations of 

measurements and how these measurements were prepared for use in the 

models. Some preliminary analysis of the data is presented. 

 

Section 2.3 briefly describes Fourier transforms, and explains why a Fourier 

transform was chosen for modelling of electricity systems with renewable 

energy and energy storage. In the probabilistic method, it is important to 

capture the essentials of the variation in solar irradiance, wind speed and 

electrical loads in the most compact form, and to effectively analyse this to 

predict the behaviour of a specified system. 

 

Section 2.4 evaluates and compares the importance of different sources of 

variation in renewable energy supply and load on different time scales. 

Cyclical or deterministic variations are distinguished from stochastic or 

random fluctuations. The Fourier spectra of wind speed variations, solar 

irradiance variations and demand variations are presented. As will be seen, 

the percentage variation in load is much smaller and more periodic than that 

of wind or solar variations. This section also discusses the covariance or 

independence of different stochastic variables. For example, minute-to-minute 

and day-to-day variations in solar irradiance are treated as independent of 

wind speed variations. This section examines how valid this assumption is. 

 

Section 2.5 describes the principle of spectrum integration used in the 

probabilistic method. This section is central to the method. An energy store is 

modelled as a series of three filter functions applied to the spectra of wind 

speed and solar irradiance variations. Equations are presented for each filter 

function. The area under each filtered spectrum represents a statistical 

variance that is used to model the behaviour of an energy system 

incorporating wind and/or solar power. 

 

A first equation calculates the variance of period-average values of wind 

speed or solar irradiance. A second equation calculates the variation of wind 

speed or solar irradiance within a given time period. These two equations 

extend previously published work by (Infield 1990) and (Bossanyi, Anderson 
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1984) and are used to evaluate the charging and discharging power ratings of 

an energy store and the required power rating of a backup power source 

and/or dump load. A third equation is entirely new to this thesis and evaluates 

the size (energy rating) of a store used to accommodate variations in wind 

power or solar power within a given time frame. 

 

Section 2.6 describes the wind power model.  The wind speed variation is 

largely stochastic with small but significant diurnal and seasonal variations. 

The profiles of monthly average daytime and night-time wind speeds are 

presented. The standard deviations of wind speed variations within a given 

time period are assumed to be proportional to the average wind speed over 

that time period. This is an extension of the concept of turbulence intensity to 

all time scales, not just variations within 10-minutes or one hour. PDFs of 

period-average wind speed and wind speeds within each period are 

constructed from the calculated standard deviations. The wind speeds are 

converted into values of wind power using a generic wind turbine power 

curve. The wind power model is relatively straightforward. 

 

Section 2.7 describes the solar power model. The spectrum of variation of 

solar irradiance has much larger diurnal and seasonal spikes than the wind 

spectrum. The solar power model must take into account both the variation in 

cloud cover and the variation in solar elevation. In addition, solar clearness 

index (the fraction of solar irradiance that penetrates the atmosphere from 

space) tends to have a bimodal probability distribution. This means that the 

beam component of solar radiation tends to be either present or absent, with 

very little middle ground. Thus the solar power model is much more 

complicated than the wind power model, and section 2.7 is the longest of 

chapter 2.  

 

Section 2.8 presents the model of electricity demand. Demand is modelled as 

if it is an entirely deterministic function of time of day, type of day and month. 

As will be seen, the stochastic variations in demand are small compared to 

the deterministic variations, and small compared to the wind and solar power 
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variations when wind and solar penetrations are high enough to justify energy 

storage. 

 

Section 2.9 presents the energy store model. A rule of conservation of energy 

is applied over the chosen time scale of the store, for example one day. 

Energy entering the store is equal to energy leaving the store to satisfy 

demand, plus energy losses. The round-trip efficiency is a single, invariant 

number between 0% and 100%. The standing loss (self discharge) is a 

constant power rate. The store has two other characteristics: the maximum 

rate at which the store can be charged and the maximum rate at which the 

store can be discharged. Thus the model�s input data is a probability 

distribution of net power (solar power + wind power � demand � losses) and 

the model�s output is the energy lost due to the store being full or the 

unsatisfied demand due to the store being empty, the energy lost due to the 

store charge rate being insufficient and the unsatisfied demand due to the 

store discharge rate being insufficient.  

 

Section 2.10 describes the process of convolution of probabilities: wind 

power, solar power and demand probabilities in each period, as performed in 

the 24-hour computer program. Each input probability density function (PDF) 

is converted to a PDF of power so that all variables have the same units (kW), 

in order to make convolution of PDFs possible. The solar irradiance PDF is 

converted into a PDF of solar power and the wind speed PDF is converted 

into a PDF of wind power. Most of the convolutions are performed using 

specially written subroutines, because the PDFs are often �sparse matrices� 

(containing many zero values), making the standard Matlab convolution 

subroutine too slow. For example, the PDF of instantaneous solar power 

contains just two non-zero values for each hour of the day: the probability of 

�sunny� or beam radiation and the probability of �cloudy� or no beam radiation. 

Furthermore, at night there is only one value of solar power, i.e. zero!  

 

Since the wind, solar and demand PDFs all have significant diurnal and 

seasonal variations, the convolution is performed separately for each hour of 

the day, then all the hourly PDFs are combined to give the total daily PDF. 
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One convolution is performed for the distribution of power variation within one 

period (day), and another convolution is performed for the combination of 

different daily averages. The first type of convolution is the one that takes 

most calculation time since it is performed many more times. 

 

Section 2.11 describes the calculation of store size (energy capacity). The 

store size results from the application of the third filter function to the wind and 

solar variation spectra, as described in section 2.5. The store size calculation 

adds up the components of variance in state-of-charge resulting from each 

source of random variation (stochastic solar and stochastic wind power 

variations) together with an average conversion factor for each variable to 

give a variance of power x time, equal to a variance of energy or state-of-

charge.  

 

The variances of state-of-charge above are calculated for wind power and 

solar power, based on their stochastic variation alone. Since the wind, solar 

and demand PDFs all have significant diurnal and seasonal variations, the 

average diurnal variation is treated as a third component of variance, and is 

added to the first two. 

 

Section 2.12 describes the modelling of grid import, grid export, and backup 

generation together with three different control strategies available in the 24-

hour computer program. Optionally, the modeller can incorporate a grid link to 

the local electricity system, and/or a backup generator to improve security of 

supply while minimising capital expenditure on renewable energy supply and 

energy storage equipment. The ability to export to grid also minimises energy 

curtailment and potentially gains revenue. However, these options add to the 

system cost, reduce its self-reliance and increase its complexity. 

 

The grid import, grid export and backup generation options also present the 

model with control decisions. Power surplus can be directed either to the store 

or to the grid. Power deficit can be met either from the store or from grid 
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import or from backup generation. The probabilistic method gives the program 

user three control options to choose from: 

1. Keep the store as full as possible at all times, minimising power cuts. 

2. Keep the store as empty as possible, minimising power curtailment. 

3. Let the store float with perfect weather forecasting, to minimise both 

power cuts and curtailment, while maintaining a constant import rate, 

export rate and backup generation power within each typical store 

period, T. 

 

Section 2.13 describes the two Matlab programs that incorporate probabilistic 

methods. The first one models only wind power variations with a constant 

electrical demand, or demand that varies in a very simple way, but can model 

a store of any size operating over any chosen time scale. This first program is 

a simplified version, without diurnal and seasonal variations in wind speed, 

and will be referred to as the �wind-only� program. 

 

The second program models any combination of wind power, solar power and 

time-varying electricity demand, including diurnal and seasonal effects, but is 

only applicable to a typical store cycling time, T, of one day (24 hours). This 

second program can also model solar power without wind power or vice 

versa, and can model constant or varying loads. The second program will be 

referred to as the �24-hour� program. 

 

The probabilistic method also calculates the proportion of time that the store 

spends full, empty, filling and emptying. These calculations are described in 

appendix B. Since the probabilistic method has lost the temporal relationships 

between high and low net powers (store charging and discharging), the 

calculations of time spent full and empty use informed guesses of a typical 

charge and discharge cycle, based on the PDF of net power entering or 

leaving the store in each period. 
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2.2 Data Gathered 

Wind speed, solar irradiation and electricity load data have been gathered and 

analysed. Temperature data was also obtained but is not used. The relative 

importance of the variations of loads, wind and solar power are explored in 

section 2.4 

 

2.2.1 Weather Data From the Rutherford Appleton Laboratory (RAL) 

Wind speed and solar irradiation data was made available from the CCLRC 

Energy Research Unit (ERU) Test Site at the Rutherford Appleton Laboratory. 

ERU has conducted research into the exploitation of wind power (Infield et al. 

1994, Palutikof et al. 1989, Watson, Ter-Gazarian 1996), and the need for 

energy storage (Infield 1984). The ERU weather station has been collecting 

data almost continuously since the late 1980s. Unlike most data available 

from the British Atmospheric Data Centre (BADC), the RAL data is stored as 

one-minute averages. This is a high enough frequency to capture much of the 

wind speed turbulence and the variation of solar irradiance due to passing 

clouds.  

 

Over time, the number of weather measurements has increased, and their 

quality has improved. Between May 1986 and April 1994, wind speed was 

measured at two heights and wind direction at one height. From April 1994, 

atmospheric pressure and two temperature measurements were added. Then 

from November 1994, two more anemometers and another wind vane were 

added. Finally, on the 30th March 1998, a pyranometer was added measuring 

global horizontal solar irradiance.  

 

The measured data contains a few gaps and bad values, but the studies in 

this thesis use the most complete of the data sets. All gaps have been 

carefully filled with data spliced in from nearby in the record. Virtually every 

month had two or three gaps of a few minutes each where the recording tapes 

were changed. Some months also had longer gaps of an hour or two, or even 

up to half the month (May and June 1999, May 2001, December 2001, and 

January 2002). Where the gaps were significant and the weather had 

changed during the gap, it was filled with data that had similar start and finish 
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values. Where a gap occurred in the temperature or solar record, the gap was 

filled with data from very nearby on the same day, or similar hours on another 

day just a few days before or after the gap. In this way, the diurnal patterns of 

solar irradiance and temperature were preserved. In some cases, the wind 

speed record exhibited a significant diurnal variation, especially in the 

summer. In those cases, the wind speed gap was also filled with data from 

similar times of day.  

 

Sometimes the whole record was missing for a period of time (a problem with 

the recording mechanism), and sometimes just one data stream (a problem 

with just one instrument). Gaps from one instrument sometimes manifest 

themselves as �-999� or some similar number to indicate a known problem. 

Such data gaps from single-instrument faults were filled by data from other 

instruments measured during the same period of time. Elsewhere, data sets 

simply had impossible or highly unlikely values, for example zero wind speed 

amongst much higher values: When the measured wind speed dropped 

abruptly from about 8m/s to 0, and then jumped back to 8m/s some time later, 

this was also recognised as a gap and replaced by other data. 

 

Two data sets have been compiled from the weather data measured at RAL. 

Each data set is four years long: 

 

2.2.1.1 Four Years Data of Wind Speed Only 

One four-year set of wind speed data has been constructed from the wind 

speed measured between 1994 and 1998 inclusive. There was no useful data 

between July 1994 and February 1995. Therefore, the first part of 1994 has 

been spliced onto the second part of 1995, with the join occurring at 28th May. 

(Weather patterns at the end of May, 1994 appear to be quite similar to 

weather patterns at the end of May 1995). Thus five calendar years have 

yielded four years of useful data. Whenever possible, the wind speed data 

was taken from the anemometer 18.7m above ground level on tower 2, 

recorded as �RLT2S19�. When this was unavailable, the second and third 

choices were the anemometers at 18m above ground level on towers 3 or 4. 
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Failing these, data was used from the anemometer at 17m above ground level 

on tower 2. 

 

The resulting four-year data set of clean wind data consists of 2,102,064 

records. This is just a few hours short of four years. This data has been used 

to construct a power spectrum of wind speed variation but has been little used 

in the probabilistic method or its time step validation presented in this thesis. 

 

2.2.1.2 Four Years Data of Wind Speed and Solar Irradiance 

Another four-year data set of wind speed data, together with simultaneous 

solar irradiance measurements, has been constructed from the data 

measured between January1999 and December 2002 inclusive. Again, the 

preferred anemometer was the one at 18.7m above ground level on tower 2. 

There is only one pyranometer for the period. It is located 3 m above ground 

level on the roof of building R64.  

 

This second set of data has been used as one of the inputs to a generic 

power spectrum of wind speed variations, a power spectrum of solar 

irradiance variations and for most time step validation presented in this thesis.  

 

Since the data set includes solar data, it is more important to capture the 

diurnal periodicity. More care was therefore taken to make each day�s worth 

of data exactly the right length, i.e. 1440 records long. The data set of cleaned 

weather data is 2,103,840 minutes long. This is exactly four years long, 

including 1 leap day in year 2000. The preparation of the solar irradiance data 

is described in more detail in section 2.7.1. 

 

2.2.1.3 Physical Location of the Weather Measurements at RAL 

The Rutherford Appleton Laboratory (RAL) is located near Didcot, 

Oxfordshire. Weather measurement instruments include anemometers, a 

pyranometer and temperature measurements. Depending on wind direction, 

some of the anemometers are in the lee of buildings or trees. 
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When the solar elevation is very low, in the morning and evening, the 

pyranometer can be shaded. However, the instrument is located sufficiently 

distant from buildings and trees that the effect on measured irradiance is 

small. 

 

The weather station at RAL is located at latitude 51.57° North and longitude -

1.31° East (+1.31° West). This corresponds to a Great Britain grid reference 

of 447,000 East and 186,000 North. The location is estimated to within one 

km and to within 0.01° of longitude or latitude from a map of the area. 

 

2.2.2 Wind Data From an East Coast Offshore Site 

Some offshore wind speed measurements have been obtained from a 

location off the east coast of the UK. The exact location and the long-term 

average wind speed cannot be disclosed for reasons of commercial 

sensitivity. Data was obtained for a period of almost 2032 days (5.56 years) at 

10-minute intervals. This data is useful for calculating a second spectrum for 

wind speed variation in order to gauge inter-site variation. 

 

2.2.3 Wind Data From the British Atmospheric Data Centre, BADC 

Wind speed data has been downloaded for several locations around Great 

Britain and offshore islands: Cottesmore in Rutland, Butt of Lewis, St Mary�s 

in the Isles of Scilly and Ronaldsway on the Isle of Man. This data was all 

measured between the years of 1993 and 2000 inclusive as hourly average 

values and forms part of the �ESAWIND� database. All the data streams 

contained a few gaps that had to be filled for the purposes of this project. 

Gaps were filled with similar periods of wind speed data from elsewhere in the 

data record, or with concurrent data from another site.  

 

Each cleaned-up BADC data set contained a whole number of years. The 

Cottesmore data runs from January 1994 to December 1999 inclusive. The 

Butt Of Lewis data runs from January 1995 to December 1997 inclusive. The 

Isles of Scilly data runs from March 1997 to February 2000 inclusive. The 

Ronaldsway data also runs from March 1997 to February 2000 inclusive. 
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Thus all the BADC data is very useful for creating spectra of wind speed 

variation. 

 

The characteristic differences between the wind measurement sites (RAL and 

all the BADC sites) are discusses in section 2.4.11. Some are maritime sites 

and others are inland; some are on the eastern side of Britain and others on 

the west coast. These differences have an effect on the levels of wind speed 

variation, particularly the diurnal and seasonal variations. 

 

2.2.4 Load Data From Leicester 

The Author�s thanks go to Central Networks (distribution network operator) for 

use of their load data. Electrical load data was measured at all branches of 

two primary substations, �Red Cross� and �Braunstone� in the south of the City 

of Leicester, for the year from February 2001 to January 2002 inclusive.  

 

It was decided to use data from just one substation feeder, �Braunstone LOC-

A�, rather than the whole substation, because a single branch is easier to 

check for data gaps, and because the load on one branch is similar in 

magnitude to the generation capacity of one large wind turbine; the annual 

average load on this feeder was 1083.225kW. This size of feeder aggregates 

the demand of individual premises but would still show local effects, for 

example the effect of local changes in weather conditions, as would be 

experienced in medium-scale stand-alone systems. This feeder probably 

supplies several hundred premises that are a mixture of industrial, commercial 

and residential premises. �Braunstone LOC-A� was also chosen because its 

load profiles closely match the national grid load profiles, within a day, weekly 

and seasonally, see section 2.8.3. 

 

This single-feeder demand data still had gaps, sometimes of just half an hour 

but sometimes as long as two days. The half-hour gaps could be filled by 

linear interpolation, but longer gaps had to be filled with data from the same 

time of day, in days of a similar type in the same month. Weekdays were filled 

with data from weekdays, Saturdays from Saturdays and Sundays from 

Sundays. 
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2.2.5 British Gas Electrical Demand Data 

British Gas plc made available measurements of the electrical load of 14 

houses in various parts of the UK, supplied as part of the Solar Cities project. 

A small-scale analysis was done on data from 53 days between Tuesday 12th 

December 1995 and Friday 2nd February 1996 inclusive. The electrical 

demand was measured at minute intervals. The British Gas data was not 

used in the probabilistic method or in its validation, but is presented here is for 

illustration and justification of the applicability of daily demand profiles in 

systems of the order of 1MW average demand. The British Gas data 

illustrates the effect of aggregation of many consumers. 
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2.3 The Fourier Transforms 

 

2.3.1 Data Compression of a Fourier Transform 

The object of using Fourier Transforms in this project is to capture the 

essential characteristics of a long time-series in a compact form. 

 

Each data set of processed weather from the Rutherford Appleton Laboratory 

consists of 4 years of data records at a frequency of 1 minute. There are up to 

2103840 records for each data stream of wind speed and solar irradiance. 

The spectrum resulting from each fast Fourier Transform is just 136 pairs of 

numbers. The logarithmic frequency interval was 0.05 in base 10 logarithms, 

or a factor of 1.12 from one frequency bin to the next. 

The first of each pair is the logarithm of the centre of the frequency bin and 

the second of each pair is the power density in that frequency bin. This 

represents a data reduction factor compared to the original time series of: 

 

2103840 7735
2 136

=
×

        (2.1)  

 

The wind and solar power spectra that were used in most of the calculations 

presented in this thesis consist of these 136 frequencies. 

 

At Rutherford Appleton Laboratory, 3 days of wind speed measurements have 

also been recorded at an averaging frequency of 5 seconds. This has also 

been used to create a wind speed power spectrum extending to shorter time 

scales. It has been possible to splice this extra spectrum onto the end of the 

main wind speed spectrum to create a spectrum from 4 years down to 10 

seconds (the Nyquist frequency for a 5-second sampling period). The Fourier 

transform method thus lends itself to combining data from several sources for 

use in one model. 

 

2.3.2 Limitations of Fourier Transforms 

Inevitably, some information is lost when the number of data points is reduced 

so radically. In the case of Fourier Transforms the temporal relationships are 
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lost. Nothing useful can be deduced from the phase information of the Fourier 

transform. For example, the spectrum does not tell us how the magnitude of 

the turbulent, short-term variation changes with the magnitude of the weather 

dependent, long-term wind speed. The spectrum does not even tell us that the 

wind speed cannot go negative! Other assumptions have to be made in a 

practical model, and those assumptions have to be based on the physics of 

the real system. 

 

When modelling wind speed variations, the probabilistic method assumes that 

the standard deviation of variations within a period is always proportional to 

the period-average wind speed. This is an extension of turbulence theory to 

all time scales. Other assumptions were tried, see section 2.6.5 and produced 

no improvement in the predictions. 

 

When modelling solar irradiance variations, the probabilistic method simply 

assumes that the sky cloud state is bivalent � either sunny (beam radiation 

present) or cloudy (no beam radiation present). The clearness indices are 

chosen to give the correct total variance and the correct monthly and hourly 

average radiation. The solar model also makes extensive use of sun-earth 

geometry to calculate the solar elevation and therefore the extra-terrestrial 

global horizontal irradiance and the air mass. 

 

2.3.3 The Matlab Fast Fourier Transform Subroutine 

As part of this project, various data have been processed using the standard 

Fast Fourier Transform function within Matlab, called �fft�. In its raw form, the 

�fft� function is not very useful. Its output is a data set of complex numbers, 

with one number for each frequency from zero up to the sampling frequency, 

in steps of the total smallest possible frequency interval, i.e. 1/total period. 

Thus the number of output complex numbers is equal to the total number of 

data samples.  

 

The first number in the output is the zero frequency or D.C. component, equal 

to the total of all numbers in the data series. This is discarded.  
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Since the Nyquist frequency is half the sampling frequency, the second half of 

the output data set is redundant. The magnitudes are a mirror image of the 

first half, reflected at the Nyquist frequency. The second half of the data set is 

therefore also discarded.  

 

The real and imaginary parts of each complex number represent the sine and 

cosine components of the data series. The methods presented here do not 

need to know the relative magnitudes of the sine and cosine components. All 

that is required is the magnitude of each frequency component, equal to the 

modulus of each complex number. In fact, we require the component of 

statistical variance, or �power� represented by each frequency component. 

This is equal to each modulus squared. In order to make the total power 

representative of the total statistical variance of the data series, each power 

component has to be normalised by dividing it by the total number of data 

points in the original data stream.  

 

The phase angle of each frequency component is the argument of each 

complex number. The phase angles have been plotted of Fourier transform 

results from several wind speed time series, and found to be apparently 

completely random. They therefore convey no useful information to a 

probabilistic modelling method. 

 

The Fourier transform is calculated on equal increments of frequency. The 

magnitudes of the low frequency components tend to be greater than those of 

the high frequency components, sometimes by several orders of magnitude. 

The total variance represented by the higher frequencies is similar to that of 

the lower frequencies, but the high frequency variance is distributed between 

more frequencies. In order to obtain a useful, smooth power spectrum on a 

logarithmic axis of frequency, the magnitudes of the spectral components 

must be binned according to a logarithmic frequency scale. The higher 

frequency bins have many Fourier transform components, each of small 

magnitude, whereas the lower frequency bins have just a few components of 

larger power. At the lowest frequency end of the spectrum, there may be just 
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one or no components in each bin. In these cases, the spectral amplitude in 

each bin must be interpolated between adjacent Fourier transform points. 

 

Because half the data set was discarded, the resulting spectrum only 

represents half the total variance of the original wind speed time series. When 

calculating the variance represented by an interval of frequencies, the 

amplitude of the spectrum must be doubled again, (Bendat, Piersol 1993), 

pages 10 to 12. A Matlab programme has been written that performs all the 

above conversions to create a smooth spectrum, the integral area of which is 

equal to half the total variance of the original data stream, within numerical 

accuracy. The amplitude of this spectrum must then be doubled to give the 

correct total variance. 

 

The raw Fourier transform output contains as many frequencies as the 

number of data points in the original time series. Since this consists of several 

thousand or even millions of time steps, the Fourier transform output has 

been binned into intervals of 0.05 on the logarithmic time scale in base 10 to 

create smooth spectra. Thus each data point in the binned spectrum 

represents variation with a frequency 1.12 times as big as the next slowest, 

and 0.89 times the next fastest. In the Fourier transform, the high frequencies 

are closely spaced whereas the low frequencies are widely spaced on the 

logarithmic scale. Therefore high frequency bins contain a sum of many 

amplitudes but low frequency bins contain just a few, or even just one or two. 

Therefore, when binned, the high frequency, right hand end of each spectrum 

is smooth but the low frequency, left hand end is rough with random scatter.  

 

This process of normalisation and binning has been written into a Matlab 

program written around the Matlab fast Fourier transform function. This 

program has been adapted and applied to time series of wind speed data and 

solar data from Rutherford Appleton Laboratory (RAL) to create the spectra 

that form part of the input data of the probabilistic method. The program has 

also been applied to other wind speed data from around the UK and to 

synthetic time series of wind speed data, see section 2.4.11. The program has 
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even been applied to time series of electrical demand, see section 2.4.5, 

although the resulting spectrum is not used in the probabilistic method. 
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2.4 Sources of Variation 

 

2.4.1 Relative Importance of the Different Sources of Variation 

Power variations originating from wind power, solar power and electrical 

demand have been compared. The purpose of this work was to support the 

assumptions and simplifications made in the probabilistic modelling method. 

Some representative time series of data from each of the variables have been 

processed through a fast Fourier transform to create power spectral densities, 

PSDs.  

 

2.4.2 Magnitudes of Variation in the Original Data 

The wind data used in this comparison was RAL wind data, 1994 to1998, 

whereas the solar data was measured at the same location between 1999 

and 2002 inclusive, see section 2.2.1.  

 

Some electrical demand data was measured at a substation feeder in the city 

of Leicester between February 2001 and January 2002 inclusive. However, 

this data is only measured as half-hour averages. Electrical demand data was 

therefore also taken from the National Grid, (National Grid Company plc 

2003), where data is given for four example days at one-minute intervals. This 

National Grid data was only used to create a spectrum of short-term variation, 

to splice with the spectrum from the Leicester data where the Leicester data 

could not provide a spectrum. Table 2.1 lists the means and standard 

deviations calculated from the original time series of data. 
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Table 2.1 A Simple Comparison of Variation in the Raw Data 

 Solar Data RAL 

1999 To 2002 

Wind Data RAL 

1994 To 1998 

Demand Data 

Leicester 2001 

To 2002 

Mean 118.8 W/m2 5.09 m/s 1083 kW 

Standard 

Deviation 

201.8 W/m2 2.61 m/s 262 kW 

 

The standard deviation of solar power is almost twice as big as its long-term 

average. At first sight this seems ridiculous, but the distribution of solar power, 

fig. 2.1, is very highly skewed. There is a very high probability of zero or near 

zero irradiance and a low probability of high irradiance. Obviously for almost 

half the time, the sky is dark and irradiance is zero. In the UK, the inter-

seasonal variation is also very strong: The average June irradiance is typically 

10 times bigger than the December irradiance. Then the solar elevation angle 

changes during the day, and cloud cover varies significantly from minute to 

minute and from day to day. 
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Figure 2.1 Probability Distribution of Solar irradiance at Rutherford Appleton 

Laboratory From 1999 to 2002 

 

Wind speed data has a smaller variation, having a standard deviation that is 

just over half of the mean value. The probability distribution of wind speed at 

RAL is a fairly typical distribution for a temperate climate, and can be 

approximated by a Weibull distribution with a shape factor of 2.04 and a scale 

factor of 5.75m/s, fig. 2.2. This Weibull distribution has the same mean and 

standard deviation as the measured distribution but a slightly different shape, 

as discussed further in section 2.6.2.1. 
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Figure 2.2 Probability Distribution of Wind Speeds at Rutherford Appleton 

Laboratory From 1994 to 1998 

 

Electrical demand data has quite a small variation, having a standard 

deviation that is only one quarter of its mean value. This is reflected in the 

graph of demand probability distribution, fig. 2.3. The smallest recorded value 

is about half the mean, and the largest recorded value is only about twice the 

mean. 
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Figure 2.3 Probability Distribution of Demand at Feeder �LOC-A� in Leicester 

From 2001 to 2002 

 

2.4.3 Effect of the Wind Turbine Power Curve 

The power output from a photovoltaic module is approximately proportional to 

the radiation it receives, but the power output from a wind turbine is not 

proportional to the wind speed. The theoretical power available from the wind 

is proportional to the swept area of the turbine multiplied by the cube of wind 

speed, and the actual power depends on the power curve of the wind turbine.  

 

A standard, typical turbine curve has been used in this thesis, fig. 2.4 and has 

also been used in previous publications, (Barton, Infield 2004). This curve has 

been constructed from an average of three commercially available 1 MW wind 

turbines (Bundesverband WindEnergie e.V. 2000). Fig. 2.4 shows how a 5th 

order polynomial has been fitted to the data. Fuller details of the calculation of 

the turbine power curve are given in section 2.6.4. 
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Figure 2.4 Generic Wind Turbine Power Curve 

 

A four-year time series of wind power values has been calculated from the 

1994 to 1998 wind speed data, using this turbine power curve, but note that 

the wind speeds were first scaled from an average of 5.09m/s to 8m/s, which 

is a more realistic value of average wind speed for a wind farm development. 

The resulting probability distribution of the wind power is shown in fig. 2.5. 
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Figure 2.5 Probability Distribution of Wind Powers Based on a 1MW Wind 

Turbine and Data From Rutherford Appleton Laboratory, 1994 to 1998 

 

The average calculated power is 393 kW and the standard deviation is 353 

kW. Thus the standard deviation of wind power is almost as large as its mean 

value. The effect of the wind turbine power curve has been to increase the 

variability of the wind power relative to the variability of the wind speed data. 

This is not surprising, given that the turbine power curve is quite steep around 

the scaled mean value of 8 m/s. The probability graph also shows that there is 

a spike of high probability at zero power (12%), and another spike of high 

probability at turbine rated power output (also 12%), with a broad probability 

distribution between. 

 

The original wind speed time series and the wind power time series have both 

been put through a fast Fourier transform program. The resulting spectra are 

shown in fig. 2.6: 
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Figure 2.6 Normalised spectra from wind speed and wind power time series 

 

This graph shows that the wind speed scaling and the wind turbine power 

curve make only a small difference to the resulting (normalised) spectra. High 

frequency components are slightly increased in significance and some low 

frequency components are decreased in significance, but the effect is very 

subtle. The relative importance of different regions of the spectrum is 

unaffected. 

 

Elsewhere in this thesis, the Fourier transform of the original wind speed time 

series was used as the basis of the probabilistic modelling method. 

 

2.4.4 Aggregation of Demand - British Gas Data 

An example subset of the British Gas data taken from 3pm to 4pm on 

Tuesday 12th December 1995 is shown in fig. 2.7: 
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Figure 2.7 Electrical load profiles from individual houses 

 

Each house�s demand varies from near zero to several kilowatts, with the 

peak demand being off the top of the scale at over 6kW, but the average load 

per house is only 0.64kW. This enormous variation is made up of minute-to-

minute variation of each house and variation between houses. The minute-to-

minute standard deviation of demand for each house is typically 52% of its 

hourly average demand, and the standard deviation of house-to-house 

variation of hourly averages is 45% of the average of all houses.  

 

When demand is averaged over all 14 houses, fig. 2.8, the time series is 

much smoother. The minute-to-minute standard deviation of total demand 

within one hour is only 17%. Even with just 14 houses, the random 

fluctuations due to individual households have been largely smoothed out, 

and the profile within an hour period is smoother. This justifies the use of 

hourly averages when modelling an electricity system with average loads of 

the order of 1 megawatt or more. 
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Figure 2.8 Average electrical load profile of 14 houses 

 

A typical substation load of 1MW (excluding a single large load to an industrial 

premises) would comprise of 1000 houses or more, or a mixture of several 

hundred commercial, small industrial and residential premises. 

 

As a worked example: If all the houses have a minute-to-minute standard 

deviation of demand that is 50% of their hourly average value, and all the 

houses have a similar magnitude of hourly average demand, then we can 

apply the central limit theorem to calculate the net minute-to-minute standard 

deviation of demand for a feeder supplying approximately 1000 houses or 

other premises: Net standard deviation = 50%/√1000 = 1.6%. Similar 

arguments apply to instantaneous house-to-house variation. 

 

2.4.5 Demand Spectrum and Profiles - Leicester Braunstone LOC-A Data  

The data from the Loc-A feeder of the Braunstone substation, as described in 

section 2.2.4 has been used to create a power spectrum of load variations, 

fig. 2.9 and also profiles of demand for each hour of the day, for weekdays 

separately from weekend days, and for each month of the year, sections 2.8.3 

and 2.8.4. 
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Figure 2.9 Power spectrum of electrical demand at Braunstone Loc-A feeder 

 

Fig. 2.9 shows that the demand spectrum is dominated by periodic variations 

that appear as spikes in the spectrum. 

 

2.4.6 Spectra of Power Variations 

The spectrum of variation (not to be confused with the solar electromagnetic 

spectrum) has also been prepared by a Fourier transform from the four years 

of irradiance data measured at RAL, section 2.2.1.2 and is shown in fig. 2.10 

and fig. 2.11 below. 
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Figure 2.10 Solar power spectrum 
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Figure 2.11 Solar power spectrum with expanded vertical scale to show broad 

spectrum 

 

Spectra of wind power, solar power and electrical demand have been 

normalised to the same total variance (total 100%) and compared in fig. 2.12. 

 

The wind power spectrum shown is the one resulting from the application of 

the generic wind turbine power curve onto wind speed data that has been 
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scaled to an average of 8m/s. Solar power is assumed to be proportional to 

horizontal global irradiance. As discussed in section 2.7.15, the effects of 

inclined PV modules, and PV module temperature are difficult to model and 

have been left for future study.  

 

Electrical demand is simply put into a Fourier transform to create a demand 

power spectrum. Again, the National Grid data was used to create the high 

frequency portion of the spectrum, for minute-to-minute variations within one 

hour.  
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Figure 2.12 Variation spectra of solar power, wind power and electrical 

demand. Each spectrum is shown normalised by its own total variance. 

 

These spectra show how much variation occurs in a given time frame, or 

section of the time spectrum, from minutes to hours, days and months. The 

power spectra also show how much variation is stochastic (apparently 

random, producing a broad spectrum) and how much is periodic 

(deterministic, producing discrete spikes in the spectrum). The area under the 
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power spectra curves can be integrated to give the components of variance 

contained in each part of the spectra, see table 2.2.  
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Table 2.2 Components of Variance in Each Part of the Power Spectra of 

Solar, Wind and Load Variations 

Spectral Range Solar power 

Percentage 

Variance 

Wind Power 

Percentage 

Variance 

Load Percentage 

Variance 

> 1 Year 0.03% 1.25% Not Measured 

Seasonal 13.67% 4.93% 28.24% 

1 Year to 1 Week 2.26% 32.09% 3.50% 

1 Week Peak None None 7.66% 

First Weekly 

Harmonic None None 2.07% 

1 Week to 1 Day 6.15% 33.98% 2.71% 

Diurnal Peak 49.94% 3.92% 33.37% 

First Diurnal 

Harmonic 6.55% 1.08% 12.68% 

Second Diurnal 

Harmonic 0.83% Negligible 2.58% 

Third Diurnal 

Harmonic Negligible Negligible 1.18% 

Fourth Diurnal 

Harmonic Negligible Negligible 2.14% 

1 Day to 1 Hour 10.51% 14.02% 3.72% 

1 Hour to 2 

Minutes 10.08% 8.74% 0.15% 

Total 100% 100% 100% 

Total Periodic 

Components 70.98% 9.92% 89.92% 

Total Stochastic 

Components 29.02% 90.08% 10.08% 

 

The vertically expanded solar power spectrum, fig. 2.11 shows a broad 

spectrum of variation from months down to minutes, with a clearly defined 

�hump� of variation centred at periods of 30 minutes due to passing clouds. 
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The variation from day to day is due to passing weather systems and is 

smaller in magnitude. The full solar spectrum, fig. 2.10 also contains several 

very large spikes at discrete frequencies corresponding with seasonal 

variation, diurnal variation and harmonics of diurnal variation. The height of 

the diurnal spike is so large that its peak is far above the top of the combined 

figure, fig. 2.12; to make the scale fit this peak would have made all 

broadband variation too small to be visible at the bottom of the graph. The 

total variance represented by the seasonal spike, diurnal spikes and diurnal 

harmonics represent 71% of the total solar variance (the diurnal spike alone is 

almost 50% of solar variation). The stochastic variation represents just 29% of 

solar variance. At a lower latitude (nearer the equator) the seasonal periodic 

component of solar variance would be smaller but the diurnal component 

would remain very large. 

 

The wind power spectrum also shows a spectrum of variation from months to 

minutes, with a broad hump of variation centred around one week, fig. 2.12. 

Most of the stochastic variation in wind power occurs over long time periods � 

longer than one hour, indicating that it is due to passing weather systems and 

not due to turbulence. Turbulence intensity is therefore quite modest at the 

measurement height of 18 metres at RAL. The wind power spectrum contains 

several spikes at discrete frequencies corresponding with seasonal and 

diurnal variation, fig. 2.12, but these spikes are much smaller than the 

corresponding spikes for solar power. Wind power variation is mostly random. 

90% of its variance is stochastic and only 10% is periodic. Nevertheless, 

periodic wind power variations are significant. At RAL, the wind power 

spectrum seasonal spike contains almost as much variance as the diurnal 

spike and its harmonic.  

 

So we have seen that solar power variation is mainly periodic but wind power 

variation is mainly stochastic, and that the random variation of solar power 

occurs on shorter time scales than most wind power variation. Solar power is 

therefore considered to be more variable than wind power, but more 

predictable, when designing stand-alone electricity systems, for example 

(Allen, Todd 1995). 



73 

 

As seen above, the spectrum of demand variation is almost entirely periodic: 

The yearly variation spike has no visible harmonics because it is so close to a 

perfect sinusoid. Weekly and daily variations have visible harmonic spikes. 

The total periodic variation represents approximately 90% of all demand 

variation while random fluctuations represent just 10%. 

 

The areas under each line in fig. 2.12 reflect the total percentage variation of 

each set of data. The standard deviation of wind power is 90% of its mean, 

the standard deviation of solar power is 170% of its mean and the standard 

deviation of demand is only 24% of its mean.  

 

2.4.7 Comparison of Absolute Variance in an Example Power System 

A hypothetical, simple power system has been examined in which the total 

demand is exactly balanced, on average, by equal amounts of wind power 

and solar power. Thus the long-term average wind power (0.5MW) and the 

long-term average solar power (0.5MW) were each assumed to be equal to 

half the long-term average demand (1MW). All system losses and energy 

storage losses are neglected. Variances in system power due to stochastic 

and periodic components of supply and demand are compared in table 2.3. 
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Table 2.3 Components of Variance in an Example System Incorporating Solar 

Power, Wind Power and Varying Demand 

Quantity Solar power 

Variance 

Wind Power 

Variance 

Load 

Variance 

Power Capacity (MW) 0.5  0.5  1.0  

Total Variance Calculated from 

Time Series (MW)2 0.7215  0.2019  0.0585  

Total Variances Calculated from 

Spectrum (MW)2 0.7251  0.2017  0.0574  

Total Variances as a Percentage 

of Total System Variance 73.67% 20.49% 5.83% 

Periodic Components 

Calculated from Spectrum 

(MW)2 0.5147  0.0200  0.0517  

Periodic Components as a 

Percentage of Total System 

Variance 52.30% 2.03% 5.25% 

Stochastic Components 

Calculated from Spectrum 

(MW)2 0.2104  0.1818  0.0058  

Stochastic Components as a 

Percentage of Total System 

Variance 21.38% 18.47% 0.59% 

 

The total variances calculated from the spectra agree with the variances 

calculated from the time series, to an accuracy of about 1%. The other results 

show the characteristics of the different sources of variation, and their relative 

importance. 

 

The periodic solar power variation is responsible for just over half (52%) of the 

total system variance on its own. The second largest source of variance is the 

stochastic variance in solar power, at 21% of total variance. Thus the solar 

power variation is responsible for 74% of system variance. 
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The wind power stochastic variance is almost as big as the solar stochastic 

variance, at 18% of total variance. The wind power periodic variance is only 

2% of total variance. Thus the wind power variance is much smaller than the 

solar power variance, at least for the weather data measured at this site at 

RAL, and is responsible for only 20% of the system variance.  

 

The periodic component of demand variance is 5.25% of system variance and 

the stochastic component of demand variance is only 0.59%. Thus the 

demand variance is much smaller even than the wind power variance, at less 

than 6% of total system variance. This is despite the average demand being 

twice the average solar power and twice the average wind power.  

 

Because the variance in the demand is so small, and the stochastic 

component is only a small fraction of the periodic component, the demand 

may be considered to be entirely periodic to a good approximation. The 

Leicester substation demand data was only measured as half-hour averages, 

and only covers a fraction of the time that the weather data covers, in a 

different part of the country. However, as the electrical load is almost entirely 

determined by the time of day, day of the week and time of year, it can be 

modelled as a series of hourly profiles. It does not matter that the demand is 

not concurrent or collocated with the weather data. 

 

The relatively large variations of the intermittent renewable sources of energy, 

especially of solar power, indicate that the challenge of matching demand with 

supply in such an electricity system is likely to be an order of magnitude 

greater than in a system with conventional generation and variable load, even 

if that generation were constant and inflexible. However, much depends on 

the seasonal and diurnal correlation or anti-correlation of supply and demand, 

as described in the following sub-sections. 

 

2.4.8 Dependence and Independence of Sources of Variation 

In practice, some of the periodic variations reinforce each other, for example 

solar power with lighting loads. Other variations are complementary, for 
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example solar power with air-conditioning loads, or winter wind power with 

winter heating and lighting loads. It is important to understand where sources 

of variation reinforce and where they complement one another and cancel out. 

This thesis examines the UK environment, where the weather is highly 

seasonal, but where winter space heating and lighting loads are much more 

important than summer air-conditioning.  

 

In the probabilistic method, correlation and anti-correlation are modelled as 

periodic effects. Solar irradiance, wind speed and electricity demand all vary 

with month of the year and with hour of the day. This makes the modelling 

relatively simple: daily and seasonal profiles are used for each variable and 

simply added or subtracted but no correlation coefficients are required. 

 

There may be some residual correlations or anti-correlations not modelled by 

periodic effects, but these are left for further work. For example, the 

probabilistic method assumes that instantaneous wind speed is independent 

of passing clouds (a reasonable assumption) but also that daily average wind 

speed is independent of daily average solar irradiance within each month. 

This last assumption depends on the pattern of cloud cover with high and low 

pressure weather systems and is less obvious. 

 

2.4.9 Seasonal Effects 

The 24-hour probabilistic computer program includes models of wind power, 

solar power and variable electrical demand and performs a separate 

calculation for each month. The program could have just used 4 seasons, but 

the electrical demand and wind speed variation apparently lag behind the 

solar variation by a month or two for the case of England and Wales. The 

normalised monthly average wind speeds, solar irradiances and demands are 

shown in fig. 2.13. 
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Figure 2.13 Seasonal variations of solar irradiance, wind speeds and electrical 

demand, normalised by their own mean values. 

 

In fig. 2.13, month �0� represents December, �1� represents January and so on 

to �14� representing February the following year. This figure shows that solar 

irradiance is at maximum in June and minimum in December, as expected. 

However, demand is at minimum in July and maximum in January, probably 

driven by heating loads, (McSharry, Bouwman & Bloemhof 2005). Wind 

speed, and therefore wind power, is at minimum in August and maximum in 

February. Thus the wind power profile lags the demand profile by one month. 

The solar profile leads the demand profile by one month and is seasonally out 

of phase with demand and wind power. 

 

2.4.10 Implications for the Probabilistic Modelling Method 

Solar power has such a large variance that both periodic and stochastic 

variations need to be included. Periodic variations are modelled on an hour-

by-hour basis for each month of the year. 
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Wind power also has such a large variance that both periodic and stochastic 

variations are included. However, the periodic variations of wind power are 

smaller than solar power, so they are simply modelled as separate daytime 

and night time averages for each month of the year. 

 

Electrical demand has a smaller total variance, and its variation is almost 

entirely periodic. The demand is therefore modelled as a profile of demand on 

an hourly basis for weekdays and weekend days, for each moth of the year. 

The stochastic variation of demand is completely neglected. 

 

2.4.11 Alternative Wind Speed Spectra from UK Data 

The general application and therefore usefulness of the probabilistic method 

depends on the similarity of the wind power spectrum at different locations. 

 

Some other wind speed data series have therefore also been gathered, as 

described in sections 2.2.2 and 2.2.3, and used in Fast Fourier Transforms to 

create wind speed spectra. These are compared with the RAL spectrum to 

see how the shape of the wind speed spectrum depends on geographical 

location, fig. 2.14. 
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Figure 2.14 Measured wind speed spectra compared, all normalised to 10m/s 

average wind speed 

 

The above spectra have been normalised by the square of the long-term 

mean wind speeds and then multiplied by 100 (equivalent to a long-term 

mean wind speed of 10m/s) to produce a useful vertical scale when plotted. 

All the spectra have qualitatively very similar spectra. At the left-hand end of 

the graph is a large spike at �3.94 on the x-axis (= -log10 of 8766 hours) 

representing annual variation in wind speed. Since this variation is an almost 

perfect sine wave, this spike has no visible harmonics for these sites in the 

British Isles. Moving to the right (to shorter time scales), all spectra show a 

broad hump of weather-related variation. This contains quite a lot of scatter, 

probably because the data does not span enough years to produce a smooth 

curve. The humps all have a maximum at about �2 on the x-axis (about 100 

hours or 4 days), corresponding to the typical period of passing weather 

systems. All the spectra also exhibit a spike at �1.38 (= -log10 of 24 hours) on 

the x-axis corresponding to a period of one day, or the diurnal variation, 

although the magnitude of this component varies considerably. Then further to 

the right, many spectra also show the first harmonic of the diurnal spike. This 

may represent non-sinusoidal diurnal variation or winds that reverse during 
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the day, for example sea breezes. The curves to the right-hand side of the 

hump are smoother than to the left because each frequency component 

completes many cycles during the total data period, and each data point on 

the curve is the sum of many Fast Fourier Transform coefficients. Only one 

spectrum, that from Rutherford Appleton, extends far enough to show the 

classic spectral gap of the Van Der Hoven spectrum and at least part of the 

turbulent spectrum to the right of the gap. The RAL spectrum alone was 

measured down to a frequency of 5 seconds, see section 2.3.1.  

 

The following sections briefly describe the sources of other wind speed data 

and compare the remaining differences in their spectra. 

 

2.4.11.1 East Coast 

This spectrum is derived from offshore wind speed data, gathered for a 

proposed wind farm off the East coast of the UK. The exact location and 

average wind speed have been withheld for reasons of commercial 

confidentiality. 

 

This spectrum exhibits a relatively small total variance of wind speed in 

relation to the square of average wind speed, fig. 2.15. The diurnal variation 

(the spike at -1.4 on the x scale) is the smallest of all the spectra. This is to be 

expected, since the temperature of the surface of the sea remains very 

constant between day and night, and thermally driven convection will 

therefore change little with time of day. 
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Figure 2.15 Wind speed power spectrum from an east coast offshore site, 

normalised to 10m/s average wind speed 

 

2.4.11.2 Cottesmore 

Cottesmore is located in Rutland, in the English Midlands. Wind speed data 

was measured on an hourly-average basis for a period of 6 years.  

 

In contrast to the east coast site, this spectrum has the highest diurnal spike 

of variation, even higher than that of the RAL site, fig. 2.16. Cottesmore is an 

inland site, many miles from any coast, so thermally driven winds are 

expected to change a lot between day and night. However, the seasonal 

variation spike at Cottesmore is the lowest of all the spectra. The reason for 

this is not known.  
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Figure 2.16 Wind speed power spectrum from Cottesmore, normalised to 

10m/s average wind speed 

 
2.4.11.3 Butt Of Lewis 

This is the most northerly site studied in this thesis, and is on an island off the 

west coast of Scotland. Hourly average wind speed data was recorded for a 

period of 3 years. 

 

This maritime location gives the spectrum a relatively small diurnal spike of 

variation. The seasonal spike of variation is large, fig. 2.17. 
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Figure 2.17 Wind speed power spectrum from the Butt of Lewis, normalised to 

10m/s average wind speed 

 
2.4.11.4 Scilly Isles 

This data was measured at St. Mary�s on the Isles of Scilly, off the south-

western tip of the UK. Hourly average wind speed was measured for a period 

of 3 years.  

 

The resulting spectrum has a relatively small diurnal spike, as expected in a 

maritime location. The seasonal spike of variation is large, fig. 2.18. 
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Figure 2.18 Wind speed power spectrum from the Isles of Scilly, normalised to 

10m/s average wind speed 

 

2.4.11.5 Ronaldsway 

Ronaldsway is the location of an airport on the south-eastern side of the Isle 

of Man. Hourly average wind speeds were recorded there for a period of 3 

years. 

 

This site appears to have the largest total wind speed variance of all sites 

studied compared to its long-term average wind speed, fig. 2.19. It also has 

the largest seasonal spike of variation and a moderately large diurnal spike. It 

is a fairly maritime site, being in the middle of the Irish Sea, but the Isle of 

Man itself may be large enough and high enough to cause some local diurnal 

weather effects. 



85 

0

1

2

3

4

5

6

7

8

-5 -4 -3 -2 -1 0
Log (Base 10) of time scale, per hour

N
or

m
al

is
ed

 V
ar

ia
nc

e.

Ronaldsway

 
Figure 2.19 Wind speed power spectrum from Ronaldsway, normalised to 

10m/s average wind speed 

 

2.4.11.6 Turbulence Intensity 

Where calculated, the turbulent portion of the spectra varies in size, 

dependent on the surface roughness of the surrounding terrain and the height 

of the anemometer. According to theory, turbulence intensity, I varies with 

height and surface roughness according to the approximate formula: 

( )0

1
ln

uI
z zU

σ= =          (2.2)  

Where: σu=Standard deviation of axial wind speed 

 U =Axial wind speed 

 z=Height above ground of wind speed measurement 

 z0=Surface roughness length 

 

See (Hassan, Sykes 1990). So a higher anemometer or a smaller surface 

roughness produces a smaller turbulence intensity. 

 

The probabilistic method presented in this thesis assumes just one turbulence 

intensity and turbulent spectrum; that calculated from the RAL data measured 
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at 5 seconds interval. The effect of turbulence on wind power would be 

reduced if aggregated over several wind turbines, (Schlez 2000), especially if 

those turbines were located over an area wider than the integral length scale 

of the local wind turbulence, according to Taylor�s Frozen Wake Hypothesis, 

(Townsend 1979). 

 

2.4.11.7 Conclusions From the Study of Different Wind Speed Spectra 

Maritime sites, especially on the western side of the British Isles, appear to 

have the largest seasonal spikes. Landlocked sites, especially sites on the 

eastern side of Britain, appear to have larger diurnal spikes but smaller 

seasonal spikes. All the available British data has been normalised by 

average wind speed and averaged to produce one generic spectrum, see fig. 

2.20.  
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Figure 2.20 Average spectrum from many British sites, normalised to 10m/s 

average wind speed 

 

This average spectrum is clearly much smoother than any one spectrum over 

the central portion, with sharp seasonal and diurnal spikes. This spectrum has 

also been extended to very short timescales by grafting on the turbulent 

spectrum as measured at RAL, fig. 2.21. This extended spectrum is the one 
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used in all the probabilistic calculations shown in the results, chapter 3 unless 

otherwise stated. 
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Figure 2.21 Generic wind spectrum used in most probabilistic calculations. 

The variance has been normalised to an average wind speed of 10m/s 

 

Further work is desirable to investigate how wind speed power spectra 

change with location around the world, particularly in different climate types, 

for example equatorial, tropical, desert, central continental and polar climates. 

 

2.4.12 Synthetic Wind Speed Data 

A spectrum has also been created from synthetic wind speed data, using a 

random walk algorithm called �Pseudowind� (Infield et al. 1994), fig. 2.22. The 

algorithm is sophisticated, employing a short-term generator for a Gaussian 

distribution of turbulence within a longer-term generator for a Weibull 

distribution of hourly average wind speeds. The spectrum in fig. 2.22 is 

actually created by merging 3 spectra from 3 different time series of synthetic 

wind speed data. The first is 200 years of hourly averages, the second is 10 

years of minute averages and the third is 2 months of 1-second interval data. 

In this way, a smooth spectrum was constructed over all time scales.  
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Figure 2.22 Wind speed spectrum from synthetic wind speed data compared 

with that measured at RAL, normalised to 10m/s average wind speed. 

 

The spectrum created from synthetic wind speed data contains approximately 

the same total variance as the spectrum from measured data, but it is 

obviously a different shape. The synthetic wind spectrum has two clear peaks 

representing weather variation and turbulent variation, separated by a gap of 

zero amplitude. It has no peaks for diurnal or seasonal variations. In contrast, 

the spectrum from measured data has two broader, lower peaks of weather 

and turbulent variation that merge into one another. The measured data 

spectrum has significantly more variation at time scales of a month or more 

(at x values of about �3) and significant spikes of diurnal and seasonal 

variation.  

 

These differences provide justification for using real weather data, or spectral 

information from it, rather than synthetic wind data. Even a time step 

simulation using this synthetic data will not capture all the characteristics of 

real wind speed data. A much more sophisticated synthetic wind speed 

generator would be required to do this. 
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2.5 Spectrum Integration Used in the Probabilistic Method 

The probabilistic method applies filter functions to the spectra described in 

section 2.4, and then integrates the resulting spectra to calculate useful 

quantities. These are used to predict the behaviour of an energy store 

together with the necessary energy rating of that store. The filter functions 

have been used in several Matlab programs and have been presented in two 

conference papers: (Barton, Infield 2005a, Barton, Infield 2005b). 

 

The probabilistic method has been applied to variations in wind power and 

solar power. If in a given application the stochastic components of variation in 

electricity demand were considered important, then the method could also be 

applied to variations in demand. For simplicity, the method is described below 

for variations in wind speed and wind power. The equations are written for just 

one frequency component of the wind speed variation spectrum. The 

description refers to periods of 24 hours, but would work equally well for other 

time periods, from seconds or minutes up to weeks or months. 

 

2.5.1 The Time Period of the Store and Filter Functions 

The probabilistic method assumes that the energy store can effectively cope 

with power variations within a certain length of time, T, but cannot cope with 

longer-term variations. The program user specifies this time period, T, for 

example one day. The method uses a low-pass filter function to calculate the 

variance associated with the probability distribution of average wind speeds 

over the time period T, for example daily average wind speeds, section 2.5.2. 

It uses a second, high-pass filter function to calculate the variance for the 

distribution of wind speeds within each time period T, for example the 

distribution of wind speeds expected within any 24-hour period, section 2.5.3. 

Finally, the method uses a third, state-of-charge filter function to calculate the 

required store energy capacity for this length of time, section 2.5.5. The filter 

functions are illustrated in fig. 2.23. The low and high pass filter functions are 

to scale, but the state-of-charge filter function is shown with arbitrary 

magnitude. 
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Figure 2.23 Filter functions for a store period of 24 hours 

 

2.5.2 Distribution of Period-Average wind Speeds � The Low Pass Filter 

Function 

For a given spectral frequency component, iω with amplitude, iA  and phase 

angle iϕ , the instantaneous component of wind speed variation is: 

( )sini i i iU A tω φ= + .  Averaging this quantity over the store period, T gives the 

contribution from this frequency to the period-average wind speed: 

( )cos cosi
i i i i

i

AU T
T

φ ω φ
ω

 = − +        (2.3) 

If eq. 2.3 were integrated over all φi from 0 to 2π, the result would be the 

average value of each frequency component, which would sum to zero and be 

meaningless. Instead, eq. 2.3 is squared to give the contribution of each 

frequency component to the variance in period-average wind speed. When 

integrated over all iϕ  from 0 to 2π to give the average contribution, the 

resulting integral is: 

( )
2

1 1 cosi
i i

i

AV T
T

ω
ω
 

 = −   
 

        (2.4)  
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Eq. 2.4 is a low-pass filter, the same as that used by (Infield 1990) for storage 

modelling, but without the empirical scaling factor of 2.4. The filter for a 24-

hour store is shown fig. 2.23. Low frequency components (small ω) have a 

relatively large effect on the period average wind speed whereas high 

frequency components (large ω) have a small effect on the period average.  

Low frequency components remain nearly constant throughout a time period, 

T . High frequency components of wind variation complete many cycles during 

the time, T , and time spent above the mean is approximately balanced by 

time spent below. 

 

2.5.3 Distribution of Wind Speeds Within Each Period � The High Pass 
Filter function 

The variance of wind speed within a period,T is calculated in a similar way, 

but this time, the important quantity is the difference between the 

instantaneous value, iU  and the period-average, iU : 

( ) ( )sin cos cosi
i i i i i i i i

i

AU U A t T
T

ω φ φ ω φ
ω

 − = + − − +     (2.5) 

If eq. 2.5 is squared, integrated over time, T  and integrated again over all iϕ , 

then the component of variance within period T  results: 

( )
22

2 1 cos
2
i i

i i
i

A AV T
T

ω
ω
 

 = − −   
 

      (2.6) 

This integral, eq. 2.6 represents a high pass filter, previously derived by 

(Bossanyi, Anderson 1984) and also shown in fig. 2.23. It is actually the 

complement of the low pass filter function in the sense that summing the two 

time series resulting from application of the two filters to a given time series 

results in the original series. We can see that adding the within-period (high 

pass) variance, V2i , eq. 2.6 to the period-average (low pass) variance, V1i , 

eq. 2.5 gives Ai
2/2. This is the total variance in the wind speed contributed by 

one frequency component, and confirms that the equations are correct.  

 

Low frequencies (small ω) have a small effect on the high pass (within-period) 

filter function whereas high frequencies (large ω) have a relatively large effect, 

fig. 2.23.  
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2.5.4 Application of the Low Pass and High Pass Filters 

The low pass and high pass filters are applied to the wind speed variation 

spectrum to create two filtered spectra, one for variations of period (24-hour) 

average wind speed and another for variations within a period of 24 hours, 

see fig. 2.24. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-5 -4 -3 -2 -1 0 1 2
Log10 of frequency (per hour)

Sp
ec

tr
al

 D
en

si
ty

 n
S(

n)

Full
Within-Day
Daily Average

 
Figure 2.24 The 1994 to 1998 RAL Wind Variation Spectrum and Filtered 

Spectra. Average wind speed was 5.09 m/s. 

 

The high pass filtered spectrum is integrated to calculate a within-period 

variance. This is equal to 6.10 (m/s)2 using the RAL wind variation spectrum 

and a period of 24 hours, when scaled to a daily average wind speed of 8m/s. 

This corresponds to a standard deviation of 2.47 m/s. This information is used 

to construct a within-period wind speed probability density function (PDF), see 

fig. 2.25. The details of this calculation are given in sections 2.6.2 and 2.6.3. 

 

Similarly, the low pass filtered spectrum is integrated to calculate a period 

average variance. This is equal to 9.36 (m/s)2 for a long-term average wind 

speed of 8 m/s, the RAL wind variation spectrum, and a period of 24 hours, 
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corresponding to a standard deviation of 3.06 m/s. This information is used to 

construct a period-average wind speed PDF, see fig. 2.25. Again, the details 

of this calculation are given in sections 2.6.2 and 2.6.3. 
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Figure 2.25 Wind Speed Distribution Functions for a 24-Hour Time Period, for  

an average wind speeds of 8m/s 

 

2.5.5 Variance of State-Of-Charge of the Energy Store 

The energy store only smoothes out variations within a period, T . Any longer 

term variations resulting in net energy imbalances over period T  must be 

accommodated by other sources of generation, power cuts or power 

curtailment. The following method describes how the energy capacity of such 

a store is calculated using a third filter function. 

 

This third filter function calculates the variance in state-of-charge of a store 

associated with a particular frequency component, iω . The net power being 

added to or subtracted from a store at time τ after the start of the period, T  is 

equal to the difference between the instantaneous wind speed, iU  and the 

period average, iU , all multiplied by the effective gradient of the wind turbine 

power curve, K: 
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( ) ( ) ( )_ sin cos cosi
i i i i i i i

i

ANet Power K U U K A T
T

ω τ φ φ ω φ
ω

 
 = − = + − − +  

 
  

              (2.7) 

 

Integrating eq. 2.7 with respect to time, up to time t after the start of the period 

gives the net change in instantaneous state-of-charge, Ei of an energy store 

due to one frequency component: 

( ) ( )cos cos cos cosi
i i i i i i i

i

AK tE t T
T

φ ω φ φ ω φ
ω

  = − + − − +   
  (2.8) 

 

It can be seen that this net energy is zero at time t=0 and at time t=T, but 

potentially non-zero at other times. The above net energy Ei  is squared, 

integrated with respect to phase angle, φi, and integrated again with respect to 

time, t, to find the component of variance in state-of-charge during the time 

period, T. Without showing all the steps of the integration, the average 

variance in state-of-charge is: 
2

2

0 0

1 1
2

T

SOC i
t

V E dtd
T

π

φ

φ
π = =

= ∫ ∫  

 

( ) ( ) ( ) ( ) ( )
2 2 2

2 2
0

1 1 1 cos cos 1 cos cos cos
T

i
i i i i i i

it

A K t tT t T t t T dt
T T T

ω ω ω ω ω ω
ω=

 
   = + − − − − − + −    

 
∫

 

( ) ( )
2 2

2 2 2
5 1 2cos cos 1
6 6

i
i i

i i

A K T T
T

ω ω
ω ω

 
 = + + −  

 
    (2.9) 

 

Eq. 2.9 forms a third weighting function, fig. 2.23, to be applied to the wind 

variation spectrum, fig. 2.21. Integration of the resulting filtered spectrum 

gives the variance of net energy.  Low frequency components have little effect 

on the store, since their magnitude varies little during period, T . High 

frequency components also have little effect on the store, since they complete 

many cycles during period, T , so each cycle accumulates and discharges 

very little energy.  Only frequency components close to the period of the store 

have a significant effect on the state-of-charge.  
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The function tends to zero for very small values of ωiT, but also tends to zero 

for very large values of ωiT . It has its global maximum value when ωiT=4.58. 

This corresponds to a frequency component, ωi , that completes almost ¾ of a 

cycle during the store time period, T, fig. 2.23. 

 

2.5.6 Calculation of the Turbine Power Curve Gradient, K 

As seen above, the variance of state-of-charge requires a wind turbine power 

curve gradient, K. This is not the average over the whole range of the power 

curve, but only that around the period-average wind speed. The wind turbine 

power curve, fig. 2.4 can be combined with the within-period wind speed PDF, 

e.g. fig. 2.25 to create a within-period PDF of wind power, e.g. fig. 2.26. 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 100 200 300 400 500 600 700 800 900 1000

Wind Power kW

Pr
ob

ab
ili

ty
 D

en
si

ty

 
Figure 2.26 Probability Density Function of Wind Power from a 1MW turbine 

for a Daily Mean Wind Speed of 8m/s 

 

In practice, all that is required is the within-period standard deviation of wind 

power, Pσ  and the within-period standard deviation of wind speed, Uσ . The 

ratio of these is the effective gradient, P UK σ σ= .   (2.10) 
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Let the PDF of wind speed within one day be ( )f U , such that ( )
0

1f U dU
∞

=∫  

Mean wind speed within a day ( )
0

DAYU U f U dU
∞

= ×∫    (2.11) 

And variance of wind speed within a day ( ) 22 2

0
DAYU U f U dU Uσ

∞
= × −∫  

Then the wind turbine power output is ( )P U , as given by the turbine power 

curve. 

Mean power output over one day ( ) ( )
0

DAYP P U f U dU
∞

= ×∫   (2.12) 

And variance of wind speed within a day ( ) ( ) 222

0
DAYP P U f U dU Pσ

∞
 = × − ∫  

(2.13) 

Section 2.11.3 describes the wind conditions for which these PDFs of wind 

speed and wind power must be calculated. 

 

In the case of solar power, K is equal to the photovoltaic module power 

capacity under standard test conditions, modified by efficiency factors e.g. 

inverter efficiency and reflectance effects. The probabilistic model neglects all 

tilt angle effects, PV module temperature effects and variable inverter effects, 

section 2.7.15. 

 

For a given time period, the energy capacity of the store is calculated using 

the above equations and the method described in section 2.11. 
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2.6 The Wind Power Model 

There are four aspects of the wind power model used in the probabilistic 

method and described in the following sections: the seasonal and diurnal 

variations in wind speed, section 2.6.1; constructing curves of probability 

density functions (PDFs) of wind speed, 2.6.2 and 2.6.3; conversion of wind 

speeds into wind power using a turbine power curve, section 2.6.4 and the 

magnitude of short term variations in wind speed, section 2.6.5. 

 

2.6.1 Seasonal and Diurnal Variations in Wind speed 

In a Northern European wind climate, average wind speeds are higher in 

winter than in summer. The percentage difference in average wind speeds 

may be small, but the percentage difference in wind power is larger because 

the available wind power per perpendicular area (wind turbine swept area) is 

proportional to the cube of wind speed. Data from the measurement site at 

Rutherford Appleton Laboratory (RAL) shows that January wind speeds are 

about 60% higher than July wind speeds, fig. 2.27 and fig. 2.28. 
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Figure 2.27 Monthly Average Wind Speeds at RAL 

 

At RAL, the power available in the wind during the winter months (December, 

January and February) is twice that available during the summer months 
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(June, July and August).  The wind speed profile lags the seasonal variation in 

solar irradiance, so that the highest wind speeds occur in January and 

February but the lowest wind speeds occur in July and August.  

 

Wind speeds are also higher in the daytime than at night, fig. 2.27 and fig. 

2.28. The percentage difference is larger in the spring and summer than in the 

autumn and winter. 
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Figure 2.28 Average Daily Wind Speed Profiles for Each Month at RAL 

 

Again, the wind speed profile lags the solar irradiance profile. The maximum 

average wind speeds occur in the early afternoon and the minimum wind 

speeds usually occur in the early hours of the morning. 

 

These features make wind powered electricity generation particularly suitable 

for Northern Europe, where winter lighting and heating loads are higher than 

in summer, and where daytime and evening electricity loads are higher than 

night time loads. The weather patterns at RAL are likely to be quite typical of 

sites in Northern Europe. 
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The seasonal and diurnal dependence of wind power, together with the 

seasonal and diurnal dependence of solar power and electrical load, made it 

essential for the probabilistic model to include seasonal and diurnal variations 

despite the extra complexity involved, see section 2.10. The full probabilistic 

method uses different average wind speeds for day and night and for each 

month of the year, making 2 x 12 = 24 different average wind speeds. The 

model could have split the year into just 4 seasons, but such a coarse model 

may not adequately capture the subtleties of variation, for example the way 

the wind speed variation lags the solar irradiance seasonally, section 2.4.9. 

The difference between day and night was judged to be small enough that 

one average wind speed for daylight hours and another for night time was 

sufficient. Future work to re-evaluate these decisions may be useful. 

 

2.6.2 Wind Speed Distributions Measured at the Rutherford Appleton 
Laboratory 

 

2.6.2.1 The Long-Term Distribution 

The wind speed data measured at Rutherford Appleton Laboratory (RAL) is 

recorded as one-minute averages, so the RAL data covers a greater range of 

the wind variation spectrum than most wind speed data and includes some of 

the turbulent variation, fig. 2.6. The standard deviation of the RAL data should 

therefore be slightly larger than for ten-minute or one-hour averages. Two 

RAL wind speed distributions, fig. 2.29 and fig. 2.30 were each measured 

over periods of 4 years. The shapes of the distributions are quite typical of 

long-term wind speed distributions in the UK. As stated in section 2.2.1, the 

1994 to 1998 data has been used to create one power spectrum of wind 

speed variations and for one time step validation while the 1999 to 2002 data 

has been used as one of the inputs to a generic wind speed spectrum and in 

most of the time-step validations. 
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Figure 2.29 PDF of One-Minute Wind Speed Data Measured at Rutherford 

Appleton Laboratory between 1994 and 1998 
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Figure 2.30 PDF of One-Minute Wind Speed Data Measured at Rutherford 

Appleton Laboratory between 1999 and 2002 

 

Weibull distributions have been added to compare with the measured PDFs. 

The Weibull distribution with a shape factor of 2.04 and a scale factor of 5.75 
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has the same mean and standard deviation as the 1994 to 1998 data, fig. 

2.29, while the Weibull distribution with a shape factor of 2.03 and a scale 

factor of 5.90 has the same mean and standard deviation as the 1999 to 2002 

data, fig. 2.30. The Weibull shape and scale factors were determined by trial 

and error to match the mean and standard deviation, while the values 

calculated using the approximations of section 2.6.3.1 below produced very 

similar results. The Weibull distributions obviously do not quite fit the 

measured PDFs exactly. The measured PDFs have higher kurtosis. They 

have sharper peaks and longer, fatter tails at higher wind speeds than the 

fitted Weibull curves. 

 

The relative merits of various statistical distributions, including Weibull 

distributions, used to model wind speed are discussed in section 2.6.3 and an 

alternative possible statistical distribution is discussed in appendix C. 

 

2.6.2.2 Period-Average Wind Speeds 

If the sample-averaging period gets longer, the calculated long-term mean 

wind speed remains unchanged but the standard deviation of the distribution 

is reduced because the variations represent a smaller range of the wind 

variation spectrum, fig. 2.21. The following plots, figs. 2.31 to 2.35 show how 

the wind speed distributions change with sampling period. Plots are based on 

the 1994 to 1998 data set. 
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Figure 2.31 PDF of 10-Minute Average Winds Speeds Measured at RAL 
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Figure 2.32 PDF of Hourly Average Winds Speeds Measured at RAL 
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Figure 2.33 PDF of Daily Average Winds Speeds Measured at RAL 
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Figure 2.34 PDF of weekly Average Winds Speeds Measured at RAL 

 



104 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12

Six Month Average Wind Speed m/s

Pr
ob

ab
ili

ty
 D

en
si

ty
.

 
Figure 2.35 PDF of Six-Monthly Average Winds Speeds Measured at RAL 

 

As the averaging period gets longer, the distribution gets narrower and 

(arguably) more symmetrical like a normal distribution, although the reduced 

sample size makes the distributions more noisy and rough, figs. 2.33 to 2.35. 

 

2.6.2.3 Variations Within Each Period 

As the averaging period gets longer (with a fixed one minute sampling rate), 

the variation in wind speed within each period gets larger and the distributions 

move from being approximately Gaussian towards a Weibull shape, as seen 

in the following plots, figs. 2.36 to 2.40. Let us consider averaging periods 

where the period-average wind speed was 2.5m/s, 5m/s or 7.5m/s: 
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Figure 2.36 PDFs of wind speed within ten-minute periods measured at RAL 
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Figure 2.37 PDFs of wind speed within one-hour periods measured at RAL 
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Figure 2.38 PDFs of wind speed within one-day periods measured at RAL 
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Figure 2.39 PDFs of wind speed within one-week periods measured at RAL 
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Figure 2.40 PDFs of wind speed within six-month periods measured at RAL 

 

The plots show that the distributions of wind speed within a time period get 

wider as that time period increases. Therefore the standard deviation of wind 

speed within a period increases. Short time periods, e.g. one minute have 

narrow, almost symmetrical distributions, fig. 2.36. Periods of one hour, fig. 

2.37, one day, fig. 2.38, and one week, fig. 2.39 have progressively wider 

PDFs. A period of six months or more has a PDF that is very similar to the 

long-term wind speed PDF, fig. 2.40. Note that only one curve is shown for 

wind speeds within six months, one for which the average wind speed was 

5m/s. This is because all the six-month averages are tightly grouped around 

5m/s; none were as low as 2.5m/s or as high as 7.5m/s. 

 

As the time period increases, the shapes of the PDFs also change. As the 

time period increases, the shapes change from symmetrical bell-shaped 

distributions, fig. 2.36 to skewed distributions with a long tail of higher wind 

speeds, fig. 2.40. The next section, 2.6.3 discusses which statistical 

distributions fit the data best. 

 

The above figs. 2.36 to 2.39 also show to a reasonable approximation that the 

standard deviation of wind speed within each period is proportional to the 

period-average wind speed. This is an assumption made in the probabilistic 
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method, but the relationship between period-average wind speed and within-

period standard deviation will be discussed further in section 2.6.5. 

 

2.6.3 Statistical Distributions for Modelling Wind Speed Probability 
Density Functions 

Two primary inputs to the probabilistic method are a wind speed power 

spectrum, see section 2.4.11.7, fig. 2.21 and a solar irradiance power 

spectrum, see section 2.4.6, fig. 2.10 and fig. 2.11. Section 2.5 shows how 

filter functions are applied to these power spectra. The filtered spectra are 

then integrated to give variances of wind speed and solar irradiance, both of 

the distributions within a store cycle period, T , and the distribution of the 

period-average values. 

 

The original wind speed distributions have been discarded as far as the 

probabilistic method is concerned. But in order to model probability 

distributions of wind power, approximations to those original distributions must 

be obtained. The probabilistic method therefore constructs wind speed 

distributions, using assumed generic statistical distribution functions, from 

knowledge of only the mean wind speed and the standard deviation (the 

square root of variance). This is done for both wind speed variations within a 

store operating period, and period-average wind speeds. 

 

The relative merits of the different statistical distributions are discussed below, 

concentrating on those typically used for wind speed modelling. 

 

2.6.3.1 Weibull Distributions 

The most widely used distribution used to fit long-term distributions of hourly 

or 10-minute averaged wind speed data is the Weibull distribution, usually 

with a shape factor between 1.6 and 2.4, see (Celik 2002b, Celik, Marshall 

1998, Chadee, Sharma 2001, Garcia et al. 1998, Infield et al. 1994, Stevens, 

Smulders 1979, Tuller, Brett 1984, Tuller, Brett 1985, Wan-Kai Pang, Forster 

& Troutt 2001).  
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(Garcia et al. 1998) found that Weibull distributions fitted hourly-average wind 

speed data better than log-normal distributions did. (Tuller, Brett 1985) found 

that Weibull distributions fitted wind speed data better than Rayleigh 

distributions. This is not surprising since a Rayleigh distribution is a special 

case of a Weibull distribution with the shape factor restricted to 2.0. 

 

A Weibull distribution can be constructed to fit a wind speed distribution, 

knowing its mean, U  and standard deviation, σ (Hassan, Sykes 1990). The 

Weibull shape factor, k is given approximately by: 
1.086

k
U
σ −
 =  
 

         (2.14) 

 

 And the Weibull scale factor, C  is given by: 

( )1 1
UC
k

=
Γ +

        (2.15) 

Where Γ  is the gamma function. 

Then the Weibull PDF is ( )
1

exp
k kk U UP U

C C C

−      = −     
      

  (2.16) 

 

When the standard deviation of a wind speed distribution is large compared to 

the mean ( Uσ  greater than about 0.36) then the corresponding Weibull 

distribution has a shape factor of less than 3. Such a Weibull distribution has 

a strong positive skewness. It has a long tail to the right, and is usually a good 

fit for a long-term distribution of wind speeds, e.g. fig. 2.30. Weibull 

distributions fit well to long-term PDFs of wind speed averaged over any 

relatively short period, e.g. one minute, one hour, fig. 2.41, or even one day, 

fig. 2.42. 
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Figure 2.41 PDF of Hourly Average Winds Speeds Measured at RAL 

Compared with a Weibull Distribution 
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Figure 2.42 PDF of Daily Average Winds Speeds Measured at RAL 

Compared with a Weibull Distribution 
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Weibull distributions also fit well to wind speed distributions within a period of 

time, provided that period of time is long enough, for example six months, fig. 

2.43, down to one week, fig. 2.44. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10 12 14 16

Wind Speed m/s

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n. Six Months, 5m/s

Weibull C=5.59, k=2.02

 
Figure 2.43 PDF of Winds Speeds at RAL Within Six Months Compared with 

a Weibull Distribution 
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Figure 2.44 PDF of Winds Speeds at RAL Within a Week Compared with 

Weibull Distributions of the same mean and standard deviation 

 

2.6.3.2 Normal Distributions 

When fitting a distribution to wind speed turbulence data (the variations within 

each 10-minute time period), fig. 2.36, a normal distribution is usually used, 

(Hassan, Sykes 1990). In the probabilistic method described here, normal 

distributions are used to model many other wind speed variations too. 

 

Weibull distributions do not tend to fit wind speed distributions when the 

standard deviation is small compared to the mean, producing a Weibull shape 

factor greater than 3. This occurs when considering a smaller range of the 

wind speed power spectrum, for example the long-term distribution of weekly 

mean or 6-monthly mean wind speeds, figs. 2.34 and 2.35 or the distribution 

of wind speeds within 10 minutes, one hour or a day, figs. 2.36 to 2.38. 

Figures 2.45 and 2.46 compare some of these example wind speed PDFs 

with Weibull and normal distributions that have the same values of mean and 

standard deviation. 
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Figure 2.45 Weekly Mean Winds Speeds Measured at RAL Compared with 

Weibull and Normal Distributions 
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Figure 2.46 PDFs of Wind Speed Within One Hour at RAL Compared with 

Weibull and Normal Distributions 
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Wind speed distributions tend to have positive or neutral skewness, even 

when the standard deviation is small. However, Weibull distributions have 

negative skewness when the shape factor is greater than about 3.6. The 

skewness becomes small when the shape factor is more than 3. Fig. 2.45 and 

fig. 2.46 above show that normal distributions tend to fit wind speed 

distributions better than Weibull distributions when the standard deviation is 

small compared to the mean, especially when considering the distribution of 

wind speeds within a short period of time, fig. 2.46. 

 

In the probabilistic method, a cross-over point was chosen at a Weibull shape 

factor of 3 ( Uσ  of 0.3636). At this point, Weibull and normal distributions 

with the same mean and standard deviation have very similar shapes, fig 

2.47. 
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Figure 2.47 Normal, Log-Normal and Weibull Distributions with identical 

means and standard deviations 

 

In the probabilistic methods presented in this thesis, Weibull distributions are 

only used when their shape factor is less than 3. Otherwise a normal, 

Gaussian distribution is used. 
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2.6.3.3 Log-Normal Distributions 

Some long-term wind speed distributions, especially ones with a large positive 

skewness, are better fitted by a log-normal distribution, (Luna, Church 1974, 

Shaw, McCartney 1985). Log-normal distributions always have a positive 

skewness, even when the ratio of standard deviation to mean is small. The 

skewness of a log-normal distribution is always higher than that of a Weibull 

distribution, except for extreme cases where the standard deviation is greater 

than the mean. 

 

The wind speed distributions measured at RAL all have a positive skewness, 

but generally appear to be closer to a Weibull distribution than a Log-normal. 

Log-normal distributions were therefore not used in the probabilistic method. 

 

 

2.6.4 The Wind Turbine Power Curve 

The power produced by a wind turbine or wind farm is not proportional to the 

wind speed, or even the cube of wind speed, but is governed by a turbine 

power curve. All wind turbines have a cut-in wind speed below which they do 

not generate any electricity, because the power from the wind is insufficient to 

overcome mechanical and electrical losses in the turbine. Wind turbines also 

have a rated wind speed, at which the generator delivers its rated or design 

electrical power. Above the rated wind speed, a turbine may continue to 

generate the rated electrical power, or the power output may vary slightly with 

wind speed, depending on whether the turbine is pitch regulated, stall 

regulated or yaw regulated, and on other design characteristics. Between cut-

in and rated wind speed, the power curve is often close to a cubic curve, 

because the power available per swept area is proportional to the cube of 

wind speed. 

 

Most wind turbines also have a cut-out or furling wind speed, above which the 

turbine stops rotating and stops generating electricity, in order to protect the 

turbine from damage caused by excessively high winds. 
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Despite the differences in design, the power curves for different large wind 

turbines of a given rated power look remarkably similar, fig. 2.48. The turbine 

power curve used in the probabilistic method is a composite power curve from 

three commercial wind turbines, see table 2.4 The data was taken from a 

catalogue of wind turbines published by the German wind energy agency in 

2000, (Bundesverband WindEnergie e.V. 2000). 

 

Table 2.4 Technical Data from 3 Commercial Wind Turbines, Each of 1MW 

Rated Power 

Manufacturer: NEG Micon BWU Enercon 

Model NM 1000-250/60 1000/57 E-58 

Rotor diameter, 

m 

60 57 58 

Rotation speed, 

RPM 

18rpm above 

250kW and 

12rpm below 

250kW, twin 

speed 

22.9rpm above 

250kW and 

15.3rpm below 

250kW, twin 

speed 

10 to 24rpm, 

variable speed 

(pitch controlled) 

Rotor mass, kg 23,000 18,000 21,000 

Cut-in wind 

speed, m/s 

3 3 2.5 

Rated wind 

speed, m/s 

13 13 13 

Furling wind 

speed, m/s 

20 25 None 

Survival wind 

speed, m/s  

54 55.8 59.5 

Wind speed, m/s Power Curve Values, kW 

2 0 0 0 

3 1.7 0 2.6 

4 36.7 7.15 25.55 

5 84.0 73.38 75.63 

6 142.1 125.4 142.69 
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7 263.0 199.2 228.82 

8 399.2 315.8 360.0 

9 540.7 457.9 511.76 

10 662.6 625.1 645.0 

11 761.3 795.4 852.46 

12 873.7 948.0 913.54 

13 954.4 1004.0 989.72 

14 1020.4 1026.0 980.33 

15 1037.8 1020.0 1011.99 

 

These power curves have been plotted in fig. 2.48 and a curve fitted through 

all the data.  
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Figure 2.48 Wind turbine power curves from 1MW machines and the 

probabilistic method�s generic turbine curve fitted through them 

 

The fitted curve is a fifth-order polynomial between cut-in and rated wind 

speed: 

 

0Power =   when 3.0002U <  
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5 4 3 20.0015 0.1967 4.0058 19.268 43.607 50Power U U U U U= − + − + −   

when 3.0002 12.9944U≤ ≤  

 

1000Power =   when 12.9944 25.0U< ≤  

 

0Power =   when 25.0U >      (2.17) 

 

Although this data is now at least four years old, the similarity of these three 

turbine curves and the maturity of the technology suggest that turbine power 

curves will not change radically from this generic turbine power curve. 

 

2.6.5 Magnitude of Short-Term Variations 

The probabilistic method always assumes that the standard deviation of wind 

speeds within any given time period, e.g. one hour, one day, one week are 

proportional to the hourly, daily, or weekly average wind speed respectively. 

This is a standard assumption for turbulent variations in wind speed, (Hassan, 

Sykes 1990); turbulent variations are proportional to the 10-minute average 

wind speed and the constant of proportionality is the turbulence intensity. 

However, this assumption is not obvious for longer time scales.  

 

When real wind speed data is analysed, the standard deviation of wind speed 

within a period are not necessarily proportional to the average wind speed 

over that period, especially when the averaging period is one day or more in 

length, fig. 2.49. There is a considerable random scatter in the size of the 

standard deviation. 
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Figure 2.49 Daily average wind speeds plotted against standard deviation of 

hourly wind speeds within those days, at Rutherford Appleton Laboratory, 

1994 to 1998 

 

If the data is binned according to the daily average wind speed, then a non-

proportional trend is visible. If a linear trend line is fitted to the original data (or 

the binned data) this also has a non-zero y-intercept, although the line 

provides a good fit to the binned averages over a wide range of daily 

averages from 2m/s to 11.5m/s. When the daily average wind speed is zero, 

the trend line suggests that the standard deviation is apparently not zero. The 

linear trend line equation is also quoted on fig. 2.49, together with its 

coefficient of correlation against the raw (un-binned) data.  

 

Calculations were therefore done to discover whether the predictions of 

energy store performance were improved by modification to the standard 

deviation of wind speed within a period. For example, the prediction of the 

time that the store was empty or full might be improved. However, no 

improvement was seen.  
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Further investigation shows that the correlation between standard deviation 

within a period and the period-average value depends on which parameter is 

assumed to be the independent variable and on which is assumed to be the 

dependent variable. If the data is binned according to intervals of standard 

deviation, and the period average is plotted as the dependent variable, then 

the correlation is reversed, fig. 2.50. According to this new trend line, if the 

standard deviation were zero, then the period average wind speed would be 

positive and non-zero. 
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Figure 2.50 Standard deviation of hourly wind speeds within a day plotted 

against the daily average wind speed of those days, at Rutherford Appleton 

Laboratory, 1994 to 1998 

 

Again, the binned data is plotted and the new trend line together with its 

equation and coefficient of correlation are quoted on fig. 2.50. 

 

Similar results were obtained for other sampling periods and averaging 

periods, for example 10-minutes within a week, or days within a month. The 

above study shows that although there is a lot of scatter in the standard 

deviations of variation within a period, no better model has emerged than the 

original, proportional model. The non-zero y-intercepts shown in figures 2.49 
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and 2.50 appear to be merely products of the statistical analysis method and 

do not convey any extra, useful insights into properties of the original data. 

The probabilistic method therefore uses the assumption of proportionality for 

standard deviations of wind speed within a given period. 
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2.7 Solar Power Model 

 

2.7.1 Preparation of Cleaned Solar Irradiance Data 

Total solar irradiance on the horizontal plane was measured at Rutherford 

Appleton Laboratory (RAL) from January 1999 to December 2002 inclusive. 

The measurements were taken as 1-minute averages and are concurrent with 

the second data set of four years of wind speed measurements at RAL, see 

section 2.2.1.2. The data record contained some gaps and bad data that were 

filled with data copied from elsewhere in the same month, or occasionally 

from adjacent months or from the same month in another year. The 

replacement data was always exactly the same length as the gap, so that the 

total number of data records in each month was made correct. The 

replacement data was also taken from almost the same times of day, so that 

the diurnal pattern would be preserved, and the replacement data was a �best 

guess� of the missing data. Many months contained just 3 gaps of less than 

20 minutes each, created when the recording tapes were changed. Some 

other months contained many more gaps of just a few minutes each, and a 

few months contained gaps of several hours or days each. 

 

2.7.2 The Solar Power Spectrum 

This solar spectrum, fig. 2.10 and fig. 2.11, contains information about the 

time-varying nature of solar radiation, and is not to be confused with the solar 

electromagnetic spectrum from infrared radiation to ultraviolet rays. It is a time 

variation spectrum, analogous to the wind power spectrum, fig. 2.21 or the 

Van Der Hoven spectrum, fig. 1.5 (Hassan, Sykes 1990, Spera 1994, Van Der 

Hoven, I. 1957). 

 

The processed solar radiation data contains exactly 2,103,840 records. That 

is the number of minutes in 4 years, including one leap year (year 2000). The 

cleaned data was first input to a Matlab program that performed a fast Fourier 

transform and created a scaled spectrum of solar irradiance variation, i.e. a 

�power� spectrum. The data spans all time scales from 4 years down to 2 

minutes, the Nyquist frequency. This produced a smooth spectrum up to time 

scales of about 1 week, fig. 2.11 and a rough spectrum at longer time scales.  
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The spectrum is dominated by specific frequencies, fig. 2.10, due to diurnal 

and seasonal variations in solar irradiance, but stochastic (broadband) 

variations are also present and significant, fig. 2.11 and see section 2.4.6. The 

ratio of total standard deviation to mean is larger than for wind speed or 

electrical load variations. 

 

The fastest variations are related to passing clouds and are located at the 

right-hand end of the spectrum, fig. 2.11, of the order of 10-1 hours. Synoptic 

variations, due to passing weather systems are in the centre of the spectrum, 

fig. 2.11, of the order of 102 hours. Interseasonal and inter-annual variations 

are at the far left-hand end of the spectrum, fig. 2.10, of the order of 105 

hours. Not surprisingly, the largest spike is at a frequency of 24 hours, fig. 

2.10. Harmonics of 24 hours: 12 hours, 8hours, 6 hours, 4.8 hours, and 4 

hours are also clearly visible, fig. 2.11. At the left-hand end of the spectrum, 

fig. 2.10 there is a spike at 1 year representing the seasonal variation in solar 

radiation. The seasonal variation is so close to being a pure sine wave that 

harmonics of annual variation are not visible as separate spikes. 

 

2.7.3 Solar Power Probability Density Function 

If the instantaneous solar irradiance is simply put into bins and plotted, then 

the resulting probability distribution function is not very useful for modelling. 

The graph is dominated by times of zero radiation (at night) and periods of 

very low radiation, with a long, lumpy tail at higher values of irradiance, fig. 

2.1. This causes the standard deviation of solar irradiance to be larger than its 

mean, see section 2.4. The lower values of radiation are sometimes due to 

the sun being low in the sky and at other times due to cloudy conditions, but 

this graph does not tell us the relative importance of these two effects. 

 

2.7.4 Clearness Index 

A more useful approach is to plot clearness index. The position of the sun in 

the sky is a precise function at each moment in time of sun-earth geometry 

and orbits. Published equations can give the elevation and azimuthal angle of 

the sun, (Duffie, Beckman 1974). The elevation of the sun gives the 
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theoretical solar radiation on a horizontal surface, fig. 2.51, given a standard 

extra-terrestrial solar radiation of 1367W/m2 and neglecting atmospheric 

absorption.  
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Figure 2.51 Extra-terrestrial global horizontal solar radiation as a function of 

time of day, averaged for each month 

 

The measured global horizontal radiation has been plotted in a similar way, 

fig. 2.52. The data was first binned by month of the year, then by minute of the 

day. Each data point represents an average of 4 years worth of data for that 

minute of the day, and that month of the year, typically 30 days x 4 years = 

120 measurements per point. 
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Figure 2.52 Measured global horizontal radiation as a function of time of day 

at Rutherford Appleton Laboratory, 1999 to 2002 

 

2.7.4.1 The Equation of Time 

Both the extra-terrestrial and the actual irradiance graphs clearly show the 

seasonal variations in solar elevation, sunrise and sunset times. They also 

show the effect of the �equation of time�, that is the way solar noon moves 

earlier or later depending on the time of year. January, February, March, July 

and August solar irradiances are shifted later in the day, but May, September, 

October, November and December solar irradiances are shifted earlier in the 

day (Duffie, Beckman 1974), fig. 2.53 
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Figure 2.53 The solar equation of time 

 

2.7.4.2 Typical Days in Each Month 

As described below, the probabilistic method calculates the average solar 

radiation for each month of the year. The method performs this calculation by 

considering the solar elevation on 12 typical days, (Duffie, Beckman 1974) 

that have extra-terrestrial solar radiations closest to the monthly averages. 

These typical days are 17th January, 16th February, 16th March, 15th April, 15th 

May, 11th June, 17th July, 16th August, 15th September, 15th October, 14th 

November and 10th December. 

 

2.7.4.3 Measured Clearness Index 

By comparing the actual global horizontal radiation with the extra-terrestrial 

global horizontal radiation at the same instant of time, a time series of 

clearness index was calculated. This is only meaningful when the sun�s 

elevation is more than about 5.7°. This elevation angle corresponds to an air 

mass of 10; i.e. sine of the elevation angle is 0.1. When the elevation angle is 

less than 5.7°, the beam component of radiation is very low and the horizontal 

radiation is dominated by diffuse radiation, some of it coming from sunlight 

bouncing around the atmosphere from beyond the horizon. At dawn and dusk 
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for example, the calculated clearness index becomes infinite. Therefore, the 

clearness index has only been used for correlations and empirical formulas 

where the sun�s elevation was greater than 5.7°. 

 

The use of clearness index does not completely remove the effect of solar 

elevation, fig. 2.54. Clearness index displays a clear positive trend with solar 

elevation. When the elevation angle is less than 5.7°, the trend is lost in 

random scatter.  
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Figure 2.54 Overall clearness index vs. solar elevation 

 

Some seasonal and diurnal dependence is also noticeable. For example, 

March days tend to be darker than average, especially in the afternoon. In 

contrast, October days tend to be lighter than average, especially in the 

morning. The causes of these anomalies are not known. However, the graph 

clearly shows a broad trend of increasing clearness index with solar elevation. 

 

The clearness index calculated above could have been put through a fast 

Fourier transform to produce an alternative solar spectrum, reducing the 

dominance of the daily and seasonal spikes. However, this approach is 

problematic, since it is not clear how to treat the clearness index at night. If 

night-time and low sun elevation were simply chopped out of the time series, 
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then winter days would be shorter, leading to speeded-up weather effects, 

whereas summer days would be longer leading to slowed weather effects. If 

night time clearness index were treated as constant, then winter variations 

would be smaller than summer variations. In any case, clearness index still 

has a strong correlation with solar elevation, fig. 2.54. In clear skies, low 

elevation means greater air mass and more attenuated beam radiation. In 

cloudy skies, low elevation means even greater attenuation of the diffuse 

radiation. In partially cloudy skies, low elevation may also mean a greater 

probability that a cloud will stop the beam radiation. The fast Fourier 

transform, fig. 2.10, was therefore performed on absolute solar radiation. 

 

2.7.4.4 Models of Clearness Index in Clear and Cloudy Skies 

An overall probability distribution function of clearness index, binned by 

clearness index is shown in fig. 2.55. All data where the sine of elevation 

angle is less than 0.1 (solar elevation less than 5.7°) has been removed.  
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 Figure 2.55 Probability distribution of overall clearness index measured at 

RAL from 1999 to 2002 

 

This graph shows a double peak of clearness index: A broad peak centred at 

about 0.22, and a smaller, sharper peak centred at about 0.72. It is 

reasonable to assume that these peaks correspond to cloudy conditions and 
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sunny conditions respectively. The graph means that at any instant of time, 

the probability of cloudy conditions (no beam radiation at falling on the 

ground) is high, and the probability of sunny conditions (beam radiation at 

ground level) is a little lower. The probability of semi-sunny conditions, in the 

middle of the graph, is low, and the probability of very high clearness indices, 

at the right hand end of the graph is even lower. Common experience 

confirms that the sun tends to be either �in� or �out� for long periods at a time, 

and changes from one state to the other relatively quickly. 

 

As seen above in fig. 2.54, the clearness index also depends on the sun�s 

elevation. In fig. 2.56, the data has therefore been binned into solar elevation, 

and then into clearness index. Each line in fig. 2.56 represents a different 

range of solar elevations, calculated as sine of elevation angle, from 0 to 0.9 

in steps of 0.1. The probabilities have been scaled by the solar elevation, 

mainly to separate the lines and make them clearly visible, but also to weight 

them according to their relative importance in total annual solar energy. For 

each value of solar elevation, the clearness index values are binned into 

intervals of 0.02 as before. 
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Figure 2.56 Probability density functions of clearness index for each solar 

elevation, measured at RAL from 1999 to 2002 

 

Fig. 2.56 shows that the highest solar elevation is 0.9. Actually, the latitude of 

Rutherford Appleton Laboratory is 51.57° north. So on 21st June, at solar 

midday, the sun�s elevation angle is (90° - 51.57°) + 23.45° = 61.88°. The sine 

of elevation is then 0.882, which gets rounded up to 0.90. the �0.9� line 

therefore represents a relatively small amount of data measured when the 

solar elevation was close to its annual maximum value. 

 

Because the heights of the lines have been scaled, the relative heights of the 

curves are not important, but the positions of the peaks indicate the 

attenuation of the atmosphere in cloudy and clear conditions. These, and the 

mean values of clearness index for each value of elevation, have been used 

in the solar power models of the probabilistic method. 

 

The position of the cloudy peak starts at about 0.29 for a solar elevation of 0.8 

or 0.9, dropping to 0.17 for a solar elevation of 0.2. The positions are 

approximate, since there is some scatter in the graphs of fig. 2.56, and the 

cloudy peak is very rounded. The position of the sunny peak starts at about 
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0.74 for a solar elevation of 0.8 or 0.9, dropping to about 0.62 for a solar 

elevation of 0.2. Again, the positions are approximate, but better defined than 

the cloudy peaks. 

 

The graphs seem to show that at high solar elevations, the probability of 

beam radiation is almost as high as the probability of cloud cover; the sunny 

peak is as high as the cloudy peak. Then with reducing solar elevation, the 

sunny peak declines in height and disappears entirely. This would suggest 

that the probability of beam radiation declines with reducing solar elevation.  

 

However, the graphs may also be interpreted as showing that the cloudy and 

sunny peaks both decline in height, get broader and merge together with 

reducing solar elevation. As will be seen later, the probabilistic method 

assumes no change in probability of sunny conditions with changing solar 

elevation. A �sunny fraction� parameter is calculated that appears to be almost 

independent of solar elevation, see section 2.7.5.  

 

The positions of the peaks are plotted on a logarithmic scale in fig. 2.57. For 

this graph, the solar elevation sine was binned into smaller intervals of 0.05 

for greater resolution, but the graph is plotted in terms of air mass. Fig. 2.57 

anticipates that the solar irradiance is attenuated by the thickness of 

atmosphere through which it passes, i.e. the air mass: 

 

( )
1 1,

sin
AirMass M

Elevation ElevationAngle
= =     (2.18) 

The equations quoted on the graph are those of the trend lines fitted through 

the sunny peak data, the cloudy peak data and the overall average data. Each 

has its own correlation coefficient, R2 showing the suitability of a linear fit. 
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Figure 2.57 Clearness index peak positions as a function of air mass 

 

The model assumes that the solar power is attenuated according to the 

following law: 

 

( ), expClearnessIndex CI K Mα= −       (2.19) 

Where: K=Scale factor 

  α=Attenuation factor 

 

Rearranging: ( ) ( )ln lnCI K Mα= −       (2.20) 

 

Three lines are plotted onto fig. 2.57: one for sunny conditions, another for 

cloudy conditions, and a third for the average of all conditions at each solar 

elevation (air mass). A best straight line has been fitted to each set of data. 

The gradient of each straight line is -α and the y-intercept is ln(K). 

 

For beam radiation the gradient is �0.0455, so the beam radiation attenuation 

factor, αS is 0.0455. The beam radiation y-intercept is =�0.2508. The beam 

radiation scale factor, KS is therefore 0.7782. So the probabilistic model for 

sunny conditions is: 
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( ), 0.7782exp 0.0455ClearnessIndex CI M= −      (2.21) 

 

The cloudy gradient is �0.1504 so the cloudy attenuation factor, αC is 0.1504. 

The cloudy y-intercept is -1.0428. The graph would therefore give a cloudy 

scale factor, KC of 0.3525, but the cloudy scale factor was reduced to 

KC=0.2729 in order to preserve the correct total variance in solar irradiance 

and so make the probabilistic model work, as will be seen later, in section 

2.7.5. For a given solar elevation, the whole PDF of solar clearness index is 

replaced by just two discrete values, fig. 2.59. So the probabilistic model for 

cloudy conditions is: 

( ), 0.2729exp 0.1504ClearnessIndex CI M= −     (2.22) 

 

One can see that the cloudy-sky clearness index is much more dependent on 

air mass than the sunny-sky clearness index; the slope of the cloudy 

clearness index is steeper. This is simply because clouds attenuate solar 

radiation faster than a clear atmosphere. 

 

2.7.5 The Probabilistic Model of Solar Radiation 

The probabilistic model used in this thesis uses a �sunny fraction� parameter 

to describe the probability of beam radiation or cloudy conditions at any 

instant of time. The cloud cover is assumed to be completely bivalent, 

transmitting either beam radiation plus some diffuse radiation according to eq. 

2.21, or cloudy, diffuse radiation only with no beam radiation, according to eq. 

2.22. The probability of the presence of beam radiation is the sunny fraction, f 

and the probability of no beam radiation is 1-f.  

 

Fig. 2.56 suggests that the sunny fraction might reduce with increasing air 

mass. However, when the average global solar radiation is plotted on the 

same graph as the sunny and cloudy peak positions, fig. 2.57, the average 

line is almost half way between the sunny and cloudy lines, with 

approximately half the gradient, for all values of air mass. The probabilistic 

method therefore makes a simplifying assumption that the sunny fraction is 

independent of time of day (solar elevation). Instead, the sunny fraction is 
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assumed to vary only with month of the year, i=1 to 12 and with the daily 

average solar radiation, j=1 to N values of daily average, with j=1 representing 

completely cloudy conditions to j=N representing completely clear skies all 

day. 

 

In practice, the average level of cloud cover at RAL is very constant through 

the year. Just one long-term value of sunny fraction could have been used, 

but the sunny fraction was allowed to vary through the year in order to make 

the model as generally applicable as possible. Many other parts of the world 

have dry seasons and rainy seasons, and these may produce radically 

different sunny fractions at different times of the year. 

 

The model sunny and cloudy clearness attenuation factors, αS and αC, are 

given directly by the graph of peak positions, fig. 2.56 and eq. 2.21 and eq. 

2.22. The sunny scale factor is also given by fig. 2.57. This leaves two global 

quantities to calculate: the cloudy scale factor, KC and the overall average 

sunny fraction, f .  We also have two known quantities that can help us 

calculate these two unknowns simultaneously: the long-term average solar 

radiation and the long-term variance in solar radiation. The probabilistic 

method makes two simplifying approximations in order to calculate the cloudy 

scale factor: 

 

1. The sunny fraction is independent of the solar elevation within a day 

2. The month-to-month variation in sunny fraction is effectively 

independent of the average solar elevation in each month. This 

assumption certainly applies where the sunny fraction varies little 

throughout the year and/or the solar elevation varies little throughout 

the year. 

 

Returning to the power spectrum of solar radiation variation, fig. 2.10 and fig. 

2.11, the method preserves the total solar variation due to all factors: diurnal, 

seasonal and stochastic. For the weather measurement site at RAL, the 

average solar irradiance is 118.8W/m2 and the total standard deviation in 
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solar irradiance is 201.8 W/m2 calculated from the original data or 202.3 W/m2 

calculated by integrating the area under spectrum and taking the square root. 

The probabilistic method calculates the values of cloudy scale factor and 

average sunny fraction that preserves these quantities. 

 

At first sight, this method might appear to give ill-conditioned simultaneous 

equations; the stochastic variation is small compared to the periodic variation, 

and we are trying to calculate the effect of the stochastic variance using the 

whole spectrum. However, the sizes of the diurnal and seasonal spectral 

spikes are proportional to the average solar irradiance, and we have already 

set the scale factor, under sunny conditions, SK . The simultaneous equations 

work well, because the long-term average solar irradiance, I  is well defined. 

The following notes should be observed for accurate results: 

 

1. Note that if the latitude of the modelled electricity system is significantly 

different from the latitude of the measurements from which the 

spectrum is produced, then the calculation of KC and f  would have to 

be done using the latitude at which the solar spectrum was measured 

and calculated, not the latitude of the modelled location. Otherwise, the 

variance represented by the diurnal and seasonal spikes in the 

spectrum would distort the calculated values of KC and f . 

 

2. Note that the value of long-term average solar irradiance, I  to be used 

here is the one associated with the spectrum, not the one for the site 

being modelled. The monthly average solar irradiances, iI  are used 

later to give the correct average solar irradiance for the modelled site, 

within each month and in total. 

 

3. Note that the assumption of sunny fraction being independent of solar 

elevation probably breaks down at high latitudes if the cloud cover is 

very seasonal. The model would then correctly predict the total solar 

irradiance and the average irradiance within each month, but would 
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over-predict or under-predict the variation within each month. This 

problem is left for future work. 

 

Let us consider one hour, k within a day of cloud type j, within month i. 

 

In general, the expected value of instantaneous solar irradiance, ijkI  is: 

( ) ( ) ( )
0

exp exp
1S ik C ik

ijk ij S ij C
ik ik

M M
I I f K f K

M M
α α − −

= + − 
 

   (2.23) 

Where I0 is the global, normal extra-terrestrial solar irradiance, 1367W/m2 

 ijf is the sunny fraction for that month and day cloud type 

 

The daily average solar radiation is: 

( ) ( ) ( )24

0
1

exp exp1 1
24

S ik C ik
ij ij S ij C

k ik ik

M M
I I f K f K

M M
α α

=

 − −
= + − 

 
∑  

 

( ) ( ) ( )24 24
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1 1

exp exp1 11
24 24

S ik C ik
ij S ij C

k kik ik

M M
I f K I f K

M M
α α

= =

   − −
= + −   

   
∑ ∑  (2.24) 

 

2.7.6 Calculation of Long-Term Average Sunny Fraction 

Now we assume that the total variance, TOTV  of the solar spectrum represents 

not only the variation in solar elevation (periodic effects) but also the variation 

due to changing cloud cover (largely a stochastic effect). Let f be the long-

term annual sunny fraction. For the moment we assume this is independent of 

season or time of day. 

 

So the long-term average solar radiation is: 

( ) ( ) ( )
12 24

0 0
1 1

1 1 exp 1 exp
12 24

S C
S ik C ik

i k ik ik

K KI I f M I f M
M M

α α
= =

 
= − + − − 

 
∑ ∑  

 

( ) ( ) ( )12 24 12 2400

1 1 1 1

1exp exp
12 24 12 24

CS ik C ikS

i k i kik ik

I f KM MI f K
M M
α α

= = = =

−   − −
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∑∑ ∑∑   (2.25) 
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Total variance in solar radiation, ( )221
12 24TOT ijkV I I

N
= −

× × ∑  
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1 1 1 1
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i k i kik ik

I f KM MI f K I
M M
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(2.26) 

 

Now let us use some working variables to simplify the equations above:  

 

Let  ( )12 24
0

1 1

exp
12 24

S ik

i k ik

MIX
M
α

= =

 −
=  ×  

∑∑      (2.27) 

 

 ( )12 24
0

1 1

exp
12 24

C ik

i k ik

MIY
M
α

= =

 −
=  ×  

∑∑      (2.28) 

 

 ( ) 22 12 24
0

1 1

exp
12 24

S ik

i k ik

MIP
M
α

= =

 −
=  ×  

∑∑      (2.29) 

 

 ( ) 22 12 24
0

1 1

exp
12 24

C ik

i k ik

MIQ
M
α

= =

 −
=  ×  

∑∑      (2.30) 

 

Then eq. 2.25 becomes: 

( )1S CI f XK f YK= + −        (2.31) 

 

And eq. 2.26 becomes: 

( ) ( )22 21TOT S CV f PK f QK I= + − −       (2.32) 

 

Rearranging eq. 2.31 we get: 
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( )1
S

C
I K X fK

f Y
−=
−

        (2.33) 

And combining with eq. 2.32 we get: 

( )
( ) ( )

2
22

2

1

1
S

TOT S

K X f
V f PK Q I

f Y

−
= + −

−
     (2.34) 

( )( ) ( ) ( )2

2 2
2

1
1 1

S
TOT S

K X f
V I f PK f f Q

Y

−
⇒ + − = − +  

 

Expanding and rearranging terms, we get a quadratic equation in f : 

 
222 2 22 2

2 2 22 0S S TOT S TOT
X Q XQ I Qf K P f IK V I K P V I
Y Y Y

     − + − − − + + − =            
 

(2.35) 

We can now use the standard solution to a quadratic equation: 

 

Let: 
2

2
2S

X QA K P
Y

 
= − 

 
       (2.36) 

 
2 2

22 S TOT S
XQB IK V I K P
Y

= − − −      (2.37) 

 
2

2

2TOT
I QC V I
Y

= + −        (2.38) 

This can be solved to give two possible real values for f . For the RAL solar 

data, A = -9964, B = 15695 and C = 10518. Since A is negative, only the 

negative square root gives a positive value of f , and this is the value used in 

the model. It is assumed that the signs of A, B and C will not change for all 

sensible solar data, and thus the negative square root should always be 

chosen when the coefficients are defined as above. 

 

The cloudy scale factor CK can now be calculated using eq. 2.33. For the RAL 

data, CK  is 0.2729 when SK is 0.7782, as quoted above in eqs. 2.21 and 2.22. 
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These values have been used to create ideal sunny and cloudy clearness 

index models, as shown in fig. 2.58. 
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Figure 2.58 Clearness index peak positions as a function of air mass, 

measured and modelled 

 

The sunny model is very close to the locus of measured peaks of sunny 

radiation. However, the cloudy model is at significantly lower values of 

clearness index than its measured peaks. This is because the probabilistic 

method assumes a purely bivalent behaviour, that is a binomial distribution 

with n=1, also called a Bernoulli PDF (Hastings, N. A. J., Peacock 1975). In 

order to preserve total variance of solar radiation, and account for the 

variation of clearness within the �sunny� peak and within the �cloudy� peak, the 

model values must be further apart than the measured peaks. This is 

illustrated in fig. 2.59 for the bin of data centred on a solar elevation of 36.87° 

(sine elevation = 0.6): 
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Figure 2.59 Model values of clearness index compared to the actual 

measured distribution at a solar elevation of 36.87° 

 

2.7.7 Calculation of Monthly Average Sunny Fractions 

Now we need to translate the known monthly average solar irradiances, iI  

into monthly average sunny fractions, if  using the long-term, annual average 

sunny fraction, f  together with the sunny and cloudy scale factors, SK  and 

CK . 

 

The monthly average irradiance is given by an equation similar to eq. 2.24 

above, as the monthly average sunny fraction does not change with hour of 

the day: 

 

( ) ( ) ( )24 24

0 0
1 1

exp exp1 11
24 24

S ik C ik
i i S i C

k kik ik

M M
I I f K I f K

M M
α α

= =

   − −
= + −   

   
∑ ∑  (2.39) 

 

Rearranging this, we get an expression for the monthly sunny fraction: 

( ) ( ) ( )24 24 24

0 0 0
1 1 1

exp exp exp
24 24 24

C ik S ik C ikC S C
i i i

k k kik ik ik

M M MK K KI I I f I f
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α α α

= = =

     − − −
− = −     

     
∑ ∑ ∑
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    (2.40) 

 

2.7.8 Variations of Clearness Index Within a Period Vs. Period Average 
Clearness Index 

Referring to the solar variation spectrum, fig. 2.10, solar power varies on all 

time scales. For a given time scale, e.g. one day, some of this variation 

occurs within each period, i.e. changing light levels within a day. The 

remaining variation occurs between days, i.e. light days and dark days. 

 

It is not immediately obvious how the variation within a period depends on the 

period average irradiance. By using only the power spectrum, the temporal 

information of the original irradiance data has been lost. Assumptions have to 

be made that fit the original measured data and reflect the physical reasons 

for the variation:  

 

In the case of wind speed data, the short-term wind speed variations are 

roughly proportional to the period average wind speed, section 2.6.5. 

 

In the case of solar irradiance, short-term variation is due to changing cloud 

cover and cloud thickness, as well as the changing position of the sun in the 

sky. The sun�s position can be directly calculated from time-of-day, day of 

year and sun-earth geometry but the effect of cloud cover and cloud thickness 

has to be inferred from variations in clearness index.  

 

2.7.9 Measured Variations in Clearness Average Over Various Time 
Scales 

The following series of plots show how the short-term variation (as variance) 

in sunny fraction depends on the average sunny fraction over the period in 

question. The data used is that measured at RAL from 1999 to 2002, and is 

the same data from which the power spectrum, fig. 2.10 and fig. 2.11 was 

produced. Measurements taken when the sun was low in the sky (sine of 
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elevation angle less than 0.1, or air mass greater than 10) were ignored and 

removed from the data set. 

 

The sunny fraction in each minute was calculated using the equation below, 

which is a rearrangement of eq. 2.23, applied to any instant of time: 

 

( )

( ) ( )
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exp

exp exp

C
C
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S C

MI K
I Mf

M M
K K

M M

α

α α

−
−

=
− −

−
     (2.41) 

 

 

2.7.9.1 Variations Within Ten Minutes 
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Figure 2.60 One-minute samples of sunny fraction within ten-minute periods 

 

Fig. 2.60 shows the calculated variance in sunny fraction (scaled) within a 10-

minute period vs. the statistical count of each 10-minute average. This shows 

that where the probability density is high, the variation within the period 

follows a smooth curve, and that for the central portion this curve is 

approximately quadratic, as shown. The formula and regression coefficient 

are quoted on fig. 2.60. 



143 

 

The highlighted central portion with a sunny fraction between 0.3 and 1.0 

contains 46.0% of the data. The lower end contains 43.0% and the upper end, 

with very erratic data contains just 11.0%. These very high and very variable 

sunny fractions are probably due to cloud-side reflection (Durisch, Bulgheroni 

1999, Laird, Harshvardhan 1997). The clearness index is significantly higher 

than in a completely cloudless sky. Similar effects are visible in the hourly and 

four-hourly data below. 

 

2.7.9.2 Variations Within One Hour 
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Figure 2.61 One-minute samples of sunny fraction within one-hour periods 

 

Fig. 2.61 shows the calculated variance in sunny fraction (scaled) within a 1-

hour period vs. the statistical count of each 1-hour average. Again, where the 

probability density is high, the variation within the period follows a smooth 

curve, and for the central portion this curve is approximately quadratic, as 

shown. The formula and regression coefficient are quoted on fig. 2.61. 
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The highlighted central portion with a sunny fraction between 0.3 and 1.0 

contains 55.5% of the data. The lower end contains 38.7% and the upper end, 

with erratic data contains just 5.8%. 

 

2.7.9.3 Variations Within Four Hours 

y = -258.83x2 + 289.86x + 1.7325
R2 = 0.9145

0

10

20

30

40

50

60

70

80

90

100

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
4-Hour Mean Sunny Fraction

C
ou

nt
 a

nd
 V

ar
ia

nc
e 

W
ith

in
 4

 H
ou

rs Count

Variances
in 4 Hours

Centre
Graph

Poly.
(Centre
Graph)

 
Figure 2.62 One-minute samples of sunny fraction within four-hour periods 

 

Fig. 2.62 shows the calculated variance in sunny fraction (scaled) within a 4-

hour period vs. the statistical count of each 4-hour average. Again, where the 

probability density is high, the variation within the period follows a smooth 

curve, and for the central portion this curve is approximately quadratic, as 

shown. The formula and regression coefficient are quoted on fig. 2.62. 

 

The highlighted central portion with a sunny fraction between 0 and 1.0 

contains 87.4% of the data. The lower end contains 10.5% and the upper end, 

with erratic data contains just 2.1%. 
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2.7.9.4 Variations Within One Day 
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Figure 2.63 One-minute samples of sunny fraction within one-day periods 

 

Fig. 2.63 shows the calculated variance in sunny fraction (scaled) within a 12-

hour period vs. the statistical count of each 12-hour average. Again, where 

the probability density is high, the variation within the period follows a smooth 

curve, and for the central portion this curve is approximately quadratic, as 

shown. The formula and regression coefficient are quoted on fig. 2.63. 

 

The highlighted central portion with a sunny fraction between 0 and 1.0 

contains 94.7% of the data. The lower end contains 5.1% and the upper end, 

with erratic data contains just 0.2%. 

 

The averaging period was actually 720 minutes or 12 hours since the average 

day length is 12 hours. 

 

2.7.9.5 Conclusion of the Study of Variations Within Periods 

At all time scales, the short-term variation in sunny fraction is greatest when 

the period-average clearness index is in the middle of its range at about 0.5. 

The short-term variation is lower at the low and high ends of the range. This 
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qualitatively confirms the results of (Graham, Hollands 1990) except that 

Graham and Hollands have fitted a sine curve rather than a quadratic, and 

have plotted standard deviation vs. atmospheric transmittance rather than 

variance vs. sunny fraction. 

 

The central quadratic portion of the data (the portion that could reasonably 

fitted by a quadratic equation) is in the sunny fraction range from 0 or 0.3 to 

1.0. These values correspond well with the positions of the peaks in the 

overall PDF of clearness index, fig. 2.55, these peaks corresponding to cloudy 

and sunny conditions respectively. This adds further evidence that when a 

period (10-minutes, hour, day etc.) is completely cloudy or completely sunny, 

the variation within the period is a minimum, and that most within-period 

variations are due to cloud cover changes between cloudy and sunny.  

 

2.7.10 Variations in Clearness Index with Changing Solar Elevation 

The above plots group together data from all solar elevations, but the average 

clearness index (not sunny fraction) depends on solar elevation. The following 

plots, fig. 2.64 to fig. 2.67 group the data by solar elevation, but only for a time 

scale of one day. Each plot contains data from a group of four months, 

grouped by average solar elevation. Thus May, June and July are the 

sunniest months, April, August and September are the second sunniest 

months, then February, March and October. Finally, the darkest months of the 

year are January, November and December. The solar elevation is described 

by the sine of the elevation angle, from 0.2 to 0.9. Obviously, in May, June 

and July, the elevation can range from 0.2 to 0.9, but in January, November 

and December, the highest elevation is only 0.4. 
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Figure 2.64 Variances of one-minute samples of clearness index within one-

day periods, grouped by solar elevation and daily average clearness index in, 

May June and July 

Next-To-Lightest Months: September, April and August
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Figure 2.65 Variances of one-minute samples of clearness index within one-

day periods, grouped by solar elevation and daily average clearness index in 

September, April and August 
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Next-To-Darkest Months: February, October and March
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Figure 2.66 Variances of one-minute samples of clearness index within one-

day periods, grouped by solar elevation and daily average clearness index in 

February, October and March 

Darkest Months: December, January, and November
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Figure 2.67 Variances of one-minute samples of clearness index within one-

day periods, grouped by solar elevation and daily average clearness index in 

December, January and November 
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This second group of plots all confirm that the short-term standard deviation of 

clearness index is a maximum when the daily average is in the middle of the 

range, and lower at the bottom and top ends of the range. These graphs are 

also approximately quadratic in shape. A quadratic fit is important to the 

probabilistic method, as will be seen in section 2.7.11 below. 

 

Increasing solar elevation simply shifts the graph to the right, and reducing 

solar elevation shifts the graph to the left. This is consistent with fig. 2.58. 

Increasing air mass increases the attenuation of solar radiation and reduces 

the average clearness index. 

 

2.7.11 Calculation of Total Variance Due to Changing Cloud Cover 

All the stochastic solar variance, represented by the area under the 

broadband spectrum excluding the periodic spikes, fig. 2.11 has to be due to 

a changing cloud cover (changing sunny fraction). All other terms are 

dependent only on solar elevation, which is periodic. Looking at all time scales 

from minutes up to months, this total variance is given by a summation over 

all months, i and all hours of the day, k . The variance in irradiance due to 

cloud cover in each hour of the day, in each month of the year is given by: 

( ) ( ) ( )2 2

2
0 0

exp exp
1S ik C ik

ik i S i C ik
ik ik

M M
V f I K f I K I

M M
α α   − −

= + − −   
   

  (2.42) 

 

And the average radiation in that hour in that month is: 

 

( ) ( ) ( )
0 0

exp exp
1S ik C ik

ik i S i C
ik ik

M M
I f I K f I K

M M
α α   − −

= + −   
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  (2.43) 

 

To simplify the equations, let us use working variables: 

 

Sunny clearness index, 
( )

0

exp S ik
i S

ik

M
S I K

M
α−

=     (2.44) 

And cloudy clearness index, 
( )

0

exp C ik
i C

ik

M
T I K

M
α−

=    (2.45) 
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So eq. 2.42 becomes: ( )2 2 21ik i ik i ik ikV f S f T I= + − −   (2.46) 

 

And eq. 2.43 becomes: ( )1ik i ik i ikI f S f T= + −    (2.47) 

 

Substituting for ikI  in eq. 2.46: 

 

( ) ( ) 22 21 1ik i ik i ik i ik i ikV f S f T f S f T = + − − + −   

 

( ) ( ) ( )22 2 2 2 21 2 1 1i ik i ik i ik i i ik ik i ikf S f T f S f f S T f T= + − − − − − −  

 
2 2 2 2 2 2 2 2 2 22 2 2i ik ik i ik i ik i ik ik i ik ik ik i ik i ikf S T f T f S f S T f S T T f T f T= + − − − + − + −  

 

Cancelling terms and then factorising: 

 
2 2 2 2 2 2 22 2ik i ik i ik i ik ik i ik ik i ik i ikV f S f S f S T f S T f T f T= − − + + −  

 

( )( )21ik i i ik ikV f f S T= − −        (2.48) 

 

Now ikS  and ikT  depend only on the solar elevation, which is determined by 

the hour and the month. 

 

Note that this bivalent model fits very well, at least qualitatively with the 

graphs of sections 2.7.9 and 2.7.10. Eq. 2.48 is a quadratic dependence of 

the monthly variance, ikV on the monthly average sunny fraction, if . 

 

The dependence of ikS and ikT  on solar elevation also shifts the graphs to the 

right with increasing solar elevation, just as the graphs of section 2.7.10 show. 

The monthly averages of stochastic variances are then: 
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( ) ( )
24

2

1

11
24i i i ik ik

k
V f f S T

=
= − −∑       (2.49) 

 

And the annual average stochastic variance is approximately: 

 

( ) ( )
12 24

2
_

1 1

1 11
12 24Stochastic Simple i i ik ik

i k
V f f S T

= =
= − −∑ ∑     (2.50) 

 

Using the model developed here for RAL data, the above quantity was 

calculated to be 13666 (W/m2)2. 

 

The actual formula used in the computer program is adjusted slightly for the 

different lengths of each month. As will be seen later, real calendar months 

were used because a real calendar was needed for the load data, to give the 

correct balance of holidays and working days. The accurate formula as used 

by 24-hour probabilistic program is: 

( ) ( )
12 24

2

1 1

11
365 24

i
Stochastic i i ik ik

i k

Days
V f f S T

= =
= − −∑ ∑     (2.51) 

 

Where: iDays  is the number of days in month i . 

 

Using the model developed here for RAL data, and the real month lengths, 

the stochastic solar variance was calculated to be 13716 (W/m2)2. 

 

These quantities compare fairly well with the total stochastic variance 

calculated from integrating the broad solar power spectrum, with the spikes 

removed, see section 2.4.6. This spectrum integration was calculated to be 

12661 (W/m2)2. The spectrum integration is not precise, since the position of 

the bases of the daily spikes are only an estimate. It is therefore not clear how 

much variance belongs to the daily periodic variation (and its harmonics) and 

how much to the broad spectrum of variation.  
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2.7.12 Model of Cloudy Periods, Sunny Periods and Mixtures 

The simplified model used within the probabilistic method assumes that at a 

given solar elevation, all variation in clearness index is due to the presence or 

absence of clouds, and that at any instant of time the sky is either cloudy (no 

beam radiation) or sunny (full beam radiation and no clouds). Furthermore, 

periods (e.g. 10-minutes, hours, days or weeks) can be characterised 

according to the percentage of time that the weather is cloudy or sunny. 

Henceforth, for description purposes the assumed period of time will be one 

day, as used in the 24-hour Matlab probabilistic program, section 2.13. 

 

On completely cloudy days, the weather is uniformly cloudy and the clearness 

index follows the lower line, the cloudy model in fig. 2.58, and eq. 2.22. No 

account is taken of variation in cloud thickness. Cloudy days therefore have 

constant sunny fraction (equal to 0) and zero variation in irradiance due to 

passing clouds. The total variation in clearness index will be low, and will 

result only from changes in solar elevation and therefore changes in air mass.  

 

On completely sunny days, the weather is uniformly clear and sunny with a 

clearness that follows the upper line, the sunny model in fig. 2.58, and eq. 

2.21. Sunny days therefore also have constant sunny fraction (but this time 

equal to 1.0) and zero variation in irradiance due to passing clouds. The total 

variation in clearness index will again be low, resulting only from changes in 

solar elevation and therefore changes in air mass.  

  

For days that are a mixture of sunny and cloudy conditions, the probabilistic 

method requires the stochastic cloud-cover variance to be split into two 

components: short-term (variations within a day) and long-term (variation in 

daily averages). This is done using the filter functions of sections 2.5.2 and 

2.5.3. For the solar spectrum, this is illustrated in fig. 2.68. The left-hand 

portion of the spectrum determines the stochastic variation of daily averages 

(the �Daily Average� line). The integrated area under this curve gives a 

variance of 2000.3 (W/m2)2. The right-hand, short-term portion of the 

spectrum (the �Within Day� line) determines the stochastic variation of solar 

irradiance within a day. The integrated area under this second curve gives a 



153 

variance of 10661 (W/m2)2. The sum of the short-term variance and the long-

term variance is 12661, as previously calculated by the integration of the 

whole spectrum, after removing the spikes. 
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Figure 2.68 Filter functions applied to the solar variation spectrum as 

measured at Rutherford Appleton Laboratory, 1999 to 2002 

 

Note that these calculations of stochastic variance are based on the solar 

spectrum after the spikes have been removed. The spikes represent periodic 

variation in solar elevation and periodic variation in cloud cover. Their removal 

leaves only the random variation due to changing cloud cover.  

 

The integral of the left-hand, long-term portion of the spectrum = 

2000.3(W/m2)2 has been used to construct probability distributions of daily 

average sunny fractions, as described in section 2.7.13.2. 

 

2.7.13 Beta Distributions for Daily Average Sunny Fractions 
The probabilistic method assumes that within a given month, i , the daily 

average sunny fractions, ijf  are distributed according to a beta distribution.  

 

2.7.13.1 General Characteristics of Beta Distributions 
Beta distributions have often been used for modelling probability distributions 

of solar irradiance and clearness index: (Graham, Hollands 1990, Mefti, 
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Bouroubi & Adane 2003, Rahman, Khallat & Salameh 1988, Sahin, Sen 1998, 

Sulaiman et al. 1999, Youcef Ettoumi et al. 2002). The properties of beta 

distributions: formulas for their mean, variance and mode are quoted from 

(Patel 1976) 

 

 One advantage of beta distributions is that they have lower and upper 

bounded values, and can have a wide variety of shapes depending on the 

mean and standard deviation. Since the sunny fractions, ijf  have a minimum 

value of 0 and a maximum value of 1, we can use the normalised form of the 

beta distribution.  

 

Another advantage is that the mean and variance (hence standard deviation) 

of a distribution are all easy to calculate from the two parameters, a and b. 

The beta function probability distribution function is: 

 

( ) ( )
( )

11 1
,

bax x
pdf x

a b

−− −
=

Β
       (2.52) 

 

The mean is:  am
a b

=
+

      (2.53) 

 

And the variance is:  
( ) ( )21

abv
a b a b

=
+ + +

   (2.54) 

 

What is more, if we know the mean and variance, we can calculate the two 

parameters, a and b, and so construct a beta distribution with any desired 

mean and standard deviation. Simple algebraic manipulation yields the 

following equations: 

 

Rearranging eq. 2.53:  ( )1a m
b

m
−

=     (2.55) 
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And substituting into (2.54):  

( )
( )

2

2
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m mmv
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m m

−
−

= =
++   

   
   

  

So: ( ) 21 m m
a m

v
−

= −        (2.56) 

The value of b  can then be calculated using eq. 2.55. 

 

2.7.13.2 Beta Distributions of Sunny Fraction for Real Solar Data ( RAL 
Data) 

The above method has been used to construct beta distributions, fig. 2.69 of 

daily average sunny fraction, ijf  for each month, i  of the year to represent the 

means and standard deviations of daily average sunny fractions at RAL. Note 

that these probability distributions only approximately reflect the shapes of 

probability distributions of sunny fraction or clearness index in those months. 

However, they do preserve the mean and standard deviation values of sunny 

fraction, and therefore clearness index in a simple but practical methodology. 

The monthly mean average values of daily sunny fraction are identical to the 

monthly overall mean sunny fractions, if  and are calculated directly from the 

monthly averages of solar radiation. The standard deviations of daily sunny 

fraction within each month are derived from the spectrum integration, section 

2.5.4, such that the total stochastic variance, StochasticV  is preserved.  

 

The long-term (period average) portion of the variance, i.e. the variances in 

daily average sunny fraction, ijf within each month i  are a fixed proportion of 

the total variance of f within each month ( )1i if f= − . That proportion is simply 

the ratio of long-term (period average) stochastic variance to total stochastic 

variance. In the case of the RAL data model, this ratio is 2000.3 / 13716. This 

fixed proportion reflects the fact that the total solar power spectrum conveys 

no information as to which months may have a more variable sunny fraction 

and which months may have a more consistent sunny fraction. 
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Figure 2.69 Beta distributions of daily sunny fraction for RAL constructed from 

4 years of solar irradiance measurements, 1999 to 2002 

 

Table 2.5 presents the same information, the parameters of the beta 

distributions, as a table. This confirms that the values of standard deviation in 

daily average sunny fraction in each month are all very consistent.  
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Table 2.5 Means, Standard Deviations, �a�s and �b�s of the Beta Distributions 

of Sunny Fraction for Each Month 

Month Mean 

Sunny 

Fraction 

Standard 

Deviation of 

Daily Sunny 

Fractions 

Beta 

distribution 

parameter �a� 

Beta 

distribution 

parameter �b� 

January 0.4122 0.1893 2.3763 3.3886 

February 0.4617 0.1917 2.6616 3.1033 

March 0.3846 0.1870 2.2171 3.5478 

April 0.4640 0.1917 2.6750 3.0899 

May 0.4457 0.1911 2.5692 3.1957 

June 0.4927 0.1922 2.8403 2.9245 

July 0.4526 0.1914 2.6092 3.1557 

August 0.4624 0.1917 2.6657 3.0992 

September 0.4720 0.1919 2.7211 3.0438 

October 0.4814 0.1921 2.7750 2.9899 

November 0.4579 0.1916 2.6399 3.1250 

December 0.3761 0.1862 2.1681 3.5968 

 

 

The values of monthly mean sunny fraction are seen to change with the 

month. The lowest value is 0.3761 for the month of December, while the 

highest value is 0.4927 for the month of June. These extremes suggest there 

is some seasonal dependence, in which months of low solar elevation have 

low sunny fraction and months of high solar elevation have high sunny 

fraction. However, February and July have almost average sunny fractions, 

March has the second lowest sunny fraction, and October has the second 

highest sunny fraction. Any seasonal dependence is therefore not very strong. 

 

Months with low average sunny fraction have their peak shifted to the left on 

the graph of PDFs, fig. 2.69, corresponding to larger b and smaller a, but 

months of high average sunny fraction have their peak shifted to the right on 

the graph of PDFs, corresponding to larger a and smaller b. In practice, b is 
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always slightly greater than a since the monthly mean sunny fractions are all 

less than 0.5. 

 

2.7.14 Preservation of Total Stochastic Variance 
The probabilistic method uses long-term beta distributions within each month 

to model the distribution of short-term bivalent distributions. To support the 

validity of this method, the following argument proves that the total stochastic 

variance due to changing cloud cover is preserved. 

 

As seen in eq. 2.50 and eq. 2.51, we have expressions for the total stochastic 

variance in solar irradiance (due to changing cloud cover). These can be 

thought of as a variance of the sunny fraction, multiplied by a solar elevation-

dependent factor. Let us consider a generic average, x  (representing monthly 

average sunny fraction if or overall sunny fraction f ) in a bivalent distribution 

with values of 0 or 1. It is difficult to prove that total variance is preserved 

specifically for the case of a beta distribution, but it is possible to prove for the 

general case of a distribution of bivalent distributions: 

 

Each short-term bivalent distribution has a mean value of x , a minimum of 0 

and a maximum of 1. The probability of �1� is x  and the probability of �0� is 

1 x− . The variance within each bivalent distribution is then: 

( ) ( )2 2 2 21 1 0 1v x x x x x x x= × + − × − = − = −     (2.57) 

 

The value of x  slowly varies, from day to day. Suppose the means of the 

bivalent distributions have a long-term probability density function (PDF), 

( )p x , such that ( )
1

0

1
x

p x dx
=

=∫  

 

The long-term mean value of x is the same as the long-term mean value of 

the long-term PDF: ( )
1

0x

x xp x dx
=

= ∫       (2.58) 
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The weighted total of the variances within each short-term bivalent 

distribution, using eq. 2.57 is: 

( ) ( )
1

1
0

1
x

v x x p x dx
=

= −∫        (2.59) 

And the long-term variance (i.e. the variance in short-term distribution means) 

is: 

( ) ( )
1 22

2
0x

v x p x dx x
=

= −∫        (2.60) 

 

So the total variance is the sum of short-term and long-term 

variances: ( ) ( ) ( ) ( )
1 1 22

1 2
0 0

1TOT
x x

v v v x x p x dx x p x dx x
= =

= + = − + −∫ ∫  

 

( ) ( ) ( ) ( )
1 1 1 22 2

0 0 0x x x

xp x dx x p x dx x p x dx x
= = =

= − + −∫ ∫ ∫  

 

( ) ( )
1 2

0x

xp x dx x
=

= −∫  ( )2
x x= −  ( )1x x= −  QED   (2.61) 

This is the variance of the overall bivalent distribution of mean value x . 

 

2.7.15 Conversion of Solar Irradiances into Electrical Power 
The probabilistic model tries to keep the modelling of solar power as simple 

as possible. Therefore, the electrical power output of a photovoltaic (PV) 

device is assumed to be proportional to the global horizontal solar irradiance. 

 

In practice, PV power depends on a number of factors: the PV technology 

chosen, the tilt and orientation of the PV module, the electromagnetic 

spectrum of solar radiation, the temperature of the PV module, the intensity of 

solar irradiance, the power capacity of the inverter or other energy conversion 

device etc. Each factor affects or interacts with every other one. For example 

a higher irradiance may cause over-heating of the module. A change in 

temperature may improve or reduce the PV performance, depending on which 

technology is chosen. The tilt and orientation of the module affect the relative 
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amounts of beam and diffuse radiation received by the module, and the time 

of day and year that most radiation is received. If the inverter is over-sized, its 

standing losses will be significant. However, if the inverter is under-sized, it 

will be over-loaded at times of high solar power, and solar energy will be lost.  

 

To model all these effects accurately, we would need to model variations in 

ambient temperature and the heat balance of the solar module knowing its 

position on the roof and all heat transfer properties. We would need to know 

the percentage of radiation contained in beam and diffuse components, and 

construct the geometric interaction of the sun�s position in the sky together 

with the orientation of the module. We would need an accurate model of the 

module performance and of the inverter. All these effects are the subjects of 

various academic papers and ongoing research. They are all complex and 

usually non-linear.  

 

The biggest effects appear to be the tilt and orientation of the module and the 

temperature of the module. It is anticipated that in the next decade or two, 

most installed PV modules will be roof mounted and will be positioned flat to 

the roof. In the northern hemisphere, the modules will therefore be at various 

tilt angles and all orientations from east, through south-east, south and south-

west to west. Most will be approximately facing towards the equator at some 

moderate tilt angle, tending to increase the solar energy falling on the module. 

However, most solar energy is received in summer and tends to make the 

module even hotter than the already elevated ambient temperature. In most 

PV technologies this tends to reduce the energy captured. As a simple 

approximation, it was assumed that these two effects will cancel each other.  

 

The probabilistic model program created for this thesis is designed for a scale 

of at least a few hundred kW of power. This is the typical size of one feeder of 

an electricity substation, section 2.2.4, and is also the typical power capacity 

of one large, modern wind turbine. At this size, the system would typically 

supply electricity to many premises of various types, from domestic to 

commercial and small industrial. The buildings of those premises would have 

various shapes and sizes of roof at a variety of tilt and orientation angles. If 
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solar PV modules are fitted to several different roofs, the effect of orientation 

and tilt angles will aggregate and cancel out, bringing us back to an 

assumption of electricity output proportional to global solar horizontal 

radiation. 

 

Given that the whole probabilistic method is a fast and approximate one, 

appropriate to feasibility studies, it was decided to simply assume that power 

captured is; 

 

( )2

( ) ( )
1000e

Irradiance W m
Power kW PowerRating kWp= ×     (2.62) 

 

2.7.16 How Well Does the Model Match the Real Global Horizontal Solar 
Irradiance Data? 
Fig. 2.70 compares the actual and model-predicted annual probability 

distribution of global horizontal solar irradiance. The actual distribution was 

built from measurements of one-minute averages. 

 

The theoretical distributions were built from hourly values calculated using the 

probabilistic method. That is the average sunny radiation, the average cloudy 

radiation and the average monthly sunny fraction. Although the hourly 

distribution of solar irradiance is purely bivalent (two values only in a binomial 

PDF with n=1), when these hourly distributions are added together for all 24 

hours of the day and all 12 months, they produce an almost smooth 

probability distribution: 
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PDF of Solar Irradiance for the Whole Year
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Figure 2.70 Probability distribution of solar power for the whole year, 

measured at RAL and modelled 

 

Fig. 2.71 below shows that the mean and standard deviations of solar 

irradiance within each month are modelled very well 
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Actual and Theoretical Means and Standard Deviations 
of Solar Irradiance In Each Month
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Figure 2.71 Means and standard deviations of solar power through the year, 

actual and modelled 

 

2.7.17 For Further Work - Improved Predictions of Solar Energy Capture 
There are various published models of solar irradiance that can convert a 

global solar radiation into a radiation on an inclined surface. In future 

refinements of the probabilistic or time-step models presented in this thesis, it 

may be possible and desirable to include a calculation of irradiation on an 

inclined plane. 

 

Many papers present methods of estimating the diffuse fraction or beam 

components from the global horizontal clearness index, e.g. (Babatunde, Aro 

1995, Gonzalez, Calbo 1999, Ideriah 1992, Lam, Li 1996, Lopez, Rubio & 

Batles 2000, Suehrcke, McCormick 1989, Tiris, Tiris 1998, Trabea 2000, 

Unozawa, Otani & Kurokawa 2001). Thus the solar radiation could be 

separated out into beam and diffuse components. The radiation falling on an 

inclined surface could be better estimated by treating these two components 

separately.  
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Alternatively, at least one model estimates the radiation on an inclined surface 

directly from the horizontal radiation, (Olmo et al. 1999) 
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2.8 Load Model 
 

2.8.1 Introduction to the Load Model 

This section describes how the electrical load model has been constructed for 

the probabilistic method. One of the key assumptions of this probabilistic 

method is the size of the electrical power system. It is appropriate to a village, 

a region within a town, or larger. The system could accommodate the 

electricity produced by at least one large modern wind turbine. 

 

Unlike the solar power and wind power models, the load is modelled as a 

deterministic function of time of day, type of day and month of the year. Sub-

section 2.8.2 re-visits the reasons for this assumption, based on the 

magnitude of variation in electrical load and the proportion of variation that is 

deterministic and periodic. 

 

Sub-section 2.8.3 describes the derivation of the load profiles and compares 

them with National Grid data. 

 

Sub-section 2.8.4 describes the division of the model year into months and 

into weekdays and holidays. 

 

2.8.2 Magnitudes of Variation of Electrical Load 
Section 2.4.4 shows that as the number of consumers on an electricity 

network increases, the variation due to each individual consumer rapidly 

diminishes to a negligible level. If the number of consumers is of the order of 

1000, and the standard deviation of variation in demand between consumers 

is about 50%, then by the central limit theorem predicts that the standard 

deviation in the mean of a sample of 400 consumers will be about 

50 400 50 / 20= = 2.5%. This is relatively small compared to the actual hour-

to-hour standard deviation in total demand of 24% seen in one substation 

feeder that probably supplies about that number of consumers.  
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Section 2.4.6 shows that variations in electrical load at the substation feeder 

level are smaller in percentage terms than those of wind power or solar power 

(24% vs. 90% and 170% respectively) and that variations in electrical load are 

dominated by periodic effects: daily, weekly and seasonal cycles. The periodic 

component of standard deviation in electrical load on the chosen substation 

feeder is 23% of the long-term average whereas the stochastic component is 

only 7.6%. 

 

Because the stochastic minute-to-minute aggregated variations in demand 

are small compared to the periodic variations, and compared to either solar or 

wind power variations, these stochastic variations were considered negligible 

for the purposes of the probabilistic method. Only the periodic variations in 

demand were included in the probabilistic method. 

 

2.8.3 Load Profiles 

As stated in section 2.2.4, substation feeder Braunstone LOC-A appears to 

have a load profile close to the national average, as published in (National 

Grid Company plc 2003). The load data is recorded as half-hour averages 

and the number and variety of electrical loads is such that the total load 

changes smoothly from one half-hour to the next. The loads from the LOC-A 

feeder have been compared with the national grid average profiles for the 

whole of England and Wales, (National Grid Company plc 2003), for both 

summer and winter typical days, fig. 2.72 and fig. 2.73. The Braunstone data 

shows slightly more variation between day and night and a slightly larger 

evening peak of load than the national average. The Braunstone sub-station 

also shows a larger difference between summer and winter than the national 

grid average, as would be expected due to more limited aggregation. 
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Figure 2.72 December weekday demand profiles 

 

June Weekday Typical Demand Profile
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Figure 2.73 June weekday demand profiles 

 

In order to minimise the data required, and to minimise computer run time, the 

probabilistic model uses hourly time steps of electricity demand. Each pair of 

half-hour averages have been added together to give the energy consumed in 
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each hour period of the probabilistic model, starting with the first two. The load 

data is all in, or has been converted to Greenwich Mean Time (GMT). The 

load profiles have been scaled to an annual average of 1000kW before the 

probabilistic program user applies his or her chosen load scale factor. 

 

2.8.4 The Model Calendar  
The 24-hour probabilistic program uses load profiles calculated for weekdays 

and weekend days, for each month of the year. The months modelled are the 

calendar months of the year, with the real number of days in each month 

(without leap year adjustment, 28 days in February). Months were chosen 

because the electricity load is out of phase with the seasonal variation in wind 

power and with the seasonal variation in solar irradiance, see section 2.4.9. 

 

The probabilistic model includes a typical annual pattern of weekends and 

holidays. In the probabilistic method, Weekdays are treated separately from 

weekends or holidays because the electricity demand is higher on weekdays. 

In practice, Saturdays have higher electricity demand than Sundays or bank 

holidays, but this effect was considered too small to worry about. The 

important factor was to recognise that different days have different levels of 

demand and to make the range of demands about right. The probabilistic 

method uses the UK holiday calendar and resulting profiles of electricity 

demand, although this method could be adapted to any country of the world. 

 

In each month, at least 2 out of every 7 days are modelled as weekend days. 

The exact number of weekend days is rounded up or down to the nearest 

whole number. However, some adjustment was needed, as will be seen later. 

Starting in January, New Year�s bank holiday adds one holiday to January 

and reduces the number of weekdays by one. February has exactly 8 

weekend days and 20 weekdays. Easter sometimes falls in March but more 

often in April. Occasionally Easter spans the end of March and the beginning 

of April. The probabilistic model assumes three extra holidays at Easter, one 

being in March and two in April. May has two bank holidays: one on the first 

Monday and one on the last Monday. June and July have no bank holidays, 

but August has one. September, October and November have no bank 
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holidays. Finally, the whole period between Christmas and New Year has 

relatively low electricity demand. The probabilistic method treats this period as 

all holiday and December therefore has five extra holidays.  

 

A further correction is needed because so many months have 9 weekend 

days (rounded up from 2/7 of 30 = 8.57 or 2/7 of 31 = 8.86). To achieve the 

correct total number of holidays, April loses one of its weekend days, as do 

September and November. The final numbers of weekdays and weekend 

days in each month is shown in table 2.6: 

 

Table 2.6 Working days and Holidays in Each Month as Modelled in the 

Probabilistic 24-Hour Program 

Month Weekends and holidays Weekdays 

January 10 21 

February 8 20 

March 10 21 

April 10 20 

May 11 20 

June 9 21 

July 9 22 

August 10 21 

September 8 22 

October 9 22 

November 8 22 

December 14 17 

Total 116 249 
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2.9 Energy Store Model 
 

2.9.1 Introduction to the Energy Store Model 

This section sets out the assumptions made about an energy store and the 

mathematical model developed. 

 

The probabilistic method and its time-step validation method both treat a store 

as a bin into which surplus energy is put and from which energy is retrieved to 

satisfy an energy deficit some time later. Nothing is known or assumed about 

the physics or chemistry of the energy store. The only parameters used by the 

model are the round-trip electrical efficiency, the parasitic loss, the power 

ratings of charging or discharging the store, and the typical cycle time of the 

store (probabilistic method) or the energy capacity of the store (time-step 

validation). Otherwise the probabilistic and time-step methods treat the store 

as a �black box�. The effects of round-trip efficiency, parasitic loss and power 

ratings on net power flows to and from the store are shown in section 2.10.7. 

 

2.9.2 Assumptions Made and Comparison with Real Energy Stores 
 

1. The round trip efficiency of the store is constant except for a constant 

parasitic loss, see below. The ratio: _ _
_ _

Electrical Energy Out
Electrical Energy In

 is 

constant, regardless of the actual rate at which the store is charged or 

discharged. Many real stores, such as batteries, tend to get more 

efficient as charge and discharge rates are reduced but less efficient as 

charge and discharge rates are increased. 

2. The parasitic loss (if present) is a constant power consumption and 

applies regardless of the state of charge of the store, even when the 

store is not being actively used or when it is empty. This assumption 

makes the calculations of the probabilistic method much easier than if 

the parasitic loss were variable. In contrast, real stores have a self-

discharge rate that may drop to zero when the store is empty, and 

electronic power conversion losses that may be zero when the store is 

not being used. 
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3. The maximum store charging rate is constant, regardless of how full 

the store is becoming. A real store, such as a battery, often has a 

reduced charging rate as the store gets nearly full. 

4. The maximum store discharging rate is constant, regardless of how 

empty the store is becoming. A real store, such as a battery, often has 

a reduced discharging rate as the store gets nearly empty. 

5. The probabilistic method assumes that an energy store has a fixed 

cycle time or operating period, and that energy cannot be carried 

forward from one period to the next. The state-of-charge at the end of 

one period is the same as at the beginning of that period. In practice, 

real stores operate in continuous time and can store energy for as long 

as needed. When power variability is low, a store can float between full 

and empty for a very long time. The state-of-charge at the end of a 

period is rarely the same as at the beginning. 

6. The probabilistic method assumes that a store cannot be full at one 

time within an operating period and empty at another time within the 

same period. Thus operating periods are divided into ones of net 

surplus, in which the store is sometimes full but never empty, and other 

periods of net deficit in which the store is sometimes empty but never 

full. Again, in practice, real stores operate in continuous time, and 

when the power variability is high, the store may be full then empty, or 

vice versa in a very short period of time. 

 

2.9.3 Typical Parameter Values 
The charge and discharge rates of an energy store depend on the physical 

size of that store, and the parasitic loss also depends to some extent on the 

embodiment of the store, but round-trip efficiency and typical cycle time are 

mainly dependent on the chosen technology. Table 2.7 lists some 

approximate data first published in a paper by this author, (Barton, Infield 

2004) and updated in places for clarification. 
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Table 2.7 Typical Properties of Energy Storage Technologies 

Technology Round-trip 

efficiency, η 

Typical discharge 

time 

Typical time 

scale, period of 

operation, T 

Super-conducting 

magnetic energy 

storage (SMES) 

90% (but high 

power 

consumption of 

refrigeration) 

10-4 to 10-3 hours, 

= seconds 

10-4 to 10-3 hours,

= seconds 

Super-capacitor 86% 10-4 to 10-2 hours, 

= seconds to 

minutes 

10-4 to 10-2 hours,

= seconds to 

minutes 

High-speed 

flywheel 

89% 10-4 to 10-2 hours, 

= seconds to 

minutes 

10-4 to 10-2 hours,

= seconds to 

minutes 

Traditional lead-

acid batteries 

63% 1 to 5 hours 3 to 24 hours 

Zinc-bromide 

batteries 

70% 2 to 5 hours 6 to 24 hours 

Nickel-cadmium 

batteries 

72% 1 to 10 hours 3 hours to 3 days 

Sodium-sulphur 

batteries 

87% 4 to 8 hours 12 to 24 hours 

Nickel metal 

hydride batteries 

64% 1 to 4 hours 3 to 24 hours 

Flow cells, e.g. 

Regenesys and 

vanadium 

75% 2 to 12 hours 6 to 24 hours 

Hydrogen as a 

compressed gas 

32% 12 hours+ 1 day or much 

longer 
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2.10 Combination of Probabilities  
 

2.10.1 Systems with Variable Wind Power Only (The First Probabilistic 
Program) 
If an electrical system consists only of a constant load, wind powered 

generation and a backup supply or a weak grid connection, only the wind 

power is variable. This simplification facilitates a straightforward 

implementation of the probabilistic modelling method. The methods of section 

2.5 can be applied to the whole wind power spectrum, both its stochastic and 

periodic components of wind speed variation. The model need not concern 

itself with correlation or anti-correlation with any other source of variability.  

 

2.10.2 Systems Including Wind Power, Solar Power and Variable Load 
(The 24-Hour Probabilistic Program) 
The task of modelling an electrical system with wind power, solar power and a 

variable load using a probabilistic method is considerably more complex. 

Wind power may sometimes correlate positively with solar power e.g. higher 

wind speeds occur during the daytime, or wind power may sometimes 

correlate negatively with solar power e.g. higher wind speeds occur during the 

winter than in the summer. Then the correlation of both wind power and solar 

power with electrical demand has to be considered.  

 

The 24-hour probabilistic modelling program solves most of this complexity by 

considering periodic effects separately from stochastic or random effects. 

Once periodic effects have been removed, the remaining stochastic variation 

of solar power is shown to have very little correlation with wind power. The 

variation in electrical demand is almost entirely periodic and therefore shows 

the minimum of correlation with stochastic variations of either solar or wind 

power. In any case, the largest single driver of variation in electrical demand 

(after daily and seasonal effects) is ambient temperature (McSharry, 

Bouwman & Bloemhof 2005) and not solar irradiance or wind speed. This 

periodic approach works well but leads to a considerable complexity in 

computer programming and much longer computer run times compared to the 

wind-only probabilistic program. 
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2.10.3 Program Loop Nesting 
The program structure of the probability combination subroutine consists of 7 

nested �for� loops, illustrated in fig. 2.74. The code is laid out in pseudo Matlab 

format. The comment lines are written in green and begin with a �%� to 

distinguish them from executable code: 

 

 

For Month = 1 to 12
%Calendar month of the year

For Day_Type = 1 to 2
%Weekday or weekend 

For Slow_Solar_Count = 1 to N1     
%Daily average �sunny fraction� interval

For Slow_Wind_Count = 1 to N2     
%Daily average wind speed interval

For Hour = 1 to 24
%Hour of the day. 
NB daylight treated differently from night time 

For Fast_Solar_Count = 1 to 2     
%Instantaneously Cloudy or sunny 
(Matlab implied loop)

For Fast_Wind_Count = 1 to N3     
%Instantaneous Wind speed interval 
(Matlab implied loop)

Store Timescale T = 24 hours 

�Slow Loops�

�Fast Loops�

For Month = 1 to 12
%Calendar month of the year

For Day_Type = 1 to 2
%Weekday or weekend 

For Slow_Solar_Count = 1 to N1     
%Daily average �sunny fraction� interval

For Slow_Wind_Count = 1 to N2     
%Daily average wind speed interval

For Hour = 1 to 24
%Hour of the day. 
NB daylight treated differently from night time 

For Fast_Solar_Count = 1 to 2     
%Instantaneously Cloudy or sunny 
(Matlab implied loop)

For Fast_Wind_Count = 1 to N3     
%Instantaneous Wind speed interval 
(Matlab implied loop)

Store Timescale T = 24 hours 

�Slow Loops�

�Fast Loops�

 
 

Figure 2.74 Nested for loops of the 24-hour probabilistic program 

 

2.10.4 Coding Optimisation 
The operation of these �for� loops is the main reason for the increased 

computer run time compared to the wind-only, first computer program. 

However, efficient and well-organised programming has mitigated this 

increase.  
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Firstly, Matlab enables �implied� loops by simultaneously performing 

mathematical operations on all elements (or a range of elements) within 

arrays and matrices. The operations on arrays and matrices considerably 

reduce the computer run time compared to the explicit loops necessary in 

some other computing languages. The implied loops were used at the inner 

two nested loops. 

 

Secondly, the program does as much pre-processing as possible in other 

subroutines. For example: matrices of probabilities for wind speed intervals 

and sunny fraction intervals are pre-calculated. Sun-earth geometry and 

hence solar elevation and air mass are already calculated. Typical numbers of 

week and weekend days in each month (based on the British calendar of 

bank holidays) are pre-calculated, together with their levels of electrical 

demand. The �for� loops then only have to look up the relevant line of each 

matrix, each line being called several times in the course of the program. For 

example, each month of the year has a long-term average daytime wind 

speed and a long-term average night-time wind speed. From these, 

probability density functions (PDFs) of long-term wind speed are constructed 

in a separate subroutine. Each is an array of wind speed intervals with 

associated probabilities. Each array is called many times during the course of 

the program, for every possible value of daily sunny fraction, and for both 

weekdays and weekend days. 

 

Thirdly, the program works mainly in power intervals, not wind speed 

intervals, at least in the inner loops. PDFs of wind power, solar power and 

electrical demand are calculated for each hour of the day. These PDFs are 

directly convoluted for each hour of the day and each daily weather condition. 

The calculation of the wind power PDFs require the wind power intervals to be 

converted into wind speed intervals. The constructed wind speed PDFs, 

section 2.6.3 can then be used to calculate probabilities for each wind power 

interval. This is achieved via an inverted wind turbine power curve. The 

turbine power curve only has to be inverted once for each system variant, 

then treated as a look-up table to save computation time. 
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Fourthly, meaningless combinations or ones with zero probability are not 

calculated. For example, during the night-time hours, there is only one 

possible value of solar power, i.e. zero! Then during the day, at any one 

instant of time, the solar power can only have two possible values according 

to the solar power model, section 2.7, i.e. sunny or cloudy. 

 

Fifthly, the number of possible power intervals is reduced compared to the 

wind-only program. The total number of power levels between minimum net 

power (max. demand and min. solar or wind) and maximum net power (min. 

demand, max. solar and max. wind) is only 51. Further refinements to the 

program may find a more optimum balance between program run time and 

calculation accuracy. 

 

2.10.5 The Energy Store and Time Scale, T 
As outlined in spectrum Integration, section 2.5.1, the probabilistic method 

uses a time-scale, T as its starting point. In the case of the first computer 

program (wind only), this time scale is arbitrary and chosen by the user to be 

anywhere between minutes and months. However, for the second computer 

program, T is fixed at 24 hours. In future, similar programs could be written to 

work on other time scales, but this has not yet been done. Referring to the 

nested �for� loops in fig. 2.74 above, T occurs inside the first four loops 

(month, day type, slow solar count and slow wind count) but outside the last 

three loops (hour, fast solar count and fast wind count), fig. 2.74. 

 

The four outer loops are therefore designated �slow� loops, slower than 24 

hours, and the three inner loops are designated �fast� loops, faster than 24 

hours. Many of the program variable names have been chosen to reflect this 

convention. 

 

2.10.6 Calculation of System Net Power PDF � Convolution of 
Probabilities 

The electrical demand is treated as a deterministic function of hour of the day, 

i.e. a load profile, but solar power and wind power vary both randomly and 

with time of day. The inner two nested loops in fig. 2.74 are used to convolute 
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the wind and solar power probabilities to create PDFs of net power in each 

hour, i.e. solar + wind - demand. The third loop, the hour-of-day loop, 

averages all the net power PDFs to build daily PDFs of net power.  

 

Note that the convolution of solar and wind probabilities could have been 

performed using the specific Matlab �conv� command. However, in the solar 

power model of this method, the instantaneous solar power can have only two 

possible values: sunny and cloudy. The convolution of solar and wind power 

is therefore done more quickly by a simple addition of shifted wind power PDF 

arrays. 

 

2.10.7 Calculation of Store Power PDF 
The net useful power entering or leaving the store also depends on the finite 

charging and discharging rates of the store, the finite round-trip efficiency of 

the store and any standing (parasitic) loss of the store, see section 2.9. The 

net power of the electrical system is converted to net store power as 

illustrated by fig. 2.75. 
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Figure 2.75 Conversion of electrical system power to store power 
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In the example system of fig. 2.75, the maximum discharge rate is 500kW and 

the maximum charge rate is 1000kW. Negative powers are therefore first 

truncated to �500kW and positive powers are truncated to +1000kW.  

 

When the net power is positive, the round-trip efficiency of 70% applies, since 

efficiency losses are accounted as energy enters the store, not as it leaves. 

The positive portion of the graph is therefore kinked and the maximum 

positive power is limited to +700kW 

 

Finally, the store net power is adjusted downward by the parasitic loss of 

100kW. This applies to both the positive and negative portions of the graph. 

The minimum power is reduced from �500 to �600kW and the maximum 

power is reduced from +700kW to +600kW. 

 

In the probabilistic programs, the electrical system net power PDF is modelled 

as an array of net power, e.g. �1000kW to +1500kW in steps of 50kW, each 

with an associated probability in a separate array. The PDF of store net power 

is calculated by simply converting the power levels using the process 

illustrated above. The power levels change while the associated probabilities 

remain unchanged.  

 

2.10.8 Effect of the PDF of Instantaneous Net Store Power on System 
Behaviour 

An example daily PDF of instantaneous net power to or from a store, fig. 2.76 

is shown below for illustration only. One daily PDF is constructed for each 

iteration of the outer four (slow) loops. That is one net PDF for each 

combination of daily average wind speed, daily average sunny fraction, 

weekday and weekend day, in each month. 
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Figure 2.76 Example daily PDF of net instantaneous power 

 

In the above illustration, the average net power is zero, the charging power 

capacity of the store+grid is 50kW and the discharging capacity of the 

store+grid+backup power is 50kW.  Depending on the control strategy chosen 

by the user, section 2.12.4, when there is a positive net power, i.e. a surplus 

of power, some power is sent firstly to the store and secondly to the grid or 

vice versa. Similarly, when there is a negative net power, i.e. a power deficit, 

that deficit is met firstly by the store and secondly by the grid and backup 

power or firstly by grid and backup and secondly by the store. If the positive 

net power is too large some power has to be curtailed and if the negative net 

power is too large then some demand will not be satisfied (a power cut 

results) 

 

The probabilistic programs calculate the total expected powers entering and 

leaving the store during each 24-hour period by integrating the store net 

power PDF (adjusted for the store round-trip efficiency, any store parasitic 

losses and the finite charging and discharging rates of the store).  

 

Periods of 24 hours are thus divided into ones where the net power to the 

store is positive (more power is sent to the store than is drawn from it over 24 

hours), ones where the net power to the store is negative (more power is 
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drawn from the store than is sent to it over 24 hours) and ones where the 

store power is neutral (net surplus or deficit is balanced by the grid and/or 

backup generation). These three cases are treated slightly differently. 

 

2.10.9 When the Daily Average Net Power to the Store is Positive 
Excess power may occur because the net power exceeds the charge power 

rating of the store, or because more energy is sent to the store than is drawn 

from the store over a period of 24 hours (after losses are accounted), or 

because of a combination of these situations. 

 

When the net store power is positive over a 24-hour period, the probabilistic 

method assumes that during that period, the store spends some time full, 

some time emptying, some time re-filling but none empty, fig. 2.77. Note that 

the probabilistic method knows nothing of the time sequence of power 

variations. These figures are for illustration only. 
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Figure 2.77 Behaviour of a store in a period when its average net power is 

positive 
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The probabilistic method also assumes, on average, that the state-of-charge 

of a store is the same at the end of a period as at the beginning. Therefore, 

the net excess power flowing into the store has to be balanced by energy 

curtailment or extra energy exported to the grid. The choice between these 

two options is decided by the store control option, section 2.12.4. 

 

The flows of power to and from the store, from sources and to demand are 

calculated in a probability matrix, a simplified example of which is explained in 

section 2.10.13.  

 

2.10.10 When the Daily Average Net Power to the Store is Negative 

Conversely, a power deficit may occur because the net power drawn from the 

store exceeds the discharge power rating of the store, or because more 

energy is drawn from the store than is sent to the store (after losses are 

accounted), or because of a combination of these situations. 

 

When the net store power is negative over a 24-hour period, the probabilistic 

method assumes that during that period, the store spends some time empty, 

some time filling, some time emptying but none full, fig. 2.78.  
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Figure 2.78 Behaviour of a store in a period when its average net power is 

negative 

 

Again, on average, that the state-of-charge of a store is the same at the end 

of a period as at the beginning. Therefore, the net deficit of power in the store 

has to be balanced by imports from the grid, by backup generation or by 

power cuts (unsatisfied demand). The choice between these options is 

decided by the store operating procedure, section 2.12.4. Again, see section 

2.10.13 for an explanation of the probability matrix.  

 

2.10.11 When the Daily Average Net Power to the Store is Neutral 
Any net store surplus or deficit over 24 hours is balanced by the grid and by 

backup generation. The probabilistic method assumes that the store spends 

some time filling and some time emptying but none full or empty. This does 

not necessarily prevent all power cuts or all power curtailment: There may be 

times when the instantaneous power deficit exceeds the discharge rate of the 

store together with the grid import and backup generation capacities. There 

may also be times when the system power surplus exceeds the store charge 
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rate together with the grid export capacity. The power flows are still calculated 

in a probability matrix.  

 

2.10.12 Store Operating Strategies 
In practice, three different operating options can be modelled by the 24-hour 

probabilistic program, see section 2.12.4: 

 

1. Keep the store as full as possible. Export to grid only when store is full 

or store charge rate is exceeded. Use grid import and backup 

generation whenever net power is negative. 

2. Use the grid and backup generation at a constant rate to keep the store 

as balanced as possible 

3. Keep the store as empty as possible. Import from grid or use backup 

generation only when store is empty or store discharge rate is 

exceeded. Export to grid as much as possible when net power is 

positive. 

 

2.10.13 The Probability Matrix 
At the heart of the probabilistic method is a spreadsheet or matrix of power 

levels and associated probabilities (Barton, Infield 2004). In the case of the 

first program (wind variation only) the matrix only has two dimensions: long-

term variations in wind speed and short-term variations in wind speed. The 

24-hour program (wind, solar and demand all varying) has more dimensions 

but the principle is the same. Each of the short-term variations (fast, inner �for� 

loops in fig. 2.74) are represented by columns of the matrix and each of the 

long-term variations (slow, outer �for� loops in fig. 2.74) are represented by 

rows of the matrix. 

 

A very simplified example of a matrix is shown here in table 2.8, similar to the 

one published in (Barton, Infield 2004). This matrix shows just wind power 

variations as modelled in the wind-only probabilistic program. There is no grid 

connection, representing a stand-alone system with backup generation. The 

store operating period, T is 24 hours in this example (the original published 

example used one hour) and the matrix consists of just 3 rows and 3 columns. 
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Real matrices would consist of many more rows and columns for greater 

accuracy. 

 

In this example, the long-term average wind speed is 8m/s and the standard 

deviation of wind speed variation within each day is 4m/s. This is like a 

turbulence intensity of 50%, but applies over 1 day, not just to variations 

within an hour. The distribution of daily average wind speeds is modelled by 

one PDF. Each row represents a different interval of daily average wind 

speed. Let us call the mid-value of this interval 1U . In the example, 1U  takes 

three possible values: 6m/s (representing daily-average wind speeds from 

0m/s to 7m/s); 8m/s (representing daily-average wind speeds from 7m/s to 

9m/s); and 10m/s (representing daily-average wind speeds above 9m/s). 

Each element within each row represents a different interval of instantaneous 

wind speed (second by second) higher or lower than 1U . The instantaneous 

wind speed 1 2U U= + , where 2U is the interval mid-value of the instantaneous 

variation. The matrix has been constructed so that each column represents a 

fixed ratio of 2 1U U (like a turbulence intensity, but in this case the sample 

period is 24 hours). In the example spreadsheet of Table 2.8, U2 takes values 

of �1, 0 and +1 times the standard deviation of variation within one day. Since 

one standard deviation is 50%, the absolute wind speed, 1 2U U+  takes values 

of 0.5, 1.0 and 1.5 times the daily average wind speed. 

 

E.g. when the daily average is 6m/s, U2 takes values of�3m/s, 0m/s and 

+3m/s, giving absolute wind speeds of 3m/s, 6m/s and 9m/s. These values of 

1 2U U+  actually represent ranges of wind speeds: the first column represents 

values of wind speed less than the mean minus half a standard deviation 

( 1 2U U+ <4.5m/s); the middle column represents wind speeds from mean 

minus half a standard deviation to mean plus a half standard deviation 

(4.5 1 2U U< + <7.5); the final column represents wind speeds greater than 

mean plus half a standard deviation (7.5 1 2U U< + ). Each element in the matrix 

is also associated with a wind turbine power output calculated using the 

turbine power curve of section 2.6.4 at a wind speed of 1 2U U+ , see table 2.8.  
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For each time scale considered, all variations in wind speed slower than the 

time scale in question are described by one probability distribution function, 

( )1p U , (one value of probability for each row of the matrix). In the case of a 

one-hour store, this would be a Weibull distribution, perhaps even a Rayleigh 

distribution (a Weibull with a shape factor of 2). In the case of a 24-hour store 

this would also be a Weibull distribution but with a larger shape factor e.g. 

about 2.9 corresponding to smaller standard deviation. 

 

Variations faster than the time scale are described by a second probability 

distribution of wind speeds within the time period, ( )2p U , (one value of 

probability for each column of the matrix). In the case of a one-hour store, this 

second distribution describes turbulent variations in wind speed, and is best 

represented by a Gaussian distribution. However, in the case of a daily store, 

e.g. table 2.8, this second distribution would include turbulent variation and 

some weather system (synoptic) variation up to periods of one day and would 

be better represented by another Weibull distribution of high shape factor, e.g. 

about 2.4. The wind speed distributions are described in more detail in section 

2.6.3.  

 

In the spreadsheets, energy can be �taken� from points with high wind power 

output and �given� to other points in the same row with lower power. This 

represents the action of a store absorbing transient surpluses and delivering 

this as useful energy a short period later. Energy cannot be exchanged 

between rows because this would require longer-term energy storage than is 

being modelled. The precise redistribution is not important and is not 

calculated, but the spreadsheets do calculate the total amount of power 

transferred, and the total amount of extra energy used to supply the electrical 

demand, see table 2.8. For the example below, the maximum charging rate of 

the store is 500kW and the discharging rate of the store is 350kW. The 

electrical demand is a constant 400kW. The round-trip efficiency of the store 

is 70%, appropriate to an electrochemical storage technology and no standing 

losses are assumed. In practice, standing losses are accounted as a simple 
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addition to the electrical demand. Let us now work through each daily-average 

case in table 2.8: 

 

Row 1: When the daily average wind speed, 1U is 6m/s, the wind turbine is 

only generating for a portion of the time. When the wind turbine does generate 

a surplus, this is easily used up at other times in the day. In the first column, 

1 2U U+ = 3m/s and the turbine is not generating. The store would be able to 

discharge up to 350kW (limited by the discharge rate of the store) if that 

energy were available. In the second column, 1 2U U+ =6m/s and the turbine is 

generating 140kW. This leaves a deficit of 260kW compared to the demand of 

400kW.  The deficit is less than the store discharge capacity, so the store 

would be able to discharge 260kW, if the energy were available. In the third 

column, 1 2U U+ = 9m/s and there is a small surplus of 100kW. This can all be 

absorbed by the store, but the useful stored power is only 70kW because the 

efficiency of the store is only 70%. 

 

The probability-weighted average stored power is 22kW and the probability-

weighted average spare discharge capacity is 207kW. The useful extra power 

delivered to the load is the minimum of these, i.e. 22kW, limited by the wind 

energy available during the 24-hour period. This leaves zero curtailed power 

but 201kW of demand to be met by backup generation (averaged over the 24 

hours). 

 

Row 2: When the daily average wind speed, 1U is 8m/s, the times of power 

deficit are almost exactly balanced by times of power surplus. In the first 

column, wind speed, 1 2U U+ = 4m/s, the wind power is 24kW and the power 

deficit is 376kW. However, the spare discharge capacity is again limited to 

350kW by the discharge capacity of the store. In column 2, the wind speed is 

8m/s and the wind power is 360kW, leaving a deficit of 40kW. This is well 

within the discharge capacity of the store. In column 3, the wind speed is 

12m/s and the wind power is 915kW. This produces a surplus of 515kW of 

which only 500kW can be absorbed by the store, limited by the charging rate. 
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However, the stored power is only 350kW because the efficiency of the store 

is only 70%.  

 

The raw probability-weighted surplus is 28kW larger than the raw probability-

weighted deficit, but when the store power ratings and efficiency are taken 

into account, the stored power is 15kW less than the spare discharge 

capacity. The average extra power delivered to the load is therefore limited by 

the stored energy, equal to 109kW. This leaves 5kW of curtailed power and 

23kW to be met by backup generation (averaged over the 24 hours). 

 

Row 3: When the daily average wind speed, 1U  is 10m/s, the wind power 

exceeds the demand most of the time. The probability-weighted average 

power surplus is 280kW. In column 1, the wind speed, 1 2U U+ = 5m/s and the 

turbine power is 69kW leaving a deficit of 331kW. This is within the discharge 

capacity of the store and can be supplied by the store if sufficient energy is 

available. In column 2, the wind speed is 10m/s and the wind power is 648kW. 

This produces a surplus of 248kW, all of which could be absorbed by the 

store, but only 174kW of which could be stored because of the 70% efficiency 

factor. In column 3, the wind speed is 15m/s (above the rated wind speed of 

the turbine) and the wind power is 1000kW. This creates a surplus of 600kW, 

only 500kW of which can be absorbed by the store, and only 350kW can be 

usefully stored due to the 70% efficiency of the store. 

 

In this row, the probability-weighted stored power is 175kW but the spare 

discharge capacity is only 103kW. The extra power that can be delivered to 

the load is therefore limited by the deficit to 103kW. This time, no power is 

required from backup generation, but an average of 133kW is curtailed, 

calculated as follows: The useful extra power is 103kW, so the total power 

absorbed by the store is 103kW divided by 70% = 147kW. The difference 

between this and the surplus of 280kW is 133kW. Then the power lost due to 

the finite efficiency of the store is (100%-70%) times 147kW = 44kW. 
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The spreadsheets include the round trip efficiency of an appropriate energy 

storage technology. For example, the spreadsheet for one-hour storage 

assumes an efficiency of 90% appropriate to a high-speed flywheel system, 

whilst the Daily spreadsheet assumes an efficiency of 70% appropriate to an 

electrochemical store, for example the Regenesys flow cell system. 

 

Table 2.8 Illustration of a Daily Probability Matrix in Operation � Wind Only 

Model with Constant Demand of 400kW 

Wind Turbine Power 

Capacity =1000kW 

Mean    - 

1  

Std. Dev. 

Mean Mean + 1 

Std. Dev. 

Probability 

Weighted 

Average 

Column Probabilities 0.31 0.38 0.31  

Row 1: U1=6m/s, 

Probability = 0.43 

 

U1+U2 3.0 6.0 9.0 6.0 

Wind Power, kW 0 140 500 208 

Surplus Power, kW 0 0 100 31 

Stored Power, kW 0 0 70 22 

Deficit Power, kW 400 260 0 223 

Spare Discharge 

Capacity, kW 

350 260 0 207 

Extra Power to Load, kW   22 

Required Backup, kW  201 

Curtailed Power, kW  0 

Store Inefficiency, kW  9 
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Row 2: U1=8m/s, 

Probability = 0.36 

 

U1+U2 4.0 8.0 12.0 8.0 

Wind Power, kW 24 360 915 428 

Surplus Power, kW 0 0 515 160 

Power Stored, kW 0 0 350 109 

Deficit Power, kW 376 40 0 132 

Extra Discharge 

Capacity, kW 

350 40 0 124 

Extra Power to Load, kW   109 

Required Backup, kW  23 

Curtailed Power, kW  5 

Store Inefficiency, kW  46 

Row 3: U1=12m/s, 

Probability = 0.21 

 

U1+U2 5.0 10.0 15.0 10.0 

Wind Power, kW 69 648 1000 578 

Surplus Power, kW 0 248 600 280 

Power Stored, kW 0 174 350 175 

Deficit Power, kW 331 0 0 103 

Extra Discharge 

Capacity, kW 

331 0 0 103 

Extra Power to load, kW  103 

Required Backup, kW  0 

Curtailed Power, kW  133 

Store Inefficiency, kW  44 
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2.11 Calculation of Energy Capacity 
This section sets out the method of calculating the energy capacity of a store 

in a given electricity system with a given store operating period, T. As 

described in the introduction to the methodology, section 2.1, the starting 

point for the probabilistic modelling method is the typical cycle time or 

operating period, T of the energy store. The store smoothes short-term 

variations in power that occur within a time-scale of T, but not longer-term 

variations with longer cycle times. 

 

The probabilistic method uses the third filter function, section 2.5.5 to 

calculate the standard deviation of accumulated energy within a period, T 

originating from each frequency component, iω  of wind speed variation or 

solar irradiance variation. The third filter function is used to create a third 

filtered spectrum of wind speed variations, fig. 2.79 and a third filtered 

spectrum of solar irradiance variations, fig. 2.80. The area under each of 

these filtered functions represents a variance in state-of-charge of an energy 

store with appropriate scaling, e.g. the square of the average gradient of the 

wind turbine power curve, K, see section 2.5.6. The spikes are first truncated 

from each spectrum to remove the variance associated with periodic 

variations, because the state-of-charge variance associated with periodicity is 

dealt with separately, section 2.11.4.1. 
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 Figure 2.79 Third filter function applied to the generic wind speed variation 

spectrum, scaled to an average wind speed of 8m/s 

 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

-5 -4 -3 -2 -1 0 1 2
Log10 of frequency (per hour)

A
m

pl
itu

de

Full
No Spikes
State-Of-charge

 
Figure 2.80 Third filter function applied to the solar irradiance variation 

spectrum, as measured at Rutherford Appleton Laboratory 
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2.11.1 Balanced Power Conditions for Store Size Calculation 
For a given electricity system, and chosen period of time, T, the required size 

of store is a maximum in periods in which the energy entering the store is 

exactly balanced by the energy leaving the store, i.e. balanced conditions. A 

very simple example follows to illustrate why this is so. 

 

Suppose that the net power into or out of a store follows a square wave, ( )s t  

with a mark-space ratio equal to 1.0 and a period, τ . Suppose also that the 

average value of net power is offset from zero by a value, m : 

 

( )s t m= + ∆  when 
2

t τ<  

 

( )s t m= − ∆  when 
2

t τ>        (2.63) 

 

For example, if m =+2kW, ∆ =5kW and τ =8 hours, the following square wave 

results, fig. 2.81: 
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Figure 2.81 Square wave graph of net power into and out of the store 
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If m is positive (average net power entering the store) then the state of charge 

would ratchet up until the store is full. Then the state-of-charge will dip below 

full and recover on each cycle of net power, fig. 2.82: 
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Figure 2.82 State of charge resulting from a square wave of positive net 

power 

 

The mean value of net power is greater than zero. Therefore the power into 

the store in the positive half of the square wave is greater than the power 

drawn from the store in the negative half of the cycle. This causes the upward 

slopes of state-of-charge (SOC) to be steeper than the downward slopes, 

leaving a portion of each cycle when the store is full. The maximum excursion 

from full is given by integrating the net power function, ( )s t  over the negative 

half of each cycle, so the negative change in SOC ( )
2

m τ= ∆ − .  (2.64) 

In the numerical example above, the maximum excursion from full is 12kWh. 

 

Now let us consider the case where m is negative (average net power leaving 

the store). Then the state of charge would ratchet down until the store is 

empty. The state-of-charge will then rise above empty and drop again on each 

cycle of net power, fig. 2.83: 
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Figure 2.83 State of charge resulting from a square wave of negative net 

power 

 

The mean value of net power is less than zero. Therefore the power into the 

store in the positive half of the square wave is less than the power drawn from 

the store in the negative half of the cycle. This causes the downward slopes of 

state-of-charge (SOC) to be steeper than the upward slopes, leaving a portion 

of each cycle when the store is empty. The maximum excursion from full is 

given by integrating the net power function, ( )s t  over the positive half of each 

cycle, so the positive change in SOC ( )
2

m τ= ∆ +    (2.65) 

In the numerical example above, now with m =-2kW, ∆ =5kW and τ =8 hours, 

the maximum excursion from empty is 12kWh. 

 

Whether the net power is positive or negative, the range of state-of-charge is 

always: ( )
2

m τ= ∆ − , and for a given magnitude and period of power 

variations, the range of state-of-charge is a maximum when m =0, i.e. when 

the energy entering the store is equal to the energy leaving the store. Similar 

analysis would apply for any other shape of power variations, e.g. triangle 
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wave, sinusoid etc. The largest range in state-of-charge is observed, and 

therefore the largest store size is required, when the store energy is balanced. 

 

2.11.2 Locating the Periods in which Store Energy is Balanced 
In the wind-only probabilistic computer program, only wind speed varies while 

electrical demand remains constant and solar power is absent. This means 

there is only one long-term �slow� loop, fig. 2.74, corresponding to varying 

period-average wind speed. There exists only one iteration of that slow loop in 

which the store power is most nearly balanced. This is the one where the 

period-average wind speed is such that wind power balances demand + store 

losses. This is also the iteration where the store energy capacity should be 

calculated. 

 

However, in the 24-hour probabilistic program, daily average wind speed 

changes, daily average demand changes (according to weekdays or holidays 

and with month of the year), and daily average solar power changes (with 

daily sunny fraction and as solar elevations change through the year), fig. 

2.74. Therefore, there are many different cases in which the store energy will 

be balanced: This may occur on a low-demand day with moderate wind power 

and low solar power, or on a high-demand day with high wind power and 

moderate solar power, or on a moderate-demand day with low wind power 

and high solar power. The possible combinations are large in number.  

 

Imagining the varying wind power as a continuous line, the wind-only program 

merely has to find the point on this line where supply = demand + losses, but 

the 24-hour program has to find a surface in multi-dimensional space (four 

dimensions in this case). The various parameters of month, day type, daily 

average wind speed and daily average sunny fraction each represent one 

dimension in this space. Month and day type are examples of discontinuous 

variation, with just a few discrete possible values, but daily average wind 

speed and daily sunny fraction are examples of continuous variation, having a 

large number of possible values, determined only by the bin sizes used in the 

program. 
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The 24-hour probabilistic program solves the problem by considering each 

two-dimensional map of wind speed and sunny fraction within each discrete 

case of day type and month.  

 

2.11.2.1 A Worked Example  
For example, table 2.9 is derived for weekend days in June in an electrical 

system with an average load of 500kW, a wind turbine capacity of 500kW and 

a solar PV installed capacity of 1MW. The store has 100% round-trip 

efficiency and zero parasitic loss. Ignoring for a moment the improbably high 

level of solar PV capacity, and the perfectly efficient store, the table shows 

which days have a net store surplus and which days have a net store deficit: 

 

Table 2.9 The Boundary Between Energy Surplus and Energy Deficit  

 Increasing Daily Average Wind Speed → 
D D D D D D D S S S S S S S S S S S D D D D D D D D 

D D D D D D D S S S S S S S S S S S D D D D D D D D 

D D D D D D D S S S S S S S S S S S D D D D D D D D 

D D D D D D D S S S S S S S S S S S S D D D D D D D 

D D D D D D D S S S S S S S S S S S S D D D D D D D 

D D D D D D S S S S S S S S S S S S S S D D D D D D 

D D D D D D S S S S S S S S S S S S S S D D D D D D 

D D D D D D S S S S S S S S S S S S S S S D D D D D 

D D D D D D S S S S S S S S S S S S S S S S D D D D 

D D D D D D S S S S S S S S S S S S S S S S S D D D 

D D D D D S S S S S S S S S S S S S S S S S S D D D 

D D D D D S S S S S S S S S S S S S S S S S S S D D 

D D D D D S S S S S S S S S S S S S S S S S S S S D 

D D D D D S S S S S S S S S S S S S S S S S S S S S 

D D D D S S S S S S S S S S S S S S S S S S S S S S 

D D D D S S S S S S S S S S S S S S S S S S S S S S 
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In table 2.9, the areas marked with �D� have a net energy deficit and areas 

marked with an �S� have a net energy surplus. The left-hand boundary 

represents zero wind speed and zero wind power. Even when the daily sunny 
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fraction is 1.0 (the bottom left hand corner) the solar power is still insufficient 

to supply the daily average electrical demand. 

 

The middle of table 2.9 represents moderate wind speeds and useful wind 

power, creating an energy surplus when averaged over the day. Moving from 

left to right, the boundary between deficit, �D� and surplus, �S� occurs first at 

the bottom of table 2.9, where solar power is high and wind power is low, and 

later at the top of table 2.9 where solar power is low but wind power is higher. 

 

The right-hand side of table 2.9 represents very high daily average wind 

speeds that cause the turbine to be furled for part of the day, causing lower 

wind power again. The top-right corner of table 2.9 therefore has a net energy 

deficit and is full of �D�s. This creates another boundary between surplus and 

deficit. Moving from left to right, this second boundary occurs first at the top of 

table 2.9, where wind power is still high and solar power is low, and second at 

the middle of the table, where wind power is lower and solar power is 

moderately high. The boundary between �S� and �D� disappears off the right-

hand edge of table 2.9 before it reaches the bottom edge. If the table 

extended to even higher daily average wind speeds, then the furling of the 

turbine would again cause virtually zero wind power and some power deficit 

even at highest solar power. 

 

The size of the store is calculated at the points closest to the �D� to �S� 

boundary, in the squares highlighted in red, bold font. These are the squares 

where a change of one discrete bin increment in either sunny fraction or daily 

average wind speed would be enough to change the store state from �S� to �D� 

or vice versa. The highlighted squares are either an �S� surrounded by 3 �D�s, 

or a �D� surrounded by 3 �S�s. These squares represent the daily weather 

conditions that are the very closest to the boundary.  

 

Note that this boundary between surplus and deficit changes into a broad 

balanced region when a grid connection and backup generation are available, 

under control option 2; see section 2.12.4.2. The principles of the calculation 

remain unchanged. 
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2.11.3 Energy Capacity for the Wind-Only Case � The First Probabilistic 
Program 

In the case of wind power alone, the energy capacity is calculated from the 

filtered wind spectrum, after application of the third filter function, see section 

2.5.5, eq. 2.9. The filtered spectrum is weighted by 1/(frequency squared) and 

integrated to give a variance of wind speed x time, with dimensions of (wind 

speed x time) squared. This quantity is rather meaningless on its own, but 

when multiplied by the average effective gradient of the wind turbine power 

curve, K, eq. 2.66, this yields the variance in state-of-charge within a period, 

e.g. one day. The resulting quantity has dimensions of (power x time) 

squared, or energy squared, as expected. 

 

The effective gradient of the wind turbine power curve is not immediately 

available or obvious. The gradient depends which part of the curve we look at. 

For example, the bottom end of the curve is less steep than the middle or top 

end of the working range, fig. 2.4. Above the rated wind speed, the gradient is 

effectively zero. The gradient also depends on the range over which we take 

the average, since the turbine power curve is a curve not a straight line. The 

probabilistic method avoids these problems by calculating the standard 

deviation of wind speed within the store period, e.g. standard deviation of 

wind speeds within a day, and the standard deviation of wind powers resulting 

from the PDF of wind speeds within the same day. The standard deviation of 

within-day wind speeds is already calculated as part of the construction of 

wind speed distributions, see section 2.6.3. The standard deviation of wind 

powers has to be calculated by applying the wind turbine power curve to the 

resulting PDF of within-day wind speeds. Then: 

 

( )
( )

_ _
_ _ _ ,

_ _
Std Dev Turbine Power

Effective Turbine Curve Gradient K
Std Dev Wind Speed

=   (2.66) 

 

The details of how eq. 2.66 is evaluated are described in section 2.5.6. 
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2.11.4 Solar Power, Wind Power and Demand  - The 24-Hour 
Probabilistic Program 
The energy capacity due to varying wind power is calculated as before, but for 

the case of solar power, there is no power curve to worry about: The power 

output is proportional to the solar irradiance multiplied by the solar power 

capacity. The gradient, K in the eq. 2.9 is simply the solar power capacity in 

( )2kW W m . This should approximately be the power capacity in MW under 

standard test conditions of 1000W/m2, 25°C cell temperature and an air mass 

of 1.5. 

 

The solar power varies through the day according to the solar elevation. One 

function applies to sunny conditions and another for cloudy conditions; see 

sections 2.7.4 through 2.7.6 and fig. 2.58. Since the solar elevation is a 

function of sun-earth geometry, and the average sunny fraction is assumed to 

be constant through the day, the PDF of solar power within a day can easily 

be directly constructed. The variance of solar power is thus directly calculated 

for each bin of daily-average sunny fraction. 

 

In the probabilistic method, the electrical demand is assumed to be a direct 

function of time of day and day type, see section 2.8. The variance of demand 

within a day can therefore be directly calculated. 

 

Unfortunately, the total variation in state-of-charge cannot be calculated 

simply by summing the variances of wind, solar and demand variances, 

because within a day, wind power, solar power and demand are far from 

independent. All vary with time of day. Even wind speeds are higher during 

the day than at night. The probabilistic method therefore calculates the 

average wind power, the average solar power and the demand during each 

hour of the day and calculates the average net system power = wind power + 

solar power � demand, for each hour. The method steps through each hour of 

the day, calculating the average daily periodic accumulated energy surplus or 

deficit. This periodic variation is not a sine wave, or even a random 

combination of sine waves, but a strange and �knobbly� shaped wave specific 
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to that combination of daily weather conditions, day type and month. This 

time, the probabilistic method calculates the difference between the minimum 

and maximum values of state-of-charge through the day. The difference 

between minimum and maximum is treated as equal to twice the �periodic� 

standard deviation in state-of-charge. The following analysis shows why this is 

so: 

 

2.11.4.1 Daily Periodic Variations  
Referring to section 2.5.5, the effect on variance of state-of-charge of a store 

due to one component of spectral variation, iω  with mean-to-peak amplitude, 

iA  is given by: 

 ( ) ( )
2 2

2 2 2

5 1 2cos cos 1
6 6

i
i i

i i

A K T T
T

ω ω
ω ω

 
 + + −  

 
    (2.67) 

If we have just one component of frequency, Tω  and that frequency 

completes exactly one cycle within the store period, T , then 2TTω π= the 

above formula becomes ( ) ( )
2 2

2 2

5 1 2cos 2 cos 2 1
6 6 4

T

T

A K π π
ω π

  + + −   
  (2.68) 

and this reduces to 
2 2

2
T

T

A K
ω

. The standard deviation of state-of-charge is 

therefore ._ . T

T

A KStd Dev
ω

=        (2.69) 

 

Now if we consider this one spectral component, Tω  and calculate the 

accumulated energy surplus or deficit through one cycle of period, T , starting 

at zero energy and with zero phase angle: 

 

( )_ sinT TPower Component A K tω=  at time, t  after the start of the period. 

Then at time, τ after the start, 

( ) ( ) ( )
0

0

_ sin cos 1 cos
t

tT T
T T T Tt

T Tt

A K A KAccumulated Energy A K t dt t
τ

τ
ω ω ω τ

ω ω

=
=

=
=

   = = − = −   ∫
 

(2.70) 
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This energy has a minimum value of zero at 0t =  and t T= , and a maximum 

value of 2 T

T

A K
ω

 at 2t T= .  

Thus the minimum-to-maximum range of state-of-charge is 2 T

T

A K
ω

 

and half this range is T

T

A K
ω

, as above.      (2.71) 

Thus for a single frequency component, the standard deviation in state-of-

charge is equivalent to half the minimum-to-maximum range in accumulated 

energy. That is why the value of �standard deviation� for the daily periodic 

variation in energy is half the minimum-to-maximum range, as used in the 

probabilistic modelling programs. This becomes important when combining 

the size of store calculated to cope with periodic variations with the sizes of 

store calculated to cope with stochastic variations, section 2.11.4.3. 

 

Note: The coding of the equations in the probabilistic Matlab programs 

actually contain two factors of 2. The first is because a Fourier transform 

results in a power spectrum, the magnitude of which represents only half the 

total variance of the original time series, (Bendat, Piersol 1993), pages 10 to 

12. The second factor of 2 is because the actual amplitude of each frequency 

component, A  is 2  times its root-mean-square value. 

 

2.11.4.2 Adjustment for Finite Power Ratings, Finite Efficiency and 
Parasitic Losses in the Store 
The user inputs to the probabilistic programs include the maximum charging 

power and the maximum discharging power of the energy store. The 

instantaneous net power of the electricity system (= wind power + solar power 

� demand � parasitic losses) may at times be in greater surplus than the 

maximum charging power of the store, or may be in greater deficit than the 

maximum discharging power of the store. In these circumstances, some 

energy is curtailed or some additional electrical demand must be supplied by 

backup power, grid connection or is not satisfied at all. The actual standard 

deviation of state-of-charge will be reduced accordingly. The probabilistic 
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method does not have or use any temporal relationships to directly calculate 

the degree of reduction in required energy capacity. Instead, the probabilistic 

program assumes that the standard deviation of state-of-charge is 

proportional to the actual useful power entering or leaving the store, not the 

external power available. 

 

The charging power includes the inefficiency loss of the store, which is 

accounted as energy enters the store, not as it leaves. At times of surplus, the 

charging power is therefore greater than the useful energy stored, unless the 

store efficiency is 100%. The standard deviation of state-of-charge is also 

reduced by the finite efficiency of the store. 

 

The parasitic loss is effectively an additional electrical demand, and shifts the 

actual store power in the negative direction. 

 

All these effects are accounted for by multiplying the variances of solar power 

state-of-charge, wind power state-of-charge and periodic state-of-charge by a 

further adjustment ratio:  

 

_ _ _ _ __
_ _ _ _ _

Variance Of Net Useful Store PowerAdjustment Ratio
Variance Of Net Electrical System Power

=  (2.72) 

 

The probabilistic method already calculates the PDF of net useful power 

entering or leaving the store, as part of the accounting of power flows, 

sections 2.10.6 and 2.10.7. The variance of net useful store power is 

calculated directly from this PDF. 

 

The variance of net electrical system power for a given hour has to be 

calculated separately as the sum of variances of periodic power, solar power 

and wind power within the day. As a check on the accuracy of the method, 

when the store efficiency is 100%, when the parasitic loss is zero, and when 

the charge and discharge rates are so large as to not restrict the operation of 

the energy store at all, then the variance of net electrical system power is 

identical to the variance of net useful store power, within numerical error. 
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2.11.4.3 Combination of State-Of-Charge Variances 
Now the total variance in state-of-charge within each day is the sum of the 

three components. The standard deviation in state-of-charge is the square 

root of this: 

 

( ) ( ) ( )_ _ _ _ _SOC Std Dev Solar Variance Wind Variance Periodic Variance= + +  

(2.73) 

For each condition of month and week day or holiday (24 different 

combinations), each square represents a combination of daily wind speed and 

daily sunny fraction, each with its associated probability, based on the PDF of 

daily sunny fractions for that month and the PDF of daily average wind speeds 

for that month. As stated in section 2.4.8, the daily sunny fraction and the 

daily average wind speed for each month are assumed to be independently 

distributed. The individual probabilities of sunny fraction and wind speed are 

therefore simply multiplied together. The resulting probabilities are used to 

weight the energy store sizes for each square, to give a weighted average 

store size for that month and day type. Taking the example above of weekend 

days in June, the probabilities of each square are shown in table 2.10. 
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Table 2.10 Probabilities of Each Combination of Daily Average Wind Speed 

and Daily Sunny Fraction for Weekend Days in June, x 10,000 

 Increasing Daily Average Wind Speed → 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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The probabilities have been multiplied by 10,000 and then rounded to the 

nearest integer to turn them into meaningful numbers. Only the boundary 

points are shown, i.e. the combinations of wind speed and solar irradiance 

where the store size is calculated. These squares are highlighted in bold, red 

text. Note that only the left-hand boundary has significant associated 

probabilities. These are the squares representing combinations with 

moderately high daily average wind speeds.  

 

The right hand boundary represents times when the wind turbine is furled for 

part of the day due to excessive wind speeds and has very low probabilities. 

In fact, for the purposes of calculating the store size, the right hand boundary 

can usually be ignored. It is included for completeness in the probabilistic 

method in case the user would want to model a case with very high wind 

speeds compared to the rated wind speed of the turbine. 
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2.11.5 Calculation of Store Energy Capacity From Variance in State-Of-
Charge 
The standard deviation in state-of-charge of a store is equal to the square root 

of the variance. The energy capacity of the store is then calculated as +/- 1.0 

standard deviations, i.e. the allowed energy range is 2 standard deviations.  

 

This value of 2 standard deviations was found empirically. It has no direct 

analytical basis, although it is an elegant mathematical value: The excursion 

of state-of-charge can go positive or negative with equal probability, when the 

electrical system is balanced, with amplitude equal to the standard deviation 

of state-of-charge. This value was chosen because it produces good 

agreement between the probabilistic method and its time-step validation, on 

any time scale. The probabilistic method is run first using an assumed time-

period of storage. The probabilistic method yields a standard deviation of 

state-of-charge and hence a store energy capacity equal to twice this value. 

This store energy capacity is then used in a time-step validation of the same 

system, and the results give excellent agreement with the probabilistic 

method, for example in energy delivered, energy curtailed, unsatisfied 

demand and proportions of time spent full and empty. 

 

To give a very simple example, suppose an energy store has a working period 

of 24 hours, in an electricity system with a turbine that has a completely linear 

power curve, i.e. power in kW is equal to wind speed in m/s. Suppose the site 

average wind speed is 8m/s. Using the scaled RAL wind power spectrum 

produced from the years 1999 to 2002, the variance in state-of-charge is 

calculated to be 136.63 (m/s-hours)2. The standard deviation is 11.69 m/s-

hours. Then using an example turbine power curve gradient of 1kW/(m/s), the 

required energy range of the store is 2 standard deviations, equal to 

23.38kWh. The average power from the wind turbine is 8kW. Therefore the 

capacity of the store represents almost 3 hours of wind power production 

(24kWh), but the store can smooth out variations within a 24-hour period. 

Most power passes straight from the wind turbine to the load, and only a small 

fraction has to pass into or out of the store. 
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Moving back to our earlier example of a real wind turbine power curve and 

solar power with an average demand of 500kW, the calculated store sizes are 

listed in the table2.11 for weekend days in June. Only the left-hand portion of 

the table is shown. 

 

Table 2.11 Store Energy Capacities in kWh Calculated for 24-hour Storage in 

Weekend Days in June for an Example System 

 Increasing  Daily Average Wind Speed→ 
726 726 733 843 1077 1408 1683 1796 1766 1661 1548 1496 1554 1711

1009 1009 1014 1101 1295 1589 1843 1948 1917 1817 1709 1658 1705 1842

1239 1239 1244 1322 1494 1759 1993 2091 2062 1967 1866 1813 1849 1968

1438 1438 1443 1515 1675 1921 2142 2233 2204 2112 2014 1960 1985 2092

1619 1619 1624 1691 1841 2074 2284 2370 2341 2251 2155 2099 2119 2214

1789 1789 1793 1857 1997 2219 2420 2503 2473 2385 2290 2235 2250 2333

1949 1949 1953 2016 2149 2358 2551 2631 2600 2514 2424 2369 2377 2449

2100 2100 2104 2166 2295 2496 2679 2755 2726 2644 2555 2499 2501 2564

2245 2245 2250 2311 2436 2631 2809 2881 2852 2771 2684 2626 2622 2677

2385 2385 2389 2450 2573 2763 2935 3005 2975 2895 2809 2750 2741 2788

2521 2521 2525 2585 2706 2891 3059 3128 3097 3018 2932 2871 2859 2898

2652 2652 2657 2717 2836 3017 3182 3248 3216 3138 3053 2991 2974 3007

2781 2781 2785 2845 2963 3140 3303 3368 3335 3256 3171 3108 3088 3115

2907 2907 2911 2971 3087 3262 3423 3485 3452 3373 3289 3224 3200 3222

3030 3030 3035 3095 3210 3382 3541 3601 3568 3488 3404 3339 3312 3328

3152 3152 3156 3216 3330 3501 3657 3717 3683 3603 3518 3452 3422 3433
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3271 3271 3275 3336 3449 3619 3773 3830 3797 3717 3631 3564 3531 3538

 

Only the values highlighted in red, bold font are the ones closest to the break-

even boundary and are the store sizes used to calculate the weighted store 

size for weekend days in June. Weighting these store sizes by the 

probabilities in table 2.10 above, we get a store energy capacity of 2787kWh. 

This would be enough to supply the long-term average demand of 500kW for 

only 5.6 hours, but of course most of the power goes directly from source to 

demand without having to charge or discharge the store. 
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2.11.6 Overall Energy Store Size 
In the wind-only program, only one energy store size is calculated. However, 

the 24-hour program creates 24 different store sizes; that is one for each 

month and day type. These store sizes are weighted and averaged to produce 

an overall store energy capacity. This weighting is in proportion to the total 

amount of time that the electricity system spends close to the break-even 

boundary in a whole modelled year. The monthly store sizes are first weighted 

according to the total of the highlighted probabilities in table 2.10. This is a 

good indication of the total time spent close to the break-even boundary in 

each day type and in each month. These weightings are shown for the 

example case above in the table 2.12: 

 

Table 2.12. Indication of Time Spent Close to the Break-Even Boundary, 

Probabilities x 10,000 

Month Weekend Days Week Days 

January 0 0 

February 71 0 

March 216 9 

April 485 439 

May 622 562 

June 839 634 

July 833 577 

August 549 341 

September 344 268 

October 180 164 

November 7 0 

December 0 0 

 

Table 2.12 shows that there are many days in the summer when supply 

almost equals demand, but few days in winter, especially on weekdays. This 

is because electrical demand is higher in winter and solar power is much 

lower; even on windy winter days, 500kW of wind power is insufficient to meet 

the daily average demand. 
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Secondly, the store sizes are weighted according to the number of days in the 

year of each type, e.g. there are 9 weekend days in June. The total number of 

weekend days and weekdays in each month is shown in table 2.6 in section 

2.8.4. The two weighting matrices are multiplied together, element-by-element 

to give the overall weighting factors for each day type. 

 

For the example above, the resulting yearly overall store size is calculated to 

be 2548.6 kWh. 

 

2.11.7 Validation 

The calculated store sizes have been used as inputs to time stepping models 

of the same electrical systems. The results, section 3, show good agreement 

between the probabilistic method and the time step model run in this way. 

This constitutes the validation of the store size calculation and of the 

probabilistic method in general. 
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2.12 Import, Export and Backup Generation 
The second probabilistic program (the 24-hour program), and its time-step 

validation, allow both grid-connected and backup generator operation to be 

modelled. When there is a power surplus, electricity may be exported via the 

grid connection as an alternative to charging the store. When there is a power 

deficit, electricity may be supplied from the grid connection or from a backup 

generator. If not required, these options are turned off by setting their power 

capacities to zero. 

 

2.12.1 Grid Connection 
The grid connection is modelled as a maximum power capacity of grid import 

and a maximum power capacity of grid export. The import need not have the 

same capacity as the export. 

 

The grid electricity also has an associated price in money, e.g. pence per 

kWh. The price is primarily a function of local electrical demand, which is 

assumed to be approximately proportional to the total demand on the grid. 

The price dependence is a simple mathematical formula first derived from a 

combination of the demand-duration curve for England and Wales, (Burdon 

1998) and the price-duration curve for England and Wales, (Milborrow 2000). 

This makes the crude assumption that price is always a direct function of 

demand only. Furthermore, the derived demand-price relationship was fitted 

by a simple mathematical curve. Thus the financial data inputs to the 

modelling programs are very approximate and any financial results are 

similarly approximate. Nevertheless, they demonstrate the principle of 

including costs in the probabilistic modelling method, and therefore the 

possibility of performing an economic optimisation on the electricity system 

and its energy storage. 

 

In the models, the grid prices are further modified by a price mark-up of 

imported electricity and a price mark-down of exported electricity, to reflect 

grid pricing, transmission losses, and imperfect market pricing. 
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2.12.2 Backup Generation 
This is modelled as an infinitely variable backup generating power, up to a 

user-defined maximum value. At times of power deficit, grid import is always 

used before backup generation. 

 

The electricity produced by backup power has a flat cost per unit, e.g. pence 

per kWh. In the computer programs written for this thesis, the chosen cost-

per-unit of backup generation was nearly always greater than the cost-per-unit 

of grid electricity. 

 

2.12.3 An Alternative Method of Modelling a Grid Connection or Backup 
Generation 
In some weak electricity grids, the amount of intermittent renewable energy 

that can be connected is limited by the amount of locally generated electricity 

that the grid can absorb. The grid may be sufficient however, for any likely 

local electricity demand. In these cases, the grid connection can be modelled 

as the local demand. In the modelling programs, the local demand is replaced 

by the capacity of the local grid to absorb renewable energy, and this capacity 

may vary with time of day, day type and month of the year. There is then no 

need to model a separate grid connection, for example (Barton, Infield 2004) 

 

Alternatively, the grid may be able to absorb the entire renewable energy 

supply at all times, but may not always be able to satisfy the local demand on 

its own. In that case, the local demand is replaced by the net local demand 

subtracting the grid import capacity. Again, there would be no need to model a 

separate grid connection. 

 

2.12.4 Control Options for the 24-Hour Probabilistic Program and its 
Validation Program 
Without a grid connection or backup generation, the energy store system has 

no real choice in its behaviour. It charges when there is a local surplus of 

electricity and discharges when there is a local deficit of electricity (net local 

power is adjusted for store losses in all cases). 
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However, a grid connection or backup generation gives the store control 

system a choice: Should any surplus electricity be directed to the store or to 

grid export? Should any deficit in electricity be satisfied by discharging the 

store, or by importing from the grid, or by running the backup generator? In a 

real system, the choice depends on the relative costs and opportunities of the 

options available.  

 

2.12.4.1 Control Option 1 
In a system that is in danger of not satisfying all its demand at all times, a 

sensible control system may cause the store to remain as full as possible. The 

backup generator and grid import will be used to charge the store whenever 

their capacity is not required to supply the demand directly. This will certainly 

be the case when the consequences of unsatisfied demand are severe. A 

simple example of such a system is an uninterruptible power supply (UPS). 

 

In the 24-hour probabilistic program, this type of control is called �control 

option 1�. The store stays as full as possible and the store size is calculated 

on the boundary of: Wind power + solar power + max. grid import + backup 

generation = demand + losses, averaged over 24 hours. This is where the 

store is considered to be �balanced�, section 2.11.2. Electricity is only exported 

to the grid when the store is full, or when the store cannot absorb the entire 

electricity surplus. 

 

2.12.4.2 Control Option 2 
This control option attempts to combine the best of options 1 (above) and 3 

(below). The store�s management system uses perfect weather forecasting to 

calculate the net energy surplus or deficit to the store over the following 24 

hours. The management system then uses grid export, grid import and 

backup generation appropriately to balance the power flows to or from the 

store. Provided the net surplus or deficit is not too large, the store neither 

goes completely empty nor completely full. The risk of power cuts and the risk 

of power curtailment are both minimised at the same time. 
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The 24-hour probabilistic program models this situation by constructing PDFs 

of wind power and solar power within each 24-hour period, given the 24-hour 

average conditions. Net PDFs of power to or from the store, including the 

store losses, are constructed for each set of weather conditions, for each day 

type and month of the year. In order to simplify the control system and the 

program software, the grid import or export power is held constant within each 

24-hour period. Backup generation is only used if grid import is insufficient to 

balance the net store power flows, in which case backup generation is also 

held constant during each 24-hour period. If the grid import capacity and 

backup generation are insufficient to balance a deficit of electricity over 24 

hours, some power cuts will be unavoidable. In this case, the store reverts to 

�control option 1� and tries to stay as full as possible at all times in order to 

minimise those power cuts. If however, the grid export capacity is insufficient 

to balance a surplus of electricity, some energy curtailment will be 

unavoidable. Then the store reverts to �control option 3� and tries to stay as 

empty as possible at all times in order to minimise that energy curtailment.  

 

The 24-hour time-step validation program simulates this by looking ahead 24 

hours and anticipating the net power surplus or deficit, together with the 

current state-of-charge of the store. The time-step program uses perfect 

weather forecasting based on the real time series of weather data. It re-

evaluates the necessary grid export, grid import and backup generation if 

necessary in order to achieve a balanced store over the following 24 hours. It 

re-evaluates the situation once every hour, and so adjusts the grid import or 

export power and the backup generation once per hour. Note that the time-

step program always aims to have a store that is half full (i.e. half way 

between full and empty) in 24-hours time and adjusts the grid and backup 

generation accordingly. 

 

The store size in control option 2 is calculated on the entire region in which 

the electricity surplus or deficit is balanced by the grid and backup generation; 

see section 2.11.2.1 and table 2.9. Option 2 produces a much broader range 

of conditions in which the energy capacity of the store comes into play.  
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As stated earlier, in control option 2, the store is used to make the grid import 

and export and the backup generation as constant as possible. This is 

perhaps an artificial situation; a real store management system is more likely 

to vary the grid import and export power and backup generation in response 

to the local demand, the state-of-charge of the store and time-varying 

electricity prices. This strategy would make more use of the flexibility of the 

grid and of backup generation and therefore make less use of the store and 

require a smaller store size. Nevertheless, the assumption of constant grid 

import/export and backup generation is a good starting point, especially if 

local demand is approximately proportional to national demand and therefore 

the price of grid electricity varies monotonically with both local and national 

demand. � If the local demand for electricity increases at certain times of the 

day, there is no point in increasing the import or decreasing the export of 

power if the whole network is experiencing the same effect at the same time 

and so the price of electricity will also be higher at those times. Similarly, if the 

whole grid is experiencing similar weather effects at the same time of day, 

and if intermittent renewable energy is evenly distributed throughout the grid, 

then there is no point in changing the grid import/export in response to local 

renewable generation. A constant grid import or grid export power will tend to 

minimise the requirement for and therefore the cost of central electricity 

generation and backup generation. 

 

2.12.4.3 Control Option 3 

In a system that is in danger of curtailing excess renewable energy but can 

generally supply the local demand, a sensible control system may cause the 

store to remain as empty as possible. The store will be discharged whenever 

possible to export electricity to the grid. An example of such a system would 

be a weak electricity grid in which the level of intermittent renewable 

generation that can be connected is limited by the voltage rise, for example 

(Barton, Infield 2004). 

 

In the 24-hour probabilistic program, this type of control is called �control 

option 3�. The store stays as empty as possible and the store size is 

calculated on the boundary of: Wind power + solar power  = demand + max. 
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grid export capacity + losses, averaged over 24 hours. This is where the store 

is considered to be �balanced�, section 2.11.2. Electricity is imported from the 

grid only when the store is empty, or when the electricity deficit exceeds the 

store discharge power rating of the store. Backup generation is then only used 

as a last resort, when grid import is insufficient to accommodate the deficit. 
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2.13 Matlab Programs 
The probabilistic method has been embodied in two computer programs, each 

validated by a time-step program: 

 

2.13.1 The Wind-Only Probabilistic Program 
This works on any time scale from minutes to years but only models variable 

wind-generated electricity with electrical demand and no solar power. 

Optionally, this program can be run with time-varying demand using 3 

different times of day (peak, mid-rate and off peak) and two seasons (summer 

and winter). However, this program has to assume that wind speed variations 

have no periodic dependence on time of day or season. If run with a time-

varying demand, the program assumes that the averaging time scale is at 

least 24 hours but shorter than 6 months. 

 

2.13.2 The 24-Hour Probabilistic Program 

This models variable wind power, variable solar power and truly time-varying 

electrical demand but only over a time-scale of 24 hours. It models energy 

stores that smooth variations within each period of 24 hours but not day-to-

day variations in power. 

 

 

Future work may enable a program to model variable wind power, solar power 

and truly time-varying demand on all time scales but such a program was not 

achievable within the time scale of this PhD project. 

 

Both the probabilistic programs use a spectral approach to wind power 

variations. The probabilistic 24-hour program also uses a spectral approach to 

solar power variations. Both use the spectrum integration equations of section 

2.5 and both use the same generic turbine power curve, section 2.6.4. 

 

2.13.3 Time Step Validation Programs 

Each probabilistic program has been validated by a time step program with 

exactly the same modelling functionality. For example, the time step programs 

use the same wind turbine power curve, the same energy store assumptions; 
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the 24-hour time step program has the same control options 1, 2 and 3. One 

important difference between the probabilistic and time step models is that the 

probabilistic programs use a storage time scale as an input, whereas the time 

step programs take an energy storage capacity in kWh. This storage capacity 

has to be first calculated by the appropriate probabilistic program modelling 

the same electricity system. 
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3 Results and Discussion 
 
As described in section 2.11.7, the probabilistic model results are validated by 

comparison with time stepping programs. Section 3.1 describes the results of 

the wind-only programs that model storage on all time scales. Section 3.2 

describes the results of the 24-hour modelling programs that model wind 

power, solar power, variable demand and energy storage with cycle times of 

24 hours. 

 

3.1 The Wind Only Programs 
The following graphs show the effect of changing various input parameters 

while the store operating time scale, T is varied between a few seconds and 

several years.  

 

3.1.1 Datum Case 
The datum case for all results of the wind only program is an energy store of 

100% efficiency and unrestricted charge and discharge capacities. That is, the 

maximum charge rate is greater than the largest possible power surplus and 

the maximum discharge rate is greater than the largest possible power deficit. 

The electricity system connected to the store consists of 1MW of wind power 

capacity (typical of one large modern wind turbine) and 400kW of constant 

demand. The average wind speed is 8m/s (typical of a good wind site) and the 

standard turbine power curve is used, see section 2.6.4. This curve has a cut-

in wind speed of 3m/s and a rated wind speed of 13m/s. The constant 

demand of 400kW is modelled as a grid connection that allows up to 400kW 

of wind power output to be absorbed by the grid. 

 

The wind speed power spectrum used in most runs of the probabilistic 

program is a generic average of spectra derived from various measurement 

sites around the British Isles. The wind speed data used in the time step 

program is a scaled wind speed time series measured at Rutherford Appleton 

Laboratory (RAL) between 1999 and 2002 inclusive, unless otherwise stated. 
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All the wind speeds have been scaled such that the time-series average is 

8m/s. 

 

Figs. 3.1 to 3.7 show the results of  the datum comparison between the 

probabilistic and time step programs over time scales from 5 seconds (0.0014 

hours) to 4 years (35,000 hours). Most of the results are plotted against store 

size in kWh rather than time scale, but the store size was derived from the 

time scale by the probabilistic program. 

 

 In addition, the probabilistic program has been run using a wind speed 

spectrum derived purely from RAL data measured between 1994 and 1998, 

and the stepping program has been run using the wind speed time series 

measured between 1994 and 1998. These extra results are also shown on the 

datum plots, figs. 3.1 to 3.7 in order to illustrate the improved accuracy or 

otherwise resulting from the use of a spectrum derived from the same time 

series as used in the time step program.  
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Figure 3.1 Calculated Store Size vs. Store Cycle Time 
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Figure 3.2 Average power curtailed due to store being full 
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Figure 3.3 Average demand unsatisfied due to store being empty 
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Figure 3.4 Fraction of time that the store spends full 
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Figure 3.5 Fraction of time that the store spends empty 
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Figure 3.6 Fraction of time that the store spends filling 
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Figure 3.7 Fraction of time that the store spends emptying 

 

In the probabilistic results, the graphs show that very little difference is made 

by using the RAL 1994 to 1998 spectrum instead of the generic wind 

spectrum. This gives confidence that the spectrum of wind speed varies little 

throughout the British Isles and that the generic spectrum is generally 

applicable, throughout Britain at least. 

 

In the stepping results, very little difference is made by using the 1994 to 1998 

time series instead of the 1999 to 2002 time series. Note though that both 

time series have been scaled to the same average wind speed of 8m/s. 

 

3.1.2 Varying Demand 
Figs. 3.8 to 3.14 illustrate the effect of varying the demand (or the maximum 

wind powered generation that a grid can accommodate). The demand is first 

set at approximately half the average supply, i.e. 200kW and then at 1.5 times 

average supply, i.e. 600kW. In these figures, the results are compared with 

the datum case in which average supply is approximately balanced with 

demand, which was a constant 400kW. From now on, all probabilistic results 
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use the generic wind spectrum as their starting point and all time step results 

use the 1999 to 2002 wind speed time series. 
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Figure 3.8 Calculated Store Size vs. Store Cycle Time 
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Figure 3.9 Average power curtailed due to store being full 
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Figure 3.10 Average demand unsatisfied due to store being empty 
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Figure 3.11 Fraction of time that the store spends full 
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Figure 3.12 Fraction of time that the store spends empty 
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Figure 3.13 Fraction of time that the store spends filling 
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Figure 3.14 Fraction of time that the store spends emptying 
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When demand is half the supply, the store spends a lot of time full, fig. 3.11 

even when the store is large in size. In every case, there are times when 

some power is always curtailed due to the store being full, fig. 3.9. 

 

Conversely, when demand is 50% larger than the average supply, the store 

spends a lot of time empty, fig. 3.12, even when the store is large. In every 

case, there are times when some demand is left unsatisfied due to the store 

being empty, fig. 3.10. 

 

The different levels of demand make only a small change to the store size, 

when plotted on the logarithmic scale, fig. 3.8. 

 

3.1.3 Varying Charge and Discharge Rates 
In figs. 3.15 to 3.23, the first set of lines represents the datum case again. The 

second set of lines represents a store with its maximum discharge rate 

restricted to 200kW while the maximum charge rate is effectively unrestricted 

at 1000kW. The third set of lines represents a store with its maximum charge 

rate restricted to 200kW while its maximum discharge rate is unrestricted at 

1000kW. In each case, the turbine power capacity was 1MW, the average 

turbine power was approximately 400kW and the demand was a constant 

400kW. 
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Figure 3.15 Calculated Store Size vs. Store Cycle Time 
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Figure 3.16 Average power curtailed due to store being full 
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Figure 3.17 Average total power curtailed 
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Figure 3.18 Average demand unsatisfied due to store being empty 
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Figure 3.19 Average total unsatisfied demand 
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Figure 3.20 Fraction of time that the store spends full 
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Figure 3.21 Fraction of time that the store spends empty 
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Figure 3.22 Fraction of time that the store spends filling 
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Figure 3.23 Fraction of time that the store spends emptying 

 

When the charge rate is restricted to 200kW, less power enters the store on 

average than in the datum, unrestricted case. Therefore, the store spends an 

increased fraction of time filling, at a slower rate, fig. 3.22 and a reduced 

fraction of time full, fig. 3.20. Because the store is, on average, less full than 

the unrestricted case, it also empties more quickly, spends less time 

emptying, fig. 3.23 and more time empty, fig. 3.21. 

 

Conversely, when the charge rate is unrestricted but the discharge rate is 

restricted to 200kW, less power leaves the store than in the datum case. The 

store spends more time emptying at a slower rate, fig. 3.23 and a reduced 

fraction of time empty, fig. 3.21. Because the store is on average more full 

than in the unrestricted case, it also fills more quickly, spends less time filling, 

fig. 3.22 and more time full, fig. 3.20.  

 

However, all these effects only become apparent in stores with relatively long 

cycle times and large store sizes. At shorter time scale and smaller stores, the 

store spends most of its time either full or empty, and the altered charge rate 

or discharge rate does not substantially change this pattern.  
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A restricted charge or discharge rate reduces the energy entering and leaving 

the store in a given cycle. This reduces the required store sizes, fig. 3.15 but 

only when the cycle time is long. At short time scales, the variation in wind 

power within the cycle time, T, and therefore the size of the power surplus or 

deficit, is generally smaller than the maximum charge or discharge capacity. 

Longer time scales are associated with greater variations in power and 

therefore greater required store charge and discharge rates. 

 

Looking at power flows, when the charge rate is restricted to 200kW, an 

average of 81kW (time step model) or approximately 90kW (probabilistic 

model) are curtailed due to the power surplus exceeding the charge rate, 

regardless of the energy capacity of the store. The restricted charge rate 

reduces the power curtailed due to the store being full, fig. 3.16. It increases 

the total curtailed power, but only at large store sizes, fig. 3.17. 

 

Similarly, when the discharge rate is restricted to 200kW, an average 57.2kW 

(time step model) or approximately 62kW (probabilistic model) of demand are 

left unsatisfied because the power deficit exceeds the discharge rate, 

regardless of the energy capacity of the store. This reduces the unsatisfied 

demand due to the store being empty, fig. 3.18. It increases the total 

unsatisfied demand, but only at large store sizes, fig. 3.19. 

 

3.1.4 Varying Store Efficiency 
In this thesis, the store efficiency is defined as the ratio of energy available 

from the store to energy needed to charge the store. In these first, wind-only 

models, parasitic losses are ignored. The store efficiency has been set to 

100% (datum case), 70% (typical of a chemical energy store) and 30% (more 

typical of a hydrogen energy storage system). The results are shown in figs. 

3.24 to 3.31. 
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Figure 3.24 Calculated Store Size vs. Store Cycle Time 
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Figure 3.25 Average power curtailed due to store being full 
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Figure 3.26 Average power lost to store inefficiency  
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Figure 3.27 Average demand unsatisfied due to store being empty 
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Figure 3.28 Fraction of time that the store spends full 
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Figure 3.29 Fraction of time that the store spends empty 
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Figure 3.30 Fraction of time that the store spends filling 
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Figure 3.31 Fraction of time that the store spends emptying 

 

When the store efficiency is reduced to 70% or 30%, less power enters the 

store on average than in the datum, 100% efficient case. Note that inefficiency 

is assumed to remove energy before it enters the store. Therefore, the store 
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spends an increased fraction of time filling, at a slower rate, fig. 3.30 and a 

reduced fraction of time full, fig. 3.28. Because the store is, on average, less 

full than the unrestricted case, it also empties more quickly, spends less time 

emptying, fig. 3.31 and more time empty, fig. 3.29.  As with maximum charge 

rates, all these effects only become apparent in stores with relatively long 

cycle times and large store sizes. At shorter time scale and smaller stores, the 

store spends most of its time either full or empty, and the reduced efficiency 

does not substantially change this pattern.  

 

A reduced efficiency reduces the effective store energy capacity at a given 

time scale, fig. 3.24. A similar percentage reduction occurs on all time scales 

of storage, as the useful power flows out of the store are reduced by the 

inefficiency.  

 

Note that the power lost to inefficiency, fig. 3.26 is all accounted as the store 

is charged, not as it is discharged. How the losses are accounted makes no 

difference to the actual fractions of time spent full, empty, filling or emptying, 

nor to the physical size of the store; it is merely an accounting effect. The 

energy capacity of the store is reduced because it is calculated on the energy 

that can be drawn from it, not the energy that can be directed into the store. 

 

The reduced efficiencies cause the store to be less full on average than the 

datum case. There is less energy available to supply the demand at times of 

power deficit, fig. 3.27 and less energy is curtailed due to the store being full, 

fig. 3.25. 

 

3.1.5 Comparison of Probabilistic with Time Step Methods 

All the above graphs show good agreement between the probabilistic and 

time-step models, especially in the central portions of the graphs. We must 

exclude the very longest time scales in which the store is so large that it does 

not have time to get full or empty over the 4-year period of the time step 

model. We must also exclude the very shortest time scales where spectrum 

aliasing effects become significant and where the store is so small that it may 
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move from completely full to completely empty (or vice versa) in a single time 

step. 

 

The probabilistic method results often agree better with the time step method 

when predicting curtailed power and unsatisfied demand, e.g. figs. 3.9 and 

3.10, than when predicting times spent full, empty, filling and emptying, e.g. 

figs. 3.11 and 3.13, especially at large store sizes. This may be because the 

probabilistic method first calculates average power flows from the wind 

turbine(s), to the load, to and from the store and curtailed power. It then uses 

these as inputs to its estimates of time fractions spent full and empty etc. 

Thus the calculations of time fractions are one step more removed from input 

data than the power flow calculations, and incur the errors of that extra 

calculation step. 

 

In the above figures, the probabilistic method agrees very well with the time 

step method in the datum case, but less well when power supply and power 

demand are not balanced, either by system component sizing or by the effect 

of store parameters. In modelling real electricity systems, this should not be a 

problem, as system components are usually sized to meet the loads and are 

therefore similar in magnitude.  

 

The probabilistic method always shows similar trends to the time step method, 

even if it does not agree in absolute level. When studying the effect of a 

change in an electricity system, e.g. a small increase in demand, increase in 

store discharge capacity or a reduced store efficiency, the probabilistic 

method is therefore likely to give a good estimate of changes to system 

performance in a back-to-back calculation, even if absolute levels of 

performance are less well predicted. 

 

Finally, the calculations of curtailed power, figs.  3.2, 3.9, 3.16, 3.17 and 3.25 

show a relatively large gap between probabilistic and time step methods when 

the store size is small. Both methods used the same average wind speed, 

8m/s and exactly the same wind turbine power curve. However, the 

probabilistic calculation used synthesized wind speed PDFs based on Weibull 
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or normal distributions whereas the time step method used the real wind 

speed time series. The probabilistic method therefore gave a different 

calculated wind power PDF and different average wind power from the time 

step method. The time step method predicted an average wind power of 

394kW whereas the probabilistic method predicted a wind power between 

390kW and 403kW depending on the cycle time of the store. Appendix C 

discusses further the modelling of wind speed PDFs.  

 

3.2 Time-Varying Wind Power, Solar Power and Demand � The 24-Hour 
Programs 
These programs can only be run for store cycle times, T of 24 hours. The 

following graphs show results for this one cycle time, but with continuous 

variation in other system and store parameters. These programs also model 

variable store parasitic (standing) losses, grid connections and backup 

generation. 

 

The datum case is again an energy store of 100% efficiency with unrestricted 

charge and discharge capacities, and the wind power assumptions are as 

before.  In contrast, the electrical demand varies with time of day, weekdays 

and weekends, and with month of the year, see section 2.8, but the average 

demand is still 400kW unless otherwise stated. The datum case is a stand-

alone system with no grid connection, no backup generation and no solar 

power although all these variables are explored in the following simulations. 

The datum case does not require a control strategy, see section 2.12.4 but 

when a grid connection or backup generation are modelled, all three control 

options are modelled. 

 

3.2.1 Varying Demand 
Figs. 3.32 to 3.39 show the effect of varying demand while all other 

parameters are held constant. 
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Figure 3.32 Curtailed Power Due To Finite Store Being Full 
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Figure 3.33 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.34 Fraction of Time that the Store is Empty 
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Figure 3.35 Fraction of Time that the Store is Full 
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Figure 3.36 Fraction of Time that the Store is Emptying 
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Figure 3.37 Fraction of Time that the Store is Filling 
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Figure 3.38 Power Supplied to the Loads With and Without the Store 
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Figure 3.39 Required Store Size for a Cycle Time of 24 Hours 

 

At low levels of demand, the store spends most of the time full, fig. 3.35, the 

unsatisfied demand is very low, fig. 3.33, and the curtailed power is very high, 

fig. 3.32. Then at high levels of demand, the store spends most of its time 
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empty, fig. 3.34, the unsatisfied demand is high, fig. 3.33 and the curtailed 

power drops to zero, fig. 3.32. 

 

The store is most useful when supply and demand are balanced, around a 

demand of 400kW, as indicated by the large amount of time spent emptying 

and filling, fig. 3.36 and fig. 3.37 and by the increase in power supplied to the 

demand as a result of the store, fig. 3.38.  

 

The required store energy capacity, fig. 3.39 shows that at low levels of 

demand, the store is small. Here it is limited by the small and occasional 

power deficits created by the small demand when wind speeds are low. At 

high levels of demand, the store size increases to a plateau where it is 

determined by the size of the energy surpluses on windy days. 

 

3.2.2 Varying Turbine Power Capacity 

Figs. 3.40 to 3.47 show the effect of varying the turbine power rating while all 

other parameters are held constant. In many ways, these results are the 

inverse of varying the demand at constant turbine power. However, the 

following graphs show more clearly the effect of an average demand that is 

much larger than average supply, when the turbine power rating is very low. 
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Figure 3.40 Power Curtailed Due To Finite Store Being Full 
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Figure 3.41 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.42 Fraction of Time that the Store is Empty 
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Figure 3.43 Fraction of Time that the Store is Full 
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Figure 3.44 Fraction of Time that the Store is Emptying 
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Figure 3.45 Fraction of Time that the Store is Filling 
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Figure 3.46 Power Supplied to the Loads With and Without the Store 
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Figure 3.47 Required Store Size for a Cycle Time of 24 Hours 

 

At low levels of turbine capacity, the store spends most of the time empty, fig. 

3.42, the unsatisfied demand is very high, fig. 3.41 and the curtailed power is 

zero, fig. 3.40. Then at high levels of turbine capacity, the store spends most 

of its time full, fig. 3.43, the unsatisfied demand is low, fig. 3.41 and the 

curtailed power becomes large, fig. 3.40. 

 

 The store is most useful when supply and demand are balanced, at a turbine 

power of 1MW or larger, as indicated by the large amount of time spent 

emptying, fig. 3.44 and filling, fig. 3.45 and by the average increase in 

satisfied demand as a result of the store, fig. 3.46. The store continues to be 

equally useful at much larger turbine capacities than 1MW, even though the 

average wind power is well above 400kW (the average demand). The store 

continues to be useful on days when wind speeds are low. 

 

The required store energy capacity, fig. 3.47 shows that at small turbine 

capacities the store is small. Here it is determined by the small and occasional 

power surpluses created when wind speeds are high. At high levels of turbine 
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capacity, the store size increases but more slowly, determined more by the 

size of the average demand. 

 

3.2.3 Varying Charge and Discharge Rates 
Figs. 3.48 to 3.55 show the effect of varying the charge and discharge rates of 

the store. For simplicity, charge and discharge rates are made equal and are 

both varied at the same time. The probabilistic and time stepping programs 

are both capable of modelling charge and discharge rates independently, but 

real energy storage systems, especially electrochemical systems, often have 

maximum charge and discharge rates that are similar in magnitude. 
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Figure 3.48 Power Curtailed Due To Surplus Power Exceeding Maximum 

Charging Rate (Excess Surplus) and Due to Store Being Full (Difference 

between Excess and Total) 
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Figure 3.49 Unsatisfied Demand Due to Deficit Exceeding Discharge Capacity 

(Excess Deficit) and Due to Store Being Empty (Difference between Excess 

and Total) 
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Figure 3.50 Fraction of Time that the Store is Empty 
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Figure 3.51 Fraction of Time that the Store is Full 
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Figure 3.52 Fraction of Time that the Store is Emptying 
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Figure 3.53 Fraction of Time that the Store is Filling 
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Figure 3.54 Power Supplied to the Loads With and Without the Store 
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Figure 3.55 Required Store Size for a Cycle Time of 24 Hours 

 

Restricting the maximum charge and discharge rates of the store effectively 

reduces the power entering and leaving the store. In times of surplus power, 

some power is curtailed even though the store may not be full. In fig. 3.48, the 

lower lines represent power curtailed due to the limited charge rate of the 

store. The upper lines represent the total average curtailed power, and the 

difference between them is the power curtailed due to the store being full. 

When the maximum charging rate is small, the full-curtailed power is reduced, 

but the total curtailed power is increased. 

 

Similarly, during periods of power deficit, some demand is not satisfied even 

though the store may not be empty. In fig. 3.49, the lower lines represent the 

unsatisfied demand due to the limited discharge rate. The upper lines 

represent the total average unsatisfied demand and the difference between 

them is the demand left unsatisfied due to the store being empty. When the 

maximum discharging rate is small, the empty-unsatisfied demand is reduced, 

but the total unsatisfied demand is increased. 
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The fractions of time that the store is full, empty, filling and emptying are 

almost unchanged by the charge and discharge rate limitations, if both are 

changed together, figs. 3.50 to 3.53. The case of zero charge rate and 

discharge rate is a special case that has been excluded from these graphs; 

fractions of time spent full and empty etc. are meaningless because zero 

charge and discharge rates mean the store is not connected to the system! 

 

As the maximum charge and discharge rates are increased, the store 

achieves maximum usefulness at about 600kW, when all possible surpluses 

and deficits can be accommodated by the store, fig. 3.54. Beyond this point, 

the store cannot further increase the average power supplied to the loads 

without increasing the cycle time of the store. 

 

The required energy capacity of the store increases with charge and 

discharge rates until all possible surpluses and deficits within 24 hours can be 

accommodated, fig. 3.55. Again, this occurs at charge and discharge rates of 

600kW. 

 

3.2.4 Varying Store Efficiency 

Figs. 3.56 to 3.63 show the effect of varying the round-trip efficiency of the 

store. Parasitic/standing losses are still set to zero. The efficiency is then 

simply the ratio of energy out to power in. Efficiency is varied between 0% and 

100%. 
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Figure 3.56 Power Curtailed Due To Store Being Full 
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Figure 3.57 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.58 Fraction of Time that the Store is Empty 
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Figure 3.59 Fraction of Time that the Store is Full 
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Figure 3.60 Fraction of Time that the Store is Emptying 
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Figure 3.61 Fraction of Time that the Store is Filling 
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Figure 3.62 Power Supplied to the Loads With and Without the Store 
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Figure 3.63 Required Store Size for a Cycle Time of 24 Hours 

 

Reducing the efficiency of the store means that a proportion (1-efficiency) of 

the energy directed to the store is lost. This reduces the energy entering the 

store and causes the store to be less full on average than if the efficiency 
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were 100%. Therefore, at low store efficiencies the full-curtailed power is 

reduced, fig. 3.56 and the empty-unsatisfied demand is increased, fig. 3.57. 

As expected, the store spends less time full, fig. 3.59 and more time empty, 

fig. 3.58. It also spends more time filling but at a slower rate, fig. 3.61. The 

store is on average less full and so empties more quickly in times of power 

deficit and spends less time emptying, fig. 3.60. The 0% efficiency case is 

another special case in which the store is effectively not connected to the 

system. 

 

The reduced efficiency means a reduced benefit from the store in terms of 

total power delivered to loads, fig. 3.62. 

 

The required energy capacity of the store declines with reduced efficiency, fig. 

3.63 because a reduced amount of energy enters and leaves the store. Again, 

the losses are accounted as energy enters the store, not as it leaves. 

 

3.2.5 Varying Store Parasitic Loss 
Figs. 3.64 to 3.71 show the effect of varying the parasitic loss (or standing 

loss) of the store between 0 and 700kW. The 24-hour modelling programs 

treat parasitic loss in a simplistic way, in that it always draws power, even 

when the store is empty. In extreme cases, the power delivered to loads can 

effectively be negative. 
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Figure 3.64 Power Curtailed Due To Store Being Full 
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Figure 3.65 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.66 Fraction of Time that the Store is Empty 
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Figure 3.67 Fraction of Time that the Store is Full 
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Figure 3.68 Fraction of Time that the Store is Emptying 
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Figure 3.69 Fraction of Time that the Store is Filling 
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Figure 3.70 Power Supplied to the Loads With and Without the Store 
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Figure 3.71 Required Store Size for a Cycle Time of 24 Hours 

 

Parasitic or standing loss reduces the average energy in the store but in a 

different way from a reduced round-trip efficiency. Parasitic loss reduces the 

curtailed power, fig. 3.64, both by reducing the fraction of time that the store 
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spends full, fig. 3.67 but also by directly absorbing surplus power as it enters 

the store. It is equivalent to an increase in the load. 

 

In the worst case shown here, a parasitic loss of 700kW, the store loses even 

the largest possible power surplus and draws power from the loads! The 

parasitic loss increases the unsatisfied demand, fig. 3.65, until at 700kW of 

parasitic loss the unsatisfied demand is larger than the average demand of 

400kW. 

 

As expected, the parasitic loss reduces the time that the store is full, fig. 3.67 

and increases the time that the store is empty, fig. 3.66. Parasitic loss reduces 

the time spent emptying, fig. 3.68, presumably because in times of power 

deficit, the store is often already empty, fig. 3.66. However, the probabilistic 

calculation predicts a strange increase in emptying time when parasitic loss is 

greater than about 400kW. This could be due to a software bug in the 

probabilistic 24-hour program, but it only appears when parasitic loss is 

unrealistically big. 

 

The time spent filling, fig. 3.69 remains fairly constant up to about 400kW of 

parasitic loss, then reduces rapidly, perhaps as parasitic losses absorb all 

surpluses. 

 

The benefit of the store becomes negative if the parasitic loss is greater than 

about 75kW, fig. 3.70, but the predicted store energy capacity required 

remains almost constant, fig. 3.71. The probabilistic method is calculating the 

variability of net power, but not necessarily relating the store size to the actual 

accumulated energy (which becomes zero with large parasitic loss). 

 

3.2.6 Varying Solar Power Fraction 
Until now, in all the presented calculations, the only power input to the 

electricity system has been wind power. Figs. 3.72 to 3.79 show the effect of 

progressively reducing the fraction of wind power and replacing it with an 

equal average amount of solar PV power. Since the wind capacity factor is 

about 0.390 and the solar capacity factor is 0.119 (for the weather conditions 
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at RAL), the exchange rate of solar PV capacity to wind turbine power rating 

is 3.28.  
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Figure 3.72 Power Curtailed Due To Store Being Full 
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Figure 3.73 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.74 Fraction of Time that the Store is Empty 
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Figure 3.75 Fraction of Time that the Store is Full 
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Figure 3.76 Fraction of Time that the Store is Emptying 
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Figure 3.77 Fraction of Time that the Store is Filling 
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Figure 3.78 Power Supplied to the Loads With and Without the Store 
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Figure 3.79 Required Store Size for a Cycle Time of 24 Hours 

 

As the solar power fraction increases and wind power fraction decreases, 

there is a technical optimum apparent as a minimum of average curtailed 

power, fig. 3.72 and a minimum of average unsatisfied demand, fig. 3.73. This 
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optimum occurs at between 40% and 50% solar PV power. This is the point at 

which the average total of wind power and solar power is most reliable (least 

variable), both because wind power and solar power are seasonally 

complementary, section 2.4.9 and because the sum of any two random, 

uncorrelated variables has a lower percentage standard deviation than each 

variable on its own, according to the central limit theorem. This optimum of 

40% to 50% solar is also apparent as a minimum in the fraction of time that 

the store spends empty, fig. 3.74, and a maximum of renewable power 

supplied to the loads, fig. 3.78. This optimum solar fraction even maximises 

the time that the store spends filling, fig. 3.77. 

 

Comparing the ends of graphs 3.74 to 3.77 (100% wind vs. 100% solar), solar 

power on its own causes the store to spend less time full, fig. 3.75 and more 

time emptying, fig. 3.76, perhaps because solar power has a highly skewed 

PDF, with high probability of zero or low power, and a low probability of high 

power, fig. 2.1 in section 2.4.2. 

 

The store increases the average power delivered to the load, more so for 

solar power than for wind power, fig. 3.78. This is because solar power has a 

greater within-day variability than wind power. The required 24-hour store 

energy capacity is also greater with 100% solar power than with 100% wind 

power, fig. 3.79, again because of greater within-day variability of solar power. 

The store energy capacity shows a minimum at between 10% and 20% solar 

power, corresponding to a minimum of within-day variability of the net solar 

and wind power. 

 

3.2.7 Varying Solar Power With No Wind Power 

Figs. 3.80 to 3.87 show the effect of varying solar power capacity in a system 

with time-varying demand but zero wind power. Like the varying wind turbine 

capacity case, section 3.2.2, average renewable power supply is at first much 

smaller than demand, then much larger. The solar PV capacity is taken to a 

ridiculously large size of 64MW, just to see how the computer programs cope. 
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Figure 3.80 Power Curtailed Due To Finite Store Being Full 

 

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70
Solar PV Power Rating, MW

U
ns

at
is

fie
d 

D
em

an
d,

 k
W

.

Probabilistic
Stepping

 
Figure 3.81 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.82 Fraction of Time that the Store is Empty 
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Figure 3.83 Fraction of Time that the Store is Full 
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Figure 3.84 Fraction of Time that the Store is Emptying 
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Figure 3.85 Fraction of Time that the Store is Filling 
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Figure 3.86 Power Supplied to the Loads With and Without the Store 
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Figure 3.87 Required Store Size for a Cycle Time of 24 Hours 

 

At low levels of solar PV capacity, the store spends most of the time empty, 

fig. 3.82; the unsatisfied demand is very high, fig. 3.81 and the curtailed power 

is zero, fig. 3.80. Then at high levels of solar capacity, the store spends most 
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of its time full, fig. 3.83, the unsatisfied demand is low or even zero, fig. 3.81, 

and the curtailed power becomes large, fig. 3.80. Unlike wind power, even the 

worst (dullest) days of the year have some solar power, so if the solar 

capacity is large enough, a 24-hour store will be sufficient to supply the entire 

demand. But this would require a solar capacity 80 times the average load, or 

32MW! 

 

Increasing solar capacity causes the store to spend less time empty, fig. 3.82 

and more time full, fig. 3.83. With increasing solar power capacity, the fraction 

of time spent filling, fig. 3.85 initially increases then reduces, to be replaced by 

time spent full. 

 

However, the time spent emptying, fig. 3.84 is predicted differently by the 

probabilistic and time step models. It either increases then levels out at almost 

0.5 (time stepping) or increases then drops again (probabilistic). Here we 

have to believe the time-step model, since we know that on average, the sun 

is below the horizon for 50% of the time. The demand never drops to zero, so 

the store must be empty or emptying for at least 50% of the time. The 

probabilistic calculations of times spent filling, full, emptying and empty, 

appendix B, do not have access to the real time sequence of power flows. 

Instead they make assumptions based on the discretised PDFs of net power 

within each 24-hour period. As the solar power capacity increases, the power 

interval of this discretisation gets larger and the accuracy of the method may 

decline. This is the likely explanation for the under-estimate of time spent 

emptying in the probabilistic 24-hour program. 

 

The store does more �work� with increasing solar capacity, fig. 3.86 up to 

about 16MW of solar capacity. Above this level, the store does not increase 

the average power delivered to loads. The demand is almost entirely satisfied 

above this level of solar power, fig. 3.81. 

 

The required store energy capacity increases with solar power capacity, but 

then levels out, determined by the size of variations in demand, fig. 3.87. 
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3.2.8 Varying Grid Connection Capacity 
Figs. 3.88 to 3.95 show the effect of a grid connection of varying capacity. For 

simplicity, the maximum grid import power is set equal to the maximum grid 

export power and both are changed at the same time. Three store control 

options are shown, section 2.12.4. The first option keeps the store as full as 

possible, to minimise the probability of the store being empty and so minimise 

the unsatisfied demand. The second option uses the grid to balance surpluses 

and deficits as much as possible, and as far as possible minimising the risk of 

either energy curtailment or unsatisfied demand. The third option keeps the 

store as empty as possible, so minimising the probability of curtailed energy. 

The option numbers are show in the legends of the figures.  
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Figure 3.88 Power Curtailed Due To Finite Store Being Full 
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Figure 3.89 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.90 Fraction of Time that the Store is Empty 
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Figure 3.91 Fraction of Time that the Store is Full 
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Figure 3.92 Fraction of Time that the Store is Emptying 
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Figure 3.93 Fraction of Time that the Store is Filling 
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Figure 3.94 Power Supplied to the Loads With and Without the Store 
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Figure 3.95 Required Store Size for a Cycle Time of 24 Hours 

 

The curtailed power, fig. 3.88 is minimised in control options 2 and 3. In the 

probabilistic program, options 2 and 3 perform equally well, since the model 

assumes perfect weather forecasting, but in the time step program option 3 

performs slightly better than option 2 due to large short-term surpluses of 

power affecting the ability of option 2 to absorb energy. Option 1 uses the grid 

to recharge the store even when there is a small power surplus, but then 

curtails power later in the day if the surplus is too large. Option 1 therefore 

causes a much larger curtailment of power, both in the probabilistic program 

and the time step program. 

 

The unsatisfied demand, fig. 3.89 is minimised in control options 1 and 2. In 

the probabilistic program, options 1 and 2 perform equally well, since the 

model assumes perfect weather forecasting, but in the time step program 

option 1 performs slightly better than option 2 due to large short-term deficits 

of power affecting the ability of option 2 to supply energy. Option 3 uses the 

grid to export power even when there is a small deficit, but then leaves some 

demand unsatisfied later in the day if the deficit is too large. Option 3 
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therefore causes a much larger unsatisfied demand, both in the probabilistic 

program and the time step program. 

 

Option 1 causes the store to spend more time full than options 2 or 3, fig. 

3.91. Option 3 causes the store to spend more time empty than options 1 or 2, 

fig. 3.90 and option 2 causes the store to spend more time filling, fig. 3.93 and 

emptying, fig. 3.92, and the minimum of time full or empty. Option 1 causes 

the store to spend a little less time filling than option 3, fig. 3.93 probably 

because the store fills more rapidly when importing from the grid at the same 

time as absorbing surplus wind power. 

 

Fig. 3.94 shows the increase in satisfied demand resulting from the presence 

of the energy store. The �direct� power, without the benefit of the store, 

increases with the strength of the grid connection, but does not change with 

the store control option. As the grid import and export capacity increase to 

about 600kW, all possible power deficits can be met by the grid, and the 

average delivered power approaches the average demand of 400kW. The 

store in control options 1 or 2 increases the delivered power, with greatest 

benefit when the grid import and export are small. However, the store in 

option 3 increases the delivered power by a smaller margin. The probabilistic 

program may have a bug in its calculation at this point; at large grid capacities 

it actually predicts that the store reduces the delivered power compared to the 

no-store case when in control option 3. 

 

The required store energy capacity, fig. 3.95 depends on the control option. A 

store in option 1 is sized to supply power through periods of deficit when the 

grid and renewables together cannot meet the demand. In control option 1, as 

the grid import capacity increases, the days when the store does most work 

change to days of very low wind speed. When the daily wind speed is low, its 

variability is also low, and the accumulated and discharged energy is small.  

 

A store in control option 3 is sized to accumulate energy on days when the 

grid cannot export the entire surplus. As the grid export capacity increases, 

the days when the store does most work change to days of higher wind 
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speed. Initially, this means more variable wind speeds and greater store size, 

but then at very large grid export capacity, the net surpluses become smaller 

and the store size reduces again, but the reduction in energy capacity is 

small.  

 

A store in control option 2 behaves sometimes like option 1 and sometimes 

like option 3, so at small grid strengths, its energy capacity is an average of 

options 1 and 3. However, a store in option 2 also attempts to make the grid 

import and exported power as constant as possible. This results in the store 

absorbing lots of variability when the grid import and export capacities are 

large. The required store size apparently increases as a result, fig. 3.95, even 

though the store is actually needed much less when the grid capacity is large. 

 

3.2.9 Varying Backup Generation 
Figs. 3.96 to 3.103 show the effect of an increasing backup generation 

capacity. This effectively behaves like a grid connection that can import power 

but not export surplus power. Again, control options 1, 2 and 3 are compared 

and the option numbers are show in the legends of the figures. 
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Figure 3.96 Power Curtailed Due To Finite Store Being Full 
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Figure 3.97 Unsatisfied Demand Due to Store Being Empty 
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Figure 3.98 Fraction of Time that the Store is Empty 
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Figure 3.99 Fraction of Time that the Store is Full 
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Figure 3.100 Fraction of Time that the Store is Emptying 
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Figure 3.101 Fraction of Time that the Store is Filling 

 

200

220

240

260

280

300

320
340

360

380

400

0 100 200 300 400 500 600 700 800
Backup Generation Capacity, kW

Po
w

er
 T

o 
Lo

ad
. k

W
.

Probabilstic Direct (1,2,3)

Stepping Direct (1,2,3)

Probabilistic Total (1,2)

Stepping Total (1,2)

Probabilistic Total (3)

stepping Total (3)

 
Figure 3.102 Power Supplied to the Loads With and Without the Store 
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Figure 3.103 Required Store Size for a Cycle Time of 24 Hours 

 

The curtailed power, fig. 3.96 is minimised in control options 2 and 3. Option 1 

uses the backup generation to recharge the store even when there is a small 

power surplus, but then curtails power later in the day if the surplus continues 

and the store is full. Option 1 therefore causes a much larger curtailment of 

power, both in the probabilistic program and the time step program. 

 

The unsatisfied demand, fig. 3.97 is minimised in control options 1 and 2. 

Option 3 does not operate the backup generation until the store is empty, but 

then leaves some demand unsatisfied later in the day if the deficit is too large. 

Option 3 therefore causes a much larger unsatisfied demand, both in the 

probabilistic program and the time step program. 

 

Option 1 causes the store to spend more time full than the other control 

options, fig. 3.99. Option 3 causes the store to spend more time empty than 

other control options, fig. 3.98. In fact option 3 has no effect on the fraction of 

time that the store spends empty, full, emptying or filling compared to the zero 

backup case, because it only uses backup generation when the store is 
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empty. Control option 2 causes the store to spend more time filling, fig. 3.101 

and emptying, fig. 3.100, and the minimum of time full or empty. 

 

Fig. 3.102 shows the increase in satisfied demand resulting from the presence 

of the energy store. The �direct� power, without the benefit of the store, 

increases with the backup generation capacity, until about 600kW at which 

point all power deficits are satisfied by the backup generator. The store in 

control options 1 and 2 increase the delivered power more than option 3, with 

greatest benefit when the backup generation capacity is small. This is 

consistent with fig. 3.97 where control options 1 and 2 reduce the unsatisfied 

demand more than option 3 does. 

 

The required store energy capacity, fig. 3.103 is again least for control option 

1. An option 1 store is sized to supply power through periods when renewable 

energy together with backup generation cannot meet the demand. As the 

backup generation increases, the store does most work on days of very low 

wind speed. Wind power variability is then also low, and the accumulated and 

discharged energy is small.  

 

The operation of a store in control option 3 is unaffected by the backup 

generation. The store size is therefore unchanged by the backup generation 

capacity.  

 

A store in option 2 behaves sometimes like option 1 and sometimes like 

option 3, so at small backup generation capacities, the store size is an 

average of options 1 and 3. At large backup generation capacities, the store 

size reverts to being the same as in option 3 because the risk of unsatisfied 

demand is removed. 

 

3.2.10 Comparison of Probabilistic with Time Step Methods 
All the figures of section 3.2 show good agreement between the probabilistic 

and time-step models. As in the wind-only modelling programs, the 

probabilistic method often agrees better with the time step method when 

predicting power flows, e.g. curtailed power and unsatisfied demand, e.g. fig. 
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3.32 and fig. 3.33, than when predicting times spent full, empty, filling and 

emptying, e.g. figs. 3.34 to 3.37. This may be because the probabilistic 

method first calculates average power flows from renewable sources, to the 

load, to and from the store and curtailed power etc. It then uses these as 

inputs to its estimates of time fractions spent full and empty etc. Thus the 

calculations of time fractions are one step more removed from input data than 

the power flow calculations. 

 

The 24-hour programs often give better agreement between probabilistic and 

time step methods, e.g. figs. 3.32 and 3.33 than the wind-only programs, e.g. 

figs. 3.9 and 3.10 when modelling power flows. A principle difference is the 

presence of seasonal variation in the24-hour probabilistic program, and this 

could be responsible for the improvement. 

 

The 24-hour modelling programs show less good agreement between 

probabilistic and time-step methods when run in solar-only mode, figs. 3.80 to 

3.87. This suggests that the solar probabilistic model needs refinement, or 

perhaps less should be expected of a probabilistic solar model. The solar 

model has certainly required much more complex calculation than the wind 

model.  

 

The probabilistic method always shows similar trends to the time step method, 

even if it does not always agree in absolute level.  

 

3.3 Computer Run Time and Program Complexity 
Table 3.1 compares the size and performance of the four computer programs 

written for this thesis. 
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Table 3.1 Computer Program Lengths and Run Times 

Program name Description Lines 
of 
code 

Preparation 
and loading 
data, seconds 

Time per 
case, 
seconds 

finitestore 

MSc13.m 

Wind-only 

probabilistic 

655 Very small 1.6 

finitestore 

stepping 

MSc7.m 

Wind-only 

stepping 

273 17 104 

Probabilistic11.m 24-Hour wind, 

solar and load 

probabilistic 

2036 Very small 42 

Stepping3.m 24-Hour wind, 

solar and load 

stepping 

607 34 98 

 

The probabilistic program codes are 2 to 3 times longer than the time step 

codes that model the same electricity system. This increase is due to the 

added complexity of creating the probabilistic models. The mathematical 

complexity represents the physical complexity of random wind speed 

variations and random solar irradiance variations on top of daily and seasonal 

variations. The number of lines in each program includes the comments, but 

even the comments represent some of the thought required to write the code. 

 

The time step programs take a measurable time to load the time series of 

weather data. The wind-only program takes approximately 17 seconds to load 

4 years of 1-minute wind speed data. The 24-hour program takes 

approximately 34 seconds to load 4 years of 1-minute wind speed data, 4 

years of 1-minute solar irradiance data and 1 year of half-hourly demand data. 

The demand data probably takes an insignificant length of time to load 

compared to the weather data. In contrast, the probabilistic programs appear 

to start immediately. The time required to load the demand profiles, the wind 

speed power spectrum and the solar irradiance power spectrum is negligible. 
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Both probabilistic programs do save a significant amount of computer 

calculation time compared to the time step programs. In the wind-only 

programs, the calculation time is cut by a factor of over 60. The wind-only 

probabilistic program only requires 2 of the nested loops: the period-average 

wind speed loop and the within-period wind speed loop, fig. 2.74. 

 

In the 24-hour programs, the calculation time is cut by a factor of only 2.33. 

The 24-hour probabilistic program requires many nested loops: the month, 

daily average wind speed, daily average cloudiness factor, week or weekend, 

within-day wind speed, within-day cloudiness factor and hour-of-day, as 

described in section 2.10.3 and fig. 2.7.4. The effect of the nested loops is 

offset by efficient coding and by a reduction in the number of possible wind 

speed and wind power levels. However, one of the major benefits of a 

probabilistic method, the reduction in computer run time, has almost 

evaporated. 

 

The 24-hour time step program takes slightly less time per case than the 

wind-only time step program, probably as a result of more efficient coding. 

This is despite having to perform calculations on solar irradiance and 

electrical demand as well as wind speed data. 
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4 Conclusions 
 

A probabilistic method has been developed for modelling energy storage used 

with wind power and solar power. This method is based on a spectral analysis 

of variations in wind speed and solar irradiance variations and is an 

alternative to the standard time step method.  It has the advantages that the 

required input data is less and that it is faster to run.  Key features and results 

are listed below. 

 

1. The probabilistic method gives promising results that are generally 

accurate when compared to the time step method. 

2. The generic wind speed spectrum derived from various sites around 

the British Isles gives results as good as those derived from the RAL 

spectrum when used in the probabilistic method and when compared 

with time step results obtained using RAL wind speed data. This is a 

good indication that the generic spectrum is generally applicable and 

useful for modelling wind speed at any site in the British Isles, and 

possibly in any maritime climate. 

3. The probabilistic predictions of system power flows and losses are 

mostly very accurate when compared with time step predictions. 

4. The probabilistic predictions of the fractions of time that a store spends 

full, empty, filling or emptying are usually good, but not as close as the 

power flow predictions when compared with time step predictions. 

5. The wind-only probabilistic program was relatively simple to code and 

easily models stores that operate on all cycle times from minutes to 

years. However, the 24-hour probabilistic program, modelling wind, 

solar and load variations, is more complex in terms of both the 

underlying science and the number of lines of computer code. 

6. The wind-only probabilistic program runs at approximately sixty times 

the speed of the time step wind-only program. The 24-hour probabilistic 

program runs at approximately twice the speed of its time step 

equivalent and retains the advantage of requiring far less input data. 
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7. The 24-hour probabilistic program is less accurate when run in solar-

only mode than when run in wind-only mode or wind-and-solar model. 

8. In the UK, aggregated electrical demand standard deviation is 24% of 

the mean value; typical wind power standard deviation is 90% of its 

mean value; typical solar power standard deviation is 170% of its mean 

value. Wind power is therefore much more variable than electrical 

demand. Solar power is even more variable than wind power, if rather 

more predictable than wind power, and accounts for the increased 

difficulty in determining an accurate probabilistic representation. 

9. The current versions of the probabilistic programs are not optimised for 

accuracy and computer run time. Some parts of the code make gross 

modelling simplifications while other areas may be overly detailed. The 

computer codes need refinement, especially in the modelling of solar 

power. This should be the focus of further work. 

 

4.1 Advantages and Disadvantages of the Probabilistic Method 
Confirmed by This Thesis: 
 

Advantages 

1. The probabilistic method requires less input data 

2. The computer run time is less than the standard time step method, 

especially for the wind-only probabilistic method. 

3. Its results are generally accurate when compared to the time step 

method, especially when predicting total average energy flows. 

 

Disadvantages 
1. It is computationally more complex, especially when modelling solar 

power variations 

2. The probabilistic method is not quite as accurate as the time step 

method when predicting the fractions of time that a store spends full, 

empty, filling or emptying. 

3. It cannot easily model increased complexities, such as complex control 

strategies or other intermittent sources of renewable generation, e.g. 

tidal power or wave power. 
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4.2 Further Work and Potential Applications 
The probabilistic programs are not yet in a form that could be used 

commercially or by anyone not familiar with the method. No user interface has 

been written; inputs are changed by directly modifying the Matlab code. A 

graphical user interface would make the programs more accessible. 

 

More functionality could and should be added to the programs. A future 

program should be capable of modelling wind power, solar power and variable 

demand over any working period (store cycle time). It may also be desirable 

to model other sources of intermittent renewable energy and an electricity 

demand that depends on weather conditions. It would definitely be useful to 

model two or more types of storage working together, e.g. flywheels for the 

short term, batteries for medium term and hydrogen for long term storage. 

 

At the same time, the program could be simplified, perhaps by making simpler 

assumptions about the variations in solar power and �lumping� all stochastic 

variation into one composite spectrum. The probabilistic method would then 

use just two spectra: a periodic one in which seasonal and diurnal correlations 

can be accounted, and a stochastic one in which wind power, solar power and 

any other random variables are assumed to be independent. This method 

would considerably reduce the number of nested loops, figure 2.74 and 

further reduce computer run time. 

 

Returning to the value of energy storage, section 1.4, the program already 

includes a very simple method of accounting costs of each component of an 

electricity system (although not presented in this thesis). This method could 

be developed to perform an economic comparison between systems with and 

without energy storage. If the probabilistic program can be made to run fast 

enough, it may even be possible to make the program perform an economic 

optimisation with regard to the size of components in the system. 

 

It is anticipated that the probabilistic method would be useful for first stage 

feasibility studies of renewable energy systems and approximate sizing of 

components. Programs already exist for more detailed studies, e.g. HOMER 
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(Lambert, Lilienthal 2003) and HYBRID2 (Manwell et al. 1998) but these 

demand more input data and specific size options of system components. 
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Appendix A 
 
List of Publications 
 

Some of the results presented in this thesis have been published as 

contributions to conferences or articles in journals; they are listed below. 

 

Journal: (Barton, Infield 2004) This journal paper describes the potential 

benefit of energy storage in increasing the penetration of wind powered 

generation onto a weak grid in which the level of embedded generation is 

limited by voltage rise. This paper also describes the operation of a probability 

matrix and compares various different energy storage technologies. 

 

Conference: (Barton, Infield 2005a) This invited, refereed paper, was 

presented at the IEEE Power Engineering Society General Meeting 

conference, 2005, and is included in the conference proceedings. It describes 

the operation of a probability matrix and includes calculations of fractions of 

time that a store spends full, empty, filling and emptying using the probabilistic 

method. The probabilistic method is used on all time scales from minutes to 

months. 

 

Journal: (Barton, Infield 2005b) This journal paper and oral presentation 

shows results of a probabilistic calculation performed on an electricity system 

including wind power, solar PV power and an energy store suitable for a cycle 

time of 24 hours and supplying a time-varying load of variable size. 

 

Copies of the publications are attached below. 
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Appendix B 
 
Calculation of Fractions of Time Spent Full or Empty 
 

B.1 Operating States of an Energy Store 
 

The probabilistic method assumes that at any instant in time, the energy store 

may be in one of four operating states: 

 

Full: Energy supply exceeds demand and the store is full 

Filling: Energy supply exceeds demand but the store is not yet full 

Empty: Energy demand exceeds supply and the store is empty 

Emptying: Energy demand exceeds supply but the store is not yet empty 

 

The model makes an important simplifying assumption that the periods of time 

(store operating periods) used in the analysis may be divided into ones where 

supply exceeds demand, and other periods in which demand exceeds supply. 

Corrections must be made for store losses, store charge rates and discharge 

rates, to calculate actual net supply and demand, and from these, the power 

flows into and out of the store. 

 

The 24-hour probabilistic modelling program allows different options for 

backup generation / grid import or grid export. These options are discussed in 

section 2.12.4 and may result in store operating periods in which supply and 

demand are balanced. The remainder of this appendix is devoted to periods 

when the backup generation and/or grid connection is absent or is insufficient 

to balance the net surplus or deficit of energy to or from the store.  

 

During some time periods, more power flows into the store than out, on 

average. In these periods, the store is filling, full or emptying, but is assumed 

to be never empty, fig. B.1. The net surplus of energy is balanced by curtailed 

power when the store is full. 
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Figure B.1. Operation of a store where energy supply exceeds demand 

 

For other periods, more power flows out of the store on average. Then the 

model assumes that the store is either empty, emptying or filling but is never 

full, fig. B.2. The net shortfall of energy is balanced by the unsatisfied demand 

when the store is empty. 
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Figure B.2. Operation of a store where energy demand exceeds supply 

 

The following paragraphs describe how the probabilistic model calculates the 

fractions of time spent full, empty, filling and emptying. 

 

B.2 When Energy Into and Out of the Store is Almost Balanced 
 

The algorithm uses a previously calculated probability distribution of net 

power into or out of the store, shown diagrammatically in figs. B.3 and B.4 

below. The probability distribution has already been corrected for store 

efficiency, parasitic store losses and maximum store charging and discharging 

rates, section 2.10.7. 

 

B.2.1 When The Store is More Empty than Full 
 

Let us consider a period in which average demand exceeds average supply, 

fig. B.3. 
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Figure B.3. Probability distribution of net power in a period when average 

demand exceeds supply. 

 

The shaded area represents the probability that at any instant the supply 

exceeds demand. During this time, the store cannot be empty or emptying, 

and the model assumes that the store must be filling. Thus the fraction of time 

that the store is filling can be directly calculated from the probability 

distribution. The unshaded area represents the probability of empty and 

emptying. More calculation is required to split this probability according to 

these two states. The model assumes that the net power rapidly reverses, 

and that the distribution of net power is the same whether the store is empty 

or emptying. There is no assumed time-dependence of net power on net 

state-of charge of the store. We do know the average power deficit over the 

whole period, 1X . This is the demand that is not satisfied due to the store 

being empty. We also know that when the store is empty, the instantaneous 

net power must be negative (otherwise the store would start to refill). The 

model assumes that the average power deficit when empty or emptying is 

given by the centre of gravity, 2X  of the unshaded portion of the probability 

distribution, to the left of zero. 
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Then: 2 1_ _Empty Time X Total Time X× = ×  

And:  1

2

_ _ _ _ _ _ XFraction of time that store is empty
X

=  

 

The fraction of time that the store is emptying is the remaining time in the 

period: 

 

_ 1 _ _Emptying fraction Empty fraction Filling fraction= − −  

 

Note that when the store is empty, some of the demand is still satisfied, and 

only a portion of it is unsatisfied. The �hours of power cut� calculated later is 

not the same as the fraction of time that the store is empty.  

 

B.2.2 When The Store is More Full than Empty 
 

Now let us consider a period in which average supply exceeds average 

demand, fig. B.4. 
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Figure B.4. Probability distribution of net power in a period when average 

supply exceeds demand. 
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The shaded area in fig. B.4 represents the probability that at any instant the 

demand exceeds supply. During this time, the store cannot be full or filling, 

and the model assumes that the store must be emptying. Thus the fraction of 

time that the store is emptying can be directly calculated from the probability 

distribution. The unshaded area now represents the probability of full and 

filling. As before, this probability must be split into the two time fractions. The 

model assumes that the distribution of net power is the same whether the 

store is full or filling. We know the average power surplus over the whole 

period is 1X . We also know that when the store is full, the instantaneous net 

power must be positive (otherwise the store would start to empty). The model 

assumes that the average power surplus when full is given by the centre of 

gravity, 2X  of the unshaded portion of the probability distribution, to the right 

of zero. 

 

Then: 2 1_ _Full Time X Total Time X× = ×  

And:  1

2

_ _ _ _ _ _ XFraction of time that store is full
X

=  

 

The fraction of time that the store is filling is the remaining time in the period: 

 

_ 1 _ _Filling fraction Emptying fraction Full fraction= − −  

 

B.3 When Supply And Demand Are Very Different  
� The Triangular Wave Method 
 

The above method works very well over a wide range of operating conditions. 

However, due to autocorrelation of the power time series, when the net power 

is above average, it stays above average for some time, and when the net 

power is below average, it stays below for some time. It is concluded that the 

net power and state-of-charge are not truly independent. 

 

When average demand is much greater than supply, the store spends most of 

its time empty. When the store does occasionally accumulate a little energy at 
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instants of above-average power, it therefore takes a relatively long time to 

empty again compared to the rate if the instantaneous power were closer to 

the mean for the period. 

 

Conversely, when average supply is much greater than demand, the store 

spends most of its time full. When the store occasionally empties a little at 

instants of below-average power, it therefore takes a relatively long time to 

refill compared to the rate if the power were closer to the mean for the period.  

 

The times that the store spends empty, full, emptying and filling cannot be 

directly calculated because all the temporal information has been lost; all we 

have is a spectrum of wind speed variations and a probability distribution of 

net power. To deal with this, the probabilistic model uses an approximation to 

the time variations. It assumes that the net power time variation follows a 

triangular waveform.  Based on this, the required calculations can be made as 

described below. Let us first consider a period in which average demand 

exceeds average supply, fig. B.5. 
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Figure B.5. Modelling a store that spends most of its time empty 
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The fraction of time that the store spends filling, f is calculated from the 

probability distribution, as before, fig. B.3. We do not have to know the length 

of a typical cycle of power variation (the period of the triangular wave). All time 

fractions are normalised by this period. The time taken to empty again, e is 

calculated such that the areas of the filling triangle, F and emptying triangle, E 

are equal in fig. B.5, after adjustment for store efficiency. If the efficiency, η is 

constant, defined as: 

 

EnergyOut
EnergyIn

η =   

And assuming that the state of charge at the end of any time period is the 

same as at the beginning. 

Then: 
2

e f η=  

 Now let us consider a period in which average supply exceeds average 

demand, fig. B.6. 
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Figure B.6. Modelling a store that spends most of its time full 

 

The fraction of time that the store spends emptying, e is calculated from the 

probability distribution, as before, fig. B.4. The time taken to refill, f is 
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calculated such that the areas of the filling triangle, F and emptying triangle, E 

are equal in fig. B.6, after adjustment for store efficiency. If the efficiency, η is 

constant, defined as: 

 

EnergyOut
EnergyIn

η =   

And assuming that the state of charge at the end of any time period is the 

same as at the beginning. 

 

Then: 
2
ef
η

=  

 

This triangular wave method was found to give such good results that it was 

considered as an option for all conditions, even when energy into and out of 

the store is almost balanced. This required a more complex formula, using 

one root of a quadratic equation. In a store experiencing slightly more energy 

out than in, the emptying after filling would take not only the �down� slope but 

also part of the following �up� slope, fig. B.7. 
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Figure B.7. Modelling a store that spends a small fraction of time empty 
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Similarly, in a store with slightly more energy in than out, the refilling after 

emptying would take not only the �up� slope but also part of the following 

�down� slope. This approach was tried, but the results were not as good as the 

first method shown in section B.2, when compared with the time-stepping 

results. 

 

The probabilistic method now achieves the best of both worlds. When energy 

into and out of the store is almost balanced, the first method is used. When 

the energy is far from balanced, the triangular wave method is used. When 

energy out of the store exceeds energy into the store, the triangular wave 

method always gives the longer emptying time. When energy into the store 

exceeds energy out of the store, the triangular wave method always gives the 

longer refilling time. Thus the probabilistic method always evaluates both 

methods and takes the longer of the two emptying times, or the longer of the 

two refilling times: 

 

So when energy out of the store exceeds energy into the store: 

 

Emptying time, 1max 1 ,
2 2
Xe f f
X

η 
= − − 

 
 

Then empty time 1 e f= − −  

 

And when energy into the store exceeds energy out of the store: 

 

Refilling time, 1max 1 ,
2 2
X ef e
X η

 
= − − 

  
 

Then full time 1 e f= − −  

 

B.4 modification of the Triangular Wave Method for Truncated 
Probability Distributions 

 

The formulation described above works well for many cases, but not when the 

probability distribution ends abruptly, for example due to the shape of the 
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turbine power curve, or due to the store having a limited charge or discharge 

rate. For example, in fig. B.8, the left-hand tail of the probability distribution 

function has been shortened and concentrated into a second peak. The peak 

may represent a single operating state of the system with a significant 

probability, e.g. when the wind speed is too low to generate any electricity. 
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Figure B.8. Truncated probability distribution of net power, in a period when 

energy to the store exceeds energy from the store. 

 

This situation has again been modelled using a triangular wave, but now with 

a truncated triangular wave, fig. B.9. 
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Figure B.9. Modelling a store that spends most of its time full, using a 

truncated triangular wave 

 

The maximum power out of the store, represented by the truncation of the 

triangle of time d, may not be the same as the actual maximum power coming 

from the store as described by the probability distribution function. The actual 

distribution may include a small tail of low probability e.g. due to variations in 

electrical demand. To accommodate this, and other possible variations in the 

shape of the probability distribution, the truncation of the triangular wave, d is 

calculated from the first and second moments of the actual probability density 

function, M and S, fig. B.8. 
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Then the fraction of time, d that the triangular wave spends at the limit is 

calculated to give the same values of M and S as the actual probability 

distribution 

 
2

24 1 16 12
3 3
M Md e M S
S S

 
 = − + −  

 
  

 

When 24 3M S> , d is real and positive and is used to calculate the refilling 

time. However, when 24 3M S< , d is complex and its real part is negative. 

Then d is set to zero. 

 

The full formula for the fractional refilling time is: 
2 2

2
e df

η
−=    

Thus the formula reverts to the simple triangular wave formula when d=0 

 

In the general case: Refilling time, 
2 21max 1 ,

2 2
X e df e
X η

 −= − − 
  

 

And full time is still 1 e f= − −  

 

Similar modifications apply to the case of a period in which power out of the 

store exceeds power into the store. Now M and S refer to the positive portion 

of the net power probability distribution: 
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Let c be the fraction of time that the power into a store is limited. The total 

fraction of time that the store is filling is f. The formula for the fractional time of 

limited power is otherwise unchanged: 

 
2

24 1 16 12
3 3
M Mc f M S
S S

 
 = − + −  

 
 

 

The formula for the fractional emptying time is: 
( )2 2

2
f c

e
η −

=  

This also reverts to the original triangular wave formula when c=0. 

 

In the general case: Emptying time, 
( )2 2

1max 1 ,
2 2

f cXe f
X

η − = − −
 
 
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Appendix C 
 
The Search for an Improved Wind Speed Distribution 
 

Weibull distributions tend to fit wind speed data well for relatively large 

standard deviations (small Weibull shape factor). However, as seen in section 

2.6.3, when the standard deviation is small compared to the mean, and the 

shape factor of the equivalent Weibull distribution (with the same mean and 

standard deviation) becomes large, then the skewness of the Weibull 

distribution becomes low or even negative. Real wind speed distributions 

almost always have highly positive skewness, even when the standard 

deviation is small. However, neither Weibull nor normal distributions possess 

this characteristic. This has led to a search for a more suitable family of 

distributions to model wind speed probabilities. Several distributions are 

promising: the log-normal, Chi, Chi squared and gamma distributions for 

example. As will be seen below, the non-central chi squared distribution with 2 

degrees of freedom offers an alternative that always has a positive level of 

skewness.  

 

The Rayleigh distribution (a Weibull distribution with a shape factor of exactly 

2) is very limited but has some basis in theory (Hassan, Sykes 1990). This 

derivation of the Rayleigh distribution from a bi-variate normal distribution 

assumes that the wind is isotropic; that it is uniformly distributed with no 

prevailing wind direction. This raises an interesting question: What would be 

the distribution if the wind did have a prevailing direction? What if the north-

south and east-west wind components were still each normally distributed, but 

the centre of those distributions were not at zero wind speed? Here we refer 

to this distribution as an Offset Circle - Circular Normal distribution. 

 

The following derivation is an extension of the theory given in (Hassan, Sykes 

1990). Consider wind speed components in the east-west and north-south 

directions of x  and y  respectively. The resultant wind speed is: 

2 2U x y= +  
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Assuming that the wind is isotropic (uniformly distributed with no prevailing 

wind), then each wind speed component will be normally distributed about 

zero: 

( ) ( )2

2

1 exp
22

xx
f x

µ
σσ π

 − −
=  

  
  Where µx is the mean in the x-direction 

 

( ) ( )2

2

1 exp
22

yy
f y

µ
σσ π

 − −
 =
 
 

  Where µy is the mean in the y-direction 

 

Then ( ) ( ) ( )22

2 2

1 1, exp exp
2 22 2

yx yx
f x y

µµ
σ σσ π σ π

   − −− −  = × 
     

 

( ) ( )22

2 2

1 exp
2 2

x yx yµ µ
πσ σ

 − − − −
 =
 
 

 

2

2 2

1 exp
2 2

rµ
πσ σ

 −
=  

  
 Where rµ is the wind speed vector from point (µx,µy) to 

point (x,y). 

 

For the isotropic case, 0x yµ µ= = , and r Uµ = . The probability density is then: 

 
2

2 2

1( , ) exp
2 2

Uf x y
πσ σ

 −=  
 

 

To obtain the probability density as a function of wind speed, U  this equation 

must be integrated in polar coordinates with respect to angle (wind direction), 

θ : 
2 2 2

2 2 2 2
0

( ) exp exp
2 2 2
U U U Uf U d

π

θ

θ
πσ σ σ σ=

   − −= =   
   

∫  

This is the standard Rayleigh distribution, as expected. 

 

When the distribution is non-central, 0xµ ≠  and/or 0yµ ≠ , and the integration 

is more difficult. Let us consider a wind speed interval, Uδ  at wind speed, U , 

with wind speed direction, θ  and sector angle interval, δθ . 
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The �area� of this interval is U Uδ δθ× × . 

And the probability of the wind speed occupying that area is: 

( ) ( ) ( )22

2 2

1, exp
2 2

x yx y
p U U U

µ µ
δ δθ δ δθ

πσ σ

 − − − −
 =
 
 

 

( ) ( )22

2 2

cos sin1 exp
2 2

x yU U
U U

θ µ θ µ
δ δθ

πσ σ

 − − − −
 =
 
 

 

In the limit, as δθ  tends to zero, the total probability within the ring Uδ  is: 

( ) ( ) ( )222

2 2
0

cos sin
exp

2 2
x yU UU Up U d

π

θ

θ µ θ µδδ θ
πσ σ=

 − − − −
 =
 
 

∫  

And the wind speed probability density is: 

( ) ( ) ( )222

2 2
0

cos sin
exp

2 2
x yU UUf U d

π

θ

θ µ θ µ
θ

πσ σ=

 − − − −
 =
 
 

∫  

 

This probability density function has previously been evaluated and is 

identified as an �integral of the circular normal distribution over an offset 

circle�, (Abramowitz, Stegun 1964).  

If R  is the radius of the circle and 22
yxr µµ +=   

Then the cumulative probability of the wind being less than R is 






 2
2

,
2
rRP  

Where P  is the cumulative form of the non-central chi-square distribution with 

two degrees of freedom, (Abramowitz, Stegun 1964). This function is also 

known as the generalised Rayleigh, Rayleigh-Rice or Rice distribution. 

 

The above integral has been evaluated numerically for a range of offsets and 

results have also been compared with Weibull distributions with the same 

means and standard deviations in fig. C.1.  
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Figure C.1 Weibull distributions compared with offset-circle - circular normal 

distributions with the same means and standard deviations 

 

In fig. C.1 all the distributions have standard deviations of 1.04, and various 

different mean values, in pairs. Each pair consists of a Weibull distribution and 

an offset circle - circular normal distribution with the same mean.  

 

The first pair has a mean of 2, and the first Weibull distribution has a shape 

factor of exactly 2. Thus it can be seen that a Rayleigh distribution is exactly 

the same as a circular normal distribution with the same mean value. 

 

Subsequent pairs have means of 4, 6, 8 and 10. In these distributions, the 

offset circle - circular normal PDFs all have positive skewness, decreasing in 

skewness as the mean increases. The Weibull distributions all have negative 

skewness, and their shapes get progressively more different from the 

corresponding offset circular normal distributions. 

 

The above offset circle - circular normal distribution, or non-central chi-

squared distribution, offers the possibility of a single, mathematically elegant 

family of wind speed distribution functions with a wide range of standard 
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deviation to mean ratios, all with positive skewness. However, this is left for 

future work. The process of constructing a suitable distribution from a given 

mean and standard deviation requires iteration and would be too time 

consuming for the probabilistic method. The probabilistic method therefore 

uses the tried and tested Weibull and normal distributions. 
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