
 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



3-D Antenna Array 
Analysis using the 

Induced EMF Method 
 

 

 

 

 

by 

Norun Farihah Abdul Malek 

 

 

 

 

Doctoral Thesis 

Submitted in partial fulfillment of the requirements for the award of 
Doctor of Philosophy of Loughborough University 

2013 

 

© By Norun Farihah Abdul Malek, 2013

 

  



ii 
 

 

ABSTRACT 

The effect of mutual coupling between elements plays a crucial role to the 

performance of the antenna arrays. The radiation patterns of antenna arrays will 

be altered by the coupling effect from the adjacent elements thus reducing the 

accuracy and resolution in direction finding application. This research developed 

and validated the novel 3-D Algorithm to calculate the far-field pattern of dipole 

arrays arranged in three dimensions and in any configuration (both in straight 

and slanted position). The effect of mutual coupling has been accounted using 

the Induced EMF method. The computation is performed on 2x2 parallel dipoles 

and 12 dipoles arranged at the edge of a cube. The results are validated with 

other electromagnetic techniques such as Method of Moment (MoM) and Finite 

Difference Time-Domain (FDTD). Then, a 2x2 dipole array is chosen for beam 

steering and experiment validation due to its ease of implementation and feeding 

network. The array optimisation to control the pattern is performed using a 

genetic algorithm. The far-field pattern computed using the 3-D algorithm might 

be less accurate than other 3-D electromagnetic techniques but its array 

optimisation is faster and efficient. The simulation and measurement results are 

in good agreement with each other confirmed the validity of the 3-D algorithm. 
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CHAPTER 1:  
Introduction to Research 

1.1 Research Background 

Phased array antennas are in high demand due to certain applications such as in 

radar development that require radiation pattern control. They have the ability to 

shape or electronically steer the radiation pattern by proper element excitations 

without the need to mechanically rotate. Electronic beam steering is preferable 

compared to mechanical steering due to the rapid and flexible electronic phasing 

for each element. In the 1950s, many industrial companies, government 

laboratories and academic institutions developed various methods of electronic 

beam steering, as summarized by Fowler [1] from the 1950s to date. 

 The Special Radar Group in Lincoln Laboratories, Massachusetts was 

one of the major contributors to the phased array radar development project in 

1958. The group began with the application in satellite surveillance, and later 

developing the Millstone Hill radar, one of the few radar instruments existed at 

that time with satellite detection and tracking capability [2]. In 1959, the group 

led by John L. Allen developed the technology of phased arrays for military 

purposes. As a result, the laboratory produced a series of reports [3-5] entitled 

‘Phased-Array Radar Studies’. The reports highlighted the development of array 

theory to hardware implementation to obtain reliable and low-cost array 

components, a variety of beam scanning techniques and a good understanding of 

the array theory. 

 Early works on phased array antennas concentrated on the dipole antenna, 

as it is the simplest type [3-5]. However, one of the primary challenges in 

designing a phased array is the existence of mutual coupling between elements in 

the antenna array. Mutual coupling is the interaction of microwave power 

transmitted by one element that can be received by other elements surrounding 
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that element in an array. It can affect the performance of the antenna array. Allen 

[6] investigated the effects of mutual coupling by comparing the measured H-

plane pattern of a 16-dipole antenna array with and without the effect of mutual 

coupling. The measured H-plane pattern is in closer agreement by taking the 

mutual coupling effect into account rather than neglecting it. 

The effect of mutual coupling between elements plays a crucial role in 

the direction-finding performance of the adaptive antenna arrays. The radiation 

patterns of antenna arrays will be altered by the coupling effect from the adjacent 

elements thus reducing the accuracy and resolution of direction finding system. 

Gupta [7] considered the mutual coupling effect into account by using the 

concept of mutual impedance to derive the open-circuit voltages from the 

terminal voltages. From there, the steady state output signal-to-interference noise 

ratio (SINR) has been derived as a measured performance for the adaptive arrays. 

It was shown that its performance is lower compared to that obtained without the 

mutual coupling effect. On the other hand, Hui [8] introduced a new definition of 

mutual impedance by taking the actual measured current on the antenna element. 

The result is used as input in Multiple Signal Classification (MUSIC) algorithm 

[9] where the algorithm is used to provide unbiased estimation of the direction of 

arrival (DoA) of signals at the antenna array. The combination of both methods 

enabling them to accurately predicts the direction-of-arrival’s of two signals at 

angle 30° and 57° better than open-circuit voltages [7]. Other than accurately 

predict DoA, the mutual coupling also affects the nulls which is also important to 

steer the nulls in undesired direction [10]. 

Preston [11, 12] demonstrated the switched-parasitic antenna array in a 

direction-finding system for the tracking of base stations in mobile 

communications. The author presents three modes of direction-finding solution 

for both single- and multiple-signal detection by using a switched four-element 

parasitic array with the four patterns as shown in Figure 1-1. One way to track 

the single incident signal is by detecting the field strength sequentially at q1, q2, 

q3 and q4. The maximum value is determined and the antenna is switched to the 

position that gives the maximum signal until a further update is required. 
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inadequate for detailed analysis. Therefore, it has been compensated with many 

thorough array analysis existed nowadays.  

1.2 Problem Statement 

The mutual coupling effect plays a significant role in the array environment and 

should be taken into consideration, especially in small antenna arrays. It is 

always desirable to achieve a small antenna array due to its flexibility and cost 

effectiveness. However, small antenna arrays incorporate small spacing which 

leads to high coupling between antenna elements. 

One of the well-known array analyses that include the mutual coupling 

effect is the active element pattern [14]. The pattern of a fully excited (scanned) 

phased array is the product of the active element pattern and array factor. The 

active element pattern (or known as AEP) of a phased array is defined as the 

radiation pattern of the array when one radiating element is driven and all others 

are terminated with matched loads. The method is accurate for infinite arrays and 

approximately true for finite but large arrays. However, in small arrays, it might 

be inaccurate since the mutual coupling change in edge elements may be 

neglected. The coupling of edge elements behaves differently with each other 

and its change should not be ignored. 

Many papers discuss array analysis techniques that include the mutual 

coupling effect between elements in small antenna arrays. However, they are 

lacking in 3-D, where the elements can be placed in any configuration and 

orientation, which is useful for conformal, cubic or spherical arrays. Conformal 

arrays are array antennas on curved surface and are usually integrated on 

vehicles such as cars, aircraft and satellite bodies. Cubic arrays are the 

arrangement of all the antenna elements (such as dipoles and slots) at the edge of 

cube structure as presented in [15, 16]. One of the reasons is due to the 

increasing complexity of the analysis as the dimensions increase.  

 Accurate and fast calculations of the antenna radiation patterns are 

essential for optimisation methods to generate antenna arrays. Full-wave analysis 

takes long computation and requires large memory. Numerical technique such as 

method of moment (MoM) considers coupling between elements. It directly 
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applies Maxwell’s equation and computes the unknown current distribution from 

a set of known voltage excitation with the proper selection of basis and 

weighting functions. On the other hand, the calculation of the far-field pattern 

without the mutual coupling effect (such as pattern multiplication) resulting 

inaccurate decisions by the optimisation method. Pattern multiplication is a 

conventional technique which is the product of the array factor and the element 

pattern. The array factor does not consider the mutual coupling between elements 

because it depends only on the geometry of antenna elements and the current 

distribution is directly proportional to the voltage excitation of the antenna 

elements. Other technique tends to remove the effect of the mutual coupling by 

increasing the element spacing, d as in Figure 1-1. However, the technique might 

produce higher side-lobe levels and grating lobes.  

Optimization techniques have evolved tremendously in recent years to 

ease computational burden in optimizing antenna arrays. Dolph-Chebyshev [17] 

and Taylor [18] are a few conventional ways to find the best weighting amplitude 

for low side lobe levels. Using high-speed computers, iterative and evolutionary 

methods such as genetic algorithm (GA) [19], particle swarm optimization (PSO) 

[20], least-mean square (LMS) [21] are widely used in pattern synthesis. On the 

other hand, there are new hybrid techniques [22] which sometimes offer greater 

performance compared to iterative and evolutionary methods. Criteria in 

determining good performance depends on computational efficiency, not trapped 

in local extremums, capability to optimize multi objectives (PARETO) function, 

complex problems and large variables. Hybrid methods combine more than one 

method thus providing more capabilities compared to single optimization 

technique. 

Realising the importance of mutual coupling effect in 3-D array, its effect 

in dipole antenna arrays is investigated. It can be applied to elements arranged in 

any locations and configurations, such as in aperiodic, cubic or spherical arrays. 

As a result, a novel 3-D array analysis has been developed considering the 

mutual coupling effect between elements. The analysis has been demonstrated 

both on four (or known as 2 by 2 dipoles arranged in x and y-axis) and cubic 

dipole arrays (or known as twelve dipoles arranged at the edge of cube as shown 

in Figure 1-2). A 2x2 dipole array can be categorized as 2-D array while cubic 
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dipole array can be categorized as 3-D array. Then, the synthesis pattern of four 

dipole arrays was performed using a combination of this new array analysis and a 

genetic algorithm. The realization of the dipole antenna array was then 

performed using a four-dipole antenna with a feed network. The purpose is to 

validate the new array analysis considering the mutual coupling effect with 

measured results of a dipole array; this is elaborated in detail in this thesis. 

 
Figure 1-2 (a) Four (or 2x2) dipole antenna arrays, (b) Twelve dipole antenna 
arrays arranged at the edge of a cube (or known as cubic arrays). 

1.3 Research Contributions 

The principal aim of this thesis is to develop a 3-D antenna analysis employing 

mutual coupling effect between elements for direction finding application. At 

this stage, a few research contributions are achieved: 

 The development of new array analysis for dipole antenna arrays 

considering the mutual coupling effect using the Induced EMF 

method in three dimensions. 

The above point is the major and novel contribution of this dissertation. 

The new 3-D algorithm developed is applicable to elements arranged in any 

configuration; 1-D, 2-D, or 3-D. The model takes into account the mutual 

coupling effect between the elements, giving more accurate results compared to 

conventional pattern multiplication, especially in the side-lobe and null regions. 

The method was compared with other full wave modelling software such as 

FDTD (Empire XCcel) and MoM (4NEC2++). The results show that the 3-D 
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algorithm is more than 75% in agreement with other techniques, especially with 

FDTD. 

 The optimisation to find the ‘best fit’ to the desired pattern using a 

combination of the 3-D algorithm and a genetic algorithm. 

The 3-D algorithm was developed from scratch, allowing a greater 

flexibility to control the pattern by considering the mutual coupling effects into 

account. One way to demonstrate it by using a genetic algorithm (GA) to vary 

the amplitude and phase excitations of each element in order to obtain the desired 

pattern. The pattern can be steered sequentially in order to determine the strength 

of the signal in direction finding application. The results from the 3-D algorithm 

might be less accurate compared with other 3-D electromagnetic software but 

faster and efficient where the simulation runs simultaneously and does not need 

to be exported to the genetic algorithm. 

 The validation of the 3-D algorithm with experimental work using 

a 2x2 dipole antenna array and a feed network consists of phase 

shifter and attenuator. 

Last but not least, the validation of 3-D algorithm is performed with the 

experimental work using a 2x2 dipole array. A good agreement between them 

proves the 3-D algorithm comprising of mutual coupling effect is accurate, fast 

and efficient, especially for small antenna arrays.  

1.4 Thesis Outline 

The second chapter of this thesis presents an introduction and the mathematical 

background related to the characteristics of antennas’ elements and arrays. A 

conventional pattern multiplication for antenna arrays and the mutual coupling 

effect between elements are also included. Other methods such as the active 

input impedance and the active element pattern to account for the mutual 

coupling effect in antenna arrays are briefly introduced. The mathematical 

concept of self and mutual impedances is also discussed in detail in this chapter.  

Numerical methods and array analysis are described in Chapter Three. 

The numerical techniques such as method of moment (MoM) and finite-
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difference time-domain (FDTD) method are briefly explained. A review of 

previous works related to array analysis in 1-D (linear), 2-D (planar or circular) 

and 3-D (spherical, cube) are also presented. The study is essential in order to 

develop a new array analysis technique that includes mutual coupling effect for 

3-D arrays. Furthermore, a number of array optimisation techniques, include 

sequential uniform sampling, gradient search, Nelder-Mead simplex, simulated 

annealing and genetic algorithm, which is used for pattern synthesis, are 

discussed at the end of this chapter.  

Chapter Four provides the development of novel pattern analysis of 

antenna arrays using the Induced EMF method. This method takes into account 

the mutual coupling effect between elements. It is applicable for elements 

arranged in any configuration. The novel 3-D algorithm was tested for 2x2 and 

twelve dipole arrays arranged at the edge of cubic structure. The result was 

compared with full wave techniques such as FDTD, MoM and a conventional 

pattern multiplication method.  

The pattern needs to be electronically steered into any desired direction 

while removing any interference in other directions. This may be achieved using 

a genetic algorithm by varying the amplitude and phase excitation of each 

element. The combination of this optimisation technique and the new 3-D 

Algorithm are explained in Chapter Five. It is demonstrated using a 2x2-dipole 

array arranged in a rectangular grid with a spacing of 0.9λ0 between the 

elements. The obstacles and limitations of this technique are discussed in this 

chapter. 

In Chapter Six, the verification of the novel 3-D algorithm is performed 

with the experimental setup of 2x2-dipole antenna array. A feed network was 

designed in order to feed the four-dipole antenna array with different amplitudes 

and phases. The feed network consists of a Wilkinson Divider, a circuit of 

surface-mounted voltage control phase shifter and attenuator chips. The dipole 

array was mounted on Rohacell substrate to make it robust. The entire devices 

were mounted on the platform in the anechoic chamber for pattern measurement. 

The measurement setup and results are explained in details within this chapter. 

Chapter Seven highlights the conclusions discussed in each chapter. 

Furthermore, some recommendations for future work are also included. Then, 
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four appendices are included at the end of this thesis; the former three are the 3-

D algorithm for 2x2 and cubic dipole arrays, the genetic algorithm, and last but 

not least the effect of the element spacing and orientation on the far-field pattern 

of four dipoles array. Last but not least, Figure 1-3 categorized the content of the 

whole thesis in a flowchart.  
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CHAPTER 2: 
Basics of Antenna 

Arrays 

2.1 Introduction 

This chapter introduces the readers to the background theory of dipole antenna 

and arrays. One of the advantages of antenna arrays as compared with individual 

radiating elements is to obtain radiation pattern control. Pattern multiplication 

technique which is the conventional and idealised method in array analysis is 

presented. However, there are other effects that influence how elements behave 

in arrays when compared to individual elements in isolation. The effect, which is 

known as mutual coupling, brings a significant effect to arrays, which will be 

explained in this chapter. 

There are a few methods to study the effect of mutual coupling between 

elements, such as the active input impedance and the active element pattern 

(AEP). Those will be briefly introduced in this chapter. The active element 

pattern may be performed through simulation software or measurement. On the 

other hand, the active input impedance can be obtained from numerical 

computation or measurement. It is based on N-port network and its background 

theory such as self and mutual impedance is elaborated in details before the 

concluding remarks in this chapter. 

2.2 Basics of Element and Array Antenna 

An antenna array is a combination of several single-element antennas (or 

sources) forming a single antenna in order to achieve an improved performance 

in comparison to an elementary antenna. The performance may be either to 
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increase the overall gain, to provide diversity reception, to cancel out 

interference from a particular set of directions, to steer the array to a desired 

direction, to determine the direction of arrival of the incoming signal or to 

maximise the Signal to Interference Noise ratio (SINR). Generally, elements are 

arranged in a uniform geometrical configuration or matrix, such as in linear, 

planar and circular. Antenna arrays constructed in this way have received a lot of 

research interest due to their wide application such as communications and radar. 

Usually, one type of antenna is used to form an array. However, the use 

of different types of antenna in an array is also possible. Monopoles, dipoles, 

slot-in waveguides and microstrip are types of elements that are generally used in 

arrays. Factors that influence the selection of the type of antenna include 

operating frequency, power-handling capability, polarisation, cost, feeding 

arrangements and mechanical constraints. 

There are a few terms to describe the performance of the antenna. 

Characteristics such as the far-field pattern, directivity and input impedance are 

discussed in this chapter. 

Moreover, the characteristics of antenna array are explained. The total 

far-field pattern of an array that represents ideal array theory is also described in 

this section. 

2.2.1 Array Element: Half wavelength Dipole 

A few elements of dipole antennas were chosen for this study due to their simple 

characteristics and ease of implementation in array analysis. The half-wavelength 

dipole is the most common length of antenna used in many applications. The 

coordinate system that is used in this thesis is taken from [1] (Figure 2-1). A 

pattern can be referred in polar form as a function of three vectors ࢇ௥,  .థࢇ ఏ andࢇ
The electric and magnetic far-field components of a half-wavelength dipole (l = 

λ/2), Eθ and Hφ are [1]: 

,ߠ)ఏܧ ߮) ≈ ݎߨ଴݁ି௝௞௥2ܫߟ ݆  . cos(2ߨ cos sin(ߠ ߠ                                     (2 − 1) 
,ߠ)ఝܪ ߮) ≈ ߟఏܧ ≈ ݎߨ଴݁ି௝௞௥2ܫ ݆  . cos(2ߨ cos sin(ߠ ߠ                           (2 − 2) 
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where I0 is the maximum current, η is the wave impedance (120π), k is the 

number of wavelength, r is the distance from any point on the source to the 

observation point, θ and φ is the angle calculated from z and x-axis respectively 

to the any point on the source as shown in Figure 2-1. 

 
Figure 2-1: The coordinate system for far-field pattern analysis from Balanis [1]. 

 

The far-field components are valid when the measurement distance is 

greater than 2D2/λ. D is the largest dimension of the antenna and λ is the 

wavelength.  

The total power radiated, Prad 

௥ܲ௔ௗ = ߟ ߨ଴|ଶ8ܫ| 2)                                                 (ߨ2)௜௡ܥ − 3) 
where Cin(x) is derived from the cosine integral Ci(x)  

(ݔ)௜ܥ = න cos ݕݕ ௫ݕ݀
ஶ                                                     (2 − 4) 

(ݔ)௜௡ܥ = 0.5772 + ln(ݔ) − 2)                                    (ݔ)௜ܥ − 5) 
where Ci(2π)=2.435 is obtained from Balanis [1]. 

 

௥ࢇ                ,௥ࡱ)  (௥ࡴ
 
       
,థࡱ) థࢇ          (థࡴ

 
ఏࢇ      ,ఏࡱ)  (ఏࡴ
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The maximum directivity of the half wavelength dipole is  

଴ܦ          = ߨ4 ܷ௠௔௫௥ܲ௔ௗ                                                    (2 − 6) 
where ܷ௠௔௫  is the maximum radiation intensity of half-wave dipole (occured at 

θ=90°) and is given by 

ݔ ≃ ߟ ଶߨ଴|ଶ8ܫ| sinଷ ߠ                                               (2 − 6ܽ) 
Substituting equation 2-3 to 2-5 into equation 2-6 will give: ܦ଴ ≈ 1.643 = 2)                                    ܤ݀ 2.156 − 6b) 
The radiation resistance for a dipole in free space (η ≈ 120π) is given by: 

ܴ௥ = 2 ௥ܲ௔ௗ|ܫ଴|ଶ = ߨ4(ߨ2)௜௡ܥߟ ≈ 30(2.435) ≈ 73Ω      (2 − 7) 
These values are for an infinitely thin dipole and might be different for 

finite thickness dipole. The imaginary part (reactance) is calculated using the 

induced EMF method and found to be j42.5 for a half-wavelength dipole at 

resonance [1]. Since the current maximum for a λ/2 dipole occurs at the input 

terminals, the radiation resistance and reactance given is also the input 

impedance of the dipole and equal to: ܼ௜௡ = 73 + ݆42.5                                                 (2 − 8) 
Usually, in practice, the length of the antenna is reduced so that the 

imaginary part of the input impedance decreases to zero at the resonant 

frequency. The length to be reduced depends on the radius of the wire, around ݈ 
= 0.47λ to 0.48λ. The thinner the wire, the closer the length is to 0.48λ [1].  

2.2.2 Antenna Array 

There are many advantages of an antenna array including increasing gain and 

achieving desired radiation pattern. Gain is equal to the product of antenna 

radiation efficiency and directivity. Antenna radiation efficiency takes into 

account the conduction and dielectric losses. Directivity is defined as “the ratio 
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of the radiation intensity in a given direction from the antenna to the radiation 

intensity averaged over all directions” [2].  

The Yagi-Uda antenna is one of the best known dipole antenna arrays 

with high gain [3, 4]. It consists of a driven element placed between several 

dipoles that act as directors and a dipole that acts as a reflector. By increasing the 

number of directors in an array, the gain of the antenna is increased. The 

technique had been applied widely in radio and television due to its directivity, 

low wind resistance and low cost. 

Another advantage of antenna arrays is the ability to control the radiation 

pattern. The total radiation field is the summation of the radiation field of each 

element in that array. Each element in an array can be arranged so that their 

radiation fields accumulate constructively in the desired direction while 

interfering destructively (cancelling each other) in other directions. Many works 

discuss how to shape the pattern of an antenna array according to the designer’s 

specification, see, for example [1, 8]. 

There are at least five factors that affect the shape of the radiation pattern 

of an array of identical elements: 

 The geometrical configuration of the overall array (such as linear, 

rectangular, circular, and spherical).  

 The spacing between the elements. 

 The excitation amplitude of the individual elements. 

 The excitation phase of the individual elements. 

 The relative pattern of the individual elements. 

For example, the effect of mutual coupling is high for small spacing 

between elements because of the interaction of energy from its neighbourhood. 

On the other hand when the spacing is large between elements, another effect 

called grating lobes will occur. Grating lobes are unintended strong beams 

radiation that occurred in the other direction away than main lobe that existed in 

the radiation pattern of the array.  

The term ‘phased array’ refers to those antenna arrays with elements that 

are excited with a few methods such as variable phase shift or time delay control 

to direct the radiation energy in the desired direction. Phase shift control can be 
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obtained by varying the phase of the input excitation for each element in an array 

using phase shifting network [5] while time delay control can be accomplished 

by switching on-off the elements at different time [6]. The disadvantage of using 

phase shifting network in antenna array is that they are expensive and complex as 

the number of elements increased. On the other hand, the time delay control 

produces unwanted harmonics, or sidebands, at multiples switching frequency 

and many studies are concentrating on minimizing this effect [7]. Depending on 

the application, it is sometimes necessary to increase the radiation energy in a 

particular direction (main lobe signal), suppress the interference in the other 

directions and block electromagnetic signal(s) approaching from a known 

direction (nulling signal). These modifications to the radiation pattern can be 

made through a pattern synthesis process [7].  

The characteristic of the far-field pattern of an antenna array is shown in 

Figure 2-2. 

 
Figure 2-2: Far-field pattern of antenna array (in dB). 

Generally, the radiation patterns are plotted for normalised values on a 

dB scale. The radiation pattern shows the proportion of the electric field or the 

power directed to a particular direction. This radiation pattern helps to define 

several important antenna array metrics. The metrics presented in this chapter are 

used for the array pattern synthesis problems dealt within this work. 

Beamwidth refers to the angular width of the main lobe of the radiation 

pattern. The beamwidth is measured in degrees. It usually refers to 3-dB-
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beamwidth (or half-power beamwidth). It is defined as the angular separation 

between the two points on the main lobe where the power is dropped to 3-dB or 

the electric field pattern is half from the peak of the main beam (Figure 2-2). 

Usually, the larger size of the beamwidth indicates the low gain performance of 

the antenna array.  

2.2.3 Ideal Array Theory: Element and Array Factor 

The total radiation pattern can be simplified by multiplying the pattern of an 

individual element (the element factor) positioned at the reference point (or 

origin) by the pattern due to an array of isotropic sources, called the array factor. 

This is known as the pattern multiplication rule and applies to identical elements 

of an array. Generally, an array factor is a function of the number of elements 

(N), their geometrical arrangement, their relative magnitudes, their relative 

phases and their spacing. Therefore, the array factor can be calculated by 

replacing each element with an isotropic (point) source, since it does not depend 

on the characteristic of the element itself [1]. Many conventional techniques such 

as Uniform, Binomial, and Chebyshev used the concept of array factor due to its 

computational efficiencies. 

The concept of the array factor can be derived from two half-wavelength 

dipoles positioned along z-axis. The far-field pattern for a half wavelength dipole 

is defined in equation (2-1). Thus, the total far-field pattern radiated by array 

without coupling between elements is equal to the summation of two elements 

and is given by: ܧ௧௢௧௔௟(ߠ, ߶) = ,ߠ)ଵܧ ߶) + ,ߠ)ଶܧ ߶)                                 (2 − 9) 
,ߠ)௧௢௧௔௟ܧ ߶) = ߟ݆ ቐcos ቀ2ߨ cos ଵቁߠ ଵݎߨଵ݁ି௝௞௥భ2ܫ sin ଵߠ  +  cos ቀ2ߨ cos ଶቁߠ ଶݎߨଶ݁ି௝௞௥మ2ܫ sin ଶߠ ቑ , (2 − 10) 

where  ܫଵ = ଶܫ = ௝ఞ݁ܣ  ଶ⁄  where χ is the phase difference (or progressive phase) 

between elements and the amplitude excitation is identical. By using the far-field 

observation: ߠଵ ≃ ଶߠ ≃ 2)                                              ߠ  − 11ܽ) 
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ଵݎ ≃ ݎ − ௗଶ  cos  ߠ
ଶݎ ≃ ݎ + 2݀  cos ଵݎ                                                             ߠ ≃ ଶݎ ≃ for amplitude variation (2 ݎ − 11ܿ) 

Equation 2-9 and 2-10 reduce to: 

,ߠ)௧௢௧௔௟ܧ ߶) = ݎߨ2ܣߟ݆ ݁ି௝௞௥  cos ቀ2ߨ cos ቁsinߠ ߠ ൜݁௝(݇2݀  cos (2߯ +ߠ +  ݁ି௝( ݇2݀ ݏ݋ܿ           ,ൠ(2߯ +ߠ
,ߠ)௧௢௧௔௟ܧ ߶) = ݎߨ2ܣߟ݆ ݁ି௝௞௥  cos ቀ2ߨ cos ቁsinߠ ߠ ቊ2 cos ቈ12 (݇݀ cos ߠ +  ߯)቉ቋ , (2 − 12) 

Therefore, by comparing equation (2-12) and (2-1), it is apparent that the total 

far-field pattern of the array is equal to the pattern of single half-wavelength 

dipole antenna (equation (2-1)) multiplied by a factor which is known as the 

array factor (denoted in the bracket of the equation (2-12)). The normalized array 

factor for the two-element array of same constant magnitude is given as: ܨܣ = cos ቈ12 (݇݀ cos ߠ +  ߯)቉                             (2 − 13) 

The array factor is as a function of the spacing and the excitation phase. Thus, 

the total field can be controlled by varying the spacing, d and/or the phase χ 

between the elements. Thus the total far-field pattern can be summarized as: ܧ௧௢௧௔௟ = x [array factor]            (2 [(single element at reference point)ܧ] − 14) 

Equation 2-14 is known as pattern multiplication for arrays of identical elements. 

The equation is also valid for arrays with any number of identical elements with 

different excitation amplitudes and phases, and/or spacing between them.  

2.3 Analysis of Mutual Coupling Effects in Antenna Arrays 

Ideal array theory does not guarantee optimum array pattern synthesis 

performance. There is another effect known as mutual coupling that changes the 

radiation pattern significantly, especially in closely spaced antenna arrays. 

Mutual coupling is the interchange of energy from one element to another when 

they are placed in close proximity to each other. There are at least three factors 

that lead to coupling: coupling through a feed network, indirect coupling caused 

by near-by scatterers and direct space coupling between array elements [8]. Lee 

for phase variation  
                     (2 − 11ܾ) 
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and Chu [9] present an analysis of the mutual coupling effect between a phased 

array of dipoles and its feed network. Therefore, the mismatch between the 

radiating elements and the feed network has to be taken into account. Indirect 

coupling caused by near-by-scatterers such as mounting platform might leads to 

multipath propagation that affecting the pattern of the antenna array [10, 11]. The 

multipath propagation causes reflection and refraction to the electromagnetic 

waves thus may alter the characteristics of antenna. One way to overcome 

propagation delay is by using multiple antennas or known as MIMO (multiple 

input multiple output) to combine information from multiple signals improving 

both speed and data integrity.  

Mutual coupling might affect the performance of the antenna arrays. A 

few papers discussed the mutual coupling effect to the channel capacity in 3-D 

antenna system such as MIMO cube [12, 13]. Others mentioned that the effect of 

mutual coupling reduces the channel capacity such as in [14] while a work by 

Svantesson and Ranheim [15] showed that it enhanced capacity in other 

situation. The mutual coupling behaviour is complex and therefore should be 

taken into account especially for closely spaced antenna arrays.  

2.3.1 Mutual Coupling between Elements 

The amount of mutual coupling between array elements depends on the radiation 

characteristics of each antenna, the relative separation between the pair of 

antennas and the relative orientation of each antenna. Conventionally, the mutual 

impedance was used to measure the mutual coupling effect. Many works [16, 33] 

describe the concept of mutual coupling assuming the antenna systems consist of 

two elements with one antenna in transmitting mode connected to a source and 

another is in receiving mode and open circuited.  

Conventional mutual impedance (introduced by Carter [33]) represented 

two antennas as two port (four terminals) networks (Figure 2-3). Therefore, the 

current-voltage relationship is given by: 

ଵܸ = ܼଵଵܫଵ + ܼଵଶܫଶ,                                                            (2 − 15)  
ଶܸ = ܼଵଶܫଵ + ܼଶଶܫଶ,                                                          (2 − 16) 
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where ܼ௠௡ the impedance is the ratio of voltage to current. 

ܼଵଵ = ଵܸܫଵ ฬூమୀ଴                                                           (2 − 17) 
ܼଵଵ is the input impedance at port 1 with port 2 open circuited. 

ܼଵଶ = ଵܸܫଶ ฬூభୀ଴                                                            (2 − 18) 
ܼଵଶ is the mutual impedance at port 1 due to current at port 2 (with port 1 open-

circuited). In a reciprocal network, ܼଵଶ = ܼଶଵ. 

ܼଶଵ = ଶܸܫଵ ฬூమୀ଴                                                            (2 − 19) 
ܼଶଵ is the mutual impedance at port 2 due to current at port 1 (with port 2 open-

circuited). 

ܼଶଶ = ଶܸܫଶ ฬூభୀ଴                                                            (2 − 20) 
ܼଶଶ is the input impedance at port 2 with port 1 open-circuited. Equations (2-17) 

and (2-20) stated that the impedances Z11 and Z22 are the self impedances of 

antenna 1 and 2 when in isolated environment. The circuit conditions defining 

the impedances are demonstrated in Figure 2-3(a) and (b). By placing antenna 2 

close to antenna 1; a current, I2, is induced in antenna 2 due to radiation from 

antenna 1. Vice versa, current I2 will also cause radiation from antenna 2 and 

thus will influence the current on antenna 1 (Figure 2-4). This effect is called 

mutual coupling. 

Knowing the values of self and mutual impedances, the relation may be 

expanded to a N–element antenna array for which V1, V2, ..., VK are the input 

voltages of each element. ଵܸ  =  ܼଵଵܫଵ  +  ܼଵଶܫଶ + . . . . + ܼଵேܫே ଶܸ  =  ܼଶଵܫଵ  +  ܼଶଶܫଶ + . . . . + ܼଶேܫே ⋮ 
 ேܸ  =  ܼேଵܫଵ  +  ܼேଶܫଶ + . . . . + ܼேேܫே                      (2 − 21) 
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where 

ܼ௠௡ = ௠ܸܫ௡ ฬூ೔ୀ଴,௜ஷ௡                                                (2 − 22) 
The active input impedance Za of the nth element in the array (or the 

driving point impedance), including the effect of mutual coupling, is then 

ܼ௔ =  ௔ܸܫ௔ = ܼ௔ଵ ௔ܫଵܫ +  ܼ௔ଶ ௔ܫଶܫ + … +  ܼ௔௔ +  … . + ܼ௔௡ ௔ܫ௡ܫ                       (2 − 23) 
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It is observed (from equation 2-23) that mutual coupling will affect the 

input impedances of the elements in the array. As the current distribution varies 

due to the effect of the coupling, the radiation pattern also changes.  
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Figure 2-3: (a) Two ports network and (b) its T-network equivalent. 
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Figure 2-4: The circuit conditions defining the impedance: a) Antenna 1 transmitting
and antenna 2 receiving, b) Antenna 2 is transmitting and antenna 1 is receiving. 
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The convention of mutual impedance assumes that the same model is 

applicable in transmitting and receiving mode. However, Hui [17, 18] defines 

and introduces new concept of mutual impedance in the receiving mode. In 

receiving mode, the mutual impedance Z12 is defined as the ratio of the induced 

voltage V1 across the terminal load of antenna 1 to the current I2 on the terminal 

load of antenna 2 when the array is excited by an external source.  

As a result, the effect of mutual coupling between elements needs to be 

taken into consideration, since the pattern of isolated elements (a single element 

with the absence of other array elements) behaves differently compared to when 

it is placed in an array environment. Several techniques have taken this effect 

into account, including the active input impedance method and the active 

element patterns. Other works [19, 20] compensated the mutual coupling effect 

by designing an inverse coupling network in an antenna array. The coupling 

matrix may be obtained from the scattering parameters of an array. After the 

coupling matrix have been compensated, the pattern may be synthesized using 

conventional methods such as Chebyshev, Taylor, and pattern multiplication 

method that do not include mutual coupling effects in antenna arrays. The above-

mentioned techniques will be explained in the next chapter.  

2.3.1.1 The Active Input Impedance Method 

The active input impedance treated an ܰ-element array as an ܰ-port network. 

The array elements may be excited either using a set of individual transmitters or 

a feed network. For both cases, array excitation may be modelled as a set of 

Thevenin equivalent voltage sources with source impedances, as shown in Figure 

2-5. 

There are two concepts by which antenna arrays can be viewed: the 

forced and the free excitation models. In the forced excitation model, a driving 

voltage (or current) assumed to be constant is applied to each element when the 

excitation is phased. When each element has an excitation with a different phase, 

the active reflection coefficient varies with scan angles and affects the actual 

gain (or pattern). The active reflection coefficient is related to the active element 
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impedance (admittance). Nevertheless, the voltage across the element is kept 

constant by a generator [21, 22]. 

A different situation occurs with the free excitation method: when the 

active impedance varies, the voltage drop across the generator impedance, ܼ௚ , 

varies, thus making the voltage across the element no longer constant. As the 

voltage across the element is varied according to the conditions, it is termed 

‘free’. The feeding method in this case is a constant-incident power instead of 

voltage (Figure 2-6). This method is used practically, since in actual arrays the 

feed network is based on power. Another reason is that a constant voltage or 

current source is difficult to maintain or obtain. 

 
Figure 2-5: Free excitation model where ࢙ࢂ and ࢙ࢆ is the source excitation and 
impedance respectively. 

The impedance matrix for a total of ܰ elements, Z consists of self and 

mutual impedances: 

ܼ = ൦ ܼଵଵ ܼଵଶܼଶଵ ܼଶଶ ⋯… ܼଵேܼଶே⋮ ⋮ ⋱ ⋮ܼேଵ ܼேଶ ⋯ ܼேே൪                                     (2 − 24) 
Then, by assuming the array elements are fed by independent Thevenin 

sources (Figure 2-6), the source impedances are represented by a diagonal matrix 

(eq. 2-25). 

ܼ௦ = ൦ܼଵଵ௦ 00 ܼଶଶ௦ ⋯… 00⋮ ⋮ ⋱ ⋮0 0 ⋯ ܼேே௦ ൪                                   (2 − 25) 

  ܼ௡ିଵ௦       ܼ௡௦                         ܼ௡ାଵ௦  

 

. . .        . . . 

 ௡ܸିଵ௦       ௡ܸ௦                      ௡ܸାଵ௦  

 
        Dipole element 

  ܼ௡ିଵ௦       ܼ௡௦                         ܼ௡ାଵ௦  

 

. . .        . . . 

 ௡ܸିଵ௦       ௡ܸ௦                      ௡ܸାଵ௦  

 
        Dipole element 
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As the active element impedances depend on the array excitation with 

scan angle, the feed current is no longer proportional to the generator voltage. 

Therefore, if the feed current for each element is phased by α rad, the generator 

voltage for each element may not be phased by α rad due to mutual coupling. 

The relationship between terminal current, mutual impedance, source impedance 

and source voltage is represented as follows [21, 22],  ࡵ = ࢆ} + 2)                                            ࢙ࢂ૚ି{࢙ࢆ − 26) 
where ࡵ is the terminal current, ࢆ is the impedance matrix,  ࢙ࢂ and ࢙ࢆ  is the source voltage and impedance for ܰ element respectively. 

Usually, the generator impedance for each element is identical, so for ܰ 

elements, ܼ௡௡௦ = ܼ௚ (݊ = 1, … , ܰ), where ܼ௚ is the universal generator 

impedance. If the generator impedance is zero (ܼ௚=0), then the free excitation 

model reduces to a fixed excitation model. Similarly the voltage terminal is 

represented as: ࢂ = ࡵࢆ = ࢆ}ࢆ + 2)                                   ࢙ࢂ૚ି{࢙ࢆ − 27) 
Therefore, the active input impedance is the impedance of an element in 

an array when all of the elements are fully excited. It is a ratio of terminal 

voltage and current for each element and defined by: 

ܼ௡ = ௡ܸܫ௡  ,          ݊ = 1, 2, … , ܰ                         (2 − 28) 
The equivalent circuit for the free excitation model is shown in Figure 2-6.  

 

 
Figure 2-6: The equivalent circuit of free excitation model. It is for an element n 
driven by a Thevenin source in an array. 

     ܼ௡௦                Element terminal 
 
 
௡                            + ௡ܸ௦                                      ௡ܸܫ    ܼ௡ 
            _  
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There are many techniques to calculate the mutual impedances of dipoles 

either by measurement (the measurement of self- and mutual impedances) or 

numerical computation. Numerical computation can be performed using various 

methods such as the Method of Moments (MoM) [23], the Induced EMF Method 

[24-27] or the Galerkin Method [28]. Pozar [29] analysed the mutual impedance 

of a printed dipole array on a substrate using MoM. MoM provides an accurate 

value for mutual impedance but requires large computation time and storage. The 

Induced EMF method provides a good approximation and is easy to evaluate, 

since it gives a closed form solution.  

There are a few papers that address the analysis of mutual coupling in 

parallel or planar arrays using the active input impedance method [9, 35]. 

However, not many papers address the far-field pattern including mutual 

coupling effect for elements arranged in any other configurations. Therefore, the 

method has been expanded into a 3-D antenna array so that it will be useful to 

analyse the elements in any configuration, i.e. spherical or cubic arrays.  

2.3.1.2 The Active Element Pattern Method  

Various authors have used the concept of active element pattern such as Pozar 

and Rudge [30, 31] to predict the scan performance of large phased array 

antennas. This method takes into account the mutual coupling effect between 

elements and can be employed in any configuration, such as in a 3-D antenna 

array. Hansen [32] replaces the terms ‘active element pattern’ and ‘active 

impedance’ with ‘scan element pattern’ and ‘scan impedance’ respectively. This 

section provides a definition of the active element pattern, and the next chapter 

will discuss how this method may be applied in the analysis of antenna arrays. 

The derivation begins by considering an ܰ-element uniform linear array 

of identical elements with its feed as shown in Figure 2-7. Conventional array 

theory ignores the effect of mutual coupling between elements and derives the 

pattern radiated by the array as pattern multiplication between the element factor 

and the array factor. The element factor, ଴݂(ߠ), is the pattern of a single element 

taken in isolation from the array. 
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Figure 2-7: Geometry of a uniform ࡺ-element linear array where ࢂ૚, ,૛ࢂ … ,  ࡺࢂ
are excitation voltage for each element and ࢊ is the spacing between elements. 

Then, the array shown in Figure 2-7 has been replaced by the one shown 

in Figure 2-8 to define the active element pattern, ܨ௘(ߠ). ܰ feeds in Figure 2-7 

have been replaced with a feed at a single element in the array and terminating 

all other elements with matched loads (Figure 2-8).  

The active element pattern, ܨ௘(ߠ), is different from the isolated element 

pattern, ଴݂(ߠ), because of several reasons: 

 The active element pattern consists of radiation from neighbouring 

elements due to mutual coupling with the feed element.  

 ܨ௘(ߠ) depends on the location of the feed element in the array: edge 

elements have a different active element pattern compared to elements at 

the centre of the array. However, for large arrays, ܨ௘(ߠ) can be 

approximated as equal for all elements in the array since the ratio of edge 

elements to the other elements is small and may be neglected. 

If the active element pattern for all elements can be approximated as 

equal, then the pattern of the fully excited array in Figure 2-7 is the product of 

the active element pattern and the array factor. Chapter 3 discusses the pattern of 

the fully excited array in more detail.  
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Figure 2-8: Defining geometry for the active element pattern of a uniform ࡺ-
element array. 

2.4 Self- and Mutual Impedance  

Through the active input impedance method, it is possible to compute the mutual 

coupling using the mutual impedance matrix. The mutual impedance matrix may 

be solved using methods such as the Method of Moments (MoM) or the Induced 

EMF Method. Carter [33] introduced the concept of conventional mutual 

impedance using the Induced EMF method from the perspective of a circuit 

network. It is a first order theory (sinusoidal current distribution) which is 

usually adequate for dipole arrays. To start with, its application was limited to 

straight, parallel and in echelon elements only [33, 34, 35]. Subsequently, it was 

further developed to skew dipoles [26, 27, 36]. The drawbacks of this method are 

that it does not account for the radius of the wires or the gaps in the feeds. It 

assumes a very small gap between the upper and lower arms of the dipole. The 

advantage of this method is that it leads to closed form solutions. It gives an 

accurate result for an infinitely thin wire but still provides a good approximation 

for others [1]. 

2.4.1 Self Impedance using the Induced EMF Method 

In general, the radiation resistance for any length, ݈, of a single dipole is given as 

[1]: 

ܴ௥ = 2 ௥ܲ௔ௗ|ܫ଴|ଶ  
= ߨ2ߟ ൜ܥ + ݈݊( ݈݇) − (݈݇)௜ܥ + 12 sin(݈݇) [ ௜ܵ(2݈݇) − 2 ௜ܵ(݈݇)] + 12 cos(݈݇) ൤ܥ + ln ൬݇2݈ ൰ + ௜(2݈݇)ܥ − ௜(݈݇)൨ൠ, (2ܥ2 − 29) 

         . . . 
   ଵܸି     ௠ܸ±   ேܸି  
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where ܥ is a Euler’s constant, where 0.5772=ܥ, and ܥ௜ and ௜ܵ   are the cosine and 

sine integrals. 

The imaginary part of the impedance is calculated using the EMF Method 

and given as: 

ܺ௠ = ߨ4ߟ ቊ2 ௜ܵ(݈݇) + cos(݈݇) [2 ௜ܵ(݈݇) − ௜ܵ(2݈݇)] − sin(݈݇) ቈ2ܥ௜(݈݇) − ௜(2݈݇)ܥ − ௜(2݇ܽଶ݈ܥ )቉ቋ , (2 − 30) 
Kraus [16] gives the simplified impedance value for a thin linear centre-

fed antenna that is an odd number ݊ of half wavelengths long.                    ܼଵଵ = ܴଵଵ + ݆ ଵܺଵ = (ߨ2݊)௜௡ܥ)30 +  ݆ ௜ܵ(2݊ߨ))                       (2 − 31) 
where ܥ௜௡ is derived from equation (2-5) and ௜ܵ is a sine integral 

௜ܵ(ݔ) = න sin(ݕ)ݕ ௫ݕ݀
଴                                                      (2 − 32) 

By substituting ܥ௜(2݊ߨ) (equation 2-5) into equation (2-29), the simplified self 

impedance for a thin linear centre-fed antenna of odd number (݊) of half 

wavelengths long is: ܼଵଵ = 30൫0.577 + ln(2݊ߨ) (ߨ2݊)௜ܥ − +  ݆ ௜ܵ(2݊ߨ)൯          (2 − 33) 
2.4.2 Mutual Impedance using the Induced EMF Method 

There are many methods of calculating the mutual impedance numerically or 

experimentally. In this case, an Induced EMF Method is employed to calculate 

the mutual impedance for an array of dipoles arranged in arbitrary 

configurations. Conventional mutual impedance assumed similar mutual 

impedance both in transmitting and receiving mode. Hui [18, 19] shows that the 

receiving mutual impedance and the conventional mutual impedance are quite 

different, especially when the antenna separation is small and the mutual 

coupling effect is large. However, the conventional mutual impedance is close to 

the receiving mutual impedance when the spacing of the antenna is greater than 

0.5λ0.  
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2.4.2.1 Side by Side, Collinear and Parallel in Echelon 

Configurations 

There are three classic configurations generated by Carter, Brown and others to 

calculate the mutual impedance between two dipoles [24, 33, 34 and 35]. These 

configurations are side by side, collinear, and parallel in echelon (Figure 2-9). 

These expressions are already simplified for two identical elements (the length of 

both dipole arms are the same) with the length of odd multiples of λ/2. General 

expressions for unequal elements are much more complex and can be found in 

King [35].  

              
  

            ݈                                                                                            
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              ݀ 
                 ℎ 
                                      
                                                         ݈                   ݈ 
             a)         (b)                 (c) 

 

 

 

2.4.2.2 Skew or slanted configuration 

The previous section introduces the mutual impedance between two dipoles 

arranged side by side, collinear and echelon configurations. Other literature 

extends the work so that the mutual impedance between two dipoles can be 

calculated no matter what orientation it is placed in [24-27, 36]. Due to its ease 

of implementation, the method proposed by Baker and LaGrone [27] has been 

chosen to calculate the far field for dipole arrays. Results obtained from this 

method have been verified with both published and experimental data for various 

parallel, echelon and skew cases. It is applicable to the relative geometrical 

configuration of the two antennas, with arbitrary lengths.  

Figure 2-9: Configuration of two dipoles where ࢒ is the length of dipole, ࢊ is the
spacing between two dipoles along y-axis and ࢎ is the distance between end point
of dipole 1 and dipole 2 along z-axis: (a) Side-by-side, (b) Collinear, (c) Parallel
in Echelon. 
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The method is based on the Induced EMF Method. Therefore, the mutual 

impedance is computed as the ratio of the voltage induced across the open-

circuited terminals of antenna 2 to the excitation current flowing through the 

short-circuited terminals of antenna 1. 

ܼଶଵ = ଶܸଵܫଵ                                                            (2 − 34) 
Figure 2-10 shows that the induced open-circuit voltage in antenna 2, ଶܸଵ, 

with respect to its current at the input terminals, due to the radiation from 

antenna 1 is given in equation (2-35) [1]. The primary coordinates (ݔ, ,ݕ  refers (ݖ

to coordinates of antenna 1, and secondary coordinates (ݔᇱ, ,ᇱݕ  ᇱ) refer toݖ

coordinates of antenna 2. The term dash ( ′ ) here refers to secondary coordinates 

of antenna 2. The dipoles length of (݈ଵ, ݈ଶ) refer to dipole 1 and dipole 2, the 

distances (ݎ, ,ଵݎ  axis at the start, middle and end-ݖ ଶ) are measured from theݎ

point of dipole 2 to any point along dipole 1, (ݕ଴,  ଴) are the displacements (inݖ

wavelengths) in the ݕ and ݖ directions between primary and secondary 

coordinate systems and ℎ is the distance between end point of dipole 1 and 

dipole 2 along z-axis. 

Therefore, the derivation of mutual impedance is derived as follows: 

ଶܸଵ = − ଶܫ1 න ଶ ௟మܫ(ᇱݖ) ௓ଶଵܧ ଶ⁄
ି௟మ ଶ⁄ ᇱ                         (2ݖ݀(ᇱݖ) − 35) 

where ܧ௓ଶଵ(ݖᇱ) is the E-field component radiated by antenna 1, which is parallel 

to antenna 2. While ܫଶ(ݖᇱ) is the current distribution along antenna 2 (assuming 

sinusoidal distribution). 

Therefore, the mutual impedance is defined as: 

ܼଶଵ = ଶܸଵܫଵ =  − ଶܫଵܫ1  න ௭ଶଵ௟మܧ ଶ⁄
ି௟మ ଶ⁄ ᇱ                  (2ݖ݀(ᇱݖ)ଶܫ(ᇱݖ)  − 36) 
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Figure 2-10: Mutual coupling between two dipoles along z-axis. 

The mutual impedance given by Balanis [1] is for two parallel dipoles 

positioned along the ݖ-axis (Figure 2-10). Since the position of the dipoles, in 

general, is not along the ݖ -axis only, the integration is performed along vector ࢚ 

(Figure 2-11, 2-12 and 2-13), where ࢚ is the direction of the centre of the 

secondary dipole toward the end point of antenna 2. Similar nomenclatures as 

mentioned in Figure 2-10 also applies to Figure 2-11 to 2-13 with a few 

additional terms: the distance ߩ is the radial distance from the ݖ-axis to the point 

defined by ࢚, (݉, ݉ଵ, ݉ଶ) are positive angles as shown in Figure 2-11, and ݀ݐ is 

an incremental distance along vector ࢚. Therefore, all the components of the 

electric field are integrated with respect to ࢚ where the mutual impedance is 

defined as: 

ܼଶଵ = ଶܸଵܫଵ =  − ଶܫଵܫ1  න ଶଵ௟మܧ ଶ⁄
ି௟మ ଶ⁄ 2)                          ݐ݀(ݐ)ଶܫ(ݐ) − 37) 

where ܧଶଵ(t) is the E-field component radiated by antenna 1 to antenna 2. While ܫଶ(t) is the current distribution along antenna 2 (assuming sinusoidal 

distribution). 
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Figure 2-11: Mutual coupling between two dipoles arranged along vector t. 

A derivation by Schelkunoff [37] decomposes an electric field vector 

along ࢆࡱ ,࢚૛૚, along the ݖ and ߩ components.  

௭ܧ = ଵܫ30݆ ቈ2 ݁ିଶ௝ଶగ௥ cos ݎଵ݈ߨ − ݁ି௝ଶగ௥భݎଵ − ݁ି௝ଶగ௥మݎଶ ቉                  (2 − 38) 
ఘܧ = ݆30 ߩଵܫ ൣ݁ି௝ଶగ௥భ cos ݉ଵ +  ݁ି௝ଶగ௥మ cos ݉ଶ − 2 cos ଵ݈ߨ ݁ି௝ଶగ௥ cos ݉൧, (2 − 39) 

 ఘ in Figure 2-12, is a horizontal component of the electric field and canܧ

be broken down to ݔ and ݕ components by using a trigonometric function. It has 

been modified from [27] for this thesis so that it can be employed in 3-D (the ݔ,  ݕ

and ݖ-axes). The angle ߰ is between ݕ-axis to radial ߩ and angle ߛ is between 

vectors ࢚ and ࡱ. The components of ܧ௫ and ܧ௬ are defined as follow: 

௫ܧ = ఘܧ  sin ߰ = ఘܧ  ൬ݐ௫ + ߩ଴ݔ  ൰                                   (2 − 40) 
௬ܧ = ఘܧ  cos ߰ = ఘܧ  ൬ݐ௬ + ߩ଴ݕ  ൰                                   (2 − 41) 
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(௭ܧ)݉ܫ = ଵܫ30 ቈ2 (cos cos)(ݎߨ2 ߨ ݈ଵ)ݎ −  (cos ߨ2 ଵݎ(ଵݎ −  (cos ߨ2 ଶݎ(ଶݎ ቉ , (2 − 45) 
ܴ݁൫ܧఘ൯ = ߩଵܫ30 [ (sin ଵ)(cosݎߨ2 ߭ଵ) +  (sin ଶ)(cosݎߨ2 ߭ଶ) −  2(cos ଵ)(sin݈ߨ cos)(ݎߨ2 ߭)], (2 − 46) 
ఘ൯ܧ൫݉ܫ = ߩଵܫ30 [ (cos ଵ)(cosݎߨ2 ߭ଵ) +  (cos ଶ)(cosݎߨ2 ߭ଶ) −  2(cos ଵ)(cos݈ߨ cos)(ݎߨ2 ߭)], (2 − 47) 

The ܫଶ(t) in equation (2-37) is equal to the product of maximum ܫଶ with 

the sinusoidal factor. The factor is: 

݊݅ݏ ൤2ߨ ൬݈ଶ2 ൰൨                                          (2|ݐ| − − 48) 
By using equations 2-44 to 2-48 and applying them to ܧ௓ଶଵ (equation 2-

42) and ܼଶଵ (equation 2-37), the mutual impedance can be derived based on real 

and imaginary values in integration form, as follows: 

ܴଶଵ = −30 න ൞ێێۏ
ۍ ଶߩ1 ቌ[sin [ଵݎߨ2 ቎ݐ௭ + ଴ݖ + ݈ଵ2ݎଵ ቏ + [sin ߨ2 [ଶݎ ቎ݐ௭ + ଴ݖ − ݈ଵ2ݎଶ ቏ − 2[cos ߨ ݈ଵ][sin [ݎߨ2 ൤ݐ௭ ݎ଴ݖ + ൨ቍ ௫ଶݐൣ + ଴ݔ௫ݐ + ଴ݕ௬ݐ + ۑۑے௬ଶ൧ݐ

௧ୀ௟మې ଶ⁄
௧ୀି௟మ ଶ⁄

+ ቈቆ2 ݎ(ଵ݈ߨݏ݋ܿ)(ݎߨ2݊݅ݏ) − ଵݎଵݎߨ2݊݅ݏ − ଶݎଶݎߨ2݊݅ݏ ቇ ݊݅ݏ௭቉ൢ ቐݐ ቂ2ߨ ቀ݈ଶ2 ݐቁቃ|ݐ| − ቑ ,ݐ݀ (2 − 49a) 
ܺଶଵ = −30 න ൞ێێۏ

ۍ ଶߩ1 ቌ[cos [ଵݎߨ2 ቎ݐ௭ + ଴ݖ + ݈ଵ2ݎଵ ቏ + [cos ߨ2 [ଶݎ ቎ݐ௭ + ଴ݖ −  ݈ଵ2ݎଶ ቏ − 2[cos ߨ ݈ଵ][cos [ݎߨ2 ൤ݐ௭ + ݎ଴ݖ  ൨ቍ ௫ଶݐൣ + ଴ݔ௫ݐ + ଴ݕ௬ݐ + ۑۑے௬ଶ൧ݐ
௧ୀ௟మې ଶ⁄

௧ୀି௟మ ଶ⁄
+ ቈቆ2 ݎ(ଵ݈ߨݏ݋ܿ)(ݎߨ2ݏ݋ܿ) − ଵݎଵݎߨ2ݏ݋ܿ − ଶݎଶݎߨ2ݏ݋ܿ ቇ ݊݅ݏ௭቉ൢ ቐݐ ቂ2ߨ ቀ݈ଶ2 − ݐቁቃ|ݐ|  ቑ ,ݐ݀ (2 − 49b) 

The integration in equations (2-49) is later achieved using Simpson’s 

Rule. Simpson’s Rule is a method of numerical approximation of definite 

integrals. It is employed in order to obtain the real and imaginary values of input 

impedance. Simpson’s equation is based on the following approximation: න ௕(ݔ)݂
௔ ݔ݀ ≈ ܾ − ܽ6 ൤݂(ܽ) + ൬ܽ + ܾ2 ൰ + ݂(ܾ)൨                                (2 − 50) 

However, a Composite Simpson’s Rule has been used in this thesis [39]. 

It is an approximation of integration which is split up into n subintervals with n 

as an even number. The program will compute ݊ increments between ܽ and ܾ. 
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න ௕ݔ݀(ݔ)݂
௔ ≈ ℎ3 ൦݂(ݔ଴) + 2 ෍ ݂൫ݔଶ௝൯ + 4 ෍ ݂൫ݔଶ௝ିଵ൯ + ௡(௡ݔ)݂ ଶൗ

௝ୀଵ
௡ ଶൗ ିଵ

௝ୀଵ ൪   (2 − 51) 
where ℎ = ௕ି௔௡ ଴ݔ  = ௡ݔ ܽ = ௝ݔ ܾ = ܽ + ݆ℎ 
 

 

Therefore, ݔଶ௝ = ܽ + 2݆ℎ ݔଶ௝ିଵ = ܽ + (2݆ − 1)ℎ 
In conclusion, the real and imaginary values of mutual impedance 

between two dipole antennas of different lengths arranged in any configuration 

may be calculated using the method proposed by Baker [27]. Thus, this will be 

used to study the effect of mutual coupling in antenna arrays where the elements 

are arranged in any configuration. 

2.5 Conclusions 

The first section of this chapter discussed the basic characteristics of the dipole 

antenna, including its far-field pattern, self-impedance, directivity and gain. The 

characteristics of antenna arrays were then discussed in detail, due to their ability 

to increase gain and control the radiation pattern.  

This thesis focussed on the latter ability in order to meet the requirement 

of pattern synthesis in an antenna array. Therefore, the pattern multiplication of 

antenna arrays which is the ideal theory is briefly discussed. Some other 

properties that influence the ideal pattern such as coupling from the feed network 

(2− 53)

(2− 52)
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and from the adjacent elements are discussed in this chapter. The mutual 

coupling between elements is investigated through several approaches. There are 

the active input impedance and the active element pattern (AEP) methods. 

The active input impedance observed the mutual impedance through 

Thevenin’s ܰ-ports equation, while the active element pattern contains the 

mutual coupling effect by exciting one element and terminating the rest with 

matched loads. In the former method, the mutual impedance may be performed 

by numerical computation or measurement. Conventionally, the Induced EMF 

method for an ܰ-port networks provides a good approximation to calculate the 

self and mutual impedance for dipole antenna arrays. It has been explained 

thoroughly and can be used to calculate the mutual impedance of thin dipoles 

arranged side–by-side, collinear and in echelon configurations. Then, the 

technique was expanded carefully before this section to calculate the mutual 

impedance between thin dipoles arranged in various configurations.  
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CHAPTER 3: 
Numerical Methods and 
Optimisation Techniques 

3.1 Introduction 

This chapter reviews several array numerical techniques including numerical 

methods and closed form analytical methods. Some of the well-known methods 

utilize numerical techniques to solve mutual coupling such as the method of 

moments (MoM) and the finite-difference time-domain method (FDTD) will be 

discussed. The benefits and drawbacks of both methods are also presented. 

Then, the array analysis is investigated in one-, two- and three-

dimensions. Many techniques applied in one- and two-dimensions are 

conventional but useful. Most of them are inaccurate because the mutual 

coupling effect has not been taken into account such as binomial, Dolph-

Chebyshev and Schelkunoff method. However, it works better and faster with the 

optimisation techniques to meet engineers’ specifications. 

Later, the optimisation techniques that work with array analysis are 

reviewed. The techniques are sequential universal sampling, Nelder-Mead, finite 

difference quasi-Newton method (FDFNLF1), quasi-Newton method, particle 

swarm optimization (PSO), simulated annealing and genetic algorithm (GA). 

Finally, the chapter concludes with the method used throughout this thesis and 

the explanation behind it. 

3.2 Electromagnetic Modelling 

Antenna arrays play an essential role in many applications, such as in 

communication, surveillance and radar systems. Many advantages for an array 

include increasing antenna gain, meeting radiation pattern requirements, beam 
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steering and multiple beam channels capability such as MIMO. Practically, there 

is always a need to design an antenna system that meets desired radiation 

characteristics. Many examples include designing an antenna whose far-field 

pattern have nulls in certain directions. Other requirements are the pattern needs 

to have a desired distribution, such as narrow beam width, low side lobes, and so 

forth. 

A few numerical solutions are available to analyze the far-field pattern 

that includes mutual coupling effect in antenna arrays. The numerical methods 

can be divided into two equation based on integral or differential form. They are 

employed in order to solve unknown quantities such as current distribution based 

on the known quantities such as voltage excitation and boundary values. Full 

wave numerical techniques (such as method of moments, finite-time difference 

domain) are extremely accurate, versatile, complex, able to treat single elements, 

arrays, stacked elements, arbitrary shaped elements and coupling. The model 

usually employs simulating software to estimate an antenna performance. 

However, it has drawbacks when working with array optimisation techniques 

(such as genetic algorithm, least mean square method) because the computation 

may take longer and in the active element pattern (AEP), results needs to be 

extracted from the simulating software. It complicates the whole process and in 

certain cases, the simulation might need to be performed more than once. 

 The advancement of computer technologies enabled array analysis 

becomes a reality. The array analysis is an approximation to the integral equation 

of numerical methods, with the aid of few assumptions and approximations to 

obtain closed form solution. Analytical methods in arrays are fast and easy to 

implement with optimisation methods but inaccurate. Most of them are based on 

array factor and do not take into account mutual coupling (such as Dolph-

Chebyshev and Schelkunoff method) and some provide approximations to 

simplify the methods. Several authors applied the compensation techniques [1, 2] 

in order to compensate the mutual coupling effect before using the above-

mentioned method. These will be reviewed here to gives an understanding of the 

pros and cons of the methods. Table 1 summarizes the differences between 

numerical and analysis softwares to compute the characteristics of antenna. 
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Table 1: Comparison between numerical and analysis softwares. 

 Numerical softwares Analytical softwares 

Characteristics 

 solve Maxwell’s equations 

subject to appropriate boundary 

conditions. 

 Requires the user to be very 

familiar with the software, the 

limitations of the technique, 

and the problem being 

analysed.  

 solve specific problems that 

have pre-defined geometries 

using closed-form equations.  

 The user must be able to relate 

the geometry of the problem 

being analyzed to a geometry 

that the software is capable of 

solving. 

Advantages 
 provides very accurate 

solutions to well-defined 

problems. 

 provides fast solutions for a 

limited class of problems. 

 

3.2.1 Numerical Methods 

Numerical methods solve Maxwell’s equations subject to appropriate boundary 

conditions. It provides very accurate solutions to well-defined problems. Full-

wave numerical methods can be subdivided into integral and differential 

equation based. Both of them are further divided into frequency domain methods 

(such as method of moments and finite element method) and time domain 

methods (such as finite-difference time domain and transmission line method). A 

good understanding of the principles on which the software is based is necessary 

in order to set the relevant parameters properly and avoid the misuse and 

misinterpretation of the results.  

3.2.1.1 Method of Moments (MoM) 

The basic idea of the method of moments is to transform an integral or 

differential equation into a set of simultaneous linear algebraic equations (or 

matrix equation) which may then be solved by numerical techniques. It was first 

applied to electromagnetic problems in the 1960s by Harrington [3]. It presents a 
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unified approach to MoM by employing the concepts of linear spaces and 

functional analysis.  

 The integral or differential equations may have the form of ܨ(݃) = ℎ,                                                           (3 − 1) 
where F is a known linear operator (either integral or differential operator), g is 

an unknown response function, and h is the source or excitation function. The 

objective is to find g once F and h are given. The unknown response function g 

can be expanded as a linear combination of N terms as: 

(ᇱݖ)݃ ≃ ܽଵ ଵ݃(ݖᇱ) + ܽଶ݃ଶ(ݖᇱ) + ⋯ + ܽே݃ே(ݖᇱ) = ෍ ܽ௡݃௡(ݖᇱ)ே
௡ୀଵ        (3 − 2) 

where an is an unknown constant and each gn(z’) is a known function usually a 

basis or expansion function. Substituting equation (3-2) into (3-1) and applying 

the linearity of the F operator replaces (3-1) into  

෍ ܽ௡ܨ(݃௡) = ℎ                                                   (3 − 3)ே
௡ୀଵ  

The selection of basis function gn depends on each F(gn) in equation (3-3) 

to be solved easily, either in closed form or numerically at least. Every equation 

of (3-3) leads to N unknown of an (n=1, 2, ..., N) constants. N unknown constants 

can be solved using N linearly independent equations. This can be obtained by 

evaluating equation (3-3) at N different points (such as the boundary conditions). 

This technique is known as point-matching (or collocation). Therefore, equation 

(3-3) takes the form of  ∑ (௡݃)ܨ௡ܫ = ℎ௠,      ݉ = 1,2, … , ܰ                                  (3 − 4ே௡ୀଵ ) 

Equation (3-4) may be represented in matrix form as: [ܼ௠௡][ܫ௡] = [ ௠ܸ]                                                     (3 − 5) 
where  ܼ௠௡ = 3)                                                         (௡݃)ܨ − ௡ܫ (5ܽ = ܽ௡                                                               (3 − 5ܾ) 
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௠ܸ = ℎ௠                                                              (3 − 5ܿ) 
 The unknown coefficients an can be obtained by solving equation (3-5) 

using inverse technique as: [ܫ௡] = [ܼ௠௡]ିଵ[ ௠ܸ]                                                      (3 − 6) 
 The point-matching method is a numerical technique where solutions 

meet the electromagnetic boundary conditions (such as vanishing tangential 

electric field on the surface of an electric conductor) only at discrete points. 

However, the boundary conditions might not be satisfied between these points, 

thus creating a residual (residual=ΔE|tan=E(scattered)|tan+E(incident)|tan≠0 on the 

surface of an electric conductor). Therefore, the method of weighted residual is 

applied which forces the boundary conditions to be satisfied in an average sense 

over the entire surface. It minimizes the residual in a way that its overall average 

over the entire surface approaches zero. 

 The method of weighted residuals begins by defining a set of N weighting 

(or testing) functions {wm}=w1, w2,  ...., wN in the range of F. Forming the inner 

product between this function with equation (3-3) yields to: 

෍ ܽ௡〈ݓ௠, 〈(௡݃)ܨ = ,௠ݓ〉 ℎ〉ே
௡ୀଵ                    ݉ = 1, 2, … , ܰ       (3 − 7) 

Equation (3-7) is written in matrix form as: [ܨ௠௡][ܽ௡] = [ℎ௠]                                                          (3 − 8) 
where 

[௠௡ܨ] = ൦〈ݓଵ, )ܨ ଵ݃)〉 ,ଵݓ〉 〈(ଶ݃)ܨ ⋯ ,ଵݓ〉 ,ଶݓ〉〈(ே݃)ܨ )ܨ ଵ݃)〉 ,ଶݓ〉 〈(ଶ݃)ܨ ,ேݓ〉⋮⋮ )ܨ ଵ݃)〉 ,ேݓ〉⋮ 〈(ଶ݃)ܨ ⋮… ,ேݓ〉 ൪              (3〈(ே݃)ܨ − 8ܽ) 
[ܽ௡] = ൦ܽଵܽଶ⋮ܽே൪               [ℎ௠] = ൦〈ݓଵ, ℎ〉〈ݓଶ, ℎ〉⋮〈ݓே, ℎ〉൪                             (3 − 8ܾ) 

The unknown coefficients an may be solved using inversion matrix: 
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[ܽ௡] = ଵ[ℎ௠]                                               (3ି[௠௡ܨ] − 9) 
By relating MoM to the antenna theory, the electric field integral equation is 

written as: ܧ = 3)                                                       (ܬ)ܨ − 10) 
where E is the known electric field,  J is the unknown induced current, F is the 

linear operator. 

Steps to be taken to obtain current distribution J is as follows: 

1. Expand J as a finite sum of basis function as: 

ܬ = ෍ ௡݃௡                                                      (3ܬ − 11)ே
௡ୀଵ  

where gn is the nth basis function and Jn is an unknown coefficient. 

2. Define a set of N linearly independent weighting functions, wm. 

Substituting equation (3-11) into (3-10) and performing the inner product 

on both sides resulting: 

,௠ݓ〉 〈ܧ = ෍〈ݓ௠, ,௡ܬ)ܨ ݃௡)〉                                           (3 − 12)ே
௡ୀଵ  

where m=1, 2, ... N 

In matrix form, the equation (3-12) is in the form: [ܧ] = [ܼ௠௡| ܬ]                                                           (3 − 13) 
where  [ܧ] = ,௠ݓ〉 3)                                                        〈ܧ − 13ܽ) ܼ௠௡ = ,௠ݓ〉 3)                                                〈(௡݃)ܨ − 13ܾ) 
and J is the current distribution containing the unknown quantities. 

Once the current distribution is known, parameters of interest such as 

field patterns, input impedance, etc. can be calculated by employing the 
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appropriate formulas. Numerical Electromagnetics Code (NEC) is a user oriented 

program developed based on method of moment. It is a numerical solution of an 

integral equation to analyze the interaction of electromagnetic waves of the 

structure. It is approached by dividing the integration range into discrete steps, 

thereby turning it into a set of linear equations of matrices. It applies the electric 

field integral equation (EFIE) for thin wires and magnetic field integral equation 

(MFIE) for surfaces. There are two possibilities for excitation: applied voltage 

source or an incident plane wave. The code calculates induced currents and 

charges, near- and far-zone electric and magnetic fields, radar cross section, 

impedances or admittances, gain and directivity, power budget, and antenna-to-

antenna coupling.  

3.2.1.2 Finite-Time Difference Domain (FDTD) 

The (FDTD) method is one of grid-based differential time domain numerical 

modelling methods. It was developed by Yee in 1966 at Lawrence Livermore 

National Laboratories [4]. The method discretized into many cells (usually 

square or rectangular), known as Yee cells/lattices (Figure 3-1). The electric and 

magnetic field components have been decomposed into (ݔ, ,ݕ  components It (ݖ

discretized the time-dependent partial-differential Maxwell equations (given in 

equation (3-14)) using central-difference approximations to the space and time 

partial derivatives. The resulting equations are solved in a leapfrog manner: the 

electric field vector components in a volume of space are solved initially 

(assuming the magnetic fields are known), then the magnetic field vector 

components in the same spatial volume are solved at the next instant in time. 

This process is repeated until the desired transient or steady-state 

electromagnetic field behavior is fully evolved. This scheme has proven to be 

very robust and remains at the core of many current FDTD software constructs. 

Various modelling tools are developed based on this method including Empire 

XCcel.  
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discretisation creates a suitable mesh for the entered structure. It also defines the 

boundaries of the simulation domain by detecting the objects’ extensions and 

following certain rules as defined from far field definition, excitation response, 

port size and so on. The automatic discretisation can be optimized depending on 

information about the object types such as planar, 3D or it can be user defined. 

The general rule to define the mesh is that the largest cell size of the mesh should 

be smaller than the tenth of the smallest wavelength. On the other hand, the 

smallest cell size will determine the time step for the simulation; which means 

for very small cell size resulting longer computation time.  

3.2.2 Analytical Method 

Analytical modelling softwares solve specific problems that have pre-defined 

geometries using closed-form equations. It provides fast solutions for a limited 

class of problems. This section reviews the array analysis techniques and have 

been arranged according to complexity of dimension of the array itself, starting 

with the first-dimension (such as linear array) to three-dimensions. Most of the 

synthesis techniques of the array analysis are based on the array factor and is 

explained in this section.  

3.2.2.1 1-D Array (Linear array) 

A linear array refers to a number of antenna’s elements arranged along a straight 

line. Since the far-field equation in 1-D is not complex, many literatures 

developed their techniques using the array factor (Section 2.1.2). Balanis [5] has 

described how an antenna array can produce either a broadside or endfire pattern 

simply by changing the phase difference between elements. For an array with 

elements greater than 2, a uniform array excites all elements with the same 

amplitude and a progressive phase prior to previous element. Binomial and 

Dolph-Chebyshev implemented amplitude tapering in order to synthesize the 

pattern [6, 7]. All the above-mentioned method applies to narrow beam patterns 

and producing low side lobes. Schelkunoff [8] described a technique which is 

similar to the z transform (used by Hurewicz in developing his pulsed filters [9]) 

in order to exhibit pattern with nulls in interference direction. All of the above 
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techniques by default do not take into account the mutual coupling effect 

between elements. However, a few of the array analysis [1, 2] compensates the 

mutual coupling effect first before applying the above techniques to control the 

radiation pattern. All of these will be explained in details within this section. 

3.2.2.1.1 Non-Uniform Amplitude, Equispaced Array 

In pattern multiplication method, the total field of the array is equal to the field 

of single element positioned at the origin times a factor which is known as array 

factor. It is a function of the displacement of the array elements and the 

excitation phase. By changing either one or both of them, the total field of the 

array can be controlled.  

The array factor for even (2ܯ) or odd number (2ܯ + 1) of elements can 

be arranged as follows (Figure 3-2): (ܨܣ)ଶெ(݁݊݁ݒ) = ∑ ௡ܣ cos[(2݊ − ெ௡ୀଵ[ݑ(1                          (3 − 15)  

(݀݀݋)ଶெାଵ(ܨܣ) = ෍ ௡ܣ cos[(2݊ − ெାଵ[ݑ(1
௡ୀଵ                          (3 − 16) 

where  ݑ = ߣ݀ߨ cos ߠ                                                        (3 − 17) 

The array factor is arranged in the above equation so that the elements 

can be positioned symmetrically along the z axis. 



Section 3.

                

Figure 3-2
elements 
separation
observatio

3.2.2.1.2

Binomial 

Binomial 

N elementܨܣ = (1 +
 = 1 +

and 

where c i

element s

coefficien

2 Electroma

                  

2: Non unif
where ࢔࡭ 

n between 
on point. 

2 Binomia

array dete

expansion. 

ts, the excita+  ݁௝௖)ேିଵ 
+ (ܰ − 1)݁௝௖

s array pha

spacing, k i

nts for differ

agnetic Mo

           (a)   

form ampli
is the am

elements a

al Weight 

ermined the

It is applica

ation coeffi

+ (ܰ − 1)(ܰ2!
ܿ = ߙ +

ase function

is wave nu

rent values o

  ଵܣ         

ݖ              ࡹ࢘
ெܣ                  
 
                       
૛࢘                  
ଶܣ                   

૚࢘            ݀    
   ߠ          2/݀  
૚ᇱ࢘         2/݀   
 ଵܣ         
૛ᇱ࢘                  ݀ 
 ଶܣ         
 
ᇱࡹ࢘                    
                
 ெܣ        
 

delling 

53 

                  

itude arrays
mplitude exc
and  ࢘ is th

Excitatio

e excitation

able to an e

cient is in th

ܰ − 2) ݁௝ଶ௖ +
+ ߠ ݏ݋ܿ ݀݇
n,α is phas

umber and 

of N are (us

              
               

               
               
               

        ࢘   
૛   
ᇱࡹ  

         

        ݀

        
ܣ        
 
        
        

       ݀
ݕ݀              

       ݀
        

        

        
ܣ        
 

   (b) 

s of (a) eve
citation for
he distance

on 

n coefficien

qually spac

he form 

(ܰ − 1)(ܰ −3!
                   
se of excita

θ is elevat

sing Pascal’

  ଶܣ   

૜ᇱ࢘            ݀    

ݖ        ெାଵܣ  ା૚ࡹ࢘

 ૜࢘            
 ૛࢘            ݀ ଷܣ  

૛ᇱ࢘            ݀                      ଵܣ૚   2࢘    ߠ         ݀    
 ଶܣ   

 ଷܣ   

ା૚ᇱࡹ࢘              ெାଵܣ     

 

en and (b) 
r each elem
 for each 

nt of each

ed array. Fo

− 2)(ܰ − 3)! ݁
                     
ation coeffi

tion angle. 

s triangle- s

    ݕ       

 

odd numbe
ment, ࢊ is
element to

 element f

or an array 

݁௝ଷ௖ + ⋯ , (3 −
           (3 −

icients, d is

The excita

see Figure 3

er of 
 the 

o the 

from 

with 

− 18) 
19) 

s the 

ation 

3-3.) 



Section 3.2 Electromagnetic Modelling 

54 

 

Thus, for a given number of elements the excitation coefficients can be 

used to design pattern with low side lobes. In fact, they have no side lobes when 

the spacing between elements is λ/4 or λ/2 [1]. However, even though Binomial 

weight excitation has the lowest side-lobe level compare to uniform and Dolph-

Chebyshev, it has wide variation between the coefficients of the different 

elements in an array which making it less efficient. For example (Figure 3-3), 

(N=7) the coefficient for first element is 1 and the center element is 20. As the 

number of elements increase, the amplitude variation between different elements 

becomes larger. In practice, it is difficult to maintain large amplitude variations 

between different elements.  

3.2.2.1.3 Dolph-Chebyshev 

The technique was introduced by Dolph [7] and further developed by others [10-

12]. It is a compromise between uniform and binomial arrays. Their side lobe 

levels are lower than uniform array but higher than the binomial array.  

The technique works by applying equation (3-15) and (3-16) to a 

Chebyshev polynomial. Equation (3-15) and (3-16) is a summation of M (even) 

or M+1 (odd) cosine terms. The largest harmonic of these cosine terms is one 

less than the total number of elements of the array. The argument for each cosine 

term is integer multiples of u. It can be rewritten as a series of cosine functions 

1

1       1

1         2         1

1          3           3          1

1           4           6           4           1

1          5          10         10          5          1

1          6          15         20         15         6          1

N=1 

N=2 

N=3 

N=4 

N=5 

N=6 

N=7 

Figure 3-3: Pascal's Triangle. 
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with u as the argument. It is further expanded into mth order using trigonometric 

identities.  

By following the design procedure as explained by Balanis [5], Hansen 

[13] and Fourikis [6], the polynomial excitation coefficients can be determined 

from the given side lobe characteristics.  

3.2.2.1.4 Schelkunoff Method 

The Schelkunoff method yields the number of elements and their excitation 

coefficients needed based on the given location and number of nulls in the 

radiation pattern. 

The far-field pattern of a linear array is a summation of the fields radiated 

by each element with the existence of the other elements. The excitation variable 

will affect the far-field pattern of linear array. Thus, a far-field pattern is a 

discrete Fourier transform of the excitation array. The excitation array is 

represented by [14] 

(ݑ)ܨ = ෍ ݊)ߨ2݆]݌ݔ௡݁ܣ − ே[ݑ(1
௡ୀଵ                                    (3 − 20)  

where u is 

ݑ = ߣ݀ cos ߠ −  ߯                                                     (3 − 21) 
 is the ݑ ௡ is the excitation coefficient, N is the total number of elements, andܣ 

progressive phase shift, the elevation angle is θ and the element spacing is d.  

Schelkunoff [14] elaborates how each element interacts with each other 

in an array by using the unit circle approach. The exponential factor in equation 

(3-20) has been replaced with a new variable, z. ݖ = exp(݆2ݑߨ)                                                     (3 − 22) 
Therefore, the excitation can be represented as 

(ݖ)ܨ = ෍ ௡ேܣ
௡ୀଵ ௡ିଵݖ  = ଵܣ + ݖଶܣ + ଶݖଷܣ + ⋯ + ேିଵ            (3ݖேܣ − 23) 
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Equation (3-23) has a degree of (N-1) and possesses (N-1) roots. It can be 

expressed as a product of (N-1) linear terms as (ݖ)ܨ  = ݖ)௡ܣ − ݖ)(ଵݖ − ݖ)(ଶݖ − (ଷݖ … ݖ) − ேିଵ)                         (3ݖ − 24) 
where z1, z2, z3, ..., zN-1 are the roots. The magnitude of equation (3-24) can be 

expressed as (ݖ)ܨ  = ݖ| |௡ܣ| − ݖ||ଵݖ − ݖ||ଶݖ − |ଷݖ … ݖ| − ேିଵ|                (3ݖ − 25) 
The polar angle (or visible region) is ߴ =  and substituting equation ݑߨ2

3-21 in the ߴ gives: ߴ = ݇݀ cos ߠ −  ߯                                                 (3 − 26) 
where cos  is varied from [-1: 1] thus covering the region unit circle (visible ߠ

region) between −݇݀ − ߯ ≤ ߴ ≤ ݇݀ −߯                                             (3 − 26ܽ) 
As spacing is half-wavelength, z goes over unit circle once. This traverse 

is called visible region [5]. For spacing of a wavelength, z moves around the unit 

circle twice and so on. By increasing the spacing will increase the visible region 

of that array factor. On the other hand, changing progressive phase shift, ߯, will 

rotate the visible region to any side around unit circle. The polynomial in z has 

N-1 roots. The root placement can be real valued (on the unit circle) or a 

complex value (inside the unit circle). Zeros placed on the unit circle within the 

visible region creates nulls in the pattern, while zeros inside unit circle may 

produce pattern minima. Therefore, the pattern is the product of the distance 

from the observation point in z (on unit circle) to each of the zeros (roots). As z 

goes around the circle, lobes form and reduced to create null and pattern minima. 

While, z=1 denotes the principal maximum of the pattern (Figure 3-4). 



Section 3.2 Electromagnetic Modelling 

57 

 

The zeros placed in the visible region on the unit circle will contribute to 

nulls in the pattern of array factor. If no zeros exist in the visible region of the 

unit circle, then that particular array factor has no nulls for any value of θ. 

However, if a given zeros lies on the unit circle but not in its visible region, that 

zero can produce null to the pattern by changing the phase excitation ߯ so that 

the visible region can be rotated and cover that root. 

Many works have already employed Schelkunoff’s method for pattern 

synthesis. Another important issue is that the choice of the sample point is 

crucial as if one fails to specify the pattern correctly; some undesirable side-lobe 

might appear and dominate the regions in interest [19]. 

3.2.2.2 2-D Array (Planar, Circular) 

Geometrically, simple 2-D arrays are described. Examples are the planar and 

circular arrays. They deal with the array factor and do not incorporate coupling 

between elements. 

3.2.2.2.1 Rectangular (Planar) Array 

The elements can be positioned along a square grid to form a 2-D array. Planar 

arrays give additional parameters and dimension which can be used in beam 

shaping and pattern control. Therefore, the electric field for this design will be 

investigated in this section.  

Figure 3-5(a) and (b) shows the elements positioned along a linear and 

rectangular array respectively. The array factor for Figure 3-5a is  

Main beam 
region 

 Side lobe 
region 

 

Figure 3-4: Unit circle for an array. 
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ܨܣ = ෍ ௠ଵ݁௝(௠ିଵ)(௞ௗೣ௦௜௡ఏ௖௢௦ఝାఞೣ)ெܣ
௠ୀଵ                                    (3 − 27) 

where Am1 is the excitation coefficient for each element, dx is spacing, ߯x is the 

phase shift between the elements, and M is total number of elements along x axis. 

For N total number of elements placed in the y-direction, a square array is 

produced (Figure 3-5b). The array factor for the whole array is 

ܨܣ =  ෍ ଵ௡ேܣ
௡ୀଵ ൥ ෍ ௠ଵ݁௝(௠ିଵ)(௞ௗೣ௦௜௡ఏ௖௢௦థାఞೣ)ெܣ

௠ୀଵ ൩ ݁௝(௡ିଵ)(௞ௗ೤௦௜௡ఏ௦௜௡థ ା ఞ೤) , (3 − 28) 

where dy and ߯y is spacing and progressive phase shift between elements along y-

axis. The total array factor can also be represented as: ܨܣ = ܵ௫௠ܵ௬௡                                                                   (3 − 29) 
where 

ܵ௫௠ =  ෍ ௠ଵ݁௝(௠ିଵ)(௞ௗೣ௦௜௡ఏ௖௢௦థାఞೣ)ெܣ
௠ୀଵ                               (3 − 30) 

ܵ௬௡ =  ෍ ௡ଵ݁௝(௡ିଵ)(௞ௗ೤௦௜௡ఏ௦௜௡థାఞ೤)                                  (3ܣ − 31)ே
௡ୀଵ  

௠௡ܣ = ଵ௡                                                                   (3ܣ௠ଵܣ − 32) 
If the amplitude excitation for entire array is uniform (Amn=I0), equation 

(3-28) can be expressed as 

ܨܣ = ଴ܫ  ൥ ෍ ݁௝(௠ିଵ)(௞ௗೣ௦௜௡ఏ௖௢௦థାఞೣ)ெ
௠ୀଵ ൩ ෍ ݁௝(௡ିଵ)(௞ௗ೤௦௜௡ఏ௦௜௡థ ା ఞ೤)ே

௡ୀଵ   ,   (3 − 33) 
In order to obtain the desired main beam at θ=θ0 and ߶=߶0, the 

progressive phase shift between the elements in the x- and y-directions is equal 

to: ߯௫ = −݇݀௫ߠ݊݅ݏ଴ܿݏ݋߶଴                                             (3 − 34ܽ) ߯௬ = −݇݀௬ߠ݊݅ݏ଴݊݅ݏ߶଴                                             (3 − 34ܾ) 
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,ݎ)௡ܧ ,ߠ ߶) = 60݆ ∙ cos(2ߨ ݏ݋ܿ ݊݅ݏ(ߠ ߠ ∙ ݁ି௝௞௥ݎ ෍ ௡ସܣ
௡ୀଵ ݁௝[୩ୠ ୱ୧୬ ఏ ୡ୭ୱ(థିథ೙)ାఈ೙], (3 − 39) 

where  

,ߠ)ܨܣ ߶) = ෍ ௡ସܣ
௡ୀଵ ݁௝[୩ୠ ୱ୧୬ ఏ ୡ୭ୱ(థିథ೙)ାఈ೙]                                         (3 − 40) 

To direct the peak of the main beam in the (θ0, ߶0) direction, the phase 

excitation for each element can be selected as ߙ௡ = −ܾ݇ sin ଴ߠ cos(߶଴ − ߶௡)                                          (3 − 41) 
3.2.2.2.3 The active input impedance approaches 

The techniques that have been discussed previously are ideal theories which are 

essential but not adequate to characterise the pattern of antenna array. Therefore, 

the active input impedance approach has been employed in many literatures by 

taking a consideration of mutual coupling effect in antenna array. However, 

many of them are concentrated to 1-D and 2-D antenna arrays [15]. This method 

has been discussed in chapter 2. It has been developed further into 3-D and will 

be explained in chapter four in order to observe the effect of mutual coupling to 

the antenna array. 

3.2.3 3-D Array (Cubic, Spherical) 

Many authors discussed about 1-D and 2-D array analysis compared to 3-D array 

due to the 3-D complexity [16]. Now, the advancement of computer technology 

makes the 3-D analysis and synthesis a possibility. The most popular method that 

demonstrated the idea by considering mutual coupling effect is the active 

element pattern (AEP). However, it depends on fixed geometry structure thus 

make the optimisation process limited to only on the excitation value. There 

might be issues in order to find the best performance and cost effective of 

antenna array such as how many elements required and what is the spacing 

between elements. As a result, there is a need to find a 3-D antenna array which 

developed from scratch in order to give flexibility in the optimisation process 
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such as spacing, number of elements and so on. Moreover, the method can be 

developed in order to include other effect such as the effect from the platform, 

feed network and array elements to increase its accuracy. 

3.2.3.1 The active element pattern method 

There are few methods employing the active element pattern (AEP) as shown in 

Figure 3-7. The unit-excitation AEP represents the pattern radiated by the array 

when the nth element is excited by a unit voltage with its associated generator 

impedance Zgn, and the other elements are loaded by their respective generator 

impedances {Zgn}. The total radiation pattern can be expressed as [15]: 

,ߠ)ܧ ߮) = ෍ ௡ܸ୒
௡ୀଵ ݃௡௨(ߠ, ߮),                                         (3 − 42) 

The quantity ݃௨(ߠ, ߮) is called the unit excitation active element pattern 

where it represents the pattern radiated by the array when the nth element is 

excited by a unit voltage with its associated generator impedance Zgn and the 

other elements are loaded by their respective generator impedances { Zgn }. Vn is 

the complex-valued feed voltage applied to the nth element and N is the number 

of voltage sources applied to the array. Therefore, the array pattern can be 

computed for any set of feed voltages {Vn} using equation 3-28. The set ݃௨(ߠ, ߮) 

includes the effect of mutual coupling and since it is calculated or measured once 

for each element, it is known as the exact active element pattern. 

The phase-adjusted unit-excitation AEP is an extension from the previous 

method by extracting the spatial phase information that contains the element 

location from the unit-excitation parameter, ݃௨(ߠ, ߮) . By using this method, the 

total far-field pattern can be computed for arbitrary geometries for once. 

However, it is not true as the phase-adjusted change whenever the array 

geometry change [15].  

Both of the above methods are exact methods and become complex as the 

number of elements increased. Therefore, they are suitable for small and finite 

arrays. In this case, the active element pattern is performed for each element and 

summed up in order to obtain the total far-field pattern. For large (i.e. infinite) 
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arrays, the average AEP method, Fe(θ) provides a better solution since the active 

element pattern of all elements is identical and used only once. However, the 

disadvantageous are that it doesn’t take into account the edge effect and how 

many number of elements so that it can be classified as an infinite array. The 

edge effect occurs because the way the central element sees the array 

environment is different compared to the elements placed at the edge of antenna 

array. On the other hand, the hybrid AEP is a good solution for medium sized 

array where it is an intermediate between the average and the unit excitation AEP 

method. It is suitable for finite array analysis where the edge effects will be taken 

into account [15].  

The active element pattern may be obtained from the simulated or 

measured patterns of the individual element in the array environment to calculate 

the pattern of the fully excited array. This method is applicable especially in 

conformal analysis [16, 17] when classical analysis and numerical techniques 

failed to do so. Plus, its measurement is much simpler and cheaper compared to 

the direct measurement of the scanning characteristics of a large phased array 

antenna, combined with power divider network and phase shifters. The 

measurement of active element pattern requires only a large antenna array with 

matched loads on all but one of the elements. Thus, it can be used to locate and 

correct array design problems and thereby, reduced the risk of a costly design 

failure. However, this technique only accounts mutual coupling effect between 

array elements and does not consider the coupling effect between feed networks, 

mounting platform with array elements. The AEP also does not take into account 

the mismatch effect in source network. Wang [16] proposed a new method based 

on the active element pattern that includes mutual coupling and platform effects 

of conformal array. 

Another disadvantage of the AEP method is that it is restricted to fixed 

structures, frequency and set of generator impedances. Therefore, it is only 

applicable in order to obtain the best excitation values for the element. There are 

other issues that need to be considered such as number of elements for an array 

so that the design will be cost effective, the element spacing to avoid grating 

lobes and so on. This issue may be solved using array analysis or numerical 

methods. 
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3.3 Optimisation Techniques  

There are many techniques available to optimize the antenna characteristic so 

that it meets the designer’s specification. The antenna requirements are based on 

the application. For example, a flat-topped and cosecant shaped beam pattern 

which has low side-lobe levels and narrow bandwidth are importance in satellite 

and radar systems. Another application is the use of smart antennas in mobile 

applications that provide adequate signal strength in designated areas while 

having a low strength (nulls) in interference area [18].  

It is a difficult task to meet the antenna’s specification since there are a 

large number of variables may be involved in the process. Many authors focused 

on synthesizing the pattern either in one [19] or two-dimensions [20] due to its 

simplicity. In some cases, the antenna’s requirement may not be fulfilled entirely 

due to other restrictions placed on the antenna itself. However, an optimisation 

process will lead all the variables toward a compromise solution to the problem. 

The building blocks of optimisation process have been illustrated by 

Thiel and Smith [21] in Figure 3-8. The optimization technique makes a 

comparison between new calculated optimized antenna design with the ‘ideal’ 

performance as required by the designer. 

One of the most important factors in any optimization techniques is cost 

function. A cost function (or objective function or error function) represents how 

close the optimized design meets the specification. There are a few ways to 

calculate a cost function. A common way is to define it in terms of the least 

squared error. If the parameters that need to be optimized are the directivity ܦ(݅) 

dB, the front-to-back ratio ܤܨ(݅) dB, the beamwidth ߶(݅)°, and the ଵܵଵ = ܵ(݅) dB, 

then the least squared error cost function, ܥ௟௦௘ [21] is: 

௟௦௘ܥ = ෍(ܦ௢௣௧ − ଶ((݅)ܦ = ௢௣௧ܤܨ) − ଶ((݅)ܤܨ + (߶௢௣௧ − ߶(݅))ଶ + ቀܵ௢௣௧ − ܵ(݅)ቁଶ , (3 − 43) 
where is ܦ௢௣௧ the desired directivity (dB),  ܤܨ௢௣௧ is the desired front-to-back ratio 

(dB), ߶௢௣௧ is the desired beamwidth, and ܵ௢௣௧ is the desired ଵܵଵ. 

Thus, the variables within the cost function are varied until the minimum 

of Clse is reached. The disadvantage of this definition is that if one variable is 
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very large in comparison with others, it will dominate the cost function. On the 

other hand, if it has small value, it has the tendency to be ignored in the 

optimization process. To overcome this problem, the relative least squared error, 

Crlse(i) (equation 3-44) has been employed and is given by [21]: 

(݅)௥௟௦௘ܥ = ଵݓ ቈܤܨ௢௣௧ − ௢௣௧ܤܨ(݅)ܤܨ ቉ଶ + ଶݓ ቈ߶௢௣௧ − ߶(݅)߶௢௣௧ ቉ଶ + ଷݓ ቈܵ௢௣௧ − ܵ(݅)ܵ௢௣௧ ቉ଶ , (3 − 44) 

The weight parameters, wi has been assigned to prevent one variable from 

dominating or ignored in the cost function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-8: Block building block of an optimisation routine [21]. 
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The simplest array optimization technique is the sequential uniform 

sampling. It calculates the cost function for each possible value of the input 

variables in the solution space [21]. The step size of the variables determines the 

number of iterations required for all possible input combination. The advantage 

of this technique is the ability to locate a number of minimum values for the cost 

function, increasing a degree of flexibility in the chosen solution. The drawbacks 

of using this method is that the number of iterations to calculate the cost function 

increase as the step size decrease (for higher resolution) or the number of 

variables increase. For example, if there are 64 steps for two variables, t1 and t2, 

it requires 642 of iterations to be solved. 

Another work [22] compares in terms of search efficiency between direct 

search methods that do not use random decision making to those that do. Non-

random search methods include Nelder-Mead, finite difference quasi-Newton 

method (FDFNLF1) and quasi-Newton method requiring user supplied 

derivatives (NLF1) while random search method is particle swarm optimization 

(PSO). The results show that non-randomized search methods required less 

number of iterations to converge to acceptable pattern performance than 

randomized search method. However, Nelder-Mead is a local search method and 

its performance highly depends on the starting point. In order to mitigate 

convergence difficulties of random search methods, Nelder-Mead method is 

combined together with PSO [23] and GA [24], forming hybrid optimization 

algorithms. 

Another optimization technique that can be used in pattern synthesis is 

simulated annealing. This technique represents an analogy to the annealing or 

tempering of steel, where the initial temperature is high and reduced in a 

controlled manner to the point where the metal becomes completely rigid and its 

crystal structure is locked in place. In general, it searches for a minimum in a 

more general system. 

Metropolis [25] proposed the algorithm in order to find the equilibrium 

configuration of a collection of atoms at a given temperature. Pincus [26] relates 

this algorithm with mathematical minimization. However, it was Kirkpatrick et 

al. [27] who propose it in optimization technique for combinatorial (and other) 

problems.  
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In [28], simulated annealing was able to synthesise the antenna pattern of 

circular arc arrays. The method minimises the cost function wherein nulls can be 

fixed in given directions, while the dynamic range of excitations, beamwidth and 

other parameters of interest in the design can be controlled. This process avoids 

the local minima of the cost function and achieves a good approximation to the 

sum and flat topped beam pattern. Another author by [29] extended the work in 

[28] for pattern synthesis of cylindrical array using simulated annealing. They 

also compare its performance with genetic algorithm [30] and found out that 

genetic algorithm takes longer computational time than simulated annealing for 

this case. 

Genetic Algorithm (GA) is widely used in electromagnetic optimization. 

Due to its popularity and ease of implementation, it has been chosen for pattern 

synthesis and will be explained into details in chapter 5. Genetic algorithm (GA) 

optimizers are robust and stochastic technique based on the Darwinian concepts 

of natural selection and evolution. They allow a set of populations to develop 

toward a global optimum solution. The process is based on three important steps; 

selection, recombination and mutation. 

Many authors employs genetic algorithm in pattern synthesis. Recioui 

and Azrar [19] implemented a combination of Schelkunoff’s method and a 

genetic algorithm to synthesize equispaced linear and planar arrays. This method 

applied array factor as a polynomial whose roots are placed in the z plane. A 

comparison has been made with other methods such as Uniform, Binomial, and 

Dolph-Chebyshev arrays in term of directivity and side-lobe level. The results 

show that it has highest directivity compared to its counterparts for linear array.  

A simple genetic algorithm also has drawbacks such as poor local 

searching, premature converging and slow convergence speed [31]. Few other 

methods have been combined with genetic algorithms to mitigate this problem 

such as adaptive genetic algorithm (AGAs) using fuzzy logic controller 

technique [32] or hybrid genetic algorithm using Nelder-Mead method [24]. 

Adaptive genetic algorithm (AGAs) works by adjusting their control variables 

according to the variation of the environment in which the GAs are run. In [32], 

fuzzy logic controller technique is introduced in order to adjust control variables 

of GA (crossover and mutation probabilities) based on the current performance 
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measures of GAs (such as maximum, average or minimum fitness and diversity 

population).

3.4 Conclusions 

A few array numerical techniques have been elaborated within this chapter, 

including numerical methods and closed form analytical array. The well-known 

full-wave techniques, such as method of moments and finite-difference time 

domain have been studied. The comparison between both techniques has been 

summarized. These techniques can calculate mutual coupling but do not allow 

array optimisation (such as GA or LMS method) easily or quickly because it 

takes long computation In certain cases, the simulation might need to be 

performed more than once whenever the frequency and geometrical of the model 

change. 

Analytical methods have been discussed within this chapter. Most of 

them are conventional methods such as Binomial, Dolph-Chebyshev and 

Schelkunoff which are limited to one-dimensional (linear) antenna array. Other 

analysis as described in 2-D array is based on the array factor (or pattern 

multiplication method). These techniques are inaccurate since they do not 

incorporate coupling effect between elements. The AEP do consider mutual 

coupling but the results need to be extracted from the simulation before running 

with the optimisation method. Therefore, this thesis focuses on investigating an 

array analysis using the Induced EMF method. The numerical techniques using 

the Induced EMF method has been established for a long time.  However, it only 

applies for parallel and 2-D dipole antenna arrays. There is a need to create a 3-D 

antenna array due to its wide angle steering capability and low side-lobe level. 

Resulting from this, a novel 3-D array analysis based on Induced EMF 

method will be developed. The method employs self and mutual-impedance 

using the Induced EMF method as it is a good approximation for dipole arrays. 

The results may not be as accurate as full-wave modelling but the method runs 

quickly and blends easily with the optimisation technique. The method will be 

developed using MATLAB [33]. The far-field pattern from this new 3-D array 



Section 3.4. Conclusions 

70 

analysis will be compared with the other full wave techniques as validation to the 

code.  

The array analysis shall be combined with optimization techniques in 

order to control the beam. From the review, a genetic algorithm has been chosen 

since it is robust, not easily trapped into local values and easy to implement. By 

applying a genetic algorithm as described previously, the best characteristics 

(such as to acquire beam pattern with nulls and maximum at certain angles) 

might be possible to attain.  
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CHAPTER 4: 
Computational and 
Modelling Details of 

Dipole Antenna Arrays 

4.1 Introduction 

This chapter describes the method used to analyze radiation pattern of dipole 

arrays arranged in three-dimensions. The analysis should include mutual 

coupling since its effect is significant especially for small antenna arrays [1]. 

Therefore, the Induced EMF method [2, 6] has been chosen since it is simple yet 

provides a good approximation to consider the mutual impedance effect in dipole 

antenna arrays. Other higher order methods such as Maxwell’s equation [3] 

provide a more accurate solution by considering the mutual coupling effect in the 

array environment, and may be solved using the method of moments (MoM) [4] 

or the finite-difference time-domain method (FDTD) [5]. However, this approach 

requires large computational resources to solve Maxwell’s equations 

numerically. 

The array analysis in this thesis employs the Induced EMF method 

derived from [6] in order to obtain the current excitation for each element. Then, 

the pattern is calculated based on the current excitation of each element. Since 

the pattern for each field is rotated with respect to z-axis, a transformation matrix 

[7] has been applied for each element. Then, the pattern for each element is 

summed up to obtain the total radiation pattern. Two models; 2x2 and 12 dipoles 

arranged at the edge of a cube are chosen as examples for this analysis. The 

method is suitable for dipole elements arranged in 3-D both in straight and 

inclined configurations. The results are presented here and compared with other 
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The total far-field pattern is calculated using King’s technique [9] for the 

N (N=4) element of vertical half-wavelength dipoles as follows: ܧ௧௢௧௔௟(ߠ, ߶) = ,ߠ)ଵܧ ߶) + ,ߠ)ଶܧ ߶) + ,ߠ)ଷܧ ߶) + ,ߠ)ସܧ ߶)                   (4 − 1) 
where the electric field for each dipole, En, is given from equation (2-1). 

Therefore, the total electric field, Etotal, is 

,ߠ)௧௢௧௔௟ܧ ߶) = ߟ݆ ቐcos ቀ2ߨ ݏ݋ܿ ߨቁ2ߠ sin ߠ ቑ ൝෍ ௡݁ି௝௞ோ೙ܴ௡ܫ
ே

௡ୀଵ ൡ                               (4 − 2) 
where Rn is the distance from each dipole (xn, yn, zn) to the far-field observation 

point (ݎ, ,ߠ ߶). The equation within the brackets on the left-hand side represents 

the pattern of a dipole, while the Induced EMF Method (mutual coupling effect) 

is represented within the right-hand brackets. The far-field observation point is 

converted from polar coordinates (ݎ, ,ߠ ߶) to rectangular coordinates (x, y, z) 

using equations (4-3 to 4-5): ݔ = ݎ  sin ߠ cos ߶                                                                          (4 − 3a) ݕ = sin ߶                                                                           (4 ߠ sin ݎ  − 3b) ݖ = 4)                                                                                      ߠ cos ݎ  − 3c) 

Therefore, the Rn distance is calculated based on equation: 

ܴ௡ = ඥ(ݔ − ௡)ଶݔ + ݕ) − ௡)ଶݕ + ݖ) − ݊                    ௡)ଶݖ = 1, 2, … , ܰ         (4 − 4) 

Since Rn in the denominator of equation (4-2) is an amplitude variation, it is 

equal to r (the far field distance).                ܴ௡  ≈ 4)                                                               ݎ  − 5) 
The far-field equation is valid when ܴ௡ ≥ ଶ஽మఒ ,, which is the far-field region. 

Therefore, the total far-field as follows: 

,ߠ)௧௢௧௔௟ܧ ߶) = ߟ݆ cos ቀ2ߨ cos ݎߨቁ2ߠ sin ߠ ൝෍ ௡݁ି௝௞ோ೙ேܫ
௡ୀଵ ൡ                                (4 − 6) 
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A simplified flowchart is given in Figure 4-2 below to explain the overall 

modified 2-D algorithm. 

 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

4.2.2 3-D Algorithm 

The 3-D algorithm is an extension of the modified 2-D algorithm. The difference 

between the 2-D and 3-D algorithms is that 2-D can be employed for straight and 

Figure 4-2: Flowchart of the modified 2-D algorithm. 

Calculate the mutual impedance matrix Z using the 
Induced EMF Method 

Calculate the input impedance, Za and current for each 
element, I. Za,n=Vn/In and In is obtained from equation 

(4-9) 

Calculate the total far- field pattern, E for the array and 
plot it in 3-D and polar form (2-D) 

E field is the summation of E field of each dipole. 

Enter the array size in x, y, z and spacing 
distance between any two dipoles in an array. 

Enter the value of excitation voltage for 
each element in an array.  

Start 

End 
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parallel dipoles only. 3-D algorithm (as shown in Figure 4-3) is a new technique 

to calculate the far-field pattern in 3-D dipole arrays incorporates the coupling 

effect based on the Induced EMF method. It enables the far-field pattern for the 

dipole arrays to be computed weather the elements are arranged in straight and 

inclined position and also either in one, two or three-dimensions. Baker and 

LaGrone [6] found that the mutual impedance could be computed when the 

dipole is inclined position. 3-D algorithm proves to be useful for an array of 

dipoles arranged in three dimensions, such as cubic, spherical or icosahedrons. 

One of the advantages of employing a 3-D algorithm in the array optimisation is 

the wide scanning ability in three-dimensions by taking into account the coupling 

effect. 

The 3-D algorithm is similar to the modified 2-D algorithm (as shown in 

Figure 4-2) with several modifications: 

1. The mutual impedance matrix is calculated from Baker and LaGrone [6], 

as it can be applied for straight and inclined elements in an array. As a result, the 

direction of terminal current vector, I is along the axis of the dipole antenna.  

The root mean square (rms) terminal current vector, I can be calculated 

for each dipole, by taking the inverse of the mutual coupling impedance vector, ࢆ and generator impedance vector, Zg and multiplying it with the feed voltage 

(vector), Vs [13, 14, 15]. It is obtained from the network analysis as mentioned in 

Section 2.3.1.1 together with the free excitation model [16]. ࡵ = ܈} + 4)                                                              ࢙ࢂ૚ି{ࢍࢆ − 7) 
The self and mutual impedance matrix, ࢆ may be computed using the 

Induced EMF Method using equations (2-46) and (2-47). Therefore, the current 

in equation (4-7) is calculated in matrices for N dipoles as follows: [ࡵ] = ࢆ]࢜࢔࢏ + [ࢍࢆ ∗ 4)                                                    [࢙ࢂ] − 8) 
൦ܫଵܫଶ⋮ܫே൪ = ݒ݊݅ ൮൦ ܼଵଵ   ܼଵଶܼଶଵ  ܼଶଶ⋮        ⋮ܼேଵ   ܼேଶ   

…   ܼଵே⋱   ܼଶே⋱      ⋮…   ܼேே  ൪ + ൦ ௚ܼܼ௚⋮ܼ௚൪൲ × ൦ ଵܸܸଶ⋮ܸே൪                        (4 − 9) 
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2. The transformation matrix [7] has been calculated in order to transform 

the electric far-field pattern of dipole antenna which the original axis is directed 

along z-axis (equation 4-6) to any direction the dipole has been inclined. The 

transformation matrix will be explained in the next section. 
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Figure 4-3: Flowchart of the novel 3-D algorithm 

Calculate the mutual impedance matrix Z using the Induced EMF 
Method by specifying the spacing between two dipoles and the 

angle of orientation of each dipole. 

Enter the excitation voltage for 
each element, V.

Start 

Calculate the input impedance, Za, and current for each element, I. 
Za,n=Vn/In and In is from equation (4-9). 

Calculate the transformation matrix (B), theta prime and phi prime 
for the dipole in a slanted position. 

E field is the summation of E field of each dipole. 

Sum up all electric fields induced by all dipoles. 

Plot the far-field pattern, Eθ and Eφ in 3-D and 2-D (polar form) 

Calculate the electric field for each dipole at each position x’,y’,z’. 

Transform the electric field E(θ,߶) for dipoles in a bent position to 
the origin coordinate at x,y,z using the transformation matrix B. 

End
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A set of Euler angles has been applied to an array of 12 dipoles arranged 

in a cube (Figure 4-5). Cubic dipole array has been chosen considering an 

efficient way of calculating Euler angle for each dipole that is perpendicular to 

the z-axis. Moreover, the arrangement of dipoles in 3-D increase capability to 

steer the beam in 3-D. Cubic arrays have been used in many applications where 

one of it in MIMO [22]. Several examples are shown in Table 3 to illustrate the 

relationship of Euler angles to the position of each element in an antenna array.  

 
 
 
 
 
 

 

 

 

 

 

Table 3: The position of dipole elements in rectangular coordinates (x, y, z) and 
Euler (α, β, γ). 

Index Element Position (x,y,z) α β γ 
1 -0.04,-0.04,0 0 0 0 
2 0.04,-0.04,0 0 0 0 
3 0.04,0.04,0 0 0 0 
4 -0.04,0.04,0 0 0 0 
5 0,-0.04,0.04 -π/2 - π/2 0 
6 -0.04,0,0.04 0 - π/2 0 
7 0.04,0,0.04 0 - π/2 0 
8 0,0.04,0.04 - π/2 - π/2 0 
9 0,-0.04,-0.04 - π/2 - π/2 0 

10 0.04,0,-0.04 0 - π/2 0 
11 0,0.04,-0.04 - π/2 - π/2 0 
12 -0.04,0,-0.04 0 - π/2 0 

 

4.2.2.2 Transformation Matrix 

There are several situations where the feed coordinates or in this case, the far-

field pattern coordinates do not coincide with the antenna coordinates [7]. The 
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Figure 4-5: An array of 12 dipoles at the edge of cube. 
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transformation matrix has been applied here to present the relationship of the 

spherical and Cartesian components of one system (i.e. x’, y’, z’) to the spherical 

and Cartesian components of another system (x, y, z). The fact that the far-field 

pattern of a dipole is based on a local coordinate where the z’-axis is parallel to 

the length of the individual dipole should be taken into account. Figure 4-6 

illustrates Cartesian and spherical coordinate systems. Two unit vectors have 

been assigned respectively to Cartesian and spherical coordinates by {܋} = ,૚ࢉ} ,૛ࢉ ૜}௧                                                    (4ࢉ − {࢙} (10 = ,૚࢙} ,૛࢙ ૜}௧                                                    (4࢙ − 11) 
Here, ݐ represents the transpose operator (column operator). The two vectors can 

be assigned as: ࢉ૚ = ,࢞  ૛ࢉ = ,࢟  ૜ࢉ = ૚࢙ ࢠ  = ,࢘  ૛ܛ = ,ࣂ  ૜࢙ =  ࣘ 
where ࢞, ,࢟ ,࢘  and ࢠ ,ࣂ ࣘ are defined in Figure 4-6.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-6: The relationship between Cartesian and spherical coordinates. 

In this case, the electric field vector, E has been replaced with vector H to 

calculate the far-field pattern. A vector field H can be expressed in terms of 

Cartesian or spherical components as follows: 

ࡴ =  ෍ 4)                                                       ࢏ࢉ௜௖ܪ − 12)ଷ
௜ୀଵ  

 ݖ     
 
 ࡴ        ݎ   
 ߠ           
 
 
 
 ݕ                                                                    
   
       ߶ 
 
 ݔ  
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or 

ࡴ =  ෍ 4)                                                       ࢏࢙௜௦ܪ − 13)ଷ
௜ୀଵ  

Note that, ࡴ = {௦ܪ}  = ,ଵ௦ܪ}  ,ଶ௦ܪ ଷ௦}௧ܪ =  ൛ܪ௥, ,ఏܪ థൟ                                        (4ܪ − 14) 
The relationship between spherical and Cartesian components can be 

defined as follows: 

(௦ܶ௖ݏ) =  ൭sin ߠ cos ߶ sin ߠ sin ߶ cos cosߠ ߠ cos ߶ cos ߠ sin ߶ − sin −ߠ sin ߶ cos ߶ 0 ൱                           (4 − 15) 
The superscripts s and c are used to denote the transformation from Cartesian 

components to spherical components. Therefore, it is easily proved that {࢙} = 4)                                                  {ࢉ}(௦ܶ௖ݏ) − {௦ܪ} (16 = 4)                                           {௖ܪ}(௦ܶ௖ݏ) − 17) 
Furthermore, it can be shown that ݏ௖ܶ௦ = ଵି(௦ܶ௖ݏ) = ௧                                          (4(௦ܶ௖ݏ) − 18) 

In this case, (ݏ௖ܶ௦) defines a transformation from spherical to Cartesian 

components.  

The relationship between one Cartesian system and another Cartesian 

system is as follows: {ࢉᇱ}  = 4)                                                     {ࢉ}(௖ܤ௖ᇱܣ) − 19) ൛ܪ௖ᇲൟ = ൫ܣ௖ᇲܤ௖൯{ܪ௖}                                                (4 − 20) 
Here, (ܣ௖ᇱܤ௖) is the transformation matrix from the Cartesian coordinates {ࢉ}  
and {ࢉᇱ}  by using the Euler angle (α, γ, β), defined as: 
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൫ܣ௖ᇲܤ௖൯
=  ൭ cos ߛ sin ߛ 0− sin ߛ cos ߛ 00 0 1൱ ൭1 0 00 cos ߚ sin 0ߚ − sin ߚ cos ൱ߚ ൭ cos ߙ sin ߙ 0− sin ߙ cos ߙ 00 0 1൱          

= ൭ܤଵଵ ଵଶܤ ଶଵܤଵଷܤ ଶଶܤ ଷଵܤଶଷܤ ଷଶܤ ଷଷ൱                                                                         (4ܤ − 21) 
By expanding the above equation, the transformation matrix, B can be written as: ܤଵଵ = cos ߛ cos ߙ − sin ߛ cos ߚ sin ߙ                                       (4 − ଵଶܤ (22ܽ = cos ߛ sin ߙ + sin ߛ cos ߚ cos 4)                                      ߙ − ଵଷܤ (22ܾ = sin ߛ sin 4)                                                                          ߚ − ଶଵܤ (22ܿ = −sin ߛ cos ߙ − cos ߛ cos ߚ sin ߙ                                  (4 − ଶଶܤ (22݀ = −sin ߛ sin ߙ + cos ߛ cos ߚ cos ߙ                                  (4 − ଶଷܤ (22݁ = cos ߛ sin 4)                                                                         ߚ − ଷଵܤ (22݂ = sin ߚ sin 4)                                                                         ߙ − ଷଶܤ (22݃ = −sin ߚ cos ߙ                                                                     (4 − 22ℎ) ܤଷଷ = cos 4)                                                                                 ߚ − 22݅) 

In addition, the following relationship can be obtained: (ܣ௖ܤ௖ᇱ) = ଵି(௖ܤ௖ᇱܣ) = ௧                                           (4(௖ܤ௖ᇱܣ) − 23) 
After the transformation matrix, B, is obtained; the far-field pattern for 

each element can be calculated. Figure 4-7 shows two systems: an antenna 

coordinate system {ࢉ}  and a feed coordinate system {ࢉᇱ}. The radiated field of 

the feed is given as {ࢉᇱ}  in spherical components. This technique provides a way 

of calculating the radiated field in the antenna coordinate system {ࢉ}. The vector {ࢉ}  and {ࢉᇱ} are related through a transformation matrix, B. The feed coordinate 

system can be replaced with the inclined coordinate antenna system (local 

coordinate, x’, y’, z’), which is assumed in this program.  

The computation is summarizes in two steps: 
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Since ݎᇱ௖ᇲ = ′ݎ} sin ′ߠ cos ߶′, ′ݎ sin ′ߠ sin ߶ᇱ, ′ݎ cos ௧                              (4{′ߠ − 27) 
Therefore, θ’ and ߶’ (with respect to the local coordinate) can be easily 

determined from θ and ߶ (the global coordinate system) using equation (4-26). 

For the second step, the spherical components of the radiated field of the feed at 

this point are calculated in the programme as {H’s’} in {ࢉᇱ}. By using {H’s’}, the 

Cartesian components in {ࢉᇱ} can be derived: ൛ܪᇱ௖ᇲൟ = ቀݏ௖ᇲܶ௦ᇱቁ ൛ ܪᇱ௦ᇲൟ                                           (4 − 28) 
Then, the relationship of the Cartesian components of the global 

coordinate system, {ܪ௖} , due to the spherical components of the local coordinate 

system, ൛ ܪᇱ௦ᇲൟ, are as follows: {ܪ௖} = ᇱ௖ᇲൟܪ൛(′௖ܣ௖ܣ) = (′௖ܣ௖ܣ)  ቀݏ௖ᇲܶ௦ᇱቁ ൛ ܪᇱ௦ᇲൟ                 (4 − 29) 
where  { ܪᇱ௖ᇲ} is from equation (4-28). 

Using the equation (4-29), the spherical vector of the global coordinate 

systems, H, can be derived as: {ܪ௦} = {௖ܪ}(௦ܶ௖ܣ) = (′௖ܣ௖ܣ)(௦ܶ௖ܣ) ቀݏ௖ᇲܶ௦ᇱቁ ൛ ܪᇱ௦ᇲൟ                      (4 − 30) 
All the previous equations can be summarized as follows: 

൝ݎᇱ sin ᇱߠ cos ᇱݎ′߶ sin ′ߠ sin ᇱݎ′߶ cos ′ߠ ൡ =  ൭ܣଵଵ ଵଶܣ ଶଵܣଵଷܣ ଶଶܣ ଷଵܣଶଷܣ ଷଶܣ ଷଷ൱ܣ ቌݎ sin ߠ cos ߶ −  ଵ݂ݎ sin ߠ sin ߶ −  ଶ݂ݎ cos ߠ −  ଷ݂ ቍ                     (4 − 31) 

From θ and ߶, the spherical components of H in {ĉ} are determined as:  

 ቐܪ௥(ݎ, ,ߠ ,ݎ)ఏܪ(߶ ,ߠ ,ݎ)థܪ(߶ ,ߠ ߶)ቑ =  ൭sin ߠ cos ߶ sin ߠ sin ߶ cos cosߠ ߠ cos ߶ cos ߠ sin ߶ − sin −ߠ sin ߶ cos ߶ 0 ൱ ൭ܣଵଵ ଶଵܣ ଵଶܣଷଵܣ ଶଶܣ ଵଷܣଷଶܣ ଶଷܣ ଷଷ൱ܣ ×  ൭sin ′ߠ cos ߶′ cos ′ߠ cos ߶′ − sin ߶′sin ′ߠ sin ߶ ′ cos ′ߠ sin ߶′ cos ߶ ′cos ′ߠ − sin ′ߠ 0 ൱ ቐܪᇱ௥ᇲ(ݎ′, ,′ߠ ,′ݎ)ᇱఏᇲܪ(′߶ ,′ߠ ,′ݎ)ᇱథᇲܪ(′߶ ,′ߠ ߶′)ቑ 

Rahmat-Samii [7] used the above technique on a reflector antenna 

illuminated by an array of feed horns, where the radiated field of each horn was 

in its own coordinates and did not coincide with reflector coordinates. However, 

it may also be applied for the case where the far-field pattern coordinates (x’, y’, 

(4 − 32) 
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z’) do not coincide with the antenna coordinates (x, y, z) [17, 18]. As a result, the 

far-field pattern of the dipoles in a global coordinate system can be calculated 

using the far-field pattern of dipoles due to local coordinate systems. This proves 

to be useful, especially when the position of the element or dipole in this case, is 

in inclined configuration such as in a spherical antenna array. The 3-D algorithm 

code is attached in appendix A and B.  

Therefore, the total radiation pattern for N elements is calculated as: 

ቐܪ௥(ݎ, ,ߠ ,ݎ)ఏܪ(߶ ,ߠ ,ݎ)ఝܪ(߶ ,ߠ ߶)ቑ = ෍ ൮ [ݏ௦ܶ௖] × [ܤ] × ቂݏ௖ᇲܶ௦ᇱቃ × ൞ܪᇱ௥ᇲ೙(ݎᇱ, ,ᇱߠ ߶ᇱ)ܪᇱఏᇲ೙(ݎᇱ, ,ᇱߠ ߶ᇱ)ܪᇱఝᇲ೙(ݎᇱ, ,ᇱߠ ߶ᇱ)ൢ൲,    ( 4 − 33) ே
௡ୀଵ  

where  

(௦ܶ௖ݏ) =  ൭sin ߠ cos ߶ sin ߠ sin ߶ cos cosߠ ߠ cos ߶ cos ߠ sin ߶ − sin −ߠ sin ߶ cos ߶ 0 ൱,                 (4 − 33ܽ) 
ܤ = ൭ܤଵଵ ଵଶܤ ଶଵܤଵଷܤ ଶଶܤ ଷଵܤଶଷܤ ଷଶܤ ଷଷ൱,                            (4ܤ − 33ܾ) 

௖ᇲܶ௦ᇱݏ = ൭sin ′ߠ cos ߶′ cos ′ߠ cos ߶′ − sin ߶′sin ′ߠ sin ߶ ′ cos ′ߠ sin ߶′ cos ߶ ′cos ′ߠ − sin ′ߠ 0 ൱,              (4 − 33ܿ) 
and the far-field radiation pattern for each element assuming the dipole along z-

axis, 

,ߠ)ᇱఏᇲ೙ܪ ߶) ≈ ݎߨ૙݁ି௝௞௥2ࡵߟ ݆  . cos(2ߨ ݏ݋ܿ ݊݅ݏ(ߠ ߠ   ,    ݊ = 1,2, … . , ܰ          (4 − 34) 
and H’r’n is zero in the far-field range and ܪథᇲ௡ᇱ

’ is zero due to the dipole position 

along z-axis. 

4.3 Pattern Multiplication Method (without mutual coupling) 

A programme of mathematical analysis using the Circular Array Method 

(Equation 3-36) has been written as a comparison with the 3-D algorithm. Four 

half-wavelength dipoles arranged in a circular array with radius b, 0.057 m 
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(a) 

 
(b)

Figure 4-9: Arrays of (a) four and (b) twelve dipoles at 2.45 GHz from 
4NEC2++ [22]. 

4.4.2 FDTD 

The previous designs were also simulated using FDTD [5] method via Empire 

XCcel [24]. Four dipoles are arranged as a rectangular array with its axis parallel 

to the z-axis (Figure 4-10(a)). The array is fed using four perpendicular lumped 

ports. Another simulation using 12 dipoles arranged at the edge of a cube has 

been designed, as shown in Figure 4-10(b). The labelling for dipoles in Figure 4-

10 is similar to Figure 4-9. 

 

 
(a) 

 
(b)

Figure 4-10: Arrays of (a) four and (b) twelve dipoles at 2.45 GHz from Empire 
XCcel [23]. 
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4.5 Results of the 3-D algorithm. 

4.5.1 Mutual impedance 

Baker and LaGrone [6] calculated the value of mutual impedance between two 

dipoles for various configurations using the Induced EMF Method. This thesis 

has extended [6] in order to include the y-axis for three dimensions for ease of 

implementation. The results of the real and imaginary mutual impedance 

between two dipoles for various cases are plotted in Figs. 4-11 to 4-19. The 

graphs are in similar agreement with [6] and [9]. Baker and LaGrone [6] have 

made a comparison of their work, [6] with King, [9] and they are in good 

agreement. The mutual impedance calculated using equation (2-46) and (2-47) is 

only an extension in ݕ direction so that the mutual impedance between two 

dipoles can be calculated in three dimensions (ݔ, ,ݕ  axis) instead only in two- ݖ

dimensions (ݕ,  axis) as in [6]. Equation 2-46 and 2-47 has been used to- ݖ

facilitate the calculation of mutual impedance for cubic dipole in three 

dimensions. Due to that reason, both methods (equation 2-46 and 2-47) and work 

in [6] should be in similar agreement and has been proven in Figs. 4-11 to 4-16. 

However, in Figures 4-17 to 4-19, there are slight discrepancies when theta is 

varied from 0° to 20° between plots of the imaginary impedance of equation (2-

47) and results from Baker. The reason is probably due to the far-field equation 

which is used to derive the mutual impedance within small range of angle 

variation and infinitely small spacing, thus resulting inaccuracies to the 

imaginary impedance. The equations (2-46) and (2-47) are based on 

Schelkunoff’s electric field intensity [25] due to the sinusoidal current 

distribution in the first antenna. 
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Figure 4-11: Mutual impedance vs 
spacing (࢞-axis) for two parallel half-
wavelength antennas, non-staggered.

 
Figure 4-12: Mutual impedance vs 
spacing (࢟-axis) for two parallel half-
wavelength antennas, non-staggered.

 
Figure 4-13: Mutual impedance vs 
spacing (࢞ -axis) for two parallel half-
wavelength antennas in echelon, 
staggered by 0.25ࣅ૙.

 

Figure 4-14: Mutual impedance vs 
spacing (࢟ -axis) for two parallel half-
wavelength antennas in echelon, 
staggered by 0.25ࣅ૙. 

 
Figure 4-15: Mutual impedance vs 
spacing (࢞-axis) for two half-
wavelengths antennas in echelon, 
staggered by 0.5ࣅ૙. 

 
Figure 4-16: Mutual impedance vs 
spacing (࢟-axis) for two half-
wavelengths antennas in echelon, 
staggered by 0.5ࣅ૙. 
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Figure 4-17: Mutual impedance vs 
interior angle for two half-wavelength 
antennas in a V configuration (along ࢞ 
-axis) 

 
Figure 4-18: Mutual impedance vs 
interior angle for two half-wavelength 
antennas in a V configuration along ࢟-
axis.

 
Figure 4-19: Mutual impedance vs interior angle for two half-wavelength 

antennas in a V configuration (at ߶= 45°). 

4.5.2 Impedance matrix, Z for four parallel dipoles 

The impedance matrix, [ܼ] has been calculated using equations (2-46) and (2-47) 

by taking into account mutual coupling effect for an array of four parallel dipoles 

with a spacing of 0.65λ0 at 2.45 GHz is shown in Table 4. The self impedance, ܼ௠௠ of each dipole is 73.1 +42.5i while the mutual impedance between dipoles ݉ and ݊, ܼ௠௡ depends on the spacing and angle of orientation between them. 

The same spacing and parallel configuration of four dipoles resulting similar 

values of ܼ௠௡ in the impedance matrix [ܼ]. 
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Table 4: The impedance matrix, [ܼ], for four parallel dipoles 
Index No 1 2 3 4 

1 73.1 + 42.5i -25.2- 7.41i -4.62+ 18.93i -25.2- 7.41i 
2 -25.2- 7.41i 73.1+ 42.5i -25.2- 7.41i -4.62 + 18.93i 
3 -4.62 + 18.93i -25.2 - 7.41i 73.1+42.5i -25.2 - 7.41i 
4 -25.2 - 7.41i -4.62 + 18.93i -25.2 - 7.41i 73.1 + 42.5i 

 

4.5.3 Impedance matrix for twelve dipoles in various 

configurations 

The impedance matrix, [ܼ], has been calculated using equations (2-46) and (2-

47) for twelve dipoles (Fig.4-9(b)) is shown in Table 5.   
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Table 5: The impedance matrix, [ܼ], for 12 dipoles 
Index 

No 
1 2 3 4 5 6 7 8 9 10 11 12 

1 73.1 + 
42.5i 

-25.2- 
7.41i 

-4.62+ 
18.93i 

-25.2- 
7.41i 

14.44 + 
17.46i 

14.44 + 
17.46i 

1.72- 
3.09i 

1.72 - 
3.09i 

-14.44 - 
17.46i 

-1.72 + 
3.09i 

-1.72 + 
3.09i 

-14.44- 
17.46i 

2 -25.2- 
7.41i 

73.1+ 
42.5i 

-25.2- 
7.41i 

-4.62 + 
18.93i 

-14.42- 
17.55i 

1.72 - 
3.09i 

14.44 + 
17.46i 

-1.72+ 
3.08i 

14.43+ 
17.55i 

-14.44 - 
17.46i 

1.72 - 
3.08i 

-1.72 + 
3.09i 

3 -4.62 + 
18.93i 

-25.2 - 
7.41i 

73.1+42.5i -25.2 - 
7.41i 

-1.72 + 
3.08i 

-1.72 + 
3.08i 

-14.42 - 
17.55i 

-14.42 - 
17.55i 

1.72- 
3.08i 

14.42+ 
17.55i 

14.42 + 
17.55i 

1.72 - 
3.08i 

4 -25.2 - 
7.41i 

-4.62 + 
18.93i 

-25.2 - 
7.41i 

73.1 + 
42.5i 

1.72 - 
3.09i 

-14.42 - 
17.55i 

-1.72+ 
3.08i 

14.44 + 
17.46i 

-1.72+ 
3.09i 

1.72- 
3.08i 

-14.44- 
17.46i 

14.43 + 
17.55i 

5 14.44+ 
17.46i 

-14.43 - 
17.55i 

-1.72 + 
3.08i 

1.72- 
3.09i 

73.1 + 
42.5i 

-14.46- 
17.55i 

14.44 + 
17.46i 

-25.2- 
7.41i 

-25.2 - 
7.41i 

4.18 - 
5.51i 

-4.62+ 
18.93i 

-1.72 + 
3.09i 

6 14.44 + 
17.46i 

1.72- 
3.09i 

-1.72+ 
3.08i 

-14.43- 
17.55i 

-14.43 - 
17.55i 

73.1+ 
42.5i 

-25.2 - 
7.41i 

14.44 + 
17.46i 

-4.18 + 
5.51i 

-4.62 + 
18.93i 

-4.18 + 
5.51i 

-25.2 
7.41i 

7 1.72 - 
3.09i 

14.44 + 
17.46i 

-14.43- 
17.55i 

-1.72 + 
3.08i 

14.44+ 
17.46i 

-25.2- 
7.41i 

73.1 + 
42.5i 

-14.42 - 
17.55i 

4.21- 5.5i -25.2 - 
7.41i 

4.21 - 
5.5i 

-4.62+ 
18.93i 

8 1.72- 
3.09i 

-1.72 + 
3.08i 

-14.43 - 
17.55i 

14.44 + 
17.46i 

-25.2 - 
7.41i 

14.44 + 
17.46i 

-14.43 - 
17.55i 

73.1 + 
42.5i 

-4.62 + 
18.93i 

-4.18 + 
5.51i 

-25.2 - 
7.41i 

1.72- 
3.08i 

9 -14.44- 
17.46i 

14.43 + 
17.55i 

1.72 - 
3.08i 

-1.72+ 
3.09i 

-25.2 - 
7.41i 

-4.18 + 
5.51i 

4.21- 5.5i -4.62 + 
18.93i 

73.1+ 
42.5i 

14.44+ 
17.46i 

-25.2- 
7.41i 

-14.43- 
17.55i 

10 -1.72 + 
3.09i 

-14.44- 
17.46i 

14.43 + 
17.55i 

1.72- 
3.08i 

4.18 - 
5.51i 

-4.62 + 
18.93i 

-25.2 - 
7.41i 

-4.18 + 
5.51i 

14.44 + 
17.46i 

73.1+ 
42.5i 

-14.43 - 
17.55i 

-25.2 - 
7.41i 

11 -1.72 + 
3.09i 

1.72 - 
3.08i 

14.43 + 
17.55i 

-14.44- 
17.46i 

-4.62 + 
18.93i 

-4.18+ 
5.51i 

4.21- 5.5i -25.2 - 
7.41i 

-25.2- 
7.41 

-14.43- 
17.55i 

73.1+ 
42.5i 

14.43+ 
17.55i 

12 -14.4- 
17.46i 

-1.72+ 
3.09i 

1.72 - 
3.08i 

14.4+ 
17.55i 

-1.72+ 
3.09i 

-25.2- 
7.41i 

-4.62+ 
18.93i 

1.72 
- 3.08i 

-14.43- 
17.55i 

-25.2- 
7.41i 

14.43+ 
17.55i 

73.1+ 
42.5i 
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4.5.4 3-D Far-Field Patterns 

The 3-D far-field pattern for an array of half-wavelength dipoles is calculated 

using the 3-D algorithm. Two types of array were tested using this algorithm: 1) 

four half-wavelength parallel dipoles and 2) twelve half-wavelength dipoles 

arranged in various configurations. The results are discussed in this section. 

4.5.4.1 Four Parallel Dipoles 

In this case, an array of four half-wavelength parallel dipoles with a spacing of 

 .଴ at 2.45 GHz was chosen and the results are discussed in the next sectionߣ0.65

The axis of the dipoles is parallel with the ݖ-axis. A diagram of the four dipoles 

is shown in Figure 4-20. The excitation value (i.e. 1; 0; 0; 0) can be represented 

by dipole 1, dipole 2, dipole 3 and dipole 4. A comparison was performed 

between the Induced EMF Method (3-D algorithm), FDTD, MoM and pattern 

multiplication method (without coupling) on the far-field pattern. Different 

excitation was employed to each element of the array to observe the difference 

between those methods and the behaviour of mutual coupling. 

 
Figure 4-20: Diagram showings the position of each dipole on the ݕݔ plane. 
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4.5.4.1.1 Uniform excitation values 

The far-field patterns for four dipoles with an identical excitation amplitude (1V) 

and 0° phase angle are shown in Figs. 4-21 to 4-25 below. They may be viewed 

in planar cut (2-D) and 3-D [26].  

 
Figure 4-21: 2-D azimuth far-field 
pattern at theta=90°. 

 
Figure 4-22: 2-D elevation far-field 
pattern at phi=0°. 

 

Figure 4-23:  3-D far-field pattern 
calculated via Induced EMF Method 
from this thesis (3-D algorithm). 

 

Figure 4-24: 3-D far-field pattern of 
a circular array calculated using 
pattern multiplication method.
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Figure 4-25: The 3-D far-field pattern from Empire XCcel. 

It was observed that when all the excitation values are similar, the 

patterns produced from 3-D algorithm is in similar agreement with other methods 

except that in Figure 4-21,  it generates higher side lobes compared to nulls at 

azimuth pattern (θ=90°). It is because of the existence of the mutual coupling 

effect between parallel elements spaced 0.65λ0 between each other. The effect of 

coupling between elements increases the side lobe levels in comparison between 

other methods. Due to this reason, it can be concluded that the coupling effect 

between elements should not be ignored especially in pattern synthesis and 

direction finding application because it will resulting inaccuracies to the 

optimization process. Table 6 summarized the far field pattern comparison in 

Figures 4-21 and 4-22 between 3-D algorithm, pattern multiplication method, 

FDTD and MoM. 

Table 6: Comparison on the far field pattern. 

 
 0° (Elevation plane) = ࣘ (Azimuth plane) °90 = ࣂ

Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW 

3-D 
algorithm 

0°, 90°, 
180°, 
270° 

-16 30° 90°, -90° -6.5 40° 

Pattern 
multiplication 

0°, 90°, 
180°, 
270° 

-31 30° 90°, -90° -6.5 40° 

FDTD 
0°, 90°, 
180°, 
270° 

-31 30° 90°, -90° -6.5 40° 

MoM 
0°, 90°, 
180°, 
270° 

-31 30° 90°, -90° -6 40° 



Section 4.5. Results of the 3-D algorithm  

99 

4.5.4.1.2 Uniform amplitude with different phase. 

The far-field patterns for four dipoles with an identical excitation amplitude 

(0.5V) and different phase shift are shown in Table 7 below. The phase shift is 

calculated using equation (3-36) to direct the peak of the main beam in the 

θ0=90°, φ0=100° direction. 

Table 7: Excitation values with uniform amplitude and different phases 
Element Index Amplitude Phase (degrees) 

Dipole 1 0.5 95.4° 
Dipole 2 0.5 136.2° 
Dipole 3 0.5 -95.4° 
Dipole 4 0.5 -136.2° 

 

 
Figure 4-26: Far-field pattern at 
theta=90° 

 
Figure 4-27: Far-field pattern at 
phi=100° 

 
Figure 4-28: 3-D far-field pattern 
calculated via Induced EMF Method 
from this thesis (eqn 4-46). 

 
Figure 4-29: 3-D far-field pattern of 
a circular array calculated using 
pattern multiplication method (eqn 
3-36).
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Figure 4-30: The 3-D far-field pattern from simulation (Empire XCcel).

It was observed that the results using the 3-D algorithm are in good 

agreement, especially with full wave technique; FDTD. By taking into account 

mutual coupling via the Induced EMF Method, the far-field pattern is better 

pronounced than conventional pattern multiplication, especially in the side lobes 

and the null region. Moreover, the side lobes at 190° are better pronounced using 

the 3-D algorithm and FDTD (Figure 4-26) compared to MoM and the pattern 

multiplication method. Furthermore, it is noted that the highest side lobe level 

obtained from MoM and pattern multiplication occurred at 240° while from 3-D 

algorithm and FDTD occurred at 350°. Therefore, it can be concluded that the 

coupling effect from the 3-D algorithm affecting the side-lobe levels in the far-

field pattern of antenna array. The discrepancies on the far-field pattern between 

FDTD and MoM are probably because of parameters differences of both 

methods. Table 8 summarized the far field pattern comparison Figures 4-26 and 

4-27 between 3-D algorithm, pattern multiplication method, FDTD and MoM. 

The results show that they are in close approximations with each other. 

Table 8: Comparison on the far field pattern. 

 
 100° (Elevation plane)= ࣘ (Azimuth plane) °90 = ࣂ

Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW 

3-D 
algorithm 

100° -4.8 45° 90° -6 60° 

Pattern 
multiplication 

100° -3.5 45° 90° -5.5 60° 

FDTD 100° -4.8 45° 90° -6 60° 
MoM 100° -3.5 47° 90° -5.5 65° 
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4.5.4.1.3 Different amplitude and phase 

The far-field patterns for four dipoles with different excitation (amplitude 

and phase) are shown in Table 9 below. The phase is chosen so that the main 

beam is pointed at phi=284°. The difference between red straight line and black 

dashed line of the Induced EMF method (in Figure 4-31) is that the former using 

the amplitude given in Table 6 while the latter use a constant amplitude of 0.5 V. 

Varying the amplitude excitation for each element will change the side-lobe 

levels of the far-field pattern as shown in Figures 4-31 and 4-32. However, the 

direction of steering angle remains similar because the phase excitation for each 

element unchanged either by applying constant amplitude or varying amplitude 

excitation as in Table 9.  

Figure 4-31 shows that the pattern computed from 3-D algorithm agrees 

with FDTD and MoM. However, it disagrees with pattern multiplication method 

because of the coupling effect. The position and number of side-lobes and nulls 

of pattern multiplication differs considerably with other methods. On the other 

hand, Figure 4-32 shows a small difference between patterns due to the parallel 

arrangement of the dipoles in x-y plane which increase the coupling considerably 

in azimuth plane but very small or none at all in elevation plane. Table 10 

summarized the far field pattern comparison Figures 4-31 and 4-32 between 3-D 

algorithm, pattern multiplication method, FDTD and MoM. The result shows that 

3-D algorithm, FDTD and MoM are in close approximations with each other 

except pattern multiplication which differs in azimuth pattern. 

Table 9: Excitation values with different amplitude and phases 
Element Index Amplitude rms,  Phase (degrees) 

Dipole 1 0.5607 -164.5° 
Dipole 2 0.4157 129.2° 
Dipole 3 0.0824 45.9° 
Dipole 4 0.3294 50.1° 
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Figure 4-31: Far-field pattern at 
theta=90°.

 

Figure 4-32: Far-field pattern at 
phi=284°.

 
Figure 4-33: 3-D far-field pattern 
calculated via Induced EMF Method 
from this thesis (eqn 4-46). 

 

 
Figure 4-34: 3-D far-field pattern of 
a circular array calculated using 
pattern multiplication method (eqn 
3-36).

 
Figure 4-35: 3-D Far-field pattern from Empire XCcel 
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Table 10: Comparison on the far field pattern. 

 
 284° (Elevation plane) = ࣘ (Azimuth plane) °90 = ࣂ

Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW 

3-D 
algorithm 

280° -4.5 32.5° 90° -7.25 62.5° 

Pattern 
multiplication 

280° -2.5 37.5° 90° -7.5 65° 

FDTD 280° -4.5 32.5° 90° -7 62.5° 
MoM 280° -4.8 32.5° 90° -7.25 60° 
 

4.5.4.2 Twelve Dipoles in Various Configurations 

The 3-D far-field was computed using the 3-D algorithm for an array of 12 

dipoles arranged at the edge of a cube structure (Figure 4-9(b)). The size of the 

cube is (0.65ߣ଴ m)3. The excitation value (i.e. 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0) can 

be represented by dipole 1, dipole 2, dipole 3, dipole 4, dipole 5, dipole 6, dipole 

7, dipole 8, dipole 9, dipole 10, dipole 11 and dipole 12. The idea is that the 3-D 

algorithm can be applied to dipoles in any configuration by considering the effect 

of mutual coupling. 

4.5.4.2.1 Uniform Excitation Values 

The far-field patterns for 12 dipoles with uniform excitation (1V for amplitudes 

and zero phases) are shown in Figs. 4-36 to 4-40. By applying uniform excitation 

for each element, the direction of steering angle is pointing towards 84°=ߠ and ߶=6°. 

 
Figure 4-36: Far-field pattern at 
theta=84° 

 
Figure 4-37: Far-field pattern at 
phi=6° 
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Figure 4-38: 3-D far-field pattern 
calculated via Induced EMF Method 
from this thesis (eqn 4-46). 

 
Figure 4-39: 3-D far-field pattern 
calculated using pattern 
multiplication method (eqn 3-36).

 
Figure 4-40: 3D far-field pattern from Empire XCcel 

It was observed that in this case, the pattern produced from the 3-D 

algorithm is in similar agreement with other methods. This is maybe due to the 

uniform spacing and the excitation values for each element, therefore, no 

significant changes of mutual coupling may be observed in this example. One of  

changes could observed from Table 11 with the number of beam steering where 

the 3-D algorithm only has one maximum beam pointing in the direction of 84° 

at θ=84° comparing with other methods that have four steering angles. 
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Table 11: Comparison on the far field pattern. 

 

 6° (Elevation plane) = ࣘ (Azimuth plane) °84 = ࣂ
Pointing 

beam 
Highest 
side lobe 
levels, dB 

HPBW Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW 

3-D algorithm 84°, -1 35° 6°, 86° -2 30° 

Pattern 
multiplication 

6°, 84°, 
186°, 
264° 

-12 35° 6°, 86° -1.5 30° 

FDTD 
6°, 84°, 
186°, 
264° 

-14.5 35° 6°, 86° -1.5 30° 

MoM 
6°, 84°, 
186°, 
264° 

-14.5 35° 6°, 86° -1.5 30° 

 

4.5.4.2.2 Different amplitude and phases for excited coefficients 

The excitation values with the same amplitude and different phases are shown in 

Table 12, and the far-field patterns are shown in Figs. 4-41 to 4-45. They are 

similar to those in Section 4.5.4.1.2 but with additional four short-circuited 

dipoles arranged at the top and bottom of 2x2 dipole array. Therefore, the far-

field patterns in Fig. 4-42 are slightly different to the Fig. 4-27 due to the effect 

of the parasitic elements on top and bottom (vertical plane) of 2x2 dipole array. 

Figures 4-41 and 4-26 are similar because no additional dipoles or changes 

existed between them in horizontal plane. However, Figure 4-42 shows the 

discrepancies existed between the 3-D algorithm, the FDTD, the MoM and 

pattern multiplication (no coupling) method. The largest difference of 6 dB is 

occurred especially at side-lobe levels. Overall, a good agreement was achieved 

between those methods especially in the main beam region. 

The discrepancies between the 3-D algorithm and full wave modelling 

(FDTD and MoM) might be due to the thickness and the feed gap of the dipole in 

the Induced EMF method. The mutual impedance calculated using the Induced 

EMF method assumes that the dipole is infinitely thin. It also assumes 

infinitesimal feed gap between each arm of the dipole. The effect of mutual 

coupling using Induced EMF Method only bring changes on the terminal current 

values, not on the element current distribution itself (i.e. the shape of the 

current). It assumes the current distribution is in sinusoidal form and its phase is 
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constant. Therefore, it only provides an approximation for mutual coupling 

between elements. Table 13 summarizes the differences between those methods. 

Figure 4-41 and 4-42 shows that the far-field pattern from 3-D algorithm is not in 

good agreement with other methods compared to previous examples. However, 

the steering angle, the beam width and the highest side lobe level from the 3-D 

algorithm as mentioned in Table 13 is approximately close with the other 

methods. 

Table 12: Excitation values with the same amplitude but different phases 
Element index Amplitude Phase (degrees) 

1 0.5 95.4° 
2 0.5 136.2° 
3 0.5 -95.4° 
4 0.5 -136.2° 
5 0 0 
6 0 0 
7 0 0 
8 0 0 
9 0 0 
10 0 0 
11 0 0 
12 0 0 

 

 

Figure 4-41: Far-field pattern at 
theta=90° 

 

Figure 4-42: Far-field pattern at 
phi=100° 
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Figure 4-43: 3-D far-field pattern 
calculated via Induced EMF Method 
from this thesis (eqn 4-46). 

 
Figure 4-44: 3-D far-field pattern 
calculated using pattern multiplication 
method (view from yz axis) 

 
Figure 4-45: 3-D far-field pattern from Empire XCcel 

Table 13: Comparison on the far field pattern. 

 

 100° (Elevation plane) = ࣘ (Azimuth plane) °90 = ࣂ
Pointing 

beam 
Highest 
side lobe 
levels, dB 

HPBW Pointing 
beam 

Highest 
side lobe 

levels, 
dB 

HPBW 

3-D algorithm 100° -4.5 45° 90° -6.5 60° 
Pattern 
multiplication 

100° -3.5 45° 90° -5.5 80° 

FDTD 100° -4.5 45° 90° -7 60° 
MoM 100° -3.5 45° 90° -6.5 60° 

4.5.4.2.3 Different amplitude and phase 

The excitation values with different amplitudes and phases are shown in Table 

14 and the far-field patterns are shown in Figs. 4-46 to 4-50. Figure 4-46 shows 

that the far-field pattern computed from 3-D algorithm is in close agreement with 
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the pattern computed using FDTD. On the other hand, the pattern computed from 

MoM agrees with pattern multiplication method. Figure 4-47 shows small 

discrepancies in the far-field pattern of those methods. However, it shows that 

the steering angle, number of side lobes and nulls from 3-D algorithm, FDTD 

and MoM are similar. The far-field pattern obtained from 3-D algorithm 

encompasses the coupling effect and agrees well with FDTD and MoM. Table 15 

shows the comparison of the steering angle, the highest side-lobe level, and the 

beam-width obtained from the pattern in Figures 4-46 and 4-47.  

Table 14 : Excitation values with the different amplitude but phases 
Element Index Amplitude Phase (degrees) 

1 0.5607 -164.5° 
2 0.4157 129.2° 
3 0.0824 45.9° 
4 0.3294 50.1° 
5 0 0 
6 0 0 
7 0 0 
8 0 0 
9 0 0 

10 0 0 
11 0 0 
12 0 0 

 

 
Figure 4-46: E far-field pattern at 
theta=90° 

 
Figure 4-47: E far-field pattern at 
phi=280° 

0 50 100 150 200 250 300 350
-40

-35

-30

-25

-20

-15

-10

-5

0

angle (degrees)

F
ar

-f
ie

ld
 p

at
te

rn
 (

dB
)

 

 

3-D algorithm

without coupling

FDTD

MoM

0 50 100 150 200 250 300 350
-40

-35

-30

-25

-20

-15

-10

-5

0

angle (degrees)

F
ar

-f
ie

ld
 p

at
te

rn
 (

dB
)

 

 

3-D algorithm

without coupling

FDTD

MoM



Section 4.6. Conclusion 

109 

 
Figure 4-48: 3-D far-field pattern 
calculated via Induced EMF Method 
from this thesis (eqn 4-46). 

 
 Figure 4-49: 3-D far-field pattern 
calculated using pattern 
multiplication method. 

 
Figure 4-50: 3-D Far Field pattern from Empire XCcel. 

 

Table 15: Comparison on the far field pattern. 

 

 280° (Elevation plane)= ࣘ (Azimuth plane) °90 = ࣂ
Pointing 

beam 
Highest 
side lobe 
levels, dB 

HPBW Pointing 
beam 

Highest 
side lobe 
levels, dB 

HPBW 

3-D algorithm 280° -4 40° 90° -8 60° 
Pattern 
multiplication 

280° -2 50° 90° -7 80° 

FDTD 280° -4 40° 90° -6.5 60° 
MoM 280° -2 55° 90° -7.5 60° 
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4.6 Conclusions 

This chapter explained the use of 2-D algorithm to calculate the far-field patterns 

for an array of dipole antennas in free space using the Induced EMF Method. The 

method incorporates the coupling effect but only applicable to parallel dipole 

antenna arrays. Then, a new 3-D algorithm is developed to calculate the far-field 

pattern for 3-D dipole arrays based on the Induced EMF method. It is an 

extension work of the 2-D algorithm. Two set of examples were tested: a) four 

parallel dipoles; and b) 12 dipoles arranged at the edge of a cube in free space. 

The advantage of using the 3-D algorithm is that it includes the mutual coupling 

effect between elements and applicable for dipoles arranged in straight and 

inclined position. Thus, the pattern computation is more accurate than the 

conventional array theory. The algorithm is built from scratch, thus allowing a 

degree of flexibility in optimising any critical variables such as the number and 

the spacing between elements. It is quick, efficient and compatible to work with 

array optimization techniques (such as genetic algorithm). All those criteria are 

essential in order to obtain fast and fairly accurate results. Moreover, the degree 

of flexibility allows it to be cost-effective, since the feed network in a phased 

array (i.e. phase shifter, attenuator) are complex and costly as the number of 

elements increase. On the other hand, other method such as the active element 

pattern depends on the modelling software and thus places a restriction on the 

fixed structure. The results from the 3-D algorithm are compared with 

conventional array analysis and full wave modelling such as FDTD (Empire 

XCcel) and MoM (4NEC2++). The results are in good agreement especially for 

2x2 dipole arrays. In conclusion, the comparisons show that the 3-D algorithm 

based on the Induced EMF is sufficient to compute the far-field pattern 

considering the mutual coupling effect for an array of dipoles either in 1-D, 2-D 

or 3-D. Later on, the 2x2 dipole array is chosen for pattern control using genetic 

algorithm (will be explained in chapter 5) and measurement (chapter 7) since it 

consists small number of elements thus requiring simpler feeding network. 



 

111 

References 

[1] H. Steyskal, J. S. Herd, “Mutual Coupling Compensation in Small Array 

Antennas,” IEEE Transactions on Antennas and Propagation, vol. 38 (12), pp. 

1971, Dec. 1990. 

[2] P. S. Carter, "Circuit Relations in Radiating Systems and Applications to 

Antenna Problems," Proceedings of the Institute of Radio Engineers, vol. 20, pp. 

1004, June, 1932. 

[3] J. C. Maxwell, “XXV. On physical lines of force,” Philosophical Magazine 

Series 4, vol. 21 & 23, pp. 161-175, 1861. 

[4] R. F. Harrington, Field Computation by Moment Methods. Piscataway. NJ: 

Piscataway, NJ: IEEE Press, 1993. 

[5] K. Yee, "Numerical solution of initial boundary value problems involving 

maxwell's equations in isotropic media," Antennas and Propagation, IEEE 

Transactions on, vol. 14, pp. 302-307, 1966. 

[6] H. Baker and A. LaGrone, "Digital computation of the mutual impedance 

between thin dipoles. " Antennas and Propagation, IRE Transactions on, Vol. 10, 

pp. 172-178, 1962. 

[7] Y. Rahmat-Samii, "Useful coordinate transformations for antenna 

applications," Antennas and Propagation, IEEE Transactions on, Vol. 27, pp. 

571-574, 1979. 

[8] G. Abdalla, "Switched Pattern Control," MSc theses, Loughborough 

University, United Kingdom, 2006.  

[9] H. E. King, "Mutual impedance of unequal length antennas in echelon." 

Antennas and Propagation, IRE Transactions on, Vol. 5, pp. 306-313, July 1957.  

[10] P. Ioannides and C. A. Balanis. "Mutual coupling in adaptive circular 

arrays." Antennas and Propagation Society International Symposium, 2004, 

IEEE, pp. 403-406, 2004.  

[11] H. Ebersbach, D. V. Thiel, and M. Leckenby, “Modelling Yagi-Uda 

antennas using point source approximation,” Electronic Letters, Vol. 40, Sept. 

2004. 

[12] D. V. Thiel and V. Moyle, "Using mutual coupling to calculate the radiation 

pattern for parasitic patch antennas." In Antennas and Propagation Society 

International Symposium, 2003, IEEE, 2003, Vol 1, pp. 597-600.  



 

112 

[13] K. Takamizawa. "Analysis of highly coupled wideband antenna arrays using 

scattering parameter network models." PhD thesis, Virginia Polytechnic Institute 

and State University, United States, 2002.  

[14] D. F. Kelley and W. L. Stutzman, "Array antenna pattern modeling methods 

that include mutual coupling effects," IEEE Transactions on Antennas and 

Propagation, Vol. 41, pp. 1625-1632, Dec 1993.  

[15] K. M. Lee and R. Chu, "Analysis of mutual coupling between a finite 

phased array of dipoles and its feed network." IEEE Transactions on Antennas 

and Propagation, Vol. 36, pp. 1681-1699, Dec 1988.  

[16] A. A. Oliner and R. G. Malech, "Mutual coupling in infinite scanning 

arrays." In Microwave Scanning Antennas, R. C. Hansen (Ed.). New York: 

Academic, 1966, p. 195.  

[17] T. Milligan, "More applications of Euler rotation angles." Antennas and 

Propagation Magazine, IEEE, Vol. 41, pp. 78-83, 1999.  

[18] E. Khoomwong and C. Phongcharoenpanich, "Analysis of an arbitrarily 

rotated slot on a conducting spherical cavity." In Microwave Conference, 2007. 

APMC 2007. Asia-Pacific, 2007, pp. 1-4.  

[19] C. Phongcharoenpanich, D. Boonrod and M. Krairiksh, "Radiation 

characteristics of inclined slot antenna on conducting spherical cavity." In 

Communications, 2003. APCC 2003. The 9th Asia-Pacific Conference on, 2003, 

pp. 964-968, Vol. 3.  

[20] H. Goldstein, Classical Mechanics. San Francisco: Addison Wesley, 2001.  

[21] H. A. Burger, "Use of Euler-rotation angles for generating antenna 

patterns." IEEE Antennas Propagation Magazine, Vol. 37, pp. 56-63, April 1995. 

[22] B. N. Getu and J. B. Andersen, "The MIMO cube - a compact MIMO 

antenna," Wireless Communications, IEEE Transactions on, vol. 4, pp. 1136, 

may, 2005. 

[23] T. Mashall, "Numerical electromagnetics code (method of moments)". 

Internet: http://www.nec2.org/, [May 28, 2011]. 

[24] "Empire XCcel". Internet: http://www.empire.de/, [May 28, 2011].  

[25] S. A. Schelkunoff, Electromagnetic Waves. Van Nostrand, 1960.  



 

113 

[26] J. C. Bregains, F. Ares and E. Moreno, "Visualizing the 3-D polar power 

patterns and excitations of planar arrays with Matlab." Antennas and Propagation 

Magazine, IEEE, Vol. 46, pp. 108, April 2004.  

  



 

114 

CHAPTER 5: 
Pattern control of a Four 

Dipole Antenna Array 
using a Genetic 

Algorithm 

5.1 Introduction 

In the previous chapter, a 3-D array analysis with mutual coupling has been 

extensively investigated and developed. Two examples were given such as 2x2 

dipoles (2-D array) and cubic dipoles arrays (3-D array). This chapter describes 

ways to control the pattern of an array using a Genetic Algorithm. A Genetic 

Algorithm was chosen, because it is robust, not easily trapped in local maxima 

(or minima) and is suitable for complex problems (with a large number of 

variables), especially those involving mutual coupling [1]. Moreover, GAs have 

large applications in electromagnetic problems such as a thinning array [2], low 

side-lobe levels [3], antenna array element failure [4] and pattern null steering 

[5]. 

In this case, a pattern synthesis is performed using a combination of the 

3-D Algorithm and a Genetic Algorithm. From Chapter Four, a 2-D array 

(consisted of four dipoles) has been chosen due to its ease of computation and 

also it requires less complexity of feeding network compared to 3-D array (cubic 

dipole). The excitation voltages (amplitude and phase) of four dipoles are varied 

in order to meet the requirement of a cosine-shaped main beam [6], which may 

be steered to any direction. Then, the optimized pattern obtained from Genetic 
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Algorithm is compared with a pattern multiplication method for best 

performance. 

5.2 Introduction to Genetic Algorithms 

Genetic Algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics. They were originally developed by John Holland, 

with his colleagues and students at the University of Michigan. A feature of this 

algorithm is its robustness in many different environments [7]. Many papers and 

dissertations have written about GAs in function optimization and control 

applications.  

The genetic algorithm (GA) allows a set of populations to develop toward 

a globally optimal solution. The process is based on three important steps: 

selection, recombination and mutation. Johnson and Rahmat-Samii [8] elaborate 

some of the basic GA terminology in Table 16. 

Table 16: Genetic Algorithm terminology 
GA Terminology Definition 

Gene 
Coded optimisation parameter. The basic building block in GA 

(variable). 

Chromosome 
A trial solution vector (string) consisting of genes. A combination 

set of genes/parameters. 

Generation Successively created populations (an iterations) 

Population Set of trial solutions 

Parent Member of the current generation 

Child Member of the next generation 

Fitness 
A number assigned to an individual representing a measure of 

goodness. 

 

Many papers discuss the process of genetic algorithms [9, 10]. A simple 

genetic algorithm has been chosen as the optimisation technique for pattern 

synthesis. The algorithms begin with a population of strings (chromosomes) 

selected at random. GA then generates the next generation via the principle of 

natural selection, in which good populations (better results or fitness values) are 

encouraged to survive and bad populations (worse results) are eliminated. The 
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natural selection procedures are reproduction, crossover and mutation. This 

whole process is repeated, yielding a global optimum solution because the 

selection is based on the principle of the survival of the fittest.  

Johnson and Rahmat-Samii [8, 11] list several advantages of genetic 

algorithms (global optimisation technique): 

 Stochastic research processes which are substantially independent of 

starting points. 

 Applicable to situations that have non-differentiable and discontinuous 

objective functions. 

 Able to search within the global solution space and find global maxima or 

minima. 

 Well suited to a discrete search space. 

 Well suited for a broadband problem and new problems in which the 

solution spaces are not known. 

 Fast convergence rate even though the search space is significantly large. 

 An easy to implement and uncomplicated program. 

A simple genetic algorithm (SGA) was chosen for the beam pattern 

synthesis combined with the 3-D Algorithm. Figure 5-1 illustrates a block 

diagram of SGA. It can be divided into three stages: coding and initialisation; 

reproduction; generation replacement. 
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Figure 5-1: Block diagram of a simple genetic algorithm optimiser [8]. 
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5.2.1 Initialisation and Coding 

At this stage, a solution set is randomly generated and encoded as a gene for each 

parameter. This process allows the genetic algorithm to operate on a coding of 

the parameter instead of the parameter itself [8]. A string of genes can be 

represented as one chromosome. Each of these chromosomes is called an 

individual. The set of individuals is referred to as a current generation. A fitness 

value is assigned to every individual in the set by evaluating its fitness function.  

A coding process provides a transition from the parameter space (usually 

consisting of real numbers) to the chromosome space (a finite length of string). 

There are at least three types of chromosome representation (or coding 

technique): binary, Gray and real-value coding. Weile and Michielssen [12] 

present a summary regarding chromosome representation. Typically, a binary 

coding technique (a combination of zeros and ones) is used for the coding 

process, as suggested by Holland [13]. Holland states that binary coding provides 

GA with the largest space to search for and facilitate the similarities between 

successful chromosomes. Many researchers have used Gray coding to eliminate 

‘Hamming cliffs’ issue caused by binary coding (transforming the search space 

with Gray coding). The ‘Hamming distance’ between two strings of equal length 

refers to the number of positions in which two strings are different. Hamming 

cliffs are the gaps between the codings of adjacent integers separated by a 

Hamming distance greater than one. Hamming cliffs will yield an assumption 

that binary coding can convert an initially simple, unimodal function of real 

numbers into a deceptive binary function. The advantage of the Gray code is that 

it is constructed so that coding of adjacent integers differs in only one bit 

position.  

However, Mathias and Whitley [14] point out that there is no reason to 

believe that Gray codes are helpful for arbitrary problems. Even though Gray 

codes improve performance on certain test functions such as the De Jong’s test 

suite function, its performance on arbitrary functions corresponds to binary code. 

If a function is difficult to optimise in standard binary space, the same will occur 

with Gray codes. Thus, it has lost popularity and been replaced with real-coded 

GA.  
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Wright [15] claims that the use of real-valued genes in GAs offers 

advantages in numerical function optimisation over binary encoding. The 

strengths include: 

 The efficiency of the GA is increased, as there is no need to convert 

chromosomes to phenotypes before each function evaluation. 

 Less memory is required, as efficient floating-point internal computer 

representations can be used directly. 

 No loss in precision due to the discretisation of binary or other values, 

since only real-number representation is used. 

 Greater freedom to use different genetic operators such as mutation and 

crossover techniques based on real-number representation. 

The disadvantage of the real-coded is that the crossover and mutation 

process are more complicated than binary and Gray coding. 

5.2.2 Reproduction  

The reproduction stage consists of three sub-processes: selection, crossover and 

mutation. It generates a new generation from the current generation. First, a pair 

of individuals is selected from the population to act as parents. The parents go 

through crossover and mutation, to produce a pair of children. These children 

become the new generation. The selection, crossover and mutation processes are 

repeated until all individuals have been placed in a new generation. The new 

generation will replace the current generation. The selection, crossover and 

mutation process is explained further in the following sections. 

5.2.2.1 Selection Strategies 

Selection employs the fitness function in the genetic algorithm optimisation 

process. A fitness function is a measure of the ‘goodness’ of an individual in that 

generation. However, selection cannot solely choose the best individual because 

it might not lead to the optimal solution. Some of the chromosomes that have 

worse results can be selected according to the procedure of the selection 

techniques. This ensures that certain traits carried by them do not entirely 
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disappear from the population. Some selection strategies are discussed, such as 

population decimation, proportionate selection (or roulette wheel selection), 

tournament selection and stochastic universal sampling. Some of the methods are 

described here to provide an understanding of the process. 

Population Decimation is the simplest strategy based on the survival of 

the fittest chromosomes with the removal of the least fit. Individuals are ranked 

based on their fitness value from the largest to the smallest. A random minimum 

fitness is then chosen as the cut-off point. Any individual fitness which is less 

than that value is removed from the population. The remaining individuals are 

then randomly assigned in pairs to generate a new generation. The process is 

repeated until the new generation is filled. 

The advantage of population decimation is its simplicity. However, the 

disadvantage is that any unique characteristic that the removed individual 

possesses is totally lost from the population. It is common that the loss happens 

before the genetic algorithm acknowledges the beneficial effect of a unique 

characteristic in that individual. The good characteristic is difficult to retrieve 

once it has been lost in the process. Therefore, it is better to keep good genes 

whenever possible.  

Proportionate Selection, sometimes called Roulette Wheel Selection (or 

‘RWS’), is the most well known strategy used [16]. The selection of individuals 

is based on a probability of selection as in equation (5-1). 

௦௘௟௘௖௧௜௢௡݌ = ∑(௜ݐ݊݁ݎܽ݌)݂ ௜(௜ݐ݊݁ݎܽ݌)݂                                                       (5 − 1) 
where f(parenti) is the fitness of the i-th parent. The probability of selecting an 

individual from the population relates to the fitness of the individual. Individuals 

with better fitness will be involved in the creation of the next generation more 

frequently than less fit individuals. The distinction between population 

decimation and proportionate selection is that there is still a finite possibility that 

highly unfit individuals will participate in the creation of the next generation (at 

least some of the mating) thus preserving their genetic information. 

Tournament Selection is attributed to the unpublished work by Wetzel 

and studied in Brindle’s dissertation [17]. It is a strategy where a random 
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selection of a sub-population of N individuals is made from the population. The 

individual with the highest fitness in the selected sub-population wins the 

tournament and becomes the selected individual. The remaining sub-population 

members are returned to general population and the process is repeated. 

Stochastic Universal Sampling (‘SUS’) [18] is a variation from roulette 

wheel selection. The individuals are mapped to neighbouring segments of a line 

and each individual’s size segment is proportional to its fitness. Equally spaced 

pointers are then placed over the line. The number of pointers, NPointer, depends 

on the number of individuals to be selected. Therefore, the step size between the 

pointers is 1/NPointer and the position of the first pointer is randomly generated 

within the range [0,1/NPointer]. 

Figure 5-2 illustrates the process. For six individuals to be selected, the 

step size between the pointers is 1/6=0.167. The position of the first pointer is 

within the range of [0, 0.167] and is randomly generated. In this case, the 

position of the first pointer is at 0.1. The position of pointer 2 is obtained by 

adding fixed step size to pointer 1, and the process goes on. As a result, each 

pointer selects an individual of 1, 2, 3, 4, 6 and 8 to participate in the new 

generation.  

 

 

 
 
 

 

Figure 5-2: Stochastic universal sampling 

5.2.2.2 Crossover  

After the selection process, a pair of individuals will create a pair of children 

using the basic genetic algorithm operators, crossover and mutation. Crossover 

and mutation are applied with probability pcross and pmutation respectively.  

The crossover operator works on a pair of parents and generates a pair of 

children. If p>pcross, a random location in the chromosomes is selected. The 

portion of the chromosome preceding the selected point is copied from parent 1 

   pointer 1 pointer 2      pointer 3   pointer 4     pointer 5     pointer 6 
 
individual   1  2        3           4  5         6       7      8  9  10 
 
 
         0.0                  0.18               0.34            0.49          0.62      0.73   0.82            0.95   1.0      
 random number  
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to child 1 and from parent 2 to child 2 (Figure 5-3). Meanwhile, the portion of 

the chromosome of parent 1 following the randomly selected point is positioned 

in the corresponding placement in child 2 and vice versa for the remaining 

portion of parent 2’s chromosome. On the other hand, if p<pcross, the entire 

chromosome of parent 1 is copied into child 1 and the same goes for parent 2 and 

child 2. The purpose of crossover is to rearrange the genes with the object of 

producing a better combination of genes. As a result, more fit individuals are 

developed.  

Parent 1   Parent 2  

݁ଵ ݁ଶ ݁ଷ ݁ସ ݁ହ ݁଺ ݁଻ 
 

଼݁ ݁ଽ ݁ଵ଴ ݁ଵଵ ݁ଵଶ
  ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂ ଺݂ ଻݂

 

଼݂  ଽ݂ ଵ݂଴ ଵ݂ଵ ଵ݂ଶ
 

     

     

Child 1   Child 2  

݁ଵ ݁ଶ ݁ଷ ݁ସ ݁ହ ݁଺ ݁଻ 
 

଼݂  ଽ݂ ଵ݂଴ ଵ݂ଵ ଵ݂ଶ
  ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂ ଺݂ ଻݂

 

଼݁ ݁ଽ ݁ଵ଴ ݁ଵଵ ݁ଵଶ
 

Figure 5-3: Crossover operation. 

5.2.2.3 Mutation 

The aim of mutation is to provide a means of searching parts of the solution 

surface that are not represented in the genetic makeup of the current population. 

If p>pmutation, an element in the chromosome string is randomly selected and 

altered. For binary encoding, the alteration involves selecting a bit from the 

chromosome string and inverting it. This means that 1 becomes 0 and vice versa. 

If other coding is used (such as real-coding), a more complicated form of 

mutation is required.  

5.2.3 Generation Replacement 

In the generation replacement process, the new generation replaces the current 

generation together with the fitness values that are assigned to each individual. 

The termination criterion is then evaluated and if it has not been met, the 

reproduction process is repeated. 
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5.2.4 Termination Criteria 

The process is repeated until a termination condition has been achieved. 

Generally, the terminating conditions may be one of the following: 

 Set number of iterations. 

 Set time reached. 

 A cost that is lower than an acceptable minimum. 

 Set number of cost function evaluations. 

 A best solution has not changed after a set number of iterations. 

 Operator termination. 

Usually a number of generations (or iterations) are chosen because of 

their simplicity. The other conditions are more difficult to be realized. If the 

optimised results obtained from this process are not satisfactory, the parameters 

need to be altered and the process needs to be run again. Linden [19] gives 

suggestion on how to monitor the process of the genetic algorithm and what 

actions should be taken if the process is slow or the results converge slowly. De 

Jong [16], Schaffer et al. [20] and Grefenstette [21] proposed the control 

parameter values (number of individuals, crossover and mutation rate) in order to 

obtain the best performance of GA. 

The last generation will produce a set of chromosomes that is different 

from the initial generation. It is common that the fitness values increase 

throughout the process, since only the best fitted chromosomes from the previous 

generation are selected to go through to the next level.  

5.3 Radiation Pattern Control using a Combination of the 3-D 

(based on the Induced EMF Method) and a Genetic 

Algorithms  

5.3.1 Computation of the Far-Field Radiation Pattern 

The basic geometry of a three-dimensional antenna array is shown in Figure 5-4. 

The position of each element and orientation is varied and not limited to any 

direction. The far-field radiation pattern for N elements of dipole antenna array 
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was calculated using the 3-D algorithm (equation 4-46 in Chapter 4) and shown 

as follows:  

ቐܪ௥(ݎ, ,ߠ ,ݎ)ఏܪ(߶ ,ߠ ,ݎ)ఝܪ(߶ ,ߠ ߶)ቑ = ෍ ൮ [ݏ௦ܶ௖] × [ܤ] × ቂݏ௖ᇲܶ௦ᇱቃ × ൞ܪᇱ௥ᇲ೙(ݎᇱ, ,ᇱߠ ߶ᇱ)ܪᇱఏᇲ೙(ݎᇱ, ,ᇱߠ ߶ᇱ)ܪᇱఝᇲ೙(ݎᇱ, ,ᇱߠ ߶ᇱ)ൢ൲,     (5 − 2) ே
௡ୀଵ  

where the electric field for theta component, 

,ߠ)ᇱఏᇲܪ ߮) ≈ ݎߨ૙݁ି௝௞௥2ࡵߟ ݆  . cos(2ߨ ݏ݋ܿ ݊݅ݏ(ߠ ߠ                                             (5 − 3)  
and I0 is the vector of complex excitation weights  

 
 

 

For the work described in this thesis, the method is applied to four 

vertical dipoles with 0.9λ0 spacing at 2.45GHz. The reason for selecting this 

spacing is for practical reasons which will be explained later and will become 

apparent in Chapter 7. The complex excitation weights are optimised in order to 

obtain the desired radiation pattern.  

5.3.2 GA Specifications 

The 3-D algorithm is run together with the genetic algorithm toolbox [10] 

(shown in Figure 5-5) in order to obtain the excitation value for each element in 

an array. It is modified for pattern synthesis purposes and is attached in 

Appendix C. There are at least five factors affecting the GA performance: 

Figure 5-4: Antenna elements (represented by red dots) are placed in 3-D 
coordinates with same spacing. 
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 the method of representing solutions (how it is encoded as 

chromosomes) 

 initial population of solutions (the group of chromosomes created at 

the beginning of the evolution process) 

 fitness function 

 genetic operators (e.g. three basic operators, selection, crossover and 

mutation) 

 control parameters (e.g. the size of the population of chromosomes and 

probabilities of crossover and mutation). 

Pham and Karaboga [22] state that the control parameters tend to be less 

problem dependent in comparison with the former four factors. Therefore, the 

study of the control parameters to improve the GA performance might be useful 

for array optimization. Previous works on control parameters (shown in table 17) 

to obtain good performance have been done by De Jong [16], Schaffer et al. [20], 

and Grefenstette [21].  

Table 17: GA control parameters using different methods. 
Control parameters De Jong [16] Schaffer [20] Grefenstette [21] 

Population size 50-100 (50) 
20-30  

(20 was chosen) 
30 

Probability of crossover  0.60 
0.75-0.95  

(0.75 was chosen) 
0.95 

Probability of mutation 0.001 
0.005-0.01 

(0.005 was chosen) 
0.01 

 

The optimization is run with all the above three methods. Table 18 shows other 

specifications for the work described in this thesis. 

Table 18: Parameters for the genetic and the 3-D algorithms. 
Genetic Algorithm Parameters Specification 
Number of Generations 700 
Number of Variables (or Genes) 8 (4 for amplitude and 4 for phase of each dipole) 

Range of Variables 
Amplitude [0, 1]; 
Phase [-π, π] 

Coding Representation Binary 
Selection Strategy Stochastic Universal Sampling ‘sus’ 
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5.3.3 Desired Pattern 

A cosine-shaped main beam pattern [6, 18] was chosen due to its simplicity. The 

restriction is added by assuming its HPBW is 30° and side-lobe level of -10 dB 

Figure 5-5: Flowchart of the genetic algorithm and the 3-D Algorithm. 
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imposed on the desired pattern. Figure 5-6 shows a cosine-shaped main beam 

pattern directed towards 120° with 30° beamwidth. A balance between the side-

lobe level of -10dB and maximum beam is required so that the aim of steering 

the main beam can be achieved. 

 
Figure 5-6: A cosine shaped main beam pattern directed towards 120° with side-
lobe levels of -10dB. 

5.3.4 Fitness Function 

The fitness function, sometimes known as the objective function, aims to assign 

a fitness value to each individual. It is a measure of how fit or good each 

individual is in the population. The fitness function is the only connection 

between the physical problem being optimised and the genetic algorithm. There 

are several fitness functions in pattern synthesis such as the least mean square 

function [23, 24], absolute error [25, 26] and so on. 

In this case, the absolute error [25, 26] has been chosen as an objective 

function to evaluate the best fitness values of each individual. Each pattern is 

calculated as depicted in Figure 5-5 and compared with the desired radiation 

pattern to obtain the fitness values of each individual. The fitness function, f(x), 

is defined as [26]:                            ݂݅ݏݏ݁݊ݐ, (ݔ)݂ = ଵଵା∑ ௉బೂ೔సభ ቚௌ೏೔ିௌ೎೔ቚ                                      (5 − 4) 

0 50 100 150 200 250 300 350
-40

-35

-30

-25

-20

-15

-10

-5

0

angle (degrees)

C
o

si
n

e
 p

a
tte

rn
 (

d
B

)

 

 



Section 5.4. Results of Pattern Control using Genetic Algorithm 

128 

where Q is a number of sampling points in the far-field pattern, P0 is a penalty 

constant which ranges from [0-1], Sd is desired radiation pattern and Sc is the far-

field pattern calculated using the 3-D algorithm. The penalty constant, p0 is 

chosen as 0.05 using trial and error so that the values of fitness function within 

[0, 1]. 

5.4 Results of Pattern Control Using Genetic Algorithm 

The 2-D pattern synthesis for a parallel dipole array is performed at a single 

plane of θ0=90°. For 3-D arrays, the analysis and synthesis of a 3-D far-field 

pattern becomes more complex and difficult. Zhang [27] suggests that the 3-D 

pattern synthesis problem should be transformed into a multi-2D pattern 

synthesis problem. The method sampled the data of the 3-D far-field pattern on 

several cutting planes. However, the technique requires more data than 2D array, 

thus slowing the performance of the genetic algorithm. 

5.4.1 Steerable Main Beam at 100° 

The aim of this work is to steer the main beam for whole region of xy-plane by 

varying the amplitude and phase of array elements. However, since the dipoles 

are arranged symmetrically, only 45° range is covered. Other steering directions 

can be obtained by applying the same excitation values (obtained from 

synthesizing process) to the different element numbers. Meanwhile, the steering 

angles of 0°, 90°, 180° and 270° can be obtained by exciting all elements with 1. 

As a result, the steering angles from 100° to 140° are selected with a 10° step. 

Because of wide beam of HPBW, a step angle of 10° is sufficient to cover beam 

steering for whole xy-plane. 

Figure 5-7 shows the performance of the genetic algorithm based on 

control parameters suggested by De Jong [16], Schaffer [20] and Grefenstette 

[21]. The highest fitness function is obtained by using parameters suggested by 

Grefenstette, which is followed by De Jong and Schaffer. Figure 5-8 shows the 

patterns obtained from the genetic algorithm in comparison with the desired main 

beam cosine pattern steering to 100°. It is observed that the pattern due to the 

parameters proposed by Grefenstette is the closest agreement in terms of the 
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main beam and side lobe levels to the desired pattern. It is due to the highest 

fitness function obtained by Grefenstette compared to De Jong and Schaffer. 

Moreover, patterns optimised by all those parameters are in close agreement. It is 

because the largest difference of the fitness values are insignificant, roughly 0.03 

difference. Meanwhile, Figure 5-9 shows a comparison made between the GA 

optimised pattern and the pattern derived from the technique to direct the peak of 

the main beam in the (θ0, ߶0) direction in a circular array. Four dipoles arranged 

in square are similar to four dipoles arranged in circular (as in Sections 3.2.2.2.2 

and 4.3). However, circular array only used constant amplitude with uniform 

phase excitation. In optimization technique, amplitude and phase excitation for 

each element has been optimized to satisfy desired pattern. Therefore, the 

optimized patterns proposed by three authors are in closer agreement compared 

to the method using circular array. All patterns are plotted in 2° step which 

clearly defined the position of nulls and side-lobes that are missing from Figure 

5-8. In a circular array, the amplitude excitation is constant while the phase 

excitation (αn) for each element can be selected as:  ߙ௡ = −ܾ݇ sin ଴ߠ cos(߶଴ − ߶௡)                                              (5 − 5) 
where k is the wave number, b is the radius of the circular array and (θ0, ߶0) is 

the direction of the main beam and ߶n is the phi angle. The aim is to determine 

whether the GA produces the optimised results compared with other method, and 

the results show that they are in agreement with each other. 

Figures 5-10 and 5-11 show the amplitude and phase excitation for the 

GA optimised and the circular array patterns respectively.  
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Figure 5-7: Performance of GA when steering at 100°.

 

Figure 5-8: Comparison between the 
GA optimised and desired pattern.

 

Figure 5-9: Comparison between the 
GA optimised and circular array 
pattern in 2° step. 

 
Figure 5-10: Amplitude excitation 
versus number of elements of dipole 
antennas. 

 
Figure 5-11: Phase excitation versus 
number of elements of dipole antennas.
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5.4.2 Steerable Main Beam at 110° 

Figure 5-12 to 5-16 show the synthesis results of the genetic algorithm when the 

main beam cosine pattern steers at 110°. Figure 5-12 shows that the fitness 

functions from three sets of control parameters (i.e. De Jong, Schaffer and 

Grefenstette) converge close to each other. The fitness function for all plots 

converges significantly estimated from 0.66 to almost 0.8 for 700 generations. At 

700th generations, all the plots converge at the same fitness value. As a result, it 

was observable that the GA optimised patterns from those three authors as shown 

in Figure 5-13 are in similar agreement with each other. Figure 5-14 shows the 

sampling of optimised pattern for every 2°. It is observed that there is a deeper 

null at angle 140° formed in Figure 5-14 as compared to Figure 5-13. This is due 

to the small step of 2° which brings clarity to the pattern. The small step cannot 

be used in optimised pattern because of the priority to meet the main beam of the 

desired pattern. 

 
Figure 5-12: Performance of GA when steering at 110°.
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Figure 5-13: Comparison between the 
GA optimised and desired pattern

 
 Figure 5-14: Comparison between the 
GA optimised and circular array 
pattern in 2° step. 

 

Figure 5-15: Amplitude excitation 
versus number of elements of dipole 
antennas. 

 

Figure 5-16: Phase excitation versus 
number of elements of dipole antennas.
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Figures 5-17 to 5-21 show the synthesis results of the genetic algorithm when the 

main beam cosine pattern steers at 120°. Figure 5-18 shows that the plot obtained 

by Schaffer has the highest fitness value in comparison with other plots. 

Therefore, Figure 5-19 shows that the optimised pattern by Schaffer is the closest 

agreement to the desired pattern in terms of main beam and side lobe levels. 

Figure 5-20 and 5-21 show the amplitude and phase excitation of the optimised 

pattern for each plots.  
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Figure 5-17: Performance of GA when steering at 120°.

 

Figure 5-18: Comparison between the 
GA optimised and desired pattern 

 

Figure 5-19: Comparison between the 
GA optimised and circular array pattern 
in 2° step. 

 
Figure 5-20: Amplitude excitation 
versus number of elements of dipole 
antennas.

 
Figure 5-21: Phase excitation versus 
number of elements of dipole antennas. 
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5.4.4 Steerable Main Beam at 130° 

 

Figure 5-22 to 5-26 show the synthesis results of the genetic algorithm when the 

main beam cosine pattern steers at 130°. 

 

Figure 5-22: Performance of GA when steering at 130°. 

 
Figure 5-23: Comparison between the 
GA optimised and desired pattern.

 
Figure 5-24: Comparison between the 
GA optimised and circular array 
patterns in 2° step. 
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Figure 5-25: Amplitude excitation from 
GA for each dipole element. 

 

Figure 5-26: Phase excitation from GA 
for each dipole element. 

5.4.5 Steerable Main Beam at 140° 

Figures 5-27 to 5-31 show the synthesis results of the genetic algorithm when the 

main beam cosine pattern steers at 140°. 

 

Figure 5-27: Performance of GA when steering at 140°.
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Figure 5-28: Comparison between the 
GA optimised and desired pattern. 

 

Figure 5-29: Comparison between the 
GA optimised and circular array 
pattern in 2° step.

 

Figure 5-30: Amplitude excitation 
versus number of elements of dipole 
antennas.

 

Figure 5-31: Phase excitation versus 
number of elements of dipole 
antennas.
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MATLAB. CPUTIME command returns the CPU time in seconds that has been 

used by the MATLAB process since MATLAB started. Figure 5-32 shows the 

script of this code to calculate the computational run time of 3-D algorithm.  

 

 

 
 
 
 

 

Figure 5-32: Script code (MATLAB) to calculate the run time for 3-D algorithm 

Table 19 summarizes the computational run time of 3-D algorithm and 

other commercial software which runs on the same computer based on 2x2 

dipole antenna array models. It is observed that the run-time computation for 3-D 

algorithm is 3.54 seconds which is shorter in comparison with Empire XCcel 

(FDTD) but slightly longer than NEC (MoM). This is because Empire XCcel is a 

full wave modelling software and provides very accurate results based on well-

defined geometries. On the other hand, 3-D algorithm is based on a closed form 

approximations and computationally efficient. Even though the run time it takes 

is slightly longer than the NEC, it works efficiently with the optimization 

techniques such as genetic algorithm since there are existing genetic algorithm 

toolboxes available in MATLAB. To the author’s knowledge, there is no existing 

NEC software that offers the optimization techniques together to optimise the 

pattern of an antenna array. Many studies used the active element pattern 

(Section 3.2.3.1) as in [29] in order to optimize the far-field pattern obtained 

from commercial software and combine it with optimization techniques. 

Therefore, it places a restriction where the active element pattern can be used 

only on a fixed structural geometry of antenna. The active element pattern need 

to be extracted (or simulated) again from the software if there is a change in the 

position of the antenna elements or its frequency. 

  

%at start of timing store current cputime
t0=cputime; 
 
%main work...... 
 
t1=cputime; 
%print the total operation time 
sprintf('Total time for calculation was %g \n ', t1-t0) 
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Table 19: Run time comparison for 2x2 dipole antenna arrays. 

 3-D algorithm 
FDTD  

(Empire XcCel) 
MoM  
(NEC) 

Average 
computation run 
time  

3.54 sec 7 minutes 1.95 sec 

5.6 Discussion 

The results in Figure 5-5 to 5-31 indicates the capability of 2-D dipole array to 

steer the main beam over an angular range [100°, 145°] with a step size of 10°. 

Due to the symmetry of dipoles position in square array, the beam can be steered 

over whole range (360°) of the ݕݔ-plane. The beam width of the steered main 

beam nearly remains constant over the entire steer angle. The optimum 

performance for all the cases is occurred when the main beam is scanned towards 

an angle of 120° with the highest fitness value more than 0.8.  

The GA was run for beam steering of [100°, 140°] using the control 

parameters proposed by three authors: De Jong, Schaffer and Grefenstette to 

obtain the good performance. The results show that different sets of control 

parameters generate almost similar shape of GA optimised patterns especially for 

the main beam. The differences between the GA optimised patterns occur at the 

side-lobe levels.  

It was observable that the GA performance converges quickly for all the 

above cases. Moreover, the cosine main beam pattern with HPBW of 30° is 

steered successfully to the desired angle. However, the target of a side-lobe level 

of -10dB is difficult to achieve for whole region aside from the main beam. On 

the other hand, it is observed that there is large variation for amplitude and phase 

excitations optimised using the control parameters proposed by three authors in 

Figures 5-10, 5-11, 5-15, 5-16, 5-20, 5-21, 5-25, 5-26, 5-30 and 5-31. One of the 

reasons is that the genetic algorithm produced different combination of excitation 

for each element. However, if each method has almost similar values of fitness 

function such as in Figure 5-12, the optimised pattern is similar to each other 

(Figure 5-13) even though the excitation values for each element are different 

(Figures 5-15 and 5-16). 
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The discrepancies between desired pattern and optimised patterns may be 

due to the following reasons: 

 The small number of elements. Increasing the number of elements allows 

flexibility in the pattern control of the antenna array. However, the 

disadvantage of increasing number of elements is that it complicates the 

feeding network of the antenna array. Moreover, higher number of 

elements will increase number of variables that need to be optimised in 

genetic algorithm thus slowing the optimisation process. Therefore, a 2-D 

array of four dipoles antenna has been chosen for optimization process. 

 The arrangement of four dipoles along a square geometry makes the 

pattern difficult to add to in a constructive and deconstructive manner, 

thus making it difficult to obtain a low side-lobe level. Thus large spacing 

between elements (0.9λ0) influences the antenna array to generate grating 

lobes (more than 1 main beam) in the far-field pattern. The spacing has 

been chosen as it is the smallest spacing that could be obtained in the 

measurement set-up (in Chapter 7). The arrangement of balun in diagonal 

position connected with the coaxial cable complicates the dipole elements 

to be spaced less than 0.9λ0 apart. It is desirable to obtain small spacing in 

order to demonstrate the coupling effect and also to reduce the grating 

lobe effect on the pattern. 

 The number of sampling points in the desired pattern plays an important 

role in achieving the desired pattern [26]. There has to be a compromised 

between the main beam region and the side-lobe region since the main 

objective is to steer the main beam while achieving as the lowest side-

lobe level possible. Therefore, a 1° step has been used for the main beam 

region and a 10° step for the side-lobe region. 

 The constant value of the control parameters (crossover and mutation 

probability) are used within GA. The control parameters can be adjusted 

for example based on individual fitness and the population diversity 

measurements using a fuzzy controller (FLC). Kadri, Boussahla and 

Bendimerad [30] show that using a fuzzy controller results in a better 
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agreement between the desired and calculated radiation patterns 

compared with those obtained using simple GA. 

 The number of populations and generations in GA. Increasing the number 

of populations and generations will increase the searching space of the 

genetic algorithm. Linden [19] gives suggestions on how to monitor the 

performance of GA. However, increasing those parameters means more 

time consumption as there are more loops to run. Moreover, the 3-D 

algorithm has many repeated ‘for’ loops resulting processing bottlenecks 

which slows the code significantly. The problem could be mitigated by 

re-coding the processor intensive functions in C and using the new C files 

to generate ‘.mex’ files. The ‘.mex’ files can be treated as normal 

MATLAB function, with a large increased in processing speed [31, 32]. 

For example, the time taken for one case to synthesize using MATLAB 

takes one to five hours depending on the processor. Therefore, a 

compromise should be considered when running GA using MATLAB. 
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5.7 Conclusions 

This chapter demonstrates a technique to steer the main beam pattern and low 

side-lobe levels using a simple genetic algorithm. For four parallel dipoles 

spaced 0.9λ0 apart at 2.45 GHz, the cosine shaped main beam has been steered 

within the range [100°, 145°] with a step of 10°. Due to the symmetry 

arrangement, the steering angle can be extended to the whole entire range of xy-

plane. The optimum performance for the above cases is occurred when the 

steering angle is at 120° with the highest fitness more than 0.8. The GA was run 

with the control parameters proposed by three authors: De Jong, Schaffer and 

Grefenstette to obtain the good performance. The results show that even though 

different sets of control parameters have been used, the shape of GA optimised 

pattern is similar especially in the main beam region. The radiation pattern 

calculated using 3-D algorithm includes mutual coupling effect between 

elements. The run time to simulate 2x2 parallel dipoles between those three 

software; 3-D algorithm, Empire XCcel and NEC has been discussed. 3-D 

algorithm requires approximately 1.59 sec longer than NEC but less than 7 

minutes than Empire XCcel for each simulation. Therefore, its combination with 

GA runs quickly and took between 45 minutes to 5 hours for each optimization 

process. Even though the run time for 3-D algorithm is slightly longer than NEC, 

it works efficiently with the optimization techniques and can be optimized for 

non fixed geometry and change in frequency unlike other software such as NEC 

and Empire XCcel.   
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CHAPTER 6: 
Measurement 

6.1 Introduction 

In this chapter, the actual design and experimental validation are outlined in 

detail. The phased array system consists of 2x2 dipole antennas, power divider, 

phase shifter and attenuation circuit and voltage supply are designed and 

constructed. The characteristics such as return loss and transmission coefficient 

for each element are simulated and measured. The frequency of operation is 

chosen at 2.45 GHz since the anechoic chamber is working below 3 GHz. Then, 

all the elements are set-up before the pattern measurement takes place. The 

elements are held together using a Rohacell substrate mounted on the platform. 

Several trials are made to the prototype in order to find the optimum results. The 

measured pattern is then compared with the simulation using the 3-D algorithm 

to confirm the validity of the method.  

6.2 The Description of the Array Hardware 

A block diagram of phased-array dipole antenna system is presented in Figure 6-

1. It may be divided into five basic units: power supply, vector network analyzer, 

Wilkinson divider, attenuator and phase shifter circuit and dipole array. Vector 

Network Analyzer generates RF signal and splits it into four output signals with 

equal amplitude and phase using Wilkinson Divider. The four RF signals then 

flow into the Attenuator and Phase Shifter Circuit. The attenuator and phase 

shifter circuit is used to control the amplitude and phase of the input signal to 

each element of antenna array. The amplitude and phase of the signal is 

controlled by the 30 V power supply and later on it was changed to batteries. All 

will be explained in detail in the next section. The dipole antennas here act as 

transmitters in the far-field measurement in an anechoic chamber. 



Section 6.2. The Description of the Array Hardware. 

146 

 

 

 

 

 

 

 

 

 

 

 

 

      y 

           x 

Figure 6-1: Block diagram of a phased array antenna (on the transmitting side). 
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6.2.1 Dipole Antenna 

A conventional centre-fed dipole antenna may be made from a single wire. It 

consists of two metal conductors of rod or wire, oriented parallel and collinear 

with each other (in line with each other), with a small space between them. A 

balun (balanced to unbalanced converter) was designed together with each dipole 

to cancel the net current flow to the ground on the outside part of the outer 

conductor of the coaxial cable. This is because the inner and outer sides of the 

conductors of the coaxial cable are not coupled to the antenna in the same way, 

thus creating an unbalanced system [1]. Figure 6-2(a) shows the connection 

between coaxial cable and dipole antenna without a balun. The unbalanced 

system will create a net current flow, I3, on the outer surface of the coaxial cable. 

Figure 6-2(b) shows that by incorporating a balun between coaxial cable and 

dipole will make the impedance, Zc, very large, thus choking the outside current, 

I3, in the unbalanced system, resulting in a balanced system. 

 

 

 

 

 

 

            

          (a)     (b) 

Figure 6-2: (a) The unbalanced coaxial line without a balun, (b) The circuit of 
balanced system with a balun.  

For this case, a balun design from [2] was chosen due to its ease of 

manufacture together with the dipole element. Moreover, the design provides a 

wide band frequency range to match with the resonance frequency of the dipole 

antenna. Figure 6-3 shows the balun consists of two lengths of coaxial 

transmission lines, d and e, connected to each other (Figure 6-3). The symbols 

Zd, Ze and Zde represent the characteristic impedance of lines d, e and the coupled 

lines de. 
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In Figure 6-3, terminal H represents the connection for the external 

unbalanced source (or load), while terminals F and G are the points of 

connection for the balanced load (or source). The centre conductors of lines d 

and e are connected at D, while the outer conductors of both lines are connected 

at C. The end point of the centre conductor of line e is at E. The length from 

point E to point FG is λ0/4 at resonant frequency. 

 

 

 

 

 
 

6.2.2 Wilkinson Power Divider  

A Wilkinson divider [3] is used to divide the amplitude equally and in phase of 

the radio frequency signal from one input source into several output sources. In 

addition, it provides high isolation between output ports and approximately 

matched impedance around 20 per cent of the frequency band. The divider can 

be made in microstrip or stripline form.  

Kowalczuk [4] based on Pozar [5] designed two-way Wilkinson divider 

at 2.45 GHz. The design is similar to those shown in Figure 6-4(a) and (b). The 

design employs two quarter-wavelength lines (஛ౝସ ), impedance characteristic of 

√2Z0 and a lumped isolation resistor of 2Z0. Z0 is the characteristic impedance of 

the stripline, which is usually 50Ω. Theoretically, the output signal resulting 

from this divider is -1/2 or -3dB at each port, with the isolation between the 

output ports being zero. 

                         E 
             e  
                  Ze            F 
  
Unbalanced             C           Zde    D   Balanced 
input, H                         output
                 Zd    
                             G 
           a 

Figure 6-3: The schematic of a wide band balun. 
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Figure 6-4: a) Two-way Wilkinson divider in microstrip form. b) Equivalent 
transmission line circuit [5]. 

For the work described in this thesis, a four-way Wilkinson divider was 

designed to obtain four output signals with the same amplitude and phase. This 

may be made using two cascades of two-way Wilkinson dividers, as shown in 

the following section. Therefore, the output signal for each port is further divided 

by two, which is equivalent to 1/(4)  of the input signal. 

6.2.3 Phase Shifter and Attenuation Circuit  

A control circuit consists of phase shifters and attenuators are soldered onto a 

FR4 substrate (Figure 6-5). The aim is to control the amplitude and phase of each 

signal to the antenna array. The 50Ω surface-mounted voltage variable 

attenuators EVA-3000+ [6] and phase shifters JSPHS-2484+ [7] were obtained 

from Mini Circuits. The maximum control voltage for attenuators is 9 V, and for 

phase shifters is 15 V. The phase range for the phase shifter is 0–180°. The 

operating frequency for both EVA-3000+ and JSPHS-2484+ are from 0.05 to 3 

GHz and 2.15 to 2.484 GHz respectively. The copper track has been etched on 

FR4 with a thickness of 2.54 mm. The attenuators and phase shifters are then 

soldered onto the copper track. The width of the copper track has been set to 3.8 

mm at 2.45 GHz, similar to the width track on Wilkinson Divider. However, the 

width track has been narrowed down to smaller width due to the small size of the 

leg of the phase shifter chips which cannot be avoided. Moreover, the phase 

shifter and attenuator circuit is difficult to simulate in electromagnetic softwares, 

thus complicates the design of the circuit. The DC (direct current) voltage, which 

acts as the supply and control voltage to both chips, is fed from the DC power 

supply of 30 V using 5 m of thin cables. The long cables ensure that the feed 
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network can be rotated together with the antenna array during the far-field 

pattern measurement.  

 
Figure 6-5: Wilkinson divider, phase shifter and attenuation circuit at 2.45 GHz. 

6.2.4 Vector Network Analyser 

In this case, a vector network analyser (VNA 37397D) from Anritsu was used for 

reflection (S11) and transmission (S12) coefficient measurement. The measured 

value is always a combination of the actual value and the systematic 

measurement errors. Systematic errors are repeatable errors due to imperfections 

in the components, connectors and fixtures. The VNA needs to be calibrated first 

in order to remove systematic errors and take into account the presence of any 

accessories (i.e. adaptors) that may have been added to enable specific 

measurements to be made. The calibration can be performed in many ways; such 

as using SOLT (Short, Open, Load and Thru line) or AUTOCAL Calibration [8].

6.2.5 Voltage Supply 

Seven +30 V DC voltage supplies were used as voltage controls for JHPHS 

2484+ and EVA 3000+ and another +5 V was used as the voltage supply for 

JHPHS 2484+ (Figure 6-6). The DC voltages are varied according to the desired 

amplitude and phase of the signals. However, the ratio between the maximum 
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and minimum amplitude and phase of the input signals should not be too large to 

ensure that they are physically realizable. At a later stage, another voltage supply 

circuit with batteries (+18 V or 2 x 9 V and -4.5 V or 3 x 1.5 V) and voltage 

regulator circuits have been designed to replace voltage generator and shown in 

Figure 6-7. 

 
Figure 6-6: DC voltage supplies for JHPHS 2484+ and EVA 3000+. 

 

 
Figure 6-7: Battery supplies and voltage regulator circuit. 
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6.3 Simulation, Fabrication and Measurement Results 

6.3.1 Dipole Antennas 

The simulation for each dipole antenna was performed using Empire XCcel 

(Figure 6-8). Each dipole was fed using a perpendicular lumped port as an 

excitation source. The length and diameter of each dipole is shown in Table 19 to 

match with the fabrication. Four centre-fed half-wavelength dipole antennas at 

2.45 GHz were then fabricated using RG-58/U coaxial cable and soldered to 

male SMA connectors (Figure 6-9). The simulation and measurement return loss 

for each dipole is shown in Figures 6-10 to 6-13.  

The return loss for each dipole was measured using Anritsu VNA [8]. It 

is observed that the resonant frequency for measured plots is shifted compared to 

the simulated plots in Figure 6-10 to 6-13. However, all the measured return loss 

falls at desired frequency of 2.45 GHz. It is due to the cut-and-try approach 

during S11 measurement. The different traits between simulated and measured 

plots are due to several reasons: 

 The measured plot for all dipoles has got more resonances and ripples as 

compared to the simulated plot. Ripples occurred at the earliest 

frequencies in dipole 4 is probably because of the improper calibration 

that been performed in the first place. Extra ripples and resonances from 

the measured plot especially in dipole 1 could be due to the losses 

(copper and conductor) experienced when designing the dipole. 

 The simulation model as shown in Figure 6-8 depicted the design of a 

dipole with a perfect perpendicular lumped port and not considering 

balun and connector used as in fabrication. Future work on designing a 

dipole with a balun will bring the simulation results closer to the 

measurement.  

 Additionally, the fabricated antenna has experienced some tolerance error 

when assembling the antenna, balun and connector. The diameter of 

dipole antenna is thin (2.06 mm) make it susceptible to break during 

measurement.  
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Figures 6-10 to 6-13 shows that dipole#2 has better return loss in comparison to 

other three dipoles. 

 
Figure 6-8: A model of a dipole antenna and its far field pattern using Empire 
XCcel. 

Table 20: The length and diameter of four dipole antennas 
Index No. Length (mm) with 2 mm feed gap Diameter (mm) 

1 52.73 2.06 
2 53.12 2.06 
3 53.55 2.06 
4 53.12 2.06 

 

 
Figure 6-9: Four fabricated dipole antennas with balun. 
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Figure 6-10: Simulated and measured return loss for dipole 1. 

 

 
Figure 6-11: Simulated and measured return loss for dipole 2. 
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Figure 6-12: Simulated and measured return loss for dipole 3. 

 

 
Figure 6-13: Simulated and measured return loss for dipole 4. 
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GHz and Z0 of 50Ω requires the isolation resistors (R1, R2 and R3) to be 

2Z0=100Ω. The size of the resistor chosen for this design was SMD1210 (inch). 

The impedance for the quarter-wavelength lines was √2ܼ଴=70.7Ω. The dielectric 

substrate used is Rogers-RT/Duroid6002 (εR=2.94) with a thickness of 1.524 

mm. The conductor thickness is 0.1 mm. The microstrip line ports are used to 

excite and terminate the signal at ports 1 to 5. The dimension for the design is 

shown in (Figure 6-14). 

 
Figure 6-14: The design of a 4:1 Wilkinson Divider using Empire XCcel. 

After it was simulated (the results are shown in Figure 6-15 to Figure 6-

21), the modelling files were then converted into Gerber files for etching 

purposes. The 4:1 Wilkinson divider was etched onto a Rogers-RT/Duroid6002 

[9] with a thickness of 1.524 mm with copper traces on top of it and ground at 

the bottom (Figure 6-15). An isolation high frequency chip resistor of 100 Ω with 

a case size of 1206 (obtained from Vishay Thin Film [10]) was then soldered 

onto every divider. The connectors were also soldered at the end of each track 

using SMA end launch jack 1.57 PCB, obtained from RS Components, UK [11].  
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Figure 6-16 shows how to measure S11 of Wilkinson divider and Figure 

6-17 shows the simulation result for S11 is -18.7 dB, while the measurement 

result is -15.35 dB at 2.45 GHz. The measured plot follows the similar pattern as 

in the simulated plot with slightly different magnitudes. This could be due to the 

losses (copper and conductor) in the feeding network. Additionally, the 

difference of the thickness of the copper lines between quarter wavelength lines 

(approximately 2 mm) and feeding lines (3.8 mm) resulting losses in the feeding 

network.  

 
Figure 6-15: Fabrication of the 4:1 Wilkinson divider and its S12 measurement. 

 
Figure 6-16: Measurement of the S11 parameter using VNA. 
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abovementioned frequency is less than 2.1 GHz and is not being used in the 

upcoming measurement. 

The phase of simulated and measured results at 2.45GHz differ 

approximately 110° for all cases. It is possibly due to the extra length of copper 

added on top of FR4 for the soldering process of internal resistor which is not 

included in simulation. However, the simulated and measured phase between all 

ports are almost similar (around 20° and -90° respectively) that ensures the 

output signals of each port are in phase with each other. The current distribution 

for the 4:1 Wilkinson Divider at 2.45 GHz is shown in Figure 6-22. 

 
Figure 6-18: Simulated (magenta line) and measured (blue line) magnitude of S21 
are on the left axis (L) while the simulated (red line) and measured (green line) 
angle of S21 are on the right axis of the graph. 
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Figure 6-19: Simulated (magenta line) and measured (blue line) magnitude of S31 

are on the left axis (L) while the simulated (red line) and measured (green line) 
angle of S31 are on the right axis of the graph. 

 
Figure 6-20: Simulated (magenta line) and measured (blue line) magnitude of S41 

are on the left axis (L) while the simulated (red line) and measured (green line) 
angle of S41 are on the right axis of the graph. 
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Figure 6-21: Simulated (magenta line) and measured (blue line) magnitude of S51 

are on the left axis (L) while the simulated (red line) and measured (green line) 
angle of S51 are on the right axis of the graph. 

 
Figure 6-22: The current distribution of the 4:1 Wilkinson divider at 2.45 GHz 
using Empire XCcel. 
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6.3.3 Phase Shifter and Attenuator Circuit 

One of the main concerns regarding phased-array systems is their calibration. 

Figure 6-23 elaborates some points where the phase and amplitude errors may be 

introduced in a phased-array antenna. Points 1 to 3 introduce errors in the RF 

phase and amplitude control sections, while the remaining points (points 4 to 7) 

introduce the errors that exist in the physical antenna configuration. There are 

several reasons for these errors, including [12]: 

 Improper control voltages being applied to the phase shifter and 

attenuator (1). 

 Unwanted amplitude variations (insertion loss) across the control range of 

the phase shifter (2). 

 Unwanted phase variations across the amplitude range of the attenuator 

(3). 

 Discontinuities at the interfaces between lines and connectors (4). 

 Differences in the length of transmission lines (5). 

 The air interface discontinuity (6). 

 Mutual coupling between antennas (7). 

  
Figure 6-23: Points where phase and amplitude errors may be introduced in each 
branch of a phased array antenna [12]. 

The value of the attenuation (EVA-3000+) and phase shift (JSPHS-

2484+) for each dipole are controlled by DC voltage from the power supply and 
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later on battery (Figures 6-6 and 6-7). The characteristics of the feed network 

consisted of a Wilkinson divider and a control circuit were measured using VNA 

Anritsu at 2.45 GHz (Figures 6-24 and 6-25). First, the phase shift and insertion 

loss for the feed network were measured when Vp was varied and Vatt was kept 

constant. Vp and Vatt represent the voltage control for the phase shifter (JSPHS-

2484+) and attenuator (EVA-3000+) respectively. Later, the same measurements 

were performed with Vatt was varied while Vp was kept constant. It is difficult to 

control the attenuation and phase shift between each channel simultaneously 

because there are seven voltage controls in the network; thus varying one voltage 

will influence the attenuation and phase shift of the remaining channels.  

 
Figure 6-24: Feed network characteristics measurement. 
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Figure 6-25: Four-way Wilkinson divider, phase shifter and attenuator circuit. 

Figure 6-26 shows the characteristics of the phase shift of the feed 

network versus Vp, while Vatt is kept constant. The value of Vatt has been kept to 

that value as in Figure 6-26 and 6-27 in order to keep the attenuation for each 

channel as close as possible with each other. The results show that the phase shift 

is in linear relationship with the control voltage, Vp for CH1, CH2, and CH3 

(labelled in Figure 6-26). Figure 6-27 shows the insertion loss of S12 for the 

output ports when Vatt is kept constant throughout the phase shift measurement 

for each port. The measured plots show that CH3 nearly has constant attenuation, 

while CH1 has a maximum of 3 dB attenuation and CH2 has a maximum of 7 dB 

attenuation as Vp is varied. The reason of CH2 has large attenuation is possibly 

due to the reflection caused by different transmission line thickness in CH2. The 

study of the phase shifter and attenuator circuit may be included in the future 

work of this thesis. 

Figure 6-28 shows the characteristics of the phase shift of the feed 

network versus Vatt, while Vp is kept constant. The value of Vp has been kept to 

that value as in Figures 6-28 and 6-29 in order to maintain constant phase 

between each channel. It is observed that the largest phase shift for four channels 

occurred when Vatt is at low voltages. There is no phase shift occurred when Vatt 

at 5V for all channels and remain constant until 8V. Figure 6-29 shows the 

insertion loss for all channels when Vp is kept constant while Vatt is varied. The 
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measured plots show that the insertion loss decreased as Vatt increased from 0-

8V. 

 

Figure 6-26: Phase shift characteristics for each port versus voltage control of the 
phase shifter, ࢖ࢂ. 

 
Figure 6-27: Insertion loss for each port versus voltage control of the phase 
shifter, ࢖ࢂ. 
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Figure 6-28: Phase shift characteristics for each port versus the control voltage of 
the attenuator, Vatt. 

 
Figure 6-29: Insertion loss for each port versus the control voltage of the 
attenuator, Vatt. 

From the simulated and measured results in this section, it can be concluded that 

each device meets the work requirement of this thesis. All those devices will be 
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6.4 Measurement Set-up 

6.4.1 Anechoic Chamber 

The measurement set-up was built in an anechoic chamber at the Electrical and 

Electronic Department at Loughborough University. The anechoic chamber is 

designed with absorbing material which covers the walls, ceiling and floor to 

prevent any unwanted reflections during the measurement procedure. It is a 

controlled measurement environment. The purpose is to create free-space 

conditions for the design test, because it diminishes reflection and allows direct 

measurement of the azimuth pattern. It is not influenced by dynamic 

environment factors that might occurring in the far-field test range such as 

reflections from buildings, vegetation, seasonal changes, snow or ice. It ensures 

very accurate measurement results and allows repeatability of the results at any 

time. 

The chamber properties are designed to ensure that an accurate antenna 

measurement within a certain tolerance can be achieved. The characteristics of 

the chamber include: 

 It acts as a closed metal box that eliminates radio wave energy from 

outside the chamber, which might severely attenuate the signal 

propagation inside the chamber. 

 The absorber lining inside of the chamber is made of foam 

impregnated with a carbon-like substance, enabling it to absorb radio 

frequency energy. 

 The pyramidal shape of the absorber assists in breaking up any 

standing waves present inside the chamber. 

The wiring diagram of the anechoic chamber at Loughborough University is 

shown in Figure 6-30. 
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Figure 6-30: Wiring diagram of Loughborough University’s anechoic chamber 
[13] 

6.4.2 Transmitter and Receiver Set-up 

The Loughborough University anechoic chamber has dimensions of 7 x 3 x 3 m. 

The two antenna positioners are so made that the distance between antennas 

becomes approximately 3.9 m. The largest dimension of the dipole antenna array 

is 110 mm. Therefore, by exploiting the far-field distance equation (2D2/λ0), the 

critical point of the far-field distance for the dipole antenna array at 2.45 GHz is 

197 mm, which shows that the measurement can be performed in the anechoic 

chamber. The dipole array is known as the device under test (DUT) in this 

measurement. 

The receiving end positioner is fixed and can only rotate the antenna in 

elevation (θ) plane while the transmitting end positioner can be rotated in both 

directions: azimuth (φ) and elevation (θ) planes. The transmitter is connected to 

port 1 and the receiver is connected to port 2 of the VNA. This set-up is also 

explained in Figure 6-30. 

For the far-field measurement pattern, a clamp was built to hold the feed 

network together with the device under test when it is rotating either in the θ or φ 

direction. The DUT consists of 2x2-dipole antenna array which is connected at 

Inside anechoic chamber 

 

 

 

 

 
 
 

Outside anechoic chamber 
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the transmitting side of the VNA (Figure 6-31). The power supplies for the 

attenuators and phase shifters were replaced by +18V and -4.5V battery supplies 

(Figure 6-32). On the other side, a broadband horn antenna (1-18 GHz) was used 

to act as a receiver (Figure 6-33). The VNA range is up to 6 GHz and the 

frequency of the device under test is within the frequency range of the chamber. 

The rotation of the tower (or positioner) can be controlled with the aid of control 

software. The measured data (S12) is recorded for every step of 2° for accuracy. 

 
Figure 6-31: Measurement set-up in an anechoic chamber for dipole antenna 
arrays (transmitter) with the feed network. 
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Figure 6-32: The feed network is connected to the batteries, which act as control 
voltages for the surface mounted attenuator and phase shifter. 

 
Figure 6-33: Measurement set-up of a horn antenna (1-18 GHz) at the receiving 
side in an anechoic chamber. 
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6.4.3 Device under Test: 2x2-Dipole Array with a Feed Network 

The aim of this measurement was to measure the far-field pattern for 2x2-dipole 

arrays with different amplitude and phase excitation of each element. The dipole 

arrays are held together with spacing 110mm using Rohacell substrates [14] and 

mounted onto the platform. The spacing is chosen as small as possible in order to 

demonstrate the effect of mutual coupling. However, due to the arrangement of 

2x2 dipoles (2-D array) in diagonal position, the length of balun, connector and 

cables enabling the smallest spacing that can be obtained is 110mm. 

Additionally, the spacing is chosen in order to allow the connector and cables 

through the hole of antenna array as in Figure 6-34. The feed for each dipole is 

connected to the feed network using four coaxial cables (Figure 6-34). Since the 

3-D dipoles array is more complex than 2-D array and requires more feeding 

network than 2x2 dipole array, the 2-D array has been chosen for pattern 

measurement. The dipoles are arranged as in Figure 6-34 so that the pattern 

measurement can be performed for 2-D array and thus validate the 3-D 

algorithm. 

The antenna structure is complex, since it involves not only an antenna 

array but also the feed network, batteries and voltage regulator circuit, coaxial 

and thin cables. Therefore, three trials were done with the dipole array in order to 

validate the 3-D algorithm 

 
Figure 6-34: Four dipole antennas with the feed network. 
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6.4.3.1 Trial 1  

The first trial is shown in Figure 6-35. Four dipole antennas were connected to 

the four-port feed network via right angle SMA (F) connectors and SMA (M) 

straight connectors at the other end. Ferrite rings were placed as close as possible 

to the feed point of the antenna in order to choke out any unwanted induced 

current flowing on the outer surface of the coaxial cable shield [15].  

 
Figure 6-35: Trial 1 of a 2x2-dipole antenna array. 

6.4.3.2 Trial 2 

The 3-D algorithm only takes into account the mutual coupling effects between 

antenna elements. Therefore, the possibility of any other effects or coupling with 

other objects should be removed or kept as far away as possible from the dipole 

array. The first trial has significant metal right angle SMA connectors, which 

influence the far-field pattern of the dipole antenna array. Therefore, they were 

replaced with straight SMA connectors (Figure 6-36) in order to reduce the metal 

interaction with the dipole array. Moreover, four additional slots were cut (Figure 

6-37) to allow connection between the straight SMA semi-flexible coaxial 

cables, worms and dipole antennas. 
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Figure 6-36: The set-up of the dipole antenna array with SMA (M-M) straight 
coaxial cable, worms and tape to hold the four dipoles together. 

 

 
Figure 6-37: Four slots were added to Trial 1 to allow the set-up of straight SMA 
connectors, worms and semi-flexible coaxial cables. 

6.4.3.3 Trial 3 

In Trial 3, ferrite rings were added to the structure of Trial 2 in order to suppress 

the interference from the induced current flowing out of the shield of the coaxial 

cable. Tie cables were used to hold all the dipoles and the ferrite rings together 
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so that the structure remained robust and fixed during the pattern measurement 

(Figures 6-38 and 6-39). 

 
Figure 6-38: Top view of the dipole array with ferrite rings. 

 

 
Figure 6-39: Side view of the dipole array with ferrite rings. 

6.4.4 Simulation and Measurement Results 

To set up the measurement, the dipole array was connected to the transmitting 

side together with its feed network clamped onto the tower. A broadband horn 

antenna (1-18 GHz) was connected onto the receiving side. The position of the 
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Table 21: Voltage control of sample#1 applied to attenuator and phase shifter. 
Channel no. Vatt (V) Vp (V) 

CH1 1.40 8.12 
CH2 3.90 10.70 
CH3 1.91 8.60 
CH4 2.60  

The S21, S31, S41 and S51 (magnitude and phase) of the feed network (in 

Figures 6-41 and 6-42 respectively) were measured at specific frequencies so that 

it could be used to obtain the simulated pattern. The amplitude (in dB) for each 

port was then converted into the antilog (Table 22) and both amplitude and phase 

were employed in the 3-D algorithms. The port number, as shown in Figure 6-14, 

is connected to the dipole antenna arranged as described in the previous chapter. 

The far-field pattern was then measured in the anechoic chamber at several 

frequencies for every step of 2°. Both simulated and measured far-field patterns 

were compared and shown in the next section. 

6.4.4.1.1 Results at f=2.45 GHz 

Figures 6-41 to 6-42 show the magnitude (in dB) and phase (in degrees) of the 

input of the dipole array. A frequency of 2.45 GHz was selected because it is the 

intended or desired resonant frequency of this research. Table 21 shows the 

excitation values used in the 3-D algorithm. Figures 6-43 and 6-44 show the 

comparison between the simulated and measured patterns for co-polar and cross-

polar antenna array. It is noted that the measured plot in Figure 6-43 is in close 

agreement with the simulated plot within the range of 0°-140°. However, the 

measured plot from 140°-360° do not agree well with the simulated plot. The 

measured plot slightly shifted from the simulated plot. One of the reasons is due 

to the position of the tower which disrupting the measured pattern within the 

range of 140°-360°. In addition, it is observed that from Figure 6-40 that the 

measured pattern is not at the resonant frequency. Meanwhile, the difference of 

the cross-polar patterns between simulated and measured plots is large. The 

measured cross polar pattern for all angles from Figure 6-44 is less than -14dB. 

The cross-polarization could be improved by positioning the dipoles in straight 

arrangement. However, it should be noted that it was impossible to get the 
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Table 22: The magnitude and phase applied at each dipole antenna in 3D 
algorithm. 

S 
parameter 

Dipole 
Antenna 

Marker File 
name 

Amplitude 
(dB) 

(Figure 6-41) 

Normalized  
Amplitude 

(V)  

Phase 
(degrees) 

(Figure 6-42) 
S21 3 #4 R3 -17.8602 0.1279 149.86 
S31 4 #2 R2 -21.9445 0.07994 -178.58 
S41 1 #3 R4 -15.1848 0.1741 -128.34 
S51 2 #1 R1 -19.4985 0.1059 -174.52 

 

 
Figure 6-43: The 3-D algorithm simulated (red) and measured (blue) plots for the 
co-polar pattern at 2.45 GHz. 
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Figure 6-44: The 3-D algorithm simulated (red) and measured (blue) plots for the 
cross-polar pattern at 2.45 GHz. 

6.4.4.1.2 Results at f=2.56 GHz  

Referring to the return loss parameter in Figure 6-40, it is observed that the 

resonant frequency has been shifted from its desired frequency at 2.45 GHz to 

2.56 GHz. The frequency shift is probably due to the assembling of the antenna 

array with all other elements; i.e. the divider, control circuit, cables, battery and 

voltage regulator circuit. The same voltage control as in Table 20 was applied to 

the attenuator (EVA-3000+) and phase shifter (JHPHS-2484+). However, as the 

attenuation and phase shift change with frequency, the magnitude and phase of 

S12 for each port is measured (as shown in Figure 6-45 and 6-46) and converted 

at 2.56 GHz (Table 22). Figure 6-47 shows the co-polar patterns from the 3-D 

algorithm and the measurement. The measured pattern does not agree well with 

the simulated pattern. However, it is observed that a deep null occurred in the 

measured pattern (denoted in blue line) around 260°, which shows its agreement 

with the 3-D algorithm (denoted in red line). In addition, the number of lobes and 

nulls between the simulated and measured plots are similar. Therefore, a slight 

modification has been performed on Trial 1 to obtain a good agreement between 

3-D algorithm simulated pattern and measured pattern. 
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Table 23: The magnitude and phase applied at each dipole antenna (at 2.56 GHz) 
in the 3-D algorithm. 

S 
parameters 

Dipole 
Antenna 

Marker File 
name 

Amplitude 
(dB) 

(Figure 6-45) 

Normalized 
Amplitude 

(V)  

 Phase (deg) 
(Figure 6-46) 

S21 3 #3 P1 -18.618 0.117 -155.32 
S31 4 #4 P2 -19.201 0.110 -159.09 
S41 1 #1 P3 -17.093 0.140 99.54 
S51 2 #2 P4 -15.131 0.175 -149.98 

 

 
Figure 6-47: The 3-D algorithm simulated (red) and measured (blue) plots for co-
polar pattern at 2.56 GHz. 

6.4.4.2 Trial 1 with different voltage (Sample #2) 

A different sample of voltage control applied to four attenuators and three phase 

shifters (known as sample #2), shown in Table 23. The aim was to observe that 

by changing the voltage control, the measured pattern of the dipole array also 

changed. Thus, the steerable beam with amplitude and phase control is 

realizable. Figure 6-48 shows the S11 for Trial 1 with sample #2 voltage controls. 

It is observed that there is a small change to the return loss for sample #2 in 

comparison with sample #1. Moreover, it is observed that the resonant frequency 

is at 2.56 GHz which is similar to the resonant frequency obtained in Figure 6.40. 
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Table 25: The magnitude and phase applied at each dipole antenna in the 3-D 
algorithm. 

S 
parameters 

Dipole 
Antenna 

Amplitude (dB) 
(Figure 6-49) 

Normalized 
Amplitude (V)  

Phase (deg) 
(Figure 6-50) 

S21 3 -15.775 0.1626 -82.34 
S31 4 -15.388 0.1700 16.77 
S41 1 -26.153 0.0492 -95.73 
S51 2 -14.419 0.1901 -116.15 

 

 
Figure 6-51: Sample #2’s co-polar 3-D algorithm simulated (red) and measured 
(blue) plots at 2.45 GHz. 
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Figure 6-52: Sample #2’s cross-polar 3-D algorithm simulated (red) and 
measured (blue) plots at 2.45 GHz.. 

6.4.4.2.2 Results at f=2.56 GHz 

From S11 graphs (Figure 6-48), it is observed that the resonant frequency for 

sample #2 occurred at 2.56 GHz. However, since the operating frequency of the 

phase shifter is limited to 2.484 GHz, the measured pattern is not performed at 

2.56 GHz. Moreover, even though the measured pattern is performed at 2.56 

GHz, the results are expected not in good agreement with the 3-D algorithm due 

to the results obtained in Figure 6-47. Therefore, several modifications are made 

to Trial 1 in order to achieve good agreement between the 3-D algorithm and the 

measurement pattern. 

6.4.4.3 Trial 2 

It is observed that the measured patterns in Trial 1 are not in good agreement 

with the 3-D algorithm (simulation results). Therefore, few modifications have 

been made to Trial 1, as mentioned in Section 6.4.3.2. Figure 6-53 shows the 

measured return loss of the dipole antenna array of Trial 2 with the feed network. 

The control voltage applied to the phase shifter, Vp, and attenuator, Vatt, of Trial 2 

is shown in Table 25. The far-field pattern of Trial 2 is taken at several 

frequencies (at 2.54 and 2.56 GHz), and is shown in the next section.  
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Figure 6-53: Measured S11 of Trial 2. The ࢞- and ࢟-label refers to the frequency 
(GHz) and ࡿ parameters (dB) according to the ࢞- and ࢟-axis respectively. 

 

Table 26: Voltage control of sample#1 applied to attenuator and phase shifter. 

Channel no. Vatt (V) Vp (V) 
CH1 1.40 8.12 
CH2 3.90 10.70 
CH3 1.91 8.60 
CH4 2.60  

6.4.4.3.1 Results at f=2.54 GHz 

The magnitude and phase of S21, S31, S41 and S51 was measured at 2.54 GHz, 

shown in Figure 6-54 and 6-55. Table 26 shows the final input feed for each 

dipole at 2.54 GHz. Figure 6-56 shows that the measured co-polar pattern is in 

good agreement with 3-D algorithms pattern, especially within the region of 265° 

to 130°.  

The differences arise between both measured and the 3-D algorithm 

patterns especially within the region from 130° to 265° are probably due to 

several reasons: 

#2 
x=2.56 

y=-25.87 
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Figure 6-56: The 3-D algorithm simulated (red) and measured (blue) plots for the 
co-polar pattern at 2.54 GHz 

 

6.4.4.3.2 Results at f=2.56 GHz  

Another measurement was taken at 2.56 GHz. The magnitude and phase of S12 

was measured, and the results are shown in Figure 6-57 and 6-58. Table 27 

shows the final input feed for each dipole at 2.56 GHz. Figure 6-59 shows the co-

polar patterns for both the 3-D algorithm and the measurement at 2.56 GHz. It is 

observed that both are in good agreement in terms of location, number and size 

of the lobe in the region of 0° to 130° and 270° to 360°. On the other hand, the 

measured pattern is not in good agreement from 130° to 270° due to the 

existence of the tower (or positioner) at 180° which affects the line of sight of the 

measurement. The measured pattern behaves almost similarly with the pattern in 

Figure 6-56. However, Figure 6-56 shows a better agreement in terms of the 

number of nulls and side lobes compared to Figure 6-59. On the other hand, 

Figure 6-59 shows that the agreement between simulated and measured main 

beam at 110° is better than the main beam in Figure 6-56. 
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Table 28: The magnitude and phase applied at each dipole antenna (at 2.56 GHz) 
in the 3-D algorithm. 

S 
parameters 

Dipole 
Antenna 

Marker File 
name 

Amplitude 
(dB) 

(Figure 6-57) 

Normalized 
Amplitude 

(V)  

Phase (deg) 
(Figure 6-58) 

S21 3 #3 P1 -18.618 0.117 -155.32 
S31 4 #4 P2 -19.201 0.110 -159.09 
S41 1 #1 P3 -17.093 0.140 99.54 
S51 2 #2 P4 -15.131 0.175 -149.98 

 

 
Figure 6-59: The 3-D algorithm simulated (red) and measured (blue) plots for the 
cross-polar pattern at 2.56 GHz. 

 

6.4.4.4 Trial 3 

In Trial 3, the ferrite cores were added to the Trial 2 set-up in order to increase 

the accuracy of the measured pattern. The ferrite cores were held together in a 

fixed position using a tie cable. However, the measured far-field pattern obtained 

was not in good agreement, which is probably due to the imperfectly parallel 

dipole structure that caused by ferrite rings, as shown in Figure 6-39. Therefore, 

the results are not included in this thesis. 
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6.5 Conclusions 

This chapter discusses the fabrication and measurement set-up used to validate 

the 3-D algorithm based on the 2x2 dipole antenna arrays. The 2x2 dipoles are 

chosen because of the less feeding network required compared to cubic (or 

twelve) dipole arrays. The spacing has been chosen as small as possible to 

demonstrate the mutual coupling effect. However, the arrangement of balun and 

cables for 2x2 dipoles for pattern measurement only allows that the minimum 

spacing that can be obtained is 110 mm. The fabrication consists of 4 dipole 

antennas mounted on Rohacell substrate, 4 way power divider, phase shifter and 

attenuator circuit and supply source. The measurement such as S11, S21, S31, S41 

and S51 for each device is performed to ensure good performance. The measured 

plots of S11 for four dipoles are slightly higher than the simulated plots. One of 

the reasons is because the simulated model used perfectly perpendicular lumped 

port as to feed the dipole instead of the existence of balun in practical. However, 

the simulated and measured plots of S11 fall within the same region and covered 

the desired frequency. On the other hand, the measured plot of S11 for Wilkinson 

divider follows the similar pattern as in the simulated plot with slightly different 

magnitudes. This could be due to the losses (copper and conductor) and the 

difference of the thickness in the feeding network. On the other hand, the good 

agreement of the magnitude and phase of the transmission coefficients of S21, S31, 

S41 and S51 ensures that the output signals of each port are divided with the same 

amplitude and in phase with each other. Next, the characteristics of the phase 

shifters and attenuators have been measured because of the unwanted amplitude 

and phase variations (insertion loss) introduced from the phase shifters and 

attenuators respectively. The results show that the phase shift is in linear 

relationship with the control voltage for four channels, CH1, CH2, CH3 and 

CH4. Then, three trials are performed to measure the normalised far-field pattern 

of dipole antenna array. All devices such as the feed network, dipoles antenna, 

cables, battery and voltage regulator circuit are assembled for pattern 

measurement. The cables that connected the feed network, voltage regulator 

circuit and batteries should be long in order to mitigate their coupling effect on 

the dipole array. The measurement results are compared with the 3-D algorithm. 
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The results show that the Trial Two’s measured patterns at the resonant 

frequency of 2.54 and 2.56 GHz are in good agreement with the 3-D algorithm. 

The disagreement between the simulated and measured plots has been justified. 

that disturbs the line of sight between the transmitter and receiver. The tower 

effect could be reduced by using a thinner tower. It is also observed that there is 

a small shift in the resonant frequency at 2.45 GHz (desired frequency) to 2.54 

and 2.56 GHz which is highly due to the effect of the feed network. However, 

those frequency shifts have already been considered in the 3-D algorithm. In 

conclusion, this chapter provides a verification that the 3-D algorithm based on 

the Induced EMF method is useful for the three-dimension array analysis 

considering the mutual coupling of dipole antenna arrays. 
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CHAPTER 7: 
Final Conclusions 

This chapter presented a summary of the work that has been carried throughout 

this thesis plus a list of contributions to the field of antenna array analysis. Other 

possible alternatives to enhance or improvise the work discussed in this thesis 

will be highlighted in the future work section. 

7.1 Summary of Research 

A novel array analysis using the Induced EMF method (or known as the 3-D 

algorithm) considering the mutual coupling effect in antenna arrays has been 

presented in this thesis. It may be applied in any dimensions (one, two or three 

dimensions) and configurations (straight or slanted dipole position). The pattern 

comparison was performed with full wave techniques, such as FDTD and MoM, 

and conventional pattern multiplication method. A pattern synthesis was then 

performed using the 3-D Algorithm with the aid of a genetic algorithm in order 

to steer the beam pattern to any direction. A prototype using dipole antennas at 

2.45 GHz was built and the pattern measurement was performed on 2x2 dipole 

antennas in order to verify the 3-D algorithm. 

Chapter One presented an introduction of the phased array antenna and its 

capability to shape or electronically steer the main beam pattern to the desired 

direction. Electronic beam steering is preferable than mechanical beam steering 

due to the fast and flexibility of electronic equipment such as phase shifter 

applied on each element. The performance of electronic beam steering depends 

on the accurate and fast calculations of the antenna radiation pattern. As a result, 

the technique becomes computationally efficient when working with 

optimisation methods to generate antenna arrays. However, the radiation pattern 

of antenna array is easily affected by mutual coupling effect between antenna 

elements. Numerical techniques such as FDTD and MoM are very accurate since 



Section 7.1. Summary of Research  

197 

they consider this effect but require long computation and large memory. On the 

other hand, the calculation of the far-field pattern without the mutual coupling 

effect (such as pattern multiplication) resulting inaccurate decisions by the 

optimisation method. So it was concluded to develop a 3-D array analysis which 

is not only accurate (considering the mutual coupling effect) but computationally 

efficient when working with optimization techniques.  

Due to the main objective to develop an array analysis for 3-D arrays, 

Chapter Two presented mathematical background related to the characteristics of 

the dipole elements and arrays of antennas. A conventional pattern multiplication 

for antenna arrays and the mutual coupling effect between elements were 

explained in detail. Other methods such as the active input impedance and the 

active element pattern considering the mutual coupling effect in antenna arrays 

were briefly introduced. The active input impedance using the Induced EMF 

method has been developed long time ago but only applicable for parallel dipoles 

(2-D). Therefore, this thesis further developed this method so that it may be 

applied to 3-D arrays where the elements can be arranged in any orientation and 

dimensions.  

A number of electromagnetic modelling techniques to analyse the far-

field pattern have been highlighted in Chapter Three. It was necessary to review 

the work of others in order to determine the efficiency and accuracy of each 

technique. Numerical techniques such as MoM and FDTD are accurate, versatile, 

able to treat complex geometries and coupling between elements. MoM is based 

on frequency domain method while FDTD is based on time domain method. The 

differences between both methods have been summarized. On the other hand, 

array analysis techniques are computationally efficient when working on with 

optimization techniques. Several techniques of array analysis have been 

explained by investigating 1-D (linear), 2-D (planar or circular) and 3-D 

(spherical, cube) arrays. At the end of the chapter, a number of optimization 

techniques, i.e. sequential uniform sampling, gradient search, Nelder-Mead 

simplex, simulated annealing and the genetic algorithm, which are used for 

pattern synthesis, were summarised.  

Chapter Four provided the development of the pattern analysis of antenna 

arrays using the Induced EMF method. The method or known as 3-D algorithm 
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takes into account the mutual coupling effect between elements. The algorithm 

was tested for 2-D and 3-D arrays and was applicable for elements arranged in 

any configuration. For 2-D array, an example was performed using a 2x2-dipole 

arranged in a rectangular grid, while another example using twelve dipoles 

arranged at the edge of a cube structure was performed for 3-D analysis. The 

pattern was compared with numerical techniques, such as FDTD, MoM and a 

conventional pattern multiplication method. The pattern comparison for the 

azimuth and elevation plane of each technique has been summarized in each 

table. The comparison includes beam characteristics such as the direction of the 

maximum beam, highest side lobe level and beam width. The results from 3-D 

algorithm consider the mutual coupling effect unlike pattern multiplication 

technique. The pattern discrepancy between the 3-D Algorithm and full wave 

techniques is because the mutual impedance calculated using the Induced EMF 

method assumes that the dipole is infinitely thin with no feed gap. Therefore it 

assumes that sinusoidal current distribution with the same phase occurred for 

entire length of each dipole. However, the analysis is sufficient for dipole 

antenna arrays. On the other hand, the discrepancies occurred between MoM and 

FDTD are probably because of parameters differences of both methods. FDTD is 

suitable for complex antenna geometries where MoM isn’t because the 

computational time and storage for MoM rise significantly when number of 

segments increases.  

Chapter Five has discussed one of the applications of developing a novel, 

accurate and computationally efficient of the 3-D algorithm. The pattern 

calculated from 3-D algorithm needs to be electronically steered into any desired 

direction while removing any interference in other directions. This already been 

achieved using a genetic algorithm by varying the amplitude and phase excitation 

of each element. It was demonstrated using a 2x2-dipole array arranged in 

rectangular coordinates with a spacing of 0.9λ0 between the elements. The results 

indicate that the genetic algorithm tends to converge quickly and the optimized 

pattern meets the designer’s specification. Then, the runtime between the 3-D 

algorithm and other numerical techniques have been compared. It was observed 

that based on those runtime, the 3-D algorithm is computationally efficient when 
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working with genetic algorithm. The obstacles and limitations of this technique 

were discussed at the end of this chapter. 

In Chapter Six, the pattern simulated from 3-D algorithm was verified 

with the pattern measurement from the fabrication of 2x2-dipole antenna arrays. 

The justification on using 2x2 dipole antennas with spacing of 110 mm has been 

presented. Then, a feed network was designed to feed the four-dipole antenna 

array with different amplitudes and phases. The feed network consists of a 

Wilkinson divider and a circuit consist of surface-mounted voltage control phase 

shifters and attenuators. The S11, simulated and measured plots for each dipole is 

performed and they fall within the same region and covered the desired 

frequency. Then, the measured plot of S11 for Wilkinson divider is in good 

agreement with the simulated plot except that the measured magnitude of S11 is 

slightly higher than the simulated plot. The justifications on the disagreement 

between simulated and measured plots have been discussed in detail. Meanwhile, 

a good agreement has been achieved of the magnitude and phase of the 

transmission coefficients of S21, S31, S41 and S51 between simulated and measured 

plots for each port of Wilkinson Divider. Thus, the results confirmed that the 

output signal coming through each port is divided with similar amplitude and 

phase of each other. The irregularities and differences occurred between those 

plots are also been highlighted. Then, the unwanted amplitude and phase 

variations (insertion loss) occurred in phase shifters and attenuators initiated a 

study on phase and attenuation characteristics between four channels, CH1, CH2, 

CH3 and CH4. The observation confirmed that the phase shift for each channel is 

in linear relationship with the control voltages. The circuit was controlled using 

battery during measurement. The dipole array was mounted using Rohacell to 

make it robust. The entire device was mounted on the platform in the anechoic 

chamber for pattern measurement. Three trials are made in order to find a good 

agreement between the 3-D algorithm and the measurement pattern. The 

measurement results are compared with the 3-D algorithm. The results show that 

the Trial Two’s measured patterns at the resonant frequency of 2.54 and 2.56 

GHz are in good agreement with the 3-D algorithm. The disagreement between 

the simulated and measured plots has been justified. Results presented here 

provide a verification that the simulated plots based on 3-D algorithm 
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considering mutual coupling between elements matches well with the measured 

plots on the normalised far-field pattern.   

Finally, this work has achieved the following contributions: 

 The study and development of three-dimension array analysis for 

dipole antenna arrays considering the mutual coupling effect 

which is fairly accurate, fast and efficient. This leads to a 

significant improvement in the computational efficiency compared 

with a full-wave analysis. 

 The optimization to find the ‘best fit’ to the desired pattern using 

a combination of the 3-D algorithm and a genetic algorithm. 

 The validation of the 3-D algorithm with experimental work using 

a 2x2 dipole antenna array and a feed network consists of phase 

shifter and attenuator. 

7.2 Future Study 

The research presented in this dissertation may be extended in several ways. The 

3-D algorithm may include the radius and the length of the dipole antenna. The 

work presented here assumes the dipole radius is infinitely thin and applicable 

only to half-wavelength dipole antenna. The half-wavelength restriction is due to 

the simplified electric field characteristics of Eθ and Eφ that were used in this 

algorithm. However, the mutual impedance provided by Baker is applicable for 

any length of dipole antenna array. The algorithm may also be extended to the 

near-field pattern with additional complexity, since the 3-D algorithm assumed 

that the radial electric field component, Er, is zero for all cases.  

In addition, the algorithm may be extended to other types of antenna such 

as microstrip or printed dipoles. The algorithm also has to take into account other 

effects such as those from the feed network and the mismatch that occurs 

between the feed network and the array elements. It affects the accuracy of the 

pattern of the antenna array, since in practice; the feed network contributes 

significant changes to the antenna arrays.  

The optimization technique may be developed by performing pattern 

synthesis for 3-D patterns. There are few papers optimize the pattern in 3-D, 
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since it is more complex compared to 2-D. However, the 3-D optimization will 

be time-consuming since the 3-D pattern contains lots of data to be optimized. 

Moreover, the 3-D pattern synthesis may be extended to azimuth and elevation 

direction finding applications. The optimization technique may also consider 

other things to be optimized, such as the spacing and number of elements, so that 

the design of the feeding network will be less complicated and more cost-

effective. Nowadays, the aim of the phased array system is getting an accurate 

performance rather than its cost. As a result, the number of antenna elements is 

large and the feeding network designed with it is complicated. However, it is 

desirable to obtain a small and cost-effective phased array antenna without 

degrading its performance. 

Last but not least, the study of phase shifter and attenuator circuit should 

be explored in details. The attenuation and phase shift values are dependable of 

each other making the measurement process complicated. It is also difficult to 

obtain the attenuation and phase shift of each signals to the desired values 

because tune in one DC voltage of one channel resulting a change of phase and 

attenuation in three other channels. The study in this area will ensure that the 

phased array system is working sequentially and efficiently. 
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Appendix A: 3D 
Algorithm for 2x2 Dipole 

Arrays 

%main program 
lamda=3/(24.5); % change with frequency 
radius=4.7*lamda;                      
theta=(0.01:2:360.01)*pi/180; 
phi=(0.01:2:360.01)*pi/180; 
[a,b]=size(theta); 
[c,d]=size(phi); 
theta=theta'; 
  
%transform the (r,theta,phi) to (x,y,z) coordinates 
  
r1=radius*sin(theta)*cos(phi);      %x 
r2=radius*sin(theta)*sin(phi);      %y 
r3=radius*cos(theta);               %z 
  
%----------------------------------------------------------------
---------- 
%position of each centre fed dipole in x,y,z axis 
x1=-0.055; 
y1=-0.055; 
z1=0.001; 
d1=[x1 y1 z1]; 
  
x2=0.055; 
y2=-0.055; 
z2=0; 
d2=[x2 y2 z2]; 
  
x3=0.055; 
y3=0.055; 
z3=0; 
d3=[x3 y3 z3]; 
  
x4=-0.055; 
y4=0.055; 
z4=0; 
d4=[x4 y4 z4]; 
  
%plot the position of each dipole in x,y,z axis 
dd=[d1;d2;d3;d4]; 
figure 
scatter3(dd(:,1),dd(:,2),dd(:,3),'c','filled'); 



Appendix A: 3-D Algorithm for 2x2 Dipole Arrays 

203 

 
%spacing between two centre fed dipoles in (x,y,z) axis    
s12=[abs(x2-x1)*24.5/3 abs(y2-y1)*24.5/3 abs(z2-z1)*24.5/3]; 
s13=[abs(x3-x1)*24.5/3 abs(y3-y1)*24.5/3 abs(z3-z1)*24.5/3]; 
s14=[abs(x4-x1)*24.5/3 abs(y4-y1)*24.5/3 abs(z4-z1)*24.5/3]; 
s21=[abs(x2-x1)*24.5/3 abs(y2-y1)*24.5/3 abs(z2-z1)*24.5/3]; 
s23=[abs(x3-x2)*24.5/3 abs(y3-y2)*24.5/3 abs(z3-z2)*24.5/3]; 
s24=[abs(x4-x2)*24.5/3 abs(y4-y2)*24.5/3 abs(z4-z2)*24.5/3]; 
s32=[abs(x3-x2)*24.5/3 abs(y3-y2)*24.5/3 abs(z3-z2)*24.5/3]; 
s31=[abs(x3-x1)*24.5/3 abs(y3-y1)*24.5/3 abs(z3-z1)*24.5/3]; 
s34=[abs(x4-x3)*24.5/3 abs(y4-y3)*24.5/3 abs(z4-z3)*24.5/3]; 
s41=[abs(x4-x1)*24.5/3 abs(y4-y1)*24.5/3 abs(z4-z1)*24.5/3]; 
s42=[abs(x4-x2)*24.5/3 abs(y4-y2)*24.5/3 abs(z4-z2)*24.5/3]; 
s43=[abs(x4-x3)*24.5/3 abs(y4-y3)*24.5/3 abs(z4-z3)*24.5/3]; 
  
array=4; 
  
Z11=73.1+42.5i; %self impedance 
%calculate the mutual impedance between two dipoles 
for r=1:array 
    for s=1:array 
        if s==r 
        Z(r,s)=Z11; 
        elseif (s==3&&r==2)||(s==2&&r==3) 
        
Z(r,s)=impedance(0.5,0.5,s23(1,1),s23(1,2),s23(1,3),2*pi/180,0); 
        elseif (s==4&&r==1)||(s==1&&r==4) 
        
Z(r,s)=impedance(0.5,0.5,s14(1,1),s14(1,2),s14(1,3),4*pi/180,0); 
        elseif (s==3&&r==4)||(s==4&&r==3) 
        
Z(r,s)=impedance(0.5,0.5,s34(1,1),s34(1,2),s34(1,3),4*pi/180,0); 
        elseif (s==2&&r==1)||(s==1&&r==2) 
        
Z(r,s)=impedance(0.5,0.5,s12(1,1),s12(1,2),s12(1,3),2*pi/180,0); 
        elseif (s==3&&r==1)||(s==1&&r==3) 
        Z(r,s)=impedance(0.5,0.5,s13(1,1),s13(1,2),s13(1,3),0,0); 
        elseif (s==2&&r==4)||(s==4&&r==2) 
         
Z(r,s)=impedance(0.5,0.5,s24(1,1),s24(1,2),s24(1,3),6*pi/180,0);     
         end 
    end 
end 
  
Chrom=[0.1727 148.25*pi/180 0.1033 -175.14*pi/180 0.1304 -
129.64*pi/180 0.07825 -179.94*pi/180]; 
  
V=[Chrom(1,1)*exp(1*j*Chrom(1,2));  Chrom(1,3)*exp(1*j*Chrom(1,4)); 
Chrom(1,5)*exp(1*j*Chrom(1,6)); Chrom(1,7)*exp(1*j*Chrom(1,8))]; 
  
source=[50 50 50 50];%perfect match 
Zs=diag(source); 
Ifeed=inv(Z+Zs)*V; 
Vfeed=Z*Ifeed; 
  
r=1; 
  
    %--------------------------------------------------------------- 
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%dipole1 
  
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x1,y1,z1,A,theta,phi,radius);  
[Etheta1 Ephi1]=calculateEfield(d1,Ifeed(1,r),r1,r2,r3,theta_prime); 
[Et1 
Ep1]=transformE(Etheta1,Ephi1,theta,phi,theta_prime,phi_prime,A); 
  
%-------------------------------------------------------------------
- 
  
%dipole2 
  
A=calculateA(0,2*pi/180,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x2,y2,z2,A,theta,phi,radius);  
[Etheta2 Ephi2]=calculateEfield(d2,Ifeed(2,r),r1,r2,r3,theta_prime); 
[Et2 
Ep2]=transformE(Etheta2,Ephi2,theta,phi,theta_prime,phi_prime,A); 
  
%-------------------------------------------------------------------
-- 
 
%dipole3 
 
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x3,y3,z3,A,theta,phi,radius);  
[Etheta3 Ephi3]=calculateEfield(d3,Ifeed(3,r),r1,r2,r3,theta_prime); 
[Et3 
Ep3]=transformE(Etheta3,Ephi3,theta,phi,theta_prime,phi_prime,A); 
 
%-------------------------------------------------------------------
--- 
 
%dipole4 
 
A=calculateA(0,4*pi/180,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x4,y4,z4,A,theta,phi,radius);  
[Etheta4 Ephi4]=calculateEfield(d4,Ifeed(4,r),r1,r2,r3,theta_prime); 
[Et4 
Ep4]=transformE(Etheta4,Ephi4,theta,phi,theta_prime,phi_prime,A); 
  
%-------------------------------------------------------------------
------- 
 
%summation of both E fields 
 
E_theta=Et1+Et2+Et3+Et4; 
E_phi=Ep1+Ep2+Ep3+Ep4; 
 
Efield=sqrt((abs(E_theta)).^2+(abs(E_phi)).^2); 
 
maxi=max(max(Efield)); 
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Efield2=Efield/maxi; %normalized the Electric Field 
  
row=46;     %theta=90 deg,  
column=46;  %phi=90 deg 
  
max_phi=phi(column)*180/pi 
max_theta=theta(row)*180/pi 
  
Sh_p=(Efield2(row,:));      %E field at theta=90deg 
Sv_p=(Efield2(:,column));   %E field at phi=90deg 
  
figure 
polar_dB(phi*180/pi,20*log10(Sh_p),-30,0,20,'*-b'); 
  
figure 
polar_dB(theta*180/pi,20*log10(Sv_p),-30,0,20,'*-r'); 
  
%plot far-field pattern in 3D  
threeDplot(Efield2,theta,phi);
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%impedance function 
function Z21=impedance(L1,L2,xx0,y0,z0,the,ph) 
%L1=length of dipole 1 
%L2=length of dipole 2 
%xx0=spacing between dipole 1 and 2 along x axis 
%y0=spacing between dipole 1 and 2 along y axis 
%z0=spacing between dipole 1 and 2 along z axis 
%the=bent angle of dipole 2 along xz plane 
%ph=bent angle of dipole 2 along xy plane 
  
a=-L2/2; 
b=L2/2; 
n=51;                   %choose n as odd number so s not equal to 0 
hh=(b-a)/n; 
  
s(1,1)=a; 
s(1,n+1)=b; 
  
for k=1:1:floor(n/2)     %even number 
    x=2*k; 
    s(1,x)=a+x*hh; 
end 
  
for k=2:1:floor(n/2+1)   %odd number 
    x=2*k-1; 
    s(1,x)=a+x*hh; 
end 
  
  
sz=s*cos(the); 
sy=s*sin(the)*sin(ph); 
sx=s*sin(the)*cos(ph); 
rho=sqrt((sx+xx0).^2+(y0+sy).^2); 
r=sqrt(rho.^2+(z0+sz).^2); 
r1=sqrt(rho.^2+(z0+sz+L1/2).^2); 
r2=sqrt(rho.^2+(z0+sz-L1/2).^2); 
 
factor_a=((1./rho.^2).*((sin(2*pi*r1).*(sz+z0+L1/2)./r1)+(sin(2*pi*r
2).*(sz+z0-L1/2)./r2)-
(2*cos(pi*L1)*sin(2*pi*r).*(sz+z0)./r)).*(sx.^2+xx0*sx+y0*sy+sy.^2))
; 
factor_b=(2*sin(2*pi*r)*cos(pi*L1)./r-sin(2*pi*r1)./r1-
sin(2*pi*r2)./r2).*sz; 
current_max=(sin(2*pi*(L2/2-abs(s))))./s; 
factor1=(factor_a+factor_b).*current_max; 
 
fact_a=((1./rho.^2).*((cos(2*pi.*r1).*(sz+z0+L1/2)./r1)+(cos(2*pi.*r
2).*(sz+z0-L1/2)./r2)-
2*cos(pi*L1)*cos(2*pi.*r).*(sz+z0)./r).*(sx.^2+xx0*sx+y0*sy+sy.^2)); 
fact_b=(2*cos(2*pi.*r)*cos(pi*L1)./r-cos(2*pi.*r1)./r1-
cos(2*pi.*r2)./r2).*sz; 
factor2=(fact_a+fact_b).*current_max; 
 
total_a=0; 
for k=1:floor(n/2) 
    x=2*k; 
    total_a=total_a+(factor1(1,x)); 
end 
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total_b=0; 
for k=2:floor(n/2+1) 
    x=2*k-1; 
    total_b=total_b+(factor1(1,x)); 
end 
  
total_2a=0; 
for k=1:floor(n/2) 
    x=2*k; 
    total_2a=total_2a+(factor2(1,x)); 
end 
  
total_2b=0; 
for k=2:floor(n/2+1) 
    x=2*k-1; 
    total_2b=total_2b+(factor2(1,x)); 
end 
  
R21=-30*Integrand(factor1,total_a,total_b,a,b,n); 
X21=-30*Integrand(factor2,total_2a,total_2b,a,b,n); 
Z21=R21+X21*1i; 
 
%Integration function according to Simpson's rule 
function Int=Integrand(factor1,tot_a,tot_b,a,b,n) 
  
hh=(b-a)/n; 
Int=hh/3*(factor1(1,1)+2*tot_a+4*tot_b+factor1(1,n+1)); 
 
end 
 

%calculateA function to calculate [A] for transformation matrix 
function A=calculateA(alpha,beta,gamma) 
  
A11=cos(gamma)*cos(alpha)-sin(gamma)*cos(beta)*sin(alpha); 
A12=cos(gamma)*sin(alpha)+sin(gamma)*cos(beta)*cos(alpha); 
A13=sin(gamma)*sin(beta); 
A21=-sin(gamma)*cos(alpha)-cos(gamma)*cos(beta)*sin(alpha); 
A22=-sin(gamma)*sin(alpha)+cos(gamma)*cos(beta)*cos(alpha); 
A23=cos(gamma)*sin(beta); 
A31=sin(beta)*sin(alpha); 
A32=-sin(beta)*cos(alpha); 
A33=cos(beta); 
 
A=[(A11) (A12) (A13);(A21) (A22) (A23);(A31) (A32) (A33)]; 
 
end 

 
%findThetaPhiPrime to calculate theta’ and phi’ for transformation 

matrix 
function [theta_prime 
phi_prime]=findThetaPhiPrime(x1,y1,z1,A,theta,phi,radius) 
 
b=181; 
d=181; 
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r1=radius*sin(theta)*cos(phi);      %x 
r2=radius*sin(theta)*sin(phi);      %y 
r3=radius*cos(theta);               %z 
 
for a=1:b 
    for c=1:d 
      result=A*[(r1(a,c));(r2(a,c));(r3(a))]; 
      angtheta=result(3)/radius; 
      ThetaQuarter=theta_fun(a,angtheta);   %call 
theta_fun 
      theta_prime(a,c)=ThetaQuarter; 
      angphi=result(2)/(radius*sin(theta_prime(a,c))); 
      angr=result(1)/(radius*sin(theta_prime(a,c))); 
      PhiQuarter=phi_fun(angphi,angr);   %call phi_fun 
      phi_prime(a,c)=PhiQuarter; 
       
    end    
end 
 
end 
%theta_fun function 
function  ThetaQuarter=theta_fun(a,angtheta) 
%angtheta is cosine argument 
  
ThetaQuarter=acos(angtheta); 
  
end 
 

%phi_fun function 
function  PhiQuarter=phi_fun(angphi,angr) 
  
%angphi is sine argument 
%angr is cosine argument 
  
if (angphi>=0)&(angr>=0) 
    PhiQuarter=asin(angphi); 
elseif (angphi>=0)&(angr<0) 
    angle=asin(abs(angphi)); 
    PhiQuarter=pi-angle; 
elseif (angphi<0)&(angr<0) 
    angle=asin(abs(angphi)); 
    PhiQuarter=pi+angle; 
elseif (angphi<0)&(angr>=0) 
    angle=asin(abs(angphi)); 
    PhiQuarter=2*pi-angle; 
end 
 
end 
 

%calculateEfield function based on terminal current 
function [Ethetas Ephis]=calculateEfield(d1,I,r1,r2,r3,theta) 
  
b=181;%73%normal simulation points 
d=181; 
lamda=3/(24.5); 
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radius=4.7*lamda;%7.2*lamda; 
  
  
for c=1:d 
    for a=1:b 
            R=sqrt((r1(a,c)-d1(1,1))^2+(r2(a,c)-d1(1,2))^2+(r3(a)-
d1(1,3))^2); 
            Ethetas(a,c)=(1i*60/(radius))*I*exp(-
1i*2*pi*R/lamda)*cos(0.5*pi*cos(theta(a,c)))/sin(theta(a,c)); 
   end 
end 
  
Ephis(b,d)=0; 
  
end 

%transform the Efield from (x’,y’,z’) coordinates to 
(x,y,z)coordinates 
function [Et 
Ep]=transformE(Etheta1,Ephi1,theta,phi,theta_prime,phi_prime,A) 
  
b=181; 
d=181; 
  
  
for a=1:b 
    for c=1:d 
        [prime 
unprimed]=calculate(theta(a),phi(c),theta_prime(a,c),phi_prime(a,c))
; 
        vectorE=[0;Etheta1(a,c);Ephi1(a,c)];   
        E=unprimed*A'*prime*vectorE; 
        Et(a,c)=E(2); 
        Ep(a,c)=E(3);   
    end 
end 
  
end 
%threeDplot to plot far-field pattern in 3D 
function threeDplot(rho,theta,phi) 
  
%rho is the normalized Efield 
[s_t,a]=size(theta); 
[b,s_p]=size(phi); 
level_db=40; 
  
for m=1:s_t 
    for n=1:s_p 
        if (rho(m,n)<10^(-level_db/20)) 
            rho(m,n)=0; 
        else rho(m,n)=20*log10(rho(m,n))+level_db; 
        end 
    end 
end 
 
XX=sin(theta)*cos(phi).*rho; 
YY=sin(theta)*sin(phi).*rho; 
ZZ=cos(theta)*ones(1,s_p).*rho; 
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fig_power=figure('Name','3D Polar Power Pattern in 
dBs','NumberTitle', 'off'); 
ps=surf(XX,YY,ZZ, 'Edgecolor','black','EdgeAlpha', 0.20, 
'Linewidth', 1.00); 
  
for k=1:s_t 
    rho3(:,:,k)=rho(:,:); 
end 
  
alpha(0.6);  
 
tick_pos=(-level_db:10:level_db); 
ticks=abs(tick_pos)-level_db; 
  
set(gca,'XTick',tick_pos,'XTickLabel',ticks); 
  
set(gca,'YTick',tick_pos,'YTickLabel',ticks); 
  
set(gca,'ZTick',tick_pos,'ZTickLabel',ticks); 
  
set(gca, 'Xcolor', 'black', 'Ycolor','black', 'Zcolor' , 'black' ) ; 
  
xlabel('x-axis, dB'); 
ylabel('y-axis, dB'); 
zlabel('z-axis, dB'); 
  
axis equal; axis auto; box on;camlight; lightangle(0,45); lighting 
gouraud; camproj ('perspective'); 
  
 

function hpol = polar_dB(theta,rho,rmin,rmax,rticks,line_style) 
% Input Parameters Description 
% ---------------------------- 
% - theta (in degrees) must be a row vector from 0 to 360 degrees 
% - rho (in dB) must be a row vector 
% - rmin (in dB) sets the minimum limit of the plot (e.g., -60 dB) 
% - rmax (in dB) sets the maximum limit of the plot (e.g., 0 dB) 
% - rticks is the # of radial ticks (or circles) desired. (e.g., 4) 
% - linestyle is solid (e.g., '-') or dashed (e.g., '--') 
% 
% Tabulate your data accordingly, and call polar_dB to provide the 
% 2-D polar plot 
% 
%   Credits: 
%       S. Bellofiore 
%       S. Georgakopoulos 
%       A. C. Polycarpou 
%       C. Wangsvick 
%       C. Bishop 
% 
%   Tabulate your data accordingly, and call polar_dB to provide the 
%   2-D polar plot 
% 
% Note: This function is different from the polar.m (provided by 
% MATLAB) because RHO is given in dB, and it can be negative 
%-------------------------------------------------------------------
--- 



Appendix A: 3-D Algorithm for 2x2 Dipole Arrays 

211 

  
% Convert degrees into radians 
theta = theta * pi/180; 
  
% Font size, font style and line width parameters 
font_size = 16;%16 
font_name = 'Times'; 
line_width = 1.5; 
  
if nargin < 5 
    error('Requires 5 or 6 input arguments.') 
elseif nargin == 5 
    if isstr(rho) 
        line_style = rho; 
        rho = theta; 
        [mr,nr] = size(rho); 
        if mr == 1 
            theta = 1:nr; 
        else 
            th = (1:mr)'; 
            theta = th(:,ones(1,nr)); 
        end 
    else 
        line_style = 'auto'; 
    end 
elseif nargin == 1 
    line_style ='auto'; 
    rho = theta; 
    [mr,nr] = size(rho); 
    if mr == 1 
        theta = 1:nr; 
    else 
        th = (1:mr)'; 
        theta = th(:,ones(1,nr)); 
    end 
end 
if isstr(theta) | isstr(rho) 
    error('Input arguments must be numeric.'); 
end 
if any(size(theta) ~= size(rho)) 
    error('THETA and RHO must be the same size.'); 
end 
  
% get hold state 
cax = newplot; 
next = lower(get(cax,'NextPlot')); 
hold_state = ishold; 
  
% get x-axis text color so grid is in same color 
tc = get(cax,'xcolor'); 
  
% Hold on to current Text defaults, reset them to the 
% Axes' font attributes so tick marks use them. 
  
fAngle = get(cax, 'DefaultTextFontAngle'); 
fName = get(cax, 'DefaultTextFontName'); 
fSize = get(cax, 'DefaultTextFontSize'); 
fWeight = get(cax, 'DefaultTextFontWeight'); 
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set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'), ... 
'DefaultTextFontName', font_name, ... 
'DefaultTextFontSize', font_size, ... 
'DefaultTextFontWeight', get(cax, 'FontWeight') ) 
  
% only do grids if hold is off 
  
if ~hold_state 
    % make a radial grid 
    hold on; 
    % v returns the axis limits 
    % changed the following line to let the y limits become negative 
    hhh=plot([0 max(theta(:))],[min(rho(:)) max(rho(:))]); 
    v = [get(cax,'xlim') get(cax,'ylim')]; 
    ticks = length(get(cax,'ytick')); 
    delete(hhh); 
    % check radial limits (rticks) 
    if rticks > 5 % see if we can reduce the number 
        if rem(rticks,2) == 0 
            rticks = rticks/2; 
        elseif rem(rticks,3) == 0 
            rticks = rticks/3; 
        end 
    end 
    % define a circle 
    th = 0:pi/50:2*pi; 
    xunit = cos(th); 
    yunit = sin(th); 
    % now really force points on x/y axes to lie on them exactly 
    inds = [1:(length(th)-1)/4:length(th)]; 
    xunits(inds(2:2:4)) = zeros(2,1); 
    yunits(inds(1:2:5)) = zeros(3,1); 
    rinc = (rmax-rmin)/rticks;  
    % label r 
    % change the following line so that the unit circle is not 
multiplied 
    % by a negative number. Ditto for the text locations. 
   
    for i=(rmin):rinc:rmax %for i=(rmin+rinc):rinc:rmax 
        is = i - rmin; 
         
        plot(xunit*is,yunit*is,'-','color',tc,'linewidth',0.5); 
        text(0,is-1.7,[' ' 
num2str(i)],'verticalalignment','bottom','fontsize',14 ); 
   %text(0,is+rinc/20,[' ' num2str(i)],'verticalalignment','bottom' 
); 
    end 
    %text(-5,36,'Phi','fontsize',14); 
    % plot spokes 
    th = (1:6)*2*pi/12; 
    cst = cos(th); snt = sin(th); 
    cs = [-cst; cst]; 
    sn = [-snt; snt]; 
    plot((rmax-rmin)*cs,(rmax-rmin)*sn,'-
','color',tc,'linewidth',0.5); 
    % plot the ticks 
    george=(rmax-rmin)/30; % Length of the ticks 
    th2 = (0:36)*2*pi/72; 
    cst2 = cos(th2); snt2 = sin(th2); 
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    cs2 = [(rmax-rmin-george)*cst2; (rmax-rmin)*cst2]; 
    sn2 = [(rmax-rmin-george)*snt2; (rmax-rmin)*snt2]; 
    plot(cs2,sn2,'-','color',tc,'linewidth',0.15); % 0.5 
    plot(-cs2,-sn2,'-','color',tc,'linewidth',0.15); % 0.5 
    % annotate spokes in degrees 
    % Changed the next line to make the spokes long enough 
    rt = 1.1*(rmax-rmin); 
    for i = 1:max(size(th)) 
        text(rt*cst(i),rt*snt(i),int2str(abs(i*30-
90)),'horizontalalignment','center' ); 
        if i == max(size(th)) 
            loc = int2str(90); 
        elseif i*30+90<=180 
            loc = int2str(i*30+90); 
        else 
            loc = int2str(180-(i*30+90-180)); 
        end 
        text(-rt*cst(i),-
rt*snt(i),loc,'horizontalalignment','center' ); 
    end 
    % set viewto 2-D  
    view(0,90); 
    % set axis limits 
    % Changed the next line to scale things properly 
    axis((rmax-rmin)*[-1 1 -1.1 1.1]); 
end 
  
% Reset defaults. 
set(cax, 'DefaultTextFontAngle', fAngle , ... 
'DefaultTextFontName', font_name, ... 
'DefaultTextFontSize', fSize, ... 
'DefaultTextFontWeight', fWeight ); 
  
% transform data to Cartesian coordinates. 
% changed the next line so negative rho are not plotted on the other 
side 
  
for i = 1:length(rho) 
    if (rho(i) > rmin) 
        if theta(i)*180/pi >=0 & theta(i)*180/pi <=90 
            xx(i) = (rho(i)-rmin)*cos(pi/2-theta(i)); 
            yy(i) = (rho(i)-rmin)*sin(pi/2-theta(i)); 
        elseif theta(i)*180/pi >=90 
            xx(i) = (rho(i)-rmin)*cos(-theta(i)+pi/2); 
            yy(i) = (rho(i)-rmin)*sin(-theta(i)+pi/2); 
        elseif theta(i)*180/pi < 0 
            xx(i) = (rho(i)-rmin)*cos(abs(theta(i))+pi/2); 
            yy(i) = (rho(i)-rmin)*sin(abs(theta(i))+pi/2); 
        end 
    else 
        xx(i) = 0; 
        yy(i) = 0; 
    end 
end 
  
% plot data on top of grid 
  
if strcmp(line_style,'auto') 
    q = plot(xx,yy); 
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else 
    q = plot(xx,yy,line_style); 
end 
  
if nargout > 0  
    hpol = q; 
end 
  
if ~hold_state 
    axis('equal');axis('off'); 
end 
  
% reset hold state 
if ~hold_state, set(cax,'NextPlot',next);  
end 
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Appendix B: 3D 
Algortihm for 12 Dipole 
Arrays arranged at the 

edge of Cube 

%main program 
lamda=3/(24.5); 
radius=4.7*lamda;                      
theta=(0.01:2:360.01)*pi/180; 
phi=(0.01:2:360.01)*pi/180; 
[a,b]=size(theta); 
[c,d]=size(phi); 
theta=theta'; 
 
r1=radius*sin(theta)*cos(phi);      %x 
r2=radius*sin(theta)*sin(phi);      %y 
r3=radius*cos(theta);    
 
%-------------------------------------------------------------------
------- 
  
Z11=73.1+42.5i; 
      
array=12;
 
%calculate the mutual impedance between two dipoles 
for r=1:array 
    for s=1:array 
        if s==r 
        Z(r,s)=Z11; 
        elseif 
(s==2&&r==1)||(s==3&&r==2)||(s==3&&r==4)||(s==4&&r==1)||(s==1&&r==2)
||(s==2&&r==3)||(s==4&&r==3)||(s==1&&r==4)  
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
        elseif 
(s==3&&r==1)||(s==1&&r==3)||(s==2&&r==4)||(s==4&&r==2) 
        Z(r,s)=impedance(0.5,0.5,0,0.92395,0,0,0); 
        %dipole 5 
        elseif (s==5&&r==1)||(s==1&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0.32666,0,0.32666,pi/2,0); 
        elseif (s==5&&r==2)||(s==2&&r==5) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,0,0.32666,pi/2,0);  
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        elseif (s==5&&r==3)||(s==3&&r==5) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,-0.65333,0.32666,pi/2,0);  
        elseif (s==5&&r==4)||(s==4&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0.32666,-0.65333,0.32666,pi/2,0);  
         %dipole 6 
        elseif (s==1&&r==6)||(s==6&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,0.32666,pi/2,pi/2); 
        elseif (s==2&&r==6)||(s==6&&r==2) 
        Z(r,s)=impedance(0.5,0.5,-
0.65333,0.32666,0.32666,pi/2,pi/2);        elseif 
(s==3&&r==6)||(s==6&&r==3) 
        Z(r,s)=impedance(0.5,0.5,-0.65333,-
0.32666,0.32666,pi/2,pi/2); 
        elseif (s==4&&r==6)||(s==6&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,0.32666,pi/2,pi/2); 
        elseif (s==5&&r==6)||(s==6&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,0.32666,pi/2,pi/2); 
        %dipole 7 
        elseif (s==1&&r==7)||(s==7&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0.65333,0.32666,0.32666,pi/2,pi/2); 
        elseif (s==2&&r==7)||(s==7&&r==2) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,0.32666,pi/2,pi/2);        
        elseif (s==3&&r==7)||(s==7&&r==3) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,0.32666,pi/2,pi/2); 
        elseif (s==4&&r==7)||(s==7&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0.65333,-
0.32666,0.32666,pi/2,pi/2); 
        elseif (s==5&&r==7)||(s==7&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,0.32666,pi/2,pi/2); 
        elseif (s==6&&r==7)||(s==7&&r==6) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
        %dipole 8 
        elseif (s==1&&r==8)||(s==8&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0.32666,0.65333,0.32666,pi/2,0); 
        elseif (s==2&&r==8)||(s==8&&r==2) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,0.65333,0.32666,pi/2,0);        
        elseif (s==3&&r==8)||(s==8&&r==3) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,0,0.32666,pi/2,0); 
        elseif (s==4&&r==8)||(s==8&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0.32666,0,0.32666,pi/2,0); 
        elseif (s==5&&r==8)||(s==8&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
        elseif (s==6&&r==8)||(s==8&&r==6) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,0.32666,pi/2,pi/2); 
        elseif (s==7&&r==8)||(s==8&&r==7) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,0.32666,pi/2,pi/2); 
        %dipole 9 
        elseif (s==1&&r==9)||(s==9&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0.32666,0,-0.32666,pi/2,0); 
        elseif (s==2&&r==9)||(s==9&&r==2) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,0,-0.32666,pi/2,0);        
        elseif (s==3&&r==9)||(s==9&&r==3) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,-0.65333,-0.32666,pi/2,0); 
        elseif (s==4&&r==9)||(s==9&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0.32666,-0.65333,-0.32666,pi/2,0); 
        elseif (s==5&&r==9)||(s==9&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
        elseif (s==6&&r==9)||(s==9&&r==6) 
        Z(r,s)=impedance(0.5,0.5,0.65333,-0.32666,-0.32666,pi/2,0); 
        elseif (s==7&&r==9)||(s==9&&r==7) 
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        Z(r,s)=impedance(0.5,0.5,-0.65333,-0.32666,-0.32666,pi/2,0); 
        elseif (s==8&&r==9)||(s==9&&r==8) 
        Z(r,s)=impedance(0.5,0.5,0,0.92395,0,0,0); 
        %dipole 10 
        elseif (s==1&&r==10)||(s==10&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0.65333,0.32666,-
0.32666,pi/2,pi/2); 
        elseif (s==2&&r==10)||(s==10&&r==2) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,-0.32666,pi/2,pi/2);        
        elseif (s==3&&r==10)||(s==10&&r==3) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,-0.32666,pi/2,pi/2); 
        elseif (s==4&&r==10)||(s==10&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0.65333,-0.32666,-
0.32666,pi/2,pi/2); 
        elseif (s==5&&r==10)||(s==10&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0.65333,-0.32666,0.32666,pi/2,0); 
        elseif (s==6&&r==10)||(s==10&&r==6) 
        Z(r,s)=impedance(0.5,0.5,0,0.92395,0,0,0); 
        elseif (s==7&&r==10)||(s==10&&r==7) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
        elseif (s==8&&r==10)||(s==10&&r==8) 
        Z(r,s)=impedance(0.5,0.5,0.65333,-0.32666,-0.32666,pi/2,0);    
        elseif (s==9&&r==10)||(s==10&&r==9) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,0.32666,pi/2,pi/2);    
        %dipole 11 
        elseif (s==1&&r==11)||(s==11&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0.32666,0.65333,-0.32666,pi/2,0); 
        elseif (s==2&&r==11)||(s==11&&r==2) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,0.65333,-0.32666,pi/2,0);        
        elseif (s==3&&r==11)||(s==11&&r==3) 
        Z(r,s)=impedance(0.5,0.5,-0.32666,0,-0.32666,pi/2,0); 
        elseif (s==4&&r==11)||(s==11&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0.32666,0,-0.32666,pi/2,0); 
        elseif (s==5&&r==11)||(s==11&&r==5) 
        Z(r,s)=impedance(0.5,0.5,0,0.92395,0,0,0); 
        elseif (s==6&&r==11)||(s==11&&r==6) 
        Z(r,s)=impedance(0.5,0.5,0.65333,0.32666,-0.32666,pi/2,0); 
        elseif (s==7&&r==11)||(s==11&&r==7) 
        Z(r,s)=impedance(0.5,0.5,-0.65333,0.32666,-0.32666,pi/2,0); 
        elseif 
(s==8&&r==11)||(s==11&&r==8)||(s==9&&r==11)||(s==11&&r==9) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0);    
        elseif (s==10&&r==11)||(s==11&&r==10) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,0.32666,pi/2,pi/2);   
        %dipole 12 
        elseif (s==1&&r==12)||(s==12&&r==1) 
        Z(r,s)=impedance(0.5,0.5,0,0.32666,-0.32666,pi/2,pi/2); 
        elseif (s==2&&r==12)||(s==12&&r==2) 
        Z(r,s)=impedance(0.5,0.5,-0.65333,0.32666,-
0.32666,pi/2,pi/2);        
        elseif (s==3&&r==12)||(s==12&&r==3) 
        Z(r,s)=impedance(0.5,0.5,-0.65333,-0.32666,-
0.32666,pi/2,pi/2); 
        elseif (s==4&&r==12)||(s==12&&r==4) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,-0.32666,pi/2,pi/2); 
        elseif (s==5&&r==12)||(s==12&&r==5) 
        Z(r,s)=impedance(0.5,0.5,-0.65333,0.32666,-
0.32666,pi/2,pi/2); 
        elseif (s==6&&r==12)||(s==12&&r==6) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
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        elseif (s==7&&r==12)||(s==12&&r==7) 
        Z(r,s)=impedance(0.5,0.5,0,0.92395,0,0,0); 
        elseif (s==8&&r==12)||(s==12&&r==8) 
        Z(r,s)=impedance(0.5,0.5,-0.65333,-0.32666,-
0.32666,pi/2,pi/2);   
        elseif (s==9&&r==12)||(s==12&&r==9) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,0.32666,pi/2,pi/2);   
        elseif (s==10&&r==12)||(s==12&&r==10) 
        Z(r,s)=impedance(0.5,0.5,0,0.65333,0,0,0); 
        elseif (s==11&&r==12)||(s==12&&r==11) 
        Z(r,s)=impedance(0.5,0.5,0,-0.32666,-0.32666,pi/2,pi/2); 
        end 
    end 
end 
 
V=[0.560784314*exp(-1j*2.870553287);  
0.415686275*exp(1j*2.254554728); 
0.082352941*exp(1j*0.8008);0.329411765*exp(1j*0.874717955); 0; 0; 0; 
0; 0; 0; 0; 0]; 
 
%mutual coupling effect 
source=[50 50 50 50 50 50 50 50 50 50 50 50]; 
Zs=diag(source); 
Ifeed=inv(Z+Zs)*V; 
 
r=1; 
  
%--------------------------------------------------------------- 
%dipole1 
x1=-0.3267*lamda; %(x=-0.04,y=-0.04,0) 
y1=-0.3267*lamda; 
z1=0; 
d1=[x1 y1 z1]; 
  
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x1,y1,z1,A,theta,phi,radius);  
[Etheta1 
Ephi1]=calculateEfield2deg(d1,Ifeed(1,r),r1,r2,r3,theta_prime); 
[Et1 
Ep1]=transformE2deg(Etheta1,Ephi1,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
- 
%dipole2 
x2=0.3267*lamda;%(x=0.04,-0.04,0) 
y2=-0.3267*lamda; 
z2=0; 
d2=[x2 y2 z2]; 
  
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x2,y2,z2,A,theta,phi,radius);  
[Etheta2 
Ephi2]=calculateEfield2deg(d2,Ifeed(2,r),r1,r2,r3,theta_prime); 
[Et2 
Ep2]=transformE2deg(Etheta2,Ephi2,theta,phi,theta_prime,phi_prime,A)
; 
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%-------------------------------------------------------------------
-- 
%dipole3 
x3=0.3267*lamda;%(0.04,0.04,0) 
y3=0.3267*lamda; 
z3=0; 
d3=[x3 y3 z3]; 
 
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x3,y3,z3,A,theta,phi,radius);  
[Etheta3 
Ephi3]=calculateEfield2deg(d3,Ifeed(3,r),r1,r2,r3,theta_prime); 
[Et3 
Ep3]=transformE2deg(Etheta3,Ephi3,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
--- 
%dipole4 
x4=-0.3267*lamda;%(-0.04,0.04,0) 
y4=0.3267*lamda; 
z4=0; 
d4=[x4 y4 z4]; 
  
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x4,y4,z4,A,theta,phi,radius);  
[Etheta4 
Ephi4]=calculateEfield2deg(d4,Ifeed(4,r),r1,r2,r3,theta_prime); 
[Et4 
Ep4]=transformE2deg(Etheta4,Ephi4,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
------- 
%dipole5 
x5=0; 
y5=-0.04; 
z5=0.04; 
d5=[x5 y5 z5]; 
  
A=calculateA(-pi/2,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x5,y5,z5,A,theta,phi,radius);  
[Etheta5 
Ephi5]=calculateEfield2deg(d5,Ifeed(5,r),r1,r2,r3,theta_prime); 
[Et5 
Ep5]=transformE2deg(Etheta5,Ephi5,theta,phi,theta_prime,phi_prime,A)
; 
%-------------------------------------------------------------------
------- 
%dipole6 
x6=-0.04;  %(-0.04,0,0.04) 
y6=0; 
z6=0.04; 
d6=[x6 y6 z6]; 
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A=calculateA(0,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x6,y6,z6,A,theta,phi,radius);  
[Etheta6 
Ephi6]=calculateEfield2deg(d6,Ifeed(6,r),r1,r2,r3,theta_prime); 
[Et6 
Ep6]=transformE2deg(Etheta6,Ephi6,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
------- 
%dipole7 
x7=0.04;     
y7=0*lamda; 
z7=0.04;%*lamda; 
d7=[x7 y7 z7]; 
  
A=calculateA(0,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x7,y7,z7,A,theta,phi,radius);  
[Etheta7 
Ephi7]=calculateEfield2deg(d7,Ifeed(7,r),r1,r2,r3,theta_prime); 
[Et7 
Ep7]=transformE2deg(Etheta7,Ephi7,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
----- 
%dipole8 
x8=0;%32666*lamda;  (0,0.04,0.04) 
y8=0.04;%65333*lamda; 
z8=0.04;%32666*lamda; 
d8=[x8 y8 z8]; 
  
A=calculateA(-pi/2,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x8,y8,z8,A,theta,phi,radius);  
[Etheta8 
Ephi8]=calculateEfield2deg(d8,Ifeed(8,r),r1,r2,r3,theta_prime); 
[Et8 
Ep8]=transformE2deg(Etheta8,Ephi8,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
---- 
%dipole9 
x9=0;%.32666*lamda;(0,-0.04,-0.04) 
y9=-0.04; 
z9=-0.04;%32666*lamda; 
d9=[x9 y9 z9]; 
  
A=calculateA(-pi/2,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x9,y9,z9,A,theta,phi,radius);  
[Etheta9 
Ephi9]=calculateEfield2deg(d9,Ifeed(9,r),r1,r2,r3,theta_prime); 
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[Et9 
Ep9]=transformE2deg(Etheta9,Ephi9,theta,phi,theta_prime,phi_prime,A)
; 
  
%-------------------------------------------------------------------
----- 
%dipole10 
x10=0.04;%65333*lamda;(0.04,0,-0.04) 
y10=0;%.32666*lamda; 
z10=-0.04;%32666*lamda; 
d10=[x10 y10 z10]; 
  
A=calculateA(0,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x10,y10,z10,A,theta,phi,radius);  
[Etheta10 
Ephi10]=calculateEfield2deg(d10,Ifeed(10,r),r1,r2,r3,theta_prime); 
[Et10 
Ep10]=transformE2deg(Etheta10,Ephi10,theta,phi,theta_prime,phi_prime
,A); 
  
%-------------------------------------------------------------------
------- 
%dipole11 
x11=0;%.32666*lamda;(0,0.04,-0.04) 
y11=0.04;%65333*lamda; 
z11=-0.04;%32666*lamda; 
d11=[x11 y11 z11]; 
  
A=calculateA(-pi/2,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x11,y11,z11,A,theta,phi,radius);  
[Etheta11 
Ephi11]=calculateEfield2deg(d11,Ifeed(11,r),r1,r2,r3,theta_prime); 
[Et11 
Ep11]=transformE2deg(Etheta11,Ephi11,theta,phi,theta_prime,phi_prime
,A); 
  
%-------------------------------------------------------------------
------- 
%dipole12 
x12=-0.04;%     (-0.04,0,-0.04) 
y12=0;%.32666*lamda; 
z12=-0.04;%32666*lamda; 
d12=[x12 y12 z12]; 
  
A=calculateA(0,-pi/2,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime2deg(x12,y12,z12,A,theta,phi,radius);  
[Etheta12 
Ephi12]=calculateEfield2deg(d12,Ifeed(12,r),r1,r2,r3,theta_prime); 
[Et12 
Ep12]=transformE2deg(Etheta12,Ephi12,theta,phi,theta_prime,phi_prime
,A); 
%-------------------------------------------------------------------
------- 
%summation of both E dipoles 
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E_theta=Et1+Et2+Et3+Et4+Et5+Et6+Et7+Et8+Et9+Et10+Et11+Et12; 
E_phi=Ep1+Ep2+Ep3+Ep4+Ep5+Ep6+Ep7+Ep8+Ep9+Ep10+Ep11+Ep12; 
 
Efield=sqrt((abs(E_theta)).^2+(abs(E_phi)).^2); 
 
maxi=max(max(Efield)); 
          
Efield2=Efield/maxi; 
  
val1=46;val2=51; 
t=theta(val1)*180/pi 
p=phi(val2)*180/pi 
 
Sh_p=Efield(val1,:)/maxi; %normalized far-field pattern 
Sv_p=Efield(:,val2)/maxi; %normalized far-field pattern 
threeDplot(Efield2,theta,phi); %plot 3D far-field pattern 
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Appendix C: 3D 
Algorithm (2x2 dipole 
arrays) with Genetic 

Algorithm 

%main program 
% sga.m 
% 
% This script implements the Simple Genetic Algorithm described 
% in the examples section of the GA Toolbox manual. 
% 
% Author:     Andrew Chipperfield 
% History:    23-Mar-94     file created 
% 
% tested under MATLAB v6 by Alex Shenfield (22-Jan-03) 
  
NIND = 40;           % Number of individuals per subpopulations 
MAXGEN = 700;        %%usually 700 maximum Number of generations 
GGAP = .9;           % Generation gap, how many new individuals are 
created 
NVAR = 4;           % Number of variables,four dipoles 
PRECI = 8;          % Precision of binary representation 
 
% Build field descriptor 
   FieldD = [rep([PRECI PRECI],[1, NVAR]); rep([0 -pi;1 pi],[1, 
NVAR]);... 
              rep([0 0; 0 0; 1 1;1 1], [1, 
NVAR])];%len,lb,ub,code,scale,,lbinc,ubinc 
  
% Initialise population 
   Chrom = crtbp(NIND, 2*NVAR*PRECI);%row=ind,col=nvar*preci 
  
% Reset counters 
   Best = NaN*ones(MAXGEN,1);    % best in current population 
   gen = 0;            % generational counter 
  
% Evaluate initial population 
   ObjV = objfun1(bs2rv(Chrom,FieldD)); % call objfun1 
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% Track best individual and display convergence 
   Best(gen+1) = min(ObjV);%min 
   plot(abs(Best),'ro');xlabel('generation'); ylabel('(f(x))'); 
   text(0.5,0.95,['Best = ', 
num2str(abs(Best(gen+1)))],'Units','normalized');    
   drawnow;         
   phen1=bs2rv(Chrom,FieldD); 
  
% Generational loop 
   while gen < MAXGEN, 
    % Assign fitness-value to entire population 
       FitnV = ranking(ObjV); 
  
    % Select individuals for breeding 
    %select choice a)sus=stochastic universal sampling, 
b)rws=rhoullete 
    %wheel selection, 
       SelCh = select('sus', Chrom, FitnV, GGAP); 
  
    % Recombine selected individuals (crossover) 
       SelCh = recombin('xovsp',SelCh,0.7); 
  
    % Perform mutation on offspring 
       SelCh = mut(SelCh); 
  
    % Evaluate offspring, call objective function 
       ObjVSel = objfun1(bs2rv(SelCh,FieldD)); 
  
    % Reinsert offspring into current population 
       [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); 
  
    % Increment generational counter 
       gen = gen+1; 
  
    % Update display and record current best individual 
       Best(gen+1) = min(ObjV);%min 
       plot(abs(Best),'ro'); xlabel('generation'); 
ylabel('(f(x))'); 
       text(0.5,0.95,['Best = ', 
num2str(abs(Best(gen+1)))],'Units','normalized'); 
       drawnow; 
   end  
  
   phen=bs2rv(Chrom,FieldD); 
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% OBJFUN1.M      (OBJective function for De Jong's FUNction 1) 
% 
% This function implements the De Jong function 1. 
% 
% Syntax:  ObjVal = objfun1(Chrom,rtn_type) 
% 
% Input parameters: 
%    Chrom     - Matrix containing the chromosomes of the current 
%                population. Each row corresponds to one 
individual's 
%                string representation. 
%                if Chrom == [], then special values will be 
returned 
%    rtn_type  - if Chrom == [] and 
%                rtn_type == 1 (or []) return boundaries 
%                rtn_type == 2 return title 
%                rtn_type == 3 return value of global minimum 
% 
% Output parameters: 
%    ObjVal    - Column vector containing the objective values of 
the 
%                individuals in the current population. 
%                if called with Chrom == [], then ObjVal contains 
%                rtn_type == 1, matrix with the boundaries of the 
function 
%                rtn_type == 2, text for the title of the graphic 
output 
%                rtn_type == 3, value of global minimum 
%                 
% 
% Author:     Hartmut Pohlheim 
% History:    26.11.93     file created 
%             27.11.93     text of title and rtn_type added 
%             30.11.93     show Dim in figure title 
%             16.12.93     rtn_type == 3, return value of global 
minimum 
%             01.03.94     name changed in obj* 
%             21.01.03     updated for MATLAB v6 by Alex 
Shenfield 
  
function [ObjVal] = objfun1(Chrom,rtn_type) 
% Dimension of objective function 
   Dim = 8;%8 for 4 vertical dipole array 4 for 2 dipoles 
   Nind= 40; 
% Compute population parameters 
   [Nind,Nvar] = size(Chrom); 
  
   %x=decode(Chrom); 
% Check size of Chrom and do the appropriate thing 
   % if Chrom is [], then define size of boundary-matrix and 
values 
   if Nind == 0 
      % return text of title for graphic output 
      if rtn_type == 2 
         ObjVal = ['DE JONG function 1-' int2str(Dim)]; 
      % return value of global minimum 
      elseif rtn_type == 3 
         ObjVal = 0; 
      % define size of boundary-matrix and values 
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      else    
         % lower and upper bound, identical for all n variables         
         ObjVal = [0 -pi;1 pi]; 
         ObjVal = ObjVal(1:2,ones(Dim,1)); 
      end 
   % if Dim variables, compute values of function 
   elseif Nvar == Dim 
      % function 1, sum of xi^2 for i = 1:Dim (Dim=30) 
      % n = Dim, -5.12 <= xi <= 5.12 
      % global minimum at (xi)=(0) ; fmin=0 
      %ObjVal =-(0.7*abs(sin(pi*(Chrom-3)))./abs(pi*(Chrom-3)));% 
sum((Chrom .* Chrom)')'; 
      % ObjVal = diag(Chrom * Chrom');  % both lines produce the 
same 
   % otherwise error, wrong format of Chrom 
    for id=1:Nind 
    C=Chrom(id,:); 
    [Sw]=compute3(C);  %call compute3(C) function; 
    ObjVal(id)=fitness(Sw); %call fitness(Sw); 
    end 
    
   ObjVal=ObjVal'; 
   else 
      error('size of matrix Chrom is not correct for function 
evaluation'); 
   end    
  
  
% End of function 
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%compute3 function 
function [Sw]=compute3(Chrom) 
  
L=0.5;       
global dist Z; 
ang1=(0.01:10:110)*pi/180; %max_rad-30=lowbound 
ang2=(116:1:164)*pi/180; %lowbound+6:upperbound-6 
ang3=(170:10:359)*pi/180; %upperbound 
ang=[ang1 ang2 ang3]; 
  
theta=ang; 
phi=ang; 
[m,n]=size(theta); 
[s,t]=size(phi); 
r=4.3;                   
arraySize=4; 
  
dist=[-0.4492 -0.4492 0;0.4492 -0.4492 0;0.4492 0.4492 0;-0.4492 
0.4492 0]; 
  
x1(t,n)=0; 
y1(t,n)=0; 
z1=0; 
A(t,n)=0; 
  
V=[Chrom(1,1)*exp(1*j*Chrom(1,2))  Chrom(1,3)*exp(1*j*Chrom(1,4)) 
Chrom(1,5)*exp(1*j*Chrom(1,6)) Chrom(1,7)*exp(1*j*Chrom(1,8))]; 
 
%impedance 
a=73.1+1i*42.5; 
b=-7.68 + 18.44*1i; 
c=13.86 - 4.38*1i; 
Z=[a b c b;b a b c;c b a b;b c b a]; 
  
v_t=V.'; 
Zimp=[50 50 50 50]; 
Zs= diag(Zimp); 
Ifeed=(Z+Zs)\v_t; 
l=3/24.5;       %calculates lamda at f=2.44 GHz 
 
r=1; 
%--------------------------------------------------------------- 
%dipole1 
  
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x1,y1,z1,A,theta,phi,radius);  
[Etheta1 
Ephi1]=calculateEfield(d1,Ifeed(1,r),r1,r2,r3,theta_prime); 
[Et1 
Ep1]=transformE(Etheta1,Ephi1,theta,phi,theta_prime,phi_prime,A); 
  
%----------------------------------------------------------------
---- 
%dipole2 
  
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
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[theta_prime 
phi_prime]=findThetaPhiPrime(x2,y2,z2,A,theta,phi,radius);  
[Etheta2 
Ephi2]=calculateEfield(d2,Ifeed(2,r),r1,r2,r3,theta_prime); 
[Et2 
Ep2]=transformE(Etheta2,Ephi2,theta,phi,theta_prime,phi_prime,A); 
  
%----------------------------------------------------------------
----- 
%dipole3 
 
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x3,y3,z3,A,theta,phi,radius);  
[Etheta3 
Ephi3]=calculateEfield(d3,Ifeed(3,r),r1,r2,r3,theta_prime); 
[Et3 
Ep3]=transformE(Etheta3,Ephi3,theta,phi,theta_prime,phi_prime,A); 
 
%----------------------------------------------------------------
------ 
%dipole4 
 
A=calculateA(0,0,0); %(alpha,beta,gamma for dipole 2) 
[theta_prime 
phi_prime]=findThetaPhiPrime(x4,y4,z4,A,theta,phi,radius);  
[Etheta4 
Ephi4]=calculateEfield(d4,Ifeed(4,r),r1,r2,r3,theta_prime); 
[Et4 
Ep4]=transformE(Etheta4,Ephi4,theta,phi,theta_prime,phi_prime,A); 
  
%----------------------------------------------------------------
---------- 
%summation of both E fields 
 
E_theta=Et1+Et2+Et3+Et4; 
E_phi=Ep1+Ep2+Ep3+Ep4; 
 
Efield=sqrt((abs(E_theta)).^2+(abs(E_phi)).^2); 
 
maxi=max(max(Efield)); 
 
row=13; 
%theta cut at theta=90 deg 
Sw=(Efield(row,:)/maxi);%Sw(theta=90,:)row vector[x x x x ....] 
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%fitness function calculated 
function z=fitness(Sw) 
  
max_rad=7*pi/9;   %steer the beam to the desired 
direction 
[Sd ang]=desiredcosine(max_rad); %call desiredcosine function  
  
[Q c]=size(ang); 
P02=0.05; 
 
total=0; 
for i=1:c 
total=total+abs(Sd(1,i)-Sw(1,i));%compare the GA pattern with 
desired cosine pattern 
end 
  
z=-1/(1+P02*total); %calculate the cost function for each 
individual 
 

%desiredcosine is the desired pattern 
function [Sd ang]=desiredcosine(max_rad) 
  
delta=30*pi/180; 
  
ang1=(0.01:10:110)*pi/180;%max_rad-30=lowbound 
ang2=(116:1:164)*pi/180;%lowbound+6:upperbound-6 
ang3=(170:10:359)*pi/180;%upperbound 
ang=[ang1 ang2 ang3]; 
[r c]=size(ang); 
low_bound=max_rad-delta; 
upper_bound=max_rad+delta; 
 
for i=1:c 
    if ang(i)>low_bound&&ang(i)<upper_bound 
        Sd(i)=cos(pi/2*((ang(i)-max_rad)/delta)); 
    else 
        Sd(i)=0.3;           
    end 
end 
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Appendix D: Effects of 
Element Spacing and 

Orientation on the Far-
field Pattern of Four 

Dipole Antenna Arrays 

D.1 Parameters Variation 

This appendix provides parameters variation using the 3-D algorithm in order to 

observe its changes to the pattern of 2x2 dipole antenna array. The simulations 

are used to study the range of accuracy of four dipole arrays in measurement set-

up. For example, if the far-field pattern alters tremendously even though the 

spacing of the four dipoles array is changed by small amount, then the 

measurement process will be pointless. It is because the dipole antennas are 

handmade, thus they are not in perfect arrangement and prone to errors. 

Therefore, it presents an obstacle to the measurement set-up to ensure that the 

position and angle of the dipole elements are as close as possible to the ones 

being used in simulation. Several parameters are varied in these simulations: 

spacing in parallel, spacing in echelon, and slanted angle of dipole antennas. 

The simulation may be divided into few sections:  

1) Design of the sample (for example 4 dipoles array) used in the 

measurement study. 

2) Spacing in parallel variation. 

3) Spacing in echelon variation. 

4) Spacing with dipole elements are tilted in certain angles.
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Figure D-2: The normalised azimuth far-field radiation pattern for a parallel 
dipole array computed using a 3-D algorithm. 

D.3 Calculation of the Array Factor of Four Dipoles 

The array factor demonstrating the far-field pattern in Figure D-2 can be 

calculated using the 3-D algorithm. It is observed that two main beams, a deep 

null approximately at angle 62° and the second null is approximately at 125° are 

formed in Figure D-2. 

The main beams and nulls could be derived from the array factor of four 

dipoles:  

,ߠ)ܨܣ ߶) = ෍ ௡ସܣ
௡ୀଵ ݁௝[୩ୟ ୱ୧୬ ఏబ ୡ୭ୱ(థబିథ೙)ାఈ೙]                                                  (d − 1) 

,ߠ)ܨܣ ߶) = ,ߠ)ଵܨܣ ߶) ,ߠ)ଶܨܣ + ߶) ,ߠ)ଷܨܣ + ߶) + ,ߠ)ସܨܣ  ߶)                (d − 2) 
where ܨܣଵ(ߠ, ߶) = 0.3454݁௝ቂమഏഊ ×଴.଺ଷହଶఒ×ୱ୧୬ ఏ ୡ୭ୱቀథିఱഏర ቁାభరఴ.మఱഏభఴబ ቃ 
,ߠ)ଶܨܣ ߶) = 0.2066݁௝ቂଶగఒ ×଴.଺ଷହଶఒ ×ୱ୧୬ ఏ ୡ୭ୱቀథି଻గସ ቁିଵ଻ହ.ଵସగଵ଼଴ ቃ 
,ߠ)ଷܨܣ ߶) = 0.2608݁௝ቂଶగఒ ×଴.଺ଷହଶఒ ×ୱ୧୬ ఏୡ୭ୱቀథିగସቁିଵଶଽ.଺ସగଵ଼଴ ቃ 
,ߠ)ସܨܣ ߶) = 0.1565݁௝[ଶగఒ ×଴.଺ଷହଶఒ ×ୱ୧୬ ఏୡ୭ୱቀథିଷగସ ቁିଵ଻ଽ.ଽସగଵ଼଴ ] 

 

(d − 2a)
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Equation (d-2) is obtained by applying the amplitude and phase excitation 

from Table 28. The total AF for maximum beam of (θ0, ߶଴) at (90°, 100°) and 

(90°, 355°) is: ߠ)ܨܣ, ߶) ≈ 1                                                     (d − 3) 
The nulls could be obtained by applying the position of the null (for 

example approximately at (90°, 62°)) in equation (d-2) to obtain: 90)ܨܣ°, 62°) = 0.3454݁௝(ି଻଴.ସଷ°) +  0.2066݁௝(ିଶସଶ°) + 0.2608݁௝(଼ଽ°) + 0.1565݁௝(ିଵଵଷ°) = 0.11568 − ݆0.32544 − 0.1 + ݆0.182 + 0.005 + ݆0.2608 − 0.0611 − ݆0.144      = −0.0409 − ݆0.02664                                                                                             (d − ,ௗ஻(90°ܨܣ (4 62°) =    ܤ݀ 26− 
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